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Abstract 
The process manufacturing sector is increasingly using the collection and analysis of data to 

improve productivity, sustainability, and product quality. The endpoint of this transformation 

is processes that automatically adapt to demands in real-time. In-line and on-line sensors 

underpin this transition by automatically collecting the real-time data required to inform 

decision-making. Each sensing technique possesses its own advantages and disadvantages 

making them suitable for specific applications. Therefore, a wide range of sensing solutions 

must be developed to monitor the diverse and often highly variable operations in process 

manufacturing. Ultrasonic (US) sensors measure the interaction of mechanical waves with 

materials. They have benefits of being in-line, real-time, non-destructive, low in cost, small in 

size, able to monitor opaque materials, and can be applied non-invasively.  

Machine Learning (ML) is the use of computer algorithms to learn patterns in data to perform 

a task such as making predictions or decisions. The correlations in the data that the ML 

models learn during training have not been explicitly programmed by human operators. 

Therefore, ML is used to automatically learn from and analyse data. There are four main 

types of ML: supervised, unsupervised, semi-supervised, and reinforcement learning. 

Supervised and unsupervised ML are both used in this thesis. Supervised ML maps inputs to 

outputs during training with the aim being to create a model that accurately predicts the 

outputs of data that was not previously used during training. In contrast, unsupervised 

learning only uses input data in which patterns are discovered. Supervised ML is being 

increasingly combined with sensor measurements as it offers several distinct advantages 

over conventional calibration methods, these include: reduced time for development, 

potential for more accurate fitting, methods to encourage generalisation across parameter 

ranges, direct correlations to important process information rather than material properties, 

and ability for continuous retraining as more data becomes available.  

The aim of this thesis was to develop ML methods to facilitate the optimal deployment of US 

sensors for process monitoring applications in industrial environments. To achieve this, the 

thesis evaluates US sensing techniques and ML methods across three types of process 

manufacturing operations: material mixing, cleaning of pipe fouling, and alcoholic 

fermentation of beer. Two US sensing techniques were investigated: a non-invasive, 

reflection-mode technique, and a transmission-based method using an invasive US probe 

with reflector plate. The non-invasive, reflection-mode technique is more amenable to 

industrial implementation than the invasive probe given it can be externally retrofitted to 

existing vessels. Different feature extraction and feature selection methods, algorithms, and 

hyperparameter ranges were explored to determine the optimal ML pipeline for process 

monitoring using US sensors. This facilitates reduced development time of US sensor and 

ML combinations when deployed in industrial settings by recommending a pipeline that has 

been trialled over a range of process monitoring applications. Furthermore, methods to 

leverage previously collected datasets were developed to negate or reduce the burden of 

collecting labelled data (the outputs required during ML model training and often acquired by 

using reference measurements) for every new process monitoring application. These 

included unlabelled and labelled domain adaptation approaches.  

Both US sensing techniques investigated were found to be similarly accurate for process 

monitoring. To monitor the development of homogeneity during the blending of honey and 

water the non-invasive, reflection-mode technique achieved up to 100 % accuracy to classify 

whether the materials were mixed or non-mixed and an R2 of 0.977 to predict the time 

remaining (or time since) complete mixing was achieved. To monitor the structural changes 

during the mixing of flour and water, the aformentioned sensing method achieved an 
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accuracy of 92.5 % and an R2 of 0.968 for the same classification and regression tasks. 

Similarly, the sensing method achieved an accuracy of up to 98.2 % when classifying 

whether fouling had been removed from pipe sections and R2 values of up 0.947 were 

achieved when predicting the time remaining until mixing was complete. The non-invasive, 

reflection-mode method also achieved R2 values of 0.948, Mean Squared Error (MSE) 

values of 0.283, and Mean Absolute Error (MAE) values of 0.146 to predict alcohol by 

volume percentage of alcohol during beer fermentation. In comparison, the transmission-

based sensing method achieved R2 values of 0.952, MSE values of 0.265, and MAE values 

of 0.136 for the same task. Furthermore, the transmission-based method achieved 

accuracies of up to 99.8 % and 99.9 % to classify whether ethanol production had started 

and whether ethanol production had finished during an industrial beer fermentation process.  

The material properties that affect US wave propagation are strongly temperature 

dependent. However, ML models that omitted the process temperature were comparable in 

accuracy to those which included it as an input. For example, when monitoring laboratory 

scale fermentation processes, the highest performing models using the process temperature 

as a feature achieved R2 values of 0.952, MSE values of 0.265, and MAE values of 0.136 to 

predict the current alcohol concentration, compared with R2 values of 0.948, MSE values of 

0.283, and MAE values of 0.146 when omitting the temperature. Similarly, when transferring 

models between mixing processes, accuracies of 92.2 % and R2
 values of 0.947 were 

achieved when utilising the process temperature compared with 92.1% and 0.942 when 

omitting the temperature. When transferring models between cleaning processes, inclusion 

of the process temperature as a feature degraded model accuracy during classification tasks 

as omitting the temperature produced the highest accuracies for 6 out of 8 tasks. Mixed 

results were obtained for regression tasks where including the process temperature 

increased model accuracy for 3 out of 8 tasks. Overall, these results indicate that US 

sensing, for some applications, is able to achieve comparable accuracy when the process 

temperature is not available. The choice of whether to include the temperature as a feature 

should be made during the model validation stage to determine whether it improves 

prediction accuracy.  

The optimal feature extraction, feature selection, and ML algorithm permutation was 

determined as follows: Features were extracted by Convolutional Neural Networks (CNNs) 

followed by Principal Component Analysis (PCA) and inputted into deep neural networks 

with Long Short-Term Memory (LSTM) layers. The CNN was pre-trained on an auxiliary task 

using previously collected US datasets to learn features of the waveforms. The auxiliary task 

was to classify the dataset from which each US waveform originated. PCA was applied to 

reduce the dimensionality of the input data and enable the use of additional features, such 

as the US time of flight or measures of variation between consecutively acquired waveforms. 

This CNN and PCA feature extraction method was shown to produce more informative 

features from the US waveform compared to a traditional, coarse feature extraction 

approach, achieving higher accuracy on 65 % of tasks evaluated. The coarse feature 

method used commonly extracted parameters from US waveforms such as the energy, 

standard deviation, and skewness. LSTM units were used to learn the trajectory of the 

process features and so enable the use of information from previous timesteps to inform 

model prediction. Using LSTM units was shown to outperform neural networks with feature 

gradients used as inputs to incorporate information from previous timesteps for all process 

monitoring applications. Multi-task learning also showed improvements in learning feature 

trajectories and model accuracy (improving regression accuracy for 8 out of 18 tasks), 

however, at the expense of a greater number of hyperparameters to optimise. The choice to 

use multi-task learning should be evaluated during the validation stage of model 

development.  
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Unlabelled and labelled domain adaptation were investigated to transfer ML knowledge 

between similar processes. Unlabelled domain adaptation was used to transfer trained ML 

models between similar mixing and similar cleaning processes to negate the need to collect 

labelled data for a new task. Transfer Component Analysis was compared to a Single 

Feature transfer method. Transferring a single feature was found to be optimal, achieving 

classification accuracies of up to 96.0% and 98.4% to predict whether the mixing or cleaning 

processes were complete and R2 of up to 0.947 and 0.999 to predict the time remaining for 

each process, respectively. The Single Feature method was most accurate as it was most 

representative of the changing material properties at the sensor measurement area. Training 

ML models across a greater process parameter range (a greater range of temperatures; 

19.3 to 22.1°C compared with 19.8 to 21.2°C) or multiple datasets improved transfer 

learning to further datasets by enabling the models to adapt to a wider range of feature 

distributions. Labelled domain adaptation increased model accuracy on an industrial 

fermentation dataset by transferring ML knowledge from a laboratory fermentation dataset. 

Federated learning was investigated to maintain dataset privacy when applying transfer 

learning between datasets. The federated learning methodology performed better than the 

other methods tested, achieving higher accuracy for 14 out of 16 machine learning tasks 

compared with the base case model which was trained using data solely from the industrial 

fermentation. This was attributed to federated learning improving the gradient descent 

operation during network optimisation. During the federated learning training strategy, the 

local models were trained for a full epoch on each dataset before network weights were sent 

to the global model. In contrast, during the non-federated learning strategy, batches from 

each dataset were interspersed. Therefore, it is recommended that the order that the data is 

passed to the model during training should be evaluated during the validation stage.  

Overall, there are two main contributions from this thesis: Development of the ML pipeline for 

process monitoring using US sensors, and the development of unlabelled and labelled 

domain adaptation methods for process monitoring using US sensors. The development of 

an ML pipeline facilitates reduced time for the deployment of US sensor and ML 

combinations in industrial settings by recommending a method that has been trialled over a 

range of process monitoring applications. The unlabelled and labelled domain adaptation 

methods were developed to leverage previously collected datasets. This negates or reduces 

the burden of collecting labelled data in industrial environments. Furthermore, the pipeline 

and domain adaptation methodologies are evaluated using a non-invasive, reflection-mode 

US sensing technique. This technique is industrially relevant as it can be externally 

retrofitted onto existing process equipment.  

The novelty contained within this thesis can be summarised as follows:  

• The use of CNNs and LSTM layers for process monitoring using US sensor 

data: CNNs were used to extract spatial-invariant features from US sensor data to 

overcome problems of features shifting in the time domain due to changes in 

temperature or sound velocity. LSTM units were used for their ability to analyse 

sequences and understand temporal dependencies, critical for monitoring processes 

that develop over time. Feature extraction using CNNs was shown to produce more 

informative features from the US waveform compared to a traditional, coarse feature 

extraction approach, achieving higher accuracy on 65 % of tasks evaluated. LSTM 

units were shown to outperform neural networks with feature gradients used as 

inputs to incorporate information from previous timesteps for all process monitoring 

applications.  

• Evaluating the omission of the process temperature as a feature for process 

monitoring using US sensor data: This indicates whether the US sensor and ML 
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combinations could be used in industrial applications where measurement of the 

process temperature is not available. Overall, it was found that ML models which 

omitted the process temperature were comparable in accuracy to those which 

included it as an input (for example, R2 values of 0.952, MSE values of 0.265, and 

MAE values of 0.136 when including temperature compared with R2 values of 0.948, 

MSE values of 0.283, and MAE values of 0.146 were obtained when omitting the 

temperature to predict the current alcohol concentration during laboratory scale 

fermentation processes).  

• The use of labelled and unlabelled domain adaptation for US data for process 

monitoring: Unlabelled domain adaptation was used to transfer trained ML models 

between similar mixing and similar cleaning processes to negate the need to collect 

labelled data for a new task. Labelled domain adaptation increased model accuracy 

on an industrial fermentation dataset by transferring ML knowledge from a laboratory 

fermentation dataset.  

• The use of labelled and unlabelled domain adaptation on features extracted 

from US waveforms: This allows the domain adaptation methods to be used for 

diverse US waveforms as, instead of aligning the US sensor data, the US waveform 

features are used which provide information about the process being monitored as 

they develop over time.  

• The use of federated learning and multi-task learning with US data: Federated 

learning was investigated to maintain dataset privacy when applying transfer learning 

between datasets. Multi-task learning was investigated to aid LSTM unit learning of 

the process trajectory. The federated learning methodology performed better than the 

other methods tested, achieving higher accuracy for 14 out of 16 ML tasks compared 

with the base case model. Multi-task learning also showed improvements in learning 

feature trajectories and model accuracy (improving regression accuracy for 8 out of 

18 tasks evaluated), however, at the expense of a greater number of 

hyperparameters to optimise. 

• The use of data augmentation for US data for process monitoring applications: 

Data augmentation was a component of the convolutional feature extraction method 

developed in this thesis. Data augmentation artificially increased the dataset size to 

train the convolutional feature extractor while ensuring that features specific to each 

waveform, rather than the position or magnitude of features, were learned. This 

improved the feature-learning auxiliary task the CNN was trained to perform which 

classified the dataset from which each previously collected US waveform originated.   
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1 Introduction to thesis  

1.1 Motivation 
The manufacturing sector is increasingly utilising developments in digital technologies, 

especially advances in computing power and connectivity, to integrate processes 

(Ghobakhloo, 2020). This is often termed as Industry 4.0 or the fourth industrial revolution 

and is anticipated to culminate in entire value chains being optimised through autonomous 

data analysis (Kang et al., 2016). In-line and on-line sensors underpin this transformation, 

where in-line specifies techniques that directly measure the process stream and on-line 

techniques utilise automatic sampling methods (De Beer et al., 2011), by automatically 

collecting the real-time data required to inform decision-making. Discrete manufacturing is 

leading process manufacturing in the deployment of digital technologies owing to the simpler 

and less variable processes in operation (Fisher et al., 2018). Therefore, a wide range of 

sensing options must be developed for the process manufacturing sector. Low power 

(intensities below 1 Wcm2), high frequency (greater than 100 kHz) ultrasonic (US) sensors 

monitor the interaction of materials with mechanical sound waves. Ultrasonic sensors have 

advantages of being low cost, small in size, able to monitor opaque materials, low in power 

consumption, able to operate non-invasively, non-destructive, real-time, in-line, and do not 

cause changes to the structure of the material through which they pass (Henning and 

Rautenberg, 2006). These attributes will ensure that US sensors are the optimal sensor 

choice for certain process monitoring applications and necessitates research to evaluate 

their use across a range of processes.  

Machine Learning (ML) is the use of computer algorithms to learn patterns in data to perform 

a task such as making predictions or decisions (Shanthamallu et al., 2018). The correlations 

in the data that the ML models learn during training have not been explicitly programmed by 

human operators. There are four main types of ML: supervised, unsupervised, semi-

supervised, and reinforcement learning (Ayodele, 2010), of which supervised and 

unsupervised learning are used in this thesis. Supervised ML maps inputs to outputs during 

training with the aim being to create a model that accurately predicts the outputs of data that 

was not previously used during training (Ge, 2017). In contrast, unsupervised learning only 

uses input data in which patterns are discovered (Ayodele, 2010). Supervised ML is being 

increasingly combined with sensor measurements as it offers several distinct advantages 

over conventional calibration methods: Firstly, ML can provide a reduced development time 

through collection of data over the natural variability of the process conditions opposed to 

creating calibration curves over a range for each process parameter (e.g., temperature, 

pressure, dissolved gas concentration etc.). Furthermore, the more complex algorithms used 

in ML can provide more accurate fitting and negate the reliance of additional measurements 

such as the process temperature. Correct selection of validation methods can encourage ML 

models to generalise outside of the parameter ranges it was trained on. Finally, the sensor 

data can be directly correlated to important process information opposed to material 

properties. For example, by creating ML models that predict the processing time remaining 

opposed to the density of the process material, the models may learn different features more 

useful to predict the desired task.  

During application in industrial environments, ML models must be developed that are able to 

accurately predict information about the process being monitored from new, real-time US 

data. This requires two criteria to be met: Firstly, the US sensor and ML combination should 

achieve the level of accuracy desired by the manufacturer and, secondly, the collection of 

data should not present an unacceptable level of disruption to the manufacturer. For the first 

criteria, selection of feature extraction methodologies, hyperparameter values, and 
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algorithms utilised with US sensor data should be optimised to achieve the desired level of 

accuracy. For the second criteria, the sensing approach should be chosen according to the 

manufacturer’s requirements, e.g., whether invasive sensing is acceptable or whether a non-

invasive sensing approach must be used. For example, in the food and drink industry, 

invasive probes may be discounted for some applications due to risk of contamination 

between product batches (Bowler et al, 2020). During data collection, normal production 

schedules may have to be postponed in order to sample the process or to obtain data over a 

wider range of process parameters than observed during normal operation. Therefore, 

methods are required to minimise the volume of data required to collect whilst achieving the 

desired level of accuracy.  

1.2 Aim and objectives  
Aim: This thesis aimed to develop ML methods to facilitate optimal deployment of US 

sensors for process monitoring applications in industrial environments. 

Objectives:  

• To collect US sensor data for process monitoring applications that enable the 

thesis conclusions to be expected to extend to industrial environments. Three 

types of processes were monitored: material mixing, cleaning of pipe sections, and 

alcoholic fermentation covering the full range of impacts to US waveforms during 

process monitoring (see Section 3.1 Experimental datasets). Furthermore, the data 

was collected at sufficient timescale granularity and the US sensor data was shown 

to contain useful information about the processes (see Section 9 Discussion).  

• To evaluate different US sensing techniques to determine their benefits and 

limitations for industrial process monitoring. Two US sensing techniques were 

investigated: a non-invasive, reflection-mode technique that can be externally 

retrofitted to existing processing equipment, and an invasive US probe with reflector 

plate.  

• To evaluate different feature extraction, feature selection, algorithm types and 

hyperparameter values to determine the optimal ML pipeline for process 

monitoring using US measurements. This reduces time for ML model development 

in industrial environments by suggesting ML pipelines that achieve the highest 

accuracy for previous process monitoring tasks.  

• To develop unlabelled domain adaptation methods to utilise previously 

collected datasets and negate the data labelling burden for sensor deployment. 

These methods can be used to transfer ML models between processes without 

requiring labelled data (the outputs required during ML model training and often 

acquired by using reference measurements) and therefore negate disruption to a 

manufacturing process during the data collection stage.  

• To develop labelled domain adaptation methods to utilise previously collected 

datasets, reduce the data labelling burden for sensor deployment, and improve 

ML model accuracy on target processes. These methods can be used to reduce 

disruption to a manufacturing process during the data collection stage.  

1.3 Contributions and novelty  
Overall, there are two main contributions from this thesis: Development of the ML pipeline for 

process monitoring using US sensors, and the development of unlabelled and labelled 

domain adaptation methods for process monitoring using US sensors. To achieve this, the 

thesis evaluates US sensing techniques and ML methods across three types of process 

manufacturing operations: material mixing, cleaning of pipe fouling, and alcoholic 

fermentation of beer. Two US sensing techniques were also investigated: a non-invasive, 
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reflection-mode technique, and a transmission-based method using an invasive US probe 

with reflector plate. Extensive investigation of feature extraction and feature selection 

methods, algorithms, and hyperparameter ranges were used to optimise ML pipeline for 

process monitoring using US sensors. This facilitates reduced development time of US 

sensor and ML combinations when deployed in industrial settings by recommending a 

pipeline that has been trialled over a range of process monitoring applications. Furthermore, 

the unlabelled and labelled domain adaptation methods were developed to leverage 

previously collected datasets and negate or reduce the burden of collecting labelled data for 

every new process monitoring application.  

The novelty contained within this thesis can be summarised as follows:  

• The use of CNNs and LSTM layers for process monitoring using US sensor data. 

CNNs have previously been combined with US measurements for applications such 

as damage detection (Rai and Mitra, 2021; Rautela et al., 2021) and LSTMs for 

applications such as flow regime identification (Nguyen and Park, 2020; Ren et al., 

2021).  

• Evaluating the omission of the process temperature as a feature for process 

monitoring using US sensor data. This indicates whether the US sensor and ML 

combinations could be used in industrial applications where measurement of the 

process temperature is not available. Previous works have either inputted the 

process temperature into ML models (Wallhäußer et al., 2014), performed 

experiments at a constant temperature (Resa et al., 2004), or performed calibration 

procedures across a range of temperatures (Amer et al., 2015).  

• The use of labelled and unlabelled domain adaptation for US data for process 

monitoring. Domain adaptation has been previously used with US measurements to 

monitor boreholes in oil fields (Gao et al., 2021) and for damage visualisation in plate 

structures (Alguri et al., 2021).  

• The use of labelled and unlabelled domain adaptation on features extracted from US 

waveforms. Domain adaptation has previously been applied to the US waveforms 

opposed to the extracted features (Gao et al., 2021; Alguri et al., 2021).  

• The use of federated learning and multi-task learning with US data.  

• The use of data augmentation for US data for process monitoring applications. Data 

augmentation has previously been used with US sensor measurements for 

applications such as weldment defect classification (Munir et al., 2019; Munir et al., 

2020).  

1.4 Thesis structure  
This thesis is constructed from journal publications (Figure 1). Section 2 presents a 

literature review accompanying these publications. It is a review paper titled: “A review of 

ultrasonic sensors and machine learning methods to monitor industrial processes”. This 

review article was published in Ultrasonics on 28th May 2022. The article reviews process 

monitoring using US sensors and ML combined with US sensors. It reviews feature 

extraction, feature selection, algorithm choice, and hyperparameters for US waveforms, 

along with other topics such as data augmentation, domain adaptation, semi-supervised 

learning and machine learning interpretability. Recommendations for combining US 

measurements with ML for process monitoring are also provided to the reader using the 

ideas generated in this thesis. The review also includes the publications produced as part of 

this thesis, and therefore contextualises their position in the wider literature.  
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Section 3 presents a single methodology section for the work included in this thesis. The 

collection of the datasets used in these works are described and explanations of the ML 

methods utilised are included.  

Overall, the articles included in this thesis are separated into two categories; one that 

optimises the ML pipeline for process monitoring using US sensors and the other that 

develops domain adaptation approaches to minimise the data collection burden in industrial 

settings (Figure 1).  

 

Figure 1: A schematic of the articles included in this thesis.  

Section 4 presents a research article titled: “Monitoring Mixing Processes Using Ultrasonic 

Sensors and Machine Learning”. This article was published in Sensors on 25th March 2020. 

Two mixing processes were monitored: namely, honey-water blending and flour-water batter 

mixing. Extensive feature extraction, feature selection, and algorithms were used for 

classification and regression tasks. The novelty of this work was the combination of an 

industrially relevant non-invasive, reflection-mode US sensing technique with ML to monitor 

mixing processes. Furthermore, the use of Long Short-Term Memory (LSTM) layers and 

Convolutional Neural Networks (CNN) for process monitoring using US sensors was novel. 

The main conclusions from this work were that using information from previous time steps 

was vital for accuracy on most tasks and, specifically, that flexible use of previous time steps 

was required. For example, LSTMs and CNNs, which were able to learn how far back in the 

process history to use previous US measurements, performed better than Artificial Neural 

Networks (ANNs) which used a fixed feature lag time.  

Authors: Bowler A.L., Bakalis S., Watson N.J. 

Author contributions (as published): Conceptualization, A.L.B., and N.J.W.; Methodology, 

A.L.B., N.J.W Software, A.L.B.; Validation, A.L.B.; Formal Analysis, A.L.B.; Investigation, 

A.L.B.; Resources, A.L.B., and N.J.W; Data Curation, A.L.B.; Writing—Original Draft 

Preparation, A.L.B.; Writing—Review and Editing, A.L.B., N.J.W., and S.B.; Visualization, 

A.L.B.; Supervision, A.L.B., N.J.W., and S.B.; Project Administration, A.L.B., N.J.W.; Funding 

Acquisition, N.J.W. All authors have read and agreed to the published version of the 

manuscript. 
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Section 5 presents a research article titled: “Predicting Alcohol Concentration during Beer 

Fermentation Using Ultrasonic Measurements and Machine Learning”. This article was 

published in Fermentation on 4th March 2021. The novelty of this work was the combination 

of ML with a non-invasive, reflection-mode US sensing to monitor fermentation processes. 

Furthermore, the evaluation of ML models omitting the process temperature as a feature 

was also novel. The main conclusions from this work were that comparable ML accuracy 

could be achieved using the non-invasive, reflection-mode sensing method and omitting the 

process temperature as a feature. Furthermore, LSTM layers were again determined to be 

more accurate than using ANNs with a fixed feature time-lag.  

Authors: Bowler, A.L., Escrig, J., Pound, M.P., Watson, N.J. 

Author contributions (as published): Conceptualization, A.L.B., J.E. and N.J.W.; 

methodology, A.L.B., J.E., N.J.W. and M.P.P; software, A.L.B. and J.E.; validation, A.L.B.; 

formal analysis, A.L.B.; investigation, A.L.B. and J.E.; resources, A.L.B.; data curation, 

A.L.B. and J.E.; writing—original draft preparation, A.L.B.; writing—review and editing, 

A.L.B., N.J.W. and M.P.P; visualization, A.L.B.; supervision, N.J.W.; project administration, 

N.J.W.; funding acquisition, N.J.W. All authors have read and agreed to the published 

version of the manuscript. 

Section 6 presents a research article titled: “Convolutional feature extraction for process 

monitoring using ultrasonic sensors”. This article was published in Computers & Chemical 

Engineering on 28th August 2021. The novelty of the work was the convolutional feature 

extraction method presented which consisted of a CNN pre-trained on an auxiliary task 

followed by Principal Component Analysis (PCA) and the incorporation of additional features 

before being inputted into LSTM layers. The auxiliary task was to classify to which dataset 

previously collected US waveform originated from. In this way, the CNN could learn to 

identify features of US waveforms and be used as a feature extractor for new tasks. PCA 

was used to extract a reduced number of orthogonal features and the additional features 

included the variation between consecutively acquired waveforms and the US time of flight. 

Furthermore, the use of multi-task learning with US data and US data augmentation for 

process monitoring was novel. The main conclusions from the work were that the 

convolutional feature extraction method produced more informative features than a coarse 

feature extraction method. The coarse method used conventional features extracted from 

US waveforms such as energy, standard deviation, or skewness. Multi-task learning was 

shown to improve feature trajectory learning.   

Authors: Bowler, A.L., Pound, M.P., Watson, N.J. 

Author contributions (as published): A.L.B.: Conceptualization, Data curation, Formal 

analysis, Investigation, Methodology, Software, Validation, Visualization, Writing – original 

draft, Writing – review & editing. M.P.P.: Conceptualization, Supervision, Writing – review & 

editing. N.J.W.: Funding acquisition, Project administration, Resources, Supervision, Writing 

– review & editing. 

Section 7 presents a research article titled: “Transfer learning for process monitoring using 

reflection-mode ultrasonic sensing”. This article was published in Ultrasonics on 18th May 

2021. This work investigated the transfer of ML models between similar mixing and similar 

cleaning processes using unlabelled domain adaptation. A method transferring a single 

waveform feature was compared with Transfer Component Analysis. The novelty of this 

work was the use of unlabelled domain adaptation with US sensors for process monitoring, 

the use of unlabelled domain adaptation on features of US waveform opposed to the 

waveform itself, and, finally, the investigation of omitting the process temperature as a 
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feature. The main conclusions from this work were that transfer of a single US waveform 

feature was found to be optimal as it was most representative of the changing material 

properties at the sensor measurement area. Further, training on a greater number of source 

datasets, or source datasets with larger variability in feature distributions, improved transfer 

learning.  

Authors: Bowler, A.L., Watson, N.J. 

Author contributions (as published): A.L.B.: Conceptualization, Formal analysis, Funding 

acquisition, Methodology, Project administration, Supervision, Visualization, Writing - review 
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Section 8 presents a research article titled: “Domain Adaptation and Federated Learning for 

Ultrasonic Monitoring of Beer Fermentation”. This article was published in Fermentation on 

1st November 2021. This work compared three labelled domain adaptation methods to 

transfer knowledge for process monitoring using US sensors between different fermentation 

processes. The novelty of this work was the use of labelled domain adaptation for US sensor 

data for process monitoring, the use of labelled domain adaptation on features from US 

waveforms opposed to the waveform itself, the use of federated learning with US sensor 

data, and the use of multi-task learning with US sensor data. The main conclusion from this 

work was that federated learning produced the highest model accuracy. This was because 

the federated learning strategy improved the gradient descent operation during network 

optimisation. During the federated learning training, the local models were trained for a full 

epoch on each dataset before network weights were sent to the global model. In contrast, 

during the non-federated learning strategies, batches from each dataset were interspersed.  
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Section 9 presents the conclusions of the works and Section 10 discusses directions for 

future work. 
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A B S T R A C T   

Supervised machine learning techniques are increasingly being combined with ultrasonic sensor measurements 
owing to their strong performance. These techniques also offer advantages over calibration procedures of more 
complex fitting, improved generalisation, reduced development time, ability for continuous retraining, and the 
correlation of sensor data to important process information. However, their implementation requires expertise to 
extract and select appropriate features from the sensor measurements as model inputs, select the type of machine 
learning algorithm to use, and find a suitable set of model hyperparameters. The aim of this article is to facilitate 
implementation of machine learning techniques in combination with ultrasonic measurements for in-line and on- 
line monitoring of industrial processes and other similar applications. The article first reviews the use of ul
trasonic sensors for monitoring processes, before reviewing the combination of ultrasonic measurements and 
machine learning. We include literature from other sectors such as structural health monitoring. This review 
covers feature extraction, feature selection, algorithm choice, hyperparameter selection, data augmentation, 
domain adaptation, semi-supervised learning and machine learning interpretability. Finally, recommendations 
for applying machine learning to the reviewed processes are made.   

1. Introduction 

The manufacturing sector is increasingly using the collection and 
interpretation of data to inform decision making and improve produc
tivity, sustainability, and product quality [1]. This is part of the fourth 
industrial revolution, which is projected to culminate in Industry 4.0 
and consist of fully interconnected supply chains, processes, and mar
kets where intelligent, automatic decision-making adjusts to demands in 
real-time [2]. This transformation will be realised through the deploy
ment of industrial digital technologies (IDTs) such as smart sensors, edge 
computing, cloud computing, the internet of things (IoT), and machine 
learning (ML). Sensors underpin this transition by acquiring the real- 
time data required to inform the decision-making process. This neces
sitates in-line and on-line sensors which do not require human operators, 
where in-line techniques directly measure the process stream and on- 
line measurements use automatic sampling methods [3]. Sensors can 
be adapted into smart sensors through additional functionalities such as 
wireless IoT connection or by providing some processing of the acquired 
data to reduce the complexity of the data being transferred [4]. Hard
ware solutions are required for process interconnectedness such as edge 

computing, where compute nodes are located close the end devices, or 
cloud computing, where data is transferred to a centralized cloud loca
tion [5]. ML can be used at all levels, from the individual sensors to the 
centralised data in the cloud, to analyse data and provide automatic 
decisions [6]. 

Discrete manufacturing is leading process manufacturing in IDT 
implementation owing to the much simpler processes to be monitored 
[7]. A wider range of sensor options is needed for process manufacturing 
to monitor more complex and often highly variable operations. The 
process analytical technology (PAT) initiative, first introduced to the 
pharmaceutical industry in 2004 and since spread to other sectors such 
as food, demonstrates the desire for greater process understanding [8,9]. 
PAT focuses on real-time sensor measurements, preferably in-line or on- 
line, which monitor critical process parameters that effect critical 
quality attributes of the products. There are many sensor techniques in 
development, each with different advantages and disadvantages making 
them suitable for specific applications [10]. Low power (intensities 
below 1 Wcm2), high frequency (higher than 100 kHz) ultrasonic (US) 
sensors monitor the interaction of materials with mechanical sound 
waves. They benefit from being low cost, small in size, able to monitor 
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opaque materials, low in power consumption, able to operate non- 
invasively, non-destructive, real-time, in-line, and do not cause 
changes to the structure of the material through which they pass [11]. 
These attributes make US sensors the optimal sensor for certain appli
cations and there use has been demonstrated for monitoring industrially 
relevant processes as reviewed in Section 3. Therefore, their appeal to 
industry can be expected to continue to grow. 

The most commonly used US measurements include velocity, 
attenuation, and acoustic impedance [11]. The US velocity is calculated 
by measuring the time of flight and distance the sound wave has trav
elled. Attenuation is measured as a loss in sound wave energy as it passes 
through a material. Attenuation may be caused by absorption in ho
mogeneous materials due to effects such as fluid viscosity, or by scat
tering due to encountering discontinuities in heterogeneous materials 
[12]. Acoustic impedance, the product of the sound velocity and mate
rial density, is typically monitored by measuring the proportion of a 
sound wave reflected from a boundary between two materials [13]. 
Pulse-echo sensing techniques utilise a single sensor to both transmit 
and receive a sound wave after reflection from an interface. Pitch-catch 
techniques use one sensor to produce the sound wave and another to 
receive it [13]. 

Traditionally, physical inversion models were developed from first 
principles to determine material properties from US measurements [14]. 
However, their development becomes challenging in real-life applica
tions where the paths of the sound wave are often complex or the sound 
wave travels through multiple material interfaces. Furthermore, US 
properties are highly dependent on temperature and the presence of gas 
bubbles causes strong reflection of the sound wave, both of which must 
be accounted for [15,16]. As such, calibration procedures are 
commonplace that correlate ultrasonic measurements (such as the speed 
of sound, attenuation, or acoustic impedance) to desired material 
properties across a range of process parameters without defining the 
underlying paths of the sound wave. Calibration procedures also become 
complicated in industrial processes when many parameter ranges must 
be investigated, such as temperature, gas content, and the content of 
other heterogeneities [17]. ML uses algorithms to learn solutions to tasks 
without requiring explicit instructions. Supervised ML is a type of ML 
that maps inputs (or features) to outputs (or target variables) during 
training with the aim of producing a model that accurately predicts the 
outputs of previously unseen input data [18]. Supervised ML offers some 
distinct advantages over calibration methods: (1) The time investment 
for calibration procedures can be eliminated simply by monitoring the 
desired process across its natural parameter variations, so long as these 
are recorded and a reference measurement is available to label the 
sensor data with target variables. (2) ML typically uses a greater number 
of more complex US waveform features compared with calibration 
procedures allowing more US waveform information to be used in 
determining material properties. (3) ML models typically employ more 
complex fitting procedures to map input data to outputs. This allows 
more accurate predictions while minimising over-fitting to the training 
data through model regularisation and validation procedures. (4) Vali
dation procedures can encourage development of ML models that 
accurately predict on new data from outside the range of process pa
rameters that they were trained on. (5) ML models can be continuously 
retrained as more data becomes available to increase prediction accu
racy. (6) Lastly, ML models can correlate sensor data directly to useful 
process information (such as classifying the state of a process or pre
dicting the processing time remaining) rather than to material 
properties. 

However, a lack of knowledge and experience in applying ML is a 
barrier to its deployment for US measurement analysis. To develop an 
adequate ML model, features must be extracted and selected from the US 
waveform, suitable ML algorithms must be identified and investigated, 
and a satisfactory set of hyperparameters must be chosen or found. 
Hyperparameters are any variables that may be selected by the ML 
model developer. The aim of this article is to facilitate the use of ML in 

combination with US sensors for in-line and on-line industrial process 
monitoring. This article first reviews the ability of US measurements to 
monitor processes before reviewing the combination of US measure
ments and ML including other areas such as structural health monitoring 
(SHM). This review covers feature extraction, feature selection and 
unsupervised learning, algorithm choice, hyperparameter selection, 
data augmentation, domain adaptation, semi-supervised learning and 
ML interpretability. Finally, recommendations are provided for 
combining ML and US measurements for the reviewed processes. 

2. Machine learning background 

This review includes supervised, unsupervised, and semi-supervised 
ML methods. Supervised learning uses features as inputs along with 
corresponding target variables as outputs (also known as labelled data) 
[18]. The ML algorithms then map the inputs to these outputs with the 
aim of accurately predicting the target variables for previously unseen 
data. This may be classification tasks, in which the target variables are 
discrete categories, or regression tasks where the targets are continuous 
variables. Unsupervised learning only uses input data for tasks such as 
finding patterns within the data or reducing its dimensionality. Semi- 
supervised learning is typically employed when a large volume of 
unlabelled data and a small volume of labelled data is available [19]. 
This may be due to the time and expense required to label each data 
point. Semi-supervised techniques may be used to pseudo-label previ
ously unlabelled data points using knowledge from the labelled data. 
Then, a more accurate ML model can be constructed using the labelled 
and pseudo-labelled data compared with using the labelled data alone 
[18]. Fig. 1 displays a pipeline for supervised ML model development. 

Labelled data is required to create the set of model outputs, or target 
variables, for the model inputs to be correlated to by the ML algorithm. 
Labelled data may be collected using: an alternative in-line or on-line 
sensing technique as a reference measurement such as imaging, den
sity measurement, or particle sizer; off-line techniques where material 
samples are periodically collected during the process; stopping or sam
pling the process at stages, collecting data using a reference measure
ment technique, and using semi-supervised learning to pseudo-label the 
unlabelled data; using the US sensor measurements combined with prior 
process knowledge to infer process stages; or by transferring ML models 
between similar processes after domain adaptation [20]. Data labelling 
may be challenging in factory environments and its consideration should 
be taken into account throughout the different development stages of 
sensor and ML combinations. 

During the supervised ML pipeline, the input data is usually divided 
in training, validation, and test sets. The training data is used for model 
training. Multiple trained models can be evaluated on the validation 
data to compare between algorithm choice, model architecture, hyper
parameter and feature selection. Finally, the best performing models on 
the validation set are evaluated (or retrained and evaluated using the 
combined training and validation sets) on the test set to provide an 
assessment of the full ML pipeline. Several validation techniques are 
available such as holdout, k-fold cross validation, stratified k-fold cross 
validation, leave-one-out cross validation, leave-p-out cross-validation, 
and nested cross-validation. For a detailed comparison of these methods, 
readers are encouraged to visit [21]. Choice of the training, validation, 
and test data can also be used to evaluate the ML model’s extrapolation 
capability beyond the process parameter bounds it was trained on [22]. 
This is a useful approach for applications with limited training data 
available or highly variable processes. 

The success of ML tasks is in part dependent on the features used. A 
feature is any measurable property of the process being monitored that 
is inputted into an ML model [23]. Features can originate from the US 
signal or from other process parameters such as temperature or flowrate. 
Features may be extracted from the time domain US waveform, the 
frequency domain (for example after Fourier transformation [24,25]), or 
time–frequency domain following wavelet decomposition [26]. Wavelet 
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analysis uses decaying waveforms as the transform function compared 
with the non-decaying sine or cosine waves used in the Fourier trans
form [27]. The continuous wavelet analysis uses a continuous range of 
frequencies to decompose the US signal whereas the discrete wavelet 
transform and wavelet packet transform use discrete frequencies at each 
decomposition. Wavelet packet decomposition performs successive de
compositions on each branch of the original signal whereas the discrete 
wavelet transform only applies successive decompositions to the higher 
frequency signal content [15,27]. 

Feature selection encompasses methods of choosing which features 
to use in ML models or reducing the number of features by using algo
rithms. A common method is Principal Component Analysis (PCA) as 
used in [27–29] which is an unsupervised ML method that linearly 
transforms input variables into new, uncorrelated features called prin
cipal components (PCs) [30]. Feature selection can be used to improve 
ML model fitting by removing redundant information, reducing the 
likelihood of a model overfitting to its training data, providing simpler 
optimisation problems, and reducing the computational requirement to 
train the model [30,31]. However, some information from the input 
features could be lost leading to a reduction in ML model accuracy. 

According to the No Free Lunch theorem, all optimisation techniques 
are equally as accurate when averaged over all possible problems [32]. 
Therefore, the optimal algorithm to use is dependent on the application. 
However, some knowledge of the procedure of each algorithm can help 
in identifying which to try. For classification tasks, support vector ma
chines (SVMs) find a hyperplane that separates two classes of data by 
maximizing its distance from the closest data points from each category. 
In regression tasks, support vector regressors fit lines to continuous data 
by only accounting for the error from data points outside a set distance 
from the fitted line. SVMs generalise well to new data and, as they are 
effective with high dimensional feature spaces, make use of the kernel 
trick for non-linear fitting [33]. Decision and regression trees (DT) use 
conditions which are successively applied to the input data until an 

output decision is reached. They are simple, interpretable, have low 
computational cost, can be graphically represented, but typically have 
lower accuracy compared to other algorithms [34]. Random forests (RF) 
are an ensemble method that combines the predictive performance of 
multiple DTs by, for example, selecting the most common class predicted 
in classification tasks or the mean output for regression tasks [16]. K- 
nearest neighbours (KNN) uses the distance between data points in the 
feature space and a voting procedure of the K nearest training instances 
to determine the class or regression value of the queried data point [16]. 
Artificial neural networks (ANNs) can create new features in their hid
den layers from combinations of input features to non-linearly fit model 
inputs to the outputs. In ANNs, information flows by feed-forward 
propagation from the input layer, through hidden layers, to the output 
layer. Weight and bias terms connect all units in the previous layer to all 
the units in the following layer. During training, the weight and bias 
terms are iteratively altered through backpropagation of the prediction 
error and gradient descent steps [34]. A deep neural network (DNN) is 
an ANN with more than one hidden layer. Convolutional neural net
works (CNN) have convolutional layers as well as fully connected layers 
and are widely used in image recognition tasks [35]. The convolutional 
layers consist of filters of weights which perform cross-correlation on the 
input data. This enables CNNs to learn their own features from the input 
data at lower computational expense and with simpler optimisation than 
fully connected neural networks of similar size. Furthermore, CNNs are 
spatially invariant meaning that they are robust to changes in feature 
locations, unlike fully connected neural networks. The accuracy of ML 
methods is limited by the choice of features inputted into the models. 
Therefore, CNNs offer the advantage of negating the need for feature 
extraction or selection by automatically learning features important to 
the task (Fig. 2). Long short-term memory neural networks (LSTMs) are 
able to learn sequences of time series data and are widely used in natural 
language processing applications. LSTMs are a development of recurrent 
neural networks (RNNs) that reduce the likelihood of exploding or 

Fig. 1. An exemplar pipeline for developing supervised machine learning models.  

A.L. Bowler et al.                                                                                                                                                                                                                               



Ultrasonics 124 (2022) 106776

4

vanishing gradients, enabling the learning of long-term dependencies 
[36]. LSTMs can store representations of sequences by using gate units 
to update their internal network state. At each time step, LSTMs use the 
input features as well as information passed from the previous time step 
to make their prediction. 

Hyperparameters are variables that may be selected by the devel
oper. This may be through trial and error, using values previously 
employed in other works, through grid-searches of possible hyper
parameter combinations, or through other procedures such as Bayesian 
optimisation. Hyperparameter selection can be evaluated using part of 
the data as a validation set. Hyperparameters may define the structure of 
the algorithm or how it trains. For example, neural networks (encom
passing ANNs, DNNs, CNNs, and LSTMs) often require regularisation to 
prevent them from over-fitting to the training data and limiting their 
ability to generalise to new data. Common regularisation techniques 
include L1 and L2 penalties, early stopping, and dropout layers. L1 
regularisation adds a penalty term to the error value that is the sum of all 
the weight magnitudes, whereas L2 sums the square of the weights [37]. 
Therefore, a model is penalised for having many or large weight values 
depending on the chosen magnitude of these regularisation penalties. 
Early stopping evaluates the current model on a validation set during 
training. After the prediction accuracy on this validation set decreases 
for a specified number of iterations, training is stopped [37]. Dropout 
layers randomly drop network nodes during training according to a 
specified probability. This effectively “thins” the network during 
training, allowing multiple input data propagation paths through the 
network and reducing co-adaptation of the hidden nodes [38]. 

3. Process monitoring using ultrasonic sensors 

The section reviews the use of in-line and on-line ultrasonic mea
surement techniques to monitor processes including cleaning, fermen
tation, crystallisation, mixing, extrusion, injection moulding, curing, 
reactions, tabletting, and membrane fouling. 

3.1. Cleaning 

Cleaning is a process used to remove material from the internal 
surfaces of processing equipment in sectors such as food and drink, 
pharmaceutical and Fast-Moving Consumer Goods (FMCG) [39]. How
ever, cleaning is usually carried out for a predetermined length of time 
which is designed to over-clean the equipment. With real-time moni
toring of fouling removal, time and cleaning resource (e.g. water, en
ergy, and chemicals) use can be minimised. This not only improves 
process economics but sustainability as well [40]. Furthermore, the 
build-up of fouling decreases the efficiency of heat exchangers and so a 
method to detect the presence of this fouling would allow for improved 
scheduling of heat transfer equipment cleaning [41]. 

Wallhäußer et al. [41] combined US measurements and an ANN to 
classify whether a model heat exchanger was fouled by dairy protein 
deposits. A single US sensor monitored waveforms reflected from the 
plate-fouling interface and from the far wall of the heat exchanger. The 
ANN achieved an accuracy of 98.6%. Wallhäußer et al. [42] used ANNs 
and SVMs to classify the presence of protein or mineral fouling. The 
SVMs achieved higher accuracies compared with the ANNs. It is sug
gested that this is due to the ability of SVMs to find global minima, 
opposed to local minima found by ANNs. In actuality, this may be due to 
the ability of SVMs to generalise well to new data and that not enough 
regularisation was applied to the ANNs. This is likely, as no validation 
set was used to evaluate hyperparameters for the ANN. Only features 
from the reflection from the plate-fouling interface was used. The SVMs 
achieved 97.6 % accuracy when the mineral and protein fouling datasets 
were combined, and 100 % and 98.2 % for the protein and mineral 
fouling, respectively, when each dataset was used individually. Wall
häußer et al. [43] monitored the cleaning process of protein fouling 
using a sodium hydroxide solution. Seven US waveform features were 
used along with the process temperature and cleaning fluid mass flow 
rate. The gradients of the US features were also monitored to identify a 
plateau that could indicate the end of cleaning. SVMs achieved greater 
than 94 % accuracy when classifying whether the heat exchanger was 

Fig. 2. A comparison between Artificial Neural 
Networks (ANNs) and Convolutional Neural 
Networks (CNNs). ANNs require feature extrac
tion and, if necessary, feature selection before 
using the model. In contrast, CNNs use convolu
tional filters, and pooling layers to downsample 
the data, to automatically extract features. ANNs 
may be used with feature extraction or selection, 
i.e. the raw data is used as inputs. However, this 
network would not be robust against spatial 
variance of the features, unlike CNNs.   
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fouled or cleaned. Úbeda et al. [40] used a single US transducer to 
monitor cleaning of milk fouling in a model plate heat exchanger. Milk 
protein deposits build up on heat transfer surfaces during thermal 
treatment, reducing their efficiency and necessitating cleaning. Cleaning 
was carried out for 95 min using sodium hydroxide and, subsequently, 
nitric acid solutions. Two sections of the received US waveforms were 
analysed: the start of the waveform corresponding to sound wave re
flections from the plate-fouling interface, and the third echo reflecting 
from the far wall of the plate heat exchanger (after passing through the 
fouling and cleaning fluid or cleaning fluid alone). For the sound wave 
reflections from the plate-fouling interface, three US waveform features 
were monitored: the temporal spread, temporal roll-off, and temporal 
inertia. These features were used in an ANN to classify whether the plate 
was fouled or cleaned. For the third echo, four features were used: the 
maximum amplitude, spectral crest factor, spectral centroid, and tem
poral entropy. Classification accuracies of up to 98 % for the plate- 
interface features and 96% for the 3rd echo features were achieved. 

Escrig et al. [39] monitored the removal of three types of food 
fouling (gravy, tomato paste, and malt) at two cleaning fluid tempera
tures (12 ◦C and 45 ◦C) using a single US sensor. The US sensing method 
monitored the US waveform reflected from the interface between the 
pipe wall and the fouling material. The experiments were conducted in a 
lab-scale pipe section. The pipe section was cuboid with a flat, stainless 
steel bottom plate where the US sensor was attached externally. Three 
features from the received US waveform were monitored: the waveform 
energy, peak-to-peak amplitude, and root mean square error of the 
amplitudes at every sample point in the waveform compared to that of a 
clean pipe. The US sensor could identify differences in the cleaning 
mechanisms between the mechanical removal of the tomato paste and 
gravy compared with the dissolution of the malt. The US technique was 
only sensitive to the area of fouling coverage not the fouling thickness. 
Escrig et al. [16] expanded this study by training classification machine 
learning models to predict whether the pipe section was fouled or 
cleaned. The highest model accuracy was attained when the amplitudes 
at each sample point in the waveforms were used directly instead of 
using any further feature extraction methodologies. A K-best feature 
selection methodology was used to select the number of amplitudes to be 
used. The classifiers used were KNN, SVM, RF and adaboost RF. It was 
found that combining multiple datasets from different fouling materials 
resulted in improved model accuracy. Accuracies up to 99 % were 
achieved. Simeone et al. [15] used the same pipe test section and ma
terials to monitor cleaning by combining US and optical sensors. A three- 
level wavelet package transform using the 3 Daubechies mother wavelet 
was performed on the US waveforms. Afterwards, the mean, standard 
deviation, minimum, maximum, skewness, kurtosis, and energy were 
extracted from the decomposed signals. These features were then input 
into an ANN for a regression task to predict the surface area or volume of 
fouling remaining. Escrig et al. [44] used classification methods to 
monitor tomato paste and malt fouling in plastic (PMMA) and metal 
(stainless steel) cylindrical pipe sections. Accuracies up to 100% were 
achieved for both pipes. Finally, Chen et al. [45] used a single US sensor 
to monitor cleaning of wax deposits from a flat duct section over the 
course of 3 h. A decorrelation coefficient of coda waves compared with a 
clean plate was monitored and cleaning was completed after 2.2 h. 

3.2. Fermentation 

Fermentation processes are conventionally monitored through sam
pling and off-line analysis [46]. However, this has issues of requiring 
manual operation, risking contamination, and lacking timely results 
[17]. There are several types of fermentation that have been monitored 
using US sensors, such as alcoholic fermentation where yeast converts 
sugar into ethanol and carbon dioxide [46], lactic acid fermentation 
where lactose is converted to lactic acid through bacteria metabolism 
[47], and malolactic fermentation in red wines where malic acid is 
converted into lactic acid which is an important process for developing 

sensory characteristics [48]. 
Becker, Mitzscherling, and Delgado [49] used a single externally 

mounted sensor to monitor beer fermentation in a 300 m3 tank under 
industrial conditions for 90 h. The US wave was transmitted across the 
4.5 m diameter vessel and was reflected at the far wall before returning 
to the transducer. The US velocity was monitored and an ANN was used 
to compensate for the effects of temperature. Resa, Elvira, and De 
Espinosa [46] mounted two non-invasive US sensors to a square glass 
bottle (64 mm ID) to monitor the US velocity using a pitch-catch 
transmission method. A water bath was used to keep a constant tem
perature of 30 ◦C. The US velocity decreased with the decreasing density 
of the fermenting medium. Resa et al. [47,50] used similar experimental 
methods to monitor lactic acid fermentation. The US velocity decreased 
throughout fermentation despite no significant change in density. Resa 
et al. [17] monitored wine and beer fermentations and reported a 
decreasing US velocity with the decreasing density. The US amplitude 
was also used to monitor the beer wort fermentation and an increase in 
attenuation was obtained during the start of ethanol production due to 
the production of CO2 bubbles. Similarly, Lamberti et al. [51] used two 
transducers for transmission across a 35 mm diameter square bottle to 
monitor wine fermentation. A decreasing US velocity during ethanol 
production was found. 

Hussein, Hussein, and Becker [24] implemented a single US sensor 
on a circulation line for in-line monitoring of a 60 L (working volume) 
yeast fermentation process. The sensor used a reflector plate to transmit 
through the fermenting liquid. Frequency domain analysis, after Fourier 
transformation, and phase shift correction were used for the time-of- 
flight measurements. The US velocity was combined with nine wave
form features and the temperature and was inputted into an ANN to 
predict the liquid density. The ANN produced a maximum error of 
0.95%. The US velocity increased throughout the fermentation, con
tradicting the previously reported results presented above. Hoche et al. 
[52] also found the US velocity to increase during fermentation and the 
reflection coefficient to decrease. The reason for these results may be 
due to the larger scale process and industrial conditions monitored in 
[24,52] compared with [17,46,47,50,51]. At these specific combina
tions of temperature, along with the content of sugar, ethanol, yeast, and 
CO2, the US velocity may increase during fermentation. [52] used 
invasive sensor probes with a 50 mm reflector plate transmission dis
tance to monitor alcoholic fermentation in vessels up to 2140 L 
(maximum volume) in size. A sound velocity–density–temperature 
calibration model achieved an average root mean square error of 0.53% 
g/g sugar and 0.26% g/g ethanol during the fermentations. However, 
this does require a secondary measurement of the density of the fer
menting wort. Bowler et al. [53] used LSTMs to predict the alcohol 
concentration during beer fermentation in a 30 L vessel. An invasive 
probe with a reflector plate was used. Accurate monitoring of the 
alcohol content was achieved without using the sound wave reflection 
that had passed through the wort or using the process temperature. This 
indicates that a non-invasive, reflection-mode US sensing technique 
could be possible. The energy of the reflection from the probe-wort 
interface increased throughout fermentation although no trend in the 
speed of sound was identified owing to variations in the process 
temperature. 

Ogasawara et al. [54] used two invasive probes in pitch-catch mode 
with a 15 mm transmission distance to monitor yogurt fermentation in a 
beaker. The US velocity was used to detect phase changes of the yogurt 
along with variations in the internal temperature caused by the 
exothermic fermentation reaction. Meng et al. [55] used a single non- 
invasive sensor to monitor yogurt fermentation through the wall of a 
250 ml stainless-steel reactor. The acoustic impedance was monitored 
using multiple reflections from the wall-yogurt interface. The acoustic 
impedance of the yogurt increased between pH 5.6 and 5.3. 

Novoa-Díaz et al. [48] used an invasive US sensor probe with a 
reflector plate to monitor malolactic fermentation in red wine. The US 
velocity increased during the fermentation until reaching a stationary 
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phase after approximately six days. It was proposed that identification of 
the stationary phase could be used to determine the fermentation end 
point. However, temperature compensation would be required to un
cover its masking effect on the velocity. Amer et al. [56] presented a 
temperature compensation strategy by determining the effect of tem
perature at different concentrations of alcohol and Amer et al. [57] 
presented two further temperature compensation methods. Çelik et al. 
[58] presented the design of an invasive sensor probe with reflector 
plate to be installed in the side of industrial vessels for malolactic acid 
fermentation. 

Lastly, Keskinoǧlu and Aydln [59] used two non-invasive trans
ducers in pitch-catch mode to monitor cell growth in a small-scale 
vessel. From the US velocity, growth curves were obtained that could 
identify the lag, growth, and stationary phases. 

3.3. Crystallisation 

Crystallisation is a process predominantly used in the chemical and 
pharmaceutical industries [60]. The most important parameters to 
control are the mean crystal size and the crystal size distribution as these 
determine the properties of the product and effect downstream pro
cessing [61]. Mougin et al. [62] used an invasive probe consisting of two 
pairs of broadband US transducers to monitor the crystallisation of two 
organic compounds. US attenuation spectroscopy using the Epstein and 
Carhart and Allegra and Hawley (ECAH) scattering model was utilised. 
The frequency range of the probe spanned from 1 MHz to over 150 MHz 
and was capable of measuring particle sizes in the range from 0.01 to 
1000 µm. The minimum crystal concentration for size characterisation 
was 0.1% vol. The technique had limited effectiveness for monitoring 
the crystallisation of urea owing to the formation of high aspect ratio 
needle crystals whose long axial length was beyond the sensor mea
surement range. Mougin, Wilkinson, and Roberts [63] went on to 
monitor the particle size of crystals in two different polymorphic forms. 
In this work, the US attenuation spectroscopy method was less sensitive 
than turbidometric measurements for the determination of the onset of 
crystallization. Mougin et al. [61] used a 470 ml stainless steel flow- 
through cell connected to the side-ports of a double-jacketted 2.6 L 
glass reactor to determine the crystal size and solid concentration during 
crystallisation. The method could identify secondary nucleation, growth 
and crystal breakage and the results were used to determine kinetic 
parameters such as the secondary nucleation rate and growth rate. Li 
et al. [64] inputted US attenuation spectroscopy measurements into two 
neural networks. The first ANN was used to predict the mean crystal size 
and crystal size standard deviation. The five inputs were the attenuation 
at four different frequencies along with the process temperature. The 
second neural network was used to predict the US attenuation at a 
reference frequency to determine solids concentration. Its inputs were 
the temperature and the mean crystal diameter and standard deviation 
predictions from the first ANN. Although the authors acknowledge that a 
single ANN could have been used to make both sets of predictions, two 
separate models were used to simplify the ANN training. ANNs were 
used as they did not need knowledge of the solid and liquid physical 
parameters required for the ECAH model. Furthermore, the ANNs could 
be used in-line where as the ECAH model must be completed off-line due 
to the long iterative process required. Lyall et al. [65] was able to 
monitor crystal breakage and the mass and linear crystal growth rates 
were determined from the US measurements. Shukla, Prakash, and 
Rohani [66] employed US attenuation spectroscopy using a single 
invasive sensor with a reflector plate in a jacketed glass reactor of 0.115 
m diameter and 0.25 m height. 

Pertig et al. [67] used an invasive probe and measurements of the US 
velocity and attenuation at a single frequency to determine the mean 
particle size and suspension density. Experiments were performed 
isothermally in a jacketed vessel with a diameter of 115 mm and a height 
of 200 mm. The method could measure particle sizes between 200 and 
800 µm with solids content up to 40 wt%. This method was presented as 

faster, less expensive, and simpler than US attenuation spectroscopy 
which must be conducted across multiple frequencies. Stelzer, Pertig, 
and Ulrich [60] used two invasive probes in a 1 L jacketed glass crys
tallizer to monitor the suspension density, mean crystal size and liquid 
concentration. One sensor was surrounded by a mesh to prevent crystals 
from entering the measurement line so the liquid properties could be 
monitored. Frohberg and Ulrich [68] showed that the same two-sensor 
technique could be used for the determination of the metastable zone 
width, nucleation and growth kinetics, seeding events, and detection of 
phase transitions. Helmdach, Feth, and Ulrich [69] showed that cali
bration transfer using the same sensing technique was possible between 
lab and pilot scale processes so long as the influence of gas was minimal 
in the pilot-plant setup. Morris et al. [70] used a single US sensor with 
reflector plate in a 250 ml reactor. US attenuation spectroscopy and 
monitoring of multiple reflections was utilised. 

3.4. Mixing 

Mixing is a ubiquitous process across manufacturing, such as in the 
food, chemical, and pharmaceutical industries [10]. In many industries, 
mixing is typically carried out for a predetermined length of time 
without monitoring the product quality. Classification of whether the 
materials were mixed or a prediction of when the mixing process will 
finish would enable more consistent product quality, more efficient 
resource use, and better equipment scheduling. Bamberger and Green
wood [71] used an invasive probe to monitor slurry suspension in a 1.91 
m diameter tank. The US attenuation was measured across three trans
mitter–receiver transducer pairs located at different heights along the 
probe and separated by a 10.2 cm distance. Fox, Smith, and Sahi [72] 
and Salazar et al. [73] used single, invasive sensors to monitor air 
incorporation into batters during mixing. Both sensors monitored the 
changing acoustic impedance of the batter by measuring the reflected 
sound wave. Tourbin and Frances [74] used a flow-through cell and US 
attenuation spectroscopy to monitor the suspension and aggregation of 
nanoparticles (mean diameter of 80 nm) in a 1 L capacity stirred tank. 
Liu et al. [75] also used a flow-through cell and US attenuation spec
troscopy in combination with Electrical Resistance Tomography (ERT) 
to monitor crossflow membrane emulsification. The size distribution 
and concentration of droplets was determined using the ECAH inversion 
model. Hunter et al. [76] employed an in-situ, multi-frequency acoustic 
backscatter system to monitor high concentration particle dispersion. 
Homogeneous glass powder dispersions were monitored at small and 
large (2 m3 mixing tank) scale. Transducers with central frequencies of 
1, 2, 4, and 5 MHz were used in pulse-echo mode and the attenuation 
decay with time of the returning signal was dependent on the particle 
concentrations. Bowler, Bakalis, and Watson [27] used single, non- 
invasive US sensors in reflection-mode to monitor two model mixing 
systems: honey-water blending and flour–water batter mixing. Classifi
cation ML models were developed to predict if the materials were mixed 
or not, and regression models were trained to predict the time remaining 
until (or time passed since) the materials were fully mixed. ANNs, SVMs, 
LSTMs, and CNNs were all tested with extensive feature extraction in 
both the time and time–frequency domains (after applying the discrete 
or continuous wavelet transform). Multi-sensor fusion between two 
sensors was also investigated. Classification accuracies of up to 96.3% 
for the honey-water blending and 92.5% for the flour–water batter 
mixing were achieved, as well as R2 values for the regression models of 
up to 0.977 for the honey-water blending and 0.968 for the flour–water 
batter mixing. Each prediction task achieved optimal accuracy using 
different ML algorithms and feature extraction methods. 

3.5. Extrusion 

Using ultrasonic sensors to monitor extrusion processes has appli
cations in industries such as polymer processing and food production 
[77]. Coates et al. [78] used US and spectroscopic sensors to monitor the 
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blending of polyethylene and polypropylene pellets in a 38 mm single 
screw extruder. Two US transducers were used in pitch-catch mode 
across a path distance of 15 mm. The US velocity was more sensitive 
than the spectroscopic measurements in detecting a change of blend 
composition. Barnes et al. [79] monitored the blending of ethylene vinyl 
acetate (EVA) random co-polymers with varying vinyl acetate (VA) 
content. US probes were implemented into dies attached to the end of 
the extruder barrel and the time of flight was measured. Although, 
pressure fluctuations that effected the US velocity measurements did not 
affect the NIR probe measurements. Alig et al. [80] combined US, 
spectroscopic, and rheometry measurements, as well as US and dielec
tric measurements, in slit die extruders. US attenuation was used to 
monitor polymer filler blending. Sun et al. [81] monitored filler 
dispersion during extrusion using two US sensors. An ANN was trained 
using the US velocity and attenuation along with the pressure, temper
ature, filler type and feed rate for prediction of the dispersion index. An 
error of less than 5% was achieved. 

Fischer et al. [82] combined US and spectroscopic measurements to 
monitor additive blending during extrusion. Fischer et al. [83] used NIR 
spectroscopy and US attenuation spectroscopy to monitor the extrusion 
of polymer nanocomposite blends. The measurements were used to 
determine the dispersion extent and the impact strength of the polymer 
product. Schober et al. [84] also used US attenuation spectroscopy to 
monitor dispersion and particle size during polymer melt extrusion. 
Wöckel et al. [85] monitored the reflected sound wave using a single US 
sensor. The standard deviation of consecutive signals was used to 
determine the filler concentration. Halmen et al. [86] used US tomog
raphy to determine filler distribution in polymer melts. The US velocity 
and attenuation from a 60 mm ID sensor ring consisting of 40 trans
ducers were used. 

3.6. Injection moulding 

US sensors have been widely applied to monitor injection moulding 
of polymer materials. For a full review of this area, the interested reader 
is directed to [87]. Recently, Wu et al. [88] presented a T-shaped 
extension nozzle with two integrated high temperature US transducers 
in transmission mode for non-invasive monitoring of injection 
moulding. The US velocity and attenuation could follow the process 
stages and was also correlated to the polymer flow speed. Altmann, 
Praher, and Steinbichler [89] used three US transducers (10 MHz) in 
pulse-echo to monitor melting behaviour in injection moulding. Zhao 
et al. [90] used a single US transducer for in-line monitoring of micro
cellular injection moulding. The duration of the US signals and the 
change in US velocity could be used to monitor variations in cell size and 
thickness of the skin layer. Cheng and Wu [91] used two high temper
ature US sensors in transmission mode to non-invasively monitor in
jection moulding of two types of plastic. Each stage of the injection 
moulding process could be identified from the US measurements, and 
the effect of injection speed on the quality of the final product could be 
monitored using the US velocity. Zhao et al. [92] used the US velocity 
and pressure measurements for in-line temperature measurement during 
injection moulding. Finally, outside of polymer processing, Grob et al. 
[93] used four US transducers (two to transmit US waves and two to 
receive) to monitor the crystallisation, solidification, contraction, and 
mould wall detachment of chocolate products. Detachment from the 
mould wall produced a reduction in the US amplitude. 

3.7. Curing 

Rath et al. [94] used US sensors in a compression mould and 
measured the velocity and attenuation during curing to evaluate the 
effects of different mouldings compounds, elevated temperatures, and 
filler, moisture, and hardener content. Lionetto, Tarzia, and Maffezzoli 
[95] used two air-coupled US sensors to monitor the curing of resin. The 
US measurements were corrected for the variations in air temperature 

caused by the exothermic reaction by periodically switching the US 
sensors from pitch-catch to pulse-echo mode. Lionetto and Maffezzoli 
[96] used the US velocity and attenuation to monitor the curing pro
cesses of thermosetting resins. Both contact and air-coupled US tech
niques were used. Koissin, Demčenko, and Korneev [97] used a 
noncollinear US wave mixing approach to monitor curing of resin. This 
technique uses the interaction of two US waves to produce scattered 
waves with mixed frequencies. Ghodhbani, Maréchal, and Duflo [98] 
used a single US sensor to monitor the liquid viscous, glassy transition, 
and saturation solid stages during curing of an epoxy resin. Dominguez- 
Macaya et al. [99] used an air-coupled US sensor to monitor longitudinal 
and, after the gel point was reached, shear waves during ultraviolet 
curing of a vinyl ester resin. The US system was also used to monitor the 
change in thickness of the resin due to shrinkage. Finally, [100–103] 
measured the velocity and attenuation of US waves to monitor curing of 
carbon fibre-reinforced plastics. 

3.8. Reaction monitoring 

Pawelzyk, Toledo, and Willenbacher [104] monitored US velocity 
and attenuation during styrene emulsion polymerization. However, this 
was conducted using a through-transmission method across a small- 
scale sample volume (15 ml). Buckin and Atlas [105] and Buckin 
[106] demonstrate how non-invasive, through-transmission measure
ment of the US velocity and attenuation can be used to determine many 
phenomena of reactions at small scale. For example, [106] reviews the 
monitoring of substrate and product concentrations, degree of poly
merisation, polymer molar mass, reaction rates, catalyst inhibition, 
reversible and irreversible thermal deactivation, and particle size 
changes in dispersions. Figueiredo et al. [107] used a single 
transmission-based US sensor to monitor the transesterification process 
of biodiesel at small scale (70 mm diameter vessel). Stabilisation of the 
US velocity and amplitude indicated the achievement of the maximum 
yield and that the process should be stopped at this point. Baêsso et al. 
[108] used the US velocity and attenuation to determine the content of 
contaminants or by-products in biodiesel samples. In this way, US sen
sors could eventually be used for in-line monitoring of trans
esterification final products. Schmachtl et al. [109] monitored the 
synthesis of zeolite A and zeolite X using a transmission US sensing 
method a small scale. Decreases in the US velocity and attenuation were 
correlated with gel formation at the start of the process. An increase in 
attenuation and corresponding peak in US velocity indicated zeolite 
crystallisation. Hums, Baser, and Schwieger [110] used an invasive US 
transducer and reflector plate to monitor nucleation and crystal growth 
during the hydrothermal synthesis of zeolite A and X from coal fly ash. 
Van Groenestijn et al. [111] used a US nanoparticle sizer probe to 
monitor the synthesis of spherical silica nanoparticles. The ECAH 
method was used to obtain the size and concentration of particles. 

3.9. Tabletting 

Tabletting involves the compaction of powders into tablet forms 
using punches. Stephens et al. [112] used a single, non-invasive, 
embedded US sensor to monitor the mechanical properties of tablets 
during compaction. The time of flight and reflection coefficient of the 
sound wave reflecting from the interface between the upper punch and 
the powder was monitored. Leskinen et al. [113] used two transducers 
implemented inside the upper and lower punches of a tableting ma
chine. Through-transmission was used to measure the US velocity and 
frequency spectra to monitor the mechanical properties of tablets. 

3.10. Membrane fouling 

US measurements have been widely applied as a non-invasive tech
nique to monitor membrane fouling during micro-, ultra- and nano
filtration separation processes [114,115]. The amplitudes of reflected 
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sound waves from the fouling and membrane layers are measured to 
monitor fouling formation. For example, Li et al. [116] used an in-situ 
US technique to monitor organic and colloidal fouling during nano
filtration. Differences in the fouling process were observed in the US 
measurements when using different mixtures of foulants. 

4. Ultrasonic sensors and machine learning 

This section reviews the use of ML with US sensor measurements 
applicable to industrial process monitoring and other similar applica
tions. Feature extraction, feature selection, algorithm choice, hyper
parameter selection, data augmentation, and domain adaptation is 
reviewed. For reviews on similar areas, the interested reader is directed 
to [117–128]. 

4.1. Feature extraction 

The choice of features to investigate may be decided through either 
understanding of US sensors and the process being monitored, plotting 
features over the course of the process and monitoring their trends, or 
preliminary experiments to evaluate the accuracy of ML models using 
different feature combinations. As explained in Section 2, features can 
be extracted from the US waveform in the time domain, frequency 
domain following the Fourier transform, time–frequency domain 
following wavelet transform, or after other transformations such as 
cosine [25], chirplet [129], or short-time Fourier [130]. Empirical mode 
decomposition has also been widely applied in the SHM community and 
a review of this area can be found in [131]. 

The choice of Mother wavelet and level of decomposition are 
important decisions when applying wavelet transformation to US 
waveforms [25]. For this reason, a review of wavelet methods to analyse 
US signals is provided in Table 1. Typically, the choice of mother 
wavelet is selected as that most visually similar to the received US 
waveform [27]. The number of decompositions and vanishing moments 
can be decided by evaluating ML models using different values [27]. 

Table 2 reviews features extracted from US waveforms and inputted 
into ML models. A US waveform in the time, frequency, or time
–frequency domain is a function composed of amplitudes. Specific am
plitudes in these functions can be monitored, such as the maximum, 
minimum, or peak-to-peak amplitudes. Other features use many of these 

function amplitudes in a single measure. For example: the standard 
deviation or variance monitor amplitude dispersion relative to an 
average magnitude, features such as the temporal slope monitor the rise 
or decrement of amplitudes in a function, features similar to the energy 
provide a measure of the overall magnitude of the function, the crest 
factor measures the dominance of the maximum amplitudes, and 
skewness and kurtosis provide measures of the shape of the function. 
Another set of features can provide measurements of the position of the 
function in its respective domain, such as the time centre, average fre
quency, temporal duration, or bandwidth. Also, all, or a subset of, 
function amplitudes may be used as features directly rather than 
incorporated into other measures [16,27,35,148]. The time of flight 
monitors the distance in the time domain between two waveforms and is 
used to measure the speed of sound in the process material. The variance 
between consecutive waveforms of any of the previously listed features 
may also be monitored for example to monitor the production of CO2 
during fermentation [53] or identify flow regimes [149,150]. Time- 
lagged features or feature gradients can be used to incorporate infor
mation from past time-steps into the ML models for processes that 
progress over time. Finally, additional features, such as the process 
temperature or material mass flowrate can be used to provide extra in
formation to the ML models about the process being monitored. 

4.2. Feature selection 

This section reviews feature selection methods used with US mea
surements and ML. Feature selection encompasses methods to reduce 
the number of features inputted into ML models, however, it is not a 
mandatory step in the ML pipeline. Feature selection can improve ML 
model training by removing redundant information, reducing the like
lihood of overfitting, providing an easier optimisation problem for the 
algorithm, and reducing the computational requirement for model 
training [30,31]. However, some information from the input features 
could be lost leading to a reduction in accuracy. As explained in Section 
2.2, PCA is a common method of feature selection and was employed in 
[27–29,156–159]. Ref. [16] used a K-best predictors method to select 
the sample point amplitudes from waveforms. This involved using a grid 
search of the amplitudes used and an F-test to determine their impor
tance. Ref. [28] used a Garson’s method which calculated feature 
importance from weights of a previously trained ANN. The feature 
importance was scored between 0 and 1 and features scoring below a 
threshold value of 0.35 were discarded. Ref. [25] used the Wilcoxon- 
Mann-Whitney rank test to find class discriminant features. This 
method is usable in binary classification tasks and does not determine if 
features are redundant or not. 

Autoencoders can also be used as unsupervised ML methods for 
feature selection. Autoencoders are a type of neural network that aims to 
reconstruct its inputs after having passed the data through a bottleneck, 
or latent space, in the network. For example, [160] used a convolutional 
autoencoder as a feature extraction methodology. During training, the 
information about the input signal contained in the latent space is 
maximised so that it may be reconstructed. After training, the encoder 
part of the network (from the inputs to the latent space) may be applied 
to new data as a feature extractor. Similarly, [161] used autoencoders as 
a feature extraction method for detecting fatigue damage in structures. 
Autoencoders have also been used for other applications when used with 
US sensor data. For example, [162] used a convolutional autoencoder to 
reconstruct noiseless US signals after artificial noise has been added. In 
this way, the trained autoencoder could then be used to denoise new US 
signals. The input signals consisted of 2048 datapoints and the latent 
space was 256 neurons. Ref. [163] used convolutional denoising 
autoencoders to remove the effects of temperature on US guided waves 
for structural health monitoring applications. Refs. [164,165] applied 
denoising autoencoders for US waveforms to improve the signal to noise 
ratio. As noise is random fluctuations overlaying a US waveform, 
autoencoders are unable to learn a relationship between the noise and 

Table 1 
A review of US waveform decomposition through wavelet analysis as a feature 
extraction methodology for ML models.  

Reference Wavelet 
decomposition 
transform 

Number of 
decompositions 

Mother wavelet and 
number of vanishing 
moments 

[15] Wavelet packet 3 3 Daubechies 
[27] Discrete wavelet 3, 5, 7 Symlet 
[27] Continuous wavelet N/A Morlet 
[132] Wavelet packet 5 5 Daubechies 
[133] Discrete wavelet 4 Daubechies 
[134] Wavelet packet 4 5 Daubechies 
[135] Discrete wavelet 4 5 Coiflet 
[136] Continuous wavelet N/A Various investigated 
[137] Continuous wavelet N/A 3 Morse 
[138] Discrete wavelet 4 1 Debuchet 
[139] Wavelet packet 3 4 Daubechies 
[140] Discrete wavelet 7 Created own mother 

wavelet 
[141] Wavelet packet 3 8 Symlet 
[142] Discrete wavelet 3 5 Coiflet 
[143] Discrete wavelet  10 Daubechies 
[144] Discrete wavelet 5 10 Daubechies 
[145] Discrete wavelet 5 8 Daubechies 
[146] Discrete wavelet 5 8 Symlet 
[147] Continuous wavelet  Gaus  

A.L. Bowler et al.                                                                                                                                                                                                                               



Ultrasonics 124 (2022) 106776

9

Table 2 
A review of features extracted from US measurements in the time, frequency, or time–frequency domain for ML.  

Category of features Features Description References 

Specific amplitudes in function Maximum amplitude The largest amplitude in the investigated function interval [28,40,53,133,140]  
Minimum amplitude The smallest (or largest negative) amplitude in the investigated 

function interval 
[15,53,133,140]  

Peak-to-peak amplitude The difference between the largest and smallest amplitude in the 
investigated function interval 

[28,52,140] 

Dispersion of amplitudes along the 
function 

Standard deviation A measure of the dispersion of amplitude values with respect to 
the mean 

[15,140]  

Variance A measure of the dispersion of amplitude values with respect to 
the mean 

[28,29,133]  

Temporal spread A measure of the dispersion of amplitude values with respect to 
the mean 

[40]  

Temporal entropy A measure of amplitude variability along the function [24,40]  
Spectral standard deviation A measure of the dispersion of frequency amplitudes with respect 

to the mean 
[28]  

Spectral smoothness The variability of frequency amplitudes with respect to their 
neighbouring amplitudes 

[42,43]  

Spectral spread The variance of frequency amplitudes with respect to the average [24]  
Spectral entropy The amplitude variability along a frequency domain function [24] 

Measures of the rise or descent of 
function amplitudes 

Temporal roll-off The time value at which 90 % of the signal energy is concentrated [40]  

Logarithmic decrement The logarithmic decrease of amplitudes in a function [41]  
Temporal slope A measure of the rate of decrease in function amplitudes [28,43]  
Descent time A time value. For example, the time at which the slope of 

amplitude descent crosses zero. 
[28,29,43]  

Lower 25 % of power spectrum Fraction of total energy between lower 25 % level and peak 
frequency amplitude 

[28]  

Upper 25 % of power spectrum Fraction of total energy between peak and upper 25 % level 
frequency amplitude 

[28]  

Rising time The time value for function increase from 25% level amplitude to 
peak 

[29] 

Energy Temporal energy The sum squared amplitude of the waveform interval investigated [15,16,24,27,29,41- 
43,53,151,152]  

Spectral energy The sum squared amplitude of the frequency domain interval 
investigated 

[24]  

Temporal inertia Weighted average of the signal amplitude in time domain [40]  
Mean The mean amplitude in a function [15,28,133,140]  
Sum absolute amplitude A measure that gives lesser weight to large amplitudes compared 

with the energy 
[27]  

Median The median amplitude in a function [140] 
Crest factor Temporal crest factor The magnitude of the maximum signal amplitude in the time 

domain compared to the average 
[24,42,43]  

Spectral crest factor The magnitude of the dominant frequency compared with the 
average 

[24,40,42,43] 

Average frequency Mean frequency The mean frequency value [28,133]  
Spectral centroid The frequency value where half of the waveform energy is 

contained 
[24,28,29,40,133] 

Temporal position Time centre The centre of the function in the time domain [29] 
Temporal duration Pulse duration The length of time between the start and end of the waveform [29,151] 
Bandwidth Measured bandwidth The range of the measured frequency values [28,29,151] 
Skewness Temporal skewness A measure of the lack of symmetry in the waveform [15,151]  

Spectral skewness A measure of the lack of symmetry in the frequency domain [24,29] 
Kurtosis Temporal kurtosis A measure of the tailedness of the waveform [15]  

Spectral kurtosis A measure of the tailedness of the frequency domain function [29] 
Amplitudes at sample points in the 

waveform  
Using the amplitude at each sample point in a waveform as 
individual features 

[16,27,35,148,154] 

Variations in features between 
consecutive waveforms 

Standard deviation of the energy A measure of the dispersion of consecutive waveform energy 
values 

[53]  

Frequency analysis of consecutive 
amplitudes 

A measure of the dispersion of consecutive amplitude values [149]  

Features extracted from velocity 
variations 

Measures of the dispersion of consecutive velocity values [150] 

Time of flight  The length of time for a sound wave to travel through a material [53,81,152,153,155] 
Feature gradients  A measure of the current time step feature with respect to previous 

time steps 
[27,53] 

Other features Temperature The process temperature [24,43,81]  
Mass flow rate The process mass flow rate [43,81]  
Pressure The pressure of the process [81]  
Material type Information about the material being processed [81]  
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Table 3 
Hyperparameters used for ANNs with features from US measurements.  

Reference Number of input 
features 

Number of neurons in 
each hidden layers 

Training algorithm Additional information 

[172] Varied between 
128 and 512 

128  Root mean square error goal of 0.01 during training 
Learning rate and momentum term varied 

[173]  5 Levenberg–Marquardt  
[153] 2 10  Training stopped after mean squared error of 1 × 10-6 or 6,000 iterations 

reached 
Learning rate of 0.6 
Momentum rate of 0.4 

[152] 2 10  Training stopped after 20,000 iterations or 1 × 10-6 mean squared error 
reached 
Learning rate of 0.6 
Momentum rate of 0.4 

[64] 5 50 Levenberg–Marquardt Training stopped after a maximum of 500 iterations or desired minimum mean 
square error of 5.0 
× 10-4 reached 

[64] 4 20 Levenberg–Marquardt Training stopped after a maximum of 500 iterations or mean square error of 5 
× 10-4 reached 

[28] 24 40  Stopping criteria were: maximum epochs 500, minimum error gradient equal 
to 1 × 10-5, minimum mean square error equal to 1 × 10-5 

[144] Varied between 1 
and 7 

Varied between 6 and 22  Learning rate of 0.2 
Additional momentum 0f 0.5 

[145]  12  Learning rate of 0.05 
[174] 2 3, 3, 1 Evolutionary optimisation Learning rate of 0.5, 

Mutation rate of 0.04, population size of 50, and cross over 
rate of 0.2 

[175] 10 10, 2 Levenberg–Marquardt  
[132] 32 100  Training stopped when accuracy of 1 × 10-3 reached 
[143]  32, 12 Scaled conjugate gradient  
[176] 4 3 hidden layers Evolutionary algorithm Population of 50 individuals 

Crossover probability of 0.95 
Mutation probability of 0.01 
200 generations 

[133] 8 8, 25 Scaled Conjugate Gradient Training continued until error goal of 1 × 10-2 achieved 
[41]  5 2   

[146]  10 Scaled Conjugate Gradient  
[24] 6 11   
[42] 5 2   
[43] 9 14   
[177]  10 Scaled Conjugate Gradient  
[40] 3 9  Training continued until error was below 0.1 % accuracy 
[178] 4 5, 2 Bayesian regularization 

Levenberg–Marquardt 
Network trained 100 times and weights with lowest score on the validation set 
were used 
Training was stopped once the Summation of Squared Errors reached below 
102 or 101 depending on the prediction task, or 1000 epochs were reached 

[139] 3 4 Levenberg–Marquardt  
[148] 502 980, 270  3 dropout layers with 0.5 probability 

Trained for 3000 epochs 
[179] 151 10 Levenberg–Marquardt  
[180]  50 Levenberg–Marquardt Trained for 5 epochs 
[35]  3 hidden layers  Dropout layers with 0.5 probability 

Trained for 500 epochs 
[154] 11,501 502  Trained for 500 epochs 
[154] 11,501 4 hidden layers   
[181] 5 5   
[182] 3300 1300, 660, 330, 165 Scaled Conjugate Gradient ReLu activation function 

Learning rate of 0.001 
Trained for 1000 epochs 

[15] 7 7 Bayesian Regularization  
[27] Various Determined through grid- 

search 
Levenberg–Marquardt for 
regression 
Scaled Conjugate Gradient for 
classification 

Early stopping applied with a validation patience of six iterations 
Ten networks were trained and their scores averaged 
A grid search determined L2 regularisation magnitude 

[183]  1024, 512, 265, 128 Adam ReLu activation function used 
Dropout layers with probabilities 0.2, 0.3, 0.4, 0.5 
Learning rate of 0.0001 
Batch size of 8 
Trained for 10,000 epochs 

[183]  2048, 2048, 1024, 1024 Adam ReLu activation function 
Dropout layers with probabilities 0.2, 0.2, 0.2, 0.2 
Learning rate of 0.0001 
Batch size of 8 
Trained for 10,000 epochs 

(continued on next page) 
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the signal and so fail to reconstruct noise during training. Ref. [166] 
used simulations and a small number of experimentally collected sam
ples to train an autoencoder to reconstruct full wavefield data from 
sparsely sampled US measurements. This allows US data to be collected 
at lower sampling frequencies and artificially reconstructed as higher 
sampling frequency waveforms, thus reducing measurement acquisition 
time. Ref. [167] trained autoencoders to reconstruct flawless US signals 
so that when a flaw is detected the autoencoder fails to reconstruct the 
waveform. This allows flaws to be identified even if they overlap the 
initial transducer pulse. Ref. [168] used stacked autoencoders to localise 
and classify acoustic emission sources in riveted panels. 

As comparatively few feature selection methods have been used with 
US sensor measurements, the interested reader is directed to [169–171] 
for further information on techniques available such as wrapper, filter, 
hybrid, and embedded methods. 

4.3. Algorithms 

This section provides a review of the hyperparameters used in ML 
models with US measurements. Table 3 reviews the hyperparameters 
used for ANNs with US measurements. These can determine the struc
ture of the network (e.g. the number of hidden layers and the number of 
neurons in each hidden layer) or the training of the network (e.g. 
training algorithm used and the learning rate). 

Similar to ANNs, CNNs also require hyperparameter selection to 
decide the structure of the network and how it trains. However, the 
hyperparameters in the convolutional layers, which detect features, and 
pooling layers, which downsample the data, must also be chosen. 
Table 4 reviews the hyperparameters used for CNNs combined with US 
measurements. LSTMs also require selection of similar hyperparameters 
to ANNs in addition to the number of LSTM units to employ. Ref. [27] 
used 50 LSTM units, a fully connected layer of 50 neurons, a dropout 
layer with a probability of 0.5. The network was trained for 60 epochs 
using the Adam optimisation algorithm, a learning rate of 0.01, a batch 
size of 2 and a gradient threshold of 1 to prevent exploding gradients. 
Ref. [182] used the Scaled Conjugate Gradient optimisation algorithm 
and a learning rate of 0.01 for 400 epochs. Two dropout layers with 
probabilities of 0.1 and 0.2 were used. Ref. [186] used 32 LSTM units, 
two fully connected layers (with 512 and 128 neurons), and two dropout 
layers with probabilities of 0.25 and 0.2. Training was carried out for 
500 epochs with a learning rate of 5 × 10− 5 and a batch size of 8. 
Ref. [138] used 6 LSTM units and [187] used 7. Ref. [188] combined 
CNNs with two layers of 8 Gated Recurrent Units (GRU) along with 
dropout probabilities of 0.5 to extract temporal features from US 
waveforms. GRUs are similar mechanisms to LSTMs only simpler with 
two gates rather than three and therefore, generally, lower performance 
when learning long sequences. Ref. [189] trained a ConvLSTM encoder- 
decoder DNN on finite element simulations of 2-D US wave propagation. 
ConvLSTMs allow the learning of spatio-temporal dependence in input 
sequences by employing convolutional structures within the LSTM units. 
The trained model was comparable in accuracy to finite element simu
lations but faster to solve by approximately an order of magnitude 
through negating the computation of numerical calculations. Ref. [190] 
used an LSTM layer following a CNN for damage detection of copper 
pipelines using laser ultrasonic scanning. 

CNNs have also been used for other applications such as for B-scan 
US images [208], combining multiple B-scan images [209], C-scan im
ages [210], and guided waves [211]. Ref. [199] used a CNN to decon
volve overlapping US signals and extract the time of flight and 
amplitude. Ref. [212] used 3D CNN for defect detection by using US 
images of wave propagation from multiple time steps. Refs. [213,147] 
presented a 22-layer GFresNet and GFresNET-2D for guided-wave 
focusing defect signal classification, respectively. Ref. [214] employed 
a U-net style CNN for predicting the material thickness of plate-like 
structures using acoustic steady-state excitation spatial spectroscopy. 
Ref. [215] used a CNN for corrosion inspection on an aluminium plate 
using broadband Lamb waves. 

For models using support vectors, the most commonly tuned 
hyperparameters include C, the penalty factor, γ or σ, the influence a 
single training example has, and the type of kernel used, e.g. linear, 
polynomial, or radial. In support vector regression, epsilon defines the 
distance from the fitted function where the error cost of datapoints is not 
counted. Hyperparameters used for support vector models and US 
measurements are reviewed in Table 5. Decision trees can require a 
choice in the number of trees used (500 [16], maximum tree depth (1 
[16], 3 [44], 4 [16], the minimum number of leaf instances (10 [16]), 
the learning rate (1 [16]), or the maximum number of splits (4, 20, 100 
[216]). The type of ensemble method can also be chosen, such as Ada
boost used in [16]. Furthermore, K-nearest neighbour algorithms 
require a selection of the number of neighbours to use, such as 5 [216], 
11 [217], 25 [44], 50 [44], or 105 [16]. 

Gaussian Processes (GP) are an algorithm for classification or 
regression which interpolates datapoints with normal distributions and 
thereby provides confidence intervals for its predictions. GPs have 
recently been applied to measure oil film thickness in journal bearings 
using US measurements [230] and to localise acoustic emission sources 
in SHM by measuring the time of flight with multiple sensor pairs [231]. 
Ref. [232] used data-driven GPs to model guided waves in composite 
materials. Physical knowledge of the system was inputted into the model 
by specifying constraints of the GP’s kernels such as rotational sym
metry, exponential decay for viscoelastic damping, and attenuation due 
to geometric spreading using a polynomial kernel. Ref. [233] used 
Bayesian linear regression to decompose guided wave signals into in
dividual modes to enable damage sixing and localisation following two- 
dimensional Fourier transformation. Ref. [234] used a GP to predict 
thermal barrier coating porosity. Input features to the GP were first 
selected by evaluating a neural network using different feature 
combinations. 

4.4. Out-of-distribution detection 

Out-of-distribution (OOD) detection methods are used to identify 
datapoints that fall outside the range of normally expected values. For 
example, [235] used OOD detection to identify damage in wind turbine 
blades. During feature extraction, DWT, Fast Fourier Transform and PCA 
were used. One-class classification algorithms were used including 
support vector machine data description, K-means, and Euclidean dis
tance measures. Autoencoders are commonly used for OOD detection. If 
anomalous data is passed through as encoder, the distribution of the 
latent space variables will be different to the training data and the 

Table 3 (continued ) 

Reference Number of input 
features 

Number of neurons in 
each hidden layers 

Training algorithm Additional information 

[184] 5000 1000 Learning rate of 0.001 Dropout layers with 0.7 probability before and after each fully connected layer 
ReLu activation function 

[184] 5000 1000, 1000 Learning rate of 0.001 Dropout layers with 0.7 probability before and after each fully connected layer 
ReLu activation function 

[185] 24 6, 10, 2 Levenberg–Marquardt 
Algorithm 

1000 epochs  
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autoencoder fails to reconstruct the input. Ref. [167] used autoencoders 
to allows flaws to be identified even if they overlap the initial transducer 
pulse. Ref. [236] used autoencoders in a similar network structure for a 
Ganomaly approach. Furthermore, they used another generative model, 
normalizing flows, to learn transformations between normal and 
anomalous samples for OOD detection. Ref. [237] used variational AEs 
as an OOD detection system to detect defects from ultrasonic B-scans. In 
this study, a second encoder was added after the decoder and was found 
to provide increased accuracy in detecting defects. Ref. [238] compared 
autoencoders to one-class SVMs, isolation forests, and hidden Markov 
models. 

4.5. Data augmentation 

Data augmentation can be used to artificially increase the size of a 
dataset. This can be particularly useful when training deep learning 
models (e.g. DNNs, CNNs, and LSTMs) which can require many training 
instances to tune all the model parameters. Ref. [35] time-shifted US 
signals forwards and backwards by 5 and 10 µs forward to increase the 
dataset size by four times. Similarly, [162] time-shifted US signals for
wards and backwards by 6 × 10− 3, 10 × 10− 3, 14 × 10− 3, and 20 × 10− 3 

μs. Ref. [239] laterally translated signals and used magnification to in
crease the dataset size by five times. Ref. [205] added six different levels 
of Gaussian white noise to US signals ranging from 20 to 30 dB. 
Ref. [240] rotated samples by 90◦, 180◦, and 270◦ for damage local
isation in plate-like structures. Ref. [204] extracted parts of US wave
forms received from measuring flawed samples and inserted them into 
flawless signals. In this way, virtual data could be created by implanting 
flaws into different locations of a test section. The choice of data 
augmentation techniques, such as lateral translation, magnification, or 
noise addition, must be decided based on the application it is being used 
for. For example, lateral translation could not be used if the time of flight 
is an important parameter to measure during the process being moni
tored. Refs. [35,162] were classifying weldment defects. As such, as shift 
in the time domain would only represent a change in depth of the flaw 
rather than its presence or type. Ref. [239] used data augmentation for 
US waveform feature learning in a CNN. The CNN was trained on an 
auxiliary task to classify the dataset membership of previously collected 
US measurements. The pretrained CNN weights were then used as a 
feature extractor on new US measurement datasets. Therefore, the 
lateral translation and magnification did not represent a change in any 
physical parameters of a system. Ref. [241] doubled the size of an 
experimental dataset by reversing US images of defects around the 
vertical axis. Ref. [207] used time shifting and the addition of white 
Gaussian noise for US flaw classification in weldments. Ref. [202] added 
white Gaussian noise to create three datasets with signal-to-noise ratios 
of 5, 10, and 20. 

4.6. Semi-supervised learning 

[242] used a hierarchical clustering algorithm to detect whether pipe 
sections were damaged or undamaged. This is traditionally an unsu
pervised learning method which divides the input data into the number 
of clusters specified (in this case, two). To label each of the clusters, only 
one labelled instance of an undamaged pipe was required to perform the 
classification. Similarly, [243] used a k-means clustering technique to 
monitor the growth of simulated cracks in pipes. An alarm threshold was 
developed to trigger when the size of the defect becomes critical based 
on the distance of the US measurement from each cluster. Ref. [244] 
presented a semi-supervised Gaussian mixture model which was upda
ted through the expected maximisation algorithm over both the labelled 
and unlabelled data. 

4.7. Active learning 

Active learning uses methods to select unlabelled datapoints that 

would have the most benefit to model performance if labelled thereby 
minimising the total number of datapoints to be labelled. Ref. [245] 
used active learning to improve a probabilistic mixture model initially 
trained on a small sample of labelled data. This approach was evaluated 
on three datasets: Z24 Bridge data, a machining acoustic emission 
dataset, and data from ground vibration aircraft tests. Ref. [246] used 
the expected value of perfect information for SHM on a numerical case 
study and the Z24 Bridge benchmark. 

4.8. Generative models 

Generative Adversarial Networks (GAN) and Variational Autoen
coders (VAE) are methods to produce realistic data from random inputs. 
The generator component of a GAN is trained by aiming to fool the 
discriminator component into determining whether its input data are 
real or synthetic. During training, a VAE learns a probability distribution 
of the input data in the latent space from which new samples can be 
drawn. Ref. [247] used a GAN for generating defects in US B-scan images 
and successfully increased defect detection from 70 % to 76 % when 
combining real and synthetic images. Ref. [248] compared two GAN 
structures to produce images of defects in US signals and confirmed that 
the generated images could not be identified by human experts. 
Ref. [249] used GANs to increase the size of Finite Element simulation 
datasets for welding defect detection. The highest defect detection ac
curacy was achieved by supplementing the generated data with noise 
derived from experiments and extracted using the sliding kernel 
approach. Ref. [250] also used GANs to generate B-scans from simulated 
US data for non-destructive evaluation applications. Ref. [251] used 
GANs to create synthetic acoustic emission spectrograms in the US range 
for detecting cavitation in hydraulic turbines. This increased cavitation 
detection accuracy from 94.2% using CNNs alone to 95.1%. 

4.9. Transfer learning 

Transfer learning encompasses methods which transfer knowledge 
learned from one task to different, but similar, tasks. Ref. [241] trained a 
Faster-CNN to detect defects in US images on simulated datasets first 
before training on a small set of experimental data. This greatly reduced 
the loss function compared with training on the experimental datasets 
alone. Ref. [252] presented an experimental dataset of 7004 ultrasonic 
images collected from 18 stainless steel plates and evaluate the perfor
mance of many pre-trained CNNs. They conclude that their dataset may 
be used by others for pre-training their own CNN models. Ref. [253] 
transferred fixed layers of a neural network trained on easier-to-classify 
tasks to more difficult cases for damage localisation on an aircraft wing. 
Ref. [254,255] used a pre-trained VGG16 to classify acoustic emission 
sources following CWT by training the last convolutional layer, two fully 
connected layers, and output layer, and the output layer only, respec
tively. Similarly, [256] updated the last layer of a pre-trained ResNet34 
model for vibration data for SHM. Ref. [257] pre-trained a CNN on 
compressed vibration data in the form of a histogram of response 
thresholds for an SHM application. This CNN was then fine-tuned using 
extremely compressed, smoothed histogram data in the form of a mean, 
variance, and scale factor. 

4.9.1. Domain adaptation 
An ML model trained on one task (source domain) will predict poorly 

on a second task (target domain) if the feature distributions between the 
domains change. US waveform features may be different across domains 
due to differences in the path of the sound wave or the materials being 
monitored. Even for similar processes, differences in the sensor used, 
attachment procedure, or contact pressure may alter the feature distri
butions [20]. Domain adaptation is a subcategory of transfer learning 
which alters how a ML model trains so that it predicts accurately across 
both domains. Ref. [20] used unlabelled domain adaptation of a single- 
feature waveform feature to apply a trained ML model to new, similar 
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Table 4 
A review of hyperparameters used for CNNs with US measurements.  

Reference Convolutional layers, number of 
filters, size of filters 

Pooling layers Fully connected 
layers 

Training Additional information 

[134] 2 
16 7 × 5 
32 5 × 3  

2 × 2 max pooling 128 neurons and an 
SVM final layer   

[135] 3 
5 5 × 1 
8 8 × 1 
16 7 × 1 

Max pooling: 2 × 1, stride 1 
× 1 

2 
150 and 75 neurons 

Adam optimisation 
algorithm 
Learning rate varied between 
10-5 and 1 
Trained for 100 epochs 

ReLu activation function  

[135] 2 
6 10 × 2 
16 10 × 2 

2 × 2 max pooling 2 
500 and 250 neurons 

Adam optimisation 
algorithm 
Learning rate varied between 
10-5 and 1 
100 epochs  

[191] 2 
16 10 × 1 
32 10 × 1  

2 
200, 200  

ReLu activation function  

[192] 3 
32 3 × 3 
32 3 × 3 
64 3 × 3 

2 × 2 max pooling 64 neurons Batch size of 8 
3 epochs 

Three dropout layers with 0.5 
probability 
ReLu activation function 

[188] 6 layers 
Combined with GRUs   

Batch size of 512 
300 epochs 
Adam optimisation function 
Initial learning rate of 0.001 
Learning rate reduced every 
50 epochs 
Final learning rate of 0.0001 

ReLu activation function 
Batch normalisation used 
Dropout rate of 0.5 

[35] 2 
32 16 × 1 filter size, 8 × 1 stride 
64 3 × 1 filter size, 2 × 1 stride 

No pooling layer between 
1st and 2nd convolutional 
layers 
Max pooling, 2 × 1 size with 
2 × 1 stride 

300 neurons Trained for 500 epochs Padding: “Same” for convolutional 
layers, “valid” for max pooling layer 
Activation function: Elu in 
convolutional layers, ReLu in fully 
connected layers 
Two dropout layers, 0.25 and 0.5 
probability 

[27] 2 
8 5 × 5 
16 5 × 5  

2 × 2 max pooling  Adam optimisation 
algorithm 
Learning rate 0.01, drop 
factor of 0.33 after 4 epochs 
Trained for 8 epochs in total 
Batch size of 256, shuffled 
every epoch 

“Same” padding 
Batch normalisation 
ReLu activation function 
Single dropout layer, probability 
varied between 0.1 and 0.5 

[162] 2 
32 25 × 1, 8 × 1 stride 
64 3 × 1, 2 × 1 stride 

No max pooling between 1st 
and 2nd convolutional 
layers 
Max pooling: 2 × 1 size, 2 ×
1 stride   

Three dropout layers with 0.7, 0.5 
and 0.5 probability, respectively 

[136] 2 
16 3 × 3 
512 3 × 3 

2 × 2 max pooling SVM final layer Learning rate of 0.1 Batch normalisation 
ReLu activation function 
Single dropout layer with 0.5 
probability 

[193] 7 
Structure based on VGGNet 

3 max pooling layers    

[194] 3 
32 5 × 1 
64 5 × 1 
96 5 × 1 

Max pooling: 2 × 1, stride of 
2 

1000   

[195] 2 
30 3 × 3 in both 

Max pooling: 3 × 3, stride of 
2 

56, 28 Learning rate of 1e-6 

Trained for 5000 iterations 
ReLu activation function  

[196] 21 convolutional layers across three 
channels 
Filters ranging in size from 1 × 1 to 
12 × 20   

Adam optimisation 
algorithm 
Trained for 6 epochs 
Learning rate of 0.001 
Batch size of 32 

Batch normalisation 
Leaky ReLu activation function 

[197] 4 
32 3 × 3 
32 3 × 3 
64 3 × 3 
1 1 × 1 

1 × 2 max pooling   Batch normalisation 
ReLu activation function 

[198] 3 
48 3 × 3 
96 3 × 3 
192 3 × 3 

2 × 2 max pooling 64 Adam optimisation 
algorithm 
Learning rate of 0.001 
Batch size of 128 

10 % dropout rate before and after 
fully connected layer 
ReLu activation function 

(continued on next page) 
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Table 4 (continued ) 

Reference Convolutional layers, number of 
filters, size of filters 

Pooling layers Fully connected 
layers 

Training Additional information 

400 epochs 
Validation patience of 150 
epochs 

[199] 1 
64 filters   

Stochastic gradient descent 
optimisation algorithm used 
Initial learning rate of 0.005 
and decreased 
logarithmically 
30,000 epochs 

Dropout rate of 0.5 

[200] 1 
8 5 × 5 

3 × 3 max pooling 2 
1024 and 64 neurons 

Adam optimisation 
algorithm  

[201] 5 
Inception blocks with 1 × 1, 3 × 3, 
and 5x5 filters 

3 × 3 max pooling 
Stride of 2 

3 Momentum of 0.9 
Weight decay of 0.0002 
Stochastic gradient descent 
optimisation algorithm 
Initial learning rate of 0.001 
160 epochs 

Batch normalisation and ReLu 
activation function before each 
convolutional layer 
Dropout ratios of 0.5 

[147] 4 ResBlocks   Adam optimisation 
algorithm 
Learning rate of 0.0001 
20 epochs 
Batch size of 30  

[202] 3 convolutional blocks   Adam optimisation 
algorithm 
Learning rate of 0.01 
Batch size of 4 
500 epochs  

[137] 3 
16 3 × 1 
32 3 × 1 
64 3 × 1 

2x1 max pooling 16 neurons Learning rate of 1e-4 

Adam optimisation 
algorithm 
Trained for 250 epochs 
Batch size of 64 

ReLu activation function 

[137] 5 
16 3 × 1 
32 3 × 1 
64 3 × 1 
128 3 × 1 
256 3 × 1 

2x1 max pooling 2 
512 and 128 neurons 

Learning rate of 1e-5 

Adam optimisation 
algorithm 
Trained for 500 epochs 
Batch size of 32 

ReLu activation function 
Two dropout layers with 
probabilities of 0.25 and 0.2, 
respectively 

[203] 5 
16 3 × 1 
32 3 × 1 
64 3 × 1 
128 3 × 1 
256 3 × 1 

2x1 max pooling 128 neurons Adam optimisation 
algorithm 
Learning rate of 1e-5 

Trained for 2500 epochs 
Batch size of 128 

ReLu activation function 
Single dropout layer with 0.25 
probability 

[203] 5 
16 3 × 1 
32 3 × 1 
64 3 × 1 
128 3 × 1 
256 3 × 1 

2 × 1 max pooling 128 neurons Adam optimisation 
algorithm 
Learning rate of 1e-5 

500 epochs 
Batch size of 32 

ReLu activation function 
Single dropout layer with 0.25 
probability 

[204] 4 
96 3 × 3 
64 3 × 3 
48 3 × 3 
32 3 × 3 

Max pooling with varying 
sizes of 7 × 1, 2x8, 3 × 4  

14 neurons  ReLu activation function  

[184] 32 50 × 1, stride of 5 × 1 
64 4 × 1, stride of 2 × 1 

2 × 1 max pooling, stride of 
2 × 1 

1000 neurons Learning rate of 0.001 2 dropout layers, before and after 
full-connected layer, probabilities 
of 0.7 
ReLu activation function 

[205] Dual-headed convolutional neural 
network 
4 convolutional layers in each head 
576 11 × 1 
484 11 × 1 
500 5 × 1 
324 5 × 1 

4 × 1 max pooling 1 fully connected 
layer in each head, 
256 neurons in each 
Final fully connected 
layer with 196 
neurons 

Batch size of 24 
Trained for 70 epochs 

Two dropout layers in each head, 
0.2 and 0.3 probabilities 
ReLu activation function 
L2 regularisation value of 0.01 
Early stopping with patience of 10 
epochs 

[130] 1 
64 3 × 3 

2 × 2 max pooling 512 neurons Adam optimisation 
algorithm 
Learning rate of 0.003 
Trained for 30 epochs 
Batch size of 32 
Momentum of 0.9 

ReLu activation function 

[206] CNN base on WaveNet 
Dilation rate of 3 × 1 filters 
increased to 3, 9, 27, 81 through   

Trained for 900 epochs “Casual”, “valid”, and “same” 
padding used 

(continued on next page) 
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processes (investigated for two mixing and three cleaning processes) 
without needing to label data in the new domain. This is therefore a 
method of eliminating the data labelling burden in a factory environ
ment when applying a US sensor to a new, similar process. Combining 
multiple source datasets or using datasets collected from a wider range 
of process parameters (e.g. temperature variations) enabled the models 
to better adapt to changes in feature distributions. Ref. [258] used 
labelled domain adaptation, where a reference measurement is available 
in the target domain, to use previously collected data from a laboratory 
fermentation process to reduce the development time of accurate ML 
models for an industrial process. Three methods were investigated to 
train DNNs with LSTM layers: simultaneous training over both datasets, 
federated learning using both datasets, and fine-tuning of the previously 
trained models on the target domain dataset. Federated learning was 
investigated as a method for potentially using datasets from multiple 
companies while maintaining data privacy. Federated learning shares 
network weights between a local models from each dataset and a global 
model rather than sharing the real data. All methodologies provided an 
increase in prediction accuracy over solely using the industrial 
fermentation dataset. Federated learning provided the highest increase 
in accuracy by allowing further convergence to minima during training. 
Ref. [259] transferred knowledge from microseismic data of earthquake 
studies to acoustic logging tools for collecting borehole information in 
oil fields. The purpose of this study was to overcome the effects of noise 
on accurate determination of the time-of-flight using pulse-echo trans
ducers. The maximum mean discrepancy was used to align feature 
spaces and a convolutional autoencoder was used to ensure class 
discriminant features were extracted. Ref. [260] used a dictionary 
learning method to use simulated US wavefields to isolate damage 
wavefields in experimental data from plate structures. Firstly, a dictio
nary is learned to optimally reconstruct the simulated wavefields and 
then transferred to the experimental data. Secondly, the reconstructed 
experimental data is aligned with the experimental data to account for 
changes in domain between the simulated and experimental datasets. 

Ref. [261] used Transfer Component Analysis (TCA) to transfer 
damage detectors between experimental datasets from three aircraft 
tailplanes. The data from both domains were matched in a latent space 
and two Transfer Components were extracted. Ref. [262] used metric- 
informed joint domain adaptation to overcome the problem of pre- 
and post-repair changes in data distribution in SHM. Joint domain 
adaptation aligns both the marginal and conditional distributions in a 
latent space using pseudo-labels from the target domain. In this work, 
the Mahalanobis squared distance was used to select the data for pseudo- 
labelling. Ref. [263] used a domain-adapted Gaussian mixture model 
(DA-GMM) to transfer labelled information between two bridge datasets 
for SHM. A linear mapping was used to transform the target domain data 
and the model was optimised using an expectation maximisation tech
nique. Ref. [264] presented a kernelised Bayesian transfer learning 
(KBTL) approach for SHM applications. The approach maps data from 
each domain onto a shared latent space where labelled data from the 
source domain is used to classify the data from the target domain. This 
method may be used to transfer labelled data from uncommon damage 
types from similar structures or simulations to reduce the burden of 
labelling these rare states in the target domain. Ref. [265] used Balanced 

Table 4 (continued ) 

Reference Convolutional layers, number of 
filters, size of filters 

Pooling layers Fully connected 
layers 

Training Additional information 

four residual blocks 
16 filters in each convolutional 
layer 

[207] 19-layer ResNet 1 × 2 max pooling 30o neurons Adam optimisation 
algorithm 
500 epochs 

ReLu activation function 
Dropout probability of 0.5  

Table 5 
Hyperparameters used with support vector models and US measurements.  

References Information 

[218] Radial basis function (RBF) kernel 
C varied between 1 and 32 
γ varied between 0.00049 and 0.5 

[29] C = 1000 
γ = 10 
Gaussian kernel 
Kernel Fisher discriminant used to optimise parameters 

[219] Linear kernel with C = 10 
2nd order polynomial kernel with C = 0.1 
RBF kernel with C = 10 and γ = 1 

[220] RBF and linear kernels 
γ = 20 

[221] Linear kernel, polynomial kernel, RBF kernel, and sigmoid kernel 
Range of C values tested: 1, 101, 102, 103, 104, 105 

[42] Third order polynomial kernels used 
[43] RBF kernel 

γ = 0.7 
[222] Epsilon, C, and γ determined through particle swarm analysis 
[223] Linear, polynomial, and RBF kernels used 

C varied between 0.001 and 100 in increasing powers of 10 
Polynomial degree evaluated between 2 and 5 
γ for RBF kernel evaluated between 0.01 and 100 in increasing powers 
of 10 

[224] Linear, quadratic, RBF, and polynomial kernels tested 
γ values tested: 4, 5, 6, 7 
Polynomial orders tested: 2, 3, 4 

[177] Linear, quadratic, polynomial, multilayer perceptron and RBF kernels 
tested 
A 3rd degree polynomial kernel function was used 

[225] C = 2 
γ = 10,000 
RBF kernel 

[129] Binary tree SVM 
C and γ varied 

[180] Bias = 42.57 
Box constraint = 9.4885 
Epsilon = 0.9489 
Number of iterations = 64 
RBF kernel 

[141] RBF kernel 
C and γ parameters determined using particle swarm optimisation 

[216] Linear, polynomial and RBF kernel tested. Linear kernel performed 
best. 
The best box constraint was found to be 1. 

[181] Linear and RBF kernels investigated 
[226] RBF kernel 

C and γ optimised using Particle Swarm Optimisation 
[227] RBF kernel 

C = 0.1 
γ = 0.3 

[16] C = 0.0001 
[44] C = 0.001 
[27] Bayesian optimisation for 60 evaluations to select box constraint value, 

kernel scale, kernel function, polynomial order, and whether the inputs 
were standardised 
The expected improvement acquisition function was used 

[228] C and γ optimised using Bat Optimisation Algorithm 
[229] Cross-validation to determine C and γ 

RBF kernel  
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Distribution Adaptation to transfer damage localisation models between 
different types of aircraft wings. Three metrics were evaluated to 
determine the structural and data similarities between domains before 
domain adaptation. This was to minimise the risk of negative transfer 
where transfer learning leads to a decrease in model performance. 

4.10. Object detection 

Object detection is a type of image analysis where a CNN identifies 
the presence, location, and class of objects and has been used for defect 
detection in ultrasonic images. Ref. [241] used a Faster R-CNN to 
identify, locate, and size defects using simulated data and a small 
experimental dataset. Ref. [266] presented EfficientDet and a method to 
select anchor hyperparameters for the high aspect ratios expected. They 
achieved a 9 % increase in accuracy (89.6% accuracy overall) compared 
to the YOLOv3 architecture used in [267]. Ref. [268] presented 
DefectDet which uses a lightweight encoder-decoder feature extractor 
and a detection head with custom anchor box aspect ratio and stride to 
detect high aspect ratio defects. Ref. [269] presented two methods of 
using multiple ultrasonic B-scans for defect detection by merging feature 
maps using convolutional and convolutional LSTM layers. 

5. Future directions - interpretability in machine learning 

A particular barrier to implementation of sensor and ML combina
tions is the perceived lack of explainability and interpretability of ML 
models and therefore a lack of trust it their predictions. These issues 
must be addressed to increase buy-in from companies and operators, 
and, furthermore, to meet any potential regulation criteria that requires 
adequate transparency in the ML prediction process. There are three 
points in the supervised ML pipeline where these problems can be 
considered. The first is during feature extraction and selection. Inher
ently explainable features such as the waveform energy (typically a 
measure of the reflection coefficient, and therefore acoustic impedance, 
or attenuation in a system) or the time of flight (a measure of the speed 
of sound through a material) may be preferred over other, more abstract 
features acquired from a US waveform. Feature selection methods may 
be used to reduce the number of features to make models simpler or 
calculate the importance of each feature and thereby make the models 
more interpretable. Secondly, transparent algorithms could be used such 

as linear or logistic regression, decision trees, or k-nearest neighbour 
models [270]. Predictions from linear and logistic regression could be 
accompanied by the weights applied to each feature used to make the 
prediction. In this way, the prediction process can be made fully 
explainable. Similarly, decision trees could produce the hierarchical 
decision process used and k-nearest neighbour models could present the 
k nearest training points used to inform the prediction made. Finally, 
post-hoc explanation of individual predictions can be used to understand 
the decision-making process [271]. Local interpretable model-agnostic 
explanations (LIME) perturb training data around a particular query 
point and build a transparent model (e.g. decision tree) correlating the 
new synthetic training data with model predictions to understand the 
decision-making process around this particular point. Shapley Additive 
explanations (SHAP) calculate the change in predictions by varying 
feature values at a particular data point to understand the impact of each 
feature on the prediction being made. For CNNs, additional techniques 
such as, gradients, class activation mappings, saliency maps, or occlu
sions can be used to indicate the datapoints contributing to a particular 
prediction. 

6. Recommendations 

Tables 6 and 7 contain recommendations for combining ML and US 
sensors for the reviewed process applications. To obtain labelled data in 
industrial environments, other in-line or on-line sensors can be used as a 
reference measurement for all the reviewed processes. Periodic sam
pling combined with off-line analysis could be employed for all pro
cesses other than cleaning, curing, or membrane fouling. Instead, for 
cleaning, the process would need to be ended at different stages, the 
equipment dismantled, and the sensor data labelled. During curing, 
sampling would not be possible due to the toughening or hardening of 
the material. For membrane fouling, no non-disruptive sampling of the 
fouling material could be performed. As such, semi-supervised learning 
could be used in all processes to pseudo-label the unlabelled data except 
for curing or membrane fouling processes where single data points 
cannot be collected. For all the processes reviewed, the US measure
ments could be used to infer process stages (such as the attainment of 
homogeneity during mixing, or the start of ethanol production during 
fermentation), apart from for tabletting. This is because during tablett
ing the final product is monitored opposed to the compaction process. 
For every process, unlabelled and labelled domain adaptation from 
similar processes could be used to reduce the data labelling burden in a 
factory environment. The recommended features include the coarse 
time domain features and convolutional feature extraction methods as 
compared in [239]. Fig. 3 displays the convolutional feature extraction 
method as an unrolled DNN with an LSTM presented in [239]. The 
coarse time domain features include specific amplitudes in the function, 
dispersion of amplitudes along the function, measures of the rise or 
descent of function amplitudes, energy, crest factor, kurtosis, skewness, 
and temporal duration. These features do not misattribute waveform 
variations of narrow frequency band US sensors to changes in frequency 
content as do the Fourier or wavelet transformations [239]. These fea
tures also overcome the problem of lateral sample point shifting of 
waveforms due to temperature changes as suffered by using the ampli
tudes at sample points as features directly [239]. The time of flight can 
be used for all processes to monitor the speed of sound throughout the 
material. The variations between consecutively acquired US waveforms 
can be used to monitor product quality variation in extrusion and in
jection moulding, the degree of homogeneity in mixing processes, or the 
presence of CO2 bubbles during fermentation. Feature gradients along 
with LSTMs can be used for all processes that progress over time to 

Table 6 
An explanation of the recommendations presented in Table 7.  

Recommendations Explanation 

Other sensors Other in-line or on-line sensors as a reference 
measurement 

Semi-supervised Semi-supervised learning to pseudo-label the 
unlabelled data 

Sampling Sampling and off-line sensors as a reference 
measurement 

US measurements US measurements to infer process state 
Unlabelled domain 

adaptation 
Unlabelled domain adaptation from similar processes 

Labelled domain 
adaptation 

Labelled domain adaptation from similar processes 

Coarse time dome features E.g., specific amplitudes in a function, dispersion of 
amplitudes along the function, measures of the rise or 
descent of function amplitudes, energy, crest factor, 
kurtosis, skewness, temporal duration 

Convolutional feature 
extraction 

Convolutional feature extraction methodology as 
presented in [239] 

Feature variations Variations in features between consecutive waveforms  
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Table 7 
Recommendations for combining ML and US measurements with the reviewed processes.   

Cleaning Fermentation Crystallisation Mixing Extrusion Injection moulding Curing Reaction 
monitoring 

Tabletting Membrane fouling 

Obtaining 
labelled 
data 

Other sensors  

Ending the process 
at different stages 
and using off-line 
sensors as a 
reference 
measurement  

Semi-supervised 
learning 

Other sensors  

Sampling  

Semi-supervised 
learning 

Other sensors  

Sampling  

Semi-supervised 
learning 

Other sensors  

Sampling  

Semi-supervised 
learning 

Other sensors  

Sampling  

Semi-supervised 
learning 

Other sensors  

Sampling  

Semi-supervised 
learning 

Other sensors  Other sensors  

Sampling  

Semi-supervised 
learning 

Other sensors  

Sampling  

Semi-supervised 
learning 

Other sensors  

Reducing 
data 
labelling 
burden 

US measurements  

Unlabelled domain 
adaptation  

Labelled domain 
adaptation 

US measurements  

Unlabelled 
domain 
adaptation  

Labelled domain 
adaptation 

US measurements  

Unlabelled 
domain 
adaptation  

Labelled domain 
adaptation 

US measurements  

Unlabelled 
domain 
adaptation  

Labelled domain 
adaptation 

US measurements  

Unlabelled domain 
adaptation  

Labelled domain 
adaptation 

US measurements  

Unlabelled domain 
adaptation  

Labelled domain 
adaptation 

US measurements  

Unlabelled 
domain 
adaptation  

Labelled domain 
adaptation 

US measurements  

Unlabelled 
domain 
adaptation  

Labelled domain 
adaptation 

Unlabelled 
domain 
adaptation  

Labelled domain 
adaptation 

US measurements  

Unlabelled domain 
adaptation  

Labelled domain 
adaptation 

Feature 
extraction 

Time of flight  

Coarse time domain 
features  

Feature gradients  

Other features 
available (e.g. 
temperature, 
material type, mass 
flow rate)  

Convolutional 
feature extraction 

Time of flight  

Coarse time 
domain features  

Feature gradients  

Other features 
available (e.g. 
temperature, 
material type)  

Convolutional 
feature extraction  

Feature 
variations 

Time of flight  

Coarse time 
domain features  

Feature gradients  

Other features 
available (e.g. 
temperature, 
material type)  

Convolutional 
feature extraction 

Time of flight  

Coarse time 
domain features  

Feature gradients  

Other features 
available (e.g. 
temperature, 
material type)  

Convolutional 
feature extraction  

Feature 
variations 

Time of flight  

Coarse time domain 
features  

Other features 
available (e.g. 
temperature, 
material type, 
pressure, mass flow 
rate)  

Convolutional 
feature extraction  

Feature variations 

Time of flight  

Coarse time domain 
features  

Other features 
available (e.g. 
temperature, 
material type, 
pressure, mass flow 
rate)  

Convolutional 
feature extraction  

Feature variations 

Time of flight  

Coarse time 
domain features  

Feature gradients  

Other features 
available (e.g. 
temperature, 
material type)  

Convolutional 
feature extraction 

Time of flight  

Coarse time 
domain features  

Feature gradients  

Other features 
available (e.g. 
temperature, 
material type)  

Convolutional 
feature extraction 

Time of flight  

Coarse time 
domain features  

Other features 
available (e.g. 
temperature, 
material type)  

Convolutional 
feature extraction 

Time of flight  

Coarse time 
domain features  

Feature gradients  

Other features 
available (e.g. 
temperature, mass 
flow rate, material 
type)  

Convolutional 
feature extraction 

Algorithms LSTMs LSTMs LSTMs LSTMs LSTMs for short 
time sequences of 
features  

ANNs or DNNs, 
using US 
waveforms 

LSTMs for short 
time sequences of 
features  

ANNs or DNNs, 
using US 
waveforms 

LSTMs LSTMs ANNs or DNNs LSTMs  
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incorporate knowledge from previous time steps. LSTMs can be used on 
short time sequences of features for extrusion and injection moulding to 
monitor variations in product qualities, or ANNs and DNNs can be used 
on single time-step features. ANNs or DNNs should be used for data that 
is not part of a time sequence due to their ability to construct new fea
tures from input data that correlate to output variables. This ability for 
complex fitting requires adequate regularisation to prevent over-fitting. 
ANNs and DNNs should also be used over CNNs as they allow for 
incorporation of other features such as the time of flight, mass flow rate, 
temperature, pressure, material type, or variations between consecu
tively acquired waveform features. 

7. Summary 

The manufacturing sector is increasingly using data to inform deci
sion making. In-line and on-line sensors underpin this transition by 
automatically acquiring real-time data. Supervised ML techniques can 
be combined with US measurements and provide advantages over cali
bration procedures. However, their implementation is lagging due to 
expertise required to extract and select appropriate features from the 
sensor measurements, select the ML algorithm to use, and find a suitable 
set of model hyperparameters. The aim of this article is to facilitate the 
combination of ML and US measurements for in-line and on-line process 
monitoring or other similar applications. The article first reviews the use 
of US sensors for monitoring processes before reviewing the combina
tion of US measurements and ML including literature from other sectors. 
This review covers feature extraction, feature selection, algorithm 
choice, hyperparameter selection, data augmentation, domain adapta
tion, semi-supervised learning and ML interpretability. Recommenda
tions for applying ML methods for monitoring of the reviewed processes 
are also provided. 
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learning architecture for detection of defects with extreme aspect ratios in 
ultrasonic images, Neurocomputing 473 (2022) 107–115, https://doi.org/ 
10.1016/j.neucom.2021.12.008. 

[269] D. Medak, L. Posilovic, M. Subasic, M. Budimir, S. Loncaric, Deep learning-based 
defect detection from sequences of ultrasonic B-scans, IEEE Sens. J. 22 (3) (2022) 
2456–2463, https://doi.org/10.1109/JSEN.2021.3134452. 

[270] A.B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, 
S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, F. Herrera, 
Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and 
challenges toward responsible AI, Inform. Fusion 58 (2020) 82–115, https://doi. 
org/10.1016/j.inffus.2019.12.012. 

[271] P. Linardatos, V. Papastefanopoulos, S. Kotsiantis, Explainable AI: a review of 
machine learning interpretability methods, Entropy 23 (2021) 18, https://doi. 
org/10.3390/e23010018. 

A.L. Bowler et al.                                                                                                                                                                                                                               

https://doi.org/10.1109/TUFFC.2021.3081750
https://doi.org/10.1109/ISPA.2019.8868929
https://doi.org/10.1016/j.neucom.2021.12.008
https://doi.org/10.1016/j.neucom.2021.12.008
https://doi.org/10.1109/JSEN.2021.3134452
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.3390/e23010018
https://doi.org/10.3390/e23010018


10 
 

3 Methodology 
This section presents a cohesive methodology of the works in this thesis. Section 3.1 

describes the experimental datasets used throughout the works and Section 3.2 explains the 

ML methodology used.  

3.1 Experimental datasets  
For all experiments, a US box (Lecoeur Electronique) was used to excite the transducers 

and digitise the received sound waves. Temperature sensors (RTD, PT1000) were 

connected to a PT-104 Data Logger (Pico Technology). The US box and temperature data 

logger were connected to a laptop and a bespoke MATLAB software controlled the hardware 

components and acquired the data. 

US waveforms can be affected by two phenomena: Firstly, the magnitude of the waveform 

can be altered by changing acoustic impedance or attenuation. Secondly, variations in 

sound velocity alter the displacement of the waveform in the time domain (Henning and 

Rautenburg, 2006). In this thesis, the processes monitored were honey-water blending, 

flour-water batter mixing, cleaning of food fouling from pipe sections, and alcoholic beer 

fermentation. During blending, mixing, and cleaning, the acoustic impedance at the 

measurement areas change as the material composition varies. Furthermore, conducting 

these processes over a range of temperatures alters the sound velocity through the 

materials. Throughout alcoholic beer fermentation, the acoustic impedance and speed of 

sound of a transmitted US wave change as the density of the wort decreases (Bowler et al., 

2021). Moreover, attenuation increases as CO2 bubbles are produced. Therefore, the works 

in this thesis investigate the full range of impacts to US waveforms during process 

monitoring. This means that the feature extraction methods developed in the ML pipeline 

and domain adaptation methods were created using all possible impacts to US waveforms. 

Furthermore, the methods in this thesis can be applied to both stationary and evolving 

processes. Processes which evolve over time, such as those investigated in this thesis, 

require information from previous timesteps as inputs to the ML model. In these instances, 

the LSTM layers used in the final ML pipeline may be used to learn process trajectories. 

However, if only information from the current timestep is required, then the feature extraction 

methodologies developed in this thesis can be applied into neural network architectures. 

3.1.1 Honey-water blending  
Two datasets for the honey-water blending experiments were collected to enable 

investigation of transfer learning between datasets from similar processes. These datasets 

were collected by Alex Bowler during 2019. Two magnetic US sensors (5 MHz central 

resonance, M1057, Olympus) were externally attached to the base of a mixing vessel 

(Figure 1). A reflection-mode, pulse-echo, non-invasive sensing technique was used to 

monitor the sound wave reflected from the interface between the vessel wall and the 

mixture. To the author’s knowledge, only two works have used reflection-mode, non-invasive 

US sensing to monitor mixing processes. Buurman, Resoort, and Plaschkes (1986) used a 

non-invasive US Doppler sensor to detect whether particles were suspended at the bottom 

of a mixing vessel and Zhan et al. (2016) used a non-invasive pulse–echo transducer 

attached to the base of the vessel as part of their study to monitor particle suspension. 

Reflection-mode, non-invasive US sensing measures the change in acoustic properties at 

the vessel-material interface. It is therefore more industrially relevant than invasive sensing 

as it can be externally retrofitted to process equipment and does not require transmission of 

the sound wave through the mixture. The same sensing technique was used to monitor flour-

water batter mixing, as outlined in Section 3.1.2.  
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A 250 ml glass mixing vessel was used. The sensing technique is viable to monitor the 

development of homogeneity for any scale of mixing process, however, only at the sensor 

measurement area. Therefore, during industrial deployment, the location of the sensors must 

be chosen to monitor useful mixing phenomena inside the vessel. The sensors were 

attached to adhesive magnetic strips on the outside of the vessel and coupling gel (Proceq 

ultrasound couplant) was applied between the sensor and strip. An overhead stirrer was 

used to stir the mixture. One sensor was attached in the centre of the vessel base and 

another sensor was attached approximately 2 cm offset from the centre as this was half the 

distance between the centre of the vessel and the vessel wall. This allowed monitoring of 

two areas of mixing phenomena to compare between the data obtained from different 

regions of the vessel. The sensors were attached to the base of the vessel as this was a flat 

surface in contrast with the curved vessel sides. This enabled enhanced transmission of the 

US wave through the vessel walls. The reduced curvature at larger scales would enable the 

attachment of the sensors to the vessel sides. The temperature sensor was also attached 

externally to the base of the vessel. US signals were acquired continuously for 1 s for each 

probe consecutively. Two different volumes of pure clear honey (Wm Morrison 

Supermarkets plc) were used: 20 and 30 ml. The volume of tap water used was 200 ml for 

all runs. Both the honey and water were loaded into the vessel before mixing was started. 

The impeller speed was set to either 200 or 250 rpm. These four parameter permutations 

were repeated three times, producing a set of 12 runs. The temperature ranged between 

19.3 and 22.1 °C. Figures 1b and 1c display the degree of temperature variability between 

this range. The environmental temperature was varied throughout the data collection by 

controlling the laboratory thermostat set point. These parameter ranges were selected to 

create variability between the experiment repeats and encourage generalisation of the 

trained ML models whilst retaining a mixing time that enabled collection of US datapoints. 

The time length until mixing was complete varied between 200 (45 datapoints) and 1140 

seconds (165 datapoints). This methodology was repeated across two days, producing the 

two datasets. Justification of the data collected in this thesis is provided in Section 9 

Discussion. Between collection of the two datasets, the US sensors were removed and 

reattached to obtain different US waveforms. A video camera was used to film the mixing 

process. The labelled data was obtained by viewing the videos to determine the time where 

mixing was complete for each run. In an industrial setting, labelled data would need to be 

collected through using additional sensing techniques to follow the mixing trajectory or 

periodic sampling of the mixtures (Bowler et al., 2022). As honey is completely miscible in 

water, the honey-water blending dataset is representative of developing homogeneity in 

liquid–liquid blending. 

The aim of this thesis was to develop ML methods to facilitate optimal deployment of US 

sensors for process monitoring applications in industrial environments. Therefore, the 

temperature range chosen, spanning from 19.3 to 22.1 °C, is used to draw conclusions 

about the relative strengths of each ML method investigated rather than to reflect actual 

industrial temperature spectra. The choice of temperature range and granularity is therefore 

justified as the emphasis of this thesis is comparative evaluation of ML methods rather than 

achieving high accuracy in an industrial application. The results drawn from this thesis are 

indicative of differing temperature ranges between the two mixing processes and provide 

insight into which ML methods may be most generalisable to varying temperature ranges in 

industrial scenarios.  
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Figure 1a: A diagram of the honey-water blending process. Adapted from Bowler et al. 

(2021). Figure 1b and 1c: The environmental temperature range and degree of temperature 

variability between the range for each of the honey-water blending datasets collected. The 

temperature during the first dataset (Figure 1b) ranges between 19.8 to 21.2°C and the 

temperature of the second dataset ranges between 19.3 to 22.1°C.  

3.1.2 Flour-water batter mixing  
The flour-water batter mixing dataset was collected by Alex Bowler during 2019. Two 

magnetic US sensors (5 MHz resonance, M1057, Olympus) were externally attached to a 

stand mixer glass mixing bowl (1000 W Kenwood kmix kmx754) using magnetic tape and 

silicone vacuum grease. A temperature sensor was also attached to the outside of the 

mixing bowl to monitor the environmental temperature. A reflection-mode, pulse-echo 

sensing technique monitored the sound wave reflected from the interface between the 

mixing bowl and the mixture. US signals were continuously acquired for 1 s for each probe 

consecutively and, on average, produced two waveforms. The quantity of strong white flour 

(Wm Morrison Supermarkets plc) and tap water was varied between 450 and 450 g, 500 and 

450 g, and 500 and 400 g, respectively. Each combination was repeated three times 

producing a total of nine runs. These parameter combinations led to variability in process 

length between 720 and 1320 s. The variation in composition was used to ensure variation in 

the US measurements acquired for each run to enable the evaluation of ML model 

generalisability. Below 400 g of tap water, the batter began to pull away from the sides 

where the sensors were located. Above a water quantity of 450 g, the gluten network failed 

to develop. Measuring the power or torque supplied to the impeller is a common method of 

monitoring dough mixing. Mixing should be stopped at the maximum power input for optimal 

gluten network development and therefore bread properties (Perez Alvarado, Hussein, and 

Becker, 2016). Beyond this point of maximum resistance to extension, the gluten network 

begins to breakdown. The optimal mixing time was obtained by determining the time of 

maximum power input to the impeller. This was measured using a YouThink plug socket 

power meter.  
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Figure 2: A diagram of the flour-water mixing process. Adapted from Bowler et al. (2021).  

3.1.3 Cleaning of food fouling from pipe sections  

These datasets were collected by Josep Escrig and have been used in Escrig et al. (2019, 

2020a, and 2020b). Three pipe test sections were used: A rectangular rig with a SS340 base 

plate and clear, PMMA sides; a circular pipe section constructed from clear PMMA; and an 

opaque, circular pipe section constructed from SS316. This enabled collection of US 

waveform from different pipe materials and geometries including circular pipes as commonly 

used industrially. Three different food materials were used to foul the pipe test sections: 

tomato paste, concentrated malt, and gravy. This allowed for collection of US data for 

materials with different cleaning characteristics. Tomato paste and gravy were cleaned by 

mechanical forces whereas the malt extract dissolved into the cleaning solution (Escrig et 

al., 2019). The fouling material was then spread with a spatula to form a layer of 

approximately 5 mm thickness and left for 10 min to dry. It was placed in the centre of the 

base plate for the rectangular rig and 30 mm from the exit for the circular pipes. The 

temperature of the water used for cleaning was set at either 12 °C or 45 °C and a flowrate of 

6 l/s was used. This produced mean cleaning times ranging between 2:12 (malt, 45°C) and 

67:41 (gravy, 12°C) minutes. For the rectangular test section, a magnetic sensor (5 MHz 

resonance, M1057, Olympus) was externally attached to the base plate. For the circular pipe 

sections, the US transducers (2 MHz, Yushi, 2P10N) were glued externally to the bottom of 

the pipes in the location where the fouling material would be placed. The temperature 

sensors were also attached externally, in close proximity to the US sensors. A camera was 

used to determine the time at which all the fouling material was removed. The position of the 

camera was moved depending on whether the pipe section was clear or opaque. In an 

industrial setting, the labelled data could be acquired through either disassembling the pipe 

section to inspect cleanliness, using additional sensing techniques to monitor the 

concentration of fouling in downstream cleaning solution, or transfer learning from similar 

processes (Bowler et al., 2022). The US and temperature data was recorded every 4 s 

producing 4 US waveforms. A reflection-mode, pulse-echo sensing technique was used to 

monitor the waveform reflected from the interface between the pipe wall and the fouling 

material. To the author’s knowledge only Chen et al. (2019) has used a non-invasive, 

reflection-mode US sensing technique as used to collect these datasets. The camera 

images were recorded every 20 s. A minimum of 7 repeats were conducted for every 
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permutation of pipe test section, fouling material and fluid temperature, producing 93 runs in 

total.  

 

Figure 3: A diagram of the cleaning process to remove food fouling from pipe sections. 

Adapted from Bowler et al. (2021).  

3.1.4 Laboratory scale fermentations  
The laboratory scale fermentation dataset was collected by Josep Escrig. The fermentations 

were conducted in a 30 L cylindrical plastic vessel. A lid sealed the vessel to protect the wort 

from contamination. The lid contained an air lock to release the CO2 produced during 

fermentation. A belt heater increased the temperature of the wort to facilitate fermentation. 

The wort was prepared in the vessel by dissolving and mixing 1.5 kg of malt (Coopers Real 

Ale, UK) and 1 kg of sugar (brewing sugar, the Home Brew Shop, UK) in 22 L of water. Once 

the ingredients were mixed, an invasive US probe was installed, consisting of a US 

transducer (Sonatest, 2 MHz central frequency, UK) and a temperature sensor. Coupling gel 

was applied between the US transducer and the probe, and a spring was used to maintain 

the contact pressure. The US sensor monitored up to three sound wave reflections. Firstly, a 

sound wave that travelled through the coupling gel, along the probe material, and reflected 

from the probe-wort interface. Secondly, a reverberation of this sound wave path. Thirdly, a 

reflection from the far probe wall where the sound wave has travelled through the fermenting 

wort. Using an invasive probe allowed comparison between machine learning models that 

used either the first or second and third waveform reflections.   

A Tilt hydrometer was installed to provide real-time density measurements. This device was 

a small cylinder that floats in the liquid with its centre of gravity different from its centre of 

buoyancy. This causes an inclination of the device that is dependent on the specific gravity 

of the fermenting media. The inclination of the hydrometer was measured by a self-

contained accelerometer and was transmitted by radio to a smartphone located outside of 

the vessel. A calibration procedure related the inclination to the specific gravity.  

The yeast (Coopers Real Ale, UK) was distributed on the surface and the vessel sealed. The 

mixture was left for 4 to 7 days while the fermentation occurred. After this time, the 

fermentation equipment was cleaned and a new batch was prepared. In total, 13 batches 

were completed. During fermentation, data was collected from the three different sensors: 

the US sensor, the temperature sensor, and the hydrometer. The fermentation batches were 

conducted over a period of approximately 3 months. The environmental and water 

temperature in the laboratory changed during this time and the belt heater was only in 

contact with the lower section of the vessel. This resulted in the temperature ranging 

between approximately 20 and 30 °C. Sets of US and temperature data were collected 

periodically (at regular intervals where 200 s elapsed between each set of collected data). 
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Each of the sets consisted of 36 US waves and 36 temperature readings. The time between 

each waveform acquisition was 0.55 s.  

To the author’s knowledge, as reviewed in Section 2, only Meng et al. (2012) has used a 

non-invasive, reflection-mode US sensing technique to monitor fermentation. They used a 

single sensor to monitor yogurt fermentation by monitoring the change in acoustic 

impedance at the wall-yogurt interface. Although an invasive probe was used to monitor the 

alcoholic fermentation of beer during the collection of this dataset, this thesis (Section 5,  

Predicting Alcohol Concentration during Beer Fermentation Using Ultrasonic Measurements 

and Machine Learning) evaluates the potential of a non-invasive, reflection-mode US sensor 

by only using features reflected from the probe-wort interface and omitting the process 

temperature from the ML models.  

 

Figure 4: A diagram of the laboratory alcoholic beer fermentation process. Adapted from 

Bowler et al. (2021).  

3.1.5 Industrial scale fermentations  
The industrial scale fermentation dataset was collected by Nicholas Watson. Five 

fermentations were monitored in a 2000 L industrial scale fermenter at the Totally Brewed 

brewery in Nottingham, UK. Three different beers were monitored: three fermentations 

consisting of Slap in the Face, one Guardian of the Forest, and one 4 Hopmen of the 

Apocalypse. The same US probe was used to monitor both the laboratory and industrial 

scale fermentation processes. Samples were removed every two hours (except overnight) 

and the wort density was measured using a hydrometer. The temperature was decreased 

once the desired wort density was reached. Blocks of US and temperature data were 

collected periodically (at regular intervals where 200 s elapsed between each block of 

collected data). Each of the blocks consisted of 36 US waveforms and 36 temperature 

readings. The time between each waveform acquisition was 0.55 s.  

3.1.6 Summary of experimental datasets  
Table 1: A summary of the experimental datasets investigated in this thesis. 

 Honey-water 
blending 

Flour-water 
batter mixing 

Cleaning Alcoholic beer 
fermentation  

Sensors • Two  

• 5 MHz 
central 
frequency  

• Two  

• 5 MHz 
central 
frequency  

• One  

• 2 or 5 MHz 
central 
frequency 

• One 

• 2 MHz central 
frequency  

Sensor 
attachment  

• Non-
invasive  

• Non-
invasive  

• Non-invasive  • Invasive probe  
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• Magnetic 
sensors 
attached to 
magnetic 
adhesive 
strip   

• Magnetic 
sensors 
attached to 
magnetic 
adhesive 
strip   

• Magnetic 
sensors 
attached to 
metal pipe 

• Non-magnetic 
sensors glued 
to pipe  

Number of 
datasets 

Two One One Two  

Equipment • 250 ml 
glass 
mixing 
vessel  

• Overhead 
stirrer  

• 5 l mixing 
bowl 

• Stand 
mixer   

• Three pipe 
sections 
(rectangular 
with SS340 
base plate, 
circular 
PMMA, and 
circular 
SS316) 

• 30 l 
fermentation 
vessel  

• 2000 l 
fermentation 
vessel  

Length of 
process  

200 – 1140 s 720 – 1320 s 2:12 to 67:41 min 4 – 7 days 

Number of 
runs 

12  9 93 18  

Number of 
datapoints  

1493 and 921 999 22,207 61,220 and 11,920  

Class 
balance  

19.0 % mixed 
and 81.0 % not 
mixed, 28.9 % 
mixed and 71.1 
% not mixed 

30.3 % mixed 
and 69.7 % 
not mixed  

56.0 % clean and 
44.0 % not clean 

Start of ethanol 
production: 89.6 % 
started and 10.4 % 
not started, 87.8 % 
started and 12.2 % 
not started 
 
End of ethanol 
production: 52.6 % 
ended and 47.4 % 
not ended, 54.9 % 
ended and 45.1 % 
not ended 

Temperature 
range (°C) 

19.3 - 22.1  19.4 - 21.3  12 – 45  10 – 30 

Parameter 
range  

• 20 – 30 ml 
honey  

• 200 – 250 
rpm 
impeller 
speed  

• 450 – 500 
g flour  

• 400 – 450 
g tap water  

• Malt extract, 
gravy, tomato 
paste  

-  

Data 
labelling  

Video camera 
used to 
determine the 
time at which 
the materials 
were fully 
mixed  

Measurement 
of power 
output from 
impeller  

Video camera 
used to determine 
the time at which 
the pipe was fully 
cleaned  

Density 
measurements 
using in-line 
sensors and 
sampling  
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3.1.6.1 Dataset size for machine learning  

For linear regression, a rule of thumb is that the size of the dataset should be at least 10 

times larger than the number of features. It has been suggested that this should be 

increased to at least 50 times for neural networks (Alwosheel et al., 2018). Using the 

literature reviewed in Section 2 (Bowler et al., 2022), the median number of features used 

with neural networks and US data is seven (Section 2, Table 3). This suggests a dataset 

size of 350 samples is required to model the average task in the literature. All datasets used 

in this thesis have a greater number of samples than this (Table 1), suggesting that they are 

sufficient for training machine learning models. However, the number of data points required 

depends on many factors such as complexity of the task or desired model accuracy. 

Nonetheless, the machine learning models developed in this thesis are used to compare 

between machine learning techniques opposed to being deployed in final applications. 

Therefore, each model is trained on the same datasets to those with which it is compared. 

For further discussion about the data collection required to justify the conclusions developed 

in this thesis, see Section 9 ‘Discussion’. 

3.2 Machine learning  
This section outlines the feature extraction, feature selection, algorithm and hyperparameter 

choice used throughout the works in this thesis which are outlined in Table 2. Furthermore, 

labelled and unlabelled domain adaptation were investigated to transfer ML knowledge 

between datasets.  

Table 2: A summary of the articles in each section of this thesis.  

Section Title of article Novelty Case studies 

4 Monitoring Mixing 
Processes Using 
Ultrasonic Sensors and 
Machine Learning 

ML was combined with non-
invasive, reflection-mode US 
sensing to monitor mixing 
processes. A range of ML 
algorithms were trialled 
including LSTMs and CNNs. 

• Honey-water 
blending  

• Flour-water 
batter mixing  

5 Predicting Alcohol 
Concentration during 
Beer Fermentation Using 
Ultrasonic Measurements 
and Machine Learning 

ML was combined with non-
invasive, reflection-mode US 
sensing to monitor 
fermentation processes. 
Omission of the temperature 
as a feature was evaluated.  

• Laboratory-
scale beer 
fermentation  

6 Convolutional feature 
extraction for process 
monitoring using 
ultrasonic sensors 

A convolutional feature 
extraction method is 
presented. Multi-task learning 
and data augmentation were 
applied to US sensor data.  

• Honey-water 
blending  

• Flour-water 
batter mixing 

• Pipe section 
cleaning  

• Laboratory-
scale beer 
fermentation 

7 Transfer learning for 
process monitoring using 
reflection-mode ultrasonic 
sensing 

Unlabelled domain adaptation 
was applied to US sensor data 
for monitoring mixing and 
cleaning processes. Omission 
of the temperature as a 
feature was evaluated. 

• Honey-water 
blending  

• Pipe section 
cleaning  
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8 Domain Adaptation and 
Federated Learning for 
Ultrasonic Monitoring of 
Beer Fermentation 

Labelled domain adaptation 
was applied to US sensor data 
for fermentation monitoring. 
Federated learning and multi-
task learning were combined 
with US sensor data.  

• Laboratory-
scale beer 
fermentation 

• Industrial-
scale beer 
fermentation 

 

3.2.1 Feature extraction  

3.2.1.1 Wavelet transform  

Wavelet analysis uses decaying waveforms as transform functions to analyse the frequency 

content of a waveform at each location in the time domain (Mallat and Mallat, 1999). The 

Continuous Wavelet Transform (CWT) uses a continuous range of frequencies to 

decompose the US signal whereas the Discrete Wavelet Transform (DWT) and Wavelet 

Packet Transform (WPT) use discrete frequencies at each decomposition. The WPT 

performs successive decompositions on each branch of the original signal whereas the DWT 

only applies successive decompositions to the lower frequency signal content (Mallat, 1989). 

Thereby the WPT has improved resolution of high frequency components of the signal. All 

these wavelet transform techniques have been widely applied for feature extraction from US 

waveforms (Bowler et al., 2022). The DWT was utilised in Section 4 and Section 7 (‘dwt’ 

function, MATLAB) as it has more commonly been utilised with US waveforms compared 

with the WPT (Bowler et al., 2022). A key parameter is the choice of the analytical wavelet 

shape, termed the mother wavelet (Safavian et al., 2005). The Symlet wavelet was chosen 

as the mother wavelet for both investigations due to it being the least asymmetric and 

therefore most visually similar to the waveforms studied. The number of vanishing moments 

was trialled between one and ten in Section 4 as is the range used in previous studies with 

US waveforms (Bowler et al., 2022). Six vanishing moments were selected in Section 7 after 

this was found to be optimal for the same application in Section 4 (honey-water blending). 

Three, five, and seven decomposition levels were evaluated in Section 4 owing to the 

common range of three to seven being used with US waveforms (Bowler et al., 2022). 

Different levels of decomposition worked best for each task. These results led to using five 

decomposition levels in Section 7 as the middle of the range tested. The CWT was also 

used in Section 4 (‘cwt’ function, MATLAB) as it retains greater information about the 

frequency content of the waveform than the DWT. In this case, it was used with CNNs to 

handle the greater number of input features compared to ANNs or LSTMs. The Morlet 

wavelet was used owing to its symmetricity.  

3.2.1.2 Waveform features  

The following section describes features calculated from the US waveform. The waveform 

may be in the time domain or time-frequency domain after applying the wavelet transform. 

The waveform in either domain may consist of multiple overlapping sound waves requiring 

multiple features to fully capture its variation with the properties of the measured materials.  

The features investigated in this thesis were chosen to cover the full range of previous 

features extracted for use with US waveforms and machine learning determined in Bowler et 

al. (2022). For example, specific amplitudes in waveforms were monitored (3.2.1.2.4 Peak-

to-peak amplitude, 3.2.1.2.5 Maximum amplitude, 3.2.1.2.6 Minimum amplitude), single 

measures of all waveform amplitudes (3.2.1.2.1 Energy, 3.2.1.2.2 Sum absolute amplitude, 

3.2.1.2.3 Sum root amplitude, 3.2.1.2.7 Standard deviation, 3.2.1.2.8 Skewness, 3.2.1.2.9 

Kurtosis), the position of the waveform (3.2.1.2.10 Position of maximum peak, 3.2.1.2.11 

Position of minimum peak), using waveform amplitudes directly as features (3.2.2.1 Principal 

component analysis), the time of flight (3.2.1.2.12 Time of flight), the variance between 
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consecutive waveforms (3.2.1.4 Energy standard deviation), time-lagged features (3.2.1.3 

Feature gradients), and additional process features (3.2.1.5 Temperature).  

3.2.1.2.1 Energy  

The Energy is the sum of all the squared amplitudes in a section of a waveform (Equation 1). 

It is a measure of the magnitude of the sound wave.  

𝐸 =  ∑ 𝐴𝑖
2𝑖=𝑒𝑛𝑑

𝑖=𝑠𝑡𝑎𝑟𝑡          (1) 

Where E is the Energy, i is the sample point in a waveform, start is the first sample point, 

end is the last sample point, Ai is the waveform amplitude at sample point i (Zhan et al., 

2015).  

3.2.1.2.2 Sum absolute amplitude  

The Sum Absolute Amplitude (SAA) is the sum of all the absolute amplitudes in a section of 

a waveform (Equation 2). It is also a measure of the magnitude of a sound wave but it 

assigns larger weighting to smaller amplitudes than the Energy.  

𝑆𝐴𝐴 = ∑ |𝐴𝑖|𝑖=𝑒𝑛𝑑
𝑖=𝑠𝑡𝑎𝑟𝑡          (2) 

Where SAA is the Sum Absolute Amplitude, i is the sample point in a waveform, start is the 

first sample point, end is the last sample point, Ai is the waveform amplitude at sample point 

i (Zhan et al., 2015). 

3.2.1.2.3 Sum root amplitude  

The Sum Root Amplitude (SRA) is the sum of the square root of the absolute amplitudes in a 

waveform section (Equation 3). It is another measure of the magnitude of a soundwave, 

however, gives larger weighting to smaller values than the SAA.  

𝑆𝑅𝐴 =  ∑ √|𝐴𝑖|𝑖=𝑒𝑛𝑑
𝑖=𝑠𝑡𝑎𝑟𝑡          (3) 

Where SRA is the Sum Root Amplitude, i is the sample point in a waveform, start is the first 

sample point, end is the last sample point, Ai is the waveform amplitude at sample point i 

(Zhan et al., 2015). 

3.2.1.2.4 Peak-to-peak amplitude  

The peak-to-peak amplitude measures the range between the maximum and minimum 

amplitudes in a waveform section (Equation 4).  

PPA = max(Astart:end) – min(Astart:end)       (4) 

Where PPA is the peak-to-peak amplitude, start is the first sample point, end is the last 

sample point, max and min indicate functions to find the maximum or minimum amplitudes in 

a waveform section, respectively.  

3.2.1.2.5 Maximum amplitude  

The maximum amplitude is the largest positive value in a waveform section (Equation 5).  

Amax = max(Astart:end)         (5) 

Where Amax is the maximum amplitude in a waveform section, start is the first sample point, 

end is the last sample point. 

3.2.1.2.6 Minimum amplitude  

The minimum amplitude is the largest negative value in a waveform section (Equation 6).  

Amin = min(Astart:end)         (6) 
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Where Amin is the minimum amplitude in a waveform section, start is the first sample point, 

end is the last sample point.  

3.2.1.2.7 Standard deviation  

The standard deviation of sample point amplitudes along a waveform section is a measure 

of their dispersion relative to the mean value (Equations 7 and 8).  

µ =  
∑ 𝐴𝑖

𝑖=𝑒𝑛𝑑
𝑖=start

𝑠𝑡𝑎𝑟𝑡−𝑒𝑛𝑑
          (7) 

𝑆𝑇𝐷 =  √
1

𝑠𝑡𝑎𝑟𝑡−𝑒𝑛𝑑
∑ (𝐴𝑖 − µ)2𝑖=𝑒𝑛𝑑

𝑖=𝑠𝑡𝑎𝑟𝑡        (8) 

Where µ is the mean amplitude in the waveform, STD is the standard deviation, i is the 

sample point in a waveform, start is the first sample point, end is the last sample point, Ai is 

the waveform amplitude at sample point i (Zhan et al., 2015).  

3.2.1.2.8 Skewness 

The skewness is a measure of the lack of symmetry in the waveform section (Equation 9). 

𝑆 =  
∑ (𝐴𝑖−µ)3𝑖=𝑒𝑛𝑑

𝑖=𝑠𝑡𝑎𝑟𝑡

(𝑒𝑛𝑑−𝑠𝑡𝑎𝑟𝑡)×𝑆𝑇𝐷3         (9) 

Where S is the skewness, i is the sample point in a waveform, start is the first sample point, 

end is the last sample point, Ai is the waveform amplitude at sample point i (Caesarendra 

and Tjahjowidodo, 2017).  

3.2.1.2.9 Kurtosis  

The kurtosis is a measure of the tailed-ness of the waveform section (Equation 10).  

𝐾 =  
∑ (𝐴𝑖−µ)4𝑖=𝑒𝑛𝑑

𝑖=𝑠𝑡𝑎𝑟𝑡

(𝑒𝑛𝑑−𝑠𝑡𝑎𝑟𝑡)×𝑆𝑇𝐷4         (10) 

Where K is the kurtosis, i is the sample point in a waveform, start is the first sample point, 

end is the last sample point, Ai is the waveform amplitude at sample point i (Caesarendra 

and Tjahjowidodo, 2017).  

3.2.1.2.10 Position of maximum peak  

The position of the maximum peak is the sample point where the maximum amplitude in a 

waveform section is located. This position may change during a process due to changes in 

material speed of sound, variations in temperature, or superposition of multiple overlapping 

sound waves.  

3.2.1.2.11 Position of minimum peak  

Similarly, the position of the minimum peak is the sample point where the minimum 

amplitude in a waveform section is located.  

3.2.1.2.12 Time of flight  

Three different methods to determine the time of flight (the length of time for a sound wave 

to travel through a material) were used in these works. Firstly, a thresholding method was 

used which determines the earliest sample point in a waveform which exceeds a fixed value 

(Zhu et al., 2017). However, with small signal to noise ratios, noise may sometimes rise 

above this threshold value or the threshold must be increased which can degrade the 

accuracy of the calculated waveform arrival time. Therefore, additional methods were also 

used. The second method was zero-crossing where the time of arrival is defined as the next 

sample point where the waveform crosses zero amplitude (Zhu et al., 2017). It therefore 

provides a more consistent selection of the arrival time as the threshold value may be 
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located along any part of a peak. However, it is still impacted by low signal to noise ratios. 

The third method was auto-correlation (‘autocorr’ function in MATLAB and ‘correlate’ function 

in NumPy) which performs a correlation analysis of the incident and received sound waves 

to determine the time delay (Khyam et al., 2017). This method is therefore unaffected by the 

signal to noise ratio but can become inaccurate if the shape of the incident and received 

waveform differ. Therefore, to improve robustness in this thesis, all three methods are used 

to provide time of flight estimates for the US waveform.  

3.2.1.3 Feature gradients  

Feature gradients provide a measure of the process trajectory by comparing feature values 

at the current timestep to their values at previous timesteps. In these works, the feature 

gradients were calculated after applying a backwards, one-sided moving mean so that only 

past data is used. The size of the sliding window to calculate the mean can be decided 

through using process knowledge (e.g., selected as 5 h in Section 5 or 5 % of the total 

process time in Section 7) or through testing multiple lengths of time (as used in Section 4).  

3.2.1.4 Energy standard deviation  

The Energy standard deviation is a measure of the dispersion in the Energy of consecutively 

acquired waveforms (Equation 11). This can be used to identify fluctuations in the materials 

being measured by the US sensor, for example, the production of CO2 bubbles during 

fermentation.  

ESTD = √
1

𝑊
∑ (𝐸𝑖 − 𝐸̅)2𝑖=𝑊

𝑖=1         (11) 

Where ESTD is the Energy standard deviation, and W is the number of consecutively 

acquired waveforms investigated.  

3.2.1.5 Temperature 

Use of the process temperature as a feature, or its exclusion, were also investigated in the 

ML models. This is because properties effecting US wave propagation (e.g., compressibility, 

density) are highly sensitive to changes in temperature and therefore impact the acquired 

waveforms.  

3.2.1.6 Convolutional feature extraction  

Convolutional neural networks (CNNs) have convolutional layers as well as fully connected 

layers. The convolutional layers consist of filters that perform cross-correlation on the input 

data. This enables CNNs to automatically learn spatially invariant features from the input 

data (Bowler et al., 2022). Section 6 presents a convolutional feature extraction methodology 

for US waveforms (trained in Keras Python). A 1D CNN is pre-trained on an auxiliary task to 

classify waveform dataset membership of the experimental datasets previously outlined. 

Segments of 1000 sample points in length were selected from each waveform. The position 

of the 1000 sample point length window was chosen for each waveform by investigating the 

difference between the start and end waveforms of the individual process. The areas with 

the largest visual change throughout the process were used. To increase the training set 

size for training the CNN, and to improve informative feature learning in the convolutional 

layers, a 600 × 1 input to the CNN was used. Data augmentation using a sliding window, 

laterally translated by 100 sample points each time, produced five waveform segments of 

600 sample points in length. Further data augmentation used separate normalisation of each 

waveform segment to differentially magnify the waveform. This was to ensure that the CNN 

learned features specific to each waveform, rather than the position or magnitude of 

features. 
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A grid search was used to select the learning rate, batch size and number of neurons in the 

fully connected layer. No padding was used. Training was performed with the Adam 

optimiser. The minimum number of neurons in the fully connected layer to achieve 100% 

accuracy for the dataset membership prediction was used to ensure feature identification in 

the convolutional layers rather than the fully connected layer. The pre-trained convolutional 

weights were then used to extract features on the full-size waveform for each dataset. 

3.2.2 Feature selection  

3.2.2.1 Principal component analysis  

Principal Component Analysis (PCA) is an unsupervised ML method that linearly transforms 

input variables into new, uncorrelated features called principal components (PCs) (Khalid et 

al., 2014). Principal component analysis (PCA) was the only feature selection method used 

in these works and was applied in Section 4 (‘pca’ function, MATLAB) and Section 6 (‘PCA’ 

function scikit-learn). Despite only identifying linearly correlated variables, PCA was utilised 

instead of autoencoders because it offers advantages of not requiring model training or 

hyperparameter optimisation and the desired number of features can be selected without 

having to retrain a model.  

There are many methods to estimate the number of PCs to retain. For example, choosing 

the most informative PCs that explain a predefined amount of variance in the data (typically 

larger than 90 % (Valle et al., 1999)), retaining PCs with eigenvalues greater than 1 

(Braeken and Van Assen, 2017), using scree plot to visualise the impact of each PC (David 

and Jacobs, 2014), or selecting PCs that have a greater explained variance than a 

predefined threshold (e.g. 1 % (Cau et al., 2005) or 2 % (Miao et al., 2008)). In Section 4 the 

amplitude at each sample point in the waveform was used as the input variables for PCA. 

The PCs explaining > 95 % of the variance in the input variable were selected which is a 

commonly selected threshold. However, if this number was greater than ten, then only the 

first ten PCs were selected to reduce model dimensionality. In Section 6, PCA was applied 

to the waveform features extracted using the pre-trained convolutional filter weights. This 

was to aid LSTM layer training accuracy and stability in the deep neural network. PCA 

reduced the dimensionality of the data, minimised non-useful information inputted into the 

network, and enabled the use of additional features such as the US time of flight and 

standard deviation between consecutive waveforms. Five PCs were chosen for each dataset 

and justification is provided below. In this thesis, the use of PCA was compared to other ML 

methods. As such, the number of PCs was not optimised fully, only the estimation methods 

as discussed above were used. In practice, if using PCA, the number of PCs can be thought 

of as another hyperparameter to optimise during the model validation procedure.  

Table 3 presents the percentage variability explained by each PC for the US waveform 

datasets and the number of PCs required to explain 95% of the variability, a commonly used 

method to determine the number of PCs to utilise (Valle et al., 1999). In Section 6, the first 

PC likely follows the common waveform changes across the full dataset caused by 

variations in the US properties of the materials being monitored (either due to changing 

composition or process temperature). Successive PCs will identify waveform changes more 

specific to each batch, most likely due to the different process temperatures. Therefore, it is 

anticipated that only a small number of PCs are required (i.e. greater than one) to monitor 

the changing material composition and account for changes in the monitoring US waveform 

at different temperatures. This is supported by Table 3 where the percentage variability 

explained drops off after the first two PCs. As shown in Table 3, the smallest number of PCs 

required to explain 95% of the variability in the dataset, is eight for the Plastic Cleaning 

dataset and nine for fermentation monitoring using only the first reflection. Therefore, using 

these two pieces of guidance (the primacy of the first and second PCs and the smallest 
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number of PCs to explain 95% of dataset variability), five PCs were selected to obtain useful 

waveform information while minimising noise in Section 6.  

Table 3. A summary of the distribution of the explained variance by each PC for the US 

waveform datasets after convolutional feature extraction (Section 6).   

Experimental 
dataset  

Waveforms  Number 
of PCs to 
explain 
95% of 
variability 

Variability 
explained 
by 1st PC 
(%)  

Variability 
explained 
by 2nd PC 
(%) 

Variability 
explained 
by 3rd PC 
(%) 

Variability 
explained 
by 4th PC 
(%) 

Variability 
explained 
by 5th PC 
(%) 

Fermentation Reflection 1 9 56.4 23.1 9.2 2.1 1.5 
 Reflection 2 18 30.4 21.6 14.9 9.0 6.1 
Cleaning of 
food fouling 
from pipe 
sections  

Flat rig   15 60.4 15.2 7.4 4.3 1.8 

 Circular, 
plastic   

8 56.7 14.3 12.4 6.3 1.9 

 Circular, 
metal  

32 50.9 12.3 8.5 4.6 3.7 

Honey-water 
mixing 1 

Central 
sensor  

24 52.1 18.8 7.5 4.6 2.3 

 Non-central 
sensor 

41 51.4 17.0 4.7 3.8 2.8 

Honey-water 
mixing 2 

Central 
sensor  

19 38.6 30.8 12.4 4.1 2.9 

 Non-central 
sensor 

25 41.6 36.8 4.6 2.7 2.4 

Batter mixing  Sensor 1 42 49.1 15.1 14.3 4.5 2.6 
 Sensor 2 16 60.5 16.3 7.5 3.1 1.5 

 

3.2.3 Algorithms  

3.2.3.1 Training, validation, and test procedures  

In ML, datasets are split into training, validation, and test sets. The models are trained using 

the training set, the model hyperparameters are optimised by monitoring performance on the 

validation set, and a measure of the optimised model’s accuracy on unseen data is 

estimated through evaluation on the test set. The size of each of these splits, the data used 

in each of these splits, and the validation procedure used must be decided based on the 

application of the ML model as the pipeline is chosen to maximise accuracy on the validation 

and test set data. The aim of this thesis was to develop ML methods to facilitate optimal 

deployment of US sensors for process monitoring applications in industrial environments. To 

achieve this purpose, the conclusions drawn from this thesis, such as the relative strengths 

and weaknesses of each US sensing or ML technique, must be representative of what may 

be expected in industrial environments. Therefore, the training, validation, and testing 

procedures must be representative of those that would be used in industrial settings so that 

the conclusions drawn from this thesis can be expected to transfer to industrial processes. 

K-fold cross validation splits the combined training and validation sets into k sections. Each 

of these sections is used as individual validation sets and an average metric for the 

validation accuracy is obtained (Jung and Hu, 2015). This is a robust method of validation as 

it repeats the procedure k number of times. The size of k typically ranges between 2 and 10 

(Xu and Goodacre, 2018). However, in industrial environments, single-fold validation may be 

utilized to reduce ML model development time. Furthermore, drawing conclusions from test 

set results for models that have undergone single-fold validation biases for ML techniques 

with greater generalisation capabilities, a useful attribute in industrial scenarios (see Section 
9.5 ‘Considerations for industrial application’). Therefore, either k-fold or single-fold 

validation methods are representative of industrial practices (Table 4). However, no 
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validation set was used for the LSTMs and CNNs in Section 4 or the LSTMs in Section 7. 

This represents a limitation although was not found to influence the conclusions drawn from 

this thesis. The reason for this is that the omission of a validation set disadvantages the 

hyperparameters selected for the LSTMs and CNNs compared to the other algorithms used 

in the articles (ANNs and SVMs in Section 4 and ANNs in Section 7) as they were not 

chosen to generalise to unseen data. Despite this, LSTMs and CNNs performed best in both 

studies. Further discussion is provided in Sections 4 and 7. The chosen test set size typically 

lies in the range of 10 to 50 % of the data with the validation set forming the same proportion 

of the total training and validation set size (Xu and Goodacre, 2018). However, in industrial 

applications, the desired level of model generalisability is dependent on the volume of 

representative data able to be collected which is dependent on the process complexity, 

variability, and level of disruption to the manufacturing process caused by labelled data 

collection (see Section 9.5 ‘Considerations for industrial application’). Therefore, all 

validation and test set sizes used in this thesis contribute to the thesis aim of to develop ML 

methods to facilitate optimal deployment of US sensors for process monitoring applications 

in industrial environments. For all validation procedures, the datasets were split by number 

of runs so that all datapoints for a single run were included in either the training, validation, 

or test set.  

Table 4: The validation procedures used in the sections of this thesis. For all validation 

procedures, the datasets were splits by number of runs so that all datapoints for a run was 

included in either the training, validation, or test set.  

Section Algorithm Validation procedure  

4 

ANN Single-fold (~ 20% of data) 
SVM 5-fold 
LSTM None 
CNN None 

5 ANN and LSTM 5-fold 

6 LSTM Single-fold (~ 20% of data) 

7 
ANN Single-fold (~ 20% of data) 
LSTM None 

8 LSTM k-fold (where k ranges from 1 to 4) 

 

3.2.3.2 Metrics  

In this thesis, several metrics were utilised to evaluate the predictive capabilities of the ML 

models. Firstly, for classification tasks, the accuracy was used. The accuracy is calculated 

by summing the number of correct predictions and dividing by the total number of 

predictions. This value is multiplied by 100 to convert into percentage terms. Other 

classification metrics include precision, specificity, and recall (or sensitivity). Precision is a 

measure of how precisely the model detects true positives compared to false positives, 

specificity is a measure of the model’s accuracy to detect negative instances, and recall is a 

measure of the model’s accuracy to detect positive instances (Towards Data Science, 2019). 

These additional metrics are typically used to evaluate models trained on data with 

imbalanced classes. For example, if few positive instances exist within the dataset, an 

artificially high accuracy can be obtained for a poorly performing model. However, in this 

thesis, the model accuracies are used to compare between ML pipelines and are not used to 

predict a final model’s performance in application. Therefore, only the model accuracy was 

used as this provides a method of comparing between ML techniques. For regression tasks, 

a combination of the Mean Absolute Error (MAE, equation 12), Mean Squared Error (MSE, 

equation 13), and Coefficient of Determination (R2, equation 14) was used. The Coefficient 
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of Determination is a commonly used method that provides the percentage variation 

between the predicted and true regression values. It therefore provides an interpretable 

metric with which to evaluate models and is commonly used to assess ML models (Hale, 

2020). However, the R2 score has several limitations, such as increasing as new variables 

are added to the model and being dependent on the variation in the data (Ford, 2015). 

Therefore, a combination of regression metrics should be used to provide an unbiased 

assessment of a model’s performance. Similarly to the classification metrics, in this thesis, 

the regression metrics were used to compare between US and ML techniques rather than 

evaluate an ML model’s performance in industrial application. Therefore, any of these 

metrics may be used to compare between models. However, in industrial application, choice 

of evaluation metric may alter the best choice of feature extraction method, algorithm, or 

hyperparameters to accomplish the desired task. For example, MSE provides larger 

weighting to high errors and therefore a lower MSE indicates a model more able to correctly 

predict over the full process length. In comparison, models with low MAE may provide 

increased accuracy at certain process stages compared to models with low MSE scores.  

MAE = 
∑ |𝑦𝑖−𝑦̂𝑖|𝑛

𝑖=1

𝑛
         (12) 

MSE = 
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

𝑛
         (13) 

 R2=1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

         (14)  

Where n is the number predictions, y is the true value, ŷ is the predicted value, and ȳ is the 

average of the true values.  

3.2.3.3 Artificial neural networks  

Artificial neural networks (ANNs) have the ability to create new features in their hidden layers 

from combinations of input features to perform the ML task. ANNs are formed of weight and 

bias terms that connect the model inputs to the outputs that are iteratively updated during 

the training procedure (Rodriguez-Galiano et al., 2015). ANNs were used in Sections 4 

(MATLAB), 5 (Keras Python), and 7 (MATLAB). US waveform features from the current 

process timestep were inputted in to ANNs to predict the output value at the current 

timestep. In Section 4, the Levenberg-Marquardt optimisation algorithm was used for 

regression networks and the scaled conjugate gradient optimisation algorithm for 

classification, as recommended by MathWorks (2021a). Early stopping with a validation 

patience of 6 epochs was used to prevent overfitting. For each task, 10 ANNs were trained 

and the average validation error was used to account for the effects of random weight 

initialisation. To further prevent overfitting, single fold validation using 80% of the total 

training and validation set as the training set and 20% of the training and validation set as 

the validation set was used for hyperparameter optimisation. A grid search determined the 

optimal number of neurons in the hidden layer (varied between 1 and 10 in intervals of 1) 

and regularisation weight (varied between 0.1 and 0.5 in intervals of 0.1). The same 

methodology was used in Section 7, except 5 neurons were used in the hidden layer for all 

tasks as the maximum number of features used was 7 to reduce the likelihood of overfitting. 

Section 5 optimised ANNs using the Adam optimisation algorithm, which is the most 

common optimisation algorithm for deep learning tasks (Bowler et al., 2022). Cross-

validation determined the optimal batch size, number of neurons in the hidden layer, learning 

rate, drop-out rate, L2 regularisation penalty, and number of epochs for training. 
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3.2.3.4 Support vector machines  

Section 4 evaluated Support Vector Machines (SVMs) for classification tasks (‘fitcsvm’ 

function, MATLAB) and Support Vector Regression (‘fitrsvm’ function, MATLAB) for 

regression tasks. US waveform features from the current process timestep were inputted in 

to SVMs to predict the output value at the current timestep. Bayesian optimisation for 60 

evaluations with the expected improvement acquisition function was used to select the box 

constraint value, kernel scale, kernel function, polynomial order, and whether the inputs were 

standardised, as suggested by MathWorks (2021b). 5-fold cross validation was used.  

3.2.3.5 Convolutional neural networks  

In Section 4, the CNNs consisted of 2 convolutional layers. The first convolutional layer was 

either 2D or 3D containing 8 5 × 5 pixel filters for each sensor input matrix depending on 

whether one or two sensor signals were being used as inputs. The second convolutional 

layer was a 2D convolutional layer containing 16 5 × 5 pixel filters. The “same” padding was 

applied to keep the input matrices the same size. Batch normalisation was applied after each 

convolutional layer to aid training and provide some regularisation. By normalising each mini 

batch for every layer in the network, each layer does not need to continuously adapt to 

changing input distributions (Ioffe, 2015). Batch normalisation was followed by the ReLu 

non-linearity function and 2 × 2 pixel max pooling. The Adam training function was used, the 

initial learning rate was selected as 0.01 with a drop factor of 0.33 after 4 epochs. Training 

was carried out for 8 epochs, with a mini batch size of 256. The training data was shuffled 

after every epoch. A dropout layer was added before the fully connected layer to further 

prevent overfitting, with the dropout factor varied between 0, 0.1, 0.3, and 0.5. Two types of 

input were used for the CNNs. Firstly, 25 stacked time-domain waveforms extending 

backwards approximately 10 s in time were used to provide historical timesteps to the 

network (Figure 5). Secondly, single waveforms after applying the CWT were used (Figure 

6). Table 5 lists references which employ the same hyperparameters to those used in this 

study. Although the hyperparameter used in this model are similar to previous literature, 

ideally, they should be selected through a validation procedure. Hyperparameters used in 

previous studies may be used to set the bounds of the hyperparameter search to be fine-

tuned on the validation data.  

(a) 

 

(b) 

 
Figure 5. (a) A grey-scale representation of the input matrix to the time domain input CNNs 

in Section 4, constructed of 25 ultrasound waveforms similar to the waveform depicted below 

it in Figure 5b. The bright pixels correspond to the maximum amplitude values of the 25 

waveforms, and the dark pixels correspond to the minimum amplitude values. (b) An 

example of an ultrasonic waveform used in each row of the time domain input matrix.  
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(c) 

 

(d) 

 
Figure 6. (a) A frequency-time domain magnitude scalogram after the CWT of a single 

waveform. The sample points correspond to the sample points of the original waveform. (b) 

A grey-scale image representation of the matrix used as an input to the CWT-input CNN in 

Section 4. It contains the absolute values after the CWT of the same waveform as used for 

Figure 6a. The bright pixels correspond to the maximum frequency amplitudes, and the dark 

pixels to the minimum. 

Table 5: Previous studies that combine US sensors and CNNs that use the same 

hyperparameters as employed in this study.  

Hyperparameter References  

2 convolutional layers  
Lim and Sohn (2020) 
Yan et al. (2020) 

8 filters in first layer Gao et al. (2021) 

Doubling number of filters between first and second layers   
Rautela et al. (2021) 
Pyle et al. (2021) 

5 x 5 filter size  Gao et al. (2021) 

“Same” padding  Munir et al. (2019) 

Batch normalisation  Xiao et al. (2021) 

ReLu activation function  
Rautela et al. (2021) 
Pyle et al. (2021) 

2 x 2 max pooling  Pyle et al. (2021) 

Adam optimisation algorithm  
Rautela et al. (2021) 
Gao et al. (2021) 

0.01 learning rate  Gopalakrishnan et al. (2021) 

 

3.2.3.6 Long short-term memory neural networks  

Long short-term memory neural networks (LSTMs) are able to learn sequences of time 

series data. LSTMs are a development of recurrent neural networks (RNNs) that reduce the 

likelihood of exploding or vanishing gradients and thereby enable the learning of long-term 

dependencies (Hochreiter and Schmidhuber, 1997). LSTMs store representations of 

sequences by using gate units to update their internal network state. At each time step, 

LSTMs use the input features at the current time step as well as information passed from the 

previous time steps to make their prediction. Therefore, they have the capability to learn 

feature trajectories during processes that evolve over time.  
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To the author’s knowledge, from the literature review conducted in Section 2, the works 

included in this thesis are the first to use LSTM layers for process monitoring using US 

measurements. Previously, ANNs (Wallhäußer et al., 2011; Wallhäußer et al., 2013), SVMs 

(Wallhäußer et al., 2013; Wallhäußer et al., 2014), decision tree (Escrig et al, 2020a; Escrig 

et al, 2020b), and K-nearest neighbour algorithms (Escrig et al, 2020a; Escrig et al, 2020b) 

have been used to monitor cleaning processes with US sensors. However, this thesis is the 

first to use LSTM layers to monitor cleaning processes which provide the advantage of 

learning the trajectory of processes over time by incorporating knowledge from previous 

timesteps (Bowler et al., 2022). Similarly, only ANNs have been previously used to monitor 

fermentation processes using US sensors (Becker et al, 2002; Hussein et al., 2012). In this 

thesis, LSTMs are also used for this task owing to their ability to incorporate knowledge from 

previous time steps and monitor the progress of processes that evolve over time. This thesis 

also presents the first use of ML and US sensors to monitor mixing processes (Bowler et al., 

2022). However, LSTMs have been used for US measurements for other applications such 

as flow regime monitoring (Nguyen and Park, 2020).  

LSTM layers were evaluated in all works in this thesis. The LSTMs were used in sequence 

to sequence tasks, where the sequence of feature extracted from US sensor measurements 

were used to predict the sequence of output values. At each timestep the model predicted 

the output value at the current timestep. At the following timestep, the model obtains the new 

US sensor measurement features from this timestep with which to predict the output value. 

Therefore, only US sensor measurement features are used to make predictions and 

previous ground truth data or output predictions are not used as inputs. All timesteps for 

each dataset were used as a single sequence rather than being truncated into multiple 

sequences of shorter length. Long sequences (250–500 timesteps) are prone to producing 

vanishing gradients in LSTM layers when predicting a single output. The reason for this is 

that the gradient information from the output is backpropagated through all the timesteps to 

the initial input, leading to the attenuation of the gradient signal over time. As a result, the 

weights of the network do not get updated effectively, which can lead to poor performance 

and slow convergence. Predicting an output at every timestep is an approach to reduce the 

likelihood of vanishing gradients in LSTM layers, as used in the works in this thesis (Machine 

Learning Mastery, 2021). By doing so, the direct supervision of each timestep enables early 

US measurements to contribute to early timesteps during training by learning directly from 

the output at that time. This approach ensures that the gradient signal is not attenuated over 

time, and each output contributes to the updating of the network's weights. Moreover, by 

predicting an output at every timestep, later US measurements will contribute less to earlier 

timesteps during training. This is because the gradient signal attenuates over time, leading 

to a smaller contribution to the earlier timesteps. Conversely, at later timesteps, earlier US 

measurements will contribute a smaller gradient, while later US measurements will provide a 

more substantial contribution to the training.  

Table 6 presents hyperparameters used in previous studies when combining US sensor data 

with LSTMs. Similar hyperparameters were used in Sections 4 and 7 as outlined in the 

following paragraphs. However, cross- and single-fold validation were used in Sections 5, 6, 

and 7 to optimise the hyperparameters used. Although the hyperparameters used in 

Sections 4 and 7 were selected based of values from literature, preliminary investigations, 

and prior experience, validation procedures should be used for fine-tuning of the parameter 

for the ML task. The Adam optimisation algorithm was used in all sections owing to it being 

most widely used for deep learning tasks with US data, most frequently with CNNs (Bowler 

et al., 2022).  

Table 6: Hyperparameters used in previous studies that combine US sensors and LSTMs.  



30 
 

Hyperparameter Value Reference  

Optimisation algorithm 
Scaled Conjugate 
Gradient  

Nguyen and Park 
(2020) 

Learning rate  
0.01  

Nguyen and Park 
(2020) 

0.00005 Ren et al. (2021) 

Number of LSTM units  
32 Ren et al. (2021) 
6 Bosse et al. (2021) 
7 Qin et al. (2018) 

Number of epochs  
400 

Nguyen and Park 
(2020) 

500 Ren et al. (2021) 
Number of neurons in fully connect 
layer  

512, 128 Ren et al. (2021) 

 

In Section 4 (MATLAB), the training was carried out for 600 epochs with a batch size of 1, 

the Adam optimisation algorithm was used, a learning rate of 0.01, and a gradient threshold 

of 1 to prevent problems of exploding gradients. Only 5 hidden units were used in the LSTM 

layer, as the processes did not follow a complex sequence. Five neurons were used in the 

fully connected layer to ensure linear fitting of the feature combinations with the activation 

function. 

In Section 5 (Keras Python), zero-padding was applied to the features to make every batch 

sequence an equal length. A masking layer specified that the LSTM units ignore this 

padding. The Adam optimisation algorithm was used and 5-fold cross-validation determined 

the optimal batch size, number of LSTM units, learning rate, drop-out rate, L2 regularisation 

penalty, gradient norm clipping value, and number of epochs. The optimal set of 

hyperparameters were used to retrain a model using all of the training and validation data. 

In Section 6 (Keras Python), deep neural networks consisting of an LSTM layer followed by 

a fully-connected layer were used for all ML tasks. A fully-connected layer allows for the 

creation of modified features which better match the prediction task output while the LSTM 

layer learns the trajectories of the input features. The input features were normalised and 

zero-padding at the start extended the sequence lengths to that of the maximum. A masking 

layer specified the LSTM to disregard the zero-padding. The Adam optimisation algorithm 

and a gradient norm clipping value of 1 was used. A single-fold validation procedure 

determined the learning rate, number of LSTM units, dropout probability, L2 regularisation 

penalty, number of neurons in the fully-connected layer, and batch size. The optimal set of 

hyperparameters were used to retrain a model using all of the training and validation data. 

Multi-task learning was also investigated to aid LSTM learning of the process trajectory. 

Multi-task learning is an ML approach where a single model is trained on multiple related 

tasks simultaneously, sharing some or all of the model parameters between tasks to improve 

performance on all tasks (Caruana, 1997). By training on two correlated tasks, the shared 

LSTM layer may learn more effective feature trajectories while reducing redundant 

information being stored. This may have several benefits, such as increased model accuracy 

through global learning of feature trajectories important to the process being monitored, 

more stable model training by optimising for two combined losses, and reducing overfitting 

by preventing a single task from dominating the learning process (Zhang and Qiang, 2018). 

In Section 7 (MATLAB), network training was carried out for 60 epochs using the Adam 

optimisation algorithm, an initial learning rate of 0.01, a batch size of 2, and a gradient 

threshold of 1 to prevent problems of exploding gradients. In the LSTM layer, 50 hidden units 
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were used and 50 neurons in the fully connected layer. A 0.5 probability dropout layer was 

used to prevent overfitting and improve algorithm generalisation performance. 

In Section 8 (Keras Python), multi-task deep neural networks consisting of a fully connected 

layer followed by an LSTM layer were used for all ML tasks. Zero-padding was applied to the 

US features to make every fermentation sequence equal to the maximum sequence length 

of 1556 timesteps. A masking layer designated that the LSTM units ignore this padding. The 

Adam optimisation algorithm and a gradient norm clipping value of 1 was used to reduce the 

likelihood of exploding gradients. The order of the training sets was shuffled after every 

epoch. The regression losses were multiplied by 0.1 to ensure their magnitudes were similar 

to the classification losses. This aided the network in learning both the classification and 

regression tasks. After cross-validation, the optimal hyperparameters which resulted in the 

lowest average validation error were used to train a final model using the entire training and 

validation sets.  

3.2.4 Domain adaptation 
Transfer learning is a machine learning technique where a model trained on one task is used 

to improve performance on a different but related task (Torrey and Shavlik, 2009). The most 

common example is using pre-trained CNNs trained on large datasets to apply to new tasks 

(Yang et al., 2021). Domain adaptation is a subcategory of transfer learning where a model 

is trained on a source domain and transferred to a target domain where the data distributions 

may differ (Ben-David et al., 2010). Domain adaptations methodologies are therefore used to 

increase the accuracy of the model trained on the source domain to predict on the target 

domain (Figure 7). Unlabelled domain adaptation consists of domain adaptation methods 

where no labelled data is available in the target domain. In contrast, labelled domain 

adaptation methods use some labelled data from the target domain to aid transfer of the 

model. To the authors knowledge, as reviewed in Section 2, only Gao et al. (2021) has used 

domain adaptation for 1D US measurements (domain adaptation has been used for 2D US 

images in medical applications and is reviewed in Section 7). Gao et al. (2021) used 

microseismic datasets from earthquake studies to improve time-of-flight detection for 

acoustic logging tools for collecting borehole information in oil fields.  
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Figure 7: A depiction of domain adaptation where the position of Dataset 2 in the feature 

space has been shifted for accurate classification using the decision boundary separating 

Dataset 1.   

3.2.4.1 Unlabelled domain adaptation  

Section 7 compares two unlabelled domain adaptation techniques to transfer ML models to 

new processes where no labelled data is available. A Single Feature (SF) transfer method 

was compared to Transfer Component Analysis (TCA) (Pan et al., 2011). TCA minimises the 

distance between source and target domain feature spaces by using the Maximum Mean 

Discrepancy (MMD) and extracts transfer components that maximise the variance across 

this shared feature space. The MMD is a measure of the distance between feature 

distribution embeddings in a reproducing kernel Hilbert space (Tolstikhin et al., 2016). TCA 

is a highly cited method and MMD is common to use in domain adaptation problems (Li et 

al., 2019; Li, Zhang, and Deng, 2018; Guo et al., 2019; Lu et al., 2017; Geng, Tao, and Xu, 

2011). Furthermore, TCA guarantees feature extraction with no training necessary unlike 

techniques such as domain adversarial networks (Tzeng et al., 2017). The TCA code 

provided in the MATLAB domain adaptation toolbox produced by Yan (2020) was used. 

Three dimensions, or transfer components, were selected to allow for comparison against 

the SF method.  

The waveform Energy (section 3.2.1.2.1) was used for the SF method as it is a measure of 

the total magnitude of the sound wave and therefore is representative of the acoustic 

impedance of the process material at the vessel wall. Other features, such as the maximum 

or minimum peaks, position of peaks, skewness or kurtosis, are useful to monitor changes in 

the waveform shape and aid identifying multiple overlapping sound waves. Therefore, the 

trend in these other features does not follow changes in the process material. Features 

similar to the waveform Energy that monitor the process material properties include the Sum 

Absolute Amplitude or Sum Root Amplitude, however, these give greater or lesser weighting 

to larger amplitudes, respectively. Therefore, the discrepancy between the Energy and either 

of these features would be due to the shape of the waveform rather than the changing 

process material. As the shape of the waveform is unlikely to follow the same trends across 

domains, inclusion of these features may degrade model accuracy.  

For the SF method, the features of each domain were standardised. This was to align and 

scale the feature spaces so that the ML model trained on the source domain could predict 

accurately on the target domain data. Furthermore, for the honey-water blending 

experiments, prior to standardisation, the waveform Energy of the first data point in each run 

was subtracted from all data points of that run so that they all began at a waveform Energy 

of 0. For this dataset, the process material being measured at the start of each run is known 

to be honey which has a greater density than the water, meaning it settles at the vessel base 

where the sensors are located. This is analogous to any industrial process where the same 

process material is located at the sensor measurement area at the start of each run. This 

procedure further aligned the feature spaces to combat the varying temperature range the 

honey-water mixing experiments were conducted over. As the laboratory set point 

temperature was not altered for the pipe section cleaning experiments, this additional 

operation was not performed. Although, no feature extraction was performed during the SF 

method, this is still classed as domain adaptation. Domain adaptation methodologies are 

used to increase the accuracy of the model trained on the source domain to predict on the 

target domain (Ben-David et al., 2010), and therefore common feature extraction to both 

domains is not necessitated. For example, the MMD is a commonly used processing step in 

domain adaptation methodologies (Li et al., 2019; Li, Zhang, and Deng, 2018; Guo et al., 

2019; Lu et al., 2017; Geng, Tao, and Xu, 2011) where a function is found to minimise the 
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MMD metric between two domains. This therefore aligns the two feature distributions whilst 

not extracting common features to both domains. 

3.2.4.2 Labelled domain adaptation  

In Section 8, three domain adaptation investigations were conducted; network training on 

both datasets simultaneously (Simultaneous training), network training in a federated 

learning set-up (Federated learning), and fine-tuning (Fine-tuning) of the best performing 

previously trained networks on the target domain (industrial scale) dataset (Figure 8). The 

purpose was to improve ML model accuracy on the target fermentation dataset through 

transfer learning from the laboratory fermentation dataset.  

 

Figure 8: A depiction of the three labelled domain adaptation methodologies investigated.  

Federated learning is a ML technique where multiple datasets can be used to collaboratively 

train a model without sharing the raw data with one another. Each dataset is used to train a 

local model and the model weights are aggregated to update a global model (McMahan et 

al., 2017). For the federated learning investigations, local models were trained on each 

dataset and a weighting factor was applied to the resulting local network weights before 

being summed to produce a global model. The global model weights were used as the 

initialisation weights for the next epoch of local network training. After training, the global 

model was evaluated on the test set. The weighting factors were changed depending on the 

number of industrial fermentation runs present in the training set.  

Finally, fine-tuning the best performing models on the target domain data was assessed. As 

the models were used to monitor the industrial scale fermentations, the final models did not 

need to be accurate on the source domain laboratory scale fermentations. Therefore, after 

initial training to transfer knowledge from the source domain, fine-tuning on the target 

domain can increase model accuracy on the industrial scale data. All network weights were 

tuned. Preliminary investigations froze the model weights for the fully connected and LSTM 

layers and only tuned the output layers. However, this resulted in lower accuracy models on 

the validation sets than when all weights were allowed to be updated. 
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The aim of this thesis was to develop ML methods to facilitate optimal deployment of US 

sensors for process monitoring applications in industrial environments. This article 

contributed to this aim by monitoring two mixing processes: namely, honey-water blending 

and flour-water batter mixing. This contributed to the thesis objective of collecting US data 

from process monitoring applications that enable the thesis conclusions to be extended to 

industrial applications (see Section 1.2 Aims and Objectives). Extensive feature extraction, 

feature selection, and algorithms were used for classification and regression tasks to aid 

development of an optimal ML pipeline for process monitoring using US measurements. The 

novelty of this work was the combination of an industrially relevant non-invasive, reflection-

mode US sensing technique with ML to monitor mixing processes. This contributed to the 

thesis objective of evaluating a non-invasive, reflection-mode US sensing technique that can 

be externally retrofitted to existing process equipment. Furthermore, the use of Long Short-

Term Memory (LSTM) layers and Convolutional Neural Networks (CNN) for process 

monitoring using US sensors was novel. The main conclusions from this work were that 

using information from previous time steps was vital for accuracy on most tasks and, 

specifically, that flexible use of previous time steps was required. This influenced the 

decision to use LSTM algorithms for the remaining works in this thesis contributing to the 

thesis objective of determining an optimal ML pipeline for process monitoring using US 

measurements. LSTM layers were evaluated in all works in this thesis. The LSTMs were 

used in sequence to sequence tasks, where the sequence of feature extracted from US 

sensor measurements were used to predict the sequence of output values. At each timestep 

the model predicted the output value at the current timestep. At the following timestep, the 

model obtains the new US sensor measurement features from this timestep with which to 

predict the output value. Therefore, only US sensor measurement features are used to make 

predictions and previous ground truth data or output predictions are not used. All timesteps 

for each dataset were used as a single sequence rather than being truncated into multiple 

sequences of shorter length. 

In this work, several feature extraction methods are utilised. No feature selection methods 

were used in this work. Instead, the methods developed in this article were used to inform 

feature engineering approaches for future works in this thesis. Firstly, the Sum Absolute 
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Amplitude and Energy are extracted from the waveforms as these are measures of the 

acoustic impedance at the vessel-wall interface and therefore follow material changes during 

mixing at this location (Bowler et al., 2022). The individual amplitude at each sample point in 

the waveform was also used to provide further information as utilised in Escrig et al. (2020) 

and Munir et al. (2019). However, the peaks forming a US waveform can shift in the time 

dimension as the speed of sound through materials changes. Therefore, in the article 

presented in Section 6 (titled “Convolutional feature extraction for process monitoring using 

ultrasonic sensors”), a CNN is used to extract features from individual sample point 

amplitudes as they are robust to spatially varying features (Lecun et al., 2015). Wavelet 

transformation was also used in this present work, as it has been widely applied with ML 

problems for US sensor data (Bowler et al., 2022). However, the waveforms in this work are 

composed of multiple overlapping sound waves. Therefore, the convolutional method 

presented in Section 6 is preferred to learn waveform features as the wavelet transform may 

misattribute waveform features to different frequency bands (Bowler et al., 2021). For clarity, 

the inputs to the CNNs in this work were matrices of sensor data opposed to images 

(Convolutional Neural Networks section, page 10 of 24).  

A limitation of this article was the varying validation approaches utilised for each algorithm 

(single-fold validation with 20% of total training and validation set size for ANNs, 5-fold cross 

validation for SVMs, and no validation data for CNNs or LSTMs). This benefits the 

hyperparameters selected for the SVMs as these underwent the most comprehensive 

validation approach (the hyperparameters were selected based on five validation evaluations 

each on a different 20% of the training and validation data). This disadvantages the 

hyperparameters selected for the LSTMs and CNNs as they were not chosen to generalise 

to unseen data. However, despite this, SVMs performed worst for all prediction tasks whilst 

LSTMs performed best for honey-water blending classification (96.3 %) and CNNs 

performed best for honey-water blending regression (0.977 R2), flour-water batter 

classification (92.5 %), and flour-water batter regression (0.976). Therefore, the conclusions 

drawn from this article were not influenced by this limitation. Furthermore, the use of LSTM 

layers and CNN for feature extraction were confirmed in Sections 5 and 6 in this thesis.  

In this work, a video camera was used to film the honey-water blending process. The 

labelled data was obtained by viewing the videos to determine the time when mixing was 

complete for each run. For classification tasks, the time for complete mixing determined the 

first positive classification (i.e., a fully mixed system). For regression tasks, the time for 

complete mixing determined zero seconds remaining until a fully mixed system was 

obtained. Therefore, the labels for previous timesteps were assigned positive regression 

values for time until complete mixing was achieved. Later timesteps were assigned negative 

regression values for the time until complete mixing was achieved. A similar method was 

used for the flour-water batter mixing case study, but the power input to the impeller was 

used to determine the time for optimal mixing.  

When applying this method to larger scale systems, the most important consideration is the 

location of the US sensors which determine the process phenomena able to be measured. 

For the honey-water blending datasets, two sensors were used. One sensor was located in 

the centre of the vessel base and the second was attached to the vessel base but offset 

from the sensor. The highest R2 values (up to 0.977) were achieved by combining the inputs 

from both sensors. This is because the non-central sensor had better prediction ability 

nearer the beginning of the process as the honey was removed from this sensor 

measurement area first, and the central sensor had greater resolution nearer the end of the 

mixing process as the last of the honey was dissolved. Therefore, the location of the sensors 

should be chosen to obtain representative measurements of the process to be monitored. 
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Multiple sensors may require use on large vessels where the dynamics at different locations 

in the vessel vary.  
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Abstract: Mixing is one of the most common processes across food, chemical, and pharmaceutical
manufacturing. Real-time, in-line sensors are required for monitoring, and subsequently optimising,
essential processes such as mixing. Ultrasonic sensors are low-cost, real-time, in-line, and applicable
to characterise opaque systems. In this study, a non-invasive, reflection-mode ultrasonic measurement
technique was used to monitor two model mixing systems. The two systems studied were honey-water
blending and flour-water batter mixing. Classification machine learning models were developed to
predict if materials were mixed or not mixed. Regression machine learning models were developed
to predict the time remaining until mixing completion. Artificial neural networks, support vector
machines, long short-term memory neural networks, and convolutional neural networks were tested,
along with different methods for engineering features from ultrasonic waveforms in both the time
and frequency domain. Comparisons between using a single sensor and performing multisensor
data fusion between two sensors were made. Classification accuracies of up to 96.3% for honey-water
blending and 92.5% for flour-water batter mixing were achieved, along with R2 values for the
regression models of up to 0.977 for honey-water blending and 0.968 for flour-water batter mixing.
Each prediction task produced optimal performance with different algorithms and feature engineering
methods, vindicating the extensive comparison between different machine learning approaches.

Keywords: food and drink manufacturing; industry 4.0; digital manufacturing; mixing; ultrasonic
sensors; machine learning; convolutional neural networks; long short-term memory neural networks;
wavelet transform

1. Introduction

The world is experiencing the fourth industrial revolution where digital technologies such
as artificial intelligence, robotics, and the Internet of Things are used to improve the productivity,
efficiency and sustainability of manufacturing processes [1,2]. This transformation is underpinned
by the enhanced collection and use of data, and therefore sensors are one of the most important
technologies in Industry 4.0 [3]. Although sensors exist for basic measurements such as temperature
and pressure, there is a need for more advanced techniques that can monitor materials and processes.
Mixing is one of the most common manufacturing processes. It is not only used for combining materials,
but also for increasing heat and mass transfer, providing aeration, and suspending solids. Correct
active ingredient dosing in the pharmaceutical industry is critical for patient safety and treatment
effectiveness and effective mixing is essential to achieve this. In food manufacturing, mixing provides
uniform heating and modifies material structure. In material manufacturing such as the polymer,
cement, and rubber industries, final product qualities are determined by the level of homogeneity [4].
Sensors that provide automatic, real-time data acquisition capabilities are required to monitor critical
processes such as mixing. These sensors are termed in- or on-line, where in-line methods directly
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measure the process material with no sample removal, and on-line methods automatically take samples
to be analysed without stopping the process [5]. Sensors able to characterise whether a mixture is
non-mixed or fully mixed offer benefits of reducing off-specification products, early identification
of process upset conditions, and reduced resource consumption from overmixing. Furthermore,
techniques able to predict the required time remaining until mixing completion would improve batch
scheduling and therefore process productivity.

There are numerous in-line and on-line techniques available to monitor industrial mixing processes,
with the major categories of techniques being point property measurements, tomographic (e.g., electrical
resistance tomography), and spectroscopic (e.g., Near Infrared Spectroscopy (NIRS)). Discussion of
the aptitude of each technique to different mixing applications is provided in [4]. Active acoustic
techniques introduce sound waves into a material or system by converting electrical signal pulses
into pressure waves using piezoelectric transducers. Either a single transducer sends and receives the
sound wave after reflection from an interface (pulse–echo mode) or a second transducer receives the
sound wave after it has been transmitted through the material (pitch catch mode) [6]. Low power, high
frequency sound waves in the ultrasonic frequency range are used for material characterisation, and
do not affect the structure of the material [6]. Typical ultrasonic parameters measured to characterise a
system include the speed of sound, sound wave attenuation, and the material’s acoustic impedance.
The speed of sound through the material is dependent on its density and compressibility, and is
calculated by measuring the time of flight of the sound wave. The attenuation of the sound wave can
be measured as a decrease in the signal amplitude, and is caused by sound wave scattering, reflection,
or energy dissipation. The acoustic impedance is dependent on the speed of sound and density of the
material, and the proportion of reflected sound wave from a material boundary is dependent on the
magnitude of the acoustic impedance mismatch between the neighbouring materials [7]. Ultrasound
sensors are low-cost, real-time, in-line, and capable of operating in opaque systems. However, the
large changes in acoustic impedance when transmitting from liquid or solid to gas causes strong
reflection of the sound wave, making transmission difficult in the presence of gas bubbles. Furthermore,
the speed of sound in a material is strongly dependent on temperature [7]. Ultrasound has found
application for material characterisation in industries such as food, chemicals, pharmaceuticals, and
biotechnology [6–9].

Several studies have used ultrasonic measurements to monitor mixing. However, many of
these require transmission of the sound wave through the mixture in order to measure the speed of
sound or attenuation. Stolojanu and Prakash [10] used two invasive transducers in the pitch–catch
mode to characterise glass bead suspensions up to concentrations of 45 wt % in a laboratory scale
mixing system. The ultrasonic velocity, attenuation, and peak frequency shift were used to determine
particle concentration and size. Both Ribeiro et al. [11] and Yucel and Coupland [12] used two
non-invasive transducers in the pitch–catch mode to characterise laboratory scale systems. However,
transmission-based measurements are unable to be used for most mixing systems at the industrial
scale. Firstly, the increased distance that the sound wave must travel increases the attenuation of the
signal. Secondly, industrial mixtures are typically more complex than simple model systems tested
at laboratory scale. The number of materials being mixed in industrial mixers creates an increased
number of heterogeneities causing scattering and reflection of the sound, or the presence of gas bubbles
cause strong reflection of the sound wave. These also contribute to greater attenuation of the signal
and transmission becomes more difficult without high power, high cost transducers.

Bamberger and Greenwood [13] mounted pitch–catch mode transducer pairs to a probe to monitor
solids suspension in an industrial slurry mixing tank. However, this technique was invasive and
the attenuation correlation with solids concentration was only possible over the short sound wave
propagation distance. Sun et al. [14] monitored the dispersion homogeneity of calcium carbonate in
polypropylene during extrusion. Two transducers in the pitch–catch mode measured the ultrasound
attenuation. Again, this was invasive and transmission was only possible due to the short sound
wave propagation distance. Fox et al. [15] and Salazar et al. [16] used the invasive pulse–echo
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mode ultrasound probes to monitor air incorporation into aerated batters during mixing. Due to
the strong reflectance of sound waves caused by gas bubbles, transmission was not possible. The
acoustic impedance of the probe-batter interface was measured to determine the optimal mixing
time. Hunter et al. [17] and Bux et al. [18] used intrusive pulse–echo transducers to monitor particle
suspension. Acoustic backscatter techniques were used to measure speed of sound and attenuation,
where the reflected sound wave from the particles was measured opposed to transmission through the
suspension. Invasive techniques suffer from problems such as probe fouling, probe breakage, and
difficulty in installation, thereby limiting their appeal in industrial settings. Ultrasound is applicable for
non-invasive measurement by transmitting the sound wave through the wall of the vessel. Therefore,
this current work uses a non-invasive, pulse–echo ultrasound technique to monitor mixing, which
requires no sound wave transmission through the mixture being characterised. The only examples of
non-invasive, no-transmission ultrasonic sensors for mixing processes are those used to monitor particle
suspension. Buurman et al. [19] used non-invasive ultrasonic Doppler velocimetry to detect whether
particles were suspended at the bottom of an opaque mixing vessel to monitor particle suspension.
Zhan et al. [20] used a non-invasive pulse–echo transducer attached to the base of the vessel to monitor
particle suspension by measuring the acoustic impedance of the base-suspension interface.

In this study, two laboratory-scale mixing systems are monitored: honey-water mixing and
flour-water batter mixing. These two model systems were selected to show the application of ultrasonic
sensors to monitor different mixing processes. As honey is completely miscible in water, this system is
representative of the development of homogeneity in liquid–liquid blending. Flour-water batter was
used in this study to monitor structural changes as the gluten proteins in the flour become hydrated
and aligned into a network, as opposed to air incorporation as investigated in Fox et al. [15] and
Salazar et al. [16]. Therefore, this flour-water batter system is similar to dough mixing, only with higher
water content. This system was chosen as during dough mixing at atmospheric pressure, the dough
pulls away from the mixer sides and is therefore not measurable using low-power ultrasound due to
the created air gap. However, industrial dough mixing is typically performed at reduced pressure or
vacuum pressure, where the dough will be in contact with the mixer sides. Furthermore, batter mixing
has been shown to follow the same physical and chemical changes as dough during mixing, and is
therefore representative of industrial dough mixing [21].

For in-line industrial process monitoring, suitable signal processing and interpretation is required
for automatic process diagnosis. Supervised Machine Learning (ML) maps input data to output classes
(classification) or values (regression) during training so that it may then be used to predict outputs
from new input data. The advantage of ML is the ability to fit functions to input–output relationships
without the need to define the often complex underlying physical models. The success of ML models
is dependent on the input feature variables used to make predictions. A received ultrasonic waveform
consists of an amplitude at each time period sample. From this waveform, useful features are typically
manually engineered, e.g., selecting the maximum waveform amplitude, or monitoring the speed of the
sound wave. This approach of using manually engineered features is termed shallow ML. Ultrasonic
measurements have been combined with shallow ML algorithms such as Artificial Neural Networks
(ANNs) [22–29] and Support Vector Machines (SVMs) [23,25,30,31], using waveform features from
the time domain [23,25,27,31,32] and frequency domain [24,27,31,32] after analyses such as wavelet
transforms [22,24]. These have been used for applications such as predicting sugar concentration
during fermentation [33], measuring particle concentration in multicomponent suspensions [34], and
classification of heat exchanger fouling in the dairy industry [23,25]. There are no examples of using
ultrasonic measurements and ML to follow a mixing process; however, El-Hagrasy et al. [35] used the
Soft Independent Modelling of Class Analogies (SIMCA) and Principal Component Modified Bootstrap
Error-adjusted Single-sample Technique (PC-MBEST) algorithms to analyse NIRS spectra during
pharmaceutical solids blending. Typically, shallow ML requires some expertise of the sensor signal
to engineer useful features from the raw data. In contrast, Convolutional Neural Networks (CNNs)
utilise representation learning, which requires no manual feature engineering by transforming the raw



Sensors 2020, 20, 1813 4 of 24

data into higher, more abstract levels to automatically extract features [36]. CNNs use convolutional
filters to measure the spatial relationship data values and have found application in image recognition
tasks [37,38]. CNNs have also been used to improve ML prediction from ultrasonic signals in both
the time [26] and frequency domain after the wavelet transform [39]. The focus of this study is to
compare different feature engineering methods and ML algorithms to classify the mixture state and
predict the time remaining until mixing completion for two model mixing systems. ANNs, SVMs, and
Long Short-Term Memory (LSTM) neural network shallow ML algorithms are compared with CNNs.
The wavelet transform will also be investigated to provide the frequency content of the waveforms as
inputs to the ML models. The sensors used in this current work only characterise material close to the
vessel wall and therefore the potential for non-representative readings must be investigated. This is
achieved by comparing the results from multiple low-cost sensors distributed around the vessel along
with data fusion between the sensors. Multisensor data fusion is the combination of measurements
from multiple sensors to produce improved analysis over that which could be achieved by using the
data from each sensor independently.

2. Materials and Methods

2.1. Experimental

2.1.1. Ultrasound

Two magnetic transducers of 1 cm2 active element surface area with a 5 MHz resonance (M1057,
Olympus, -6 DB bandwidth—116.43%) were externally mounted to the mixing vessels. The transducers
were attached to adhesive magnetic strips on the outside of the vessels and coupling gel (Proceq
ultrasound couplant) was applied between the sensor and strip (Figure 1a). The transducers were
used in the pulse–echo mode to both transmit and receive the ultrasonic signal. The ultrasound
wave is transmitted through the coupling gel, magnetic strip, adhesive, vessel wall, and mixture. At
each interface between different materials, a part of the sound wave continues through to the second
material and a part of it is reflected. The proportion of the sound wave reflected at the interface is
dependent on the acoustic impedance mismatch between the two materials (Equation (1)) [40]. The
ultrasound wave of interest is that reflected from the vessel–mixture interface. The acoustic impedance
is a product of the material density and speed of sound (Equation (2)) [40]. Therefore, the acoustic
impedance mismatch between the mixture and vessel materials is the parameter being measured; this
is depicted by the wave returning from the vessel–mixture interface to the transducer in Figure 1a.
During the mixing processes, the composition of the mixture in contact with the vessel wall at the
sensor measurement area will change. This will change the acoustic impedance mismatch between
the vessel wall and mixture, and therefore this technique is suitable to monitor the mixing process.
The portion of the wave that continues through the mixture is either dissipated due to attenuation or
reflects from additional boundaries present in the mixture. However, only reflections from boundaries
approximately perpendicular to the direction of wave propagation will be received by the transducer.
Due to the thin thickness of the vessel wall, the ultrasonic technique is operating in the near field.
The near field is the region closest to the transducer element and has a complex structure due to
constructive and destructive interference of multiple waves generated by the transducer surface.
Although performing measurements in the near field is challenging, it is possible as highlighted by the
work of Escrig et al. 2019 [8].

R =
Ar

Ai
=

Z1 −Z2

Z1 + Z2
(1)

Zi = Ciρi, (2)

where R is the reflection coefficient, Ar the amplitude of the reflected wave, Ai the amplitude of the
incident wave, Z1 and Z2 the acoustic impedance of the material the wave is travelling from (material
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1) and the material the wave is travelling into (material 2). Ci is the speed of sound in material i, and ρi
the density of material i. These parameter values for the tested materials are provided in Table 1.
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Figure 1. (a) At each boundary between two materials, part of the ultrasound wave is reflected. The
proportion of the sound wave energy reflected is dependent on the acoustic impedance mismatch
between the materials. The ultrasound wave of interest in this study is that reflecting back from the
vessel–mixture interface to the transducer. (b) Diagram showing the position of the two ultrasound
sensors on the vessel base to monitor honey-water blending. (c) Diagram showing the position of the
two ultrasound sensors on the side of the mixing bowl to monitor the flour-water batter mixing.

Table 1. The speed of sound and density of the materials used in the honey-water blending experiments.
The acoustic impedance is a product of these two values (Equation (2)). The reflection coefficient is the
proportion of the sound wave reflected at the glass vessel wall and mixture interface.

Material Speed of Sound
(m/s) Density (kg/m3)

Acoustic Impedance
(×106 Pa.s/m3)

Reflection
Coefficient

Water 1493 [41] 998 1.49 0.79
Honey 2125 [42] 1420 [43] 3.02 0.61

Well-mixed
flour-water mixture

(50 wt % water)
2000 [44,45] 1230 [46] 2.46 0.67

Glass, Pyrex 5640 [47] 2210 [48] 12.46 -

2.1.2. Honey-Water Blending

The ultrasonic transducers were mounted on the base of a 250 mL glass vessel. This was because
a flat surface was needed to allow full contact of the sensors and the magnetic strip. It was not possible
to mount the transducers on the side of the vessel due to its curvature. As the sensors only measure
a small area of material properties in a single location, they may be designated as point property
measurement techniques. Therefore, the positioning of the sensors is of paramount importance to
obtain useful readings; for example, multiple NIR sensors have been used to monitor different mixing
dynamics during particulate blending across different locations in a mixer [49,50]. Therefore, one
sensor was located at the centre of the vessel base and the other was closer to the vessel sides (Figure 1b),
allowing comparison between both sensor positions. Furthermore, sensor fusion could be explored
by combining outputs from both sensors to improve ML prediction. An ultrasound box (Lecoeur
Electronique) was used to excite the transducers by providing electrical pulses and digitisation of
the received signals (2048 bit resolution). A temperature sensor was taped to the base of vessel and
connected to a PT-104 Data Logger (Pico Technology) to monitor local temperature. The ultrasound box
and temperature data logger were connected to a laptop and bespoke MATLAB software controlled
the hardware components and acquired the data. Before beginning the experiments, the change in
waveform in the presence of water was used to select the portion of the signal reflecting from the
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vessel–material interface. The ultrasonic gain was then set to maximise the resolution of this portion
of the reflected waveform. The number of samples was then also selected by monitoring the last
sample point where a change in waveform could be seen visually using this test. Signals were acquired
continuously for 1 s from each probe consecutively. Two ultrasonic waveforms were recorded during
each 1 s time period. For the ANNs, SVMs, and LSTMs the signal was averaged over this 1 s interval
before applying feature engineering to minimise the effect of signal noise. However, for the CNNs
every waveform collected during the 1 s intervals was used in training to maximise the number of
images that the network had available for training. The sampling frequency was set to 160 MHz to
maximise waveform resolution. A mobile phone camera was used to film each mixing process to be
later used to determine the time for mixing completion, defined as the time when the honey had fully
dissolved. The location for the last part of the honey to be fully mixed was in the centre of the vessel
base. This determination of time for mixing completion is the ground truth data to label the output of
each ultrasonic waveform. From this labelled data, the ML models can be trained and tested to predict
the mixture state (non-mixed or mixed) or predict the time remaining until mixing completion. Pure
clear honey (Wm Morrison Supermarkets plc) and tap water were loaded into the vessel at the start of
each mixing process. Two different volumes of honey were used for the experiments: 20 and 30 mL. A
constant volume of 200 mL tap water was used throughout. An overhead stirrer with a cross-blade
impeller was used to stir the mixture. The impeller speed was also set to values of either 200 or 250
rpm. These four parameter permutations were repeated three times across one day while varying the
laboratory thermostat set point to produce a temperature variation from 19.3 to 22.1 ◦C. This induced
variability in process parameters was performed to enable the ML models to generalise.

2.1.3. Flour-Water Batter Mixing

NIRS has previously been used to monitor the chemical and surface structure changes occurring
during dough mixing [51–53] and image analysis of the dough surface has been used to determine
optimal mixing time [54]. Measuring the power or torque supplied to the impeller is a common method
of monitoring dough mixing. Mixing should be stopped at the maximum power input for optimal
bread properties [54]. Beyond this point of maximum resistance to extension, the gluten network
begins to breakdown. The standard deviation of the power measurement has also been found to peak
at the optimal dough consistency [55]. Ultrasound has previously been used to characterise the effects
of mixing on dough. The relevant literature is included in the Results section. However, none of these
ultrasonic techniques have used an in-line monitoring system similar to that used in this investigation.
The power supplied to the motor was monitored using a YouThink plug socket power meter to provide
a reference measurement for the mixture’s state. The optimal mixing time was determined by the time
of maximum power drawn to the impeller. From this, an output value for each sensor signal can be
labelled with the ground truth data to then train and test the ML models. The same transducers as
used in the honey-water blending experiments were attached to the outside of a stand-mixer glass
mixing bowl (1000 W Kenwood kmix kmx754). Due to the curvature of the vessel, the adhesive was
not sufficient to hold the magnetic tape onto the sides. Therefore, the magnetic tape was attached to
the vessel using silicone vacuum grease and electrical tape. The transducers were located close to the
base of the vessel to reduce the likelihood of an air gap caused by the dough pulling away from the
mixing bowl sides when close to the optimal mixing time. As both sensors were located at the same
height on the mixing bowl, a comparison between different sensor positions could not be made. This is
because the mixing was similar at all radial positions in the vessel for the same height position. Rather,
the ability of one sensor versus two sensors to monitor the mixing process could be evaluated. The
quantity of strong white flour (Wm Morrison Supermarkets plc) and tap water was varied between 450
and 450 g, 500 and 450 g, and 500 and 400 g, respectively. Each combination was repeated three times
producing nine runs. Again, this induced variability between runs allowed the examination of the
ability of the ML algorithms to generalise across process parameters. A creaming beater was chosen as
the attachment to prevent non-mixed zones and the formation of a fouling layer at the surface of the
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sensor measurement. The minimum impeller speed was used for 1 min to incorporate all of the flour
into the water and was then increased to Speed 2 for the remainder of the process. The environmental
temperature varied between 19.4 and 21.3 ◦C. The signal gain and number of sample points were
selected in the same process as described in the honey-water blending section. Again, ultrasound
signals were acquired continuously for 1 s from each probe sequentially at a sampling frequency of
160 MHz and treated in the same way as previously described.

2.2. Data Analysis

All data analysis and ML algorithms were completed in MATLAB R2019a.

2.2.1. Waveform Preprocessing

The ultrasonic signal was first windowed to select the useful information from the waveform to
use in subsequent calculations and machine learning tasks. Visual inspection of the waveform was
used to identify and remove the saturated part of the waveform (sample points 1 to approximately
210 in Figure 2a) corresponding to sound wave reflections prior to the vessel–mixture interface. The
part of the waveform displaying no further amplitude change between non-mixed and well-mixed
materials (sample point 700 to the end of the waveform in Figure 2a) was also identified and removed
from the final waveform (Figure 2b).
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Figure 2. The example waveforms presented are the starting and final waveforms collected from the
first run of the honey-water blending experiments. Corresponding to a non-mixed material state and
a fully-mixed state, respectively. (a) The non-windowed waveform, with the signal saturated from
sample points 1 to 210 and containing no further useful information from sample point 700 to the end
of the waveform. (b) The windowed waveform.

2.2.2. Machine Learning Model Development

Feature Engineering

A particular focus of this study is to compare feature engineering methods for shallow ML in
both the time and frequency domain. The following sections detail the methods used and justify the
selection of each.

The waveform Sum Absolute Amplitude (SAA) is the summed amplitude magnitude of each
sample point in a waveform. It is a measure of the sound wave proportion reflecting back from the
vessel–mixture interface and is therefore dependent on changes in mixture acoustic impedance.

SAA =
i=SP∑
i=1

|Ai| (3)

where SAA is the sum absolute amplitude, SP is the total number of sample points, and Ai is the
amplitude at sample point i [34].
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The waveform energy is the summed squared amplitudes of every sample point in a waveform.
It is therefore a similar measure to the waveform SAA; however, it gives greater weight to larger
amplitudes. Therefore, two waveforms of the same waveform SAA but having different shapes can
produce different waveform energies.

E =
i=SP∑
i=1

Ai
2 (4)

where E is the waveform energy [34].
Principal component analysis (PCA) was also used throughout the investigation as a feature

dimension reduction method. The waveform amplitude at each sample point in the waveform was
used as the input variables. Therefore, the obtained principal components (PC) were constructed
from parts of the ultrasonic waveform that change at the same time, providing more information than
only using the SAA or waveform energy. PCA is an unsupervised ML algorithm, meaning only the
relationship of input variables to one another are investigated. PCA extracts a new set of orthogonal
variables, or PCs, which are a combination of co-linear input variables [56]. When combining the data
from both sensors, the sample points in both waveforms were used as input variables. In all cases,
the PCs explaining >95% of the variance in the input data set were used as features. If this number
happened to be greater than 10 PCs, then only the first 10 were taken as features to prevent overfitting.

The gradients of each feature (e.g., the waveform energy, SAA, or PC magnitudes) were investigated
for use as additional features that represent previous process time-steps. The difference between
consecutive parameter values were calculated after applying a backwards, one-sided moving mean of
varying size. A backwards, one-sized gradient means that only past process data is used. The sizes of
the moving mean chosen for each ML prediction task is presented in the relevant Results sections.

MMVi =
1
N

i−N∑
i

Vi (5)

G = MMVi −MMVi−1, (6)

where G is the gradient of a parameter, MMV is the moving mean value of a parameter, N is the size of
backwards, one-sided moving mean, and V is the original parameter value [57,58].

While the Fourier transform uses non-decaying sine and cosine waves as transform functions,
the wavelet transform uses decaying wavelets (small waves) to analyse the frequency content of a
waveform at each location in the time domain [59]. Opposed to the Continuous Wavelet Transform
(CWT) analysis, which uses continuous wavelet frequencies as transform functions and therefore
produces much redundant information, the Discrete Wavelet Transform (DWT) performs successive
decomposition of a waveform by halving the frequency of the orthogonal analytical wavelet, thereby
retaining no redundant information after the transform [60]. A key parameter is the choice of the
analytical wavelet shape, termed the mother wavelet [61]. The Symlet wavelet was selected owing to it
being the least asymmetric, which is most visually similar to the expected waveform composition [62].
The number of vanishing moments and decompositions were investigated and the optimal results
for each ML task are reported in the relevant Results sections. After performing the DWT, features
for ML model development were engineered in similar ways as described previously. The waveform
energy and SAA of each decomposition were used as features, or PCA was applied using the waveform
amplitude at every sample point in all decompositions as input variables.

Training, Validation, and Test Data Set Splits

Throughout this investigation a k-fold testing procedure (where k is the number of runs undertaken
for each mixing system; 12 in the case of honey-water blending and 9 for flour-water batter mixing)
was carried out by holding one run back for the testing data set. The run held back was alternated
between all runs and the models were retrained. The average test set performance was taken as the
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result for that feature and algorithm combination. The training and validation splits are discussed in
each individual algorithm section. The number of data sets obtained from each sensor for each ML
method is provided in Tables 2 and 3.

Table 2. The number of data sets recorded for the honey-water blending process.

Run
The Number of Data Sets from Each Sensor

Shallow Learning Time Domain Input CNNs CWT Input CNNs

1 146 243 292
2 131 213 262
3 108 167 216
4 166 283 332
5 139 227 276
6 141 233 282
7 109 169 218
8 122 195 244
9 108 165 214
10 102 155 204
11 114 177 226
12 115 179 228

Total 1501 2406 2994

Table 3. The number of data sets recorded for the flour-water batter mixing process.

Run
The Number of Data Sets from Each Sensor

Shallow Learning Time Domain Input CNNs CWT Input CNNs

1 93 137 186
2 90 131 180
3 107 165 214
4 105 159 208
5 102 153 202
6 102 155 204
7 123 197 246
8 129 207 256
9 154 259 308

Total 1005 1563 2004

Artificial Neural Networks

Neural networks were investigated for their ability to create new features from input variables,
which have a linear relationship with the outputs [36,63]. The constructed ANNs consisted of three
layers—an input, hidden, and output layer. The trainlm training function was used for regression
networks and the trainscg training function for classification [64]. The training was stopped once
the validation loss had increased for 6 consecutive iterations to prevent overfitting. For each neural
network, 10 networks were trained and the average performance value was used to account for the
effects of random weight initialisation. To further prevent overfitting, the training and validation
data set was further broken down into 70% training, 15% validation, and 15% test for an initial
hyperparameter optimisation search. A grid search determined the optimal number of neurons in the
hidden layer (varied between 1 and 10 in intervals of 1) and regularisation weight (varied between
0.1 and 0.5 in intervals of 0.1) by monitoring this new test set error. The optimal number of hidden
neurons and regularisation weight were used for training the final networks. These used 80% of the
original training and validation set as the training set and 20% of the original training and validation
set as the validation set. The previously discussed k-fold testing procedure was then used to evaluate
the final networks.
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Support Vector Machines

SVMs were chosen for investigation owing to their ability to handle high dimensional feature
spaces and thus use kernels functions for non-linear input–output fitting [65]. Bayesian optimisation
for 60 evaluations was used to select the box constraint value, kernel scale, kernel function, polynomial
order, and whether the inputs were standardised. The acquisition function was chosen to be the
expected improvement [66]. The training and validation data set underwent 5-fold validation and was
repartitioned after every evaluation to improve generalization performance.

Convolutional Neural Networks

The CNNs consisted of 2 convolutional layers [26,39]. The first was either a 2D or 3D convolutional
layer containing 8 5 × 5 pixel filters for each sensor input image depending on whether one or two
sensor signals were being used as inputs. The second convolutional layer was a 2D convolutional layer
containing 16 5 × 5 pixel filters. Padding was applied to keep the input matrices the same size. Batch
normalisation was applied after each convolutional layer to aid training, increase the learning rate, and
to provide some regularisation. By normalising each mini batch for every layer in the network, each
layer does not need to continuously adapt to changing input distributions [67]. Batch normalisation
was followed by the ReLu non-linearity function and 2 × 2 pixel max pooling. The training function
used was the “adam” function, the initial learning rate was selected as 0.01 with a drop factor of 0.33
after 4 epochs. Training was carried out for 8 epochs, with a mini batch size of 256. The training data
was shuffled after every epoch to improve network generalisation. No validation data set was used to
maximise the number of datasets that the network fits to. Therefore, a dropout layer was added before
the fully connected layer to further prevent overfitting, with the dropout factor varied between 0, 0.1,
0.3, and 0.5. A dropout layer randomly forgets network nodes during training based on the probability
specified by the dropout factor. The effect of this is to ensure all nodes contribute to the prediction and
improve model generalisation.

Time Domain Input CNNs

The waveform amplitudes at every sample point were used for time domain inputs into CNNs.
Input matrices for the CNN were created by stacking 25 windowed signal amplitudes (approximately
10 s of acquired ultrasonic signals) at each time domain sample point on one another, with the current
time ground truth being equal to that of the last (bottom) signal (Figure 3).
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Figure 3. (a) A grey-scale representation of the input matrix to the time domain input Convolutional
Neural Networks (CNNs), constructed of 25 ultrasound waveforms similar to the waveform depicted
below it in Figure 3b. The bright pixels correspond to the maximum amplitude values of the 25
waveforms, and the dark pixels correspond to the minimum amplitude values. (b) An example of an
ultrasonic waveform used in each row of the time domain input matrix.
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Frequency-Time Domain Input CNNs

The absolute values of the frequency-time domain map after the Continuous Wavelet Transform
(CWT) were used as an alternative input to the CNNs. An example of a single waveform after
undergoing the CWT is presented in Figure 4. The Morlet wavelet was selected as the mother wavelet
owing to the expected symmetry of returning sound waves.
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Figure 4. (a) A frequency-time domain magnitude scalogram after the Continuous Wavelet Transform
(CWT) of a single waveform. The sample points correspond to the sample points of the original
waveform. (b) A grey-scale image representation of the matrix used as an input to the CNN. It contains
the absolute values after the CWT of the same waveform as used for Figure 4a. The bright pixels
correspond to the maximum frequency amplitudes, and the dark pixels to the minimum.

Long Short-Term Memory Neural Networks

As this research was interested in monitoring time-evolving processes, LSTMs were an obvious
choice for investigation due to their ability to store representations of all previous time-steps in a
sequence. LSTM networks are a development of Recurrent Neural Networks (RNN) to overcome
problems of exploding and vanishing error gradients. While RNNs use feedback connections to use
the output from the previous time-step as an input for the current time-step, LSTMs have gate units to
update the internal network state [68]. No validation set was specified to maximise the training data
set size for the LSTM networks. The inputs were standardised to give a mean of zero and a standard
deviation of 1. The mini-batch size was selected to be 2 runs and the sequence length of each run was
sorted to minimise the amount of padding applied. The training was carried out for 60 epochs using
the “adam” optimisation algorithm, an initial learning rate of 0.01, and a gradient threshold of 1 to
prevent problems of exploding gradients. In the LSTM layer, 50 hidden units were used and 50 neurons
in the fully connected layer. These relatively few hidden units and neurons were selected along with a
0.5 probability dropout layer to prevent overfitting and improve algorithm generalisation performance.

3. Results

3.1. Honey-Water Blending

Figure 5 displays the waveform energy profiles of both sensors during Run 1. The waveform
energy was lowest at the beginning of the process as honey has a closer acoustic impedance to glass in
comparison to water (Table 1, Equation (2)). Therefore, a greater proportion of the sound wave energy
transferred into the honey. The waveform energy of the non-central sensor then increases as honey is
removed and the water fraction increases at the sensor measurement area. This is because the action of
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the impeller creates more mixing at the sides of the vessels, rather than directly below the impeller in
the centre of the vessel. Finally a plateau is reached when honey has been completely removed from
the non-central sensor measurement area. The waveform energy of the central sensor then increases to
a plateau as the honey concentration at the measurement area decreases. The central sensor has less
fluctuations in waveform energy as in the centre of the vessel base the glass was more flat, providing
a vessel–mixture interface perpendicular to the direction of sound wave travel and therefore less
variability in the proportion of the sound wave returning to the transducer. The waveform energy
profiles for the central sensor during Run 1 and Run 12 are presented in Figure 6. Only these two runs
are displayed to aid visibility of the parameter profiles. The differing waveform energy magnitudes
are due to Run 1 being performed at an average temperature of 19.4 ◦C, Run 6 at 20.1 ◦C, and Run 12
at 20.7 ◦C. This causes different changes to the speed of sound in each material that the sound wave
travels through, thus producing large changes in waveform energy in the reflected sound wave of
interest. This highlights the need of using ML techniques to monitor the mixing process, as it can be
seen that only using the waveform energy to monitor the mixing process would be insufficient. It can
also be seen that the waveform energy during Run 12 continues to decline after peaking, indicating
that monitoring the gradient of the waveform energy would also be insufficient for detecting the end
of mixing.
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Figure 6. Waveform energy profiles for Run 1 (20 mL honey, 200 rpm impeller speed, 19.4 ◦C average
temperature), Run 6 (30 mL honey, 200 rpm impeller speed, 20.1 ◦C average temperature), and Run 12
(30 mL honey, 250 rpm impeller speed, 20.7 ◦C average temperature). Only three runs are presented to
aid visibility of the parameter profiles. This figure displays the variation in waveform energy levels in
the data, highlighting the need of Machine Learning (ML) methods to monitor the mixing process.

3.2. Flour-Water Batter Mixing

In the batter mixing experiments both sensors were located at the same height on the mixing bowl
but at different radial positions. The mixing dynamics were similar for all radial positions owing to
the mixing bowl being circular and the impeller located in the centre. For this reason, both sensors
displayed similar waveform energy profiles for all mixing runs as similar mixtures were present at each
sensor measurement area throughout the mixing processes. Therefore, only information from Sensor 1
is presented in Figure 7. Only the waveform energy profiles and impeller power measurements Run 1
and Run 2 are presented in Figure 7 to aid visibility of the parameter profiles. Run 1 consisted of 500 g
flour and 400 g water and Run 2 500 g flour and 450 g water. The increased water content of Run 2
delayed the gluten development process and therefore the time of maximum impeller power draw [21].
At the beginning of the process, water or flour may be present at the sensor’s measurement area. If
water was first present at the measurement area, the waveform energy initially increases as seen in
Run 2. This is because water has a closer acoustic impedance to glass than a poorly mixed flour-water
mixture would. The poorly mixed flour-water mixture has a high void fraction, which contains air and
therefore produces a low average acoustic impedance over the sensor measurement area. In Run 1,
flour was first present at the measurement area so the waveform energy initially decreases. This is
because water is mixing into the flour, replacing the air between the flour particles. Ross et al. [44]
found a peak in sound wave velocity in bubble free dough at optimal mixing time due to the aligned
and fully hydrated glutenin polymers, whereas Létang et al. [45] found the speed of sound in high
water content dough (>56% total weight) increases to a plateau at optimal mixing time. Ross et al. [44]
found that despite the increasing alignment of the glutenin polymers, there were no significant density
changes in bubble free dough during mixing. However, dough is a cellular structure of air incorporated
into a viscoelastic matrix during mixing [45,69,70]. Therefore, dough density progressively decreases
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with mixing time up until the optimum mixing time. Past optimal mixing it begins to increase again
as the gluten matrix is broken down by shearing [71]. The decrease in waveform energy (increasing
mixture acoustic impedance) up to optimal mixing time marked by the peak in the impeller power
draw suggests that the increase in the speed of sound through the dough had a larger effect than
this decreasing density (Equation (2)). It should be noted that although increased air entrainment
reduces the speed of sound through the dough for lower frequencies [70], at the higher frequencies
used here (5 MHz) the ultrasonic velocity approaches the velocity in bubble-free dough, i.e., it travels
only through the viscoeleastic matrix [46]. Past the point of optimal mixing, the viscoelastic matrix
begins to break down and the water binding capacity of the gluten declines, increasing the level of free
water [72]. Although Ross et al. [44] show that this results in a decreasing sound velocity through a
regular water content dough matrix, Létang et al. [45] found no change in speed of sound in highly
hydrated doughs, suggesting that this increase in free water would not affect this overly hydrated
batter. However, the results show a further increase in acoustic impedance, suggesting an increase in
batter density past optimal mixing. This is due to the shearing action of the mixer breaking down the
polymer matrix and therefore destroying the cellular structure of air pockets, thus increasing the batter
density. Again, it can be seen that monitoring the magnitude of the waveform energy would not be
sufficient to detect the optimal mixing time, further highlighting the need for ML techniques.
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Figure 7. The waveform energy profiles of Sensor 1 and impeller power draw during two flour-water
mixing processes containing different volumes of water. Run 1 consisted of 500 g flour and 400 g water
and Run 2 500 g flour and 450 g water. Only the waveform energy profiles of Run 1 and Run 2 are
provided to aid visibility of the parameter profiles.

3.3. Machine Learning Technique Comparison

3.3.1. Honey-Water Blending Classification

Initial investigations monitored the prediction accuracy of ANNs (as these required the least time
to train) to determine the optimal moving mean gradient length, number of vanishing moments of the
DWT mother wavelet, and number of DWT decompositions. The optimal size of the moving mean
gradient was found to be 25 previous waveforms for the non-central sensor (approximately 25s) and
10 for the central sensor (approximately 10s). The optimal DWT mother wavelet was determined to be
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Symlets 6 wavelet. This finding was carried forward for all remaining ML tasks. The optimal number
of DWT decompositions was found to be 3 for both sensors.

The highest classification accuracy to predict whether the system was mixed was 96.3% and
attained using the central sensor and an LSTM with the waveform energy, SAA, and gradients as features
(Table 4). This superior classification accuracy demonstrates the efficacy of combining ultrasonic
sensors with ML techniques. Performing data fusion between both sensors did not provide any benefit
over results from using only the central sensor, sometimes even producing lower classification accuracy
due to overfitting. This is because the time for mixing completion was defined as the moment the last
remaining honey was dissolved. Owing to the motion of the impeller, the location of this event was
the centre of the vessel base, where the central sensor was located. Therefore, the highest classification
accuracy using the non-central sensor alone was only 89.8%. Although performing the DWT and
PCA aided the performance of the ANNs and SVMs, this led to the LSTM neural networks beginning
to overfit. Due to their ability to store representations of all previous time-steps, the LSTM neural
networks were able to produce the highest classification accuracy using only the waveform energy,
SAA, and their gradients. ANNs produced their highest classification accuracy when using feature
gradients as additional features. However, despite using approximately 10 s of previous time-step
waveforms, the time domain input CNNs produced lower classification accuracies than both LSTMs
and ANNs (Table 5). This suggests that by using the amplitude at every sample point in the waveform,
the time domain input CNNs began to overfit.

Table 4. Classification accuracies of shallow machine learning algorithms to predict whether the
honey-water blending mixture was mixed or non-mixed. E—Energy, SAA—Sum Absolute Amplitude,
G—Gradients of Features, PCs—Principle Components, DWT—Discrete Wavelet Transform.

ANN (% Correct) SVM (% Correct) LSTM (% Correct)

Features Non-central Central Combined Non-central Central Combined Non-central Central Combined

E, SAA 65.5 85.0 83.4 80.2 80.1 86.0 89.5 93.0 88.0
E, SAA,

G 76.1 91.1 92.5 77.2 91.1 89.1 89.8 96.3 95.4

PCs 76.2 90.7 83.1 75.1 81.8 80.4 82.9 86.1 91.5
PCs, G 79.3 93.0 92.7 71.8 83.7 86.7 86.2 89.4 93.7

DWT, E,
SAA 79.2 91.7 90.6 72.1 82.3 86.4 77.8 95.1 92.9

DWT, E,
SAA, G 80.9 92.4 94.6 82.9 92.1 91.9 80.8 94.5 90.8

DWT,
PCs 71.9 88.7 90.0 76.2 82.7 80.1 82.5 84.5 89.5

DWT,
PCs, G 80.5 95.0 93.9 75.0 85.3 91.0 79.7 86.1 90.4

Table 5. Classification accuracies of CNN algorithms to predict whether the honey-water blending
mixture was mixed or non-mixed.

CNNs Time Domain Input (% Correct) CWT Input (% Correct)

Dropout layer
probability Non-central Central Combined Non-central Central Combined

0 71.7 92.2 93.0 73.5 88.6 88.2
0.1 75.3 92.6 93.1 75.4 89.1 87.0
0.3 72.9 92.7 91.3 73.1 88.2 85.4
0.5 76.3 93.1 93.0 74 90.0 85.4

3.3.2. Honey-Water Blending Regression

The optimal moving mean gradient length was found to be 25 previous waveforms for both
sensors, and the optimal number of DWT decompositions was found to be three for both sensors.
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The highest R2 values were achieved by combining the inputs from both sensors. R2 values of
0.972, 0.973, and 0.977 could be reached using ANNs, LSTMs, or CNNs, respectively (Tables 6 and 7).
This is because the non-central sensor has better prediction ability nearer the beginning of the process
as the honey is removed from this sensor measurement area first, and the central sensor has greater
resolution nearer the end of the mixing process as the last remnants of honey are dissolved. This is
presented in Figure 8, where the combined prediction is more accurate than either single sensor from
approximately 600 s before mixing completion until 200 s afterwards. However, reasonable accuracy
can be attained using only a single sensor should only one sensor position be available. ANNs using the
DWT decompositions energy and SAA was able to generalise well and produced an R2 value of 0.960
for the central sensor. Similarly, LSTMs using the same features with the non-central sensor achieved
an R2 value of 0.963, increasing to 0.965 when incorporating feature gradients. Again, these high
prediction accuracies illustrate the effectiveness of combining ultrasonic sensors with ML to monitor
mixing. As observed when classifying the mixture state, the ability to use data from previous time-steps
was vital for accurate prediction of the mixing time remaining. LSTMs, which store representations
of all previous time-steps; ANNs using feature gradients; and time domain input CNNs, which use
the previous 10 s of acquired waveforms, all produced the greatest R2 values with the true mixing
time remaining. Time domain input CNNs, which use the amplitude at every sample point in the
waveform, displayed the greatest prediction performance. This indicates that, unlike for classifying
the mixture state, some useful waveform information is not represented by the time domain and DWT
decomposition energies, SAAs, and PCs. However, the CWT input CNNs performed poorer, because
only a single waveform was used for prediction. SVMs performed worst overall, most likely because
of overfitting due to their convex optimisation leading to a global minima, as opposed to ANNs,
which only converge to local minima. Although global cost minimisation is desirable to fit training
and validation data, it may lead to poor prediction ability when the test data process parameters lies
outside of the bounds of the training data. As in this investigation each monitored run is individually
held back for testing, testing on data lying outside of the process parameter space used in training
is unavoidable.

Table 6. Regression accuracies of shallow machine learning algorithms to predict the mixing
time remaining of the honey-water blending process. E—Energy, SAA—Sum Absolute Amplitude,
G—Gradients of Features, PCs—Principle Components, DWT—Discrete Wavelet Transform.

ANN (R2) SVM (R2) LSTM (R2)

Features Non-central Central Combined Non-central Central Combined Non-central Central Combined

E, SAA 0.751 0.788 0.920 0.276 0.223 0.795 0.852 0.818 0.954
E, SAA, G 0.875 0.806 0.922 0.894 0.663 0.780 0.755 0.853 0.969

PCs 0.810 0.882 0.956 0.622 0.503 0.817 0.705 0.584 0.959
PCs, G 0.910 0.904 0.972 0.771 0.190 0.721 0.939 0.936 0.969

DWT, E, SAA 0.862 0.960 0.949 0.713 0.570 0.907 0.963 0.895 0.957
DWT, E, SAA,

G 0.758 0.892 0.948 0.827 0.722 0.899 0.965 0.865 0.959

DWT, PCs 0.786 0.881 0.957 0.552 0.551 0.806 0.857 0.751 0.973
DWT, PCs, G 0.916 0.914 0.972 0.787 0.503 0.854 0.914 0.930 0.972

Table 7. Regression accuracies of CNN algorithms to predict the mixing time remaining of the
honey-water blending process.

CNNs Time Domain Input (R2) CWT Input (R2)

Dropout layer
probability Non-central Central Combined Non-central Central Combined

0 0.825 0.936 0.975 0.786 0.866 0.950
0.1 0.828 0.943 0.974 0.790 0.869 0.955
0.3 0.827 0.933 0.974 0.793 0.869 0.951
0.5 0.828 0.932 0.977 0.789 0.866 0.949
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Figure 8. A comparison between regression predictions during honey-water blending for the central
sensor, non-central sensor, and combining the outputs from both sensors. A time domain input CNN
was used as the learning algorithm. R2 values: 0.825 non-central sensor, 0.936 central sensor, and 0.975
multisensor data fusion.

3.3.3. Flour-Water Batter Mixing Classification

The optimal size of the moving mean gradient was found to be 25 previous waveforms for both
sensors. The optimal number of DWT decompositions was 7 for Sensor 1 and 5 for Sensor 2.

Both sensors performed equally well and combining sensor inputs did not provide any advantage
(Tables 8 and 9). This shows that the signal received from each sensor was adequate for determining
when the system was fully mixed. ANNs and CWT-input CNNs produced the greatest classification
accuracies of up to 91.3% and 92.5%, respectively. However, decomposition of the original time domain
waveform using wavelet analysis was required to obtain optimal classification. This suggests there was
a change in the waveforms only noticeable through wavelet analysis that marked the transition between
non-mixed and mixed. Furthermore, the incorporation of previous time-steps in the prediction was
not necessary for classification accuracy and may have led to the LSTMs and time domain input CNNs
performing poorly due to overfitting. The only highly performing algorithm using past time-steps was
ANNs with DWT decomposition energy, SAAs, and gradients as features. The lower classification
accuracies for predicting the state of the batter mixture compared with the honey-water blending
may be caused by limitations in the frequency analysis employed during this investigation. Further
decompositions using the DWT may yield more information in the frequency content of the ultrasonic
signals, and an incorporation of an LSTM layer into the CWT input CNNs would provide them with
the ability to incorporate previous process states into their prediction.



Sensors 2020, 20, 1813 18 of 24

Table 8. Classification accuracies of shallow machine learning algorithms to predict whether the
flour-water batter mixture was fully mixed or non-mixed. E—Energy, SAA—Sum Absolute Amplitude,
G—Gradients of Features, PCs—Principle Components, DWT—Discrete Wavelet Transform.

ANN (% Correct) SVM (% Correct) LSTM (% Correct)

Features Sensor 1 Sensor 2 Combined Sensor 1 Sensor 2 Combined Sensor 1 Sensor 2 Combined

E, SAA 78.5 77.3 81.7 69.9 66.2 78.2 76.9 77.9 80.9
E, SAA, G 79.9 80.6 82.8 79.2 84.2 81.4 85.2 89.6 85.5

PCs 86.9 90.4 89.7 75.7 86.7 83.1 76.1 85.3 86.3
PCs, G 85.5 90.3 86.5 74.0 87.3 76.9 74.6 83.0 84.2

DWT, E, SAA 90.7 90.8 90.8 84.3 88.5 87.7 87.0 85.2 89.3
DWT, E, SAA, G 91.1 90.4 90.0 84.7 89.5 82.0 83.7 88.1 88.3

DWT, PCs 91.3 89.6 91.1 80.4 87.9 84.2 77.7 80.5 88.1
DWT, PCs, G 85.0 88.2 88.4 70.4 72.0 80.9 75.8 84.2 83.4

Table 9. Classification accuracies of CNN algorithms to predict whether the flour-water batter mixture
was fully mixed or non-mixed.

CNNs Time Domain Waveforms (% Correct) CWT (% Correct)

Dropout layer
probability Sensor 1 Sensor 2 Combined Sensor 1 Sensor 2 Combined

0 82.6 84.4 83.4 91.5 92.5 90.3
0.1 86.6 85.0 78.7 90.3 90.6 92.2
0.3 85.3 82.4 85.8 87.2 91.6 92.2
0.5 85.7 86.0 78.9 88.4 92.3 92.4

3.3.4. Flour-Water Batter Mixing Regression

The optimal size of the moving mean gradient and number of DWT decompositions was the
same as for the classification of the batter mixture. Despite combined sensor outputs producing the
highest prediction accuracies, using both sensors was not required to achieve adequate performance
(Tables 10 and 11). LSTMs using time domain waveform energy, SAAs, and feature gradients achieved
an R2 value of 0.966, and LSTMs using PCA of the DWT decompositions achieved an R2 value of
0.968, both using a single sensor. However, time domain input CNNs produced the highest R2 values
of up to 0.976 using a single sensor. These results show that performing wavelet analysis was not
necessary for high prediction accuracy, unlike for batter mixing classification. Instead, the ability to
use previous time-step data and the amplitude of every sample point in the waveform as features
is required. However, ANNs preformed worse than both LSTMs and time domain input CNNs,
suggesting that a more flexible incorporation of previous time-step data was required for regression
accuracy at different process stages rather than using fixed feature gradient lengths throughout the
process. Again, the single waveform CWT input CNNs did not produce high prediction performance
due to not incorporating previous time-step data as features.

Table 10. Regression accuracies of shallow machine learning algorithms to predict the mixing
time remaining for the flour-water batter mixture. E—Energy, SAA—Sum Absolute Amplitude,
G—Gradients of Features, PCs—Principle Components, DWT—Discrete Wavelet Transform.

ANN (R2) SVM (R2) LSTM (R2)

Features Sensor 1 Sensor 2 Combined Sensor 1 Sensor 2 Combined Sensor 1 Sensor 2 Combined

E, SAA 0.633 0.697 0.868 0.208 0.430 0.658 0.937 0.935 0.936
E, SAA, G 0.576 0.819 0.835 0.712 0.817 0.873 0.912 0.966 0.974

PCs 0.846 0.879 0.855 0.464 0.775 0.810 0.732 0.822 0.848
PCs, G 0.947 0.91 0.946 0.485 0.713 0.629 0.641 0.760 0.754

DWT, E, SAA 0.831 0.872 0.876 0.392 0.781 0.535 0.940 0.950 0.912
DWT, E, SAA, G 0.666 0.766 0.743 0.815 0.917 0.631 0.771 0.953 0.955

DWT, PCs 0.844 0.898 0.824 0.489 0.665 0.485 0.932 0.968 0.958
DWT, PCs, G 0.840 0.930 0.906 0.662 0.774 0.654 0.786 0.911 0.939
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Table 11. Regression accuracies of CNN algorithms to predict the mixing time remaining for the
flour-water batter mixture.

CNNs Time Domain Waveforms (R2) CWT (R2)

Dropout layer
probability Sensor 1 Sensor 2 Combined Sensor 1 Sensor 2 Combined

0 0.961 0.976 0.975 0.945 0.920 0.958
0.1 0.962 0.973 0.980 0.944 0.922 0.962
0.3 0.959 0.970 0.982 0.938 0.922 0.958
0.5 0.960 0.975 0.977 0.940 0.915 0.961

4. Discussion

Although ML algorithms were able to achieve similar regression accuracy for both the honey-water
blending and flour-water batter mixing, the classification accuracy was lower for the flour-water
batter mixing. This is because despite the waveform energies of both processes changing by a similar
proportion throughout the mixing processes (Figures 5 and 7), the honey-water blending waveform
energy profile has a sharper change during the time of mixing completion. The waveform energy
increased as the honey was removed from the measurement area of the central sensor, giving greater
resolution of this sensor around the end of the mixing process.

Different ML approaches performed best on each prediction task. To classify the honey-water
mixture state, predict honey-water mixing time remaining, and predict the flour-water batter mixing
time remaining, the use of previous time-steps as features was useful for prediction accuracy. However,
the ability of LSTMs to represent all previous time-states in the internal network, and time domain
input CNNs ability to use the previous 10 s of acquired waveforms, performed better than the fixed
feature gradient lengths used for the ANNs. In contrast, to classify the mixture state of flour-water
batter, no previous time-steps were required. Instead, decomposition of the time domain waveform
by the wavelet transform was needed to monitor a state change signature in the frequency domain.
Time domain input CNNs were the best performing algorithm to predict the mixing time remaining of
both the honey-water blending and flour-water batter mixing. This suggests that the ability to use
the amplitude at every sample point in the waveform was better equipped to predict the mixing time
remaining than using the waveform energy, SAA, or PCs. However, the time domain input CNNs
began to overfit when classifying the state of the honey-water mixture. Therefore, the ANN and
LSTM prediction accuracy may only sometimes be improved by using the amplitude of all sample
points in a waveform. The use of only one acquired waveform for prediction hindered the CWT input
CNNs ability to predict the mixing time remaining for both systems, and classified the state of the
honey-water blending. Therefore, the addition of an LSTM layer would aid the prediction performance
of the CNNs by storing representations of previous time-step data. The only ML task that required
combining two sensor outputs was predicting the mixing time remaining for the honey-water blending.
This is because the different sensor positions gave increased resolution at different stages of the mixing
process. SVMs performed the worst for all prediction tasks. This is likely due to overfitting causing
low prediction accuracy on test data outside the parameter bounds of the training and validation data.
This is because SVM have convex optimisation functions that produce a global minima. In comparison,
ANNs only converge to local minima, which may have aided their ability to generalise to test data
outside the parameter space of training.

The application of the combined sensor and ML techniques to monitor processes relies on
attaining ground truth data to label the outputs of all sensor signals. In industrial settings, product
quality evaluations are typically conducted off-line and require considerable time, expense, or manual
operations. This can mean ground truth values to produce labelled data are difficult to obtain, and
therefore only a small set of labelled data is available for ML model development. In this case,
additional techniques must be considered. For example, semisupervised learning can be used to
first perform unsupervised learning on the combined set of labelled and unlabelled data to extract
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features. Supervised learning models using the labelled data can then be used to predict the class
or value of the unlabelled data [73]. Subsequently, active learning can be employed to automatically
select data, which would be most useful to the model development if labelled rather than employing
annotation of random samples [74]. For example, data points close to classification boundaries or
those, which expand the model training space. Transfer learning is another technique that can help
overcome the limitation of small labelled data sets. It has found particular application for transferring
pretrained CNNs for image recognition tasks or for NIR spectroscopy calibration transfer across
spectrometers [75,76]. A model trained on another system, for example a laboratory or pilot scale
model system, can be used to aid in the prediction of the state of the target system. For example, the
optimised signal processing, network weights, or ML hyperparameter values from the first system can
be used as initial training values for the target system. Alternatively, the outputs of the previously
trained model applied to the target system may be used as inputs to a second model [75].

5. Conclusions

This work studied the potential of using an industrially applicable ultrasonic sensing technique
combined with ML to monitor the mixing of two model systems. Two ultrasonic sensors were used for
data acquisition, and different ML and feature engineering methods were compared. This work has
shown the potential of using ultrasonic sensors and ML to predict the time remaining until mixing
is complete and when a system is mixed. The superior prediction accuracies of up to 96.3% for
honey-water blending and 92.5% for flour-water batter mixing, along with R2 values of up to 0.977
for honey-water blending and 0.968 for flour-water batter mixing, highlight the efficacy of combining
ultrasonic sensors and ML to monitor mixing processes.
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The aim of this thesis was to develop ML methods to facilitate optimal deployment of US 

sensors for process monitoring applications in industrial environments. This article 

contributed to this aim by combining ML with a non-invasive, reflection-mode US sensing to 

monitor an alcoholic fermentation process. This contributed to the thesis objectives of 

collecting data from process monitoring applications that allow the thesis conclusions to 

extend to industrial scenarios as well as comparing reflection-mode and transmission-based 

US sensing approaches (see Section 1.2 Aims and Objectives). LSTM layers were 

determined to be more accurate than using ANNs with a fixed feature time-lag, echoing the 

results attained in the previous section (Section 4, titled: “Monitoring Mixing Processes Using 

Ultrasonic Sensors and Machine Learning”) further contributing to the thesis objective of 

developing an optimal ML pipeline for process monitoring using US sensor measurements. 

The evaluation of ML models omitting the process temperature as a feature was also novel 

for US monitoring of fermentation processes. This can be used to indicate whether the US 

sensor and ML combinations trialled could be used in industrial applications where 

measurement of the process temperature is not available. The choice of whether to include 

the temperature as a feature should be made during the model validation stage to determine 

whether it improves prediction accuracy. 

In this work, the inclusion of the process temperature was shown to degrade ML model 

accuracy when using only the first waveform reflection (increasing the mean squared error 

from 0.146 to 0.345 % alcohol by volume). This was most likely due to the high variability of 

this feature (ranging between approximately 20 and 30 °C) creating a more difficult 

optimisation problem for the model. However, in subsequent works (Sections 6 and 8) an 

additional fully connected layer was used in the deep neural networks to reduce the burden 

on the LSTM layer to extract features, learn feature trajectories, and fit to the model outputs. 

Therefore, this new network structure is expected to handle the extra complexity of the 

process temperature and thereby achieve an increase in model accuracy, although, this was 

not confirmed in this thesis. The number of fully-connected layers should be trialled during 

the model validation stage.  
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In this work, LSTMs achieved higher accuracies (R2 = 0.952, MAE = 0.265, and MSE = 

0.136) compared with ANNs (R2 = 0.398, MAE = 1.01, and MSE = 1.942). This shows that 

the gradients of the features, as provided to the ANNs, is insufficient, and the enhanced 

memory of the feature history provided by the LSTM units is required for the fermentation 

process. This is unsurprising, as LSTMs have been shown to outperform ANNs in many 

applications such as transit-time measurement in US flowmeters (0.95 for an LSTM 

compared with 0.9 R2 for ANNs (Nguyen and Park, 2020)), gas volume fraction prediction in 

three-phase flows using US sensors (0.99 R2 for LSTM methods compared with 0.97 R2 for 

non-recurrent methods (Ren et al., 2021)), and damage detection using US sensors (0.999 

R2 for LSTM methods compared with 0.992 for non-recurrent neural networks (Huang et al., 

2022)). The reason why the discrepancy between the LSTM and ANN results in this study is 

larger than the previously cited examples is likely due to the different volumes of data each 

algorithm had access to when making a prediction. In this work, the LSTMs had access to 

the full data series (i.e., the total fermentation times of 4 to 7 days) compared with the ANNs 

which only had feature gradient inputs from the previous 5 hours. In Nguyen and Park (2020) 

and Huang et al. (2022), the ANNs and LSTMs had access to the same volume of data with 

which to make a prediction, most likely producing the more similar R2 values between the 

algorithms. This approach would not have been possible in this work as the LSTMs had 

access to the full trajectory of US measurements since the beginning of the process on the 

account of being able to process the features sequentially and output a prediction at each 

timestep. If the ANNs had access to all US measurements during the fermentation, this 

would have resulted in a single datapoint per fermentation batch owing to the ANNs inability 

to process the data sequentially.  

The previous section (Section 4, titled: “Monitoring Mixing Processes Using Ultrasonic 

Sensors and Machine Learning”) monitored honey-water blending and flour-water batter 

mixing processes. Ultrasonic signals can be affected in three ways: variations in material 

acoustic impedance that alters the magnitude of the waveforms, variations in attenuation 

that alter the magnitude of the waveforms, and variations in sound velocity that alter the 

displacement of the waveforms in the time domain (Henning and Rautenburg, 2006). During 

mixing, the acoustic impedance at the measurement areas changes as the material 

composition varies whilst the sound velocity through the materials changes by conducting 

these processes over a range of temperatures. In this section, the final phenomena is also 

monitored: increases in attenuation as CO2 bubbles are produced during the fermentation 

process. Throughout alcoholic beer fermentation, the acoustic impedance and speed of 

sound of a transmitted US wave also change as the density of the wort decreases.  

In this work, a Tilt hydrometer was used to provide real-time density measurements, which 

floats at the surface of the fermenting wort. Therefore, altering the location of the hydrometer 

would not affect the density readings so long as it was not in contact with the sides of the 

vessel. In industrial applications, the wort density during fermentation is typically measured 

once or twice per day (Controllo e Misura, 2021). Measuring wort density provides 

information into the sugar concentration and alcohol level. Brewers can measure specific 

gravity during fermentation for multiple purposes. Firstly, the fermentation rate can be 

monitored. If fermentation proceeds too slowly, the yeast may be inactive, and the brewer 

can respond by adding more yeast or adjusting temperature in real-time to ensure 

fermentation progresses as intended (Precision Fermentation, 2023). Conversely, if 

fermentation occurs too rapidly, off-flavours may develop (Beer & Brewing, 2016). Secondly, 

monitoring specific gravity helps brewers determine when fermentation is complete to 

produce consistent batches. If fermentation is halted too early, the beer may be under-

fermented, resulting in a sweet or low-alcohol beer. Thirdly, specific gravity measurements 

enable brewers to calculate the final alcohol content (ABV) of the beer. By taking initial and 
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final readings, brewers can determine how much sugar was converted to alcohol, thus 

calculating the final ABV (Brewer’s Friend, 2023). Again, this is required for consistency as 

well as regulatory compliance. Lastly, tracking specific gravity lets brewers confirm 

fermentation has begun. If the specific gravity does not decrease over time, this could 

indicate problems with the yeast or temperature. By identifying whether fermentation has not 

started, corrective action can be taken or the batch may be abandoned. To monitor the rate 

of fermentation and alcohol content, a labelled data collection rate of once or twice per day 

would suffice owing to the fermentation processes requiring 4 to 7 days to complete. On the 

other hand, increased labelling at the start and end of ethanol production may be required to 

increase resolution at these points. If the times of these phenomena are not known, 

techniques such as interpolation or semi-supervised learning may be used to increase the 

labelling frequency at these points.  

In this work, the ML models were trained to predict the alcohol levels during fermentation 

which can be used to achieve all these aims of monitoring fermentation rate, determining the 

start and end of fermentation, and predicting the final alcohol content of beer. Therefore, the 

conclusions drawn from this work are relevant to industrial beer fermentation monitoring. 

However, none of the final models produced in this article would be able to be utilised for all 

these aims (see Figure 5). For example, only Model 2 and 3 may be able to provide 

information as to whether fermentation had started, whereas Model 1 and 4 would be more 

useful to identify the end of fermentation and final alcohol content. Moreover, Model 2 

appears to be most accurate at predicting the fermentation rate. However, in subsequent 

works (Sections 6 and 8) an additional fully connected layer was used in the deep neural 

networks to reduce the burden on the LSTM layer to learn the feature trajectories and also fit 

to the target variables. Therefore, this new network structure is expected to handle the extra 

complexity of the process temperature and thereby achieve an increase in model accuracy, 

although, this was not confirmed in this thesis. Furthermore, multi-task learning (as utilised in 

Section 6) may be used to enable learning the four aims separately to improve the accuracy 

for each whilst extracting useful information common to all tasks. Lastly, US measurements 

could be used in conjunction with continued sampling to provide real-time measurements 

and reduce manual burden on operators. Therefore, it can be decided which of these four 

aims is most pertinent to complement sampling activities and models can be trained to 

predict the chosen aim more accurately or this aim can be assigned a higher error weighting 

factor during multi-task training.  

5.1 References  
Beer & Brewing (2016) Available online: https://beerandbrewing.com/slow-and-steady-wins-

the-race/ (Accessed on 19th April 2023).  

Brewer’s Friend (2023) Available online: https://www.brewersfriend.com/abv-calculator/ 

(Accessed on 19th April 2023). 

Controllo e Misura (2021) The Brewing Process Is under Control. Available online: 

https://www.publiteconline.it/controlloemisura/2021/09/10/the-brewing-process-is-under-

control/ (Accessed 18th April 2023)  

Henning, B., Rautenberg, J. (2006) ‘Process monitoring using ultrasonic sensor systems’ 

Ultrasonics 44, e1395–e1399. Doi: 10.1016/j.ultras.2006.05.048. 

Huang, L., Hong, X., Yang, Z., Liu, Y., Zhang, B. (2022) ‘CNN-LSTM network-based damage 

detection approach for copper pipeline using laser ultrasonic scanning’ Ultrasonics 121, 

106685. Doi: 10.1016/j.ultras.2022.106685.  



46 
 

Nguyen, T.H.L., Park, S. (2020) ‘Intelligent ultrasonic flow measurement using linear array 

transducer with recurrent neural networks’ IEEE Access 8, 137564–137573. Doi: 

10.1109/ACCESS.2020.3012037. 

Precision Fermentation (2023) Available online: 

https://www.precisionfermentation.com/blog/yeast-pitching-rates-beer-fermentation/ 

(Accessed on 19th April 2023). 

Ren, W., Jin, N., OuYang, L., Zhai, L., Ren, Y. (2021) ‘Gas volume fraction measurement of 

oil-gas-water three-phase flows in vertical pipe by combining ultrasonic sensor and deep 

attention network’ IEEE T. Instrum. Meas. 70, 1–9. Doi: 10.1109/TIM.2020.3031186. 



fermentation

Article

Predicting Alcohol Concentration during Beer Fermentation
Using Ultrasonic Measurements and Machine Learning

Alexander Bowler 1, Josep Escrig 2 , Michael Pound 3 and Nicholas Watson 1,*

����������
�������

Citation: Bowler, A.; Escrig, J.;

Pound, M.; Watson, N. Predicting

Alcohol Concentration during Beer

Fermentation Using Ultrasonic

Measurements and Machine

Learning. Fermentation 2021, 7, 34.

https://doi.org/10.3390/

fermentation7010034

Received: 16 February 2021

Accepted: 2 March 2021

Published: 4 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Food, Water, Waste Research Group, Faculty of Engineering, University Park, University of Nottingham,
Nottingham NG7 2RD, UK; alexander.bowler@nottingham.ac.uk

2 i2CAT Foundation, Calle Gran Capita, 2-4 Edifici Nexus (Campus Nord Upc), 08034 Barcelona, Spain;
josep.escrig@i2cat.net

3 School of Computer Science, Jubilee Campus, University of Nottingham, Nottingham NG8 1BB, UK;
michael.pound@nottingham.ac.uk

* Correspondence: nicholas.watson@nottingham.ac.uk

Abstract: Beer fermentation is typically monitored by periodic sampling and off-line analysis. In-
line sensors would remove the need for time-consuming manual operation and provide real-time
evaluation of the fermenting media. This work uses a low-cost ultrasonic sensor combined with
machine learning to predict the alcohol concentration during beer fermentation. The highest accuracy
model (R2 = 0.952, mean absolute error (MAE) = 0.265, mean squared error (MSE) = 0.136) used a
transmission-based ultrasonic sensing technique along with the measured temperature. However,
the second most accurate model (R2 = 0.948, MAE = 0.283, MSE = 0.146) used a reflection-based
technique without the temperature. Both the reflection-based technique and the omission of the
temperature data are novel to this research and demonstrate the potential for a non-invasive sensor
to monitor beer fermentation.

Keywords: machine learning; ultrasonic measurements; long short-term memory; industrial digi-
tal technologies

1. Introduction

During beer fermentation, yeast metabolism produces ethanol and carbon dioxide
from a sugar-water mixture called wort [1,2]. The fermentation is conventionally monitored
through off-line wort density measurements until a predetermined ethanol concentration is
reached [3], after which the process is continued for a predefined time for development of
flavour compounds [4]. This requires manual sampling, takes time, and wastes resources
by disposing of the measured sample. In-line measurement techniques directly measure the
process material and on-line methods use bypasses to automatically collect, analyse, and
return samples to the process [5]. By providing real-time, automatic alcohol concentration
measurements, in-line and on-line techniques would ensure product quality through early
detection of anomalous batches, allow effective scheduling of production equipment by
predicting fermentation endpoint, and reduce the burden of manual sampling by opera-
tors. Furthermore, real-time data is key to the Fourth Industrial Revolution, which will
implement industrial digital technologies such as the Internet of Things, cloud computing,
and machine learning (ML) to integrate entire processes, automatically make decisions,
and improve manufacturing productivity, efficiency, and sustainability [6].

Several in-line and on-line methods to monitor alcoholic fermentation have been
investigated, including in-situ transflectance near-infrared spectroscopy [7,8], and Raman
spectroscopy probes [9]; automated flow-through mid-infrared spectroscopy [10], Fourier
transform infrared spectroscopy [11], and piezoelectric MEMS resonators [12]; non-invasive
Raman spectroscopy through transparent vessel walls [13]; and CO2 emission monitor-
ing [14]. Ultrasonic (US) sensors are an attractive monitoring technique owing to their low
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cost and have previously been used to study fermentation, including as in-line methods on
circulation lines [15], in-situ in tanks [16], and using non-invasive, through-transmission
of the fermenting media [17,18]. US monitoring techniques use high frequency (>1 MHz)
and low power (<1 Wcm−2) pressure waves to characterise material properties whilst caus-
ing no alterations to the material in which they propagate [19]. However, US properties
vary with temperature and the presence of gas bubbles causes attenuation of the sound
wave [20]. Previous in-line, on-line, and off-line studies to monitor fermentation using
US measurements have developed empirical or semi-empirical models from the speed of
sound or acoustic impedance to determine alcohol content [16]. These methods require
extensive calibration procedures to compensate for the effects of temperature, dissolved
CO2 [16,18,21], and yeast cell concentration [18]. Supervised ML uses data to train pre-
dictive algorithms for classification or regression problems. Through ML, compensation
procedures are not required as the complexities caused by varying process parameters
imbedded in the sensor data can be unravelled. Furthermore, procedures for accurate
determination of the speed of sound are not necessary [15,16,22].

This work presents three novel contributions to US monitoring of alcoholic fermen-
tations: Firstly, ML is used to predict alcohol concentration during lab-scale beer fermen-
tations from US measurements. Secondly, although an in-situ sensor probe is used, the
potential for non-invasive monitoring of fermentation is investigated by only using the US
wave reflected from the interface between the probe and the wort. This technique is similar
to previous work by our group [23–26]. Implementation of this technique would provide in-
line, non-invasive process monitoring without the need for circulation or bypass lines. This
method would also not require transmission through the total vessel contents, which would
be impossible at industrial scale. Therefore, this technique could be inexpensively fitted to
the outside of existing vessels. Finally, exclusion of the temperature as a feature in the ML
models is evaluated. Effective monitoring without the need for an invasive temperature
sensor would further reduce the cost and complexity of industrial implementation.

2. Materials and Methods

The fermentation was conducted in a 30 L cylindrical plastic vessel (Figure 1). A lid
sealed the vessel to protect the wort from contamination. The lid contained an air lock to
release the CO2 produced during fermentation. A belt heater increased the temperature
of the wort to facilitate fermentation. The wort was prepared in the vessel by dissolving
and mixing 1.5 kg of malt (Coopers Real Ale, UK) and 1 kg of sugar (brewing sugar,
the Home Brew Shop, UK) in 22 L of water. Once the ingredients were mixed, a US
probe was installed, consisting of a US transducer (Sonatest, 2 MHz central frequency,
UK) and a temperature sensor (RTD, PT1000, UK). The US transducer was connected
to a Lecouer Electronique US Box (France) that excited the transducer and digitised the
received US signal. The temperature sensor was connected to a Pico electronic box (PT-104
Data Logger, UK). The two electronic boxes were connected to a laptop that controlled
the data acquisition. Coupling gel was applied between the US transducer and the probe,
and a spring was used to maintain the contact pressure. A Tilt hydrometer was installed
to provide real-time density measurements. The real-time density measurements were
required as the ground truth data of the wort alcohol concentration to train the ML models.
This device was a small cylinder that floats in the liquid with its centre of gravity different
from its centre of buoyancy. This causes an inclination of the device that is dependent
on the specific gravity of the fermenting media. The inclination of the hydrometer was
measured by a self-contained accelerometer and was transmitted by radio to a smartphone
located outside of the vessel. A calibration procedure related the inclination to the specific
gravity. It should be noted hydrometers are not suitable for in-line monitoring of industrial
fermentations. Firstly, the balance of the device can be easily distorted by foam or solids
floating on the surface, or by bubbles produced during fermentation. Secondly, as the
hydrometer floats on the wort surface, it would need manual removal at the end of each
fermentation batch. The most accurate method of specific gravity measurement is to extract
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samples and use a portable density meter. However, this would require manual sample
withdrawal at least every 2 h and would decrease the volume of liquid in the vessel,
affecting the fermentation process. Furthermore, this would only produce sparse ground
truth measurements of the density to train the ML models.
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Figure 1. Experimental apparatus and measured US wave reflections.

The yeast (Coopers Real Ale, UK) was distributed on the surface and the vessel
sealed. The mixture was left for 4 to 7 days while the fermentation occurred. After this
time, the fermentation equipment was cleaned and a new batch was prepared. In total,
13 batches were completed. During fermentation, data was collected from the three different
sensors: the US sensor, the temperature sensor, and the hydrometer. The time of each
measurement was also recorded. The fermentation batches were conducted over a period
of approximately 3 months. This meant that the environmental and water temperature in
the laboratory changed during this time. Furthermore, the belt heater was only in contact
with the lower section of the vessel. This produced temperature variations from around 20
to 30 ◦C. However, this temperature variation is beneficial to our ML evaluation as each
model must be able to generalise across a wide range of process temperatures.

Sets of US and temperature data were collected periodically. Each of the sets consisted
of 36 US waves and 36 temperature readings. For the US signal, 7000 sampling points
were collected at 80 MHz sampling frequency. The time between each wave acquisition
was 0.55 s. Between each set of data collection, 200 s elapsed. As depicted in Figure 1,
the US transducers emitted sound waves which travelled along a PMMA buffer. At the
interface between the buffer material and the wort, part of the sound wave is reflected back
to the transducer (the 1st reflection). The rest of the sound wave continues through the
wort, reflects at the opposite probe wall, and travels back to the transducer to be recorded
(the 2nd reflection). An example of the signal recorded by the transducer is presented in
Figure 2a. Close-ups of each reflection are presented in Figure 2b,c. The first section of the
waveform (sample points < 500) is reflected back to the transducer before contacting the
buffer material and wort interface and therefore contains no useful information about the
process. The 1st reflection is identified between sample point 900 and 1500, and the 2nd
reflection between 6000 and 6500, as shown in Figure 2.
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2.1. Volume of Alcohol Calculation

The volume of alcohol (%) can be calculated from the specific gravity of the fermenting
media using Equation (1) [27].

ABV = (SGin − SG) × 131.25, (1)

where ABV is the alcohol by volume (%), SGin is the starting specific gravity of the liquid
before the yeast was added, and SG is the current specific gravity of the fermenting
liquid. The multiplier of this equation is based on the stoichiometric relationship of the
fermentation reaction, where the decreasing density is due to CO2 production and escape
through the air lock [28].

2.2. Ultrasonic Wave Features

The following features were calculated from the obtained US waveform to use in the
ML models. These are common features extracted from US waveforms [29]. The theory
behind the selection of each feature is presented in their respective sections. Different
combinations of these features were tested during ML model optimisation. The optimal
feature combinations are presented in Table 1, Section 3.1.

2.2.1. Energy

The waveform energy is a measure of the size of the waveform received by the
transducer. For the 1st reflection, this is a measure of the proportion of the sound wave
reflected from the interface between the buffer material and the wort. This is dependent
on the change in acoustic impedance between these two materials [30]. Monitoring the
waveform energy of the 2nd reflection offers additional information on the level of sound
wave attenuation in the wort. This is caused by viscous losses in the media and scattering
due to heterogeneities such as bubbles and yeast cells [30].

E =
i=end

∑
i=start

Ai
2, (2)



Fermentation 2021, 7, 34 5 of 13

where E is the waveform energy, Ai is the waveform amplitude at sample point i, and start
and end denote the range of samples points for the reflection of interest [29].

Table 1. Results for the long short-term memory neural network (LSTM) models. MAE: mean absolute error; MSE: mean
squared error; ABV: alcohol by volume. The regression metrics for the models evaluated on the test set are highlighted in
bold at the bottom of the table.

Model 1 2 3 4

Reflections 1st and 2nd 1st and 2nd 1st 1st
Temperature Yes No Yes No

Optimal features

• 1st reflection energy
• 2nd reflection energy
• 1st reflection energy

standard deviation
• 2nd reflection energy

standard deviation
• Time of flight
• Temperature

• 1st reflection energy
• 2nd reflection

energy
• 1st reflection energy

standard deviation
• 2nd reflection energy

standard deviation
• Time of flight

• 1st reflection energy
• 1st reflection energy

standard deviation
• Temperature

• 1st reflection energy
• 1st reflection energy

standard deviation
• 1st reflection

peak-to-peak
amplitude

• 1st reflection
maximum
amplitude

• 1st reflection
minimum amplitude

Feature gradients Yes Yes Yes Yes
Batch size 2 2 4 4
Learning rate 0.01 0.01 0.033 0.033
LSTM units 2 2 4 4
L2 regularisation 0.0001 0.0001 0.00001 0.0001
Dropout rate 0 0 0 0
Epochs 100 100 100 100
Clip norm value 1 1 1 1
R2 0.952 0.939 0.878 0.948
MAE (% ABV) 0.265 0.355 0.426 0.283
MSE (% ABV) 0.136 0.173 0.345 0.146

2.2.2. Peak-to-Peak Amplitude, Maximum Amplitude, and Minimum Amplitude

The peak-to-peak amplitude, maximum amplitude, and minimum amplitude provide
additional information as to how the energy is distributed in the waveform. Changes in
wort composition or temperature may affect how the sound wave travels and reflects from
boundaries, presenting differences in the shape of the received waveform. These three
features were calculated for both the 1st and 2nd reflections.

PPA = max(Astart:end) − min(Astart:end), (3)

Amax = max(Astart:end), (4)

Amin = min(Astart:end), (5)

where PPA is the peak-to-peak amplitude, Amax is the maximum amplitude, and Amin is
the minimum amplitude.

2.2.3. Energy Standard Deviation

A total of 36 US waves were collected during each acquisition block. Phenomena in the
process—e.g., the presence of bubbles at different times during fermentation—may cause
fluctuations in the energy of the received waveforms. Therefore, the standard deviation of
the energy in a block of acquired waveforms was investigated as a feature. The standard
deviation of the energy was calculated for both the 1st and 2nd reflections.

STD =

√√√√ 1
W

i=W

∑
i=1

(
Ei − E

)2 (6)
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where STD is the standard deviation, W is the number of waveforms collected in the block,
i is an individual waveform, and E is the mean waveform energy in the block.

2.2.4. Time of Flight

The time of flight was calculated using a thresholding method, i.e., the waveform
sample point where the second reflection amplitude rises above the signal noise. This
is a measure of the speed of sound in the wort that is dependent on its density and
compressibility [20].

2.2.5. Feature Gradients

A one-sided, backwards moving mean was applied to obtain lagged feature represen-
tations over the previous 5 h. For the artificial neural networks (ANNs), this allows the use
of past process information. For the long short-term memory neural networks (LSTMs),
this allows for a way of storing past process information in some features, reducing the
burden on the LSTM units to remember all feature trajectories.

2.3. Machine Learning

The ground truth data for the percentage volume of alcohol during fermentation was
calculated from the portable density meter and hydrometer measurements. In total, 13
fermentation batches were monitored. The final two batches were selected as the test set to
provide an unbiased assessment of the experimental methodology used. In an industrial
setting, the final ML models would be deployed after collecting the training set runs. The
remaining 11 batches were used in a 5-fold cross-validation procedure to optimize the ML
models’ hyperparameters. Long short-term memory neural networks (LSTMs) are able to
retain information from previous time-steps in a sequence. LSTMs are a type of recurrent
neural network that reduces the likelihood of vanishing or exploding gradients by using
gate units. This enables their use over much longer sequences [31]. To evaluate the utility
of using LSTMs to predict alcohol concentration, they were compared with artificial neural
networks (ANNs) which are unable to store past process information. ANNs combine
input features to produce new features which can approximate the relationship with the
target variable given enough neurons in the hidden layer [32,33].

For the LSTMs, zero-padding was applied to the US features to make every fermenta-
tion batch sequence an equal length. A masking layer specified that the LSTM units ignore
this padding. Each sequence consisted of 4646 timesteps. All timesteps for each batch were
used as a single sequence rather than being split into multiple sequences of shorter length.
While long LSTM sequences (250–500 timesteps) are prone to produce vanishing gradients
when predicting a single output, this is not a problem when predicting an output at every
timestep as used in this task [34].

For the ANNs, a single hidden layer and the Adam optimisation algorithm was used.
Cross-validation determined the optimal batch size, number of neurons in the hidden layer,
learning rate, drop-out rate, L2 regularisation penalty, and number of epochs for training.
For the LSTMs, the Adam optimisation algorithm was used and the cross-validation
procedure determined the optimal batch size, number of LSTM units, learning rate, drop-
out rate, L2 regularisation penalty, gradient norm clipping value, and number of epochs.
After cross-validation, the set of hyperparameters which resulted in the lowest average
validation error were used to train a final model using all of the training set. The networks
were trained using TensorFlow 2.3.0. The coefficient of determination (R2), mean squared
error (MSE) and mean absolute error (MAE) were used as performance metrics to evaluate
the ML models. Multiple metrics produce a comprehensive assessment of a model’s ability
to fit to the test set and improve comparison between models.

3. Results

Figure 3 displays selected features from all the fermentation batches. It is shown that
the energy of 1st reflection (Figure 3a), energy of the 2nd reflection (Figure 3b), and the
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time of flight of the sound wave through the wort (Figure 3c) start at different values for
each batch. There are several explanations for this. Firstly, as presented in Figure 3d, the
process temperature is not the same at the start of each batch. As the speed of sound is
highly dependent on temperature, the US properties begin from different magnitudes.
Secondly, the US probe required manual removal and repositioning when disposing each
batch after fermentation. This disturbed the spring maintaining the contact pressure of
the US transducer, which affects the sound energy transferred through the materials from
the sensor.
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The trajectories of the waveform features are also not smooth. Again, this is partly
due to the oscillating process temperature. In addition, bubbles of CO2 produced during
the fermentation were observed to attach to the surface of the probe material, which would
cause scattering and reflection of the sound wave. During the fermentation, as further
CO2 bubbles were produced, the new bubbles would replace the previous ones on the
surface. This is likely to cause fluctuations in the waveform energy transferring through
the interface between the probe and the wort.

The energy of the 1st reflection increases throughout the fermentation (Figure 3a).
The energy of the 1st reflection is proportional to the change in acoustic impedance at the
buffer-wort interface, with the acoustic impedance being a product of the material density
and speed of sound [20]. As the density of the wort decreases during fermentation, the
speed of sound also decreases as found in [17,18,35]. As the solid buffer material has a
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greater density and speed of sound than the starting wort, the proportion of sound wave
reflected at the buffer-wort material increases throughout the fermentation. However, the
time of flight (Figure 3c), the inverse of the speed of sound, shows no general trend. This
contrasts with the results obtained in [17,18,35], which suggests that it should increase.
This is likely due to the changing process temperature masking an increasing time of flight.
The results in [17,18,35] were all obtained at a constant temperature. The reduced time of
flight for the last three batches (Batches 11, 12, and 13 in Figure 3c) is most likely due to a
disturbance of the sensor positioning after Batch 10. These batches were kept in order to
provide an unbiased assessment of the experimental methodology used. In an industrial
setting because the test set data (batches 12 and 13) would not be available to analyse prior
to the ML model training. The energy of the 2nd reflection is diminished compared with the
1st reflection at the beginning of the fermentation until approximately Day 3, as presented
in Figure 4. A similar result was found in [17] and is due to the fermentation being most
vigorous at the start of the process. This causes more CO2 bubbles to be produced and
therefore greater attenuation of the sound wave travelling through the wort.
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3.1. Machine Learning

The ANN model with the highest accuracy only achieved an R2 of 0.398 (MAE = 1.010%
ABV, MSE = 1.942% ABV). As such, only results from the LSTM models are included
in Table 1. This shows that the gradients of the features, as provided to the ANNs, is
insufficient, and the enhanced memory of the feature history provided by the LSTM units
is required for this process. The results of four final LSTM models are presented in Table 1,
which either use the 1st reflection or both reflections, and either use the temperature as a
feature or not. The optimal features, optimal hyperparameters, and performance metrics
are included. The most accurate LSTM model (Model 1) used features from both the 1st and
2nd reflections and the process temperature. Interestingly, the second most accurate model
(Model 4) only used features from the 1st reflection, excluding the process temperature.
The third most accurate model (Model 2) used features from the 1st and 2nd reflections
without the process temperature. Finally, the least accurate model (Model 3) combined
features from the 1st reflection and the process temperature. Graphical representations of
these predictions are shown in Figure 5a–h.
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4. Discussion

The most accurate model (Model 1) uses features from both the 1st and 2nd reflections
and the process temperature. This shows the potential of US sensors to predict the endpoint
of fermentation and, as demonstrated in Figure 5a,b, accurately predict the alcohol con-
centration throughout the fermentation process. However, industrial implementation of
this model would require the use of an invasive probe in order to obtain the 2nd reflection.
In addition, an invasive temperature probe would be required to monitor the changing
temperature of the fermentation media. Interestingly, the second most accurate model
(Model 4) only used features from the 1st reflection and excluded the process temperature.
The use of only the 1st reflection indicates that accurate results could be obtained using a
non-invasive, no-transmission US sensor, similar to the techniques used in previous works
by our group [23–26]. This is advantageous as it allows the alcohol volume to be accurately
predicted by easily mounting a US sensor externally to an existing vessel. Therefore, it
can be easily implemented into existing industrial settings at low effort and cost. The
use of Model 4 would also remove the requirement for an invasive process temperature
measurement. Furthermore, the performance metrics for Model 4 (R2 = 0.948, MAE = 0.283,
MSE = 0.146) are similar to those of Model 1 (R2 = 0.952, MAE = 0.265, MSE = 0.136)
indicating that no prediction accuracy would be lost through using a non-invasive and
no-transmission sensor approach. This US sensing technique would also not require a
hole to be bored into the vessel side, as used in this work. Instead, the US wave could be
transmitted through the vessel wall.

In Model 3, the features from the 1st reflection combined with the process temperature
produces a reduced accuracy. This is likely because the additional features required in
Model 4 (the peak-to-peak amplitude, maximum amplitude, and minimum amplitude of
the 1st reflection) contained more pertinent information about the temperature at the probe-
wort interface than the non-local temperature sensor. The suggestion that the temperature
sensor measured the temperature of the bulk wort instead of the region through which the
1st reflection passes is supported by the results from Model 2. When the temperature was
removed as a feature, Model 2 produced a reduced accuracy compared with Model 1. This
indicates that for accurate prediction using the 2nd reflection, the bulk wort temperature
measurement is required as the sound wave travels through this region. The reduced
accuracy obtained when combining the temperature data with the 1st reflection for Model
3 is most likely caused by the temperature at the probe-wort interface not closely following
the trend of the bulk wort temperature. Therefore, using the temperature measurement
as a feature increases the model complexity with little benefit, meaning it is more difficult
for the network to find an optimal solution. This further supports the aforementioned
point that accurate, invasive temperature measurement would not be required with a
non-invasive, no-transmission US sensing technique.

Figure 5 displays the predicted ABV percentage from the trained LSTM models for the
two batches used for the test set (batches 12 and 13). Model 1 (Figure 5a and b) accurately
determines the fermentation endpoint. However, the final ABV prediction is not as accurate
as Model 4, indicating that it may not be sensitive enough to determine differences in final
ABV between batches. Whilst Model 3 appears to have no utility, Models 1, 2, and 4 all
accurately followed the ABV trajectory. Owed to the real-time data acquisition of US
sensors, these models suggest that the obtained data could be used to train additional
anomaly detection models to provide early warning of undesired process trajectories within
a batch.

Several locations in the prediction require improvement; for example, the detection
of ABV plateau for Model 2 (Figure 5c,d around the 2nd day), the settling at a final
ABV for Model 3 (Figure 5e,f), and the detection of the initial ABV rise for Model 4
(Figure 5g,h around the first day). This is likely due to the varying temperature throughout
the fermentation having a large effect on the US properties of the wort compared with the
changing density. There are also locations of decreasing ABV prediction (Figure 5d during
the first day) or sudden increases in ABV prediction (Figure 5h at the end of the fourth
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day). This is likely due to the temperature variations being different for each batch and the
particular temperature variations during the test set causing these effects. These problems
would likely be reduced through obtaining more training data.

In this work, ML models were trained to predict the ABV throughout the fermentation.
However, in industrial settings this may not be the most appropriate output value with
which to fit a model. For example, ML models could be trained to predict the final ABV of
each batch, the time remaining until the ABV plateaus, classify the end of fermentation, or
provide early detection of anomalous batches. In each of these cases, the models would be
trained for a more specific purpose, as such the models may perform better than indicated
by Figure 5. This work is therefore demonstrative of the efficacy of real-time fermentation
monitoring using US sensors and ML, and increased accuracy may be achieved through
predictions of more specific outputs.

If only the 1st reflection was used in an industrial monitoring system, the sound
wave could be transferred through the vessel wall. Alternatively, if the 2nd reflection was
also to be used, the probe could be fitted through existing ports common to industrial
fermenters. This work monitored a laboratory scale fermentation process. At industrial
scale, agitation methods are uncommon in beer fermentation to prevent damage to the
yeast [36]. Therefore, radial variations in alcohol concentration exist and there would be
a difference in the alcohol concentration at the sensor measurement area and the bulk
wort [36]. However, previous work from our group showed that a non-local probe could
accurately monitor a mixing process [23]. This is because, through machine learning, the
sensor data is correlated to the location of the ground truth data, rather than the sensor. In
this case, a sensor would be trained to predict the alcohol concentration at the location of
the hydrometer measurements or sample collection.

Future Research Directions

The largest barrier to industrial implementation of sensors and ML combined tech-
nologies is the burden of obtaining labelled data. Labelled data is used as the targets for
training supervised ML models. To obtain the ground truth to label data requires another
analysis method. In this work, the hydrometer readings were used due to the sample
density measurements producing insufficient data points and disturbing the fermentation.
In an industrial setting, the hydrometer may only be able to be used for a small number
of batches for ML model development. In this case, semi-supervised learning may be
required to train high accuracy models. Semi-supervised learning uses both labelled and
unlabelled samples to train a model [37–39]. Firstly, unsupervised learning techniques,
such as principal component analysis or autoencoders, can be used on the total dataset
to learn relationships between features across the labelled and unlabelled samples. Then
traditional supervised learning can be used on the new features using just the labelled
samples. Secondly, a self-training (or pseudo-labelling) approach may be used to predict
the labels of the unlabelled data from the trained model. These pseudo-labels may then be
added to the labelled data set and the procedure repeated to improve the label predictions
or to train a final model.

Alternatively, conventional sample extraction and density measurement may be used
to obtain the labelled data. Either a curve may be fitted to these sparse density measure-
ments to produce interpolated data points, or a similar semi-supervised learning procedure
can be implemented. Active learning may also be used to identify data points for labelling
that may be the most useful to the model [40,41]. These datapoints may be during a sparsely
sampled time in the fermentation or be in a particular temperature and composition range.
Operators could then analyse these samples to provide the most benefit to the ML model
at the lowest investment in effort.

5. Conclusions

The transition to Industry 4.0 promises increased manufacturing efficiency, sustain-
ability, and productivity. By implementing digital technologies such as the Internet of
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Things, Cloud Computing and ML, not only can entire processes be integrated, but supply
chains as well. Sensors are a key technology in this revolution by providing the real-time
data to inform automatic, intelligent decision-making. Currently, beer fermentation is
monitored through periodic manual sampling and off-line wort density measurements.
This work has presented an in-line, low-cost US sensing technique combined with ML,
which would remove the need of operator sampling. This work has shown that US sensor
data combined with LSTM models are able to accurately predict the volume of alcohol
during beer fermentation. The highest accuracy model (R2 = 0.952) used a transmission-
based ultrasonic sensing technique along with the process temperature. Importantly, the
second most accurate model (R2 = 0.948) only used a reflection-based technique without
measurement of the temperature. This demonstrates the potential for a non-invasive,
no-transmission US technique, which doesn’t require invasive measurement of the process
temperature. This sensing technique could be easily and inexpensively retrofitted onto
existing fermentation vessels.
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The aim of this thesis is to develop ML methods to facilitate optimal deployment of US 

sensors for process monitoring applications in industrial environments. This article 

contributed to this aim by evaluating a convolutional feature extraction method and 

comparing it to the next best method: the extraction of coarse features such as energy, 

standard deviation, or skewness (Bowler et al., 2022). The methods were evaluated on 

material mixing, cleaning of pipe sections, and alcoholic fermentation. The convolutional 

feature extraction method produced more informative features than the coarse feature 

extraction method. Furthermore, the use of multi-task learning with US data and US data 

augmentation for process monitoring was novel. Multi-task learning was also investigated to 

aid LSTM learning of the process trajectory. Multi-task learning is an ML approach where a 

single model is trained on multiple related tasks simultaneously, sharing some or all of the 

model parameters between tasks to improve performance on all tasks (Caruana, 1997). By 

training on two correlated tasks, the shared LSTM layer may learn more effective feature 

trajectories while reducing redundant information being stored. This may have several 

benefits, such as increased model accuracy through global learning of feature trajectories 

important to the process being monitored, more stable model training by optimising for two 

combined losses, and reducing overfitting by preventing a single task from dominating the 

learning process (Zhang and Qiang, 2018). This contributed to the thesis objective of 

developing and optimal ML pipeline for process monitoring using US sensor measurements.  

This work concluded the ML pipeline optimisation portion of this thesis, and the final method 

is depicted in Figure 1. The method used a pretrained 1D CNN as a feature extractor. The 

CNN was pre-trained on an auxiliary task to classify waveform dataset membership of the all 

the experimental datasets. The output of this CNN is therefore a multi-class classification of 

waveform dataset membership. Segments of 1000 sample points in length were selected 

from each waveform. The position of the 1000 sample point length window was chosen for 

each waveform by investigating the difference between the start and end waveforms of the 

individual process. The areas with the largest visual change throughout the process were 

used. To increase the training set size for training the CNN, and to improve informative 

feature learning in the convolutional layers, a 600 × 1 input to the CNN was used. Data 

augmentation using a sliding window, laterally translated by 100 sample points each time, 

produced five waveform segments of 600 sample points in length. Further data 
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augmentation used separate normalisation of each waveform segment to differentially 

magnify the waveform. This was to ensure that the CNN learned features specific to each 

waveform, rather than the position or magnitude of features. This data augmentation 

approach increased the dataset size five-fold. The CNN was used as a fixed weight feature 

extractor. PCA was used to extract a small set of orthogonal features from the CNN outputs 

to be combined with additional features such as the time of flight or deviations between 

consecutively acquired waveforms. These features are then used as inputs in a deep neural 

network with LSTM layers. This method is used to produce features from US waveforms for 

every timestep (Figure 1).  

 

Figure 1: The optimised ML pipeline for process monitoring using US measurements (Bowler 

et al., 2022).  

Table 1 presents the percentage variability explained by each PC for the US waveform 

datasets and the number of PCs required to explain 95% of the variability, a commonly used 

method to determine the number of PCs to utilise (Valle et al., 1999). In this work, the first 

PC likely follows the common waveform changes across the full dataset caused by 

variations in the US properties of the materials being monitored (either due to changing 

composition or process temperature). Successive PCs will identify waveform changes more 

specific to each batch, most likely due to the different process temperatures. Therefore, it is 

anticipated that only a small number of PCs are required (i.e. greater than one) to monitor 

the changing material composition and account for changes in the monitoring US waveform 

at different temperatures. This is supported by Table 1 where the percentage variability 

explained drops off after the first two PCs. As shown in Table 1, the smallest number of PCs 

required to explain 95% of the variability in the dataset, is eight for the Plastic Cleaning 

dataset and nine for fermentation monitoring using only the first reflection. Therefore, using 

these two pieces of guidance (the primacy of the first and second PCs and the smallest 

number of PCs to explain 95% of dataset variability), five PCs were selected to obtain useful 

waveform information while minimising noise.  

Table 1. A summary of the distribution of the explained variance by each PC for the US 

waveform datasets after convolutional feature extraction.   

Experimental 
dataset  

Waveforms  Number 
of PCs to 
explain 

Variability 
explained 

Variability 
explained 

Variability 
explained 

Variability 
explained 

Variability 
explained 
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95% of 
variability 

by 1st PC 
(%)  

by 2nd PC 
(%) 

by 3rd PC 
(%) 

by 4th PC 
(%) 

by 5th PC 
(%) 

Fermentation Reflection 1 9 56.4 23.1 9.2 2.1 1.5 
 Reflection 2 18 30.4 21.6 14.9 9.0 6.1 
Cleaning of 
food fouling 
from pipe 
sections  

Flat rig   15 60.4 15.2 7.4 4.3 1.8 

 Circular, 
plastic   

8 56.7 14.3 12.4 6.3 1.9 

 Circular, 
metal  

32 50.9 12.3 8.5 4.6 3.7 

Honey-water 
mixing 1 

Central 
sensor  

24 52.1 18.8 7.5 4.6 2.3 

 Non-central 
sensor 

41 51.4 17.0 4.7 3.8 2.8 

Honey-water 
mixing 2 

Central 
sensor  

19 38.6 30.8 12.4 4.1 2.9 

 Non-central 
sensor 

25 41.6 36.8 4.6 2.7 2.4 

Batter mixing  Sensor 1 42 49.1 15.1 14.3 4.5 2.6 
 Sensor 2 16 60.5 16.3 7.5 3.1 1.5 

 

As determined in the previous sections (Sections 4 and 5), LSTM layers are used to allow 

the ML model to learn the trajectory of the US features. The coarse feature extraction 

method as used in Section 5 (titled: “Predicting Alcohol Concentration during Beer 

Fermentation Using Ultrasonic Measurements and Machine Learning”) is compared with the 

convolutional method presented in this section. The method is designated as “coarse” owing 

to it extracting many features from the US waveform that encompass the waveform changes, 

compared with the convolutional method which directly monitors these changes by 

measuring the amplitude of every waveform sample point.  

In previous literature, the ML methods combined with US sensor data for cleaning and 

fermentation have either used coarse waveform features (for example, the waveform energy 

(Wallhäußer et al., 2011), crest factor (Wallhäußer et al., 2013), or maximum amplitude 

(Úbeda et al., 2016)), the amplitude at every sample point in a waveform (Escrig et al., 

2020), or wavelet decomposition (Simeone et al., 2020). The convolutional feature extraction 

method presented in this section provides advantages compared with coarse time domain 

features by directly measuring changes to the waveform, does not misattribute waveform 

variations of narrow frequency band US sensors to changes in frequency content as do the 

Fourier or wavelet transformations, and overcomes the problem of lateral sample point 

shifting of waveforms due to temperature changes as suffered by using the amplitudes at 

sample points as features directly (Bowler et al., 2022).  

The use of all processes (honey-water blending, flour-water batter mixing, cleaning of food 

fouling from pipe sections, and alcoholic beer fermentation) in this work allow the method to 

be trialled on all possible impacting factors for a US waveform: changing acoustic 

impedance or attenuation that alter the magnitude of the waveform, or variations in sound 

velocity that alter the displacement of the waveform in the time domain (Henning and 

Rautenburg, 2006). This contributed to the thesis objective of evaluate US sensing and ML 

approaches on process monitoring applications that enable the thesis conclusions to extend 

to industrial scenarios. During blending, mixing, and cleaning, the acoustic impedance at the 

measurement areas changes as the material composition varies. Furthermore, conducting 

these processes over a range of temperatures alters the sound velocity through the 

materials. Throughout alcoholic beer fermentation, the acoustic impedance and speed of 

sound of a transmitted US wave change as the density of the wort decreases (Bowler et al., 
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2022). Moreover, attenuation increases as CO2 bubbles are produced during the 

fermentation process. Finally, this article contributed to the thesis objective of comparing 

non-invasive reflection-mode and transmission-based US sensing by evaluating the feature 

extraction methodologies for both of these sensing approaches.  
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a b s t r a c t 

Ultrasonic sensors are a low-cost and in-line technique and can be combined with machine learning for 

industrial process monitoring. However, training accurate machine learning models for process monitor- 

ing using sensor data is dependant on the feature selection methodology. This paper compares a convolu- 

tional feature extraction method to a traditional, coarse feature engineering approach. The convolutional 

method uses filter weights pre-trained on an auxiliary task to classify ultrasonic waveform dataset mem- 

bership using previously obtained sensor data. The filter weights are used to extract features from the 

ultrasonic waveform. Principal component analysis is then applied to produce five principal components 

to be input into long short-term memory neural networks. The two approaches are compared on fer- 

mentation, mixing and cleaning datasets monitored using ultrasonic sensors. Overall, the convolutional 

feature method produced more informative waveform features than the coarse feature engineering ap- 

proach, achieving higher model accuracy for datasets requiring substantial waveform information and for 

65% of tasks overall. Multi-task learning also improved feature trajectory learning but led to reduced 

model accuracy for data points far from the classification decision boundaries. This can be overcome by 

further optimisation of neural network hyperparameters, though at increased model development time. 

Once trained, the convolutional feature extraction approach is a fast and convenient way of producing 

high quality features from ultrasonic waveforms using convolutional neural networks with little training 

data. 

Crown Copyright © 2021 Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

The fourth industrial revolution, also termed Industry 4.0, has 

the potential to improve the productivity, efficiency, and sustain- 

ability of process manufacturing ( Sjödin et al., 2018 ). This will be 

via the implementation of industrial digital technologies which in- 

clude: The Internet of Things to enable connectivity between de- 

vices; Cloud, Fog, and Edge Computing to process large data stream 

( Chen and Ran, 2019 ; Wu et al., 2017 ); and machine learning (ML) 

to provide automatic data analysis and decision making. Industry 

4.0 requires continuous data streams to enable real-time commu- 

nication across processes, markets, and supply chains. Therefore, 

in-line and on-line sensors are a key technology in this transfor- 

mation as they provide process data with no human intervention. 

In-line sensors directly measure the process stream while on-line 

sensors use automatic sampling systems ( De Beer et al., 2011 ). 

∗ Corresponding author at: Dr. Nicholas Watson, University of Nottingham, United 

Kingdom. 

E-mail address: nicholas.watson@nottingham.ac.uk (N. Watson). 

Ultrasonic (US) sensors have the benefits of being: low-cost, in- 

line, real-time, able to be non-invasive, small in size, low energy 

consuming, non-destructive, and able to characterise opaque ma- 

terials. US sensors have been widely applied across manufacturing, 

such as fermentation ( Ojha et al., 2017 ), polymerisation, crystalli- 

sation ( Henning and Rautenberg, 2006 ), and food product analy- 

sis ( Awad et al., 2012 ; Mohd Khairi et al., 2015 ). US sensors con- 

sist of a piezoelectric transducer which converts electrical pulses 

into sound waves and vice versa. Single sensors may be used in 

pulse-echo mode, where the sound wave is reflected back to the 

transducer from an interface between two neighbouring materials, 

or in pitch-catch mode where a second sensor receives the sound 

wave after it has been transmitted through a material ( Awad et al., 

2012 ). High frequency ( > 1 MHz), low power ( < 1 Wcm 

−2 ) sound 

waves are used which do not affect the structure of the material 

that they pass through ( Ojha et al., 2017 ). However, US proper- 

ties are highly dependant on temperature and large changes in the 

acoustic impedance at a material interface (e.g. if gas bubbles are 

present in a liquid) causes strong reflection of the sound waves 

making transmission techniques difficult to use for many industrial 

applications ( Henning and Rautenberg, 2006 ). 
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Traditionally, either first principle or empirical correlations are 

used to determine material properties from US sensor data, or 

waveforms. However, first principle models soon become complex 

under industrial conditions, where the sound wave travels through 

multiple interfaces and process parameters (e.g. temperature) are 

changing. Similarly, empirical models require extensive calibration 

to account for all process parameter variations. In contrast, ML can 

be used to predict material properties without extensive calibra- 

tion procedures by learning the relationships between these vari- 

ations and the US waveform. ML also provides automatic inter- 

pretation of the sensor data. For example: training an ML model 

to predict the processing time remaining would enable improved 

batch scheduling; classifying the end of processing would reduce 

resource consumption; and anomaly detection methods would pro- 

vide early warning of problems with batches and ensure product 

quality. 

During training, ML models fit input data, or features, to the 

desired prediction outputs. The success of the ML models is partly 

dependant on the choice of features used for the model. For ul- 

trasonic techniques, the speed of sound is commonly used as a 

feature as it is dependant on the density and compressibility of 

the material it passes through and is calculated by measuring the 

sound wave time of flight and distance travelled ( Utomo et al., 

2001 ; Utomo et al., 2002 ; Supardan et al., 2003 ; Sun et al., 2005 ). 

The changing amplitude between consecutively acquired wave- 

forms can be used as a feature to identify process states and 

has been applied to determine flow regimes ( Ren et al., 2021 ; 

Abbagoni and Yeung, 2016 ). Other process information can also be 

used to aid the prediction accuracy of the ML model, such as the 

temperature, material composition and concentration ( Sun et al., 

2005 ), or mass flow rate ( Wallhäußer et al., 2014 ). Along with 

these features, measurements that describe the oscillations of the 

waveform are also required. The energy of the waveform (the 

sum of the squared amplitudes at each point in the waveform) 

may be used to monitor attenuation of the sound wave as it 

passes through a material ( Utomo et al., 2001 ; Utomo et al., 2002 ; 

Supardan et al., 2003 ; Sun et al., 2005 ) or to monitor a change 

in acoustic impedance by measuring the proportion of the sound 

wave reflected from a material boundary ( Wallhäußer et al., 2013 ; 

Wallhäußer et al., 2014 ; Figueiredo et al., 2016 ). However, the en- 

ergy may not account for all the changes to the waveform, as 

some peaks may increase in amplitude while others decrease, or 

the waveform could be composed of multiple overlapping sound 

waves. Further features can be extracted which describe the shape 

of the waveform by monitoring information such as maximum am- 

plitudes, variance in the amplitudes, the rising and falling slopes of 

the waveform, the duration of the waveform, and the relationship 

between all of these ( Wallhäußer et al., 2013 ; Wallhäußer et al., 

2014 ; Cau et al., 2005 ). Nevertheless, this is still a coarse method 

of monitoring waveform changes, which are indirectly measured 

rather than directly identified. Signal features similar to those 

previously listed can also be extracted in the frequency domain, 

commonly after using the discrete wavelet transform ( Cau et al., 

2005 ; Simeone et al., 2020 ). However, US transducers used for 

material characterisation typically have narrow frequency bands. 

Therefore, areas where the waveform changes or overlaps may 

be mis-identified as frequency changes. The amplitudes at each 

sample point in the time domain waveform can also be used 

as individual features ( Escrig et al., 2020a ; Escrig et al., 2020b ; 

Munir et al., 2018 ). Though, should a peak translate along sam- 

ple points, whether due to changes to the monitored materials or 

a change in temperature, the information regarding this part of the 

waveform is lost. 

Convolution Neural Networks (CNNs) overcome these issues by 

using convolutional filters to measure spatial relationships in the 

waveform. CNNs use representation learning to automatically ex- 

tract features by transforming the data into higher, more abstract 

levels ( Lecun et al., 2015 ). CNNs have been used previously with US 

signals ( Virupakshappa et al., 2018 ; Meng et al., 2017 ; Munir et al., 

2019 ; Munir et al., 2020 ; Bowler et al., 2020 ). However, previous 

work has also shown that Long Short-Term Memory (LSTMs) neu- 

ral network layers are required to accurately monitor time-evolving 

processes ( Bowler et al., 2020 and 2021). LSTMs are able to retain 

process information from previous time-steps and are a type of re- 

current neural network which uses gate units to reduce the like- 

lihood of vanishing or exploding gradients. This enables them to 

be used over much longer sequences ( Hochreiter and Schmidhu- 

ber, 1997 ). Previous time-step information could also be included 

in CNN inputs or even fully-connected neural networks; however, 

LSTMs are more memory efficient than fully connected structures 

and are better equipped to handle long sequences and sequences 

of varying length. In this work a pre-trained CNN is used to extract 

features from the waveform. The CNN is pre-trained on an auxil- 

iary task using previously collected US data. The auxiliary task is 

to classify which dataset each US waveform belongs to. This is a 

transfer learning task, in which the CNN learns features of a US 

waveform in the auxiliary task which are then used to aid predic- 

tion on the main tasks. Augmentation of the waveforms for the 

auxiliary task is used to improve CNN feature learning. Further- 

more, principal component analysis (PCA) is applied to these ex- 

tracted features to enable the use of additional features (such as 

the speed of sound, changes between consecutively acquired wave- 

forms, the process temperature, feature gradients, and time-lagged 

representations of waveform features) and to reduce the dimen- 

sionality of the extracted features to improve LSTM unit training 

accuracy and stability. The extracted Principal Components (PCs) 

and additional features are used as input features to the LSTM 

models. The novelty of this work can be summarised as: the use 

of CNN extracted features from US waveforms used as inputs to 

LSTM models, the pre-training of a CNN on an auxiliary task to 

identify features in US waveforms, using previously collected US 

datasets to improve ML model prediction through transfer learning, 

and applying PCA to CNN extracted US features to enable the use 

of additional features. The convolutional feature extraction method 

is compared to traditional, coarse features extracted from the time- 

domain waveform, such as the waveform energy, peak-to-peak am- 

plitude or sample point position of the maximum peak. The ben- 

efits of another type of transfer learning, multi-task learning, to 

tasks which require multiple outputs is also evaluated throughout. 

The feature extraction and ML methods are compared on previ- 

ously collected fermentation, cleaning, and mixing process moni- 

toring tasks to provide a comprehensive evaluation of their advan- 

tages. 

2. Method 

2.1. Ultrasonic data collection 

For all experiments, a US box (Lecoeur Electronique) was used 

to excite the transducers and digitise the received sound waves. 

The temperature sensors were connected to a PT-104 Data Logger 

(Pico Technology). The US box and temperature data logger were 

connected to a laptop and a bespoke MATLAB software controlled 

the hardware components and acquired the data. 

2.1.1. Beer fermentation 

Full experimental details are provided in Bowler et al. (2021) . 

The fermentation batches were conducted in a 30 l cylindrical 

plastic vessel. A US probe consisting of a US transducer (Sonatest, 

2 MHz central frequency) and a temperature sensor (RTD, PT10 0 0) 

was installed into the vessel wall. A Tilt hydrometer provided real- 

time density measurements of the wort. 1.5 kg of malt (Coopers 
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Fig. 1. The experimental apparatus and path of the received US sound wave reflections. Adapted from Bowler et al. (2021). 

Fig. 2. (a) Example US waveforms obtained for the start and end of a fermentation batch. (b) The first reflection, located between sample points 900 and 1400. (c) The 

second reflection, located between sample points 60 0 0 and 6500. 

Real Ale), 1 kg of brewing sugar (The Home Brew Shop) and yeast 

(Coopers Real Ale) were used. In total, 13 batches were completed 

with the fermentation lasting between 4 and 7 days. The US wave- 

form consisted of two sound wave reflections: the first from the 

interface between the probe material and the wort, and the sec- 

ond being transmitted through the wort and reflecting from the 

far probe interface ( Fig. 1 and Fig. 2 ). The US and temperature data 

were collected periodically. Each set of collected data consisted of 

36 US waveforms and temperature readings. The US waveforms 

were averaged for each set to minimise noise disturbance. Between 

the collection of each set of data, 200 s elapsed. 

2.1.2. Cleaning of pipe fouling 

Full experimental details are provided in Escrig et al. (2019 , 

2020a , and 2020b ). Three pipe test sections were used: A rectan- 

gular rig with a SS340 base plate and clear, PMMA sides; a circular 

pipe section constructed from clear PMMA; and an opaque, circular 

pipe section constructed from SS316. Three different food materi- 

als were used to foul the pipe test sections: tomato paste, concen- 

trated malt, and gravy. The fouling material was spread onto the 

pipes and allowed to dry. It was placed in the centre of the base 

plate for the rectangular rig and 30 mm from the exit for the cir- 

cular pipes ( Fig. 3 ). The temperature of the water used for clean- 

ing was set at either 12 °C or 45 °C and a flowrate of 6 l/s was 

used. For the rectangular test section, a magnetic sensor (5 MHz 

resonance, M1057, Olympus) was externally attached to the base 

plate. For the circular pipe sections, the US transducers (2 MHz, 

Yushi, 2P10N) were glued externally to the bottom of the pipes 

in the location where the fouling material would be placed. The 

temperature sensors were attached at the same locations. A cam- 

era was used to determine the time at which all the fouling mate- 

rial was removed. The position of the camera was moved depend- 

ing on whether the pipe section was clear or opaque. The US and 

temperature data was recorded every 4 s producing 4 waveforms 

which were averaged. A reflection-mode, pulse-echo sensing tech- 

nique was used to monitor the waveform reflected from the inter- 

face between the pipe wall and the fouling material ( Fig. 4 ). The 

camera images were recorded every 20 s. A minimum of 7 repeats 
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Fig. 3. (a) The experimental apparatus including the positions of the pipe section, US sensor, temperature sensor, and fouling material. (b) The paths of the received US 

reflections. 

were conducted for every permutation of pipe test section, fouling 

material and fluid temperature, producing 93 runs in total. 

2.1.3. Honey-water mixing 

Full experimental details are provided in Bowler et al. (2020) . 

Two US sensors (5 MHz resonance, M1057, Olympus) were exter- 

nally attached to the base of a 250 ml glass mixing vessel ( Fig. 5 ). 

An overhead stirrer was used to stir the mixture. One sensor (the 

central sensor) was attached in the centre of the vessel base. An- 

other sensor (the non-central sensor) was attached approximately 

2 cm offset from the centre. The temperature sensor was also at- 

tached to the base of the vessel. A reflection-mode, pulse-echo 

sensing technique was used to monitor the sound wave reflected 

from the interface between the vessel wall and the mixture. US 

signals were acquired continuously for 1 s for each probe consec- 

utively. On average, this acquired two US waveforms which were 

then averaged to minimise noise disturbance. Two different vol- 

umes of pure clear honey (Wm Morrison Supermarkets plc) were 

used: 20 and 30 ml. 200 ml of tap water was used for all runs. 

The impeller speed was set to either 200 or 250 rpm. These four 

parameter permutations were repeated three times whilst vary- 

ing the environmental temperature, producing a set of 12 runs. 

This methodology was repeated across two days, producing two 

datasets. Between, the US sensors were removed and reattached. 

The ground truth was obtained using a video camera to determine 

the time for complete mixing. 

2.1.4. Batter mixing dataset 

Full experimental details are provided in Bowler et al. (2020) . 

Two US sensors (5 MHz resonance, M1057, Olympus) were exter- 

nally attached to a stand mixer glass mixing bowl (10 0 0 W Ken- 

wood kmix kmx754). The temperature sensor was also attached 

to the outside of the mixing bowl. A reflection-mode, pulse-echo 

sensing technique monitored the sound wave reflected from the 

interface between the mixing bowl and the mixture ( Fig. 5 ). US 

signals were continuously acquired for 1 s for each probe consec- 

utively. On average, this produced 2 waveforms which were aver- 

aged to minimise disturbance from signal noise. The quantity of 

strong white flour (Wm Morrison Supermarkets plc) and tap wa- 

ter used was varied. A total of 9 runs were monitored. The optimal 

mixing time was obtained by determining the time of maximum 

power input to the impeller. This was measured using a YouThink 

plug socket power meter. 

2.1.5. Feature extraction 

Two feature extraction methodologies were compared: extract- 

ing coarse, time-domain signal features (Coarse method) and con- 

volutional feature extraction using a CNN pre-trained on an aux- 

iliary task (Convolutional method). The Coarse features method 

obtains coarse information about the changing waveform oscilla- 

tions compared with the Convolutional method which can iden- 

tify changing amplitudes at individual sample points in the wave- 

form. The Coarse features method is designated as the next best 

approach (as justified in Section 1 ) and was the method used in 

Bowler et al. (2021) . Therefore, a comparison between these two 

methods will evaluate the advantage of using convolutional feature 

extraction. 

2.1.6. Coarse feature extraction 

In total, 10 signal features were extracted from the waveform. 

The sum absolute amplitude (SAA), energy, sum root amplitude 

(SRA), standard deviation, skewness and kurtosis Eqs. (1) –(7) pro- 

vide measurements of the distribution of amplitudes within the 

waveform. In addition, the amplitude and position of the maxi- 

mum and minimum peaks were used as features to monitor the 

largest peaks in the waveform. 

SAA = 

i = SP ∑ 

i =1 

| A i | (1) 

Where SAA is the sum absolute amplitude, SP is the number of 

sample points in the waveform, A is the waveform amplitude at 

sample point i ( Zhan et al., 2015 ). 

E = 

i = SP ∑ 

i =1 

A i 
2 (2) 

Where E is the waveform energy ( Zhan et al., 2015 ). 

SRA = 

i = SP ∑ 

i =1 

√ 

| A i | (3) 

Where SRA is the sum root amplitude ( Zhan et al., 2015 ). 

μ = 

∑ i = SP 
i =1 A i 

SP 
(4) 

4 
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Fig. 4. The received US waveform at the start and end of the cleaning process for 

the (a) Flat, (b) Plastic, and (c) Metal pipe sections. 

SD = 

√ 

1 

SP 

i = SP ∑ 

i =1 

( A i − μ) 
2 (5) 

Where μ is the mean amplitude of the waveform, and SD is the 

standard deviation ( Zhan et al., 2015 ). 

S = 

∑ i = SP 
i =1 ( A i − μ) 

3 

SP × ST D 

3 
(6) 

Where S is the waveform skewness ( Caesarendra and 

Tjahjowidodo, 2017 ). 

K = 

∑ i = SP 
i =1 ( A i − μ) 

4 

SP × ST D 

4 
(7) 

Where K is the waveform kurtosis ( Caesarendra and 

Tjahjowidodo, 2017 ). 

2.1.7. Convolutional feature extraction 

Previous work has determined LSTM layers are required for 

accurate time-series process monitoring. Training a convolutional 

neural network to the target data without an LSTM layer to obtain 

pre-trained convolutional filter weights would be a sub-optimal 

task due to the LSTM layer’s ability to learn the important process 

feature trajectories. Therefore, the input waveforms would not be 

able to fit to the target data optimally without an LSTM layer and 

informative waveform features would not be learned ( Bowler et al., 

2020 and (2021). Training convolutional and LSTM layers simul- 

taneously would also be a difficult task especially with long time 

sequences and limited training data used in the present case stud- 

ies. This is because the many weights present in the convolutional 

filters and LSTM units would compete during the training pro- 

cess and likely fail to fit to the target data or make the train- 

ing unstable. As such, to easily train convolutional layers that ex- 

tract informative ultrasonic waveform features, this work trained 

a 1D CNN on an auxiliary task to predict waveform dataset mem- 

bership. Table 1 summarises the 11 waveform datasets used. Seg- 

ments of 10 0 0 samples points in length were taken from each 

waveform. The position of the 10 0 0 sample point length window 

was chosen for each waveform by investigating the difference be- 

tween the start and end of the corresponding process. The areas 

with the largest visual change throughout the process were used. 

To increase the training set size for the network, and to improve 

meaningful feature extraction in the convolutional layers, a 600 ×
1 input to the CNN was used. Data augmentation using a slid- 

ing window, laterally translated by 100 sample points each time, 

produced five waveform segments of 600 sample points in length. 

Further data augmentation through separate normalisation of each 

waveform segment was used to differentially magnify the wave- 

form. This ensures that the network learns features specific to each 

waveform, rather than the position or magnitude of features. 

A summary of the 1D CNN trained is presented in Table 2 

which also presents CNN structures used in other previous works 

as a comparison. It should be noted that optimal CNN architectures 

are task-specific and should be chosen through validation proce- 

dures. CNN architectures for US sensor signals are included as a 

literature review for the interested reader. A grid search was used 

to select the learning rate, batch size and number of neurons in 

the fully connected layer. No padding was used. Training was per- 

formed with the Adam optimiser. The minimum number of neu- 

rons in the fully connected layer to achieve 100% accuracy for the 

dataset membership prediction was used to ensure feature identi- 

fication in the convolutional layers rather than the fully connected 

layer. The designated training and validation sets for all datasets 

were used. A training accuracy of 100% was achievable after only 3 

5 
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Fig. 5. The experimental apparatus for (a) the honey-water mixing experiments and (b) the flour-water batter mixing experiments. The received US waveforms reflections 

for (c) honey-water mixing probe 1, (d) batter mixing probe 1, (e) honey-water mixing probe 2, and (f) batter mixing probe 2. 

epochs, highlighting the rapidity in developing our proposed con- 

volutional feature extraction methodology. The pre-trained convo- 

lutional weights were then used to extract features on the full-size 

waveform for each dataset. 

To reduce the dimensionality of the data, minimise non-useful 

information input into the network, aid LSTM unit training accu- 

racy and stability, and enable the use of additional features such as 

the US time of flight and standard deviation between consecutive 

waveforms, PCA was applied to the waveform features extracted 

using the pre-trained convolutional filter weights. PCA extracts a 

set of orthogonal principal components (PCs) which are a combi- 

nation of the co-linear original features ( Abdi and Williams, 2010 ). 

Alternatively, a CNN feature extractor structure with more down- 

sampling or additional layers to reduce the number features ex- 

tracted could have been used. However, preliminary investigations 

showed this method produced features too specific to the auxiliary 

training task. Furthermore, an autoencoder could have been used 

to learn non-linear feature relationships compared to the linear re- 
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Table 1 

A summary of the datasets used to train the convolutional feature extractor on the auxiliary task and also evaluate the performance of the proposed feature extraction 

methodology. 

Experimental dataset ML task 

Waveforms for CNN 

auxiliary task 

Total number of runs 

(train/ validation/ test 

split) 

Maximum 

sequence 

length 

Fermentation • Regression to predict alcohol concentration Reflection 1 13 (9/2/2) 3112 

Reflection 2 

Cleaning of food fouling from 

pipe sections 

• Classify the end of cleaning Flat rig 35 (25/5/5) 400 
• Regression to predict cleaning time remaining Circular, plastic 30 (20/5/5) 300 

Circular, metal 28 (20/4/4) 200 

Honey-water mixing 1 • Classify the end of mixing Central sensor 12 (8/2/2) 165 
• Regression to predict mixing time remaining Non-central sensor 

Honey-water mixing 2 • Classify the end of mixing Central sensor 12 (8/2/2) 123 
• Regression to predict mixing time remaining Non-central sensor 

Batter mixing • Classify the end of mixing Sensor 1 9 (5/2/2) 153 
• Regression to predict mixing time remaining Sensor 2 

Table 2 

A summary of the feature extraction layers of the proposed convolutional neural network and a comparison with the other 1D CNN structure present in the literature for 

US sensor data. . 

Layer Proposed network Virupakshappa et al., 2018 Meng et al., 2017 Munir et al., 2019 Munir et al., 2020 

1 1D Convolutional layer 1D Convolutional layer 2D Convolutional layer 1D Convolutional layer 1D Convolutional layer 

7 × 1 filter size 5 × 1 filter size 7 × 5 filter size 16 × 1 filter size 25 × 1 filter size 

16 filters 5 filters 16 filters 32 filters 32 filters 

8 × 1 stride 8 × 1 stride 

2 Max Pooling layer Max Pooling layer Max Pooling layer 1D Convolutional layer 1D Convolutional layer 

2 × 1 pool size 2 × 1 pool size 2 × 2 pool size 3 × 1 filter size 3 × 1 filter size 

64 filters 64 filters 

2 × 1 stride 2 × 1 stride 

3 1D Convolutional layer 1D Convolutional layer 2D Convolutional layer Max Pooling layer Max Pooling layer 

5 × 1 filter size 8 × 1 filter size 5 × 3 filter size 2 × 1 pool size 2 × 1 pool size 

32 filters 8 filters 32 filters 2 × 1 stride 2 × 1 stride 

4 Max Pooling layer Max Pooling layer Max Pooling layer - - 

2 × 1 pool size 2 × 1 pool size 2 × 2 pool size 

5 - 1D Convolutional layer - - - 

7 × 1 filter size 

16 filters 

6 - Max Pooling layer - - - 

2 × 1 pool size 

Table 3 

A summary of the distribution of the explained variance by each PC for the US waveform datasets after convolutional feature extraction. 

Experimental 

dataset Waveforms 

Number of PCs 

to explain 95% 

of variability 

Variability 

explained by 

1st PC (%) 

Variability 

explained by 

2nd PC (%) 

Variability 

explained 

by 3rd PC 

(%) 

Variability 

explained 

by 4th PC 

(%) 

Variability 

explained by 

5th PC (%) 

Fermentation Reflection 1 9 56.4 23.1 9.2 2.1 1.5 

Reflection 2 18 30.4 21.6 14.9 9 6.1 

Cleaning of food 

fouling from pipe 

sections 

Flat rig 15 60.4 15.2 7.4 4.3 1.8 

Circular, plastic 8 56.7 14.3 12.4 6.3 1.9 

Circular, metal 32 50.9 12.3 8.5 4.6 3.7 

Honey-water 

mixing 1 

Central sensor 24 52.1 18.8 7.5 4.6 2.3 

Non-central sensor 41 51.4 17 4.7 3.8 2.8 

Honey-water 

mixing 2 

Central sensor 19 38.6 30.8 12.4 4.1 2.9 

Non-central sensor 25 41.6 36.8 4.6 2.7 2.4 

Batter mixing Sensor 1 42 49.1 15.1 14.3 4.5 2.6 

Sensor 2 16 60.5 16.3 7.5 3.1 1.5 

lationships assumed using PCA. However, as outlined in Section 1 , 

the convolutional feature extraction methodology only needs to 

overcome a possible translation in waveform peaks by measur- 

ing spatial relationships between sample point amplitudes. There- 

fore, compared with autoencoders, owing to the sufficient feature 

extraction capability, elimination of hyperparameter optimisation, 

model training and convenient selection of the number of features 

extracted, PCA was identified as the optimal methodology. Table 3 

includes the percentage variability explained by each PC for the 

US waveform datasets and the number of PCs required to explain 

95% of the variability. The first PC likely follows the common wave- 

form changes across the full dataset caused by variations in the US 

properties of the materials being monitored (either due to chang- 

ing composition or process temperature). Successive PCs will iden- 

tify waveform changes more specific to each batch, most likely due 

to the different process temperatures. Therefore, it is anticipated 

7 
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that only a small number of PCs are required (i.e. greater than 

one) to monitor the changing material composition and account 

for changes in the monitoring US waveform at different tempera- 

tures. This is supported by Table 3 where the percentage variability 

explained drops off after the first two PCs. As shown in Table 3 , the 

smallest number of PCs required to explain 95% of the variability 

in the dataset, a common method for selecting the number of PCs 

to use, is eight for the Plastic Cleaning dataset and nine for fer- 

mentation monitoring using only the first reflection. Therefore, us- 

ing these two pieces of guidance (the primacy of the first and sec- 

ond PCs and the smallest number of PCs to explain 95% of dataset 

variability), five PCs were selected to obtain useful waveform infor- 

mation while minimising noise. The PCs were also combined with 

the standard deviation of the energy between consecutive wave- 

forms in an acquisition block (where the number of waveforms 

was greater than two) to provide a measure of material differences 

between consecutive waveform acquisitions ( Eq. (8) ). In the case 

of the fermentation dataset using both the first and second wave- 

form reflections, the sound wave time of flight was also added. The 

time of flight was calculated using a thresholding method, identi- 

fying the sample point where the waveform rises above the signal 

noise. 

ESD = 

√ 

1 

W 

∑ i 5= W 

i =1 
( E i − Ē ) 

2 
(8) 

Where ESD is the standard deviation in the energy of the wave- 

forms in the acquired block, and W is the number of waveforms in 

the acquired block. 

2.1.8. Model training and testing 

Neural networks consisting of an LSTM layer followed by a 

fully-connected layer were used for all ML tasks. A fully-connected 

layer allows for the creation of modified features which better 

match the prediction task output while the LSTM layer learns 

the trajectories of the input features. The input features were 

normalised and zero-padding at the start extended the sequence 

lengths to that of the maximum. A masking layer specified the 

LSTM to disregard the zero-padding. The Adam optimisation algo- 

rithm and a gradient norm clipping value of 1 was used. A single- 

fold validation procedure determined the learning rate, number of 

LSTM units, dropout probability, L2 regularisation penalty, number 

of neurons in the fully-connected layer, and batch size. As many 

tasks and hyperparameters were investigated, only a single valida- 

tion set was used to reduce the training time required. The optimal 

set of hyperparameters were used to retrain a model using all of 

the training data. The LSTMs were trained using TensorFlow 2.3.0. 

The coefficient of determination (R 

2 ), mean squared error (MSE), 

and mean absolute error (MAE) were used as performance metrics 

to evaluate the regression ML models. The accuracy, precision, and 

recall were used to evaluate the classification models. Evaluation 

of multiple performance metrics allow for improved comparison 

between models. Multi-task learning was also investigated to aid 

LSTM learning of the process trajectory ( Fig. 6 ). By training on two 

correlated tasks (in this case, both the classification and regres- 

sion tasks for the mixing and cleaning datasets), the shared LSTM 

layer may learn more effective f eature trajectories while reducing 

redundant information being stored ( Li et al., 2016 ). This may have 

two benefits. The first being increased model accuracy through 

global learning of feature trajectories important to the process be- 

ing monitored. The second being more stable model training by 

optimising for two combined losses. To reduce the model valida- 

tion time, the number of neurons in the fully-connected layers 

and the dropout rate for the task-specific branches of the neural 

networks were fixed as the optimal hyperparameters determined 

from the single-task learning networks. Alternatively, a shared fully 

connected layer could have been used for the multi-task networks. 

However, to provide easier evaluation of multi-task learning utility 

compared with the single task learning networks, only the LSTM 

layer was shared. This allows for task specific feature combinations 

to be learned in the fully connected layers. A single-fold validation 

procedure optimised the number of LSTM units, dropout rate, L2 

regularisation parameter, learning rate, batch size, and weighting 

of the individual classification and regression losses. A coarse grid 

search optimised the loss weighting by monitoring the unweighted 

classification and regression losses individually, followed by a fine 

grid search which optimised by monitoring the combined loss. 

3. Results and discussion 

To highlight the differences between the features extracted by 

the two methodologies, Fig. 7 displays the Coarse features ( Fig. 7 a) 

and the Convolutional PCs ( Fig. 7 b) for the first batch of the Flat 

Cleaning experiments. In Fig. 7 a it is shown that the Energy, Sum 

Absolute Amplitude (SAA), Sum Root Ampltiude (SRA), Kurtosis, 

and standard deviation (STD) all follow similar trends. In con- 

trast, the convolutionally extracted PCs follow different trajectories, 

highlighting the additional waveform information presented to the 

ML models through use of the Convolutional approach. 

Overall, the Convolutional method was more accurate for over 

half of the tasks evaluated. For the fermentation datasets ( Fig. 8 ), 

the Convolutional approach achieved lower accuracies than the 

Coarse feature method. In contrast, the Convolutional method 

proved more accurate for all cleaning tasks ( Fig. 9 .) and flour- 

water batter mixing ( Fig. 10 ). However, the results were mixed 

for the honey-water mixing datasets ( Fig. 11 ) with a Convolu- 

tional based approach scoring the highest for three tasks com- 

pared with five using the Coarse features method. Table 4 com- 

pares the results from this work with previous published works 

using these datasets. It should be noted that training, validation, 

and test sets, along with validation and testing procedure, differ 

between the previous published results and the current work. As 

such, the accuracies are not directly comparable. In practice, op- 

timising for the number of PCs, employing k-fold cross validation, 

and possibly using past process information (in the form of feature 

gradients, time-lagged feature representations, or the time since 

the beginning of the process) would improve model accuracy on 

the test set data. However, this is not necessary in the current 

work in which the aim is to present the superior feature extrac- 

tion ability of the Convolutional method compared with the Coarse 

features. Interestingly, for the datasets where the Convolutional 

method was more accurate than the Coarse method, cleaning and 

flour-water batter mixing, high accuracy was achieved in previ- 

ous works using complex feature extraction methodologies. For ex- 

ample, Bowler et al. (2020) achieved 92.5% accuracy in classifying 

the end of flour-water batter mixing through using a CNN train- 

ing on the continuous wavelet decomposition of the waveform. 

Escrig et al. (2020a , 2020b ) used a K-best predictors method to se- 

lected the 200 most informative sample points in the waveform 

to predict the end point of pipe section cleaning. Furthermore, no 

LSTM layers or past process information (e.g. features gradients or 

time-lagged features) were required for these tasks. Contrastingly, 

for the datasets where the Coarse method was more accurate than 

the Convolutional method, honey-water mixing and fermentation, 

previous work suggests that using past process information as fea- 

tures was vital for high model accuracy but not complex feature 

extraction methodologies. 

The increased accuracy of the Convolutional feature method for 

tasks that require a lot of waveform information in the previous 

works, namely; cleaning and flour-water batter mixing, shows that 

this method is capable of extracting more usable information from 

the waveform. As such, this proves that the Convolutional method 

is a superior feature extractor to using Coarse features. Resultantly, 
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Fig. 6. The structure of the multi-task learning network evaluated using the cleaning and mixing datasets. The cleaning and mixing datasets were used as both entail 

classification and regression tasks. 

Fig. 7. A comparison between (a) the Coarse features and (b) the Convolutional extracted features for the first batch of the Flat Cleaning experiments. The end of cleaning 

was identified using the camera at 425 s. Note the similar process trajectories of the Energy, Sum Squared Amplitude (SAA), Sum Root Amplitude (SRA), Kurtosis, and 

Standard Deviation (STD). In contrast, the five convolutionally extracted principal components show differing trajectories, making additional US waveform information more 

accessible to the ML models. 

Fig. 8. The R 2 scores for the feature extraction methodologies applied to the fermentation dataset. 

the lower accuracy of the fermentation and honey-water mixing 

results indicates that the Convolutional feature method degraded 

the feature trajectory learning of the LSTM layer. There are several 

reasons why this may be the case. Firstly, the more complicated 

trajectories of the PCs could have been more difficult for the LSTM 

layer to learn. To overcome this, the results from previous works 

suggest the use of feature gradients aids in LSTM layer learning of 

feature trajectories. Secondly, due to the increased waveform infor- 

mation extracted, the Convolutional method may have overfitted 

to the range of the training data with the testing data falling out- 

side of the training feature ranges. This can be overcome through 

using a k-fold cross-validation procedure instead of the single-fold 
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Fig. 9. The regression (R 2 ) and classification (% correct) accuracy for the feature extraction methodologies evaluated on the cleaning tasks. A CNN method was most accurate 

for every task. 

Fig. 10. The regression (R 2 ) and classification (% correct) accuracies for the feature extraction methodologies evaluated on the flour-water batter mixing dataset. A Convolu- 

tional method was most accurate for every task. 

Fig. 11. The regression (R 2 ) and classification (% correct) accuracies for the feature extraction methodologies evaluated on the honey-water mixing datasets. P1 indicates the 

non-central sensors and P2 denotes the central sensors. 

validation used in this study. Single-fold validation was used to re- 

duce model development time, owing to the large number of tasks 

and hyperparameters evaluated. K-fold cross-validation was not re- 

quired in this study, where the aim was to showcase the superior 

feature extraction capability of the Convolutional method, as has 

been presented. Thirdly, the Coarse feature method may have ben- 

efitted from the similarity in the input features. These features will 

most strongly follow the changes in US properties of the moni- 

tored materials, similar to the first PC extracted using the Convo- 

lutional method. Therefore, the Coarse feature method allows the 

LSTM layer more opportunities to learn this strong feature trend. 

In contrast, the Convolutional method can only learn the trajec- 

tory of the first principal component through a single path in the 

network. It is anticipated that, again, k-fold cross-validation would 

strengthen the impact of the first PC relative to the subsequent, 

less informative PCs. 

The results for the multi-task learning neural networks were 

mixed. Overall, multi-task learning performed worse for 23 out 

of 36 tasks compared with the single task learning counterparts. 

The reason for this likely that the networks failed to optimise for 

both tasks but instead generalised across them. The hyperparam- 

eters for the task-specific branches of the multi-task neural net- 

works were fixed as the optimal values from the respective opti- 

mised single-task networks. Optimising for these hyperparameters 

as well may improve multi-task learning accuracy though requires 

longer development time. As such, the decision to use multi-task 

learning should be made during the task validation stage. How- 

ever, multi-task learning showed more benefits to the classification 
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Table 4 

A comparison of the presented convolutional feature extraction method to previously published ML results obtained using the same datasets. 

Previous works Task ML accuracy (R 2 /%) 

Presented convolutional feature 

extraction method accuracy (R 2 

/%) 

Differences in previous 

works methodology Conclusions 

Bowler et al. (2021) Fermentation 

monitoring 

0.952 – 1st and 

2nd reflections 

0.816 – 1st and 2nd reflections Feature gradients used 

as features 

The results indicate that the 

addition of time-lagged 

feature representations 

improves LSTM model training 

Regression 0.948 – 1st 

reflection 

0.838 – 1st reflection 

Bowler et al. (2020) Honey-water 

mixing 

96.3% central 

sensor 

95.5% central sensor 

Classification 89.8% non-central 

sensor 

88.2% non-central sensor 

Honey-water 

mixing 

0.960 central 

sensor 

0.856 central sensor 

Regression 0.965 non-central 

sensor 

0.932 non-central sensor 

Flour-water batter 

mixing 

0.976 0.659 

Regression 

Flour-water batter 

mixing 

92.50% 90.30% Wavelet analysis used The results indicate a greater 

number of PCs may improve 

model accuracy Classification 

Escrig et al. 

(2020a ) 

Cleaning Up to 99% 98.20% 200 waveform sample 

points used as 

features, selected 

though K-best 

predictors 

Flat pipe 

Classification 

Escrig et al. (2020b) Cleaning Up to 100% 92.7% - Plastic pipe 

Plastic and Metal 

pipes 

97.4% - Metal pipe 

Classification 

Simeone et al., 

2020 

Cleaning 0.955 0.871 US sensor data 

combined with optical 

sensor data 

The image analysis allowed for 

early monitoring of the 

cleaning process 

Flat pipe 

Regression 

tasks compared with regression, providing improved accuracy for 

8 out of 18 tasks. This is likely because the regression part of the 

network aids in identifying the approximate position of the classi- 

fication decision boundary for the classification branch to optimise. 

This indicates that the regression results for the multi-task learn- 

ing networks may be improved around the classification decision 

boundary but failed to learn feature trajectories far from this point. 

Multi-task learning showed more benefits in the regression tasks 

for the honey-water mixing experiments, achieving higher accu- 

racy for half of the tasks. As the results from previous works show 

that learning feature trajectories is vital for these tasks, this indi- 

cates that multi-task learning may allow improved feature trend 

learning in the LSTM layer. This is further supported by multi- 

task learning proving more benefits for the Convolution method, 

achieving higher accuracies for 7 out of 18 tasks compared with 5 

for the Coarse method. As feature trajectory learning is more diffi- 

cult using the Convolutional method without feature gradients, this 

indicates that multi-task learning could alleviate this problem. 

3.1. Advantages of the convolutional feature extraction method 

The Convolutional feature extraction method presented in this 

work and evaluated on time-series data also has benefits for non- 

time series data. Firstly, it obtains informative convolutional fil- 

ter weights from an easier task to be used for a more difficult 

desired task as either a feature extraction method or as starting 

points for weight fine-tuning. Data augmentation and the minimi- 

sation of the number of neurons in the fully connected layer of 

the auxiliary task CNN ensures useful convolutional layer feature 

learning. Secondly, by using the pre-trained filter weights as fea- 

ture extractors rather than a starting point for fine-tuning time, 

model development time is saved. Thirdly, the use of PCA allows 

the incorporation of other features useful to process monitoring, 

such as the process temperature, speed of sound, standard devi- 

ation between consecutively acquired signals, feature gradients or 

time lagged feature representations, and other process parameters. 

Furthermore, the use of PCA reduces the dimensionality of the data 

to improve model training and amplifies the contribution the pre- 

viously listed additional features. 

4. Conclusion 

The performance of ML models is partly dependant on the 

quality of features extracted from the data. This work compared 

two feature extraction methodologies for process monitoring us- 

ing US sensor data. The Convolution feature extraction method 

produces more informative waveform features; however, presents 

a more difficult feature trajectory learning task. Multi-task learn- 

ing improves process trajectory learning but regression accuracy 

is degraded far from the classification decision boundary. This 

may be overcome through more extensive hyperparameter selec- 

tion though at increased model development time. Once trained, 

the convolutional method represents a fast and convenient way of 

extracting high quality US waveform features for future applica- 

tions. 
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The aim of this thesis was to develop ML methods to facilitate optimal deployment of US 

sensors for process monitoring applications in industrial environments. This article 

contributed to the thesis objectives by presenting an unlabelled domain adaptation approach 

to transfer a single US feature between similar mixing and similar cleaning processes. This 

method was compared with Transfer Component Analysis (TCA). This work and the 

subsequent section (Section 8, titled: “Domain Adaptation and Federated Learning for 

Ultrasonic Monitoring of Beer Fermentation”) comprise the portion of this thesis that explores 

the development of unlabelled and labelled domain adaptation methods for process 

monitoring using US sensors. These methods leverage previously collected datasets which 

would negate or reduce the burden of collecting labelled data in industrial environments. 

This work investigates unlabelled domain adaptation for cleaning and mixing processes, 

whereas Section 8 uses labelled domain adaptation approaches for monitoring fermentation. 

Unlabelled domain adaptation is used to transfer ML models to a new process where no 

further labelled data can be collected, for example, for monitoring the internal fouling of pipe 

sections or monitoring mixing processes in vessels. The labelled domain adaptation 

methods in Section 8 are used to transfer ML models from a laboratory fermentation process 

to an industrial process. The domain adaptation approaches are used to minimise the data 

that must be collected for the industrial process. Trialling domain adaptation methods for all 

processes (mixing, cleaning, and fermentation) also allows these approaches to be tested 

across all the factor that may impact as US waveform: changing acoustic impedance or 

attenuation that alter the magnitude of the waveform, or variations in sound velocity that alter 

the displacement of the waveform in the time domain (Henning and Rautenburg, 2006). 

In this work, classification ML models were trained to predict whether the mixture was non-

mixed or fully mixed and whether the pipe test section is fouled or clean. Regression ML 

models were trained to predict the process time remaining until fully mixed or clean. For the 

honey-water mixing, ML models were trained on either of the two datasets (Dataset 1 or 

Dataset 2) and used to predict on the other dataset. This was performed for the Non-Central 

and Central sensors individually and then by combining data from both sensors. Therefore, 

an ML model is trained on a labelled mixing system and transferred to monitor a similar 

mixing process which has no labelled data. For the cleaning of pipe fouling, models were 

trained on one or several datasets and tested on another (Datasets 1-12). This is 

representative of training an ML model on a pipe section with labelled data available and 
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transferring this knowledge to an unlabelled process pipe where the pipe material, fouling 

material, cleaning fluid properties and US sensor could be different. 

The novelty of this work was the use of unlabelled domain adaptation with US sensors for 

process monitoring, the use of unlabelled domain adaptation on features of US waveform 

opposed to the waveform itself, and, finally, the investigation of omitting the process 

temperature as a feature. Transfer of a single US waveform feature was found to be optimal 

as it was most representative of the changing material properties at the sensor 

measurement area. Further, training on a greater number of source datasets, or source 

datasets with larger variability in feature distributions, improved transfer learning.  

The single feature method achieved higher prediction accuracies (96.0 % and 98.4 % 

accuracy and 0.947 and 0.999 R2 values for mixing and cleaning, respectively) compared 

with TCA (92.6 % and 95.3 % accuracy and 0.942 and 0.966 R2 values for mixing and 

cleaning, respectively). The waveform Energy was used for the single feature method as it is 

a measure of the total magnitude of the sound wave and therefore is representative of the 

acoustic impedance of the process material at the vessel wall. Other features, such as the 

maximum or minimum peaks, position of peaks, skewness or kurtosis, are useful to monitor 

changes in the waveform shape and aid identifying multiple overlapping sound waves. 

Therefore, the trend in these other features does not follow changes in the process material. 

Features similar to the waveform Energy that monitor the process material properties include 

the Sum Absolute Amplitude or Sum Root Amplitude, however, these give greater or lesser 

weighting to larger amplitudes, respectively. Therefore, the discrepancy between the Energy 

and either of these features would be due to the shape of the waveform rather than the 

changing process material. As the shape of the waveform is unlikely to follow the same 

trends across domains, inclusion of these features may degrade model accuracy. This effect 

is magnified further when using more than two domains and therefore use of a single feature 

is optimal. However, as described in Section 8 (3.3. Future Research Directions), this single 

feature method may be used to obtain predictions in the new domain, after which, these 

predictions can be used as a feature to be inputted into another model trained for the new 

domain which also uses more waveform features. In this way, the model gains the 

knowledge from the source domain as well as being able to use many features that describe 

the changing waveform.  

To investigate whether additional waveform features are required to monitor the mixing and 

cleaning case studies, TCA was used to extract three features, or transfer components, to 

train the transfer learning models. TCA minimises the distance between the source and 

target domain feature spaces using the Maximum Mean Discrepancy and extracts transfer 

components that maximise variance across this shared feature space (Pan et al., 2011). A 5-

level DWT decomposition was applied to the US waveforms producing six resultant 

waveforms (five sets of detail coefficients and one set of approximation coefficients). Six 

feature extraction methods were combined to these resultant waveforms along with the 

original US waveform (waveform energy, sum root amplitude, sum absolute amplitude, 

standard deviation, skewness, and kurtosis) to produce 42 features to be inputted into the 

TCA algorithm. Every run in the source domain dataset was used for model training and 

validation, and every run in the target domain dataset was used for testing. An additional 

model, named the Non-Transfer Learning model, was trained using only the target domain 

data to provide a comparative result to the transfer learning models’ accuracy. This Non-

Transfer Learning model provides evaluation of what a supervised learning method would 

achieve of the target domain if labelled data were available. It thereby provides a 

comparative assessment of the accuracy of the transfer learning models and is not used to 

draw conclusions about the relative merits of each ML methodology used in the article.  
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In this work, the single feature unlabelled domain adaptation method was compared to TCA 

where three transfer components were extracted. On reflection, for accurate comparison, 

this method should be compared to other unlabelled domain adaptation methods which also 

extract fewer than three features. For example, during model validation, the single feature 

method could be trialled against TCA where one or two transfer components are extracted, 

or other domain adaptation methods such as domain adversarial training of neural networks 

to produce a small number of features (Ganin et al., 2016). In this way, the maximum 

number of features that provide positive transfer can be identified.  

A limitation of this article was the varying validation approaches utilised for each algorithm 

(single-fold validation with 20% of total training and validation set size for ANNs, and no 

validation data LSTMs). This benefits the hyperparameters selected for the ANNs as these 

were chosen to generalise to a validation set. In comparison, the hyperparameters selected 

for the LSTMs were disadvantaged owing to not being chosen to generalise to unseen data. 

However, despite this, LSTMs were best for 88.5 % of tasks. Therefore, the conclusions 

drawn from this article were not influenced by this limitation. Furthermore, the use of LSTM 

layers for feature trajectory learning during process monitoring were confirmed in Section 4 

of this thesis.    
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A B S T R A C T   

The fourth industrial revolution is set to integrate entire manufacturing processes using industrial digital tech
nologies such as the Internet of Things, Cloud Computing, and machine learning to improve process productivity, 
efficiency, and sustainability. Sensors collect the real-time data required to optimise manufacturing processes 
and are therefore a key technology in this transformation. Ultrasonic sensors have benefits of being low-cost, in- 
line, non-invasive, and able to operate in opaque systems. Supervised machine learning models can correlate 
ultrasonic sensor data to useful information about the manufacturing materials and processes. However, this 
requires a reference measurement of the process material to label each data point for model training. Labelled 
data is often difficult to obtain in factory environments, and so a method of training models without this is 
desirable. This work compares two domain adaptation methods to transfer models across processes, so that no 
labelled data is required to accurately monitor a target process. The two method compared are a Single Feature 
transfer learning approach and Transfer Component Analysis using three features. Ultrasonic waveforms are 
unique to the sensor used, attachment procedure, and contact pressure. Therefore, only a small number of 
transferable features are investigated. Two industrially relevant processes were used as case studies: mixing and 
cleaning of fouling in pipes. A reflection-mode ultrasonic sensing technique was used, which monitors the sound 
wave reflected from the interface between the vessel wall and process material. Overall, the Single Feature 
method produced the highest prediction accuracies: up to 96.0% and 98.4% to classify the completion of mixing 
and cleaning, respectively; and R2 values of up to 0.947 and 0.999 to predict the time remaining until 
completion. These results highlight the potential of combining ultrasonic measurements with transfer learning 
techniques to monitor industrial processes. Although, further work is required to study various effects such as 
changing sensor location between source and target domains.   

1. Introduction 

Whilst the third industrial revolution automated individual unit 
operations, the fourth industrial revolution (Industry 4.0) will use In
dustrial Digital Technologies (IDTs) such as the Internet of Things to 
integrate entire manufacturing processes and Machine Learning (ML) to 
provide automatic decision making [39]. This has the potential to 
improve process productivity, raw material and energy efficiency, 
product quality and increase manufacturing sustainability [14]. Sensors 
collect the real-time data required to optimise manufacturing processes 
making them a key technology in this new industrial revolution. 
Although sensors exist for basic measurements such as temperature and 
pressure, there is a need for more advanced techniques that can monitor 
materials or processes. Active ultrasonic sensors are low-cost, small, 

operate non-invasively, and can characterise opaque systems. Further
more, they are in-line, meaning they directly measure the process stream 
without need for manual sampling. Ultrasonic sensors have been used in 
process manufacturing for food material characterisation [2,31]; 
monitoring chemical, pharmaceutical, and biotechnology processes 
[17]; monitoring fermentation [34]; monitoring freezing of food mate
rials [7]; and quality control in the dairy industry including monitoring 
reactions, process stream rheology, material structural changes, and 
component concentrations [30]. 

Typically, either first principle models or calibration curves are 
developed to determine properties from US sensor data. However, these 
can become complex when the sound waves are transmitted through 
multiple materials or there is variability in process parameters, e.g. 
temperature. In contrast, supervised ML models can be trained to 
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correlate sensor data to useful classes (classification) or values (regres
sion) without having to define the complex underlying physical models. 
ML has been used with US sensors for applications such as monitoring 
cleaning of dairy fouling in heat exchangers [40,41] and classifying 
weldment flaws [33,32]. Previous work from our group has shown that 
ML and a reflection-mode US sensing technique can be combined to 
effectively monitor two important processes in manufacturing: mixing 
and cleaning of fouling in pipes [5,10,11]. The reflection-mode sensing 
technique monitors the sound wave reflected from the vessel wall and 
process material interface. Mixing is ubiquitous across process 
manufacturing, being used to combine materials, suspend solids, pro
vide aeration, promote heat and mass transfer, and modify material 
structure [4]. Being able to determine when a mixing process is com
plete would provide the benefit of less over or under mixing of materials 
and therefore less off-specification product. Furthermore, this would 
lead to a reduction in raw material and energy use. Additionally, accu
rate prediction of the time remaining until mixing completion would 
allow for improved scheduling of batch processes leading to higher 
productivity. Processing equipment is usually cleaned using automated 
Clean-in-Place (CIP) systems. Cleaning internal surfaces of processing 
equipment is important to uphold product quality and optimal operating 
conditions. However, cleaning comes at a cost of lost production time 
and consumes a vast amount of water and energy [9,38]. CIP processes 
operate to a standard procedure which is designed to clean the materials 
which are most difficult to remove from equipment surfaces. This means 
equipment is often over-cleaned to ensure complete removal of fouling. 
A sensor able to detect when the cleaning process was complete would 
eliminate unnecessary resource use and maximise production time. 

For training, supervised ML models require a reference measurement 
to label each sensor data point with a class or value, also termed ground 
truth data. For both case studies, a camera was used to determine the 
time for mixing or cleaning completion. This methodology is appro
priate in a laboratory, but in a factory, reference measurements are 
seldom available or require considerable time and cost to obtain, pre
senting a considerable a barrier to widespread US sensor deployment at 
industrial scale. To overcome this, a technique is required that can train 
an ML model to be used on a process where no labelled data is available. 
In addition to transferring models from laboratory to industrial scale, 
transferring models for use between different US sensors is also desired. 
US sensors are transducers which convert electrical pulses to pressure 
waves, and vice versa, through piezoelectric elements [2]. Owing to 
differences arising during manufacture of the piezoelectric materials, US 
sensors of the same model can have different central resonant fre
quencies and bandwidth. Additionally, US sensors are typically fastened 
in place with the contact pressure between the sensor and vessel 
affecting the sound wave transfer across this material boundary. Both 
these factors result in differences in the received US waveform shapes 
and magnitudes. Therefore, each ML model is limited to that individual 
sensor and attachment method, even when monitoring the same process. 
As such, a method to transfer ML models developed from existing US 
sensor measurements to new sensors which monitor similar processes 
would prevent the need for new labelled data for each sensor 
deployment. 

Transfer learning is an area of ML which uses data from a different 
domain (data distribution) or task (the prediction being made) to reduce 
the labelling burden of the target domain or task [35]. For example, Zhu 
et al. [49] recently used transfer learning by fine-tuning a pre-trained 
Convolutional Neural Network (CNN) to classify thyroid and breast le
sions in ultrasound images, and Alguri et al. [1] used numerical simu
lations and dictionary learning to produce ultrasonic guided wave 
baselines for damage visualisations in test materials. For a similar task, 
an ML model trained on source domain data and used to predict on the 
target domain data will perform poorly if the data distributions between 
the two domains are different. Domain adaptation is a subcategory of 
transfer learning which alters how an ML model trains on source domain 
data so that it also predicts accurately on the target domain data for a 

similar task [20]. Several review articles covering aspects of domain 
adaptation are available to the interested reader: Patel et al. [36], 
Csurka [8], Wang and Deng [42], Pan and Yang [35], Weiss et al [43]. 
Heimann et al. [16] used instance weighting to overcome the differences 
in feature space density between synthetic and real data for ultrasound 
transducer localisation in X-ray fluoroscopy. After applying principal 
component analysis on features extracted from radiofrequency ultra
sound signals or B-mode images together, Azizi et al. [3] used a deep 
belief network to minimise the divergence between the feature distri
butions of the two sensing modalities for an unlabelled dataset. Then a 
labelled dataset was passed through the pre-trained domain adaptation 
pipeline and a support vector machine was trained to classify the data 
instances. For application in foetal ultrasound imaging, Meng et al. [29] 
utilised mutual information minimisation to disentangle categorical 
features and domain features, and used feature clustering to align cat
egorical features from both domains. For ultrasonic well logging images, 
[48] used an adversarial method to train an autoencoder to fool a 
discriminator in being able to distinguish whether the training instance 
originated from the source or target domains. Gao et al. [13] minimised 
the maximum mean discrepancy distance metric for domain adaptation 
between microseismic and pulse-echo data for ultrasonic logging. These 
works either use convolutional layers, or, in the case of Azizi et al. [3], 
established feature extraction methodologies. However, in this work, 
the differences in transducer construction and attachment, as previously 
outlined, means that few US waveform features will follow the same 
process trajectory in both the source and target domains. Therefore, this 
work focuses on investigating methods to extract features which transfer 
across domains. 

This work focuses on transfer learning to an unlabelled target 
domain using domain adaptation of US sensor data for the two afore
mentioned case studies: mixing and cleaning of fouling in pipe test 
sections. Two domain adaptation techniques which transfer a small set 
of features across domains are compared: a Single Feature (SF) method 
and Transfer Component Analysis (TCA) using three features. The SF 
method uses the energy of the US waveform, a physical measurement of 
the acoustic impedance material being monitored. In contrast, 42 
waveform features evaluating the shape of the US waveform are pro
vided to the TCA and three transfer components are produced. 

2. Methodology 

2.1. Ultrasonic sensors 

In this work, the US sensors were used in pulse-echo mode where 
they transmit a sound wave into the system and receive the returning 
waves. The received sound waves have reflected from material in
terfaces approximately perpendicular to the initial wave’s direction of 
travel. The reflected sound wave of interest is that reflected from the 
interface between the vessel and the process material. The magnitude of 
this reflected sound wave is proportional to the difference in acoustic 
impedance between these two neighbouring materials [28]. This 
monitoring technique requires no transmission of the sound wave 
through the process material being characterised. This is beneficial as, in 
a factory setting, process streams usually contain many components 
such as particles, bubbles or other heterogeneities which cause scat
tering, reflection and attenuation of the transmitted sound wave. This 
makes through-transmission methods impractical without higher power, 
and subsequently higher cost, transducers. 

2.2. Mixing case study 

Honey-water blending is used as a case study to evaluate these 
domain adaptation techniques. Full details of the experimental meth
odology are provided in Bowler et al. [5]. Two transducers (5 MHz 
resonance, M1057, Olympus) were externally mounted to a 250 ml glass 
mixing vessel. An overhead stirrer was used to stir the mixture. As honey 
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is miscible in water, the US sensors monitor the change in component 
concentration at the sensor measurement area as homogeneity develops. 
One sensor was attached in the centre of the vessel base (Central sensor) 
and another was attached approximately 2 cm offset from the centre 
(Non-Central sensor). The experimental equipment is depicted in 
Fig. 1a. A US box (Lecoeur Electronique) was used to excite the trans
ducers and digitise the received sound waves. A temperature sensor was 
attached to the base of the vessel and connected to a PT-104 Data Logger 
(Pico Technology) to monitor the temperature local to the sensors. US 
signals were acquired continuously from each probe for 1 s. On average, 
two US waveforms were recorded during this 1 s interval. The acquired 
waveforms were averaged to reduce the impact of signal noise. An 
example of the received US waveforms for a non-mixed and fully mixed 
system are provided in Fig. 1b. Two different volumes of pure clear 
honey were used for the experiments: 20 ml and 30 ml. 200 ml tap water 
was used for all runs. The impeller speed was set to either 200 or 250 
rpm. These four parameter permutations were repeated three times 
whilst varying the laboratory thermostat set point, producing a set of 12 
runs across a range of temperatures. The ground truth data for ML model 
development was obtained by filming the mixing process with a camera 
to determine the time when the honey had fully dissolved. This exper
imental procedure was followed on two different days to produce two 
datasets consisting of 12 runs each. Between the two sets of experiments, 
the sensors were removed and reattached meaning that their contact and 
precise location were not the same. This reattachment of the sensors 
produces a change in the reflected waveforms, necessitating domain 
adaptation to perform transfer learning across the two datasets. Mixing 
Dataset 1 had a temperature variation of 19.3–22.1 ◦C. Mixing Dataset 2 
had a temperature variation of 19.8–21.2 ◦C (Table 1). 

2.3. Cleaning case study 

Cleaning of pipe fouling was also investigated as a case study for 
domain adaptation using US sensor data. The full details of the experi
mental methodology are provided in Escrig et al. [12] and Escrig et al. 
(2020). Three test sections were used: A rectangular rig with a SS340 
bottom plate and clear PMMA sides, a circular pipe constructed from 
PMMA, and an opaque, circular pipe constructed from SS316. Two food 
materials (tomato paste and concentrated malt) were used to foul the 
test sections (Table 2). Fouling material was placed in the centre of the 
bottom plate for the rectangular rig and 30 mm from the exit for the pipe 
sections. The fouling material was then spread with a spatula to form a 
layer of approximately 5 mm thickness and left for 10 min to dry. 
Cleaning was performed by water with a fluid temperature of either 
12 ◦C or 45 ◦C and a flowrate of 6 l/s. Cleaning was performed until all 

the fouling was removed. A minimum of 7 repeats were conducted for all 
combinations of test sections, fouling materials and fluid temperatures. 
For the flat test section, the same magnetic transducer as for the honey- 
water mixing experiments was attached to the base plate. For the pipe 
sections, different transducers (2 MHz, Yushi, 2P10N) were glued 
externally to the bottom of the pipes in the location the fouling material 
would be placed. The same US box, temperature sensor, temperature 
data logger and laptop were used to acquire the data. A camera was used 
to record images of the cleaning processes. The camera position was 
moved depending on whether the pipe section was clear or opaque, as 
depicted in Fig. 2a. US and temperature data were recorded every 4 s 
and camera images were recorded every 20 s during the cleaning pro
cess. The camera images were used as the ground truth data to label the 
recorded US data for ML model development. 

Fig. 1. (a) A diagram of the equipment for the mixing experiments; including 250 ml glass vessel, impeller, and US sensors (Adapted from Bowler et al., [5]). (b) Two 
received US waveforms corresponding to a non-mixed and a fully mixed system. 

Table 1 
A summary of the datasets for the mixing experiments, including number of runs 
and the temperature range each were conducted over.  

Mixing dataset Runs Temperature range (◦C) 

Dataset 1 12 19.3–22.1 
Dataset 2 12 19.8–21.2  

Table 2 
A summary of the datasets for the cleaning experiments, including the fouling 
material used, pipe construction, cleaning fluid temperature and number of 
runs.  

Cleaning 
dataset 

Fouling 
material 

Cleaning fluid 
temperature 

Pipe 
material 

Pipe 
geometry 

Runs 

Dataset 1 Malt Cold SS340 
(base) 

Flat 7 

Dataset 2 Malt Hot SS340 
(base) 

Flat 7 

Dataset 3 Tomato Cold SS340 
(base) 

Flat 7 

Dataset 4 Tomato Hot SS340 
(base) 

Flat 7 

Dataset 5 Malt Cold PMMA Circular 7 
Dataset 6 Malt Hot PMMA Circular 7 
Dataset 7 Tomato Cold PMMA Circular 7 
Dataset 8 Tomato Hot PMMA Circular 7 
Dataset 9 Malt Cold SS316 Circular 7 
Dataset 10 Malt Hot SS316 Circular 7 
Dataset 11 Tomato Cold SS316 Circular 9 
Dataset 12 Tomato Hot SS316 Circular 7  
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2.4. Machine learning 

Classification ML models were trained to predict whether the 
mixture was non-mixed or fully mixed and whether the pipe test section 
is fouled or clean. Regression ML models were trained to predict the 
process time remaining until fully mixed or clean. For the honey-water 
mixing, ML models were trained on either Dataset 1 or Dataset 2 and 
used to predict on the other dataset. This was performed for the Non- 
Central and Central sensors individually and then by combining data 
from both sensors. Therefore, an ML model is trained on a labelled 
mixing system and transferred to monitor a similar mixing process 

which has no labelled data. For the cleaning of pipe fouling, models were 
trained on one or several datasets and tested on another. This is repre
sentative of training an ML model on a pipe section with labelled data 
available and transferring this knowledge to an unlabelled process pipe 
where the pipe material, fouling material, cleaning fluid properties and 
US sensor could be different. 

Shallow ML algorithms, as employed in this study, require features 
extracted from the US sensor waveform as inputs. Typical features 
extracted from US waveforms include the waveform shape (e.g. skew
ness, kurtosis, standard deviation) [6], the amplitude at every sample 
point in the waveform (Escrig et al., 2020) or frequency components 

Fig. 2. (a) A diagram of the equipment for the cleaning experiments including pipe section, camera positioning, and sensor locations. (b) Two received US waveforms 
taken from Cleaning Dataset 9 corresponding to a fouled and clean pipe section. 

Fig. 3. US waveforms from the mixing experiments corresponding to non-mixed and fully mixed systems. (a) Dataset 1 Non-Central sensor. (b) Dataset 2 Non-Central 
sensor. (c) Dataset 1 Central sensor. (d) Dataset 2 Central sensor. 
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obtained after Fourier or Wavelet transforms [5]. However, US wave
forms vary each time a sensor is attached. This effect is presented in 
Fig. 3, where each US waveform differs despite using the same sensors, 
attachment procedure, vessel and process material. Furthermore, Fig. 4 
compares waveforms obtained from Cleaning Datasets 5 and 9, where 
different pipe construction materials and US sensors were used. 

In these case studies, the US sensors are monitoring the magnitude of 
the sound wave reflecting at the interface between the vessel and process 
material. The Energy of the US waveform is therefore an effective 
measure of this, as it is the squared sum of the waveform amplitude at 
each sample point (Equation (1)). The waveform Energy has previously 
been used to monitor these two case studies in Bowler et al. (2020) and 
Escrig et al. [12]. However, the obtained US waveforms are comprised of 
multiple superimposed sound waves reflecting from different material 
interfaces. Therefore, the waveform Energy is not entirely colinear with 
the change in process material at the desired measurement area and 
additional waveform features can be used to unravel this complexity. 
Owing to the uniqueness of the waveforms as previously presented, 
these additional waveform features are unlikely to follow similar trends 
for different US waveforms. Therefore, the SF method only uses the 
Energy as a description of the waveform. To investigate whether addi
tional waveform features are required to monitor these case studies, TCA 
was used to extract three features, or transfer components, to train the 
transfer learning models. TCA minimises the distance between the 
source and target domain feature spaces using the Maximum Mean 
Discrepancy and extracts transfer components that maximise variance 
across this shared feature space [37]. A total of 42 waveform features 
were inputted into the TCA algorithm (Sections 2.4.1 and 2.4.2). Every 
run in the source domain dataset was used for model training and every 
run in the target domain dataset was used for testing. An additional 
model, named the Non-Transfer Learning model, was trained using only 
the target domain data to provide a comparative result to the transfer 
learning models’ accuracy. A k-fold testing procedure was used for the 
Non-Transfer Learning model, where k is the number of runs in the 
dataset. One run was held back for testing and training was carried out 
on the remaining runs. The run held back was changed sequentially and 
the average accuracy of this procedure was used to provide a measure 
for model generalisability. Only the waveform Energy was used as a 
feature in this model. An overview of this methodology is presented in 
Fig. 5. All data analysis and ML algorithms were completed in MATLAB 
R2019a. 

2.4.1. Features 
The waveform energy is the summed squared amplitude of every 

sample point in a waveform. 

E =
∑i=SP

i=1
Ai

2 (1)  

where E is the waveform energy, SP is the total number of sample points 
in the waveform, and Ai is the amplitude at sample point I [46]. 

SRA =
∑i=SP

i=1

̅̅̅̅̅̅̅
|Ai|

√
(2)  

where SRA is the sum root amplitude [46]. 

SAA =
∑i=SP

i=1
|Ai| (3)  

where SAA is the sum absolute amplitude [46]. 

μ =

∑i=SP
i=1 Ai

SP
(4)  

STD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

SP
∑i=SP

i=1
(Ai − μ)2

√

(5)  

where µ is the mean waveform amplitude and STD is the standard de
viation [46]. 

S =

∑i=SP
i=1 (Ai − μ)3

SP × STD3 (6)  

where S is the waveform skewness [6]. 

K =

∑i=SP
i=1 (Ai − μ)4

SP × STD4 (7)  

where K is the waveform kurtosis [46]. 

2.4.1.1. Feature gradient. Using the gradient of the waveform features 
provides a measure of the process trajectory. The difference between 
consecutive waveform features were calculated after applying a back
wards, one-sided moving mean. A backwards, one-sized gradient uses 
only the past process data. The size of the moving mean was chosen as 
5% of the average run time for the respective dataset. This is to ensure 
that the energy gradient is similar feature across the source and target 
domains. 

MMVi =
1
N
∑i− N

i
Vi (8)  

G = MMVi − MMVi− 1 (9)  

where G is the gradient of a parameter, MMV is the moving mean value 

Fig. 4. US waveforms from the pipe cleaning experiments corresponding to fouled and clean pipe section. (a) Dataset 5 – circular plastic pipe section. (b) Dataset 9 – 
circular metal pipe section. 
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of a parameter, N is the size of backwards, one-sided moving mean, and 
V is the original parameter value [25,26]. 

2.4.1.2. Temperature and mean run temperature. As the acoustic prop
erties of materials are highly dependent on temperature [17], the local 
temperature measurement was also investigated as a feature. The 
additional Temperature feature was the measured temperature at the 
time each US waveform was obtained. Furthermore, the Mean Run 
Temperature (the average temperature for that repeat of the process) 
was investigated as the temperature sensors are located external to the 
process vessels. Therefore, any change in temperature may not be 
representative of temperature changes of the process material. 

2.4.2. Discrete waveform analysis 
The Discrete Wavelet Transform (DWT) is a method of obtaining the 

frequency-time information of a waveform [23]. At each decomposition, 
an orthogonal wavelet transform function produces a detail and 
approximate waveform which contain no redundant information [22]. 
The frequency of the analytical wavelet is successively halved for each 
decomposition level. The Symlet 6 wavelet was selected as the Mother 
wavelet owing to it being the least asymmetric, and therefore most 
visually similar to the expected waveforms [24], along with its previous 
success in analysing US waveforms [5]. 5 decomposition levels were 
used, and the previously described waveform features were applied to 
each resultant waveform producing a total of 42 features as inputs to the 
TCA algorithm. 

2.4.3. Standardisation 
For the SF transfer learning method, the features of each domain 

were standardised to produce feature spaces with a mean of 0 and a 
standard deviation of 1. This was to align and scale the feature spaces so 
that the ML model trained on the source domain could predict accu
rately on the target domain data. The process of feature standardisation 
is provided in equations 10–12. 

μ =

∑i=n
i=1xi

n
(10)  

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n − 1
∑n

i=1
|xi − μ|2

√

(11)  

Z =
x − μ

σ (12)  

where µ is the mean of feature x, n is the number of data points for 
feature x, σ is the standard deviation of x, and Z is the new standardised 
feature. 

Furthermore, for the honey-water blending experiments, prior to 
standardisation, the waveform energy of the first data point in each run 
was subtracted from all data points of that run so that they all began at a 
waveform energy of 0. The process material being measured at the start 
of each run is known to be honey as the honey settles to the bottom and 
the sensors are located on the vessel base. This is analogous to an in
dustrial process having the same process material located at the sensor 
measurement area at the start of each run. This procedure further aligns 
the feature spaces despite the wide temperature range the honey-water 
mixing experiments were conducted over. As the laboratory set point 
temperature was not altered for the pipe section cleaning experiments, 
this additional operation was not performed. The feature stand
ardisation method for the mixing data and the cleaning data is presented 
in Figs. 6 and 7, respectively. 

2.4.4. Transfer component analysis 
TCA attempts to extract transfer components across the source and 

target domains in a Reproducing Kernel Hilbert Space using the 
Maximum Mean Discrepancy [37]. Three dimensions, or transfer com
ponents, were selected to allow for comparison against the SF method. 
The TCA code provided in the MATLAB domain adaptation toolbox 
produced by Yan [45] was used. 

2.4.5. Algorithms 

2.4.5.1. Artificial neural networks. Artificial neural networks (ANNs) 
can create linear relationships between combinations of input variables 
and the activation function [19]. For this reason, despite the few input 
features, 5 neurons were used in the hidden layer to ensure production 
of a linear relationship. The “trainlm” training function was used for 

Fig. 5. A methodology flow diagram for the three models being compared. The two transfer learning models, SF and TCA, and the Non-Transfer Learning model.  
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regression models and the “trainscg” training function was used for the 
classification models [27]. To prevent overfitting, the model training 
was stopped once the validation loss had increased for 6 consecutive 
iterations. For each prediction task, 10 neural networks were trained 
and tested, and the average accuracy was used. This is to account for the 
effects of random weight initialisation and that ANNs converge to local 
minima. 80% of the training data was used as a training set and the 
remaining 20% was used as the validation set. 

2.4.5.2. Long short-term memory neural networks. To evaluate whether a 
more complex process trajectory memory was required rather than the 
gradient of the waveform energy alone, Long Short-Term Memory 
neural networks (LSTMNNs) were also investigated. LSTMNNs can store 
representations of all previous time-steps in a process though updating 
an internal network state using gate units [18]. No validation set was 
used to maximise the training data set size for the LSTMNN. The inputs 
were standardised and a mini-batch size of 1 was used. The training was 
carried out for 600 epochs to ensure fitting, using the “adam” optimi
sation algorithm, a learning rate of 0.01, and a gradient threshold of 1 to 
prevent problems of exploding gradients. Only 5 hidden units were used 
in the LSTM layer, as the processes did not follow a complex sequence. 5 
neurons were used in the fully connected layer to ensure linear fitting of 
the feature combinations with the activation function. 

3. Results and discussion 

3.1. Honey-water mixing 

For the honey-water mixing experiments, classification ML models 
were trained to predict whether the mixture is non-mixed or fully- 
mixed, and regression models to predict the time remaining until mix
ing completion. The models were trained on a source domain dataset 
(either Dataset 1 or Dataset 2) and used to predict on the other, target 
domain dataset. 

3.1.1. Classification 
Overall, transfer learning models trained for the Non-Central sensor 

produced poor classification accuracy (Table 3). The highest classifica
tion accuracy for the SF method was 73.9% and the highest for TCA was 
74.6%. This is compared to the Non-Transfer Learning model, which 
produced accuracies of up to 92.2%. The cause of the poor classification 
accuracy for the Non-Central sensor is due to the difference in the sen
sor’s location between Dataset 1 and Dataset 2, being closer to the vessel 
sides in Dataset 1. As the honey is mixed earlier at the vessel sides than in 
the centre of the vessel base, the waveform Energy of the Non-Central 
sensor in Dataset 1 begins to rise earlier with respect to the Central 
sensor. This is shown in Fig. 8. There is greater variability in the 
waveform Energy for the Non-Central sensor compared with the Central 
sensor due to the base of the vessel not being flat at this location, 
creating discrepancies in the sound wave received by the sensor [5]. The 
point defined as complete mixing (the time at which all honey has dis
solved) is located at the centre of the vessel base and therefore non-local 
to the Non-Central sensor. The ML models correlate the sensor data to 
this non-local phenomenon. If the location of the sensor changes be
tween the source and target domains, there is now an offset in the pre
diction. This demonstrates that if applying transfer learning models to 
unlabelled target systems which correlate sensor data to non-local 
phenomena, this offset in prediction must be similar across domains. 

The SF method produced higher classification accuracies than TCA 
for all tasks using the Central sensor, indicating that the waveform En
ergy alone is more amenable to domain adaptation than the three 
transfer components. The SF method was able to produce high predic
tion accuracies of up to 96.0% using Dataset 1 as the source domain and 
Dataset 2 as the target domain. This accuracy was similar to the Non- 
Transfer Learning model trained on Dataset 2 which achieved 95.9%. 

Fig. 6. The standardisation procedure for the mixing datasets. (a) All runs from 
Mixing Datasets 1 and 2. (b) All runs following the subtraction of the first 
waveform energy in each run, thereby aligning each of the first data points. (c) 
All runs following standardisation. 
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The Central sensors were located at the centre of the vessel base for both 
datasets, and as mixing completion occurred at the sensor measurement 
area, there was no offset in the classification model prediction. Using 
Dataset 1 as the source domain produced higher classification accuracies 
as Dataset 1 was performed over a wider temperature range. This led to 
more variability in the waveform energy (as shown in Fig. 6) and hence 
provides a form of regularisation during model training and improved 
model generalisability to the target domain. This highlights that source 

domain datasets should be gathered over a wide process parameter 
range to enable the model to generalise. LSTMNNs produced the highest 
classification accuracies for all tasks using the Central sensor. The more 
complex process trajectory stored by the LSTMNNs was beneficial 
compared with using the waveform energy gradient with the ANNs and 
did not lead to overfitting. 

Using both sensors produced lower classification accuracies than 
using the Central sensor alone due to incorporating the poorly 

Fig. 7. The standardisation procedure for the cleaning datasets. (a) All runs from Malt Cold Flat and Malt Cold Metal datasets. (b) All runs from Malt Cold Plastic and 
Malt Cold Metal datasets following standardisation. 

Table 3 
Classification results for honey-water mixing experiments. Two of the algorithm and feature combinations which produced the highest accuracy for each model are 
included; one using the temperature as feature, and one without. The Additional features column denotes the features inputted into the model other than the features 
used for domain adaptation, e.g. the waveform Energy for the SF method, or the three transfer components used for TCA. G – Gradient of features, T – Temperature, MT 
– Mean run temperature.  

Sensor Source domain Target domain Transfer learning method Accuracy (% correct) Algorithm Additional features 

Non-Central Dataset 1 Dataset 2 SF 70.8 ANN G 
73.4 LSTM G, MT 

TCA 74.7 ANN – 
74.7 LSTM G, MT 

NTL 90.3 ANN G 
92.2 LSTM G, T 

Dataset 2 Dataset 1 SF 72.6 ANN G 
73.9 ANN G, MT 

TCA 68.4 ANN G 
70.3 ANN G, MT 

NTL 90.1 LSTM – 
84.9 LSTM G, T 

Central Dataset 1 Dataset 2 SF 92.5 LSTM G 
96.0 LSTM G, T 

TCA 92.2 LSTM – 
92.6 LSTM G, MT 

NTL 94.4 LSTM G 
95.9 LSTM T 

Dataset 2 Dataset 1 SF 92.8 LSTM G 
93.8 LSTM MT 

TCA 87.6 LSTM – 
89.9 LSTM MT 

NTL 96.7 LSTM – 
95.1 LSTM G, T 

Combined Dataset 1 Dataset 2 SF 92.1 ANN G 
92.2 ANN G, MT 

TCA 92.1 LSTM G 
90.4 LSTM G, MT 

NTL 95.4 LSTM – 
94.8 LSTM G, MT 

Dataset 2 Dataset 1 SF 91.6 LSTM – 
91.9 LSTM MT 

TCA 87.3 ANN – 
89.2 LSTM G, MT 

NTL 95.4 ANN G 
95.6 LSTM G, T  
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performing Non-Central sensor. Using the temperature as a feature 
produced higher classification accuracies for all domain adaptation 
tasks, excluding TCA from Dataset 1 to Dataset 2. This enhanced per
formance is due to the large effect of temperature on material acoustic 
impedance and subsequently the waveform shape and Energy. 
Furthermore, the models were also able to learn the relationship of 
higher temperature reducing the mixing time by lowering the viscosity 
of the honey. However, an accuracy of 92.1% using the Central sensor 

was achieved without incorporating the temperature using both the SF 
method and TCA. 

3.1.2. Regression 
Similar to the classification results, domain adaptation of the Non- 

Central sensor data produced significantly lower regression accuracies 
(up to 0.905) than the Non-Transfer Learning models which were 
trained on the target domain data (up to 0.978) (Table 4). Again, this is 

Fig. 8. The waveform Energy of the Non-Central sensor increases earlier with respect to the Central sensor during the mixing process for Dataset 2 due to the 
difference in sensor location. (a) Waveform Energy profiles for the Non-Central and Central sensors during Run 1 of Dataset 1. (b) Waveform energy profiles for the 
Non-Central and Central sensors during Run 1 of Dataset 2. 

Table 4 
Regression results for honey-water mixing experiments. Two of the algorithm and feature combinations which produced the highest accuracy for each model are 
included; one using the temperature as feature, and one without. The Additional features column denotes the features inputted into the model other than the features 
used for domain adaptation, e.g. the waveform Energy for the SF method, or the three transfer components used for TCA. G – Gradient of features, T – Temperature, MT 
– Mean run temperature.  

Sensor Source domain Target domain Transfer learning method Accuracy (R2) Algorithm Features 

Non-Central Dataset 1 Dataset 2 SF 0.903 LSTM – 
0.894 LSTM G, MT 

TCA 0.846 LSTM G 
0.902 LSTM MT 

NTL 0.932 LSTM G 
0.938 LSTM T 

Dataset 2 Dataset 1 SF 0.877 LSTM – 
0.810 LSTM MT 

TCA 0.883 LSTM – 
0.905 LSTM T 

NTL 0.978 LSTM – 
0.953 LSTM T 

Central Dataset 1 Dataset 2 SF 0.919 ANN G 
0.945 LSTM G, MT 

TCA 0.942 LSTM – 
0.941 LSTM MT 

NTL 0.931 LSTM – 
0.950 LSTM MT 

Dataset 2 Dataset 1 SF 0.899 LSTM – 
0.908 LSTM MT 

TCA 0.798 LSTM G 
0.878 LSTM G, T 

NTL 0.930 LSTM G 
0.939 LSTM G, T 

Combined Dataset 1 Dataset 2 SF 0.942 LSTM G 
0.947 LSTM G, T 

TCA 0.939 LSTM – 
0.929 LSTM MT 

NTL 0.941 LSTM – 
0.946 LSTM MT 

Dataset 2 Dataset 1 SF 0.930 LSTM – 
0.921 LSTM T 

TCA 0.673 LSTM G 
0.896 LSTM MT 

NTL 0.981 LSTM G 
0.981 LSTM MT  
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attributed to the change in sensor position. As the position of the Central 
sensor has not changed between datasets, R2 values of up to 0.945 were 
achieved using the SF method, similar to the Non-Transfer Learning 
models’ regression accuracy of up to 0.950. 

Again, using temperature as a feature aided prediction accuracy of 
the Central sensor, most likely because of the aforementioned effect on 
temperature on the mixing time. Therefore, these models were able to 
infer the time until mixing completion near the beginning of the process, 
where no change in acoustic impedance had yet been detected by the 
Central sensor. In contrast to the classification tasks, using both sensors 
together led to greater regression accuracies for the SF method. This is 
owed to the greater resolution of the Non-Central sensor near the 
beginning of the mixing process, as the honey is first removed from the 
vessel base in this location, and the Central sensor’s greater resolution at 
the end, where the last of the honey is mixed [5]. As with the classifi
cation models, using Dataset 1 as the source domain and Dataset 2 as the 
target domain produced more accurate models for most regression tasks 
due to the wider temperature range in Dataset 1. Again, LSTMNN 
models were more accurate owing to their ability to store representa
tions of all previous process time-steps and therefore learn more com
plex feature trajectories than the ANNs. 

3.2. Cleaning of fouling in pipes 

For the cleaning experiments, classification ML models were trained 
to predict whether the pipe section is fouled or clean, and regression 
models predict the time remaining until cleaned. The models were 
trained on a source domain dataset, or multiple datasets for the SF 
method, and used to predict on another, target domain dataset. 

3.2.1. Classification 
For all classification tasks, the SF method produced higher classifi

cation accuracies than TCA, again suggesting that a single feature is 
optimal for domain adaptation of US waveforms (Table 5). For all 
classification tasks, excluding Datasets 11 and 12, the SF domain 
adapted models were either equal to or more accurate than the Non- 
Transfer Learning models trained on the target domain data. Using 
temperature as a feature was not required for high classification accu
racy, and only led to higher accuracy for the Dataset 12 as the target 
domain. Combining multiple source domain datasets for the SF method 
produced the highest classification accuracy for Datasets 5 and 11 as the 
target domain. This is because using multiple source domain datasets 
provides regularisation of the ML models by training them to generalise 
over multiple domains. Similar to the honey-water blending experi
ments, LSTMNNs were in general more accurate than ANNs due to their 
ability to learn complex process trajectories. 

3.2.2. Regression 
Similar to the classification tasks, the SF method produced higher 

prediction accuracies than TCA for most regression tasks (Table 6). For 
all target domain datasets, except for Dataset 7, the domain adaptation 
models produced equally high regression accuracy as the Non-Transfer 
Learning models which were trained on the target domain dataset. 
Unlike the classification tasks where using the temperature as a feature 
led to no improvements in prediction accuracy, incorporating the tem
perature into the models produced higher regression accuracies for 
Datasets 5, 6 and 10. This is because for most of the process there is no 
change in the material at the sensor measurement area and so ac
counting for the effects of temperature on the waveform energy would 
aid regression accuracy during these sections of the process. In contrast, 
the classification tasks are focused on the section of the process where 
the fouling material is being removed, resulting in large changes in the 
waveform Energy. Other than for Datasets 7 and 8 as the target domain, 
using multiple datasets as the source domain produced the highest 
regression accuracies for the SF method. Again, this is attributed to the 
models being trained to generalise across multiple datasets, increasing 

the likelihood of accurate prediction of the target dataset. LSTMNNs 
produced the highest regression accuracies for every domain adaptation 
task. This suggests that they were not prone to overfitting despite their 
ability to learn complex process trajectories. 

3.3. Comparison with previous work 

Despite using fewer ML model input features and training the models 
on a different data distribution to the target domain, the accuracies of 
the transfer learning models tested in this work are only slightly lower 
than our previously published results. For the honey-water mixing ex
periments, classification accuracies of 96.0% and regression accuracies 
of 0.947 are achieved using the SF method compared with 96.3% and 
0.977 [5]. For the cleaning of pipe fouling, classification of accuracies of 
between 91.6 and 98.4 % are achieved in this work compared with 
previous results of 98–100% [10,11]. These results are similar to the 

Table 5 
Classification results the cleaning of food fouling experiments. Two of the al
gorithm, feature, and source domain datasets combinations which produced the 
highest accuracy for each model are included; one using the temperature as 
feature, and one without. The Additional features column denotes the features 
inputted into the model other than the features used for domain adaptation, e.g. 
the waveform Energy for the SF method, or the three transfer components used 
for TCA. G – Gradient of features, T – Temperature, MT – Mean run temperature.  

Target 
domain 

Transfer 
learning 
method 

Accuracy 
(% correct) 

Source 
domain 

Algorithm Features 

Dataset 5 SF 93.6 Datasets 1 
& 2 

LSTM – 

93.2 Datasets 1 
& 2 

LSTM G, T 

TCA 87.1 Dataset 2 LSTM – 
86.7 Dataset 2 ANN MT 

NTL 93.8 – LSTM – 
87.0 – ANN G, T 

Dataset 6 SF 96.4 Dataset 4 LSTM – 
95.4 Dataset 3 LSTM G, T 

TCA 92.8 Dataset 2 LSTM – 
93.7 Dataset 4 LSTM T 

NTL 92.2 – LSTM G 
96.1 – LSTM G, T 

Dataset 7 SF 95.4 Dataset 2 LSTM – 
TCA 88.1 Dataset 2 LSTM G 
NTL 91.2 – LSTM – 

Dataset 8 SF 96.4 Dataset 3 LSTM G 
TCA 94.1 Dataset 4 ANN G 
NTL 95.6 – LSTM – 

Dataset 9 SF 93.2 Dataset 1 LSTM G 
90.0 Dataset 2 LSTM MT 

TCA 81.0 Dataset 5 LSTM G 
84.8 Dataset 5 LSTM T, G 

NTL 92.2 – LSTM G 
91.8 – LSTM T 

Dataset 
10 

SF 98.4 Dataset 3 LSTM – 
97.5 Dataset 5 LSTM G, T 

TCA 94.7 Dataset 4 ANN G 
95.3 Dataset 4 LSTM G, MT 

NTL 98.2 – LSTM – 
95.4 – LSTM MT 

Dataset 
11 

SF 91.6 Datasets 1 
& 2 

LSTM – 

86.5 Datasets 
1, 2, 5 & 6 

LSTM T 

TCA 81.0 Dataset 1 ANN – 
81.0 Dataset 2 ANN MT 

NTL 95.9 – LSTM – 
95.9 – LSTM T 

Dataset 
12 

SF 90.0 Dataset 7 LSTM G 
92.4 Dataset 5 LSTM MT 

TCA 89.9 Dataset 7 LSTM G 
85.7 Dataset 4 LSTM G, MT 

NTL 95.2 – LSTM – 
96.7 – LSTM G, T  
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domain adaptation methodologies used for motor bearing fault diag
nosis by vibration signal monitoring. Wen et al. [44] achieved classifi
cation accuracies averaging 99.79% on the widely-studied Case Western 
Reserve University dataset using a Convolutional Neural Network (CNN) 
based model. In comparison, Zhang et al. [47] achieved average clas
sification accuracies of 95.5% using a CNN based domain adaptation 
method across different load domains and Li et al. [21] achieved accu
racies >92% using a generative model. Furthermore, Guo et al. [15] 

achieved classification accuracies of up to 89.9% when transferring 
models from different machines. This similarity demonstrates the effi
cacy of the techniques proposed in this work to monitor processes with 
no labelled data available. To improve the accuracy of the trained 
models, a small set of labelled data in the target domain would allow for 
aligning not only the marginal probabilities but also the conditional 
probabilities. Furthermore, a small set of labelled data would allow the 
presented techniques to be combined with semi-supervised learning 
approaches to train robust ML models. 

4. Conclusion 

Sensors are a key technology in the fourth industrial revolution, 
especially for process manufacturing sectors which have greater vari
ability in material streams and process conditions than in discrete 
manufacturing. However, to fully realise the potential benefits, the 
problem of training ML models on limited labelled sensor data must be 
overcome. This work has compared two domain adaptation approaches 
for monitoring processes using US sensors to reduce the burden of data 
labelling in factory environments. These were: a Single Feature method 
and Transfer Component Analysis using three features. US waveforms 
are dependent on the sensor used, attachment procedure, and contact 
pressure. Therefore, this work investigated transferring a small number 
of features across domains. It was shown that ML models using US sensor 
data can be trained on a similar task in a source domain and can accu
rately predict using sensor data from a target domain. Two case studies 
were investigated: honey-water mixing using datasets recorded on 
different days after sensor reattachment, and cleaning of fouling in pipe 
sections of different geometry and construction materials. Overall, the 
Single Feature method produced the highest prediction accuracies, 
indicating that using the waveform Energy alone is optimal for domain 
adaptation between US sensors. Classification accuracies of up to 96.0% 
and 98.4% were achieved for predicting the completion of mixing or 
cleaning, and R2 values of up to 0.947 and 0.999 were reached to predict 
the processing time remaining for each process, respectively. These re
sults were similar to comparative supervised models which did not 
employ transfer learning, indicating that the domain adaptation 
approach was successful. 

Increasing the feature variability in the source domains aided pre
diction accuracy by providing regularisation to the ML models during 
training. For the honey-water mixing, using a source domain dataset 
obtained over a wider temperature range increased prediction accuracy. 
For cleaning of pipe fouling, combining multiple source domain datasets 
trained the model to generalise across domains and thereby improved 
performance on the target domain data. For the honey-water mixing 
experiments, the Non-Central sensor produced low accuracy predictions 
because the sensor position had changed between the source and target 
domains. When correlating sensor data to phenomena non-local to the 
sensor measurement area, an offset between process material changes at 
the sensor location and the prediction task is learned. This suggests that 
when using a transfer learning model to correlate sensor data to non- 
local phenomena, the learned offset must be ensured to be similar 
across domains. To monitor cleaning of fouling in pipes, it was shown 
that ML models could be trained using different US sensors, pipe ma
terials, pipes geometries, fouling materials and cleaning fluid properties. 
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Table 6 
Regression results for cleaning of food fouling experiments. Two of the algo
rithm, feature, and source domain datasets combinations which produced the 
highest accuracy for each model are included; one using the temperature as 
feature, and one without. The Additional features column denotes the features 
inputted into the model other than the features used for domain adaptation, e.g. 
the waveform Energy for the SF method, or the three transfer components used 
for TCA. G – Gradient of features, T – Temperature, MT – Mean run temperature.  

Target 
domain 

Transfer 
learning 
method 

Accuracy 
(R2) 

Source 
domain 

Algorithm Features 

Dataset 5 SF 0.894 Datasets 1 
& 2 

LSTM G 

0.987 Datasets 1 
& 2 

LSTM G, MT 

TCA 0.861 Dataset 1 LSTM – 
0.820 Dataset 1 LSTM T 

NTL 0.947 – LSTM – 
0.949 – LSTM G, T 

Dataset 6 SF 0.998 Datasets 1, 
2, 3 & 4 

LSTM – 

0.999 Datasets 1, 
2, 3 & 4 

LSTM T 

TCA 0.870 Dataset 4 LSTM – 
0.775 Dataset 4 LSTM G, T 

NTL 0.997 – LSTM – 
0.987 – LSTM T 

Dataset 7 SF 0.639 Dataset 2 LSTM G 
TCA 0.747 Dataset 2 LSTM – 
NTL 0.959 – LSTM G 

Dataset 8 SF 0.992 Dataset 4 LSTM – 
TCA 0.890 Dataset 3 LSTM – 
NTL 0.983 – LSTM – 

Dataset 9 SF 0.996 Datasets 1, 
2, 5 & 6 

LSTM – 

0.988 Datasets 1, 
2, 5 & 6 

LSTM MT 

TCA 0.962 Dataset 1 LSTM – 
0.922 Dataset 1 LSTM G, MT 

NTL 0.990 – LSTM G 
0.990 – LSTM T 

Dataset 
10 

SF 0.947 Datasets 5, 
6, 7 & 8 

LSTM G 

0.991 Datasets 1, 
2, 3, 4, 5, 6, 
7 & 8 

LSTM MT 

TCA 0.966 Dataset 1 LSTM – 
0.947 Dataset 4 LSTM G, T 

NTL 0.998 – LSTM – 
0.998 – LSTM G, T 

Dataset 
11 

SF 0.983 Datasets 1, 
2, 5 & 6 

LSTM – 

0.956 Datasets 1, 
2, 5 & 6 

LSTM G, MT 

TCA 0.880 Dataset 1 LSTM – 
0.687 Dataset 3 LSTM T 

NTL 0.919 – LSTM – 
0.855 – LSTM G, MT 

Dataset 
12 

SF 0.993 Datasets 5, 
6, 7 & 8 

LSTM – 

0.992 Datasets 1, 
2, 3 & 4 

LSTM G, MT 

TCA 0.937 Dataset 3 LSTM – 
0.890 Dataset 4 LSTM G, T 

NTL 0.948 – LSTM – 
0.902 – LSTM T  
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[41] E. Wallhäußer, W.B. Hussein, M.A. Hussein, J. Hinrichs, T. Becker, Detection of 
dairy fouling: Combining ultrasonic measurements and classification methods, 
Eng. Life Sci. 13 (3) (2013) 292–301, https://doi.org/10.1002/elsc.201200081. 

[42] M. Wang, W. Deng, Deep visual domain adaptation: a survey, Neurocomputing 312 
(2018) 135–153, https://doi.org/10.1016/j.neucom.2018.05.083. 

[43] K. Weiss, T.M. Khoshgoftaar, D.D. Wand, A survey of transfer learning, J. Big Data 
3 (1) (2016) 9, https://doi.org/10.1186/s40537-016-0043-6. 

[44] L. Wen, X. Li, L. Gao, Y. Zhang, A new convolutional neural network-based data- 
driven fault diagnosis method, IEEE Trans. Ind. Electron. 65 (7) (2018) 5990–5998, 
https://doi.org/10.1109/TIE.2017.2774777. 

[45] K. Yan, A domain adaptation toolbox, 2020. Accessed June 14, 2020. https://www. 
github.com/viggin/domain-adaptation-toolbox. 

[46] X. Zhan, S. Jiang, Y. Yang, L. Jian, T. Shi, X. Li, Inline measurement of particle 
concentrations in multicomponent suspensions using ultrasonic sensor and least 
squares support vector machines, Sensors (Basel, Switzerland) 15 (2015) 
24109–24124, https://doi.org/10.3390/s150924109. 

[47] W. Zhang, C. Li, G. Peng, Y. Chen, Z. Zhang, A deep convolutional neural network 
with new training methods for bearing fault diagnosis under noisy environment 
and different working load, Mech. Syst. Sig. Process. 100 (2018) 439–453, https:// 
doi.org/10.1016/j.ymssp.2017.06.022. 

[48] W. Zhang, T. Wu, Z. Li, S. Liu, A. Qiu, Y. Li, Y. Shi, Fracture recognition in 
ultrasonic logging images via unsupervised segmentation network, Earth Sci. Inf. 
(Article in press) (2021), https://doi.org/10.1007/s12145-021-00605-6. 

[49] Y.-C. Zhu, A. AlZoubi, S. Jassim, Q. Jiang, Y. Zhang, Y.-B. Wang, X.-D. Ye, H. Du, 
A generic deep learning framework to classify thyroid and breast lesions in 
ultrasound images, Ultrasonics 110 (2021), 106300, https://doi.org/10.1016/j. 
ultras.2020.106300. 

A.L. Bowler and N.J. Watson                                                                                                                                                                                                                

https://doi.org/10.1016/j.ultras.2020.106338
https://doi.org/10.1016/j.foodres.2012.05.004
https://doi.org/10.1007/s11548-017-1573-x
https://doi.org/10.1007/s11548-017-1573-x
https://doi.org/10.1016/j.cherd.2019.10.045
https://doi.org/10.3390/s20071813
https://doi.org/10.3390/s20071813
https://doi.org/10.3390/machines5040021
https://doi.org/10.3390/machines5040021
https://doi.org/10.1016/j.ultsonch.2015.04.015
https://doi.org/10.1007/978-3-319-58347-1_1
https://doi.org/10.1007/978-3-319-58347-1_1
https://doi.org/10.1016/S0023-6438(02)00211-6
https://doi.org/10.1016/j.foodcont.2020.107309
https://doi.org/10.1016/j.fbp.2020.05.003
https://doi.org/10.1016/j.foodcont.2019.05.013
https://doi.org/10.1016/j.foodcont.2019.05.013
https://doi.org/10.1109/TIM.2021.3050154
https://doi.org/10.1016/j.jclepro.2019.119869
https://doi.org/10.1109/TIE.2018.2877090
https://doi.org/10.1109/TIE.2018.2877090
https://doi.org/10.1016/j.media.2014.04.007
https://doi.org/10.1016/j.media.2014.04.007
https://doi.org/10.1016/j.ultras.2006.05.048
https://doi.org/10.1016/j.ultras.2006.05.048
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/2.485891
https://doi.org/10.1109/TPAMI.2019.2945942
https://doi.org/10.1109/TIE.2018.2868023
https://doi.org/10.1109/34.192463
https://doi.org/10.1109/34.192463
http://refhub.elsevier.com/S0041-624X(21)00102-5/h0115
http://refhub.elsevier.com/S0041-624X(21)00102-5/h0115
http://refhub.elsevier.com/S0041-624X(21)00102-5/h0120
http://refhub.elsevier.com/S0041-624X(21)00102-5/h0120
https://uk.mathworks.com/help/matlab/ref/gradient.html%23bvhp8_i
https://uk.mathworks.com/help/matlab/ref/gradient.html%23bvhp8_i
https://uk.mathworks.com/help/matlab/ref/movmean.html%23bu2yug_-1_seealso
https://uk.mathworks.com/help/matlab/ref/movmean.html%23bu2yug_-1_seealso
https://uk.mathworks.+com/help/deeplearning/ug/choose-a-multilayer-neural-network-training-function.html%3bjsessionid%3d+e378b9dfbf595a83f44348fc1e7c
https://uk.mathworks.+com/help/deeplearning/ug/choose-a-multilayer-neural-network-training-function.html%3bjsessionid%3d+e378b9dfbf595a83f44348fc1e7c
https://uk.mathworks.+com/help/deeplearning/ug/choose-a-multilayer-neural-network-training-function.html%3bjsessionid%3d+e378b9dfbf595a83f44348fc1e7c
https://doi.org/10.1016/S0924-2244(00)89139-6
https://doi.org/10.1016/S0924-2244(00)89139-6
https://doi.org/10.1109/TMI.2020.3035424
https://doi.org/10.1109/TMI.2020.3035424
https://doi.org/10.1016/j.measurement.2014.08.022
https://doi.org/10.1088/0957-0233/27/1/012001
https://doi.org/10.1016/j.ultras.2018.12.001
https://doi.org/10.1007/s12206-018-0610-1
https://doi.org/10.1016/j.ultsonch.2016.06.001
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/MSP.2014.2347059
https://doi.org/10.1109/MSP.2014.2347059
https://doi.org/10.1109/TNN.2010.2091281
https://doi.org/10.1109/TNN.2010.2091281
https://doi.org/10.1016/j.jclepro.2014.10.072
https://doi.org/10.20965/ijat.2017.p0004
https://doi.org/10.1007/s11947-012-1041-0
https://doi.org/10.1002/elsc.201200081
https://doi.org/10.1016/j.neucom.2018.05.083
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1109/TIE.2017.2774777
https://www.github.com/viggin/domain-adaptation-toolbox
https://www.github.com/viggin/domain-adaptation-toolbox
https://doi.org/10.3390/s150924109
https://doi.org/10.1016/j.ymssp.2017.06.022
https://doi.org/10.1016/j.ymssp.2017.06.022
https://doi.org/10.1007/s12145-021-00605-6
https://doi.org/10.1016/j.ultras.2020.106300
https://doi.org/10.1016/j.ultras.2020.106300


 

54 
 

8 Domain Adaptation and Federated Learning for Ultrasonic 

Monitoring of Beer Fermentation 
 

Article title: Domain Adaptation and Federated Learning for Ultrasonic Monitoring of Beer 

Fermentation 

Journal: Fermentation  

Date published: 1/11/2021  

DOI: 10.3390/fermentation7040253 

Authors: Bowler, A.L., Pound, M.P., Watson, N.J. 

Author contributions (as published): Conceptualization, A.L.B., M.P.P. and N.J.W.; 

methodology, A.L.B., M.P.P. and N.J.W.; software, A.L.B.; validation, A.L.B.; formal analysis, 

A.L.B.; investigation, A.L.B. and N.J.W.; resources, A.L.B. and N.J.W.; data curation, A.L.B. 

and N.J.W.; writing—original draft preparation, A.L.B.; writing—review and editing, A.L.B., 

N.J.W. and M.P.P.; visualization, A.L.B.; supervision, N.J.W. and M.P.P.; project 

administration, N.J.W.; funding acquisition, N.J.W. All authors have read and agreed to the 

published version of the manuscript. 

The aim of this thesis is to develop ML methods to facilitate optimal deployment of US 

sensors for process monitoring applications in industrial environments. This article 

contributed to the thesis objectives by comparing labelled domain adaptation methods to 

transfer knowledge for process monitoring using US sensors between different fermentation 

processes. This work and the previous section (Section 7, titled: “Transfer learning for 

process monitoring using reflection-mode ultrasonic sensing”) comprise the portion of this 

thesis that explores the development of unlabelled and labelled domain adaptation methods 

for process monitoring using US sensors. These methods leverage previously collected 

datasets which would negate or reduce the burden of collecting labelled data in industrial 

environments. 

The work uses labelled domain adaptation methods to transfer ML models from a laboratory 

fermentation process to an industrial process. The domain adaptation approaches are used 

to minimise the data that must be collected for the industrial process. Compared with Section 

7, simultaneous ML model training using labelled data for both tasks is possible. On 

reflection, domain adversarial training of the neural networks could have also been used to 

extract features discriminative as to the state of the fermentation but non-discriminative 

between the datasets (Ganin et al., 2016). This is achieved through training the ML 

predictions whilst simultaneously confusing a discriminator module as to whether the input 

data are from the source or target domain.  

For both the laboratory and industrial datasets, the frequency of US data collection was the 

same. Blocks of US and temperature data were collected periodically (between each block 

of data collected, 200 s elapsed). Each of the blocks consisted of 36 US waveforms and 36 

temperature readings. The time between each US waveform acquisition was 0.55 s. The 

laboratory scale fermentations lasted between 4 and 7 days whilst the industrial fermentation 

lasted between 6 and 7 days. Therefore, no pre-processing of the time series length was 

needed to use both datasets in the LSTM models.  
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In total, 14 US waveform features were inputted into the ML models. Zero-padding was 

applied to the US features to make every fermentation sequence equal to the maximum 

sequence length of 1556 timesteps. Therefore, the final datasets dimensions were 

5x14x1556 for the industrial fermentations and 13x14x1556 for the lab-scale fermentations. 

The LSTMs were used for a sequence to sequence tasks where the sequence of features 

were used to predict the sequence of output values. At each timestep the model predicted 

the output value at the current timestep. At the following timestep, the model obtains the new 

US sensor measurement features from this timestep with which to predict the output value. 

Therefore, only US sensor measurement features are used to make predictions and 

previous ground truth data or output predictions are not used. All timesteps for each dataset 

were used as a single sequence rather than being truncated into multiple sequences of 

shorter length. 

During training, all laboratory-scale fermentation batches were used. The number of 

industrial fermentation batches included in the training and validation set was varied 

between 1 and 4 (Table 1). A single industrial fermentation batch was used for validation 

with the number of validation folds being dependent on the number of industrial fermentation 

batches in the training and validation set (Table 1). The domain adaptation methodologies 

are compared with a model trained only on the industrial scale fermentation data, i.e., 

without using the laboratory scale data or domain adaptation. This is named the No DA 

model and is used as a base-case comparison. In the article, the column headings 1-4 in 

Table 3 indicated the number of industrial scale fermentation batches used in the training 

and validation set. 

Table 1. Selected parameters for the domain adaptation networks depending on number of 

industrial scale fermentation batches in the training set. 

Parameter Size of Training Set 

Number of industrial scale fermentation batches in training and 

validation set 
1 2 3 4 

Number of industrial scale fermentation batches in test set 4 3 2 1 

Number of validation folds 0 2 3 4 

 

Federated learning achieved the highest model accuracy and performed best for 14 out of 

16 ML tasks compared with the models not using knowledge from the source domain. This is 

likely due to the order of the dataset runs the model is trained on compared with the other 

two methodologies evaluated. During federated learning, the local models were trained for a 

single epoch on the corresponding domain dataset before passing the model weights for 

collation. This full epoch of training allows for increased gradient descent to an optimum 

point compared with a procedure that alternates between source and target domain data, as 

used for the other domain adaptation methods. This indicates that the order of the dataset 

runs may impact the ability of the models to find a better local optimum and should be trialled 

during the validation stage. 

Federated learning could be utilized by beer manufacturers in a mutually beneficial 

agreement to leverage data from other breweries. This can be used to improve model 

accuracy when monitoring beer fermentation whilst maintaining dataset privacy. Firstly, this 

would require identifying participating breweries. As larger beer manufacturers would likely 

be able to create large fermentation datasets, it would be anticipated that smaller, craft 
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breweries with wider product ranges would be most interested in this collaborative set-up. 

Due to a lack of specialist knowledge to train ML models, most likely a research group or 

consultancy would be used to develop the models. Local models would be trained within the 

data collection platforms of each brewery to avoid the transferring of private data. The model 

weights would then be passed to a global model for aggregation. However, this approach 

would also benefit from techniques that minimised the number of iterations between local 

and global models. A method to achieve this could be to use pre-trained models (e.g. the 

final models developed in this work) to provide starting network weights to produce more 

similar local models and facilitate aggregation of the network weights into a global model.  
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Abstract: Beer fermentation processes are traditionally monitored through sampling and off-line wort
density measurements. In-line and on-line sensors would provide real-time data on the fermentation
progress whilst minimising human involvement, enabling identification of lagging fermentations or
prediction of ethanol production end points. Ultrasonic sensors have previously been used for in-line
and on-line fermentation monitoring and are increasingly being combined with machine learning
models to interpret the sensor measurements. However, fermentation processes typically last many
days and so impose a significant time investment to collect data from a sufficient number of batches
for machine learning model training. This expenditure of effort must be multiplied if different
fermentation processes must be monitored, such as varying formulations in craft breweries. In this
work, three methodologies are evaluated to use previously collected ultrasonic sensor data from
laboratory scale fermentations to improve machine learning model accuracy on an industrial scale
fermentation process. These methodologies include training models on both domains simultaneously,
training models in a federated learning strategy to preserve data privacy, and fine-tuning the best
performing models on the industrial scale data. All methodologies provided increased prediction
accuracy compared with training based solely on the industrial fermentation data. The federated
learning methodology performed best, achieving higher accuracy for 14 out of 16 machine learning
tasks compared with the base case model.

Keywords: ultrasonic measurements; fermentation; machine learning; federated learning; domain
adaptation; long short-term memory

1. Introduction

Beer is one of the world’s oldest and most widely consumed alcoholic beverages [1].
Beer fermentation processes are conventionally monitored through sampling and off-line
wort density measurements [2]. This method is typically performed every couple of hours,
requires manual operation, is time-consuming, and does not produce real-time results [3].
Automatic acquisition of real-time data pertaining to the fermenting wort would enable
accurate process end point determination and identification of lagging fermentations. This
would provide benefits of improved product consistency, fewer lost batches, time savings,
and environmental benefits of less waste and less resource and energy use [3]. This can be
achieved through in-line and on-line sensing techniques, where in-line methods directly
measure properties of the fermenting wort and on-line methods use bypasses to automati-
cally collect, analyse, and return samples to the vessel [4]. Furthermore, manufacturing
is undergoing the fourth industrial revolution, where industrial digital technologies such
as the Internet of Things (IoT), cloud computing and Machine Learning (ML) are imple-
mented to integrate not only entire processes but also markets and supply chains [5]. This
has the potential to increase the efficiency, productivity, product quality, and flexibility of
manufacturing processes [5]. In-line and on-line sensors underpin this transformation by
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collecting the real-time data to provide automatic decision- making and minimise human
involvement [6]. Several in-line and on-line methods to monitor alcoholic fermentation
have been investigated, such as near-infrared spectroscopy [3,7], Raman spectroscopy [8,9],
mid-infrared spectroscopy [10], Fourier transform infrared spectroscopy [11], MEMS res-
onators [12], CO2 emission monitoring [13], and ultrasonic (US) sensors [14–18]. Typically,
these techniques use calibration techniques to correlate sensor data to material composition
across the full range of process conditions (e.g., temperature) [3]. Conversely, ML can be
used to map sensor data directly to target variables (such as classifying the stage of the
fermentation process or predicting the time remaining until significant process milestones)
without requiring extensive calibration procedures. Moreover, ML is able to fit complex
non-linear relationships between multiple variables, or features, extracted from sensor
readings. Furthermore, validation procedures encourage the development of models which
accurately predict when process parameters are outside of the range they were trained
on. Ultrasonic sensors have benefits of being low-cost, are non-invasive, small in size,
have low energy consumption, and are able to characterise opaque materials. ML has
previously been combined with US sensors to monitor fermentation processes. Hussein
et al., (2012) used the US velocity, process temperature, and nine signal features extracted
from the time and frequency domains to predict wort density using an artificial neural net-
work [14]. Bowler et al., (2021) inputted time domain signal features into Long Short-Term
Memory (LSTM) neural networks to predict the volume of alcohol percentage throughout
fermentation [18].

ML methods require sufficient volumes of data for model training. However, fermen-
tation processes can last for many days, imposing a significant time investment for data
collection. Therefore, industrial fermentation monitoring using sensors and ML would
benefit from using knowledge gained from previously monitored fermentation processes
whether conducted in a laboratory or from other breweries. This would be of particular
benefit to the growing craft breweries industry, where a wider range of beers are produced
at smaller volumes, necessitating ML models which can be trained on fewer fermentation
batches whilst being robust across different formulations of beer [19,20]. However, US
sensor readings acquired from different fermentation vessels (different domains) present
different data distributions to the ML models [21]. This can be due to differing US sensor
contact between the two vessels, a difference in vessel construction affecting US waveform
propagation, or differing waveform frequency distributions produced by the sensors [21].
Therefore, even for a similar fermentation task, the ML model trained on the source domain
data will perform poorly when asked to make a prediction based on the target domain data.
Domain adaptation is a subcategory of transfer learning which alters how the ML model
is trained to predict accurately across both domains [22]. Unlabeled domain adaptation
techniques can be used for tasks with no reference measurement available in the target
domain to correlate input features to output variables during ML model training [21]. Con-
versely, labelled domain adaptation can be used for tasks where a reference measurement
is obtainable. Common unlabeled domain adaptation techniques include minimising the
distance between features from different domains using metrics such as the Maximum
Mean Discrepancy [21,23–27], adversarial methods to confuse domain membership clas-
sifiers [28–32], generative methods to transform domain features [33–36], or Adaptive
Batch Normalisation, which aligns the feature distributions across the domains for each
batch [37,38]. Labelled domain adaptation can be achieved through either pre-training on
the source domain and fine-tuning on the target domain, retraining the last few layers of a
network using the target domain data, or by training using the data from both domains si-
multaneously [39]. While training ML models across fermentation processes from multiple
breweries, the companies may not wish to share the US sensor data which could reveal
information about their product formulation or process control strategies. In this case,
federated learning may be used to share network weights from local models trained on an
individual brewery’s data to update a common global model as opposed to transferring
the acquired sensor data and thus maintain privacy [40].
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In this work, US sensor data acquired from a laboratory fermentation process is used
to aid ML prediction on an industrial scale fermentation task. The industrial scale fermen-
tations were monitored at a Small and Medium-sized Enterprise (SME) company, and so
the data is of limited volume. Therefore, the laboratory scale dataset is used to improve ML
model accuracy on these limited number of batches. The models are trained as multi-task
networks to predict four outputs: classification of whether ethanol production has started,
classification of whether ethanol production has ended, the time remaining until ethanol
production begins, and the time remaining until ethanol production ends. Rather than
using US sensor data to predict the wort density or alcohol by volume, this methodology
directly predicts the most important information required from the fermentation process:
whether the fermentation is lagging and determination of the fermentation end point.

Three domain adaptation methodologies are investigated. Firstly, labelled domain
adaptation is used to simultaneously train the models on data from both domains. Simul-
taneous training on both domains is used as opposed to pre-training on the laboratory
scale data and fine-tuning on the industrial scale data or retraining the last few layers of
the network which are usually used for training convolutional layers in transfer learning
for image recognition tasks. This is because, unlike convolutional filters which can detect
features compared to a background of neighbouring pixels, the differences in feature mag-
nitudes and trajectories in this work mean that features extracted in the source domain
would not transfer to the target domain and the network would undergo catastrophic
forgetting [41]. Secondly, the networks are also trained in a federated learning strategy to
evaluate the impact of privacy preservation on ML model accuracy. Lastly, fine-tuning of
the best performing models which have been trained on the source and target domains
simultaneously are investigated again.

2. Materials and Methods

Two sets of fermentations were monitored: one in a 30 L laboratory scale vessel at
the University of Nottingham and the second in a 2000 L industrial scale fermenter at the
Totally Brewed brewery in Nottingham, UK. Full experimental details for the laboratory
scale fermentations are included in [18]. The laboratory scale dataset consisted of 13 fer-
mentations and the industrial scale dataset consisted of 5 fermentations. For the laboratory
scale dataset, the same type and quantity of malt (Coopers Real Ale, Adelaide, Australia),
yeast (Coopers Real Ale, Adelaide, Australia), sugar (brewing sugar, the Home Brew Shop,
Farnborough, UK) and water (22 L) were used for all fermentations. For the industrial scale
dataset, three different beers were monitored: three fermentations consisting of Slap in
the Face, one Guardian of the Forest, and one 4 Hopmen of the Apocalypse. The same US
probe was used to monitor both the laboratory and industrial scale fermentation processes
(Figure 1). The US probe contained a US transducer (Sonatest, 2 MHz central frequency,
Milton Keynes, UK) and a temperature sensor (RTD, PT1000, RS Components, Corby, UK).
The US transducer was connected to a Lecouer Electronique US Box (Chuelles, France)
that provided the excitation pulse to the transducer and digitised the received US signal.
The temperature sensor was connected to a Pico electronic box (PT-104 Data Logger, Pico
Technology, St Neots, UK). The two electronic boxes were connected to a laptop that con-
trolled the data acquisition. Coupling gel was applied between the US transducer and
the probe material, and a spring maintained the contact pressure. For the laboratory scale
fermentations, a Tilt hydrometer provided real-time density measurements as a reference
measurement of the fermentation progress and to provide labelled data for ML model
training. For the industrial scale fermentations, samples were removed every two hours
(except during night-time) and the wort density was measured using a hydrometer. For
the industrial scale fermentations only, the temperature was decreased once the desired
wort density was reached. Blocks of US and temperature data were collected periodically.
Each of the blocks consisted of 36 US waveforms and 36 temperature readings. The US
signal consisted of 7000 sampling points at 80 MHz sampling frequency. The time between
each waveform acquisition was 0.55 s. Between each block of data collected, 200 s elapsed.
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Figure 1. The probe consisting of US and temperature sensors and the paths of the received US sound
wave reflections. Adapted from [18].

As depicted in Figure 1, the US transducer emitted sound waves which travelled
along the PMMA probe material. At the interface between the probe material and the wort,
a portion of the sound wave was reflected and the rest continued through the fermenting
wort. Part of the reflected sound wave travelled through the probe-couplant boundary
and was received by the transducer (the first reflection) whilst some reflected from this
interface and repeated the previously described path (the second reflection). Therefore, the
second reflection is a reverberation of the first reflection’s path. The portion that passed
through the fermenting wort was reflected at the opposite probe wall and travelled back
to the transducer (the third reflection). An example of the US waveform recorded by the
transducer is presented in Figure 2a. Each of the reflections in isolation are presented in
Figure 2b–d. The start of the waveform (sample points <1000 in Figure 2a) was reflected
back to the transducer before it contacted the probe-wort interface and therefore contains
no useful information about the fermentation.

Figure 2. An example US waveform acquired: (a) The full waveform received; (b) the 1st reflection isolated; (c) the 2nd
reflection isolated; and (d) the 3rd reflection isolated.
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2.1. Ultrasonic Waveform Features

In total, 14 US waveform features were inputted into the ML models. Explanation of
the calculation method and justification of the feature choices are provided in the following
sections. In addition to the US waveform features, the process temperature was also used
as an input. Although US sensors can accurately monitor fermentations without inclusion
of the temperature as a feature [18], temperature sensors are already installed on most
industrial vessels. As such, this data can be exploited in the ML models with no further
effort in sensor installation or data collection.

2.1.1. Energy

The waveform energy is a measure of the total magnitude of the sound wave received
by the transducer during an enveloped period. For the first reflection, this is a measure of
the proportion of the sound wave reflected from the probe-wort interface and provides
a measure of the changing wort density. Similarly, the energy of the second reflection is
also dependent on the density of the fermenting wort in contact with the probe material.
The energy of the third reflection is dependent on the previously discussed probe-wort
boundary, the far wort-probe boundary, sound wave attenuation in the wort through which
it travels, and the level of sound wave attenuation caused by CO2 bubbles present in the
wort [42].

E = ∑i=end
i=start Ai

2, (1)

where E is the waveform energy, Ai is the waveform amplitude at sample point i, and start
and end denote the range of samples points for the reflection of interest [43].

The waveform energy was the only feature selected from the oscillating part of the US
waveform. Other features are commonly extracted to be used as ML model inputs, e.g., the
peak-to-peak amplitude, maximum amplitude, minimum amplitude, skewness, kurtosis,
and standard deviation [18,21]. However, previous work performing domain adaptation
with US waveforms has shown that these additional features are unlikely to follow the
same trend in both domains and their inclusion will degrade ML accuracy [21]. Therefore,
only the waveform energy is used in this work as it is a measure of physical changes in the
monitored wort.

2.1.2. Energy Standard Deviation

The standard deviation in the waveform energy was calculated across the 36 US
waveforms obtained during each acquisition block. As CO2 bubbles may be present in the
wort through which the 3rd reflection travels, or on the probe surface affecting the 1st and 2nd
reflections, the energy standard deviation monitors CO2 formation throughout fermentation.

STD =

√
1

W ∑i=W
i=1

(
Ei − E

)2 (2)

where STD is the standard deviation, W is the number of waveforms collected in the block,
i is an individual waveform, and E is the mean waveform energy in the block.

2.1.3. Time of Flight

The time of flight was calculated using three different methods to overcome the noise
and low amplitude signals present in the acquired US waveforms. Firstly, a thresholding
method identified the earliest waveform sample point that rises above a predetermined
value, and was calculated for all three reflections. A zero-crossing method identified
the sample point where the waveform crosses zero after the threshold value had been
reached, and this was also calculated for all three reflections. Finally, an auto-correlation
method identified the sample point where the correlation between the first reflection and
the subsequent reflections are determined to be most similar. The time of flight is a measure
of the speed of sound through the materials, i.e., the probe material for the first and second
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reflections (dependent on the temperature of the material) and the wort for the third
reflection (dependent on wort temperature and density) [44].

2.2. Machine Learning

Multi-task deep neural networks consisting of a fully connected layer followed by
an LSTM layer were used for all ML tasks. A summary of the three domain adaptation
methods used is provided in Table 1. The fully connected layer enabled the creation
of new features that are similar across both domains from combinations of the original
inputs. The LSTM layer learns the trajectories of these modified features. The multi-task
models were trained to simultaneously predict whether the production of ethanol had
begun (classification), whether the production of ethanol had ended (classification), the
time remaining until the start of ethanol production (regression), and the time remaining
until ethanol production finishes (regression). In an industrial environment, this would
provide benefits of identifying lagging fermentations by monitoring the start of ethanol
production and estimating process end times by monitoring when ethanol production
was complete. Multi-task learning is advantageous as it can allow for more effective
process learning in the ML model when multiple metrics are desired whilst reducing the
redundant information being stored [45]. Furthermore, multi-task learning is likely to
reduce overfitting by preventing a single task from dominating the learning process.

LSTM layers in neural networks are able to retain information from previous time-
steps in a sequence. LSTMs are a type of recurrent neural network that reduces the
likelihood of vanishing or exploding gradients by using gate units. This enables their use
over much longer sequences [46]. Zero-padding was applied to the US features to make
every fermentation sequence equal to the maximum sequence length of 1556 timesteps.
A masking layer designated that the LSTM units ignore this padding. All timesteps
for each fermentation were used as a single sequence rather than being truncated into
multiple sequences of shorter length. While long sequences (250–500 timesteps) are prone
to producing vanishing gradients in LSTM layers when predicting a single output, this
is not a concern when predicting an output at every timestep, as used in this work [47].
The input features from each dataset were independently normalised so that every feature
ranged between 0 and 1 for both domains. This step aids domain adaptation capability by
aligning the feature distributions from both domains, and is similar to the methodology
used in [21].

A k-fold cross-validation procedure determined the optimal batch size, number of
neurons in the fully connected layer, number of LSTM units, learning rate, L2 regularisation
penalty, and number of epochs. As five industrial fermentation batches were monitored,
the number of these fermentations used in the training set ranged from one to four, cor-
responding with the number of fermentations in the test set ranging from four to one
(Table 2). Therefore, k was determined by the number of industrial fermentations present
in the training set. For example, if only one fermentation was used in the training set,
no cross-validation could be performed. However, when four fermentations were used,
fourfold cross-validation was performed (Table 2).

The Adam optimisation algorithm and a gradient norm clipping value of 1 was used
to reduce the likelihood of exploding gradients. The order of the training sets was shuffled
after every epoch. The regression losses (mean squared error, Equation (3)) were multiplied
by 0.1 to ensure their magnitudes were similar to the classification losses (binary cross-
entropy, Equation (4)). This aided the network in learning both the classification and
regression tasks. After cross-validation, the optimal hyperparameters which resulted in the
lowest average validation error were used to train a final model using the entire training
set. The networks were trained using TensorFlow 2.3.0. The coefficient of determination
(R2), mean squared error (MSE), and mean absolute error (MAE) were used as performance
metrics to evaluate the regression tasks during cross-validation. The accuracy, precision,
and recall were used to evaluate the classification tasks during cross-validation. Evaluating
multiple metrics provides a comprehensive assessment of a model’s ability to fit to the
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validation and test sets and facilitates improved comparison between models. In the results
section, only the MAE and accuracy are discussed to aid clarity.

BCE = − 1
N ∑N

i=1 yi·logŷi + (1− yi)· log(1− ŷi) (3)

MSE =
1
N ∑N

i=1(yi − ŷi)
2 (4)

where BCE is the binary cross-entropy loss, MSE is the mean squared error loss, N is the
number of samples, y is the target variable and ŷ is the predicted value.

Table 1. Summary of the three domain adaptation machine learning methodologies investigated.

Method Simultaneous Cross-Domain
Training Federated Learning Fine-Tuning

Training datasets Both source and target domain Both source and target domain

Both source and
target domain

Followed by fine-tuning on
target domain

Training strategy Trained on both domains
simultaneously Trained on each domain sequentially Either, depending on starting

model used

Application

Transfer learning for
laboratory data

Transfer learning from other
processes within the same

company

Transfer learning between companies Either, depending on starting
model used

Advantages
More training options available

as both datasets can be used
simultaneously

Preserves privacy between domains Either, depending on starting
model used

Problem definition Define N datasets {D1, . . . DN}
used to train a ML model MDA.

Define N data owners wishing to
train a ML model MFED using all
their data {D1, . . . DN} without
sharing the datasets and thus

maintaining privacy.

Define N datasets {D1, . . . DN}
used to train a ML model MS.

Define DT as the target
domain dataset (DT included

in {D1, . . . DN}.

Algorithm

θ = model weights
E = number of epochs

Initialise θ0
For i = 1 to E

Iterate θ for 1 epoch using a
combined dataset consisting of

D1, . . . DN.
End

θ = model weights
C = number of communication

rounds
w = weighting factor

Initialise θ0
For i = 1 to C
Global model:

θG = Σ wjθj
Local models:
For j = 1 to N

Initialise θj = θG
Iterate θj for 1 epoch using Dj

Return θj
End
End

θ = model weights
E = number of epochs

Initialise θ = θS
For i = 1 to E

Iterate θ for 1 epoch using DT
End

In the domain adaptation case studied in this work, the source domain, DS, and
target domain, DT, are different because the marginal probabilities of the features are
different, PS(X) 6= PT(X). Domain adaptation aims to improve model prediction accuracy
on the target domain by altering how the model trains on the source domain. Three
domain adaptation investigations were conducted; network training on both datasets
simultaneously, network training in a federated learning set-up, and fine-tuning of the best
performing previously trained networks on the target domain (industrial scale) dataset.
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For the networks trained on both datasets simultaneously, the impact of dropout on the
domain adaptation performance was evaluated. Dropout layers randomly remove neurons
and their connections during training according to the designated probability [48]. Thus
“thinned” networks are trained during each training batch encouraging more propagation
paths through the network to be learned. Two dropout layers are used, one after the input
layer and before the fully connected layer, and one after the fully connected layer and
before the LSTM layer. The dropout layer probabilities were set to 0 or 0.5, producing
four parameter combinations. Dropout was used to investigate whether it aided domain
mixing in the network rather than certain neurons only learning a single domain and the
remaining neurons co-adapting. There were more fermentation batches in the laboratory
scale dataset compared to the industrial scale dataset. As such, to ensure both domains
were learned, the frequency of the industrial dataset in the training set was increased. For
example, when a single industrial fermentation batch was present in the training set, this
was passed to the network 13 times during one epoch. Similarly, when four industrial
fermentation batches were present, each was used three times during training for each
epoch (Table 2).

Table 2. Selected parameters for the domain adaptation networks depending on number of industrial scale fermentation
batches in the training set.

Parameter Size of Training Set

Number of industrial scale fermentation batches in training set 1 2 3 4

Number of industrial scale fermentation batches in test set 4 3 2 1

Number of validation folds 0 2 3 4

Number of industrial fermentation batch occurrences per epoch
when training on both domains simultaneously 13 6 4 3

Industrial dataset weighting factor for federated learning 0.9 0.85 0.8 0.75

For the federated learning investigations, local models were trained on each dataset
and a weighting factor was applied to the resulting local network weights before being
summed to produce a global model. The global model weights were used as the initial-
isation weights for the next epoch of local network training. After training, the global
model was evaluated on the test set. The weighting factors were changed depending on the
number of industrial fermentation runs present in the training set. I.e., 0.9 for the industrial
scale data local model and 0.1 for the laboratory scale model when a single industrial
fermentation run was present in the training data, and 0.75 and 0.25 when four industrial
fermentation runs were used in the training data (Table 2).

Finally, fine-tuning the best performing models on the target domain data was assessed.
As the models are used to monitor the industrial scale fermentations, the final models do
not need to be accurate on the source domain laboratory scale fermentations. Therefore,
after initial training to transfer knowledge from the source domain, fine-tuning on the
target domain can increase model accuracy of the industrial scale data. All network weights
were tuned. Preliminary investigations froze the model weights for the fully connected and
LSTM layers and only tuned the output layers. However, this resulted in lower accuracy
models on the validation sets than when all weights could be updated.

These domain adaptation methodologies are compared with a model trained only
on the industrial scale fermentation data, i.e., without using the laboratory scale data or
domain adaptation. This is named the No DA model and is used as a base-case comparison.

3. Results
3.1. Ultrasonic Measurements

Figure 3a–f displays the US feature and temperature results for the industrial scale
fermentations. Full discussion of the US feature and temperature results for the laboratory
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dataset are included in [18]. A comparison between the two datasets is provided in
the text. For the industrial scale dataset, the process temperature was decreased after
the desired wort density had been reached, determined through off-line sampling and
hydrometer measurements. As such, Figure 3b-f display the results until one day after
the temperature was decreased so that the US feature changes during ethanol production
are clearly presented. The results show that the time of flight for the third reflection
decreased, corresponding to an increase in the speed of sound, during ethanol production
for all fermentations (Figure 3f). This agrees with [14,15] but contradicts the results found
in [16,17,49] which monitored a decreasing speed of sound throughout fermentation. The
reason for this is likely because [14,15] monitored an industrial fermentation process,
similar to the industrial scale dataset in this work, whereas [16,17,49] monitored a small
laboratory scale process (250 cm3). Therefore, the specific combination of water, ethanol,
sugar, yeast, and CO2 concentrations present in industrial processes may produce an
increasing speed of sound during ethanol production. Overall, the energy of the first
reflection increases during ethanol production (Figure 3c), as found in [18]. This indicates
an increase in acoustic impedance mismatch at the probe-wort interface. As the acoustic
impedance is a product of the material density and speed of sound, this shows that the
decreasing wort density has a larger impact than the increasing speed of sound on the
wort acoustic impedance [42]. The energy of the third reflection shows no general trend
during ethanol production (Figure 3d) indicating that the reduced sound wave proportion
travelling through the first buffer-wort interface is offset by the increased sound wave
reflection at the far wort-buffer interface. The third reflection energy displays increased
variation over the first reflection energy due to sound wave attenuation in the presence
of CO2 bubbles, similar to the results found in [17,18]. In contrast, the laboratory scale
data shows no trend in the speed of sound during fermentation and the third reflection
energy follows a similar profile to the first reflection [18]. This is likely due to these effects
being masked due to the varying temperature during ethanol production for the laboratory
scale dataset, whereas the temperature was controlled during this period for the industrial
fermentations. Figure 4 displays the first reflection energy for the first five fermentations
from the laboratory dataset. The differing feature magnitudes and trajectories compared
with Figure 3c showcases the need for domain adaptation techniques.

3.2. Machine Learning

Figure 5a,c,e and Figure 5b,d,f display the classification accuracies for the beginning
of ethanol production and end of ethanol production for the trained networks, respectively.
Although the multi-task networks were also trained to predict the time remaining until
(and had passed since) the start and end of ethanol production, the regression predictions
are most useful close to the classification boundaries. For example, an accurate prediction
of the time since ethanol production started is not needed near the end of the fermentation
process, or an approximate time for when ethanol production will end would not be useful
when the fermentation is lagging and never begins. Therefore, the classification results are
most valuable when evaluating the utility of the trained model. Furthermore, due to the
multi-task nature of the model, the accuracy of the classification results correlates with the
ability to learn the regression tasks close to the classification boundaries. As such, only
the classification results are included in the presented graphs. However, the regression
accuracies are presented in Table 3 and discussed in the text.
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Figure 3. US feature and temperature results for the five industrial fermentation batches. (a) The process temperature.
(b) The process temperature until one day post the end of ethanol production. (c) The first reflection energy until one day
post the end of ethanol production. (d) The third reflection energy until one day post the end of ethanol production. (e) The
first reflection time of flight measured using a thresholding method until one day post the end of ethanol production. (f) The
third reflection time of flight measured using a thresholding method until one day post the end of ethanol production.
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Figure 4. The first reflection energy for the first five laboratory scale fermentation batches.

Figure 5a,b display the results for the networks which were trained on the source and
target domain data simultaneously. Preliminary investigations determined that the 0.5,
0.5 dropout rate models failed to train accurately for all training set sizes. Models with
0.5, 0 dropout rates produced inconsistent results, with some models accurately predicting
using the test set data and some models performing worse than the model trained on
only the industrial scale fermentations (No DA). However, the 0, 0 and 0, 0.5 models
achieved higher accuracy than the No DA model for six out of eight classification tasks.
Furthermore, the 0, 0 model achieved lower MAE for seven out of eight regression tasks
compared to the No DA model. Therefore, the 0, 0 and 0, 0.5 dropout rates were used for
subsequent investigations and the results of these models are presented in Figure 5a–f and
Table 3. These higher accuracy results for the domain adaptation models prove that using
the laboratory scale data to train the networks benefits the predictions on the industrial
scale dataset.

Figure 5c,d display results for the models trained in a federated learning strategy.
The two federated models are trained using the best performing dropout probabilities
determined from the previous investigation and are compared with the No DA baseline
results. The 0, 0 model achieved higher classification accuracies and lower MAE for
six out of eight classification and regression tasks than the No DA model. When using
four industrial scale fermentation batches in the training set, the 0, 0 model reached
accuracies of 99.8% and 99.9% for predicting the start and end of ethanol production,
respectively. Furthermore, the 0, 0.5 models achieved better results for seven out of eight of
the classification and regression tasks. Overall, the federated learning models were more
accurate than their corresponding non-federated training models using the same dropout
probabilities, achieving higher classification accuracies on eight tasks compared to seven
for the non-federated learning models. Similarly, the federated learning models achieved
lower MAEs on 10 regression tasks compared with five for the non-federated learning
models. This is an encouraging result as it indicates that not only can federated training
provide benefits over models that train without the laboratory scale data, but that they can
also perform better than conventionally trained domain adaptation networks in addition to
maintaining data privacy. The reason for this may be the increased model learning afforded
in the industrial scale dataset local model. During training, this model learns from an
epoch full of the industrial scale training dataset compared with the non-federated model
which only learns from the industrial scale target domain intermittently between source
domain fermentation runs. This increased learning without switching between domains
may allow the network weights to travel further towards local optima for the industrial
scale dataset in each epoch. This contrasts with results presented in the wider literature,
where federated learning degraded model accuracy compared with non-federated learning
by 3.3% [50], 1.66% [51], and <10% [52].
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Figure 5. The classification results on the industrial scale fermentations test set. The numbers in the legend indicate
the dropout layer probability for the two dropout layers. E.g., 0, 0 indicates a dropout probability of zero in both
layers. (a) Classification results for the start of ethanol production for the networks trained on both domain datasets
simultaneously. (b) Classification results for the end of ethanol production for the networks trained on both domain
datasets simultaneously. (c) Classification results for the start of ethanol production for the networks trained using federated
learning. (d) Classification results for the end of ethanol production for the networks trained using federated learning.
(e) Classification results for the start of ethanol production for the federated training networks fine-tuned on the industrial
scale dataset. (f) Classification results for the end of ethanol production for the federated training networks fine-tuned on
the industrial scale dataset.
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Figure 5e,f display the classification results for the previously discussed federated
models fine-tuned on the industrial dataset. While still providing improvements over the
No DA base case, achieving higher classification accuracies for 12 out of 16 tasks, their
accuracy is reduced over the starting federated learning models. This is most likely due to
the fine-tuning method overfitting during training. The reason for this is the large network
size required to learn both domains in the starting models. For example, the No DA models
had a maximum optimum number of eight neurons in the fully connected layer and four
LSTM units to learn only the target domain. However, the federated learning models
required a maximum of 128 neurons in the fully connected layer and eight LSTM units
to fit to both dataset domains. Therefore, when fine-tuning on the industrial dataset after
fitting to both domains, the model begins to overfit, especially when four industrial batches
are used in the training set.

Table 3. The regression accuracies of each of the models for predicting the time remaining until the start and end of ethanol
production, where MAE is the Mean Absolute Error of the prediction. The base-line model was trained using only data
from the industrial fermentations. The numbers in the Model column indicate the dropout probability used in each dropout
layer. E.g., 0,0 represents 0 dropout probability in both layers.

Method Model
Start of Ethanol Production Accuracy (MAE) End of Ethanol Production Accuracy (MAE)

1 2 3 4 1 2 3 4

Base-line model No DA 2.769 1.099 0.646 0.710 2.035 1.278 1.047 0.534

Conventional
domain adaptation 0, 0 1.942 0.93 0.423 0.541 1.767 0.980 0.950 0.681

0, 0.5 3.326 1.528 0.836 0.171 7.29 2.027 1.528 0.920

Federated Learning 0, 0 2.496 0.540 0.431 0.726 3.884 1.133 0.599 0.351

0, 0.5 2.482 0.423 0.520 0.296 3.073 1.089 0.937 0.663

Fine-tuning 0, 0 2.536 0.485 0.334 0.402 4.998 0.833 0.517 1.061

0, 0.5 3.376 0.514 0.338 0.416 5.110 0.837 0.64 1.451

3.3. Future Research Directions

Overall, transferring knowledge from the source domain increased model accuracy
when applied to the target domain data. Using more than two datasets could increase
this benefit further, especially using more similar datasets, e.g., from multiple industrial
fermentation processes. The two datasets used in this work had distinct differences. For
example, no temperature control on the laboratory scale dataset and an increasing time
of flight during fermentation for the industrial scale dataset. It is anticipated that more
similar datasets would provide even greater benefits. Furthermore, other than increasing
model accuracy, the domain adaptation methodology can also reduce the time for ML
model development. After training across two domains, the final models could be used
to predict using data from a new fermentation process without having been trained on
this new domain. However, incorporation of a small number of batches from this new
fermentation process would be expected to aid model accuracy.

In this work, the waveform energy was the single feature used to describe the oscillat-
ing part of the US waveform. The reason for this was that previous work demonstrated that
multiple oscillating waveform features are unlikely to follow similar trends across domains
and their inclusion would degrade model accuracy [21]. However, for many applications of
ML and US sensors, multiple features may need to be used to accurately monitor changes
in this portion of the US waveform. In this case, the methodologies presented in this work
may be used to obtain predictions on the target domain data from models trained on both
the source and target domains. These predictions can then be used as an additional feature
in a model only trained on the target domain data. In this way, other features describing
the oscillating part of the waveform can be used as no domain adaptation is required while
also incorporating knowledge from the source domain.
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The combination of ML and US measurements should be used in further research over
calibration procedures. In this work, the speed of sound increased during fermentation,
agreeing with [14,15], which were conducted at large scale, but contradicting [16,17,49],
which were conducted at small scale. This indicates that there is a discrepancy in the speed
of sound trend at the ethanol, sugar, yeast, and CO2 concentrations and temperature used
at small and large scales. Therefore, extensive and complicated calibration procedures
would need to be used to account for these effects. In addition, ML offers several distinct
advantages: it negates the need for these complex calibration procedures accounting for
all the parameters previously listed; more information from the waveforms is typically
used through feature extraction; more complex fitting procedures are used, allowing for
increased prediction accuracy; and validation procedures encourage model accuracy even
on process parameters outside the range the model was trained on.

Acceptable ML model accuracy is dependent on its desired application. In this work,
the highest accuracy model (federated learning, zero dropout, four industrial training
batches) achieved 99.8% and 99.9% for predicting the start and end of ethanol production,
respectively. This is equivalent to the current method of determination, off-line wort density
measurements using hydrometers, which are only conducted once every several hours (or
even less frequently overnight) and have reduced accuracy when foam is present. However,
these model accuracies were obtained using only a single test set batch and therefore a
large dataset size would be needed to determine whether these accuracies were consistent.

US measurements and ML could also be used in combination with sampling methods
to reduce the amount of sampling required (and therefore also reducing operator burden),
provide timely results between samples (for example, overnight), and predict when fer-
mentation stages will be reached to improve plant scheduling. In this case, ML models
can be continuously updated using the labelled data from the sample measurements. If
US sensors are desired to eliminate the use of sampling, higher accuracy models would be
required and longer model development times would be needed. In addition, a model that
stated a confidence level of its prediction would increase trust in the model by identifying
when sample measurements should be used as a safeguard.

4. Conclusions

This work has used previously collected US sensor data from laboratory scale fer-
mentations to improve ML model accuracy on an industrial scale process. Overall, all
methodologies led to improvements in model accuracy over training on the target domain
alone. The federated learning methodology performed best, achieving higher accuracy for
14 out of 16 machine learning tasks compared with the base case model, and achieving
around 100% test set accuracy when trained on four industrial datasets and no dropout
was used. Federated learning improved model accuracy over the traditional simultaneous
domain training by allowing increased tuning of the network weights to converge on local
target domain optima. However, fine-tuning led to a decrease in model accuracy due to
overfitting of networks caused by the larger number of neurons and LSTM units needed
to accurately train on both domains. The methodologies investigated not only provide
increased accuracy, but also speed up model development time by reducing the number of
fermentation runs required to be monitored in the target domain.

Author Contributions: Conceptualization, A.L.B., M.P.P. and N.J.W.; methodology, A.L.B., M.P.P. and
N.J.W.; software, A.L.B.; validation, A.L.B.; formal analysis, A.L.B.; investigation, A.L.B. and N.J.W.;
resources, A.L.B. and N.J.W.; data curation, A.L.B. and N.J.W.; writing—original draft preparation,
A.L.B.; writing—review and editing, A.L.B., N.J.W. and M.P.P.; visualization, A.L.B.; supervision,
N.J.W. and M.P.P.; project administration, N.J.W.; funding acquisition, N.J.W. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the Engineering and Physical Sciences Research Council
(EPSRC) standard research studentship (EP/R513283/1) and EPSRC network+ Connected Everything
(EP/P001246/1).



Fermentation 2021, 7, 253 15 of 16

Data Availability Statement: The researchers at the University of Nottingham can be contacted for
access to data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Grassi, S.; Amigo, J.M.; Lyndgaard, C.B.; Foschino, R.; Casiraghi, E. Beer fermentation: Monitoring of process parameters by

FT-NIR and multivariate data analysis. Food Chem. 2014, 155, 279–286. [CrossRef]
2. Jan, M.V.S.; Guarini, M.; Guesalaga, A.; Pérez-Correa, J.R.; Vargas, Y.; Perez-Correa, J. Ultrasound based measurements of sugar

and ethanol concentrations in hydroalcoholic solutions. Food Control 2008, 19, 31–35. [CrossRef]
3. Vann, L.; Layfield, J.B.; Sheppard, J.D. The application of near-infrared spectroscopy in beer fermentation for online monitoring

of critical process parameters and their integration into a novel feedforward control strategy. J. Inst. Brew. 2017, 123, 347–360.
[CrossRef]

4. De Beer, T.; Burggraeve, A.; Fonteyne, M.; Saerens, L.; Remon, J.; Vervaet, C. Near infrared and Raman spectroscopy for the
in-process monitoring of pharmaceutical production processes. Int. J. Pharm. 2011, 417, 32–47. [CrossRef] [PubMed]

5. Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering 2017,
3, 616–630. [CrossRef]

6. Ghobakhloo, M. Industry 4.0, digitization, and opportunities for sustainability. J. Clean. Prod. 2020, 252, 119869. [CrossRef]
7. Corro-Herrera, V.A.; Gómez-Rodríguez, J.; Hayward-Jones, P.M.; Barradas-Dermitz, D.M.; Gschaedler-Mathis, A.C.; Aguilar-

Uscanga, M.G. Real-time monitoring of ethanol production during Pichia stipitis NRRL Y-7124 alcoholic fermentation using
transflection near infrared spectroscopy. Eng. Life Sci. 2018, 18, 643–653. [CrossRef]

8. Wang, Q.; Li, Z.; Ma, Z.; Liang, L. Real time monitoring of multiple components in wine fermentation using an on-line
auto-calibration Raman spectroscopy. Sens. Actuators B Chem. 2014, 202, 426–432. [CrossRef]

9. Schalk, R.; Frank, R.; Rädle, M.; Methner, F.-J.; Beuermann, T.; Braun, F.; Gretz, N. Non-contact Raman spectroscopy for in-line
monitoring of glucose and ethanol during yeast fermentations. Bioprocess Biosyst. Eng. 2017, 40, 1519–1527. [CrossRef]

10. Mazarevica, G.; Diewok, J.; Baena, J.R.; Rosenberg, E.; Lendl, B. On-Line Fermentation Monitoring by Mid-Infrared Spectroscopy.
Appl. Spectrosc. 2004, 58, 804–810. [CrossRef]

11. Veale, E.; Irudayaraj, J.; Demirci, A. An On-Line Approach to Monitor Ethanol Fermentation Using FTIR Spectroscopy. Biotechnol.
Prog. 2007, 23, 494–500. [CrossRef]

12. Toledo, J.; Ruiz-Díez, V.; Pfusterschmied, G.; Schmid, U.; Sánchez-Rojas, J. Flow-through sensor based on piezoelectric MEMS
resonator for the in-line monitoring of wine fermentation. Sens. Actuators B Chem. 2018, 254, 291–298. [CrossRef]

13. Ete-Carmona, E.C.; Gallego-Martinez, J.-J.; Martin, C.; Brox, M.; Luna-Rodriguez, J.-J.; Moreno, J. A Low-Cost IoT Device
to Monitor in Real-Time Wine Alcoholic Fermentation Evolution through CO2 Emissions. IEEE Sens. J. 2020, 20, 6692–6700.
[CrossRef]

14. Hussein, W.B.; Hussein, M.A.; Becker, T. Robust spectral estimation for speed of sound with phase shift correction applied online
in yeast fermentation processes. Eng. Life Sci. 2012, 12, 603–614. [CrossRef]

15. Hoche, S.; Krause, D.; Hussein, M.A.; Becker, T. Ultrasound-based, in-line monitoring of anaerobe yeast fermentation: Model,
sensor design and process application. Int. J. Food Sci. Technol. 2016, 51, 710–719. [CrossRef]

16. Resa, P.; Elvira, L.; De Espinosa, F.M. Concentration control in alcoholic fermentation processes from ultrasonic velocity
measurements. Food Res. Int. 2004, 37, 587–594. [CrossRef]

17. Resa, P.; Elvira, L.; De Espinosa, F.M.; González, R.; Barcenilla, J. On-line ultrasonic velocity monitoring of alcoholic fermentation
kinetics. Bioprocess Biosyst. Eng. 2008, 32, 321–331. [CrossRef]

18. Bowler, A.; Escrig, J.; Pound, M.; Watson, N. Predicting Alcohol Concentration during Beer Fermentation Using Ultrasonic
Measurements and Machine Learning. Fermentation 2021, 7, 34. [CrossRef]

19. Donadini, G.; Porretta, S. Uncovering patterns of consumers’ interest for beer: A case study with craft beers. Food Res. Int. 2017,
91, 183–198. [CrossRef]

20. Gatrell, J.; Reid, N.; Steiger, T.L. Branding spaces: Place, region, sustainability and the American craft beer industry. Appl. Geogr.
2018, 90, 360–370. [CrossRef]

21. Bowler, A.L.; Watson, N.J. Transfer learning for process monitoring using reflection-mode ultrasonic sensing. Ultrasonics 2021,
115, 106468. [CrossRef] [PubMed]

22. Kouw, W.M.; Loog, M. A Review of Domain Adaptation without Target Labels. IEEE T Pattern Anal. 2021, 43, 766–785. [CrossRef]
[PubMed]

23. Li, X.; Zhang, W.; Ding, Q.; Sun, J.-Q. Multi-Layer domain adaptation method for rolling bearing fault diagnosis. Signal Process.
2019, 157, 180–197. [CrossRef]

24. Li, X.; Zhang, W.; Ding, Q. A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric
learning. Neurocomputing 2018, 310, 77–95. [CrossRef]

25. Guo, L.; Lei, Y.; Xing, S.; Yan, T.; Li, N. Deep Convolutional Transfer Learning Network: A New Method for Intelligent Fault
Diagnosis of Machines with Unlabeled Data. IEEE T. Ind. Electron. 2019, 9, 7316–7325. [CrossRef]

26. Lu, W.; Liang, B.; Cheng, Y.; Meng, D.; Yang, J.; Zhang, T. Deep Model Based Domain Adaptation for Fault Diagnosis. IEEE T. Ind.
Electron. 2017, 3, 2296–2305. [CrossRef]

http://doi.org/10.1016/j.foodchem.2014.01.060
http://doi.org/10.1016/j.foodcont.2006.11.009
http://doi.org/10.1002/jib.440
http://doi.org/10.1016/j.ijpharm.2010.12.012
http://www.ncbi.nlm.nih.gov/pubmed/21167266
http://doi.org/10.1016/J.ENG.2017.05.015
http://doi.org/10.1016/j.jclepro.2019.119869
http://doi.org/10.1002/elsc.201700189
http://doi.org/10.1016/j.snb.2014.05.109
http://doi.org/10.1007/s00449-017-1808-9
http://doi.org/10.1366/0003702041389229
http://doi.org/10.1021/bp060306v
http://doi.org/10.1016/j.snb.2017.07.096
http://doi.org/10.1109/JSEN.2020.2975284
http://doi.org/10.1002/elsc.201100183
http://doi.org/10.1111/ijfs.13027
http://doi.org/10.1016/j.foodres.2003.12.012
http://doi.org/10.1007/s00449-008-0251-3
http://doi.org/10.3390/fermentation7010034
http://doi.org/10.1016/j.foodres.2016.11.043
http://doi.org/10.1016/j.apgeog.2017.02.012
http://doi.org/10.1016/j.ultras.2021.106468
http://www.ncbi.nlm.nih.gov/pubmed/34022611
http://doi.org/10.1109/TPAMI.2019.2945942
http://www.ncbi.nlm.nih.gov/pubmed/31603771
http://doi.org/10.1016/j.sigpro.2018.12.005
http://doi.org/10.1016/j.neucom.2018.05.021
http://doi.org/10.1109/TIE.2018.2877090
http://doi.org/10.1109/TIE.2016.2627020


Fermentation 2021, 7, 253 16 of 16

27. Geng, B.; Tao, D.; Xu, C. DAML: Domain adaptation metric learning. IEEE T. Image Process. 2011, 10, 2980–2989. [CrossRef]
28. Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial discriminative domain adaptation. Proc. CVPR IEEE 2017, 2017,

2962–2971. [CrossRef]
29. Zhang, W.; Ouyang, W.; Li, W.; Xu, D. Collaborative and Adversarial Network for Unsupervised Domain Adaptation. Proc.

CVPR IEEE 2018, 2018, 3801–3809. [CrossRef]
30. Zhang, Y.; Qiu, Z.; Yao, T.; Liu, D.; Mei, T. Fully Convolutional Adaptation Networks for Semantic Segmentation. Proc. CVPR

IEEE 2018, 2018, 6810–6818. [CrossRef]
31. Tsai, Y.-H.; Hung, W.-C.; Schulter, S.; Sohn, K.; Yang, M.-H.; Chandraker, M. Learning to Adapt Structured Output Space for

Semantic Segmentation. Proc. CVPR IEEE. 2018, 2018, 7472–7481. [CrossRef]
32. Chen, W.; Wang, H.; Li, Y.; Su, H.; Wang, Z.; Tu, C.; Lischinski, D.; Cohen-Or, D.; Chen, B. Synthesizing training images for

boosting human 3D pose estimation. Proc. 3DV 2016, 2016, 479–488. [CrossRef]
33. Sankaranarayanan, S.; Balaji, Y.; Castillo, C.D.; Chellappa, R. Generate to Adapt: Aligning Domains Using Generative Adversarial

Networks. Proc. CVPR IEEE 2018, 2018, 8503–8512. [CrossRef]
34. Sankaranarayanan, S.; Balaji, Y.; Jain, A.; Lim, S.N.; Chellappa, R. Learning from Synthetic Data: Addressing Domain Shift for

Semantic Segmentation. Proc. CVPR IEEE 2018, 2018, 3752–3761. [CrossRef]
35. Bousmalis, K.; Silberman, N.; Dohan, D.; Erhan, D.; Krishnan, D. Unsupervised pixel-level domain adaptation with generative

adversarial networks. Proc. CVPR IEEE 2017, 2017, 95–104. [CrossRef]
36. Bousmalis, K.; Irpan, A.; Wohlhart, P.; Bai, Y.; Kelcey, M.; Kalakrishnan, M.; Downs, L.; Ibarz, J.; Pastor, P.; Konolige, K.; et al.

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping. IEEE Int. Conf. Robot. 2018, 2018,
4243–4250. [CrossRef]

37. Zhang, W.; Peng, G.; Li, C.; Chen, Y.; Zhang, Z. A new deep learning model for fault diagnosis with good anti-noise and domain
adaptation ability on raw vibration signals. Sensors 2017, 17, 425. [CrossRef]

38. Du, Y.; Jin, W.; Wei, W.; Hu, Y.; Geng, W. Surface EMG-based inter-session gesture recognition enhanced by deep domain
adaptation. Sensors 2017, 17, 458. [CrossRef]

39. Han, Y.; Yoo, J.; Kim, H.H.; Sin, H.J.; Sung, K.; Ye, J.C. Deep learning with domain adaptation for accelerated projection-
reconstruction MR. Magn. Reson. Med. 2018, 80, 1189–1205. [CrossRef]

40. Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. ACM T. Intel. Syst. Tec. 2019, 10, 12.
[CrossRef]

41. Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins, G.; Rusu, A.A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-
Barwinska, A.; et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. USA 2017, 114, 3521–3526.
[CrossRef]

42. McClements, D. Advances in the application of ultrasound in food analysis and processing. Trends Food Sci. Technol. 1995, 6,
293–299. [CrossRef]

43. Zhan, X.; Jiang, S.; Yang, Y.; Liang, J.; Shi, T.; Li, X. Inline Measurement of Particle Concentrations in Multicomponent Suspensions
using Ultrasonic Sensor and Least Squares Support Vector Machines. Sensors 2015, 15, 24109–24124. [CrossRef]

44. Henning, B.; Rautenberg, J. Process monitoring using ultrasonic sensor systems. Ultrasonics 2006, 44, e1395–e1399. [CrossRef]
45. Li, X.; Zhao, L.; Wei, L.; Yang, M.-H.; Wu, F.; Zhuang, Y.; Ling, H.; Wang, J. DeepSaliency: Multi-Task Deep Neural Network

Model for Salient Object Detection. IEEE T. Image Process. 2016, 25, 3919–3930. [CrossRef]
46. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
47. Machine Learning Mastery. Available online: https://machinelearningmastery.com/handle-long-sequences-long-short-

termmemory-recurrent-neural-networks/ (accessed on 11 August 2021).
48. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
49. Lamberti, N.; Ardia, L.; Albanese, D.; Di Matteo, M. An ultrasound technique for monitoring the alcoholic wine fermentation.

Ultrasonics 2009, 49, 94–97. [CrossRef]
50. Chen, Y.-T.; Chunag, Y.-C.; Wu, A.-Y.A. Online Extreme Learning Machine Design for the Application of Federated Learning.

In Proceedings of the IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Genova, Italy,
31 August–2 September 2020; pp. 188–192. [CrossRef]

51. Dib, M.A.D.S.; Ribeiro, B.; Prates, P. Federated Learning as a Privacy-Providing Machine Learning for Defect Predictions in Smart
Manufacturing. Smart Sustain. Manuf. Syst. 2021, 5, 1–17. [CrossRef]

52. Ge, N.; Li, G.; Zhang, L.; Liu, Y. Failure prediction in production line based on federated learning: An empirical study. J Intell
Manuf. 2021. [CrossRef]

http://doi.org/10.1109/TIP.2011.2134107
http://doi.org/10.1109/CVPR.2017.316
http://doi.org/10.1109/CVPR.2018.00400
http://doi.org/10.1109/CVPR.2018.00712
http://doi.org/10.1109/CVPR.2018.00780
http://doi.org/10.1109/3DV.2016.58
http://doi.org/10.1109/CVPR.2018.00887
http://doi.org/10.1109/CVPR.2018.00395
http://doi.org/10.1109/CVPR.2017.18
http://doi.org/10.1109/ICRA.2018.8460875
http://doi.org/10.3390/s17020425
http://doi.org/10.3390/s17030458
http://doi.org/10.1002/mrm.27106
http://doi.org/10.1145/3298981
http://doi.org/10.1073/pnas.1611835114
http://doi.org/10.1016/S0924-2244(00)89139-6
http://doi.org/10.3390/s150924109
http://doi.org/10.1016/j.ultras.2006.05.048
http://doi.org/10.1109/TIP.2016.2579306
http://doi.org/10.1162/neco.1997.9.8.1735
https://machinelearningmastery.com/handle-long-sequences-long-short-termmemory-recurrent-neural-networks/
https://machinelearningmastery.com/handle-long-sequences-long-short-termmemory-recurrent-neural-networks/
http://doi.org/10.1016/j.ultras.2008.06.003
http://doi.org/10.1109/AICAS48895.2020.9073802
http://doi.org/10.1520/SSMS20200029
http://doi.org/10.1007/s10845-021-01775-2


57 
 

9 Discussion  
This section justifies the methods used in this thesis to achieve the aim of developing ML 

methods to facilitate optimal deployment of US sensors for process monitoring applications 

in industrial environments. The methods discussed consist of the data collected; the training, 

validation, and testing procedures used; the performance metrics utilised to evaluate the ML 

models; and the level of accuracy required by the ML models in this thesis. Considerations 

for the application of US sensing and ML combinations in industrial environments is 

included, from which, limitations of this thesis towards achieving its aim are drawn.  

9.1 Data collection  
The collection and use of data underpins ML as it is used for training the models. The 

quantity and quality of the data seen during training, along with the data used during 

validation to optimise hyperparameters, determines whether the ML model is suitable for its 

desired purpose. The aim of this thesis was to develop ML methods to facilitate optimal 

deployment of US sensors for process monitoring applications in industrial environments. To 

achieve this purpose, the conclusions drawn from this thesis, such as the relative strengths 

and weaknesses of each US sensing or ML technique, must be representative of what may 

be expected in industrial environments. The data must therefore satisfy the following criteria:  

1. The US sensor data must monitor the desired process phenomena. This allows 

conclusions from this thesis to be drawn about the relative merits of US sensing 

approaches to monitor processes. To achieve this:  

a. Data must be collected at a sufficient timescale granularity to ensure that the 

US sensors are able to measure the required process phenomena.  

b. It must be evidenced that the US sensors are able to provide useful 

information about the process.  

2. The US data must be collected from a sufficient variety of processes that covers the 

range encountered in industrial environments. This enables the conclusions drawn 

from this thesis to be expected to apply to new processes encountered.  

9.1.1 Criterion 1a 
Table 1 compares the timescale granularity required to monitor the process phenomena 

investigated compared to the granularity used in this thesis. The minimum timescale 

granularity required has been estimated using the fastest process times monitored during 

the experimental runs (honey-water blending, pipe cleaning, and beer fermentation), using 

reference measurements (flour-water batter mixing), and comparison to previous literature 

(beer fermentation). Importantly, all utilised timescales were below the required sizes and 

thereby satisfy criterion 1a. 

Table 1: A comparison between the minimum timescale granularity required to monitor the 

desired process phenomena compared with the granularity used in this thesis. The 

granularity used in this thesis is below the required minimums, thereby satisfying criterion 

1a.  

Process Phenomena 
to be 
monitored 
using US 
sensors  

Granularity 
required (time 
per 
measurement) 

Explanation Granularity 
used in this 
thesis (time 
per 
measurement) 

Honey-water 
blending 

Development 
of 
homogeneity  

20 s  
 
  

The shortest time for 
mixing completion 
was 200 s. Assuming 

1 s 
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an order of 
magnitude lesser 
timescale is needed 
to monitor this 
process, a minimum 
granularity of 20 s 
per measurement is 
required. 

Flour-water 
batter 
mixing  

Development 
of gluten 
network  

30 s  Figure 1 displays the 
power consumption 
to the impeller during 
flour-water batter 
mixing acquired 
every 30 s and 
displays sufficient 
granularity to 
determine the time 
for optimal mixing 
(the peak in the 
power draw). 

1 s  

Pipe 
cleaning  

Removal of 
fouling  

13.2 s The shortest cleaning 
process occurred in 
132 s. Assuming an 
order of magnitude 
lesser timescale is 
needed to follow this 
process, a minimum 
granularity of 13.2 s 
per measurement is 
required. 

4 s 

Beer 
fermentation  

Decreasing 
wort density  

30 minutes  The shortest time for 
ethanol production to 
commence was 0.21 
days and the shortest 
time until the end of 
ethanol production 
was 1.3 days. Using, 
the value of 0.21 
days and assuming 
that an order of 
magnitude lesser 
timescale is needed, 
a minimum 
granularity of 30 
minutes per 
measurement is 
required. 

200 s 

Production of 
carbon 
dioxide 
bubbles 

432 s  Resa et al. (2008) 
monitored variability 
in sound wave 
attenuation during 
carbon dioxide 
production using a 
timescale granularity 
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of approximately 200 
measurements per 
day. This equated to 
one measurement 
every 432 s.  

 

 

Figure 1: The power draw to the impeller measurements during the flour-water batter mixing 

process runs. The power draw was recorded every 30 seconds and had sufficient granularity 

to determine the time for optimal mixing (the peak in the power draw) (Perez Alvarado et al., 

2016).  

9.1.2 Criterion 1b 
To evidence that the US sensors provide useful information about the processes being 

monitored, models were trained with varying training set sizes to evaluate whether increased 

accuracy was achieved with greater volumes of US sensor data. The purpose of this 

exercise was not to obtain as accurate predictions as possible but rather to show that with 

increasing volumes of US data, the ML models perform are able to better predict information 

relevant to each process. The models were trained using the convolutional feature 

extraction, multi-task networks presented in Section 6 (‘Convolutional feature extraction for 

process monitoring using ultrasonic sensors’). Figure 2a-g displays the results of these 

investigations. For honey-water blending (Figure 2a), flour-water batter mixing (Figure 2b), 

and pipe cleaning (Figures 2c-e), the models were trained to predict whether the process 

was complete (classification task) and the time remaining until completion (regression task). 

For the laboratory (Figure 2f) and industrial (Figure 2g) beer fermentation processes, the 

models were trained to predict whether ethanol production had begun or finished 

(classification task), and the processing time remaining until these process stages were 

reached (regression task). The model performance for these tasks is represented by the 

model’s percentage accuracy (classification task) and MAE (regression task). For all 

processes, it is shown that increasing the volume of US data used for ML models training 

increases prediction accuracy, thereby suggesting that the US sensor measurements 

provide useful process information and satisfying criterion 1b. This proves that the US 

sensors are able to provide useful information about each process and allows the 
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conclusions drawn from this thesis to be expected to apply to new process monitoring 

applications. However, plateaus in ML model accuracy are not achieved for any datasets, 

suggesting that collection of further data is required to fully represent the case studies. 

Although, it must be noted that these models were the final multi-task models produced in 

Section 6 and further optimisation for each case study and dataset size is possible. 

Increasing dataset size would increase the magnitude of this thesis’ contribution towards 

achieving its aim as with greater data volumes, greater variations in the proportion of the 

dataset used during training may be investigated. As such an adaptable US sensing and ML 

pipeline for varying generalisability requirements could be developed to produce a hierarchy 

of techniques for manufacturers to use within their applications. This is discussed further in 

Section 9.6 ‘Limitations’. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 
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(g) 

 

Figure 2: a) Honey-water blending, b) flour-water batter mixing, c) flat pipe section cleaning, 

d) plastic pipe section cleaning, e) metal pipe section cleaning, f) laboratory beer 

fermentation, and g) industrial beer fermentation. The models were trained using the coarse 

feature extraction, multi-task networks presented in Section 6 (‘Convolutional feature 

extraction for process monitoring using ultrasonic sensors’). For Figures 2a-e, the models 

were trained to predict whether the process was complete (classification task) and the time 

remaining until completion (regression task). For Figures 2f-g, the models were trained to 

predict whether ethanol production had begun or finished (classification task), and the 

processing time remaining until these process stages were achieved (regression task).  

9.1.3 Criterion 2 
US waveforms can be affected by two phenomena: Firstly, the magnitude of the waveform 

can be altered by changing acoustic impedance or attenuation. Secondly, variations in 

sound velocity alter the displacement of the waveform in the time domain (Henning and 

Rautenburg, 2006). In this thesis, the processes monitored were honey-water blending, 

flour-water batter mixing, cleaning of food fouling from pipe sections, and alcoholic beer 

fermentation. During blending, mixing, and cleaning, the acoustic impedance at the 

measurement areas change as the material composition varies. Furthermore, conducting 

these processes over a range of temperatures alters the sound velocity through the 

materials. Throughout alcoholic beer fermentation, the acoustic impedance and speed of 

sound of a transmitted US wave change as the density of the wort decreases (Bowler et al., 

2021). Moreover, attenuation increases as CO2 bubbles are produced. Therefore, this thesis 

meets criterion 2 by monitoring the full range of impacts to US waveforms during process 

monitoring. This means that the feature extraction methods for use in the ML pipeline or 

domain adaptation methods were developed using all possible impacts to US waveforms. 

Furthermore, the methods in this thesis can be applied to both stationary and evolving 

processes. Processes which evolve over time, such as those investigated in this thesis, 

require information from previous timesteps as inputs to the ML model. In these instances 

the LSTM layers used in the final ML pipeline may be used to learn process trajectories. 

However, if only information from the current timestep is required, then the feature extraction 

methodologies developed in this thesis can be applied into neural network architectures.  

9.2 Training, validation, and testing procedures used  
The aim of this thesis was to develop ML methods to facilitate optimal deployment of US 

sensors for process monitoring applications in industrial environments. To achieve this 

purpose, the conclusions drawn from this thesis, such as the relative strengths and 

weaknesses of each US sensing or ML technique, must be representative of what may be 

expected in industrial environments. Therefore, the training, validation, and testing 

procedures must be similar to those that would be used in industrial settings so that the 
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conclusions drawn from this thesis can be expected to transfer to industrial processes. K-fold 

cross validation splits the combined training and validation sets into k sections. Each of 

these sections is used as individual validation sets and an average metric for the validation 

accuracy is obtained (Jung and Hu, 2015). This is a robust method of validation as it repeats 

the procedure k number of times. The size of k typically ranges between 2 and 10 (Xu and 

Goodacre, 2018). However, in industrial environments, single-fold validation may be utilized 

to reduce ML model development time. Furthermore, drawing conclusions from test set 

results for models that have undergone single-fold validation biases for ML techniques with 

greater generalisation capabilities. As the level of generalisation required in industrial 

applications varies (see Section 9.5 ‘Considerations for industrial application’), this does not 

pose a limitation to the results generated. Therefore, either k-fold or single-fold validation 

methods are representative of industrial practices (Table 2). However, no validation set was 

used for the LSTMs and CNNs in Section 4 or the LSTMs in Section 7. Whilst this represents 

a limitation, this was not found to influence the conclusions drawn from this thesis. The 

reason for this is that the omission of a validation set disadvantages the hyperparameters 

selected for the LSTMs and CNNs compared to the other algorithms used in the articles 

(ANNs and SVMs in Section 4 and ANNs in Section 7) as they were not chosen to 

generalise to unseen data. Despite this, LSTMs and CNNs performed best in both studies. 

Further discussion is provided in Sections 4 and 7. The chosen test set size typically lies in 

the range of 10 to 50 % of the data with the validation set forming the same proportion of the 

total training and validation set size (Xu and Goodacre, 2018). However, in industrial 

applications, the desired level of model generalisability is dependent on the volume of 

representative data able to be collected. This is dependent on the process complexity, 

variability, and level of disruption to the manufacturing process caused by labelled data 

collection (see Section 9.5 ‘Considerations for industrial application’). Therefore, all 

validation and test set sizes used in this thesis allow the conclusions drawn from this thesis 

to apply to industrial processes and therefore contribute to the thesis aim of developing ML 

methods to facilitate optimal deployment of US sensors for process monitoring applications 

in industrial environments. Although, a greater contribution to this aim could obtained 

through development of an adaptable US sensing and ML pipeline to different 

generalisability requirements. For example, by comparing each US sensing method and ML 

technique over varying validation procedures and training, validation, and test split sizes, a 

hierarchy of techniques suitable for each application could be provided. This is also 

discussed in Section 9.6 ‘Limitations’.  

Table 2: The validation procedures used in the sections of this thesis. For all validation 

procedures, the datasets were splits by number of runs so that all datapoints for a run were 

included in either the training, validation, or test set.  

Section Algorithm Validation procedure  

4 

ANN Single-fold (~ 20% of data) 
SVM 5-fold 
LSTM None 
CNN None 

5 ANN and LSTM 5-fold 

6 LSTM Single-fold (~ 20% of data) 

7 
ANN Single-fold (~ 20% of data) 
LSTM None 

8 LSTM k-fold (where k ranges from 1 to 4) 
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9.3 Metrics used and levels of accuracy attained  
In this thesis, several metrics were utilised to evaluate the predictive capabilities of the ML 

models including accuracy for classification tasks and R2, MAE, and MSE for regression 

tasks (see Section 3.2.3.2 ‘Metrics’). To achieve the aim, the conclusions drawn from this 

thesis about the relative strengths of each US sensing or ML technique must be 

representative of what may be achieved in industrial applications. For the classification 

tasks, only the accuracy metric was used (the sum of the number of correct predictions 

divided by the total number of predictions and multiplied by 100 to convert into a 

percentage). While additional metrics (such as precision, specificity, and recall or sensitivity) 

may be used to obtain greater information about model performance especially on 

imbalanced datasets, in this thesis, the model accuracies are used to compare between ML 

pipelines and are not used to predict a final model’s performance in application. Therefore, 

as accuracy provides a method of comparing between ML techniques, this fulfils the thesis 

aim. Similarly to the classification metric, in this thesis, the regression metrics were used to 

compare between US and ML techniques rather than evaluate an ML model’s performance 

in industrial application. Therefore, any of the regression metrics may be used to compare 

between models and satisfy the thesis aim. However, in industrial application, the choice of 

evaluation metric may alter the optimal feature extraction method, algorithm, or 

hyperparameters required to accomplish the desired task. For example, MSE provides larger 

weighting to high errors and therefore a lower MSE indicates a model more able to correctly 

predict over the full process length. In comparison, models with low MAE may provide 

increased accuracy at certain process stages compared to models with low MSE scores. 

Furthermore, for mixing and cleaning applications, a false positive (i.e., an incorrect 

prediction that the pipe section is fully clean or a vessel is fully mixed) may trigger the ending 

of the process and thereby be less desirable than a false negative. Therefore, precision may 

be a better indicator of model performance than accuracy. This therefore represents a 

limitation of this thesis that further tasks could have been explored using the case studies to 

identify the relative strengths of US sensing and ML techniques for different applications. 

This is also discussed in Section 9.6 ‘Limitations’.  

To draw conclusions about the strengths of each US sensing and ML technique, no criteria 

for minimum accuracy attained during process monitoring is required. The reason for this is 

that the techniques are compared to one another using the same data and therefore the 

relative accuracies can be expected to apply to industrial process monitoring. However, 

during industrial implementation, minimum accuracy is required to satisfy the manufacturers’ 

criteria, as discussed in Section 9.5 ‘Considerations for industrial application’. 

9.4 Chosen temperature range  
For the honey-water blending datasets, the temperature range investigated spanned 

between 19.3 and 22.1 °C. Specifically, the temperature ranged between 19.3 to 22.1°C for 

one dataset compared with 19.8 to 21.2°C for the second. When developing unlabelled 

domain adaptation methods in Section 7, it was concluded that training ML models across a 

greater process parameter range (the greater range of temperatures for one of the honey-

water blending datasets) or multiple datasets improved transfer learning to further datasets 

by enabling the models to adapt to a wider range of feature distributions. The aim of this 

thesis was to develop ML methods to facilitate optimal deployment of US sensors for 

process monitoring applications in industrial environments. Therefore, the temperature range 

chosen, spanning from 19.3 to 22.1 °C, is used to draw conclusions about the relative 

strengths of each ML method investigated rather than to reflect actual industrial temperature 

spectra. The choice of temperature range and granularity is therefore justified as the 

emphasis of this thesis is comparative evaluation of ML methods rather than achieving high 
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accuracy in an industrial application. The results drawn from this thesis are indicative of 

differing temperature ranges between the two mixing processes and provide insight into 

which ML methods may be most generalisable to varying temperature ranges in industrial 

scenarios. However, further exploration of greater parameter ranges would have increased 

the strength of the conclusions drawn. For example, multiple datasets could have been 

collected for each case study (mixing, cleaning, and fermentation) across varying process 

parameter ranges, other process parameter ranges could have been made to be different 

other than temperature (for example, material quantities or impeller speed during honey-

water blending), or more than two datasets with differing parameter ranges could have been 

collected (e.g., a low, medium, and a larger parameter range dataset). Each of these 

methods could have evaluated whether the insight that training ML models across a greater 

process parameter range improved transfer learning to further datasets was consistent for all 

investigations.  

9.5 Considerations for industrial application  
The aim of this thesis was to develop ML methods to facilitate optimal deployment of US 

sensors for process monitoring applications in industrial environments. However, during 

application in industrial environments, the aim would be to develop ML models that are able 

to accurately predict information about the process being monitored from new, real-time US 

data. This aim presents a different set of criteria for the data collection stage compared with 

this thesis:  

1. The collection of data should not present an unacceptable level of disruption to the 

manufacturer.  

2. The US sensor and ML combination should achieve the level of accuracy desired by 

the manufacturer.  

To achieve the first criteria, the sensing approach should be chosen according to the 

manufacturer’s requirements. For example, it must be determined whether an invasive 

sensing solution is acceptable or whether a non-invasive sensing approach must be used. 

For example, in the food and drink industry, invasive probes may be discounted for some 

applications due to risk of contamination between product batches (Bowler et al, 2020). 

During data collection, normal production schedules may have to be postponed in order to 

sample the process or to obtain data over a wider range of process parameters than 

observed during normal operation. Therefore, the volume of data collected must be below 

the tolerable threshold to the manufacturer. This may require the use of additional 

techniques such as semi-supervised learning to utilise unlabelled data during normal 

production (Ge et al., 2017), transfer learning from similar tasks (Bowler et al., 2022b), active 

learning to select process parameters with high model uncertainty (Bull et al., 2019), or on-

line learning to continuously update the models during normal operation (Kaushik et al., 

2021) to achieve the required accuracy whilst reducing the disruption to the manufacturing 

process. The method of obtaining labelled data to train the ML models must also be decided. 

For example, sampling may require stopping the process at a greater frequency than during 

normal operation or an additional reference measurement sensor may need to be installed 

during the data collection stage.  

To achieve the second criteria, firstly, it must be determined that the US sensors measure 

the desired process phenomena. The sensing solution must be positioned in a location that 

is able to monitor these phenomena. For example, to monitor pipe cleaning, the sensors 

should monitor the areas of most fouling to allow identification of the end of the full cleaning 

process (e.g. the bottom of the pipe or at corners of pipe connections). For the honey-water 

blending datasets, two sensors were used. One sensor was located in the centre of the 
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vessel base and the second was attached to the vessel base but offset from the sensor. In 

Section 4, the highest R2 values (up to 0.977) were achieved by combining the inputs from 

both sensors. This is because the non-central sensor had better prediction ability nearer the 

beginning of the process as the honey was removed from this sensor measurement area 

first, and the central sensor had greater resolution nearer the end of the mixing process as 

the last of the honey was dissolved. Therefore, the location of the sensors should be chosen 

to obtain representative measurements of the process to be monitored. Multiple sensors 

may require use on large vessels where the dynamics at different locations in the vessel 

vary.  

The sensing approach utilised must also be able to measure the desired phenomena. For 

example, it must be decided whether a reflection-mode sensing technique is sufficient or 

whether transmission of the sound wave through the process material is required. In this 

thesis, transmission-based techniques were used for fermentation monitoring. However, in 

Section 5, the non-invasive, reflection-mode method (R2
 = 0.948, MAE = 0.283 % ABV, MSE 

= 0.146 % ABV) achieved similar accuracy to the transmission-based technique (R2 = 0.952, 

MAE = 0.265 % ABV, MSE = 0.136 % ABV). If transmission methods are required, then non-

invasive sensors that transmit across the full vessel diameter (although this may lead to 

strong attenuation of the sound wave), invasive probe sensors (as used for fermentation 

monitoring in this thesis), or non-invasive sensors positioned on recycle lines or sampling 

points may be used. For example, Hussein et al. (2012) implemented a single non-invasive 

US sensor on a circulation line for in-line monitoring of a 60 litre fermentation process. The 

selection of the timescale granularity for data acquisition as well as determining whether the 

US sensors provide useful information about the process can be conducted using the same 

approaches taken in Sections 9.1.1 (Criterion 1a) and 9.1.2 (Criterion 1b).  

During data collection, similar plots to Figures 2a-g can be constructed to identify a plateau 

in model accuracy to determine when a sufficient volume of data has been obtained to 

represent the process. It should be noted that this plateau does not identify that the desired 

level of accuracy is achievable, only that further data collection would not lead to an increase 

in model accuracy. The choice of datapoints for use in the training, validation, and tests sets 

must also be selected to obtain representative accuracy estimations for the ML models 

during production. For example, validation set datapoints may be selected to be outside the 

input feature range of the training set datapoints, and the test set datapoints to be located 

outside of both the training and validation sets. In this way, hyperparameters that provide the 

best extrapolation of the model predictions are chosen in the validation stage and the 

accuracies obtained on the test set are conservative estimates based on datapoints from 

outside the range that the models were trained on. This produces models that are robust to 

process deviations which may be caused by varying input streams, alterations to operating 

conditions, or seasonal variations (Fisher et al., 2020). Furthermore, large validation and test 

sets (e.g. 25 % training, 25 % validation, and 50 % test splits) could be employed to evaluate 

the model’s ability to generalise. Further ML techniques can be employed to increase model 

robustness to changing feature distributions such as real-time domain adaptation strategies 

including feature alignment, prediction alignment, and feature removal (Bowler et al., 2023a).  

During production, outlier detection methods (e.g., isolation forests (scikit-learn, 2023)) may 

be used to identify datapoints located outside the feature range encountered during model 

training. Furthermore, autoencoders may be used to identify datapoints that are located 

within the model training data range but whose feature combinations signal the datapoint as 

an anomaly (Ha et al., 2022) and uncertainty quantification techniques (such as model 

ensembles (Bowler et al., 2023b)) can be used to identify datapoints with low model 

confidence. Each of these methods may be used to firstly identify datapoints where the 



66 
 

model prediction should be questioned and secondly where further data collection efforts 

should be allocated.  

It is also important to understand what the manufacturer defines as accurate and how this 

informs the ML approach. For example, during beer fermentation, wort density is usually 

measured once or twice per day (Controllo e Misura, 2021). However, the wort density may 

be used for many purposes such as monitoring the rate of fermentation, the beer alcohol 

content, and the start or end of ethanol production (further discussion is provided in Section 

5). Therefore, to monitor the start or end of ethanol production, increased sampling rates 

may be required to obtain enhanced data labelling around these process stages. The choice 

of metric is an important consideration for determining accuracy. As discussed previously, 

for mixing and cleaning applications, a false positive (i.e., an incorrect prediction that the 

pipe section is fully clean or a vessel is fully mixed) may trigger the ending of the process 

and thereby be less desirable than a false negative. Therefore, precision may be a better 

indicator of model performance than accuracy. Furthermore, if using neural networks, the 

choice of metric during the gradient descent operation determines the model produced. For 

example, using MSE for regression tasks penalises larger errors leading to models that more 

accurately monitoring the full process length. Whereas, using MAE may produce models that 

are more accurate at process stages that provide greater US waveform information.  

9.6 Limitations  
As the aim of this thesis was to develop ML methods to facilitate optimal deployment of US 

sensors for process monitoring applications in industrial environments, there is no minimum 

data collection volume required to achieve this (aside from proving that useful information is 

provided by the sensors as highlighted by Section 9.1.2 ‘Criterion 1b’). However, increasing 

dataset size would increase the magnitude of this thesis’ contribution towards achieving this 

aim. With greater data volumes, greater variations in the proportion of the dataset used 

during training may be investigated. This is evidenced by the results presented in Figures 

2a-g where plateaus in ML model accuracy are not achieved for any datasets, suggesting 

that collection of further data is required to fully represent the case studies. However, it must 

be noted that these models were the final multi-task models produced in Section 6 and 

further optimisation for each case study and dataset size is possible. Collection of further 

data would enable investigation into the relative strengths of US sensing and ML approaches 

for a wider range of training dataset sizes. This would provide a greater contribution to 

facilitating the implementation of US sensing and ML combinations in industrial 

environments by providing adaptable recommendations to the size of dataset available. For 

example, a larger dataset volume which more completely represents the monitored process’ 

feature range and distribution may enable the use of more complex algorithms such as 

CNNs and deep neural networks with LSTM layers. However, a smaller, less representative 

dataset may require simpler ML techniques such as ANNs with feature gradients as inputs to 

reduce overfitting to the training data. Furthermore, transmission-based US sensing 

approaches obtain more US information compared with reflection-mode techniques. 

Therefore, transmission-based methods may provide increased accuracy with larger dataset 

sizes whereas reflection-mode methods may provide better generalisation due to the fewer 

features extracted at lower dataset sizes. The current conclusions drawn from this thesis are 

useful starting pipelines to trial but require evaluation for each new process encountered.  

This adaptable pipeline can also be extended to varying validation procedures (e.g. k-fold or 

single-fold), sizes of validation sets, or to validation datapoints located outside of the training 

dataset range (thereby evaluating model robustness to process deviations). Similarly, this 

could produce a hierarchy of techniques to utilise depending on the level of generalisability 

required by the model. To further improve the contribution to the thesis aim, the US sensing 
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and ML combinations could be applied to a greater number of tasks using the same case 

studies as presented. For example, ML techniques could be compared for each of the 

possible desired tasks for fermentation monitoring such as predicting fermentation rate, 

alcohol concentration, and the start or end of ethanol production. For the cleaning and 

mixing datasets, precision could be used as the performance metric to minimise the false 

positive rate triggering the early ending of the processes. This could be used to develop an 

adaptable pipeline to greater range of ML tasks. These limitations are also discussed in 

Section 10.1 ‘Limitations of thesis’ after the results from the thesis have been presented. 

As discussed in Section 9.4 ‘Chosen temperature range’, when developing unlabelled 

domain adaptation methods in Section 7, it was concluded that training ML models across a 

greater process parameter range (a greater range of temperatures; 19.3 to 22.1°C 

compared with 19.8 to 21.2°C for one of the honey-water blending datasets) or multiple 

datasets improved transfer learning to further datasets by enabling the models to adapt to a 

wider range of feature distributions. Further exploration of greater parameter ranges would 

have increased the strength of the conclusions drawn. For example, multiple datasets could 

have been collected for each case study (mixing, cleaning, and fermentation) across varying 

process parameter ranges, other process parameter ranges could have been made to be 

different other than temperature (for example, material quantities or impeller speed during 

honey-water blending), or more than two datasets with differing parameter ranges could 

have been collected (e.g., a low, medium, and a larger parameter range dataset). Each of 

these methods could have evaluated whether the insight that training ML models across a 

greater process parameter range improved transfer learning to further datasets was 

consistent for all investigations.  
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10 Conclusions and recommendations  
The aim of this thesis was to develop ML methods to facilitate optimal deployment of US 

sensors for process monitoring applications in industrial environments. Table 1 is included 

below as a reminder of the sections in this thesis. The objectives were:  

1. To collect US sensor data for process monitoring applications that enable the 

thesis conclusions to be expected to extend to industrial environments. Three 

types of processes were monitored: material mixing, cleaning of pipe sections, and 

alcoholic fermentation covering the full range of impacts to US waveforms during 

process monitoring (see Section 3.1 Experimental datasets). Furthermore, the data 

was collected at sufficient timescale granularity and the US sensor data was shown 

to contain useful information about the processes (see Section 9 Discussion).  

2. To evaluate different US sensing techniques to determine their benefits and 

limitations for industrial process monitoring. Two US sensing techniques were 

investigated: a non-invasive, reflection-mode technique that can be externally 

retrofitted to existing processing equipment, and an invasive US probe with reflector 

plate.  

3. To evaluate different feature extraction, feature selection, algorithm types and 

hyperparameter values to determine the optimal ML pipeline for process 

monitoring using US measurements. This reduces time for ML model development 

in industrial environments by suggesting ML pipelines that achieve the highest 

accuracy for previous process monitoring tasks.  

4. To develop unlabelled domain adaptation methods to utilise previously 

collected datasets and negate the data labelling burden for sensor deployment. 

These methods can be used to transfer ML models between processes without 

requiring labelled data (the outputs required during ML model training and often 

acquired by using reference measurements) and therefore negate disruption to a 

manufacturing process during the data collection stage.  

5. To develop labelled domain adaptation methods to utilise previously collected 

datasets, reduce the data labelling burden for sensor deployment, and improve 

ML model accuracy on target processes. These methods can be used to reduce 

disruption to a manufacturing process during the data collection stage.  

Table 1: A summary of the articles in each section of this thesis.  

Section Title of article Novelty 

4 Monitoring Mixing Processes 
Using Ultrasonic Sensors and 
Machine Learning 

ML was combined with non-invasive, 
reflection-mode US sensing to monitor 
mixing processes. A range of ML 
algorithms were trialled including LSTMs 
and CNNs. 

5 Predicting Alcohol Concentration 
during Beer Fermentation Using 
Ultrasonic Measurements and 
Machine Learning 

ML was combined with non-invasive, 
reflection-mode US sensing to monitor 
fermentation processes. Omission of the 
temperature as a feature was evaluated.  

6 Convolutional feature extraction 
for process monitoring using 
ultrasonic sensors 

A convolutional feature extraction method 
is presented. Multi-task learning and data 
augmentation were applied to US sensor 
data.  
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7 Transfer learning for process 
monitoring using reflection-mode 
ultrasonic sensing 

Unlabelled domain adaptation was applied 
to US sensor data for monitoring mixing 
and cleaning processes. Omission of the 
temperature as a feature was evaluated. 

8 Domain Adaptation and 
Federated Learning for Ultrasonic 
Monitoring of Beer Fermentation 

Labelled domain adaptation was applied to 
US sensor data for fermentation 
monitoring. Federated learning and multi-
task learning were combined with US 
sensor data.  

 

The first and second objectives were fulfilled through the work in Sections 4, 5, 6, and 7. The 

potential of an industrially relevant, reflection-mode, non-invasive US sensing technique was 

demonstrated by the work undertaken in Sections 4, 6, and 7 for mixing and cleaning 

processes. Furthermore, by using only the first waveform reflection and omitting the process 

temperature as an ML model feature, Section 5 demonstrated the potential of the sensing 

technique to monitor beer fermentation with comparative accuracy as transmission-based 

methods. This non-invasive method can be easily retrofitted onto existing production 

equipment. The non-invasive method (R2
 = 0.948, MAE = 0.283, MSE = 0.146) achieved 

similar accuracy to the transmission-based technique (R2 = 0.952, MAE = 0.265, MSE = 

0.136). Although the non-invasive US sensing approach was compared to a transmission-

based approach for a single case study (laboratory beer fermentation), only Meng et al. 

(2012) has previously used a non-invasive, reflection-mode US sensing technique to monitor 

fermentation. They used a single sensor to monitor yogurt fermentation by monitoring the 

change in acoustic impedance at the wall-yogurt interface. All other previous applications of 

US sensors to monitor fermentation have utilised transmission-based approaches, 

highlighting the reduction in process information available to reflection-mode sensing 

(Bowler et al., 2022). Ultimately, the consideration of whether to use invasive or non-

invasive, reflection-mode or transmission sensing approaches must be decided based on the 

criteria presented in Section 9.5 ‘Considerations for industrial application’: 1.) The collection 

of data should not present and unacceptable level of disruption to the manufacturer, and 2.) 

the US sensor and ML combination should achieve the level of accuracy desired by the 

manufacturer. It must be determined whether an invasive sensing solution is acceptable to 

the manufacturer or whether a non-invasive sensing approach must be used. If a reflection-

mode sensing solution does not achieve the level of accuracy required by the manufacturer, 

then transmission-based approaches can be trialled. 

The third objective was fulfilled by developing an optimal ML pipeline for process monitoring 

using US sensors (Figure 1). A pretrained CNN is used as a feature extractor. PCA is used 

to extract a small set of orthogonal features from the CNN outputs to be combined with 

additional features such as the time of flight or deviations between consecutively acquired 

waveforms. These features are then used as inputs in a deep neural network with LSTM 

layers. Multi-task learning is recommended for use if multiple predictions are available. The 

development of this pipeline is discussed in the following paragraphs.  
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Figure 1: The optimised ML pipeline for process monitoring using US measurements (Bowler 

et al., 2022).  

The convolutional feature extraction method presented in Section 6 was found to extract 

more informative waveform features from the US waveforms studied compared with 

traditional coarse features, achieving higher model accuracy for datasets requiring 

substantial waveform information and for 65% of tasks overall. The convolutional feature 

extraction method achieved higher prediction accuracies for tasks that required complex 

feature extraction methodologies in other sections in this thesis, such as the flour-water 

batter mixing (increasing R2 by 0.1 ± 0.046 for regression tasks and increasing accuracy by 

13.9 ± 8.8 % for classification tasks) and cleaning datasets (increasing R2 by 0.11 ± 0.23 for 

regression tasks and increasing accuracy by 15.4 ± 14.3 % for classification tasks). 

However, the convolutional feature extraction method requires choice of the number of PCs 

to extract. The author recommends that the number of PCs required for this method be 

determined through cross-validation. These results agree with theory as CNNs are able to 

monitor changes to the waveform directly, rather than indirectly through extraction of coarse 

features such as the waveform Energy. Furthermore, CNNs are robust to the spatial 

variance of features unlike ANNs that use every waveform sample point amplitude as a 

feature (Lecun et al., 2015). The position of features may vary due to a changing speed of 

sound through the process material. From these results, the author recommends that CNNs 

should be used for feature extraction from US waveforms. This recommendation enables 

faster development of US and ML combinations by providing a stipulation that the feature 

extraction power of CNNs be used within the ML pipeline. However, CNNs often need a 

large volume of data for training, with even small CNNs needing at least approximately 1000 

datapoints to train on (LUNA, 2016). In this thesis, the developed ML pipeline uses a CNN 

pre-trained on an auxiliary task to classify to which dataset previously collected US 

waveform originated from and was therefore trained on over 30,000 US waveforms. In this 

way, the CNN could learn to identify features of US waveforms and be used as a feature 

extractor for new tasks. Therefore, a prerequisite for utilising the developed pipeline is a 

large volume of US data either collected from the current process to be monitored or from 

previously investigated processes. If neither of the requirements are available, the coarse 

feature extraction methodology may be utilised, as recommended in Bowler et al. (2022).  

The use of the process temperature as a feature was not necessary in order to obtain 

comparatively high ML model accuracy, as evidenced by its omission from all models in 
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Sections 4 (achieving up to 96.3 % classification and 0.977 R2 regression accuracies for 

honey-water blending) and 6 (achieving up to 98.2 % classification and 0.947 R2 regression 

accuracies for pipe section cleaning) compared with Section 7 (up to 96.0% and 98.4% to 

classify the completion of mixing and cleaning, respectively; and R2 values of up to 0.947 

and 0.999 to predict the time remaining until completion). Notably, in Section 5, the inclusion 

of the process temperature degraded ML model accuracy when using only the first waveform 

reflection during beer fermentation monitoring (increasing the mean squared error from 

0.146 to 0.345 % alcohol by volume). This was most likely due to the high variability (20 – 

30°C presented in Figure 3d, Section 5) of this feature creating a more difficult optimisation 

problem for the model. However, in subsequent works (Sections 6 and 8) an additional fully 

connected layer was used in the deep neural networks to reduce the burden on the LSTM 

layer to learn the feature trajectories and also fit to the target variables. Therefore, this new 

network structure is expected to handle the extra complexity of the process temperature and 

thereby achieve an increase in model accuracy, although, this was not confirmed in this 

thesis. In Section 7, using the temperature as a feature produced higher classification 

accuracies for all but one task for the honey-water blending datasets (increasing accuracy by 

1.8 ± 1.8 %). Furthermore, incorporation of the process temperature as a feature increased 

the regression accuracy for the honey-water blending (increasing R2 values by 0.078 ± 

0.145) as the temperature affected the waveform features and the trajectory of the process. 

Overall, if available, using the process temperature as a feature is anticipated to simplify the 

optimisation problem and increase model accuracy. However, if not available, comparative 

model accuracy can still be expected. Therefore, the absence of available temperature 

measurement in industrial applications is not expected to hinder US sensor and ML 

combination deployment based on the results from these datasets. This is evidenced by the 

results from Section 5 where models omitting the process temperature as a feature 

achieving increased accuracy (previously stated in the paragraph) and Section 7 where 

comparable accuracy was attained when omitting temperature as a feature (Table 2).  

Table 2: A comparison between the maximum accuracies achieved for the ML models in 

Section 7 when the process temperature was either included or excluded as an input 

feature.  

Use of 
temperature as 
a feature 

Honey-water blending Pipe cleaning 

Classification 
(% accuracy) 

Regression (R2) Classification 
(% accuracy) 

Regression (R2) 

Included 92.8 0.942 98.4 0.998 

Excluded  96 0.947 97.5 0.999 

 

In Section 4, for classification (96.3 % achieved using LSTM layers and feature gradients) 

and regression tasks (0.977 R2 achieved using time domain input CNNs which use the 

previous 10 s of acquired waveforms) using the honey-water blending dataset, and 

regression tasks using the flour-water batter mixing dataset (0.976 R2 achieved using time 

domain input CNNs), using information from previous time steps was critical for model 

accuracy. However, for classification tasks using the flour-water batter mixing dataset, this 

was not required (92.5% accuracy using CWT-input CNNs). Despite this, a single ML 

pipeline approach is desired for deployment with process monitoring applications. A single, 

universally applied ML pipeline would greatly reduce the time for model development, 

despite, potentially, not being the optimal model for each use case. Therefore, it is 

recommended that information from previous time steps be utilised for all applications where 

processes evolve over time, even if this creates more difficult optimisation problems by 

requiring the use of LSTM layers in deep neural networks. In Section 4, LSTM layers and 
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CNNs using up to 10 s of previously acquired data were more accurate than using fixed 

feature gradient lengths in ANNs (results listed above). Furthermore, in Sections 5 (LSTMs 

achieved R2 = 0.952, MAE = 0.265, and MSE = 0.136 compared with R2 = 0.398, MAE = 

1.01, and MSE = 1.942 for ANNs) and 7 (where LSTMs were best for 88.5 % of tasks), 

neural networks with LSTM layers were more accurate for all tasks than ANNs using feature 

gradients. Therefore, the use of LSTM layers in deep neural networks are recommended to 

learn feature trajectories through flexible use of past process information. It is recommended 

that the impact of using of feature gradients as inputs on model accuracy should also be 

evaluated during the validation stage to reduce the burden on the LSTM layers to learn the 

feature trajectories. However, LSTMs require large training set sizes, are prone to overfitting, 

and require long times for training (Sugandhi, 2023). Therefore, in applications where limited 

data is available or there is large variability in the process and thereby input features to the 

ML model, the use of feature gradients as input features into ANNs may be used.  

Multi-task learning has the potential to increase model accuracy through global learning of 

feature trajectories important to the process being monitored, allowing for more stable model 

training by optimising for two combined losses, and reducing overfitting by preventing a 

single task from dominating the learning process. In Section 6, multi-task learning improved 

feature trajectory learning by providing increased accuracy on 8 out of 18 regression tasks 

but led to reduced model accuracy on data points far from the classification decision 

boundaries. However, to reduce model development time, the multi-task learning network 

hyperparameters were not fully optimised. Therefore, the accuracy of the multi-task models 

could be further improved despite showing improvements in accuracy for several tasks. 

Although multi-task learning was not shown to consistently provide increased accuracy over 

single-task learning in Section 6, it should be used when possible due to the desire to deploy 

a single ML pipeline approach for process monitoring applications. 

The fourth objective is fulfilled by the work undertaken in Section 7. Section 7 concluded that 

only a single feature, in this case the waveform Energy, should be used in domain 

adaptation tasks to describe the oscillating part of the US waveform. The single feature 

method achieved higher prediction accuracies (96.0 % and 98.4 % accuracy and 0.947 and 

0.999 R2 values for mixing and cleaning, respectively) compared with TCA (92.6 % and 95.3 

% accuracy and 0.942 and 0.966 R2 values for mixing and cleaning, respectively). The 

waveform Energy was used as it is a measure of the total magnitude of the sound wave and 

therefore is representative of the acoustic impedance of the process material at the vessel 

wall. Other features, such as the maximum or minimum peaks, position of peaks, skewness 

or kurtosis, are useful to monitor changes in the waveform shape and aid identifying multiple 

overlapping sound waves. Therefore, the trend in these other features does not follow 

changes in the process material. Features similar to the waveform Energy that monitor the 

process material properties include the Sum Absolute Amplitude or Sum Root Amplitude, 

however, these give greater or lesser weighting to larger amplitudes, respectively. Therefore, 

the discrepancy between the Energy and either of these features would be due to the shape 

of the waveform rather than the changing process material. As the shape of the waveform is 

unlikely to follow the same trends across domains, inclusion of these features may degrade 

model accuracy. This effect is magnified further when using more than two domains. 

However, as described in Section 8 (3.3. Future Research Directions), this single feature 

method may be used to obtain predictions in the new domain, after which, these predictions 

can be used as a feature to be inputted into another model trained for the new domain which 

also uses more waveform features. In this way, the model gains the knowledge from the 

source domain as well as being able to use many features that describe the changing 

waveform.  



74 
 

The fourth and fifth objective are fulfilled by the works carried out in Section 7 and 8. Using 

multiple source datasets in domain adaptation tasks provided increased model accuracy for 

the pipe cleaning datasets in Section 7 for six out of eight regression tasks. This was 

attributed to the model being trained to generalise across two datasets making it easier to 

adapt to the third, target, dataset. In addition, for the honey-water blending datasets, models 

trained on source honey-water blending datasets across a greater parameter range, in this 

case a greater range of temperatures (19.3 to 22.1°C compared with 19.8 to 21.2°C 

presented in Figures 1b and 1c, Section 3), improved model accuracy in Section 7 

(improving classification accuracy by 2.3 ± 4.1 % and R2 values by 0.12 ± 0.15). This 

allowed the LSTM layers to learn feature trajectories across a wider range of feature 

distributions, thereby making them more adaptable to the different feature distributions of the 

target domain. In Section 8, three domain adaptation methodologies were evaluated. 

Federated learning achieved the highest model accuracy and performed best for 14 out of 

16 ML tasks compared with the models not using knowledge from the source domain. This is 

likely due to the order of the dataset runs the model is trained on compared with the other 

two methodologies evaluated. During federated learning, the local models were trained for a 

single epoch on the corresponding domain dataset before passing the model weights for 

collation. This full epoch of training allows for increased gradient descent to an optimum 

point compared with a procedure that alternates between source and target domain data, as 

used for the other domain adaptation methods. This indicates that the order of the dataset 

runs may impact the ability of the models to find a better local optimum and should be trialled 

during the validation stage. 

10.1 Limitations of thesis  
The aim of this thesis was to develop ML methods to facilitate optimal deployment of US 

sensors for process monitoring applications in industrial environments. This thesis 

developed an ML pipeline for process monitoring using US sensors consisting of 

convolutional feature extraction, LSTM layers, and multi-task learning. Furthermore, labelled 

and unlabelled domain adaptation methods were developed to transfer knowledge from 

previously collected datasets. However, this thesis did not achieve several considerations for 

deployment of US sensing and ML combinations in industrial environments as outlined in 

Section 9 ‘Discussion’. These were: 1.) the creation of an adaptable ML pipeline to different 

dataset sizes, generalisability requirements, or ML tasks 2.) semi-supervised, active, or on-

line learning approaches to reduce the data collection burden during industrial 

implementation.  

As outlined in Section 9.5 ‘Considerations for industrial application’, to achieve the first 

consideration listed above (the creation of adaptable ML pipelines) US sensing and ML 

approaches may be evaluated over a range of dataset sizes, using datapoints that are 

outliers the training dataset range, on process deviations, or using large validation and test 

set sizes. Furthermore, a greater range of ML tasks could be applied to the same case 

studies used in this thesis such as expanding multi-task learning for fermentation 

(simultaneous prediction of the fermentation rate, alcohol concentration, and the start and 

end of ethanol production) monitoring or varying evaluation metrics (as discussed in Section 

9.6 ‘Limitations’). A hierarchy of each US sensing (reflection-mode or transmission-based) 

and ML method (e.g. CNNs or LSTM layers) may be developed for each task or 

generalisability requirement. In this way, manufacturers would have a framework for the 

different approaches to trial based on the volume of data able to be collected for the desired 

process or the process monitoring task. To contribute to the second requirement, active 

learning methods are also discussed in Section 9.5 ‘Considerations for industrial application’ 

including the use of outlier detection methods, autoencoders for anomaly detection, and 
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uncertainty quantification during production to identify datapoints that require labelling. Semi-

supervised, active and on-line learning are discussed in Section 11 ‘Directions for future 

work’.  

At present, the recommendations developed in this thesis would still need to be evaluated by 

a manufacturer to determine whether the use of CNNs, LSTMs layers, or transmission-

based techniques would provide the level of model accuracy and generalisability required, or 

whether the coarse feature extraction method, ANNs with feature gradients, or reflection-

mode sensing should be utilised.  

In Section 7, it was concluded that training ML models across a greater process parameter 

range (a greater range of temperatures; 19.3 to 22.1°C compared with 19.8 to 21.2°C for 

one of the honey-water blending datasets) or multiple datasets improved transfer learning to 

further datasets by enabling the models to adapt to a wider range of feature distributions. 

Further exploration of greater parameter ranges would have increased the strength of the 

conclusions drawn. For example, multiple datasets could have been collected for each case 

study (mixing, cleaning, and fermentation) across varying process parameter ranges, other 

process parameter ranges could have been made to be different other than temperature (for 

example, material quantities or impeller speed during honey-water blending), or more than 

two datasets with differing parameter ranges could have been collected (e.g., a low, 

medium, and a larger parameter range dataset). Each of these methods could have 

evaluated whether the insight that training ML models across a greater process parameter 

range improved transfer learning to further datasets was consistent for all investigations. 

10.2 References 
Bowler, A.L., Pound, M.P., Watson, N.J. (2022) ‘A review of ultrasonic sensing and machine 

learning methods to monitor industrial processes’ Ultrasonics 124. 

Doi:10.1016/j.ultras.2022.106776. 

Lecun, Y., Bengio, Y., Hinton, G. (2015) ‘Deep learning’ Nature 521, 436–444. 

Doi:10.1038/nature14539.  

LUNA (2016) ‘Lung Nodule Analysis’. Available online: https://luna16.grand-

challenge.org/Data/ (accessed 14 April 2023). 

Meng, R., Zhou, J., Ye, X., Liu, D. (2012) ‘On-line monitoring of yogurt fermentation using 

acoustic impedance method’ Applied Mechanics and Materials 101-102, 737-742. 

Doi:10.4028/www.scientific.net/AMM.101-102.737.  

Sugandhi, A. (2023) ‘What is Long Short Term Memory (LSTM) - Complete Guide’ Available 

online: https://www.knowledgehut.com/blog/web-development/long-short-term-memory.  

(accessed 14 April 2023).



76 
 

11 Directions for future work  
The aim of this thesis was to develop ML methods to facilitate optimal deployment of US 

sensors for process monitoring applications in industrial environments. 

Objectives:  

1. To collect US sensor data for process monitoring applications that enable the thesis 

conclusions to be expected to extend to industrial environments.  

2. To evaluate different US sensing techniques to determine their benefits and 

limitations for industrial process monitoring.  

3. To evaluate different feature extraction, feature selection, algorithm types and 

hyperparameter values to determine the optimal ML pipeline for process monitoring 

using US measurements.  

4. To develop unlabelled domain adaptation methods to utilise previously collected 

datasets and negate the data labelling burden for sensor deployment.  

5. To develop labelled domain adaptation methods to utilise previously collected 

datasets, reduce the data labelling burden for sensor deployment, and improve ML 

model accuracy on target processes.  

11.1 Objectives 1, 2, and 3 
As discussed in Section 10.1 ‘Limitations of thesis’, this thesis did not produce an adaptable 

ML pipeline to different dataset sizes, generalisability requirements, or ML tasks for use in 

industrial environments. In an industrial setting, the volume of data obtained for ML model 

training may be limited (see Section 9.5 ‘Considerations for industrial application’). 

Therefore, to achieve the level of accuracy desired by the manufacturer, each US sensing 

and ML application may require different generalisation performance to unseen data. The 

collection of further data for all case studies used in this thesis (see Section 9.6 ‘Limitations 

of the data collected in this thesis’) would enable ML approaches to be evaluated over a 

range of dataset sizes and generalisation requirements, on datapoints that are outliers the 

training dataset range, on process deviations from the training data, or using large validation 

and test set sizes (Objective 1). Furthermore, evaluation of the US sensing and ML 

combinations over a wider range of tasks (such as expanding multi-task learning for 

fermentation to simultaneously predict the fermentation rate, alcohol concentration, and the 

start and end of ethanol production, or by varying the evaluation metrics used for each ML 

task as discussed in Section 9.6 ‘Limitations’) would enable production of a adaptable ML 

pipeline to differing process monitoring tasks. A hierarchy of each US sensing (reflection-

mode or transmission-based, Objective 2) and ML method (e.g. CNNs or LSTM layers, 

Objective 3) may be developed for each task or generalisability requirement. In this way, 

manufacturers would have a framework for the different approaches to trial based on the 

desired task or volume of data able to be collected. 

Furthermore, this could be extended to minimisation of the time for development of ML 

models in industrial applications. Another constraint during industrial implementation of US 

sensor and ML combination will be the time required for development prior to deployment. 

This will be due to the time required to find optimal model hyperparameters and the 

computational time to train the models. There could be several methods to reduce the 

severity of this problem. For example, increasing model generalisability (by using out of 

training data distribution validation points or large validation set sizes) would obtain less 

complex model architecture (as less complex model architecture is comprised of fewer 

model parameters giving less chance of overfitting) which will also be less computationally 

expensive to train. Models can also be trained for fewer epochs with a higher learning rate 
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(whilst using learning rate decay to prevent missing optima) which will reduce computational 

time whilst also limiting hyperparameter ranges. Coarse-fine grid searches can also be used 

to reduce the time required during cross-validation. Finally, techniques that are parallelisable 

during training may also be of benefit, such as the ensemble methods. These methods may 

be evaluated and a hierarchy of ML methods to trial when model development time in 

industrial application is a constraint may be created.  

Improve the ML pipeline further (Objective 3), other methods for dimensionality reduction 

following the convolutional feature extraction method presented in Section 6 can be 

investigated. Two examples include using autoencoders for non-linear feature extraction and 

feature importances determined using random forest algorithms. As PCA (used in Section 6) 

extracts linear dependencies, autoencoders are able to retain more waveform information 

but at the cost of longer training times, the requirement of hyperparameter selection, a 

difficult network optimisation problem, and possible coadaptation of the latent space nodes 

leading to redundant information being stored. Random forest algorithms can be used to 

determine feature importance by summing the error or impurity at each decision node in the 

tree structure (Mathworks, 2021). Using random forests would provide the advantages of 

little hyperparameter selection, fast training time, and retaining all the information from the 

original features, however, at the expense of potentially identifying several similar features 

as being the most important to the ML task.  

11.2 Objectives 4 and 5 
As described in Section 8 (3.3. Future Research Directions) the waveform Energy and 

domain adaptation can be used to produce target variable predictions for the new domain. 

These predictions may be used as a feature in a model along with additional features from 

the waveform in the new domain. This would enable the benefits of transfer learning from 

previous datasets as well as more accurate fitting by using all available target domain 

waveform features. Furthermore, federated learning was shown to improve domain 

adaptation capability in Section 8 which was attributed to aiding gradient descent by training 

on a full epoch from each dataset sequentially. During federated learning, the local models 

were trained for a single epoch on the corresponding domain dataset before passing the 

model weights for collation. This full epoch of training allows for increased gradient descent 

to an optimum point compared with a procedure that alternates between source and target 

domain data, as used for the other domain adaptation methods. This indicates that the order 

of the datasets during domain adaptation model training should be investigated to aid 

network optimisation. However, this would add an additional step in the ML pipeline.  

Other domain adaptation methodologies may also be trialled. Self-training may be used to 

train an ML model (or ensemble of models) in the source domain and predict the target 

variables of data from the target domain (this may also be following some transformation of 

either feature space). Then, data points that the model confidently predicts the target 

variable (through either choosing the highest model outputs for classification or the 

narrowest distribution of ensemble voting) can be pseudo-labelled and added to the training 

set for model retraining. This iterative procedure can enable the original model to adapt to 

the new domain (Mishra and Woltering, 2021; Lin et al., 2019). TrAdaBoost is a method that 

uses labelled source domain data along with a small amount of labelled target domain data. 

A model is trained using these combined datasets and then the weightings of source 

datapoints which are incorrectly classified are decreased due to them having low similarity to 

the target domain, and the weightings of target domain datapoints which are incorrectly 

classified are increased to produce a model better fitted to the new domain. The iterative 

process produces an ensemble of models that can be used to predict the target variables of 

the remaining unlabelled target domain data (Yu et al., 2021; Li et al., 2021).  Autoencoders 
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may also be investigated to extract waveform feature combinations which are similar across 

domains to identify additional features that may be used rather than only the waveform 

energy during domain adaptation. Furthermore, autoencoders could be used to find a 

transformation between US waveforms from different domains, an idea similar to near-

infrared spectroscopy calibration transfer by measuring standard samples across multiple 

spectrometers (Andries, Kalivas, and Gurung, 2019). For example, a standard material such 

as water at standard temperatures can be measured using US sensors on both pieces of 

process equipment. Autoencoders can then learn this transformation by inputting the source 

domain waveform and training the reconstruct the target domain waveform. This 

transformation may then be applied to all source domain data and subsequently used to 

predict the target variables of the target domain data.  

As discussed in Section 10.1 ‘Limitations of thesis’, this thesis did not develop semi-

supervised, active, or on-line learning approaches to reduce the data collection burden 

during industrial implementation. The ability to obtain labelled data is likely to be a constraint 

during industrial deployment of US and ML sensing techniques. Further work should 

consider other in-line or on-line sensors that could be used as reference measurements 

during the monitored process, whether the process must be ended at different stages and 

off-line sensors used to obtain reference measurements, if semi-supervised learning must be 

used to pseudo-label the unlabelled data, if US measurements could be used to infer and 

label process states, and, lastly, if sampling and off-line reference measurements are 

available. For example, for pipe cleaning processes, it is unlikely that an in-line or on-line 

reference measurement could be used, or that sampling could be conducted during the 

process. Therefore, a plateau in the waveform Energy could identify the potential end of 

cleaning and the process stopped and visual inspection of the pipe section to verify. In 

industrial applications, the wort density during fermentation is typically measured once or 

twice per day (Controllo e Misura, 2021). To label the remaining US measurements, 

techniques such as interpolation or semi-supervised learning may be used. Active learning, 

where analysis of model prediction confidence identifies datapoints that should be labelled, 

could be used to identify points in the process where the labelled data should be obtained 

and semi-supervised learning could be used to pseudo-label the remaining data (Zhou, 

Chen, and Wang, 2013). During industrial deployment, models will also need to be 

continuously trained (on-line learning) to adapt to changing process specifications, 

environmental conditions, or rare process states. If new labelled data can be collected, this 

new data must be combined with the previously collected data to prevent catastrophic 

forgetting (Kirkpatrick et al., 2016). However, to reduce computational time, an ensemble 

approach that uses simple neural networks trained on all of the available data or complex 

models trained on different subsections of data could be used to reduce overall training time. 

The self-training methods discussed in Section 10.4 (Other domain adaptation 

methodologies) can also be used to adapt models to changing environments, even where no 

new labelled data is available.  

As discussed in Section 10.1 ‘Limitations of thesis’, further exploration of greater parameter 

ranges could be undertaken. For example, multiple datasets could be collected for each 

case study (mixing, cleaning, and fermentation) across varying process parameter ranges, 

other process parameter ranges could be made to be different other than temperature (for 

example, material quantities or impeller speed during honey-water blending), or more than 

two datasets with differing parameter ranges could be collected (e.g., a low, medium, and a 

larger parameter range dataset). Each of these methods could evaluated whether the insight 

that training ML models across a greater process parameter range improves transfer 

learning to further datasets was consistent for further investigations. 
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11.3 ML model trust  
A further criteria for industrial implementation of US sensing and ML combinations could be 

to achieve the level of model trust desired by the manufacturer. ML models that output a 

confidence level associated with each prediction would increase operator trust. This may be 

achieved through an ensemble of models which outputs a prediction distribution although at 

higher computational cost. In the case of neural networks, differences in models can be 

achieved by using random weight initialisation (Gawlikowski et al., 2022). An ensemble of 

neural networks also overcomes the problem of adversarial examples. Adversarial examples 

are sets of features that fool a neural network into making an inaccurate prediction despite 

possibly being imperceptible to a human operator (Carlini and Wagner, 2017). While an 

adversarial example may confuse a single neural network, an ensemble of neural networks 

would be robust to these inputs (Pang et al., 2019). An ensemble of neural networks could 

also identify when input features are outside of the training data distribution. In this case, a 

wider range of predictions would be made and the confidence score will decrease 

highlighting that the models are uncertain about the prediction being made 

(Lakshminarayanan, Pritzel, and Blundell, 2017). This would indicate that the model 

predictions should not be trusted in this instance. For an added layer of protection, input 

features outside of the training distribution can also be identified using anomaly detection 

methods such as isolation forests (Scikit-learn, 2021). Identification that a new instance is 

from outside the training distribution can indicate to an operator that extra caution should be 

taken in using the ML model prediction or possible feature distributions on which the model 

should be retrained.  Model generalisability may also be desired in industrial applications at 

the expense of accuracy. This is to ensure that ML models are robust to outliers, process 

parameter drift, or input features that were not captured by the training set distribution. One 

method of increasing model generalisability to out of distribution samples is to select the 

validation data as the datapoints furthest from the centre of the distribution. This could again 

be achieved through using anomaly detection methods such as isolation forests. Secondly, 

large validation sets could be used (for example, 2-fold cross-validation) to select 

hyperparameter that generalise from a small training set to a large validation set. 
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Glossary  
Artificial neural networks: Artificial neural networks (ANNs) have the ability to create new 

features in their hidden layers from combinations of input features to perform the ML task. 

ANNs are formed of weight and bias terms that connect the model inputs to the outputs that 

are iteratively updated during the training procedure.  

Convolutional neural networks: Convolutional neural networks (CNNs) have convolutional 

layers as well as fully connected layers. The convolutional layers consist of filters that 

perform cross-correlation on the input data. This enables CNNs to automatically learn 

spatially invariant features from the input data.  

Domain adaptation: Domain adaptation is a subcategory of transfer learning where a model 

is trained on a source domain and transferred to a target domain where the data distributions 

may differ. Domain adaptations methodologies are therefore used to increase the accuracy 

of the model trained on the source domain to predict on the target domain. Unlabelled 

domain adaptation consists of domain adaptation methods where no labelled data is 

available in the target domain. In contrast, labelled domain adaptation methods use some 

labelled data from the target domain to aid transfer of the model. 

Federated learning: Federated learning is a ML technique where multiple datasets can be 

used to collaboratively train a model without sharing the raw data with one another. Each 

dataset is used to train a local model and the model weights are aggregated to update a 

global model. 

In-line and on-line sensing: In-line specifies techniques that directly measure the process 

stream and on-line techniques utilise automatic sampling methods.  

Long-short term memory units: Long short-term memory neural networks (LSTMs) are able 

to learn sequences of time series data. LSTMs are a development of recurrent neural 

networks that reduce the likelihood of exploding or vanishing gradients and thereby enable 

the learning of long-term dependencies. LSTMs store representations of sequences by using 

gate units to update their internal network state. At each time step, LSTMs use the input 

features at the current time step as well as information passed from the previous time steps 

to make their prediction. Therefore, they have the capability to learn feature trajectories 

during processes that evolve over time.  

Machine learning: Machine Learning (ML) is the use of computer algorithms to learn patterns 

in data to perform a task such as making predictions or decisions. The correlations in the 

data that the ML models learn during training have not been explicitly programmed by 

human operators. There are four main types of ML: supervised, unsupervised, semi-

supervised, and reinforcement learning, of which supervised and unsupervised learning are 

used in this thesis. 

Multi-task learning: Multi-task learning is an ML approach where a single model is trained on 

multiple related tasks simultaneously, sharing some or all of the model parameters between 

tasks to improve performance on all tasks. 

Principal Component Analysis: Principal Component Analysis (PCA) is an unsupervised ML 

method that linearly transforms input variables into new, uncorrelated features called 

principal components (PCs).  

Supervised machine learning: Supervised ML maps inputs to outputs during training with the 

aim being to create a model that accurately predicts the outputs of data that was not 

previously used during training. 
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Support vector machines: For classification tasks, support vector machines (SVMs) find a 

hyperplane that separates two classes of data by maximizing its distance from the closest 

data points from each category. In regression tasks, support vector regressors fit lines to 

continuous data by only accounting for the error from data points outside a set distance from 

the fitted line. SVMs generalise well to new data and, as they are effective with high 

dimensional feature spaces, make use of the kernel trick for non-linear fitting.  

Transfer Component Analysis: TCA minimises the distance between source and target 

domain feature spaces by using the Maximum Mean Discrepancy (MMD) and extracts 

transfer components that maximise the variance across this shared feature space. The MMD 

is a measure of the distance between feature distribution embeddings in a reproducing 

kernel Hilbert space. 

Transfer learning: Transfer learning is a machine learning technique where a model trained 

on one task is used to improve performance on a different but related task. The most 

common example is using pre-trained CNNs trained on large datasets to apply to new tasks.  

Ultrasonic sensors: Low power (intensities below 1 Wcm2), high frequency (greater than 100 

kHz) ultrasonic (US) sensors monitor the interaction of materials with mechanical sound 

waves. Ultrasonic sensors have advantages of being low cost, small in size, able to monitor 

opaque materials, low in power consumption, able to operate non-invasively, non-

destructive, real-time, in-line, and do not cause changes to the structure of the material 

through which they pass. 

Wavelet Transform: Continuous Wavelet Transform (CWT) uses a continuous range of 

frequencies to decompose the US signal whereas the Discrete Wavelet Transform (DWT) 

and Wavelet Packet Transform (WPT) use discrete frequencies at each decomposition. The 

WPT performs successive decompositions on each branch of the original signal whereas the 

DWT only applies successive decompositions to the lower frequency signal content. 
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