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Abstract

This thesis builds on the existing body of work connecting the fields of sta-
tistical mechanics and machine learning. Many advances in machine learning
have found their roots in statistical mechanics, e.g. simulated annealing for
heuristic optimisation. Primarily, we aim to build bridges between trajectory
ensemble techniques and current advances in machine learning, and in partic-
ular, deep learning. We explore these connections in two avenues: the first
connects the study of rare events with that of reinforcement learning (RL);
the second introduces a trajectory sampling algorithm for jointly training an
ensemble of neural networks. We derive a framework for translating a rare
event sampling problem into the language of RL, offering a way to lever-
age modern deep RL algorithms to obtain near-optimal sampling dynamics.
Our work showcases a plethora of these RL algorithms and provides analysis
on examples, including both finite and infinite time problems. Furthermore,
we present a novel neural network ensemble training method, facilitated via
Markov chain Monte Carlo algorithms, to produce coupled ensembles using
gradient-free updates. We show that our coupled ensembles perform better,
and are easier to train, than their uncoupled counterparts trained via neu-
roevolution, providing both analytic results on a linear problem and empirical
evidence on the MNIST problem.
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Introduction

Machine learning is a growing field that is being applied to several domains, such as
protein folding [1], natural language processing [2–6], healthcare [7–10], climate modelling
[11], robotics [12–14], and even discovery of physics from data [15, 16]. The history of
machine learning has deep-rooted connections with statistical mechanics [17–22], and the
research continues (e.g. [23–25]), but there is much to explore. This thesis aims to add
to the existing body of work, emphasising the connections between the two fields.

In particular, we first aim to connect the study of dynamical fluctuations with large
deviation theory [26] to that of reinforcement learning (RL) [27], focusing on the study of
rare events. Our research allows powerful RL algorithms to be used to train an optimal
sampling dynamics. We do this by formulating a reward structure, whereby the optimal
policy is equivalent to the optimal sampling dynamics, as measured by the Kullback-
Leibler divergence. We present various standard techniques for solving RL problems,
such as policy gradient methods and dynamic programming. Further, we demonstrate
these techniques and their connection to rare event sampling on examples ranging from
a discrete finite time excursion problem, to an infinite time horizon problem based on a
particle hopping on a 1-dimensional ring. We cover the fundamental basis of this research
in chapters 1, 2, and 3 and present the published research in Chapter 6.

Following from this, we aim to adapt methods commonly used for studying dynamical
systems, specifically trajectory sampling techniques, into an ensemble training method,
whereby a collection (or ensemble) of machine learning models are jointly optimised. We
translate the problem of “training” into one of sampling a low loss trajectory, where the
trajectory represents the ensemble and the loss acts as a surrogate for the optimisation
target. In Chapter 7, we show that this technique is viable for training reasonably large
neural network ensembles (NNEs), whose individual models are based on the convolu-
tional neural network architecture, to obtain high accuracy on the MNIST problem [28].
In the same chapter, we additionally conduct a theoretical analysis of the technique, ver-
ified with results on a simple linear problem. Introductory material for the basis of this
research is outlined in the chapters 1, 3, and 4.

We continue our investigation of our ensemble training technique in Chapter 8, where
we present an algorithmic adjustment that vastly improves the computational efficiency
of the method. In its original form, the training technique is computationally bound
by the size of the dataset provided, now remedied by the introduction of a statistically
compatible minibatch technique. Using the minibatch approach, we were able to decouple
training time from the size of the dataset, vastly expanding the range of problems in which
this technique is viable.

Much of the research presented in this thesis is underpinned by a substantial engineering
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iv INTRODUCTION

effort required to produce the results. The output of this effort is reviewed and sum-
marised in Chapter 5, which primarily outlines several packages that can support future
research. Second to this, the chapter also describes a large body of educational resources
produced to aid future researchers in developing skills for writing high performance code,
particularly that which can be reused and shared with others.

This thesis is organised in a thesis by publication style, with the first 4 chapters pro-
viding background information required for understanding and interpreting the research
presented in chapters 6, 7 and 8.



Chapter 1

Introduction to Machine Learning

All the research projects undertaken and presented in this thesis are underpinned by the
field of machine learning (ML). This field is the study of how to produce algorithms and
techniques for producing programs which learn desired behaviour from data. Traditional
algorithms, while enabling great progress in the field of computing, are often limited to
well-defined tasks with well-defined inputs. Many of the large computing systems today
have a vast amount of their infrastructure dedicated to ensuring these algorithms are
fed with the right data which enables them to function. These algorithms are carefully
hand-crafted by humans to produce reliable, predictable and verifiable results, while ML
instead aims to produce models and methods which learn from existing data. This is of
particular interest as it enables ML practitioners to solve, or attempt to solve, problems
that currently have no known solution. For an example of where ML techniques have
vast advantages over hand-crafted algorithms, one need look no further than computer
vision. Early algorithms for recognising handwritten digits used hand-crafted features and
simple techniques, which often had very poor performance. Adoption of ML techniques,
in particular those of deep learning (DL) [29], now allow computer vision algorithms
to compete with [30, 31] (or even outperform [32–35]) existing methods, or sometimes
humans, on many vision-based tasks of classification and recognition.

At the time of writing, ML (and more generally its parent field of artificial intelligence
(AI)) is making new headlines every day. These algorithms and methods are set to
revolutionise modern society; understanding and building on the existing techniques is of
vital importance.

We can break down ML into its three subfields:

• Supervised learning (SL) — Learning a mapping of features to labels, from a
dataset consisting of features and labels (already supplied).

• Unsupervised learning (USL) — Learning underlying patterns in some unla-
belled data, to find structure or meaning.

• Reinforcement learning (RL) — Learning to achieve a certain goal through
actions, usually acting over time, defined in terms of maximising the cumulative
scalar signal known as the reward.

In this thesis, the most pertinent topics are that of SL and RL. In this chapter, we will
briefly cover some of the basics of SL and introduce neural networks (NNs), which are

1



2 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

at the heart of the research presented in chapters 6, 7 and 8. The thesis will not cover
the details of USL — interested readers are directed towards [36]. We will dedicate the
entirety of Chapter 2 to RL.

1.1 Supervised Learning
SL is one of the three subfields of ML, and one of the most extensively studied. This
subfield focuses on learning (or “fitting”) models to existing data for some process. In the
context of supervised learning, we refer to a model as a (usually) parameterised function
approximation. For example, if one has a set of features, commonly denoted as X, with
corresponding labels, or targets, Y , one may want to find a model which best represents
the mapping from features to labels. We refer to the combined features and labels as the
dataset. We denote a model, parameterised by some variables θ, as fθ, which maps the
features to values we call predictions

Ỹ = fθ(X). (1.1)

In training, we aim to make these predictions similar to the corresponding labels.

When provided labels are continuous, one popular measure of fit is the mean-squared
error (MSE), which defines a loss function that should be minimised. We write the loss
as

LMSE(θ;X,Y ) =
1

2

N∑

i

[Yi − Ỹi]
2, (1.2)

where N is the number of samples the dataset. On the right-hand side of the eq. (1.2),
we note that Ỹ implicitly relies on the model f and the parameters θ. For now, we
assume that a prediction from a single sample is 1-dimensional, but any derivations can
be extended to predict multidimensional outputs [36]. Additionally, one may also see the
loss function written simply as LMSE(θ), as this will implicitly rely on the dataset used.

Functionally, when this loss equals zero, the model and its parameters can precisely
recreate the labels from the features in the dataset. Some models may not have the
capacity to precisely model the supplied data, and instead aim for minimising the loss.
Often, the goal of supervised learning is not just to create this encoding of features to
labels exactly, but to be able to learn the underlying relationship so that one can obtain
high quality predictions on new data that was not in the training dataset, a property
known as generalisation. If the supplied training set contained the entire set of possible
inputs to the model, then minimising the loss function (i.e. perfectly mapping the features
to the labels) would also generalise, as the set of unseen data is empty. However, this is
rarely achievable and if it is, one would almost certainly not require these techniques.

A concrete definition of generalisation can be given as [37]

A model which performs at least as well on unseen examples from the possible
set of inputs as it does on the supplied training set can be said to generalise.
If performance on unseen data is much worse than on a training set, the model
can be said to be overfitting.

While a sufficiently complex model can indeed fit any supplied data, it often behoves
one to instead employ Occam’s razor — “the simplest model that explains the data is
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usually the best one”. For this reason, we aim to find the least complex models which
perform “well ” on the training dataset, while still being able to generalise on unseen data.

The two most common categories of problems in SL are regression and classification,
where the first deals with producing a numerical value for a problem, and the second
deals with predicting the group that a sample belongs to. Both of these problems are
discussed in the research presented in Chapter 7 and Chapter 8.

1.2 Linear Models

A common function approximation studied and employed for fitting data is the linear
model. The linear model is well studied and understood, producing understandable
and reliable output [36]. A linear model can be characterised by multiplying some input
features by some parameters (the weights) and summing the result and adding a constant
factor — the bias. If a single sample has a vector of N features, xi ∈ x, then it can be
mapped to an output via

y = b+
N∑

i

wixi = b+w · x, (1.3)

where b is a constant bias parameter and w is an N -dimensional vector of the weight
parameters. For simplicity, we usually extend the input features with a constant such
that x̃ = [x 1], allowing us to incorporate the bias b inside a modified weight vector
w̃ = [w b] such that y = w̃ · x̃ for simplicity.

This type of model, while being very simple in nature, is suitable for some simple tasks,
especially when augmented with feature selection or representation learning [38]. We can
extend the model to make multiple predictions by transforming our x̃ ∈ R(d+1)×1 into a
matrix X̃ ∈ R(d+1)×(N), where d is the dimensionality of the data and N is the number of
samples in a dataset. These N feature vectors will have N corresponding output labels,
now denoted as Y ∈ R1×N . Typically, if we want to train the model to predict the output,
we use a MSE loss (see eq. (1.2)). This loss can be minimised using optimal weights w̃∗

calculated via
w̃∗ = (X̃X̃T )−1X̃Ỹ T . (1.4)

It is common to create one’s own features for input into a linear model, such as squaring
the inputs — this is the aforementioned feature selection. This process can be used to
fit a non-linear model (such as a polynomial) using the same mechanisms as the linear
model. Additionally, one can regularise the model by introducing a hyperparameter,
usually denoted with λ, to penalise the weights for being too large, as this can cause
overfitting. One can optionally introduce an additional λ

2
w̃T w̃ term to the loss given in

eq. (1.2), which can then be exactly optimised via the optimal parameters

w̃∗ = (λI + X̃X̃T )−1X̃Ỹ T , (1.5)

where I is the identity matrix.

An example of a learned linear model is shown in fig. 1.1.
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x

y

Figure 1.1: An example dataset of several (x, y) points, with a liner model, the red
dashed line, fit to the data by minimising the MSE loss, with no regularisation. This
method is also known as the least-squares method [39].
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Figure 1.2: Traditional feed-forward neural network with 2 hidden layers.

1.3 Neural Networks

Neural networks (NNs) form the basis of the current field of DL. A NN processes inputs
sequentially in “layers”, reminiscent of linear models. Each of these layers has a specified
number of outputs, known as neurons. In a fully-connected NN, each neuron is connected
to every other neuron in the layers adjacent to its current layer, but not connected to
the neurons in the same layer. Additionally, each neuron has an associated activation
function, which is some non-linear function, chosen separately for each layer. Each
neuron acts as its own linear model, taking as inputs all the neurons of the previous
layer, and additionally passing its output through the non-linear activation function.
This description is known as a feed-forward neural network, and a corresponding diagram
is shown in fig. 1.2. This type of network will be the one used throughout this text, unless
otherwise stated.

To simplify the equations, we will specify the output of a network in terms of matrices,
and incorporate the bias into the weight matrix as in the previous section by using the ·̃
notation, such that

Ã =

[
A
1

]
, and W̃n =

[
W
bn.

]
(1.6)
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The nth hidden layer will have the output

H(n) = fn(W̃
(n)H̃(n−1)), (1.7)

where fn(·) represents the activation function of the nth layer, and we define H(0) = X
and H(K+1) = Ŷ where K represents the number of hidden layers in the neural network.

1.3.1 Activation Functions

The activation function of each neural network layer must be non-linear, as any layer
following a linear activation function will have its weight matrix combined with the cur-
rent layer, resulting in redundancy of the parameters of the first layer. One of the most
common activation functions is the rectified linear unit (ReLU), which can be expressed
as

ReLU(x) = max(0, x). (1.8)

Another common activation function is the logistic sigmoid which can be written as

σ(x) = (1 + e−x)−1, (1.9)

which constrains the output as 0 < σ(x) < 1 ∀ x ∈ R. This is useful is the output can
be interpreted as a probability.

A final example is the hyperbolic tangent, which is expressed as

tanh(x) =
e2x − 1

e2x + 1
. (1.10)

These are not all the possible activation functions, but are the most common. These
three functions are graphed visually in fig. 1.3.

1.3.2 Back-Propagation

Most recent methods of training a neural network rely on gradient descent applied to the
loss function in parameter space [36, 40, 41]. This means we need to take the gradient
of the loss w.r.t the parameters of the model. There are numerous numerical techniques
and algorithms for computing the gradient of an arbitrary function, however, the most
efficient method is often back-propagation. As the loss is usually calculated using a
forward pass (i.e. running the model forwards to obtain the predictions), we can cache the
results of the outputs of the hidden layers and use them on a “backwards pass” through
the model to calculate the gradients using the chain rule.

Back-propagation is an algorithm entirely derived by repeated application of the chain
rule. We can calculate the derivative of the loss w.r.t the output neurons of a given layer,
and then use this information to propagate these gradients to the next layer. As a simple
example, let us briefly consider a simple loss function for a single data point with 1 output
y.

L =
1

2
(y − ŷ)2. (1.11)

The output of the network, ŷ, is a function that depends on the weights of the network.
Our aim is to be able to calculate the derivatives of L w.r.t each of the weights of the
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x

y

-2 -1 1 2

1

−1

y = tanh(x)

y = σ(x)

y = ReLU(x)

Figure 1.3: Shows three activation functions: ReLU — Rectified Linear Unit (in red),
given by eq. (1.8); logistic sigmoid (in blue), given by eq. (1.9); and the hyperbolic tangent
(in green), given by eq. (1.10).

network. Let us consider that the neural network has K layers, such that we express ŷ
as

ŷ =
∑

j

W
(K)
1,j h

(K−1)
j + b

(K)
1 , (1.12)

where W (k) and b(k) represent the weight matrix and bias vector of the kth layer respec-
tively. We know from calculus that the derivative of L with respect to the weights can
be calculated via the chain rule

∂L

∂W
(K)
1,j

=
∂L

∂ŷ

∂ŷ

∂W
(K)
1,j

. (1.13)

Similarly, we know that
∂L

∂b
(K)
1

=
∂L

∂ŷ

∂ŷ

∂b
(K)
1

. (1.14)

Finally, we know that we can work out the partials ∂L

∂h
(K−1)
j

again using ∂L
∂ŷ

. Using these

chain rule equations, we can break up the calculation of the partial derivatives of the
weights and biases to depend on the outputs of their layer. The partials of the outputs
of the previous layer can also be calculated by application of the chain, allowing one to
repeat the process back through the entire network.

In the remaining part of this section, we will comprehensively derive the equations for
back-propagation for a simple neural network composed of fully connected layers. As
back-propagation is usually defined by averaging gradients for a batch of N data points,
it makes sense to perform this derivation using matrix calculus where the input features
are defined as X ∈ Rdin×N and target outputs Y ∈ Rdout×N . We allow for the outputs to
have multiple dimensions per sample, which we evenly weight when contributing to the
loss. Following the MSE loss given in eq. (1.2), we extend the definition to our matrix
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notation as

LMSE(θ;X,Y ) =
1

2N
tr
{
[Y − f(X)][Y − f(X)]T

}

=
1

2N

[
tr{Y Y T}+ tr{f(X)f(X)T} − 2 tr{f(X)Y T}

]
, (1.15)

where trA denotes the trace of the matrix A. We call the outputs of the network Ŷ =
f(X).

We start by finding the derivative of the loss w.r.t to the neural network outputs to be
given by

∇Ŷ LMSE = ∇Ŷ

1

2N

[
tr{Y Y T}+ tr{f(X)f(X)T} − 2 tr{f(X)Y T}

]

=
1

2N

[
((((((((∇Ŷ tr{Y Y T}+∇Ŷ tr{Ŷ Ŷ T} − 2∇Ŷ tr{Ŷ Y T}

]

=
1

�2N

[
�2Ŷ − �2Y

]

=
1

N

[
Ŷ − Y

]
. (1.16)

Using this derivative as the initial input, we aim to recursively apply the chain rule
through each layer, caching our partial gradients along the way for use in the later
equations. Recall that the NN is made up of layers defined by

H(n) = fn(W̃
(n)H̃(n−1))

= fn(W
(n)H(n−1) + b(n))

= fn(A
(n)), (1.17)

where A(n) is called the activation and b(n) represents the bias vector of the nth layer.
To start, we can write that the derivative of the loss w.r.t the activation is given by

∇A(n)LMSE = (∇H(n)LMSE)⊙ fn
′(A(n)), (1.18)

where ⊙ represents the Hadamard product (or “element-wise” product) between two ma-
trices. From here, we again apply the chain rule to calculate the gradients w.r.t the
weights in the nth layer, such that

∇W (n)LMSE = ∇A(n)LMSE ×H(n−1)T . (1.19)

Finally, we can calculate the gradients w.r.t the biases of the layer, given by

∇b(n)LMSE = ∇A(n)LMSE × 1, (1.20)

where 1 represents a “ones” column vector of size (N × 1).

Altogether, we know that HK+1 = Ŷ , for which we have already calculated gradients.
Using eq. (1.18), we are able to calculate the gradient term needed for both eq. (1.19)
and eq. (1.20). We can calculate the gradients of the outputs of the next layer via

∇H(n−1)LMSE =
[
(∇A(n)LMSE)W

(n)
]T

. (1.21)
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The process ends when the gradients of the first layer (n = 1) are calculated. One
is usually not concerned with calculating the gradients w.r.t the input vector X, but
remember that X = H(0) and one can use eq. (1.21) to calculate these gradients if so
desired.

To highlight the importance of the forward pass, notice that eq. (1.19) depends on the
layer outputs of the previous layer and eq. (1.18) relies on the activation of that layer. An
efficient implementation can cache these values during the forward pass so that they can
be used in back-propagation, without needing to recalculate them (at the cost of higher
memory usage). Additionally, one tends to use activation functions whose derivatives
calculated w.r.t the inputs can be evaluated using the outputs. For example, consider
the sigmoid activation

σ(x) = (1 + e−x)−1, (1.22)

whose derivative is
σ′(x) =

e−x

(1 + e−x)2
. (1.23)

Notice that we can equivalently write σ′(x) in terms of the output σ(x),

σ′(x) = σ(x) [1− σ(x)] . (1.24)

This allows one to just store the output of the activation in memory on the forward pass,
without needing to store the activation itself.

I have implemented this algorithm, applied to neural networks, available in the package
SimpleNNs.jl, described in Section 5.4.

1.4 Training as an Optimisation Problem
Training a model (such as a NN) to perform well on a desired task can be difficult
depending on the task itself. Machine learning provides a suite of common problem
classes, such as regression or classification, which can act as a standard proxy for a
large range of tasks and provide a common strategy for training models. Particularly in
DL, one uses a loss function as a proxy for “good ” performance on a task. One usually
selects this proxy to be continuous, as to allow for gradient-based methods to optimise
the loss via gradient descent. In this section, we will briefly cover the basics of this
method. Combined with the back-propagation algorithm defined in the previous section,
this provides the underpinnings of traditional training methods.

1.4.1 Gradient Descent

A vanilla version of gradient descent is comparable to the Newton-Raphson method [42]
of root-finding, whereby one calculates the gradient of a given set of parameters on a loss
function and proceeds to follow the negative of that gradient in fixed steps according to
some step size α. This algorithm is an iterative method, with the update step given by

θn+1 = θn − αn∇θnL(θn), (1.25)

where n is the current iteration index, θ are the parameters to optimise on the loss
function L, and αn (chosen such that αn > 0) is a learning rate which can depend on
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the iteration number n. A similar algorithm is gradient ascent, where one substitutes
αn → −αn into the above equation.

This algorithm has many issues in that it cannot effectively optimise a non-convex loss
function as it may get trapped in local minima and not reach the global minima [36]. Ad-
ditionally, each update of the parameter set is expensive as it requires the full evaluation
and gradient calculation on all samples in the dataset. The vanilla version of gradient
descent, as presented here, is rarely used in practice as a slight modification is favoured
as the base of many gradient-based methods - stochastic gradient descent (SGD).

1.4.2 Stochastic Gradient Descent

SGD modifies the vanilla gradient descent algorithm by evaluating the loss function on a
subset of the total available data which is chosen at random on each step. The choosing
of data introduces stochasticity into the iterative optimisation process which allows for
overcoming local minima [36]. One usually defines the loss on a subset of data D∗ which
is randomly chosen at each n such that the update now becomes

θn+1 = θn − αn∇θnL
∗(θn), (1.26)

where
L∗(θn) =

1

|D∗|
∑

Xi∈D∗
L(θn;X), (1.27)

where |D∗| is the number of samples in the minibatch and the loss, L(θn;Xi), is evaluated
on a single data point, Xi. For batch sizes of 1, this has similarities with online learning
[43]. Typically, one uses larger batch sizes to parallelise the training process [44].

This technique is very powerful, and can reach global optimisation in the infinite time
limit with probability 1, dependent on some constraints on the learning rate [45, 46],
written as

∞∑

n=0

αn =∞,
∞∑

n=0

|αn|2 = c, (1.28)

where c is just a finite constant. However, waiting for an infinite time is quite impractical,
and instead, many researchers favour some momentum-based approaches that build on
SGD — such as ADAM [41]. ADAM, derived from “adaptive moment estimation”, is
a momentum-based gradient optimisation method, and is arguably the most popular
method for optimisation due to its empirically validated performance across a wide range
of problems.
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Chapter 2

Reinforcement Learning

RL is one of three core paradigms in ML. It aims to provide a framework on how to
“teach” an agent (usually a ML model) to complete a specific goal in the most optimal
way, even when we as teachers do not know the most optimal actions. This departs from
the usual trend of SL, where one has access to a (usually static) dataset which is labelled,
and only need “fit a curve” to the data. This form of learning often requires interaction
with the environment to explore and test actions to assess their quality. For this reason,
RL is often studied in the context of games like Chess and Go, where agents can be
trained in a simulation, which eventually can outperform all human experts [47, 48]. As
this technique has far ranging applicability, it is often studied in a range of fields, from
psychology to operations research. This technique is incredibly powerful and general,
having deep connections with fields such as control theory, operations research, and game
theory. In the statistical mechanics literature, problems that study optimal control [49–
53] can be linked to RL. In other fields, the term approximate dynamic programming [54,
55] usually refers to techniques that are also studied under RL.

During this chapter, we will take a deep dive into the field of reinforcement learning
to provide context and background for the research presented in Chapter 6, where we
explore the connections between RL and rare trajectory sampling. For readers wishing
for a more complete review of the topic, see Sutton and Barto’s excellent textbook [27].

At its core, SL can only hope to solve tasks that are already able to be solved by humans
in some form, whether that be personally (e.g. image classification tasks [28, 56]), or via
expensive simulations or algorithms [57–61]. SL relies on being able to give a learning
agent information about correct or incorrect actions. One cannot use SL techniques to
train a model to perform a task if no one knows how to label any data for that task.
Similarly, USL can only uncover underlying trends in data. USL does not aim to have
a model perform a certain behaviour, but simply, learn underlying patterns in supplied
data. However, RL aims to provide a framework for learning optimal, complex, behaviour
in scenarios in which we, as the teacher, are not able to provide optimal examples. RL is
often deployed in scenarios where a model has to perform actions over multiple time steps,
in order to achieve a certain goal. One can avoid giving examples of correct behaviour by
instead constructing a scalar signal (known as the reward), which can inform the agent
whether the actions taken were “good ” or “bad ”. This process of translating a complex
task into reward signals can often vastly simplify the task. For example, knowing what
is a good move to make in Chess is extremely difficult, but it is obviously bad if one loses

11
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and good if one wins. If one assigns a number to both winning and losing, say +1 and
−1 respectively, then one can translate the task of “playing Chess well” into the problem
of choosing an action in each situation that will maximise the chances of receiving a +1
reward.

The process of rewarding good behaviour and punishing bad behaviour explains the Re-
inforcement part of RL, having some origins in the field of Psychology [27, 62]. One tries
to reinforce good actions and discourage bad actions. In RL, we attempt to perform the
same procedure, under the reward hypothesis [27, 63, 64]:

Any goal can be formalised as the outcome of maximising a cumulative, scalar,
reward signal.

This form of learning is done through interaction with our environment. This is often a
very active form of learning, as one can choose what information to gather through one’s
actions. Most importantly, using a reward signal for a goal definition can enable us to
find optimal behaviour without any examples of optimal behaviour.

RL is a term given to three distinct concepts [27]:

1. A framework for mathematically defining a goal-oriented task as a RL problem.

2. The research field which studies the aforementioned problem.

3. The suite of algorithms that are developed to solve a RL problem.

Before we can dive into any more details, we must rigorously define what a RL problem
consists of. This is the topic of the next section.

2.1 Mathematical Definition

We have already outlined some of the ways one can think of defining a RL problem. One
usually refers to the diagram shown in fig. 2.1. A RL episode usually involves multiple
time steps, hence the cycle in the diagram. We usually denote the current time step as t.

The process starts with the agent observing the state of the environment. This can
be denoted as Ot = O(St), where O(s) denotes the observation function which maps
the state of the environment to the observation that the agent sees — this is depicted
as the observer in fig. 2.1. For simplicity, we often assume that Ot = St, which is a
fully-observable environment. When the agent receives the first observation, an internal
policy function maps this observation to an action. In a deterministic case, this is usually
written as At = π(St). However, sometimes the agent follows a stochastic policy, which
defines a probability distribution over all actions possible in the state s, given by π(a|s)
where we normalise the distribution such that

∑

a∈A(s)

π(a|s) = 1, (2.1)

in which A(s) represents the set of actions that an agent can take in the state s.

Once the agent selects and carries out an action, it is applied to the environment. This,
together with the previous state, is used to update the environment to the next time
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Agent

Observer

Environment

Reward Rt Action At

State St

Observation Ot

Figure 2.1: The typical setup of a RL problem. t represents the discrete time of
the events. One reads the diagram clockwise, starting with the environment producing
an initial state, S0, which is converted to an observation and given to the agent. The
agent decides which action to take, which is then sent to the environment. This alters
the environment and produces a reward, which is sent to the agent, and a new state is
observed and the cycle continues. Note that the agent and environment are depicted
as separate for visual clarity, but usually the agent is contained within the environment
itself.

step. In a deterministic setting, one usually writes this as s′ = f(s, a), where s′ is the
next state and f(s, a) is the environment function which maps states to actions.

Again, we can extend the framework to have a stochastic environment, whose func-
tion instead defines a probability distribution over all possible next states and rewards
p(s′, r|s, a), where ∑

s′∈S,r∈R

p(s′, r|s, a) = 1, (2.2)

for all s ∈ S and a ∈ A(s). We use s′ to often denote a generic “next” state, s for the
current generic state and r and a to be a reward and action respectively. We use the
convention that S, R andA(s) represent the state, reward, and action spaces respectively.
Once a single transition has been made, a reward for the action taken can then be sampled
using the reward function. In the deterministic reward setting, one can write this reward
function as r(s′, s, a), read as the scalar reward for transitioning from state s to state s′

using action a. In the stochastic setting, the probability distribution is usually combined
with that of the next state, whose shorthand expression is given by

p(s′, r|s, a) = f(s′|s, a)ϕ(r|s′, s, a), (2.3)

where we have used ϕ(r|s′, s, a) to define the probability distribution of receiving the
reward r conditioned on transitioning from state s to s′ using action a. This distribution
is normalised, as given by ∫ +∞

−∞
ϕ(r|s′, s, a)dr = 1. (2.4)

This reward function defines the goal of the problem, and is usually constructed to influ-
ence the learning outcome (in a process known as reward engineering [65]). Alternatively,
this reward function can also be learnt via inverse reinforcement learning [66] from ob-
served optimal behaviour. Like with the other parts of the process, this reward can also



14 CHAPTER 2. REINFORCEMENT LEARNING

be stochastic in nature. The framework allows each individual process to have some
stochasticity, however, pedagogically it is easiest to look at the deterministic case first.

We can now define a quantity, known as the return, which is the cumulative sum of
rewards into the future, denoted as

Gt = Rt +Rt+1 +Rt+2 + . . .+RT−1, (2.5)

where T indicates the time of reaching the terminal state. A terminal state defines an
end to a trajectory, for which Rt′ = 0 when t′ ≥ T . If a problem has a terminal state, we
call it an episodic problem. One can alternatively specify non-episodic problems, which
do not have any terminal state, but continue indefinitely. However, looking at eq. (2.5),
one can see the return will blow up for very long or non-episodic (T → ∞) problems.
One way to adapt this return, is to introduce a parameter γ, which controls how much
an agent should pay attention to short term gains compared to long term gains. We
introduce this parameter to the return as

Gt = Rt + γRt+1 + γ2Rt+2 + . . . =
∞∑

i=0

γiRt+i, (2.6)

which is called the discounted return, as the parameter γ discounts future rewards in
favour of short term rewards. This parameter is subject to γ ∈ [0, 1]. One recovers the
episodic case by setting γ = 1 and defining all rewards from (and including) time step
T equal to 0. We will use the term return to, in general, refer to the discounted return.
Sometimes γ is omitted in the case that γ = 1.

One must remember that eq. (2.5) and eq. (2.6) are defined in terms of the sampled
returns. They are simply random variables, which are sampled from having an agent
interact with the environment. We use the notation of a capital letter X to denote a
random variable sample of the quantity usually denoted by the symbol x. For example,
you will see Rt for the reward sampled at time t and St as state sampled at time t,
whereas r and s represent a generic reward and state respectively.

As we regularly refer to a sequence of events in time, we use ω to denote a trajectory,
which is made up of an array of state-action-reward tuples, written as

ω = [S0, A0, R0, S1, A1, R1, . . . , ST−1, AT−1, RT−1, ST ], (2.7)

here ST is the terminal state. We use the notation T (ω) to indicate the terminal time
step of the trajectory ω.

A useful construct is the value function, which calculates the expected return an agent
will receive, given they are in the state s. This is usually written as

vπ(s) = E
ω∼π|S0=s

[G(ω)], (2.8)

where E
ω∼π|S0=s

[A] denotes the average (or expected) value of the random variable A, which

is sampled according to using the policy π, given that the initial state started at s. To
summarise eq. (2.8), we average the total discounted return of all possible trajectories
which start at state s, and follow the environment transition probabilities along with
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the policy π. Another way of writing an expectation is as an average over all possible
trajectories, weighted by the probability of a trajectory pπ(ω), given by

vπ(s) =
∑

ω

pπ(ω)δS0,sG(ω) =
∑

ω

p(ω)δS0,s

T (ω)−1∑

t=0

γtRt, (2.9)

where only trajectories where the initial state S0 is equal to s contribute to the sum,
given by the use of the Kronecker delta function1 (also called an indicator function), δa,b
[67].

It is crucial to remember that value functions can only be defined in terms of a policy.
Additionally, one implicitly makes the value function depend on both the reward function
and environment function. Given that Gt = Rt + γGt+1, we can write eq. (2.8) as a
recursive equation, as shown in eq. (2.10).

vπ(s) = E
ω∼π|S0=s

[rt + γGt+1]

= E
ω∼π|S0=s

[rt] + γ E
ω∼π|S0=s

[Gt+1]

=
∑

a∈A(s)

∑

s′,r

p(s′, r|s, a)r(s′, s, a) + γ
∑

a∈A(s)

∑

s′,r

p(s′, r|s, a)v(s′)

=
∑

a∈A(s)

∑

s′,r

p(s′, r|s, a) [r(s′, s, a) + γv(s′)] , (2.10)

which states that the value of a state s is defined only in terms of the values of the states
that s can transition to, and the reward received for moving between them.

In the deterministic case, eq. (2.10) simplifies to

vπ(s) = r(f(s, π(s)), s, π(s)) + γvπ(f(s, π(s))), (2.11)

where the selected action in state s is given by a = π(s) and the next state, s′ = f(s, π(s)).
The reward is also awarded deterministically depending on the current state, the action
taken and the next state.

One can also extend this idea to choosing an arbitrary action, a, in the current state,
but then following the same policy, π, for the rest of the trajectory. This allows us to
compare immediate actions with one another. We can capture this idea in what is known
as the state-action-value function, which is given the symbol qπ(s, a) and is defined
as

qπ(s, a) =
∑

s′,r

p(s′, r|s, a) [r(s′, s, a) + γv(s′)] , (2.12)

and in the deterministic case as

qπ(s, a) = r(f(s, a), s, a) + vπ(f(s, a)). (2.13)

This allows us to make the assertion that if qπ(s, a) ≥ vπ(s) then we can improve the
policy π by taking the action a in the state s instead of the action π(s). One can

1δa,b equals 1 only when a = b and 0 otherwise. This assumes that the states take discrete values.
For the case of continuous variables, the corresponding indicator function is called a Dirac delta function
and is written as δ(a− b) [67].
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see that these definitions lend themselves to rigorously defining the quality of different
policies, and reduce the problem to looking at single actions in single states, rather than
considering entire trajectories.

The equations for qπ(s, a) and vπ(s) define the Bellman equations [27], which enable a
rigorous, algorithmic optimisation strategy, known as Dynamic Programming (DP) [27,
68].

To end this section, we will define the goal of RL in these recently defined terms. We can
state that the goal of RL is to find a policy π∗, which satisfies

π∗ = argmax
π

vπ(s) ∀ s. (2.14)

As a consequence of this definition, the optimal policy π∗ is the policy, or set of policies
which obey

vπ∗(s) ≥ vπ(s) ∀ s ∈ S and π. (2.15)

In words, eq. (2.14) states that the goal of RL is to choose an optimal policy, which max-
imises the expected cumulative reward of an agent when interacting with an environment
starting from any state.

One may also be interested in a special optimisation case, which focuses on maximising
values under a set of initial states, as long as the probability distribution of being in that
state is stationary and well-defined, yielding an optimal policy

π∗ = argmax
π

[∑

s∈S

d(s)vπ(s)

]
, (2.16)

where d(s) defines the probability distribution of state s being the initial state at t = 0.
This definition reduces to eq. (2.14) in the case that d(s) is uniform across all states. An
optimal policy in eq. (2.14) is always an optimal policy under eq. (2.16). This is not true
for the converse, as eq. (2.16) only cares about the policy in the states that are visited by
the optimal policy from the initial state distribution; the policy in non-accessible states
(from the initial starting states) could be random under eq. (2.16) but need to be optimal
under eq. (2.14).

2.2 Grid World
As with any showcasing any complex theory, it is helpful to have a toy problem upon
which one can apply the theory. A prototypical problem for RL is navigation through
a 2-dimensional grid world, as shown in fig. 2.2, with the goal of reaching a particular
tile on the map. We express the optimal behaviour as reaching the target tile in the
shortest amount of time. Each different tile in the grid world takes a different amount of
time to cross. We can think of each different tile as a different type of terrain, like on a
map. Green represents grass, the easiest tile to cross, taking only 1 unit of time. Blue
represents water, costing 3 units of time, while grey represents mountains, taking 5 units
of time to cross. Finally, there is the gold tile, which represents the target destination in
the grid world. In this simplified world, an agent can only move to adjacent tiles, and
the “game” ends when the agent reaches the gold tile.
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Figure 2.2: A representation of a grid world. Green represents grass, blue represents
water, grey represents mountains and the yellow/gold colour represents the goal (or exit)
tile. The labels of each tile shows the (x, y) position of the tile.

Using what we have learnt in the previous section, we can translate this problem into a
reinforcement learning problem. We can start with the state of the problem. In this case,
the state would be the position of the agent in the grid world. One can label the west
to east (horizontal) and north to south (vertical) directions as x and y respectively. We
will assume for now that the terrain map does not change, which means we do not have
to include it in part of the state2, as it becomes an implicit part of the problem. We can
denote the state as s = (x, y).

The set of actions of an agent can be denoted by A ∈ {↑, ↓,→,←} for north, south, east
and west respectively. The action which maps from state s to the next state s′ is denoted
as a. The environment function is deterministic and determines how s is mapped to s′

using a via

s′ = f(s, a) =





(x, y − 1), a is ↑
(x, y + 1), a is ↓
(x+ 1, y), a is →
(x− 1, y), a is ←

. (2.17)

Our final choice is the reward function. How are we to encode the goal of reaching the
gold tile in the shortest possible time? The goal of a RL problem is to maximise a reward.
As our grid world goal is to minimise the time, we can instead maximise the negative of
the total time taken. We can encode the cost to travel on a given tile as

c(s) =





0, s is a goal (gold)
1, s is grass (green)
3, s is water (blue)
5, s is mountains (grey)

, (2.18)

2If we were training an agent to operate in any grid world configuration, we would have to include
the details of the tile configuration in the state.
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Figure 2.3: (a) shows the initial policy, π0, in grid world. We do not allow actions that
would cause the agent to exit the grid world shown. (b) shows the initial value function,
vπ0 , in grid world. This value function is only defined in terms of the policy π0, shown in
(a).

where s represents the tile, indicated by an (x, y) position on the grid. The reward is
given as

r(s′, s, a) = −c(s′), (2.19)

where the reward is deterministic and only depends on the tile that is travelled into. In
general, the reward function can depend on any number of variables, but in this case, it
only depends on the next tile entered. As an example, if a player moves from a grass
tile (green) into a mountain tile (grey), they will receive a reward of −5. In fact, moving
from any tile into a mountain tile will receive a reward of −5.
We can represent a deterministic policy with arrows in each tile, indicating the direction
of travel from that tile, as shown in fig. 2.3(a). If we imagine starting at (4, 6), we can
see that the path followed is

ωπ0(S0 = (4, 6)) = {S0 = (4, 6), A0 =↓, R0 = −1
S1 = (4, 7), A1 =→, R1 = −1
S2 = (5, 7), A2 =→, R2 = −5
S3 = (6, 7), A3 =→, R3 = 0

S4 = (7, 7)}, (2.20)

where we set the initial time to t = 0, the initial state at S0 = (4, 6) and follow the policy
π0 until the terminal goal state, giving us a trajectory ωπ0(S0 = (4, 6)). We can calculate
the return of the trajectory as G0 = R0 +R1 +R2 +R3 = −7, using γ = 1. As we are in
a deterministic setting, we know that vπ0(S0 = (4, 6)) = G0 = −7 since there is only one
possible trajectory starting at (4, 6).

We can repeat this type of calculation, starting at each tile on the map, to calculate
the value of each state under the initial policy. However, this method is very inefficient,
as many trajectories contain sub-trajectories which may have already been evaluated.
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Instead, we can use the recursive form of the value function to calculate each value by
only visiting each state a single time.

We start by labelling the terminal state (gold) as having a value of 0, by definition, as
the episode ends here and there are no more subsequent rewards. If you look carefully at
the policy, one can see that there are no cycles and one always ends in the terminal state,
regardless of the starting position. For this reason, we can use this initial value, along with
eq. (2.11), to “propagate” the values backwards so that each state has a corresponding
value (under the policy π0). We then visit all the tiles which are adjacent to the labelled
states, updating those that have actions that take an agent into one of our already labelled
states, using eq. (2.11).

Under this new method, after giving the initial value to the terminal state, we visit states
(6, 7) and (7, 6), which also have a value of 0, since you get a 0 reward for entering the
terminal state and it has zero value in that state. Next, we visit (5, 7), (6, 6) and (7, 5).
They have actions taking an agent into a currently labelled state; the values of these next
states are −5, −5 and −3 respectively, as the first two enter a mountain tile and the last
enters a water tile. This process is iterated, until all tiles are labelled. The final result of
this process is shown in fig. 2.3(b).

Notice that while both methods give the same answer, the second is much more efficient
at calculating the answer. The efficiency comes from breaking the problem down into a
single state transition, and choosing a sensible order in which to evaluate the states. The
order in which we calculate the values is called a sweep.

2.3 Dynamic Programming

A traditional approach to solving RL problems is to use dynamic programming. This
section will outline one approach to using this technique to solve the problems of interest
exactly.

2.3.1 Bellman Equations and Optimality

In Section 2.1, we defined equations 2.11 and 2.13 for vπ and qπ respectively. We called
these the Bellman Equations. These two functions are very important to RL as they
provide a partial ordering of the quality of policies. A policy, π, is defined to be
“better” than or equal to a policy, π′, if the expected return is greater than or equal to
the expected return of π′ for all states [27]. This is codified by

π ≥ π′ ⇐⇒ vπ(s) ≥ vπ′(s) ∀ s ∈ S, (2.21)

where S defines the state space of the problem, and ⇐⇒ is the symbol for if and only if.
This is only a partial ordering, since it does not disambiguate two policies with the same
values in each state, even if the policies are different. However, this condition is enough to
ensure that we can define at least one optimal policy, denoted as π∗. Even though there
may be multiple optimal policies, they all share the same state-value function, called the
optimal state-value function, denoted as v∗, and defined as

v∗(s) ≡ max
π

vπ(s), ∀ s ∈ S. (2.22)
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Figure 2.4: (a) The map, along with the coordinates in the form of (x, y). (b) The
optimal policy w.r.t eq. (2.22). (c) A policy which is not optimal in terms of eq. (2.22)
but is optimal in terms of eq. (2.16), in the case that d(s) = 0 for y = 1. This means
that the probability of starting at the top of the map is zero, and hence, the optimal
policy will never visit any of those states, so it is still an optimal policy when we take
into account the initial states.

Optimal policies also share the same optimal state-action-value function, denoted
as q∗ and given by

q∗(s, a) ≡ max
π

qπ(s, a), ∀ s ∈ S and a ∈ A(s). (2.23)

One can also write the above equation in terms of v∗, such that

q∗(s, a) ≡
∑

s′,r

p(s′, r|s, a) [r + γv∗(s′)] . (2.24)

One can see that this is a stronger set of conditions for defining optimality than eq. (2.16),
as it does not define an initial state (or distribution of initial states). If we restrict our
search space of policies to one which does not explore part of the possible state space (as
it is not optimal), then a policy which is not optimal in this area is still optimal in terms
of the goal we care about. We can use the grid world problem to understand this.

Picture the grid world shown in fig. 2.4(a). If we were to follow the definition of optimality
given by eq. (2.22), then we would arrive at an optimal policy given by fig. 2.4(b).
However, if we know that we only start in tiles where y > 1 (i.e. excluding the top line of
the map), then we know that it is optimal to avoid this line. As the agent never enters
the state space in the top row, the policy here is irrelevant, as optimality can be defined
in terms of the starting state, given by eq. (2.16). We can see that for all states actually
visited by the policies, the values are identical. However, we do not always know which
states will not be visited by an optimal policy starting at a distribution of initial states,
and as such, we should prefer the more general definition of optimality. This ensures that
we do not discard part of the state space which may be essential to finding the optimal
policy.

2.3.2 Policy Evaluation

In our grid world example, we presented a few ways of calculating the values for a given
state. These methods relied on the fact that we knew where the exit tile was, and knew
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Figure 2.5: (a) and (b) show the value functions for the policy in fig. 2.4 (b) and (c)
respectively. The values for the visited states under an initial starting state distribution
of y > 1 are identical for both policies.

that it would be a terminal state. This sort of information is problem specific, and
the dynamics of the environment are not always known, but need to be explored. It is
therefore important that we discuss a more general way of constructing the values for a
given policy.

Trajectory Evaluation

The first method that we should discuss is directly evaluating the returns of a trajectory
from a state. By definition in eq. (2.8), we know that the value of a state is the expected
discounted return of a trajectory starting at that state. If we wish to estimate this value,
we can just run trajectories starting at the state s, and take an average. In the episodic
and deterministic settings, such as grid world, we can just run a single trajectory starting
at s until termination and calculate the return by adding up the discounted rewards.
In a non-deterministic environment, or with a stochastic policy, one has to run many
trajectories and take an average. This average can be estimated to any arbitrary precision
at the cost of more trajectories. In the stochastic case, running trajectories to estimate
quantities like returns is a form of Monte Carlo, covered in light detail in Section 4.3.

This approach is computationally expensive and does not benefit from the recursive
nature of the Bellman equations and requires re-calculating values for a large state space.
Additionally, in the non-episodic case, where T → ∞, one usually has to settle for an
estimate for the state, taking only Tmax steps in the trajectory, where Tmax is finite.
Remember that γ < 1 and so the tth step in the trajectory has a prefactor of γt−1. If the
rewards are static and finite, then the contributions from additional terms tend towards
0, making the approximation arbitrarily accurate.

Exact Value Calculation

If the dynamics of a problem are entirely known, then we have a system of equations,
one for each state s, given by

vπ(s) =
∑

a

π(a|s)
∑

s′,r

p(s′, r|s, a) [r + γvπ(s
′)] . (2.25)

We have |S| unknowns (i.e. the number of states) and all equations are linear in the
unknowns. This can be solved as a simultaneous equations problem. The dynamics is
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entirely given by the probability distribution p(s′, r|s, a) and the policy π.

Value Iteration

Instead of performing many trajectories, one can instead use the Bellman equations to
iterate the state values until they have converged. To start, we initialise a set of values
for each state. This does not need to be a correct value, so a good choice is to usually
set the values of each state to zero, as all terminal states will have the correct value,
despite not knowing which states are terminal ahead of time. As this will be an iterative
process, we will use the superscript (k) to specify the kth iteration of a quantity. Our
initial conditions are

V (0)
π (s) = 0 ∀ s, (2.26)

where we use the symbol V (u)
π to denote the approximate value function at iteration step

u, whereas vπ is reserved for the true value function. Notation throughout this chapter
will use a capital V to denote a current approximation of the value function and lowercase
v to denote the true value function.

The only condition on our initialisation is to make sure that terminal states are set to
zero. As we are initialising all states at zero, this ensures the terminal states are also
initialised at zero. The way we update the value functions is by applying the Bellman
equations, giving

V (k+1)
π (s) =

∑

a∈A(s)

π(a|s)
∑

s′,r

p(s′, r|s, a)
[
r + γV (k)

π (s′)
]
∀ s, (2.27)

which, in the deterministic case, becomes

V (k+1)
π (s) = r (f [s, π(s)], s, π(s)) + γV (k)

π (f [s, π(s)]) ∀ s, (2.28)

where f [s, π(s)] is the state transitioned to, from s, using the action selected from the
policy. One should pay attention to the fact that we update all states in one go, and only
use values from the previous iteration to produce the next iteration.

This process will iterate towards the true value function. In the case of continuing
problems, then one iterates until differences in subsequent iterations are within a chosen
arbitrary threshold. We can apply this on the grid world problem in fig. 2.4(a), using
the policy in fig. 2.4(b). Figure 2.6 shows the iterations of this happening until there
are no more differences, starting from k = 0, until k = 5. Notice that k = 4 and k = 5
are identical, so the iteration process ends. The algorithm terminates when an iterations
yields no changes. We can see that the final value function at k = 5 is the same as the
one presented in fig. 2.5(a).

The process of value iteration is guaranteed to converge to the correct answer, provided
that each state is visited infinitely often. This is because eq. (2.27) clearly has a fixed
point when V

(k)
π = vπ.

2.3.3 Policy Iteration

Now that we can calculate the value function, we can equally calculate the state-action-
value function, via

qπ(s, a) =
∑

s′,r

p(s′, r|s, a) [r(s′, s, a) + γvπ(s
′)] , (2.29)
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Figure 2.6: (a) A given policy π, same as fig. 2.4(a). (b)-(f) The value iteration
sweeping over all states using eq. (2.27) at iteration k. A final round of value iteration is
shown in (f) to confirm that this is a fixed point and is unchanged after update.

which in the deterministic regime becomes eq. (2.13).

Using qπ(s, a) allows us to compare a single transition action a in the state s. In fact,
if we have a policy π′, we can prove that it is better than a current policy, π, under the
condition that

vπ′(s) ≥ vπ(s) ∀ s. (2.30)

One can see that if we create a new policy such that

π′(s) = max
a

qπ(s, a) ∀ s, (2.31)

then we are guaranteed to satisfy eq. (2.30).

We can use eq. (2.31) to generate an improved policy, π′. In turn, we can use any method
to evaluate the new value function, vπ′ , and then continue the process. We can see that
the optimal policy, π∗, is a fixed point of this process. For the same reason that the value
function iteration is guaranteed to converge, this process is also guaranteed to converge
to the optimal policy. This allows us to solve most simple problems exactly.

The policy iteration algorithm to find an optimal policy is summarised below [27]:

1. Generate an initial policy π0 and set n = 0, where πn is the nth policy.

2. Initialise V
(k)
πn (s) = 0 ∀ s and set k = 0.

3. Calculate V
(k+1)
πn using eq. (2.27), sweeping over all states.
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Figure 2.7: Process of generating an optimal policy from a randomly initialised policy
via policy iteration. Values are calculated by running a trajectory, and detecting loops
(to calculate −∞ values), instead of the value iteration to avoid infinite loops. The final
optimal policy generated is the same as fig. 2.4(b). The final policy iteration is not shown,
as π4 = π3, showing that π3 is the optimal policy .

4. Check for convergence between V
(k+1)
πn and V

(k)
πn . If converged, set Vπn = V

(k+1)
πn and

continue, else go to step (3).

5. Create a new policy, πn+1 using eq. (2.31) based off πn.

6. Stop if πn+1 = πn and output π∗ = πn and V ∗(s) = Vπn .

7. Increment n, such that n← n+ 1 and go to step (2).

We can substitute any valid value function evaluation technique to calculate vπ into this
algorithm.

Figure 2.6 shows this algorithm in practice, by applying it to a random policy. We only
show the final value function for each policy, as the process is already detailed in fig. 2.6.

2.4 Model-Free Methods

In the last section, we covered the basic terminology of RL, and formulated a simple grid
world game as a RL problem. We have explored exact methods of solving these problems
using the Bellman equations and dynamic programming. We also introduced a basic,
traditional, algorithm for finding the optimal policy of a generic RL problem.

However, the field of RL rarely focuses on the methods presented in this section, despite
being the bedrock of the field. Many problems of interest suffer due to a lack of a model for
the environment, rendering dynamic programming techniques unsuitable. Additionally,
many problems that RL is applied to have an incredibly large state and/or action space,
which make these methods computationally infeasible. In this section, we will discuss
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ways of learning, without explicit access to a model, but rather from interactions with
the environment using via model-free methods.

Previously, we assumed that one could solve problems by exhaustively searching the entire
state space, and confidently knowing how the environment would respond to actions; we
call this having a model of the environment. These assumptions are not always feasible.
Imagine the scenario of training a self driving car. In this scenario, the behaviour of other
objects in the environment, such as people, cannot be effectively contained in a model of
the environment. There are some methods that try to learn a model of the environment
to help with prediction, but it is common to have access to no model at all.

Additionally, most problems have a combinatorial state-space, e.g. backgammon has over
1020 states [27], rendering the exact methods infeasible. To add to the complexity, there
are some problems with continuous action and state spaces which are not well handled by
the exact methods; in practice, these are usually discretised or approximated, however,
one can see how the state space could grow arbitrarily large.

It should be stated that the dynamic programming methods described previously, while
impractical for large problems, are actually quite efficient. In the worst case, the time
taken to reach an optimal policy is polynomial in the number of states and actions. If a
problem has n states and k actions, then it is clear that one can choose k actions in each
state n, and as such, the number of total policies is kn. Despite the number of policies
growing exponentially with the state size, dynamic programming can find the globally
optimal policy in polynomial time. This is extremely efficient. Nethertheless, if n is too
large to sweep over, then it is an impractical algorithm. Many problems in the real world
fit into this category.

One way in which we can focus the search in the policy space is to learn through experi-
ence, focusing on the part of the state space that an agent is likely to visit, and therefore
likely to be important in finding the optimal policy. These are collectively known as
Monte Carlo methods and form the basis of most modern RL algorithms. Unlike the
previous section, we do not assume any knowledge of the environment (i.e. the transition
function/rates), making the techniques model-free. A typical Monte Carlo method only
requires experience — a sample sequence of states, actions and rewards from actual or
simulated interaction with an environment.

2.4.1 Policy Evaluation through Interaction

In Section 2.3.2, we discussed using trajectories to evaluate the value of a given state.
While this is not the most efficient approach in some problems, such as grid world, Monte
Carlo trajectories form a very important part of modern RL, as dynamic programming
(DP) methods are often infeasible.

To remind ourselves, the definition of the value of a state is

vπ(s) = E
ω∼π|S0=s

[G(ω)], (2.32)

where G(ω) is the return (sum of discounted rewards) of a trajectory beginning at state
s. One can imagine running a trajectory beginning at some initial state s drawn from a
distribution of initial states with probability d(s). The quality of a policy is given exactly
by the expected discounted return of trajectories generated by the starting distribution
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and the policy π. In terms of the values of the initial states, we write the expected return
as

⟨Gπ⟩ =
∑

s∈S

d(s)vπ(s). (2.33)

As before, this provides a partial ordering over all policies, such that if ⟨Gπ′⟩ > ⟨Gπ⟩,
then π′ > π. It is only a partial ordering, since if ⟨Gπ′⟩ = ⟨Gπ⟩, then both policies are
equal and cannot be distinguished using this metric. Notice that this is a slightly different
metric to the Bellman policy ordering (given in eq. (2.21)), as it compares the weight of
states, and does not require iterating over the entire state space to compare policies. We
have relaxed the restriction that the policy must have the most optimal value function
over all states, but instead focus on a weighted average of the values of the initial states.
A true optimal policy (over all states) is also an optimal policy with respect to an initial
distribution, but the converse cannot be guaranteed.

In the dynamic programming approach of policy evaluation, one would have to visit
every single state of the problem iteratively. For many problems this can be prohibitively
expensive as the state space of most problems is very large. Instead, one can consider
which states are actually relevant to solving the problem, as some states may not even
be reachable depending on the initialisation conditions. We touched on this earlier in
this chapter in fig. 2.4 and fig. 2.5, where under the initialisation conditions of y > 1,
these two policies have the same expected returns, as the trajectories from the initial
states never enter the regions where the policy differs. Often, optimisation of dynamic
programming algorithms comes in the form of biasing the sweep of states to those which
are more likely to be relevant to solving the problem. Take the example of finding the
shortest path between two points. The default algorithm for this is called “Dijkstra’s
algorithm” [69], which is often augmented for the A* algorithm [70], which prioritises
searching in the direction of the target, as it deems these states more relevant.

Along with prioritising important states, interaction with the environment does not re-
quire the agent to have a model of the environment to learn. Dynamic programming
explicitly requires a model of the environment to learn, which we called a model-based
method. This usually also involves methods that have some aspect of planning, which
allow an agent to plan out future actions, much like a Chess player visualising the board
a few moves into the future3.

In order to evaluate a given state, one can simply run a number of trajectories, ω(i)
π , using

the current policy, π, starting at a state s to approximate the value of that state, such
that

vπ(s) ≈
1

N

N∑

i

G(ω(i)
π ), (2.34)

where G(ω) is the total return of the trajectory ω, and N is the total number of samples.
Equation (2.34) becomes an equality in the limit of N →∞. Notice that one can sample
ω without having to know the specific model of the environment. Instead, one need
only be able to interact with the environment and does not need to know the explicit
probabilities of certain transitions and rewards.

3Planning is not extensively covered here, but Chapter 8 of [27] provides a basic overview. Planning
is also extensively used in Monte Carlo Tree Search (MCTS), which is one of the main algorithms behind
AlphaGo [71], the first computer program to beat a world champion at the game of Go.
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Data: Policy π
Result: Estimated state-value function Vπ(s) ≈ vπ(s).

1 Initialise a state-value-function Vπ(s) ∈ R, arbitrarily, for all s ∈ S;
2 Initialise an empty list, Returns(s) of sampled returns for all s ∈ S;
3 for i← 1 to Nmax do
4 Sample a trajectory, ω, using π: ω = (S0, A0, R0 . . . , ST , AT−1, RT−1);
5 G← 0;
6 for t in T − 1, T − 2, . . . , 0 do
7 G← γG+Rt;
8 Append G to Returns(St);
9 Vπ(St)← average(Returns(s));

10 end
11 end
Algorithm 1: Value-Function estimation using Monte Carlo policy evaluation.

The algorithm for estimating the value function Vπ(s) ≈ vπ(s) using Monte Carlo is given
in Algorithm 1. It should be noted that this is called the every-visit Monte Carlo method,
which averages returns from every single visit to the state s. An alternative approach is
to only alter the average to Vπ(St) if it is the first visit in the trajectory, known as the
first-visit Monte Carlo method, discussed in more detail in Chapter 5 of [27].

2.4.2 Monte Carlo Policy Iteration

Estimating state-values tends to be less helpful when one does not have access to the
model of the environment. Previously, we could construct a greedy policy with a value
function Vπ(s) using

π(greedy)(s) = argmax
a

[∑

s′∈S

p(s′, r|s, a) (r + γVπ(s
′))

]
, (2.35)

where p(s′, r|s, a) is the model of the environment. However, without a model, we cannot
compute this. Instead, we should attempt to estimate the state-action-value function,
qπ(s, a), for a given policy. One approach to estimating the state-action-value function
is to randomly start in any state and select a random starting action. After this first
transition, one follows the given policy π until the end of the trajectory. One can then
calculate the return for the starting state and action, and use this as an estimate for the
qπ value at the initial state, using the initial action. This is known as exploring starts. We
do not consider this approach further, as it is prohibitively computationally expensive in
most cases.

Instead, we consider making our policy stochastic, to ensure there is some exploration.
One way to make a policy stochastic, is to make it ϵ-greedy, which means that with
probability (1−ϵ), we pick the actions according to a∗π = argmax

a′
qπ(s, a

′), and otherwise,

choose a completely random action. The probability of this can be defined as

π(a|s) =
{
(1− ϵ) + ϵ

|A(s)| if a = a∗π
ϵ

|A(s)| if a ̸= a∗π
(2.36)
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We choose ϵ to be between 0 and 1. Notice that we recover a greedy policy if we set
ϵ to zero. Usually, one anneals ϵ towards zero to decrease exploration and maximise
exploitation at the end of training.

Data: Soft policy π
Result: Estimated state-action-value function Q(s, a) ≈ qπ(s, a).

1 Initialise a state-action-value-function Q(s, a) ∈ R, arbitrarily, for all s ∈ S;
2 Initialise an empty list, Returns(s, a) of sampled returns for all s ∈ S;
3 for i← 1 to Nmax do
4 Sample a trajectory, ω, using π: ω = (S0, A0, R0 . . . , ST , AT−1, RT−1);
5 G← 0;
6 for t in T − 1, T − 2, . . . , 0 do
7 G← γG+Rt;
8 Append G to Returns(St, At);
9 Q(St, At)← average(Returns(St, At));

10 end
11 end
Algorithm 2: State-action-value function of the soft policy π, which ensures
that all actions are taken with some finite, non-zero, probability.

We can now evaluate the state-action-value function of the exploring policy π, using Al-
gorithm 2. Once the policy has been estimated, one can iterate the policy such that
πk+1(a|s) = argmax

a′
Q(k)(s, a′) ∀ s ∈ S, similar to the policy iteration shown in Sec-

tion 2.3.3. This iteration is guaranteed to converge to the optimal soft policy [27]. One
can also imagine this soft policy as always choosing the greedy action, but the environment
randomly (with probability ϵ) overrides the agent’s action with a uniformly random one
instead. In this case, the best that the agent can do is choose an action which maximises
the state-action-value function, which takes into account this action randomisation.

2.4.3 On/Off Policy Methods

In the last section, we presented learning a soft-policy4 π for optimisation, ensuring that
samples have some exploration. However, this policy can be quite suboptimal. We will
use an example from grid world to emphasise this.

Let us introduce a new type of tile to our map and call it “lava”. This will symbolise a
type of tile that is to be strongly avoided, and let us give it a cost of some high value,
say 100, meaning that the agent will receive a −100 penalty for entering the tile, causing
the episode to end. If we have an ϵ-greedy policy, then there is a chance the agent will
randomly enter the tile if it is adjacent. For this reason, there is a strong influence to
stay far away from any lava tiles, even if the optimal path to the exit goes near them.

Take the policies given in fig. 2.8, given a starting point of the south-west corner, we
can clearly see that the optimal path is to avoid the lava, as shown in (a). However, if
we were to instead calculate the optimal ϵ-greedy (soft)policy, we can see that this will
diverge from the “true” optimal path, and we pay the price for baking in exploration to
the existing policy.

4A soft policy is one which is stochastic, and takes every available action a with at least π(a|s) > 0.
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Figure 2.8: A grid world example with lava blocks at the bottom. A soft-policy has a
small chance of entering the lava if the agent is in a tile near it. Imagine the environment
has a strong wind that will move the agent at random into another tile with a small
chance. In this situation, the only optimal policy is one which takes you far away from
costly tiles, as these states will have a lower value as there is a contribution from the
random chance that you are knocked into the adjacent costly tile, whatever your desired
action. This example illustrates that the optimal hard policy, shown in (a), is not the
optimal soft policy (b).

To keep exploration, but ensuring we learn the optimal policy, we can modify our al-
gorithm to be off-policy. An off-policy algorithm uses a different policy to generate
trajectories, from which we can learn the state-action-value function of our actual policy
π, then used for policy iteration. In general, we can call this other policy, b, which is used
to generate sample trajectories to learn from.

Imagine that we have a trajectory ω, generated using b, which has a probability pb(ω).
Under a different policy π, this probability would be pπ(ω). Remember that we can
calculate the expected value of the return (under π) via

⟨G⟩π = E
ω∼π

[G(ω)] =
∑

ω

pπ(ω)G(ω), (2.37)

which assumes that ω starts in a state s with probability d(s).

We can multiply each term inside the sum by pb(ω)
pb(ω)

, as this is equal to 1, yielding

⟨G⟩π =
∑

ω

pπ(ω)G(ω)

=
∑

ω

pb(ω)

pb(ω)
pπ(ω)G(ω)

=
∑

ω

pb(ω)

[
pπ(ω)

pb(ω)
G(ω)

]

= E
ω∼b

[
pπ(ω)

pb(ω)
G(ω)

]

= E
ω∼b

[ρ(ω)G(ω)] , (2.38)

where ρ(ω) = pπ(ω)
pb(ω)

. We can expand the probability of a particular trajectory under policy
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µ into a product of probabilities, as this is a Markov decision process (MDP), yielding

pµ(ω) = d(S0) µ(A0|S0) p(S1|A0, S0) µ(A1|S1) . . . µ(AT−1, ST−1) p(ST |AT−1, ST−1).
(2.39)

Notice that, for a given trajectory, the only terms unique to the policy are the ones
given by µ(at|st). This means that if we find the ratio of pπ(ω)

pb(ω)
, all the terms except for

the policy differences will cancel, meaning that the quantity ρ does not depend on the
environment. We are left with

pπ(ω)

pb(ω)
= ���d(S0) π(A0|S0) (((((((

p(S1|A0, S0) π(A1|S1) . . . π(AT−1, ST−1) ((((((((((
p(ST |AT−1, ST−1)

���d(S0) b(A0|S0) (((((((
p(S1|A0, S0) b(A1|S1) . . . b(AT−1, ST−1) ((((((((((

p(ST |AT−1, ST−1)

=
T−1∏

t=0

π(At|St)

b(At|St)
= ρ(ω). (2.40)

This technique of using different weights to estimate an expectation is called importance
sampling. It has this name as it determines how to adjust the weighting of a given sample,
depending on how representative it is under the other dynamics (other policy), or rather,
how important it is to the expectation. We also discuss this technique in Chapter 4.

Let us take an example where ρ(ω) = 2, such that ω is twice as likely to happen under
π than b. In this case, it means that when we are sampling trajectories, ω will be half as
likely to be sampled when we are using b, and therefore, we must double the contribution
as a correction.

This technique of importance sampling is extremely powerful, as it generalises how to
learn from experience, regardless of the policy under which the experience was generated.
In the special case that π = b, then this returns to on-policy learning, and all the ρ factors
will be equal to 1.

There are a few caveats we must address when sampling using b. If b does not sample all
the possible experiences that π samples, then there are experiences for which pb(ω) = 0,
and as such, the ratio in ρ becomes undefined. The only exception to this is when
pπ(ω) = 0, in which we set ρ(ω) = 0. From this, we can learn that if, for an arbitrary
state s, π(a|s) > 0 then we ensure that b(a|s) > 0. In general, we want b to be a stochastic
policy in places where π(a|s) > 0.

So far, we have only come up with a way of estimating the average return of a trajectory.
Let us adjust our notation so that we assess partial returns from a state st at time t. We
will adjust ρ to be instead ρt:T , which is equal to

ρt:T =
T−1∏

t′=t

π(At′|St′)

b(At′|St′)
. (2.41)

We recover our original ρ(ω) = ρ0:T , for the entire trajectory. The partial return of the
trajectory from t until the end is given as

G(ωt:T ) =
T−1∑

t′=t

γt′−tRt′ . (2.42)
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With our notation adjusted, we can easily define the state-action-value function under π
in terms of our behaviour policy b, written as

qπ(s, a) = E
ω∼π

[G(ωt:T )|St = s, At = a]

= E
ω∼b

[
ρ(t+1):TG(ωt:T )|St = s, At = a

]
. (2.43)

Under this notation, we take a trajectory ω which passes through s, taking action a at
time t, and average the importance-sampled partial return from t. Notice how we are
not including the term π(At|St)

b(At|St)
, since by definition, we chose the action At, in state St at

time t, as the first action in a q function is independent of a policy. Now that we have
a formula, we can modify Algorithm 2 for estimating these q values, using an off-policy
method, as shown in Algorithm 3.

Data: Policy π, and behaviour policy b
Result: Estimated state-action-value function Q(s, a) ≈ qπ(s, a).

1 Initialise a state-action-value-function Q(s, a) ∈ R, arbitrarily, for all s ∈ S;
2 Initialise an empty list, Returns(s, a) of sampled returns for all s ∈ S;
3 for i← 1 to Nmax do
4 Sample a trajectory, ω, using b: ω = (S0, A0, R0 . . . , ST , AT−1, RT−1);
5 G← 0;
6 ρ← 1;
7 for t in T − 1, T − 2, . . . , 0 do
8 G← γG+Rt;
9 if t < T − 1 then

10 ρ← ρ× π(At+1|St+1)
b(At+1|St+1)

;
11 end
12 Append (ρ×G) to Returns(St, At);
13 Q(St, At)← average(Returns(St, At));
14 end
15 end
Algorithm 3: State-action-value function estimation of the policy π using the
off-policy samples from b. This uses an every-visit Monte Carlo algorithm.

One should note that our estimates for qπ(s, a) are biased using the every-visit Monte
Carlo algorithm, but this bias shrinks asymptotically to zero [27] as Nmax → ∞. One
can remove this bias, using the first-visit variant, which modifies Algorithm 3 such that
the importance-sampled partial return is only appended to the list of returns if the tuple
(St, At) did not appear in the trajectory before t.

According to Sutton and Barto (Ref. [27]), this method of estimation can have extremely
high variance, and as stated in the previous paragraph, some bias. This means that one
needs to sample many trajectories to get a reliable estimate of the q function, meaning
that off-policy learning can be extremely sample inefficient.

However, if one is able to get a good approximate q function, one can use policy iteration
(as described in Section 2.3.3) to improve the policy π.
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2.4.4 Bootstrapping: Updating Estimates with Estimates

Up until this point, we have estimated the value function using the Bellman equations or
running trajectories and constructing an estimate via Monte Carlo (MC) methods. How-
ever, these methods are not mutually exclusive and can be synthesised into a combined
method. Let us explore some of these methods in further detail.

Temporal Difference

We will first look at the simplest temporal difference (TD) method, known as TD(0)
[27]. Remember that we defined the value of state to be

vπ(s) =
∑

a∈A(s)

π(a|s)
∑

s′,r

p(s′, r|s, a) [r + γvπ(s
′)] , (2.44)

which is just an expectation of the reward plus the discounted next state, i.e.

vπ(s) = E
ω∼π|St=s

[Rt + γvπ(St+1)] . (2.45)

This equation tells us that we could use a single transition to estimate the value of a state
s. Instead of having to generate an entire trajectory, we can just jump one step into the
future, and gain an estimate of the current value. We can calculate an estimate for the
“error” on a value estimate with the TD error

δt = Rt + γVπ(St+1)− Vπ(St). (2.46)

An algorithm to learn the value function over time with experience is given below in
Algorithm 4. In essence, the aim is to minimise the expected temporal difference error,
which is minimised by the actual value function vπ. Convergence is guaranteed under
stochastic conditions, such as annealing α towards 0, but ensuring that

lim
T→∞

[αT ] = 0 (2.47)

lim
T→∞

[
T∑

t=0

αt

]
=∞ (2.48)

lim
T→∞

[
T∑

t=0

α2
t

]
= const, (2.49)

which are collectively known as the Robbins-Monro conditions [72], described briefly
in Section 1.4.2.

Our algorithm is now able to update the estimate of the value function before actually
finishing the trajectory, which is the real advantage of temporal difference methods as
they can be used for online updates. The effectiveness of such updates depends on how
accurate the estimate of the value function currently is. These methods are extremely
helpful in non-episodic problems.

2.4.5 n-step Temporal Difference

Instead of including a single transition, we can include a finite number of transitions. The
idea is simple, we can work with the definition of the value function and “unroll” some of
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Data: Policy π, learning rate α≪ 1 and discount γ.
Result: Estimated value function Vπ(s) ≈ vπ(s).

1 Initialise a state-action-value-function Vπ(s) ∈ R, arbitrarily, for all s ∈ S,
except for terminal states which are set to 0.;

2 for i← 1 to Nmax do
3 Sample an initial state s with probability s;
4 while s is not terminal do
5 Sample action a using π in state s;
6 Sample next state with s′ ← f(s, a);
7 Sample the reward for the action r ← r(s′, s, a);
8 Estimate TD error δ ← r + γVπ(s

′)− Vπ(s);
9 Vπ(s)← Vπ(s) + αδ;

10 Move to the next state with s← s′;
11 end
12 end
Algorithm 4: Value function estimation of the policy π by using 1 step temporal
difference learning — TD(0).

the rewards up to a horizon, H, from the current state, such that

vπ(St) = E
ω∼π

[
Rt + γRt+1 + . . . γHRt+H + γH+1vπ(St+H+1)

]

= E
ω∼π

[
γH+1vπ(St+H+1) +

t+H∑

t′=t

γt′−tRt′

]
. (2.50)

In the case of H = 0, we get back TD(0): Vπ(St) = E
ω∼π

[Rt + Vπ(St+1)]. When H →∞ or
stops when hitting ST , the terminal state, we have an equation for estimating the value
function via Monte Carlo (i.e. by running trajectories). This allows us to blend between
temporal difference and Monte Carlo methods, in which a compromise can often lead to
optimal learning.

Here, we can calculate our temporal difference error to be

δt =
t+H∑

t′=t

γt′−tRt′ + γH+1Vπ(St+H+1)− Vπ(St). (2.51)

Notice that we can also sum up the temporal difference errors for an entire trajectory,
regardless of H, and provided that the value estimate is not updated during the sum, we
return to the Monte Carlo “return-to-go” from the state St. We have therefore recovered
a way of going from TD(0), all the way back to a Monte Carlo method, with a blended
method for intermediate H.

Remember that the introduction of any amount of bootstrapping to replace a return will
bias the temporal difference update, resulting in a “semi-gradient” method, as when we
differentiate δ2t , we only take the derivate with respect to the current state, not the future
state used to bootstrap. This bias is reduced asympotically to 0 when taking H → ∞,
but still exists. The bias is also removed once Vπ(s) ≈ vπ(s) for all s.

Another method of mixing information from previous time steps is the TD(λ) algorithm,
which is an eligibility trace method [27], which has good convergence properties [73,
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74]. An advantage of these approaches is one can update the parameters in an online
fashion, without requiring a full epsiode, or horizon to complete, making them suitable
for non-episodic problems.

2.5 Approximate Solution Methods

Throughout the earlier RL sections, we have assumed that we can construct a value or
state-action-value function for a problem by storing a number (or many numbers) for
every single state of a problem. However, this assumes that we can enumerate the states
of a problem. It may be the case that there are an infinite number of states, such as in
continuous domains. In these situations, one can group states such that many original
states are combined into a single representative “state”. This process is sometimes called
binning when discretising a set of values as you would do when computing a histogram.
As an example, imagine a robot arm with some moving parts, whose limb orientation is
measured by a set of continuous signals (outputting in degrees). To reduce the state space,
we can instead round all the angles to the nearest degree, discretising the state-space to
make it smaller and more manageable.

Additionally, in extremely large state spaces, it is possible that an agent will frequently
encounter states that have not been visited before. By using a simple lookup table for
the value function, the agent cannot generalise to unseen states and infer what actions
are likely to be optimal behaviour. Training these lookup tables, therefore, has to en-
sure that enough of the state space is covered to be useful, making the training process
computationally expensive.

Take an example of the Lunar Lander (found in OpenAI’s gym [75], a common benchmark
suite of environments for evaluating RL algorithms) game, whereby an agent controls
various thrusters on a spacecraft, much like the one which landed on the Moon. The
aim is to land the simulated craft safely on the surface. An episode of the game may
randomise the surface of the Moon each time, along with the incoming initial speed of
the lander, the fuel and maximum power of the thrusters. Even in this relatively simple
game, one has many continuous inputs, and a huge variety of possible states and hence
an incredibly large space of possibilities, infeasible to solve exactly via tabular methods5.
An interesting extension of this game to the real world involves using RL algorithms for
controlling actual spacecraft to land on the moon using image data [76]. Another example
is training a self-driving car [77]. Even with extensive experience, in the real world, there
will be scenarios that have not been seen before, and hence, an urgent need for the ability
of the agent to generalise to new situations.

We can introduce supervised learning techniques to address issues with large (or continu-
ous) state and action spaces, recognising that many states may have very similar values
or the same policy, allowing a good function approximation to generalise to unseen states.
SL studies various techniques to learn function approximations, based on data, that aim
to describe the general function transformation from data to label, which can generalise
on unseen data. RL often does not have access to labelled states, except when imple-
menting imitation learning [78]. Even with this data, it is unlikely that it is exhaustive

5Where tabular methods refers to algorithms where the value and policy functions can be stored
exhaustively (tabulated) for all states.
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over every possible state, and some learning may be needed to learn a generalised pol-
icy. Despite the lack of labelled data, the techniques of function approximation are still
incredibly useful in the RL domain, providing the foundations for the bulk of the most
recent cutting edge advances in the field. In this section, we will cover the basics of
applying function approximation to RL problems.

2.5.1 Large State Spaces and Generalisation

Any problems which have continuous state spaces, or even very large discrete ones, require
too much memory to store a tabular value function, or a tabular policy. Not only is the
memory requirement massive, but learning the optimal policy by searching through this
state space can be infeasible due to computational constraints. We know that dynamic
programming is incredibly efficient, requiring only polynomial time to reach a solution
[27]; however, with large enough state spaces, this is still too large.

Eventually, one requires some sort of approximate function to step in for the value function
(or commonly the state-action-value function), and sometimes the policy as well — this
will be discussed in the last section of the chapter. Usually these approximations take
the form of a deep neural network, yielding methods under the term deep reinforcement
learning (DRL) (see reviews [79] and [80] for a more detailed overview).

2.5.2 The Deadly Triad

Sutton and Barto, Ref. [27], warn of the danger of instability and divergence that arises
whenever one combines any of the three elements in RL:

1. Function approximation: A scalable and efficient way of generalising a function
on a problem with a large state or action space.

2. Bootstrapping: An efficient way of updating target values using existing estimates
(as in dynamic programming, n-step returns or temporal difference methods).

3. Off-policy training: Training on a distribution of transitions other than that
produced by the target policy.

Each of these methods have their place, and can often be an essential part of successfully
training a RL agent on difficult problems. However, they are a recipe for instability.
Most of the cutting edge research into reinforcement learning focuses on heuristics and
techniques to help reduce the instability caused by using or combining these methods.

Sutton and Barto in Ref. [27], refrain from commenting on specific solutions, as all are
open research questions, and there are no clear strategies which can be used to improve
training. However, there are a few techniques that are used commonly, such as replay
buffers [81], target value functions (sometimes called double q-learning [82]), asynchronous
updates [83], policy gradients [84, 85] and planning [71]. As with SL or USL, increasing
the amount of data one has access to can also help mitigate some of these problems, which
is achieved by efficiently simulating the reinforcement learning environment. Simulating
your environments can help you scale up and parallelise the experience gathering process
to get more accurate estimates of the quantities described in this thesis.

In the final section of this chapter, we will discuss in detail policy gradient methods,
which assume some parameterisation (possibly a function approximation) approach to
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the agent’s policy function, which can be directly optimised via gradient ascent on the
cumulative reward.

2.6 Policy Gradient Methods
Until now, we have discussed constructing a policy by calculating the associated value
function, and then improving on that policy. This focused entirely on the value function
and the estimates. However, some problems can have extremely complicated value func-
tions, but relatively simple policies. If we only care about the value function in so far as
it helps us find an optimal policy, it can be advantageous to directly optimise the policy.

Remember that we started with a value function as we could guarantee convergence
to the optimal policy through policy evaluation and iteration. However, as we started
to move to more complicated methods, introducing function approximation, off-policy
learning and bootstrapping techniques, we relaxed any guarantees about optimality that
we started with. For the most difficult problems, our aim is only to attempt to maximise
the expected reward on a given problem, or get as close as possible, without guaranteeing
the optimal behaviour.

Our relaxed constraint enables us to devise methods that do not involve calculating the
value function, but instead, allow us to directly optimise a policy. From the title of this
section “Policy Gradient Methods”, we are implying that we will be discussing meth-
ods which have a differentiable, parameterised policy, such as a function approximation.
These techniques are incredibly powerful and can be extended to problems in continu-
ous state and action spaces. However, we will usually only be able to locally optimise
the function (exploitation), and we often have to add in additional techniques to ensure
exploration.

Policy gradient methods explored extensively in Chapter 6.

2.6.1 Parameterising a Policy

Choosing a policy until now has been fairly simple, relying on a value or state-action-
value function to choose the actions. However, we can go directly from a state to a policy.
The typical way of creating this mapping is to use a neural network as, in theory, it can
represent any function due to its universal-approximation trait [86]. NNs6 are also useful
in that they are well studied in supervised learning, and there are many open source
libraries which provide ways of constructing and optimising them.

Discrete Action Spaces

If we are trying to represent a policy for an environment which accepts only deterministic
actions, then we should ensure the final layer of the neural network is able to output
a probability distribution of selecting the available actions. We can have the neural
network output a preference for each action, and the relative preferences decide the final
probability distribution. In neural networks, we call these preferences logits [29]. If a
neural network has D hidden layers (not including the input or final output layer), then
the Dth layer should have a linear activation function to allow the logit to express any real

6See Section 1.3 for a brief overview, or Ref [29] for a more in-depth treatment.
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valued preference, together with (max
s
|A(s)|) outputs (the maximum number of possible

actions).

The final layer, Ŷ , should have a softmax activation function. The softmax function can
be written as

Ŷ (j) =
exp(H

(j)
D )

Z
, (2.52)

where x(j) represents the jth component of the vector x and Z is the term that nor-
malises the output distribution, allowing the outputs to be interpreted as a probability
distribution. We see that the form of Z can be calculated via

1 =
∑

j

Ŷ (j)

1 =
∑

j

exp(H
(j)
D )

Z

Z =
∑

j

exp(H
(j)
D ). (2.53)

This can be greatly simplified in the binary case as we need only a single preference value
to indicate the probability; we use the logistic sigmoid function, defined as

σ(x) =
1

1 + e−x
, (2.54)

which has the properties that σ(−x) = (1−σ(x)). We interpret the input as the preference
for the binary output being true. If x = 0 then there is an equal chance of choosing either
action. Notice that when x→∞ then σ(x)→ 1 and when x→ −∞ then σ(x)→ 0. The
logistic sigmoid is therefore a valid probability distribution, bounding the probabilities
between 0 and 1.

Forcing a softmax policy ensures that the agent will take all actions with some finite prob-
ability, ensuring exploration of the state space, while allowing for a smooth continuous
gradient to be calculated. Eventually, as the agent trains, it can decrease the probability
of taking known poor actions and focus on exploiting the most relevant area of the state
space.

We can additionally use an off-policy method (such as ϵ-greedy) with the appropriate
importance sampling on any expectation value over the trajectories. Since we have a soft
policy in both cases, we will always get a well-defined importance sampling ratio, leading
to better stability, while also providing exploration if needed during training.

Continuous Action Spaces

As we are directly parameterising the policy, we introduce the idea of continuous actions.
These are common in practice, e.g. a robot trying to walk needs to tell each of the servo
motors the angle that it should move towards. As before, one can discretise the space
of continuous actions and use the method in the previous section, however, we are not
limited by this method.

One method for directly choosing continuous actions is for the network to output the mean
and variance of a normal distribution which is sampled to choose the actual continuous
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action. The reason that we make the network output a probability distribution is that
we can efficiently differentiate this probability distribution to update the weights of a
network, along with introducing the exploration that comes hand-in-hand with a soft
policy.

As a concrete example, we will use a linear network for a policy, which chooses the
characteristic values for a normal distribution, which in turn samples the continuous
actions for the policy. We can then see that the probability density of the policy, π, can
be written as

πθ(a|s) =
1

σθ(s)
√
2π

exp

(
−1

2

(a− µθ(s))
2

σθ(s)2

)
, (2.55)

where µθ(s) and σθ(s) are the parameterised mean and standard deviation of the normal
distribution, which describes the policy in the state s. As before, we represent the
parameters of the model with θ.

In a continuous action space, it is known that the probability of selecting an exact action,
a, is 0 for any action a. Instead, we can ask what is the probability that an action is
chosen between two limits a1 and a2, such that a1 ≤ a ≤ a2, which is given by

Pr [a1 ≤ a ≤ a2|s] =
∫ a2

a1

π(a|s)da. (2.56)

As a shorthand when working with continuous action spaces, we tend to use π(a|s) to
denote the probability density function of the policy.

Differentiating a Gaussian

We can differentiate the policy w.r.t the parameterised mean µθ, giving

∂πθ(a|s)
∂µθ(s)

=
a− µθ(s)

σθ(s)2
πθ(a|s). (2.57)

We can write a similar equation for the variance, which we calculate to be

∂πθ(a|s)
∂σθ(s)

=
(a− µθ(s))

2 − σθ(s)
2

σθ(s)3
πθ(a|s). (2.58)

Notice that we only calculated the partial derivatives. In general, our full derivative,
w.r.t the parameters θ, is given by

dπθ(a|s)
dθ

=
∂πθ(a|s)
∂µθ(s)

dµθ(s)

dθ
+

∂πθ(a|s)
∂σθ(s)

dσθ(s)

dθ
. (2.59)

The equations eq. (2.57) and eq. (2.58) are manually used to calculate the derivative,
which can be used as part of the backpropagation routine provided by a chosen deep
learning package like PyTorch [87] or TensorFlow [88].

2.6.2 Policy Gradient: REINFORCE

Now that we have discussed ways to parameterise a policy such that it is differentiable,
we choose a loss function to optimise. The most sensible loss function to optimise is tied
to the expected return. We follow the REINFORCE algorithm from Williams [84].
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In the episodic case, we can define this as

L(θ) = E
ω∼π




T (ω)∑

t=0

γtRt


 , (2.60)

where T (ω) is the length of the trajectory ω, such that ST (ω) is the terminal state. As
RT (ω) = 0 by definitition of the terminal state, we can ignore this time step in future
summations. However, in the return form, it is unclear how the policy affects the loss.
Alternatively, one can instead write

L(θ) =
∑

ω

p(ω)




T (ω)−1∑

t=0

γtRt


 , (2.61)

wherein p(ω) can be expanded into

p(ω) = d(S0)

T (ω)−1∏

t=0

πθ(At|St)p(St+1, Rt|At, St) (2.62)

as usual. Notice here that p(ω) explicitly depends on θ, but only in the terms πθ(At|St)
and no other terms.

Further, we derive the derivative of our loss function w.r.t the parameters θ, resulting in

∇θL(θ) =
∑

ω

∇θ


p(ω)

T (ω)−1∑

t=0

γtRt




=
∑

ω




T (ω)−1∑

t=0

γtRt


∇θp(ω). (2.63)

Here, we are using the notation

∇θ = [
∂

∂θ1
,
∂

∂θ2
, . . . ,

∂

∂θn
], (2.64)

instead of d
dθ

, as θ is usually a vector of n parameters.

We know that the differential of the total discounted reward is not dependent on θ as
these are just random variable values. The only dependence is on p(ω). We can explicitly
work out the derivative of this probability,

∇θp(ω) = ∇θd(S0)

T (ω)−1∏

t=0

πθ(At|St)p(St+1, Rt|At, St)

=


d(S0)

T (ω)−1∏

t′=0

p(St′+1, Rt′ |At′ , St′)


∇θ

T (ω)−1∏

t=0

πθ(At|St), (2.65)

where we have moved all terms independent of θ to the left, so we can focus on the
differential. Here, we use the product rule on the product of probabilities

∇θ

T (ω)−1∏

t=0

πθ(At|St) =




T (ω)−1∏

t′′=0

πθ(At′′ |St′′)




T (ω)−1∑

t=0

1

πθ(At|St)
∇θπθ(At|St). (2.66)
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We can use the fact that

∇θ log πθ(a|s) =
1

πθ(a|s)
∇θπθ(a|s) (2.67)

to simplify eq. (2.66), such that

∇θ

T (ω)−1∏

t=0

πθ(At|St) =




T (ω)−1∏

t′′=0

πθ(At′′ |St′′)




T (ω)−1∑

t=0

∇θ log πθ(a|s). (2.68)

Fortunately, we can substitute this all back into eq. (2.65), combining all product terms
to recover p(ω) at the front, leaving

∇θp(ω) = p(ω)

T (ω)−1∑

t=0

∇θ log πθ(at|st). (2.69)

Finally, this can be put back into eq. (2.63) to give

∇θL(θ) =
∑

ω

p(ω)




T (ω)−1∑

t=0

γtRt


×




T (ω)−1∑

t′=0

∇θ log πθ(at′ |st′)




= E
ω∼π






T (ω)−1∑

t=0

γtRt


×




T (ω)−1∑

t′=0

∇θ log πθ(at′ |st′)






= E
ω∼π


G0(ω)×




T (ω)−1∑

t=0

∇θ log πθ(at|st)




 , (2.70)

where G0(ω) represents the total discounted return from the initial state. Notice that
the gradient is defined using expectation value over trajectories. This makes an estimate
easy to construct by just sampling trajectories and averaging the gradient contributions
from each.

In DL libraries, which provide automatic differentiation capabilities, one usually repre-
sents the loss function as

L(θ) =
∑

ω∼π

A(ω)
∑

St,At∈ω

log πθ(at|st), (2.71)

where A(ω) is a weighting function that depends on the trajectory. In the case we have
seen, we can use G0(ω) = A(ω) to perform vanilla REINFORCE. As we will learn in
later sections, this number A(ω) can be constructed in many ways. This loss function is
quantitatively different from the total expected reward; however, it has the same gradient
which can be used to update the weights θ. One usually estimates the gradient using a
minibatch, consisting of a small number of trajectories reminiscent of stochastic gradient
descent.

2.6.3 Variance of Vanilla Policy Gradient

In policy gradient methods, we often talk about methods to “reduce the variance” of the
gradient estimate, as a lower variance of estimates allows safe use of a high learning rate,
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and hence accelerates the learning process. One estimate of the unbiased gradient can be
done via MC, for example

∇θL(θ) ≈ ∇θL(θ) =
1

N

∑

i

G(ω(i))




T (ωi)−1∑

t=0

∇θ log πθ(A
(i)
t |S(i)

t )


 , (2.72)

where each trajectory, ω(i), is sampled using π with N total samples. We can also use
a single trajectory to try and estimate the gradient. The estimate of the gradient using
one trajectory ω can be written as

δL =

T (ω)−1∑

t=0

G(ω)∇θ log πθ(At|St). (2.73)

As our estimate in eq. (2.72) is just a weighted mean over δL, we know that the variance
should follow

Var(∇θL) =
Var(δL)

N
, (2.74)

where Var(X) denotes the variance of the random variable X. We can calculate the
variance with the formula

Var(δL) = E
ω∼π

[
(δL)2

]
− E

ω∼π
[δL]2 . (2.75)

However, we can just as easily sample a set of δL and plot a histogram to visually show
the variance in the form of a wider distribution.

Linear Model

1 2 3 4 5 6 7

Figure 2.9: A simple 1-dimensional grid world environment in which the agent always
starts in the left-most state — (1).

Let us look at a simple grid world environment with the map shown in fig. 2.9, which
has the agent starting in the left-most state every time, and can only move east or west.
Additionally, we only let the agent walk for a maximum of 20 steps and set γ = 1.
Note that enforcing a maximum time step of 20 introduces time as a factor in the state;
however, we will only take this into account when calculating the true value functions.

To analyse the various policy gradient methods later in this section, we will construct a
policy approximation for demonstrations by using a linear function approximation. We
can encode the input state as s̃ = [x, 1], which is a column vector with size 2 by 1.
Appending the constant 1 to the state allows us to encode a bias vector directly into the
weight matrix. We encode the weight vector as Wθ = [θ1, θ2], such that

πθ(→ |s) = σ(Wθ
T s̃) (2.76)

πθ(← |s) = σ(−Wθ
T s̃). (2.77)

This ensures that the probabilities are normalised as 1− σ(x) = σ(−x). We encode the
actions of (←,→) to be (−1,+1) respectively, such that the environment update is simply
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Figure 2.10: The probability density of the gradient estimates for θ1 (left) and θ2
(right). Both estimates will have a very high variance, as seen by the wide distributions;
however, the means are accurate and unbiased. Averaging many estimates will lead to
an accurate, unbiased, estimate of the true gradient. The PDFs (Probability Density
Functions) are estimated by sampling 104 trajectories on the problem shown in fig. 2.9.

f(x, a) = x+ a. Also, when we are at the left-most side, the probability is deterministic,
always going to the right, which will have 0 gradient.

Remember that our gradient format requires evaluating ∇θ log πθ(a|s), whose derivation
is shown in eq. (2.78).

∇θ log πθ(a|s) = ∇θ log σ(aWθ
T s̃)

=
1

σ(aWθ
T s̃)
∇θσ(aWθ

T s̃)

=
1

������
σ(aWθ

T s̃)
(1− σ(aWθ

T s̃))������
σ(aWθ

T s̃)∇θ(aWθ
T s̃)

= (as̃)× σ(−aWθ
T s̃)

= aπθ(−a|s)s̃. (2.78)

Variance of Linear Model

We can calculate an estimate for the REINFORCE gradient, substituting eq. (2.78) in
for ∇θ log πθ(a|s) to get an expression for the gradient of the loss, calculated as

∇θL(θ) = E
ω∼π

[∇θl(ω)]

= E
ω∼π


G0(ω)

T (ω)−1∑

t=0

Atπθ(−At|St)

[
Xt

1

]
 . (2.79)

Using eq. (2.79), we calculate the gradient contributions for a single trajectory. These
gradient measurements are random variables. We observe their distribution by plotting
the approximate probability density function, as shown in fig. 2.10.
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We can see that if we take only a single example, we are very unlikely to be close to the
actual mean. We can only obtain an estimate close to mean by averaging many indepen-
dent samples. Having an accurate gradient allows us to take fewer steps to converge to
a locally optimal policy as we can safely increase the step-size. Techniques that require
few samples to determine the mean value are known as “low-variance”. Low variance
techniques are efficient as one can sample fewer trajectories at each update, or choose to
make larger changes to the parameters, as the gradient estimate will be more accurate.
In the next few examples, we will discuss ways of improving our estimate of the gradient
by lowering the variance.

Removing the Past

In our basic estimate of the gradient in eq. (2.70), we notice that each term in the sum
is multiplied by the same prefactor, G0(ω). The other part of the term inside the sum
over t is the ∇θ log πθ(At|St) part, which can be interpreted as moving in the direction
of increasing the likelihood of choosing the action At in the state St if multiplied by a
positive number. However, we formulate all of our problems as MDPs, which means that
the history of a trajectory is not relevant to the future, only the current state is. Since
we are dealing with MDPs, it does not make sense that the prefactor for each of the
terms should include information from the past, before state St was reached. Fortunately,
our estimate of the gradient is invariant under a special transformation, allowing us to
remove the past.

Take the expectation over a ∈ A(s) of the quantity β(s)∇θ log πθ(a|s), for any function
β that only depends on the state s. We calculate this expectation as

∑

a∈A(s)

πθ(a|s)β(s)∇θ log πθ(a|s) = β(s)
∑

a∈A(s)

πθ(a|s)∇θ log πθ(a|s)

= β(s)
∑

a∈A(s)

����πθ(a|s)
1

����πθ(a|s)
∇θπθ(a|s)

= β(s)
∑

a∈A(s)

∇θπθ(a|s)

= β(s)∇θ

∑

a∈A(s)

πθ(a|s)

= β(s)∇θ1

= 0, (2.80)

where we used the fact that πθ(a|s) is a normalised probability distribution which sums
to 1, a constant, whose gradient is 0. We can interpret this fact by saying that whenever
we perform an expectation over the gradient of the log probabilities, multiplied by a
function which does not depend on the action a, but only on the state s, the resulting
expectation is zero. Said differently, our expectation value is invariant under additions of
arbitrary functions β(s) multiplying ∇θ log πθ(a|s). We write the new gradient estimate
in eq. (2.81).

∇θL(θ) = E
ω∼π




T (ω)−1∑

t=0

[G0(ω)− β(s)]∇θ log πθ(at|st)


 . (2.81)
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Figure 2.11: The probability density of the gradient estimates for θ1 (left) and θ2
(right) compared between using eq. (2.70), shown in blue, and eq. (2.83), shown in orange.
Removing the past from the rewards changes the distribution of the gradients for each
parameter, but does not change the mean of the distribution. Additionally, the variance
is much reduced by removing the past, allowing one to obtain a more accurate gradient
estimate with fewer trajectory samples.

This form of the estimate is commonly called the baseline, and there are many forms
which the function β can take. β(s) can even depend on the previous part of the trajec-
tory, before t, without affecting the expected value. One popular choice for our baseline
function is

β(s, t)past =
t−1∑

t′=0

γt′Rt′ , (2.82)

which is simply just the first part of the discounted reward totalled up to just before time
t. This turns our prefactor into simply

∑T (ω)−1
t′=t γt′Rt′ , which is the return-to-go from

state St, multiplied by a discount factor of γt.

Now, we have removed the past from our equation, getting an estimate using samples
from

∇θL(θ) = E
ω∼π




T (ω)−1∑

t=0




T (ω)−1∑

t′=t

γt′Rt′


∇θ log πθ(at|st)


 . (2.83)

Removing the past leaves the gradient estimate unbiased. However, it makes a huge
difference to the variance of the estimate. Looking at fig. 2.11, we can see that this
alteration significantly reduces the variance of our estimate of the gradient for both
parameters, while leaving the mean unchanged. Again, this means that we can construct
an accurate (and unbiased) estimate for the gradient with very few trajectories.

We continue this section by returning to this idea of variance reduction, as it is the
most important technique for increasing learning efficiency when using policy gradient
methods.
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Figure 2.12: The probability density of the gradient estimates for θ1 (left) and θ2 (right)
compared between using eq. (2.70), shown in blue, and eq. (2.83), shown in orange. In
green, we see the effect of using a value baseline using eq. (2.84) with eq. (2.86). Adding
a value baseline on top of removing the history significantly reduces the variance of the
estimates, but the mean is largely unaffected. Value function was estimated using 104

trajectories for illustration purposes.

2.6.4 REINFORCE with Value Baseline

From this point forward, we will use eq. (2.83) (removing the past) as our starting point.
We now introduce the concept of the advantage, written as χt. The advantage enters the
gradient equation as

∇θL(θ) = E
ω∼π




T (ω)−1∑

t=0

γtχt∇θ log πθ(at|st)


 . (2.84)

Our standard algorithm sets χt = Gt, where Gt is the return-to-go for the trajectory ω,
which is defined as

Gt =

T (ω)−1∑

t′=t

γt′−tRt′ . (2.85)

However, we know that we are free to offset χt by any quantity that only depends on the
current state, or that occurs before t, without changing the estimate. Another popular
choice for this quantity comes from subtracting the value of the state St under the current
policy from Gt, such that

χt = Gt − vπ(St), (2.86)

which is where the name advantage comes from: since the value vπ(St) is the average of
Gt from that state, this quantity measures the advantage of taking the actions that led
to Gt when compared with the average behaviour. The only issue here is that vπ(St) is
the value function of our policy, which is often unknown. However, using an estimate
Vπ instead will not bias your estimate, but may increase the variance if Vπ is inaccurate.
However, one can find that the more accurate Vπ, the better it is at reducing the variance
of your estimate [27]. As seen in fig. 2.12, using the true value function, the variance in
our simple problem is greatly reduced.
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2.6.5 Actor-Critic

In the previous methods, we still have to generate entire trajectories, which can take a
very long time. Instead, it may be beneficial to be able to have a method that can learn
from single transitions, so the methods can be effectively ported to non-episodic problems.
Instead of generating an entire trajectory, we can instead sample single transitions and
estimate the temporal difference in value between the two states. We can substitute our
expression for Gt with a single step evaluation (Rt + vπ(St)) to get

χt = Rt + γvπ(St)− vπ(St), (2.87)

which we call the temporal-difference error. When our estimate of vπ is not correct, this
method introduces a bias into the gradient estimation. If our estimate of vπ becomes more
and more accurate, then this bias will asymptotically approach zero. We can accept this
bias, as this method can further reduce the variance from the baseline. The reason this
method is called Actor-Critic, is because we have our policy that takes actions in the
environment (the actor), and a separate function approximation for vπ, which we call the
critic. We usually have a separate loss for the critic which aims to minimise loss given in
eq. (2.88).

L(ϕ) = E
ω∼π

[
1

2

∑

t=0

T (ω)− 1(γVϕ(St)− vϕ(St))
2

]
(2.88)

Equation (2.88) approximates vπ by using a function approximation Vϕ with parameters
ϕ.

We can see the effect of using actor critic in fig. 2.13, where the method caused a higher
variance in comparison to the standard value-baseline method. However, we should note
that we are calculating the gradient for an entire trajectory. Instead, Actor-Critic can
be used to calculate gradients for single transitions, making it much more effective when
training on continuing problems, whereas standard value-baseline, which uses Monte
Carlo returns cannot create an estimate from a single transition.

Actor-Critic is a type of bootstrapping technique, which can be used to increase the
computational efficiency of the learning algorithms, but at the cost of introducing some
bias. It is also important to realise that the value function needs to be quite accurate
for the bias to be reduced, so if the value function is too complex, then actor critic
methods may not converge depending on the function approximation used for the state.
In contrast, value-baseline methods only affect the variance of the gradient estimate, not
the mean, and therefore, even if the value function is too complex to approximate exactly,
no bias will be introduced. The only reason we did not see any introduced bias when
using Actor-Critic in fig. 2.13, is because we used an exact numerical evaluation of vπ as
the critic.
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Figure 2.13: The probability density of the gradient estimates for θ1 (left) and θ2
(right), similar to fig. 2.12, with the addition of the Actor-Critic variance in pink. We
can see that there is no bias when using an accurate value function. The variance for the
trajectory is actually higher than just using a value baseline. However, this method allows
one to sample single transitions from the trajectory, which can vastly reduce variance in
online and continuing problems.
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Chapter 3

Large Deviation Theory

In this chapter, we describe the physics background that binds all research presented in
this thesis together: large deviation theory (LDT). While this chapter is not intended as
a comprehensive overview of the subject, we will cover the essentials for understanding
the background and motivations of Chapter 6, Chapter 7 and Chapter 8. For a more
detailed reviews of LDT and its application to statistical physics, see Refs [89–92].

As a starting point, we shall consider a simple problem: quantifying the probability of
outcomes of a series of coin flips. We can label a single coin flip as a random variable X
which has a probability of c for heads and 1 − c for tails. For now, we do not assume
that the coin is fair and c can take any value between 0 and 1 inclusive. We can perform
n coin flips and count the empirical frequency of heads with the random variable

Fn =
1

n

n∑

i

Xi, (3.1)

where Xi is a series of independent coin flips (all using the same coin). Using the binomial
distribution we can quantify the probability that Fn = f , where f can take values of
0, 1

n
, 2
n
, . . . , 1, denoted as

P (Fn = f) =
n!

(fn)!(n− fn)!
cfn(1− c)n−fn. (3.2)

We can ask what form this probability takes when n is large. For this, we can use Stirling’s
approximation for a factorial (lnn! ≈ n lnn− n) to arrive at the result

P (Fn = f) ≈ exp

(
−n
[
f ln

f

c
+ (1− f) ln

1− f

1− c

])
. (3.3)

The resulting probability can therefore be expressed as

P (Fn = f) ≈ e−nI(f), (3.4)

where
I(f) = f ln

f

c
+ (1− f) ln

1− f

1− c
. (3.5)

This means that the probability exponentially decays in n according to some rate given
by I(f), which is a constant with respect to n. Hence, we call I(f) the rate func-
tion. We can see that if we set f = c, then the rate function vanishes, and hence, the

49
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probability does not decay with increasing n, whereas all other values (f ̸= c) decay ex-
ponentially. This recovers the strong law of large numbers, but we have also characterised
the likelihood of measuring values of Fn away from c, for large n.

We say that the probability of Fn follows a large deviation principle (LDP) when it has
the form given in eq. (3.4). While eq. (3.4) is only given as an approximate value, we can
concretely define a probability to follow the LDP if the following is true [90]

lim
n→∞

− 1

n
ln p(An = a) = I(a), (3.6)

where I(a) is a rate function that only contains terms that are sublinear in n. The
notation that is commonly used to express the probability is

P (An = a) ≍ e−nI(a), (3.7)

where ≍ reflects the log asymptotically approaching in the limit n→∞. If an ≍ bn then

lim
n→∞

1

n
ln(an) = lim

n→∞

1

n
ln(bn). (3.8)

3.1 Gärtner-Ellis Theorem
Here, we shall present a useful result from LDT that helps us to identify random variables
which follow a LDP. We can start with the definition of the scaled cumulant generating
function (SCGF) of a random variable, An, parameterised by a non-negative integer, n,
given by

λ(k) = lim
n→∞

1

n
ln
〈
enkAn

〉
, (3.9)

where 〈
enkAn

〉
=

∫

R
da enkap(An ∈ [a, a+ da]), (3.10)

where the notation p(An ∈ [a, a + da]) is a PDF, indicating a probability of An falling
between a and a+ da.

If the SCGF exists and is differentiable for all k ∈ R, then the Gärtner-Ellis (GE) theorem
states that

1. An satisfies the large deviation principle ∴ P (An ∈ [a, a+ da]) ≍ e−nI(a)da.

2. The rate function is given by the Legendre-Fenchel transform [93] of λ(k), i.e.

I(a) = sup
k∈R
{ka− λ(k)} . (3.11)

Two notes should be made: if this method fails, it does not mean that An does not satisfy
a LDP; second, that the transform is only valid when the rate function and SCGF are
convex [90].

One can also obtain the SCGF using a rate function via another Legendre-Fenchel trans-
form, as shown in eq. (3.12).

λ(k) = sup
a∈R
{ka− I(a)} . (3.12)
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3.2 Moments of the SCGF

First, notice that when k = 0, the definition of λ(0) is

λ(0) = lim
n→∞

1

n
ln
〈
e0
〉

= lim
n→∞

1

n
ln 1

= 0. (3.13)

To extend this, the expression for the derivative of λ w.r.t k is

λ′(0) = lim
n→∞

1

�n

〈
�nAne

nkAn
〉

⟨enkAn⟩

∣∣∣∣∣
k=0

= lim
n→∞

⟨An⟩
⟨1⟩

= ⟨An⟩ , (3.14)

which means that λ′(0) gives the mean of a random variable An, provided that λ′(0)
exists. Further, we can differentiate again

λ′′(0) = lim
n→∞

n

(〈
A2

ne
nkAn

〉

⟨enkAn⟩ −
〈
Ane

nkAn
〉2

⟨enkAn⟩2

)∣∣∣∣∣
k=0

= lim
n→∞

n
(〈
A2

n

〉
− ⟨An⟩2

)

= lim
n→∞

nVar(An), (3.15)

which means that if An is a sample mean of a variable X (à la eq. (3.1)), we can deduce
that λ′′(0) = Var(X). Hence, if we have an expression for λ(k) in terms of k, one can use
the above expressions to easily calculate the means and variances of a random variable.

3.2.1 Example: Bernoulli Random Variables

At the beginning of this chapter, we introduced the idea of measuring the frequency of
heads or tails of a (possibly) weighted coin, which comes up heads with probability c.
This type of random variable is a Bernoulli random variable [94], as it has a binary
outcome with some fixed distribution. Here, we will derive λ(k) and find its moments
using eq. (3.14) and eq. (3.15).

To start with, let us define the discrete probability using a continuous function, such that

p(X)dX = (1− c)δ(X)dX + cδ(1−X)dX. (3.16)

We use δ(x) to mean the delta function (see [67] for definition and properties). In order
to work out λ(k), we first need to calculate

〈
enkFn

〉
=

∫

f∈R
dfp(Fn = f)enkf . (3.17)
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As p(Fn = f) =
∏n

i=1 p(Xi = xi), we can rewrite the integral as

〈
enkFn

〉
=

∫

x1

∫

x2

. . .

∫

xn

n∏

i=1

dxi p(Xi = xi)e
kxi . (3.18)

As each random variable Xi is independent of one another, we can move the product
outside and calculate a single integral, yielding

〈
enkFn

〉
=

n∏

i=1

∫

xi∈R
dxi p(Xi = xi)e

kxi

=
n∏

i=1

∫

xi∈R
dxi e

kxi [(1− c)δ(xi) + cδ(1− xi)]

=
n∏

i=1

[
(1− c)ek×0 + cek×1

]

=
n∏

i=1

[
(1− c) + cek

]

=
[
(1− c) + cek

]n
. (3.19)

We plug this expression directly into eq. (3.9) to get

λ(k) = ln
[
(1− c) + cek

]
, (3.20)

which expectedly satisfies λ(0) = 0. From here, we can derive λ′(k) and λ′′(k) as

λ′(k) =
cek

(1− c) + cek
, (3.21)

λ′′(k) =
cek

(1− c) + cek
− c2e2k

((1− c) + cek)2
, (3.22)

(3.23)

which, when evaluated at k = 0, give the expected results

λ′(0) = c, (3.24)
λ′′(0) = c(1− c). (3.25)

While we carried out this derivation for a specific distribution of a sample mean, any
sample mean of independent and identically distributed (IID) random variables can have
the corresponding SCGF derived by calculating the cumulant generating function of a
single of the IID variables.

λ(k) = ln
〈
ekX
〉
. (3.26)

Equation (3.26) is known as Cramér’s Theorem [95, 96].

To end this example, let us re-derive

I(f) = sup
k∈R
{kf − λ(k)} , (3.27)
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using eq. (3.11). As λ(k) is differentiable and convex [90], we can calculate

I(f) = k∗(f)f − λ(k∗(f)), (3.28)

where k∗(f) is the solution to λ′(k∗) = f , allowing us to continue the derivation, as seen
in eq. (3.29).

cek
∗

(1− c) + cek∗
= f

cek
∗
= f(1− c) + cfek

∗

(1− f)cek
∗
= f(1− c)

ek
∗
=

f(1− c)

c(1− f)

k∗ = ln
f(1− c)

c(1− f)
. (3.29)

We substitute the above into eq. (3.28), yielding

I(f) = f ln
f

c
+ (1− f) ln

1− f

1− c
, (3.30)

the same result as previously derived in eq. (3.5).

3.3 Dynamical Large Deviations
LDT provides a mathematical framework for analysing and understanding the probability
of events occurring in a system, such as the behaviour of extreme fluctuations of various
quantities the so-called rare events. As we have seen in earlier sections, this can help
us quantify large fluctuations of certain random variables. We can leverage the same
machinery to examine fluctuations in a dynamical context — i.e. on trajectories of con-
figurations. We can view a trajectory ω = [x1, x2, . . . , xτ ] generated by some dynamics p
as a random variable. Further, we can begin to examine certain values of some observable
O on the trajectory, and investigate its fluctuations.

As a starting point, let us define what we mean by a Markov Jump Process. Typically,
we can express the dynamics via a master equation [97]

∂

∂t
P (C, t) =

∑

C′ ̸=C

W (C ′ → C)P (C ′, t)−R(C)P (C, t), (3.31)

where P (C, t) represents the probability of being in configuration C at time t, W (C ′ → C)
is the rate of transition from configuration C ′ to C and finally R(C) is the escape rate
from C to a different state C ′, given by

R(C) =
∑

C,C′ ̸=C

W (C → C ′). (3.32)

It is useful to write the master equation (ME) as an operator, such that

∂

∂t
|P (t)⟩ =W|P (t)⟩, (3.33)
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where we choose an orthonormal configuration basis (⟨C|C ′⟩ = δC,C′) and set the proba-
bility vector |P (t)⟩ as

|P (t)⟩ =
∑

C

P (C, t)|C⟩. (3.34)

We are left with the Master operator, defined as

W =
∑

C,C′ ̸=C

W (C → C ′)|C ′⟩⟨C| −
∑

C

R(C)|C⟩⟨C|. (3.35)

We define two important states. The first is the “flat” state which is a sum of all config-
urations, denoted by

⟨−| =
∑

C

⟨C|. (3.36)

Second, we have the stationary state, denotes as |Pss⟩ which is an eigenvector of the
stochastic operatorW . Both the flat state and the stationary state are eigenvectors ofW ,
corresponding to the left and right eigenvector with matching eigenvalue 0 respectively.
The statement ⟨−|W = 0 implies probability conservation and W|Pss⟩ = 0 implies that
the probability vector does not change over time [92].

We derive the probability of a given state by solving the ME, yielding

|P (t)⟩ = Z−1etW |P (0)⟩, (3.37)

where Z is the normalisation factor satisfied by

Z =
∑

C

⟨C|etW |P (0)⟩. (3.38)

Equation (3.38) is equivalent to

Z = ⟨−|etW |P (0)⟩. (3.39)

Often, we are interested in measuring quantities on a given trajectory, which we refer to
as observables — denoted by O(ωt). Usually, the quantities of interest can be expressed
as a time integral over a trajectory, written in the most general form as

O(ωt) =

∫ t

0

dt′⟨Xt′+dt′ |
(∑

C

κ(C, t′)|C⟩⟨C|+
∑

C,C′ ̸=C

ν(C → C ′, t′)|C ′⟩⟨C|
)
|Xt′⟩,

(3.40)
where κ(C, t) is a (generally) time-dependent counting field which weights contributions
to O for the configuration C dependent also on how much time is spent in that state.
ν(C → C ′, t) as a weighting of transitioning from configuration C to C ′ at time t and
weights the flux contribution to the observable. If we restrict κ and ν to be homogenous
in time, one can simplify the observable calculation as

O(ωt) = t
∑

C

κ(C)µC(ωt) + t
∑

C,C′ ̸=C

ν(C → C ′)qC,C′(ωt), (3.41)

where

µC(ωt) =
1

t

∫ t

0

dt′⟨Xt′+dt′|C⟩⟨C|Xt′⟩, (3.42)
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which represents the average time spent in the state C, and

qC,C′(ωt) =
1

t

∫ t

0

dt′⟨Xt′+dt′ |C ′⟩⟨C|Xt′⟩, (3.43)

which represents the time averaged flux of changing from C to C ′ across the trajectory.
One refers to µ as the empirical measure as it acts as a distribution of likelihoods of being
in a given state C [92]. Similarly, ν is sometimes called the dynamical or empirical flux
[92].

The probability of observing a value O for a given observable O is given by

Pt(O) =
∑

ωt

P (ωt)δO(ωt),O. (3.44)

which, for an observable of the form of (3.41), usually satisfies a large deviation principle

Pt(O) ≍ e−tI(O
t
), (3.45)

where I(O
t
) is the rate function given by the intensive observable ξ = O

t
, dependent on

using sufficiently well-behaved underlying dynamics. In this context, it means that the
dynamics converges to a unique stationary state in some finite time.

Similarly, one can derive a moment generating function given by

Zt(s) =
∑

O

Pt(O)e−sO, (3.46)

which has a large deviation form of

Zt(s) ≍ etλ(s). (3.47)

λ(s) is the SCGF, whose derivatives at s = 0 give the cumulants of O scaled by time.
From earlier sections, we know that the rate function and the SCGF are related by a
Legendre-Fenchel transform, which, for this instance, reads [26, 89, 90]

λ(s) = − inf
ξ∈R

[ξs+ I(ξ)] . (3.48)

One can write the moment generating function (MGF) as [26, 89, 90, 92]

Zt(s) = ⟨−|etWs|P (0)⟩, (3.49)

where we have defined a tilted Markov generator, given as

Ws =
∑

C

∑

C′ ̸=C

e−sν(C→C′)W (C → C ′)|C ′⟩⟨C| −
∑

C

[R(C) + sκ(C)] |C⟩⟨C|. (3.50)

For long times, application of the operator etWs has approximately the same effect as
applying the exponentiated maximum eigenvalue of Ws, scaled by t. This maximum
eigenvalue is the SCGF, allowing us to recover eq. (3.47).

For examples of large deviation analysis and techniques on problems in statistical physics,
see reviews [26, 91, 92] and a selection of examples [98–111].
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3.3.1 Doob Dynamics

It often of interest to directly study the ensemble of trajectories biased towards some
values of an observable. In particular, we aim to study the tilted dynamics given by

P̃s(ωs) =
e−sO(ωt)P (ωt)

Zs

, (3.51)

where s is some conjugate variable to the observable O, P (ωt) is some original, unbiased,
dynamics and Zs is some normalisation factor, dependent on s. This tilted dynamics
allows one to study the tail ends of the distribution of O(ωt), along with the fluctuations
around a particular value. For s = 0, we recover the original trajectory. In order to sam-
ple this distribution, one often needs to calculate Zs, which can be difficult or impossible
depending on the problem; when analytical calculation is difficult, alternative methods,
such as those described in Section 4.3, are used. If one can discover dynamics which
equivalently produces an ensemble of trajectories with probabilities given by P̃s(ωs), we
refer to this dynamics as the Doob dynamics. Methods of calculating, or even approx-
imating, the Doob dynamics, are often an aim of current research (e.g. see [112–118]).
Research presented in Chapter 6 presents a RL approach to learning the Doob dynamics.



Chapter 4

Monte Carlo Sampling

Many problems considered in this thesis require the precise sampling of probability distri-
butions, which may not always be analytically tractable. It is useful for us to take some
time to consider useful numerical techniques for accurate statistical sampling. The ma-
jority of numerical techniques used fall under the “Monte Carlo” umbrella, which is used
to describe numerical methods which rely on stochastic processes to answer questions.
We have already discussed a similar variety of applications and methods in Chapter 2, but
we take a deeper dive into these techniques and expand further into sampling unknown
distributions.

The first section in this chapter will discuss a simple Monte Carlo algorithm for calculating
π to describe how this technique can be used to approximate integral values. We will
expand upon the importance-sampling technique, first introduced in Chapter 2, and apply
this to the π estimation problem with an example auxiliary sampling distribution.

Following this, we will discuss Markov-chain Monte Carlo methods to sample distribu-
tions which are not fully known. We cover the well-known Metropolis-Hastings algorithm
and how this can be adapted for trajectory sampling, extensively studied in chapters 6,
7 and 8.

4.1 Monte Carlo Integration
The classic problem used when introducing Monte Carlo integration is that of calculating
π. We set up the problem by making a dart board with a square box perfectly inscribed
with a circle which just touches the edges of the square, as seen in fig. 4.1. We know that
the area of the square is simply given by 4r2 and the area of the circle is given by πr2.
Therefore, the ratio ρ of the area of the circle to the area of the square is given by ρ = π

4
.

Now, we can approximate ρ using random numbers, i.e. analogously throw random darts
at the board. If we select particularly unskilled players whose hits are uniformly likely to
hit anywhere on the board, we can count the number of hits inside the circle and divide
this by the total number of darts thrown, which will be an estimate for ρ, denoted as ρ̃.
When the number of darts N → ∞, this estimate becomes more accurate. Hence, we
can approximate π ≈ 4ρ̃.

As the title of this section suggests, we can relate this method to integration. Specifically,
we are interested in the integral of an observable that measures whether a point is inside

57
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Figure 4.1: The π experiment setup, with a square inscribed with a circle. The green
circles show a dart hit and the red circles show a miss outside the circle.

or outside the circle. This observable can be denoted as

O(x, y) =
{
1 if x2 + y2 ≤ 1

0 otherwise.
(4.1)

The integral we wish to calculate is the expected value of this observable, using some
probability distribution of p(x, y), as given by

⟨O⟩ =
∫

dxdy p(x, y)O(x, y), (4.2)

where integration is performed over all possible values of x and y. Under a uniform
probability density in the region −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1, we know that ⟨O⟩ = ρ = π

4
.

We can always approximate an expected value with an average over discrete values, such
as

⟨O⟩ ≈ 1

N

∑

i

O(xi, yi), (4.3)

where xi ∼ U(−1, 1) and yi ∼ U(−1, 1). One can see this is equivalent to adding up all
the darts that hit inside the circle. Varying N , we can calculate an approximation for π
(using π ≈ 4⟨O⟩), allow study of how accuracy changes with the number of samples. We
show one instance of this experiment in fig. 4.2. One can see that this method is unbiased,
but requires many random points to begin to converge (i.e. has a large variance).

4.1.1 Error Estimates

As our algorithm does not have access to the true value of π, how can we estimate the
error of our approximation? As we are summing independent random variables, we can
estimate the variance of the samples using

Var(⟨O⟩) ≈ 1

N


 1

N

∑

i

O(x, y)2 −
(

1

N

∑

i

O(x, y)
)2

 . (4.4)

We approximate the error as σ =
√

Var(⟨O⟩), which we call the standard deviation. In
fig. 4.2, we plot the approximation with error bars calculated via the standard Gaussian
error given by σ√

N
. The random variable approximating ⟨O⟩ in the limit of large N is

Gaussian with a mean of π
4

and an error which is ∝ 1√
N

. This means that increasing N

by a factor of 100 only gives a factor of 10 reduction in error (i.e. a single decimal place).
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Figure 4.2: Convergence of the Monte Carlo integration method to π using darts. Error
bars are calculated through the standard error.

Note that one only has an approximate error for the sample, which is a reliable indicator
for large enough N . In some difficult situations, this error can vastly underestimate the
true error [119]; e.g. if the samples generated are correlated (i.e. not independent).

4.2 Importance Sampling
In the previous example, we were able to successfully perform the integration as we
were directly able to sample points from a known distribution. However, there are some
situations where this direct sampling method can cause problems. Let us take the π
calculation example and extend this into D dimensions (in the previous example we used
D = 2). Instead of a square inscribed by a circle, we instead choose a hypercube with
side length 2 and a hypersphere with radius 1, concentric with one another. For the sake
of brevity, we will use the standard formula for the volume of a D-dimensional sphere
with radius R [119], given by

VD(R) =
π

D
2

Γ(D
2
+ 1)

RD, (4.5)

where Γ(x) is the generalisation of the factorial function extending to real numbers such
that Γ(x+1) = xΓ(x). In our case, we also need that Γ(1

2
) =
√
π. In the limit of D →∞,

we can use Stirling’s approximation such that Γ(D
2
+ 1) ≈ D

2
ln D

2
− D

2
which leaves

VD(R) ∝∼ e−
D
2
ln D

2 RD. (4.6)

As we intend to approximate the ratio of the volume of the hypersphere to the hypercube
(with volume (2R)D), we can directly approximate these for both cases as

ρ =
VD(R)

(2R)D
∝∼ e−

D
2
ln D

2 , (4.7)

in the limit of D →∞. As the exponent is always negative, we can conclude that ρ→ 0
for large D, and hence larger dimensional geometries become super-exponentially harder
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to sample with direct Monte Carlo. To see this, let us recreate the experiment for higher
dimensions, defining our observable as

OD(x) =

{
1 if ||x||2 ≤ 1

0 otherwise,
(4.8)

where ||x||2 represents the square distance of the point from the origin, given by

||x||2 =
D∑

j

x2
j . (4.9)

Similar to before, we sample this vector with xj ∼ U(−1, 1) ∀ j ∈ 1, . . . , D and label the
sample xi. We can approximate the ratio of volumes of the hypersphere to the hypercube
as

⟨OD⟩ ≈
1

N

∑

i

OD(xi). (4.10)

The convergence to the mean depends on the variance of OD. As this is a Bernoulli
random variable, the variance can be expressed as

Var(OD) = ⟨OD⟩(1− ⟨OD⟩) (4.11)

We can investigate the standard deviation as compared with the mean to get a relative
error

Var(OD)

⟨OD⟩2
=

1

⟨OD⟩
− 1, (4.12)

which for large D becomes approximately

Var(OD)

⟨OD⟩2
∝∼ e

D
2
ln D

2 , (4.13)

which means that the relative error of the estimates will increase super-exponentially.

However, in these situations there are techniques which can be used to reduce this vari-
ance. One of these techniques is called importance sampling (briefly visited in Sec-
tion 2.4.3 from the RL chapter), which allows us to choose a different distribution of
our points xi to estimate the integral with a (hopefully) lower variance.

Our original probability distribution for selecting points is uniform over space such that
p(x) = c in the hypercube and 0 elsewhere. c satisfies the integral over the hypercube

∫
dx1dx2 . . . dxD p(x) = 1, (4.14)

to ensure normalisation. For our sampling distribution, which we will denote as p̂, we
will assume that we want to construct the point using D independent samples from the
same distribution such that p̂(x) =

∏D
i p̂(xi). As we want to bias the probability towards

sampling |xi| close to zero, one valid choice is

p̂(x) =

{
αe−βx for 0 ≤ x ≤ 1,

0 otherwise,
(4.15)
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with constants α and β. Note that we are only generating points in a unit hypercube
instead of the width 2 hypercube, as the ratio of the hypersphere to the hypercube is the
same in this region due to arguments of symmetry.

Given that we often can only generate uniform (or sometimes Gaussian) random numbers,
we need a way of sampling from an arbitrary probability distribution. Hence, we will
introduce an equation that is needed to transform the uniform random variable u (between
0 and 1 inclusive) into a random variable x distributed according to p̂(x). The correct
relation ([119]) is

p̂(x)dx = du, (4.16)

which ensures probability conservation. We can integrate both sides to arrive at

−α

β
e−βx + γ = u, (4.17)

which can be rearranged to find x in terms of u, resulting in

x = −β ln (1− u

γ
). (4.18)

This means we can generate a sample u ∼ U(0, 1), which can be transformed into x,
which is distributed according to p̂(x), using eq. (4.18).

From here, we impose three conditions to get relations for our constants α, β and γ:

i. When u = 0, x = 0.

ii. When u = 1, x = 1.

iii.
∫ 1

0
dx p̂(x) = 1.

The first of these conditions gives α = γβ. The second gives γ = (1− e−β)−1. The third
gives no new information, but is satisfied by the first two conditions. This means we have
a choice of β which will determine γ and α. As an example, let us choose β = D

2
, and

use this to calculate α and γ,

γ =(1− e−
D
2 )−1 (4.19)

α =
D

2(1− e−
D
2 )

. (4.20)

Our target is to calculate ⟨OD⟩ which is written as

⟨OD⟩ =
∫

dx1dx2 . . . dxD p(x)OD(x). (4.21)

The above equation can be rearranged by adding a factor of p̂(x)
p̂(x)

, giving

⟨OD⟩ =
∫

dx1dx2 . . . dxD p(x)
p̂(x)

p̂(x)
OD(x)

=

∫
dx1dx2 . . . dxD p̂(x)

p(x)

p̂(x)
OD(x)

=

∫
dx1dx2 . . . dxD p̂(x)I(x)OD(x), (4.22)
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Figure 4.3: Comparison of the variance of Monte Carlo sampling methods on the
hypercube-to-hypersphere ratio problem. Variance is scaled by the true ratio ρ, as cal-
culated using eq. (4.5) and eq. (4.7). Each variance is calculated empirically using 106

samples. The biased curve uses the importance-sampling technique with points being
sampled from eq. (4.15) using β = D

2
.

where I(x) represents the importance ratio of a sample at point x, which scales the
observable and is equal to

I(x) =
p(x)

p̂(x)
. (4.23)

Importantly, we should note that we were able to do this as p̂(x) ≥ 0 for any x when
p(x) ≥ 0. If we translate this integral into a Monte Carlo approximation, we will get

⟨OD⟩ ≈
1

N

N∑

i=1

I(x̂i)OD(x̂i), (4.24)

where x̂i is sampled independently using p̂. To illustrate the power of this importance
sampling, let us perform an experiment where we measure the variance of the samples
scaled by the square of the true mean for increasing dimensions. We can see the result of
this in fig. 4.3, where it is clear that for higher D, direct sampling becomes increasingly
inefficient. This means that one needs a much higher number of samples to get a good
estimate of the integral, whereas the importance sampling method can converge on the
true mean with fewer samples. For example, for D = 12 the ratio of the variances is
around 13.8. This means that one would need approximately 13.82 ≈ 190 times as many
samples to get to the same accuracy on the estimate.

4.3 Markov-Chain Monte Carlo Methods
In the previous section, we discussed a way of generating random numbers according
to some non-standard distribution. This technique can be very useful if the probability
distribution is known a-priori. However, this is not always the case, and we require a
different technique to generate these samples — this will be the focus of this section.

To motivate this section, let us look at an example of a large deviation problem —
sampling a biased probability distribution where we cannot directly calculate the re-



4.3. MARKOV-CHAIN MONTE CARLO METHODS 63

normalisation factor. Say that we have some original probability distribution of states X
given by p(X), and we want to examine a biased distribution weighted by the energy of
the state, such that our biased (or tilted) distribution is given by

p̃(X; s) =
e−sE(X)p(X)

Z(s) , (4.25)

where E(X) represents the energy of the state X, Z(s) represents the partition function
which normalises the tilted ensemble and finally s is some control parameter which allows
us to specify the strength of the biasing. We can calculate Z(s) by enforcing

∫
dXp̃(X; s) = 1, (4.26)

such that
Z(s) =

∫
dXe−sE(X)p(X). (4.27)

This integral is over the entire space of possible configurations of X. If X is multidi-
mensional and the expression for the energy is non-trivial, this calculation often cannot
be done analytically. Instead, we want to come up with an algorithm that is able to nu-
merically generate samples from p̃ without requiring this normalisation factor. We may
be interested in generating samples so that we can evaluate an integral; e.g. the average
value of an observable

⟨O⟩ =
∫

dXp̃(X)O(x). (4.28)

As in the last section, we can approximate this integral using

⟨O⟩ ≈ 1

N

N∑

i=1,Xi∼p̃

O(Xi), (4.29)

where N is the number of samples used in the approximation. However, to perform this
expectation, we need a way of drawing samples Xi ∼ p̃. One method for creating such
samples is the Metropolis-Hastings algorithm first introduced in the basic form in 1953
by Metropolis et al [120] and later generalised by Hastings [121]. For a review of the
history of these methods see Ref [122].

4.3.1 Metropolis-Hastings Algorithm

We begin by giving a basic overview of this algorithm. First, let us consider starting at
a configuration X1 and drawing a new sample configuration, X2, probabilistically, based
only on the current configuration X1. We continue this process to generate Xn+1 with
probability p(Xn+1|Xn) to be later specified. This forms the basis of a Markov chain
of correlated samples. The aim of the algorithm is to ensure that in the limit n → ∞,
distant samples become decorrelated and together follow a stationary distribution π(X).
The stationary distribution π(X) exists if one can choose dynamics p(X ′|X) such that

π(X)p(X ′|X) = π(X ′)p(X|X ′). (4.30)

However, we also must ensure that the state space is fully connected, such that starting
from any configuration X, one can construct a Markov chain from X to X ′ with non-
zero probability. We need to ensure that p(X ′|X) produces ergodic dynamics in the
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configuration space, which is commonly achieved by using random walk dynamics, à la
Ref. [120]. Metropolis-Hastings gives a general approach by allowing a split between
a proposal generating dynamics g(X ′|X) and an acceptance regime A(X ′, X) which is
defined as

p(X ′|X) = g(X ′|X)A(X ′, X). (4.31)

Therefore, we split our dynamics into two stages: (i) generate a sample X ′ using g(X ′|X)
(ii) accept or reject this sample using the acceptance function A(X ′, X). Usually, we
are free to choose whatever ergodic dynamics we deem suitable for g(X ′|X), but we fix
the choice of acceptance function such that the detailed balance condition (eq. (4.30)) is
satisfied, and hence

A(X ′, X)

A(X,X ′)
=

π(X ′)g(X|X ′)

π(X)g(X ′|X)
. (4.32)

There are a family of functions which satisfy the above condition, but the most common
choice is the Metropolis criterion, defined as

A(X ′, X) = min

[
1,

π(X ′)g(X|X ′)

π(X)g(X ′|X)

]
. (4.33)

The ratio of π(X′)
π(X)

is extremely important, especially when studying probability distri-
butions with an unknown normalisation constant Z as this factor will cancel out when
calculating the acceptance probability.

Input: Number of samples N , initial state X1, proposal dynamics g(X ′|X) and
target distribution ratio π(X′)

π(X)

Output: Sequence of correlated samples X1 → X2 → . . . XN .
1 for i ∈ 2, . . . , N do
2 Sample new dynamics X ′ ∼ g(X ′|Xi−1);

3 Calculate acceptance rate A(X ′, Xi−1) = min
[
1, π(X

′)g(X|X′)
π(X)g(X′|X)

]
;

4 Sample uniform random number V ∼ U(0, 1);
5 if V < A(X ′, Xi−1) then
6 Accept proposal, Xi ← X ′;
7 else
8 Reject proposal and use old state Xi ← Xi−1;
9 end

10 end
Algorithm 5: Metropolis-Hastings algorithm which generates a Markov Chain
of correlated samples using proposal dynamics g(X ′|X) to sample π(X).

The full algorithm is given in Algorithm 5.

4.3.2 Extensions to Trajectory Sampling

Markov chain Monte Carlo (MCMC) methods are usually very general and can be applied
to a wide range of problems. In this section, we will cover a subgenre of sampling problems
that deals with analysing a trajectory ensemble instead of an ensemble of states. We can
think of the states (as described in the last section by X) now in terms of a trajectory ω
which is a Markov Chain

ω = X1 → X2 → . . .→ Xτ , (4.34)
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where τ is the number of states in the trajectory and the probability of generating the
next state is only dependent on the last. We will call the probability transition rates the
original dynamics, denoted as p(Xi+1|Xi). For now, we will consider a trajectory of fixed
length at discrete unit time intervals1. Note that the time in the trajectory itself can be
included in the state. We draw the starting state from some initial distribution p(X1).

We can note that the probability of the trajectory is given by

π(ω) = p(X1)
τ−1∏

i=1

p(Xi+1|Xi). (4.35)

In this thesis, we specifically consider trajectories that are exponentially weighted by
some observable O with a tilted probability of

π̃(ω) = Z−1e−sO(ω)p(X1)
τ−1∏

i=1

p(Xi+1|Xi), (4.36)

where, again, s is a conjugate variable to O and Z−1 normalises the distribution. Ob-
servables of interest are usually extensive in the length of the trajectory, such that they
can be written as

O(ω) =
τ∑

t=1

O(Xt). (4.37)

If one were to use the original dynamics π(ω) to sample the tilted dynamics, corrected by
Metropolis-Hastings, it would be exponentially more difficult in τ . Problems with long
τ would be inaccessible. However, we can solve this by using transition path sampling
(TPS) methods instead. To motivate the methods, let us look at the tilted trajectory
form of the acceptance ratio, given in eq. (4.38), in the Metropolis-Hastings algorithm
(see Algorithm 5 for full algorithm).

A(ω′, ω) = min

[
1,

π(ω′)g(ω|ω′)

π(ω)g(ω′|ω) exp

(
−s

τ∑

t=1

O(X ′
t)−O(Xt)

)]
(4.38)

Notice that if we fix a portion of the trajectory, then those states’ observables will cancel
out. Additionally, terms in the probability ratio will cancel out and make this simpler
to calculate. Furthermore, some observables have only local responses to chances in the
state. If one fixes the majority of the configuration and performs a local update, one can
locally calculate an update to the observable (such as in an Ising model [123]).

Following naturally from this arrangement, one can choose a proposal function that keeps
a portion of the current trajectory fixed. Below, we outline a technique called shooting
that does just this:

1. Randomly select a point in the trajectory t′ uniformly from 1 to τ − 1.

2. Create a new trajectory ω′ where X ′
t = Xt ∀ t ≤ t′.

3. Regenerate the end of the trajectory using unbiased dynamics p(X ′
t+1|X ′

t) for
t > t′.

1One can extend these methods into the continuous time domain, but this is not considered in the
scope of this thesis.
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If the dynamics is time-reversible (e.g. a random walk), one can also fix the second half
of the trajectory and rejuvenate the beginning half with the same benefits. We often
choose the unbiased dynamics because it will obey detailed balance with itself such that
the fraction

π(ω′)g(ω|ω′)

π(ω)g(ω′|ω)
will cancel out to 1.

Specific trajectory sampling techniques to increase the acceptance rate are presented in
more detail in Chapter 7.



Chapter 5

Supporting Computational
Infrastructure

A significant practical barrier to progress was the lack of computational frameworks
that could simultaneously provide the high flexibility required for research and the high
performance necessary to achieve the desired results. This challenge is common among
researchers and is often referred to as the “two-language problem”: programs are first
written in a dynamic language like Python for initial development and testing and later
translated into languages such as C/C++ or Fortran when higher performance is needed.
As this significantly impacts productivity, we decided to address this issue by utilising
the Julia programming language [124]. Julia is a language that enables the creation of
highly performant, yet still dynamic and generic programs.

To guide others on how to write high performance and highly parallel algorithms, I created
a graduate-level course, taught as part of the Midlands Alliance Physics Graduate School
(MPAGS) in 2023, accompanied by a book [125], specifically focused on writing high
performance software in Julia. For the sake of brevity, the materials created for the
course have been omitted. However, the first section of this chapter provides a concise
overview of the covered topics.

Additionally, to support reproducibility and extensibility of my research, I have produced
three generic software packages. These open-source packages are:

• Experimenter.jl [126] — A package to aid running experiments, distributed
across multiple processes, i.e. on a HPC, and coordinating saving the final (and
intermediate) results in a single database file.

• TransitionPathSampling.jl [127] — A package to aid efficient sampling of
dynamics via TPS. This forms the base engine of the NNE algorithms researched
and presented in Chapter 7 and Chapter 8.

• SimpleNNs.jl [128] — A package to provide a basic neural network library which
has high performance on small neural networks, uses a flat parameter vector for
the entire model, and also runs the neural networks on a GPU without excessive
memory usage.

We explore the purpose and motivations behind these packages in more detail later in
this chapter.

67
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The final section briefly discusses contributions to other research articles, not presented
in this thesis in the interest of succinctness.

5.1 Course: High Performance Computing in Julia
Modern research into ML, or scientific and numerical computing more broadly, requires
use of highly efficient implementations of algorithms to take advantage of the vast com-
puting resources of modern hardware. Much research relies on existing high performance
libraries; in Python for example, one uses libraries such as numpy [129], PyTorch [87],
TensorFlow [88] and many others as a base building block for numerical research.
These libraries are incredibly successful at allowing users to take advantage of highly per-
formant implementations using a Python API1. The aforementioned libraries have been
very successful at providing high enough performance for the vast majority of use cases;
the time a program spends facilitating the higher level instructions in Python is typically
dominated by the time spent inside the library’s high performance subroutines. Advan-
tageously, these libraries are, to some extent, flexible, having constructs and patterns
which can facilitate most research requirements. Unfortunately, these constructs cannot
cover all use cases, as there are times when code cannot be easily contorted into the
form demanded by these libraries. Julia offers an alternative approach which promises
fast development speed, à la Python, while maintaining a high performance capability,
rivalling programs written in languages like C/C++ or Fortran — claiming to solve the
“two-language problem” [124].

Admittedly, while it is certainly possible to write high performance code in Julia, it is by
no means guaranteed that any code written will execute at speed. As with any language,
if one cares about performance, one must avoid writing poorly performing code, instead
of focusing on writing fast code. The course has the aim of teaching students how to write
high performance on a range of systems, from a laptop to a supercomputing cluster.

For brevity, I have summarised the list of key topics included in the course below:

• Discussion of modern hardware, including CPU and GPU architectures.

• Discussion of software concepts, including: operating systems, compilers, multi-
threading, hardware parallelism (e.g. SIMD2), memory management, data types
and data structures.

• An overview of the Julia programming language.

• Measuring performance via benchmarking and profiling.

• Optimising serial code.

• Parallel algorithm design.

• Multithreaded programming on a single, multicore CPU.

• Multiprocessing across several machines, e.g. on a high performance cluster (HPC).

• Introduction to GPU programming using the CUDA.jl package.

1Application Programming Interface
2Single-Instruction Multiple Data
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• Discussion of professional software engineering standards — in particular, how to
produce reliable, reusable and reproducible programs.

All materials for the graduate course are available online through the website [125]. In
particular, interested readers may gain insight from the accompanying book [130].

5.2 Package: Experimenter.jl

Whenever we conduct statistical studies, we usually have to run experiments over a range
of parameters — and possibly take many repeats. Orchestrating this can involve writing a
lot of boilerplate code for locating and naming data files. Additionally, many HPC system
administrators advise against saving results in many smaller files and instead, encourage
the use of a single (or a small number) of file(s) to reduce strain on the filesystem. As
this is such a common task in research, I decided to develop a standard solution to this,
making use of a centralised database to save results. The aims of this package are:

• To organise running and documentation of experiments, saving information about
the input parameters of each experiment.

• To save experiment results into a single database file.

• To provide an optional way to distribute gathering of data across a cluster and
aggregating results for saving in the database.

• To expose an optional interface (application programming interface (API)) to allow
saving intermediate results, referred to as snapshots.

• To allow the continuation of stopped experiments, avoiding re-gathering existing
results.

Most of this functionality is aimed at running on a HPC, where it is common to have
computational job time limits, requiring intermediate results to be saved and continued
in a second job. Additionally, many methods require human monitoring to see if the
experiments need to be run for longer. Many of the techniques employed by researchers
are ad-hoc, and this package aims to provide a standardised solution.

This package is open sourced for other users, hosted on GitHub [126]. Along with the
source code, a documentation website is also available, guiding users on how to integrate
the package with their existing software. The project contains a reasonably comprehensive
test suite which makes use of unit testing to ensure the package works as intended. For
the rest of this section we will quickly cover use of the package.

5.2.1 Example Usage

Firstly, we load the package and make available its functions with

� �
using Experimenter� �

As we want to be able to save results, we open a database file locally, which uses SQLite
[131] on the backend.
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� �
db = open_db("experiments.db")� �

This will create a new file in the present working directory called "experiments.db"

and give a reference to this database stored in the variable db.

From here, we need an example experiment to run. For this experiment, we will just
measure the final distance of a random walk with the following code (saved to a file
called "run.jl"):

� �
using random
function run_trial(config::Dict{Symbol,Any}, trial_id)

results = Dict{Symbol, Any}()
sigma = config[:sigma]
N = config[:N]
seed = config[:seed]
rng = Random.Xoshiro(seed)
results[:distance] = sum(randn(rng) * sigma for _ in 1:N)
return results

end� �
Importantly, this function takes in exactly two arguments, the first of which is a dictio-
nary3 which maps parameter identifiers to its corresponding value, which can be of any
type. Additionally, Experimenter.jl will also provide the function with a unique
identifier for the specific trial being run, which enables saving snapshots (which is unused
in our example). This function extracts the parameters contained in the configuration
dictionary, performs some calculation and saves the results in a dictionary (with the same
type as the input dictionary). These results are then communicated back (if conducted
on another machine than the initial host) and saved to the database.

Once the wrapper code is written, we can define the experiment in a separate script:

� �
config = Dict{Symbol,Any}(

:N => IterableVariable([10, 20]),
:seed => IterableVariable([1234, 4321]),
:sigma => 1.0

)
experiment = Experiment(

name="Test Experiment",
include_file="run.jl",
function_name="run_trial",
configuration=deepcopy(config)

)� �
This simply creates the object with the necessary metadata for identifying the experiment,
along with the experiment configuration. An experiment consists of an array of trials.
With the custom type IterableVariable, one specifies that this parameter should
form part of a grid search. Using the custom types “tags” the variable as something to be
iterated over. These trials will be made up of the combinatorial product of these tagged
variables. This file should also be checked into source control to keep a record of the
experiment for later reproducibility.

3A data structure which maps from unique keys to values. Also known as a hash map in other
languages.
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The package provides the macro4 @experiment to facilitate easy execution orchestration
of the experiment. This macro allows for different modes to be specified, for example:

� �
@execute experiment db SerialMode� �

The constant SerialMode can be replaced with either MultithreadedMode or
DistributedMode to specify running in parallel in a single process (using multiple
threads) or across multiple processes across one machine (or several). These parallel
modes use the native threading and distributed libraries provided by Julia respectively.
If running on a cluster, one should make use of the ClusterManagers.jl package
to correctly launch multiple processes across the cluster and open the communication
channels. As SLURM [132] is one of the most common schedulers on HPC systems,
a documented example of how to launch the experiment runner is documented on the
package documentation website.

As each process finishes running, the results are saved in the database. If the experiment
process is cancelled before all trials are completed, one can simply rerun the script again,
and only the uncompleted trials will be scheduled to run.

To extract the results for processing, simply open the database again, specifying the same
file path as was used previously and use the get_trials_by_name function, with the
name of the experiment chosen:

� �
db = open_db("experiments.db");
trials = get_trials_by_name(db, "Test Experiment");
results = [t.results for t in trials];� �

This will give an array of dictionaries matching the results returned by the run_trial

function. One can also access the configuration for each trial with:

� �
configurations = [t.configuration for t in trials];� �

For additional features such as saving snapshots and re-running failed experiments, see
the examples in the package documentation.

5.2.2 Limitations

The package is architected under the following assumptions:

• The overhead of sending, serialising and saving results to the database is negligible
compared to the runtime of each trial.

• The size of the results being saved is relatively modest (e.g. < 1TB for the whole
experiment).

• Each individual trial is reasonably computationally expensive (e.g. longer than 10
minutes).

4Macros allow for meta-programming, i.e. code that writes code.
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• There are a relatively small number (e.g. < 104) of trials per experiment.

I designed this package first and foremost for ease of use, not to be capable of handling
extremely high throughput. Management of the database is strictly single threaded, which
locks the database when saving results. Experiments which require high performance
storage will require a more complex package instead. Possible future extensions may
allow different back end storage solutions that allow for parallel reads and writes, such
as HDF5 instead of SQLite, to increase the maximum throughput of the package.

5.3 Package: TransitionPathSampling.jl
While the other packages presented in this chapter have a wide range of possible use
cases, this package aims to solve a targeted problem. This is for specifically performing
the trajectory “training” dynamics presented in Chapter 7 and Chapter 8. In the package,
I provide a set of utilities that allow for running discrete time random walk dynamics
efficiently on an array of values. This includes the ability to sample trajectories according
to a biased dynamics given by:

p̃(Θ) =
e−sO(Θ)p(Θ)

Z(s) , (5.1)

where O(Θ) is some observable quantity of interest, s is a control parameter and p(Θ)
represents a discrete time continuous space random walk dynamics on the trajectory. We
use Z(s) to renormalise the distribution.

The dynamics is updated via TPS, using the shooting and bridging techniques described
in Section 4.3.2 and Chapter 7. The implementation is written using abstractions, allow-
ing execution to be device-agnostic — running on both the CPU and GPU. This enables
the parameters to be updated on the GPU without needing to transfer back and forth
between host and device memory when calculating the updates.

As will be presented in Chapter 8, an efficient algorithm for calculating parameter updates
can be done via minibatching the calculation of the observable. This requires a tight
coupling between the observable and the TPS minibatch algorithm, as this is an adaptive
sampling technique. TransitionPathSampling.jl provides an API for writing the
interface between one’s custom observable calculation and the minibatch method.

As this package is designed for research purposes, TransitionPathSampling.jl also
provides a mechanism for injecting callbacks to execute flexibly throughout the training
loop, exposing all information used by the algorithm, allowing for detailed statistics to
be collected. Along with this, there are some capabilities for custom iterators that stop
only when convergence is detected — using a naïve heuristic approach.

5.3.1 Limitations

This package was designed with my own research goals in mind, and grew over time. As
such, the scope of its usefulness is very limited. We can summarise the main limitations
of the package as follows:

• The main algorithms in TransitionPathSampling.jl are centred around the
specific dynamics of interest (discrete time continuous space independent random
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walks).

• The algorithms assume that all sampling is of the biased form given in eq. (5.1),
where the unbiased dynamics obey detailed balance with the perturbation dynam-
ics.

• When minibatching, the algorithm assumes a finite set of samples and does not
extend to problems with potentially infinite samples. This can be mitigated by
using a fall back value for the maximum number of samples allowed per update.

• Also in minibatching, the error tolerance is currently calculated using a heuristic
to avoid unnecessary quadratic scaling with the final minibatch size, and to avoid
excessive memory allocation. Results in Chapter 8 explicitly remove this error
calculation and therefore this heuristic leaves results unaffected.

• There is currently very little documentation on how to use the package, other than
its usage in the unit test suite and in the two code repositories published with the
research articles.

5.3.2 Future Work

This package, while providing the necessary backbone for my research, could be much
more useful for a wider audience with further work. As the design of the package improved
over time, it would be prudent to abstract and redesign some of the internals to remove
the assumptions listed in the above section. For example, one can provide an interface
for specifying the exact form of the acceptance criteria efficiently, while being flexible
enough for varied user problems.

Some support for running multiple trajectory sampling techniques in parallel and aiming
to converge towards a stationary state using automatic convergence detection would be
a great improvement. This would save the user a great deal of time spent manually
inspecting the results from several runs to find a suitable runtime for each parameter
input.

Finally, additional utilities for specifically saving, resuming and safely cancelling training
would vastly improve usability in research. Currently, there is a callback system which al-
lows the user to specify in their own code implementations for these utilities. The current
approach is not the most ergonomic and some standard callbacks would be preferable.

5.4 Package: SimpleNNs.jl
Aside from the RL research conducted in this thesis, much focus was on studying train-
ing collections of neural network models via trajectory sampling methods such as TPS.
Importantly, the way these neural networks were trained is very different to standard
gradient methods. We perform dynamics on the flat parameter vector of each model in
the trajectory, rather than taking into account the architecture of the model — as in
gradient descent. Most existing machine learning frameworks (e.g. Flux.jl [133, 134],
PyTorch [87], TensorFlow [88]) are set up to modularise a neural network into sepa-
rate layers, each with a local set of parameters. It is expected that if one wants to modify
the parameters of the network, one would modify one layer at a time. This approach is
very good for gradient descent optimisation, as the algorithms remain very simple and
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yet flexible. However, performance is severely degraded when using a different memory
access paradigm (such as modifying a random 25% of the parameters, spread across the
model).

At first, Flux.jl (written in Julia), provided a way of deconstructing a model into
a flat parameter vector, together with a function to reconstruct the model using the
flat parameters. This allowed for dynamics to be natively handled in native Julia code;
importantly, this allowed the mutated parameters to be easily passed back to the model
framework for inferences needed to calculate the new loss. This technique was not meant
to be used in a hot loop5, and had poor performance in terms of memory usage. As Julia is
a garbage collected language, this caused slowdowns due to a lot of garbage collector (GC)
pressure. Additionally, as the GC pauses execution of concurrent threads, this severely
impacts one’s ability to take advantage of modern hardware to run multiple experiments
in parallel. In fact, when using multiple threads running parallel experiments, the GC
pressure on the GPU memory is so high that the GC cannot free the GPU memory fast
enough, resulting in a program crash and loss of results. As gathering data for Chapter 7
took on the order of months, on the second I decided to implement my own NN library,
which would be used for gathering results for Chapter 8, with four specific goals:

1. To run inference with a flat parameter vector of the model.

2. To run inference not only on the CPU, but also on the GPU.

3. To parallelise inference on a single GPU, without running out of memory.

4. To be competitive with existing popular ML frameworks for my particular use case.

I took inspiration from the SimpleChains.jl [135] package, which showed that micro-
optimisations for small networks running on the CPU can be up to 5× faster than
PyTorch implementations and around 2 to 22× faster than equivalent JAX [136] im-
plementations. However, this library is heavily limited to CPU only execution (at the
time of writing). My aim, was to produce a similar package which had simpler source
code (to allow for extensibility), while also providing native GPU support (specifically
for CUDA GPUs).

At the time of writing, my package — SimpleNNs.jl — has similar functionality to
SimpleChains.jl, but can run on the GPU. The full list of features from the package
are as follows:

• Uses a flat 1D parameter vector for representing the entire model, together with
slices and transformations to extract the parameters for each layer.

• Allows for building simple neural networks with a choice of dense, convolutional
and max pooling layers.

• Runs inference (i.e. a forward-pass) using preallocated buffers, removing all runtime
memory allocations.

• Support for any user-defined activation functions, or standard functions (e.g. ReLU,
logistic sigmoid or hyperbolic tangent) on forward passes.

• Support for automatic gradient calculation on basic loss functions like mean-squared
error and cross-entropy loss using the back-propagation algorithm introduced in

5A loop in which the program spends most of its time.
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Parameter Value
Device RTX 3090 NVIDIA GPU
Epochs 105

τ 32
s 50.0
σ 0.25
Minibatch chunk size 120
Model architecture See Appendix B in Chapter 8
Problem MNIST classification (all digits) [28]

Table 5.1: Training parameters for benchmarking the two different implementations
using SimpleNNs.jl and Flux.jl. The performance benchmark runs the minibatch
training algorithm described in chapter 8 for 105 iterations with the above parameters
using the different neural network libraries to implement the model part of the algorithm.

Chapter 1. No automatic differentiation is implemented for user-defined functions,
but can be added manually.

• Allows extensibility to new types of layers and loss functions via Julia’s rich type
system.

• Runs back-propagation (backward-pass) with minimal runtime memory allocations.

It should be noted that the scope of the package is limited to what is described above,
and is not as flexible as a package like Flux.jl, which includes automatic differentiation
capabilities for user-supplied code. Fortunately, these are all superfluous for the research
conducted into NNEs.

To validate this package, I measured the relative speed-up of using SimpleNNs.jl in
place of Flux.jl for calculating the minibatch losses required on each epoch of training.
For this benchmark, I trained a NNE with parameters specified in Table 5.1. Refer to
Chapter 8 for details on the experiment and the parameters.

I measured the total number of samples evaluated during training, divided by the time
taken to conduct the training to get a speed. Timing did not include loading the dataset
into memory or creating the model, as this is only done once at the beginning of training.
When running on multiple concurrent threads, timing was measured to be when the last
thread finished the 105 epochs — i.e. the total wall time. As Flux.jl did not run
on multiple threads without the potential of crashing, this timing was only measured
for running on a single thread. All speeds are presented relative to the speed of the
single threaded Flux.jl implementation, measured to be approximately 140k images
per second.

In fig. 5.1, we see that even on a single thread, SimpleNNs.jl outperforms Flux.jl
with a speed increase of around 23%. We also see that increasing the number of threads
(e.g. the number of experiments run in parallel using the same GPU) increases the
total throughput of the GPU. Even using only 2 threads gives a 95% improvement
over Flux.jl. We see that the performance increase saturates at 5 threads, where
the scheduling of the GPU kernels starts to hinder performance, and adding additional
threads only decreases overall throughput. At 5 threads we see approximately a 3.2 times
throughput over Flux.jl.
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Figure 5.1: Speed of training of the SimpleNNs.jl implementation relative to that
of Flux.jl. Data is based on real world experiments, and contains time evaluating the
dynamics of the training process, reducing the relative performance of the two metrics.

As a reference calculation, a single figure for Chapter 8 used 168 individual experiments;
each experiment takes, on average, around 20 hours to run on a single thread using
SimpleNNs.jl. This implies that Flux.jl would take approximately 24.4 weeks of
GPU compute to collect the same data. As running on 5 threads yields a significant
speed-up, I was able to get the results with a comparative 7.6 weeks of compute time,
saving around 16.8 weeks of compute overall.

5.5 Computational Contributions to Other Published
Works

Using the techniques discussed in Section 5.1, I was able to contribute to other works
that are not presented in full in this thesis.

The first of these contributions was to the work culminating in the article [137]

“Boundary conditions dependence of the phase transition in the quantum Newman-
Moore model ” by K. Sfairopoulos, L. Causer, J. F. Mair and J. P. Garrahan
arXiv 2301.02826.

For this work, I was able to significantly improve performance of the cellular automata
methods employed during the research. This included algorithmic improvements for
detecting cycles using Floyd’s tortoise and hare algorithm [138] and implementation im-
provements by using fast bit shift operators.

The second contribution was to the computational work behind the article [139]

“Rejection-free quantum Monte Carlo in continuous time from transition path
sampling” by L. Causer, K. Sfairopoulos, J. F. Mair and J. P. Garrahan
arXiv 2305.08935.

These contributions included discussing algorithmic implementation details and perfor-
mance improvements via generic, Julia-specific programming strategies.



Chapter 6

A Reinforcement Learning Approach to
Rare Trajectory Sampling

The following work is from the publication “A reinforcement learning approach to rare
trajectory sampling” by D.C. Rose, J. F. Mair and J. P. Garrahan in the New Journal
of Physics 23 013013 (2021) [140].

This work formalises the relationship between rare trajectory sampling, studied in large
deviation theory (Chapter 3), and reinforcement learning (Chapter 2). In RL, optimal
behaviour is defined by choosing actions which maximise the cumulative set of scalar
signals received at each time step (called the rewards). We derive what the reward
function must be in order to align the optimal behaviour with that of sampling rare
events with a desired probability distribution. This is equivalent to finding the so-called
Doob dynamics (see Section 3.3.1) which best sample rare events. Our approach is able to
train approximate near-optimal auxiliary dynamics which can be corrected via trajectory
sampling techniques like transition path sampling (see Section 4.3.2 and [141]), to produce
samples of rare events.

Corrections:

• After Eq. (12), “This cound . . . ” should be “This could . . . ”
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Abstract
Very often when studying non-equilibrium systems one is interested in analysing dynamical
behaviour that occurs with very low probability, so called rare events. In practice, since rare events
are by definition atypical, they are often difficult to access in a statistically significant way. What are
required are strategies to ‘make rare events typical’ so that they can be generated on demand. Here
we present such a general approach to adaptively construct a dynamics that efficiently samples
atypical events. We do so by exploiting the methods of reinforcement learning (RL), which refers to
the set of machine learning techniques aimed at finding the optimal behaviour to maximise a
reward associated with the dynamics. We consider the general perspective of dynamical trajectory
ensembles, whereby rare events are described in terms of ensemble reweighting. By minimising the
distance between a reweighted ensemble and that of a suitably parametrised controlled dynamics
we arrive at a set of methods similar to those of RL to numerically approximate the optimal
dynamics that realises the rare behaviour of interest. As simple illustrations we consider in detail
the problem of excursions of a random walker, for the case of rare events with a finite time horizon;
and the problem of a studying current statistics of a particle hopping in a ring geometry, for the
case of an infinite time horizon. We discuss natural extensions of the ideas presented here,
including to continuous-time Markov systems, first passage time problems and non-Markovian
dynamics.

1. Introduction

In physics, chemistry and many areas of science it is often the case that one wishes to study systems with
dynamics which are highly variable and fluctuating, and where important information is contained in ‘rare
events’, meaning particular instances of the dynamics which are very far from typical. Since analytical study
of the statistics of trajectories is almost always intractable beyond the simplest model systems one must
resort to sampling trajectories numerically. The main challenge is how to access in an efficient manner the
atypical trajectories that give rise to the rare events of interest [1, 2].

A common problem is that of estimating the large deviation (LD) statistics [3] of time-extensive
observables in systems with Markovian stochastic dynamics. This is difficult in general [4–21] as such
observables are concentrated around their average values which makes accessing the tails of their
distributions an exponentially in time hard numerical task. In the dynamical LD context, several approaches
have been developed which attempt to ameliorate the exponential scarcity of rare trajectories within the
original dynamics, often based either on population dynamics, such as cloning or splitting [4–6, 8, 22, 23],
or on importance sampling in trajectory space, such as transition path sampling (TPS) [1, 24].

Since rare events by definition are hard to obtain with the original dynamics of the system, a key
approach is to find an alternative sampling dynamics that gives access to rare trajectories in an optimal
manner [25–37]. There is an intuitive similarity [38] in this search for an optimal sampling dynamics and
the general problem of reinforcement learning (RL) [39]. Specifically, direct parametrisation of dynamics,
such as the one done in the context above of trajectory sampling, is akin to policy gradient methods [40, 41]

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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within RL. Exploring the connections between rare trajectory sampling and RL is the main aim of this
paper.

The use of RL methods in physics is of course a rapidly growing area. Examples include applications in
quantum state preparation and quantum control [42–47], quantum eigenstates [48, 49], policy guided
Monte Carlo simulations [50], and evolutionary RL for LDs [51] and for thermodynamic control [52].

The key results and contributions of this paper are the following. (i) Using a generic formulation, which
includes studying conditioned dynamics and cumulant generating functions as special cases, we
demonstrate that the problem of optimizing a dynamics for sampling rare trajectories is identical to a form
of regularized RL. This connection both allows the adaptation of RL techniques to be used in sampling rare
trajectories, and provides a new range of problems on which RL techniques can be tested and compared.
(ii) This form of regularized RL has not previously been considered using policy-gradient based techniques.
We pedagogically present a range of such techniques for optimizing the sampling of rare trajectories. (iii)
We review a small portion of the broad range of possible algorithms RL introduces through its connection
with rare trajectory sampling. (iv) We specialize to the long-time limit, relevant to the LDs of Markov
chains, finding that the regularized RL algorithms automatically estimate the scaled cumulant generating
function (SCGF) in the process of optimizing the dynamics.

The approach we present here has connections—but also important differences—to recent works
exploring related ideas [53], particularly in diffusive processes [54–56]. It is demonstrated throughout using
problems based on random walkers.

The paper is organised as follows. In section 2 we review the trajectory ensemble method in systems
with stochastic dynamics, discuss their reweighting, and how rare trajectories relate directly to such
reweightings. In section 3 we pedagogically develop general methods for rare trajectory sampling based on
RL, focussing on obtaining the optimal dynamics for finite problems. These methods are based on
minimising expected likelihood, or a Kullback–Leibler (KL) divergence, and directly connect to maximum
entropy RL and regularization [57–61]. We illustrate our approach with the simple (and solvable) example
of random walk excursions [62]. We follow this in section 4 by reviewing a range of possible variations of
these algorithms found in the RL literature, translated into our setting, which are made available by the
connection between regularized RL and trajectory sampling. Section 5 extends the ideas of sections 2 and 3
to the case of long times, viewed as an infinite horizon problem, establishing the connection to LD theory.
This connection implies these algorithms for optimizing the dynamics simultaneously provide an estimate
for the SCGF, discussed in section 5.4. We conclude with section 6 outlining further extensions and possible
adaptations of the methods presented here. This paper is intended to be the first in a series of works
exploring connections between the physical and mathematical understanding of trajectory ensembles, and
the computer science understanding of RL. Code produced to produce results for the examples shown in
this paper is available on Github at [63].

2. Formulation and applications

We begin by introducing the formalism we use to describe trajectory ensembles, followed by a precise
definition of the reweighted ensembles we consider. We then discuss how two cases in which rare
trajectories have a significant impact, conditioned ensembles and cumulant generating functions, can be
viewed as studies of reweighted trajectories ensemble. Finally, we discuss how our approach relates to—and
crucially, differs from—the traditional formulation of RL.

2.1. Formalism and aim: trajectory ensembles and reweightings
We consider a system evolving over time t with state xt. For simplicity we consider a discrete time dynamics
given by Markovian transition probabilities P(xt|xt−1), with t taken to be a dimensionless integer denoting
how many steps have occurred since the initial state. This can be simply extended to time-dependent
transition probabilities P(xt|xt−1, t). Further, in section 6 we discuss the extension to non-Markovian
problems.

Trajectories consisting of sequences of states are labelled as

ωT
t0

= {xt}T
t0

, (1)

where xt is the state at time t, t0 is the initial time and T is the final time. When ω appears multiple times
in the same equation, we follow the convention that where their times overlap, they refer to the same states.
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The probability of each trajectory is then given by

P
(
ωT

0

)
=

T∏

t=1

P(xt |xt−1)P(x0), (2)

where P(x0) is the probability of a trajectory being initialized in the state x0. These trajectory probabilities
define a trajectory ensemble that we will frequently refer to as the original dynamics P. Throughout the
paper we will make extensive use of expectation values over different trajectory ensembles, which we shall
denote 〈

O
(
ωT

0

)〉
P

=
∑

ωT
0

P
(
ωT

0

)
O
(
ωT

0

)
, (3)

where O is some function of the trajectory and the subscript denotes the trajectory ensemble over which the
expectation is taken. We will also use conditional expectations over the future of a state

〈
O
(
ωT

t

)〉
P,Xt=x

=

∑
ωT

0 :xt=xP
(
ωT

0

)
O
(
ωT

t

)
∑

ωT
0 :xt=xP

(
ωT

0

) , (4)

where Xt denotes the random variable corresponding to the state at time t. Finally we will make use of the
fact that the expectation of an expectation is simply the expected value: more specifically, we will use the
identity 〈

f
(
ωT

t

)
g(xt)

〉
P

=
〈〈

f
(
ωT

t

)〉
P,Xt=xt

g(xt)
〉

P
. (5)

The problem we consider in this paper is finding a new dynamics which efficiently samples rare
trajectories of some original Markovian dynamics P as defined above. In the next subsection we will provide
examples showing many rare trajectory problems can be framed as the task of sampling a reweighting of the
original trajectory ensemble. As such, we will now define what we generally mean by a reweighted trajectory
ensemble. We will consider a weighting function which possesses a Markovian product structure: that is, the
weight for each trajectory is given by

W
(
ωT

0

)
=

T∏

t=1

W(xt , xt−1, t), (6)

where
W(xt , xt−1, t) � 0 ∀ (xt , xt−1, t). (7)

This defines a reweighted trajectory ensemble as

PW

(
ωT

0

)
=

W
(
ωT

0

)
P
(
ωT

0

)
〈

W
(
ωT

0

)〉
P

. (8)

Our goal is then to find a new Markovian dynamics which generates a trajectory ensemble as close to this as
possible, in a precise sense defined in terms of the KL divergence in section 3. While it is not immediately
clear from equation (8), these trajectory probabilities can always be decomposed exactly into a set of
time-dependent Markovian transition probabilities, as demonstrated in appendix A. Conditions for when
this is the case in diffusive systems have previously been studied under the name penalizations in
probability theory [64]. However, for complex problems it will be difficult to calculate this exact dynamics.
It is for this reason that we present an approximate approach based on mapping the problem onto a
regularized form of RL.

We note here that, similar to how this approach extends naturally to a non-Markovian original
dynamics, more general trajectory reweightings can be considered than the Markovian product structure of
equation (6). For more general reweightings the exact dynamics which reproduces the reweighted ensemble
is naturally non-Markovian, even if the original dynamics is not. This is discussed further in section 6 and
will be studied in future work.

2.2. Applications: rare trajectories as reweighted ensembles
We will now discuss how a variety of rare trajectory problems can be seen as a reweighting. In this case the
reweighted ensemble is difficult to study using simulations based on the original dynamics, necessitating the
use of alternative sampling schemes such as cloning and TPS, and/or the construction of an adapted
sampling dynamics [1, 4–6, 8, 22–37]. Our work will supplement these by connecting the construction of
an alternative sampling dynamics to RL.
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To make our discussion of applications concrete, we will use a simple model as a recurring example: a
random walker. That is, the original dynamics is that of a single particle hopping on a lattice, where the
state x takes integer values, with Markovian transition probabilities P(x ± 1|x) = 1/2. We will consider both
infinite and periodic boundaries when we study rare events of this model in finite and long times,
respectively. The probability of each trajectory takes a particularly simple form, being just P(ωT

t ) = 2−(T−t).
We will consider a variety of rare event problems based on this model, related either to its instantaneous
position x or to an observable of the full trajectory, notably the area

A(ωT
t ) =

T∑

t′=t

xt′ . (9)

2.2.1. Conditioned dynamics
The first class of problems we consider are those in which the trajectory ensemble is conditioned on some
observation of the trajectory. That is, given some statement about the trajectory that is either true or false,
we wish to consider only the subset of trajectories for which the statement is true. Here the weight is simply
a binary W

(
ωT

0

)
= 0 if the statement is false, and W

(
ωT

0

)
= 1 if the statement is true. The resulting

ensemble then consists of rare trajectories of the original dynamics if the probability of the condition being
true is small.

For example, we may condition the trajectory ensemble of the random walker on ending in the state
xT = 0, with an initial condition of x0 = 0, often called a random walk bridge [62]. The weights for each
transition would then be precisely defined as W(xT, xT−1, T) = δ(xT) and W(xt, xt−1, t) = 1 for 0 < t < T.
Such a trajectory is relatively rare in the original dynamics. The probability of generating such a trajectory
in the original dynamics is equal to the number of such trajectories, multiplied by their probability: the
number of trajectories is simply the number of orderings of an equal number of up and down steps,
resulting in P(xT = 0|x0 = 0) ∝ T− 1

2 .
A harder problem would be to retain the same constraint on the end, but additionally require xt � 0 for

all t, known as random walk excursions [62]. Using the step function H(xt), equal to zero for xt < 0 and
one otherwise, the weights may then be written W(xT, xT−1, T) = δ(xT) and W(xt, xt−1, t) = H(xt) for
0 < t < T. As can be seen in appendix A, in this case the number of trajectories relates to Catalan numbers,
with P(xT = 0, xt � 0 ∀ t|x0 = 0) ∝ T− 3

2 . Thus these excursions are substantially rarer than the bridges.
Both excursions and bridges are have been studied extensively in a continuous time and space context of
Brownian motion, see e.g. [62].

In our approach it will be necessary to have weights which are always non-zero. As such, to consider
conditioned problems we will first need to soften the weights, setting the trajectory weight to 1 on correct
trajectories and <1 on incorrect trajectories. In particular, we can consider the weightings to be given by
some measure D which returns 0 when the condition is true and is positive when the condition is false

W (xt , xt−1, t) = e−sD(xt ,xt−1,t), (10)

where s is a parameter determining how heavily suppressed incorrect trajectories will be: in the limit
s → ∞, only correct trajectories remain, recovering the ensemble of the hard constraint. For example, to
recover a softened version of the random walk bridges or excursions, we may set

D (xt , xt−1, t) = x2
t δt,T + b(1 − H(xt)), (11)

where b is a parameter, returning a softened bridge problem at b = 0 and a softened excursion problem at
b > 0.

2.2.2. Tilted ensembles and cummulant generating functions
Suppose we wish to study the statistics of some time integrated observable

O
(
ωT

0

)
=

T∑

t=1

o(xt, xt−1, t). (12)

This cound by done by considering conditioned ensembles for each of its possible values, however, this is
often a difficult task even for a single value [34, 35]. While softened constraints are easier for individual
values, annealing the constraint over a whole range of values could be computationally demanding. A
common solution is to instead consider the observables cumulant generating function, given by

Z(s, T) =
〈

e−sO(ωT
0 )
〉

P
. (13)
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This tells us about the observables statistics by generating the observables cumulants through its derivatives
at zero

∂nZ

∂sn

∣∣∣∣
s=0

= (−1)n
〈

O
(
ωT

0

)n〉
P
. (14)

For certain observables or values of s substantially different from 0, many trajectories may make negligible
contribution to this expectation, i.e. it is dominated by rare events in the dynamics. To sample these rare
events more efficiently, we may thus seek a dynamics corresponding to an ensemble reweighted according to
the value of this observable, that is

PW

(
ωT

0

)
=

e
−sO

(
ωT

0

)
P
(
ωT

0

)

Z(s, T)
. (15)

often referred to as the biased or titled ensemble of trajectories. For example, if we wanted to consider the
statistics of the area, we would set o(xt, xt−1, t) = xt and have

W (xt , xt−1, t) = e−sxt , (16)

and thus

W(ωT
0 ) = e

−sA
(

ωT
0

)
=

T∏

t=0

e−sxt . (17)

A particular case of the above is the study of observables in the long time limit. For appropriate
observables in many models, the probability of a particular value takes a LD form [3], finding

P(O|T) ∝ e−Tφ( O
T ), (18)

where φ
(

O
T

)
is referred to as the rate function, describing the probability of the observable taking a

particular value per unit time. In these cases the cumulant generating function additionally has a simplified
form, in terms of the SCGF θ(s)

Z(s, T) ∝ eTθ(s). (19)

The SCGF θ(s) is thus often the aim of studies into the long-time statistics of time integrated observables, as
it encodes the observables moments. As we will see in section 5, such problems can be considered using a
continuing form of RL. In fact, a key result is that θ(s) ends up being directly related to the quantity we
identify as our analogue of the return from RL, the precise quantity we will aim to maximize. Our
algorithms thus provide a two-for-one: they both find a dynamics which approximately generates the tilted
ensemble, while simultaneously finding a variational approximation to θ(s).

2.3. Relationship to standard reinforcement learning
Here we will briefly describe how our problem relates to the standard approach to RL. The aim of RL is to
achieve some desired objective, by finding the best decisions or actions to make given some current
information about the situation (the state of the environment) in which the objective must be achieved
[39]. Actions are chosen within each state according to a policy, which influences the transition to the next
state. The key ingredient of RL is inspired by behavioural psychology: the objective is encoded in a sequence
of rewards received for each action in each state. Formally these rewards are assigned real numbers, with
the magnitude and sign defining how good or bad a decision is. The resulting construction is referred to as
a Markov decision process (MDP). The goal of RL is then simply to maximize the sum of rewards—the
return—received, thus making the best decisions to achieve the objective: this is done by optimizing the
policy according to which actions are taken.

Our problem can be seen as a simplified form of RL in which each ‘action’ precisely chooses the next
state: we can therefore forgo the concept of actions and simply view the problem as choosing the best next
state given the current state. The dynamics is thus completely defined by the policy of how the next state is
chosen. To connect to RL, it thus remains to define the ‘reward’ in our problem. A natural suggestion for
the return of each trajectory may be the log of the trajectories weight, which naturally produces a sum over
terms associated to each transition

ln W
(
ωT

0

)
=

T∑

t=1

ln W(xt , xt−1, t). (20)

Maximising the return would thus result in a dynamics which produces trajectories of maximal weight.
However, while this is along the right lines, standard RL tends to produce a deterministic policy: in this
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case, it would only produce trajectories with the maximum possible weight. Our goal is to approximately
reproduce the reweighted trajectory ensemble, producing each trajectory proportional to its weight. This
necessarily requires the transitions from each state to be probabilistic. While there are ad hoc approaches to
making the learnt policy probabilistic, our key result is that there is in fact a natural way of framing our
optimization problem as a regularized form of RL, based on the KL divergence. This regularized form is
very similar to recent maximum-entropy RL techniques [59–61] and other suggested approaches to
regularizing RL [57, 58], however, we are not aware of policy gradient techniques having been considered
for the particular form of regularization our problem relates to. This relation to regularized forms of RL will
be discussed further in section 3.5.

The most significant tool this connection allows us to take from RL is that of value functions, which
naturally emerge in a slightly modified form in this regularized setting. These modified value functions
satisfy a Bellman equation, as seen in section 3.3. Value focussed approaches to RL often use this as a
starting point, as do some policy focussed approaches. Equally, there exist many techniques, such as pure
Monte-Carlo sampling, which make no use of Bellman equations in formulation or algorithmic solution
[39]. Further, they are not necessary in the initial introduction to policy-gradient techniques.

While important for our approach, we believe beginning our discussion by introducing both values and
the Bellman equations they satisfy will serve to hide the simple connection between rare trajectory sampling
and RL under further layers of abstraction. Further, it would result in the rapid introduction of a range of
concepts which are not common knowledge within the physics community. As such, we choose to gradually
introduce value functions and the Bellman equation as a natural tool in improving a gradient based
approach, rather than a foundation, during the pedagogical development of the next section.

3. Gradient optimization of rare finite-time trajectory sampling

In our approach, we seek to search through a space of parameterized dynamics Pθ(xt|xt−1, t), conditional
on the state and time, in order to make the trajectory ensemble it generates with probabilities given by

Pθ(ωT
0 ) =

T∏

t=1

Pθ(xt |xt−1, t)P(x0), (21)

as similar to the reweighted trajectory probabilities of equation (8) as possible. Similarity is defined by the
KL divergence between the parameterized trajectory ensemble and the reweighted trajectory ensemble

DKL(Pθ|PW ) =
∑

ωT
0

Pθ

(
ωT

0

)
ln

(
Pθ

(
ωT

0

)

PW

(
ωT

0

)
)

=

〈
ln

(
Pθ

(
ωT

0

)

PW

(
ωT

0

)
)〉

Pθ

, (22)

taking value 0 only when the trajectories distributions Pθ and PW are identical, a measure of similarity
discussed in [30] in the context of continuous time. If these trajectory distributions agreed, we would refer
to the parameterized dynamics Pθ(xt|xt−1, t) as the optimal dynamics. We take the expectation over the
parameterized dynamics Pθ, since this is precisely what we have access to, and can thus run simulations to
sample it. This differs from the approach recently considered for rare continuous-time diffusive trajectories
in e.g. [55], where the KL divergence is treated with the distributions reversed: the expectation is taken with
respect to the reweighted distribution PW, with expectation then calculated through importance sampling.
In principle, if PW is contained within the set of parameterized dynamics Pθ , these KL divergences have the
same minimum. However, when this is not the case the two perspectives will differ in their optimal
dynamics.

We will conduct our search through the space of dynamics by performing gradient descent optimization
on the KL divergence (22). We thus require that the parameterized dynamics Pθ(xt|xt−1, t) be differentiable
with respect to the weight θ. We note that, to truly zero out the KL divergence, in general we would also
have to parametrise and optimise the initial state distribution, as this will differ from its original form in the
reweighted trajectory ensemble. For simplicity, we will forgo including this initial distribution
parametrisation and the resulting modifications to the algorithms, but their inclusion is a simple extension
to what we will develop.

In the following sections, we will pedagogically demonstrate how to minimize this function efficiently
through a line-search gradient descent based approach, following estimates of the gradient of equation (22).
Similar to the policy gradient algorithms of RL, and thus referred to as dynamical gradient algorithms in the
physical context, the resulting methods are very similar in structure to those found in maximum-entropy
RL [59–61], and closely related to current research in regularized MDPs [57, 58]. Following an analogous
development to that of [39], we begin with a simple Monte Carlo sampling based algorithm closely related
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to [56]. We then introduce an additional function approximation for the ‘value’ of each state, used to guide
the dynamical gradient first as a comparative baseline, and then as a bootstrapping estimate, leading to a
so-called ‘actor-critic (AC)’ algorithm. In particular, our use of a value function to guide the optimization
of the dynamics is a first in approaches focussed on trajectory sampling: this provides a key example of the
techniques that can be used due to our connection between trajectory sampling problems and RL. We will
not provide proofs of convergence or quality of converged results of the proposed algorithms in this work,
however, we will apply several algorithms to a toy model, and reference theoretical results for similar RL
algorithms throughout the section.

3.1. Modifying transitions according to futures experienced: Monte Carlo returns
First, for clarity, we rewrite the normalization factor, or ‘partition function’, as

Z =
〈

W
(
ωT

0

)〉
P
. (23)

Substituting the definitions of the parameterized trajectory probability (21) and reweighted trajectory
probability (8) into the KL divergence (22), we have

DKL(Pθ|PW ) =

〈
T∑

t=1

ln

(
Pθ(xt |xt−1, t)

P(xt |xt−1)

)
−

T∑

t=1

ln W(xt , xt−1, t) + ln Z

〉

Pθ

= −
〈
R(ωT

0 )
〉

Pθ
+ ln Z, (24)

where we have defined the return R of a trajectory as

R(ωT
0 ) =

T∑

t=1

ln W(xt , xt−1, t) −
T∑

t=1

ln

(
Pθ(xt |xt−1, t)

P(xt |xt−1)

)
, (25)

encoding the contribution of each trajectory to the divergence, weighted by the probability. Clearly,
minimization of the KL divergence is analogous to maximization of the expected value of this return,
similar to the usual situation considered in RL. However, this differs from standard RL in the explicit
dependence on the parameterized dynamics. As a result, in contrast to standard RL where the return
associated to each trajectory constant, here the return for a given trajectory changes with the parameterized
dynamics. This is the situation more commonly considered in maximum-entropy RL [59–61], where the
attempt to maximize a return corresponding purely to the contribution of the weights is regularized by
simultaneously trying to maximize the entropy of the trajectory ensemble. For us, maximizing the RL
reward is replaced by maximising the log of the weighting, while maximising entropy is replaced by
minimizing the KL divergence between the original (non-reweighted) trajectory ensemble and the ensemble
of the parameterized dynamics, an objective closely connected to current research in regularized MDPs
[57, 58].

For further clarity, we split the return into parts associated to each time step: specifically, we define an
overall reward associated to each transition and time as

r(xt , xt−1, t) = ln W(xt , xt−1, t) − ln

(
Pθ(xt |xt−1, t)

P(xt|xt−1)

)
, (26)

containing both the weighting and KL divergence contributions, such that the return on subsets of the
trajectory is given by

R(ωt′
t−1) =

t′∑

t′′=t

r(xt′′ , xt′′−1, t′′). (27)

To minimize we will follow gradient descent on this objective, calculating its derivative with respect to
the parameters θ: noting

∇θPθ(ωT
0 ) = ∇θ

T∏

t=1

Pθ(xt |xt−1)P(x0) = Pθ(ωT
0 )

T∑

t=1

∇θ ln Pθ(xt |xt−1, t), (28)

∇θR(ωT
0 ) = −

T∑

t=1

∇θ ln Pθ(xt |xt−1, t), (29)
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we have

∇θDKL(Pθ|PW ) = −
〈
[
R(ωT

0 ) − 1
] T∑

t=1

∇θ ln Pθ(xt |xt−1, t)

〉

Pθ

= −
〈

T∑

t=1

R(ωT
t−1)∇θ ln Pθ(xt |xt−1, t)

〉

Pθ

, (30)

where in the second line, we have removed the factor of 1 and the return prior to the differentiated time
step of each summand, since

∑

xt

Pθ(xt |xt−1, t)∇θ ln Pθ(xt |xt−1, t) = ∇θ

∑

xt

Pθ(xt |xt−1, t) = 0, (31)

due to the normalization of Pθ(xt|xt−1, t). Written in terms of the return, this takes the exact same form as
the negative of the usual policy gradient of RL [39], albeit with a regularized return.

As we will see below, equation (30) forms the basis of algorithms we will consider, as it can be
manipulated into a wide variety of useful forms. However, as stated this already provides an immediate
algorithmic approach.

The exact value of the gradient specified by the above equation will be impossible to calculate even for
simple problems. Instead, since it takes the form of an expectation over trajectories, we can use Monte Carlo
sampling of trajectories to construct an estimate, against which we will update the weights, before repeating
the process. Suppose we sample a set of N trajectories {(ωi)T

0 }N
i=1 using the current Pθ dynamics, each with

partial returns after the state xi
t of

Ri
t−1 = R

(
(ωi)

T
t−1

)
. (32)

We can construct an empirical estimate of the gradient as

∇θDKL(Pθ|PW ) ≈ − 1

N

N∑

i=1

[
T∑

t=1

Ri
t−1∇θ ln Pθ(xi

t |xi
t−1, t)

]
. (33)

We then update the weights by moving a short distance against the gradient, in order to reduce the KL
divergence according to this estimate, as

θn+1 = θn + αn
1

N

N∑

i=1

[
T∑

t=1

Ri
t−1∇θ ln Pθ(xi

t |xi
t−1, t)

]
, (34)

where αn is the learning rate for step n. The estimate (33) can be calculated iteratively as each trajectory is
created, updating the current average each new trajectory until a desired number has been run to reduce
memory requirements. Alternatively, we may even choose to sample a single trajectory between each update

θn+1 = θn + αn

T∑

t=1

Rt−1∇θ ln Pθ(xt |xt−1, t). (35)

To gain an intuition for these updates, consider each term in the sum of equation (35) individually,
along the sample excursion trajectory of four steps sketched out in figure 1(a). The state xt at each time
t < T = 4 has an associated return Rt, given by the future rewards, see figure 1(b). Each term in the update
(35) then attempts to move the weights to increase or decrease the probability of the occurring transition,
depending on the sign of the return: the size of the change is proportional to the magnitude of the resulting
return. A more rewarding future leads to a larger increase in transition probability, and vice versa. As many
of these updates are committed, competing transitions (those for the same origin state) are then repeatedly
enhanced or suppressed according to the resulting returns, leading to an eventual equilibration to a
particular balance between the probabilities, depending on the returns that follow them.

Approaching this balance requires consideration of the learning rate αn: under ideal conditions on the
function approximation and sampling, traditional RL convergence is expected provided the learning rate
satisfies the requirements of the stochastic approximation

∞∑

n=0

αn = ∞,
∞∑

n=0

|αn|2 = c, (36)

where c is any finite number [65, 66]. However, convergence is only expected in the limit of infinite updates,
and decaying learning rates can often slow learning. In practice, learning rate which decrease (or even
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Figure 1. Sketch of the information used in MCR updates. (a) A simple sketch of an excursion, with space along the x axis and
time t along the y axis. (b) The information used to update the transitions originating from times t = 0, . . . , 3: the returns Rt

following each state xt.

Algorithm 1. KL regularized MCR.

1: Inputs dynamical approximation Pθ(xt|xt−1, t)
2: Parameters learning rate αn; total updates N
3: Initialize choose initial weights θ, define iteration variables n and t, total error δP

4: n ← 0
5: Repeat
6: Generate a trajectory ωT

0 according to the dynamics given by Pθ(xt|xt−1, t), with returns Rt after each state xt.
7: t ← 0
8: δP ← 0
9: Repeat
10: δP ← δP + Rt−1∇θ ln Pθ(xt|xt−1, t)
11: t ← t + 1
12: Until t = T + 1
13: θ ← θ + αnδP

14: n ← n + 1
15: Until n = N

increase) for a short period at the start of learning, before becoming constant, may be beneficial [39, 67].
For this algorithm, and standard RL algorithms without regularization, a constant learning rate will result
in the weights fluctuating around a local minimum; for the KL divergence regularized setting we consider, it
in fact turns out that the components used in the algorithms introduced in later sections cause a decay of
the gradient to zero, even for individual samples, as optimality is approached [68, 69].

More generically, both update rules described above fall under the umbrella of stochastic gradient
descent, where noisy estimates of the gradient are used to update the parameters stochastically [66]. The
first of these updates is based on batches of trajectories, sometimes called mini-batches in the ML
literatures, while the second is based on single samples.

The algorithm presented in this section is the simplest form of dynamical gradient algorithm, a
regularized version of the classical REINFORCE algorithm [40, 41] based on return sampling, and as such
we refer to this simply as KL regularized Monte Carlo returns (MCR). For clarity, this algorithm is outlined
below in algorithm 1.

3.2. Comparing returns with past experiences: baselines and value functions
A downside of this simple approach is the large potential variance in the return following a transition in
each trajectory, which may provide an extremely noisy gradient from which to learn, resulting in slow
convergence. Fortunately, equation (30) possesses an invariance which can be used to tame this variability.
Recalling how we used (31) to remove the factor of one and the history of the return from (30), we may use
this property to instead introduce any desired function of the past trajectory. We introduce the baseline
b(xt, t) as simply a function of the state and time, transforming (30) into

∇θDKL(Pθ|PW ) = −
〈

T∑

t=1

(
R(ωT

t , xt−1) − b(xt−1, t − 1)
)
∇θ ln Pθ(xt |xt−1, t)

〉

Pθ

, (37)

where the return following each transition is then contrasted with a baseline.
The choice of baseline can have a drastic impact on the variance of the gradient estimate, especially if we

consider a small number of trajectories between updates. A reasonable choice of baseline to minimize
variance would simply be the average value of the return following a given state at a given time, the
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conditional expectation
VPθ

(x, t) =
〈

R(ωT
t )
〉

Pθ ,Xt=x
, (38)

as this would minimize the variance of the baseline error

δb(ωT
t−1, t − 1) = R(ωT

t−1) − b(xt−1, t − 1), (39)

and therefore might be expected to minimize the variance of the overall gradient estimate. These state
values encode the combined average weighting for the ensemble of sub-trajectories beginning from x at
time t, and KL divergence to the original dynamics of this sub-trajectory ensemble: the higher this value, the
higher the average weighting and/or lower the KL divergence of this ensemble relative to that of the original
dynamics.

The resulting gradient is given by

∇θDKL(Pθ|PW ) = −
〈

T∑

t=1

(
R(ωT

t−1) − VPθ
(xt−1, t − 1)

)
∇θ ln Pθ(xt |xt−1, t)

〉

Pθ

. (40)

Unfortunately, this is an ideal which cannot be achieved: calculating the value for each state visited exactly is
impossible in most problems of interest. Instead, we introduce a second function approximation for the
value function, Vψ(xt, t), with weights ψ ∈ RdV . The exact error in each of the values provided by this
function approximation is then given by

L(ψ|xt , t) =
1

2

(
Vψ(xt , t) − VPθ

(xt , t)
)2

. (41)

Even supposing we had an accurate result for the true value, we could not optimize these
state-dependent loss functions one by one, as the resulting approximation would simply be overfitted on the
last state optimized: instead, we must consider the states in unison. However, we need not consider them
with uniform weighting, and indeed each state will not be equally relevant to a given sampling dynamics
and the rare event problem it is being optimized for. The obvious choice for our aim is given by our current
sampling dynamics: not only are we likely already using this to approximate the dynamical gradient, it will
also prioritize the states which are most likely to occur in the current dynamics, and thus the most
important to get accurate values for. We thus sample states according to this dynamics, defining the loss
function averaged over trajectories as

LV (ψ) =

〈
1

2

T−1∑

t=0

(
Vψ(xt , t) − VPθ

(xt , t)
)2

〉

Pθ

, (42)

where the last time is neglected as the value is zero by definition.
Calculating the gradient of this loss, we have

∇ψLV (ψ) =

〈
T−1∑

t=0

(
Vψ(xt , t) − VPθ

(xt , t)
)
∇ψVψ(xt , t)

〉

Pθ

, (43)

giving a gradient in terms of the exact value similar to equation (40): to get a target that can be evaluated we
simply substitute the definition of the value (38) and use (5) to find

∇ψLV (ψ) = −
〈

T−1∑

t=0

(
R(ωT

t ) − Vψ(xt , t)
)
∇ψVψ(xt , t)

〉

Pθ

. (44)

As with the dynamical gradient, to estimate the value loss functions gradient (44) we can simply sample
one trajectory with states xt followed by returns Rt leading to

∇ψLV (ψ) ≈ −
T∑

t=1

(
Rt−1 − Vψ(xt−1, t − 1)

)
∇ψVψ(xt−1, t − 1). (45)

Choosing a baseline b(xt, t) = Vψ(xt, t) then leads to an estimate for the policy gradient equation (40) for a
given approximation of the value function, given by

∇θDKL(Pθ|PW ) ≈ −
T∑

t=1

(
Rt−1 − Vψ(xt−1, t − 1)

)
∇θ ln Pθ(xt |xt−1, t). (46)

10
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Figure 2. Sketch of the information used in updates based on MCR with value baseline. (a) A simple sketch of an excursion,
with space along the x axis and time t along the y axis. (b) The information used to update the transitions originating from times
t = 0, . . . , 3: the returns Rt following each state xt, contrasted with the value of that state Vψ(xt).

As in the previous section, we can readily construct empirical averages over multiple trajectories instead of
considering single trajectories.

We can get some intuition for how the two approximations affect each other by considering how they
affect each others loss functions and updates. By construction, the dynamical gradient is on average
independent of the baseline, and thus the optimal weights θ independent of the current values. However,
the better the value approximates the true values for the current policy, the smaller the variance in the
updates and the faster the dynamics will converge. We would thus desire the values to remain as accurate as
possible to the current dynamics. In contrast, the value loss function depends strongly on the dynamics:
through the probability of each future trajectory, the priority given to each state, and the reward function
itself. The optimal value weights ψ will thus depend strongly on the dynamics, however, for small changes
in the policy we would expect a small change in the optimal value weights. If the value function is
reasonably accurate, a small change in the dynamics should thus only require a small number of updates to
ψ for it to again become accurate.

Accounting for these observations, there is some choice in the usage of updates given by equations (45)
and (46). We could simply alternate updating the value function and the dynamics, leaving one fixed while
the other changes. This could range from letting the value function converge satisfactorily between updates
to the dynamics, to simply alternating updates to the values and dynamics every trajectory. Alternatively, we
could use the same trajectory samples to simultaneously update both the dynamics and the values. For a
broader discussion of interleaving updates to the dynamics and values we refer to [39], where it is discussed
in particular under the terms asynchronous and generalized policy iteration.

The chosen scheme for updating both the values and dynamics in this double-learning scenario can have
a significant affect on aspects of algorithm performance such as data efficiency, stability, convergence speed
and bias in the final result. For simplicity, we demonstrate using baselines with synchronous updates using a
single trajectory for each update. We refer to this as KL regularized Monte Carlo reinforce with a value
baseline, due to its similarity to the Monte Carlo REINFORCE algorithm with a value function of RL [39].
Intuitively, for each trajectory we contrast the value of each state with the return following it, cf figure 2(b),
aiming to increase both the probability of a transition and the value of a state if the return following it is
greater than the value, and decrease them if the return is less. We then conduct updates of the two weights θ
and ψ after every trajectory with learning rates αθ

n and αψ
n satisfying equation (36), in the directions

suggested by the average of these return-value comparisons. In practice, the efficiency of this algorithm is
enhanced by noting that the factor multiplying the gradients in both updates takes the same form

δMC(ωT
t , t) = R(ωT

t ) − Vψ(xt , t), (47)

which we refer to as the Monte Carlo value error. It is outlined below in algorithm 2.
Value baselines in the standard REINFORCE algorithm were considered in the original works on the

algorithm [40, 41], but more recent work has proposed that alternative baselines may provide a lower
variance in the Monte Carlo setting [70, 71], suggesting possible modifications to the above approach to
further improve convergence rates. Despite this, for the algorithms we consider next, it appears that the
value baseline may indeed be the best choice [72].

3.3. Replacing returns with past experiences: temporal differences and actor-critic methods
The Monte Carlo error (47), while better than the return alone, still possesses a relatively large variance if
the remainder of the trajectory is long, the dynamics highly entropic and the weightings highly variable.
Further reduction of this variance would require an alternative to the return for contrast with the states
values. To this end, suppose we used many trajectory samples to construct an estimate of the gradient:
transitions occurring multiple times will appear with their gradients multiplied by the average return
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Algorithm 2. KL regularized Monte Carlo reinforce with value baseline.

1: Inputs dynamical approximation Pθ(xt|xt−1, t), value approximation Vψ(xt, t)
2: Parameters learning rates αθ

n , αψ
n ; total updates N

3: Initialize choose initial weights θ and ψ, define iteration variables n and t, total errors δP, δV, individual error δ
4: n ← 0
5: Repeat
6: Generate a trajectory ωT

0 according to the dynamics given by Pθ(xt|xt−1, t), with returns Rt after each state xt.
7: t ← 0
8: δP ← 0
9: δV ← 0
10: Repeat
11: δ ← Rt − Vψ(xt, t)
12: δP ← δP + δ∇θ ln Pθ(xt+1|xt, t + 1)
13: δV ← δV + δ∇ψVψ(xt, t)
14: t ← t + 1
15: Until t = T
16: θ ← θ + αθ

nδP

17: ψ ← ψ + αψ
n δV

18: n ← n + 1
19: Until n = N

Figure 3. Comparison of updates used in MCR updates and AC updates. Whereas MCR (a) updates a transition x → x ′

according to the various possible returns following that transition, the one-step AC (b) update uses knowledge of only the reward
during transition and estimates of the values of the states on either side of the transition.

following that transition, cf figure 3(a). Since the first reward is fixed by the transition, this average return
would simply be the reward for that transition and the value of the state after transition. This suggests that
rather than contrasting the value of the state prior to the transition with the return of a whole trajectory, we
could simply contrast the prior state value with the reward associated to that transition, and the estimated
value of the resulting state built from past sampled trajectories. If the estimated values are accurate, we
would reasonably expect that on average this will result in the same gradients as using returns, cf
figure 3(b).

Unsurprisingly, this emerges naturally from the construction considered. Beginning from equation (40)
we immediately find

∇θDKL(Pθ|PW ) = −
〈

T∑

t=1

(
R(ωT

t ) + r(xt , xt−1, t) − VPθ
(xt−1, t − 1)

)
∇θ ln Pθ(xt |xt−1, t)

〉

Pθ

= −
〈

T∑

t=1

(
VPθ

(xt , t) + r(xt , xt−1, t) − VPθ
(xt−1, t − 1)

)
∇θ ln Pθ(xt |xt−1, t)

〉

Pθ

, (48)

where we have used (5) in the second line to replace the future return with the exact value. Since we do not
have access to the exact values of each state, we must approximate this expression using a value
approximation. Thus, defining a temporal difference (TD) error

δTD(xt , xt−1, t) = Vψ(xt , t) + r(xt , xt−1, t) − Vψ(xt−1, t − 1), (49)

so-called since it provides the difference between the value of the current state and the reward plus the value
of the state at the next time, we have simply

∇θDKL(Pθ|PW ) ≈ −
〈

T∑

t=1

δTD(xt , xt−1, t)∇θ ln Pθ(xt |xt−1, t)

〉

Pθ

, (50)

which will be accurate whenever the value function is a good estimate for states which are commonly visited
by the current dynamics Pθ. In RL, such an approach is referred to as AC, where the dynamics Pθ governing
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transitions would be the actor, while the value function Vψ judges the value of each state, playing the role of
critic by informing the actor of whether a transition was good or bad.

For the critic, we could continue to use the Monte Carlo updates of the previous section, using the value
function to construct approximate TD errors to update the dynamics. However, the TD errors can also be
used to update the critic itself, a process of updating estimates using estimates referred to as bootstrapping.
Beginning from equation (44), following similar manipulation as that used to reach equation (50), and
substituting our approximation for the future value, we quickly arrive at

∇ψLV (ψ) ≈ −
〈

T−1∑

t=0

δTD(xt+1, xt , t)∇ψVψ(xt , t)

〉

Pθ

, (51)

analogous to the basic one-step TD value updates of RL [73]. Clearly, for this to be an accurate
approximation the value would already have to be accurate, thus suggesting this estimate would be poor
when it matters: for weights ψ which produce inaccurate values. This brings into question how this gradient
estimate could ever converge for an initially inaccurate set of weights. Despite this, it often produces very
successful results when used for updating the value weights in RL problems.

To understand why, we need to adopt a different perspective. First we note that the exact value function
satisfies a natural inductive definition

VPθ
(xt , t) =

〈
VPθ

(xt+1, t + 1) + r(xt+1, xt , t)
〉

Pθ ,Xt=xt
, (52)

commonly referred to as a Bellman equation, encoding the relationship between the value of state and other
states visited in their immediate future. As an alternative to our original choice of loss function (42), using
the returns along a trajectory, we could instead directly try to minimize the error in this equation for the
approximation to the values. That is, we could minimize the mean-squared Bellman error along a trajectory

LBM
V (ψ) =

〈
1

2

T−1∑

t=0

(〈
VPθ

(xt+1, t + 1) + r(xt+1, xt , t)
〉

Pθ ,Xt=xt
− Vψ(xt , t)

)2
〉

Pθ

. (53)

Taking the derivative of this as is—differentiating both the target expectation and the state
sampled—results in a complex gradient to calculate in general: this approach is addressed by so-called
gradient-TD algorithms in the RL literature [74–76], which have recently been extended to AC methods
[77]. While the unknown stochastic environment presents an additional issue requiring a double sampling
of the transitions in that context, in our case the resulting gradient could alternatively be calculated exactly
for each state visited, albeit at a substantial computational cost.

To jump from this alternative loss to the gradient of equation (51) requires taking a slightly different
view of the Bellman loss. Suppose we instead minimize the distance between the value of each state and a
target value predicted by the expectation on the right of equation (52) for the current weights. That is, we
keep the weights in the target expectation fixed and only differentiate the value of the state sampled from a
trajectory. Differentiating equation (53) with this fixed target and manipulating the expectations then leads
directly to equation (51), but with a different interpretation: rather than approximating the gradient of the
return based loss function, we are directly targeting an alternative prediction of the value based on the
current estimated value of other states. Such an approach is sometimes referred to as a ‘semi-gradient’
method in the RL literature [39], and has been seen to produce good results provided that the sampling of
states is close to that of the dynamics the values are being estimated for, as discussed in more detail later.

To turn this discussion into an algorithm, as before we sample some number of trajectories and then
construct estimates of equations (50) and (51): for a single trajectory ωT

0 with TDs δTD(xt, xt−1, t) associated
to transitions from xt−1 to xt at time t, we have

∇ψLV (ψ) ≈ −
T∑

t=1

δTD(xt , xt−1, t)∇ψVψ(xt−1, t − 1), (54)

and

∇θDKL(Pθ|PW ) ≈ −
T∑

t=1

δTD(xt , xt−1, t)∇θ ln Pθ(xt |xt−1, t). (55)

Intuitively, these updates follow exactly the discussion at the beginning of this section: along each trajectory,
the value of each state is contrasted with the value of the state following it plus the reward received in
between, cf figure 4(b). If the value of the resulting state combined with the reward is greater than the prior
state, a contribution is added to the update which aims to increase the probability of this transition, along
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Figure 4. Sketch of the information used in updates based on one-step AC. (a) A simple sketch of an excursion, with space along
the x axis and time t along the y axis. (b) The information used to update the transitions originating from times t = 0, . . . , 3: the
rewards rt following each state xt, combined with the value Vψ(xt+1) of the following state xt+1, then contrasted with the value of
the prior state Vψ(xt).

Algorithm 3. KL regularized AC.

1: Inputs dynamical approximation Pθ(xt, xt−1, t), value approximation Vψ(xt, t)
2: Parameters learning rates αθ

n , αψ
n ; total updates N

3: Initialize choose initial weights θ and ψ, define iteration variables n and t, total errors δP, δV, individual error δ
4: n ← 0
5: Repeat
6: Generate a trajectory ωT

0 according to the dynamics given by Pθ(xt, xt−1, t), with rewards r(xt, xt−1, t) after each state xt−1.
7: t ← 0
8: δP ← 0
9: δV ← 0
10: repeat
11: δ ← Vψ(xt+1, t + 1) + r(xt+1, xt, t + 1) − Vψ(xt, t)
12: δP ← δP + δ∇θ ln Pθ(xt+1|xt, t + 1)
13: δV ← δV + δ∇ψVψ(xt, t)
14: t ← t + 1
15: Until t = T
16: θ ← θ + αθ

nδP

17: ψ ← ψ + αψ
n δV

18: n ← n + 1
19: Untiln = N

with the value of the prior state; the converse statements hold if the comparison is less. For each trajectory,
these contributions are then averaged in an attempt to respect all the corresponding directions.

Actor critic algorithms were among some of the earliest considered for RL, recently returning to favour
due to their ease of application to continuous state spaces, improved theoretical convergence properties over
purely value focussed approaches, and speed compared with purely return based policy gradient methods.
The algorithm 3 presented here is closely related to the recently proposed soft AC algorithm of RL [60],
with the key difference being the use of an initial dynamics which is targeted, rather than simply
maximising entropy.

In AC algorithms a poor value approximation will clearly lead to poor or even negative changes to the
dynamics. One way to address this is by choosing learning rates in such algorithms tuned such that the
value function learns faster than the dynamics, in the hope that it always provides a good approximation to
the true value function for the current dynamics, and thus a good way of estimating the gradient. So that
the value approximation is relatively accurate when updates to the dynamics begin, it may also be good to
have a period where only the values are updated for a fixed initial dynamics, such as the original one. Even
under these ideal conditions, AC algorithms do not converge to the weights corresponding to local minima
of the original loss function (24), but have been shown to end up in a neighbourhood of such minima with
high probability for linear function approximations [72].

This unavoidable inaccuracy is a result of the natural bias away from the true gradient introduced by
using approximate TD errors. In many RL algorithms, this bias, causing eventual inaccuracy in the final
result, is seen as the cost of the substantial reduction in the variance of gradient estimates they produce,
allowing for significant improvements in convergence rates.

3.4. Finite horizon example: random walk excursions
We finish this section with a simple example of these techniques in practice, studying the excursion problem
outlined in section 2.2.1. While the aim is to generate trajectories for the conditioned ensemble with
weights W(xT, xT−1, T) = δ(xT) and W(xt, xt−1, t) = H(xt) for 0 < t < T, due to the zero weight given to
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some trajectories, we must use a softened condition given by equations (10) and (11) as a target ensemble
to optimize sampling for. This is an exactly solvable problem in the conditioned case, as outlined in
appendix A, using a gauge transformation based approach which can in principle also be used calculate the
exact optimal dynamics numerically for this simple softened problem. For evaluating how well we are
targeting the softened ensemble, we use this same gauge transformation technique to numerically estimate
the maximum return as outlined in appendix B. We test all three algorithms currently discussed: MCR
shown in algorithm 1, Monte Carlo with a value baseline (MCVB) as in algorithm 2, and AC as outlined in
algorithm 3.

For simplicity we start by testing them in a simple ‘tabular’ setting: that is, we associate a single weight
θ(x, t) to each states transitions, and another single weight ψ(x, t) to each states value for the algorithms
which use them. The transition up is then given by this weight in terms of a sigmoid

Pθ(x + 1|x, t) = σ(θ(x, t)) =
eθ(x,t)

eθ(x,t) + 1
, (56)

with the probability of transition down then fixed by normalization. The values are simply given by
Vψ(x, t) = ψ(x, t). To perform gradient descent, we need the gradients of these with respect to the weights,
simply given by

∂ ln Pθ(x ± 1|x, t)

∂θ(x′, t′)
= ±δxx′δtt′ Pθ(x ∓ 1|x, t), (57)

and
∂Vψ(x ± 1|x, t)

∂ψ(x′, t′)
= δxx′δtt′ . (58)

Note that since each state has an independent weight, as signified by the Kronecker deltas, we can simply
update each of these weights independently rather than storing the whole vector of updates.

For evaluation of the dynamics during training, we calculate running averages of three quantities: the
expected return, 〈R〉Pθ

; the success rate, i.e. the probability of generating an excursion

〈S〉 =

〈
δ(xT)

T−1∏

t=1

H(xt)

〉

Pθ

, (59)

which is simply the expected weighting of the conditioned ensemble; and the entropy of the trajectory
ensemble

〈H〉 = −
〈

ln Pθ(ωT
0 )
〉

Pθ
, (60)

which in this case is a direct measure of the KL divergence between the optimized dynamics and the original
dynamics, since 〈H〉 = T ln 2 − DKL(Pθ|P). These running averages are calculated using a learning rate and
the quantities sampled from each episode: i.e. given a sample Oi of one of the three observables from
episode i, we update our average as 〈O〉i = 〈O〉i−1 + αO(Oi − 〈O〉i−1). Observable learning rates are chosen
as αR = 0.1, αS = 0.003 and αH = 0.01 for all three algorithms.

Results for these three quantities calculated during the learning process for excursions of length T = 100
are shown in figures 5(a)–(c), with AC performing best on all three metrics. In particular, we note that the
AC is generally more stable, as it is less likely to get stuck in areas where the gradient of the dynamics is
small, i.e. for large values of the potential θ(x, t). The MC methods are vulnerable to this since they use full
returns: initially, these returns may be extremely negative, particularly for earlier states if a trajectory spends
a significant amount of time below 0, causing a sudden jump to a very large value of the potential. This can
cause the dynamics to become almost deterministic for a long time (cf the beginning of the samples in
figure 5(d)); alternatively, the dynamics may get stuck taking incorrect actions such as going below zero for
a long time, e.g. causing the initial low success rate for the MCVB training run in figure 5(b).

The slow propagation of information about the reward structure under AC training, one transition back
at a time, suppresses these large negative returns early on, causing a greater emphasis on maintaining a high
entropy (low KL divergence to the initial dynamics). On the other hand, in this case the MC methods can
achieve a higher return earlier by emphasising successfully generating excursions, but struggle to later
optimize the entropy, due to the high variance in futures after each transition.

Plots in figures 5(g)–(h) show the upward transition probability, state values and occupation
probabilities resulting from the AC training run. The upward probabilities have the expected structure:
going upwards from zero, they start at unity probability, reducing to 50–50 along the most commonly
visited set of states, and further reducing to 0 as the edge of the backwards lightcone from x = 0, t = 0 is
reached. After t ∼ 50, transitions upwards are suppressed earlier than the edge of the backwards lightcone,
due to the rapidly reducing trajectory entropy that would result from taking further steps upwards. The
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Figure 5. Tabular excursions. In these plots: AC is indicated by dark purple with and trained with αθ = 0.15 and αψ = 0.3;
MCR by a lighter blue and trained with αθ = 0.05; and MCVB by a light green and trained with αθ = 0.05 and αψ = 0.3. The
trajectory length is T = 100 and the parameters of the softened constraint (11) are s = 7 and a = 5/7. (a) Running averages of
the returns received per episode during the learning process. The numbers indicate the initial return (top), final returns for MCR,
MCVB and AC (2nd to 4th, coloured) and optimal (bottom), with optimal shown by the dashed line. (b) Running averages of
the probability of successfully generating an excursion. (c) Running averages of the entropy of the trajectory ensemble, with
maximum T ln 2. (d)–(f) Sample trajectories generated using the final dynamics achieved for MCR, MCVB and AC (top to
bottom). (g) The probability of going up at each position and time (x, t) for the AC result, indicated by Pθ(1|x, t) = Pθ(x + 1|x, t)
for compactness. (h) The value of each state learnt while training the dynamics using AC. (i) The probability of being in each
state at each time for the final dynamics trained using AC, with normalization along each time-slice. Plots (g)–(i) have been
interpolated over the sites which are not visited (even position, odd time, vice versa) for visual clarity.

occupation probability, normalized along each time-slice, rises away from these boundaries, peaking at
around x ∼

√
100.

Overall, for this example we can see that the resulting increase in the speed of learning more than
justifies the theoretical bias induced in the final results by the various steps involved in developing these
algorithms, producing results of sufficient accuracy much more quickly.

3.5. Connection to regularized and maximum-entropy reinforcement learning
We now briefly discuss the relationship between the approach presented here and that of maximum-entropy
RL [57–61]. In particular, first consider the ‘deterministic’ RL case, translating from our Markov chains to
an MDP by associating each transition to an action, identifying the dynamics with the RL agents policy.
Training with maximum-entropy RL is identical to training with our KL regularized algorithms, provided
we choose the original dynamics to be that of the maximum-entropy trajectory ensemble, in which every
trajectory has the same probability regardless of length, and the weighting is that given by biasing with
respect to the reward function.

In the ‘stochastic’ case, the connection is less clear. Viewing our Markov chain as having a state space
which consists of state-action pairs, and decomposing the dynamics into policy and environment
components, it may be suspected that maximum-entropy RL can be recovered by choosing the original
dynamics to be the one generated by a policy which produces the maximum-entropy trajectory ensemble,
up to its ability to control the transitions around the environment. However, this turns out not to be the
case: such a policy would necessarily take into account the entropy of the environment resulting from each
action, something which standard maximum-entropy RL does not take into account, as this would require
incorporating knowledge of the environment probabilities. Maximum-entropy RL in this case is recovered
by choosing the original trajectory probabilities to consist of only the contributions of the environment, to
each trajectory, normalized as required: it is not immediately clear that this ensemble itself decomposes into
a Markovian structure. This distinction may suggest a novel model-based maximum-entropy RL algorithm,
in which a known or learnt model is used to further try to maximize the entropy of the trajectory ensemble
over considering the policy entropy alone.

4. A universe of algorithms: reviewing variations found in reinforcement learning

The optimization of the KL divergence can be further manipulated in a large number of ways, each
corresponding to different algorithms for approximating the gradient. While we will not give an exhaustive
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coverage of the possibilities presented in the RL literature, in this section we will review some key variations,
translating them into the notation used in this paper. In particular, in section 4.3 we demonstrate how to
adapt the algorithms to train neural networks, a powerful form of function approximation. It is hoped this
will give the reader an idea of the range of techniques made available by connecting the problem of efficient
trajectory sampling with RL. However, we have made later sections independent of this one: those interested
in how the approach can be specialized to the long-time limit can skip this section on first reading and
instead go to section 5.

4.1. Mixing estimates: expected errors, n-step temporal differences and weighted averages
Here we focus on two ways of modifying the AC approach, capable of reducing variance without
introducing significant bias: making use of the dynamics to calculate exact expectations of TD errors and
gradients associated to transitions for a particular state; and using the Bellman equation to look multiple
steps ahead, producing a range of equally valid estimates which can then be averaged.

Firstly, rather than manipulating the value loss into the form shown in equation (51), we could instead
use the current dynamics to calculate the expected target for each state visited along a trajectory, as
suggested by equation (53), resulting in

∇ψLV (ψ) ≈ −
〈

T−1∑

t=0

δETD(xt , t)∇ψVψ(xt , t)

〉

Pθ

, (61)

written in terms of the expected value of the TD error

δETD(xt , t) = 〈δTD(xt+1, xt , t)〉Pθ ,Xt=xt
, (62)

producing updates similar to the expected SARSA algorithm [78].
Unfortunately this error cannot be used for the dynamical gradient, due to the dependence of the

transition on the resulting state: however, we can manipulate equation (50) to arrive at

∇θDKL(Pθ|PW ) ≈ −
〈

T∑

t=1

〈δTD(xt , xt−1, t)∇θ ln Pθ(xt |xt−1, t)〉Pθ ,Xt−1=xt−1

〉

Pθ

, (63)

where for states sampled along each trajectory we calculate the expected product of the TD error and the
gradient of the corresponding transition. This possibility has recently been studied indepth in the RL
literature, named variously expected policy gradients and mean actor critic [79–80].

In contrast to updates based on equations (51) and (50), updates using (61) and/or (63) are reasonably
expected to have much lower variance than their sampled-transition counterparts, thus resulting in
improved convergence without the usual accompanying increase in bias of the final result. The pay-off is a
much higher computational demand, in part due to the need to calculate the expectation and the gradients
of each transition. Another technicality is the necessity of both updates using different quantities, whereas
the updates in algorithm 3 are both built around the same TD errors. It is worth noting that recent work in
RL has suggested the possibility of using a mixture of both updates, with the relative weighting varying over
time [81]. This may be beneficial when the most likely transitions are to states for which the value is much
more accurate, reducing the propagation of errors.

Secondly, we note that the inductive Bellman equation (52) for the exact value can be substituted into
itself multiple times, arriving at an n-step equation

VPθ
(xt , t) =

〈
R
(
ωt+n

t

)
+ VPθ

(xt+n, t + n)
〉

Pθ ,Xt=xt
, (64)

which inspires an approximate n-step TD error similar to the single step errors before

δTDn(ωt+n
t , t) = Vψ(xt+n, t + n) + R

(
ωt+n

t

)
− Vψ(xt , t). (65)

Similar arguments and manipulation to that done for the one-step TD estimates of the gradients leads to
the pair of approximations

∇θDKL(Pθ|PW ) ≈ −
〈

T∑

t=1

δTDn(ωt+n
t−1 , t)∇θ ln Pθ(xt |xt−1, t − 1)

〉

Pθ

, (66)

and

∇ψLV (ψ) ≈ −
〈

T−1∑

t=

δTDn(ωt+n
t , t)∇ψVψ(xt , t)

〉

Pθ

, (67)
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with values and rewards which would occur at or after the end of the trajectory in the above equation set to
zero.

Empirical studies of algorithms based on these errors, simply replacing the TD error in 3 with (65),
suggest that each problem has an optimal value of n: larger values result in higher variance errors, while
allowing faster propagation of reward information. Values of n greater than the trajectory length recover the
Monte Carlo techniques of the previous sections. Their benefit in gradient estimation on their own merits is
limited, but as we will see next, they act as a building block in a more powerful estimation scheme.

While TD errors, particularly one-step errors, result in a particularly low variance for the gradient
estimates, they can result in slow propagation of information about the reward structure. A large reward
occurring on average n steps in the future of a particular transition, would require at least n trajectories for
information about that reward to propagate back to that transition, likely many more. In contrast, were we
using an n-step error, reward information would propagate more quickly, but result in increased variance of
the errors.

A good compromise can be achieved by observing that rather than considering any single one of the
possible n-step approximations to the gradient, we could just as justifiably consider a weighted average of
them [82, 83]. That is, for some distribution P(n) such that

T∑

n=1

P(n) = 1, (68)

we may consider for the dynamics

∇θDKL(Pθ|PW ) ≈ −
〈

T∑

t=0

δP
TD(ωT

t+1, xt , t)∇θ ln Pθ(xt |xt−1, t)

〉

Pθ

, (69)

with the weighted error

δP
TD(ωT

t , t) =

T−t∑

n=1

P(n)δTDn(ωt+n
t , t), (70)

and a similar equation for the value loss gradient. Special cases of the distribution defining this error
provide both the Monte Carlo and TD errors discussed previously, however, we can now perform updates
according to an equal weighting of the Monte Carlo and one-step errors in each trajectory, or any other
distribution we choose. Depending on this choice, we can achieve much faster propagation of information
about the reward structure. Further, we can tune the distribution to minimize both the effect of the
increased variance inherent in the considering more of the future of each sampled trajectory, and the effect
of inaccurate value functions replacing the future.

A common distribution chosen in an attempt to achieve a balance between the variance of longer n-step
errors and propagation of reward information is a normalized geometric series

P(n) =
λn−1(1 − λ)

1 − λT
, (71)

which allows for efficient numerical implementation to be achieved by deriving inductive equations relating
this return to its value at the next time step.

For completeness, we also note that the expected TD error can be extended in an n-step or λ-weighted
form, related to the so-called tree-backup algorithm in RL [84]. Studies of n-step or λ-weighted adaptations
of mean actor critic have yet to be conducted.

4.2. Online learning, importance sampling and eligibility traces
In this subsection we briefly discuss a trio of related RL techniques. First, many RL algorithms are designed
to be implemented in an online manner, that is, updates may be applied after every transition, not after the
end of each trajectory. This allows for experiences during the current trajectory to be used immediately,
potentially leading to faster convergence, and as we will see in the next section is essential for
infinite-horizon problems where trajectories do not end, rendering Monte Carlo methods impossible.

For a simple heuristic justification of this, note we may rewrite the gradients for the one-step TD
approximations as

∇θDKL(Pθ|PW) ≈ −T 〈δTD(xt , xt−1, t)∇θ ln Pθ(xt |xt−1, t)〉Pθ
, (72)

∇ψLV (ψ) ≈ −T 〈δTD(xt , xt−1, t)∇ψVψ(xt−1, t − 1)〉Pθ
, (73)
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where we are now viewing the expectation as sampling the triplet of a pair of consecutive states at a
particular time, with time is sampled uniformly according to 1/T. The pair of states are sampled at that
time according to the state distribution and transition probabilities of the current dynamics. In reality, we
produce correlated samples of this expectation by running trajectories, with the time of each sample being
iterated along by one from the previous time. Ignoring technicalities caused by the correlations of the
samples generated, from this perspective online algorithms simply apply stochastic gradient descent at the
level of individual transitions, rather than individual trajectories.

We do, however, note a subtlety in this viewpoint: by using online updates during the sampling of
trajectories, the transitions leading up to the current time are not sampled according to the current
dynamical weights, but instead sampled according to the weights at the moment that transition was
simulated. Thus, for the heuristic SGD perspective above to be completely valid, we would have to use an
importance sampling factor to take into account the true probability of having arrived in the present state
under the current dynamical weights. In practice, the small bias this induces is tolerated, as this importance
sampling factor would be difficult to implement.

Importance sampling arises more commonly in RL through off-policy methods, in which data is
collected using an alternative dynamics to the one being optimized. In this context we must take into
account the alternative sampling probabilities twice: reweighting the past to account for the different
likelihoods of arriving in a particular state at a particular time, and reweighting the errors themselves to
account for the chance of the sampled transition occurring. The later is easy to compensate for, while the
former is in principle a complex ratio of historical probabilities. For the values, ignoring the former is
equivalent to choosing an alternative prioritization for which states to optimize with respect to. When using
the semi-gradient methods described earlier, if this shifted priority differs too substantially from the current
dynamics, this can result in a lack of convergence in learning algorithms; if close enough, the dynamics will
converge, but be biased further away from the ideal weights [85, 86]. Since the effect in the prioritization of
online learning will be minor, this later point is suggestive of the effect this will have on a learning
algorithms results: while the weights would be expected to converge, perhaps faster than an offline
approach, the end result may be less accurate than the best possible from offline learning.

While true stochastic gradient methods can address the lack of convergence in off-policy sampling
[74–77], they do not address the incorrect priority of states. For the dynamics, ignoring the importance
sampling ratio for the history is even more detrimental, implying we are not estimating a gradient of the
loss function (22) which our main goal it is to minimize. We should therefore handle this lack of emphasis
on the correct states in order to reach optimal weights. Off-policy policy gradient techniques are an open
area of research in RL [87], however, progress has recently been made through techniques which estimate
what the correct emphasis to give states [77, 88]. Despite the bias this emphasis induces in principle,
removing it is difficult enough that many state-of-the-art algorithms forgo doing so, accepting any potential
reduction in the quality of the final result.

Online learning may be used instantaneously with one-step errors or temporarily delayed for n-step
errors. The weighted λ-errors can also be approximately implemented completely online through the use of
so-called eligibility traces, closely related to Malliavin weights [89]. These approximate the true λ-error
updates, due to the continual drift of the weights away from those associated to the particular transition the
λ-error is being calculated for [39, 73, 82, 84, 87]. For linear function approximations this drift can be
compensated efficiently, leading to very effective algorithms, however, for general non-linear functions the
approximate nature of more general eligibility trace methods can in fact prevent convergence and lead to
poor results [90]. It may thus be more desirable to implement λ-errors online by first truncating them to
n-steps, then applying delayed updates calculated iteratively for equivalent computational complexity as
eligibility trace approaches, at the expense of increased memory requirements [91–93]. However, as we
discuss next, even taking this approach may result in instability for common non-linear function
approximations.

4.3. Using neural networks: replay buffers and target networks
A powerful function approximation that has found substantial use across academia and industry in recent
years is that of neural networks. Unfortunately, while powerful, training them in the straightforward
manner described previously often proves to be extremely unstable. This is a consequence of the so-called
‘catastrophic interference’ that neural networks suffer from: their strong adaptability and broad
representational power is accompanied by a tendency to forget all but the most recent experiences used in
training them. In supervised and unsupervised problems this causes issues in sequentially learning one
problem after another, transferring a learned network to a new problem, or when the data distribution is
non-stationary in some real-world applications [94–97]. This can be traced back to correlations in the data
samples used in training, resulting in non-IID sampling: in sequential or transfer learning, samples are
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Figure 6. Neural-network excursions. Here the trajectory length is T = 100. (a) An estimate of the KL divergence using a
running average over returns from the batch of trajectories generated between each update. (b) Running average over each
batches probability of successfully generating an excursion. (c) Running average over each batches trajectory entropy. (d) The
probability of going up at each position and time (x, t) for the final result, indicated by Pθ(1|x, t) = Pθ(x + 1|x, t) for
compactness. (e) The probability of being in each state at each time for the final dynamics, with normalization along each
time-slice. Plots (d), (e) have been interpolated over the sites which are not visited (even position, odd time, vice versa) for visual
clarity. (f) Sample trajectories generated using the final dynamics achieved.

correlated by the simple fact that they belong to one problem or another. While this issue also exists in
transferring learned policies and value functions between control problems, in RL, catastrophic interference
can in fact occur during training on individual problems, as data is naturally correlated when sampled from
trajectories using a Markovian dynamics [98–100]. Often experienced most severely in online training, we
even observed this phenomenon during offline training if the samples from a trajectory are strongly
correlated, such as in the excursion problem of section 3.4. Further to this, RL is a highly non-stationary
problem, with both the state distribution changing whenever the policy is updated, and the targets used in
estimating the gradient changing whenever the value function is updated.

As a straightforward demonstration on the simple excursion problem discussed above, we chose to
generate batches of 64 trajectories between each update, constructing estimates of both the policy and value
gradients using the actor critic algorithm 3, averaging the TD errors for transitions present in the batch of
trajectories. We used neural networks with input tuples of (x, t), processed through two 64 neuron hidden
layers and one 32 neuron hidden layer for both the policy and value function, with the first two layers
followed by a ReLu activation function: for the value function the final layer was linear, while for the policy
this was followed by a sigmoid to return a probability between 0 and 1 for transitioning up. Learning rates
for both networks were chosen to be a constant αθ = αψ = 0.0004. For the weighting, cf (10) and (11), we
used sb = −50 reward for transitions to a negative position; for transitions to the final time state, the
exponent is modified to a linear dependence on the final position with s = 500, W(xT, T) = exp(−500|xT|).

Results of this optimisation are shown in figure 6. Analogous to figures 5 and 6(a)–(c) show running
averages of the KL divergence, success rate and trajectory ensemble entropy during the learning process.
While the KL divergence remains much larger than the equivalent for the tabular approach, this is largely
due to the magnitude of the weight exponents used: for example, note the initial KL divergence is on the
order of 104, in comparison to order 102 for the tabular results, despite beginning at the same maximum
entropy dynamics. Although a significant improvement over the original dynamics, the success rate and
entropy do not quite achieve the levels seen in the tabular approach, owing to the difficulty in overcoming
the instability mentioned above in order to optimize neural networks to a high degree of accuracy. The
entropy in particular is lower than desired: the final up-transition probabilities in figure 6(d) show a
significant region when the network has learnt to go up at higher values of the position, until the upper
edge of the backwards lightcone from the target is reached. This is bordered below by a region where
transitions down are almost certain, likely a result of the current dynamics closer to x = 0 being more
entropic, and thus rewarding, compared to the higher position dynamics which simply goes up to the
lightcone edge before going down. The resulting state distribution figure 6(e) (with sample trajectories
demonstrated in figure 6(f)) is far more focussed around x = 0 than we would hope for, as seen in
figure 5(i). These issues likely stem from the large exponents used for the weights, dominating the
contribution of the entropy in the KL divergence. This makes it difficult for the learning algorithms to ‘see’
the entropy past the potentially large negative weight contributions, making optimization of the entropy a
slow process which cannot be achieved before the training becomes unstable.
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This instability in training neural networks with RL algorithms starts to become pronounced at longer
training times, as seen by the noise present at the end of all three learning curves and the increasing value of
the KL divergence, even while averaging over a large number of trajectories. More generally, in order to
train a neural network, a variety of stabilizing techniques are often used, aimed at suppressing correlations
between training samples [60, 101–104]. Typically, two main adaptations are used.

For the non-stationarity of the values used in bootstrapping estimates of the gradients, a third ‘target’
network is introduced: this is either periodically updated to the current weights of the value network,
remaining fixed while the value network is updated in between [101–103], or slowly updated towards the
current weights after each update of the value network using an exponential average [60]. However, the
instability caused by these moving targets is largely a result of the semi-gradient approximation we made,
and can alternatively be addressed instead by using the gradient TD methods [74–77] mentioned in
section 3.3, which take into account the change in the target by considering its derivative.

Meanwhile, both the non-stationarity of the state-distribution and the correlation of trajectory-based
sampling are partially addressed by the introduction of experience replay [60, 101, 102, 104, 105]: for
example, a recent history of experienced transitions are stored in a replay buffer, from which we sample a
random set of transitions for use in estimating the gradient. This sampling from the replay buffer reduces
correlations between the samples used, as they are no longer sampled sequentially from a trajectory, and
slows the change in the state distribution, at the expense of biasing the updates away from their true values
for the current weights.

As an example, we now cover the use of experience replay in one-step AC algorithms in more detail. In
this case, the basic information we store in the buffer D are individual transitions (x, t, x ′). Rewards are then
recalculated using the current dynamics whenever the transition is resampled from the buffer. The bias
introduced by experience replay is a result of the differing probabilities of sampling state–state pairs
corresponding to each transition, between the distribution of the current dynamics and the distribution of
stored in the replay buffer. These probabilities can be decomposed into two parts: the probability of being in
the state pre-transition, and the probability of that transition occurring. We can address the later of these
easily. If we additionally store the probability μ of each transition at the time it was originally generated, we
can multiply its contribution to the gradient when resampled by an importance sampling factor
Pθ(x ′|x, t)/μ, removing the resulting bias. The former of these is much more complicated to address, and as
such the bias it causes is often accepted in pay off for the benefits of using a replay buffer. However, there
exist various techniques which can be used to emphasise states more appropriately in the replay buffer
[77, 88]. Given the correction for the transition bias, a gradient estimate is then constructed using a set of
N samples (xi, ti, xi, μi) randomly taken from the buffer, using

∇ψLV (ψ) ≈ −
N∑

i=1

Pθ(xi|xi, ti)

μi
δTD(xi, xi, ti)∇ψVψ(xi, ti − 1), (74)

and

∇θDKL(Pθ|PW ) ≈ −
T∑

t=0

Pθ(xi|xi, ti)

μi
δTD(xi, xi, ti)∇θ ln Pθ(xi|xi, ti), (75)

to update the weights.
Despite the limitations of our demonstration in comparison with our earlier tabular results, we believe

these could be resolved by better tuning of algorithm parameters and use of the techniques mentioned
above. Regardless, it is likely that to apply these techniques to more complex systems neural networks will
be extremely useful if not essential. For simple or complex problems, even if the optimal dynamics cannot
be reached, the resulting dynamics could be combined with techniques such at TPS to efficiently gather
accurate statistics of the rare trajectories of interest.

Finally, we mention that while eligibility traces are powerful when used with tabular methods or linear
approximations, the lack of ability to train neural networks using incremental data hinders their use. To this
end, recent work has been done considering truncated λ returns [92, 93], and their reconciliation with
experience replay [106].

4.4. Further variations
We briefly mention a variety of other possibilities from the RL literature to approach optimizing such
problems:

• All algorithms described above are based on stochastic gradient descent, a commonly used line-search
gradient method. Recently, RL algorithms have been developed based on natural gradients [72,
107–110], where the updates are modified to respect that changing the parametrization of the
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dynamics, while leaving the manifold of possible dynamics invariant, should leave the gradient
updates invariant. These are closely related to recent applications of trust-region based gradient
methods to RL [69, 111–113], where the learning rates for updates are tamed in order to try and
ensure updates do not overshoot and cause a negative change to the dynamics.

• As value functions are learnt from early experiences, transitions towards states that are currently
estimated to be higher value will be increased, even if these states are in reality suboptimal, a problem
referred to as maximization bias. A common solution to this is the use of double learning, where two
value functions are learnt [60, 114, 115]. For each state visited, the value function which produces the
lower estimate is then used in estimates of the dynamics gradients.

• When the action space is continuous, the MDP problem can be rephrased as learning a function
approximation which generates an action, with inputs as the state and some random noise [60, 103,
116]. This leads to policy gradient estimate which takes into account how the target value changes
when when the action parametrization changes, resulting in a lower variance estimate. This will be
directly relevant to rare trajectory problems with continuous state spaces and an uncountable number
of transitions, and is closely related to current optimal force learning approaches in diffusive
problems [56].

An alternative but closely related adaptive approach is based on gauge transformations [32]. While there
are simpler derivations, see appendix A, to see this connection note we may rewrite equation (24) as

DKL(Pθ|PW ) =

T∑

t=0

∑

ωt−1
0

Pθ(ωt−1
0 )DKL

(
Pθ(−|xt−1, t)

∣∣∣∣
W(−, xt−1, t)P(−|xt−1)g(−, t)

g(xt−1, t − 1)

)
, (76)

where
g(xt , t) = Ext+1∼P

[
W(xt+1, xt , t + 1)g(xt+1, t + 1)

]
, (77)

with g(xT, T) = 1 is the inductive equation defining the gauge transformation g, with expectation taken over
the original dynamics. Since minimizing each of these KL-divergences individually provides the exact
solution, the optimal dynamics is given by the correct gauge transformation, and an alternative approach
may be to approximate this gauge transformation directly. This approach has a long history in the
mathematical literature [25, 26, 28, 117], and as exact solutions to some MDPs with deterministic
environments [29]. Further, this has recently been adapted to diffusion processes [16]. It has also been
discussed recently in the context of understanding RL from a statistical physics perspective [118]. From the
RL perspective, these algorithms are all based on one-step TD methods, where equation (77) is viewed as a
non-linear Bellman equation [119]. This approach could in future be developed into a broader set of RL
algorithms which have more in common with the value-function based methods of RL, as opposed to the
policy-gradient-like methods presented in this work.

5. Long time dynamics, large deviations and discounting

In many problems of relevance to physical sciences we are interested in the behaviour at long times, such
that the system is in its stationary state, be it equilibrium (as in a system in contact with a thermal bath) or
not (as in driven systems). Such situations where dynamics is time-homogeneous and the relevant times
exceed those set by all relaxation rates, pertain to the regime of dynamical LDs [2, 3, 6, 33], an approach
akin to equilibrium statistical mechanics for quantifying the statistical properties of long-time dynamics.
For this kind of problem we can specialize our methods above to allow for solutions using genuine,
infinitely long trajectories.

To consider these problems, for simplicity we restrict to cases where the original dynamics is
time-independent, although the approach may be adapted to periodic dynamics. We can then consider the
stationary state of some parameterized dynamics Pθ(xt|xt−1), a probability distribution Pss

θ (x) such that

Pss
θ (x) =

∑

x′
Pθ(x|x′)Pss

θ (x′). (78)

For clarity, we will focus on systems with ergodic dynamics. Put simply, this means that for any pair of
states, there exists a sequence of transitions which leads from either one to the other. For us, this means that
there is a unique stationary state.

A common approach to studying such models is to consider long but finite trajectories, then use a
method such as TPS to sample the reweighted ensemble. While we could take a similar approach using our
adaptively learnt dynamics, either with or without TPS, the trajectory lengths may need to be extremely
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long to achieve accurate results, and for a generic problem the length required is unknown. It may instead
be desirable to directly study the infinite-horizon case, removing fears of incorrect results caused by
finite-time effects. However, as it stands there are several problems with the algorithms presented ealier in
section 3 for studying problems formulated with an infinite-horizon. In particular, the algorithms we
detailed were ‘offline’, that is, they waited for trajectories to end before learning occurred: clearly in an
infinite-horizon context where there is no end to a trajectory, we must necessarily use an online approach,
as discussed in section 4.2.

There is a second, more substantial issue: as currently defined, the returns, and thus the resulting values,
could diverge to infinity as the trajectory continues to run. Moreover, the value of each state would be
almost identical even for sufficiently long but finite futures, as it would be dominated by the average return
following states sampled from the stationary state distribution. The origin of these issues can be attributed
to the fact that we provide equal emphasis to the value of a state for transitions which occur at any time in
the future: for an ergodic system in which any correlation with the current state will eventually be lost, such
a definition of value ignores the eventual independence of future states and transitions on the present state
being valued.

In this section we will consider a pair of adaptations which remedy this failing of the finite-time value,
so that online algorithms can be developed for the infinite-horizon case. First, we will discuss the
differential returns and relative values arising from the average-return formulation of RL; second, we will
introduce an approximate scheme based on discounting, which nonetheless can improve learning speed by
reducing variance, at the expense of accuracy in the final result.

5.1. Comparing rewards with the average: differential returns and values
For RL problems involving an infinite-horizon, one choice of formulation, sometimes argued to be the
correct formulation over the traditional one based on discounting [39, 120], is that of time-averaged returns
[67, 121–123]. For us, this approach begins by reconsidering our loss function. In the continuing case,
under the conditions of time-independence and ergodicity we mentioned in the previous section, there is
no particular special time, such as when the trajectory is initialized. As such, the time averaged KL
divergence is simply given by a steady state average of rewards on the next transition

dKL(Pθ|PW ) = lim
T→∞

1

T
DKL(Pθ|PW )

= − lim
T→∞

1

T

⎡
⎣∑

ωT
0

Pθ(ωT
0 )R(ωT

0 ) − ln Z

⎤
⎦

= −
∑

x,x

Pss
θ (x)Pθ(x|x)r(x, x) + z, (79)

where we have simply defined

z = lim
T→∞

1

T
ln Z, (80)

and r(x, x) is the time-independent reward associated to this transition

r(x′, x) = ln W(x′, x) − ln

(
Pθ(x′|x)

P(x′|x)

)
. (81)

For later clarity, we define the time-averaged return as

r̄θ = lim
T→∞

1

T

∑

ωT
0

Pθ(ωT
0 )R(ωT

0 ) = z − dKL(Pθ|PW ). (82)

As we will discuss further in section 5.4, z is related to the SCGF which is often of interest in LD studies.
The connection between z and the average reward thus means our algorithms provide an estimate of the
SCGF in the process of optimizing the dynamics.

While not immediately obvious from equation (79), the gradient of dKL(Pθ|PW) can infact be written in
terms of only the gradient of Pθ(x ′|x), without reference to the gradient Pss

θ (x): that this is possible
essentially follows from the fact that the steady state is defined by the dynamics. This is extremely useful
numerically, as while the gradient of the stationary state may be extremely difficult to construct, the
gradient of the transition probabilities is directly accessible using our approximation. However, to see this
form of the gradient of equation (79) clearly, we must first define values in this continuing setting.
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In order to construct useful values for states in the continuing case, we consider returns defined relative
to the average of equation (82): that is, we define the differential return

RD(ωT
0 ) = R(ωT

0 ) − Tr̄θ

=

T∑

t=1

r(xt , xt−1) − r̄θ. (83)

We can then consider the value of a state to be the difference between the average return following that
state, and the average return following a state drawn from the stationary distribution, simply given by the
average of differential returns following that state

VPθ
(x0) = lim

T→∞

〈
RD(ωT

0 )
〉

Pθ ,X0=x0
, (84)

where the limit is now convergent, as seen in the next section. In particular, we may relate these values
iteratively in a Bellman equation as

VPθ
(x′) =

∑

x

Pθ(x|x′)
[
VPθ

(x) + r(x, x′) − r̄θ

]
, (85)

which can be simply rearranged to give an alternative equation for our time-averaged KL divergence

dKL(Pθ|PW ) = z −
∑

x

Pθ(x|x′)
[
VPθ

(x) + r(x, x′) − VPθ
(x′)

]
, (86)

which we note holds for all x ′.
We can now write the gradient of our loss as

∇θdKL(Pθ|PW ) = −
∑

x

∇θPθ(x|x′)
[
VPθ

(x) + r(x, x′) − VPθ
(x′)

]

−
∑

x

Pθ(x|x′)
[
∇θVPθ

(x) − ∇θVPθ
(x′)

]
. (87)

Since this equation holds for all x ′, we are free to average the right-hand side over the stationary state

∇θdKL(Pθ|PW ) = −
∑

x,x′
Pss

θ (x′)∇θPθ(x|x′)
[
VPθ

(x) + r(x, x′) − VPθ
(x′)

]

−
∑

x,x′
Pss

θ (x′)Pθ(x|x′)
[
∇θVPθ

(x) − ∇θVPθ
(x′)

]

= −
∑

x,x′
Pss

θ (x′)∇θPθ(x|x′)
[
VPθ

(x) + r(x, x′) − VPθ
(x′)

]

−
∑

x

Pss
θ (x)∇θVPθ

(x) +
∑

x′
Pss

θ (x′)∇θVPθ
(x′), (88)

where by using the definition of the stationary state and the normalization of the transition probabilities,
the last two terms are seen to be equal. Rewriting the gradient using ∇f = f ∇ ln f we arrive at a quantity
that can be sampled using transitions from trajectories

∇θdKL(Pθ|PW ) = −
∑

x,x′
Pθ(x|x′)Pss

θ (x′)
[
VPθ

(x) + r(x, x′) − VPθ
(x′)

]
∇θ ln Pθ(x|x′), (89)

which depends only on the gradient of the transitions.
This derivation has naturally left us with a baseline of the exact value function: the second value

function term in this equation could be removed by conducting the sum over x. Indeed, if we introduce a
baseline of r̄θ for all states, then the term in the bracket is the TD error resulting from rearranging
equation (85). The gradient is then already in the form of those considered for the AC algorithms, with the
critic in this case still providing the perfect values of each state.

To arrive at a functioning algorithm, we must again introduce a learnt critic. We do this as before: we
target the true values VPθ

with an approximation Vψ, with a loss function given by the error in the Bellman
equation (85) averaged over the stationary state

LV (ψ′) =
∑

x′
Pss

θ (x′)
1

2

[∑

x

Pθ(x|x′)
[
Vψ(x) + r(x, x′)

]
− r̄θ − Vψ′ (x′)

]2

, (90)
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Algorithm 4. KL regularized differential AC.

1: Inputs dynamical approximation Pθ(x, x ′), value approximation Vψ(x)
2: Parameters learning rates αθ

n , αψ
n , αR

n ; total updates N
3: Initialize choose initial weights θ and ψ, initial average r̄, define iteration variable n, individual error δ
4: n ← 0
5: Repeat
6: Generate a transition from x ′ to x = {x, F(x, x ′)} according to the dynamics given by Pθ(x, x ′).
7: δ ← Vψ(x) + r(x, x′) − r̄n − Vψ(x′)
8: θ ← θ + αθ

nδ∇θ ln Pθ(x|x′)
9: ψ ← ψ + αψ

n δ∇ψVψ(x′)
10: r̄ ← r̄ + αR

n δ
11: n ← n + 1
12: Until n = N

noting that the target from the right of the Bellman equation is fixed to the current weights ψ, taking a
semi-gradient approach. The gradient evaluated at the current weights ψ is then

∇ψLV (ψ) ≈ −
∑

x,x′
Pθ(x|x′)Pss

θ (x′)
[
Vψ(x) + r(x, x′) − r̄θ − Vψ(x′)

]
∇ψVψ(x′), (91)

the same as equation (51) up to the negation of the average off of the reward at each transition.
An added complexity comes from the presence of this average return, as both gradient estimates still

assume we know the average exactly, which will almost certainly not be true. We must therefore also
estimate this average return during our optimization. To do this, we could simply use the stochastic
approximation with the rewards sampled over time. Were the dynamics fixed, this would eventually
converge to the correct value; for dynamics that are optimized over time, this will continually chase the
current value of the average, similar to how the weights of the value function chase the optimal weights for
the current dynamics. However, we can speed up convergence, admittedly to a less accurate result, by using
the TD error.

More precisely, we can rearrange the Bellman equation and average to get

r̄θ =
∑

x,x′
Pss

θ (x′)Pθ(x|x′)
[
VPθ

(x) + r(x, x′) − VPθ
(x′)

]
, (92)

which we can sample directly by running trajectories with the current dynamics. Replacing the exact values
with our current estimates, we can then update our estimate of the average r̄n every time a transition occurs,
e.g. from x ′ to x, as

r̄n+1 = r̄n + αn

[
Vψ(x) + r(x, x′) − r̄n − Vψ(x′)

]
. (93)

To make a functioning algorithm, we then replace r̄θ in the above gradient estimates for the dynamical and
value approximations with our current estimate r̄n.

With the equations (89), (91) and (93) in these forms, the updates for all three components—the
dynamical weights θ, the value weights ψ, and the approximate r̄—can be estimated using the same TD at
each step, namely

δDTD(x′, x) = Vψ(x) + r(x, x′) − r̄n − Vψ(x′), (94)

where the subscript DTD stands for ‘differential temporal difference’. The online algorithm 4 based on this
average construction, updating the two weights and the average at every transition, is stated below.
Removing the components related to the average in this algorithm will provide an online algorithm which
could easily be applied in the finite-horizon case.

As discussed in section 4.2, online algorithms introduce two issues. First, with the evolving weights, we
almost certainly are not sampling the current stationary state of the dynamics: however, if the dynamics
evolves slowly enough, the sampling is likely very similar, and certainly close enough to be confident of
convergence. Second, the samples we get are not uncorrelated, like we would ideally have in constructing an
empirical mean. For simple function approximations this is not an issue if correlations between samples
decay quickly enough, however, as mentioned in section 4.3, for more powerful function approximations
such as neural networks this can cause instability.

This algorithm, and the one discussed in the next section, can be extended in many of the ways
previously discussed in section 4. Further, it can be manipulated to an approximate form which more
closely matches the non AC algorithms of section 3. To see this, we consider modifying the algorithm to use
an n-step update with extremely large n: in this case, the value function can be removed, as its contribution
from the target n step state averages out over the stationary state to zero when n is sufficiently large. The
resulting algorithm is equivalent to a continuing version of algorithm 2. Further, the current state value is
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simply a baseline which can be removed, producing an algorithm equivalent to that used in [56], a
continuing version of algorithm 1. This provides an approximate, value-free algorithm for the continuing
case. Alternatively, the algorithm in [56] can be seen as making a finite time approximation to the problem
itself, using algorithm 1 of the previous section with an additional average reward baseline.

5.2. An approximate approach: discounting
The more traditional approach in RL for continuing problems gets round the issue of divergent returns by
discounting the contribution of rewards to the value of a state proportional to how long after the state the
reward was given. That is, the value of a state is defined as

Vγ
Pθ

(x) = lim
T→∞

〈
T∑

t′=t

γt′−tr(xt+1, xt)

〉

Pθ ,Xt=x

, (95)

which is convergent for a discount rate γ less than 1.
For these values to be correct, the discounting must be introduced in the original definition of the

problem: in this case, the interpretation of the discount is a probability of the system entering an absorbing
state in which it receives no more reward [110]. Sampling states correctly then takes us back to a finite
trajectory based approach, where we initialize according to some distribution, and end the trajectory at
some variable time with probability 1 − γ at each time step, causing infinite trajectories to be exponentially
suppressed.

While this may be an interesting problem in its own right, this is not the problem we are aiming to solve.
Instead, we introduce discounted values as an approximate approach to estimating the dynamical gradient
for the average return problem outlined in the previous section. This allows us to cease tracking the average
return, while often providing lower variance estimates for the gradient, at the expense of accuracy in the
final result.

For this approximate approach to produce reasonable accuracy of the final result, theoretical work in the
RL literature has suggested that the discount rate γ must be such that 1/(1 − γ)—the time-scale for the
average time between transitions to the absorbing state—is larger than the mixing time of the current
dynamics Pθ [110, 121, 124, 125].

To gain an intuition for why discounting works for large enough values, lets consider a slightly modified
definition of the differential values. Truncating our earlier definition up to a finite time, we use the return
up to that time averaged over time and an initial stationary distribution

r̄T
θ =

1

T

〈
R(ωT

0 )
〉

Pθ
=

∑

x0

Pss
θ (x0)

〈
R(ωT

0 )
〉

Pθ ,X0=x0
, (96)

where limT→∞ r̄T
θ = r̄θ. We negate this average off the reward at each step to define our truncated

differential values, finding

VT
Pθ

(x0) =
〈

R(ωT
0 )
〉

Pθ ,X0=x0
− Tr̄T

θ

=

T∑

t=1

∑

xt ,xt−1

Pθ(xt , xt−1)r(xt , xt−1)
[
Pθ(xt−1|x0) − Pss

θ (xt−1)
]

, (97)

where in the second line we have split the returns in to reach reward, summing over the possible paths up to
each pair, with Pθ(xt−1|x0) used to represent the probability of reaching xt−1 under Pθ by any path initiated
from x0. Introducing an importance sampling factor, we may then rewrite the value function in terms of a
return in which the rewards depend on the state being valued: given

R′(ωT
0 ) =

T∑

t=1

r(xt , xt−1)
Pθ(xt−1|x0) − Pss

θ (xt−1)

Pθ(xt−1|x0)
, (98)

we have
VT

Pθ
(x0) =

〈
R′(ωT

0 )
〉

Pθ ,X0=x0
. (99)

While this equation requires no knowledge of the average return, it does require extremely detailed
knowledge of the probabilities of states conditioned on states multiple steps in the past, something not
easily accessible. However, this form makes it transparent that by negating the average return, we are
essentially decaying out the contribution of rewards received many steps in the future, in a fashion
reminiscent of discounting: since we assume ergodicity, as the time after valuation extends into the future
the conditional probability will converge to the stationary sate.
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To see this decay we use a spectral decomposition of an operator which describes the evolution of
probability distributions under the dynamics Pθ . Viewing Pθ(x|x ′) as the components of a transition matrix
describing the evolution of a probability distribution

Wθ =
∑

x,x′
Pθ(x|x′)|x〉〈x′|. (100)

This matrix can be diagonalized, resulting in left 〈li| and right |ri〉 eigenvectors

〈li| =
∑

x

li(x)〈x|, |ri〉 =
∑

x

ri(x)|x〉, (101)

which are orthogonal,
〈

li|rj

〉
= δij, with eigenvalues λi satisfying 〈li|Wθ = λi〈li| and Wθ|ri〉 = λi|ri〉. The

stationary state satisfies Wθ|Pss
θ 〉 = |Pss

θ 〉, corresponding to an eigenvalue of 1, with associated left
eigenvector the ‘flat’ state 〈−| with value 1 for every component. It can further be shown that all eigenvalues
will satisfy |λi| < 1, since we are assuming the model is ergodic and thus has a single stationary state.

Given this spectrum, we may expand the time evolution of a given initial probability distribution as

|P(t)〉 = W t
θ|P(0)〉 = |Pss

θ 〉 +

D∑

i=2

λt
i |ri〉 〈li|P(0)〉 , (102)

where D is the dimension of the state space. This allows us to rewrite the probabilities Pθ(xt−1|x0) in a
spectral expansion, by taking as our initial distribution |P(0)〉 = |x0〉 and projecting out the xt−1 component

Pθ(xt−1|x0) = Pss
θ (xt−1) +

D∑

i=2

λt−1
i ri(xt−1)li(x0). (103)

Finally, substituting this into our alternative equation for the truncated values, we have

R′(ωT
1 , x0) =

T∑

t=1

r(xt , xt−1)

∑D
i=2 λt−1

i ri(xt−1)li(x0)

Pθ(xt−1|x0)
. (104)

Recalling |λi| < 1 for i �= 1, all terms in this sum decay as time increases, and thus later rewards contribute
less and less to the differential return. For later times this decaying contribution is dominated by the leading
eigenvalue of the master operator, the inverse of the relaxation time of the Markov chain, with the
denominator becoming the stationary distribution

R′(ωT
1 , x0) ≈

T∑

t=1

r(xt , xt−1)
λt−1

2 r2(xt−1)l2(x0)

Pss
θ (xt−1)

. (105)

This is suggestive of the form of return used when discounting, with some similarity between λ2 and the
discount γ: indeed, the mixing time, which 1/(1 − γ) must be less than for accuracy, is closely related to the
relaxation time of the dynamics given by 1/(1 − λ2).

Replacing all of the above probabilities with a general discounting factor is clearly an approximation of
the true differential values, and thus introduces a bias in the final results. However, it removes the need to
track the average return in order to estimate the TDs, which can itself introduce errors and bias into the
optimization. Discounting can also lower variance of the gradient estimate, as discounting reduces the
impact of stochasticity by giving less weight to the further future. As such, we now detail how to use
discounted values to guide the evolution of the dynamical weights.

To optimize an approximation for the discounted values, we note that the values of equation (95) satisfy
a slightly modified Bellman equation

VPθ
(x′) =

∑

x

Pθ(x|x′)
[
γVPθ

(x) + r(x, x′)
]
. (106)

We thus follow the same semi-gradient approach as previously, using the gradient estimate

∇ψLV (ψ) ≈ −
∑

x,x′
Pθ(x|x′)Pss

θ (x′)
[
γVψ(x) + r(x, x′) − Vψ(x′)

]
∇ψVψ(x′), (107)

given by the discounted TD error

δγTD(x, x′) = γVψ(x) + r(x, x′) − Vψ(x′). (108)
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Algorithm 5. KL regularized discounted AC.

1: Inputs dynamical approximation Pθ(x, x ′), value approximation Vψ(x)
2: Parameters learning rates αθ

n , αψ
n ; total updates N, discount factor γ

3: Initialize choose initial weights θ and ψ, define iteration variable n, individual error δ
4: n ← 0
5: Repeat
6: Generate a transition from x ′ to x = {x, F(x, x ′)} according to the dynamics given by Pθ(x, x ′).
7: δ ← γVψ(x) + r(x, x ′) − Vψ(x ′)
8: θ ← θ + αθ

nδ∇θ ln Pθ(x|x′)
9: ψ ← ψ + αψ

n δ∇ψVψ(x ′)
10: n ← n + 1
11: Until n = N

To approximate the dynamical gradient, we use this TD as an approximation to the one appearing in
equation (89), arriving at

∇θdKL(Pθ|PW ) ≈ −
∑

x,x′
Pθ(x|x′)Pss

θ (x′)
[
γVψ(x) + r(x, x′) − Vψ(x′)

]
∇θ ln Pθ(x|x′). (109)

The resulting online algorithm 5, almost identical to the one for differential returns, is given below.

5.3. Infinite horizon example: random walker on a ring
As a simple example to demonstrate both these algorithms, we return to our particle hopping on a chain
example, making the chain periodic with length L, x ∈ 0, . . . , L − 1. The original dynamics we consider is
inspired by a model in reference [16, 56]. We take a dynamics given by a periodic potential, specifically

P(x + 1|x) = σ

(
u + v sin

(
2πx

L

))
, (110)

where σ(y) = ey/(1 + ey) is the sigmoid function, and u, v are parameters of the dynamics. Our goal is to
study rare trajectories of the particles transition direction, with the sign of the bias s determining whether
we focus on trajectories where the direction moved is largely positive or negative. To achieve this we
introduce a soft condition by weighting transitions as

W(x, x′) =

{
e−s (x′ − 1) mod L = x
es otherwise

. (111)

For function approximations, we could choose a tabular approach as we did for the excursions, which
would work perfectly well in this simple scenario. To demonstrate a more sophisticated function
approximation, making the algorithms learn faster while requiring less data, here we instead choose to use a
linear expansion in set of Fourier modes. That is, we set the dynamics to Pθ(x + 1|x) = σ (U(x)) with
potential

U(x) =
∑

i

θifi(x), (112)

where each fi is chosen to be either a Fourier mode or the flat function fi(x) = 1, and the values are set to

Vψ(x) =
∑

i

ψifi(x), (113)

for the same set of functions fi. The gradients of these approximations are closely related to the values of

this ‘feature vector’f , with
∇ψVψ(x) = f (x), (114)

and
∇θ ln Pθ

(
x ± 1|x

)
= ±f (x)Pθ

(
x ∓ 1|x

)
. (115)

We train these approximations using both the differential and discounted forms of AC, annealing the bias s
across a range of values. By initiating the weights from those found training at nearby values of the bias, we
can potentially reduce the number of updates required to achieve good results.

Results are shown in figure 7, with the first row showing: (a) the time-averaged reward r̄θ ; (b) an
estimate of the entropy of the dynamics, defined by

h = −
∑

x,x′
Pθ(x′|x)Pθ(x) ln Pθ(x′|x); (116)
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Figure 7. Fourier-expansion ring. Results for a ring of length L = 1000, with u = 0.15 and v = 0.3. In plots (a)–(c), the dark
(purple) lines are results produced using differential AC, while light (green) lines are for discounted AC with a discount of
γ = 0.999. Dotted grey lines show the values at s = 0. Plots (d)–(f) show results for the differential AC. (a) Time average of the
rewards received each transition, i.e. the SCGF for this observable, as a function of the bias. The dashed grey line indicates the
exact result calculated according to appendix C. (b) The entropy of the dynamics. (c) The time-average of the current, the
observable biased against. (d) The steady-state distribution of the learnt dynamics as a function of s. (e) The potential U(x)
defining the probability of going up, Pθ(x + 1|x), learnt for each s. (f) The value of each state found during training.

(c) an estimate of the time-averaged current

v =
1

s

∑

x,x′
Pθ(x′|x)Pθ(x) ln W(x, x′), (117)

with exact results for the time-averaged reward calculated for comparison as described in appendix C. As
can be seen from plot figure 7(a), the differential AC provides results with a high degree of accuracy, while
the discounting appears to be inaccurate near transitions in the trajectory statistics. This is as expected: near
a transition, long-time correlations will become important to the statistics, and discounting puts a cap on
how much of the future is taken into account. Figure 7(d) shows the steady state-distribution across the
ring, with a region of localization occurring for values of positive bias which are not enough for the
optimized dynamics to overcome the constant force of the model. Despite the low entropy of the steady
state caused by this localization, this range of biases is in fact where the entropy of the dynamics is highest:
here, transitions are likely to occur either up or down, causing the localization. Outside this range the
majority of transitions are either up or down, depending on the sign of the bias. The potential defining the
probability of going up, the term inside the sigmoid of equation (112), is shown in figure 7(e), with 0
causing equal probability of up or down. Outside the range of biases resulting in localization, we find a clear
favour towards going in a direction prescribed by the bias, with the potential either taking significant
positive or negative values. Inside the localized range, the potential has an oscillatory structure, which we
note will only be accurate where the stationary state is non-negligible.

5.4. Connection to large deviation cumulant generating functions
The construction used in this section is closely related to the theory of LDs, as should be expected given
recent connections between the LDs of trajectories and optimal control theory [30, 31]. The optimal
dynamics for minimizing the time averaged KL divergence is in fact the dynamics resulting from the
generalised Doob transformation [30, 126]. Additionally, the long-time average of the log of the partition
function z of equation (80) is exactly the SCGF, the Legendre transform of which provides the probability
distribution of the observable whose rare events we are studying. Rearranging equation (82), we have

z = r̄θ + dKL(Pθ|PW ), (118)

which holds for any dynamics Pθ. While the KL divergence part of this equation is difficult to calculate, our
algorithms are designed to minimize this term, approaching zero at optimality. While optimizing we can
easily calculate r̄θ : indeed, this is already a part of the differential AC algorithm. Thus, these algorithms
provide direct access to the SCGF, and therefore the statistics of the rare events.

Minimizing the KL divergence is equivalent to maximizing the return, and since the KL divergence is
non-negative we may rewrite
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z � r̄θ ∀ θ

� max
θ

r̄θ

� max
θ

∑

x′,x

Pss
θ (x)Pθ(x′|x)

[
ln W(x′, x) − ln

(
Pθ(x′|x)

P(x′|x)

)]
, (119)

with the inequality saturable if the Doob dynamics is contained within the variational space spanned by θ

for the chosen function approximation, that is

z = max
P̃

∑

x′,x

P̃ss(x)P̃(x′|x)

[
ln W(x′, x) − ln

(
P̃(x′|x)

P(x′|x)

)]
, (120)

as seen in the LD literature discussing connections to optimal control [30, 31]. The time-averaged reward
estimated during training thus provides an efficient way of calculating at least a lower bound of the SCGF,
with powerful function approximations and extensive training allowing access to an accurate value without
needing to use any other form of statistical sampling. In cases where high degrees of accuracy are not
possible, the learnt dynamics can be combined with sampling techniques such as TPS or cloning to calculate
a better estimate.

6. Conclusions and outlook

In this work we have highlighted a general approach for developing numerical approaches to study
questions about statistical ensembles of trajectories, with a particular focus on ensembles consisting of rare
trajectories of some original dynamics. We have shown that gradient based optimization of a sampling
dynamics for these trajectory ensembles naturally maps onto a regularized form of RL, closely related to
maximum-entropy RL. We used this connection to pedagogically develop algorithms in a finite time setting,
a key ingredient being the extensive use of value functions, a first in the rare trajectory sampling literature.
Reviewing a range of modifications to learning algorithms and choices of function approximations found in
the RL literature, we saw just how many possibilities this connection makes available for the study of rare
trajectories. We then adapted the approach for time-homogeneous problems which have no unique time
and can be viewed as single unending trajectories, for the study of statistics of time-averaged observables,
and described how this connects to the theory of LDs for Markov processes and its relationship with
optimal control theory. This development was supplemented by two examples: generating random walker
excursions with the correct probabilities for the finite time case, and statistics of the time-averaged current
for a particle on a ring in the infinite time case.

There is a wide range of possible avenues for future research building on what we have presented here.
An obvious one is using these algorithms to tackle more sophisticated problems than the simple models we
used as illustration. For example, we may seek to apply the approach to study rare trajectories of
many-body systems such as spin lattices or molecular dynamics, where the state space grows exponentially
with the number of particles. In this situation, the algorithms are essentially unchanged: the difficulty
comes in making an appropriate choice of function approximation, such that it can efficiently encode the
dynamics. Analytical study of many problems can produce simple, physically inspired parameterizations of
the dynamics in such many body systems, see e.g. [36, 51, 127]. Where these physically inspired
approximations cease to be sufficient, or where it is difficult to gain such insight, we could instead resort to
neural networks. These have proven to be an incredibly versatile function approximations, with extreme
representative power. Their application to RL comes with a caveat, however: they are unstable with the
simpler algorithms we have presented. As discussed in section 4.3, to overcome these issues, training of
neural networks must therefore be conducted using modified algorithms. Further examples of the use of
neural networks in LDs can be found in [37, 128].

Many-body problems will bring with them a separate issue to overcome: how to achieve sufficiently
broad sampling of the state space, especially in models near phase transitions, where Markov chain
sampling can become trapped in subsets of the state space. The trapping could lead to over fitting of the
function approximation on the current area of the state space the Markov chain is sampling, forgetting the
dynamics in previously visited regions. This is a problem which may be addressed by running multiple
trajectories in parallel, or through the use of replay buffers to further sample previously visited regions of
the state space.
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Beyond applications, interesting generalizations and extensions include:

• Limited control. In certain situations it may be beneficial (or only possible) to make part of the
dynamics adaptive. For example, in a many-body system where each particle has separate degrees of
freedom such as a position and orientation, we may only control the orientational evolution while
leaving the position unchanged from the original dynamics. In this setup, the evolution of the
position takes on the role of an environment from the RL perspective, with the orientation under the
control of the agent. While this may limit the effectiveness of the resulting dynamics for sampling, it
could be much easier to optimize, requiring less parameters or having a more obvious choice of
function approximation.

• Non-Markovian original dynamics. As discussed earlier, the approach developed in this work can be
almost immediately extended to arbitrary non-Markovian original dynamics in the finite time case.
For example, the MCR with a value baseline becomes based on the gradients

∇θDKL(Pθ|PW) = −
〈

T∑

t=1

(
RW (ωT

0 ) − Vψ(ωt
0)
)
∇θ ln Pθ(xt |ωt−1

0 )

〉

Pθ

, (121)

∇ψLV (ψ) = −
〈

T∑

t=1

(
RW (ωT

0 ) − Vψ(ωt
0)
)
∇ψVψ(ωt

0)

〉

Pθ

, (122)

where we have simply replaced the state and time with the full history of the trajectory, sampling with
a parameterized dynamics which is itself non-Markovian. While general, this is more likely to be
applicable with approximation in studying the statistics of problems where the original dynamics has
a limited amount of memory. An alternative use case is a side effect of using function approximations:
since some useful information may be lost in processing the state, the dynamics is effectively
non-Markovian. Making use of processed states, i.e. feature vectors, of a recent history of states may
thus improve the accuracy of the dynamics further. A similar modification can be made for the
infinite time case when the original dynamics has a limited range of non-Markovianity, or the
weighting depends on a short part of the history of previous states. A particularly powerful function
approximation to apply in such problems is that of recurrent neural networks.

• Non-Markovian weights. Rather than the original dynamics being non-Markovian, its possible that
the weights may be non-Markovian. That is, rather than taking the transition-local product structure
of (6), the weight of each trajectory may simply be some function W

(
ωT

0

)
. Generically this will result

in a problem identical in structure to the one above in (121): even if the original dynamics remains
Markovian, the non-Markovian nature of the weights will necessitate a non-Markovian parameterized
dynamics to best sample the reweighted ensemble. However, many non-Markovian weights may only
require a subset of the information contained in the trajectories history.

For example, suppose we wish to consider the subset of random walks with a particular area A. To
do this we would set the weights to

W
(
ωT

0

)
= δA,A(ωT

0 ). (123)

There is no obvious way to split this weight up, but we can observe that the only information about
the history necessary to calculate the weight at the end is its area A

(
ωT

0

)
. As such, as a trajectory

evolves the only information we need keep track of is the area up to each time At, updating it after
each transition. It seems reasonable that the optimal dynamics to sample this ensemble may only be
conditional on only the current state, time, and the area up to that point in the trajectory: that is, it
should be sufficient to parameterize a conditional dynamics Pθ(xt+1|xt, t, At). This can in fact be
proven, and presents a particular case of what we call a generalized state: the necessary information,
in this case (xt, t, At) from the trajectories history to be able to exactly reproduce the reweighted
ensemble. In future work, we will further expand on the idea of generalized states, applying our
approach to more complex conditional problems.

• Fluctuating time ensembles. Rather than ending trajectories at a fixed time, we could end trajectories
according to some condition, for example, to study the statistics of rare first passages. Given that
variable length trajectories are the natural setting of RL, these algorithms will have natural adaptations
to sampling in these problems, with optimal sampling dynamics likely being time-independent.

• Continuous time Markov processes. Here for concreteness we presented our approach for
discrete-time dynamics, but it can easily be generalised to both continuous-time jump processes, to
diffusions, and to combinations of both. Indeed, there is already an extensive literature of work
covering continuous time versions of RL [129–133]. In fact, the continuous time version of our
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loss-functions have already been discussed in [30], where connections were made between LD theory
and control theory. Further to this, there has already been some adaptive algorithms of a similar
nature developed for sampling rare trajectories in the continuous time case. In particular, [56] uses an
algorithm which is an approximation to an ‘∞-step’ version of the differential AC algorithm
described above. This allows the removal of the value function, since for the current state it is a
baseline, and for the potential ‘∞-step’ states the value averages to zero over the stationary state.
Approximations result from truncating the partial return between these two times to a finite length.
Additionally, in [55] the KL divergence is used with the parameterized and weighted distributions
swapped around. Finally, a version of the LSTD algorithm [39, 134] applied to the non-linear Bellman
equation (77) [119] has recently been developed for LDs of diffusive systems [16]. Despite the above
developments, value functions and the many other techniques found in RL are not currently used for
the sampling of rare, continuous time trajectories.

• Use in TPS or cloning. If the function approximation is incapable of achieving a sufficient accuracy to
study the rare events (e.g. to directly estimate the SCGF using optimized trajectories) then TPS or
cloning could be used to fix the statistics, with convergence sped up by the optimized dynamics
[37, 56, 127].

Beyond these applications of RL-like techniques to statistical sampling, there is the obvious potential of
taking this connection in the other direction, to gain further understanding of RL itself through the use of
techniques and intuitions from the statistical physics perspective.
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Appendix A. Exact optimal sampling and random walk excursions

In this appendix we demonstrate how the optimal dynamics can be calculated exactly, either analytically or
numerically. This is done by propagating an iterative equation for a function of the state and time, which is
used to rescale the original transition probabilities. While in principle this can solve any problem, it can be
numerically unstable, and will not be applicable as presented to problems which are the target application
of the current line of research: systems for which the state space is too large for a single value to be
associated to every state. It is expected that these techniques can also be extended to generic function
approximation (see reference [16] for linear approximations in diffusion processes), however, it is likely less
stable than algorithms based on the KL divergence, due to multiplicative (rather than additive) nature of the
objects involved frequently causing extremely large or small numerical values.

Beginning from

PW

(
ωT

0

)
=

∏T
t=0 W(xt , xt−1, t)

∏T
t=1 P(xt|xt−1)P(x0)∑

ωT
0

W
(
ωT

0

)
P
(
ωT

0

) , (A.1)

we aim for a time dependent Markovian dynamics generating this ensemble. However, rather than
assuming this is possible, we first calculate a decomposition into non-Markovian conditional probabilities,
producing

PW

(
ωT

0

)
=

T∏

t=0

PW (xt |ωt−1
0 ). (A.2)

To do this, we use the definition of a conditional probability in terms of joint probability distributions:
iterating backwards step by step we have

PW

(
ωt−1

0

)
=

∑

xt

PW

(
ωt

0

)
, (A.3)

and thus

PW

(
xt |ωt−1

0

)
=

PW

(
ωt

0

)

PW

(
ωt−1

0

) . (A.4)
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Combining these definitions, for the final timestep we have

PW

(
xT |ωT−1

0

)
=

∏T
t=0 W(xt , xt−1, t)P

(
ωT

0

)
∑

xT

∏T
t=0 W(xt , xt−1, t)P

(
ωT

0

)

=
W(xT , xT−1, T)P

(
xT |xT−1

)
∑

xT
W(xT , xT−1, T)P

(
xT |xT−1

)

=
W(xT , xT−1, T)P

(
xT |xT−1

)

ExT ∼P

[
W(xT , xT−1, T)|xT−1

] , (A.5)

where we see that despite starting from joint probabilities over the whole history of the trajectory, the end
result is invariant over all but the state prior to the transition, and thus we may write PW

(
xT |ωT−1

0

)
=

PW

(
xT |xT−1, T

)
for all past trajectories up to the final transition. For earlier times we have

PW

(
xt |ωt−1

0

)
=

∑
ωT

t+1

∏T
t′=0 W(xt′ , xt′−1, t′)P

(
ωT

0

)
∑

ωT
t

∏T
t′=0 W(xt′ , xt′−1, t′)P

(
ωT

0

)

=

[∑
ωT

t+1

∏T
t′=t+1 W(xt′ , xt′−1, t′)P

(
ωT

t+1|xt

)]
W(xt , xt−1, t)P

(
xt |xt−1

)
∑

ωT
t

∏T
t′=t W(xt′ , xt′−1, t′)P

(
ωT

t |xt−1

)

=
EωT

t+1∼P

[∏T
t′=t+1 W(xt′ , xt′−1, t′)|xt

]
W(xt , xt−1, t)P

(
xt |xt−1

)

EωT
t ∼P

[∏T
t′=t W(xt′ , xt′−1, t′)|xt−1

] , (A.6)

where similarly to the final transition, the dependence on the past prior to the state before the transitions at
each time have cancelled out, allowing us to write PW

(
xt |ωt−1

0

)
= PW

(
xt |xt−1, t

)
for all times. Finally, the

initial distribution is modified as

PW (x0) =
EωT

1 ∼P

[∏T
t′=1 W(xt′ , xt′−1, t′)|xt

]
W(x0, 0)P (x0)

EωT
0 ∼P

[∏T
t′=0 W(xt′ , xt′−1, t′)

] . (A.7)

These expectations represent the expected contribution to the weighting of the trajectories future given
the current state and time. The individual contributions to the expectation play a similar role to the returns
in our algorithms, however, now they have a product structure over the individual factors associated to each
transition, rather than a sum structure. Labelling these expectations as

g(xt , t) = EωT
t+1∼P

⎡
⎣

T∏

t′=t+1

W(xt′ , xt′−1, t′)

∣∣∣∣∣∣
xt

⎤
⎦ , (A.8)

with g(x, T) = 1 for all x, we have

PW

(
xt |xt−1, t − 1

)
=

g(xt , t)

g(xt−1, t − 1)
W(xt , xt−1, t)P

(
xt |xt−1

)
, (A.9)

for all t. The function g, related to a gauge transformation of the trajectory probabilities, can then be
efficiently calculated by iterating backwards, using

g(xt , t) = Ext+1∼P

[
W(xt+1, xt , t + 1)g(xt+1, t + 1)

]
. (A.10)

Excursions. We now demonstrate the above approach by calculating the transformation for the
conditioned random walk excursions case mentioned in section 2. This problem possesses a lightcone
structure inherited from the original random walker dynamics: since each transition can only go up or
down one, the position n steps in the future or past can only be n higher or lower than the present position.
Since we are targeting a dynamics which will entirely end in a single state, this lightcone structure means the
backwards iteration based on equation (A.10) will simplify significantly, allowing analytical solution.

With the weights defined by W(x ′, x, T) = δ(x ′) and W(x ′, x, t) = H(x ′) we have

g(x, t) =
1

2

(
H(x + 1)g(x + 1, t + 1) + H(x − 1)g(x − 1, t + 1)

)
, (A.11)

33



New J. Phys. 23 (2021) 013013 D C Rose et al

Figure A1. (Left) sketch of the backwards lightcone of points that can reach the target at (0, T). The direction of the backwards
lightcone coordinates are indicated by the m, n arrows. (Right) the set of g̃(3, 3) = 5 paths leading from the point m = 3, n = 3
(indicated by the red cross on the left) to the target.

for t < T − 1, with end condition g(x, T) = 1 for all x and

g(x, T − 1) =
1

2
(δ(x + 1) + δ(x − 1)) . (A.12)

This immediately implies that g(x, t) = 0 if x < −1 from the heaviside step function, and
g(−1, t) = 0.5g(0, t) on the positive–negative boundary. The lightcone structure, imposed by the delta
function at the final time, results in g(x, t) = 0 for x > T − t.

For the remaining components of the gauge transformation, those with 0 � x � T − t which
correspond to the probability of the remainder of the trajectory being an excursion under the original
dynamics, we apply two transformations. First, we set g ′(x, t) = 2−tg(x, t), modifying the equations to

g′(x, t) = H(x + 1)g′(x + 1, t + 1) + H(x − 1)g ′(x − 1, t + 1), (A.13)

for t < T − 1, with end condition g(x, T) = 1 for all x and

g′(x, T − 1) = δ(x + 1) + δ(x − 1). (A.14)

Here g ′ is interpreted as measuring the number of paths leading from the current position to the target
without going below zero. Next, we perform a coordinate transformation to backward-lightcone adapted
coordinates (m, n), where m/n correspond to steps up/down going back in time (see figure A1), defined by
x = m − n and t = T − m − n. The gauge transformation in this coordinate system g̃ is then defined as
g̃(m, n) = g′(m − n, T − m − n): g̃ is intepreted as the number of ordered combinations of ups and downs
going backwards in time for which, given any subsequence starting from the end, there are always less or
equal downs than ups, i.e. x � 0. In these coordinates, the function g̃ satisfies the following set of equations

(a) g̃(m, 0) = 1 for m � 0,

(b) g̃(m, 1) = n for m � 1,

(c) g̃(m + 1, n) = g̃(m + 1, n − 1) + g̃(m, n) for 1 < n < m + 1,

(d) g̃(m + 1, m + 1) = g̃(m + 1, m) for m � 1,

which are precisely the equations defining Catalan’s triangle, solved by

g̃(m, n) =
(m + n)!(m − n + 1)

n!(m + 1)!
, (A.15)

as demonstrated in the right of figure A1. Reversing the transformations we find

g(x, t) = 2t g̃

(
T + x − t

2
,

T − x − t

2

)
, (A.16)

and thus

g(x, t) =
1

2t

(T − t)! (x + 1)(
T−x−t

2

)
!
(

T+x−t+2
2

)
!
. (A.17)

Finally, given this transformation, we can now calculate the transition probabilities for the optimal
sampling of random walk excursions, finding

PW

(
x ± 1|x, t − 1

)
=

1

2
2t (T − t)! (x ± 1 + 1)(

T−x∓1−t
2

)
!
(

T+x±1−t+2
2

)
!

1

2t−1

(
T−x−t+1

2

)
!
(

T+x−t+3
2

)
!

(T − t + 1)! (x + 1)
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=
1

2

(
1 ± 1

x + 1

)(
1 ∓ x + 1 ∓ 1

T − t + 1

)
. (A.18)

Appendix B. Maximum return estimation

When training the dynamics for optimal rare trajectory sampling, the most efficient way to evaluate the
current dynamics is by estimating the average return it produces. If this average increases over time, then
the model is being successfully trained. To this end, in situations where it is available, it is useful to have an
estimate for the maximum possible return over all possible transition matrices for precise evaluation of how
good the model is.

This upper bound on the return can be estimates numerically by using the gauge transformations
discussed in the appendix A. First, note that since the KL divergence must be greater than 0, equation (24)
immediately implies an upper bound of

∑

ωT
0

Pθ(ωT
0 )R(ωT

0 ) � ln Z, (B.1)

which is saturated by setting Pθ(x ′|x, t) to the gauge transformed dynamics in appendix A. We may then
rewrite

Z =
∑

ωT
0

W
(
ωT

0

)
P
(
ωT

0

)
=

∑

x

g(x, 0)p(x), (B.2)

where p(x) is the original initial state distribution. The upper bound may then be rewritten in terms of the
gauge transformation

∑

ωT
0

Pθ(ωT
0 )R(ωT

0 ) � ln

(∑

x

g(x, 0)p(x)

)
. (B.3)

For the excursion example, this takes a particularly simple form: since the initial state distribution is
p(x)δx0, only a single gauge component contributes

∑

ωT
0

Pθ(ωT
0 )R(ωT

0 ) � ln g(0, 0). (B.4)

As such, for the upper bounds in section 3.4 we simply need to estimate this component of the gauge
transformation by numerical back-propagation of the gauge.

Appendix C. Exact diagonalization for SCGF and optimal dynamics

In order to have an accurate result for evaluation of the infinite time algorithms, we use a common
technique from LD theory, turning the issue of finding the SCGF and optimal (Doob) sampling dynamics
into one of exact diagonalization. To this end, we first define the tilted master operator Ps with components

Ps(x′|x) = P(x′|x)Ws(x, x′), (C.1)

with the weighting parametrized by the bias s. It follows simply from the definitions that the SCGF θ(s)

θ(s) = lim
T→∞

ln

⎡
⎣∑

ωT
0

P(ωT
0 )Ws(ω

T
0 )

⎤
⎦

= lim
T→∞

ln
[
〈−|PT

s |Pss〉
]

, (C.2)

where |Pss〉 is the steady state distribution, and thus in the infinite time limit the SCGF is simply the log of
the leading eigenvalue of the matrix Ps.

Further to this, it is possible to calculate the optimal sampling dynamics by using this leading eigenvalue
and its corresponding left eigenvector, which we label ls with components ls(x). First, we scale the operator
so that its eigenvalues are at or below zero, Ps/eθ(s). Next, we need the action of the flat state on the left of
this matrix to result in zero for probability conservation: we therefore perform a basis transformation using
a matrix with diagonal elements given by the components of ls, finding the optimal dynamics

P̃ =
diag(ls)Ps diag (ls)−1

eθ(s)
, (C.3)
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with the new stationary state given by component wise multiplication of the left and right eigenvectors

Ps
ss(x) = ls(x)rs(x). (C.4)

That this is optimal can be derived more precisely from an infinite time version of the gauge-transformation
related approach of appendices A and B.
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Chapter 7

Training Neural Network Ensembles
via Trajectory Sampling

The following work is from the article “Training neural network ensembles via trajectory
sampling” by J. F. Mair, D.C. Rose and J. P. Garrahan submitted for consideration for
publication in Physical Review E [142].

In this work, we present a novel technique for jointly training an ensemble of neural net-
works via trajectory sampling methods, building on the techniques presented in chapters
1 and 4. The focus of our study is on ensembles of models with identical architectures,
but distinct parameter sets. We build a trajectory of models to form the ensemble, where
adjacent models in the trajectory are coupled by a parameter σ. We bias sampling of
trajectories towards low total loss of models (which can be thought of as an energy),
coupled with a parameter s which acts like an inverse temperature, and use a TPS-based
approach to generate new samples. The ensemble is “trained” together by proposing new
trajectories and accepting or rejecting using a metropolis condition, which will eventu-
ally converge to sampling the stationary state of the biased dynamics. If we set σ →∞,
this is equivalent to independently training each model in the trajectory via neuroevo-
lution, which has a correspondence with stochastic gradient descent (discussed in detail
by Whitelam et al [143]). By coupling the models, we are able to efficiently reach lower
average losses for the same fixed temperature, and hence, generate a higher performing
ensemble of models.

We present an analytical derivation of this technique on an ensemble of linear models
(using LDT, for which Chapter 3 is an introduction) on a simple regression task and
produce empirical results using TPS, which reproduce these analytic results. Further, we
go on to use a more complex Convolution Neural Network as the base architecture for our
ensemble and train on the full MNIST [28] problem, showing the powerful improvement
in ensemble performance over neuroevolution for the same temperature. This technique is
powerful as it is not limited to training only neural network models, but can be considered
a black-box technique, applicable to a wide range of models that can be represented by a
vector of real-valued parameters. However, this work does not address the computational
issue with requiring the entire dataset to train at each epoch, which can be prohibitively
costly. This shortcoming is addressed in a later work, presented in Chapter 8, via the
incorporation of a minibatch update.
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In machine learning, there is renewed interest in neural network ensembles (NNEs), whereby
predictions are obtained as an aggregate from a diverse set of smaller models, rather than from a
single larger model. Here, we show how to define and train a NNE using techniques from the study
of rare trajectories in stochastic systems. We define an NNE in terms of the trajectory of the model
parameters under a simple, and discrete in time, diffusive dynamics, and train the NNE by biasing
these trajectories towards a small time-integrated loss, as controlled by appropriate counting fields
which act as hyperparameters. We demonstrate the viability of this technique on a range of simple
supervised learning tasks. We discuss potential advantages of our trajectory sampling approach
compared with more conventional gradient based methods.

I. INTRODUCTION

The traditional approach in machine learning (ML),
once the architecture of a model is defined (say a neu-
ral network, or NN, composed of layers of coupled neu-
rons), is to learn one set of parameters (say the couplings
and biases between the neurons) as optimally as possi-
ble from the data; for reviews see e.g. [1, 2]. This is
done by minimising a (suitably regularised) objective or
loss function of the parameters over a training data set
[1, 2]. This optimisation amounts to gradient descent in
the landscape defined by the loss function and the train-
ing data, often supplemented with tricks that help to
speed up convergence, such as adding inertia or stochas-
ticity to the optimisation dynamics [3, 4]. The properties
of the training dynamics are controlled by so-called hy-
perparameters [1, 2]. In this approach, at the end of the
learning process one gets a single trained model that is
then is used to make inferences [1, 2].

However, there has been recent interest [5, 6] in an
alternative approach, where rather than a single model,
one trains a set of models. Such ensemble or committee
of models [7–13] offers several advantages. Since training
by gradient descent can converge to different solutions in
a complex loss landscape, training an ensemble of models
starting from different initial seeds gives a set of equiv-
alent yet distinct models. Obtaining inferences as the
mean or as a majority consensus of the ensemble mem-
bers can therefore provide better estimates and attenuate
uncertainty. Furthermore, an ensemble of smaller mod-
els may be more computationally efficient than a single
large model, both to train and to run [6].

Here, we introduce a method to define and train neural
network ensembles (NNEs) that is based on ideas from
the sampling of rare stochastic trajectories. From a sta-
tistical mechanics perspective, training one ML model

∗ jamie.mair@nottingham.ac.uk

with stochastic gradient descent is equivalent to ther-
mal annealing [14], where the dynamical variables are
the model parameters, the training data plays the role
of quenched disorder, the loss is the energy, and stochas-
ticity comes from a thermal bath: at low temperature,
an annealing dynamics of the ML parameters, such as
Monte-Carlo, will converge to a state of low energy and
therefore low loss. Analogously, we can think of a NNE
in terms of a trajectory of models: given some dynamics
of the parameters, the set of configurations visited over
a period of time defines the ensemble. If we require the
trajectory to have low time-integrated loss then we can
obtain a well-trained NNE. This procedure can be im-
plemented with modern trajectory sampling techniques
[15–18], and as we show below, it is a viable way to define
and train ML ensembles.

The paper is organised as follows. In Sec. II we review
basic concepts about neural networks and NN ensembles.
In Sec. III we introduce our method of defining NNEs in
terms of trajectories of a stochastic dynamics. Section
IV provides exact results for the simple case where the
NN architecture is that of a linear perceptron. In Sec. V
we show how to train NNEs by means of transition path
sampling. In Sec. VI we illustrate our method with ap-
plication to the linear perceptron, to a two-dimensional
loss landscape, and to the textbook problem of classify-
ing handwritten digits in the MNIST data set. Section
VII gives our conclusions and outlook.

II. NEURAL NETWORKS AND NEURAL
NETWORK ENSEMBLES

A. Neural Networks

Neural networks are computational models which are
commonplace throughout ML [1, 2]. They are used as
function approximations on problems where the exact
structure of the mapping between input and output is
unknown. A standard NN maps an input data vector x
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to an output vector y, via y = f(x). The structure of a
standard feed-forward NN can be expressed as follows:

h(i) = σi(W (i)h(i−1) + b(i)), (1)

where

h(0) = x (2)

h(N) = y. (3)

The model is parameterised by the weight matrices and
the bias vectors, denoted by W (i) and b(i) respectively.
The number of layers in the model is denoted by N , not
counting the input layer. The activation function σi is
any non-linear function, such as a hyperbolic tangent or
a rectified linear unit (ReLU). The exception is that the
output layer can be allowed to have a linear activation
function, to not limit the range of outputs a model, de-
pending on the type of function being approximated. We
denote the parameters of the model θ and the function
mapping input to output in the model as fθ. We treat
θ as a flat vector containing all the parameters of the
weight matrices and bias vectors.

One can define an ML problem via the specification of
a loss function, L(θ), which we view as a function of the
model parameters. This translates the problem of find-
ing the optimal parameters that define the model into
one of minimizing the loss. Most modern ML problems
use a NN as the function approximation, since the struc-
ture allows for efficient calculation of the gradient of the
loss, with respect to the parameters of the model. These
gradients can then be used to reduce the loss through a
range of techniques for updating the parameters[4, 19–
21]; all of which are variants of basic gradient descent,
where parameters are updated via

θ ← θ − α∇θL(θ), (4)

where α is a learning rate which is used to tune the size
of each update.

An alternative to gradient based optimization is
gradient-free optimization, such as neuroevolution [14,
22, 23]. Such approaches are usually based on ran-
domised Monte-Carlo changes to the model, which may
modify both the parameters and the model structure.
Each modification is evaluated using the loss function,
and probabilistically accepted or rejected according to
some chosen criteria. In particular, thermal annealing
with Monte-Carlo can be shown [14] to be analogous to
gradient descent.

B. Neural Network Ensembles

Instead of a single trained NN, one can use a collec-
tion of trained NNs to make an inference. The different
models in such a NN ensemble [5–13] need not share a
common structure, but it is important to define a way

of combining the individual predictions from the con-
stituent models to form an aggregate prediction. For
example, in the case of classification problems, one can
give each model in the ensemble a “vote” for each pre-
diction, and the final prediction is the most voted for
option. Alternatively, when the inference is a score, the
aggregate score could be the mean over the ensemble.

We will focus on the more standard case of NNEs of
models with identical structure but differing parameters.
We denote the ensemble by the set of parameters in each
of the models, Θ = {θt}τt=1, where τ is the number of
models in the ensemble. A loss for the entire ensemble is
defined as L(Θ) =

∑
t L(θt), where L(θt) is the loss of a

single model with parameters θt.

III. NEURAL NETWORK ENSEMBLES AS
TRAJECTORIES

Our approach is to construct a probability distribution
which puts a high weight on ensembles of models with low
total loss, from which we then sample effective ensembles.
This is achieved by taking inspiration from the trajectory
ensemble methods for many-body stochastic processes,
based on large deviations [17, 18, 24–27]. In what follows
we show how to construct NNEs in terms of appropriately
sampled stochastic trajectories of the parameters that
define the individual NNs of the ensemble.

We can think of our trajectory NNE construction in
two alternative but equivalent ways. The first one is as
follows. We think of a NNE as a time ordered trajectory
of models, Θ = θ1 → θ2 · · · → θτ , where the sequence
of models is generated by a stochastic dynamics of the
model parameters. We start with an unbiased dynam-
ics, which for simplicity we choose as a discrete in time
random walk in the space of parameters, with symmet-
ric Gaussian steps of variance σ2. That is, under this
unbiased dynamics, the trajectory Θ has probability

Pσ(Θ) =
1

Zτ (σ)
p(θ1)

τ−1∏

t=1

exp

[
− 1

2σ2
(θt − θt+1)2

]
, (5)

Here p(θ1) is the initial probability of the parameters of
the first model, and Zτ (σ) a normalisation. A NNE gen-
erated in this way would have an arbitrary loss. In order
to generate a useful NNE we wish to select trajectories
with low time-integrated loss

L(Θ) =

τ∑

t=1

L(θt) (6)
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This is done by tilting Eq.(5) [17, 18, 24–27]

Pσ,s(Θ) =
1

Zτ (σ, s)
p(θ1)e−sL(θ1)

×
τ−1∏

t=1

exp

[
− 1

2σ2
(θt − θt+1)2

]
e−sL(θt) (7)

=
p(θ1)

Zτ (σ, s)
e−sL(Θ)

τ−1∏

t=1

exp

[
− 1

2σ2
(θt − θt+1)2

]
,

where the normalising factor is the dynamical partition
sum, given by

Zτ (σ, s) =

∫
dΘ p(θ1)e−sL(Θ)

×
τ−1∏

t=1

exp

[
− 1

2σ2
(θt − θt+1)2

]
. (8)

In Pσ,s(Θ) the unbiased probabilities of Eq.(5) are re-
weighted by an exponential factor in the time-integrated
loss.

The probability given by (7) for a trajectory, or NNE,
is controlled by the “hyperparameters” σ and s. The first
one determines how different subsequent models in the
trajectory are, since larger σ corresponds to larger steps
in the unbiased diffusive dynamics in parameter space
(that is, σ is the conjugate to the “dynamical activity”
of the trajectory [25, 28]). The second hyperparameter
controls (i.e., is conjugate to) the time-integrated loss,
since the larger s, the lower the total loss in the NNE.

Our aim is to sample NNEs from Eq.(7) at large
enough s and, therefore, low enough overall ensemble
loss. While generating trajectories with the unbiased
probability Eq.(5) is done straightforwardly by simply
running a diffusive dynamics on the parameters, obtain-
ing trajectories compatible with (7) is more difficult. Dif-
ficulty arises as the tilted trajectories correspond to an
atypical subset of trajectories of those generated by the
diffusive dynamics, one which is exponentially suppressed
in τ and in the number of parameters with respect to the
typical trajectories. Nevertheless, as we show below, such
subset can be efficiently accessed by means of rare event
sampling techniques.

A. Connection to stochastic gradient descent

A second way to see the re-weighted, or biased, trajec-
tories in Eq.(7) connects to more traditional approaches
for NN training related to stochastic gradient descent. In
the limit of τ = 1 the NNE is simply a single model with
probability, from Eq.(7),

ps(θ) =
1

Zs
e−sL(θ), (9)

where in the following we consider only s > 0, which al-
lows us to normalise this probability distribution. Equa-
tion (9) is the equilibrium probability for a stochastic

dynamics obeying detailed balance with respect to en-
ergy L(θ) at inverse temperature s, and where Zs =∫
dθe−sL(θ). One such dynamics is so-called neuroevolu-

tion [14], in which the parameters of the model are up-
dated by proposing random Gaussian increments, and ac-
cepting them with a Metropolis criterion min(1, e−s∆L),
where ∆L is the change in loss. This process can be
shown to be equivalent to stochastic gradient descent
when averaged over many runs [14]. For the case of many
models, τ > 1, and σ → ∞, Eq.(7) describes τ uncou-
pled models equilibrated under neuroevolution (or simi-
lar thermal annealing of the individual losses at inverse
temperature s),

P∞,s(Θ) =
1

Zτ (∞, s)e
−sL(Θ) (10)

with Zτ (∞, s) = (Zs)τ . While Eq.(10) does describe an
NNE, all the models in the ensemble are distributed iden-
tically and independently, cf. Eq.(6), and the expected
loss per model in the NNE is the same as the expected
loss of an individual model under Eq.(9).

In order to reduce the NNE loss, one has to couple the
different models in Eq.(10). This is precisely what Eq.(7)
does when σ <∞: in this case σ controls how much each
successive model in the ensemble is allowed to differ from
the previous one. That this will reduce the total loss of
the ensemble can be seen from the fact that in the limit
of vanishing σ, all the models have to be the same and
Eq.(7) becomes

P0,s(Θ) ∝ exp[−sτL(θ1)]
τ∏

t=2

δ(θt − θ1) (11)

so that the NNE is equivalent to a single model equili-
brated as in Eq.(9) but at a lower temperature (sτ)−1,
and thus a much lower average loss.

B. Training strategy

From studies of other problems with complex optimisa-
tion landscapes, such as glasses and spin glasses, it is well
known that directly attempting to access low tempera-
ture states is riddled with slow convergence problems.
This makes training an NNE by simply reducing the
temperature, cf. Eq.(10), impractical. In contrast, the
combination of the hyperparameters s, conjugate to the
loss, and σ, conjugate to the dynamical activity can help
overcome the convergence problem, as shown in large de-
viation studies of glassy systems [16].

Sampling trajectories distributed according to the
tilted measure Eq.(7) is our method of training NNEs.
The technical problem is that while trajectories are easy
to generate via the diffusive dynamics that defines Eq.(5),
they are notoriously difficult to generate for Eq.(7), as
this represents a subset of rare diffusive trajectories with
atypical time-integrated loss for s > 0. To do this, we
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will employ transition path sampling (TPS) [15], supple-
mented by convergence-enhancing tricks for trajectory
proposals, in order to efficiently sample trajectories from
Eq.(7), as explained in detail in Sec. V.

IV. EXACT RESULTS FOR A LINEAR
PERCEPTRON

As an elementary and analytically tractable example,
we consider a regression problem using a linear percep-
tron with a mean-squared error (MSE) loss function. The
linear perceptron is a model given by y = Wx + b,
which we simplify by defining a modified input vector
x̃T = [xT 1], in turn defining an expanded weight ma-

trix W̃ = [W b]. This simplifies the model to y = W̃ x̃,

then y ∈ Rk, x̃ ∈ R(d+1) and W̃ ∈ Rk×(d+1), where k
is the number of target output dimensions and d is the
number of dimensions of the feature vector. Given N
target labels, y′, corresponding to some input features,
x, we define matrices X̃ ∈ R(d+1)×N , Y = W̃X̃ and
Y ′ ∈ Rk×N . Using these we write the MSE loss as:

L(θ) =
1

2N
tr
(
[Y − Y ′][Y − Y ′]T

)
, (12)

which can be further simplified to

L(θ) =
1

2

(
tr
(
W̃AW̃T

)
− 2tr

(
W̃B

)
+ tr (C)

)
, (13)

where

A =
1

N
X̃X̃T , (14)

B =
1

N
X̃Y ′T , (15)

C =
1

N
Y ′Y ′T . (16)

If we express the trajectory parameters Θ as a row vec-
tor of blocks W̃t for each time t, Θ ∈ Rk×τ(d+1), we can
write the partition sum in Eq.(7) as a Gaussian integral

Zτ (σ, s) =

∫
DΘ exp[− 1

2
tr(ΘÃΘT )

+ tr(ΘB̃)− s

2
τtr(C)], (17)

where

Ã =




1
σ2 + sA − 1

σ2 0
− 1
σ2

1
σ2 + 2sA − 1

σ2

− 1
σ2

. . .
1
σ2 + 2sA − 1

σ2

0 − 1
σ2

1
σ2 + sA



,

(18)
and

B̃ =



sB
...
sB


 . (19)

We see that Ã ∈ Rτ(d+1)×τ(d+1) and B̃ ∈ Rτ(d+1)×k.
Note that when τ = 1, Ã = sA, as there is no dependence
on σ. It is easy to integrate over trajectories to obtain
the partition sum for the linear perceptron

Zτ (σ, s) = exp

{
−1

2
tr(B̃T Ã−1B̃)

−1

2
log detÃ+

s

2
τtr(C)

}
. (20)

The dynamical partition sum Eq.(8) is the moment
generating function for the time-integrated loss. From
this, one can obtain the average time-integrated loss for
arbitrary s [17, 18, 27],

1

τ
E [L(ω̃)] = −1

τ
∂s logZτ (s). (21)

For the linear perceptron problem, we can compute
Eq.(21) directly from Eq.(20). The average loss as a func-
tion of s is shown in Fig. 1(a,b), for different values of τ
and two values of σ.

We observe the following features: (i) for a given τ ,
the loss per unit time decreases with increasing s; (ii) for
fixed s, the loss decreases with τ ; and (iii) the loss curves
are systematically lower in values the smaller σ. These
can be explained from the exact form of the average time-
integrated loss of the linear perceptron trajectories. In
that expression we find two regimes:

1

τ
E [L(ω̃)] ≈ 1

2
tr(BTB)−1

2
tr(C)−

{
1

2sτ sσ2 � 1
1
2s sσ2 � 1

(22)

The first two terms of are constants, given by samples in
the dataset. This specifies the minimum loss achievable,
given the data. When sσ2 � 1, a dependence on τ−1

emerges, which is responsible for the banding in Fig.1
for small values of s: a higher value of τ will lead to a
lower loss. When sσ2 � 1, the banding effect becomes
negligible, and all values of τ converge to the same loss
per unit time for a given s.

The parameter σ controls where the banding occurs,
see Fig.1: comparing panels (a) and (b) we see that band-
ing persists in (a) much longer than in (b); the s values
at which the curves converge, i.e. the loss of advantage of
longer trajectories, differs by a factor of σ2. [For τ = 1,
the conditions in Eq.(22) become the same, and σ plays
no role; this is the limit of a single NN trained via gradi-
ent descent or neuroevolution, as discussed in Sec. IIIA.]

The interplay between the hyperparameters s, τ and
σ provides in our trajectory method a mechanism for
balancing between exploitation versus exploration in the
training of the NNE. As we will show below, all these
features that we can compute exactly for an ensemble of
linear perceptrons generalise qualitatively to more com-
plex architectures: the loss of a NNE obtained from our
trajectory approach is reduced by increasing s, trajectory
length, and decreasing σ.
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FIG. 1. NNEs as trajectories in the linear perceptron. (a) Exact time-averaged loss, Eq.(21), as a function of s for
various trajectory lengths τ and σ = 0.1. (b) Same for σ = 1. (c) Comparison between exact results (lines) and TPS sampling
(symbols). Empirical samples were generated using methods described in Sec. V, using an adaptive annealing technique in s to
decrease convergence time, similar to the process shown in Fig.3. Full source code to reproduce this data is supplied in [29, 30].

V. TRAINING NNES WITH TRANSITION
PATH SAMPLING

In order to sample good NN ensembles from the bi-
ased distribution Eq.(7) we use Transition Path Sampling
(TPS) [15], a form of Monte-Carlo in trajectory space
that can be used to converge to sample arbitrary rare
trajectories from some unbiased dynamics. It is particu-
larly well suited for sampling dynamics where the biased
set is due to tilting by a time-integrated function of the
trajectories, see e.g. [16].

TPS proceeds as in standard Monte-Carlo by gener-
alising from configurations to trajectories. In our case
we wish to sample from Pσ,s(Θ), Eq.(7), so the start-
ing point of TPS is to construct transition probabilities
P (Θ′|Θ) which satisfies detailed balance with respect to
that distribution: P (Θ′|Θ)Pσ,s(Θ) = P (Θ|Θ′)Pσ,s(Θ′).
This guarantees that the stationary distribution of tra-
jectories generated sequentially using P (Θ′|Θ) will con-
verge to those sampled from Pσ,s(Θ). The transition
probabilities are decomposed into two sub-steps known
as the proposal and acceptance-rejection steps

P (Θ′|Θ) = g(Θ′|Θ)A(Θ′,Θ), (23)

where g(Θ′|Θ) is the conditional probability of proposing
a trajectory Θ′ given a current trajectory of Θ. The
acceptance probability A(Θ′,Θ) then specifies how likely
it is to accept the proposed trajectory, given the current
trajectory. Inserting this decomposition into the detailed
balance leads to a relation which the acceptance must
satisfy for the combined dynamics to possess the desired
detailed balance:

A(Θ′,Θ)

A(Θ,Θ′)
=
Pσ,s(Θ

′)
Pσ,s(Θ)

g(Θ|Θ′)
g(Θ′|Θ)

. (24)

A very common choice for the acceptance ratio which
fulfils the above expression is the Metropolis one

A(Θ′,Θ) = min

(
1,
Pσ,s(Θ

′)
Pσ,s(Θ)

g(Θ|Θ′)
g(Θ′|Θ)

)
. (25)

Given that only ratios of the target distribution appear
in the acceptance probability, we can simplify the above
expression by choosing proposal moves that satisfy de-
tailed balance with respect to the unbiased probability
(5),

Pσ(Θ′)g(Θ|Θ′) = Pσ(Θ)g(Θ′|Θ). (26)

Inserting into (25) we get

A(Θ′,Θ) = min
(

1, e−s[L(Θ′)−L(Θ)]
)
. (27)

The above means that trajectories are generated with
the unbiased dynamics, Eq.(26), and accepted or rejected
according to the change in time-integrated loss, Eq.(27).

While generating trajectories with the unbiased dy-
namics is a big simplification, for two arbitrary trajecto-
ries the difference in time-integrated loss is extensive in
time and (at least) also extensive in number of param-
eters, making acceptance (27), in general, exponentially
small. For that matter, most of the art in TPS is to
design moves that both satisfy detailed balance in tra-
jectory space and make acceptance efficient.

A. Generating dynamics: shooting plus Brownian
bridges

A very common choice for generating trajectory moves
in TPS is shooting [15], which involves choosing a fixed
time in the trajectory and a direction, forwards or back-
wards, and evolving with the original unbiased dynamics
until reaching the end of the trajectory (with detailed
balance, a backward shooting move can be generated
forwards and time-reversed). Shooting with the origi-
nal dynamics Eq.(5) is outlined in Algorithm Alg.1. Un-
der shooting, g obeys Eq.(26) and therefore Eq.(27) is
the corresponding acceptance probability. As shooting
leaves a portion of the trajectory unchanged, one need
only calculate the change in loss of the modified portions
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of the trajectory. The shooting method is sketched in
Fig.2(a,b).

Algorithm 1 Shooting TPS

1: input Current trajectory Θ
2: parameters Variance of the Gaussian noise σ2

3: Choose t uniformly from [1, τ ], where t is an integer
4: Choose a direction randomly κ ∈ {−1, 1}
5: Initialise Θ′ ← Θ
6: while t+ κ ≥ 1 and t+ κ ≤ τ do
7: Sample all elements of ∆θ′ i.i.d. from N (0, σ2)
8: θ′t+κ ← θ′t + ∆θ′

9: t← t+ κ
10: end while
11: output Θ′

A common issue with shooting is that it is difficult to
generate successful updates towards the centre of a tra-
jectory. The reason is that when shooting from the bulk
of the trajectory, the difference in time-integrated loss be-
tween the proposed and current trajectories scales with
the trajectory length, making acceptance exponentially
suppressed with time. To address this issue, we exploit
the fact that the unbiased dynamics we use to generate
moves is Brownian: we supplement shooting with moves
generated by Brownian bridges, see e.g. [31, 32], that is,
a proposed move consists of replacing a portion of the
trajectory by a bridge between the same initial and final
points of the replaced segment, see sketch in Fig.2(c). By
controlling the time extent of the bridge, we can attenu-
ate the loss difference in Eq.(27) thus enhancing accep-
tance. Details on the Brownian bridges is given in the
Appendix. The key formulae are as follows: if the por-
tion of the trajectory to replace is between times t1 and
t2, keeping xt1 and xt2 fixed, by generating a bridge with
the dynamics

PB (xt|xt−1, t) =
e−

[xt−µ(xt−1,t)]
2

2v(t)

√
2πv(t)

, (28)

with time-dependent mean and variance

µ(x, t) =
xt2 + (t2 − t)x
t2 − t+ 1

, (29)

v(t) = σ2 t2 − t
t2 − t+ 1

. (30)

We demonstrate how a bridge is generated in Alg.2.
One has the choice of how to generate t1 and t2. In
our simulations, we favour choosing t1 uniformly from
[1, τ − 2] and then setting t2 = t1 + 2, to give a bridge of
a single time step, so there is only one updated state.

Algorithm 2 Brownian bridges for TPS

1: input Current trajectory Θ
2: parameters Variance of the Gaussian noise σ2

3: Choose t1 and t2 uniformly from [1, τ ], where t1, t2 ∈ Z
and t2 > t1.

4: Initialise Θ′ ← Θ
5: Initialise t← t1 + 1
6: while t < t2 do
7: Calculate mean µt for (θ′t−1, t) from Eq.(29)
8: Calculate variance v(t) from Eq.(30)
9: Sample θ′a from N [(µt)a, vt] for all components a

10: θ′t ← θ′

11: t← t+ 1
12: end while
13: output Θ′

One cannot guarantee ergodicity in trajectory space
using only bridges, as it requires two ends to be fixed,
meaning the end of the trajectories will not be modi-
fied. Instead, we use a combined approach consisting of
choosing the shooting algorithm (Alg.1) with probabil-
ity pshoot or the bridge algorithm (Alg.2) with 1− pshoot.
For shorter trajectories τ ≤ 4, we choose pshoot = 1, as
the trajectories are not long enough for centre trajec-
tory updates to become inefficient. When τ > 4, we set
pshoot = 2

τ and modify the shooting algorithm to only
shoot forwards from t = τ − 1 or backwards from t = 2
with equal probability, and choose bridges that only alter
a single time in the trajectory as described earlier. This
choice was to improve acceptance, and ensure that each
model in the trajectory had an equal probability of being
mutated.

VI. NUMERICAL RESULTS

A. Linear perceptron

As an elementary demonstration of our TPS scheme,
we applied it to the linear perceptron model of Sec. IV.
Figure 1(c) shows that TPS reproduces the exact results
for the average time-integrated loss as a function of s.

The quantity of interest is the expected time-averaged
loss of the NNE. We can estimate this quantity as a run-
ning average of the TPS iterations, or “epochs” of the
training,

E [L(Θ)] ≈ 1

M

Mrel+M∑

m=Mrel

L(Θ(m)), (31)

where Θ(m) is the parameter trajectory at TPS epoch
m. In the above, the time-integrated loss is an empirical
average over M epochs, calculated after allowing TPS
to relax for Mrel epochs, large enough so that TPS con-
verges to stationarity. In the limit of M → ∞ Eq.(31)
becomes an equality. As is standard practice, we check
for TPS relaxation empirically. A common technique for
speeding up convergence is to anneal the s parameter,
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FIG. 2. TPS scheme. The original trajectory is ω and the proposed new trajectory is ω′. (a) Backwards shooting, fixing
t ≥ 4. (b) Forwards shooting, fixing t ≤ 6. (c) Brownian bridge, fixing t ≤ 2 and t ≥ 7.
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FIG. 3. TPS annealing. Training of the NNE for the
linear perceptron through stepwise decrease of s, for τ = 8
and σ = 1.0.

starting at a low s (i.e. close to the unbiased dynamics),
and progressively increasing s towards the desired value;
see Fig.3.

B. Two-dimensional loss landscape

To illustrate how TPS works on a trajectory represent-
ing a model, and in particular how biasing the diffusive
dynamics allows for sampling low loss trajectories, we
consider a simple, yet non-trivial, toy problem where the
model has only two parameters.

We consider the Hummelblau’s function:

h(x, y) = (x2 + y − 11)2 + (x+ y2)2, (32)

and choose x and y to be within [−5, 5]. The aim is
to train an ensemble of models, where each model has
parameters θ = (x, y) and h(x, y) is the loss. We can
then construct a trajectory, Θ, which is initialised un-
der Gaussian dynamics with σ = 1.0, with θ0 = (x0, y0)
randomly chosen from [−1, 1] × [−1, 1]. As before, we
choose the observable of a trajectory of length τ to be
the time-integrated loss, L(Θ) =

∑τ
t=1 h(xt, yt).

Figure 4 shows the evolution of the ensemble trajec-
tory under TPS. The first snapshot in panel (a) is the

FIG. 4. Trajectory evolution under TPS. Progression
of the NNE training for the 2D loss landscape. Snapshots of
the trajectory every 50 TPS epochs.

randomly initialised trajectory, and progress is shown ev-
ery 50 TPS iterations. We see that as TPS progresses,
the trajectory evolves towards being localised in the min-
imum of the loss landscape. This represents the training
of the ensemble by means of trajectory sampling.

In this simple example, it is easy to visualize two fea-
tures of the training. First, loss landscapes can have a
natural length scale for each dimension, which justifies a
choice of σ to enable a high enough acceptance rate. Sec-
ond, both s and σ dictate the evolution of a trajectory
under TPS, and therefore the training of the ensemble.
A lower value of s and a higher value of σ means that the
trajectory is free to spread out across the loss landscape,
fairly unimpeded. A higher value of s and a lower value
of σ restricts a trajectory to cover a small range of the
loss landscape, making the trajectory much more likely
to be localised in a local minimum.
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C. MNIST classification

As a final example, we consider a standard ML clas-
sification task. In this case the relevant loss function is
the mean cross entropy loss over the data. For a single
NN this reads

L(θ) = − 1

Nsp

Nsp∑

i=1

Ncl∑

j=1

δzi,j ln yj(xi;θ), (33)

where xi and zi represent the features and class label
index of the ith data point (in a dataset of size Nsp),
and yj(xi;θ) is the probability of selecting class j (out
of Ncl classes) using the NN parameterised by θ. This
probability is usually calculated using a softmax layer on
the end of the NN. If a model predicts that all classes
have an equal probability, then the mean cross entropy
loss is ln(Ncl).

We now consider the classification of handwritten dig-
its from the MNIST [33] dataset, a standard benchmark
for many ML algorithms. Examples of each of the 10
digits in MNIST are shown in Fig.5(a). MNIST classifi-
cation is a typical example of a problem where one would
apply the cross entropy loss function (33) to train a NN.
Being high dimensional, this is also a good problem to
test our method of producing trained NNEs via trajec-
tory sampling.

As we are interested in studying the training process
under our ensemble method, we have simplified the prob-
lem by restricting the dataset to 2048 samples, down from
the usual 60, 000. The distribution of each digit is uni-
form in the sampled training set. The basic architecture
of each NN in the ensemble uses a mix of convolution
and fully connected layers, based on LeNet[34]. The aim
is to train the NNE to output a probability of selecting
a digit, based on the softmax distribution of the final
output layer of the NN. The cross-entropy loss function,
Eq.(33), is calculated using the logits (the input to the
softmax activation) for numerical stability.

In a classification problem, one uses the loss function
as a proxy for accuracy. These two measures are highly
correlated as a low loss likely correlates with high accu-
racy. Effectively, to achieve a high accuracy on the train-
ing dataset, there is a low loss region which should be
reached. For training the NNE via trajectory sampling,
we tuned the range of s such that the models converged to
a low enough loss region, which corresponded to the full
range of accuracies. For the MNIST problem, this range
was between s = 5 and s = 50. To provide banding in the
chosen s domain, we used σ = 0.05 to effectively shift the
banding region into these higher values of s. Reducing
the value of σ provides the additional benefit of making
smaller updates in TPS, leading to a higher acceptance
rate and speeding TPS convergence.

We ran a combination of shooting and bridging TPS,
as detailed previously, for a number of independent tra-
jectories until the time-averaged loss function appeared
numerically converged, similar to what can be seen in

Fig.3. Figure 5(b) shows the time-integrated loss per
unit time as a function of s of the trained NNEs. We
can see an analogous banding to that of the simple lin-
ear perceptron: larger values of s have lower ensemble
loss, and this is significantly enhanced by increasing the
trajectory length.

In Fig.5(b) we also see differences with the perceptron
arising from the non-polynomial form of the loss, Eq.(33).
First is the effect of the minimum possible value of the
loss that the chosen NN architecture can reach. This
minimum should be approached by curves as s→∞. In
Fig.5(c) we show that this tends towards 100% accuracy
of the NNE, already achieved for s = 50 and τ = 32. The
second difference is in the small s regime, where the loss
function exerts less influence over the sampling. Since
under the unbiased dynamics each output logit is ran-
domly distributed in the long time limit, for vanishing s
the mean cross-entropy loss per unit time will converge to
ln(Ncl), provided that the classes are balanced. This pro-
duces an upper loss plateau in the dynamics. Increasing
the loss beyond this point requires a model to be “intel-
ligently wrong”, by lowering the probability of choosing
the correct answer beyond uncorrelated random chance.
In contrast, for a polynomial loss function as in the linear
perceptron case, the loss diverges as s → 0, something
that does not occur in a classification problem like this
MNIST.

The highest value of s we used for the MNIST prob-
lem is large enough to train the longer trajectories to very
low losses, which correspond to very high accuracies, see
Fig.5(c). While we could in principle reduce the losses
to arbitrarily small values, this often causes overfitting,
reducing the ability of the models to generalise to unseen
examples, see e.g. [1, 2]. Additionally, there is significant
cost in using higher values of s, as they reduce the accep-
tance rate, which can significantly increase training time
and cost. We demonstrated that our method is capable
of training a standard convolutional neural network to
high train accuracy on a subset of the MNIST problem,
as seen in Fig.5(c).

VII. CONCLUSIONS

Here, we have presented a method to train neural
network ensembles using trajectory sampling techniques
more often applied in the statistical mechanics of non-
equilibrium systems. In our approach the set of neural
networks that form the NNE corresponds to the sequence
of configurations of the NN parameters that are visited
in a stochastic trajectory. By biasing trajectories to have
low time-integrated loss we showed we could train NNEs
to perform well in standard machine learning tasks such
as MNIST classification. For concreteness, we focused on
trajectories from dynamics which is discrete in time, con-
tinuous in space, and where the changes at each time step
are synchronous, in the sense that all parameters can be
updated simultaneously. None of these is a requirement:
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FIG. 5. NN ensembles training for MNIST. (a) Representative images for the Ncl = 10 classes of the MNIST dataset.
Each digit is a 28 × 28 greyscale image, with the brightness of each pixel encoded between 0.0 (black) and 1.0 (white). (b)
Time-averaged cross entropy loss for different values of s and τ , for σ = 0.05. (c) Time-averaged mean accuracy from the NNE
at the final TPS epoch of the training, for the same hyperparameters of (b). The accuracy expected for a random NN is around
10%, as there are 10 classes in the MNIST problem. This corresponds to the loss plateau at low s for small τ .

the underlying dynamics can equally be taken to be con-
tinuous in time, as in a continuous-time Markov chain
or in diffusions, and parameter updates do not need to
be Gaussian; in such a case, the rest of the approach for
training and sampling would be essentially the same as
the one above.

Our trajectory NNE method has to be compared to
those based on gradient descent, which focus on the
shortest route to a set of parameters for a NN which
locally minimise the loss. In contrast, our method is in
the spirit of thermal sampling, where low loss configu-
rations are searched by controlling a parameter (such as
temperature in thermal annealing, or s in our trajectory
method) which being coupled to the quantity of interest
(energy or time-integrated loss) pushes towards low val-
ues, balanced with exploring state or trajectory space.
An obvious drawback of gradient descent is its inability
to escape local traps, and this is the reason that mod-
ern ML supplements it with noise and inertia to make it
efficient. Gradient-free methods like ours are less sen-
sitive to local trapping, which is especially prominent
in smaller and non-over-parameterised NNs, with their
physical interplay between minimising the observable and
maximising the entropy playing an analogous role as the
exploit/explore trade-off of ML learning techniques.

The above, together with the ability of NNEs to re-
duce overfitting, suggest to us that the approach pro-
posed here will be most useful when constructing ensem-
bles of smaller models as compared to a single, larger,
NN. While in this paper we focused only on introducing
the trajectory NNE method and showing its viability, we
hope to report in future work on systematic comparison

on performance and training cost between our NNEs and
a single NN.

Our approach relies on converging to the stationary
state in trajectory space determined by the hyperparam-
eters s, σ and τ . Their meaning is clear: s controls the
level of the ensemble loss, with larger s leading to lower
overall loss; σ controls exploration, with larger σ allow-
ing for larger fluctuations in the trajectory of models;
and τ determines the size of the ensemble. While in-
creasing s, decreasing σ, and increasing τ all reduce the
NNE loss, the ability to control the three hyperparame-
ters separately provides much flexibility for the training.
The same applies to numerical “convergence”: while ide-
ally one would like to sample trajectories from the sta-
tionary state of Eq.(7), in practice all that is required is
that the TPS iterations reach trajectories of low enough
loss for the problem at hand.

The effectiveness of TPS relies on a reasonable accep-
tance for proposed trajectory updates. In general, ac-
ceptance is exponentially suppressed in trajectory length
and size of the system. We resolved the exponential in
time problem by proposing bridge moves which are lo-
calised in time. For a NN system where the loss is a fully
connected function of the weights, the exponential in size
cost problem is more difficult to solve. For training NNEs
with larger NN constituents this might become a limit-
ing factor. A related issue is that of batching the data
when calculating the loss: in the ML/statistical mechan-
ics analogy, under learning dynamics the parameters of
the NN are the fluctuating variables, while the training
dataset is like quenched disorder in the interactions defin-
ing the loss. Using data batches to calculate the loss (a
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standard trick in ML that gives rise to stochastic gradi-
ents), is equivalent to having (slow) fluctuating disorder,
something which has not been studied in as much detail
in the context of trajectory sampling. Further integra-
tion of ML and non-equilibrium ideas will help improve
the trajectory NN ensemble even further. We hope to
report on such developments in the future.
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APPENDIX: EXACT BRIDGE DYNAMICS FOR
A DISCRETE TIME GAUSSIAN PROCESS

Consider an original dynamics of a position x ∈ R
given by gaussian movements with variance v at each
time step

P (x′|x) =

∫
dw√
2vπ

e−
w2

2v δ(x′ − x− w), (34)

=
e−

(x′−x)2
2v√

2vπ
, (35)

and initial probability distribution P (x0) = δ(x0 − xi).
The probability of an individual trajectory ωT0 = {xt}Tt=0

of length T is given by

P
(
ωT0
)

=
T∏

t=1

P (xt|xt−1)P (x0). (36)

We seek a dynamics which produced, with the correct
relative probabilities, the subset of trajectories given by
this dynamics such that they all end at xT = xf , so-
called bridge trajectories. That is, we seek a Markovian
dynamics which generates trajectories with probability

PB
(
ωT0
)

=
δ(xT − xf )P

(
ωT0
)

∑
ωT0
δ(xT − xf )P

(
ωT0
) . (37)

We can expand this trajectory probability using the prob-
abilistic chain rule as

PB
(
ωT0
)

=
T∏

t=1

PB(xt|ωt−1
0 )PB(x0), (38)

solving for these probabilities, which will turn out to be
Markovian, iteratively. For the last time step we find

PB
(
xT |ωT−1

0

)
=

PB
(
ωT0
)

PB
(
ωT−1

0

) (39)

=
δ(xT − xf )P

(
ωT0
)

∫
dxT δ(xT − xf )P

(
ωT0
) (40)

=
δ(xT − xf )P (xT |xT−1)∫
dxT δ(xT − xf )P (xT |xT−1)

(41)

= δ(xT − xf ) := PB (xT |xT−1, T ) , (42)

while for the rest we find

PB
(
xt|ωt−1

0

)
=

PB (ωt0)

PB
(
ωt−1

0

) (43)

=

∑
ωTt+1

δ(xT − xf )P
(
ωT0
)

∑
ωTt
δ(xT − xf )P

(
ωT0
) (44)

=
g(xt, t)P (xt|xt−1)

g(xt−1, t− 1)
(45)

:= PB (xt|xt−1, t) (46)

where we have defined

g(xt, t) =
∑

ωTt+1

δ(xT − xf )P
(
ωTt+1|xt

)
. (47)

Finding these scaling factors thus returns the desired
Markovian dynamics. First, for g(x, T − 1) we find

g(x, T − 1) =

∫
dx′δ(xT − xf )P (x′|x) =

e
(xf−x)2

2v√
2vπ

.

(48)

To find the rest, we note that these scaling factors satisfy
an inductive equation, a non-linear Bellman equation,
due to the normalization of the dynamics

g(x, t− 1) =
∑

x′

P (x′|x)g(x′, t), (49)

which we can solve inductively. We consider the ansatz

g(x, T − i) =
e

1
v (aix2

f+bix
2+cixfx)

ni
√

2vπ
, (50)
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for i ≥ 1, with n1 = 1, a1 = − 1
2 , b1 = − 1

2 , c1 = 1. Using
the Bellman equation (49) we thus find

ni+1 = ni
√

1− 2bi, (51)

ai+1 = ai −
c2i

4bi − 2
, (52)

bi+1 = −1

2
− 1

4bi − 2
, (53)

ci+1 = − 2ci
4bi − 2

, (54)

which are solved by

ni =
√
i, (55)

ai = − 1

2i
, (56)

bi = − 1

2i
, (57)

ci =
1

i
. (58)

Substituting into (45) and rearranging we find a Gaus-
sian with time and position dependent mean and time
dependent variance

PB (xt|xt−1, t) =
e−

[xt−µ(xt−1,t)]
2

2v(t)

√
2πv(t)

, (59)

where

µ(x, t) =
xf + (T − t)x
T − t+ 1

, (60)

v(t) = v
T − t

T − t+ 1
(61)
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Chapter 8

Minibatch Training of Neural Network
Ensembles via Trajectory Sampling

The following work is from the arXiv pre-print [144] “Minibatch training of neural network
ensembles via trajectory sampling” by J. F. Mair, L. Causer and J. P. Garrahan.

We build on the work presented in Chapter 7 by modifying the algorithm to allow for
minibatch updating, while still respecting the overall properties of the ensemble training
method. This brings the technique into line with current state-of-the-art methods which
use minibatching for parameter updates with an aim to decouple training time from the
size of the dataset. We illustrate that this approach is viable on the trajectory sampling
training method previously explored, and validate our results on the MNIST classification
problem [28].
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Most iterative neural network training methods use estimates of the loss function over small
random subsets (or minibatches) of the data to update the parameters, which aid in decoupling
the training time from the (often very large) size of the training datasets. Here, we show that
a minibatch approach can also be used to train neural network ensembles (NNEs) via trajectory
methods in a highly efficient manner. We illustrate this approach by training NNEs to classify
images in the MNIST datasets. This method gives an improvement to the training times, allowing
it to scale as the ratio of the size of the dataset to that of the average minibatch size which, in
the case of MNIST, gives a computational improvement typically of two orders of magnitude. We
highlight the advantage of using longer trajectories to represent NNEs, both for improved accuracy
in inference and reduced update cost in terms of the samples needed in minibatch updates.

I. INTRODUCTION

Traditional machine learning (ML) applications aim to
train a single model, usually by adjusting the parameters
that define a complex function approximator like a neural
network (NN), to perform well on some desired outcome
as measured by a proxy loss function. A high perfor-
mance on an appropriate loss function will entail a high
performance on the metrics one cares about, for example
accuracy in a classification problem [1]. There is strong
empirical evidence from numerical experiments that in-
creasing the scale of single models improves performance,
as for example in the timely class of large language mod-
els (LLMs) [2].

However, to counteract the seemingly ever-increasing
size of LLMs, there has also been significant work towards
devising smaller models with similar capabilities in order
to reduce the computational cost of training and of infer-
ence. A notable recent example is Stanford’s Alpaca [3],
based on LLaMA [4, 5], which can match GPT3.5 [6] de-
spite being over an order of magnitude smaller. Another
possibility is to replace one large model by an ensemble
of smaller models which can provide similar or better in-
ferences while also being less costly to train and evaluate
[7, 8]. This is the class of problems we focus on here.

Recently, we introduced an approach to train collec-
tively an ensemble of models [9], in particular neural
network ensembles (NNEs) where predictions at infer-
ence time are aggregated in a committee-like fashion (for
classification, the ensemble prediction is the most voted
for option, while for scoring, the ensemble prediction is
the mean ensemble score). In Ref. [9] we defined an NNE
in terms of the trajectory of the model parameters under
a simple (discrete in time, diffusive in parameter space)
dynamics, and trained it by biasing the trajectory that
defines the NNE towards a small time-integrated loss.

∗ Jamie.Mair@nottingham.ac.uk

That is, once training is converged, the NNE corresponds
to a discrete trajectory of the model parameters sampled
from a distribution of trajectories exponentially “tilted”
to have low time-integrated loss. This approach is bor-
rowed from the study of glassy systems [10], where bi-
asing dynamics according to time-integrated observables
(e.g. the dynamical activity [11, 12]) is known to access
low energy states for the configurations in the trajectory.
Such low-loss trajectories can be accessed via importance
sampling in trajectory space, such as transition path sam-
pling (TPS) [13] as adapted to stationary dynamics and
large deviation problems [14]. The ensuing trained NNE
is a collection of NN models correlated by the underlying
dynamics of the parameters and with a low value of the
total loss due to the tilting.

While Ref. [9] provides a proof of principle of the
trajectory sampling approach, it suffers from a signifi-
cant computational bottleneck: importance sampling is
a Monte Carlo scheme on trajectories, where updates are
determined according to changes in the (time-integrated)
loss evaluated over the whole training set, so that each
Monte Carlo iteration scales with the size of the train-
ing data. For example, when training for the textbook
MNIST digit classification problem in Ref. [9], we used
only a small amount of the entire training dataset (2048
samples from the available 60000) to make the prob-
lem tractable for a comprehensive study. On the con-
trary, it is well known that ML models generalise poorly
with small datasets [1]. This computational limitation
makes the method of Ref. [9] impractical for more com-
plex tasks. This has to be contrasted with gradient de-
scent [1], where there is no need to sample faithfully from
a distribution, so that the gradient of the loss can be
estimated efficiently only on very small subsets of train-
ing data, known as minibatches, giving rise to stochastic
gradient descent (where the noise from the difference be-
tween the minibatch estimate and the full loss actually
helps convergence to a good local minimum [1]).

In this paper, we resolve the problem above by imple-
menting a minibatch method in the trajectory sampling
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used in the training of the NNEs. We build on the ap-
proach of Ref. [15] for doing Monte Carlo sampling with
small data batches. We show that our new method re-
duces the training cost by a factor given by the ratio of
the average minibatch size (which we determine in an
adaptive manner) to the size of the dataset. We illus-
trate this more efficient method on MNIST classification
(using the whole MNIST dataset), showing in this case
a computational gain of about two orders of magnitude.
Our minibatch approach also allows us to highlight the
key features of the trajectory NNE method, showing the
advantage of using longer trajectories to represent NNEs
both in terms of accuracy and data requirement for train-
ing.

The rest of the paper is organised as follows. In Sec. II
we describe the theory, reviewing the idea of NNEs as
trajectories of a stochastic dynamics, training as tilted
trajectory sampling, and the central approach to perform
mini-batch trajectory Monte Carlo. In Sec. III we present
the adaptive minibatch trajectory sampling method for
training NNEs. We illustrate the method with two exam-
ples in Sec. IV, an exactly solvable linear perceptron, and
the full MNIST digit classification problem. In Sec. V
we give our conclusions, and further technical details are
provided in the Appendices.

II. THEORETICAL BACKGROUND

A. Neural network ensemble as a trajectory of
neural networks

In Ref. [9], we proposed that a NNE could be obtained
by evolving the parameters of a NN model under a suit-
able stochastic dynamics, where the NNE is composed of
the sequence of NNs in time. If, at time step t, the NN
is defined by θt, this dynamics would give rise to a tra-
jectory θ1 → θ2 → . . .→ θτ , with the NNE as the set of
visited models under the dynamics, Θ = [θ1,θ2, . . . ,θτ ].
As the aim is to minimise the loss over the ensemble

L(Θ) =

τ∑

t=1

L(θt) (1)

where L(θt) is the standard loss for the t-th model (see
below for a specific form of the loss), training is equivalent
to finding a suitable dynamics whose typical trajectories
are those with low time-aggregated loss, L(Θ).

Once trained, this dynamics is defined in terms
of (in general time-dependent) stochastic dynamics
M(τ, σ, s) ≡ {Mt;σ,s}τ−1

t=1 , where Mt;σ,s(θ
′|θ) are the

transition probabilities at each time step, such that
the NNE corresponds to a trajectory generated using
dynamics M(τ, σ, s). This approach is illustrated in
Fig. 1(a): the NNE is a discrete-time trajectory, where
each state along the trajectory corresponds to one of the
NNs that form the ensemble. Starting from the first
model, θ1, each subsequent model is sampled according

FIG. 1. (a) An NNE as a stochastic trajectory, and a sketch
of trajectory sampling. Each state in the trajectory corre-
sponds to one NN model in the NNE. The proposed path
sampling update from trajectory Θ to trajectory Θ′ is via a
stochastic bridge in which only one model is modified. (b)
The loss function of a model with parameters θ. Each layer
represents a data element. The loss, L(θ), is given by the
average of the individual loss for each of the elements of the
dataset, {li(θ)}1:N . The minibatch estimate of the loss is in-
stead the average over a random selection {rj}1:b of b data
points in the dataset. (c) Exactly solvable linear perceptron:
mean NNE loss ⟨L⟩ per NNE size τ , as a function of s for vari-
ous τ . Lines are analytical results. Symbols are the numerical
results using the minibatch TPS algorithm for training (with
20 × 106 TPS epochs as a “burn-in” followed by 20 × 106

epochs for convergence of training).
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toM(τ, σ, s). Three hyperparameters determine the dy-
namics that produces the NNE: the final time τ sets the
number of models in the ensemble; σ sets the “stiffness”
of the chain (see below for details), that is, how corre-
lated subsequent models are to each other, with small σ
corresponding to large stiffness; and s controls the level
of the overall loss, with larger s corresponding to lower
loss. The central idea is that a correlated chain of mod-
els generated as a trajectory from dynamics M(τ, σ, s)
at large s provides a well trained NNE [9].

B. Learning as a trajectory sampling problem

Obtaining a suitable dynamics M(τ, σ, s) that pro-
duces well-trained NNEs as its typical trajectories is a
difficult task. We can however resolve this problem by
means of trajectory sampling techniques [9]. Consider as
a starting point an untrained dynamics M(τ, σ, 0) with
the same transition probabilities at every time step t [9]

Mσ(θt+1|θt) ∝ exp

[
− 1

2σ2
(θt − θt+1)

2

]
, (2)

with
∫
θ′ Mσ(θ

′|θ) = 1. This dynamics corresponds to
a discrete-time Gaussian diffusion process that knows
nothing about the loss (1). As such, a typical trajectory
drawn from it will correspond to a random (and there-
fore untrained) NNE. As indicated above, the parame-
ter σ sets the variance of the diffusive steps, so that for
smaller σ subsequent models are more correlated, while
for σ →∞ all the models of the chain are uncoupled.

The dynamics (2) produces an ensemble of trajectories
(and therefore an ensemble of NNEs) with each trajectory
having probability

P (Θ;σ) =
1

Zτ (σ)
p(θ1)

τ−1∏

t=1

exp

[
− 1

2σ2
(θt − θt+1)

2

]
,

(3)

given by the product of the Mσ at each step. Here p(θ1)
is the probability used to draw the first model, and Zτ (σ)
a normalisation constant (the “partition sum” of the tra-
jectory ensemble). In order to obtain trajectories with
low overall loss, what we aim is to define a new trajec-
tory ensemble that is exponentially “tilted” with respect
to (3), as is standard in large deviation studies of dynam-
ics (e.g., Ref. [16]), that is [9]

P (Θ;σ, s) =
1

Zτ (σ, s)
e−sL(Θ)P (Θ;σ). (4)

For large s, a typical trajectory from this ensemble will
correspond to a NNE with low overall loss. The learned
dynamicsM(τ, σ, s) of the previous subsection would be
the dynamics that produces trajectories distributed ac-
cording to the tilted distribution (4).

One way to avoid having to determine the M(τ, σ, s)
dynamics explicitly is to directly sample trajectories from

the tilted distribution (4). In this way, convergence of the
training, that is, finding M(τ, σ, s), coincides with con-
vergence of the trajectory sampling of (4), as we do here
by means of an importance sampling method in trajec-
tory space based on transition path sampling (TPS) [13].

C. Monte Carlo in trajectory space

Consider a Monte Carlo scheme for sampling trajec-
tories, specifically a Metropolis-Hastings approach [13]:
given a current trajectory Θ, the probability to change
to a new trajectory Θ′ is given by

p(Θ′|Θ) = g(Θ′|Θ)A(Θ′,Θ), (5)

where the factor g(Θ′|Θ) is the probability to propose
the move, and A(Θ′,Θ) is that to accept it. For the
above to converge to (4) we need to impose that it obeys
detailed balance with respect to (4), which implies

A(Θ′,Θ)

A(Θ,Θ′)
=
P (Θ′;σ)g(Θ|Θ′)
P (Θ;σ)g(Θ′|Θ)

(6)

If the proposed moves obey detailed balance with respect
to the original untilted dynamics (3),

g(Θ′|Θ)

g(Θ|Θ′)
=
P (Θ′;σ)
P (Θ;σ)

, (7)

then the acceptance ratio reduces to

A(Θ′,Θ)

A(Θ,Θ′)
= e−s[L(Θ′)−L(Θ)] (8)

In standard TPS, (7) is realised by proposing trajec-
tories by simply running the original dynamics (3) (via
“shooting” or “shifting” moves, see Ref. [13]). This ap-
proach, however, carries an exponential cost in the time
extent of trajectories, since the loss difference in the ex-
ponent of (8) scales linearly with time. This can be mit-
igated [9] by proposing small changes in a trajectory, see
Fig. 1(a): the proposed trajectory is one where only the
state at one time is modified; as this has to obey (7), it
has to be done as a Brownian bridge [17, 18]. That is, as
conditioned dynamics starting in the previous state and
retuning to the state after the one changed (see Ref. [9]
for details).

III. MINIBATCH PATH SAMPLING

While the Brownian bridge version of TPS ameliorates
the exponential-in-time cost in the trajectory sampling,
there is another source of computational slowness com-
ing from the evaluation of the trajectory loss, cf. (8).
With the Brownian bridge TPS, Fig. 1(a), only a single
model changes between the current and proposed trajec-
tory, and the change in trajectory loss in (8) is therefore
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given by that the change of that model’s loss. If this
change is at time t, this requires the evaluation of L(θ′

t),
which at training is the average of the loss under that
model for each of the N training data points,

L(θ′
t) =

1

N

N∑

i=1

li(θ
′
t) (9)

where li(θt) is the loss for the inference for data point i.
This means that in each Monte Carlo iteration, comput-
ing the change in loss inevitably scales with the training
set size N (together with a cost that depends on the size
and architecture of the NN being considered). This eval-
uation can therefore become computationally infeasible
for larger datasets. For example, in Ref. [9], we had to
reduce the training dataset by almost an order of magni-
tude to show a proof-of-principle of the method with for
the MNIST classification problem.

In contrast to gradient descent, one cannot simply re-
place the loss over the whole training set for an estimate
based on a small subset, or minibatch. For gradient de-
scent, the error that this introduces becomes a source of
noise, converting it into stochastic gradient descent (and
its adaptive variants [1, 19, 20]). This in turn gives rise
to the usual advantages that an exploit/explore strategy
brings, in this case to minimise the loss locally descend-
ing the gradient versus exploration of the loss landscape.
Since Monte Carlo aims to sample from a distribution,
Eq. (4) in our case, a straightforward replacement of the
loss by a minibatch approximation would lead to failure
of the necessary detailed balance condition.

This problem has been considered before in the con-
text of Bayesian inference, where so-called “tall datasets”
make Monte Carlo inefficient, see e.g., Refs. [21–23]. In
what follows we build on the approach put forward in
Ref. [15] to develop an adaptive minibatch trajectory
sampling method.

A. Monte Carlo with minibatches

We first describe the scheme of Ref. [15] in the context
of the Monte Carlo annealing of a system with degrees of
freedom Θ (a NNE in our case) and target distribution
(4), and in the next subsection we extend the approach
to integrate it with TPS in an adaptive manner.

Let us define the quantity ∆(θ′,θ) as the logarithm of
the change in weight under a proposed move,

∆(Θ′,Θ) = −s [L(Θ′)− L(Θ)] , (10)

and choose our acceptance function as

A(Θ′,Θ) = (1 + e∆(Θ′,Θ))−1, (11)

which satisfies the detailed balance condition (8). Monte
Carlo works by generating a proposed move from
g(Θ′|Θ), and then accepting the move if

A(Θ′,Θ) > V, (12)

where V is a uniformly distributed random number,
V ∼ U(0, 1). As (11) is a logistic (or sigmoid) function
whose inverse is also its derivative, we can equivalently
write the acceptance test as ∆(Θ′,Θ) > Xlog, whereXlog

is a logistically sampled random variable. As this distri-
bution is symmetric around zero, we can equally write
the test (12) as

∆(Θ′,Θ) +Xlog > 0. (13)

The loss L(Θ) that enters in (10) is the average of the
loss over the entire training data set

L(Θ) =
1

N

N∑

i=1

Li(Θ) =
1

N

N∑

i=1

τ∑

t=1

li(θt), (14)

where Li(Θ) is the (trajectory) loss for the inference on
data point i. Consider now an approximation of the loss
difference in terms of a random minibatch of size b

L(Θ) ≈ 1

b

b∑

j=1

Lr(j)(Θ), (15)

where r(j) specifies a random permutation of the indices
of the elements in the training dataset, cf. Fig. 1(b). In
terms of the above we can define an approximation to
(10) [15],

∆∗(Θ,Θ′) = −s
b

b∑

j=1

[
Lr(j)(Θ

′)− Lr(j)(Θ)
]
. (16)

If one could replace ∆(Θ,Θ′) by ∆∗(Θ,Θ′), then there
would be a computational gain that would scale as the
ratio of the size N of the training dataset to that of the
minibatch b (as it is necessary to compute ∆(Θ,Θ′) for
each Monte Carlo iteration). The way to do so is as
follows [15].
Since the elements of the minibatch are chosen in an

identical and independent manner, from the central limit
theorem and for large enough b, we expect ∆∗ to be nor-
mally distributed around ∆ with some variance ρ2(∆∗).
That is, ∆∗ = ∆ + Xnorm, where Xnorm is an approxi-
mately normal zero-mean random correction of variance
ρ2(∆∗). As a logistically distributed random variable,
Xlog, is almost normally distributed, we can write Xlog

as Xlog = Xnorm + Xcorr, where Xcorr is the (hopefully
small) correction to normality. Inserting this decomposi-
tion of Xlog into the acceptance test (13), we can replace
∆ with the minibatch estimate:

∆∗(Θ′,Θ) +Xcorr > 0. (17)

This new acceptance only depends on the minibatch esti-
mates of the loss and — if accurate — will be efficient for
b≪ N . The test (17) will asymptotically give the correct
acceptance distribution provided that (i) that the fluctu-
ations Xnorm of ∆∗ around ∆ are normally distributed
(which can be checked to adjust the size of b), and (ii)
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that the distribution Ccorr(X; ρ) for the random correc-
tion Xcorr can be numerically computed with low error
(see [15] for analysis of the errors).

Thanks to the CLT, condition (i) is relatively easy to
satisfy for a large enough minibatch sample size. If the
batch size grows beyond the size of the dataset, we do not
need this approximation and can use (12). Condition (ii)
holds when the sample error on ∆∗ is sufficiently small
[15]. In practice one can only compute the distribution
of Ccorr(X; ρ) accurately enough only for standard de-
viations of Xnorm such that ρ ≲ 1.1 (see below for our
implementation).

As computing Ccorr(X; ρ) is numerically expensive (see
Appendix A for details) for each empirical ρ ≈ 1, we can
instead compute a ρ2 = 1 correction and then add a
further “normal correction” with small variance 1−ρ2 to
make a total normal random variable with fixed variance
1. Putting all of these together, we get the minibatch
acceptance test that we use

∆∗(Θ,Θ′) +Xnc +Xcorr > 0, (18)

where Xnc stands for the normal correction random vari-
able, of zero mean and variance 1− ρ2.

Generalisation to enable training with TPS

The TPS scheme that we use relies on proposing trajec-
tory updates, cf. Fig. 1(a), consisting of bridging moves
(for changes in the middle of the trajectory) and shoot-
ing moves to get changes in the endpoints, see Ref. [9] for
details. In either case, only a single model (i.e. a single
time step) is altered, thus reducing the size of the update
and improving the acceptance rate.

Once a candidate trajectory is proposed, the minibatch
acceptance criterion of the previous subsection is applied.
The specific steps are as follows, defining an adaptive
minibatch scheme:

• We draw m random samples from the training
set, which are used to calculate an estimate of
∆∗(Θ,Θ′) and ρ2(∆∗), cf. (16). If ρ2 > 1, m more
samples are drawn without replacement, updating
∆∗ and ρ accordingly (and terminating if all sam-
ples are used). In this way, we form a minibatch of
overall size b such that the sample variance of ∆∗

is strictly less than or equal to 1.

• We draw the random correction Xnc from a nor-
mal distribution and Xcorr from Ccorr(X; ρ). With
these we use (18) to accept or reject the proposed
change to the trajectory. [If the total minibatch
size b equals N , then we use the original test (12) as
∆∗ coincides with ∆ in that case.] Unlike Ref. [15],
exact sampling of (4) is not required to effectively
train our NNE, and we do not test the normal-
ity assumption of ∆∗(Θ,Θ′). This is equivalent to

setting their threshold δ → ∞ in Ref. [15]. Justi-
fication for this simplifying choice is given in Ap-
pendix C.

Algorithm 1 Minibatch TPS Training

1: input Initial trajectory Θ1, dataset {x1, . . . , xN}, trajec-
tory length τ , trajectory coupling σ, minibatch chunk size
m, pre-computed correction Cρ=1(X) distribution, cut-off
hyperparameters c0 and c1 and training epochs E.

2: output Sequence of trajectories {Θ1,Θ1, . . . ,ΘE+1}
3: for k ∈ [1, 2, . . . , E] do
4: Sample proposalΘ′ using g(Θ′|Θk, τ, σ) (i.e. shooting

or bridging)
5: Sample ∆∗(Θ′,Θk) and ρ2 using m randomly selected

samples, without replacement
6: b← N
7: while ρ2 > 1 and b < N , and max( |∆

∗(Θ,Θ′)|
ρ

−
c1, 0) <= c0 do

8: Select m more randomly selected samples, without
replacement and update estimates for ∆∗(Θ′,Θk) and ρ2

9: b← b+m
10: end while
11: if b = N then
12: Sample random number V ∼ U(0, 1)
13: if V < g(∆∗(Θ′,Θk)) then
14: Accept with Θk+1 ← Θ′

15: else
16: Reject with Θk+1 ← Θk

17: end if
18: continue

19: end if
20: Sample Xnc ∼ N (0, 1− ρ2) and Xcorr ∼ Cρ=1(X)
21: if ∆∗(Θ′,Θk) +Xnc +Xcorr > 0 then
22: Accept with Θk+1 ← Θ′

23: else
24: Reject with Θk+1 ← Θk

25: end if
26: end for

One issue with this simple algorithm is that the mini-
batch size grows if the sample variance is much larger
than 1. The biasing parameter, s, scales the sample vari-
ance with s2, while taking b samples only reduces this
variance by a factor of b. For fixed Θ and Θ′, we would
expect the minibatch size to change with s to compensate
for the increased sample variance. For s→∞, this would
revert the minibatch method to the original full-dataset
acceptance test. To avoid this, we introduce a cut-off test
which halts increasing the minibatch size when ∆∗ is suf-
ficiently far away from the origin and performs an alter-
native acceptance test. The alternative acceptance test
is broken into two stages. Firstly, we approximate the ac-
ceptance function to be equal to 0 when x < −c0 and 1
when x > c0 for some positive constant c0. We choose c0
to be sufficiently high that the approximate acceptance
function is unchanged for −c0 ≤ x ≤ c0 without having
to renormalise. Secondly, we choose another threshold for
which the true mean ∆ is approximately guaranteed to be
within ∆∗±c1ρ. We use max(ρ−1|∆∗(Θ,Θ′)|−c1, 0) > c0
as our cut-off acceptance test. In our experiments, using



6

c1 = 10 and c0 = 5 gave good results. The final combined
algorithm is given in Algorithm 1. Setting c0 or c1 to be
high will make this cut-off less likely to be triggered, in-
creasing minibatch size and therefore computational cost,
however, setting them too close to 0 will result in an in-
accurate acceptance test which does not obey detailed
balance.

IV. EXAMPLES OF TRAINING NN
ENSEMBLES VIA MINIBATCH TRAJECTORY

SAMPLING

We now apply the method of Sec. III for the training
of NNEs in two illustrative problems. The first is that of
a linear perceptron, which is simple enough to be solved
exactly, allowing us to directly compare our method with
the expected results. The second is the more complex,
but now standard, problem of MNIST digit classification
[24].

A. NNE of linear perceptrons

We first test the method with a linear classification
problem, also considered in Ref. [9]. This problem can
be defined as follows: we generate a set of independent
random D dimensional points, {xi}Ni=1 (setting xN = 1),
together with a D-dimensional random weight vector w
that we use to assign labels yi = w · xi to each of the
points xi. The aim is to train the parameters Θ of an
ensemble of τ linear perceptrons, where the prediction of
the t-th perceptron for the i-th data point is θt · xi. For
training, we consider the mean-squared sample loss for
each model in the NNE, which for data point i reads

l
(MSE)
i (θt) =

1

2
(yi − θt · xi)

2. (19)

The NNE loss over the training dataset, cf. (14), in turn
reads

L(Θ) =
1

N

N∑

i=1

τ∑

t=1

1

2
(yi − θt · xi)

2 (20)

We now implement the adaptive minibatch estimation of
the trajectory loss described in Alg. 1 to train this NNE
for various τ and s. Figure 1(c) demonstrates that the
numerics obtained in this way coincide with the analytic
results from the exact trajectory distribution (4) [9]. This
is an elementary proof-of-principle of the method.

Exact distributions for w and x, along with experi-
mental hyperparameters are provided in Appendix B 1.

B. NNE for MNIST digit classification

The second problem we consider is that of an ensemble
of models for classification of digits using the standard set

of handwritten MNIST images [24], see Fig. 2(a). In this
case, each NN in the NNE is a small convolutional neu-
ral network (CNN) whose architecture is described in Ap-
pendix B 2. For a given image X, one of these CNNs with
parameters θ provides the probability y(k|X;θ) that the
image corresponds to digit k, for k = 0, . . . , 9. The ap-
propriate loss function is the mean cross entropy, which
for the data point i and the t-th model reads

l
(MNIST)
i (θt) = −

9∑

k=0

δzi,k log y(k|Xi;θt), (21)

where zi is the true classification of Xi. The training loss
for the NNE then reads

L(Θ) = − 1

N

N∑

i=1

τ∑

t=1

9∑

k=0

δzi,k log y(k|Xi;θt), (22)

We train trajectories for a fixed number of epochs E
(i.e., TPS iterations), which we choose to be large enough
for the trajectory loss to appear to converge, which we
track in terms of the minibatch loss estimate to avoid
further computational cost. One can observe conver-
gence for a small number of sample runs in Figs. 3(a,
b). Specifically, we allow for a “burn-in” of the initial
20 × 106 epochs, and subsequently observe the average
trajectory loss for the next 20 × 106 epochs. For each
set of hyperparameters (τ, s) we perform six independent
trainings starting each training run from a random initial
seed trajectory. The time-averaged loss thus obtained is
shown in Fig. 2(b) as a function of s for various NNE
sizes τ . We note the following: (i) for every τ the loss
per model in the trained NNE decreases with s, as should
be the case when converging to (4); (ii) the larger τ the
lower the loss, indicating that the longer trajectories give
rise to more accurate NNEs; (iii) there appears to be a
transition from high to low loss with s which could in-
dicate (dynamical) phase coexistence, as seen in many
other trajectory ensemble problems [25].
A similar trend to that of the loss is observed in the

accuracy on the generalisation test set. In Fig. 2(c) we
show the accuracy of the final ensembles obtained af-
ter all training epochs. We use the NNE to collectively
make a prediction on each sample by letting each model
“vote” for their predicted class, with the class with the
most votes getting selected (in the event of a tie, the
smaller digit is selected). We plot this ensemble accu-
racy, averaged over six independent runs, for the same
hyperparameters of panel (b).
As a proxy for the computational cost of training, in

Fig. 2(d) we show the average batch size per epoch ⟨b⟩
necessary for training to a certain value of the loss per
model. Since the size of the training set is N = 6× 104,
the ratio N/⟨b⟩ gives the computational gain of using the
minibatch method. From Figs. 2(b, c), we know that
longer trajectories can yield a lower loss at smaller val-
ues of s. From Fig. 2(d), we see that longer trajectories
(larger NNEs) are also computationally more efficient to
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FIG. 2. (a) Representative examples of the MNIST digit images used for training. (b) Mean value of the time-averaged loss
vs s. Each data point is calculated after 2× 107 TPS epochs over the following 2× 107 TPS epochs. (c) Final accuracy on the
standard 10, 000 test images of a single trained NNE (via majority vote), taken at the end of the 4× 107 epochs. (d) Average
batch size per epoch, ⟨b⟩ as a function of the converged mean NNE loss after 2 × 107 TPS epochs. The mean batch size per
epoch is obtained from the 4× 107 TPS training epochs.
All results and error bars are from averaging over 6 independent runs with different initial trajectories.

train, requiring a smaller mean minibatch size, ⟨b⟩, than
smaller NNEs for the same level of overall loss, showing a
computational gain in excess of two orders of magnitude
of the minibatch method to the original full loss method
of Ref. [9].

V. CONCLUSIONS

In this paper we have presented a variant of the mini-
batch Monte Carlo method of Ref. [15] adapted to the
sampling of trajectories that correspond to neural net-
work ensembles [9]. We have shown that this technique
can be used to train NNEs via trajectory sampling to give
an improvement in computational efficiency up to two
orders of magnitude. While we have focused, for con-
creteness, on supervised learning applications, we note
that an adaptive trajectory sampling technique like the
one presented here should be also very useful in Monte
Carlo based reinforcement learning (RL), where datasets
do not have a fixed size. We expect that this method will
provide a stable training technique on these RL prob-
lems, which have exhibited brittle behaviour when con-
tinuously trained on changing objectives [26–29].

Our results here add to the growing number of recent
works studying the training dynamics of NNs from the
statistical mechanics point of view, see e.g., Refs. [30–
34]. Most of these consider the training of a single NN in
terms of a stochastic dynamics akin to thermal annealing,
cf. Ref. [32]. In contrast, our approach based on sampling
trajectories of NNs shares more similarities to training by
quantum annealing, see for example Refs. [35, 36]. Note
that this similarity is not referring to actual unitary dy-
namics, but to the fact the computation of a trajectory

ensemble in (4) is similar to that of a quantum partition
sum (in terms of imaginary-time trajectories). Further-
more, the improved computational efficiency provided by
the minibatch method we introduced here allowed us to
highlight the benefit of larger NNEs (i.e., longer trajecto-
ries) capable of accessing lower loss regions of state space
using far less data than single NNs or small ensembles.

CODE AVAILABILITY

Our TPS implementation package is available through
GitHub, TransitionPathSampling.jl [37], together
with the source code to generate the figures and results
in the paper [38].
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FIG. 3. Training curves for MNIST classification NNE. (a)
Average ensemble loss per model in the NNE as a function of
cumulative data usage D, for s = 50 and various NNE sizes τ .
Note that the abscissa is scaled by τ , so curves are in terms of
“per-model” epochs. In terms of D/τ , for equivalent training
time lower losses are reached for larger NNEs. (Loss curves
has been down sampled for clarity.) Inset: same in linear D
scale. (b) Same training curves but now plotted in terms of
epochs E.

Appendix A: Correction Distribution

Seita et al. [15] show that we can calculate the Xcorr

distribution numerically. We introduce a parameter V
to specify the range of values to sample the distribution
over. We construct two discrete vectors X and Y with
the elements of X going linearly from −2V to +2V and
Y going from −V to +V . The vector X has 4N + 1
elements and the vector Y has 2N + 1 elements.

From here, we define a matrix M with elements

Mij = Φσ(Xi − Yj), (A1)

where Φσ is the cumulative distribution function (CDF)
of a normal distribution with variance σ2. Additionally,

we construct a new vector v such that

vi = S(Xi), (A2)

where S is the logistic sigmoid function, i.e. the CDF
of a logistically distributed random variable. Finally, we
define the vector u to be uj = Cσ(Yj) which is our target
to calculate. This can be calculated using the formula

u = (MTM + λI)−1MT v, (A3)

where λ is regularisation parameter. We followed rec-
ommendations from Seita et al [15] and used V = 10,
N = 4000 and λ = 10 to construct our numerical ap-
proximation of Cσ. We set any negative elements equal
to zero and re-normalise the CDF to ensure the area un-
der the curve will equal 1.
Fortunately, the sampling algorithm allows us to cal-

culate the distribution for a single value of σ to save on
computation and memory. This distribution can be cal-
culated once and cached for future use. We can alter the
acceptance condition to be

∆∗(Θ,Θ′) +Xnc +Xcorr > 0, (A4)

where Xcorr is sampled when σ = 1 and Xnc ∼ N (0, 1−
Var[∆∗]), requiring that Var[∆∗] < 1.

Sampling the correction distribution

The distribution can be efficiently sampled using the
CDF: the cumulative sum of the probability distribution
function (PDF). The CDF is a monotonically increasing
set of y values from 0 to 1. These values have corre-
sponding X values in the domain −2V to 2V . In order
to sample this distribution we draw a random number,
u, uniformly between 0 and 1. We find the X which cor-
reponds to the intersection of u = Cσ(X) by bisection
on the discretised points and then linear interpolation
between discretised values.

Appendix B: Experiment Configurations

Here, we provide the exact parameters used to generate
data provided in the results.

1. Linear Perceptron

The linear perceptron model was trained on a simple
1D problem, which was generated via y = mx+ c, where
xi ∼ U(0, 1) and m ∼ U(−1, 1) and c ∼ U(−2, 0). We
randomly sampled 256 points to use in the distribution.
The minibatch method used batch sizes of 32 and set σ =
0.1 for the coupling between models in the trajectories.
Experiments were run for 4 × 107 epochs. Averages of
observables were taken by discarding the first half of the
data, to allow for a burn-in time, and using minibatch
estimates on the data.
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2. MNIST

The convolutional neural network (CNN) model archi-
tecture used for our MNIST experiments was as follows:

1. Input 28× 28 single channel image.

2. Convolution layer with a 5× 5 kernel and 16 ouput
channels.

3. 2× 2 max pooling layer.

4. Convolution layer with a 3× 3 kernel and 8 ouput
channels.

5. 4× 4 max pooling layer.

6. Fully connected dense layer with 10 outputs.

7. Softmax layer to normalise probabilities.

This model would output a normalised probability vector
for each input image, specifying the “liklihood” of the
image being a certain digit. The model contained 1906,
32-bit, floating point parameters.

For our experiments, we did not anneal the s parame-
ter, but instead, chose a fixed duration of 2× 107 epochs
to allow for some “burn-in” time. The models were then

run for another 2 × 107 epochs, to allow for measuring
the loss as an observable. Accuracies were only measured
at the end of the 4× 107 epochs, due to the high compu-
tational demand.
We ran all of our experiments using σ = 0.05 and only

changed a random 25% of the parameters of each model
on each perturbation. Each perturbation changed only a
single model in the trajectory, uniformly randomly.
We ran 6 independent experiments for each set of pre-

sented parameters and calculated averages to present the
results in Figure 2, along with calculating the error bars
using the averages’ sample variance.

Appendix C: Normality Investigation

To justify setting the error threshold δ →∞, we ran a
training experiment for two different τ at s = 50 using a
base batch size of 240. These experiments were run for
20, 000 epochs and samples at intervals of 5, 000 epochs.
Histograms of the individual ∆ samples across the entire
batch are plotted, along with a fitted curve showing the
expected normal distribution given the empirical mean
and variance of the batch data. This is presented in Fig-
ure 4.
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Conclusions & Outlook

This body of work adds to the growing list of resources that make a connection between
statistical mechanics and machine learning. While the connection between these topics
has a very long history (e.g. see reviews [17–19, 23]), recent advances in machine learning
can further help to bridge the gap between the topics.

The first contribution from this thesis is the discovery of the connection between rare
trajectory sampling and reinforcement learning. In Chapter 6, we presented a theoreti-
cal framework where one can formulate generating optimal dynamics as a reinforcement
learning problem. One constructs a reward function which is optimised by a policy which
generates an ensemble of trajectories consistent with a biased (or tilted) dynamics. Exist-
ing bodies of work into reinforcement learning are usually only concerned with, in general,
a deterministic optimal policy [27]. The comparative lack of approaches for generating
specific stochastic policies made training an optimal ensemble generator practically im-
possible prior to our work, as traditional methods failed to accurately converge on a
desired policy. Our work remedies this issue, and allows the application of reinforce-
ment learning to learn optimal sampling dynamics, even in high dimensional scenarios,
where existing methods require domain knowledge or heuristics to obtain useful auxiliary
dynamics.

Our second contribution, presented in Chapter 7, is a novel training method based on
MCMC statistical sampling methods. While MCMC sampling methods are commonly
used in Bayesian machine learning [145], they are most often focused on inference rather
than training. Our approach extends the idea of simulated annealing [20] (sometimes
called neuroevolution [143] when applied to neural networks), by instead training an
ensemble of models, upon which we impose some dynamics connecting the parameters —
forming a “trajectory”. This dynamics encourages adjacent models in the trajectory to
have similar parameters (tuned with a hyperparameter σ), and be further biased towards
having a low total loss. Coupling the model in this way produces an ensemble that
far improves on the existing neuroevolution technique, resulting in access to lower loss
models for the same value of the hyperparameter of temperature. In comparison with
traditional gradient-based methods, our approach also makes use of the temperature
hyperparameter, which can be tuned to ensure that the resulting ensemble of models
does not overfit on a small dataset, making it viable at small scales where data is very
limited and generalisation is difficult.

The third contribution further develops this line of research, presented in Chapter 8,
where we co-opt the traditional approach of minibatching to improve the computational
efficiency of the ensemble training method. This allows the computational complexity of
updates to the parameters to be decoupled from the size of the dataset, and even allows
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for studying infinite dataset problems (such as stochastic RL problems).

This research has many avenues for future development and work. Firstly, there has
already been some effort into extending the reinforcement learning applications to sam-
pling rare molecular dynamics trajectories [146]. Work is currently underway to build a
suite of benchmarks, much like OpenAI’s gym [75], specifically tailored towards statistical
mechanics problems, to better develop RL algorithms for use in statistical mechanics.

An interesting extension to our NNE research is to assess whether the ensemble training
approach would be applicable to RL to help avoid catastrophic forgetting [147] and enable
continual learning [148]. We hypothesise that our NNE training approach will prove very
stable on RL problems, similar to those studied in Chapter 6.

While we have demonstrated the ensemble training approach on a reasonably complex
neural architecture, it would be interesting to examine the limits of this approach in
training large neural networks with potentially millions of parameters. We hypothesise
that this will be feasible, but improvements to the training time of these NNEs are of
more immediate interest, as these improvements will inevitably aid scaling up to larger
networks.

There are many avenues to explore with the goal of improving the training time of these
NNEs. A simple extension would be to introduce an adaptive step size, reminiscent of how
gradient descent takes steps proportional to the size of the gradient. To facilitate this,
the coupling between adjacent models in the trajectory could be dynamically adjusted
based on factors such as the acceptance rate. While this would adjust the target of
a stationary distribution, it could allow automatic adjustment throughout training and
lead to a faster trained (and potentially lower loss) NNE. If one wishes to keep a fixed
target distribution, one could instead adjust the perturbation dynamics to alter a higher
proportion of parameters, or number of models, based on the acceptance rate. This could
vastly improve training time by serving as an “automatic” hyperparameter optimisation
heuristic which runs online during training.

Other future training optimisations could focus on practical implementation improve-
ments, such as parallelising the training of the NNE. Knowing that the trajectory sam-
pling methods only make updates, local to only parts of the trajectories, we can segment
the trajectories across multiple machines. Only models on the edge of the segment bound-
aries would need to communicate their parameters with the other machines, avoiding the
introduction of a large communication bottleneck. In effect, one could train very large
NNEs (i.e. long trajectory) in parallel, with each part of the trajectory evolving almost
independently of one another, with some long distance interactions facilitated by edges
of the segments.

Additionally, there is a large body of research dedicated to improving the efficiency of
MCMC methods, as they are known to be computationally expensive. One such method
is Hamiltonian Monte Carlo (HMC) [149], which extends the original Metropolis-Hastings
algorithm used throughout this body of work. HMC aims to introduce momentum into the
proposal dynamics, incorporating the gradient of the energy function into the updates,
allowing an effective large step size to be used while maintaining a high acceptance
rate. While we do not propose directly applying HMC to our NNE training technique,
integrating gradient-based techniques à la HMC with our stochastic process may have
positive effects on the training time and quality of the NNE produced.
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For our final suggestion, we start by noting that the NNE training technique currently is
completely architecture agnostic. While enforce a homogenous architecture on all models
in the trajectory, the actual structure of the model does not inform the training process
beyond its effect on the loss. Currently, there is only one coupling parameter which is
not only homogenous in time (i.e. along the trajectory), but homogenous in the space
of parameters. While this choice makes the implementation and analysis simpler, we
hypothesise that it is neither necessary nor optimal for effective training of a NNE. Rather,
one can imagine using a heterogeneous coupling vector for the parameters, adjusted based
on the architecture of the neural network itself. This may be particularly advantageous
in networks where the number of parameters in the layers varies across several orders of
magnitude.
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