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Abstract 

In recent decades, oil extraction activities have particularly affected land cover in the 

Niger Delta region, subsequently increasing or reducing the extent of certain land cover 

types. Where complete change has not occurred, the quality of the land cover may have 

still been affected and degraded. However, the extent to which oil activities have affected 

the landscape is not fully understood. This thesis presents an integrated multiscale land 

cover change characterisation using geospatial analyses to determine the impact of oil 

extraction activities on the land cover. Firstly, a spatiotemporal hotspot analysis of oil 

spills from 2007- 2019 and oil facilities shows that the area around Omuko-Ahoada in the 

north-eastern and around Ijaw-South in the southern part of the study area are the most 

impacted by the oil extraction activities. Secondly, from analysis of the impact of soil 

hydrocarbon parameters (SHP) on the health of different types of vegetation at the leaf 

scale from field spectrometer data, the mangrove is the most impacted by total petroleum 

hydrocarbon (TPH) and soil toxicity by showing a decrease in chlorophyll content and 

low spectral reflectance. At the same time, the mango shows the most tolerance to TPH, 

while oil palm is the most tolerant to toxicity (EC50). Thirdly, from the analysis of the 

impact of the oil spill volume and time gap after the occurrence of oil spills on the health 

of dense, sparse and mangrove vegetation even many years after the occurrence of spills 

by way of normalised difference vegetation index (NDVI) show that the dense vegetation 

is only impacted at volumes 1000 barrels and sparse vegetation between 400 and 1000 

barrels. However, the mangrove vegetation is not impacted at any volume. Additionally, 

the impact of oil spills was more visible within 90 days of the spill for sparse and 

mangrove vegetation than for dense vegetation, which can withstand the oil spill due to 

its size. Also, the result shows that the health condition of vegetation on spill sites is 

impacted by oil spills when compared with those on none spill sites for all vegetation 

types. Finally, land cover change detection at the landscape scale was performed using a 

Bayesian classifier from 1987-2016 and NDVI map. The results show that the oil 

extraction activities have affected the land cover, especially the vegetation, with many 

conversions from vegetation to non-vegetation and degradation occurring near oil 

extraction activities. The results from this thesis could help address the environmental 

problems in the Niger Delta, such as land pollution, degradation and land cover change, 

by prioritising programs such as oil spill cleans up or remediation and the restoration of 

the vegetation using some plants that have shown some resistance to the impact oil spills 

to ensure the sustainability of the natural environment in the Niger Delta. 
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Chapter 1 Introduction 

1.1 Background 

Land cover is a physical characteristic of the Earth’s surface, such as the distribution of 

vegetation, water, soil and other physical and manmade features. Comprehensive and 

precise knowledge of land cover is crucial for many scientific and operational 

applications (Inglada et al., 2017). Over the years, human activities and some natural 

processes have led to land cover changes. Land cover change (LCC) is the conversion of 

different land-cover types (Liping et al.,  2018), which results from complex human-

environmental interactions with high interdependencies on social-ecological systems, 

making it difficult to identify the main drivers (Kleemann et al., 2017). Land cover change 

detection identifies differences in the state of land cover types at different points in time 

(Ridd & Liu, 1998). Land cover change information is important in global environmental 

change research (Chen et al., 2003). Inventories and monitoring of land-use/land-cover 

changes are essential for further understanding the change mechanisms and modelling the 

impact of change on the environment and associated ecosystems at different scales (Chen 

et al., 2003; Turner et al., 1995). The main manifestations of land cover change involve 

the complete conversion or more subtle modification of land cover or subtle alterations 

(Joshi et al., 2016). 

The Niger Delta has undergone a land cover change in the form of both conversion and 

degradation. Historically, the quantity and degradation (specifically vegetation) of land 

cover change have not been well documented. However, it is well-known that one of the 

major causes of land cover change in the Niger Delta is oil extraction activities: oil spills 

onto the land and water and gas flares into the air. Ultimately, the responsibility lies with 

the multinational oil and gas companies, whose activities lead to oil spills from their 

facilities, e.g. from oil pipelines, due to negligence and ageing pipelines or sabotage. Oil 

spill affects the water and vegetation, causing land cover changes, especially to the health 

of vegetation. For more than four decades, oil exploration and production activities have 

left a severely degraded environment in the Niger Delta region (Okoye & Okunrobo, 

2014). Several studies have revealed apparent environmental contamination on land, 

groundwater, surface water and sediments, with severe impacts on vegetation, air quality 

and public health (Agbonifo, 2016). This has led to farming and fishing becoming 

impossible or extremely difficult in oil-affected areas. Drinking water has become scarce, 

and about 90% of water is not safe because of contamination (Okoye & Okunrobo, 2014). 



 

2 

 

Despite the threat of land cover change in the Niger Delta, there has not been much effort 

to comprehensively characterise the land cover changes that have occurred due to oil 

extraction activities, especially using a geospatial approach, remote sensing and spatial 

analysis. Most published studies focus on geology, geochemistry and environmental 

toxicology, while studies employing Earth observation (EO) satellite data to assess Niger 

Delta dynamics are scarce (Kuenzer et al., 2014). Nonetheless, the data available from 

satellite remote sensing missions can immensely aid efforts to accurately determine land 

cover/use and quantify changes in land cover/use management (Joshi et al., 2016), such 

as urban planning, and to prevent further destruction of land cover by introducing policies 

to help mitigate land cover changes, especially the destruction of natural environments. 

In a predominantly mangrove vegetation ecosystem such as the Niger Delta, there is a 

need for techniques that will afford the mapping of such land cover types over large 

geographical areas and with high temporal frequency. Traditional remote sensing 

classification methods have failed to map mangrove-dominated species due to relatively 

coarse spatial data resolution and spectral confusion with other land cover types 

(Heumann, 2011). Generally, image classification methods are grouped as per-pixel 

(hard) and sub-pixel (soft) classification (Lu & Weng, 2007). The hard image 

classification methods classify the remotely sensed data into a single map where each 

pixel belongs to a single land cover class. In contrast, the soft classification methods 

simultaneously categorize each pixel into several classes (Lu & Weng, 2007). While a 

mixed pixel cannot be appropriately represented by hard classification, the soft 

classification can overcome the problem of mixed pixel to some extent by indicating the 

class composition (Ling et al., 2016). 

Mapping fringe mangroves using remote sensing data remains a challenge due to the 

spectral similarity of mangroves and associated species, lack of clear zonation between 

species, and mixed pixel effects, especially when vegetation is sparse or degraded 

(Heumann, 2011). Innovative remote sensing techniques, such as soft spectral classifiers 

and geographic object-based image analysis, can offer a more effective approach for 

mapping land cover and utilising ancillary environmental data for vegetative land cover 

classifications (Gudex-Cross et al., 2017). 

Understanding the relationship between the spatiotemporal dynamics of LULCC 

scenarios will assist planners/decision-makers in formulating sustainable urban 

development and environmental protection plans and will remain a scientific asset for 
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future generations (Rimal et al., 2017). Advances in geographic information systems 

(GIS) have significantly improved the spatial representation and analysis of all kinds of 

information and data (Mohamadi et al., 2015). Change detection methods using satellite 

imagery and the analytical functions of distance and size in the GIS environment can help 

to monitor and map land cover change (Mirkatouli et al., 2015; Rawat & Kumar, 2015), 

as well as to understand spatial and temporal land cover change dynamics (Gyawali et al.,  

2004). 

The effect of oil extraction activities in the Niger Delta region is no longer contestable; 

what remains contestable is the amount of change that has taken place across space and 

time due to oil extraction activities, which this research aims to address. 

1.2 Problem statement 

In recent decades, the oil industry has undoubtedly contributed significantly to land cover 

change in the Niger Delta, due to the impact of oil extraction activities. However, the 

extent and severity of land cover change due to oil extraction activities remains unclear. 

The Niger Delta is characterised by contaminated streams, rivers, forest destruction and 

loss of biodiversity, leading to ecological wasteland due to oil pollution from oil spills, 

gas flares, effluent and waste discharges for over four decades (Agbonifo, 2016; Kadafa, 

2012a; Twumasi & Merem, 2006). The greatest problem is that the soils absorb oil like 

sponges and re-release them every rainy season. Therefore, oil is taken up by the roots of 

plants, making mangrove forests particularly vulnerable to oil spills (Pyagbara, 2007). 

One of the major problems facing the Niger Delta region is a lack of adequate forest and 

vegetation monitoring capacity (Ochege et al., 2017). The lack of spatiotemporal data on 

the evolution of oil spill hotspots and oil extraction activities and their relationship with 

land cover changes in the Niger Delta, especially vegetation, means that there is a limited 

understanding of the effect of oil extraction activities on land cover change. Although 

several studies have examined various problems of environmental degradation in the 

Niger Delta, there is still a need for improved understanding, monitoring, and 

management of the ecosystems because there are limited in‐depth studies that employ 

geospatial technology to better understand land-use changes in the Niger Delta (Ohimain, 

2007) 
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1.3 Research gap 

The land cover, especially the vegetation in the Niger Delta, has been affected by oil 

extraction activities in the form of destruction or degradation due to the construction of 

oil facilities and oil spills. However, a comprehensive multiscale-level land cover 

characterisation of the change, and the impact of oil extraction activities on the land cover, 

especially the vegetation in the Niger Delta, has not been carried out. Understanding the 

spatial and temporal pattern of oil extraction facilities and oil spill is important in 

characterising their impact on the land cover changes. Previous work on oil spill-related 

spatial statistics in the Niger Delta is limited.  

Firstly, no study has attempted to conduct an annual spatiotemporal analysis of oil spills 

to show the hotspot trends over time and oil facilities hotspots and integrate them with 

land cover change data. For example, Obida et al. (2017) and Obida et al. (2018) 

Identified human and environmental exposure to hotspots of oil spills along the oil 

pipeline networks, and Whanda et al. (2016)  assessed the geographical distribution of 

oil-spill clusters. Also, Rowland (2010) analysed hotspots and cold spots of oil spill 

clusters to explain incident patterns related to third-party interference via oil pipeline 

vandalism.  

Secondly, in the Niger Delta, to the best of my knowledge from the available literature, 

there has not been a study on the impact of soil hydrocarbon parameters on different types 

of plant species at the leaf scale using hyperspectral remote sensing to capture subtle 

changes in the health of vegetation that cannot be captured from the satellite.  

Thirdly, the impact of oil spills on different vegetation types at plot scale using satellite 

images has not been carried out. The first study that assessed the impact of oil spills on 

vegetation at plot scale was conducted by Adamu (2016); Adamu et al. (2015, 2016, 2018) 

and focused only on the mangrove vegetation. 

 Fourthly, concerning the use of remote sensing to map and detect a land cover change in 

the Niger Delta, previous land cover mapping and change detection employed pixel-

based, hard classification techniques (Eyoh & Okwuashi (2016); Nababa et al. (2020), 

which are unsuitable because of the nature and complexity of the study area.  

Combining object-based analysis and soft classification could help overcome pixel and 

object-based land cover classification limitations in areas such as the Niger Delta. 

Integrating land cover change data with oil extraction activities data (e.g., oil spill 
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hotspots) to characterise their impact on the land cover using a multi-scale approach will 

produce results for a better understanding of the interaction between land cover changes 

and oil extraction activities in the Niger Delta. 

1.4 Aim and Objectives. 

1.4.1  Aim. 

This research aims to comprehensively characterise the impact of oil extraction activities 

on the land cover change in the Niger Delta at different scales using multispectral and 

hyperspectral remote sensing data. This study analysed the spatiotemporal oil spill 

hotspot and oil facilities hotspot, the relationships between oil extraction 

activities/facilities and the observed land cover changes in quality (degradation) and 

quantity (conversions from one land cover type to another) by integrating oil spill and 

facilities data with land cover change information derived from remote sensing data. To 

achieve the aim of this research, the following research questions and objectives were 

identified. The objectives are also shown in Figure 1.1  

Research questions 1: 

 Where are the oil facilities located in the Niger Delta? 

 Where and how frequently have oil spills occurred over the past 13 years?  

Objective 1: To map and examine the spatiotemporal evolution of oil spill hotspots, oil 

facilities hotspots and the spatial distributions of oil facilities in the Niger Delta using 

spatial statistics. 

Research  question 2: 

 What are the responses of plant types to various concentrations of soil 

hydrocarbon properties?  

Objective 2: To determine the impact of soil hydrocarbon parameters (SHP) on the 

health of plant types at the leaf scale using hyperspectral vegetation indices (HVIs) in 

the Niger Delta. 
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Research question 3: 

 What are the effects of oil on the health of different types of vegetation and plants? 

Objective 3: To determine the effect of oil spills on vegetation health at the plot scale 

using satellite imagery. 

Research question 4: 

 What are the observed general patterns of land cover changes, and what land cover 

types are more affected by extraction activities in the Niger Delta?  

 At what scale (i.e., leaf, plot, and landscape) are these effects manifested? 

Objective 4: To map land cover changes at the landscape scale and the effect of oil 

extraction activities on the observed changes using the best performing land cover 

mapping classifier. 

 

Figure 1.1: Structure of the thesis: multiscale characterisations of the impact of oil 

extraction activities on the land cover in the Niger Delta. 
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1.5 Thesis structure 

This thesis consists of 8 chapters, including an introduction, literature review, general 

methodology, analysis associated with each of the four objectives, and a discussion and 

conclusion. 

Chapter 1 provides a background for the study of land cover change mapping. The 

introduction highlights the importance of mapping land cover change to assess the impact 

of oil extraction activities in the Niger Delta. The chapter also discusses the problem this 

research attempts to solve by revealing the true extent and severity of the land cover 

change due to oil production and exploration, which is currently unclear. The knowledge 

gaps, aim and objectives, and research questions have also been presented in this chapter. 

Chapter 2 provides a review of the existing literature associated with the study area, land 

cover change, the physiographical overview of the Niger Delta, oil extraction activities 

both present and past. It also review the previous studies looking at land cover change 

associated with the oil industry, the methodology for spatial analysis of oil spills and land 

cover change monitoring, and mapping using earth observation. This chapter also reviews 

optical and hyperspectral data for monitoring vegetation health. 

Chapter 3 provides an overview of the general methodology employed in this thesis. The 

first part describes the study area and data sources used for the analysis. The general 

approach to spatiotemporal hotspot analysis, field spectroscopy, soil hydrocarbon 

analysis, and land cover change detections are also presented. 

Chapter 4 analyses the spatiotemporal evolution of oil spills and oil facilities hotspots in 

the Niger Delta region using spatial statistics from 2007-2019. The hotspot results were 

used with land cover change information to determine the impact of oil extraction 

activities on land cover changes. 

Chapter 5 seeks to determine the effect of soil hydrocarbon properties on vegetation at 

the leaf scale using the data obtained from field spectrometer. This chapter discussed the 

methods for field data collection (soil and leaf samples from different plant species) in 

the Niger Delta to extract hydrocarbons and other soil parameters and corresponding 

spectral measurements from the leaf samples using an ASD FieldSpec  Pro instrument. 

The spectral characteristics of the leaves were correlated with the soil hydrocarbon 

analysis to investigate the effect of soil hydrocarbon properties on the health of plants. 
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Chapter 6 focuses on monitoring the impact of oil spills on vegetation at the plot scale 

using the satellite-derived normalised difference vegetation index (NDVI). The effect of 

oil spill volume and time gap after spills on different types of vegetation, temporal 

analysis of the impact of oil spills on vegetation condition by observing changes in NDVI 

before the spill and many years after spills and comparing them with their corresponding 

control site (non-spill) sites were determined to help in understanding the effect of time 

on vegetation health recovery. 

Chapter 7 reveals the land cover changes in the Niger Delta from 1987-2016. Land cover 

mapping was performed using six different classifiers, and the most accurate classifier 

was used as the basis for land cover change detection. The degradation of vegetation was 

analysed based on the NDVI. Oil extraction data were overlaid to determine the impact 

of oil activities on the land cover changes. 

Chapter 8 discusses the key findings of each objective covered in chapters 4 to 7. Some 

overall conclusions are derived, and recommendations for for future studies are proposed. 
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Chapter 2  Literature Review 

2.1 Introduction. 

This chapter provides a general literature review describing an overview of the Niger 

Delta’s geography and geology, land use/land cover, oil extraction activities, and the 

related impact on land cover. It also provides a review of the current methodologies for 

land cover change mapping, monitoring and spatial statistics. 

2.2 Physiographical overview of the Niger Delta 

The Niger Delta is the largest river delta on the African continent and the most densely 

populated river delta globally and has the third-largest mangrove forest in the world. It is 

a major biodiversity hotspot of our planet (Kuenzer, van Beijma, Gessner, & Dech, 2014). 

The River Niger drains a large part of West Africa. It discharges its waters, sediments, 

and other loads, including exotic species, into the Niger Delta and its extensions into the 

Atlantic Ocean, resulting in a complex and fragile delta with rich biodiversity (Abam, 

2001). The delta's surface is separated by a dense network of rivers and creeks, which 

creates a condition of delta-wide hydrological continuity (Abam, 2001). Historically and 

cartographically, the Niger Delta consists of present-day Bayelsa, Delta, and  Rivers 

States. The Niger Delta, as officially defined by the Nigerian government in 2000, extends 

over approximately 70,000 km2 and makes up 7.5% of Nigeria's land mass and includes 

Abia, Akwa-Ibom, Cross River, Edo, Imo and Ondo states, with 185 Local Government 

Council Areas making a total of nine coastal southern Nigerian states (Asanebi, 2016). 

2.2.1 Geography of Niger Delta. 

The Niger Delta area lies within the wet equatorial climate; high cloud cover and fewer 

sunshine hours cause damp weather conditions throughout most parts of the year (Shittu, 

2014). The Niger Delta consists of the most extensive freshwater swamp, coastal ridges, 

fertile-dry land forest, immeasurable creeks and streams, and tropical rainforest 

characterised by great biological diversity providing habitat for an abundance of fish and 

marine wildlife. Over thousands of years, seasonal flooding and sediment deposits have 

made the land fertile. It is located in the central part of southern Nigeria between latitudes 

5°33'49''N and 6°'31'38"E in the north. Its western boundary is given as Benin 5° 44'11"N 

and 5°03'49"E, and its eastern boundary is Imo River 4°27'16" N and 7°35'27"E. The 

Niger Delta is located along the Atlantic coast, which forms the southern boundary of 

https://en.wikipedia.org/wiki/Bayelsa_State
https://en.wikipedia.org/wiki/Delta_State
https://en.wikipedia.org/wiki/Rivers_State
https://en.wikipedia.org/wiki/Rivers_State
https://en.wikipedia.org/wiki/Abia_State
https://en.wikipedia.org/wiki/Akwa-Ibom
https://en.wikipedia.org/wiki/Cross_River_State
https://en.wikipedia.org/wiki/Cross_River_State
https://en.wikipedia.org/wiki/Imo_State
https://en.wikipedia.org/wiki/Ondo_State
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Nigeria, as shown in Figure 2.1. It is the entrance of the Niger and Benue Rivers into the 

ocean through a network of rivers, creeks, and estuaries (Alagoa, 2005).  

 
Figure 2.1: Map of Niger showing the location of Niger Delta states. 

 

A semi-hot, humid equatorial climate characterises the Niger Delta with wide variations 

from one part of the region. The temperature is uniformly high throughout the year, with 

high relative humidity and intense rainfall occurring virtually year-round in the core delta 

but becoming more seasonal further inland with an increase in distance from the ocean. 

Mean yearly rainfall ranges from over 4,000 mm in the coastal towns of Bonny and Brass 

in Rivers and Bayelsa States, respectively, and decreases inland to 3,000 mm in the mid-

delta around Ahoada, Yenagoa, and Warri in Rivers, Bayelsa and Delta States, 

respectively (The historical Niger Delta), and slightly less than 2,400 mm in the northern 

parts of the region, such as Imo and Abia States. The annual rainfall ranges from 1,500 

to 2,000 mm in the north-western portions of the Niger Delta, including Edo and Ondo 
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states (NDRDMP, 2006). The average monthly temperature for the warmest months 

(February to April) ranges from 28–33 °C, while the average monthly temperature for the 

coolest months (June to September) ranges from 21–23 °C (UNDP, 2006). 

2.2.2 Geology  and petroleum of Niger Delta 

The Nigerian coastal geology is sedimentary and is dominated by the geology of the 

arcuate Niger Delta (Egberongbe, Nwilo, & Badejo, 2006). The large amount of sediment 

carried by the river system over the centuries has resulted in a vast, relatively flat basin 

(Abam, 1999a). The river Niger forms a complex network of channels that drain into the 

Gulf of Guinea characterised by rain-fed deltaic vegetation. The  area is formed of both 

fluvial and marine sediments built-up over the past 50 million years since the upper 

Cretaceous period (Adamu et al., 2016). The natural delta of the Niger River is a vast 

sedimentary basin with deltaic deposits comprised mainly of medium to coarse 

unconsolidated sands, silt, clay, shale and peat (UNDP, 2006).  

The Niger Delta is among the most abundant petroleum basins in the world, with about 

25 billion barrels of oil and 256 trillion cubic feet of natural gas deposits . The 

three lithostratic units in the Niger Delta were developed from Akata Formation, Agbada 

Formation and Benin Formation (Deng et al.,2008).  Petroleum in the Niger Delta is 

produced from sandstone and unconsolidated sands predominantly in the Agbada 

Formation (Tuttle et al., 1999). The  Hydrocarbons have been in good-quality sandstone 

reservoirs, with the larger accumulations occurring in roll-over anticlines in the hanging 

walls of growth faults (Doust, 1990). Three petroleum systems are present in the Niger 

Delta and delta frame: Lower Cretaceous (lacustrine), Upper Cretaceous-lower Paleocene 

(marine), and Tertiary (deltaic)(Haack et al., 2000). 

The  Crude oil from the Niger Delta basin comes in two types: light (Bonny light crude 

oil) and comparatively heavy. The lighter has around 36 gravity while the heavier has 20–

25 gravity. Bonny light is a highly demanded high-quality crude oil produced in the Niger 

Delta due to its low sulfur content. 

2.2.3 The population and ethnic groups in the Niger Delta 

The Niger Delta has a very dense population of approximately 31 million, projected to be 

approximately 45 million people by 2020. A dominant feature of the structure of the 

population of the Niger Delta region is its significant level of young people, with over 

62% of the population below the age of 30 years, while the age group 30-69 years makeup 
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only 36% and those aged 70 years and above just 2%  (NDRDMP, 2006). The high 

populations are concentrated in the two major urban cities of Port Harcourt and Warri, 

which is attributed to the rapid growth in the oil and gas industries (Abam, 2001). The 

dominant ethnic group in the traditional Niger Delta is the Ijaw, while the Isoko, Itsekiri, 

Kwale, and Urhobo are located in the Western Delta. In the eastern Niger Delta, the main 

ethnic groups include the Ekpeye, Andoni, Ikwerre, Ndoni and Ogoni (Akujuru, 2014). 

However, with the inclusion of other states in 2000, the ethnic groups have increased to 

include groups such as Igbos, Yorubas, and Benis, making approximately 40 different 

ethnic groups speaking 250 languages and dialects (“Niger Delta Region: Land and 

People,” n.d.). Table 2.1 shows the population of the nine states that make up the Niger 

Delta. 

Table 2.1: Projected population of the Niger Delta. Source: GTZ projections (2004) 

based on national population commission data. 

State 2005 2010 2015 2020 

Abia 3,230,000 3,763,000 4,383,000 5,106,000 

Akwa Ibom 3,343,000 3,895,000 4,537,000 5,285,000 

Bayelsa 1,710,000 1,992,000 2,320,000 2,703,000 

Cross River 2,736,000 3,187,000 3,712,000 4,325,000 

Delta 3,594,000 4,186,000 4,877,000 5,681,000 

Edo 3,018,000 3,516,000 4,096,000 4,871,000 

Imo 3,342,000 3,894,000 4,535,000 5,283,000 

Ondo 3,025,000 3524,000 4,105,000 4,782,000 

River 4,858,000 5,659,000 6,592,000 7,679,000 

Total 28,856,000 33,616,000 39,157,000 45,715,000 

 

2.2.4 Land use/land cover and ecology 

Land cover is the physical characteristic of the Earth’s surface, such as the distribution of 

vegetation, water, soil and other physical and manmade features, e.g., settlements and 

tarred roads. At the same time, land use is the way humans use the land and its habitat, 

usually for economic activities (Ramachandra & Kumar, 2004). The major land cover 

types in the region are vegetation, predominantly forest type with 8600 km2 of swamp 

forest and approximately 1900 km2 of mangrove forests (Alagoa, 2005). Others are water 

bodies and built-up areas in the core Niger Delta. The major land-use types in the Niger 

Delta could be grouped into two categories: traditional and modern. The traditional 

economic activities of the Niger Delta communities can also be categorised as land-based 

type on the drier parts of the northern end of the Delta, which includes farming, fishing, 
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collecting and processing of palm fruits and hunting, and water-based type of economy 

at the southern parts of the Niger Delta, including fishing, gathering of seafood, and 

trading, with a less diversified economy. The Niger Delta region produces a variety of 

cash crops and food crops. The economically important crops are palm fruits from which 

palm oil and palm kernels are derived, rubber, cocoa, groundnuts and pineapples. The 

modern land use is largely associated with oil and gas extraction (e.g., pipelines, 

refineries, transportation). 

A variety of vegetation characterises the ecology of the Niger Delta (Ayanlade & Howard, 

2017). The Niger Delta ecology and diversity of estuarine and coastal communities are 

very understudied and poorly understood (Akani, Luiselli, & Politano, 1999; Igu, 2016; 

Luiselli, Amori, Akani, & Eniang, 2015; Zabbey & Malaquias, 2013). The larger part of 

West Africa, which has been draining and discharging its water and sediment into the 

Niger Delta, and its extension into the Atlantic Ocean over the years, has given rise to the 

formation of a complex and fragile delta with rich biodiversity. This has subsequently 

resulted in the development of dry flat land ecological zones, dry land with abundant 

swamp zones and freshwater swamps. Other ecological zones are mangrove swamps, 

beach ridges, and bars (Abam, 1999b). However, Ogon (2003) stated that the above 

statement was in relation to the pre-crude oil Niger Delta because today’s Niger Delta 

Wetland is well-known more for the large deposit of crude oil and gas and little of its 

endowed natural resources, which are being devastated. The five main ecological zones 

with a summary of their characteristics are shown in Table 2.2, while Figure 2.3 shows 

the area of ecological zones by states in the Niger Delta. Oil and gas activities have led 

to the reduction and fragmentation of habitats and conversion of biodiversity-rich and 

productive ecosystems to one form of development, and pollution constitutes a major 

threat to eco-sustainability and biodiversity in the Niger Delta (Zabbey & Malaquias, 

2013). The impact of joint oil multinational and government operations on the 

environment and ecology are laregely associated with three main aspects of oil 

production; namely, gas flaring, oil spillage and pipeline networks (Takon, 2014). The 

shrinking of the floodplain has gradually engineered a change in the soil moisture 

conditions, with a corresponding change in plant speciation. Several of the fish-spawning 

areas within the freshwater swamps have been lost due to low flood levels. Varieties of 

wildlife species intolerant of ecological change in the Niger Delta are bound to suffer 

stress and eventually extinction. For instance, ecologists have reported the disappearance 
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of some species of fish, birds and other wildlife downstream of dammed rivers (Crisp, 

1985; Abam, 1999). 

Table 2.2: Ecological zones in the Niger Delta. Source:(NDRDMP, 2006) 

Ecological Zone Characteristic 

Mangrove Forest and 

Coastal Vegetation. 

A chain of low sandy barrier islands protects the coast of the 

Niger Delta, between Benin and Imo estuaries, less than a 

meter above high-tide level. The dominant vegetation is 

freshwater swamp forest with occasional small salt 

marshes,where seawater washes over beaches. As the poorly 

drained and sandy soils are not conducive for farming, there 

is little direct conversion of forest to agricultural land. 

Fresh Water Swamp 

Forest. 

The Swamp forests, which are subject to the silt-laden 'white 

water' of the Niger floods, have a very high fishery and 

agricultural potential. Within this white water sector, there 

are two broad zones: (a) the Upper Delta or Flood Forest 

zone and (b) the Swampy Tidal Freshwater zone. The 'Upper 

Delta' or 'Flood Forest' zone (Aboh to Bomadi and 

Oporoma)has large sandy river channels, high flood levels, 

and numerous floodplain lakes. 

Lowland Rainforest 

Zone. 

This zone occupies the non-riverine or 'upland' areas, which 

flank the delta. The natural rainforest of the area has been 

largely cleared for agriculture, and the dominant vegetation 

types are now farmed bush, a mosaic of cropped and fallow 

areas, usually with many oil palms, and plantations, mainly 

oil palm and rubber. Open farmed areas lead to the entry of 

invasive grassland or 'savannah' species. Some forest species 

can survive in the old fallow land but most have disappeared 

due to shorter fallow periods attributable to the demands of 

an increasing population. 

Derived Savannah 

Zone. 

This is found in the northern parts of the Niger Delta 

Region.The vegetation type in this zone appears as regrowth 

after the original rainforest has been cleared for agriculture. 

It comprises of Savannah type grasses and shrub, with a few 

scattered trees. Due to constant human pressure, it is virtually 

impossible for trees to grow to maturity. 

The Montane Zone. The zone is confined to the north eastern part of Cross River 

State around Obudu/Sankwala area. The high altitude 

location of the zone – approximately 900 to 1500 m above 

sea level means that species diversity is not as great as in the 

other tropical high forest although floristic diversity is 

enhanced by the presence of many species of herbs and 

shrubs. 
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Figure 2.2: Areas of ecological zones (in Hectares) by states in the Niger Delta region 

(NDRDMP, 2006). 

 

2.3 Oil exploration activities in the Niger Delta region: past and 

present 

Petroleum exploration and production in the Niger Delta region and the export of oil and 

gas resources have greatly improved the economy of Nigeria over the past five decades 

(Ite, Ibok, Ite, & Petters, 2013). The discovery of commercially viable oil resources in 

Nigeria was a long, drawn-out process, much to the disappointment of early oil ventures. 

The Nigerian environment proved to be the most challenging obstacle, requiring more 

advanced technology than the petroleum industry possessed at the time (Steyn, 2009). Oil 

and gas exploration activities started in Nigeria when German surveyors for the Nigerian 

Bitumen Corporation began exploration in the Araromi area of western Nigeria in 1908 

(Anejionu et al., 2015; Ite, Ibok, Ite, & Petters, 2013), which ended shortly with the start 

of World War I in 1914 and later resumed in 1938 when Shell D’Arcy, a consortium of 

Iranian Oil Company (later British Petroleum and Royal Dutch Shell) was granted an 

exclusive concessionary right over the whole of Nigeria (Ite et al., 2013). The first 

commercial oil discovery dates back to 1956 when Shell British Petroleum (now Shell 

plc) discovered crude oil at Oloibiri, a village in Bayelsa state situated within the Niger 

Delta of Nigeria (Abbas, 2012; Egwu, 2012; Okoye & Okunrobo, 2014). By 1958, 
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Shell/D’Arcy had discovered oil in twelve areas, of which Oloibiri, Afam and Bomu were 

the most promising. Oil production started at Oloibiri in early 1958 at 3,000 barrels per 

day (Steyn, 2009). The first shipment of Nigerian crude oil exports (8,500 tons of crude 

oil) arrived at Rotterdam on 8 March 1958 (Steyn, 2009). The daily output of crude oil 

increased to 12,000 barrels per day by the end of 1959 and 900,000 barrels per day from 

the late 1960s to the early 1970s (Shittu, 2014) but it did not play a significant role in the 

Nigerian economy (Ugochukwu & Ertel, 2008). 

Oil and natural gas exploration has increased significantly in recent years in Nigeria due 

to increased demand and technological improvements that allow access to geologic strata 

once considered impractical to pursue petroleum from (Unger et al.,  2015). By the late 

1970s to 1980s, Nigeria reached a production level of over 2 million barrels per day, but 

the year 2004 saw significant improvement as production reached a record level of 2.5 

million barrels per day (Shittu, 2014). By 2006, Nigeria became the largest oil producer 

in Africa and the sixth-largest globally, averaging 2.7 million barrels per day (bbl/d) 

(Egberongbe et al., 2006). This has led to oil companies requiring land for oil wells, flow 

stations, oil and gas pipelines and a flurry of oil and gas-related developments, which has 

led to several spillages, bulldozing of farmlands and economic trees to create rights of 

way and exploitation of oil wells (Odudu, 2017). 

2.3.1 Oil spills in the Niger Delta 

Oil spills – the uncontrolled release of crude oil into the environment can have 

considerable economic, human and environmental consequences (Rim-rukeh, 2015). Oil 

spillage resulting from oil extraction activities has been a global problem since the 

discovery of crude oil (Kadafa, 2012b). Oil-related activities and their impact on the 

environment remain a quarrelsome issue that has affected the bond between oil 

communities, oil companies and governments, especially in developing countries, and 

less so in advanced economies with oil resources and vibrant civil societies (Takon, 

2014). Globally, oil spills are the price that must be paid whenever oil exploration 

activities occur. Rim-rukeh (2015) stated that “oil spill therefore, is an inevitable 

consequence of the ever-increasing demand for exploration, production, transportation, 

and use of oil”. In the Niger Delta, 77% of oil spills into the environment between 1976 

and 1996 were not recovered from the environment they were spilt into (Abbas, 2012). 
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2.3.2 Causes of oil spills and attacks on oil facilities  

The causes and circumstances of oil spills are many and vary from one region to another. 

The main causes of oil spills in the Niger Delta are equipment failure, operational errors, 

or wilful damage to oil facilities (Okoye & Okunrobo, 2014; Rim-rukeh, 2015). The 

driving force behind attacks on oil facilities and pipelines in the Niger Delta are socio-

economic and political deprivation (Shittu, 2014), shallow pipeline laying, insecurity and 

corruption, and bad governance across the communities (Chika & Ndidi, 2022). The 

reason for the attack on oil facilities in the Niger Delta is grouped into two: economic 

gain (bunkers) and agitation (vandals). The bunkers illegally obtain oil from pipelines 

with collaborations with security agents and oil workers to siphon crude oil directly from 

pipelines that supply the various refineries. While the agitators, saboteurs and vandals of 

oil facilities use explosives and break pipelines that supply oil to various companies and 

refineries to show their grievances towards the government and multinational oil 

companies (Umar et al., 2021). In most cases, the vandals have the blessing and support 

of the communities, making it difficult for them to be arrested by security personnel. 

In recent times, the issue of oil spills in the Niger Delta was aggravated due to militants' 

activities in early 2006. A substantial amount of crude oil pipeline vandalism in the Niger 

Delta was carried out by the militant groups with the excuse of fighting for better 

environmental management and development of the region (Umar & Hajj Othman, 2017). 

The activities of the militants, which include blowing up/shutting down oil installations 

and facilities, setting off car bombs, and illegal oil bunkering (estimated at between 

80,000 and 300 000 bbl/day) valued at six billion US dollars, is caused by years of 

political and economic marginalization, environmental degradation, bad governance and 

policy inconsistency by the government and the divide-and-rule policy of the oil 

companies in the region (Nwogwugwu et al, 2012). For instance, nearly 14,000 tons of 

crude oil flowed into the creeks of the Niger Delta from the Royal Dutch Shell plc oil 

facilities in 2009 due to the activities of oil thieves and militants, which was more than 

double the amount spilt into the delta in 2008 and quadruple what was spilt in 2007 (Press, 

2010).  

To address the militancy issues in the region, the late President Umaru Yar'Adua offered 

an unconditional pardon and cash (amnesty) on 6 August 2009 to militants willing to lay 

down their arms. However, at the beginning of 2016, militants in the Niger Delta region 

once again declared war on the Federal Government of Nigeria and international oil 
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companies (IOCs) to press home their demands by resuming attacks on oil pipelines, 

bringing oil production to its lowest rate in more than two decades with nine attacks a 

month on average (Amevor, 2016). However, due to a series of dialogues and 

consultations with stakeholders, the activities of the militants were reduced to a minimum. 

However, large-scale illegal oil bunkering in the region through breaking pipelines both 

offshore and onshore to steal oil to either refine them locally or sell them on the black 

market has been on the increase unabated. The oil typically spills into the environment, 

affecting the land cover. However, oil pipelines are not blown using an explosive, 

recently. The illegal oil refinery activity started with oil bunkering and vandalism in 2003 

but later transformed into stealing and selling crude oil and illegal oil refinery activities 

in 2012 after the militants were offered amnesty (Olujobi, Olarinde, & Yebisi, 2022). The 

issue of pipeline vandals has become worrisome to the Federal government of Nigeria. 

According to Mr Kyari, the Nigeria National Petroleum Company Limited (NNPCL) 

chief, “the pipeline taps are so sophisticated that they ran for 3-4 kilometres and would 

have involved cranes, industrial equipment and at least 40 workers with 295 illegal 

connections in one line of less than 200 kilometres” (Yusuf, 2022). By September 2022, 

the large-scale attacks on oil pipelines have caused Nigeria to lose 95% of its oil output 

to criminals at the oil hub Bonny. Only 3000 out of 239,000 barrels injected into the 

pipeline from the Bonny Terminal oil hub, a key export point for Nigeria, was recovered, 

while the remainder was lost to criminals.  

2.3.3 Effect of oil extraction activities on land cover 

Crude oil has had a profound impact on world civilization compared to any other single 

natural resource in the history of humankind and has become a very significant constituent 

in defining the politics, rhetoric and diplomacy of the nation (Pyagbara, 2007), affecting 

the lives and destinies of many people and countries around the world both negatively 

and positively. The oil and gas industry is global, with operations conducted in every part 

of the world, from Alaska to Australia, from Peru to China, and in every habitat, including 

desert, tropical rainforest, temperate woodland, mangrove, etc. (E&P Forum/UNEP, 

1997). Exploration, drilling, extraction, transportation and refining of oil always leads to 

clearing of vegetation, waste discharge, accidental spills and operational failures 

combined with sabotage, pipeline bunkering and illegal refining, contributing to serious 

environmental pollution (Langeveld & Delany, 2014), which may be regional or global 

in scale (Kharaka & Dorsey, 2005). Some ecological side effects of oil extraction are 
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damaged land, fire accidents, incidents of air and water pollution, contamination of local 

streams/rivers, farmlands, forest resources and biodiversity in oil-producing areas (E&P 

Forum/UNEP, 1997; Whanda, Adekola, Adamu, Yahaya, & Pandey, 2016). The increase 

in oil and gas activities in the Niger Delta has led to the conversion of land cover, such as 

forest or agricultural land, to oil and gas wells (Unger et al., 2015). 

The way communities in the Niger Delta interacted with their environment in pre-oil 

exploration greatly enhanced the natural resource base. The environment is more of a 

heritage than something to be conquered for the people (Ogon, 2003). With an extensive 

network of more than 900 oil wells, 100 flow stations and gas plants, over 1,500 km of 

trunk lines and some 45,000 km of oil and gas flow lines, the Niger Delta has become 

synonymous with oil pollution, recording an average number of 221 oil spills per year 

(Ugochukwu & Ertel, 2008). 

The Niger Delta is now characterised by contaminated streams and rivers (i.e., sources of 

water for domestic uses), forest destruction and biodiversity loss and has become an 

ecological wasteland due to oil pollution for over four decades (Agbonifo, 2016; Kadafa, 

2012a; Twumasi & Merem, 2006). The fact that soils absorb oil like sponges and re-

release it every rainy season and it is therefore taken up by the roots of plants makes 

mangrove forests particularly vulnerable to oil spills (Pyagbara, 2007). Pyagbara (2007) 

also stated that oil prevents the lenticels of mangroves from absorbing oxygen; hence, 

oxygen starvation results in withering and the death of large numbers of mangroves, 

lowers soil fertility and causes poor growth of other plants. A total area of dead mangrove 

forests has been estimated at 25,000, 80,000 and 190,000 hectares, for the Low, Probable 

and High Damage scenarios, respectively (Langeveld & Delany, 2014). The impact of oil 

exploration and extraction on land cover can be devastating, and it is not always easy to 

completely clean up oil that is spilt into the environment. Figure 2.3 is the typical Niger 

Delta oil spills sites showing some dead mangroves due to oil spills and residual oil spills 

along/in water and on land along the oil pipeline.  

Additionally, between 1970 and 2004, Nigeria flared an average of 76% of the total gas 

produced at approximately 70 million/m3 per day (Akpoborie & Akporhonor, 2008), 

equivalent to 40% of African natural gas consumption. The flared gas generates 

tremendous heat, thereby causing thermal pollution and increasing the temperature by 

40°C at an average distance of 43.8 m from flare sites, having negative effects on 

vegetation growth, animal life and ecological equilibrium in the Niger Delta area 



 

20 

 

(Alakpodia, 1989; Akpoborie & Akporhonor, 2008). Aside from oil 

exploration/exploitation activities, other causes of land cover change include clearing 

forests and mangroves for farming, lumbering, road construction, and industrial 

development. 

 
Figure 2.3: (a) Dead mangrove due to the oil spill, (b) residual oil along the water, 

(c) oil spill on land along the oil pipeline and (d) oil spill on water observed during 

field work. 

2.4 Land cover change associated with the oil industry in the Niger 

Delta 

The Niger Delta region has become a hotspot for numerous researchers investigating 

various issues relating to oil exploration from different perspectives, such as social 

economy, environmental and engineering aspects. Many have attempted to study the 

impact of oil on land cover changes using both geospatial and non-geospatial techniques. 

One of the major problems facing the whole Niger Delta region is inadequate forest and 

vegetation monitoring capacity (Ochege, George, Dike, & Okpala-Okaka, 2017). 

Although several studies have examined the problems of environmental degradation in 

the Niger Delta, there is still a need for improved understanding, monitoring, and 

(a) (b) 

(c) (d) 
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management of the ecosystems because there are only a few in‐depth studies that employ 

geospatial technology to understand land-use changes in coastal ecosystems in the Niger 

Delta (Ohimain, 2007). 

Abbas (2012) used remote sensing and GIS to detect land use/land cover changes using 

Landsat TM satellite imagery for 1986 and 2008 to generate the magnitude, trend, and 

annual rate of change from the classified land cover map and then used the annual rate of 

change as the basis for the projection of land cover change through to 2050. Kuenzer et 

al. (2014) detected and analysed land cover changes in the Niger Delta caused by socio-

economic factors and oil exploration and discovered serious impacts on the ecological 

system in the Niger Delta from 1986 to 2013 using remote sensing. Ochege et al. (2017) 

also used remote sensing and GIS – specifically, the NDVI and the maximum likelihood 

classifier (MLC) supervised methods – to detect significant transformations of forests due 

to the impacts of oil and gas exploration and production in the Sagbama oil field 

environment in the Niger Delta region. Omo-Irabor & Oduyemi (2007) combined 

unsupervised and supervised image classification for detecting land cover classes in the 

Niger Delta using Landsat TM and ETM+ images from 1987 - 2002 and detected the 

depletion of forests and mangroves by 9.21 % and 0.82 % respectively which they 

attributed to logging and the creation of land for farming and oil activities. Another study 

by Eyoh & Okwuashi (2016) examined the spatial and temporal dynamics of land 

use/land cover in the Niger Delta region from 1986-2016 using remote sensing and GIS 

techniques with Landsat TM 1986, ETM+ 2002 and OLI Landsat 8 2016 images to 

evaluate the LULC spatial distribution/magnitude, change trend, gains and losses, net 

change, and rate of change of each LULC class. 

A study carried out by Adamu, Tansey, & Ogutu (2016) used remote sensing to determine 

how the length of the time gap between the oil spill and image acquisition date influences 

the detectability of impacts of oil spill on vegetation; the number of days between oil spill 

events and image acquisition date on normalised difference vegetation index (NDVI) and 

normalised difference water index (NDWI). The result based on regression analysis 

shows that an increase in the volume of oil spills resulted in increased deterioration of 

vegetation conditions in the study site, and the longer the time between the date of image 

acquisition and the oil spill event, the lower the detectability of the impacts of oil spills 

on vegetation conditions. Another study by Adamu et al. (2015) investigated the potential 

for using broadband multispectral vegetation indices to detect the impacts of oil pollution 
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on vegetation conditions by exploring and evaluating twenty broadband multispectral 

vegetation indices computed using the visible, near-infrared and shortwave infrared 

wavelengths of Landsat TM and ETM. The results show that five spectral indices, namely 

normalised difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), 

adjusted resistant vegetation index (ARVI2), green near-infrared (G/NIR) and green 

shortwave infrared (G/SWIR) were consistently sensitive to the effects of oil pollution on 

vegetation and could be used to map and monitor oil pollution in vegetated areas. 

There have been several geospatial-based land studies focused on the Niger Delta and 

studies assessing the impact of oil on the environment (Akpoborie & Akporhonor, 2008; 

Akujuru, 2014; Kadafa, 2012a; Ogon, 2003; Sam, Coulon, & Prpich, 2017; Zabbey, Sam, 

& Onyebuchi, 2017). In addition, several other studies discuss hydrology, flooding and 

sea-level rise (Dim, 2017; Ite et al., 2013; Musa, Popescu, & Mynett, 2016a, 2016b; Obi, 

2014). 

From the literature reviewed, no studies currently focus on mapping land cover changes 

in the Niger Delta region by providing maps showing where the changes have occurred. 

This is important as it can reveal the locations of changes that policymakers could then 

use to take action in solving specific environmental problems. The Niger Delta land cover 

consists of mangroves, freshwater swamps, and a mixture of water with oil, which gives 

rise to a mixed pixel that cannot be appropriately represented using hard classification 

techniques. Additionally, the classification techniques might not be appropriate for 

quantifying the land cover charges and showing the intensity or severity of changes in the 

study area since land cover changes are unlikely to occur spatially at the same magnitude. 

2.5 Hotspot analysis. 

Many researchers have been concerned about environmental pollution and have carried 

out wide-ranging research on environmental pollution incidents (Ding et al.,  2015). The 

primary goal of oil spill risk appraisals and impact assessments is to characterise and 

quantitatively estimate the amount of potential harm that a spill may cause for a particular 

location (Nelson & Grubesic, 2017). GIS techniques have been used for oil spill response 

planning because they support the integration and preparation of geospatial information 

on the location, nature and sensitivities of different resources with rapid access (Giziakis 

et al., 2013). Hotspot mapping is used to help identify where pollution exists and its 

source (Lin et al., 2011). Hotspots are concentrations of incidents within a limited 
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geographical space that appear over time (Levine, 2007). Spatial-temporal hotspot pattern 

analysis of environmental pollution incidents provides a vital source of information for 

the further development of incident prevention measures (Ding et al., 2015). The method 

to use for hotspot analysis depends on the type of data (i.e. point, line and polygon) and 

the objectives of the study. The hotspot analysis detection methods can be grouped into 

three categories: spatial analysis, interpolation and spatial autocorrelation, as shown in 

Figure 2.4. 

 

Figure 2.4: Hotspot analysis methods. 

2.5.1 Spatial analysis method 

Many spatial analysis techniques are used to identify hotspots (Chainey, 2013). The three 

spatial analysis methods are Kernel Density Estimation (KDE), Point Density Estimator 

(PDE) and Line Density Estimator (LDE). Spatial Analysis with KDE, PDE, and LDE 

techniques process checks the locations, attributes, and connection of features in spatial 

data among overlay and other analytical techniques, which is used for acquiring 

knowledge that can be used in a different aspect (Amiri, Imaninasab, & Nadimi, 2018). 

KDE is specifically useful in detecting hotspots due to the series of estimations made over 

a grid placed over the entire point pattern, with each estimation showing the intensity at 

a certain location (Kalinic, 2018). Kernel density estimation (KDE) aggregates data 

points within a user-specified search radius and represents the density of points by 

creating a continuous surface area (Park et al., 2016). The PDE spatial model generates 
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new raster data, recreates each cell based on the characteristics of the closest neighbouring 

cells, and depicts density levels in more detail (Amiri et al., 2018). The LD calculates a 

magnitude-per-unit area from polyline features that fall within a radius around each cell. 

2.5.2 Interpolation methods 

Spatial interpolation is the procedure of estimating the values of the variable under study 

at un-sampled locations using point observations within the same region (Deligiorgi & 

Philippopoulos, 2011). Spatial interpolation is based on  Tobler’s first law of geography: 

the closer the point of space is to another, the more likely it is to have similar features, 

and the farther away the point is, the less likely it is to have similar features (Jia, Zheng, 

& Miao, 2018). Among interpolation methods are inverse distance weighting (IDW), 

kriging, spline, and natural neighbour. The IDW method substantially assumes that the 

rate of correlations and similarities between neighbours is proportional to the distance 

between them, which can be defined as a distance reverse function of every point from 

neighbouring points (Setianto & Triandini, 2015). The IDW is considered simple to use 

(Paramasivam & Venkatramanan, 2019). Kriging estimates an unobserved location of 

variable value based on the weighted average of adjacent observed sites within a given 

area (Setianto & Triandini, 2015). Kriging is a multistep process that starts with the 

exploratory statistical analysis of the data, variogram modelling, creation of the surface, 

and (optionally) exploration of a variance surface (Paramasivam & Venkatramanan, 

2019). The spline estimates the values of unknown points using a mathematical function 

that minimises the overall surface curvature, resulting in a smooth surface that passes 

exactly through known input points, thus minimising the total curvature of the surface 

(Amiri et al., 2018). The natural neighbour interpolation scheme is based on Voronoi 

tessellation and is a local interpolant, where the estimated function is a linear, 

appropriately weighted average of the nearby data points (Deligiorgi & Philippopoulos, 

2011). 

2.5.3 Spatial autocorrelation methods 

Spatial autocorrelation techniques test how the distributions of point occurrences are 

related to each other. Positive spatial autocorrelation is where occurrences are clustered 

or close occurrences have similar values to those farther apart (Dana & Cooper, 1964). 

The two hotspots (spatial autocorrelation) methods are Moran's I and Getis-Ord G. The 

Moran’s I and Getis-Ord G are global measurements of the overall pattern of spatial 
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autocorrelation displayed by numerical data and test the hypotheses that similar values 

tend to cluster together, be randomly distributed, or be dispersed more evenly across an 

area than would be expected by chance. Similarly, the local versions of Moran’s I and 

Getis-Ord G statistics: Ansellin local Morans I and Getis-Ord Gi* provide statistical 

evidence for the presence of clusters that differ from expected values at specific locations 

(Mueller-Warrant et al., 2008). For point data that are aggregate counts (representing the 

number of incidents within a certain geographic area, e.g., census blocks), the spatial 

autocorrelation technique is an appropriate method to test for clustering (Dana & Cooper, 

1964). The difference between the spatial autocorrelation method and other methods of 

hotspot mapping is that the spatial autocorrelation method identifies statistically 

significant hotspots. 

2.6 Remote sensing  

Remote sensing (RS), also called Earth observation, refers to obtaining information about 

objects or areas on the Earth’s surface without physical contact with the object or area 

(Dyring, 1973). The use of earth observation satellites for mapping and monitoring land 

cover occurred when the first Landsat satellite was launched in July 1972. The Landsat 

satellite provides data crucial to improving our knowledge of the Earth's land, ocean, 

atmosphere, ice and snow (Jong et al., 2006). Since the first launch of the earth 

observation satellite, remote sensing has been increasingly used to acquire information 

about environmental processes such as agricultural crops, land cover, vegetation 

dynamics, water quality, urban growth, seabed topography etc. (Jong et al., 2007). 

Remote sensing techniques effectively monitor, and measure land-cover change over 

large spatial and temporal extents. They may provide practitioners with insights into 

future land-use change processes (Bailey et al., 2016). Remote sensing uses different parts 

of the electromagnetic spectrum to record the characteristics of features (Mirkatouli et al., 

2015).  

2.6.1 Remote sensing platforms 

Remote sensing platforms are broadly grouped into three: Ground (Terrestrial), aerial 

(manned and unmanned) and space-based (Satellite). Land cover and land-use data were 

mainly acquired from terrestrial remote sensing from ground-based platforms.  However, 

new sensor developments have given rise to various platforms that can be used to capture 

remote sensing data. Although Earth-orbiting satellites and fixed-wing aircraft are the 
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most common, helicopters, balloons, masts, and booms are also used (Barnsley, 1999), 

including unmanned aerial vehicles (UAV).  

 

Ground observation platforms include – handheld platforms, cherry pickers, towers, 

portable masts, vehicles etc. Portable handheld photographic cameras and 

spectroradiometers are mostly used in laboratory and field experiments as reference data 

and ground truth verification (Yanow, 2018). Ground-based platforms (hand-held or 

mounted on a tripod) are also used for sensor calibration, quality control and the 

development of new sensors (Ahmad et al., 2019). Ground-based platforms are good for 

more detailed studies of a specific object, such as species level. Many researchers have 

used ground-based remote sensing. For instance, Prudente et al. (2021) estimated the 

biophysical parameters of soybeans using NDVI GS (GreenSeeker 505 handheld active 

sensor) and NDVI FS (FieldSpec4 model Standard-Res passive sensor) different 

terrestrial remote sensing.  Also, Kato et al. (2013) estimated leaf area index (LAI) of 

mixed forest stands in Christchurch, New Zealand using a portable terrestrial laser 

scanner (TLS).  

 

Aerial photography has a long history of use in urban geography and has remained useful 

today (Longley, 2002). It provides a detailed picture of the Earth's surface over a 

relatively small area using an aeroplane and, recently, UAV fitted with cameras of 

different types (e.g. active and passive sensors, multi and hyperspectral etc.). Aerial 

photography provides the highest spatial resolution and textural of land cover objects than 

satellite remote sensing. Aerial photography is still used for large-scale mappings, such 

as in route surveys, town planning, construction project surveying, cadastral mapping etc. 

(Dyring, 1973). The flying height could be determined and adjusted, and the type of 

sensors chosen based on the project requirement, making them versatile. Different sensors 

could be fitted on the same aeroplane by changing them after use, unlike the satellite 

system that carries onboard a sensor which cannot be changed after a single mission. In 

theory, aerial photos can be readily acquired at any time. However, there are limitations, 

such as financial support and whether a licence from the national aviation authorities is 

required. Also, flight planning (especially using an aeroplane) could be laborious and can 

be affected by weather and the availability of an airstrip and does not cover a large area 

like the satellite image. Thus, their availability can also be limited, especially for land 

cover monitoring, since spatiotemporal information about a particular scene is required 
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(Varga et al., 2010). Arial photographs have been used in many applications: monitoring 

of vegetation health (Terzioǧlu et al., 2009), survey and mapping (Everitt, Yang, & Davis, 

2010); generation of topographic information (Ajayi et al., 2018; Ajayi et al., 2017), and 

much more. 

 

Various satellites carrying remote sensing sensors were launched into space orbit in the 

early 1960s to observe and monitor the Earth and its environment. Images from sensors 

mounted on the satellites are generally called satellite images. Modern remote sensing 

systems provide satellite images suitable for medium-scale mapping used in natural 

resources surveys and monitoring such as forestry, geology, watershed management etc. 

(Dyring, 1973). Satellites provide a relatively low-cost larger view of the earth's surface, 

which makes them an efficient method for large-scale mappings such as desertification 

and land cover classification (Jafarbiglu & Pourreza, 2022). For a place like the Niger 

Delta, satellite images are better. Historical images are available at no cost for extracting 

land cover information and monitoring vegetation health. Remote sensing sensors are 

divided into two categories based on signal sources: active and passive. Passive sensors 

detect natural radiation emitted or reflected by the object or the surrounding area being 

observed (e.g. reflected sunlight, film photography, infrared, radiometers). Their major 

disadvantage is that they are affected by cloud cover and cannot capture images at night 

unless the amount of energy emitted or reflected from the object being recorded is large 

enough. Passive sensors (optical satellite systems) include Landsat, SPOT, EROS, 

GeoEye, and World View. From the two categories of sensors  based on signal sources, 

currently, there are three systems of sensors on the satellite platform. The Lidar,  

multispectral and hyperspectral sensors. The lidar has already been discussed in section 

2.6.1, while the multispectral and hyperspectral sensors will be discussed in the next 

sections. 

2.6.2 Remote sensing systems on satellite platform 

2.6.2.1 Lidar remote sensing 

On the other hand, active sensors emit their own energy to scan objects and areas. A 

sensor then detects and measures the radiation reflected or backscattered from the target 

(Adamu, 2016). Active sensors include Radio Detection and Ranging (RADAR) and 

Light Detection and Ranging (LIDAR). The choice of the dataset is a function of many 
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factors, including the project's requirement, data availability, and the study area's size. 

Both active and passive sensors have been used for land cover mapping or detecting the 

impact of oil spills on vegetation. For example, Ahmad & Idris (2022) used Synthetic-

Aperture Radar (SAR) images from dual-polarized Sentinel-1 and Multi-Spectral 

Instrument (MSI) from Sentinel-2 to study the impact of oil spills on mangrove forest in 

Pantai Cermin, Negeri Sembilan. Similarly, Unger et al. (2015) quantified land cover 

change caused by petroleum exploration and production in the Haynesville shale region 

using Landsat Thematic Mapper (TM) imagery. Generally, land-cover and land-use 

monitoring frequently use passive sensors (Turner et al., 2003) due to the availability of 

temporal data, especially from the Landsat archive. 

2.6.2.2 Multispectral remote sensing 

Remote sensing has evolved from traditional aerial photography to multispectral scanners 

in the past half-century (Mutanga et al., 2016). Even though aerial photographs remain 

significant today, multispectral scanners have gained popularity due to their wider 

coverage, higher frequency and low cost, leading to a recent interest in assessing the 

potential of satellite imagery in urban mapping (Longley, 2002), especially for land 

cover/mapping at regional, continental and global scales. Satellite imagery has been 

widely used in various applications, including classifying land use, monitoring crop and 

forest harvests, tracking beach erosion, and determining regional geological structures 

(Ooi & Lim, 2006). The satellite is in constant orbit around the earth throughout its life 

circle, acquiring data for a particular scene, unlike the aerial photo, which is often limited 

to a particular scene at a specific point in time. Spaceborne sensors provide multispectral, 

spatial and temporal data used to analyse dynamic changes associated with the Earth’s 

resources, such as land and water (Ramachandra & Kumar, 2004). They have been the 

most successful approaches for detecting land cover change. In the past two decades, 

there has been a growing trend for the development of change detection techniques using 

remote sensing data (Chen et al., 2003). Remote sensing has been used in monitoring the 

expansion and process of land cover change (El Hassan, 2004; Kundu & Dutta, 2011).  

The major advantage of Earth observation is that it provides spatiotemporal information 

(sometimes free to the user) about the Earth’s surface from a small to a large extent of 

land, making it the best tool for providing a dataset for land cover change 

detection/modelling and extracting land cover-related information. Available data from 

remote sensing missions have provided a wealth of complementary data, immensely 
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supporting efforts towards the precise determination of land use and quantifying subtle 

changes in land use management or intensity (Joshi et al., 2016). Since the advent of 

remote sensing, it has been used in many fields, such as mapping and land cover change 

detection. It has become a vital research and application area for remote sensing data 

analysts (Hester et al., 2010). It has proven to be a valuable data source for the efficient 

extraction of land-cover change information. Rimal et al. (2017) evaluated the LULC 

changes and urban expansion of Jhapa district of Nepal. They identified spatio–temporal 

dynamics of LULC using six time-series atmospherically-corrected surface reflectance 

Landsat images from 1989 to 2016. 

2.6.2.3 Hyperspectral remote sensing 

Hyperspectral remote sensing, also known as spectroscopy, spectrometry and 

spectroradiometer, means spectra with many narrow, contiguously spaced spectral bands 

(Shukla & Kot, 2016). Spectroradiometers can be both imaging and non-imaging, used 

on remote sensing platforms and provide images similar to conventional multispectral 

scanners with a much higher spectral resolution (Kumar et al. 2002). Hyperspectral data 

have been used to discriminate vegetation in many areas and environments (Jensen et al., 

2007). Imaging spectroscopy lately emerged as a very efficient remote sensing technique 

to improve the understanding of Earth's functioning (Briottet et al., 2011). Hyperspectral 

data can be acquired from satellite, aerial and terrestrial-based platforms. However, due 

to growth of satellite remote sensing, hyperspectral Remote Sensing (HRS) platforms 

have developed from ground-based and airborne platforms into spaceborne satellite 

platforms (Zhong et al., 2021). This has greatly promoted their civil application in 

agriculture, forestry, and environmental monitoring. Hyperspectral satellites have 

emerged as a new generation of remote sensing (Mohamadi et al., 2016), with a dual 

advantage of the traditional spectroscopy technology and the modern imaging system 

(Qian, 2021).  

The advantage of hyperspectral sensors over multispectral sensors is their higher spectral 

resolution, which is suitable for detecting, identifying and quantifying surface materials 

(Shukla & Kot, 2016).  Satellite hyperspectral systems also allow for coverage of larger 

areas at a fraction of the cost of airborne surveys but at the expense of lower spatial detail, 

which makes the data quality poor (Liu et al., 2018), especially for vegetation studies at 

the leaf scale. Table 2.3 shows different space-based hyperspectral sensors. Hyperspectral 

sensors mounted on an aeroplane have been available for over two decades and can collect 
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landscape images with high spatial and spectral resolution (Olmanson et al., 2013). 

However, they do not allow regular and synoptic coverages over large areas as space-

borne sensors. Also, they produce images with lower angular effects due to their much 

smaller field of view (Transon et al., 2018).  

Similarly,  terrestrial-based Field spectroscopy has emerged as a useful tool for assessing 

the degradation of biochemical and biophysical forest parameters such as chlorophyll and 

other pigment concentrations at leaf and canopy levels (Arellano et al., 2017).  Its major 

disadvantage is that it does cover a large spatial extent. Also, there is a need for visitation 

to the field, which might be dangerous due to security concerns in places like the Niger 

Delta unless security is guaranteed, like during the fieldwork for this research. Despite 

the major disadvantage of Field spectroscopy, it is ideal for this research to characterise 

the impact of oil extraction activities on vegetation at the leaf scale. Unlike space and 

airborne platforms, the main advantage is that it allows plant species studies. Similarly, 

field spectroscopy is technically less challenging. The sensing instrument can remain 

fixed over the subject of interest for much longer, and the path length between the 

instrument and the object being measured is reduced (Milton et al., 2006).  

Table 2.3: The satellite-based hyperspectral sensors 

Sensor Year of lunch Country/Organisation Spectral bands GSD 

EO-1 (Hyperion) 2000 US(NASA) 242 30 

PROBA-1(CHRIS) 2001 EU/UK 63 34 

HICO 2009 US(NASA)/Japan  128 90 

Tiangong-1 2011 China(CASC) 64 20 

HySIS 2018 India(ISRO) 30 256 

PRISMA 2019 Italy 250 30 

EnMap 2020 Germany 228 30 

HISUI 2020 Japan 185 30 

GaoFen-5(2) 2021 China(CASC)  330   

 

2.6.3 Extraction of land cover information and biophysical parameter from 

remote sensing data 

In general, the remote sensing satellite data could be grouped into three categories of 

spatial resolution (pixel size): low, medium and high spectral resolution (wavelength 

ranges), temporal resolution (frequencies of the satellite to visit the same scene), and 

spatial extent (size of the area captured) (Turner et al., 2003) (Table 2). The information 
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that may be extracted from remotely sensed data is directly related to the sensor and the 

characteristics of the images it produces.  

Remote sensing data can be used for numerous applications in three different ways: i) 

Mapping/Monitoring of earth resources, ii) Retrieval of bio-geo-physical parameters, 

which are used in models to predict the changes in geosphere and biosphere, iii) 

Management/Decision Support, where remote sensing derived information is used for 

decision making for sustainable management of earth resources (Steven et al., 2006). 

Extracting and quantifying the biophysical parameters of vegetation cover is extremely 

important when monitoring land cover and associated changes, identifying vegetation 

stress, and assessing crop production (Shelestov et al., 2017).  

 Table 2.4:Examples of some satellites based on various resolutions 

Resolution Spatial resolution (m) Temporal 

resolution (days) 

Spectral(band) Swath 

width 

Low 1000 (AVHRR)  

250(MODIS) 

500 (MODIS) 

1000(MODIS) 

2 times 

1 to 2  

5 

36 

 2,500 

2330 

by10 

Medium 30 (Landsat) 

20(SPOT-4 multispectral)  

10 (SPOT-4 panchromatic) 

16  

26 

 

4 

 

60 

High  

 

 

1(panchromatic) IKONOS 

4 (multispectral) IKONOS 

0.65-0.73(panchromatic)Quick 

Bird 

2.62-2.90(Multispectra)Quick 

Bird)  

Off nadir 3-5 

Nadir 144 

1 

4 

1 

4 

12 

Note: AVHRR: Advanced Very High-Resolution Radiometer; MODIS, Moderate 

Resolution Imaging Spectroradiometer. 

Both the hyper- and multispectral sensors are based on the same physical technology of 

recording radiance in the Visible to Near-InfraRed (VNIR) and Short-Wave InfraRed 

(SWIR) of the spectrum, VNIR spanning 400–1000 nm and SWIR 1000–2400 nm 

(Transon et al., 2018). Different land cover objects behave differently within different 
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regions of Electromagnetic wavelengths known as spectral signatures. The multiple 

spectral responses from land-cover features are organised into land-use classes (Myint, 

Wentz, & Purkis, 2007) and used to calculate various vegetation indices to monitor 

vegetation's health. For example, soil reflectance is generally lower in near-infrared (NIR) 

wavelengths and higher in red wavelengths than vegetation reflectance (Tote, Delalieux, 

Goossens, Williamson, & Swinnen, 2014), which is reflected more in NIR. 

Also, high-resolution satellite sensors can provide credible geographical feature 

extraction of land cover information and change detection at a small or local scale ( 

Kumar & Arya, 2021). But medium-resolution imagery like Landsat is usually used for a 

large-scale area like the Niger Delta. A high resolution like Ikonos imagery will provide 

a large quantity of data, high processing load, cost and time and, analysing these imagery 

data will create a substantial challenge. Landsat has more data covering many decades, 

making them suitable for long-term monitoring of land cover changes. Similarly, Landsat 

has more spectral bands, which are useful for extracting land cover information and 

biophysical parameter at the plot scale using vegetation indices such as NDVI. Many 

researchers have used Landsat-derived NDVI to monitor the health of vegetation. Ahmad 

et al. (2017) identified prospective hydrocarbon seepage areas within the vegetation cover 

in Kifl Oil Field and Adjacent Areas South of Iraq using NDVI from Landsat 8 (OLI). 

Similarly, Landsat has been used to extract land cover information by various researchers. 

Kuenzer et al. (2014) model land surface dynamics in the Niger Delta from 1986 to 2013 

using Landsat data, and Coulter et al. (2016) classified and assessed land cover and land 

use change in southern Ghana using dense stacks of Landsat 7 ETM+ imagery using 2000 

and 2010. 

2.7 Assessing and monitoring changes in vegetation health using earth 

observation data 

Natural environments and their biodiversity are increasingly endangered by many human-

induced environmental perturbations (Wang & Sousa, 2009). Changes in land cover –

especially that of vegetation in response to environmental factors or contamination – may 

not always be in the form of a complete conversion from one type to another but instead 

could be in the form of degradation (e.g., a reduction in the health or quality of the 

vegetation). The application of remote sensing in vegetation monitoring is a relevant topic 

that can detect vegetation stress due to hydrocarbon seepage (Asri et al., 2020). The 
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canopy reflectance of plants is determined by the optical properties of leaves, the amount 

of green biomass, canopy architecture and leaf angle distribution and alterations in these 

variables caused by oil pollution and other environmental stresses that induce changes in 

canopy reflectance can be detected by remote sensing and used as indicators for oil 

pollution of soils (Zhu et al., 2013). The health of the vegetation can be assessed and 

monitored using hyperspectral and multispectral vegetation indices. The scale at which 

remote sensing studies measure attributes of vegetation conditions varies with the sensor 

used. Sensors vary in their spatial, spectral, radiometric and temporal resolutions of data 

collection and, therefore, their ability to record and monitor vegetation attributes (Lawley 

et al., 2016)..  

2.7.1 Hyperspectral remote sensing for monitoring vegetation health 

Field spectroscopy and hyperspectral remote sensing have become effective tools for 

assessing the degradation of biophysical and biochemical forest parameters, such as 

chlorophyll and pigment concentrations at the leaf and canopy levels (Arellano et al., 

2017). Hyperspectral data can measure vegetation's biochemical and biophysical 

properties and how these parameters vary across the ecosystem (Onyia et al., 2018). The 

narrow bandwidths of a hyperspectral sensor are sensitive to subtle variations in the 

reflectance of vegetation (George et al., 2018; Jensen et al., 2007). Narrow band 

hyperspectral remote sensors record reflected radiant energy from a plant at a high 

number of wavebands and provide timely and reliable information about the current plant 

physiology in a cost-effective and timely manner (Maimaitiyiming et al., 2017). The 

reflectance of vegetation is directly related to plant physiology (Omodanisi & Salami, 

2014).  

Many studies have used the reflectance of plants to study their physiology. Among the 

studies are: investigating the potential of field spectroscopy for characterizing the 

physiological status of grapevines exposed to different levels of water stress based on in 

situ measurements (Maimaitiyiming et al., 2017). Similarly, Cotrozzi et al. ( 2020) 

predicted variation in physiological and anatomical leaf traits related to water status under 

varying water availability in six maize (Zea mays). Hyperspectral sensors are typically in 

the form of airborne scanners or field-based instruments (Kumar et al., 2002). The main 

advantage of the field-based vegetation condition assessment approach, which comprises 

field spectroscopy, is its capability to assess underwood conditions (Tehrany et al., 2017) 

and provide plant-specific spectral information. Accordingly, field-based vegetation 
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condition assessment approaches have been used to assess the health of vegetation for 

various applications, including the impact of oil spills on vegetation. Hyperspectral 

remote sensing provides new data for developing vegetation indices (Zhu et al., 2013) for 

assessing the health of vegetation, such as the hyperspectral vegetation indices and red 

edge position. 

2.7.1.1 Hyperspectral vegetation indices (HVI) 

Hyperspectral vegetation indices (HVIs) have been widely used in environments to 

evaluate the impacts of hydrocarbon pollution on vegetation (Serrano-Calvo et al.,  2021). 

The availability of data from field-based sensors makes it possible to develop different 

HVIs for assessing the health condition of vegetation. HVIs are proposed based on the 

absorption and reflectance properties in specific regions of the high-resolution spectrum, 

which can detect some plant characteristics that traditional multispectral remote sensing 

cannot (Zhu et al., 2013). Vegetation properties measured with HVIs can be divided into 

three main categories: 1) Structure; 2) Biochemistry, and; 3) Plant 

physiology/stress(Roberts et al., 2011). Many HVIs have been developed for various 

applications, such as estimating the plant N concentration of winter wheat in the North 

China Plain for different growth stages and years (Li et al., 2010), monitoring oil pollution 

in an area of eastern China (Zhu et al., 2013), and extracting a useful "physiological 

reflectance index" (PRI) from diurnally changing reflectance signatures of sunflower 

canopies (Gamon et al., 1992). 

2.7.1.2 Red edge position (REP) 

One of the best remote sensing descriptors of chlorophyll concentration is the red edge 

position (REP), the point of maximum slope in vegetation reflectance spectra (Filella & 

Peñuelas, 1994). The importance of the REP parameter is closely related to various 

physical and chemical parameters of vegetation, and it is commonly employed to infer 

the growing states of vegetation and monitor plant activity (Jiang et al., 2019). The REP 

is strongly correlated with foliar chlorophyll content. It provides a very sensitive indicator 

for various environmental factors affecting leaves, such as stress, drought and senescence 

(Baranoski & Rokne, 2005).  

REP has been utilised in many studies of plant reflectance. Among them are the studies 

of reflectance spectra of samples of Cenchrus ciliaris, which is a grass grown in a 

greenhouse under three levels of nitrogen supply by Onisimo Mutanga & Skidmore 
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(2007), predicting high-yielding varieties of rice based on the spectral reflectance in REP 

(Abbasi, Darvishsefat, & Schaepman, 2010), plant chlorophyll content, biomass and 

Relative Water Content (RWC) evaluation of Capsicum annuum and Phaseolus vulgaris 

plants under different nitrogen and water availabilities, and plants of Gerbera jamesonii 

with different hydric status (Filella & Peñuelas, 1994). In addition, REP has been used to 

assess the spectral characteristics of polluted and unpolluted vegetation from oil spillage 

based on the ASD FieldSpec pro measurements at plot scale in Lagos and  Ogun States 

in south-western Nigeria (Omodanisi & Salami, 2014). 

2.7.2 Multispectral satellite-based remote sensing for monitoring vegetation health 

Detecting the vegetation affected by oil spills in oil-polluted environs such as mangrove 

forests can be challenging using in situ measurements and laboratory-based analysis 

techniques due to security challenges and difficult terrain. As a more practical alternative, 

satellite remote sensing is an effective tool for detecting and monitoring vegetation health 

and status in polluted areas (Adamu, 2016), especially over a large area. It provides 

spatiotemporal data, although it is not capable of assessing underwood. Remote sensing 

of vegetation is achieved by measuring electromagnetic wave reflectance information 

from canopies using passive sensors (Xue & Su, 2017). Monitoring changes in the health 

and pattern of vegetation using multispectral satellite-based spectral indices is important 

for natural resource management and monitoring. Multispectral vegetation indices are 

those formulated using multispectral data using the reflectance at specific wavelengths 

known as broadband multispectral vegetation indices (BMVIs) and narrow-band 

multispectral vegetation indices (NMVIs) (Zhu et al., 2013). Vegetation indices (VIs) 

represent a powerful and effective way of monitoring vegetation status, growth, and 

biophysical parameters, especially for aquatic ecosystems, whose characterisation is 

extremely time-consuming and expensive (Villa, Bresciani, Braga, & Bolpagni, 2014). 

However, selecting a VI for a particular application is difficult because there is currently 

no unified mathematical expression that defines all VIs due to the complexity of the 

different light spectra combinations, instrumentation, platforms and resolutions used 

(Xue & Su, 2017). 

Remote sensing of vegetation has advanced significantly over the past half-century due 

to its ability to retrieve useful plant biochemical, physiological and structural quantities 

across a range of spatial and temporal scales (Houborg et al., 2015). Progression in optical 

sensor technology has facilitated a great opportunity to understand vegetation 
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health/quality at various spatiotemporal scales previously regarded as complex using 

remote sensing data with varying footprints and resolutions, leading to remarkable 

progress in crop, forest and rangeland monitoring (Mutanga et al., 2016). Various earth 

observation data sets from different sensors are commonly used for monitoring vegetation 

health. Generally, Tehrany et al. (2017) grouped them into three satellite sensors: 

‘environmental monitoring’ satellites (e.g., Landsat metre-scales), global weather 

satellites (e.g., MODIS at kilometre-scale) and civilian satellites (e.g., Quickbird, 

RADAR at sub-meter scale). Satellite-based vegetation monitoring has proven to be an 

important source of information on vegetation growth and vigour from regional to global 

scales (Swain et al.,  2017) and in polluted areas, as revealed from previous research using 

VIs derived from remotely sensed satellite data to monitor vegetation health (Adamu et 

al. 2015).  

Landsat data have become one of the most commonly used satellite data for monitoring 

the health of vegetation around the globe due to their free access and high temporal and 

spatial resolution. The launch of the Landsat (ERTS-1) mission in 1972 triggered 

investigations surrounding its capability for vegetation monitoring and categorisation 

(Houborg et al., 2015). Monitoring vegetation health is important in many ways and has 

many diverse applications. It can be used to forecast crop yield and assess natural forest 

expansion (Mancino et al., 2014), biodiversity and conservation (Ochege et al., 2017), 

drought monitoring (Amani et al., 2017; Kogan et al., 2017), and detecting oil pollution 

(Adamu et al., 2015), among others. Among various vegetation indices used for 

monitoring vegetation health is the normalized difference vegetation index (NDVI). The 

NDVI is calculated as the difference between near-infrared and visible reflectance values 

and has proven to be a robust indicator of terrestrial vegetation productivity (Wang et al., 

2001). NDVI became popular in the last three decades for investigating the quality of 

vegetation cover, which has remained the most well-known and used index to detect live 

green plant canopies in multispectral remote sensing data (Fabiyi, 2011). 

2.8 Land cover change detection using earth observation data 

Many regions worldwide are experiencing rapid, widespread changes in land cover (Mas, 

1999). Knowing the positions and the intensity of land cover changes will benefit the 

society for planning purposes and other applications (Kuta & Comber, 2015). Change is 

the transformation or modification of something over a period of a well-defined, enduring 

structure, not minding the complexity of the structure. The important thing is that the 
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structure exists continuously over its transformation (spatiotemporal). Change detection 

is the apprehension of change in the world around us through observing it at different 

periods (Carincotte et al., 2006; Unger et al., 2015). Change detection measures the 

distinct data framework and thematic change information that can guide more tangible 

insights into an underlying process involving land cover and land use changes than the 

information obtained from continuous change (Ramachandra & Kumar 2004). Some 

changes are visible (i.e., conversion from one land cover type to another), while others 

are not visible (e.g., subtle vegetation degradation). Many earth observation datasets exist 

for land cover change detection and modelling using classified land cover maps from 

various sensors, spatial, radiometric and spectral resolution. Monitoring land cover 

changes using remote sensing data has the advantage of synoptic view, repetitive 

coverage and cost-effectiveness (Omo-Irabor & Oduyemi, 2007) 

2.9 Land cover classification  

Classification is an automated computer-assisted grouping of pixels in remotely sensed 

images into land cover classes by converting data (images) into land cover information. 

It is usually performed to retrieve land use/cover information using statistical pattern 

recognition or classification techniques (Sharma et al., 2016). The landscape is usually 

composed of a multifaceted combination of both built-up and natural objects, including 

but not limited to paved roads, buildings, bridges, fences, railways, trees, and grass cover 

(Yan et al., 2015), which need to be grouped into various land use/cover types. 

Classification is a vital process in remote sensing that relates pixel values to land cover 

classes on the surface (Zhang & Roy, 2017). The classification approach chosen depends 

on many factors, such as the application, how familiar the analyst is with the study area, 

and the required accuracy. The multispectral mapping of landscapes consists of depicting 

boundaries around geographically located classes and their various attributes and 

relations (Robinove, 1981). Generally, digital image classification is performed to 

produce land cover maps from remote sensing data, mainly for large areas, and there are 

two types of classification techniques, supervised and unsupervised (Saha, Arora, 

Csaplovics, & Gupta, 2005). Many researchers have adopted different classification 

methods based on their requirements, with some even comparing the two methods. Digital 

image classification comprises of four steps: 1) image pre-processing to reduce haze, 

atmospheric correction, computing band ratios, geometric correction, etc.; 2) training 

sample selection to select a particular feature for describing the pattern; 3) decision: 
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selecting a suitable technique for comparing the image pattern according to the target; 

and 4) assessing the accuracy of the classification (Mahmon & Ya’acob, 2014; Seetha et 

al., 2008). Although a training sample may not be needed for unsupervised classification, 

it may be needed for accuracy assessment. 

2.9.1 Land cover Classification techniques 

Land cover classification is divided into two basic techniques:  unsupervised and 

supervised (Karan & Samadder, 2018). Unsupervised classification is the classification 

of all pixels with unknown identities that are blindly grouped into a certain number of 

clusters according to the similarities in their digital numbers (Gao, 2009). The 

classification is more machine-dependent, with the analyst only indicating the number of 

proposed land cover clusters while the machine controls the assignment of the classes. 

Unsupervised classification techniques are of high interest where an image is classified 

based on its reflectance values only without taking field measurements into account 

because field knowledge is only needed to identify the classified groups (Ibrahim et al., 

2009). However, supervised classification is the most commonly used technique for 

quantitatively analysing remote sensing image data. It is based on the concept of 

segmenting the spectral domain into regions that can be associated with the land cover 

classes of interest to a particular application (Richards, 2013). Supervised classification 

forms the basis of what we have recently come to call data mining, which originated in 

statistics in the early nineteenth century under the moniker discriminant analysis (Cook 

& Swayne, 2007). In supervised classification, the analyst assigns the pixels that belong 

to a cluster to the machine, i.e., the analyst “supervises” the pixel categorisation process 

by stating to the computer algorithm numerical descriptors of the various land cover types 

present in a scene (Lillesand et al., 2008). Knowledge of the study area is vital for 

supervised classification. It can produce more accurate results than unsupervised 

classification since it can handle mixed pixels better than unsupervised pixels to a certain 

level. Supervised classification is known to be superior to unsupervised approaches. 

Supervised classification is superior to unsupervised classification (Inglada et al., 2017). 

It is less affected by mixed pixels in the land, and it is the favourite of most authors for 

land cover classification, such as: Egorov et al. (2015), Thakkar et al. (2017) and Lv et 

al.  (2016). As mentioned earlier, supervised classification is divided into two stages: 

training and classification stages involving four steps. In the training stage, spectral 

signatures for various predefined land cover classes in the scene are defined and used by 
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the machine as the basis for its classification. The training stage is both an art and a 

science that requires close interaction between the image analyst and the image data 

(Lillesand et al., 2008). The success of supervised classification hinges on the quality of 

the training data. Rawat et al. (2013) quantified the land use/cover changes in Ramnagar 

town, India, from 1990 to 2010 using the supervised classification maximum likelihood 

technique. Although many classifiers exist, there are two main groups of methods among 

various classification methods: soft and hard classification. However, no single optimum 

method performs best for all problems, with each classifier having its merits and demerits 

depending on the dataset and the land cover type on which they are used (Lee et al., 2011). 

2.9.2 Hard classification 

The hard traditional (crip) classification approach is used when the objects/features have 

well-defined boundaries. Hard classification bypasses the requisite of class probability 

estimation and directly estimates the classification boundary (Lee et al., 2011). Hard 

classifiers make a definitive decision that each pixel in land cover is allocated to a single 

class, which may produce large errors in area estimation, especially from coarse spatial 

resolution data due to the mixed pixel problem (Choodarathnakara, et al., 2012; Sharma 

et al., 2016). The common classifiers in this group are maximum likelihood, minimum 

distance, artificial neural networks, decision tree, and support vector machine. From 

various literature, many works have been done employing hard classification. It seems as 

if it is more popular among researchers in the field of remote sensing probably because 

hard classification is easier to implement and detect land cover changes since only two 

maps are needed between any two dates, unlike the soft classification, which will require 

each land cover class to be compared with other land cover classes. The soft classification 

produces maps per land cover class, i.e., if you have five land cover classes per map, that 

means five maps for each, unlike the hard classification, which produces a single map 

containing all the land cover classes, making hard classification easier to manage in terms 

of volume of maps. Additionally, the area or size of soft map is not straight forward to 

compute, and the total sizes of all the classes are not equal to the total area. 

2.9.3 Soft classification 

The geographic space we live in comprises various land cover classes (continuous and 

discrete objects), both natural and manmade. Many do not have well-defined boundaries 

that can be mapped and visually represented. While humans can distinguish the 
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vagueness/fuzziness in land cover classes, representing it in map form is challenging 

since computers do not distinguish and recognise vagueness as humans do. Conventional 

image processing techniques assume that pure pixels in land cover cannot be 

appropriately represented as mixed pixels (Foody, 2002). Recently, soft classification 

methods have gained wider use due to their ability to represent and estimate land cover 

at the subpixel level, especially when using coarse-resolution satellite data with mixed 

pixels (Gu et al., 2015). A soft classification reveals more land use/cover information and 

potentially a more accurate result, especially for coarse spatial resolution data 

(Choodarathnakara et al., 2012; Sharma et al., 2016). Additionally, the output is not a 

single classified image. Instead, several images are obtained as the classified output 

(Tiwari et al.,  1999) of land cover information, which is very important for land resource 

management (Sharma et al., 2016). The soft classification techniques commonly used are 

fuzzy logic, genetic algorithms, artificial neural networks and decision trees, with the last 

two used as both hard and soft classifiers.  

2.9.4 Object-based classification 

The ability to spatially quantify changes in the landscape and create land-cover maps 

using remote sensing coupled with object-based image analysis (OBIA) has improved 

classification techniques for developing land cover maps (MacLean et al., 2013). Remote 

sensing-based object-based image classification for land cover mapping purposes has 

attracted significant attention in recent years (Ma et al., 2017). The object-based approach 

overcomes the limitations and disadvantages of the traditional pixel-based approaches by 

generating and analysing meaningful image objects (i.e., groups of contiguous pixels) 

instead of individual pixels, reducing the speckle noise effect (Tamta & Bhadauria, 2015). 

Image segmentation divides an image into parts that have a high correlation with 

geographic objects represented in the image (Lizarazo & Elsner, 2009) and incorporates 

both spectral information (feature vector of the pixels) and spatial information (e.g., size, 

shape and adjacency to other pixels) in categorising and delineating suitable segments 

within an image for image classification (Geneletti & Gorte, 2003; Pei et al., 2017). 

Unlike traditional pixel-based analysis, object representation with image segmentation 

algorithms is a vital prerequisite for classification/feature extraction and further 

integration in GIS analysis (Dragut et al., 2014), which often requires the use of dozens, 

and sometimes hundreds of variables (Duro et al., 2012). The two main approaches in 

image segmentation are edge-based and region-based (Geneletti & Gorte, 2003). 



 

41 

 

Robertson & King (2011) noted that the object-based method produces thematic maps 

with more uniform and meaningful LULC objects and depicts change more accurately 

despite similarities in map accuracies from both object-based classification and maximum 

likelihood (MLC) methods using Landsat TM. The method to adopt is always difficult 

because many factors come into play, including the nature of the study area and the spatial 

resolution of the satellite image. A recent study by Ma et al. (2017) noted that variation 

in study areas makes it difficult to generalise research results since certain methods may 

display good classification accuracy in a certain study area but produce inconsistent 

results in other study areas. Their study involved constructing a database with 28 fields 

of data using qualitative and quantitative information extracted from 254 experimental 

cases described in 173 scientific papers and discovered the following: 

 1 Supervised object-based classification is currently experiencing rapid advances, 

while the development of the fuzzy technique is limited in the object-based framework; 

2 Spatial resolution correlates with the optimal segmentation scale and study area, 

and Random Forest (RF) shows the best performance in object-based classification; 

3 The overall accuracy benefits from higher spatial resolution images (e.g., 

unmanned aerial vehicles) or agricultural sites, where it also correlates with the number 

of targeted classes; 

4 More than 95.6% of studies involve an area less than 300 ha, and the spatial 

resolution of images is predominantly between 0 and 2 m; 

5 Some methods that may advance supervised object-based image classification 

were identified. For example, deep learning and type-2 fuzzy techniques may improve 

classification accuracy. 

Some of their findings agreed with the study by Li et al.  (2016), which stated that random 

forest (RF) and support vector machines (SVM) are highly suitable for classifications in 

agricultural areas and confirmed the expected general tendency of the overall accuracies 

to decline with increasing segmentation scale. 

Although object-based classification involves an area of less than 300 hectares (ha) and 

with a predominantly spatial resolution of images between 0 and 2 m, some researchers 

have used datasets from Landsat sensors for object-based classification. Achieving the 

best classification results with Landsat images requires particular attention to the 

specifications of each classification method, such as selecting the right training samples, 



 

42 

 

choosing the appropriate segmentation, pre-processing calibration, and choosing the right 

classifier: each classification method applied on Landsat images has its strengths and 

limitations (Phiri & Morgenroth, 2017).  

Robertson & King (2011) used the Landsat Thematic Mapper 5 (TM) dataset and 

discovered that the object-based maps represented change more accurately than 

maximum likelihood classification (MLC)-derived change maps in the region of eastern 

Ontario for the period 1995–2005. Additionally, Reyes et al. (2017) used object-based 

analysis on medium-resolution images (Landsat TM) in the Province of  Pontevedra in 

Spain, which has a complex landscape with different coexisting elements, such as mixed 

hardwood and coniferous forests, scrublands, natural grassland, agricultural areas, water 

surfaces, bare soils and urban and industrial areas. Frohn et al. (2011) also used 

segmentation and object-oriented processing of single-season and multi-season Landsat-

7 Enhanced Thematic Mapper Plus (ETM+) to classify wetlands in a 1560 km2 study area 

in north-central Florida. They discovered that the result outperformed the traditional MLC 

in accurately mapping the wetlands, with an overall accuracy of 90.2%.  

Authors such as Frohn et al. (2011), Naboureh et al. (2017), and  Yu et al. (2016) have 

used the Landsat dataset for object-based image classification for land cover mapping. 

Despite the supposed accuracy of object-based image classification over the traditional 

pixel-based classification, it is not free from the uncertainty associated with pixel-based 

classification. Uncertainty occurs in any segmented image and can affect further image 

processing, particularly in areas where objects with uncertain boundaries (so-called fuzzy 

objects) dominate, and the indication of segmentation uncertainty is important (Lucieer 

et al., 2003). 

2.9.5 Soft object-based image classification (SOBIC) 

Although many authors have reported that object-based image classification method are 

often more accurate than traditional spectral pixel-based classification (Dornik et al., 

2017), the parametersization of crisp segmentation models commonly requires significant 

user interaction, making it difficult to employ such methods for the automated processing 

of large datasets as well as producing image objects that are delimited by clearly defined 

boundaries (Lizarazo & Elsner, 2009). Additionally, some important issues and 

classification assumptions are often overlooked or partly addressed in object-based image 

analyses (Costa et al., 2017). This is because the mixed pixel is usually associated with 
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remote sensing data no matter the resolution of the data, and the segmented image also 

contains mixed pixels due to the nature of land cover classes as well as under or 

overestimation segmentation of the classes used for training, which are inherently 

assumed to be pure. 

Combined pixel-based, pixel groupings and object segmentation offer more novel 

techniques for image classification (Al Fugara et al.,  2009) and is a less explored territory 

(Costa et al., 2017; Lizarazo & Elsner, 2009), despite the inherent novelties it brings into 

image classification and land cover change mapping/modelling. Object-oriented image 

classification based on fuzzy logic allows the integration of a broad variety of different 

object features, such as spectral values, shape, and texture (Yoon et al., 2003). In 

predominantly mangrove vegetation, such as the Niger Delta, there is a need for 

techniques that will delineate the different vegetation types. Innovative remote sensing 

techniques, such as spectral unmixing and object-based image analysis, offer unique 

forest mapping approaches by quantifying proportional species composition at the pixel 

level and utilising ancillary environmental data for forest classifications (Gudex-Cross et 

al., 2017). Heumann (2011) stated that accurate mapping of fringe mangroves using 

remote sensing data remains a challenge due to the spectral similarity of mangroves and 

associated species, a lack of clear zonation between species, and mixed pixel effects, 

especially when vegetation is sparse or degraded. Due to relatively coarse spatial 

resolution and spectral confusion with landward vegetation, traditional remote sensing 

methods have failed to accurately map fringe mangroves and true mangrove species 

(Heumann, 2011). Some researchers who have applied object and fuzzy classification to 

remote sensing datasets are Al Fugara et al. (2009); Feizizadeh, Blaschke, Tiede, & 

Moghaddam (2017); Gudex-Cross et al. (2017); Lizarazo & Elsner (2009); Wang et al.,  

(2004). 

2.9.6 Assessing classification accuracy 

Accuracy assessment should be a vital part of a program that maps land cover from 

remotely sensed imagery (Foody & Boyd, 2013) because the value of the classified map 

depends on the accuracy of the classification (Foody, 2002; Hashemian et al., 2004; 

Mahmon and Ya’acob, 2014). The classification accuracy is the degree to which the 

classified image agrees with reality (Janssen & van der Wel, 1994) and has received 

widespread attention in the remote sensing community (Congalton, 1988). Assessing the 

accuracy of land cover maps generated from remotely sensed data is expensive, time and 
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money-demanding (Congalton, 1988; Hashemian et al., 2004) and is inhibited by the 

absence of high-quality ground reference data (Foody & Boyd, 2013). Traditionally, 

accuracy assessment involves identifying a set of reference (samples) points on the 

classified image, which are visited on the ground (ground truth) to verify if the map is the 

true representation of ground features. Sampling becomes the means by which the 

accuracy of the land cover map can be derived because total visitation (where it is possible 

to do so) of all mapped areas for verification is impossible, and using the wrong sampling 

approach can be costly and yield poor results, which may introduce significant biases into 

the error matrix and over or underestimate the true accuracy (Hashemian et al., 2004).   

But a ground sample may not be possible, especially when the classified map is several 

years behind the time of visitation. Some land cover types might have changed, especially 

in urban areas where the analysis may not know what existed in the past. For example, 

validating an image of the year 2000 in 2022 may not be accurate because the land cover 

in some places might have changed. Secondly, site validation might not be feasible due 

to the size of the study area, inaccessibility and security concerns, especially for places 

like the Niger Delta. An alternative is to use a high-resolution google earth image. Google 

Earth's high-resolution imagery is important for accuracy assessment (Tilahun, 2015). It 

enables historic temporal images of the same or close time image with the classified 

image to be used for sampling and “ground” truthing for accuracy assessment. Google 

earth image has been used by  Olofsson et al. (2014) as a source of reference data for 

ground truth and validation for land cover accuracy assessment. For this research, the 

google earth image was used as “ground truth” for the reasons mentioned earlier.         

There are various sampling schemes, including simple random sampling, stratified 

sampling, systematic sampling, systematic nonaligned sampling and cluster sampling. 

Spatial complexity (size of the study region and object characteristics) of a given 

environment dictates the appropriate sampling scheme(s) to be used for creating error 

matrices necessary to assess the accuracy of maps generated from remotely sensed data 

(Congalton, 1988; Hashemian et al., 2004). The results of a study of sampling methods 

for accuracy assessment of classified remotely sensed data by Hashemian et al. (2004) 

show that for a large area, simple random sampling and stratified random sampling 

methods overestimate the overall accuracy, while systematic sampling and stratified 

systematic unaligned sampling methods performed better with Simple Random Sampling 

being the most efficient methods. However, simple and stratified random sampling 
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produces good results for a smaller area. Congalton (1988) and Hashemian et al. (2004) 

show that both the stratified systematic unaligned and systematic sampling schemes are 

not good for a large area. 

2.10 Change detection mapping techniques 

Many techniques have been developed for change detection (Devi & Jiji, 2015; Lu et al., 

2003; Pathak, 2014). The change detection techniques can be organised into 

algebraic/statistical, vector/transformation, classification or mixture categories. 

Additionally, there is no universally optimum technique; the choice depends upon the 

application (Madanian et al., 2012; Ross & Bhadauria, 2015) because different change 

detection algorithms have their own merits, and no single approach is optimal and 

applicable to all cases. Usually different algorithms are often compared to find the best 

change detection results for a specific application. Ultimately, change maps using the 

post-classification technique of two images will only be generally as accurate as the 

product of each classification's accuracy (Pathak, 2014). Previous studies have shown that 

image differencing, principal component analysis, and post-classification comparison are 

the most commonly used methods for change detection. However, spectral mixture 

analysis and artificial neural networks combined with GIS and remote sensing data have 

become important techniques for change detection applications in recent years (Lu et al., 

2003). 

Mas (1999) tested six change detection procedures; image differencing, vegetative index 

differencing, selective principal components analysis (SPCA), direct multi-date 

unsupervised classification, post-classification change differencing, and a combination of 

image enhancement and post-classification comparison; on Landsat Multispectral 

Scanner (MSS) images. They discovered that post-classification comparison was the most 

accurate procedure and offered the advantage of indicating the nature of the changes. 

Additionally, four change detection techniques, namely, post-classification, image 

differencing, image rationing and principal component analysis, were applied by  Afify 

(2011) to assess, evaluate and monitor the nature and extent of land cover changes and 

classify the changed areas according to ‘‘from-to’’ in New Burg El-Arab city from 1990 

to 2000. The results indicated that the post-classification change detection technique 

provided the highest accuracy. There are different change detection categories with 

various techniques under them. Lu et al. (2003) and Ross & Bhadauria (2015) categorise 

change detection into seven categories comprising thirty techniques (Table 2.5), while 
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Rama et al. (2016) summarise ten various change detection techniques in Table 2.6 and 

their strengths and limitations (Table 2.4). Some researchers also compared different 

techniques within the same categories. Madanian et al. (2012) used image differencing, 

image rationing, and image regression under the Algebra-based approach to study land 

use/cover changes in Falavarjan, Iran. 

Table 2.5:Change detection technique categories(Ross & Bhadauria, 2015). 

 Techniques categories Example of technique 

1 Algebra-based 

approach. 
 Image differencing. 

 Image regression. 

 Image rationing. 

 Vegetation index differencing. 

 Change vector analysis. 

2 Transformation.  PCA. 

 Tasseled Cap (KT). 

 Gramm-Schmidt (GS). 

 Chi-Squa. 

3 Classification-based 

post-classification. 

 

 

 Spectral-Temporal Combined Analysis. 

 Comparison. 

 EM Transformation. 

 Unsupervised Change Detection. 

 Hybrid Change Detection. 

 Artificial Neural Networks. 

4 Advanced models. 

 
 Li-Strahler Reflectance Model. 

 Spectral Mixture Model. 

 Biophysical Parameter Method. 

5 GIS. 

 
 Integrated GIS and RS Method. 

 GIS Approach. 

6 Visual analysis.  Visual Interpretation. 

7 Other change detection 

techniques. 

 

 Measures of spatial dependence. 

 Knowledge-based vision system. 

 Area production method. 

 Combination of three indicators: vegetation indices, 

land surface temperature, and spatial structure. 

 Change curves. 

 Generalised linear models. 

 Curve-theorem-based approach. 

 Structure-based approach. 

 Spatial statistics-based method. 
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Table 2.6:Strengths and limitations of different change detection techniques (Rama 

et al., 2016). 

Technique. Strong point. 

 

Limitation Simple. 

Image differencing. 

 

Simple to implement and 

interpret. 

Nature of change not 

found. Accuracy depends 

on threshold selection. 

Rationing vegetation. The effect of different Sun 

angles, shadows and 

topography is reduced. 

Non-Gaussian distribution 

of image makes threshold 

selection difficult. 

Vegetation index 

differencing change. 

Widely applied for both 

human-induced and 

natural forest cover 

change detection. 

Threshold identification 

for detection of vegetation 

changes represents a key 

issue. 

Change vector analysis. It offers qualitative 

information of the 

direction and intensity of 

change. CVA is applicable 

to any number of spectral 

bands. 

Not providing 

concisefrom–to 

information. 

Accuracy depends on the 

image quality, geometric 

correction and threshold. 

Tasseled Cap 

transformation. 

Data redundancy reduced. 

Scene independent. 

Difficult to interpret and 

label change information. 

Principal Component 

Analysis. 

Useful to identify where 

changes occurred. 

Difficult to interpret the 

result. Knowledge of the 

study area is essential. 

Post-classification 

comparison. 

Provides from-to change 

results. Normalise the 

atmospheric, sensor 

differences. 

Accuracy depends on the 

classification accuracy of 

individual images. 

 

Cluster approach. Simple & need not require 

any explicit assumption 

about the underlying 

classes. 

Labelling change among a 

matrix of many 

overlapping classes may 

be difficult or non-

informative. 

Artificial Neural Network. Provide complete from-to 

change information and 

the nature of change. 

Requires accurate training 

and testing classifications. 

Decision Tree approach. 

 

This technique can be 

applied to any spectral 

data or GIS data. 

Error in training data will 

produce poor result. 

 

2.11 Overview of land cover change detection applications related to 

the oil industry 

Oil and gas development results in a complex system of oil well pads, roads, pipelines, 

and other infrastructure (Unger et al., 2015). Consequently, land cover change detection 
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studies to determine the impact of oil/hydrocarbon have been carried out in many parts 

of the world. Arellano et al. (2015) used three vegetation indices (SR, NDVI and 

NDVI7057) for the detection of oil contamination in forests in the Ecuadorian Amazon 

using satellite imagery from EO-1 (Earth-Observation 1) Hyperion with supporting field 

data on soils and foliar properties to produce a map of the spatial pattern of forest oil 

contamination. Additionally, Ungeret al (2015) detected changes and quantified the 

amount of land within the Haynesville Shale area that had been converted from forestland 

and agricultural land to oil and gas well pads using Landsat Thematic Mapper (TM) 

imagery from 1984 to 2011, using unsupervised classifications for a time series analysis. 

Yu et al. (2015) detected land cover change due to climate change and oil/gas 

development in north-western Siberia using multiple sources of remotely sensed imagery. 

They discovered that 10.8% of the area experienced a decrease in vegetation cover due to 

oil and gas development and logging activities, especially within 100 m from disturbed 

sites. Prins (2009) mapped human activity in the oil concession area in southern Sudan 

using Landsat images between 1999 and 2003 during the preliminary phase of oil 

exploration and development and discovered an increase in oil infrastructure and road 

construction. 

2.11.1 Other relevant applications of land cover change detection 

Accurate and timely land cover change detection at both global and regional scales is 

essential for studies related to natural resource management and global environmental 

change using satellite remote sensing, which has been widely used in land cover change 

detection over the past three decades (Qin et al., 2013). Change detection has found many 

applications, including land-use changes, habitat fragmentation, the rate of deforestation, 

coastal change, and urban growth, through the use of spatial and temporal analysis 

techniques, such as GIS and remote sensing, along with digital image processing 

techniques (Ramachandra & Kumar, 2004). Change detection has become a valuable tool 

for studying biophysical and anthropogenic alterations to the Earth’s surface (Unger et 

al., 2015). It continues to affect resilient human communities and ecosystems due to 

climate change (Mwalusepo et al., 2017). It has also been used to assess nutrient fluxes 

at the watershed scale in oligotrophic lakes through spatially explicit modelling 

techniques (Fuentes et al., 2017). 
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2.12 Geographical information science in land cover change mapping 

The combination of remote sensing and geographical information systems (GIS) with 

expert systems has emerged as a new research frontier (Sharma et al., 2016), widely used 

and recognised as a powerful and effective tool in detecting land use/land cover change 

(Kumar et al., 2015), observing, mapping and managing natural assets (Tamta & 

Bhadauria, 2015) and modelling land cover change. Traditional methods and techniques 

for monitoring and mapping land use/cover changes, especially in developing countries, 

are time-consuming and costly, making researchers focus on GIS and remote sensing 

techniques (Amini Parsa & Salehi, 2016). Remote sensing data not coupled with GIS-

based modelling concepts may not develop their full potential in modifying and adapting 

environmental management principles and mitigation strategies (Hill et al., 2006). GIS 

and RS will complement many existing cases of wetlands (including mangrove 

restoration developments) and provide the government and all stakeholders involved in 

the development of the Niger Delta region with a strategic framework for identifying and 

calculating projects and programs for the restoration of degraded mangroves and the 

development of conservation action plans for the sustainable management of Niger Delta 

mangroves (Adedeji, Ibeh, & Oyebanji, 2011). Some researchers who have used remote 

sensing and GIS are Eyoh & Okwuashi (2016), to examine the spatial and temporal 

dynamics of land use/land cover in the Niger Delta region from historical multispectral 

remote sensing datasets from 1986-2016. Additionally, Kuppusamy & Ganesan (2016) 

analyse the spatial and temporal environmental changes in Ogoni land due to the intensity 

of oil spills from 1984 to 2015. 

2.12.1 Spatial analysis of land cover change dynamics. 

Detecting land cover changes is an important tool for understanding the forces shaping 

the landscapes (Urban & Wallin, 2002). Spatial analyses of land use/land cover change, 

such as where and the type of land use/land cover has changed and to what extent this 

change relates to social and biophysical factors, including why, is important for spatial 

planning purposes (Karsidi, 2004). The spatial statistics itself is based on the assumption 

that nearby georeferenced units are associated, including spatial association, pattern 

analysis, scale and zoning, geostatistics, classification, spatial sampling, and spatial 

econometrics (Getis, 2005). Remotely sensed data are often highly spatially 

autocorrelated, and various techniques have been developed to assess the spatial 

dependence characteristics of remotely sensed imagery (Ganguly et al., 2016). One of the 
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most popular spatial statistical methods for detecting land use/land cover change 

(LULCC) hotspots is cluster analysis, which is an effective method for determining areas 

showing a maximum number of concentrations of land transformations. However, it 

remains a particularly challenging task to detect hotspots using clustering techniques 

(Rowland, 2010). 

To effectively characterise the impact of oil extraction activities on the land cover in the 

Niger Delta, there is a need for a multiscale analysis of the land cover changes, especially 

the vegetation. Integrating oil extraction activities data (oil spills, pipelines, and oil well) 

with land cover information generated from hyperspectral and multispectral remote will 

reveal how oil extraction activities have affected the land cover in the Niger Delta. 

Geographical information systems (GIS) have emerged as a technology that could 

integrate data from different sources, such as oil extraction activities data and land cover 

change information. In this study, geospatial technology will be used to understand and 

visualise the spatial distribution of oil extraction activist data and how they impact the 

land cover changes in the Niger Delta. 
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Chapter 3  Methodology 

3.1 Introduction 

This chapter briefly describes the methodologies for each main research chapter (with the 

detailed methodologies described in each main research chapter 4-7). This chapter also 

describes the study area, the traditional Niger Delta. Multi-scale land cover change 

detection is adopted for these studies to examine the impact of oil extraction activities on 

the land cover in the Niger Delta, especially the vegetation up to plant-specific. The 

advantage of this approach is that it allows the impact of oil extraction activities on plant-

specific levels to be assessed by utilising both hyperspectral and optical remote sensing. 

In some cases, the vegetation impacted by oil spills experiences degradation instead 

conversion to other land cover types. Therefore, a multi-scale land cover change 

detection, as shown in Figure 3.1, will give more information about the general land cover 

changes at the landscape scale as well as the information on the state of the health of 

various vegetation types and some plant species at leaf and plot scales in the Niger Delta.
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Figure 3.1: General methodology flow chart. 



 

53 

 

3.2 Study Area. 

The Niger Delta region is made up of nine oil-producing states, sometimes referred to as 

the political Niger Delta, hosting approximately 1500 communities and different oil and 

gas companies where significant oil and gas productions are currently taking place (Umar 

et al., 2021). The climate in the Niger Delta region has been categorised as a wet 

equatorial climate characterised by persistent cloud cover and few sunshine hours, which 

produces damp weather conditions for most parts of the year (Umar et al., 2019). The 

vegetation in the Niger Delta comprises mangroves, which cover the coastal region of the 

delta, along with brackish lagoon and river systems, freshwater swamp forest, rainforest 

and derived savannah (Ayanlade & Howard, 2017). The dominant mangroves are Red 

Mangroves (Rhizophoraceae) and White Mangroves (Avicenneaceae), which form more 

than 90% of the vegetation in the mangrove zone. 

Traditionally, the Niger Delta comprises three states of Rivers, Bayelsa and Delta States 

in Nigeria. These three states account for approximately 70% of Nigeria's oil spillage 

incidences, while the remainders are in other oil-producing states. The study area is 

located within longitude 4° 55' E and 7° 39' E and latitudes 4° 7' N and 6° 33' N. Figures 

3.1a and b show the traditional Niger Delta in Nigeria and the three states overlaid on a 

satellite image. Rivers State was formed in 1967 when it was split from the former Eastern 

Region, and it borders Imo and the Abia States to the north, Akwa Ibom State to the east, 

and Bayelsa and Delta State to the west. Delta State was created in 1991, while Bayelsa 

State was created in 1996 from Rivers State, making it one of the newest states in Nigeria. 

The dominant ethnic groups are Ikwerre, Ijaw and Ogoni, River state, Igbo (Anioma 

people), Urhobo, Isoko, and Itsekiri in Delta State, with Bayelsa also being the ancestral 

home of the Isoko people and the Urhobo people in the Sagbama Local Government Area. 

Ijaw, the dominant ethnic group in Bayelsa State, is also found in the Rivers and Delta 

states. All the states are oil and agricultural producing states. Figure 3.1a shows the study 

area, the traditional Niger Delta in red and the political Niger Delta in green in 

relationship to Nigeria, while Figure 3.2b shows the study area overlaid on Google Earth 

imagery. 

https://en.wikipedia.org/wiki/Petroleum
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Figure 3.2: Study Area (a) in relation to Niger delta and Nigeria and (b) study area 

overlaid on Google image. 

A 
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3.3 Data 

3.3.1 Oil spills and oil facilities 

Oil spill data were downloaded in Microsoft Excel format from the Nigerian Oil Spill 

Monitor website (https://oilspillmonitor.ng/) collected by the National Oil Spill Detection 

and Response Agency (NOSDRA), which was established in 2006 by the National 

Assembly of the Federal Republic of Nigeria Act of 2006. The data contain both spatial 

and attribute data for most of the spill points, including the name of the Local Government 

Areas, incident date, and oil spill volume. NOSDRA depends on the voluntary 

engagement and support of oil companies to provide data, logistics, quantity estimates, 

soil/water samples, and clean-up operations. The data gathered and displayed by 

NOSDRA provided by oil companies are often incomplete because of the operating 

environment, which is tensed up with insecurity and logistical difficulties. The data 

represents NOSDRA's knowledge of incidents at a particular moment and are subject to 

change as new information arises and new records are added daily. This means that there 

could be more spills that are unrecorded. A total of 12,117 oil spill incidents were 

recorded in Nigeria from 2007 to 2019, with only approximately 8612 points having 

geographic coordinates that could be used for spatiotemporal analysis. 

Oil facilities, such as oil/gas wells and oil/gas pipelines, were digitised from an oil facility 

map of 2007 produced by the Global Exploration & Production Service, covering the 

entire Niger Delta on a scale of 1:750,000. The map was georeferenced using geographic 

coordinates from four map edges, while linear transformation and resampling were 

applied. The map was projected to the WGS 84 Universal Transverse Mercator grid 

system to integrate other data, such as satellite imagery and oil spill data, into the WGS 

84 coordinate system. Shapefiles were created for each component: points for oil/gas 

wells and lines for oil/gas, and the features were manually digitised. It was discovered 

that the oil pipelines were not accurately located on the map. Hence, high-resolution 

satellite imagery was used for digitising the pipelines. The locations of oil spill clusters 

also served as a guide during digitising the oil pipelines since most oil spills occur along 

the oil pipelines. A total of 1046 oil wells were digitised in ArcGIS 10.4, out of which 

498 fell within the study area and were thus selected and used to produce oil well density 

maps covering the period up to 2007. 
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The oil spills and the oil facilities data were used for spatiotemporal hotspot analysis of 

oil spills and oil facilities; oil pipelines and wells (chapter 4) and the assessing the impact 

of oil extraction on land cover changes (chapter 7), while the oil spill data only was used 

for monitoring the impact on vegetation (chapter 6). Table 3.1 is the annual oil spills 

statistics of recorded oil spills in Nigeria. At the same time, Figures 3.3 a and b show the 

spatial distributions of oil and gas wells and oil pipeline networks. 

Table 3.1: Recorded oil Spill incidences in Nigeria from 2007 to 2019. (NOSDRA) 

Year 

Total Number of oil 

Spill 

Oil spill with 

coordinates 

Spills points for 

analysis 

2007 989 101 99 

2008 948 146 95 

2009 810 321 278 

2010 860 599 492 

2011 1032 799 709 

2012 1095 942 801 

2013 1678 1478 1277 

2014 1545 1490 1335 

2015 881 844 775 

2016 582 567 514 

2017 419 401 363 

2018 385 370 347 

2019 616 594 537 

Total 11840 8650 7622 
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Figure 3.3: Oil facilities map in Nigeria: (a) oil wells and (b) oil/gas pipelines. 

(b) 

(a) 
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3.3.2 Leaf spectra and soil samples 

Spectral samples of leaves and soil samples at oil spill sites were collected during a field 

visit in December 2018 to the Niger Delta region. The timing of the trip was chosen 

because the weather conditions were more favourable, with almost zero rainfall. Before 

the fieldwork, a reconnaissance trip was carried out in June 2018, accompanied by staff 

from the University of Port Harcourt, Nigeria, and some community members. The 

sample collection sites were chosen based on accessibility to the site since it was not 

viable to perform random sampling due to insecurity in the region. It is noted that this 

could introduce some degree of unavoidable bias in the results obtained. Leaf samples 

from five different plant species from different families at oil spill locations with different 

levels of hydrocarbon pollution were sampled. They include samples from trees, grasses, 

and mangroves. The sample collection areas were divided into 30 m-by-30 m plots to 

match the spatial resolution of Landsat imagery, which was used for both temporal 

monitoring of the impact of oil spills on the land cover using NDVI and land cover change 

detection. 

3.3.3 Satellite data 

3.3.3.1 Satellite Images 

The main datasets used in this thesis were acquired from Landsat 4/5 (1987), Thematic 

Mapper (TM), Landsat 7 (2003), Enhanced Thematic Mapper Plus (ETM+), and Landsat 

8 (2016) Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) instruments. 

The Landsat images were limited to three dates due to cloud cover and Landsat 7 Scan 

Line Corrector (SLC)-off, which affects all Landsat 7 images collected after May 31, 

2003, when the Scan Line Corrector (SLC) failed. There have been limited studies on 

land cover mapping in the Niger Delta as the area is one of the most affected worldwide 

by the gaps in the Landsat archive and a consistent cloud cover (Nababa et al., 2020). 

Though the Scan Line Corrector would have been corrected using various interpolation 

methods, however, the image is mostly good for visualization, but the problem of cloud 

cover will still persist. The interpolation is based on the assumption that the same-class 

neighbouring pixels around the un-scanned pixels have similar spectral characteristics 

and that these neighbouring and un-scanned pixels exhibit similar patterns of spectral 

differences between dates (Chen et al., 2011), which may not be true for a heterogeneous 

study area like the Niger Delta. 
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These data comprised Calibrated Level 1 data products downloaded from the USGS 

website (https://glovis.usgs.gov/app?fullscreen=1). Landsat sensor data were used 

because they provide the highest temporal resolution at medium spatial resolution for the 

period required for this study. All the images were calibrated for time-series analysis, 

geometrically corrected, and projected to WGS84 Universal Traverse Mercator 

Projection Zones 31 and 32. The essential goal of the new Landsat product is to provide 

a consistent Landsat archive with improved geometric and radiometric quality across 

different sensors (Li et al., 2018; Zanter, 2019). The calibration employs algorithms and 

processes that improve Landsat data by converting the DN values of the data to spectral 

radiance and reflectance at the sensors level, followed by the removal of atmospheric 

effects (Landsat-Missions, n.d.). Table 3.2 presents the list of sensors, path/row, date of 

acquisition, the UTM zone, and pixel sizes, while Figures 3.4a, b and c provide 

illustrations of 1987, 2002/2003 and 2015/2016 false-colour composites. These false-

colour composites were used for land cover change modelling in Chapter 7. 

Table 3.2: Landsat sensor platforms, paths/rows and pixel sizes. 

Satellite Sensor Path/Row Date of 

Acquisition 

UTM Zone Pixel 

sizes(m) 

L5 TM 188/57 21/02/1987 32 30 

L4 TM 189/56 21/12/1987 32 30 

L4 TM 189/57 21/12/1987 31 30 

L5 TM 190/56 03/02/1987 31 30 

L7 ETM 188/57 08/01/2003 32 30 

L7 ETM 189/56 30/12/2002 32 30 

L7 ETM 189/57 30/12/2002 31 30 

L7 ETM 190/56 21/12/2002 31 30 

L8 OLI_TIRS 188/57 04/01/2016 32 30 

L8 OLI_TIRS 189/56 26/12/2015 32 30 

L8 OLI_TIRS 189/57 26/12/2015 31 30 

L8 OLI_TIRS 190/56 02/01/2016 31 30 

 

 

 

 

 

 

 

https://glovis.usgs.gov/app?fullscreen=1
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Figure 3.4: 30 m pixel satellite images false-colour composite (a) 1987 Landsat 5 TM 

234 Band composite, (b) 2003/2003 Landsat 4 TM 234 band composite, and (c) 

2015/2016 Landsat 8 OLI 345 234 band composite. 

(a) 

(b) 

(c) 
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3.3.3.2 Satellite-derived NDVI 

Landsat Surface Reflectance-derived NDVI products were used to monitor the effect of 

oil spills on vegetation. They are a product from section 3.3.3.1 processed 

to Landsat Level-2 Surface Reflectance products (https://www.usgs.gov/landsat-

missions/landsat-normalised-difference-vegetation-index). The NDVI is an index of 

plant greenness, which is also an indicator of the density of plants (Okoro, Schickhoff, 

Böhner, & Schneider, 2016) based on the reflectance properties of the areas covered by 

the vegetation (Rujoiu-Mare & Mihai, 2016). The NDVI is calculated using NDVI =

(NIR − RED)/(NIR + RED). The RED and NIR represent the spectral 

reflectance measurements acquired in the red (visible) and near-infrared regions. Tables 

6.1 and 6.2 in Chapter 6 shows the Landsat sensor platforms, paths/rows, pixel sizes, and 

NDVI acquisition dates for satellite-derived NDVI. NDVI was used instead of other 

vegetation indices because it has been proven effective in detecting the oil spill's impact 

on vegetation. The NDVI is the most suitable index to detect the effects of petroleum 

pollution on vegetation (Arellano et al., 2015). Adamu (2016) discovered that the NDVI 

is the most sensitive to the effects of oil pollution on vegetation in the mangrove forest 

South-West of Port Harcourt City in the Niger Delta out of 20 broadband multispectral 

vegetation indices (BMVIs) derived from Landsat satellite. Using NDVI will also enable 

the results from this research to be compared with other authors that have used it in some 

parts of the Niger Delta to investigate the impact of oil spills on the vegetation. 

3.4 Methodological approach 

3.4.1 Hotspot analysis. 

Before undertaking the hotspot analysis, the oil spill data was prepared in ArcMap 10.4. 

The oil spill points were first plotted, and the spills that fell within the study area were 

selected for the hotspot analysis. A total of 8650 oil spill incident points were recorded 

with coordinate values between 2007 and 2019. However, only 7622 oil spill incidents 

within the study area were selected and analysed since some were outside the study area. 

For oil spill locations, the hotspot analysis was based on two spatial distribution 

techniques: Moran's I and the Getis-Ord General statistic, which are global measurements 

of the overall pattern and trend of spatial autocorrelation displayed by numerical data. At 

the same time, cluster analysis was performed using the Getis-Ord Gi* local statistic.  
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Kernel density estimate (KED) was used for the oil wells and pipeline hotspot mapping. 

The detailed method is discussed in Chapter 4. 

3.4.2 The effect of soil hydrocarbon properties on vegetation at the leaf-scale 

3.4.2.1 Spectral measurements 

Spectral measurements of leaf samples were performed using an Analytical Spectral 

Devices (ASD) FieldSpec Pro. The ASD FieldSpec Pro instrument is the industry 

standard for a broad range of challenging remote sensing applications and offers superior 

signal-enhancing features and high resolution within the 350-2500 mm spectral range. 

The instrument is backpack-mounted, it can collect spectral measurements on the go 

(fsf.nerc.ac.uk/instruments/asd_FieldSpec.shtml) and can also be used in a laboratory 

setting with appropriate illumination. The spectroscopy is discussed in detail in chapter 

5. 

3.4.2.2 Soil sample analysis 

The interaction between hydrocarbons and the soil reduces the amount of oxygen and 

increases the CO2 concentration, soils turn acidic and mobilise minerals, affecting 

vegetation health (Arellano et al., 2015). The soil samples collected during the field were 

analysed at the British Geological Survey Lab, Keyworth, to determine the amount of 

hydrocarbons and other properties of the soil, which were then used for correlation 

analysis with the leaf spectral properties to determine the effect of soil hydrocarbon 

characteristics on the health of vegetation. Solid-phase microbial toxicity (EC50), total 

organic carbon (TOC %), total petroleum hydrocarbons (TPH) and Rock-Eval analyses 

were conducted on the soil samples. The detailed method is discussed in Chapter 5. 

3.4.2.3 Spectral analysis 

The ASD FieldSpec Pro measured leaf reflectance spectra were converted to the first 

derivative, and then the red edge position (REP) was extracted for each leaf sample.  Also, 

Spectral resampling was performed using the Spectral Library Resampling tool in ENVI. This 

tool performs multiplication-based convolution of all laboratory spectra to wavebands of 

three satellite sensors: Heperion, Sentinel 2 and Landsat 7). Similarly, the spectra were 

also used to compute several HVIs: Modified Normalised Difference Index (mND705), 

Modified Datt index (MDATT index), Normalised Difference Vegetation Vigour Index 

(NDVVI) and Photochemical Reflectance Index (PRI). The REP and HVIs were used to 

analyse the spectral properties of different leaf species with soil hydrocarbon parameters. 
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3.4.3 Monitoring the impact of oil spills on vegetation at the plot scale 

Regression and Student's paired t-tests were used to analyse the impact of oil spills on 

vegetation in the Niger Delta. This analysis is broadly divided into two parts. The first 

part investigated the factors that influenced the detectability of the impact of oil spills on 

vegetation health using spectral indices derived from satellite images. The second part 

conducted temporal monitoring of vegetation health/recovery after an oil spill for some 

period by comparing changes in NDVI between spill sites and no-spill sites. First, the oil 

spill sites in the database were plotted in ArcGIS and converted to shapefiles. Not all spill 

occurrences had a recorded spill volume, so only those with a recorded volume were 

retained for analysis. The regression and t-test analyses were performed to examine the 

relationship between oil spill characteristics, volume and time after the oil spill, and 

vegetation health and to test for statistical differences between the response of vegetation 

in the spill and non-spill sites. NDVI from Landsat images was used because it has been 

used and found to be able to detect the impact of oil spills on the mangrove vegetation in 

the Niger Delta by Adamu (2016);  Adamu et al. (2018);  Obida et al. (2021). The detailed 

method is discussed in Chapter 6. 

3.4.4 Land cover change dynamics in response to oil extraction 

3.4.4.1 Pre-classification analysis 

Three spectral bands (234 for 1987, 2002 and 345 for L8 OLI_TIRS false colour, which 

are spectrally equivalent) of Landsat imagery were used for land cover classification since 

vegetation is the predominant land cover, and the band combination is good in depicting 

vegetation. A layer stacking operation collated the three Landsat bands into a single 

colour composite image. Then, the layer-stacked images from four Landsat scenes 

covering the study area were mosaicked into a single image. Mosaicking is the merger of 

several arbitrarily shaped images to form one large radiometrically balanced image so 

that the boundaries between the original images are not seen (Inampudi, 1998). The 

mosaicked images were clipped (subset) to the extent of the study area. 

3.4.4.2 Supervised land cover classification 

The land cover supervised classification was performed in three stages: image 

segmentation, training site development and classification. In object-based classification, 

the main goal of image segmentation is to partition an image into uniform and 

homogeneous attribute regions based on some likeness measure (Chen & Ludwing, 
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2017). The segmented image was used to develop a set of training sites and input. The 

supervised classification was performed using six different soft and hybrid classifiers in 

TerrSet 2020 Geospatial Monitoring and Modelling Software on 2016 Landsat image. 

These were the Bayesian (BAYCLASS), Mahalanobis typicalities (MAHALCLASS), 

linear spectral unmixing (UNMIX), and self-organising map (SOM) neural network 

classifiers. The hybrid hard and soft classifiers are the decision forest and support vector 

machine (SVM). These classifiers were all used for land cover classification, and the best 

performing classifier was chosen for land cover change detection. 

3.4.5 Soft classifiers algorithms 

The classifiers used were chosen to represent a variety of algorithms, including those used 

in the study area and those that have not been used in the study area but have performed 

well in other study areas. The classifiers used in this research are Artificial Neural 

Network algorithm (ANN), Machine Learning algorithms, probabilistic and Mahalanobis 

Typicality Image classification using neural networks is done by texture feature 

extraction and then applying the back propagation algorithm . 

3.4.5.1 BAYCLASS and Bayesian Probability Theory (Bay) 

BAYCLASS is the direct extension of the maximum likelihood module. It outputs a 

separate image to express the posterior probability of belonging to each considered class 

according to Bayes 'Theorum. 𝑝(ℎ|𝑒) = the probability of the hypothesis being true given 

the evidence (posterior probability) 𝑝(𝑒|ℎ) = the probability of finding that evidence given 

the hypothesis being true 𝑝(ℎ) = the probability of the hypothesis being true regardless of 

the evidence (prior probability). 

3.4.5.2 Mahalanobis Typicality (MAHALCLASS) 

The Mahalanobis distance image classification algorithm was developed by an Indian 

applied statistician Mahalanobis in the 1930s (Talukdar et al., 2020). The Mahalanobis is 

a class statistic-based classifier that is direction-sensitive in operation and has an 

advantage over the maximum likelihood procedure because it is faster and retains a degree 

of direction sensitivity (Richards & Jia, 2006). To classify a test pixel that belongs to one 

of the N numbers of classes, the estimation of the covariance matrix of each class is done 

first, which is typically established on the training data known for belonging to such 

class(Karan & Samadder, 2018). After that, the algorithm computes the Mahalanobis 
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distance to every class and classifies the test pixel as belonging to that class for which the 

MLD is minimum. 

3.4.5.3 Support vector machine (SVM) 

The Support vector machine(SVM) was originally designed for binary classification (Hu 

et al., 2014). SVM is a group of relatively new machine-learning algorithms designed to 

find optimal classification solutions (Townshend et al., 2012). SVM are non-parametric 

learning algorithms that can compete with the best available machine learning algorithms 

and work well with a small training data set with high classification accuracy (Sharma et 

al., 2016). SVM classification methods offer more flexibility in the relationship between 

the inputs and the probability of the classes (Berrett & Calder, 2016) 

3.4.5.4 Decision Forest (DF) 

Decision forest is currently one of the most popular classification procedures in use. It 

implements the random decision forest (RDF) algorithm, a modification of the random 

forest algorithm (Eastman, 2020). Its classification is based on many trees derived from 

different random draws of training data and different random selections of input variables. 

It is a popular classifier because it can perform well with classes that are not normally 

distributed. Both the SVM and DF are nonparametric statistical and hybrid (hard and soft) 

classifiers.  

3.4.5.5 Self-Organising Feature Map (SOM) 

SOM is one of the neural network classifiers that can produce both hard and soft outputs. 

The SOM has both vector quantisation and vector projection properties and can be used 

for unsupervised and supervised classification (Li and Eastman 2010). A SOM network 

is made up of two layers; an input layer containing one neuron for each of the input 

variables, and an output layer made up of a two-dimensional array of neurons (Grebby et 

al., 2011). The self-organizing map (SOM) neural network was developed by   Kohonen 

(1982). The SOM can undertake both unsupervised and supervised image classification 

and, can output both soft and hard map 

3.4.5.6 UNMIX and the Linear Mixture Model 

The UNMIX module is used to classify remotely sensed images using Linear Spectral 

Unmixing (LSU -- also called Linear Mixture Modelling). The approach assumes that a 

pixel value is a combination of the means of the signatures of all the classes present in 
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the pixel which lead to an aggregate signature that is an area-weighted average of the 

signatures of the constituent classes (Eastman, 2016).  

3.4.6 Post-Classification analysis. 

The land cover post-classification analysis includes accuracy assessment, classified map 

clean-up, and land cover change detection. The initial accuracy of the land cover maps 

from the six classifiers was assessed using a confusion matrix with high-resolution images 

from google earth used for ground truthing. Due to the size of the study area, 

inaccessibility, and security concerns in the Niger Delta, instead of a site visit approach 

for ground truth to collect or validate the classified map, an alternative approach of using 

a high-resolution google earth image was explored. Google Earth's high-resolution 

imagery is important for ground-truthing because it provides temporal images of the same 

or close time image and has some advantages over the traditional approach, as stated in 

section 2.9.6. The method used to generate the ground truth sample point is explained in 

section 7.2.3.3 

After the accuracy assessment (detailed in section 7.2.3.3), the classifiers were narrowed 

down to two best-performing classifiers based on the overall accuracy of the confusion 

matrix. They were further subjected to visual analysis to determine the best classifier 

choice to meet the research objective. Olofsson et al. (2014) suggested that land cover 

maps should be visually inspected, and obvious errors should be identified and corrected 

before conducting the accuracy assessment. Of the two best-performing classifiers, 

Mahalanobis typicalities and Bayesian, the Bayesian classifier was the best, with fewer 

spectral similarities among the land cover class and was chosen for the land cover 

mapping.   Post-classification clean-up was carried out on the maps produced by the 

Bayesian classifier to overcome the problem of spectral similarities associated with two 

or more land covers, which were still evident. After the map clean-up, the final accuracy 

assessment was performed on the cleaned map, which was used as input for land cover 

change detection. The land cover change was detected in terms of conversion and 

degradation using land cover maps and NDVI maps, respectively. Lastly, spatial analysis 

of the land cover changes was performed in the GIS environment to determine the 

relationship between land cover changes and oil extraction activities in the Niger Delta. 
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Chapter 4 The spatiotemporal distribution of oil spills and oil 

facilities in the Niger Delta region 

4.1  Introduction 

Hazardous materials are indispensable for a production-driven economy (Park et al., 2016). 

Environmental pollution has become one of the most severe threats to human survival (Wang, 

Li, & Xi, 2016). Oil spills and other environmental pollution have led to a persistent and 

growing interest in better understanding the potential ecological, environmental, social, 

economic, cultural, and epidemiological implications of catastrophic spills, regardless of their 

form (Nelson & Grubesic, 2017). The prevalence of oil spills in the Niger Delta has led to 

severe environmental degradation and a range of impacts on the human population (Obida et 

al., 2017). Oil spills, which are considered a serious environmental problem (Ivanov & 

Zatyagalova, 2008), are reasonably well documented in Nigeria. However, information on 

potential impacts on the population and environment is limited (Obida, Blackburn, Whyatt, & 

Semple, 2018). The impact of oil spills due to oil extraction activities, usually on the land cover 

in the Niger Delta, is visible and has brought untold hardship to humans, fauna, the region's 

environment and land cover. A visit to the Niger Delta shows a beautiful landscape destroyed 

by the oil spill incidence over the years. Cleanup and remediation of the environment are 

urgently needed to save the lives of humans, animals and the environment. However, 

understanding the nature of oil spill incidences in the Niger Delta will provide the required 

information needed to handle the effect of oil spills in the area. Oil spill modelling is essential 

for planning and preparing for and responding to and mitigating actual spill events (Nelson & 

Grubesic, 2017). It could be used to understand the land cover changes in temporal and spatial 

domains in the Niger Delta. It is critical, therefore, to track the incidents using appropriate and 

timely data collection and analytical techniques even if the harmful effects are not currently 

visible. 

Geographical information systems (GIS) have proven to be an efficient tool for collecting, 

visualising, and analysing oil spills by incorporating spatial and temporal information (Giziakis 

et al., 2013). Spatial-temporal hotspot pattern analysis of environmental pollution incidents 

provides an indispensable source of information for further developing incident prevention 

measures (Ding et al., 2015). Hotspots, which are concentrations of occurrences within a 

limited geographical area that appear over time (Levine, 2007), can reveal statistically 
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significant clustering in the spatial pattern (Harris et al., 2017; Stopka et al., 2014) of oil spill 

incidences in the Niger Delta.  

Hence, to fill the research gap identified in 1.3, this chapter focuses on mapping and examining 

the spatiotemporal evolution and changes detection of oil spill hotspots, oil facilities hotspots 

and the spatial distributions of oil facilities in the Niger Delta using spatial statistics. The oil 

spill hotspots trend over a period of 13 years will be used to identify locations that are 

constantly exposed to oil spills. To the best of my knowledge, this is the first study conducted 

in the study area that looks at annual oil spill hot spots and detects changes that have occurred 

between any two hotspot dates. Prioritising relevant locations of constant exposure to oil spills 

will help better understand the existing problems in the Niger Delta. Therefore, the 

identification of hotspot locations could help the government, oil companies, and decision-

makers formulate policies that could combat future spills. Furthermore, identifying the most 

vulnerable oil pipelines, understanding the impact of the oil spills on land cover, and 

identifying possible factors encouraging oil pipeline sabotage could help pipeline surveillance 

and land cover restoration, especially for vegetation and water.  

Spatial statistics can be used to establish the statistical relationship among data based on their 

locations and identify spatial dependence through correlation and self-correlation within data 

related to their geographical positions over a period of time (Wang et al., 2016). With this in 

mind, the main aim of this chapter is to evaluate the spatiotemporal distributions of oils spills 

and production facilities in the Niger Delta. The main objectives are to conduct (1) temporal 

analyses of oil spill data; (2) hotspot analyses of oil spills and oil facilities; and (3) spatial 

analyses between oil spill hotspots and oil facilities. 

4.2 Methodology 

Figure 4.1 is the graphical summary of the methodological approach used for this chapter.  
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Figure 4.1: Methodology flow chart. 
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4.2.1  Data 

4.2.1.1 Oil spill and oil well data 

The oil spill data were obtained from the official website of the Nigerian Oil Spill Monitor 

(https://oilspillmonitor.ng/) as described in Section 3.3.1. These data were compiled by 

the National Oil Spill Detection and Response Agency (NOSDRA), established by the National 

Assembly of the Federal Republic of Nigeria Act of 2006. This oil spill incident record is dated 

from 2007 to 2019 and presented alongside their geographic coordinates. Figure 4.2 shows the 

distribution of oil spill occurrences used for the hotspot analysis, and a total of 7622 oil spill 

incidences were used. Additionally, the oil well and pipeline map from 2007 was generated 

based on the digitisation of the Global Exploration & Production Service map, as also described 

in Section 3.3.1. The map of the spatial locations of oil spill incidence, oil wells and the pipeline 

are shown in Figures 3.2 a and b in section 3.3.1. 

4.2.2 Methods 

4.2.2.1 Data preparation 

Since the focus of oil spill incident data hotspot analysis was to assess incident intensity more 

than in analysing the spatial clustering of any particular value associated with the incidents, the 

data were aggregated prior to analysis. The oil spill points were aggregated to collect and 

summarise oil spills incidence point features within a set of boundaries.  Aggregating point 

data into territorial units fosters a more comprehensible presentation of results (Burian et al., 

2022). Before the oil spill data aggregation, a fishnet was created using Create Fishnet tool in 

ArcGIS to construct a polygon network of regular grids over the point features.  To choose the 

fishnet size, the Optimised Hot spot Analysis was performed on combined oil spills data from 

2007 to 2019 in ArcGIS, which returned a hotspot with a grid size of approximately 3000 m. 

The aggregation strategy using fishnet serving as administrative units that remain fixed across 

multiple analyses enhanced making comparisons between annual hotspots and detect changes 

in annual hotspots at the same scale. The number of spill events falling within each grid 

polygon was then computed using spatial Join Tool in ArcGIS. Any grid polygons outside the 

study area and those containing zeros were disregarded from the analysis. 

4.2.2.2 Spatiotemporal pattern analysis 

There are three types of outcomes of hotspot analysis each for Moran's I and Gestis-Ord 

General G. Dispersed, random, and clustered (Moran's I), and low-clusters, random and high 

clusters (Gestis-Ord General G). The global Moran's I is based on the covariance relationship 
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of the statistical correlation coefficient (Cheng et al., 2018), which measures spatial 

autocorrelation based on feature locations and attribute values. At the same time, Getis-Ord 

General G identifies statistically significant hot and cold spots by measuring the degree of 

clustering for either high or low values. Large positive values indicate that higher than average 

values are clustered, whereas large negative values indicate lower than average values 

(Mueller-Warrant et al., 2008). The Getis-Ord statistic gives more intuitive results and a better 

visual representation than Moran's I index. It has the advantage of distinguishing high-value 

clusters or low-value clusters (Ding et al., 2015). The z-score and p-value measure the 

statistical significance, which informs whether to reject the null hypothesis, stating there is no 

spatial cluster of feature values.  

The spatial join tool in ArcGIS was used to aggregate the oil spill incidence points for each 

year within each polygon of the fishnet. The aggregated annual oil spill incidence data were 

used as an input for the pattern analysis of oil spills for 2007-2018 and the combined total oil 

spills from 2007 to 2019. 

Moran's I statistics for spatial autocorrelation are given as follows: 

𝐼 =
𝑛

𝑆𝑜

∑ ∑ 𝑧𝑖𝑧𝑗
𝑛
𝑗=1

𝑛
𝑖=1

∑ 𝑧𝑖
2𝑛

𝑖=1 𝑦
       Eq 4.1 

where𝑧𝑖 is the deviation of an attribute for 𝑖 from its mean (𝑥𝑖−X̄), 𝜔𝑖,𝑗 is the spatial weight 

between feature𝑖,𝑗, 𝑛 is equal to the total number of features, and 𝑆𝑜 is the aggregate of all the 

spatial weights: 

𝑆𝑜 = ∑ ∑ 𝜔𝑖,𝑗
𝑛
𝑗=1

𝑛
𝑖=1         Eq 4.2 

The 𝑧𝐼-score for the statistic is computed as: 

𝑧𝐼 = 
𝐼−𝐸[𝐼]

√𝑉[𝐼]
         Eq 4.3 

where: 

𝐸[𝐼] =  −1/(𝑛 − 1)         Eq 4.4 

𝑉[𝐼] =  𝐸[𝐼2] - 𝐸[𝐼]2        Eq 4.5 

While 

The general G statistic of the overall spatial association is given as: 

𝑮 =
∑ ∑ 𝝎𝒊,𝒋 𝒙𝒊𝒙𝒋

𝒏
𝒋=𝟏

𝒏
𝒊=𝟏

∑ ∑ 𝒙𝒊𝒙𝒋
𝒏
𝒋=𝟏

𝒏
𝒊=𝟏

, Ɐ𝒋 ≠ 𝒊       Eq 4.6 
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Where 𝑥𝑖and 𝑥𝑗 are attribute values for features𝑖 and 𝑗𝜔𝑖,𝑗 is the spatial weight between 

features𝑖 and𝑗.  𝑛 is the number of features in the dataset, and Ɐ𝑗 ≠ 𝑖 indicates that 

features𝑖 and𝑗 cannot be the same feature. 

The zG for the statistic is computed as: 

 𝒛𝑮 =
𝑮−𝑬[𝑮]

√𝑽[𝑮]
         Eq. 4.7 

where: 

𝑬[𝑮] =
∑ ∑ 𝝎𝒊,𝒋

𝒏
𝒋=𝟏

𝒏
𝒊=𝟏

𝒏(𝒏−𝟏)
, Ɐ𝒋 ≠ 𝒊       Eq. 4.8 

𝑽[𝑮] =  𝑬[𝑮𝟐] - 𝑬[𝑮]𝟐       Eq. 4.9  
   

4.2.2.3 Hotspot mapping  

The Getis-Ord Gi* local statistic was computed for the annual oil spill data for 2007-2019. The 

annual oil spills and combined total oil spill incidences between 2007 and 2019 were used to 

determine the annual hotspots (AHS) and total hotspots (TH) from 2007 to 2019. The combined 

annual hotspot CAH was obtained by merging all the AHS from 2007 -2019. AHS are hotspots 

for each year, while the TH is the hotspot when all the annual oil spill data from 2007 – 2019 

were combined as one set of data. The hotspot analysis was performed using the aggregated 

annual and combined total oil spill incidence data (described in 4.2.1.2). The Fixed Distance 

Band method, which is the default recommended for the conceptualisation of the Spatial 

Relationships for Hot Spot Analysis (Getis-Ord Gi*) tool in ArcGIS 10.4.1 software performs 

well for point data and was used as a threshold distance to ensure that each oil spill incidence 

point had a neighbour. The Getis-Ord Gi* statistic considers each different features within the 

context of the neighbouring feature to determine statistically significant hot spots (Park et al., 

2016). The resultant z-scores and p-values indicate where features with either high or low 

values cluster spatially. The Getis-Ord Gi* local statistic is given as: 

𝐺𝑖
∗ =

∑ 𝜔𝑖,𝑗𝑥𝑗
𝑛
𝑗=1 − 𝑋̅ ∑ 𝜔𝑖,𝑗

𝑛
𝑗=1

√
[𝑛∑ 𝜔2

𝑖,𝑗−(∑ 𝜔𝑖,𝑗
𝑛
𝑗=1 )2]𝑛

𝑗=1

𝑛−1

𝑆
       Eq.  4.10 

where𝑥𝑗is the attribute value for 𝑗, 𝜔𝑖,𝑗 is the spatial weight between feature 𝑖 and𝑗, 𝑛 is equal 

to the total number of features and: 

X̅ = 
∑ 𝑥𝑗
𝑛
𝑗=1

𝑛
          Eq. 4.11 

 

𝑆 =  √
∑ 𝑥𝑗

2𝑛
𝑗=1

𝑛
− (X̅)2         Eq. 4.12 

The 𝐺𝑖
∗statistic is a z-score, so no further calculations are needed. 
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4.2.2.4 Spatiotemporal annual hotspot change detection 

This analysis was conducted to determine how the hotspots evolve annually across the study 

area. The first step in mapping the spatiotemporal hotspot changes was to convert the vector 

hotspot maps into rasters containing integers with the same cell sizes as the input vector 

polygon. The next stage was reclassifying the converted raster into Boolean images with values 

of 1 and 0. Reclassifying data means replacing input cell values with new output cell values 

with input data from any supported raster format (ESRI, 2002). A value of 1 was given to the 

locations with hotspots, while 0 was allocated to "No data" locations where hotspots did not 

occur. The raster calculator tool in ArcGIS was used to compute the various changes in the 

annual hotspots using the reclassified hotspot raster maps. For consistent hotspot (CH) in any 

locations between  2 dates, multiplication of the reclassified raster maps with 1 and 0 values 

was performed. In contrast, subtraction was used for the disappeared hotspots (DH) and 

appeared hotspots (AH) using eq 4.13 and eq 4.14. Similarly, just like the CH, for hotspot 

frequency map (HFM) for all dates from 2007 -2019 was performed by adding all the 

reclassified annual hotspot raster maps using eq 4.15, which returned values based on the 

number of years the hotspot had occurred    

CH =hs1 x hs2         Eq. 4.13 

DH and AH = hs2 - hs1        Eq. 4.14 

which will return either -1(DH) or 1(AH) 

HFM= hs1 + ……..hsn        Eq. 4.15 

where hs1 = first date hotspot (previous year) 

hs2 = second date hotspot (later year) 

hsn = hotspot at a particular number of years. 

Using eq 4.13, a location with values of 1 in any of the output maps means that such a hotspot 

did not change between two consecutive years (i.e., no change). For equation 4.14, the DH and 

AH, a value of -1 are areas with a hotspot in hs1, which could not be found at those same 

locations in hs2, while a value of 1 is an area without hotspot hs1, which suddenly appeared in 

hs2. For eq 4.15, the number correspond with the frequency (number of years) a hotspot has 

occurred at a particular location. 
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4.2.2.5 Kernel density estimate of oil wells and pipelines 

For spatial analysis and visualisation of oil wells and oil pipelines, the kernel density estimate 

(KDE) was used. The objective of KDE is to produce a smooth density surface of point events 

over space by computing event intensity as density estimation (Lin et al., 2011). KDE is 

specifically suitable for detecting hotspots (Kalinic, 2018), and it is considered the most 

accurate of these common hotspot mapping techniques (Chainey, 2013). It is particularly useful 

in detecting hotspots due to the series of estimations (Kalinic, 2018). The KDE was chosen to 

map the hotspots of oil facilities because it can also calculate a magnitude-per-unit area from 

polyline features, such as oil pipeline (network-based kernel) and the oil wells' location 

(points). 

4.3 Results 

4.3.1 Temporal oil spill pattern 

Table 4.1 shows the monthly and annual distribution of oil spill incidences from 2007 to 2019, 

revealing the months with the lowest and highest number of spill incidences in each year and 

the years with and without recording the highest number of oil spill incidences in any month. 

Monthly spills (MS) are the number of spills in a month within each year (in columns), whereas 

the Annual Monthly Total (AMT) is the total spills per month for all the years (i.e., all the spills 

in January for all the years; the rows). The Annual-Monthly Highest Number of Spills (AHNS) 

and Annual-Monthly Lowest Number of Spills (ALNS) are the highest or lowest number of 

spill incidences per annum that fall in a particular year (number of the highest or lowest number 

of spills that occurred in January). The rows in orange show the months with at least one highest 

oil spill incidence in a particular year, while the green rows are months that never experienced 

the highest oil spill in any given year. The text in red and green are the highest and the lowest 

oil spill incidences in a month in a particular year. For example, in 2007, the highest and lowest 

oil spill incidences occurred in July (15 spills) and March-April (4 spills). From Table 4.1, the 

most oil spills occurred in January 2014, with 165 spills (which incidentally has the highest 

annual total oil spill incidence), while the fewest spills were recorded in April and May 2007, 

with 4 spills each (which incidentally has the lowest annual total oil spill incidence). 

Additionally, based on the monthly summary, the month of May has both the highest AMT 

(695), which accounts for 9.81% and AHNS (4), while April has the lowest AMT (504), which 

accounts for 7.11%.  
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Table 4.1: Monthly and annual oil spills within the study area. 

 Years  Total oil spills (TOS) 

Month 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 AMT AMT (%) AHNS ALNS 

Jan 5 3 21 32 42 75 62 165 61 56 35 31 73 588 8.30 2 3 

Feb 6 5 20 32 35 59 65 127 74 34 28 28 36 513 7.24 0 2 

March 4 5 24 33 61 58 106 124 73 43 40 30 40 601 8.48 0 1 

April 4 4 22 36 31 50 90 132 59 25 19 32 58 504 7.11 0 1 

May 9 7 25 58 44 88 147 136 81 41 22 37 43 695 9.81 4 0 

June 12 6 20 29 71 81 90 98 65 45 48 33 51 598 8.44 0 0 

July 15 9 28 35 62 74 106 99 53 48 52 32 42 613 8.65 2 0 

Aug 9 9 27 51 75 63 101 114 59 51 32 22 55 613 8.65 0 0 

Sept 7 9 23 47 63 57 101 93 69 48 19 25 47 561 7.92 0 0 

Oct 13 11 23 45 84 49 126 75 48 55 18 21 39 568 8.02 1 5 

Nov 6 14 13 42 84 76 140 91 87 41 29 37 30 660 9.32 4 1 

Dec 9 13 32 52 57 71 143 81 46 27 21 19 23 571 8.06 1 1 

Total (AS) 99 95 278 492 709 801 1277 1335 775 514 363 347 537 7622 100 14 14 

MS= Monthly spills, AMT=Annual Monthly Total, AHNS=Annual Highest number of spills, ALNS= Annual Lowest number of a spill. 

Green rows=months without recording the highest number of oil spills in any year, orange rows=months with at least one highest oil spill,  

red cell= the highest annual oil spills in 2014. The red and blue text represents the highest and lowest oil spill incidences for a particular 

year. 

. 
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Figure 4.2 presents a graphical representation of the monthly and annual oil spills from 2007 

to 2019. It can be observed that the oil spill incidence pattern changes per month for each year, 

with 2014 having the highest annual and monthly (January) oil spill incidences, and the number 

of annual spills increased linearly up to 2014 before decreasing exponentially from 2015 to 

2018m when it went up again slightly in 2019 (January). This indicates that the pattern of oil 

spills per year could be difficult to predict.  Figure 4.3a presents the annual number of oil spills 

by cause. It shows that 'sabotage' (ST) was responsible for the most oil spill incidence, while 

corrosion of an oil pipeline (CS) accounted for the fewest oil spill incidences in the study area 

for all years. For instance, in 2014, ST totalled 1147, which is far higher than the remaining 

three causes combined, and the trend is the same for all years. For equipment failures (EF) and 

other causes, spill incidences vary from one year to another. For example, while EF was higher 

than others in 2012 (69 against 60), it was lower than others in 2013 (71 against 169). The 

Total annual spill shows that (17.5%) and (16.8%) of spills occurred in 2014 and 2013, 

accounting for 34.3% of all the oil spills in the study area between 2007 and 2019. The pie 

chart in Figure 4.3b shows that ST accounts for 80% of all oil spills in the study area, while 

CS, EF and others accounted for 5%, 8% and 7%, respectively. 
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Figure 4.2 Monthly and annual oil spills from 2007 to 2019.
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Figure 4.3: Graph of the annual number of oil spills by (a) cause and (b) pie chart 

of the total oil spill by cause.  

Note: CS=Corrosion of an oil pipeline, EF=Equipment failures, ST=Sabotage. 
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4.3.2 Spatial distribution of oil spill incidences and oil facilities 

Figure 4.4 shows the spatial distribution of oil spill incidences during 2007-2019, along 

with the locations of oil pipelines. The map shows that most oil spills occur along oil 

pipelines, with only a few occurring in places away from pipelines, which could be 

associated with other oil facilities, such as oil wells and flow stations. (Figure 4.4a). The 

oil spills tend to be more clustered around the north/eastern part of the study area (Amoku-

Ahoada) as well as along the oil pipeline located in the south-eastern (close to Port 

Harcourt) and southern (around Ijaw South) parts of the area. In Figure 4.4 b, which 

shows the spatial distributions of oil wells, it can be observed that oil wells are fairly 

evenly distributed across the study area. However, fewer numbers are located in the 

northern part of the study area around Agbor and Asaba. Additionally, oil wells are not 

necessarily clustered along the oil pipeline alone, unlike oil spills.  
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Figure 4.4: Spatial distribution of oil spills from 2007 to 2019 and oil wells cont. 

Green=oil spill locations 

 

 

 

 

 

 

 

 

0 100 20050

Kilometers

(a) 



 

81 

 

 
Figure 4.4: Spatial distribution of (a) oil spills from 2007 to 2019 and (b) oil wells 

within the study area overlaid on the oil pipelines. 

 

Figure 4.5 shows the spatial distributions of oil spill incidences by causes. Among the 

four causes of oil spills, it can be observed that sabotage has more oil spill incidence 

clusters (Figures 4.5 d), while corrosion of the oil pipelines has the least clusters (Figures 

4.5a). Additionally, the oil spills caused by others and equipment failure have almost the 

same clusters (Figure 4.5b and c). 
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Figure 4.5: Distributions of oil spills by causes (a) Corrosion, (b) Equipment Failure, 

(c) others and (d) Sabotage. 

 

4.3.3 Spatiotemporal oil spill pattern 

Tables 4.2 and 4.3 show the global statistics that describe the spatial patterns of oil spill 

incidence from 2007 to 2019 using global indicators of Moran's I and Gestis-Ord General 

G. The results from the global statistics do not provide information about spatial 

clustering in a location, but rather looks at the spatial pattern across the whole study area. 

For Moran's I statistic (Table 4.2), six clusters were found in 2007, 2009, 2013,2014, 

2015, 2016 and for the overall period 2007–2019, while random patterns were found in 
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2008, 2010, 2011, 2012, 2017 and 2018; no years were characterised by a dispersed 

pattern. The year 2013 has the highest Moran's I z-score of 8.0430 and a p-value <0.001, 

while the year 2012 has the lowest z-score of -0.7707 with a p-value of 0.441(Table 4.2). 

The more intense the clustering of high values (i.e., a hotspot), the smaller the negative 

z-scores, and the more intense the clustering of low values (i.e., a cold spot), while a z-

score near zero indicates no apparent spatial clustering (Ibrahim et al., 2015; Jana & Sar, 

2016). For Gi*, the larger the positive z-score, the more intense the clustering of high 

values (hot spot), and the smaller the negative z-scores are, the more intense the clustering 

of low values (cold spot), while a z-score near zero indicates no apparent spatial clustering 

(Ibrahim et al., 2015; Jana & Sar, 2016). 

Table 4.2: Spatial autocorrelation (Moran’s I) of oil spill incidents from 2007 to 

2018. 

Years Moran’s I EI Variance z-score p-value Pattern 

2007 0.1245 -0.0135 0.0015 3.5435 0.0004 clustered 

2008 -0.0011 -0.0112 0.0005 0.4369 0.6622 random 

2009 0.0640 -0.0038 0.0002 4.5537 0.0000 clustered 

2010 0.0041 -0.0021 0.0001 0.8469 0.3970 random 

2011 -0.0010 -0.0015 0.0000 0.1475 0.8827 random 

2012 -0.0042 -0.0013 0.0000 -0.7707 0.4409 random 

2013 0.1019 -0.0014 0.0000 23.4444 0.0000 clustered 

2014 0.0108 -0.0008 0.0000 4.0432 0.0001 clustered 

2015 0.0319 -0.0014 0.0000 7.7092 0.0000 clustered 

2016 0.0382 -0.0021 0.0001 4.4929 0.0000 clustered 

2017 0.0038 -0.0028 0.0001 0.9575 0.3429 random 

2018 -0.0074 -0.0030 0.0001 -0.4299 0.6672 random 

2019 -0.0017 -0.0017 0.0000 -0.0930 0.9259 random 

2007-2019 0.1036 0.0003 0.0000 78.8286 0.0000 clustered 
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Table 4.3: Gestis-Ord General G of oil spill incidents from 2007 to 2019. 

Year O G EG Variance Z Score p Value Pattern 

2007 0.1925 0.1632 0.0001 2.6442 0.0082 high-clustered 

2008 0.2430 0.2517 0.0000 -1.5087 0.1314 random 

2009 0.0977 0.0953 0.0000 1.4835 0.1379 random 

2010 0.1317 0.1301 0.0000 1.1740 0.2404 random 

2011 0.2386 0.2407 0.0000 -1.4456 0.1483 random 

2012 0.1802 0.1797 0.0000 0.3475 0.7282 random 

2013 0.1736 0.11188 0.0000 8.1384 0.0000 high-clustered 

2014 0.1151 0.1106 0.0000 3.0111 0.0026 high-clustered 

2015 0.1604 0.1478 0.0000 4.8358 0.0000 high-clustered 

2016 0.0862 0.0809 0.0000 3.4620 0.0005 high-clustered 

2017 0.2096 0.2070 0.0000 1.3234 0.1857 random 

2018 0.1155 0.1129 0.0000 2.3951 0.0166 high-clustered 

2019 0.9966 0.9965 0.0000 0.1370 0.8910 random 

2007 - 2019 0.1222 0.1152 0.0000 13.9795 0.0000 high-clustered 

Note: O G= Observed General; E G= Expected General G 

For the Gestis-Ord General statistics in Table 4.3, seven cases of high-clustering were 

found in 2007, 2013, 2014, 2015, 2016 and 2018, as well as for the full period of 2007–

2019. Random patterns were found in 2008, 2009, 2010, 2011, 2012 and 2017, while low 

degrees of clustering were not found in any year. 2015 has the most intense high-

clustering with a z-score of 4.8367 and a p-value <0.001, unlike Moran's I, where the 

strongest clustering was observed in 2013. Generally, Moran's I produce higher z-scores 

and lower p-values for the various years. For instance, the highest Moran's I z-score is 

23.44 (for the year 2013), while the corresponding Gestis-Ord General G z-score is 8.14. 

4.3.4 Spatiotemporal hotspot mapping 

Figure 4.6 shows the spatiotemporal distribution of oil spill hotspots and the oil pipelines 

in the Niger Delta study area from 2007 to 2019. From Figure 4.6, it can be observed that 

the oil spill hotspots are located across the study area, with some consistently found at a 

location for more than a year. Some are found in the south, the north-eastern part and the 

centre of the study area for only a particular year. For example, the hotspot was only 

located in the north/western part in 2007 (Figure 4.6a) and the north/eastern part only in 

2008 (Figure 4.6b). However, hotspots were found in the north-eastern, central and 

southern parts in 2009, 2010, 2011, and 2012 (Figure 4.6c, d, e and f), in the north-eastern 

and southern parts in 2013 and 2014 (Figure 4.6g and h), in the southern part only in 2015 

(Figure 4.6i), around the central and southern parts in 2016 (Figure 4.6j) and in the central 
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and north-eastern parts of the study area in 2017, 2018 and 2019 (Figure 4.6k, l and m). 

Figure 4.7 shows the map of hotspot frequencies, which shows the number of years that 

a location has had a hotspot, from a minimum of 1 (green) to a maximum of seven (red) 

years. The map shows that the southern part of the map labelled A has the most recurrent 

oil spills in the Niger Delta. Figures 4.8a and b show the hotspots from 2007 to 2019. 

However, Figure 4.8a depicts the total hotspots (TH) obtained from Getis-Ord Gi* 

analysis of the combined oil spill data for 2007-2019. Figure 4.8b, on the other hand, 

shows the combined annual hotspots (CAH) map based on combining all of the individual 

hotspot maps shown in Figure 4.6. The maps look similar, revealing hotspots located 

around the north/eastern and southern parts of the map. However, the CAH shows more 

hotspots distributed across the study area, especially the north-western part. As seen in 

Figure 4.6, in only 2007, hotspots occurred in the north-western part of the study area. 
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Figure 4.6: Oil spill hotspots for the years: (a)2007, (b)2008, (c)2009, (d)2010, 

(e)2011, (f)2012, (g)2013, (h)2014 (i) 2015, (j)2016, (k)2017, (l)2018 and (j) 2019. 
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Figure 4.7: Map showing the frequencies of oil spill hotspot locations. Insert A 

highlights the most frequent hotspot location. 

 

A 

 

Legend

^ Major Towns

Hotspot Frequencies

1 Year

2 Years

3 years

4 Years

5 years

6 years

7 Years

 

 

 
40 0 4020

Km

 
2 0 2 41

Km

A

a 

A 

 



 

88 

 

 

 

 

 

Figure 4.8: Hotspots based on (a) the combined total oil spill data for all the years 

(total hotspot; TH) and (b) combined annual hotspot (CAH) from 2007 to 2019. 
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4.3.5 Hotspots by causes 

Figure 4.9 shows the oil spill hotspots based on causal factors as corrosion of the oil 

pipeline, equipment failure, others, and sabotage (Figure 4.9a, b, c and d). For oil pipeline 

corrosion, the hotspots are more clustered around high-density oil pipelines in the north-

eastern near Omuko (Figure 4.9a). Hotspots due to equipment failures are relatively 

dispersed around Omuko and Ijaw south, with a few found around the central part of the 

study area (Figure 4.9b). For other causes, the hotspots are distinctively found around 

Omuko and Ijaw southern parts of the study area (Figure 4.9c.) For the sabotage, the 

pattern of hotspots is more intense and has a similar pattern to equipment failure, with 

hotspots located around Omuko and Ijaw South and a few found around the central part 

of the study area (Figure 4.9d). 

 

 

 

 

Figure 4.9: Hotspots by cause: (a) Corrosion, (b) equipment failure, (c) others, (d) 

sabotage. 
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4.3.6 Annual hotspot change detection 

Figure 4.10 shows the spatiotemporal changes in hotspots between any two given dates. 

The green colour relates to a consistent hotspot (CH) found in two consecutive years; blue 

represents a disappeared hotspot (DH) that was found in the earlier year but then 

disappeared in the following year; red indicates an appeared hotspot (AH) that was not 

present in an earlier year but then appeared in the following year. Figure 4.10 clearly 

shows that the locations of hotspots varied quite significantly between consecutive years. 

The changes are mostly around Omuko, Ahoada, and Ijaw south, with few hotspot 

changes located around Yenagoa and just a one-time change located around Warri. The 

changes between 2007 and 2008 are unique compared to others because it has no CH, 

while 2008-2009 has just one recurrent hotspot located in the north-eastern part of the 

study area (around Omuko), as shown in Figures 4.10a and b. Similarly, the changes for 

2017-2018 and 2018-2019 were all located in the north-eastern part of the study area 

(Figure 4.10k and l), while a new hotspot appeared around Port Harcourt in 2019. The 

reason for no change in the hotspots around Ijaw South in 2017-2018 and 2018-2019 is 

that there were no hotspots in those locations in previous years (Figure 4.6k and i). 
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Figure 4.10: Spatiotemporal annual changes in hotspot locations cont.. 
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Figure 4.10: Spatiotemporal annual changes in hotspot locations (a) 2007-2008, 

(b)2008-2009, (c)2009-2010, (d) 2010-2001, (e)2011-2012, (f)2012-2013, (g)2013-

2014, (h)2014-2015 (i) 2015-2016, (j)2016-2017, (k)2017-2018 and (l)2018-2019. 
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4.3.7 The spatial relationship between oil facilities and oil spill hotspots 

Figure 4.11 shows maps of oil well density and oil pipeline density in relation to the oil 

spill hotspots (CAH). The density maps show different levels of oil well and oil pipeline 

densities from very low density (VLD), low density (LD), medium density (MD) and high 

density (HD). Regarding the oil wells, the high-density areas are located around Sapele 

and Amoku, with the VLD found at the extreme northern part of the study area around 

Agbor and Asaba (Figure 4.11a). At the same time, the pipeline has more VLD spread 

across the study area, especially around Amoku, Ahoada, and Sapele, with an LD located 

around Agbor and Asaba and the central part of the study area and Ijaw South (Figure 

4.11b). Figures 4.11c and d show an overlay of the CAH on the oil wells and pipeline 

density maps. The oil well density map shows that CAH is mostly located within the high-

density area of the oil wells. In contrast, more than half of the CAH is located within the 

high-density area of the pipeline, with some also located within the LD area on the 

southern part of the study area around Ijaw South. The pipeline around Ijaw south needs 

closer monitoring because it has become a highly vulnerable pipeline for oil spills. 

Figures 4.12 and 4.13 show the oil spill hotspots by causes overlaid on top of the oil wells 

and pipeline density maps. This helps illustrate the link between the density of oil wells 

and pipelines to the causes of oil spills. Figure 4.12 shows that almost all the oil spills 

hotspots are within the MD and HD areas of the oil well. Figure 4.13 shows that the 

hotspots for corrosion (Figure 4.13a) and EF (Figure 4.13b) are almost located within the 

HD and MD areas of the oil pipeline density map, especially around Omoku. Oil spills 

hotspots associated with other causes (Figure 4.12c) and sabotage (Figure 4.13) occur 

within areas of HD and MD around Omoku and Ahoada, and some hotspots occur within 

MD in the southern part of the study area around Ijaw South. The pipeline around Ijaw 

South is particularly under threat from sabotage due to its location in the mangrove, which 

helps conceal acts of vandalism and theft. The hotspot caused by sabotage has a higher 

concentration within that pipeline location than other types of oil spill cause hotspots. 
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Figure 4.11:Density of (a) oil wells, (b) oil pipelines, (c) oil well density and (d) oil 

pipeline overlaid with combined annual hotspots (CAHs) from 2017 to 2019. 
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Figure 4.12:Oil well density and oil spill hotspots by cause: (a) corrosion, (b) EF, (c) 

others and (d) sabotage. 
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Figure 4.13: Oil pipeline density and oil spill hotspots by cause:(a) corrosion, (b)EF, 

(c) others and (d) sabotage. 
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annual-monthly oil spills show no particular trend, and the same number of spills can be 

observed in a different month in the same year, with some having the same number of 

consecutive monthly spills – for example, March-April 2007(4 spills each) and January-

February 2010 (32 spills each). The implication is that there appears to be no particular 

month within a year when oil spills are likely to occur or a more favourable month for the 

activities of vandals since 81% of the recorded oil spill incidences is caused by sabotage. 

Unlike the monthly, annual-monthly total, the months of January, May, July, October, 

November, and December (2007-2019) have the highest recorded number of oil spill 

incidences, with May being exceptionally higher, having recorded the highest number of 

spill incidences per month for four different years (2010, 2012, 2013 and 2018) out of the 

twelve years. The month of May also has the highest annual-monthly total of 695 spills, 

representing 9.81% of the total monthly spills. 

On the other hand, February-April, June and August-September have the lowest number 

of monthly spills, with April recording the lowest number of oil spill incidences of 504. 

Although it is difficult to determine why May seems more favourable for oil spills in the 

Niger Delta, it could serve as useful information to develop a preventive measure to 

combat sabotage activities. Oil pipeline sabotage is the major cause of oil spills (Okoye 

& Okunrobo, 2014), usually caused by militants and other thieves that puncture oil 

pipelines (known as bunkering) and other facilities to steal crude oil. In terms of the 

annual total oil spill, while 2007 recorded the lowest number of 99 spills, 2014 recorded 

the highest number of 1335 spills, which is more than 10 times the lowest. The annual 

trend shows that the incidence of oil spills in the Niger Delta is difficult to predict due to 

high inter-annual variability. For example, while 1335 oil spills were recorded in 2014, 

775 were recorded a year after in 2015, an approximately 42% reduction. 

Social-economic and political drivers in the Niger Delta region have caused oil spills in 

the Niger Delter affecting the environmental. While the MS trend fluctuates without 

rising or falling, the continual rise in AS from 2007 until 2014, when it peaked and started 

falling continually from 2014 to 2018, and rose again in 2019 (Figure 4.2a) indicates that 

if appropriate policies are put in place, the oil spill could be reduced to the barest 

minimum. The significant drop in spill incidences in 2015 was partly due to uncertainties 

associated with the 2015 general elections in Nigeria (Obida et al., 2018). The high rate 

of sabotage in 2014 was because the militants resorted to threats and the destruction of 

the oil pipeline, hoping “force” Nigerians to vote for President Goodluck Jonathan held 
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from Niger Delta and was seeking re-election in 2015. The militants feared the 

presidential amnesty program, which gives a monthly stipend to the repentant militants, 

could be stopped if the presidential candidate from the opposition party who is from 

another region wins the election. But at the beginning of 2015, before the election held in 

March 2015, the militants were persuaded to stop the destruction of the oil pipeline, 

including President Jonathan, the current present then, who eventually lost the election. 

After the new president took over and continued with the amnesty program, there was a 

significant drop in sabotaging of oil pipelines in 2015 which was associated with the 

federal government of Nigeria negotiating with the militants and stakeholders in the Niger 

Delta and the increased effort of the security personnel in limiting the activities of oil 

thieves. The continued dialogue with the community and a sense of serious commitment 

by the federal government of Nigeria and the multinational oil company in addressing 

some communities' concerns (cleaning the polluted land, more infrastructures etc.) and 

actively engaging the youth in productive ventures could continue to lead to the decree in 

the AS in the Niger Delta. 

The high rate of oil spills caused by Sabotage (Figure 4.3b) should concern the Federal 

government of Nigeria that its citizens could wilfully destroy national assets such as oil 

facilities. Although oil pipeline sabotage occurs in other regions, including South 

America, Asia, the Middle East, and other countries, it is more common in Nigeria due 

to the cultural, socioeconomic, geopolitical and environmental perceptions of the people 

and government (Umar et al., 2021). The lack of patriotism by those who destroy oil 

facilities is caused by many administrations' neglects of the region. The Niger Delta youth 

feel that the money from the oil sales from their region has been used to develop other 

regions, leaving the youth sad. Hence, some of them sabotage oil pipelines to steal oil for 

sale either locally or at international markets. Despite the efforts to promote development 

in the Niger Delta through the establishment of the Niger Delta Development 

Commission (NDDC), the Amnesty program for the militants and improvements of 

revenue derivation for the oil-producing states in the region from 1 to 13% over the years 

etc, however, no significant development is achieved partly due to inconsistency in 

programs implementations and corruption (Umar & Hajj Othman, 2017). Sabotage as the 

main cause of the oil spill in the Niger Delta was reported by Agbonifo (2016), Mba et 

al. (2019), Obida et al. (2018) and Umar & Othman (2017) 
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The remaining causes are others (whose causes are typically unknown) corrosion of the 

oil pipeline and equipment failures are the consequencie of any oil producing society 

which could be minimised using global best paraction. For instance equipment failure are 

mostly attributed to the failure of oil production companies to meet acceptable standards 

of maintenance and their slow responses to tackle oil spills (Obida et al., 2018) 

4.4.2 Spatial distribution of oil spill incidences and oil facilities in the Niger Delta 

The location of the oil pipeline greatly influences the spatial distribution of oil spill 

incidences. Oil spill incidences and the pipeline are spread unequally, whereas the oil 

wells are more evenly distributed across the study area (Figures 4.4a and b). The oil 

pipeline network in the Niger Delta cuts across the study area with oil spills clustered 

along the oil pipeline routes, as expected (Obida et al., 2018), since sabotage of the 

pipeline is the main cause of spills. What makes the spill in the Niger Delta different from 

other parts of the world is the people who intentionally break the pipeline to steal oil 

without minding the damage such action will have on the public health, animal and the 

environment. For instance, in the US and Canada, most oil spills happen at petroleum 

production facilities, wells, production collection facilities, and battery sites (Fingas, 

2017). Similarly, the oil well has little spatial relation with the oil pipeline because not all 

oil wells are linked to oil pipelines, although some are close to the pipeline (Figure 4.4b). 

From the maps showing the spatial distribution of spills by causes in Figure 4.5, sabotage 

has the highest distribution of oil spill clusters compared to the other three causes 

combined. The spatial distribution of oil spills is almost the same for all causes, except 

that the oil spills caused by corrosion and equipment failure are less clustered in the 

southern part of the study area (Figures 4.5a and b). The reason is that the pipeline 

network in the southern part around Ijaw South is less extensive, and so less equipment 

is likely to be present and possible to sabotage. The pipeline may not be as old as the 

pipeline from other parts of the study and may not be exposed to factors that cause 

pipeline corrosion. The spatial distribution of oil spills by causes is key in addressing the 

cause of oil spill incidences in the Niger Delta. Understanding the causes and knowing 

the locations might help formulate policies/interventions strategies that could mitigate the 

causes of some of the oil spills since each cause may require a different type of approach 

and be carried out by different organisations. For instance, the oil spills caused by 

sabotage may require more surveillance by security personnel, while indications of ageing 

or damaged pipelines will help the company repair them. Additionally, information on 
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the spill caused by equipment failure could help the regulating bodies and oil companies 

locate other facilities that need inspection or replacement. 

4.4.3 Spatiotemporal evolution of oil spill hotspots 

The evolution of oil spill hotspot clusters and frequencies provides information on the 

impacted locations with statistically significant concentrations of oil spills, which could 

form the basis for further research into the effect of oil spills on land cover in the Niger 

Delta (especially water and vegetation). It could also provide indispensable information 

for further developing incident prevention measures (Ding et al., 2015). Additionally, to 

effectively manage the present oil spill-related environmental problems and quantify the 

damage, knowledge of past occurrences could help provide a solution to impacted areas 

and predict future damage. Based on the maps showing the evolution of the oil spill 

hotspot in the Niger Delta, some locations have sporadic hotspots appearing only once a 

year – e.g., in 2007 and 2019 around Warri and Port Harcourt, respectively (Figure 4.6a 

and j). Generally, while some years have hotspots located in both the northeast and the 

southern part of the study area around Omoku and Ijaw south, others have hotspots 

located in either the northeast or the south. Some years also have hotspots located in the 

central part of the study area around Yenegoa and Ahoda and the northeast and south. 

The most frequently affected area is the southern part of the study area around Ijaw south, 

which has had various levels of hotspot clusters for eight consecutive years from 2009-

2017. The areas around Omoku and Ahoda are the next most affected by the occurrence 

of oil spills. The implication is that this location needs to be given more priority to 

implementing programs and policies such as oil spill remediation. 

Locations around Ijaw south had the highest frequency of hotspots for seven years out of 

the 12 years considered. The isolated location of the pipeline in the mangrove makes it 

difficult for law enforcement agencies to monitor to prevent acts of sabotage. Also, its 

proximity to the coast for easy transportation of the crude into a waiting vessel on the sea 

could be another reason. Oil thieves usually break into wellheads and pipelines, install 

pumps, and use hoses that sometimes measure up to 2 km to load crude oil onto barges 

that travel through the delta, which is then transferred onto small tankers at the coast 

(Brock, 2013). The same location was identified by Obida et al. (2018) as being of the 

pipeline most affected by the oil spill. The less frequent (sporadic) oil spill hotspot 

locations of 1 year are mostly found around the Ughelly and Port Harcourt axes, although 

some are found around Ijaw South, Omoku and Ahoada. 
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Additionally, the data for total hotspot and combined annual hotspot in Figure 4.8 show 

that the areas most prone to oil spill incidences are predominantly found around the north-

eastern and southern parts of the study area around Omoku-Ahodia and Ijaw south, 

respectively. However, some least affected areas are located around the north-western 

and south-eastern parts of the study area around Ughelly and Port Harcourt, respectively. 

Similarly, in terms of the hotspots by causes, the same locations are the areas most 

impacted by oil spill incidences. However, the spill hotspot due to pipeline corrosion is 

found in the north-eastern part of the study area only around Omoku (Figure 4.9), with 

hotspots due to sabotage being the most intense. Spatial pattern analysis can help combat 

environmental pollution by identifying potential exposure pathways and possible sources 

of pollution concerning sensitive areas around oil production sites (Whanda et al., 2016). 

Spatial pattern analysis provides a holistic understanding of the root causes, which could 

help decision-makers reduce oil spill incidents and increase public awareness of accident 

prevention by sharing historical incident data and providing dashboards using 

multidimensional visual analytics (Park et al., 2016). 

4.4.4 Spatiotemporal oil spill hotspot changes detection 

Although the spatial analysis (hotspots) can provide insight into the temporal and spatial 

patterns of environmental incidents, it fails to provide information on the interaction 

between space and time to determine if the level of incident risk in an area is subject to 

temporal fluctuations (Park et al., 2016). Detecting temporal changes in the hotspots is 

crucial in mitigating the impact of oil spills on the environment. In the Niger Delta, the 

hotspots fluctuate from year to year between 2007 and 2019. For example, in 2008, there 

were no consistent hotspots, only disappeared hotspots and appeared hotspots around the 

Warri and Omoku axis. This means that the persistence of oil spills varies across the study 

area. Generally, the area around Ijaw South has the highest concentrations of appeared 

hotspots (from 2008-2016) and consistent hotspots (from 20011-2016), except for 2008, 

2018 and 2019. The level of DH around the south of Ijaw is minimal (the most prominent 

disappeared hotspots in 2016) compared to the locations around Omoku and Ahoada, 

which have high concentrations of appeared hotspots in 2012, 2013 and 2017 and only 

disappeared hotspots in 2015. The Ijaw south is the most vulnerable location to oil spills 

in the study area, followed by the locations around the Amoku-Ahoada axis, as seen in 

Figures 4.7 and 4.8. These results agree with  Obida et al. (2018), where the oil pipeline 

experiences a higher oil spill intensity in these two locations. The temporal fluctuations 
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in the oil spill hotspot pattern could result from some factors that favour or deter oil 

pipeline vandals at a particular location in a given year. They likely move to more 

favourable locations with fewer security threats, leading to the emergence of a new 

hotspot. For example, AH around Port Harcourt in 2019 (Figure 4.10) is a first-time 

hotspot location (Figure 4.7m). This indicates that other places that are not currently oil 

spill hotspot locations could be potential hotspots in the future, while some current oil 

spill hotspots could disappear in future. Therefore, those vested to protect the oil pipeline 

should ensure extensive security coverage of the most vulnerable oil pipelines.  

4.4.5 Factors influencing oil spill hotspot clusters 

Understanding how oil wells and oil pipeline density and proximity to towns/cities and 

coastlines influence oil spill incidents could provide the required information for oil spill 

prevention/reduction programs. The temporal and spatial patterns of oil spill hotspots 

fluctuate, likely controlled by other spatial factors within the study area. For the oil wells 

and the oil pipelines, the densest distribution (having both HD oil wells and pipeline) is 

around Omoku. It also happens to be one of the areas with a high level of oil spill hotspot 

clustering after Ijaw south. This indicates a spatial relationship between oil spills 

locations and the density of oil wells and oil pipelines, which is expected because the 

spills are typically from the oil pipelines (Figure 4.11a-b). But for, the north-western part 

around Sapele-Warri has limited hotspot clusters of oil spills despite having MD and HD 

of oil well because the corrosion and sabotage of oil pipelines are less intense in those 

areas, unlike the north-eastern part around Omoku-Ahoada.  

Similarly, almost all the oil hotspots due to corrosion are located within areas of MD and 

HD, with only a few found in LD around the Omoku-Ahoada axis (Figure 4.12a-d). The 

hotspots due to corrosion are highly spatially correlated with oil wells around the Omoku-

Ahoada axis. Additionally, the South Ijaw has an MD of oil wells but a high cluster of 

hotspots, especially for EF, others and sabotage. The relationship between corrosion and 

the oil well density is because the oil pipelines transport the oil from wells to various 

facilities, such as refineries. These pipelines are mostly located around Omoko. The 

clustering of several pipelines, coupled with the incident of the corroded pipeline 

probably due to ageing, led to a hotspot of corrosion found around Omuko. Only Ijaw 

south has an LD of oil pipeline but with a high cluster of hotspots, especially those caused 

by others and sabotage (Figure 4.13 a-d). The Ijaw south happens to have the highest and 

the most frequent oil spill hotspot cluster even though it only falls in MD and LD of oil 
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wells and pipelines. Ijaw south has only a single oil pipeline, but it is the most 

targeted/sabotaged pipeline. 

Based on the findings above, factors other than the density of the pipeline and oil well are 

also responsible for oil spills. For instance, unlike the locations Omoku-Ahoada with high 

HD pipelines and oil wells, Ijaw south has only LD and MD oil pipelines and wells. The 

proximity to towns and the pipeline's location could also be a factor that encourages or 

discourages the activities of oil bunkers. Oil theft and sabotage in the Niger Delta, either 

used in local refineries or sold on the international market, involves the local communities 

and some security agents, such as the high-ranking military officers who oversee the 

deployment of units to protect illegal refineries who pass key information to pipeline 

vandals who they work hand-in-hand with the informants from oil industries 

(Transparency International Defence and Security, 2019). The cluster around the Omoku-

Ahoada axis could be due to the pipeline's proximity to town and communities involved 

in the oil theft since some are involved. Their proximity could also provide easy access 

to escape route with stolen oil to either local refinery (if crude) or sell it even within the 

community (if already refined). For the Ijaw south pipeline, its proximity to the coast and 

its isolated location in the swampy area, making it difficult to access, has been the most 

frequent spill site. The Niger Delta's swamps and shallow waters – where oil pipelines 

crisscross the region in a grid-like pattern–are most frequently targeted in these tapping 

operations (Shadow Governance Intel, 2017). Stolen Nigerian oil worth billions of dollars 

is sold every year on international markets via a complex criminal web that includes 

foreign oil traders, shippers, bankers, refiners, high-level politicians and military officials 

(Brock, 2013).  

4.5 Conclusion 

The spatiotemporal hotspot analysis of oil spills and oil facilities in the Niger Delta was 

conducted to provide spatial information that will be used with land cover information to 

assess the impact of oil extraction activities on the land cover changes. Similarly, the 

information can be used for pipeline monitoring and understanding the impact of oil 

extraction activities on land cover change. The major findings are as follows: The 

monthly and annual temporal trends of oil spill incidence in the Niger Delta vary. While 

the monthly oil spill incidence pattern is random, the annual oil spill incidence pattern 

increased until it peaked in 2014, with the highest number of spills and started a 
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downwards movement in 2015. It was also discovered that over 80% of oil spill 

incidences in the Niger Delta are caused by sabotage by third parties who damage the oil 

facilities to steal oil. 

The distribution of oil spills is located along oil facilities, especially oil pipelines. On the 

other hand, the annual hotspot evolution, total hotspot and combined annual hotspots are 

mostly clustered around Omuko-Ahoada in the north-eastern part of the study area with 

a high and medium density of oil pipelines and wells, respectively, and around Ijaw-South 

in the southern part of the study area with a low and medium density of oil pipelines and 

oil wells, respectively. The hotspot change detection shows that hotspots are not 

consistent in one location but fluctuate from year to year between 2007 and 2019 with 

some occurring only once. However, the major locations where various changes were 

more prominent were around Omuko-Ahoada in the north-eastern and southern Ijaw part 

of the study area, with the south Ijaw being the most consistent hotspot location. 

The most vulnerable oil pipeline is found in the southern part of the study area around 

southern Ijaw. The major factor responsible for the high rate of spills on this pipeline is 

its isolated location, which is far away from the built-up area and located in the mangrove 

with proximity to the seacoast, making it a favourable target for pipeline vandals. 

Lastly, this study has provided information that other environmentalists and professionals 

can use to prioritise further research into the area with the most intense and frequent 

hotspots. The biodiversity of such locations needs to be studied to determine how these 

oil spills have affected plants and animals at these locations. The oil spill hotspot analysis 

could be integrated with the National Oil Spill Detection & Response Agency (NOSDRA) 

website, where the hotspot analysis could be updated weekly or monthly to help monitor 

oil spills. This could be achieved by building an artificial intelligence technology 

application to perform web-based spatiotemporal hotspot visualisation. Overall, the 

results of this study show that the spatio-temporal distribution of oil spills in the Niger 

Delta is consistent with many locations being persistently exposed to oil spills for several 

years. Thus, Chapter five will investigate the leaf-scale responses of some plant species 

in the Niger Delta to being exposed to hydrocarbons in the soil. Additionally, the oil spill 

data presented here will be used to study the impact of oil spills on vegetation at the leaf 

and plot scale based on hyperspectral and satellite imagery (chapters 5 and 6) and to 
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investigate landscape changes in land cover across the study area due to oil spills and 

extraction activities (chapter 7).  

The next chapter will discuss the impact of soil hydrocarbon properties on some  plant 

types in the Niger Delta exposed to oil spills 
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Chapter 5 Determining the effect of soil hydrocarbon 

properties on vegetation at leaf-scale 

5.1 Introduction 

The presence of hydrocarbons in the soil caused by oil spills can affect vegetation in 

several ways. The effects can be related to the growth of plants (stress), crop yield, and 

reduction in chlorophyll content (Anejionu et al., 2015; Osuagwu et al., 2013). Others are 

changes in the colour of leaves, stems and trunks (Adamu et al., 2016), and biophysical 

and biochemical alterations of the vegetation, leading to changes in the reflectance 

signature of vegetation (Adamu et al., 2015). In recent years, vegetation, the major land 

cover in the Niger Delta region, has been significantly affected by oil extraction activities. 

Pollution from oil spills is of great concern due to its capacity to degrade the ecosystem 

(Omodanisi & Salami, 2014). The impacts on vegetation, in particular, are devastating 

because it is the primary source of food, energy, timber and restorative materials (Yang 

et al., 2017) and is, therefore, an essential element in our world that must undergo remote 

monitoring (Kochubey & Kazantsev, 2012). 

Monitoring the impacts of soil hydrocarbons on vegetation using remote sensing requires 

understanding the vegetation's spectral reflectance characteristics (Adamu et al., 2016). 

This then enables the detection of physiological abnormalities in the vegetation even 

before the appearance of visual symptoms (Piro et al., 2017). Both satellite and field-

based remote sensing have been extensively used to monitor/investigate the health of 

vegetation around the world. Among these examples are monitoring the green roof 

vegetation health state in the sub-Mediterranean climate (Piro et al., 2017), monitoring 

mangrove spectral changes induced by oil spills (Pavanelli & Loch, 2018), monitoring 

forest health during a simulated disease outbreak (Dash et al., 2017), and assessing the 

vegetation status in the Sagbama oilfield environment in the Niger Delta region (Ochege, 

2017). 

One of the remote sensing-based vegetation health monitoring techniques is field 

spectroscopy, which provides hyperspectral measurements of the reflectance 

characteristics of the vegetation. Spectroscopy is the most flexible, efficient and 

established technology to fully characterise the vegetation health state compared to the 

other sensing techniques (Piro et al., 2017). When employed on vegetated surfaces, the 

spectral characteristics are a function of the status, composition and structure of the 
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elements measured (Lola et al., 2015). The main advantages of field-based vegetation 

condition assessment approaches are their capability to assess tree canopies (Tehrany et 

al., 2017) and provide plant/species data at the leaf-scale, which are particularly useful in 

assessing a plant or species' responses to the presence of soil hydrocarbons. 

One way to extract useful information on vegetation status from hyperspectral reflectance 

data is the ‘red edge’ position (REP). The REP results from the contrast of red light 

absorption by plant chlorophyll and NIR scattering by plant biomass (Thorp et al., 2017). 

The ‘red edge’ is the point of maximum slope in vegetation reflectance spectra, which 

occurs between wavelengths of 680-750 nm. This is where the reflectance changes from 

very low in the chlorophyll red absorption region to very high in the near-infrared region 

because of leaf and canopy scattering (Filella & Peñuelas, 1994). Additionally, other 

chlorophyll-related spectral indices are widely used to assess various characteristics of 

vegetation and yield prognosis (Kochubey & Kazantsev, 2012). Importantly, 

hyperspectral data acquired via field spectroscopy are ideal for developing vegetation 

indices for detecting some characteristics that traditional multispectral remote sensing 

cannot (Zhu et al., 2013); these are commonly referred to as hyperspectral vegetation 

indices (HVIs). Various HVIs have been developed and applied to different vegetation 

types to examine their physiological properties. Some HVIs were developed and tested 

on a particular plant species, while others were developed for use across many plant 

species with varying structures, leaf types, etc. Among them are HVIs proposed by Lu et 

al. (2015), Nkeiruka et al. (2018), and Sims & Gamon (2002). 

Over the years, many researchers have investigated the physiological responses of 

vegetation to environmental changes under controlled experimental conditions; however, 

only a few studies have been conducted in field conditions integrating remote sensing 

with field data (Onyia et al., 2018). Most of the research on the impact of oil spills on 

vegetation is satellite-based remote sensing, such as those conducted by Adamu (2016); 

Adamu et al. (2016, 2018); Adoki (2013); Mohamadi et al. & Xie (2016); Ochege et al. 

(2017);  Onyia et al. (2018). These studies only investigated the relationship between oil 

spill volume and soil hydrocarbon content on vegetation indices without considering 

other soil geochemical characteristics that could affect the health of the vegetation. 

Moreover, these studies focus only on one vegetation type at the plot-scale instead of 

different plant/species types. However, it is important to assess individual plant types 

because the ability of plant species to tolerate hydrocarbon contamination differs 
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significantly (Gunderson, 2006). Hence, to fill the research gap identified in 1.3, the 

objective of this chapter focuses was to determine the impact of soil hydrocarbon 

parameters (SHP) on the health of plant types at the leaf scale using hyperspectral 

vegetation indices (HVIs) in the Niger Delta. 

The research presented in this chapter is the first known study that seeks to correlate the 

spectral response (at fine spectral resolution via a field spectrometer) of vegetation (at 

leaf-scale) to a comprehensive range of soil hydrocarbon characteristics to investigate the 

effect of oil pollution on the health of vegetation. The only existing study that uses 

spectroscopy to assess the status of oil spill-induced stress in the vegetation in Lagos and 

Ogun States in south-west Nigeria, which is not part of the Niger Delta, was conducted 

by Omodanisi and Salami (2014), which only considered TPH and was not species 

specific. Accordingly, there is a need for a comprehensive investigation to determine the 

responses of different plant/species types to SHPs in the Niger Delta. 

5.2 Study area 

The location of the study was in the River state, Niger Delta, Nigeria. The sites of interest 

were located in Igwuruta, the upland in Figure 5.1 B1 and Bodo, the shoreline in Figure 

5.1 B2. The two sites are approximately 53km apart and were chosen to represent two 

types of geography. The upland study area Igwuruta is a town in the Ikwerre Local 

Government Area of Rivers State, near the Omagwa community, which hosts the Port 

Harcourt International Airport and is just a few kilometres away from Port Harcourt city. 

As a semiurban town within a short distance of Port Harcourt, the primary occupations of 

the inhabitants are trading, public and private workers in various government and private 

companies, farming, etc. Igwuruta town is located between longitude 6⁰ 59" 05' E & 7⁰ 

02" 55' E and latitude 4⁰ 55" 23'N & 5⁰ 00" 55'N. The shoreline study area Bodo means 

'on the sea'. It is a traditional rural and coastal Ogoni community with 69,000 inhabitants, 

which is administratively part of the Gokana local government area of Rivers State, 

Nigeria (Pegg & Zabbey, 2013). The mangrove forests and waterways that line Bodo 

Creek are an integral component of the community's traditional livelihood structures. The 

primary occupation in Bodo was fishing and farming, but the oil spill rendered fishers 

jobless. Igwuruta town is located between longitudes 7⁰ 13" 45'N & 7⁰ 17" 38'N and 

latitudes 4⁰ 33" 56'N & 4⁰ 38" 52'N. Figure 5.1 shows the locations of the study areas of 

interest. 
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Figure 5.1: (A) Map of Nigeria (green) showing the (B) study area (in red), (B1) 

upland sample location (soil sample points P1-P6), and (B2) shoreline sample 

location for dryland (P7-P13) and mangrove (P13-P22). 

 

5.2.1 Plant types 

5.2.1.1 Awolowo grass 

Chromolaena odorata (L), King & Robinson (Asteraceae, Eupatorieae) is a perennial 

shrub forming dense, tangled bush 1.5-2.0 m in height, occasionally reaching 6 m as a 

scrambler up trees (Koutika & Rainey, 2010). In Nigeria, this is known as Awolowo, 

Akintola or Queen Elizabeth weed, native to the Americas from southern Florida to 

northern Argentina, including the Caribbean islands (Uyi et al., 2014). Elephant grass has 

spread to the tropics, including Nigeria, and has been used in traditional medicine as an 

antispasmodic, antiprotozoal, antitrypanosomal, antibacterial, etc. (Igboh, Ikewchi, & 

Ikewuchi, 2009). It is a common weed found on wasteland, roadsides and farmlands, and 

it grows in most bushes in Nigeria (Taiwo et al., 2000). Awolowo grass is regarded as 

fallow because of its ability to be a nutrient sink, its potential benefit to the crop as a 

regular source of organic matter and nutrients after slashing, and its adaptability as a 

Igwuruta (B1) 

Bodo(B2) 
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fallow plant on acidic soils compared to some leguminous plants (Koutika & Rainey, 

2010). 

5.2.1.2 Elephant grass 

Synonym Pennisetum, also called elephant grass, Napier grass and Uganda grass, is a 

tropical grass with its origin in humid tropical Africa, belonging to the family Poaceae 

(Danquah, Roberts, & Appiah, 2018). Elephant grass is the fastest growing plant globally 

and has long been an important forage crop in the tropics because of its high yields and 

nutrient value (Singh et al., 2015). There are two plant types of elephant grass, giant (tall) 

and dwarf (short), with varying heights from 2 to 6 m. 

5.2.1.3 Mango tree 

Mango (Mangifera indica L.) is an evergreen fruit crop indigenous to Southern Asia, 

especially eastern India, Burma and the Andaman Islands. Nevertheless, it is one of the 

most widely cultivated and traded tropical and subtropical fruit crops in the world 

(Dessalegn, Assefa, Derso, & Tefera, 2014). The largest Mango producing countries are 

India, China, Thailand, Indonesia, Pakistan, Mexico, Brazil, Bangladesh, Nigeria, and the 

Philippines (Kumar et al., 2021). Mango trees can reach a height of 15–30 m (50–100 ft). 

Most cultivated mango trees are between 3 and 10 m (10–33 ft) when fully mature. In 

contrast, wild, non-cultivated seedling trees often reach 15 m (50 ft) when found in 

favourable climates, and they can reach 30 m (100 ft) in forest situations (Bally, 2006). 

Generally, most of the mangoes in Nigeria are wild mangoes, which were also considered 

for this study.  

5.2.1.4 Oil palm tree 

Oil palm (Elaeis guineensis, Jacq.) is by far the most productive oil crop. This crop alone 

can fulfil the large and growing world demand for vegetable oils naturally abundant in all 

African rainforests (Barcelos et al., 2015). African oil palm has the highest productivity 

among cultivated oleaginous crops (Barcelos et al., 2015; Punnuri & Singh, 2013). The 

oil palm is an indigenous plant not only to the people of the Niger Delta region of Nigeria 

but also to all the people of tropical Africa; until 1900, the Niger Delta was at the forefront 

in the production of palm oil and palm kernel for export (Aghalino, 2000). Oil palm can 

reach 60-80 ft in height in nature but is rarely more than 20 or 30 ft in cultivation (Punnuri 

& Singh, 2013). 
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5.2.1.5 Mangrove vegetation 

Mangroves are shrubs (small trees). The Niger Delta is home to the third-largest 

mangrove forest in the world (Anejionu et al., 2015; Kuenzer et al., 2014) and the largest 

in Africa (Ite et al., 2013; Kuenzer et al., 2014; Ohimain, 2003), stretching up to 50 km 

inland in some places (Musa et al., 2016a). The dominant mangroves in the Niger Delta 

are red mangroves (Rhizophoraceae) and white mangroves (Avicenneaceae), which 

comprise more than 90% of the vegetation in the mangrove zone, with Red Mangrove 

Rhizophora racemosa being the pioneer species (Ayanlade, 2014). Rhizophora racemosa 

is an essential tree for rural inhabitants living along the coastal region of the Niger Delta 

in general and Rivers State in particular, both socially and economically (Harcourt, 2012). 

Figure 5.1 outlines the methodological approach taken in this chapter.  
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Figure 5.2: Figure 5.2. Methodology flow chart. 

Figure 5.2. Methodology flow chart. 
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5.3 Data  

Concurrent leaf and soil samples were collected at oil spill sites, and their geographic 

coordinates were recorded during a fieldwork campaign in the Niger Delta region of 

Nigeria in December 2018. The month was chosen because the weather conditions are 

more favourable during this season, with almost zero rainfall. Before the fieldwork, a 

reconnaissance trip was carried out in June 2018 to become familiar with the study area, 

accompanied by some academics from the University of Port Harcourt, alongside some 

local community members. The reconnaissance fieldwork also enabled potential sample 

collection sites to be identified based on accessibility to the sites in terms of logistics and 

security. 

5.3.1 Leaf sample 

Leaf samples from the five plant species were collected at locations with different levels 

of exposure to oil spills. Each sample plot was approximately 30 m-by-30 m square to fit 

the pixel size of the Landsat images. Leaf samples for each plant species were collected 

across each plot to capture a reliable representation of each plant type and kept in a 

cooling box, as shown in Figure 5.3. The sampled plants were Awolowo grass, elephant 

grass, mango tree, oil palm tree and mangrove vegetation (Figure 5.4). The leaf samples 

were located from plots corresponding to two types of land cover: dry land and mangrove. 

At least two to four types of plant samples were collected, while only mangrove plants 

were collected from the plots located in mangrove areas. A total of 21 plots were sampled, 

which consisted of five different types of plants.  

 
Figure 5.3: Soil and leaf samples in a cooling box. 
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Figure 5.4: Sampled plot showing Mango, oil palm, Awolowo and Elephant. Field 

observation. 

5.3.2 Soil sample 

Soil samples were also collected alongside the leaf samples from within a plot. The soil 

samples were collected to determine the concentration of total petroleum hydrocarbons 

(TPHs) and other SHPs and then investigate how their presence affects the health of the 

vegetation (Arellano et al., 2015; Omodanisi & Salami, 2014). For each sample plot, five 

soil samples were collected from the four edges of the 30 m-by-30 m plot and one in the 

middle of the plot at a depth of 30 cm (Onyia et al., 2018). Oil residues highly contaminate 

the Niger Delta soil in the upper 20 cm (Little et al., 2018). The soil samples were 

collected using a portable soil auger from each plot (Figure 5.5), which was washed with 

water after each sample was collected to prevent cross-site contamination. Five soil 

samples were subsequently mixed into one composite sample representing the plot. 

The collected soil and leaf samples were put in a plastic zip-locked bag, labelled and 

stored in a portable cooling box filled with ice packs to keep the sample cool (Abdullah 

et al., 2018) (Figure 5.3). The soil samples were frozen upon returning from the field to 

prevent exposure to a temperature above 30 °C. This was done to control further chemical 

reactions in the soil (Onyia et al., 2018). Figure 5.6 is the Mangrove plant exposed to oil 

spills. 

Oil palm 

Mango 

Elephant Grass 

Awolowo Grass 
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Figure 5.5: Soil samples were taken with a portable auger. 
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Figure 5.6: Mangrove vegetation on hydrocarbon-polluted sites, with dead 

mangrove sites (top) due to oil spills in Bodo, Ogoni land in the River state.  

Observed during fieldwork. 
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5.4 Methods  

5.4.1 Leaf spectral measurements and pre-processing 

The spectral reflectance measurements of leaf samples were obtained using an Analytical 

Spectral Devices (ASD) FieldSpec Pro instrument loaned from the School of Geography 

(University of Nottingham) based on the guidelines provided by the Field Spectroscopy 

Facility (https://fsf.nerc.ac.uk/instruments/asd_fieldspec.shtml, n.d.). The ASD 

FieldSpec Pro is the industry standard for a broad range of challenging remote sensing 

applications. It offers superior signal-enhancing features and high resolution with a 350-

2500 mm spectral range. The ASD Fieldspec Pro was used indoors in a laboratory setting 

instead of outdoor due to the security risk of taking such an instrument to the field in a 

place like the Niger Delta. All leaf spectra were measured within four hours of field 

collection to ensure they were still fresh during the analysis with negligible degradation 

in their biophysical condition. 

A black box with a black, low-reflectivity material was constructed to prevent scattered 

light from objects other than the leaf samples from interfering with the measurement of 

the spectra. A blackboard equal to the size and thickness of the white panel used to 

calibrate the ASD Fieldspec Pro was employed to place the leaf samples (Figure 5.7a). 

Two 100 W Lowel-Pro lamps were fixed into the box to illuminate the leaf samples, as 

shown in Figure 5.6. When collecting spectral scans with the ASD Fieldspec Pro, the 

averaging for each scan was set to 100 to improve the signal: ratio. The ASD Fieldspec 

Pro was optimised to adjust it to the sensitivity of the instrument detectors according to 

the illumination condition at the time of measurement by taking a measurement of the 

whiteboard (Figure 5.7 b). After the instrument calibration, the whiteboard was replaced 

with the blackboard with the plant sample, and the plant sample was placed on it, covering 

at least 90% of the blackboard to ensure that field of view (FOV) was completely field. 

Typically, 4-6 spectral measurements were taken for each sample from different angles 

and positions to ensure that every aspect of the leaf sample was measured to obtain a 

representative spectrum. 
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Figure 5.7: A black box containing (a) a plant sample and (b) two 100 W Lowel-Pro 

lamps and a whiteboard during instrument calibration. Field observation. 

 Post-processing of spectral measurements. 

The spectral measurements of the leaves were post-processed using the ASD FieldSpec 

Pro software, ViewSpec Pro. The ViewSpec application is used for post-processing 

spectra files from ASD FieldSpec Pro (ASD, 2008) and includes many useful features, 

such as graphing, scaling, 1st derivative and conversion of the spectrometer's binary files 

into ASCII text files (Walker, 2009). The measured spectra of leaf samples were 

converted into spectral reflectance and 1st derivatives and exported as ASCII files. For 

the spectral shape analysis, the reflectance signatures were averaged for a particular plant 

type in a plot (Serrano-Calvo et al., 2021). Also, the spectral resampling to Hyperion , 

sentinel 2 and Landsat 7 was performed using the filter functions (User Defined Filter 

Function in ENVI) for each waveband of the sensors to assess how the plant species will 

appear on satellite imagery. A filter function is the sensitivity/spectral response of the 

satellite’s sensor to specific wavelengths within the bandwidth for a given waveband. The 

spectral response performed a weighted average of the reflectance from the hyperspectral 

signature at the corresponding wavelengths, which then gives a single value of reflectance 

for each waveband for the sensor with the lower spectral resolution by multiply the 

spectral response values (0-1) from a filter function with the reflectance values for the 

corresponding wavelengths in the hyperspectral signature and then calculate the weighted 

average. 

5.4.2 Soil geochemistry analysis 

5.4.2.1 Solid-phase microbial toxicity (EC50 mg L-1) 

The Microtox® Solid Phase Test (SPT) was used to assess the bioavailability of toxins 

within the sampled soils using the test organism Vibrio fischeri (strain NRRL B-1117), 

(a) (b) 
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which is a luminescent bacterium. The methodology followed that recently applied to 

evaluate soils and sediments from London and New York (Vane et al., 2020a, Vane et al., 

2020b). This strain of the organism can be used to assess both acute and chronic toxicity 

in samples, as it is highly sensitive to a broad range of chemicals. The test was designed 

by the manufacturer to be used specifically on soils and sediments. Seven grams of dry 

weight of a soil sample was transferred to a beaker and 35 ml of SPT diluent (3.5% NaCl) 

was added. To analyse a representative sample, the suspension was then stirred for 10 

minutes on a magnetic stirrer with a speed set to achieve a vortex depth in the liquid of 

approximately 50% of the liquid level at the beaker wall. Then, 1.5 ml of the suspension 

was transferred by pipette to cooled SPT tubes from a region adjacent to the beaker wall, 

approximately 2 cm above the bottom of the beaker, using a modified pipette tip with an 

enlarged opening (to accommodate any large particles present). The SPT tubes were 

cooled in an incubation block and placed in a water bath at 15°C. 1:2 serial dilutions of 

the sample were made in SPT tubes to give 2 controls and 13 dilutions in duplicate. These 

were then left for 10 minutes to equilibrate to temperature. 

Meanwhile, freeze-dried bacteria were reconstituted in ultra-pure water (test reagent) and 

left in the reagent well of a Microtox® M500 Toxicity Analyser. A timer was then started, 

and 20 µl of test reagent was immediately transferred by pipette to each SPT tube. Each 

sample was mixed well and a tube filter was placed in the SPT tube to just above the 

liquid level. After 20 minutes, the samples were filtered to remove the sediment, and 0.5 

ml of the filtrate was pipetted into glass cuvettes placed in the wells of the analyser, and 

a timer started for 5 minutes. After this time, the sample light output from each cuvette 

was measured in the analyser. The measurements were used to create a dose–response 

curve, and an EC50 value was calculated which indicate the level of toxicity in the soil. 

5.4.2.2 Total organic carbon (TOC) 

The total organic carbon content (TOC % wt/wt) was determined using an Elementar 

VarioMax C, N analyser operated in C mode. All soils were first prepared by acidification 

with HCl (50% v/v) to remove inorganic carbon (e.g., carbonate). The limits of 

quantification reported for a typical 300 mg sample were 0.18 % (wt/wt) (Vane et al., 

2007). 
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5.4.2.3 Total petroleum hydrocarbons (TPH) 

To measure the total petroleum hydrocarbon content (TPH), 1 g of ground sediment was 

extracted with a dichloromethane (DCM)/acetone (1:1 v/v) mixture using an accelerated 

solvent extraction system (ASE 200, Dionex). Extracts were reduced to dryness and 

reconstituted in 1 mL toluene, and 5 µL aliquots were spotted onto silica-rods 

(Chromarods-S III). The rods were developed for 21 minutes using n-hexane, for 8 

minutes with toluene and 1.5 minutes with dichloromethane/methanol (9:1 v/v). The 

concentrations of saturated and aromatic hydrocarbons were determined using an 

Iatroscan Mk6 s instrument (Vane et al., 2020a; Vane et al., 2020b). The calibration was 

performed for saturated hydrocarbons using pristane, aromatic hydrocarbons using 

triphenylene, and resins using an in-house purified standard extracted from combined 

urban road-run-off sediments. TPH was calculated as the sum of saturated and aromatic 

hydrocarbons. The limit of quantification (LoQ) for total non-volatile petroleum 

hydrocarbons was 3 mg/kg. 

5.4.2.4  Rock-Eval (PI & HI) 

Rock-Eval is used as industrial standard hydrocarbon exploration method (bulk rock) for 

measuring product index (PI) and hydrogen index (HI), Hydrocarbon pollution was 

assessed using a Rock-Eval (6) pyrolyzer. Powdered samples (20 mg dry wt.) were heated 

from 300°C to 650°C at 25°C min-1 in an inert atmosphere of N2, and the residual carbon 

was then oxidised by the addition of a constant flow of clean compressed oxygen-

containing air at 300°C to 850°C (Thomas et al., 2019; Waters et al., 2019; Whitelaw et 

al., 2019). Free and bound hydrocarbon contents (S1, S2) were measured using a flame 

ionisation detector (FID). All the soil analysis were carried out at the British Geological 

Survey (BGS) in Keyworth. 

5.4.3  Spectral characterisation using vegetation indices 

5.4.3.1 First derivative and red edge position (REP) 

Derivative analysis was used to detect spectral absorption features, reduce spectral 

variations due to illumination and baseline shifts to reveal absorption features masked by 

broader interference from other leaf components and biochemical properties (Serrano-

Calvo et al., 2021). A common means of using spectral derivatives in the remote sensing 

of plant physiology has been to characterise the red edge (Blackburn, 1998). The red edge, 

which is the point of maximum slope in vegetation reflectance spectra of 1st derivatives, 
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occurs between wavelengths of 680-750 nm, where the reflectance changes from very 

low in the chlorophyll red absorption region to very high in the near-infrared region due 

to leaf and canopy scattering (Filella & Peñuelas, 1994). For this research, the red edge 

position (REP) was derived from the wavelength of the peak values of the 1st derivative 

graphs. 

The next analysis was the calculation of hyperspectral vegetation indices (HVIs). Many 

HVIs have been developed to estimate leaf pigment content (Sims & Gamon, 2002). Most 

of the published HVIs have a strong relationship with leaf chlorophyll content (Lu et al., 

2015) and have been tested for only one or at most a few related species. Therefore, it is 

currently unclear which HVIs can be applied across different species with variable leaf 

structure characteristics (Sims & Gamon, 2002). To overcome such challenges, the HVIs 

previously applied either across species or previously utilised in the study area were 

carefully selected owing to the difference in leaf surface structures between the different 

plant species sampled in this study. 

5.4.3.2 Modified Normalised Difference Index (mND705) 

The mND705 spectral is an index for predicting leaf pigment content that is relatively 

insensitive to species and leaf structure variation, which could be applied in larger-scale 

remote-sensing studies without extensive calibration developed by Sims & Gamon 

(2002). They found that previously published spectral indices provided relatively poor 

correlations with leaf chlorophyll content when applied across various species and plant 

types. By developing a new spectral index that reduces the effect of differences in leaf 

surface reflectance, they significantly improved the correlations with chlorophyll content. 

The mND705 index developed by Gitelson & Merzlyak (1994) was modified using 

wavelengths at 705 and 750 nm, which are based on the chlorophyll index to compensate 

for high leaf surface reflectance by eliminating the effect of surface reflectance by 

incorporating the reflectance at 445 nm (Sims & Gamon, 2002).  

mND705= (𝑅750 − 𝑅705) (R750 + R705 − 2R445)⁄     Eq. 5.1 

where R= the reflectance at a particular wavelength (in nm). 

5.4.3.3 Modified Datt index (MDATT index) 

The MDATT index was developed by Lu et al. (2015) for remote estimation of 

chlorophyll content in plants with varying leaf surface structures based on the Datt 
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(1999b) principle by introducing a third band into the index. The MDATT index was 

modified to compensate for high leaf surface (specular) reflectance and scattering from 

the mesophyll, which tends to alter reflectance across the whole visible and near-infrared 

spectrum. Among the reflectance indices tested by Lu et al. (2015), the MDATT index 

performed best among all the indices. It could be the best vegetation index for estimating 

leaf Chl content, regardless of the leaf side or species (Lu et al., 2015): 

MDATT index =(R719−R726)/(R719−R743)     Eq. 5.2 

5.4.3.4 Normalised Difference Vegetation Vigour Index (NDVVI) 

Onyia, Balzter, & Berrio (2018) developed the normalised difference vegetation vigour 

index (NDVVI) as a new method for monitoring the impact of oil pollution on 

biodiversity at a regional scale in the Niger Delta region using integrated satellite remote 

sensing and field data for biodiversity monitoring. NDVVI was used on vascular plants 

of various species observed in polluted and unpolluted (control) locations. The NDVVI 

variants were estimated from Hyperion wavelengths sensitive to petroleum hydrocarbons, 

and the NDVVI variants accurately predicted species diversity compared to traditional 

narrowband vegetation indices. 

NDVVI = (Ri − Rj)/(Ri + Rj)                                                Eq. 5.3 

where: 

Ri = reflectance at least sensitive wavelength =R 

Rj = reflectance at most sensitive wavelength=R 

Therefore: 

NDVVI844,447= (R844 – R447)/(R844 + R447)           Eq. 5.4 

5.4.3.5 Photochemical reflectance index (PRI) 

The photochemical reflectance index (PRI), derived from narrowband reflectance at 531 

and 570 nm wavelengths, was used to explore photosynthetic radiation use efficiency for 

20 species representing three functional types: annual, deciduous perennial, and 

evergreen perennial by Gamon, Serrano, & Surfus (1997). Although initially developed 
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to estimate xanthophyll cycle pigment changes, it was related to carotenoid/chlorophyll 

ratios in green leaves (Sims & Gamon, 2002). 

PRI = (R531 − R570)/(R531 + R570)                   Eq. 5.5 

 

5.4.4 Statistical analysis 

Pearson’s correlation analysis was used to assess the correlation between the leaf spectral 

characteristics and the soil geochemistry analyses to determine the effect of the presence 

of hydrocarbons in the soil on the health of vegetation.  However, many of the soil 

characteristics analysed are inherently correlated with each other and therefore considered 

redundant. Therefore, the SHPs that were positively strongly correlated with TPH were 

first identified and removed from subsequent analysis. Parameters with with R-values 

<0.5 were considered to be weakly correlated and retained. Parameters that had a strong 

correlation (p>0.5) with TPH were deemed to be essentially providing redundant 

information and therefore discarded. Spearman’s and Pearson’s correlation analyses were 

then used to test the hypothesis that various plant types are affected by the remaining 

SHPs, leading to reduced leaf chlorophyll content in plant families. The relationship 

between the SHP (TPH and soil parameters), i.e., and the spectral properties of leaves 

samples, may not be linear; hence, both Spearman’s and Pearson’s correlations were used. 

The Pearson’s correlation coefficient is typically used for jointly normally distributed 

data (data that follow a bivariate normal distribution). In contrast, Spearman’s rank 

correlation measures a monotonic association of continuous data, ordinal data, or data 

with relevant outliers (Schober & Schwarte, 2018).  

5.5  Results 

5.5.1 Soil geochemical analysis 

5.5.1.1 Selection of hydrocarbon parameters 

Table 5.1 shows the correlation between soil hydrocarbon parameters (SHPs) – resin, 

aromatic and aliphatic content, TPH, PI and HI. The results show that the hydrocarbon 

parameters are strongly correlated with TPH, with resin having R=0.99, aromatic and 

aliphatic both having R=1, PI (0.57) and HI (0.61), respectively. The results show a strong 

correlation between TPH and other hydrocarbon parameters. When the TPH is high, the 

other hydrocarbon parameters are likely going to be high and likely have a similar impact 

on the vegetation.  Hence, the THP was subsequently correlated with the general soil 
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parameters, Microtox (EC50 mg L-1) and Total Organic Carbon (TOC (%)), to determine 

their impact on the vegetation. The result helped in narrowing down the hydrocarbon 

parameter to just the TPH. 

Table 5.1: Pearson’s correlation analysis of hydrocarbon and soil parameters. 

Soil parameters Resin Aromatic Aliphatic TPH mg kg-1 PI HI 

Resin 1 0.99 0.99 0.99 0.59 0.66 

Aromatic 0.99 1 1 1 0.57 0.61 

Aliphatic 0.99 1 1 1 0.59 0.63 

TPH mg kg-1 0.99 1 1 1 0.58 0.62 

PI 0.59 0.57 0.59 0.58 1 0.84 

HI 0.66 0.61 0.63 0.62 0.84 1 

 

5.5.1.2 Soil hydrocarbon parameter  

Table 5.2 details the soil sample plot number, plant type sampled from each plot and the 

selected SHPs with the red text indicating the average values of SHP for upland and 

shoreline sample sites and the combined upland and shoreline sites. The plant types are 

Awolowo grass (AG), Elephant grass (EG), oil palm tree (OP), mango tree (MT) and 

mangrove (MG). A total of 22 plots and five types of plant types/species were sampled, 

thirteen from both upland and shoreline sites (P1-P13) and mangrove land (P14-P22). For 

dryland, six upland plots were sampled in Igwuruta-Porthacourt (P1-P6), and seven were 

sampled in Bodo close to the shoreline (P7-P13). For the plots at Igwurata-Porthacourt, 

three plant types (Awolowo grass, Elephant grass and Oil palm tree)  were sampled, 

except at P2, which had only Awolowo grass and Elephant grass. Table 5.2 shows 

different levels of concentration of SHP in the soil of sampled plots. In terms of THP, the 

content is relatively similar for both dryland and mangrove sample plots, with values 

ranging from 89 mg kg-1 to 2606 mg kg-1, except for P20 (mangrove), which had a TPH 

of 42996 mg kg-1. TOC (%) has variable concentration levels, with mangroves having a 

higher concentration of TOC (%) between 0.61% and 26.17% and dryland between 0.50% 

and 2.21%. The level of toxicity in the soil is grouped into nontoxic (EC50 > 10,000 mg 

L-1), moderate toxicity (EC50 10,000-5000 mg L-1), and highly toxic <5000. On this basis, 

mangrove soils have a high level of toxicity, as shown by the EC50 with P14-P18 having 

EC50 ≤ 5000 mg L-1, along with one moderate toxicity (P22) with EC50 10,000-5000 mg 

L-1 and three nontoxic plots P19-P21 with EC50 >10,000 mg L-1 (Table 5.2). For the 
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sample plots on the land, the level of toxicity was low, with EC50 >10,000 mg L-1 except 

for P10, which had EC50 >5000 to <10,000 mg L-1.  

Figure 5.8 shows a boxplot for TPH, EC50 and TOC (%), with the TPH measurement at 

P20 (24996 mg kg-1) removed from the mangrove boxplot because it is an outlier that 

could affect the boxplot. For example, the TPH concentrations for mangroves and 

drylands are low. Additionally, Figure 5.9 shows maps of the SHP content for both 

dryland (shoreline) and mangrove combined in Figure 5.9a and dryland (upland) in Figure 

9.5b. The results show that all the SHPs are more concentrated in the mangrove (P14-

P21) in the north-west and south-west location of the study area except the toxicity in the 

north-east and south-east (P18. P9-P10), which are located on dry land (shoreline). For 

the upland, EC50 concentration is none toxic but more concentrated in the southern part 

of the map (P2 and P4), while the TOC (%) are highly concentrated toward the northern 

part of the study area (P5). Also, the TPH has a high concentration in the southern part of 

the study area  
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Table 5.2. Soil sample plot number, plant types sampled from each plot and soil 

parameters. 

Plot 

No Plants Types 

Microtox: 

EC50 mg L-1 

Total Organic 

Carbon:TOC (%) 

Total TPH mg kg-1 

(dry weight sediment) 

P1 AG,EG, OP 27899 1.58 642 

P2 AG,EG 19561 1.66 2247 

P3 AG,EG, OP 27309 1.86 1508 

P4 AG,EG, OP 18922 1.24 89 

P5 AG,EG, OP 23128 2.15 136 

P6 AG,EG, OP 36496 1.38 151 

P7 AG,EG, MT, OP 40423 0.8 212 

P8 AG,EG, MT, OP 33671 0.5 163 

P9 AG,EG, OP 13278 1.29 2606 

P10 AG,EG, MT, OP 7986 1.27 770 

P11 AG,EG, MT, OP 20364 1.37 89 

P12 AG,EG, MT, OP 37792 0.96 89 

P13 AG,EG, MT, OP 10975 2.21 1174 

P14 MG 4848 13.98 396 

P15 MG 2525 26.17 89 

P16 MG 3990 13.63 1887 

P17 MG 2992 17.06 399 

P18 MG 2672 15.74 393 

P19 MG 19168 1.97 996 

P20 MG 14248 13.85 42996 

P21 MG 29720 0.61 329 

P22 MG 6455 12.83 826 

ADL  22446 1.40 760 

AM  9623 12.90 5368 

TA  18383 6.10 2645 

Note: AG=Awolowo grass, EG=Elephant grass, OP=Oil palm, MT=Mango Tree, 

MG=Mangrove, ADL=average values for dryland, AM=average values for 

mangrove, TA=Total average values for each soil property. The red text indicates 

the average values of SHP for upland and shoreline sample sites and the combined 

upland and shoreline sites. 
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Figure 5.8: shows a boxplot for (a) TPH (mg kg-1), (b) EC50 and (c) TOC (%). 

The TPH measurement at P20 (24996 mg kg-1) was removed from the mangrove boxplot 

because it is an outlier that could affect the boxplot 
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Figure 5.9:Soil hydrocarbon parameter content maps for the shoreline (a) toxicity 

(EC50), (b) TOC (%) and (c) TPH; and upland area (d) toxicity (EC50), (e) TOC 

(%) and (f) TPH. 
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5.5.1.3 Relationship between TPH and soil parameters 

Figure 5.10 shows the correlation between TPH and TOC (%) and TPH and EC50 for 

dryland and mangrove land cover types. The correlation is between TPH and EC50 and 

TPH and TOC (%) for all samples (Figure 5.10a and b, respectively), TPH and EC50 and 

TPH and TOC (%) for mangroves (Figure 5.10c and d), as well as TPH and EC50, and 

TPH and TOC (%) dryland (Figure 5.10e and f). The results show a weak correlation 

between TPH and TOC (%) and TPH and EC50 for both the Pearson’s and Spearman’s 

correlation, except for the correlation between TPH and the EC50, which shows a 

moderate positive correlation for the dryland sample sites (R= -0.500). Note, the smaller 

the value of EC50 (i.e. EC50 <5000 mg L-1), the more the toxicity, hence, a negative sign 

of correlation mean positive. 
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Figure 5.10:Relationship between TPH and soil parameters (a) TPH and EC50 for 

all samples, (b) TPH and TOC (%) for all samples, (c) TPH and EC50 for 

mangroves, (d) TPH and TOC (%) for mangroves (%), (e) TPH and EC50 for 

dryland, and (f) TPH and TOC (%) dryland.  

 

5.5.2 Spectral analysis 

5.5.2.1 Vegetation spectra 

Figures 5.11 show each plant species' mean spectral reflectance curve for the dry land 

(upland and near the shoreline) and the mangrove sample plots from hyperspectral data 

(Figures 5.11a). Others are mean spectral reflectance hyperspectral data resample to 

Hyperion (Figure 5.11b), Sentinal 2 (Figure 5.11b)  and Landsat 7 (Figure 5.11d). The 
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results show that the spectral reflection curve from Hyperion, a satellite-based 

hyperspectral sensor with more spectral bands than sentinel 2 and Landsat 7, looks similar 

to the spectral of in Figure 5.11a. Blue indicates mangrove vegetation, black indicates 

Awolowo, red indicates elephant grass, yellow indicates oil palm tree, green indicates 

mango tree, and blue indicates mangrove. Elephant grass has the highest reflectance in 

the near-infrared (NIR) region (700-1300 nm) of the electromagnetic spectrum, while 

mangrove grass has the lowest reflectance. The reflectance of mango trees and the 

Awolowo grass are almost the same within NIR, while the oil palm has the second-lowest 

reflectance after the Mangrove (Figure 5.11a). Additionally, the shape and the spectral 

curve were different for each plant group. While mango and oil palm trees have smooth 

curves around 977 nm, Awolowo grass, elephant grass, and mangrove have more 

variation due to deeper spectral absorption features in the same region.  

Figure 5.12 shows the land and shoreline mean spectral reflectance for plants found on 

dryland, i.e., both upland land and shoreline in the NIR region, excluding the mangrove 

from hyperspectral data (Figure 5.12a). It can be observed that the upland plants have 

higher spectral reflectance than those of the same plant type.  
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Figure 5.11:Mean spectral reflectance for each plant (a) hyperspectral data, and 

resampled reflectance to satellite sensors (b) Hyperion, (c) Sentinel 2 and (d) 

Landsat 7. 
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Figure 5.122:Mean spectral reflectance for upland and shoreline(broken lines) for 

land plants in Near-infrared region (a) hyperspectral data, and resampled 

reflectance to satellite sensors (b) Sentinel 2, (c) Landsat 7 and (d) Landsat 8. 
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Figure 5.13 shows the spectral reflectance curve for each plant type with varying TPH 

soil concentrations for Awolowo grass (Figure 5.13a), Elephant grass (Figure 5.13b), oil 

palm trees (Figure 5.13c), including upland and shoreline, mango trees (Figure 5.13d) 

and Mangrove (Figure 5.13e). For the three plant types found on dryland: upland (with 

the prefix “u” and a broken line) and shoreline (with a prefix “s”) in Fig 5.13a-c, it is 

evident that the upland vegetations have higher spectral reflectance than those near the 

shorelines, even at similar or the same level of TPH concentration. Among the plant types, 

elephant grass (shoreline), oil palm (upland) and mango tree (shoreline) have the highest 

vegetation spectral reflectance (albedo), corresponding to the lowest TPH concentration 

of 89 mg kg-1 (Figure 5.13c and d). While the trend continues for oil palm trees with the 

overall spectral reflectance decreasing with the TPH concentration, the same thing could 

not be said of the elephant grass (shoreline) and mango trees. The corresponding highest 

reflectance curves to TPH concentration for the remaining plant species are at TPH 150 

mg kg-1 upland and 1174 mg kg-1 shoreline (Awolowo), 136 mg kg-1 upland (Elephant 

grass) and 329 mg kg-1 (mangrove) instead of 89 mg kg-1, respectively (Figure 5.13a-c 

and e). However, for mangroves, the lowest albedo corresponds to the highest TPH 

concentration (42,996 mg kg-1). 
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Awolowo (a)      Elephant (b) 

 

Oil Palm (c)      Mango (d) 

 

Mangrove (e) 

 
Figure 5.13:Spectral reflectance of different plant types exposed to varying TPH 

concentrations: (a) Awolowo, (b) elephant grass, (c) oil palm, (d) mango and (e) 

mangrove.  

Prefixed to the to the TPH concentration; U=upland; S=shoreline; M=mangrove.  
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5.5.2.2 First derivative and Red Edge Position (REP) 

Figure 5.14 shows the REP, the peak points of the 1st derivative and the TPH 

concentration. The number with a prefix corresponds to various TPH concentrations. The 

results show that different plant types have REPs at slightly different wavelengths. 

Generally, the first derivative peaks for plant samples located on the upland (labelled with 

the prefix "U" with broken lines) are higher than plants near the shoreline (labelled with 

the prefix "S" with continuous lines) for Awolowo grass, Elephant grass and oil palm 

trees (Figure 5.14 a-c). Additionally, the first derivative peaks show no obvious 

relationship to the TPH concentration for some plant species/types. For instance, the 

highest peak occurred for a TPH concentration of 2247 mg kg-1 (U2247) for both 

Awolowo and Elephant grass, while it occurred at the higher TPH (S2606) and lowest 

(S89) for shoreline samples of Awolowo grass and Elephant grass, respectively (Figure 

5.14 a and b). 

Table 5.3 shows the wavelengths at which REPs occur for the various plant types. It can 

be observed that REP has slightly different ranges for different plant types. The REP 

occurs at regions between 703-717 nm (Awolowo grass), 704-727 nm (Elephant grass), 

703-714 nm (Mango trees), 703-724 nm (Oil Palm trees), and 696-704 nm (Mangrove). 

Among them, mangrove samples have the narrowest wavelength range, while elephant 

grass has the highest range. Figure 5.15 presents a boxplot summary of the REP for all 

plant samples. It shows that elephant grass has the highest REP among all plants. 

Furthermore, the oil palm tree has the highest interquartile range, whereas mangroves has 

the lowest interquartile range among all the plants. 

 

 

 

 

 

 

 

 



 

138 

 

 

Awolowo (a)      Elephant (b) 

 

Oil Palm (c)      Mango (d) 

 

Mangrove (e) 

 

Figure 5.14:First derivative spectra of different plant species: (a) Awolowo grass, 

(b) elephant grass, (c) oil palm, (d) mango, and (e) mangrove.  

Prefixed to the to the TPH concentration; U=upland; S=shoreline; M=mangrove.  
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Table 5.3 Red edge positions (nm) for various plant types. 

 

Awolowo Elephant Oil Palm Mango Mangrove 

703 704 703 703 696 

704 717 707 704 699 

705 718 708 706 699 

707 718 708 708 699 

707 719 710 713 699 

707 720 712 714 699 

711 722 713  700 

713 722 714  701 

713 723 714  704 

713 723 718   

715 725 722   

716 725 724   

717 727    
 

 
Figure 5.15:Box plot of REP for different plant types. 
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5.5.3 Statistical analysis of spectral properties 

The statistical analysis of the relationship between the SHPs and plant types was 

performed based on the Spearman’s (rs) and Pearson’s (R) correlations. The correlation 

is between the SHP, REP, and HVIs for different plant types/species. When rs > R, the 

relationship between the variables is not linear but monotonic, and vice versa. For this 

research, the correlation is strong when R≥  ± 0.50 and ± 1, moderate when R is between 

± 0.30 and ± 0.49, weak when R ≤ + 0.29, and no correlation when R = zero 

(Statisticssolutions.com, n.d.). 

5.5.3.1 Red edge position and soil parameters 

Figures 5.16-5.18 show graphs of the impact of TPH, EC50 and TOC (%) on the REP of 

awolowo grass, elephant grass, mango tree, oil palm trees, mangrove and all plant types 

combined using Spearman's and Pearson's correlations analysis. Figure 5.16 shows that 

the impact of TPH on REP is positive for Awolowo grass, elephant grass, oil palm and 

all plant types combined from Spearman's and Pearson's correlation with rs and R <0.3 

(Figure 5.16 a,b,d and f). However, the mango tree and mangrove are moderately 

positively and negatively impacted, with R= 0.398 (Figure 5.16c) and rs = -0.456 (Figure 

5.16e), respectively. This indicates that the Mangrove is the most impacted plant type in 

the Niger Delta, while the Mango is the most tolerant to THP content in the soil. Similarly, 

the impact of TOC (%) on REP is weak for Elephant grass and all plant types combined 

from both Spearman's and Pearson's correlation with rs and R = <0.3 (Figure 5.17 b and 

f). For Awolowo, oil palm tree and mangrove, the impact is positive and moderate with 

rs =0.456; R = 0.420,  rs = 0.302; R = 0.315 and R = 0.324 (Figure 5.17a, d and e) 

respectively,  showing some level of the important of TOC (%) to their health. However, 

the mango tree's correlation is strong and negative, with rs= -0.657; R= -0.650 (Figure 

5.17c). This result was unexpected since TOC (%) is important to plant health. The 

implication is that Mango trees can grow on soil with low organic content. Similarly, 

Figure 5.18 shows Spearman's and Pearson's correlation between REP and EC50 for 

Awolowo grass, elephant grass, mangrove, and oil palm are weak with rs and R <0.3. 

However, for the mango tree and all combined plants, the correlation is moderated and 

positive rs= 0.429; R= 0.401 and rs = 0.355; R= 0.337 (Figure 5.18 c and e), respectively. 

The result indicates that the mango tree is affected by pollutants in the soil. 
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Figure 5.166:Relationship between REP and TPH for (a) Awolowo grass, (b) 

elephant grass, (c) mango tree, (d) oil palm tree, (e) mangrove tree and (f) all 

samples. 
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Figure 5.177: Relationship between REP and TOC (%) for (a) Awolowo grass, (b) 

elephant grass, (c) mango tree, (d) oil palm tree, and (e) mangrove tree and (f) all 

samples. 
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Figure 5.188: Relationship between REP and EC50 for (a) Awolowo grass, (b) 

elephant grass, (c) mango tree, (d) oil palm tree, (e) mangrove tree and (f) all 

samples. 

5.5.3.2 Hyperspectral vegetation indices (HVIs) and soil parameters 

Table 5.4 shows Spearman’s and Pearson’s correlations between the HVIs and SHPs for 

the individual vegetation types and all combined plants. It can be observed that each HVIs 

havr a different range of values (both negative and positive). Among the various HVIs, 

NDVVI844,447 has the highest value, followed by mND705, while the MDATT index 

and PRI have the lowest HVI values. While NDVVI844,447, mND705 and MDATT have 
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positive values ranging from 0 to 1, PRI, conversely, ranges from -1 to 1. Also, the 

MDATT index shows a negative correlation when other indices show a positive 

correlation. 

 The results show that the mangrove vegetation is the most impacted by TPH, having a 

strong negative correlation in terms of Spearman’swith R=-0.683 and rs = -0.500 (mND 

705), respectively. However, the Awolowo is the least impacted. It has the s weakest 

correlation in terms of Spearman’s and Pearson’s correlation. At the same time, the 

correlation is moderate for elephant grass and oil palm tree in terms of Spearman with rs 

=-0.311(mND 705) and rs =-0.438 (PRI), respectively (Table 5.4a).  

The impact of TOC (%) on the health of various plant types in Table 5.4b shows that the 

elephant grass is the least impacted by TOC (%) among all plant types, with  R and rs 

<0.3. However, the correlation is strong and negative for mango, all combined plants, and 

mangroves, with the highest values of R= -0.725 and R = -0.585 (mND705)  and R =0.654 

(MDATT index), respectively. The Oil palm tree shows an interesting result. There is 

both positive and negative moderate correlation between TOC and the MDATT index 

(rs= -0.483; R= -0.359)  and PRI (rs= -0.413; R= -0.324), a moderate and weak positive 

correlation for Spearman’s with NDVVI844,447 (rs= 0.315) but with highest rs= -0.483 

from (MDATT index) which indicate positive correlation since negative sign means 

positive for MDATT index. On the other hand, Awolowo has a strong positive correlation 

between TOC and HVIs, with the highest rs = 0.621 (NDVVI844,447). The results show 

that only elephant grass is less responsive to the TOC (%) concentration among the plant 

types, with Awolowo grass being the most responsive plant type. Also, the presence of 

TOC (%) in the soil does not improve the health condition of mango and mangroves, but 

the health condition of Awolowo grass 

The impact of EC50 in Table 5.4c shows that the mangrove and mango are the most 

impacted plant, with each having  R =-0.870 (MDATT index) and rs=0.600 (mND705). 

The results show that awolowo grass and elephant grass are less responsive to toxicity in the 

soil among the plant types. However, oil palm is not affected. A negative correlation (which 

means positive) indicates resistance to pollutants since the higher the values of EC50, the 

less polluted the land.  
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Table 5.4. Correlation between SHP and  HVIs 

 

5.6 Discussion 

5.6.1 Soil hydrocarbon parameter (SHP) concentrations   

To determine the impact of soil hydrocarbon parameters (SHP) on the health of plant 

types at the leaf scale using hyperspectral vegetation indices (HVIs), various soil 

hydrocarbon parameters (SHP) of varying concentrations in the soil for the two types of 

sample locations: upland and mangrove were analyse. From the results of the TPH 

concentration, a higher toxicity level was observed in the mangrove soil than in the land, 

with an average EC50  < 5000 mg L-1  (Figure 5.9a), while the land had many locations 

with EC50 > 10000 mg L-1. For the land sample locations, none of the soils was 

characterised as having high toxicity. However, high toxicity was found in mangrove 

soils. Mangrove forests have become a dumping ground for waste due to overpopulation 

and poor waste management strategies (Numbere, 2019a). The establishment of open 

 Plant Types 

mND 705 PRI NDVVI844,447 MDATT index 

R rs R rs R rs R rs 

(A) TPH  

 All plant -0.075 -0.153 -0.250 -0.205 0.071 0.022 0.091 0.106 

 Awolowo 0.007 0.025 -0.135 -0.003 0.174 0.179 0.034 -0.091 

 Elephant -0.070 -0.311 0.106 -0.124 0.247 0.173 0.042 0.190 

 Mango 0.312 0.058 0.265 0.232 0.143 0.058 -0.582 -0.116 

 Palm Tree -0.209 -0.095 -0.323 -0.438 -0.147 -0.105 0.051 0.046 

  Mangrove -0.683 -0.500 -0.351 -0.667 0.368 -0.476 0.275 0.524 

(B) TOC  

 All plant -0.585 -0.227 -0.537 -0.459 -0.031 -0.027 0.510 0.170 

 Awolowo 0.374 0.522 -0.017 0.016 0.486 0.621 -0.279 -0.500 

 Elephant -0.018 -0.011 -0.158 -0.225 0.032 0.110 -0.164 -0.286 

 Mango -0.725 -0.543 -0.339 -0.029 -0.564 P 0.437 0.371 

 Palm Tree 0.218 0.273 -0.324 -0.413 0.289 0.315 -0.359 -0.483 

  Mangrove -0.276 -0.357 -0.240 -0.119 -0.252 -0.095 0.654 0.405 

(C) EC50 

 All plant 0.418 0.379 0.198 0.214 -0.099 0.182 -0.379 -0.363 

 Awolowo 0.254 0.104 0.138 -0.115 0.107 -0.198 -0.301 -0.104 

 Elephant 0.233 0.137 -0.240 -0.093 -0.344 -0.280 -0.217 -0.126 

 Mango 0.416 0.600 -0.343 -0.314 0.335 0.543 -0.264 -0.657 

 Palm Tree -0.225 -0.336 -0.331 -0.098 -0.323 -0.371 0.200 0.210 

  Mangrove 0.563 0.333 0.531 -0.024 0.627 0.190 -0.870 -0.381 
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waste disposal in coastal areas has also contributed to soil and water quality changes in 

mangroves (Numbere, 2019b). A significant amount of crude oil has been discharged into 

coastal environments, and mangroves are extremely responsive to oil and industrial waste 

(Onyena & Sam, 2020). The mangroves act as sinks, retaining pollutants from 

contaminated tidal water (TRCC, n.d.). Equally, most oil spills on land close to the 

shorelines are washed into the mangroves, contributing to the high toxicity of mangrove 

soil in the Niger Delta. 

Similarly, the TOC (%) has a varying concentration for both the mangrove and the 

dryland soil samples, with the mangrove having a very high level of TOC (%) compared 

to land (Figure 5.9b). The average TOC (%) concentration for the combined soil samples 

is 6.10 wt%, while the mangrove and dryland have averages of 12.9 wt% and 1.40 wt%, 

respectively. The TOC (%) range is between 0.61 - 26.17 wt% for mangroves and 0.5-

2.21 wt% for land. The minimum standard threshold value of source rock for hydrocarbon 

generation in the Niger Delta is 0.5 wt% (Fadiya et al., 2020; Oyonga, Itam, & Etete, 

2019). The average values for all combined samples, mangrove and dryland, are above 

the minimum threshold. Additionally, all the results show that the TOC (%) in mangroves 

is above the threshold, while only one site (P8) is at the minimum threshold for dryland. 

Mangrove forests store five times more carbon per hectare than most other tropical forests 

around the world because their ability to store such large amounts of carbon is, in part, 

due to the deep, organic-rich soils in which they thrive (Onyena & Sam, 2020). Studies 

by Seiter et al. (2004) discovered that the world's highest TOC (%) contents are observed 

in the Atlantic Ocean along the West African continental margin, especially off Namibia, 

offshore the Congo mouth and along the West African margin. The implication of this 

result has revealed that the Niger Delta mangrove has one of the highest TOC (%) 

concentrations globally, rated as excellent with an average of 12.8 wt%. In comparison, 

dryland is rated good, with an average of 1.4 wt%, based on the rating of TOC (%) as 

poor (<0.5%), fair (0.5% - 1.0%), good (1.0% - 2.0%) or excellent (> 2.0%) (Onyena & 

Sam, 2020). The results from these studies recorded the highest TOC (%) compared to 

studies by Onyena & Sam (2020) of 6.97 wt%, Fadiya et al. (2020) 2.27 wt%, Umar et 

al. (2021) 8.11 wt% and Falebita et al. (2015) between 7.56 and 12.44 wt% in the Niger 

Delta. 

In general, the TPH concentration in the study area was below the Environmental 

Guideline and Standards for the petroleum industry in Nigerian (EGASPIN) soil/sediment 
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intervention values for minerals (5000 mg/kg-1), except for sample P20 (mangrove) 

(Figure 5.9c), which was above the EGASPIN intervention values by approximately 

37000 mg/kg-1. Previous measurements of TPH in the Niger Delta by Adeniji et al. (2017) 

and Alinnor & Nwachukwu (2013) were all below the EGASPIN intervention value 

limits. In contrast, Little et al. (2018) and UNEP (2011) had measurements both below 

and above the EGASPIN intervention value limits, similar to this study's findings. 

Different study locations could be the reason for the disparity with Adeniji et al. (2017) 

and Alinnor & Nwachukwu (2013) findings, who all had their TPH values below 

EGASPIN intervention value limits. 

5.6.2  Relationship between TPH and other soil parameters  

The presence of hydrocarbons in the soil could affect many soil properties (Egobueze et 

al., 2019), which could affect the vegetation's health. It is important to determine if the 

presence of one parameter affects the values of the other and how this could also affect 

the health condition of the vegetation. The increase in the concentration of TPH could 

lead to an increase or decrease in other soil parameters crucial for enhancing or 

diminishing plant health.  The cause of toxicity present in the Niger Delta mangrove soil 

is not primarily from oil spills alone but from other sources, such as agricultural chemical, 

industrial and domestic waste. This is because the correlation between the TPH and EC50 

for all vegetation and the mangrove is weak. However, a higher concentration of TPH 

might have led to an increase in the level of toxicity in the dryland soil, with the TPH and 

EC50 showing a moderate positive linear correlation for the dryland sample sites with R= 

-0.500 (Figure 5.10 e), given that lower EC50 values correspond to higher toxicity.  

Similarly, the TPH has no significant impact on TOC (%) for all the sampled locations 

(mangrove and dryland combined and for mangrove and dryland, respectively). This 

finding agrees with Osuji & Adesiyanan (2005), who did not find any significant 

correlation between TPH and TOC (%) in an environment impacted by the 1997 leakage 

of the high-pressure crude oil pipeline in Isiokpo, in the Niger Delta in south-east Nigeria.  

But the studies by Wang et al. (2009) discovered a significantly positive correlation 

between TOC (%) and TPH contents in oilfields in Momoge Wetland, China, with R = 

0.88, p < 0.05. The possible reason for the disparity in the findings between Wang et al. 

(2009) and Osuji & Adesiyanan (2005) and this study could be attributed to different 

geography, soil type and other environmental factors.  
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5.6.3 Health condition of plant types exposed to oil spills 

The hyperspectral reflectance for each plant shows that elephant grass has the highest 

spectral reflectance in the NIR region. At the same time, mangrove has the lowest 

reflectance of each plant type within the NIR region (700-1300 nm) (Figure 5.11). This 

result agrees with Jensen et al. (2007), who discovered that the reflectance of healthy 

grass was higher than that of healthy mangroves, which could represent the diverse 

environment (sand, water, etc.) mangroves grow in. Additionally, the reflectance for the 

same plant type for the upland sites in the Igwuruta area of Port Harcourt is higher than 

those near the shoreline in Bodo for Awolowo, elephant grass and oil palm trees (Figure 

5.12 a, b, and c), which suggests that they are healthier. Mango and mangrove were only 

found along the shoreline and could not be compared to upland and shoreline vegetation. 

This means that proximity to the sea could affect the spectral reflectance of vegetation. 

The mean spectral reflectance in the NIR region (700-1300 nm) for shoreline and upland 

vegetation shows that the highest range of spectral difference between shoreline and 

upland plant types is found in elephant grass. The shoreline vegetation in the Niger Delta 

is mostly flooded, which increases the chance of the upland being polluted more by the 

oil spill from the rivers, which could affect their reflectance. The marsh plant's spectral 

responses are predictably reduced in the near-infrared region as the canopies are 

progressively flooded (Kearney et al., 2009). 

5.6.4 Leaf chlorophyll content of vegetation 

One of the best remote sensing descriptors of chlorophyll concentration is the red edge 

(Filella & Peñuelas, 1994), whose shape and position are determined by chlorophyll 

content (Onisimo et al., 2007). The REP is based not on reflectance per se but rather on 

the wavelength position of the transition between low reflectance in the red region of the 

spectrum and high reflectance in the near-infrared region (Sims & Gamon, 2002), and it 

occurs between wavelengths of 680-750 nm.  The results show that elephant grass and oil 

palm trees have the highest chlorophyll contents among all the sampled vegetation types, 

with the REP moving toward a longer wavelength (Figures 5.14 and 5.15). Similarly, the 

mangrove is the most stressed plant. It has the lowest chlorophyll concentration among 

all plants, followed by awolowo grass and mango trees with the REP moving toward a 

shorter wavelength. The movement of REP to a shorter wavelength is a sign of plant stress 

or low chlorophyll concentration. In comparison, the movement of REP to a longer 

wavelength indicates less vegetation stress and higher chlorophyll concentrations (Piro et 
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al., 2017). The implication is that the chlorophyll content could affect the ability of each 

plant type to withstand external stresses, especially from hydrocarbon. However, this 

result may not imply the effect of hydrocarbons since some plants naturally have higher 

chlorophyll contents than other plant types. However, since all the samples were taken on 

sites exposed to a similar soil and hydrocarbon concentration level, further research is 

required on plants not exposed to hydrocarbons to determine if the chlorophyll 

concentration is similar for different plant types. 

5.6.5 Influence of soil hydrocarbon parameters on plant chlorophyll content  

Physical changes in plants can be related to oil pollution and other environmental stresses, 

which may be responsible for a plant's spectral changes (Adamu, 2016). Therefore, 

analysing the impact of hydrocarbons at the species/type level will identify specific plant 

species/types sensitive to petroleum pollution and others that are more tolerant to 

pollution (Arellano et al., 2017). The REP has demonstrated to be one of the best remote 

sensing descriptors of chlorophyll concentration (Curran et al., 1995; Filella & Peñuelas, 

1994). Based on the results presented in this chapter, despite some potential indications 

of the effect of TPH concentration on the chlorophyll content, overall, the TPH 

concentration did not significantly affect the chlorophyll content of any plants, except 

mangrove, which was negatively impacted to some extent. In fact, the chlorophyll content 

of Awolowo grass and mango trees was positively correlated. The reason for some impact 

on the mangrove could be due to lower chlorophyll content, which the impact of TPH 

might have caused.  

Similarly, the TOC (%) has a moderate positive impact on the chlorophyll content of 

Awolowo grass, oil palm tree and mangrove (Pearson’s), with Awowolo Awowolo being 

the most responsive. This was expected since a high TOC (%) concentration is generally 

good for plant growth. Despite the importance of TOC (%) to the plants, the chlorophyll 

of the mango trees shows an unusually strong negative correlation with TOC with rs = -

0.657 and R= -0.650 (Figure 5.17c). The mango trees may not require a high TOC (%) in 

the soil to maintain their health. 

5.6.6 Impact of soil hydrocarbon parameters on vegetation 

Remote sensing derived vegetation indices are evident in their use for effective detection 

and monitoring of the impacts of hydrocarbon spills on the health of vegetation 

(Kuppusamy & Ganesan, 2016). Similarly, Adamu et al. (2018) used broadband 
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vegetation spectral techniques to detect and monitor the impact of oil spills on vegetation 

in the Niger Delta using satellite-based indices. However, for this thesis, HVIs derived 

from field-based measurements were used to detect the impact of the SHP on common 

plant species in the Niger Delta. The HVIs have been developed and used to quantify the 

chlorophyll content and vegetation vigour, making them crucial in this study since field 

data on chlorophyll were not available. NDVVI844,447 was specifically developed for 

application on vegetation affected by oil pollution. The four HVIs, mND705 (Sims & 

Gamon, 2002), MDATT index (Lu et al., 2015), NDVVI844,447 (Onyia et al.,  2018), 

and PRI (Gamon et al., 1997), have been used to estimate chlorophyll content in the leaves 

of the different vegetation types. The correlation between the TPH and all the HVIs for 

all combined plants is weak for Spearman’s and Pearson’s correlation (Table  5.4a). It 

indicates that the vegetation is not significantly affected by TPH, especially when no 

particular plant type is considered. It shows the level of tolerance by the plant to the level 

of TPH in the Niger Delta. However, the EC50 has a moderate positive correlation with 

the mND705 and MDATT indices for both Spearmen’s and Pearson’s correlation, which 

indicates that the health of the plants is somewhat affected by the level of toxicity in the 

soil. Additionally, the strong negative correlation between TOC (%) and the mND705, 

MDATT index and PRI (Pearson’s correlation) and the moderate negative correlation 

with PRI (Spearman’s correlation) show that TOC (%) affects the health of the plant more 

than TPH and EC50, with the Pearson’s correlation indicating that the TOC (%) has a 

linear effect on the plants (Table 5.4). This was not expected since TOC (%) is a soil 

property that enhances plant growth. However, a better understanding will come at the 

plant-specific level. 

5.6.7 Impact of soil hydrocarbon parameters on the plant types 

Based on the correlation between TPH and the HVIs in Table 5.4a, the health of the 

mangrove is the most impacted by TPH. The mangrove vegetation exhibited the strongest 

negative correlation between TPH and mND705, MDATT index, PRI (Spearman's), and 

mND705 (Spearman's and Pearson's) with (R>0.5). This is anticipated as it is known that 

mangroves are very responsive to oil and industrial waste (Onyena & Sam, 2020). 

Similarly, the moderate negative correlation with PRI for oil palm (Spearman's and 

Pearson's) and mND705 for elephant grass (Spearman's ) makes them the next most 

affected plants by TPH in the Niger Delta. The lack of impact of TPH on Mango trees 

and Awolowo grass indicates that some plants have successfully grown to be resistant to 
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soil contamination by petroleum hydrocarbons in the Niger Delta. However, there is no 

literature to support this hypothesis with regard to the vegetation types in the Niger Delta. 

Previous studies by Ikhajiagbe & Akindolor (2016) and Rahbar et al. (2012) have shown 

that Awolowo grass tolerates oil contamination in the soil. Awolowo grass can reduce the 

concentration of heavy metals in polluted soils (Ayesa et al., 2018). The sunflower family 

(to which Awolowo grass belongs ) can survive soil hydrocarbon contamination of 

approximately 18,000 mg/kg by metabolic changes in chlorophyll a, total chlorophyll and 

carotenoids, showing no significant decrease under these conditions (Rahbar et al., 2012). 

The strong positive correlation between the TOC (%) and HVIs for Awolowo grass with 

R > 0.5 for MDATT index, NDVVI844,447 and mND705 in Table 5.4b is an indication of 

the importance of TOC (%) to Awolowo grass. TOC (%) provides energy for soil 

microorganisms, affects plant growth as an energy source, and triggers nutrient 

availability through mineralisation (Https://spectralevolution.com/, n.d.). The weak and 

negative correlation between TOC (%) and the HVIs was not expected. Surprisingly, the 

mangrove and mango were indifferent to TOC (%),  having a strong negative correlation 

with TOC (%),  which might have been caused by their constant exposure to the oil spill.  

The toxicity effect on the various vegetation types shows that each plant responds 

differently Table 5.4c. The level of toxicity might be responsible for the chlorophyll 

content in each plant type, as indicated in the REP in Figure 5.14, because mango and 

mangrove have the lowest chlorophyll content and are incidentally affected by toxic 

concentrations in the soil. The strong impact of EC50 on the health of mango and 

mangrove makes them the most vulnerable to soil toxicity among the plant types. 

Similarly, the moderate impact of toxicity on the health of Awolowo grass shows that it 

is not tolerant of toxic soil (though it is tolerant to TPH). In contrast, elephant grass and 

oil palm tree are not affected by soil toxicity (though they are moderately affected by 

TPH).   

 In the summary of the correlation analysis between soil hydrocarbon parameters (SHP) 

and HVIs for each vegetation type and the highest R values, the MDATT index correlated 

better than all the HVIs for at least each of the three correlations between the HVIs and 

SHP for each of the five plant types with four strong correlations. The MDATT index 

could be used for monitoring the health of mango trees and the mangrove since it 

correlates with the SHP for TPH and EC50 for the mango trees and EC50 and TOC (%) 

for the mangroves. The MDATT index has been developed to remotely estimate 
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chlorophyll content in plants with varying leaf surface structures (Lu et al., 2015).  

NDVVI844,447 is the next best performing index, having corrected better in four 

instances with one strong correlation (Awolowo grass) across three plant types between 

HVIs and SHP. It could be used for awolowo grass, with it having a better correlation 

with TPH and TOC (%). NDVVI844,447 was developed for monitoring biodiversity 

indicators in oil-polluted areas in the Niger Delta. Although mND705 has three strong 

correlations with SHP for elephant grass (TPH), mango (TOC (%)) and mangrove (TPH). 

Hence, it could not be recommended for any plant species except those SHPs correlated 

better. The PRI is the worst performing HVI. It correlated better with oil palm (TPH).  

However, the lack of major impact of TPH and toxicity on the health/chlorophyll of 

different plant types apart from the mango (toxicity) and mangrove (TPH), which has a 

moderate correlation, could result from many factors, including the methodological and 

environmental. Assessing chlorophyll content in a diverse tropical forest is challenging 

due complex forest structure in the light interaction in the canopy and the resulting 

vertical photosynthesis gradient, the required rapid analysis of sampled leaves to preserve 

their biophysical and biochemical integrity (Arellano et al., 2017). But for this study, 

reasonable precautions were taken to minimise the effect of sampling and analyses 

method on the result. The leave samples were kept in a cooling box filled with an ice 

block, and all the leaves samples were analysed within two hours of collection. The light 

box was painted black and covered with black cloth to prevent interference from external 

sources. An alternative laboratory analysis will be direct field data capture. But this might 

be difficult to achieve for a place like the Niger Delta with a high-security risk. Similarly, 

a tree like a mango or oil palm might need climbing for spectral measurement, which 

might be difficult. Another factor, which is likely in the case of the study, is 

environmental.  The constant exposure of the plants to industrial oil waste and oil spills 

might have made them develop some form of resistance to the impact of the oil spills and 

toxicity. 

5.7 Conclusion 

To determine the impact of soil hydrocarbon parameters (SHP) on the health of plant 

types at the leaf scale using hyperspectral vegetation indices (HVIs) in the Niger Delta, 

the Red edge position and five hyperspectral vegetation indices were used. The soil 

hydrocarbon parameters considered are Total petroleum hydrocarbon(TPH), Microtox 

(EC50 mg L-1) and Total Organic Carbon (TOC (%)). For various concentrations of SHP, 
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the level of pollutant/toxicity in the soil in which plants are most affected is higher in the 

Mangrove soil than in dryland, which could have resulted in the low chlorophyll content 

in the mangrove. Also, the mangrove has a higher concentration of TOC (%), with an 

average concentration nine times higher than that of dryland soil, making it one of the 

soils with the highest concentration of TOC (%) in the world. The difference in TPH 

concentration between the dryland and the mangrove is small and falls within the 

permissible limit in Nigeria, except for one point in the mangrove. However, the TPH 

permissible limit in Nigeria is higher than in many countries. 

For the impact of SHP on different plants,  the mangrove vegetation is the most impacted 

plant by TPH and toxicity. In general, Awolowo grass is tolerant to all soil hydrocarbon 

properties. However, mango is the most tolerant to TPH but highly susceptible to toxicity. 

Therefore, there is a need for a policy that could reduce the quantity of pollutants in 

mangrove soil. The TPH and the toxicity in the mangrove might have led to the negative 

response of the mangrove to TOC (%), despite having nine times the average TOC (%) 

concentration than the dry land. The next plants impacted by TPH are oil palm trees and 

elephant grass. 

Among the HVIs, the MDATT index performed strongest in detecting the impact of soil 

hydrocarbons on the various plant types in the Niger Delta. Therefore, it is recommended 

that a combination of field chlorophyll data with an HVIs study should be conducted to 

confirm the effectiveness of the MDATT index and other HVIs. The next chapter will 

discuss monitoring the impact of oil spills on different vegetation types at the plot scale, 

considering vegetation types, instead of being plant specific. This analysis will leverage 

the available spatiotemporal data from satellite based derived NDVI. 
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Chapter 6 Monitoring the impact of oil spills on vegetation at 

the plot scale.   

Part of the work in this chapter has been presented as: 

Kuta A. A., Grebby, S. and Boyd, D. S. (2019). Determining the impact of oil spills 

on vegetation in the Niger Delta using satellite imagery, AfricaGIS 2019 Innovations in 

Geospatial Technologies for Achieving Sustainable Development Goals in Africa, 

Kigali, Rwanda, 18 - 22 November 2019,  Kigali Conference and Exhibition Village 

(KCEV).   

6.1 Introduction 

The effect of oil extraction activities on land cover, especially vegetation, could be 

devastating, leading to either the destruction or degradation of vegetation, depending on 

the type. Studying the impact of oil spills on vegetation on a plot scale in the Niger Delta 

region provides the practical/operational approach to detect and monitor the impact of oil 

spills on vegetation over a large, partially inaccessible area like the Niger Delta. Unlike 

the investigation at the leaf scale level, the vegetation study at the plot scale provides 

spatiotemporal data that enables monitoring vegetation health conditions before and after 

oil leakage or spill. Oil leakage or pollution may affect vegetation health and vigour 

(Adamu et al., 2015). Therefore, monitoring the health of vegetation is important in many 

ways and has diverse applications. For example, it can be used to forecast crop yield 

(Kogan & Salazar, 2012), assess natural forest expansion (Mancino et al., 2014), 

biodiversity and conservation (Ochege et al., 2017), to undertake drought monitoring 

(Amani et al., 2017; Kogan et al., 2017), and to detect oil pollution in vegetation (Adamu 

et al., 2015), among others. The two main approaches for assessing the health of 

vegetation are field-based and remote sensing. Some advantages of the field-based 

approach are data acquisition finer or leaf scale, allowing for under canopy data 

collection, and flexibility of acquiring data when needed. But despite the advantages of 

the field-based approach, its major disadvantage is that it requires considerable time, 

effort and budget, typically restricting their application to small areas and unsuitable for 

regional and global coverage (Tehrany, Kumar & Drielsma, 2017). Also, the field 

approach does not offer information on the health of the vegetation before the first field 

survey, limiting a spatiotemporal analysis. For places like Niger Delta, a field-based 

approach is unsuitable for other reasons, such as security concerns and difficult terrain. 
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Satellite remote sensing has become essential to the oil spill response (Fingas & Brown, 

2014). Unlike field base approaches, satellite remote sensing provides a means of 

overcoming the limitations of field-based approaches. It has proven to be a useful tool in 

monitoring vegetation health and status over large, polluted areas (Adamu, 2016). A key 

advantage of this approach is that imagery is routinely acquired, which permits long-term 

spatiotemporal analysis of the vegetation canopy and limits the need for site visits. Other 

is it allows coverage of very large areas at a regional and global scale and collection of 

data over various scales and resolutions.  

Vegetation indices (VIs) derived from airborne and satellite images represent a powerful 

and effective way of monitoring vegetation status, growth, and biophysical parameters 

(Villa et al., 2014). The derivation of VIs is based on using electromagnetic wave 

reflectance information from canopies obtained using passive sensors (Xue & Su, 2017). 

Choosing a VI for a particular application is a difficult task since there is currently no 

universally optimum VI because of the complexity of the different combinations of 

illumination conditions, waveband configurations, instrumentation, platforms and 

resolutions in each case (Xue & Su, 2017). Its value is used to quantify vegetation health 

or structure. Changes in vegetation reflectance spectra have been shown at visible (VIS: 

400–700 nm), near-infrared (NIR: 700–1300 nm) and shortwave infrared (SWIR: 1300–

2500 nm) ranges in response to oils and hydrocarbons (Khanna et al., 2013; Mishra et al., 

2012; Pavanelli & Loch, 2018). Time series of the normalised difference vegetation index 

(NDVI) derived from satellite sensors are vital data to study vegetation dynamics (Guo 

et al., 2017) and have proven to be a robust indicator of terrestrial vegetation productivity 

(Wang et al.,  2001). It can be used to estimate vegetation health and monitor changes in 

vegetation (Huang, Dai, Wang, & Han, 2014), especially in oil spill-impacted vegetation 

such as the Niger Delta region in Nigeria.  

NDVI is a quantitative index often used for a quantitate proxy measure of vegetation 

health, cover and phenology (life cycle stage) over large areas 

(www.earthdatascience.org). Published studies on monitoring the impact of oil spills 

using satellite-derived VIs are scarce, especially in the Niger Delta region. Previous 

studies that examine the effect of oil spills on the health of vegetation in the Niger Delta 

region using satellite-derived VIs include Adamu (2016), Adamu et al. (2018) and Adamu 

(2015). These studies investigated the influence of oil spill volume and time gap (number 

of days between oil spill events and image acquisition date) using various VIs in the 
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mangroves of the Niger Delta region. In addition, Ozigis et al. (2019) identified oil-

impacted land in the Niger Delta region of Nigeria by using a random forest classifier in 

conjunction with Landsat 8 OLI-derived vegetation health indices. Onyia, Balzter & 

Berrio (2018) monitored the impact of oil pollution and environmental pressure on 

biodiversity at a regional scale by integrating a Hyperion-derived normalised difference 

vegetation vigour index (NDVVI) and field data to develop a set of spectral metrics for 

biodiversity monitoring. 

The studies by Adamu et al. (2016) revealed that five VIs (NDVI, SAVI, ARVI2, G/NIR 

and G-SWIR) detected oil spills, with NDVI producing better results than NDWI. 

However, the studies only focus on the mangrove vegetation and compare, in some cases, 

absolute NDVI values before and after spills. Furthermore, determining the change in 

NDVI before and after spills would be more appropriate to negate the impact of external 

factors on the NDVI, such as the soil nutrients and water content, among others, which 

may be higher at spill sites than at no-spill sites, which could lead to some spill sites 

having a higher NDVI value than no-spill sites. Hence, there is a need to look at the 

change in NDVI values at spill sites and compare them with no-spill sites for different 

types of vegetation in the Niger Delta to better understand the effect of oil spills. To fill 

the research gap identified in section 1.3, this chapter aims to assess the effects of oil 

spills on the health of different vegetation types at the plot scale using satellite-based 

Normalised Difference Vegetation Index (NDVI) from Landsat data. This will be 

achieved by (1) analysing the impact of oil spill volume and time after the oil spill spectral 

indices of various types of vegetation in an oil-polluted environment and (2) to undertake 

temporal monitoring of different types of vegetation to determine their medium- and long-

term responses to oil spills. For this study, the vegetation types are divided into three 

categories: dense vegetation (DV), sparse vegetation (SV) and mangrove vegetation 

(MV). 

6.2 Methodology 

Figure 6.1 outlines the methodological approach taken in this chapter.  
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Figure 6.1: Methodology flow chart. 
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6.2.1 Data 

6.2.1.1 Satellite-derived vegetation index (NDVI) 

The health of vegetation was determined using Landsat 7 Enhanced Thematic Mapper 

Plus (ETM+) on-demand through EarthExplorer and ESPA satellite imagery level 2 for 

the period 2005–2018, which is a readily generated NDVI product from Landsat 

collection 1 data. All the satellite NDVI images were for the dry season from December 

to February to minimise cloud cover and temperature variability since the three months 

have almost the same weather conditions (with almost zero precipitation).  NDVI was 

chosen because, from various studies, it has proven to be a robust VI in monitoring the 

impact of oil spills on the health of vegetation. The data comprise Landsat Surface 

Reflectance-derived spectral indices that are atmospherically corrected, orthorectified 

and downloaded from https://espa.cr.usgs.gov/. All the imageries are calibrated for time-

series analysis, geometrically corrected and projected to WGS84 Universal Traverse 

Mercator Projection Zones 31 and 32 (Table 6.1). 

Table 6.1: Landsat sensor platforms, paths/rows and pixel sizes. 

Satellite Sensor Path/Row Years of images 

acquisition 

UTM 

Zone 

Pixel 

sizes(m) 

L7 ETM+ 188/56  

 

2006 to 2018 

 

 

32 30 

L7 ETM+ 188/57 32 30 

L7 ETM+ 189/56 32 30 

L7 ETM+ 189/57 31 30 

L7 ETM+ 190/56 31 30 

6.2.1.2 Oil spill data 

The oil spill data downloaded from the Nigerian Oil Spill Monitor website 

(https://oilspillmonitor.ng/) in section 3.3.3 were used to analyse the oil spill incidences 

recorded in Nigeria from 2006 to 2018 with geographic coordinates. The data was 

compiled by the National Oil Spill Detection and Response Agency (NOSDRA) which 

relies on the voluntary support of oil companies to provide the spill data logistics, 

estimated spill volumes estimates etc.  The oil spill volume is calculated through site visit 

by joint investigation team which includes representatives of regulatory agencies, the oil 

company, the affected community, and the security forces through a process called joint 

investigation visits (JIV). The report of JIV join provides information on the oil spill, its 

causes, scale and effects on the environment. 
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 Figure 6.2 shows the distribution of oil spill occurrences used for extracting the NDVI 

values used to determine the effect of oil spills on vegetation. Figure 6.2a shows the oil 

spill points on the vegetation types used to investigate the factors (volumes of spills and 

time gap between oil spills and image acquisition date) influencing the detectability of oil 

spills using spectral indices. Figure 6.2b shows the oil spill points for temporal monitoring 

of different vegetation types affected by oil spills in the Niger Delta. The circle, square, 

and diamond shapes represent spill sites, and no-spill sites represent dense, sparse and 

mangrove vegetation. Green indicates no-spill sites (control), while red indicates spill 

sites. 
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Figure 6.2. Spatial distribution of oil spills sample points for monitoring the effect 

of oil spills on vegetation (a) and location of spills and no spills sites for temporal 

monitoring of oil spill impacts on vegetation. 

(a) 

(b) 
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6.2.2 Methods 

6.2.2.1 Analysis of the effect of oil spills on vegetation 

The oil spill points within and around the study area were selected to extract NDVI values 

for the chosen spill sites for analysis. The total number of sample points used for 

determining the impact of oil spill volume, the time gap between oil spills and image 

acquisition date on the vegetation health are 55 for dense vegetation, 60 for sparse 

vegetation and 61 for mangrove vegetation (Table 6.2) out a total number of 8220 oil spill 

incidents points a subset of 8612 recorded oil spill incident with coordinate values. The 

shapefiles of oil spills with a minimum of 10 bbl were overlaid in GIS on the NDVI 

image. The time series Google world imagery served as a guide in identifying the correct 

vegetation types for selecting sites to extract NDVI values using a 1x1 pixel window 

before and after spills. The first available images acquired after the spills were used to 

derive the corresponding NDVI for comparison with spills volume and the time gap 

between oil spills dates and the image acquisition date. The time gap was computed 

between the recorded oil spills and the NDVI image acquisition dates. 

The value of NDVI varied between − 1.0 and + 1.0, and the increasing amount of positive 

NDVI values indicates an increase in the amounts of green vegetation, while NDVI values 

near zero and decreasing negative values indicate non-vegetated features, such as barren 

surfaces (rock and soil), water, snow, ice, and clouds (Saravanan at el., 2019). The higher 

the value of NDVI, the healthier and dense the vegetation, while the lower the NDVI 

values are, the less healthy or dense the vegetation. Usually, if the traditional method is 

used, the NDVI is calculated as a ratio between the red (R) and near-infrared (NIR) sing 

equ1 

 NDVI =
NIR−RED

NIR+RED
              Eq. 6.1 

The RED and NIR represent the spectral reflectance measurements acquired in the red 

(visible) and near-infrared regions. 

The temporal monitoring of vegetation health following an oil spill involved comparing 

the NDVI values at spill sites (SS) with NDVI values at control sites (CS), where no spills 

had occurred. Spill sites were selected for each land cover type; 8 for dense vegetation 

and sparse vegetation and 6 for mangrove vegetation, and a time series of NDVI values 

were extracted to cover a period before spills and four to ten years after spills (Table 6.3) 
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to assess how the health of vegetation varied in comparison to sites not exposed to oil 

spills. Points with oil spill volumes above 225 bbl were selected for this analysis based 

on the minimum volume for which the impact of oil pollution on vegetation can be 

detected (Adamu et al., 2016). At each of the oil spill locations, average values of nine 

pixels around the polluted pixel (in a 3 × 3 window pixels) were sampled for extracting 

the vegetation indices because oil from spills may travel from the point of source, thereby 

affecting neighbouring surroundings (Adamu et al., 2018; Ozigis et al.,  2019) The same 

sampling approach was also used for no-spill sites. The time ranges in years ranged from 

four to up to 10 years, depending on when the oil spills occurred. Instead of using the 

NDVI values for the analysis, the changes in NDVI for SS and CS were used, and the no-

spill locations were proximal to reduce the effect of external factors on the NDVI, such 

as availability of water, sunlight, soil composition, variability in weather conditions, etc. 

Some oil spill sites may have an initial higher NDVI value than those at no-spill sites and 

may remain higher after the spill than the no-spill site if exposed to different external 

factors, which may affect the analysis. The values of change in NDVI were computed 

using the following equation: 

ΔNDVI= NDVIAS
1…... NDVIAS

s -NDVIBS        Eq. 6.2 

ΔNDVI and NDVIBS are changed in NDVI and NDVI before the oil spill, respectively, 

while NDVIAS
1and NDVIAS

s are the first and subsequence NDVI after a spill. 

Table 6.2 shows the years of spills, the number of sample points per year for each type of 

vegetation, the NDVI image acquisition date for each year from 2006 to 2018, and the oil 

spill dates from 2006 to 2017. Table 6.3 shows the sample point spill dates, spill volumes, 

years after spills and NDVI date ranges for dense vegetation, sparse vegetation and 

mangrove vegetation. Minimum and maximum oil spills volumes for each vegetation type 

are 280 and 1500 bbl for dense vegetation, 228 and 1500 bbl for sparse vegetation and 

264 and 2500 bbl for mangrove vegetation (Table 6.3). 
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Table 6.2: Year of oil spills, numbers of sample points, and NDVI acquisition dates 

used to assess the effect of oil spills on different vegetation types. 

 Sample Points NDVI acquisition Dates 

YOS DV SV MV DV SV MV 

2006 1  1 09/12/2006  09/12/2006 

2007 1 3 1 14/02/2008 14/02/2008 14/02/2008 

2008 1 3 1 30/12/2008 07/12/2008, 30/12/2008 30/12/2008 

2009  7 3  18/01/2010, 21/01/2011 02/01/2010, 21/01/2011 

2010 6 9 4 21/01/2011 21/01/2011, 11/01/2011 14/01/2011, 21/01/2011 

2011 2 6 4 17/01/2012 

17/01/2012, 09/02/2012, 

10/01/2013 
09/02/2012, 10/01/2013 

2012 2 5 5 10/01/2013 10/01/2013, 13/01/2014 10/01/2013, 13/01/2014 

2013 2 3 10 21/12/2013 13/01/2014 13/01/2014, 27/12/2015 

2014 11 4 18 

16/01/2015 

,09/01/2015 09/01/2015, 16/01/2015 
09/01/2015, 16/01/2015 

2015 11 14 9 03/01/2016 03/01/2016, 05/01/2017 03/01/2016, 05/01/2017 

2016 11 5 4 05/01/2017 

29/12/2016, 05/01/2017, 

08/01/2018 05/01/2017 

2017 7 1 1 

01/01/2018,

08/01/2018 08/01/2018 01/01/2018 

Total 55 60 61    

Note: YOS=Year of Spill, DV=Dense vegetation, SV= sparse vegetation, 

MV=mangrove vegetation. 
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Table 6.3: Number of points, date and volumes of spills, number of years after spills 

for some selected spill points used to analyse the temporal effect of oil spill on change 

in NDVI values of spill sites. 

Sample points Spill date Spill Volumes Years after spill NDVI date range 

SSD1 01/10/2014 280.0 4 2014 to 2018 

SSD2 13/10/2011 345.8 7 2012 to 2018 

SSD3 25/06/2014 367.0 4 2014 to 2018 

SSD4 14/11/2014 367.0 4 2014 to 2018 

SSD5 09/04/2011 429 6 2012 to 2017 

SSD6 25/04/2010 1000.0 6 2011 to 2018 

SSD7 31/10/2011 1430.0 7 2012 to 2018 

SSD8 25/04/2010 1500.0 7 2010 to 2018 

SSS1 19/01/2014 228 4 2013 to 2017 

SSS2 17/09/2013 235 5 2012 to 2017 

SSS3 24/06/2010 260 8 2010 to 2017 

SSS4 08/08/2008 440.3 10 2008 to 2018 

SSS5 22/01/2012 529.5 7 2011 to 2018 

SSS6 23/12/2010 802.5 7 2010 to 2017 

SSS7 25/09/2010 1000 5 2010 to 2016 

SSS8 05/05/2008 1500 10 2008 to 2017 

SSM1 14/08/2013 264 4 2013 to 2018 

SSM2 26/06/2010 800 7 2010 to 2018 

SSM3 01/02/2010 1020 4 2010 to 2018 

SSM4 05/08/2010 1510 8 2009 to 2018 

SSM5 15/05/2009 1554 6 2008 to 2018 

SSM6 15/06/2009 2500 6 2008 to 2018 

SSD=sample site Dense; SSS=sample site Sparse; SSM=sample site mangrove. 

 

6.2.2.2 Statistical analysis 

Statistical methods provide tools for making quantitative decisions about a process or 

processes (Dahiru, 2011). Regression is a statistical technique used for prediction and 

causal inference to determine the linear relationship between two or more variables 

(Campbell & Campbell, 2008) and is used for forecasting and time-series modelling. 

Here, regression analysis was carried out to determine the impact of oil spill volume, the 



 

165 

 

time gap between oil spills and image acquisition date on vegetation health (i.e., NDVI), 

and the nature of any relationship between the variables and NDVI. For the temporal 

monitoring of vegetation health, students’s paired t-tests were used to compare the change 

in NDVI values from spill sites with values from paired non-spill sites for several years 

to see how each vegetation type responds to being subjected to oil spills and to help 

understand the effect of time on vegetation health recovery. A paired t-test was used to 

compare the two population means of the two samples. Observations in one sample are 

paired with observations in the other sample (Shier, 2004) to determine the level of 

significance of any differences. 

 

6.3  Results 

6.3.1 NDVI values after spills, volumes of spill and time gap after the spill. 

Table 6.4-6.7 shows the number of oil spill points, NDVI values after spills, volumes of 

spills in units of barrels, and the number of days (time gap) between the oil spill date and 

image acquisition date for dense, sparse and mangrove vegetation for various spill sites 

(ss). The highest spill volume for dense vegetation is 1894 bbl, 6866.16 bbl for sparse 

vegetation and 5000 bbl for mangrove vegetation. The lowest spill volume is 10 bbl for 

all vegetation types. Additionally, the volume of spills did not show a proportional effect 

on the NDVI values of some sites, especially the dense vegetation and sparse vegetation, 

i.e., There are sites with lower oil spill volumes having lower NDVI values. At the same 

time, others have large oil spill volumes and high NDVI values. The mangrove (Table 

6.7) tends to have more sites with lower NDVI values at higher oil spill volumes than the 

remaining dense vegetation and sparse vegetation. 

Tables 6.4-6.7 show the highest and lowest NVDI values in red and green bold text. It 

can be observed that dense vegetation has the highest NDVI value of 0.6611 at volume 

108 bbl in Table 6.4 (DSS25), followed by sparse vegetation with 0.5825 at volume 22.15 

in Table 6.5 (SSS12) and mangrove vegetation with 0.3913 at 53 in Table 6.6 (MSS25). 

Similarly, the mangrove vegetation has the lowest NDVI value of 0,0404 at 20 bbl 

(MSS15), followed by SS with 0.0428 at 14 bbl (SSS4) and dense vegetation with 0.1069 

at 138 bbl (DSS 28), as shown in Tables 6.4, 6.5 and 6.6, respectively. 
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Table 6.4: Number of sample points, NDVI values after an oil spill, the volume of an 

oil spill, and the time gap between the oil spills and image dates for dense vegetation. 

SS NDVI Volume (bbl) DAS SS  NDVI Volume (bbl) DAS 

DSS1 0.2808 10 77 DSS29  0.5570 150 80 

DSS2 0.2402 10 83 DSS30  0.3857 180 30 

DSS3 0.3277 10 283 DSS31  0.2984 180 139 

DSS4 0.267 10 153 DSS32  0.4110 182 80 

DSS5 0.3485 10 108 DSS33  0.4339 202 65 

DSS6 0.4405 14 10 DSS34  0.1790 204 286 

DSS7 0.3323 15 187 DSS35  0.2553 221 256 

DSS8 0.5988 15 51 DSS36  0.1393 251 239 

DSS9 0.1429 17 55 DSS37  0.4879 266 151 

DSS10 0.3115 20 74 DSS38  0.1528 280 107 

DSS11 0.3619 23 187 DSS39  0.1922 311 19 

DSS12 0.5878 25 198 DSS40  0.4496 344 303 

DSS13 0.5726 27 51 DSS41  0.1650 367 205 

DSS14 0.3264 29 283 DSS42  0.3802 461 129 

DSS15 0.182 30 369 DSS43  0.2110 725 204 

DSS16 0.4301 30 248 DSS44  0.3525 743 287 

DSS17 0.1935 31 157 DSS45  0.5237 768 176 

DSS18 0.579 41 85 DSS46  0.3559 797 135 

DSS19 0.245 50 291 DSS47  0.3782 811 93 

DSS20 0.5804 60 164 DSS48  0.5152 948 180 

DSS21 0.3647 61 266 DSS49  0.3261 1000 271 

DSS22 0.2889 70 286 DSS50  0.3938 1066 190 

DSS23 0.2469 100 316 DSS51  0.3272 1100 360 

DSS24 0.2091 100 196 DSS52  0.5524 1200 140 

DSS25 0.6011 108 18 DSS53  0.2794 1455 93 

DSS26 0.3854 127 49 DSS54  0.3000 1500 271 

DSS27 0.4232 131 169 DSS55  0.2255 1894 167 

DSS28 0.1069 138 174      

DSS=dense vegetation spill sites, DAS=days after a spill, red and green bold 

text=highest and lowest NDVI values. 
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Table 6.5: Number of sample points, NDVI values after an oil spill, the volume of an 

oil spill, and the time gap between the oil spills and image dates for sparse vegetation. 

SS NDVI Volume (bbl) DAS SS NDVI Volume (bbl) DAS 

SSS1 0.0442 10 303 SSS32 0.4183 100 331 

SSS2 0.5613 10 234 SSS33 0.1808 100 585 

SSS3 0.1611 12 107 SSS34 0.2559 100 425 

SSS4 0.0428 14 380 SSS35 0.3261 150 532 

SSS5 0.3018 15 577 SSS36 0.2845 160 382 

SSS6 0.3948 15 475 SSS37 0.3301 188.67 82 

SSS7 0.5169 19.3 158 SSS38 0.0441 200 192 

SSS8 0.3914 19.36 62 SSS39 0.5696 210 56 

SSS9 0.2895 20 216 SSS40 0.3523 234 355 

SSS10 0.5175 20 346 SSS41 0.2318 250 308 

SSS11 0.0445 20 101 SSS42 0.1255 260 204 

SSS12 0.5825 22.15 340 SSS43 0.3257 275 309 

SSS13 0.3095 23 628 SSS44 0.3973 285 279 

SSS14 0.4512 25 211 SSS45 0.3398 306.14 295 

SSS15 0.4423 30.5 422 SSS46 0.1822 350 365 

SSS16 0.339 32 155 SSS47 0.3488 440.3 144 

SSS17 0.2923 34.84 338 SSS48 0.3615 500 305 

SSS18 0.3424 35.33 36 SSS49 0.4545 529.5 354 

SSS19 0.2481 40 548 SSS50 0.3394 630 118 

SSS20 0.2786 45 613 SSS51 0.3946 637 114 

SSS21 0.2633 47 178 SSS52 0.2873 802.5 22 

SSS22 0.2724 50 180 SSS53 0.1786 862.6 217 

SSS23 0.1104 53 135 SSS54 0.3018 864 106 

SSS24 0.2804 64 101 SSS55 0.3004 946 118 

SSS25 0.16 70 135 SSS56 0.2678 1000 118 

SSS26 0.2616 70.5 130 SSS57 0.1630 1430 101 

SSS27 0.3122 75 484 SSS58 0.2062 1500 216 

SSS28 0.3293 75.5 184 SSS59 0.3622 2664 252 

SSS29 0.2843 80 126 SSS60 0.3171 6866.16 330 

SSS30 0.1987 90 47 SSS60 0.1573 1115 452 

SSS31 0.337 92.8 497     

SSS=sparse vegetation spill sites, DAS=days after a spill, red and green bold 

text=highest and lowest NDVI values. 
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Table 6.6: Number of sample points, NDVI values after an oil spill, the volume of an 

oil spill, and the time gap between the oil spills and image dates for mangrove 

vegetation. 

SS NDVI Volume (bbl) DAS SS NDVI Volume (bbl) DAS 

MSS1 0.1329 10 185 MSS32 0.1593 150 284 

MSS2 0.1516 10 322 MSS33 0.0801 200 19 

MSS3 0.1568 10 195 MSS34 0.2132 246 383 

MSS4 0.1953 10 71 MSS35 0.0967 250 157 

MSS5 0.3894 10 216 MSS36 0.2441 250 187 

MSS6 0.1115 10 283 MSS37 0.3018 264 152 

MSS7 0.2719 10 243 MSS38 0.0845 270 403 

MSS8 0.1932 10 185 MSS39 0.2205 290 404 

MSS9 0.1922 15 582 MSS40 0.1822 350 365 

MSS10 0.2444 15 368 MSS41 0.1091 361 302 

MSS11 0.182 15 142 MSS42 0.1586 400 22 

MSS12 0.2373 17 66 MSS43 0.0601 479 176 

MSS13 0.3379 19 301 MSS44 0.2494 561 586 

MSS14 0.2458 20 262 MSS45 0.1592 570 282 

MSS15 0.0404 20 46 MSS46 0.0899 634 1029 

MSS16 0.1378 20 143 MSS47 0.2077 648 95 

MSS17 0.1812 25 350 MSS48 0.1055 725 156 

MSS18 0.229 26 293 MSS49 0.2116 800 209 

MSS19 0.2487 30 92 MSS50 0.3319 1000 333 

MSS20 0.2384 30 193 MSS51 0.2030 1020 354 

MSS21 0.1598 38 79 MSS52 0.2979 1200 655 

MSS22 0.214 45 268 MSS53 0.0594 1510 162 

MSS23 0.2842 50 191 MSS54 0.1588 1900 321 

MSS24 0.1887 50 61 MSS55 0.2294 2000 289 

MSS25 0.3913 53 143 MSS56 0.1882 2450 313 

MSS26 0.1199 60 313 MSS57 0.1547 2500 585 

MSS27 0.0776 61 232 MSS58 0.0909 2699 185 

MSS28 0.0731 61 307 MSS59 0.0573 3803 48 

MSS29 0.1253 80 143 MSS60 0.1113 5000 52 

MSS30 0.1707 130 51 MSS61 0.2957 5000 394 

MSS31 0.13 150 53     

Note: MSS=Mangrove Vegetation Spill Sites, DAS=Days after a spill, red and green 

bold text=highest and lowest NDVI values. 

 

6.3.2 Effect of oil spill volume on different types of vegetation 

The regression analysis results on the relationship between NDVI values and oil spill 

volume and time interval after an oil spill are presented in Figures 6.3-6.8. Figure 6.3 

shows the relationship between all volumes of the oil spill and NDVI. Also, Figure 6.4, 

Figure 6.5, Figure 6.6 and Figure 6.7 shows the corresponding relationship for volumes 
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above 225 bbl, volumes of 225–400 bbl, 401–1000 bbl and volumes >1000 bbl, 

respectively, for dense vegetation, sparse vegetation and mangrove vegetation. It can be 

observed that for all volumes of spills and up to volumes >225-400 bbl, there was a weak 

relationship between the oil spill volumes and NDVI values for all the vegetation types 

with R2 <0.03 (Figure 6.3-6.5 a, b and c).  

From the results, the sparse vegetation was affected by an oil spill at volumes between 

401-1000 bbl with R2 = 0.5(Figure 6.6b), while the dense vegetation was affected at 

volumes above 1000 bbl with R2 =0.436 (Figure 6.7a). However, the mangrove was 

unaffected at any volume with R2<0.3. The mangrove has the strongest positive 

correlation between the oil spill volume and NDVI values with  R2 =0.452 (Fig 6.6c). For 

the effect of time after spill, Figure 6.8 showed no strong correlation between the time 

after the spill and the NDVI value, with R2 =0.088, R2 = 0.003 and R2 = 0.014 for dense, 

sparse and mangrove vegetation, respectively. However, the graph of dense vegetation 

showed signs of the effect of oil spills after a long time (Figure 6.8a) than sparse and 

mangrove vegetation. 

  

 
Figure 6.2. The relationship between NDVI values after oil spill and all volumes of 

the oil spill for (a) DV, (b) SV and (c) MV.  

 

 

(a) 
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Figure 6.3. The relationship between NDVI and oil spills volumes above 225 bbl for 

(a) DV, (b) SV and (c) MV.  

  

 
 

Figure 6.4. The relationship between NDVI and oil spill volumes of 225–400 bbl for 

(a) DV, (b) SV and (c) MV. 
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Figure 6.5. The relationship between NDVI and oil spill volumes of 401–1000 bbl for 

(a) DV, (b) SV and (c) MV. 

  

 
 

Figure 6.6. Relationship between NDVI and oil spill volumes greater than 1001 bb) 

for (a) DV, (b) SV and (c) MV. 
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Figure 6.7. Relationship between NDVI and time after the spill for (a) DV, (b) SV 

and (c) MV. 
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6.3.3 Temporal analysis of the impact of oil spills on vegetation condition 

6.3.3.1 NDVI and change in NDVI time series 

Tables 6.7, 6.8 and 6.9 are the combined NDVI values for pre-and post-spill dates for 

both SS and CS used for temporal analysis of the effect of oil spills on the health of 

vegetation and the change in NDVI time-series values for dense, sparse and mangrove 

vegetation for some selected points. The values in red represent NDVI observations 

acquired before the oil spill, while the black values correspond to NDVI values after the 

occurrence of a spill. The computed results of the change in NDVI time series values over 

many years after the spill for SS and CS are shown in light green (columns). The negative 

values indicate a decrease in NDVI relative to the NDVI value before the spill. A time-

series dominated by negative values suggest that vegetation at that site failed to recover 

after being fully exposed to an oil spill. On the other hand, a positive NDVI value 

indicates that the vegetation recovered somewhat after exposure to an oil spill. 
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Table 6.7: NDVI values and change in NDVI time-series data for spill sites (SS) and control sites (CS) for dense vegetation. 

 

ID 

Volume(

bbl) 

Pre and Post 

spill days  

NDVI Values Change in NDVI  

ID 

Volume(

bbl) 

Pre and Post 

spill days 

NDVI Values Change in NDVI 

SS CS SS CS SS CS SS CS 

SD1 280 -261 0.4488 0.2925   SD6 1000 -113 0.6785 0.6171   

  107 0.1485 0.2106 -0.3003 -0.0819   271 0.3199 0.3047 -0.3586 -0.3124 

  459 0.3318 0.2819 -0.1170 -0.0106   655 0.2531 0.3176 -0.4254 -0.2995 

  827 0.3180 0.2734 -0.1309 -0.0191   1359 0.3305 0.2980 -0.3480 -0.3191 

  1195 0.3878 0.3561 -0.0610 0.0636   1727 0.4975 0.5042 -0.1810 -0.1129 

SD2 345.75 -265 0.3353 0.3081     2447 0.3994 0.3448 -0.2791 -0.2723 

  119 0.4555 0.4006 0.1202 0.0925   2815 0.3880 0.3179 -0.2905 -0.2992 

  455 0.5229 0.5161 0.1876 0.2079 SD7 1430 -283 0.2155 0.2646   

  823 0.6021 0.5714 0.2668 0.2633   101 0.1602 0.3466 -0.0553 0.0821 

  1191 0.6147 0.5681 0.2794 0.2599   437 0.3183 0.4549 0.1028 0.1903 

  1543 0.5942 0.5729 0.2589 0.2648   805 0.3713 0.3561 0.1557 0.0915 

  1911 0.4778 0.4382 0.1425 0.1300   1173 0.1154 0.1608 -0.1001 -0.1037 

  2279 0.4149 0.3962 0.0796 0.0881   1525 0.1844 0.2456 -0.0311 -0.0189 

SD3 367 -163 0.3111 0.3101     1893 0.3721 0.4096 0.1566 0.1450 

  205 0.1658 0.1769 -0.1452 -0.1332   2261 0.3562 0.4174 0.1406 0.1528 

  557 0.4561 0.4488 0.1450 0.1387 SD8 1500 -113 0.6074 0.5881   

  925 0.2787 0.3499 -0.0324 0.0398   271 0.3069 0.3118 -0.3006 -0.2763 

  1293 0.3431 0.3568 0.0321 0.0467   655 0.2962 0.2303 -0.3112 -0.3578 

SD4 367 -305 0.6049 0.6344     991 0.4654 0.4468 -0.1421 -0.1413 

  63 0.5277 0.6021 -0.0772 -0.0323   1727 0.5051 0.4527 -0.1023 -0.1355 

  415 0.5490 0.5919 -0.0559 -0.0425   2079 0.2546 0.2729 -0.3528 -0.3152 

  783 0.4467 0.4528 -0.1583 -0.1816   2447 0.3611 0.3478 -0.2463 -0.2404 

  1151 0.4092 0.4058 -0.1957 -0.2286   2815 0.3588 0.3639 -0.2487 -0.2242 

SD5 429 -78 0.3388 0.3569          

  306 0.4178 0.5085 0.0790 0.1516        

  642 0.5453 0.5643 0.2065 0.2075        

  1010 0.2897 0.1995 -0.0491 -0.1574        

  1378 0.6102 0.6585 0.2714 0.3016        

  1730 0.5757 0.5953 0.2368 0.2384        

  2098 0.4434 0.4789 0.1046 0.1220        

Note: red =NDVI values before oil spill date; red with negative values are the numbers of days before oil spill date, SD=sample site, light 

green =changes time-series changes in NDVI. 
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Table 6.8: NDVI values and change in NDVI time-series data for spill sites (SS) and control sites (CS) for sparse vegetation. 

 

ID 

Volume 

(bbl) 

Pre and Post 

spill days 

NDVI Values Change in NDVI  

Site ID 

Volume 

(bbl) 

Pre and Post 

spill days 

NDVI Values Change in NDVI 

SS CS SS CS SS CS SS CS 

SS1 234 -29 0.5074 0.5146   SS5 529.5 -366 0.3427 0.3422   

  355 0.3240 0.3544 -0.1834 -0.1602   18 0.2218 0.3114 -0.1209 -0.0308 

  707 0.3267 0.4068 -0.1807 -0.1079   354 0.4613 0.4556 0.1186 0.1134 

  1075 0.1561 0.1882 -0.3514 -0.3264   722 0.5036 0.5133 0.1609 0.1712 

  1443 0.2898 0.3333 -0.2176 -0.1813   1090 0.4828 0.4980 0.1400 0.1558 

SS2 235 -257 0.5050 0.5076     1442 0.4830 0.5012 0.1403 0.1590 

  95 0.5131 0.5881 0.0082 0.0805   1810 0.3777 0.3877 0.0350 0.0455 

  479 0.3606 0.3995 -0.1444 -0.1081   2178 0.3252 0.3381 -0.0175 -0.0041 

  831 0.3888 0.3973 -0.1162 -0.1103 SS6 802.5 -362 0.5372 0.1480   

  1199 0.2081 0.2226 -0.2968 -0.2850   22 0.3071 0.3582 -0.2302 0.2103 

  1567 0.3476 0.3641 -0.1574 -0.1435   390 0.1895 0.2152 -0.3477 0.0672 

SS3 260 -180 0.3138 0.1845     742 0.4758 0.5575 -0.0614 0.4095 

  204 0.1390 0.1580 -0.1748 -0.0265   1094 0.5240 0.5699 -0.0132 0.4219 

  572 0.1221 0.1138 -0.1916 -0.0706   1478 0.3460 0.4183 -0.1912 0.2704 

  924 0.3497 0.4820 0.0360 0.2976   1830 0.3846 0.4829 -0.1527 0.3349 

  1276 0.4021 0.5472 0.0883 0.3628   2566 0.3701 0.4092 0.0274 0.0670 

  1660 0.2660 0.3513 -0.0478 0.1668 SS7 1000 -250 0.4881 0.4377   

  2012 0.3190 0.4346 0.0053 0.2502   118 0.3017 0.2994 -0.1864 -0.1383 

  2380 0.2061 0.1838 -0.1077 -0.0006   502 0.3681 0.3562 -0.1200 -0.0815 

  2748 0.2607 0.3331 -0.0530 0.1486   838 0.4462 0.4624 -0.0419 0.0247 

SS4 440.3 -176 0.2742 0.3242     1206 0.5513 0.5944 0.0632 0.1567 

  144 0.3529 0.4093 0.0787 0.0851   1926 0.4895 0.4851 0.0014 0.0473 

  528 0.1962 0.0857 -0.0779 -0.2385 SS8 1500 -136 0.5307 0.1918   

  896 0.2782 0.3020 0.0040 -0.0222   216 0.2112 0.1702 -0.3195 -0.0215 

  1280 0.1390 0.0948 -0.1351 -0.2294   600 0.0510 0.1828 -0.4797 -0.0090 

  1616 0.3931 0.4209 0.1190 0.0966   984 0.2951 0.3628 -0.2356 0.1710 

  1984 0.4455 0.5027 0.1713 0.1785   1352 0.1402 0.1574 -0.3905 -0.0344 

  2352 0.3975 0.4317 0.1233 0.1075   1704 0.4668 0.5285 -0.0639 0.3367 

  2704 0.3328 0.3741 0.0587 0.0499   2056 0.5557 0.5822 0.0250 0.3904 

  3072 0.3305 0.3670 0.0564 0.0428   2440 0.3438 0.4024 -0.1869 0.2107 

  3440 0.2984 0.3259 0.0242 0.0016   2792 0.4210 0.4413 -0.1097 0.2495 

         3160 0.2630 0.2934 -0.2677 0.1016 

         3528 0.3844 0.4465 -0.1463 0.2547 

Note: red =NDVI values before the oil spill date; red with negative values is the number of days before the oil spill date, SS=sample site 

sparse vegetation, light green = time-series changes in NDVI. 
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Table 6.9: NDVI values and change in NDVI time-series data for spill sites (SS) and control sites (CS) for mangrove vegetation. 

 

ID 

Volume 

(bbl) 

Pre and Post 

spill days 

NDVI Values Change in NDVI  

ID 

Volume 

(bbl) 

Pre and Post 

spill days 

NDVI Values Change in NDVI 

SS CS SS CS SS CS SS CS 

SM1 264 -216 0.3529 0.3111   SM4 1510 -222 0.1403 0.0500   

  152 0.2922 0.3275 -0.0607 0.0164   162 0.0572 0.0563 -0.0831 0.0063 

  520 0.2845 0.3368 -0.0684 0.0257   530 0.0389 0.0529 -0.1013 0.0029 

  872 0.3927 0.4029 0.0398 0.0918   1234 0.1645 0.3586 0.0242 0.3086 

  1240 0.2053 0.2002 -0.1475 -0.1109   1618 0.1018 0.2300 -0.0385 0.1800 

  1608 0.2950 0.2498 -0.0579 -0.0613   1970 0.0814 0.2641 0.0589 -0.2141 

SM2 800 -175 0.3113 0.3142     2338 0.0498 0.1229 0.0904 -0.0729 

  209 0.2464 0.2976 -0.0649 -0.0166   2706 0.0931 0.2132 0.0472 -0.1632 

  593 0.1899 0.2915 -0.1214 -0.0228 SM5 1554 -136 0.4212 0.4772   

  1665 0.3467 0.3943 0.0354 0.0801   232 0.2255 0.5384 -0.1957 0.0612 

  2017 0.3236 0.3995 0.0123 0.0853   616 0.1343 0.2958 -0.2869 -0.1814 

  2385 0.2029 0.2483 -0.1085 -0.0659   1000 0.1151 0.1939 -0.3061 -0.2833 

  2753 0.2521 0.2949 0.0592 0.0193   1704 0.1846 0.2838 -0.2366 -0.1934 

SM3 1020 -30 0.2994 0.3460     2072 0.1860 0.3803 -0.2352 -0.0969 

  354 0.1988 0.2742 -0.1005 -0.0718   2424 0.1994 0.4786 -0.2218 0.0014 

  1074 0.2551 0.3436 -0.0443 -0.0024   2792 0.0783 0.2272 -0.3429 -0.2500 

  1442 0.2200 0.2341 -0.0794 -0.1119   3160 0.0974 0.2755 -0.3238 -0.2017 

  1810 0.3053 0.3962 0.0059 0.0502 SM6 2500 -167 0.2933 0.2806   

  2530 0.2133 0.2436 -0.0861 -0.1024   585 0.1736 0.2071 -0.1196 -0.0735 

         969 0.1648 0.1988 -0.1284 -0.0818 

         1305 0.1536 0.2690 -0.1396 -0.0117 

         1673 0.2096 0.3110 -0.0836 0.0304 

         3129 0.1203 0.2432 -0.1729 -0.0374 

Red =NDVI values before the oil spill date; red with negative values is the number of days before the oil spill date, SM=sample site 

mangrove vegetation, light green =time-series changes in NDVI. 
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6.3.3.2 The temporal effect of oil spills on the health of vegetation 

Figures 6.9 a, b and c are the graphs that show the relationship between changes in NDVI values 

relative to pre-spill NDVI values for various times (number of days) after the spill for SS and CS 

for dense, sparse and mangrove vegetation, respectively. The result shows how the health of 

vegetation is affected after the spill for a more extended period and not just immediately after a 

spill. Figures 6.10a, b and c show how the oil spill volume affects only the change in NDVI at 

SS. Table 6.10 shows the paired t-test results computed to determine if there is a statistically 

significant difference between the changes in NDVI values after spills for SS and CS for dense, 

sparse and mangrove vegetation. Two observations can only be statistically significant if the p-

value is <0.05, which means the null hypothesis states that there is no difference between changes 

in NDVI values after spills at SS and CS. For example, if the p-value of paired t-test results is 

>0.05, then there is no statistically significant difference between the change in NDVI after the 

oil spill for some time (as shown in Table 6.3) at SS and CS. Table 6.10 shows a significant 

change in NDVI between SS and CS in Table 6.7-6.9 (i.e., the combined values), with sparse 

and mangrove vegetation being the most affected, with a p-value <0.001. 

Table 6.10: Paired t-test analysis to determine the differences in the changes in NDVI 

values after spills for the SS and CS for dense, sparse and mangrove vegetation 

Land cover type p- values 

Dense Vegetation ** 

Sparse Vegetation *** 

Mangrove vegetation *** 

Levels of significance: *** p -value < 0.001 (highly significant), ** p value < 0.01 (very 

significant), *p -value < 0.05 (significant), ns p- value ≥ 0.05 (not significant). 
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Figure 6.8: Relationship between change in NDVI and number of days after 

a spill for SS and CS for (a) DV, (b) SV and (c) MV.  
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Figure 6.9: Relationship between the change in NDVI and volumes of oil spills 

on SS for (a) DV, (b) SV and (c) MV. 

6.3.3.3 NDVI time series values analysis between spill sites and control sites 

Table 6.11 shows the p-values from the student’s t-test for changes in NDVI 

values after the spills for each SS and its corresponding CS for some years for 

dense, sparse and mangrove vegetation for different volumes of spills. Some p-

values are very significant, while some are significant, with none having a highly 

significant p-value. A p-value of <0.05 means there is a statistically significant 

difference between a change in NDVI values after a spill for SS and CS. A p≥0.05 
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means the change in NDVI between SS and CS is not statistically significant. For 

example, it can be observed that for dense vegetation, the p- values are mostly 

>0.05, with only an oil spill volume of 280 bbl (SSD1) having a p-value of <0.05, 

while five out of eight sites for sparse vegetation have p<0.05 and mangrove 

vegetation having three out of six sites with p<0.05. 

Figures 6.11, 6.12 and 6.13 illustrate the temporal changes in NDVI values of each 

spill site (SS) with its corresponding control sites (CS) from the values extracted 

from Tables 6.10–6.12 for dense vegetation, sparse vegetation and mangrove 

vegetation, respectively. The graphs show a visual representation of changes in 

NDVI values after an oil spill over some time to explain better the reason for 

various p values in Table 6.11 at SS and correspondent CS for dense vegetation, 

sparse vegetation and mangrove vegetation for different oil spill volumes. The 

graphs also show the possible recovery of vegetation from an oil spill after a 

certain period. Figure 6.11 a-h is the graph for dense vegetation having several 

years ranging from 0-4 years (Figure 6.11 a, c, d), 0-6 years (Figure 6.11 e and f) 

and 0-7 years (Figure 6.11 b, g and f) with the lowest and highest oil spill volumes 

of 280 and 1500 bbl, respectively, and with 4 and 7 years being the lowest and the 

highest number of years. The range of years for sparse vegetation in Figure 6.12a-

h are 0-4 years (Figure 6.12 a), 0-5 years (Figure 6.12 b and g), 0-7 years (Figure 

6.12 e and f), 0-8 years (Figure 6.12 c) and 0-10 years (Figure 6.12 d and h), with 

the lowest and highest oil spill volumes of 234 and 1500 bbl and with the lowest 

and highest numbers of years of 4 and 10 years, respectively. For mangrove 

vegetation in Figure 6.13 a-f, the years range from 0-5 years (Figure 6.13 a and 

d), 0-6 years (Figure 6.13 b and f) and 0-7 years (Figure 6.13 c and e), with the 

lowest and highest oil spill volumes of 264 and 2500 bbl and with both the lowest 

and highest numbers of years being 5 and 7 years, respectively. 

From the graphs, a wider distance between the change in NDVI values between 

SS and CS indicates a significant difference in the condition/health of vegetation 

at SS and CS over the observed period. Additionally, a positive change in NDVI 

values means that the vegetation is recovering, while a negative change means 

that the vegetation's health is affected compared to the pre-spill condition. For 

almost all cases, the change in NDVI values is greater and negative at SS than CS 

within the first year after an oil spill for all the vegetation types. The only 
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exception is for SSD2 (Figure 6.11b), which has a greater positive change in 

NDVI within the first year than its corresponding CS. 

The time-series line graph showing similar trends indicates that vegetation has 

similar conditions at these sites. The gap between the SS and SC line graph 

indicates the levels of significant differences in the health conditions of vegetation 

between SS and SC. A smaller gap shows that there is no significant difference in 

the health condition of the vegetation between SS and CS, while a larger gap 

means there is a significant difference compared to pre-spill. Where the line graph 

intersects and the SS line goes above the CS, it shows that the SS health condition 

of vegetation at that location has improved/recovered from the effect of an oil 

spill. From Figure 6.11 (dense vegetation), Figure 6.12 (sparse vegetation) and 

Figure 6.13 (mangrove vegetation), the sparse vegetation has a greater number of 

graphs whose lines between SS and CS are parallel, with wider gaps followed by 

the mangrove vegetation with dense vegetation, which has more intersecting lines 

between SS and CS. The graphs also show that all the CS are initially above the 

SS line except Figure 6.11 b (dense vegetation), although some SS later rise above 

CS, which shows recovery. This explains why dense vegetation has more sites 

with p>0.05 (Table 6.15). 

Table 6.11: Paired t-test analysis of changes in NDVI values after a spill 

between each SS and CS at different volumes for DV, SV and MV. 

VT OSV p- value VT OSV p -value VT OSV p- value 

DV   SV   MV   

SSD1 280 * SSS1 228 * SSM1 264 * 

SSD2 345.75 ns SSS2 235 ns SSM2 800 ns 

SSD3 367 ns SSS3 260 ** SSM3 1020 ns 

SSD4 367 ns SSS4 440.3 ns SSM4 1510 ns 

SSD5 429 ns SSS5 529.5 ns SSM5 1554 ** 

SSD6 1000 ns SSS6 802.5 ** SSM6 2500 *  

SSD7 1430 ns SSS7 1000 *    

SSD8 1500 ns SSS8 1500 **    

Note: VT=Vegetation type, OSV=Oil spill volume (bbl). 

Levels of significance: *** p- value < 0.001 (highly significant); ** p- value < 

0.01 (very significant); *p -value < 0.05 (significant), ns p -value ≥ 0.05 (not 

significant). 

 



 

182 

 

 

 

 

  

  

  
 

Figure 6.10: Temporal changes in NDVI values for each SS and CS for 

different oil spill volumes for dense vegetation. 
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Figure 6.11: Temporal changes in NDVI values for each SS and CS for 

different oil spill volumes for sparse vegetation. 
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Figure 6.12: Temporal changes in NDVI values for SS and CS for different 

oil spill volumes for mangrove vegetation. 

6.3.3.4 Some selected spill sites with their correspondent control sites for 

NDVI Time series 

Figures 6.14, 6.15 and 6.16 show high-resolution satellite images of some selected 

spill sites and their corresponding control sites. The significant changes in NDVI 

values between the spill sites and their corresponding control sites for dense 

vegetation (SSD1), sparse vegetation (SSS8) and the mangrove (SSM 5) is 

because of the difference in the vegetation cover before and after the spill. For 

example, it can be observed that there is a difference in vegetation cover before 

and after spill of SSD1(Figures 6.14a and b), SSS8 (Figures 6.15a and b)  and 

SSM5 (Figures 6.16 a and b). However, not much difference could be observed in 

(a) 
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the vegetation cover of their control sites in the same period (Figures 6.14, 6.15, 

and 6.16  c and d). The spill years and volumes are SSD1 (2014, 280bbl) in Figure 

6.14, SSS8(2008, 1500bbl) in Figure 6.15, and SSM5 (2009, 1554bbl) in Figure 

6.16. The cloud cover means limited availability of reference images. For 

instance, the only available reference images before the oil spills for the mangrove 

were from 2004, while the spill happened in 2009, 5 years before the spill. 

However, the information provided is still important in understanding why there 

were significant differences between the spill sites and the corresponding control 

sites. 

 

 
 

Figure 6.13:The dense vegetation spill site SSD1 in 2014 (a) before the spill in 

2005, (b) after the spill in 2015, and control site (c) before the spill in 2005  

and (d) after the spill in 2015.   

(a): 2005 (b): 2015 

(d): 2015 (c): 2005 
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Figure 6.14:The sparse vegetation spill site SSS8 in 2008 (a) before the spill 

in 2007, (b) after the spill in 2013, and control sites (c) before the spill in 2007 

and (d) after the spill in in 2013. 
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Figure 6.15:The mangrove spill site SSM 5 in 2009 (a) before the spill in 2004, 

(b) after the spill in 2015, and control sites (c) before the spill in 2004 and (d) 

after the spill in 2015. 
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6.4  Discussion 

6.4.1 Impact of the volume of an oil spill and time gap on the spectral 

response of vegetation 

Vegetation indices derived from remote-sensing images are an efficient tool to 

highlight the spectral differences due to changes in leaf pigments and internal leaf 

structure and can be used as indicators of plant health (Tote et al., 2014). The 

changes in vegetation health in oil polluted sites may depend on the volume of a 

given oil spill because it is assumed that larger-volume of oil spills may have a 

greater impact on the surrounding vegetation (Adamu, 2016) 

The lack of a strong correlation between NDVI and all oil spill volumes on the 

different vegetation (R2 <0.02) indicates that an oil spill can only affect the 

vegetation at a particular volume. A previous study by Adamu et al. (2016) 

suggested that changes in vegetation health were only detectable at the Landsat 

pixel scale (30 m × 30 m) if the oil spill volume exceeded 225 bbl. When different 

volumes were considered, the oil spill's impact on sparse vegetation was 

noticeable at a spill range between 401–1000 bbl and moderately impacted at 

volume >1000 bbl. This suggests that sparse vegetation is most affected by oil 

spills in the Niger Delta, within the range of 401–1000 bbl oil spill volume. 

Similarly, the next impacted vegetation is the dense vegetation which was 

impacted at a higher spill volume of >1000. The NDVI values decrease within the 

spill volume regions, with an increase in the oil spill volume. However, the lack 

of a negative correlation between the NDVI and the oil spill for the mangrove 

within all spills volume regions doesn’t imply a lack of impact oil spill on the 

mangrove. Due to the mangrove vegetation being located within the swamp forest, 

where the oil spill could easily be washed out by ocean/sea currents, making it 

more unpredictable. The spill volume will not have much effect since waves and 

currents might propagate them to other locations.  Oiling on marsh vegetation is 

more complex than just the chemical toxicity of oil because they are likely more 

prone to being saturated with oil and repeatedly reoiled during tidal cycles 

(Fingas, 2015).  

For the relationship between the NDVI and the time after the oil spill, the dense 

vegetation shows more gradual signs of degradation, especially after 180 days (6 
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months) by decreasing in NDVI values following an oil spill in Figure 6.8 a. This 

is because the full extent of the oil damage on dense vegetation may not be obvious 

until 6-12 months after the spill incident (Bartha, 1976). The sparse vegetation 

and the mangrove vegetation seemed to show an earlier sign of degradation within 

180 days and 90 days (Figure 6.8 c and c, respectively) and some sign of recovery 

after the first 90 days (for mangrove vegetation). This result suggests that different 

vegetation types respond differently to the oil spill volumes and the time gap 

between the spill and NDVI observations. On the other hand, mangrove vegetation 

shows earlier signs of degradation due to oil spills than dense vegetation and 

sparse vegetation within the first 90 days. Mangrove stress usually occurs within 

the first two weeks of an oil spill event, and these signs can be seen in several 

ways, such as chlorosis and defoliation to tree death (Omodanisi & Salami, 2014). 

Mangrove is very sensitive to oil, partly because oil films affect the breathing 

roots, which inhibit oxygen supply to the underground root system (IOM, 2010). 

Additionally, visible oil stress symptoms of vegetation depend upon the plant 

species type and degree of stress (Mohamadi et al., 2016). Each vegetation type 

has different biophysical properties, and the level of resistance varies. 

6.4.2 Temporal monitoring of vegetation conditions affected by oil spills 

The results show how oil spills impact vegetation health based on the change in 

NDVI values before and several years after spills and compare them with sites 

that have not been exposed to oil spills. The results provide a better understanding 

of the impact of the oil spill on the health condition of vegetation types over a 

period in the Niger Delta. Both graphical and statistical analyses using paired t-

tests were used to determine oil spill-induced differences in the change in NDVI 

values of spill sites (SS) and control sites (CS) acquired on the same day. This was 

done because many factors could affect the level of change in NDVI, in addition 

to oil spills in both SS and CS. Some of these factors are the spill area size, 

impacted area environment, soil type, and size of the area burned by fire, among 

others (Mohamadi et al., 2016). From Tables 6.7–6.9, some SS have initial NDVI 

values higher than some CS. It means vegetation exposed to oil spills could be 

healthier (initially) than vegetation not exposed to a spill if all other conditions are 

consistent. Additionally, using only the absolute NDVI values could provide 

misleading results. 
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From the correlation between the change in NDVI and the number of years after 

a spill at SS and CS in Figure 6.9, each type of vegetation NDVI value changes 

over a period of some years for both the SS and CS. Both the SS and CS had 

negative changes in NDVI values, with sparse vegetation and mangrove 

vegetation having more negative changes. It would have been expected that the 

CS should not have negative changes. Nevertheless, other factors, such as weather 

conditions (such as temperature and rainfall), may not be the reason for CS having 

negative values since all the NDVI images were downloaded for the dry season, 

only between December and February, with almost the same weather conditions. 

The likely reason for this could be that some SS are located on more fertile soil 

than the CS. 

Nevertheless, the changes are greater for SS, especially for sparse and mangrove 

vegetation. While dense vegetation SS had some NDVI higher than the NDVI 

before the spill within the first 730 days (2 years) after the spill, sparse vegetation 

had just a few, with mangrove vegetation having none above the NDVI before the 

spill within the first two years (Figure 6.9a, b and c). This makes the mangrove 

vegetation the most degraded vegetation in the Niger Delta impacted by oil spills, 

while the dense vegetation is more resistant to oil spills. 

For the effect of oil spill volumes on the health of vegetation, the dense vegetation 

was less affected by a volume of spill between 225 and approximately 500 bbl but 

responded more to the oil spill at volumes of approximately 1000 bbl and 1500 

bbl (Figure 6.10), similar to the results in Figure 6.4a and Figure 6.7a. The health 

condition of sparse vegetation is more affected at approximately 225 bbl to 300 

bbl, 800 bbl and 1500 bbl. On the other hand, mangrove vegetation shows a greater 

negative change in the NDVI value at approximately 1500 bbl. The health of all 

vegetation types appears most affected by an oil spill at a volume of approximately 

1500 bbl. The paired t-test in Table 6.10 shows that the health condition of 

vegetation at SS is affected by the impact of oil spills. The sparse and mangrove 

vegetation are the most affected, while the dense vegetation is the least affected. 

Mangroves are highly vulnerable to oil spills (Duke, 2016) 
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6.4.3 Temporal analysis of changes in NDVI values for each spill site with 

corresponding control sites 

A temporal analysis was carried out on selected SS with varying volumes of oil 

spills and paired CS to determine the effect of oil spills on different vegetation 

types in the Niger Delta over a period of time to evaluate the level of recovery of 

the vegetation. As mentioned in section 6.4.2, the changes in NDVI values for SS 

and CS were used instead of the actual values.  For example, the NDVI values for 

SSD6 in Table 6.7 before and immediately after the spill (0.6785 and 0.3199) are 

larger than the NDVI values for CS within the same period (0.6171 and 0.3047). 

This indicates that vegetation exposed to oil, depending on the volume of oil spilt, 

may still be healthier even after exposure to the spill, but it could be stressed 

sometime later. However, the changes in NDVI values for SS and CS for dense, 

sparse, and mangrove vegetation show that the negative changes over time are 

higher at SS than at CS. The negative change in NDVI values for both SS and CS 

shows signs of degradation in vegetation's health condition (a sign of stress) at a 

particular site. For most sites, the SS and CS had the same pattern of change in 

NDVI values, resulting from having the same environmental conditions, such as 

temperature and soil type, for each SS and its corresponding CS. Not all stressed 

vegetation may be related to oil spills (Adamu et al., 2018).Conversely, not all oil 

spills affect vegetation since other factors, such as annual rainfall (during the rainy 

season) and variability, could contribute to changes in NDVI values. However, it 

can be observed that the changes in NDVI values are greater at SS than at CS for 

all the dense, sparse and mangrove vegetation, which could be due to the impact 

of an oil spill. Although some spill sites' vegetation was able to recover after the 

oil spill, some could not recover for both SS and CS. However, CS tended to have 

smaller changes in NDVI values, which means that the oil spill still has some 

effect on the vegetation. 

The statistical analysis in Table 6.11, which compares the difference between 

changes in NDVI values for each SS and CS at different oil spill volumes, shows 

that the impact of oil spills on the health condition of dense vegetation is less 

significant, with only one site having significant difference in NDVI values (SSD1 

at spill volume 280 bbl). The most impacted vegetation is the sparse vegetation, 

with five out of eight locations having very significant and significant differences 
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with their CS, which indicated impacts on their health conditions. The nature of 

sparse vegetation, mostly grasses and smaller than the dense and mangrove 

vegetation, makes them more vulnerable to oil spills and other environmental 

factors. Similarly, the mangrove vegetation is the next affected vegetation, with 

three out of 6 locations having a very significant and significant impact on their 

health conditions. The results also show that the significance level difference in 

SS and CS is not directly proportional to the volumes of spills.  For instance, the 

only significant impact of oil spill volume on dense vegetation is 280 bbl, the 

lowest spill volume. A similar scenario is also observed for the mangrove 

vegetation at a spill volume of 1554 bbl and a spill volume of 2500 bbl, with the 

CS NDVI values been significantly different with the SS. Some environmental 

condition variability in SS with its corresponding CS may be responsible for such 

results. 

The oil spill has affected the recovery of some vegetation in the Niger Delta. 

Among all the vegetation, the dense vegetation recovers from the impact of oil 

spills faster than the sparse and mangrove vegetation. Apart from at volume 280 

bbl, which shows that the change in NDVI from SS and CS are parallel without 

crossover at any point, every other point intersects at some point, showing a sign 

of recovery. For sparse and mangrove vegetation, the recovery is slower, with 

some locations never recovering within the study period, clearly showing that the 

sparse vegetation is the most impacted, with many graphs having a parallel line 

between the change in NDVI values for SS and CS. However, the mangrove 

vegetation is mostly affected within the first year of the spill, with none of the 

changes in NDVI values for CS larger than the changes in NDVI for SS (Figure 

6.13), unlike dense vegetation and sparse vegetation, which have some changes in 

NDVI for CS larger than the NDVI for SS. 

Similarly, the high-resolution satellite image of some selected spill sites before 

and after oil spills (Figure 6.14-6.16) with a statistically significant difference 

from their CS for the mangrove (SSM5) and the sparse vegetation (SSS8) show a 

visual difference between vegetation cover of SS and CS the vegetation dead 

around the mangrove SS. However, the sparse vegetation has more numbers of SS 

that are statistically significant from their CS. The nature of the dense vegetation 
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makes them less vulnerable to the impact of oil spills. Hence the small changes 

between the images before and after the oil spills. 

6.5 Conclusion 

The monitoring of oil spill impacts on vegetation using spectral indices (NDVIs) 

at the plot scale with statistical analysis was performed using linear regression and 

paired t-test analysis for different vegetation types. For the impact of volume on 

spectral indices of vegetation after a spill, the vegetation responded differently to 

various volumes of an oil spill, with sparse vegetation being the most affected 

among the three types of vegetation and dense vegetation responding more at a 

higher volume than the sparse vegetation the mangrove vegetation. The effect of 

the time gap after a spill also affects the spectral reflectance of each vegetation 

type, with the dense vegetation taking a longer time to show a sign of stress, unlike 

the sparse and mangrove vegetation, which show an earlier sign of stress. 

The temporal analysis of changes in NDVI values for each spill site with 

corresponding control sites shows that sparse vegetation is also the most affected 

by an oil spill. The recovery rate from an oil spill is higher in dense vegetation 

and mangrove vegetation, with sparse vegetation being the slowest in recovery. 

Additionally, another factor, such as gas flaring, which increases the temperature 

and affects the soil quality around the flare site, seasonal changes in rainfall and 

weather conditions could affect the spectral response of the vegetation. This is 

because some of the sites never recovered during the studies for both SS and 

control sites. However, the SS has lower NDVI values in general, which indicates 

that the oil spill effect on the health of vegetation has a long-term impact 

depending on the types of vegetation, the volumes of the spill, and some 

environmental factors, among others. This result provides insight into how 

different types of vegetation respond to the effect of an oil spill, which could help 

in designing an oil spill clean-up program to reduce the impact on sparse 

vegetation in the Niger Delta by prioritising oil spill clean-up based on the 

vegetation type that is most affected by the impact of the oil spill. The next chapter 

will focus on detecting general land cover changes due to oil extraction activities 

at the landscape scale. It is important to understand other drivers   that affect the 

vegetation apart from the oil spill, and also, the oil spill affect the other  land cover, 

especially the vegetation spatially. 
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Chapter 7 Land cover change detection 

Part of the work in this chapter has been presented and published in the book of 

proceedings volume 1 no 1 ISBN: 978- 978 – 55067 – 3 – 0 as: 

Kuta, A. A., Grebby. S and Boyd, D. (2019). Land Cover Mapping using Combined 

Soft Classification and Geographic Object-Based Image Analysis (SGOBIA) in the 

Niger Delta Region of Nigeria, book of proceeding National Association of Surveying 

and geoinformatics Lecturers 1ST AGM/Conference Maiden Edition, Minna 2019  

7.1 Introduction 

Land use-land cover changes (LULCC) are directly or indirectly caused by factors 

playing out on the landscape (Zitta, Musa, & Muhammed, 2022). For many decades, 

the Niger Delta region has undergone severe environmental degradation and land 

cover change due to oil extraction activities (e.g., oil spills). While chapters 5 and 6 

deal with the degradation of vegetation, in some cases, the effects of oil extraction 

activities on the vegetation are so severe that it dies off or is purposefully removed and 

completely changes the land cover. Hence the need to understand where changes have 

happened at a landscape scale. One way to detect land cover changes is through land 

cover maps derived from classified satellite images. 

Classification is an important method used in remote sensing to relate pixel values to 

land cover classes present on the surface (Zhang & Roy, 2017). It is usually performed 

to retrieve land use/cover information using a range of statistical pattern recognition 

or clustering techniques (Sharma et al., 2016). There are two main classification 

outputs: soft (purely pixel-based) and hard classification (pixel- and object-based), 

with no single best method for all mapping problems (Lee et al., 2011), as each 

classifier has its advantages and disadvantages depending on the dataset used and the 

land cover types to be mapped. For example, some land cover types do not have a well-

defined boundary or contain a mixture of land cover types within a single pixel (i.e., 

mixed pixels). Combined pixel-based, pixel grouping and object segmentation may 

offer greater potential for improved image classification (Al Fugara et al., 2009). 

However, this field has not been well explored (Costa et al., 2017; Lizarazo & Elsner, 

2009), despite the inherent advantages it offers for overcoming several limitations of 

conventional approaches to land cover change mapping. 
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To use remote sensing to investigate land cover change, one must consider that land 

cover in the Niger Delta is complex and comprises mangroves, freshwater swamps, 

and a mixture of water with oil, giving rise to mixed pixels. Previous attempts at land 

cover mapping in the Niger Delta region have employed pixel-based hard 

classification techniques, which are not considered adequate for capturing the nature 

and complexity of land cover in the study area. Many authors have reported that object-

based image classification methods are often more accurate than traditional pixel-

based classification (Dornik et al., 2017; Frohn et al., 2011). But the parameterisation 

of crisp segmentation models commonly requires significant user interaction, making 

it difficult to employ such methods for the automated processing of large datasets in 

generating image objects with well-defined boundaries (Lizarazo & Elsner, 2009). 

Object-based classification also suffers from over- and under-segmentation of the land 

cover features and its inability to map vagueness in land cover due to the fuzziness of 

the classes to fill the research gap mentioned in section 1.3, the objective of this chapter 

was to test different classifiers and choose the best-performing classifier to map the 

land cover changes at the landscape scale, using Landsat data and integrating oil 

extraction activities data to determine their effect on the observed land cover changes. 

The result will provide a better understanding of landscape-scale changes to land 

cover, particularly the vegetation, that have occurred within the study area. Ultimately, 

the outcome could be used to map land cover changes in the whole Niger Delta region 

to determine the oil industry's impact on land cover. 

 Elsewhere, several studies have applied object-based soft classification to remote 

sensing datasets (Feizizadeh et al., 2017; Gudex-Cross et al., 2017;  Wang et al., 2004). 

For example, using Landsat ETM 7+, Al Fugara et al. (2009) discovered that the 

classification results obtained using an object-oriented cum fuzzy logic approach to 

map land cover types in the Klang Valley, Malaysia, were superior to the pixel-based 

supervised classification, producing a higher overall accuracy of 89.78%, while the 

pixel-based classification had an overall accuracy of 70.24%. Other studies that have 

utilised Landsat datasets in conjunction with combined soft and object-based 

classification include Aksoy & Ercanoglu (2012), Asfour et al. (1995) and Yoon et al. 

(2003). 

7.2 Methodology 

Figure 7.1 outlines the methodological approach taken in this chapter.  



 

196 

 

 

Figure 7.1:Methodology Flow Chart  
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7.2.1 Data 

The oil extraction activities and satellite data, and the classifiers used in this chapter 

have been described in section 3.3.3 of the methodology chapter.  

7.2.2 Methods 

7.2.3 Land cover mapping 

7.2.3.1 Image segmentation and training site development 

The first step in land cover mapping was image segmentation. It involves dividing the 

satellite image into spatially partitioned contiguous groups of pixels (i.e., objects), used as 

the basic spatial unit of analysis (Costa et al., 2018). During land cover classification 

scheme development, seven land cover classes were identified for the study area: water, 

built-up, dense vegetation, sparse vegetation, mangrove, sand dune and bare soil (Table 

7.1). The images were segmented using a scale of 30 to ensure that the segments were 

not too small or large after trying other scales.  The training sites for the seven land 

cover classes were developed from the segmented images instead of screen digitising. 

One of the advantages of using objects for training samples is that it is more efficient 

than manually digitising the training sites. The classification was implemented using 

Terrset Geospatial Monitoring and Modelling System, 2020 software. 

7.2.3.2 Land cover classification 

Soft classification of the satellite images was performed using six soft classifiers 

available in Terrset 2020 on the 2016 satellite images using the developed training file 

of the segmented image as an input. The 2016 images were used because it is easier to 

assess the higher-resolution images from the Google Earth archive for the same period 

for ground truth for accuracy assessment instead of fieldwork. Soft classification, 

which reveals more land cover information and potentially a more accurate result, 

especially for coarse spatial resolution data (Choodarathnakara et al., 2012; Sharma, 

Goyal et al., 2016), was used to classify the satellite images. The output is not a single 

classified image, but a number of images are obtained as the classified output (Tiwari 

et al., 1999) of land cover information, which is very important for land resource 

management (Sharma et al., 2016). Finally, the hardener function in Terrset was used 

to produce a hard map for each classifier. The hardener uses the membership output 

images from the soft classifier to produce a hard decision image by selecting the class 

image that contains the maximum membership grade and assigning that class to the 
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image element (Eastman, 2016). The same hardened map from the two best classifiers 

was used to produce the object-based land cover map. The overall best classifier based 

on classification accuracy assessment and visual analysis was used to map the land 

cover for 1987 and 2002. 

Many land cover classes were merged to minimise the effect of spectral similarities 

and to make the classification implementation more manageable.  All water bodies 

were classified as water to avoid so many water classes. Every building: urban, rural, 

etc., was classified as built-up since the research interests are not on specific buildings. 

The vegetation class was based on the major vegetation types in the Niger Delta, which 

corresponded to the vegetation types in chapter 6. The vegetation in the Niger Delta 

comprises mangroves, which cover the coastal region of the Niger Delta, along with 

brackish lagoon and river systems, freshwater swamp forest, rainforest and derived 

savannah (Ayanlade & Howard, 2017). Agricultural and grassland were merged as 

sparse vegetation. Separating these classes poses difficulties, as the spectral 

separability between them is low (Nababa et al., 2020), and grassland is used for 

agricultural purposes. Sand deposits were given a class to minimise their influence on 

built-up, i.e. classified as built-up, which could greatly affect built-up accuracy. The 

bare soil was given a class since most of the consequence of oil spills on vegetation is 

anticipated to be converted to bare soil, making it an important land cover class. 

 

Table 7.1: Land cover classes 

Class Group 

Water (W) River, pond, stream 

Built-up (BU) Urban, Rural etc 

Dense Vegetation (DV) Trees in general, oil palm, forest 

Sparse vegetation (SV) Shrubs, agriculture, grasses 

Mangrove (M) Tall and short and tall mangrove of all species. 

Sand dune (SD Beach, pure sand bars deposit 

Bare soil (BS) Mud, barren land, exposed soil 

 

7.2.3.3 Land cover accuracy assessment 

Accuracy assessment is a vital part of a program that maps land cover from remotely 

sensed imagery (Foody & Boyd, 2013). The value of the resulting map depends on the 

accuracy of the classification (Foody, 2002; Hashemian et al., 2004; Mahmon and 

Ya'acob, 2014). The stratified random sampling strategy was adopted among various 
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sampling methods to generate ground truth data for accuracy assessment, and at least 

20 validation points per land cover class were selected. The minimum sample size 

should be 20 points per strata (Congalton & Green, 2008). Stratified random sampling 

using map classification to define strata is a simple but generally applicable design that 

typically satisfies most accuracy and reduces standard errors of class-specific accuracy 

estimates (Olofsson et al., 2014). It also ensures that even the least land cover class 

had some sample points. 400 ground truth sample locations were validated using high-

resolution google earth images to determine the best-performing classifier. The 

following were reported: overall accuracy (OA), which measures how accurate the 

classified classes are; producer's accuracy (PA), which is the probability of how 

accurate each class was classified; and user's accuracy (UA), which is the probability 

that a certain class prediction belongs to that class. A test of statistical significance 

between the classification accuracy of the two best performing classifiers was 

computed using the McNemar test. For cases where the validation data are related, the 

McNemar test is more appropriate for testing the significance of any differences in 

classification accuracies. The McNemar test is based upon a Chi-squared (χ2) 

distribution, which involves a cross-tabulation of the number of validation pixels 

correctly and incorrectly classified through two algorithms (Grebby et al., 2011). The 

classifier that satisfied the visual accuracy of the 2016 map was used to classify the 

1987 and 2003 satellite images. The 2016 classified map was chosen because it has 

the least cloud cover and has available reference data from Google Earth for ground 

truthing for classification accuracy assessment. 

7.2.4 Post-classification map clean-up. 

Post-processing is often carried out to reduce errors in the classified map (Townshend 

et al., 2012). Sometimes the only solution to achieve a highly accurate classification is 

to engage in manual clean-up (Eastman 2020). The land cover types in the Niger Delta, 

such as the built-up and bare soil, dense vegetation and mature mangrove, have similar 

spectral reflectance, which was corrected from the classified land cover map by 

reallocating the misclassified pixel to the right class by directly editing the pixel values 

beneath any region of interest (ROI) vector polygons. The post-classification ensured 

that the land cover maps were as accurate as possible. The second post-classification 

analysis was smoothing the pixels to reduce the "salt and pepper" effect due to some 

misclassification by reallocating a class to the predominant neighbours. The post-
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classification clean-up was performed after the first accuracy assessment in order to 

compare the accuracies of the pre-cleanup with the post-clean-up map. 

7.2.5 Land cover change detection and mapping 

The following changes were detected: Magnitude of Change (MC), Nature of Change 

(NC), and Direction of Change (DC). The MC quantifies the amount of change that 

has occurred, or the gain and loss; NC compares each pixel of two classified images 

with a particular class of interests (inter-classes); DC takes the maximum of all the 

NCs based on the number of comparisons made, given that there were several 

predefined numbers of classes for this research. 

 

The change analysis in the vegetation was performed using image differencing applied 

to the normalised vegetation index (NDVI) images of 1987 and 2016 using a raster 

calculator in ArcGIS. Many authors have used the NDVI to monitor vegetation quality 

in the Niger Delta, such as Adamu (2016); Fabiyi (2011). Before detecting the changes 

in NDVI (CNDVI), the NDVI values of ≥0.15 were extracted to ensure that non-

vegetation features were removed, such as water and built-up area. 

CNDVI, i.e., Gains and losses = NDVI2–NDVI1.    Eq 7.1. 

where NDVI 1 = first date NDVI (1987) and NDVI2= second date NDVI (2016) 

However, these returned results included pixels that have converted either from 

vegetation to other land cover or from other land covers to vegetation with values of 

0. To obtain changes in vegetation for persistent vegetation in both periods, 1987 and 

2016, first, the persistent vegetation (PV) was produced for the two dates using Eq2 

PV =NDVI 2016*NDVI 1987      Eq. 7. 2 

The PV produces a map of places that have retained vegetation in 1987 and 2016. To 

remove places that have been converted to other land covers from the CNDVI, the PV 

was reclassified to 1 and 0, with 1 representing persistent vegetation and 0 representing 

other land cover types. 

Gain and losses in NDVI=PV*CNDVI    Eq. 7.3 

7.2.6 Spatial analysis of land cover changes. 

Spatial analysis was conducted to determine how oil extraction activities affected the 

vegetation: dense, sparse, mangrove, and the entire vegetation using the NDVI map. 



 

201 

 

The analysis includes overlays of oil hotspots, pipelines, oil wells and oil spill points 

on the land cover/change maps and the NDVI map. The volume of oil spilt into each 

land cover was extracted using the extract function in QGIS, and the number and 

volumes of oil spilt into each land cover were quantified. 

 

7.3 Results 

7.3.1 Land cover accuracy assessment  

Table 7.2 shows the overall and individual class accuracy for the six combined soft-

object-based classifiers, object-based classifiers and the post-processed Bay map for 

2016 and 1987. For the 1987 image, only the best two performing classifiers were used 

instead of the six since the 2 classifiers produced an acceptable accuracy for the land 

cover change detection. The 2002 map accuracy was not assessed due to cloud cover, 

which masked most validation sample points. As stated earlier, the 2016 images were 

used to determine the best two performing classifiers due to the available reference 

data from Google Earth. From the results in Table 7.2, different classifiers produced 

different levels of accuracy: overall (OA), producer (PA) and user accuracy (UA) for 

both the combined soft-object-based classifiers and object-based classifiers. Before the 

post-classification analysis on the Bay and Mahal map, the various OAs are 

Mahal=82.17%, Bay =81.56%, SVM=77.78%, UNMIX =74.73%, DT=74.34 and 

SOM= 55.83% and the 1987 bay 79.41%. The results of the object-based map from 

the two best performing classifiers show that BayObj has higher accuracy (77.87%) 

than MahalObj (76.41%). 

Similarly, the results of 1987 in Table 7.2 show the OAs of Bay (79.41%) and BayPP 

(80.65%). The results show that the Mahal is the best performing classifier among the 

six, with Bay coming second and SOM the least performing classifier. BayObj and 

MahalObj also performed below their Bay and Mahal counterparts. However, for an 

individual class, the results of the UA and PA show that each classifier performed 

better in classifying some land cover types than even Mahal and Bay. For example, 

the water mapped better by Bay (UA= 90.74%) and SVM (UA=78.46%), Built-up by 

DT (UA=45.55%, PA=62.23%), Dense vegetation by SVM (PA=87.95%) and Unmix 

(UA=90.54%), Sparse vegetation by Mahal (PA=91.86%, UA=77.46), Mangrove by 

Bay (UA=91.18) and Mahal (PA=89.50%), Sand dune by Bay (PA=25.51), and both 
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DT/SVM (UA=100) and BS by DT (UA=70,97%) and Mahal (PA=49.30%). 

MahalObj performed below the six soft object classifiers except for the BayObj map 

sand dune, which performed better than all with PA=26.77%. Table 7.3 shows the per 

class confusion matrix from different classifiers for the 2016 map, including the 

object-based Table 7. 3a-i and 1987 map Table 7.3j and k. 

The results of the McNemar test in Table 7.4 show that the accuracy between Mahal 

and Bay, the two most accurate classifiers, is not statistically significant, with a p-

value = 0.82. From Table 7.4, 11 points were correctly classified in the Bay map but 

incorrectly classified in the Mahal map; 9 points were correctly classified in the Mahal 

map but incorrectly classified in the Bay map; 302 points were correctly classified in 

both the Bay map and the Mahal map, and 78 points were incorrectly classified in both 

the Bay map and the Mahal map. The second part of the accuracy assessment, which 

was visual, shows that the Bay class is less noisy compared to Mahal, and Mahal 

suffers more from "salt and pepper", especially for mangroves. Since the Bay and 

Mahal difference is not statistically significant, the Bay class was chosen for further 

post-classification clean up and land cover change mapping. From the results in table 

7.2, it can be observed that the OA of the BayPP map of 2016 and Bay PP1987 

increased from 81.56% to 83.06% and 79.41% to 80.65%, respectively. 
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Table 7.2: Land cover accuracy assessment of hardened soft maps from different classifiers. 

Year Classifiers OA Accuracies (%) Water Built-up DV SV MG SandDune BS 

   PA 72.68 48.24 85.52 87.40 88.70 25.51 45.67 

 Bay 81.56 UA 90.74 50.00 84.00 76.06 91.18 96.00 62.79 

   PA 67.08 62.23 87.89 68.23 75.80 22.39 32.23 

 DT 74.34 UA 71.64 54.55 78.21 65.28 82.26 100.00 70.97 

   PA 76.90 58.17 80.39 91.86 89.50 20.76 49.30 

2016 Mahal 82.17 UA 85.25 53.97 87.88 77.46 89.71 100.00 56.25 

   PA 74.72 42.44 86.17 27.15 64.55 13.08 5.07 

 SOM 55.83 UA 68.06 42.67 56.76 47.37 60.49 94.74 25.00 

   PA 78.46 46.20 87.95 69.56 89.00 23.02 40.24 

 SVM 77.78 UA 85.25 44.62 79.27 72.22 86.84 100.00 65.00 

   PA 78.93 22.06 90.54 71.03 77.15 14.07 35.22 

 Unmix 74.73 UA 87.93 40.00 72.83 70.77 88.89 86.96 40.91 

   PA 60.10 43.49 85.46 91.09 86.18 26.77 26.13 

 Bay Obj 77.86 UA 86.79 58.93 80.26 72.50 83.56 96.00 61.11 

   PA 61.34 45.33 78.02 89.79 88.44 21.78 34.34 

 Mah OBJ 76.4148 UA 87.04 57.89 81.54 67.06 83.56 95.83 59.52 

   PA 80.02 50.01 84.75 87.13 90.46 43.94 58.03 

 BayPP 83.06 UA 91.07 62.75 84.93 76.06 92.65 92.86 66.04 

   PA 30.96 11.57 88.18 85.06 76.73 99.00 30.06 

 Bay 79.41 UA 91.84 35.71 80.95 80.88 89.66 76.74 67.44 

   PA 63.06 75.85 90.50 81.71 84.22 18.62 45.29 

1987 Bay PP 80.65 UA 89.80 51.28 82.28 76.47 83.82 77.08 67.35 
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Table 7.3: Confusion matrix from different classifiers for 2016/2017 (Table 7.3a-

i) and 1987 (Table 7.3J and k) for different land cover types in the Niger Delta. 

(a) Bay 

Classes WT BU DV SV MG SD BS Total 

WT 49 0 0 0 4 0 1 54 

BU 3 32 1 7 0 6 15 64 

DV 0 2 63 5 4 0 1 75 

SV 0 3 12 54 0 0 2 71 

MG 6 0 0 0 62 0 0 68 

SD 0 1 0 0 0 24 0 25 

BS 0 7 1 3 5 0 27 43 

Total 58 45 77 69 75 30 46 400 

(b) DT 

WT 48 0 0 1 13 1 4 67 

BU 3 36 3 6 0 4 14 66 

DV 3 1 61 8 5 0 0 78 

SV 2 3 9 47 6 0 5 72 

MG 2 1 4 3 51 0 1 62 

SD 0 0 0 0 0 24 0 24 

BS 0 4 0 4 0 1 22 31 

Total 58 45 77 69 75 30 46 400 

(c) Mahal 

WT 52 0 1 1 6 0 1 61 

BU 1 34 1 6 0 5 16 63 

DV 0 2 58 2 3 0 1 66 

SV 0 1 14 55 0 0 1 71 

MG 5 0 2 0 61 0 0 68 

SD 0 0 0 0 0 23 0 23 

BS 0 8 1 5 5 2 27 48 

Total 58 45 77 69 75 30 46 400 
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Table 7.3 Confusion matrix from different classifiers cont. 

(d) SOM 

Classes WT BU DV SV MG SD BS Total 

WT 49 4 0 4 8 1 6 72 

BU 2 32 3 5 3 11 19 75 

DV 1 3 63 36 6 0 2 111 

SV 0 1 11 18 7 0 1 38 

MG 5 4 0 6 49 0 17 81 

SD 1 0 0 0 0 18 0 19 

BS 0 1 0 0 2 0 1 4 

Total 58 45 77 69 75 30 46 400 

(e)      SVM     

WT 52 2 0 1 4 0 2 61 

BU 0 29 1 15 0 8 12 65 

DV 1 1 65 12 3 0 0 82 

SV 0 2 7 39 2 0 4 54 

MG 4 1 3 0 66 0 2 76 

SD 0 0 0 0 0 22 0 22 

BS 1 10 1 2 0 0 26 40 

Total 58 45 77 69 75 30 46 400 

(f) UNMIX 

WT 51 0 0 0 6 0 1 58 

BU 3 22 0 4 0 8 18 55 

DV 1 2 67 11 10 0 1 92 

SV 0 6 7 46 2 0 4 65 

MG 3 0 2 1 56 0 1 63 

SD 0 0 0 0 0 20 3 23 

BS 0 15 1 7 1 2 18 44 

Total 58 45 77 69 75 30 46 400 
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Table 7.3 Confusion matrix from different classifiers cont. 

(g) BayOB  

Classes WT BU DV SV MG SD BS Total 

WT 46 0 0 0 5 0 2 53 

BU 1 33 2 3 0 5 12 56 

DV 2 3 61 3 4 0 3 76 

SV 0 4 12 58 1 0 5 80 

MG 9 1 1 0 61 0 1 73 

SD 0 0 0 0 0 24 1 25 

BS 0 4 1 5 4 0 22 36 

Total 58 45 77 69 75 29 46 399 

(h) MahalOB 

WT 47 0 0 0 5 0 2 54 

BU 1 33 2 4 0 6 11 57 

DV 1 3 53 3 3 0 2 65 

SV 2 3 19 57 0 0 4 85 

MG 8 1 2 0 61 0 1 73 

SD 0 0 0 0 0 23 1 24 

BS 0 5 1 5 6 0 25 42 

Total 59 45 77 69 75 29 46 400 

(i)    BayPP     

Classes WT BU DV SV MG SD BS Total 

WT 51 0 0 0 4 0 1 56 

BU 2 32 0 7 0 3 7 51 

DV 0 2 62 5 3 0 1 73 

SV 0 3 12 54 0 0 2 71 

MG 4 0 1 0 63 0 0 68 

SD 0 2 0 0 0 26 0 28 

BS 1 6 2 3 5 1 35 53 

Total 58 45 77 69 75 30 46 400 
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Table 7.3 continued 

1987  

(j) Bay  

Classes WT BU DV SV MG SD BS Total 

WT 45 0 0 0 4 0 0 49 

BU 3 20 0 2 5 13 13 56 

DV 1 0 68 6 9 0 0 84 

SV 2 0 6 55 0 0 5 68 

MG 5 0 1 0 52 0 0 58 

SD 5 3 1 0 0 33 1 43 

BS 0 6 0 4 2 2 29 43 

Total 61 29 76 67 72 48 48 401 

(k)    BayPP     

WT 44 0 0 0 4 0 1 49 

BU 1 20 1 3 1 5 8 39 

DV 1 0 65 7 5 1 0 79 

SV 2 0 8 52 0 0 6 68 

MG 7 0 2 0 57 2 0 68 

SD 6 5 0 0 0 37 0 48 

BS 0 4 0 5 5 2 33 49 

Total 61 29 76 67 72 47 48 400 

 

Table 7.4: Extracted accuracy validation points for the McNemar test for 

statistically significant differences between Bay and Mahal. p-value =0.82 

 Mahal  

B
ay

 

 + - Total 

+ 302 11 313 

_ 9 78 87 

Total 311 89 400 
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7.3.2 Land cover maps 

Figure 7.2a-g shows the Bay 2016 soft classification maps, with each map representing 

a land cover class. The legend indicates the degree of the fuzzy membership function 

of each class; that is, black (0) indicates areas without fuzzy membership, while red 

(1) shows areas with full fuzzy membership rising from above 0 (Kuta 2012). Figure 

7.3a-h shows the spatial extent of the land cover map from hardened soft object-based 

classifiers and the object-based map from hardened bay and mahal classifiers. Figure 

7.3g-h. Figure 7.4a-c shows the subsets of the six classifiers mapped and two object-

based maps showing some portions of the study area. 
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Figure 7.2:Bay soft land cover maps for 2016: (a) water, (b) built-up, (c) dense 

vegetation, (d) sparse vegetation, (e) mangrove, (f) sand dune and (g) bare soil.

Legend 

Water (a) Built-up (b) 

DV (c) SV (d) 

Mangrove (e) sand dune (f)  

 

bare soil (g) 



 

210 

 

 

Figure 7.3: Hardened soft land cover maps cont. 

Bayclass (a)  Decision Tree (b)  Mahalclass (c) 

SOM (d) SVM (e) Unmix (f) 
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Figure 7.3:Hardened soft land cover maps (a) Bayclass, (b) Decision Tree, (c) Mahalclass, (d) SOM, (e) SVM and (f) Unmix, (g) Object-

based Bay and (h) object-based Mahal.

 

Object-based Bay (g) 
Object-based Mahal (h) 
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Figure 7.4: Thematic maps from different classifiers cont.. 
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Figure 7.4: Thematic maps from different classifiers cont.. 
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Figure 7.4:Thematic maps from different classifiers (A) shows BU, W, DV and 

SV in the northern Niger Delta around Asaba; (B) shows, primarily, M and DV 

in the eastern Niger Delta around Warri; and (C) shows water, DV, SV, etc., 

except for the mangroves in the central Niger Delta around Ahoada 
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7.3.3 Land cover extents. 

Table 7.5 shows the land cover extents for various land cover types from the cleaned 

maps of 1987, 2002, and 2016. The proportion of land cover extents from the largest 

to the smallest in 1987, 2002 and 2016 are dense vegetation 15133.56 km2 (41.03%), 

13899.78 km2 (37.68%) and 12470.3 km2 (33.81%), followed by sparse vegetation 

8972.74 km2 (24.33%), 10036.24 km2 (27.21%) and 10258.96 km2 (27.81%), 

mangrove 8324.40 km2 (22.57%), 8314.76 km2 (22.54%) and 8592.85 km2 (23.30%), 

with the least being sand dune. The results show continued net gains by built-up and 

sparse vegetation and net losses by dense vegetation and sand dunes from 1987-200 

and 2002-2016. Mangrove and bare soil each had a net loss from 1987-2002 and net 

gains from 2002-2016, which were higher than the losses, while water had net gains 

from 1987-2002 and net losses from 2002-2016, which were lower than the net gains. 

Figure 7.5 shows the graphical contributors of net changes experienced by each land 

cover class from the periods 1987-2002 in the first column, 2002-2016 in the second 

column and 1987-2016 in the third column. The rows are the net contribution to water 

in the first row, built up in the second row, dense vegetation in the third row, sparse 

vegetation in the fourth, mangrove in the fifth, sand dune in the sixth throw, and bare 

soil in the fifth, and seventh row. The results highlight that bare soil was the highest 

net contributor to built-up land between 1987 and 2002, while sparse vegetation 

became the highest net contributor in 2002-2016 and 1987-2016. It can be observed 

that the sparse vegetation and built-up are the highest negative net contributors to 

dense vegetation sand dunes, respectively. Others are shown in Figure 7.5. Figures 

7.6a, b and c show the final (post-processed) land cover maps of 1987, 2002 and 2016, 

respectively, which were used to map the land cover changes in the Niger Delta. Some 

changes could be detected on the map, especially in built-up land and vegetation 

between 1987, 2002 and 2016. Figure 7.7 a-d show high-resolution satellite image a 

subset of some selected mixed land cover class which cause misclassifications in the 

land cover class. For example, urban built-up areas mixed with bare (Figure 7.7a), 

mangroves mixed with dense vegetation and bare soil (Figure 7.7b), rural built-up 

areas mixed with bare soil sparse vegetation and dense vegetation along a river (Figure 

7.7c), built-up area mixed with sparse vegetation, dense vegetation and mangrove 

(Figure 7.7d),  and mangrove mixed with bare soil and water (Figure 7.7e). These types 
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of land cover classes mixed within 30 by 30 metre pixels of Landsat make land cover 

mapping difficult in the Niger Delta using medium-resolution satellites like Landsat. 

Figures 7.8a, b and c show the vegetation cover map derived from the NDVI for 1987, 

2002, and 2016. The NDVI map of 2002 (7.8b) suffered from cloud cover, especially 

in the western and southern parts of the study area, which affected the quality of the 

NDVI map. The NDVI was reclassified to only the vegetation part by extracting values 

=> 0.15, therefore removing no vegetation values. From the map in Figures 7.8 a b and 

c, the NDVI values decreased from 0.68 in 1987 to 0.58 in 2016, showing vegetation 

degradation signs. The loss of vegetation could be observed in the 2016 map around 

Warri-Sapele and the Port-Harcourt axis. The green areas have higher NDVI values. 
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Table 7.5: Areas of 1987 and 2016 land cover extents and net changes.  

Land 

Covers 

Area in Km2 Area as % NTC in Km2 NTC in (%) 

1987 2002 2016 1987 2002 2016 1987-2002 2002-2016 1987-2016 1987-2002 2002-2016 1987-2016 

WT 2551.44 2666.27 2591.73 6.92 7.23 7.03 114.83 -74.54 40.29 4.50 -2.80 1.58 

BU 644.23 810.68 1468.43 1.75 2.20 3.98 166.46 657.75 824.20 25.84 81.13 127.94 

DV 15128.53 13899.78 12466.05 41.01 37.68 33.80 -1228.75 -1433.73 -2662.48 -8.12 -10.31 -17.60 

SV 8969.12 10036.24 10254.49 24.32 27.21 27.80 1067.12 218.25 1285.37 11.90 2.17 14.33 

M 8323.77 8314.76 8591.98 22.57 22.54 23.29 -9.01 277.22 268.21 -0.11 3.33 3.22 

SD 160.74 124.13 96.14 0.44 0.34 0.26 -36.61 -27.98 -64.59 -22.78 -22.55 -40.19 

BS 1095.40 1021.37 1404.41 2.97 2.77 3.81 -74.02 383.04 309.01 -6.76 37.50 28.21 

Total 36873.23 36873.23 36873.23 100 100 100       

NTC=Net Changes in Km2, WT=water, BU=built-up, DV=dense vegetation, SV=sparse vegetation, M= mangrove, SD=sand dunes and 

BS=bare soil. 
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1987-2002      2002-2016    1987-2016 

 

 

 

Figure 7.5: Contributor to net changes cont.. 
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1987-2002      2002-2016    1987-2016 

 

 

 
 

Figure 7.5: Contributor to net changes cont.. 
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1987-2002      2002-2016    1987-2016 

 

Figure 7.5:Contributor to net changes experienced by each land cover type in km2. 
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Figure 7.6:Land cover maps of (a) 1987, (b) 2002, (c) 2016 and (d1-3) show a comparison between a subset of the classified map (first row) 

and post-classified cleaned map (second row) for the 2016 land cover map.  

A B C 

 

 

D1 D2 D3 
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Figure 7.7:High-resolution satellite image of some subset of the study area showing causes of mixed pixel  in the land cover map  

A B C 

D E 
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Figure 7.8: Vegetation map (NDVI) cont.. 

 

 

(a) 

(b) 
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Figure 7.8:Vegetation map (NDVI) for (a) 1987, (b) 2002 and (c) 2016.  

Note: Figure 7.8b is affected by cloud cover 

7.3.4 Land Cover Change Detection 

7.3.4.1 The magnitude of change in land cover: gains and losses 

Table 7.6 shows the gains and losses for each land cover type from 1987-2002 and 

2002-2016. Bult-up area is the highest gainer in proportion to its total size in both 

1987-2002 and 2002-2016 and overall, from 1987-2016, having gained 484.85 km2 

(75.26%), 939.53 km2 (115.89%) and 1067.19 km2 (165.65%). On the other hand, the 

sand dune is the highest loser for all periods, having lost 139.98 Km2 (86.50%) in 2016. 

Dense vegetation and mangroves were the least gained and lost, respectively, at 

1032.67 km2 (6.82%) and 740.13 (8.89%). The full extent of gains and losses are 

shown in Table 7.6. The spatial extent of gain and losses for each land cover class from 

1987 to 2016 is shown in Figure 7.9. Green indicates gains, while red indicates losses. 

The land cover classes are water (7.9a), built-up area (Figure 7.9b), dense vegetation 

(7.9c), sparse vegetation (7.9d), mangrove (7.9e), sand dune (7.9f) and bare soil (7.9 

g). The maps show that built-up area and sparse vegetation are the highest gainers in 

 

(c) 
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spatial extent (Figure 7.9b and c), while dense vegetation is the highest loser. The gains 

and losses for 1987-2002 and 2002-2016 are in appendix B. 

The degradation in vegetation in the Niger Delta region of Nigeria is high. Figure 7.10 

a and b shows the gain and losses in NDVI from 1987-2016, covering the entire study 

period. The periods of 1987-2002 and 2002-2016 were not calculated due to the poor 

quality (cloud cover) of the 2002 images. It can be observed from the gain and losses 

that the vegetation only gained 0.28 in 2016 and lost 0.48 in the same year. The value 

of 0 or close to 0 is the location with little change. 
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Table 7.6: Gains and losses of land cover extent between 1987 and 2016 in km2 and as a percentage.  

Land 

cover 

classes 

1987-2002 2002-2016 1987-2016 

Area in km2 Area in (%) Area in km2 Area in (%) Area in Km2 Area in (%) 

Gains losses Gains losses Gains losses Gains losses Gains Losses Gains Losses 

WT 632.52 517.69 24.79 20.29 579.15 653.69 21.72 24.52 559.92 519.70 21.95 20.37 

BU 484.85 318.40 75.26 49.42 939.53 281.78 115.89 34.76 1067.19 242.74 165.65 37.68 

DV 1621.05 2849.80 10.72 18.84 1405.27 2839.00 10.11 20.42 1032.67 3695.93 6.83 24.43 

SV 2748.73 1681.61 30.65 18.75 2446.22 2227.97 24.37 22.20 3173.82 1887.60 35.39 21.05 

M 943.28 952.29 11.33 11.44 1173.94 896.72 14.12 10.78 1008.58 740.13 12.12 8.89 

SD 92.31 128.92 57.43 80.21 67.71 95.69 54.55 77.09 74.48 139.98 46.34 87.09 

BS 680.46 754.49 62.12 68.88 1013.01 629.97 99.18 61.68 1035.71 726.28 94.55 66.30 

Note: WT=water, BU=built-up, DV=dense vegetation, SV=sparse vegetation, M= mangrove, SD=sand dunes and BS=bare soil
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Figure 7.9: Spatial extents of gains and losses of various land cover classes cont.. 
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Figure 7.9: Spatial extents of gains and losses of various land cover classes cont.. 

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user

community
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Figure 7.9:Spatial extents of gains and losses of various land cover classes between 

1987 and 2016 (a) Water, (b) Built-up areas, (c) Dense vegetation, (d) Sparse 

vegetation, (e) Mangrove, (f) Sand dunes and (g) Bare soil.  

 

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user

community
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Figure 7.10:Spatial extents of gains and losses of NDVI (a) gains (b) loss between 

1987 and 2016. 

(a) 

(b
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7.3.4.2 Nature of land cover changes and direction of change: Conversions between 

various land cover classes. 

Table 7.7a-c shows the land cover conversion for 1987-2002, 2002-2016 and 1987-2016 

calculated using three land cover maps of 1987, 2002 and 2016. For the three periods, 

the table summarises the area that has remained unchanged, and the types of change 

observed for each class from 1987-2002, 2002-2016 and 1987-2016. The rows are the 

conversions from a particular land cover to all other land covers, while the columns are 

the conversion from other land covers to a particular land cover. For example, Water 

lost 18.02 km2 in row 1, column 2 to build up but gained 21.35 km2 in row 2, column 1 

between 1987 and 2002 (Table 7.7a). 

Table 7.7: Land cover conversions extend in km2 from (a) 1987 to 2002, (b) 2002 to 

2016 and (c) 1987 to 2016 with no change in red bold.  

 

Land cover 

classes 

To 2002 (a) 

WT BU DV SV M SD BS 

F
ro

m
 1

9
8
7

 

WT 2033.75 18.02 86.15 13.89 339.19 43.78 16.66 

BU 21.35 325.83 58.93 172.66 25.09 7.87 32.50 

DV 130.41 61.44 12278.45 2068.85 474.57 12.22 102.31 

SV 12.25 239.69 933.96 7287.51 15.08 10.23 470.41 

M 393.19 18.33 485.17 15.75 7371.48 3.52 36.32 

SD 38.75 28.95 11.35 10.98 16.63 31.81 22.26 

BS 36.57 118.41 45.49 466.61 72.72 14.69 340.91 

To 2016                                           (b) 

F
ro

m
 2

0
0
2

 

WT 2012.57 29.63 87.01 21.89 448.05 31.17 35.93 

BU 16.87 528.90 19.88 156.20 14.14 6.01 68.68 

DV 121.40 144.18 11060.78 1840.11 649.72 4.56 79.03 

SV 16.97 561.47 1011.55 7808.27 12.52 4.57 620.89 

M 364.89 35.98 260.62 45.22 7418.04 5.93 184.07 

SD 35.95 18.66 4.47 9.80 2.40 28.44 24.41 

BS 23.07 149.61 21.73 373.00 47.10 15.46 391.40 

To 2016  (c)     

F
ro

m
 1

9
8
7

 

WT 2033.27 27.01 60.87 18.01 335.40 39.02 39.40 

BU 17.35 401.96 31.80 134.24 18.53 2.66 38.16 

DV 118.93 171.01 11437.63 2617.50 571.43 6.99 210.06 

SV 10.93 600.59 685.03 7085.14 6.03 3.33 581.69 

M 331.88 39.28 214.82 16.89 7584.27 5.71 131.55 

SD 46.23 27.35 4.62 9.53 17.39 21.85 34.85 

BS 34.59 201.94 35.54 377.64 59.81 16.77 369.48 

NOTE: WT=water, BU=built-up, DV=dense vegetation, SV=sparse vegetation, 

M=mangrove, SD=sand dunes and BS=bare soil 
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Figure 7.11 a-f shows the spatial conversions (changes) from a particular land cover 

class to all other land cover classes. The maps are the conversion from a particular land 

cover type to all. The conversions are from water to all (Figure 7.11a), built-up area to 

all (Figure 7.11 b), dense vegetation to all (Figure 7.11 c), sparse vegetation to all 

(Figure 7.11 c), mangrove to all (Figure 7.11 d), sand dunes to all (Figure 7.11e) and 

bare soil to all (Figure 7.11f). 

 

Figure 7.11:Land cover conversion cont.. 

 

 

 

 

 

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community
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Figure 7.11: Land cover conversion cont.. 

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community
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Figure 7.11: Land cover conversion cont.. 

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community
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Figure 7.11:Land cover conversion from (a) water, (b) built-up area, (c) dense 

vegetation, (d) sparse vegetation, (e) mangrove, (f) sand dunes and (g) bare soil to 

all other land cover types.  

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community
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7.3.5 Impact of oil extraction on land cover changes. 

The number and volume of oil spills in each land cover class in 2016 are shown in Table 

7.8. From Table 7.8, there have been 6698 oil spills, and 354906.13 barrels (bbl) spills 

into the land cover in the study area. The results show that sparse and dense vegetation 

have the highest number of spills and volume, respectively, with sand dune having the 

least number and volume of spills. Figure 7.12 is the overlay of oil facilities on the land 

cover maps of 2016. The oil spills are located along the oil pipeline since most of them 

are from sabotage and vandalization, with a few cases occurring due to equipment 

failure and others. 

Table 7.8: Numbers of spills and volumes of oil spills per barrel in land cover. 

NS=number of spills, V=Volumes of spills and bbl=barrel 

Land cover Classes NS V in bbl NS as % V as % 

WT 860 34777.12 12.84 9.80 

BU 439 40009.534 6.55 11.27 

DV 1589 98656.14 23.72 27.80 

SV 1789 96000.42 26.71 27.05 

M 1655 59077.45 24.71 16.65 

SD 24 691.33 0.36 0.19 

BS 342 25694.143 5.11 7.24 

Total 6698 354906.13 100.00 100.00 

NS=number of spills, V=Volumes of spills, bbl=barrel, WT=water, BU=built-up, 

DV=dense vegetation, SV=sparse vegetation, M=mangrove, SD=sand dunes and 

BS=bare soil 
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Figure 7.12:Distribution of oil spills and facilities on various land cover classes. 

Figures 7.13-7.15 show the distribution of oil facilities and oil spill hot spots overlaid 

on land cover changes in dense vegetation, sparse vegetation and mangrove from 1987 

to 2016, instead of from 1987-2002 and 2002-2016. The main interest is to map the 

changes from 1987-2016. The vegetation map shows the conversion of each vegetation 

to other land cover types and the gains by each vegetation in light blue. For example, 

Figure 7.13 shows the conversion of dense vegetation to water, built-up land, sparse 

vegetation, mangroves, sand dunes and bare soil. It can also be observed from the map 

that the dense vegetation lost more to other land cover types than it gained, although 

some gained could be seen northeast of Warri and northwest of Ahoada  

Figure 7.16 shows the distribution of oil facilities and oil-spill hot spot areas from 2008 

to 2019 overlaid on vegetation's gain and loss map (NDVI). The map shows the 

relationship between vegetation degradation and oil extraction activities in the Niger 

Delta. It can be observed, for example, that the places that experience high loss are close 

to the oil pipelines and spills, especially around the central part of the study area. 
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Figure 7.13:Land cover losses from DV to all and DV gain from 1987 to 2016 

overlaid on oil spill hotspots, pipelines and oil wells (A) western Niger Delta, west 

of Sapele, (B) the central Niger Delta and (C) the southern Niger Delta. 
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Figure 7.14:Land cover losses from SV to all and SV gain from 1987 to 2016 

overlaid on oil spill hotspots, pipelines and oil wells (A) in the northern Niger Delta, 

(B) in the central Niger Delta and (C) toward the eastern Niger Delta 
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Figure 7.15:Land cover losses from M to all and M gain from 1987 to 2016 overlaid 

on oil spill hotspots, pipelines and other oil facilities (A) in the western Niger Delta, 

west of Sapele, (B) in the southern Niger Delta and (C) in the eastern Niger Delta.  
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Figure 7.16:Gains and losses in vegetation conditions between 1987 and 2016 from 

NDVI (a and d). 

(b) 
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7.4 Discussion 

7.4.1 Challenges of land cover mapping in the Niger Delta 

The Niger Delta region is one of the most affected worldwide by Landsat archive gaps 

and consistent cloud cover (Nababa et al., 2020). The first challenge for remotely 

sensing the Niger Delta is frequent cloud coverage (Kuenzer et al., 2014). The limited 

availability of cloud-free data, especially from optical sensors such as Landsat for land 

cover mapping and change detection, is a challenge. The second problem is mixed pixels 

among the land cover classes in the Niger Delta, water mixed with mangroves and 

mangroves mixed with dense vegetation, sparse vegetation with dense vegetation and 

even water mixed with built-up, etc., partly due to the land cover types and the spatial 

resolution of the images. Mapping mangrove forests and other land cover types, in 

particular, is challenging, as they are affected by seasonal and intertidal effects, pixels 

often mixed with vegetation, soil, and water due to their location between land and sea 

and the average tidal range in the Niger Delta being 1.5 m (Nababa et al., 2020). The 

last challenge is the issue of spectral similarities among different land cover classes. 

Spectral similarities were discovered between mangrove and dense vegetation, bare soil, 

sand dunes and built-up areas, water bodies and mangroves, etc. Even the water bodies 

have similar spectral reflectance to the built-up due to oil spills, making them brighter 

in reflections. The problem of spectral similarities in the Niger Delta land cover was not 

overcome using soft classifiers since they were not developed to solve this problem. All 

six classifiers used in this research had the same challenges. Incidentally, none of the 

authors who have carried out land cover classification in the Niger Delta ever noted this 

problem. Heumann (2011) encountered the same challenges when mapping fringe 

mangroves on Isabela Island in the Galapagos Archipelago, Ecuador, using remote 

sensing data due to the spectral similarity of mangroves with associated species and the 

lack of clear zonation between species. A post-classification analysis was used to 

reallocate the land cover classes to their original pixels to reduce the impact of spectral 

similarities on the land cover classes. 

7.4.2 Soft maps 

Despite the challenges of mapping land cover in the Niger Delta, seven different land 

cover classes were mapped for 1987, 2002 and 2016 using the Bay classifier, which was 

more visually accurate and less "noisy" than the Mahal, which had higher overall 
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accuracy. For a soft map of 2016 from the Bay land cover map (Figure 7.2), both the 

extent and intensity of each land cover type are similar to a "hotspot" map. The dense 

and sparse vegetation  are the most extensive land cover types located around the central 

part of the study area, with the sparse vegetation located toward the northern part of the 

study area. The soft maps and changes detected by them could be used to prioritise 

interventions related to land cover changes, especially when resources are scarce. Unlike 

the hard map, each soft land cover class has a map, which can be used to analyse land 

cover changes and monitoring; since they show places with more intense land cover 

types or changes, they could help policy makers identify the locations requiring more 

urgent attention since the degree of change is mapped. Unfortunately, for this research, 

the problem of spectral similarity among some land cover types could not allow further 

analysis using the maps. 

7.4.3 Hard maps 

All the classifiers used were carefully chosen to include some that have been used before 

in the Niger Delta and those that have not been used. The classifiers that have been used 

for land cover mapping in the Niger Delta are maximum likelihood (Ayanlade & 

Howard, 2017; Eyoh & Okwuashi, 2016; Omo-Irabor & Oduyemi, 2007 etc.), the SVM 

method under the radial basis function kernel type (Nwobi et al.,  2020) and random 

forest (Nababa et al., 2020; Ozigis et al., 2019). The Bayes, Mahal, SOM and Unmix 

classifiers have not been used in the Niger Delta before. Also, from previous studies, 

only two authors have compared two classifiers for mapping land cover in the Niger 

Delta. Nwobi et al.  (2020) compared SVM and Maximum likelihood classifiers to map 

land cover in the Niger Delta, while Ozigis et al. (2019) compared the fuzzy forest (FF) 

and random forest (RF) methods in detecting and mapping oil-impacted vegetation from 

post-spill using multispectral data in the Niger Delta. From this study, Mahal performed 

better, with an overall of 82.17%, followed by Bay with 81.56%, with the least being 

SOM with 55.83% (Table 7.3). The overall accuracy is different from Nwobi et al. 

(2020), who achieved better accuracy with SVM than the maximum likelihood classifier 

in the Niger Delta. Although he did not compare it with the same classifiers used in this 

study, his study area's extent was also larger. Similarly, the object-based classifier for 

Bay and Mahal, the two best classifiers, did not perform well; they also suffered from 

spectral similarities. Object-based classification using medium resolution remotely 

sensed images may be relatively low in accuracy when the objects are over- or under 
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segmented due to spectral confusion and over- or underemphasis of spectral variations 

within/between large objects (Wang et al., 2018). Although Mahal was the best overall 

classifier, it was discovered that it has more issues with spectral misclassification; it has 

more "noise" than Bay, especially for vegetation, which tends to be the most important 

land cover for this study. Hence, Mahal did not meet the visual accuracy, and Bay was 

chosen as the best classifier. The result of McNemar also shows that the difference 

between the Mahal and Bay classifiers is not statistically significant, p>0.05. 

For per-class accuracy from Bayes, water, dense vegetation, sparse vegetation and 

mangrove were mapped to higher accuracy by all classifiers ranging from PA=64%-

78% and UA 60%-91%, in 2016 and 1987, including the object-based except for SOM 

despite all the land cover classes suffering from spectral similarities. For instant, all 

classifiers classified some water as mangrove, apart from DT (Figure 7.5). However, 

the built-up was the less accurately mapped land cover, thought the DT classifier 

produced a better PA and UA for the built-up. From the analysis of the high-resolution 

satellite image in Figure 7.7, various land cover classes are mixed, and the built-up area 

was confused by bare soil for all classifiers except SOM due to spectral similarities. 

Most of the buildings in the Niger Delta, especially in the rural area, are built 

haphazardly using thatch, mud, timber etc., without recourse to town planning rules and 

are located along the banks of creeks and rivers (Amasuomo & Japo, 2016). The 

buildings have a lot of space, even in the urban built-up area between the blocks having 

bare soil, making it difficult for the classifier to map. However, the results by (Ayanlade 

& Howard, 2017; Nababa et al., 2020; Nwobi et al., 2020; Omo-Irabor & Oduyemi, 

2007) all achieved high accuracy in the built-up. The high accuracies achieved in built-

up areas by these authors could be that some did not consider spectral similarities among 

various land covers, and they assumed some bare soil and sand dunes as built-up, with 

some not having bare soil as a class. For instance, Ayanlade and Howard (2017) did not 

have bare soil as a class, while Omo-Irabor and Oduyemi (2007) had built-up and bare 

soil as one class. The misclassification of dense vegetation as sparse vegetation and the 

mangrove as either water or dense vegetation was expected since dense vegetation is 

also found within sparse vegetation and vis versa. The mangrove is located in the water 

with some dense vegetation, resulting in mixed pixels. The proximity of sparse 

vegetation was also the reason for it being misclassified as built-up, especially in the 

rural area where farming activities are around the houses. Overall, this accuracy 
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achieved is satisfactory for the objective of this work since the most important land 

cover is vegetation in general.  

7.4.4 Post-classification analysis 

Any change detection can only be as good as the individual classification (Kuenzer et 

al., 2014). The problem of spectral similarities and the "salt and pepper" effect was 

reduced using post-classification or postprocessing. Spectral similarities among objects 

within the parcel can misclassify certain land-cover types (Li et al., 2014). The 

classification accuracy for Bay increased from 81.56% to 83.06% after post-

classification analysis, and the visual quality of the map improved, as shown in Figure 

7.6. For the land cover to be used for change mapping, one must ensure that the land 

cover map is produced with high accuracy. The advantage of post-classification analysis 

is that it improves the classified map's accuracy and allows for more interaction between 

the classifier and the analyst (human). The analyst can intervene in the classification 

when the classifier cannot distinguish between objects with similar reflectance. The 

major disadvantage is that it may be labour-intensive for a large study area. Wang et al. 

(2018) also had an improved accuracy between 5% and 14.1% after post-classification 

analysis of four study areas of Cixi, Yinchuan and Maanshan in China and Hartford in 

the USA using the Markov chain random field (MCRF) post-classification method to 

improve object-based land use/cover classifications on different landscapes. 

7.4.5 Qualitative and quantitative land cover extents 

Despite the challenges of mapping land cover in the Niger Delta, seven different land 

cover classes were mapped from the Bay classifier for 1987, 2002 and 2016. This study 

discovered that the dense vegetation occupied the largest portion of the study area 

15133.56 km2 in 1987, 13899.78 km2 in 2002 and 12470.30 km2 in 2016 and 

experienced a continuous net loss of 8.12% (1228.75 km2) and 10.31% (1433.73 km2) 

for the first and second periods, respectively. However, the high net gain by the built-

up area for both the first and the second periods makes it the main net contributor to the 

net losses in all land cover classes. The gain is caused by oil extraction activities, such 

as building oil facilities and shelters to meet the growing demand for shelter to 

accommodate both the locals and workers working for various national multination oil 

companies, which mostly involve clearing and felling trees. The results of  Eyoh and 

Okwuashi (2016); Nababa et al. (2020); Nwobi et al. (2020); Omo-Irabor and Oduyemi 
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(2007) also show that the built-up area is the highest net gainer at all times, while the 

dense vegetation (forest) is  the highest loser and possible the main net contributor to 

the net gain in all land cover classes.  

However, unlike the dense vegetation, the net gain recorded by sparse vegetation for the 

two periods, with the first period being higher with 11.90% and 2.17% in the second, is 

a pointer that the sparse vegetation is the main gainer from the loss experienced by dense 

vegetation. Similarly, the net loss in the first period of 0.11% and a net gain of 3.33% 

in the second period for the mangroves shows a sign of either recovery of the mangrove 

or the conversion of other land cover classes to mangrove. This could have a positive 

impact on the animal and people of the Niger Delta since the mangrove is important to 

both animals and the inhabitants of the Niger Delta. However, the net gain in the second 

period for the mangrove did not agree with most of the authors who reported a consistent 

net loss in mangroves, except for the study by Eyoh and Okwuashi ( 2016), who 

recorded a net increase in a mangrove from 3.03% to 10.34% in 2016 from 2002. 

Similarly, Kuenzer et al. (2014) discovered that the mangrove forest (overall, combining 

all mangrove classes) had remained more or less the same, with 10,311 km2 in 1986/87 

and 10,072 km2 in 2013, just a small loss. Comparing this study with others shows that 

the spatial and temporal scales are different. Some authors cover the entire political 

Niger delta, while some cover a section of this study area. At the same time, some cover 

a shorter time. 

From the NDVI map, the vegetation in the Niger Delta has been seriously affected by 

urban growth, especially around Port Harcourt and Sapele-Warri, as seen in the 2016 

map (Figure 7.8). The mangrove vegetation in the southern part of the study area is the 

most degraded vegetation, with lower NDVI values in 1987, 2002 and 2016. The NDVI 

value in 1987 was higher than the NDVI value in 2002, while the NDVI value in 2002 

was lower than the NDVI value in 2016 (Figure 7.8a-c), which shows that the vegetation 

degraded with an NDVI value of 0.68 in 1987, decreased to 0.48 in 2002 and increased 

to 0.58 in 2016 from 2002. The increase in NDVI in 2016 from 2002 could be attributed 

to the influence of natural forces and the ability of some plant types to develop tolerance 

to the impact of oil spills and other hazardous materials. For example, during the 

fieldwork, some mangroves were regenerating after being destroyed by oil spills. 

Vegetation resources in the Niger Delta have been under stress conditions due to human-

induced impacts arising from oil and gas activities (Ochege et al., 2017), especially in 
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the central part of the Niger Delta. The results by Ayanlade and Howard (2017) also 

show severe deforestation, especially in the north-western and north-eastern parts of the 

delta, with the mean NDVI decreasing from 0.61 in 1987 to 0.55 in 2001 and decreasing 

further to  0.48 in 2011. Ochege et al. (2017) also discovered a severe decline in healthy 

forests and vegetation in the Sagbama oil field from an NDVI of 0.55 in 1987 to 0.32 in 

2002 and later rose to 0.44 in 2013. However, it was still lower than the initial NDVI in 

1987. 

7.4.6 Land cover change analysis 

7.4.6.1  Gains and Loses: Landscape 

Each land cover is expected to gain and lose in land cover changes. Unlike the net losses 

and gains, the gross gain and losses show what each land cover gives and takes. From 

Table 7.6, the gain and losses of water are not high; 24.79% and 21.71% in the first and 

second periods and 20.29% and 24.52% within the same period. The built-up area 

gained 75% (484.85 km2), lost 49.42% (318.402) in the first period, gained 115.89%, 

and lost just 34.76% in the second period, which was the highest gain. The rapid 

expansion in the built-up area in the second period could be partly attributed to the 

increase in population from both the locals and the workers working with many 

multinational oil companies, the building of new oil facilities and an increase in wealth 

in the hands of some people due to the increased affluence resulting from increased 

individual income earning/employment opportunities, activities of oil theft, illegal 

refineries, etc., which put more money into the hands of the local people. Although most 

land cover change studies did not report the gross gain and losses, Eyoh and Okwuashi 

(2016) and Nababa et al. (2020) also recorded losses in the built-up area. The loss in the 

built-up could result from some buildings destroyed by the militant activities or spectral 

similarity with other land cover types, especially in the first period. On the other hand, 

dense vegetation experienced continuous loss. It was the least gainer, with 10.72% 

(1621.05 km2) gain and 18.84% (2849.80 km2) loss and 10.1% (1405.27 km2) and 20.40 

(2839.00 km2) loss in the first and second period, making it the largest loser and the 

most vulnerable land cover undergoing massive destruction. The forest in the Niger 

Delta suffered heavy depletion throughout the 30 years at a rate of approximately 1% 

per year (Eyoh & Okwuashi, 2016). The massive destruction of dense vegetation is 

expected due to massive pressure. Forest loss/degradation has increased over the years 

due to crude oil activities, urbanisation/developments, population increases, agricultural 
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activities and natural causes such as flooding, which vary from community to 

community, with agricultural activities and population growth being responsible for 

most of the losses across the landscape (Igu, 2017). Unlike the dense vegetation, the 

sparse vegetation gained more than what it lost in the two periods: 30.65% (2748.73 

km2) gain and 18.75% (1681.61 km2) lost, and 24.37% (2446.22 km2) and 22.20% 

(2227.97 km2). The gain and loss in the second period are minimal. Eyoh and Okwuashi 

(2016) also recorded a 1.85% loss and 2.40% gain in their study between 1986 and 2016. 

Sparse vegetation could gain some loss from dense vegetation since any destruction of 

dense vegetation could also be because farming activities could contribute to the sparse 

vegetation gaining more in the two periods. 

Although the mangrove lost more than it gained in the first period and gained more than 

it lost in the second period, the difference was small in the first period (11.33% gain and 

11.44% loss). The difference between gain and loss is greater in the second period 

(12.12% gain and 8.89% lost). Only Eyoh and Okwuashi (2016) recorded a gain of 

7.87% against the loss of 2.17% from mangroves in the Niger Delta. Sand dune lost 

more than what it gained in both 2002 and 2016. The loss of sand dunes in both periods 

is because beaches and pure sand bars are highly dynamic at short time scales (Kuenzer 

et al., 2014). Many of them were located in mangroves during the construction of 

massive oil facilities, such as the Warri refinery and pipelines in the Niger Delta, which 

have now been converted to either mangroves or built-up areas. 

The spatial extent for gain and losses covering the entire period; 1987-2016 in Figure 

7.9 shows that the built-up area gained more around Asaba (north-east), Warri (north-

west), Yenegoa (central) and Port-Harcourt (south-east) of the Niger Delta. The reason 

is that Asaba, Yenegoa and Port-Harcourt are the state capitals of Delta, Bayelsa and 

Rivers states and are homes to many multinational oil companies. At the same time, 

Warri also hosts the Warri refinery. Other spatial locations of the remaining land cover 

gains and losses are shown in Figure 7.9a-f. The spatial extent of gains and losses could 

identify the exact location of land cover change to implement policies to mitigate land 

cover changes such as forest depletion. 

7.4.6.2 Gains and losses: Normalised difference vegetation index analysis 

While oil extraction activities have a devastating consequence on ecosystems, studies 

on the spatiotemporal monitoring of vegetation are scarce in the Niger Delta region. 
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Thus, the use of NDVI data to quantify the gains and losses over time is one method of 

monitoring land degradation, specifically in ascertaining the health and status of 

vegetation. In this study, the analysed NDVI data show that the vegetation in the Niger 

Delta from 1987-2016 has been significantly degraded. It only gained approximately 

0.28 NDVI value in 2016 and lost approximately 0.44 within the same period. The 

degradation in the quality of vegetation is more severe around Warri-Sapele (northwest), 

the centre of the study area around Ughelli and the southwest around Port-Harcourt. The 

Niger Delta is home to many oil refineries and facilities, which results in gass flaring 

into the environment. The presence of oil refineries and oil wells could be one of the 

factors responsible for the high degradation of vegetation in the region. 

7.4.6.3 Directions of land cover changes 

While oil extraction activities have devastating consequences on ecosystems, studies on 

the spatiotemporal monitoring of vegetation are scarce in the Niger Delta region. Thus, 

the use of NDVI data to quantify the gains and losses over time is one method of 

monitoring land degradation, specifically in ascertaining the health and status of 

vegetation. In this study, the analysed NDVI data show that the vegetation in the Niger 

Delta from 1987-2016 has been significantly degraded. It only gained approximately 

0.28 NDVI value in 2016 and lost approximately 0.44 within the same period. The 

degradation in the quality of vegetation is more severe around Warri-Sapele (northwest), 

the centre of the study area around Ughelli and the southwest around Port-Harcourt. The 

Niger Delta is home to many oil refineries and facilities, which results in gas flaring into 

the environment. The presence of oil refineries and oil wells could be one of the factors 

responsible for the high degradation of vegetation in the region. 

7.4.6.4 Directions of land cover changes 

The directions of land cover changes; the net contributor to changes in each land cover 

class could help to tell the conversion from one land cover class to another land cover 

type. This may be of interest to policy making in the Niger Delta since the net gains and 

losses and gross gains and losses did not give such information on interclass conversion. 

For sparse vegetation, dense vegetation is the most targeted land cover for the period, 

leading to the conversion of 2068.85 km2 and 1840.11 km2 in 2002 and 2016 of dense 

vegetation to sparse vegetation. Sparse vegetation is the major change driver for dense 

vegetation; the conversion could be due to clearing or felling trees for farming, illegal 
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lumbering, etc. Mangroves and water also targeted dense vegetation in the first period, 

while mangroves and built-up areas targeted dense vegetation in the second period. 

Similarly, sparse vegetation was the most targeted by dense vegetation in the same 

period, with 933.96 km2 and 1011.55 km2 of sparse vegetation converted to dense 

vegetation. However, the conversion from dense vegetation to sparse vegetation was 

more than twice in the first period and almost three times the conversion from sparse to 

dense vegetation in the second period. Other drivers of conversion from sparse 

vegetation in the first and second periods are bare soil and built-up land, 470.41 km2 

and 239.69 km2 in the first period and 561.47 km2 and 620.89 km2 in the second period. 

The conversion from sparse vegetation to built-up is almost four times that of dense 

vegetation to built-up area (Table 7.7). The possible reason for the high rate of 

conversion from sparse vegetation to built-up land could be the ease of building houses 

and other infrastructure, which requires less clearing and the preparation of the land. 

The dense vegetation /forest is more difficult and costly to build on. The high conversion 

of sparse vegetation to bare soil indicates land degradation since they are areas with very 

little or no vegetation cover. 

For mangroves, dense vegetation and water are the most targeted land cover in the first 

and second periods, leading to the conversion of 485.17 km2 and 364.89 km2 to dense 

vegetation and water, respectively. The conversion of mangroves to dense vegetation 

could result from the invasion of oil palm tree species since they were all classified as 

dense vegetation. The mangroves of the Niger Delta are endangered by the invasive 

Nipa Palm (Numbere, 2019a; Nwobi et al., 2020; Onyena & Sam, 2020).  

Similarly, the second most targeted land cover in the first and second periods was dense 

vegetation and water. Other land cover conversions are shown in Table 7.7. 

Additionally, mangroves are the most targeted land cover by water in the first and 

second periods, with 339.19 km2 and 448.05 km2 converted to water. When mangroves 

die, most locations are converted to water since they are mixed with water. 

From the maps of spatial conversion from 1987 to 2016 in Figure 7.11a-g, the 

conversions from dense vegetation to sparse vegetation are more intense and extensive 

around the northern part of the study area down to the central and south-eastern regions. 

The conversion from sparse vegetation also shows that the built-up area bare soil and 

dense vegetation cover the largest extent of the map Figure 7.11 d. The derived 
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nature/direction of changes map has provided the necessary information that could help 

in locating a particular place of interest for any land cover change programs. 

7.4.7 Effect of oil extraction activities on land cover 

7.4.7.1 The volume of oil spilt into land cover 

From various studies, none has quantified the number of oil spills into the land cover in 

the Niger Delta. The high number of oil spills into the sparse vegetation (26.71% of the 

total oil spill) and the high volumes of oil spills into dense vegetation (27.80% of the 

total volume of the spill) will have a devastating effect on them and the inhabitant of 

Niger delta. The high conversion from sparse vegetation to bare soil could be because 

of the oil spill, which easily destroys the sparse vegetation leading to land degradation, 

unlike the dense vegetation, which is not easily affected by the oil spill. The oil spill's 

impact, especially on sparse vegetation, could have health implications for the human 

who consume food (especially vegetables) from such contaminated land. Sparse 

vegetation is highly cultivated in the Niger Delta. The spill could affect even the fruit 

from some dense vegetation, such as oil palm, mango fruit, etc. An oil spill-induced 

conversion of sparse vegetation to bare soil will expose the land to other environmental 

problems, such as soil erosion. Similarly, the mangrove, with the second-largest number 

of spill incidences (24.71%) and third-largest spill volumes, has caused the degradation 

of the mangrove despite the lack of net loss in its spatial extent for the period of the 

study. This called for an investigation to ascertain whether foods produced on such oil-

contaminated land are safe  for human consumption 

 

7.4.7.2 Spatial analysis: impact of oil spills on vegetation 

The responses of different vegetation types throughout 1987-2016 to the impact of oil 

spills and oil extraction activities in the Niger Delta differ. The result is the validation 

of the previous chapters, five and six, which looked at vegetation at leaf and plot scales 

using hyperspectral and satellite-derived normalised vegetation indices. The oil 

facilities in the Niger Delta are mostly located in the central Niger Delta, Southwest and 

Southeast. They are mostly located within dense vegetation, sparse vegetation, and 

mangrove. Only a few oil wells are in the northern part of the study area, with the oil 

spills mostly found along the oil pipelines. Most of the losses in dense vegetation are 

within oil spill, pipeline or oil spill hotspot locations. Some changes are from dense 
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vegetation to mangroves and bare soil in the southern part of the study area (Figure 

7.13a). Although the loss of dense vegetation to mainly sparse vegetation and bare soil 

in the central part of the Niger delta is not particularly close to oil facilities, it may still 

result from oil extraction activities. Multidirectional water flow enables the spread of 

oil within the extensive tidal river network and mangrove swamps in the Niger Delta, 

which has become a persistent sink of oil that is redistributed instead of being removed 

(Obida et al., 2021). However, the changes from dense vegetation to mangrove and 

water in the south around Ijaw south are mostly within oil spill hotspots, pipelines and 

spills. The dense vegetation near the mangrove is more vulnerable to the impact of oil 

extraction activities, especially oil spills, since mangrove spills stay longer. 

For most sparse vegetation, the loss toward the north of the study area is not close to oil 

facilities, hotspots, or spills (Figure 7.14). However, the loss to the bare soil around the 

central part of the Niger Delta is found close to the oil pipeline, unlike some losses in 

the southern part of the study area, which are farther away from the oil facilities. As a 

low-lying region, approximately 2 m to 4 m above sea level (Adamu 2016) with a flow 

direction from north to south, the vegetation south of the oil spills could be affected 

kilometres away from the spill location. In the rainy season, rivers, surface water and 

tributaries flow towards the Atlantic Ocean in the south just as the water table tilts 

towards the same direction, providing many opportunities for trapped oil to migrate 

freely along the southward flow direction without major restriction from inundated 

surfaces (Shittu, 2014). The losses of sparse vegetation to dense vegetation in the south-

eastern study area are mostly near the oil spill hotspot, pipeline and spill location. The 

gain in sparse vegetation could result from the resistance of some sparse vegetation to 

the impact of oil spills, although there are some conversions to built-up. Among all the 

vegetation types, mangroves are the most vulnerable to the impact of oil extraction 

activities in the Niger Delta. The loss of mangroves to water and bare soil was mostly 

found close to oil pipelines, hotspots and spills (Figure 7.15a, b and c). Mangroves are 

extremely responsive to contamination by oil and industrial waste. Once oil and marine 

tar residues are deposited on or around mangroves, they stick to plant surfaces, 

absorbing to oleophilic surfaces of flora and fauna (Onyena & Sam, 2020). Oil 

exploration/exploitation activities affect Mangrove forests, and some portions have been 

converted to farmlands (TRCC, n.d.). 
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7.4.7.3 Land degradation due to oil extraction activities 

Vegetation degradation is one of the consequences of oil extraction activities that affect 

vegetation health. This study shows that the vegetation in the Niger Delta has been 

highly degraded within the past 30 years. The gain from the NDVI values is just an 

average of 0.28, with just a few areas showing vegetation with values close to that. The 

major gains in NDVI, around the extreme northwest region of the study area, west of 

Sapele, especially the dense vegetation, as shown from the land cover map, have a few 

oil facilities, with oil pipelines and spills below it (Figure 7.15a). The proximity of the 

dense vegetation to water could have caused the gains. The mangrove between Yenogoa 

and Ijaw South also experienced gains within the pipeline and oils pills corridor. At the 

same time, the sparse vegetation did not show any appreciable gain, especially in the 

northwest and southeast of the study area around Ugelli and Opobo. The high losses in 

the NDVI are highly related to oil extraction activities, especially in the northwest, 

around Warri-Ugehelli, northeast, around Port-Harcourt and the central part of the Niger 

Delta, covered by dense vegetation and sparse vegetation. The losses are less intense in 

the mangrove. The study by Ayanlade and Howard (2017) NDVI shows that forests are 

mostly degraded, especially in the north-west and north-east part of the map, with 

lowland rainforest being degraded, which is more intense than freshwater swamp forests 

and mangroves. 

7.5 Conclusion 

Qualitative and quantitative spatiotemporal land cover change mapping was carried out 

in the Niger Delta using three-date satellite images and combining the data with oil 

extraction data to assess the impact of oil extraction activities on land cover changes at 

both temporal and spatial scales, specifically, the vegetation. From the six classifiers 

(Bayes, DT, Mahal, SOM, SVM and Unmix) tested, Mahal and Bayes's classifier 

performed best, with Bayes being less affected by mixed pixels.  The land cover changes 

at the landscape scale and the effect of oil extraction activities on the observed changes 

was assessed using the best performing land cover mapping classifier, the Bayes 

classifier. While the results of land cover mapping were used to assess land cover 

changes in terms of conversions, the NDVI data were used to assess the degradation in 

vegetation. The research has provided valuable results that can be useful in mitigating 

the impact of oil extraction activities, especially vegetation, on the land cover in the 

Niger Delta. The summary of the results is as follows: 
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 The largest land cover is the dense vegetation, and the best performing classifier 

that meets both the statistical and visual accuracy is the Bayesian classifier 

(Bay), with an OA of 83.06%. 

 The land cover in the Niger Delta, especially the dense vegetation (Forest), is 

under pressure mostly from the SV, including agriculture. 

 The build-up has experienced a substantial increase for the two periods and has 

the largest net gain of 127.94%. 

 Mangrove is more vulnerable to the impact of oil extraction activities in terms 

of conversion. 

 Land cover and vegetation are affected by oil extraction activities in the Niger 

Delta, with many conversions from vegetation to no vegetation occurring in 

proximity to oil extraction activities. 

 Where there has not been a conversion from other land cover types, the 

vegetation is highly degraded and influenced by oil extraction activities, as 

shown by the NDVI data. 

There is an urgent need to restore vegetation before it deteriorates further. These results 

can be used to develop an intervention program to restore the quantity and quality of 

vegetation and take steps to mitigate the impact of oil spills, and conduct proper 

environmental impact assessments before siting any oil infrastructure or carrying out 

exploration activities. 
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Chapter 8 Synthesis and conclusions 

8.1 Discussion 

This research aimed to comprehensively characterise the impact of oil extraction 

activities on the land cover change in the Niger Delta at different scales using 

multispectral and hyperspectral remote sensing data. This study analysed the 

spatiotemporal oil spill hotspot and oil facilities hotspot, the relationships between oil 

extraction activities/facilities and the observed land cover changes in quality 

(degradation) and quantity (conversions from one land cover type to another) by 

integrating oil spill and facilities data with land cover change information derived from 

remote sensing. The general discussion summarised the main findings from the four 

objectives chapters (4, 5, 6, and 7), which addressed the following objectives and 

research questions. 

8.1.1  Where and how frequently have oil spills occurred over the past 13 years, 

and where are the oil facilities located in the Niger Delta? 

Since the oil discovery, environmental pollution from oil exploration and exploitation 

has plagued the Niger Delta region for over five decades (Umar et al., 2019). Oil spills 

and resultant land contamination have destroyed rural economies and social livelihood 

in the Niger Delta, and due to the inadequacy of the oil companies, together with the 

destruction of livelihood, led the people to vandalise and steal from the oil infrastructure 

as a way of obtaining compensation (Sam, 2016). To achieve the aim of this thesis, the 

first objective was to examine the spatiotemporal evolution of oil spill hotspots from 

2007-2019 and oil facility hotspots in the Niger Delta using spatial statistic hotspot 

analysis. The Gestis-Ord General G and The Getis-Ord Gi* local statistic a were used 

to examine the spatiotemporal evolution of oil spills from 2017 to 2019 in the Niger 

Delta, while the oil facilities hotspot map was produced using Kernel Density 

Estimation in chapter 4. Understanding the historical and geographical distribution of 

oil spills will help in adopting an appropriate remediation strategy and prevent further 

spills in the area (Umar et al., 2021). Detecting oil spills also forms the basis for 

establishing the total area affected by oil pollution, facilitating remediation efforts and 

recovery after oil spills, and monitoring the impacts of oil pollution on plant life (Ozigis 

et al., 2019). 
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 Where and how frequently have oil spills occurred over the past 13 years?  

The oil spills in the Niger Delta are located along the oil pipelines spread across the 

study area. This is not surprising since the sabotage of oil pipelines is the major cause 

of oil spills in the Niger Delta. Between 2007 and 2019, the average annual oil spill 

incidents were approximately 586. However, May and November recorded the highest 

number of oil spills within the study period in many years, while April had the lowest 

number of oil spill incidents in the Niger Delta. The year 2014 was the worst year for 

oil spill incidence in the Niger Delta, while 2007 recorded the fewest spills, according 

to the NOSDRA. However, the incidence of oil spills in the Niger Delta decreased after 

the peak year in 2014. Nevertheless, the frequency of oil spills is high and will adversely 

affect the environment and land cover changes 

From the consistent oil spill hotspot map, the location in the southern part of the study 

area, around Ijaw south, has a more consistent hotspot for seven years along a major 

pipeline, while Ahoada-Omoku, in the south-eastern part has a consistent hotspot of up 

to six years. These results agree with Obida et al. (2018), whose results show that the 

southern Ijaw-Nembe-Brass axis of the pipeline is by far the most contaminated area in 

terms of oil spill intensity based on the oil spill volume due to it remote and inaccessible 

location, making policing a hard task. Incidentally, unlike Ahoada-Omoku, which 

primarily falls within the medium and high density of oil wells and pipelines, Ijaw south, 

with the most consistent oil spill hotspot, falls within the low density of oil wells and 

pipelines.  Also, the mangrove close to the sea makes it difficult for the activities of the 

oil pipeline vandal to be spotted.  

The oil spill incidence may continue to occur in the Niger Delta; the extent of occurrence 

will depend on the peace and stability in the region since most of the oil spills are caused 

by sabotage. This study has answered some questions, such as the spatiotemporal pattern 

of oil spill concentrations and the frequencies. This provided information that could help 

mitigate the oil spill due to sabotage. The security agencies could prioritise their 

surveillance around hotspots by sabotage, accounting for 81% of oil spill incidents in 

the study area between 2007 and 2019. From the autocorrelation of annual spills, 2013 

and 2015 have the most clustered oil spill incidences, while 2019 has the most random 

spill incidence despite 2013 having the highest number of oil spill incidents. 

Additionally, the spatiotemporal pattern of oil spill hotspots in the Niger Delta is 
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inconsistent in most locations throughout the year, which shows how dynamic the 

vandal activities are. 

 Where are the oil facilities located in the Niger Delta? 

The three states of the traditional Niger Delta, namely Bayelsa, Rivers, and Delta, have 

the highest number of oil spill occurrences and oil facility distributions (Umar et al., 

2019), accounting for 88% of recorded oil spills in Nigeria from 2007-2019. The 

implication is that the land cover, especially the vegetation, is the most affected by oil 

extraction activities in these states. The oil facilities, pipelines and wells are distributed 

across the study area. The oil pipeline network is extensive, covering almost the entire 

extent, except for the northern part of the study around Agbor and Asaba. These towns 

are not oil-producing areas of the Niger Delta, hence, the lack of pipeline networks. The 

oil well also follows the same pattern as the oil pipelines, spread across the study area 

except for the north. For the density of oil facilities, i.e., the oil pipeline and well, 

Ahoada and Omoku, southeast of the study area, have the densest oil pipeline and oil 

wells, which is also the location with the most consistent oil spill hotspots. These 

locations require a comprehensive land cover study to assess the impact of oil extraction 

on vegetation. The result of the hotspot analysis also provided data for further analysis 

in chapter 7 to assess the impact of oil spills on land cover changes (conversion and 

degradation). 

8.1.2 What are the responses of plant types to various concentrations of soil 

hydrocarbon properties? 

The Niger Delta region has experienced petroleum hydrocarbon contamination of 

different magnitudes for several decades, making the soil highly hydrocarbon-

contaminated, toxic and unproductive in some cases. The presence of TPH in soil may 

affect vegetation and other soil properties, such as the level of toxicity (EC50) and total 

organic content (TOC%) in the soil, which could affect the health conditions of different 

plant types. Plants depend mostly on soil quality for growth and survival. Oil seepage 

influences the soil and the vegetation around hydrocarbon seeps (Omodanisi & Salami, 

2014). To achieve the aim of this thesis, the second objective was to analyse the impact 

of soil hydrocarbon parameters (SHP):Total petroleum hydrocarbons(TPH),  Microtox 

(EC50 mg L-1) and Total Organic Carbon (TOC (%)) on the health of plant types at the 

leaf scale using hyperspectral vegetation indices (HVIs). The red edge parameters and 
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four hyperspectral vegetation indices HVIs were used to determine each plant's spectral 

response to SHPs using Spearman’s and Pearson’s correlation analysis. It was done to 

test the hypothesis that various plant types are affected by the SHPs, leading to reduced 

leaf chlorophyll content in plant families. From the results, the responses of spectral 

reflectance of plant types to various concentrations of soil hydrocarbon properties differ 

from individual plant types. Spectral reflectance is a source of information on 

vegetation's chemical-physical status and physiological properties (Piro et al., 2017). 

The results show that TPH most impacts the mangrove. Most reported oil spillages have 

occurred in the mangrove swamp forest in the Niger Delta (Kadafa, 2012a), and even 

those that occurred on land sometimes get washed into the mangrove. Mangroves are 

the most vulnerable to large-scale and chronic oil spills (Onyena & Sam, 2020), mainly 

because spilt oils are stored in the soil and rereleased annually during inundation 

(Adelana & Adeosun, 2011). Hydrocarbon has been trapped in mangroves for many 

years and remains circulating by waves and currents since the mangroves are in the 

water. However, the Mango is the most tolerant among all the plant types to TPH. Being 

a larger plant, Mango could withstand the oil spill's impact more than the mangrove and 

other plant types. 

On the other hand, oil palm is the plant most affected by the amount of soil toxicity, 

followed by elephant grass. Interestingly, mangroves and mangoes are the most tolerant 

to the impact of soil toxicity and are positively correlated. Mangroves are trees or large 

shrubs that have adapted to harsh environmental conditions and have developed unique 

survival features (Onyena & Sam, 2020). Due to oil extraction activities, pollutants from 

industrial waste have been trapped in mangroves for many years, making them tolerant 

to the impact of pollutants despite having a higher toxicity concentration than the land 

where the mango plants were located.  

Additionally, Mango is the most affected by TOC (%), having a higher negative 

correlation, while Awolowo is the least affected. The implication is that mangoes can 

survive on soil without many soil nutrients, unlike Awolowo grass. The plant needs 

TOC (%), which is not harmful, unlike the hydrocarbons and pollutants present in the 

soil. Having information on plant-specific responses to the impact of soil hydrocarbons 

could help understand how each plant is tolerant to the impact of oil extraction and other 

soil parameters. 
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This result has shown that TPH does not significantly correlate with TOC (%) and 

toxicity in the soil in the Niger Delta. Each plant responds differently to the impact of 

soil hydrocarbon parameters. This result is important to the government and other 

stakeholders interested in restoring the environment affected by the oil spill in the Niger 

Delta. For instance, the mango tree could be used in the locations that have been affected 

by the oil spill, which has killed some trees that are not tolerant of the impact of THH. 

The tolerance of mangroves to toxicity also means that they can survive in the Niger 

Delta despite being the most vulnerable to TPH. 

8.1.3 What is the effect of oil on the health of different types of plants? 

The impacts of hydrocarbon seepage pollution in vegetation are reducing the plant 

transpiration rate, levels of chlorophyll content, higher levels of foliar water content and 

leaf structural changes (Susantoro et al., 2018). Hence, the need to investigate the effect 

of spill volume and time gap after oil spills on vegetation health and how health changes 

over a period spanning before and after the occurrence of spills by way of the NDVI for 

dense vegetation, mangrove vegetation and sparse vegetation. To achieve the aim of this 

thesis,  the third objective was to assess the effects of oil spills on the health of different 

vegetation types at the plot scale using satellite-based Normalised Difference 

Vegetation Index (NDVI) from Landsat data. Regression analysis was carried out to 

determine the impact of oil spill volume, the time gap between oil spills and image 

acquisition date on vegetation health as indicated by NDVI values. For the temporal 

monitoring of vegetation health, a student’s paired t-test was used to compare the change 

in NDVI values from spill sites with values from non-spill sites for all sites combined 

and for each spill site for several years. It was done to determine each vegetation type's 

response after being subjected to oil spills and to help understand the effect of time on 

vegetation health recovery. 

From the results, different vegetation types respond differently to the oil spill volume, 

and the time interval between the oil spill dates affects them. When all the spill volumes 

were used, the relationship between the NDVI and the volume of oil spills was weak for 

all the vegetation types, with the highest R2=0.0108 for mangroves. These results show 

a weak or no relationship and agree with Adamu et al. (2016), with R2=0.0001 when all 

spill volumes were used. The dense vegetation responded more to oil spill volumes 

above 1000 bbl (R2=0.4356), and sparse vegetation responded more to oil spill volumes 

between 400 and 1000 bbl (R2=0.5018). In contrast, the mangrove vegetation has the 
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weakest relationship at a volume between 225 and 400 bbl with R2=0.0748), although it 

has a strong inverse relationship within 401 to 1000 bbl with R2=0.452. This result 

differs from Adamu et al. (2016), which had a positive R2=0.5944. The lack of oil spill 

volume impact on the mangrove does not indicate that the oil spill does not impact the 

mangrove. The possible reason is the dynamic nature of the location of the mangrove in 

the water bodies, which makes it difficult to quantify the volume of the oil spills. When 

oil spills into the mangrove, it could propagate to places with less or without oil spills. 

Also, the constant exposure of mangroves from oil spills from the land, which gets 

washed into the mangrove, could contaminate the mangrove site not, which may make 

it have more volume of the spill than what was originally spilt. It can be observed from 

the leaf scale that the health condition of the mangrove was the most affected among all 

plant types when the hydrocarbon was correlated for each sample site for the mangrove. 

Studying the oil volume's impact on mangroves from the plot scale might not give the 

best result. 

 In terms of the influence of time after the oil spill on the vegetation, a weak relationship 

exists for all the vegetation. However, the oil spill's effect was more visible within 90 

days for both sparse vegetation and mangrove vegetation than for dense vegetation. 

Depending on plant species and hydrocarbon type, chlorophyll may decrease differently 

in polluted hydrocarbon environments (Serrano-Calvo et al., 2021). The results by 

Adamu et al. (2016) showed a general decrease in the NDVI values of mangroves in the 

first year, which implied the impacts of oil pollution on vegetation. Still, the NDVI 

values increased after a year, which implies vegetation recovery. 

Similarly, the comparison results of all the changes in NDVI values of SS and CS show 

a highly significant difference between the change in NDVI values before and after the 

spill for sparse vegetation and mangrove vegetation and a very significant difference for 

dense vegetation. The dense vegetation is less affected by the impact of oil spills, as 

indicated by the significance level. The results agree with some authors. For example, 

the results by Onyia et al. (2018) show a significant difference in vascular plant species 

richness and diversity from non-polluted and oil-polluted vegetation in the Niger Delta. 

Similarly, Adamu et al. (2018) also show a significant difference between vegetation at 

the spill site and non-spill sites in mangrove vegetation in the Niger Delta. From the 

statistical analysis comparing the difference between changes in NDVI values for each 

SS and CS at different oil spill volumes, the impact of oil spills on the health condition 
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of dense vegetation is less significant, with only one site having a p-value <0.05 (SSD1 

at spill volume 280 bbl). The impact of oil spills on health conditions is greater on sparse 

vegetation and mangrove vegetation at various spill volumes, with sparse vegetation 

being the most impacted, with five out of eight locations having very significant 

differences (at volumes 260, 802.5 and 1500 bbl) and significant (at volumes 228 and 

1000 bbl) impacts on their health conditions, respectively. 

 In summary: 

 The volume and time after spills have different effects on the vegetation types 

in the Niger Delta, with dense vegetation responding to the impact of oil spills 

at a higher volume than sparse vegetation and mangrove vegetation. 

 The impact of the oil spill is felt within the first 90 days after the spill for sparse 

vegetation and mangrove vegetation. 

 There is a significant difference in the change in NDVI values between SS, with 

their corresponding CS, with sparse vegetation being the most affected and 

dense vegetation being the least affected. 

The next discussion will provide more information in map form about the impact of oil 

extraction on vegetation at the landscape scale, conversion, and degradation. 

8.1.4 What are the observed pattern of land cover changes and what land cover 

types are more affected by extraction activities in the Niger Delta? 

Monitoring the locations and distributions of land cover changes is vital for establishing 

links between policy decisions, regulatory actions and subsequent land use activities 

(Ahmad, 2012). In the Niger Delta, more than 1000 km2 of land has been contaminated 

by oil pollution, with broadleaved forest, mangroves and agricultural land being the 

most impacted land cover types (Obida et al., 2018). The land cover in the Niger Delta 

has undergone many changes over the past 30 years due to the construction of oil 

facilities and oil spills. The objective of this chapter was to test different classifiers and 

choose the best-performing classifier to map the land cover changes at the landscape 

scale using multispectral Landsat data and integrate oil extraction activities data to 

determine their effect on the observed land cover changes. Six different combined soft 

and object-based classifiers were used to map land cover classes in the Niger Delta using 

the 2006 Landsat image to determine the best classifier that would satisfy both statistical 
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and visual accuracy. The classification results show that Bayclass performed better than 

the other classifiers. The accuracy improved after post-classification correction, and the 

Bayclass was used for land cover mapping of the two satellite images and change 

detection. 

Many factors were identified during the land cover classification that affects land cover 

mapping in the Niger Delta using a medium-resolution image, such as Landsat. From 

all six classifications, it was discovered that the problem of land cover mapping in the 

Niger Delta goes beyond mixed pixels. Rather, the main problem was what Nababa et 

al.(2020) described as spectral similarities in the land cover types. The built-up area has 

spectral similarities with the bare soil, sand dunes and even water bodies affected by oil 

spills. However, despite the effect such spectral similarities have on the land cover in 

the Niger Delta, no author has taken any step to reduce its impact on the accuracy of 

land cover classes in the Niger Delta. For this thesis, the problem of spectral similarities 

was reduced through post-classification analysis. The correct land cover class was 

manually edited to improve the visual and statistical accuracy with 1.5% and 1.24% in 

the 2016 and 1987 Bayclass maps, respectively. Although the effect on the accuracy 

was small, the visual accuracy improved greatly. The overall improvement in the 

classification accuracy of the land cover maps through post-classification analysis is 

significant in their potential use for land change modelling (Manandhar et al.,  2009). 

The result of land cover change mapping shows different patterns of land cover changes: 

from 1987-2016, there was a net increase of 1.58% by water, 127% by built-up land, 

14.33% by sparse vegetation, 3.22% by mangroves and 28.21% by bare soil, with a 

decrease of 17.60% by dense vegetation. The astronomical increase in built-up area 

points to the fact that more infrastructure has been built, including oil facilities, in the 

past 30 years in the Niger Delta, while the loss of dense vegetation and the increase in 

sparse vegetation and bare soil is a pointer that the forest in the Niger Delta is being 

destroyed. The forest is very important to the region because it is a source of food, a 

habitat for various types of animals, etc. Generally, vegetation is the most affected by 

oil extraction activities.  The most affected land cover by oil spill volume and the 

numbers of spills are dense vegetation and sparse vegetation, respectively. Similarly, 

land degradation in dense and sparse vegetation is highly related to oil extraction 

activities, especially in the northwest, around Warri-Ugehelli, northeast, around Port-

Harcourt and the central part of the Niger Delta, unlike the mangrove. The proximity of 
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the vegetation to oil facilities caused great damage to them in the form of destruction or 

degradation. 

8.1.5 At what scale (i.e., leaf, plot, landscape) are these effects manifested? 

The effect of oil extraction affected the land cover differently on a different scale. The 

vegetation grouping for the plot and landscape scale differs from the leaf scale except 

for the mangrove. At the leaf scale, the oil spill's impact is more manifested on the 

mangrove vegetation/plant, while the impact is more manifested on sparse vegetation at 

the plot scale. The difference in vegetation most affected by oil spill between the leaf 

and plot scale could be because more than one species are included in sparse vegetation 

at the plot scale. For example, Awolowo and Elephant grass etc., are jointly called sparse 

vegetation, with different levels of resistance to the impact of oil spills within the 30 by 

30-metre pixels of the Landsat image. Similarly, the same reason stated in section 8.1.3 

could be the major reason why the mangrove seems not impacted by oil spill volumes 

at the plot scale  

For the impact of oil at the landscape scale, dense vegetation is the most affected land 

cover type in terms of oil spill volume, followed by sparse vegetation and mangrove. In 

contrast, sparse vegetation is the most affected land cover, followed by mangrove and 

dense vegetation in terms of the number of oil spill incidences. Obida et al. (2018) also 

reported broadleaved tropical rainforest (dense vegetation) as the most contaminated 

land cover type in terms of oil spill volume, followed by mangroves and cropland 

(sparse vegetation), which agree with dense vegetation for this research. The difference 

in results for sparse and mangrove vegetation could be attributed to the difference in the 

spatial extent of the study area. In general, vegetation is the most affected land cover by 

the oil extraction activities in the Niger Delta, with over 70% of oil spilt in terms of 

incidence and quantity (volume). 

Similarly, the impact of oil extraction is manifested in all the vegetation types at the 

landscape scale. The conversions to non-vegetation land cover are within oil extraction 

activities, especially the dense and sparse vegetation. The degradation in vegetation is 

more manifest in dense and sparse vegetation than in the mangrove, mostly found 

around oil extraction activities. Compared to the plot scale, the oil spill's impact on the 

mangrove manifests more at the landscape scale. The reason stated in section 8.1.3 (i.e. 

the dynamic nature of the mangrove, which is located in the water body, makes it 
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difficult to assess the impact of oil spill volume on it since an oil spill in a particular 

location could propagate to other locations). The multi-scale characterisation of the 

impact of oil extraction on land cover change, especially the vegetation, has provided 

information on how each vegetation is affected by the impact of oil extraction activities 

in the Niger Delta.  

In summary, oil extraction activities contribute to land cover changes in the Niger Delta 

both in quantity(conversions) and quality (degradation). Land cover changes and 

conversion from dense, sparse, and mangroves are close to oil spill hotspots, locations, 

and facilities. The spatial analysis between observed changes from NDVI and oil 

extraction activities shows that the quality of the vegetation in the Niger Delta from 

1987-2016 has degraded. 

While land cover mapping, it was discovered that: 

 Object-based land cover classification using optical medium resolution satellite 

images such as Landsat in the Niger Delta is unsuitable for mapping land cover 

classes. 

 The spectral similarities of land cover classes make soft classifications 

unsuitable for mapping land cover such as the Niger Delta. 

The problem of spectral similarities among the land cover classes: dense vegetation and 

mangrove, bare soil, sand dune and built-up etc., was reduced through post-

classification analysis, and it is recommended for future land cover mapping in the Niger 

Delta. 

8.2 The implication of the results 

Like any production activity, oil extraction activities have a lot of implications for the 

health of the inhabitants of the Niger Delta. The quality of vegetation that has been 

degraded and killed means the Niger Delta will be more vulnerable to environmental 

disasters such as flooding, global warming, etc., due to vegetation's role in providing 

habitat, converting solar energy to biomass, and being a source of oxygen etc.  

The spatiotemporal evolution of the oil spill hotspots means that the land cover will be 

affected differently depending on the consistency of the oil spills at a particular place. 

For those locations with less consistent oil spill hotspots, the land cover, especially the 
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vegetation, might recover more quickly. In contrast, those locations with more 

consistent spills may either die (depending on the types of vegetation or plant types), 

degrade or develop resistance to the impact of oil spills depending on the impacted area 

size, spilt oil volume, residual oil volume on-site, impacted area environment, and 

response, recovery, and clean-up. The degradation of mangroves from oil contamination 

and high toxicity in the soil will affect the quality of flora and fauna, which are sources 

of food for the region's inhabitants. The food from the contaminated and toxic 

mangroves could have health implications for the inhabitant. 

Similarly, the loss of forests and the astronomical increase in the built-up areas is not 

sustainable in the long run due to its part in the carbon cycle. The stakeholders in the 

Niger Delta have to formulate policies to reduce the rate at which the dense vegetation 

is being destroyed. At the same time, the little increase in mangroves shows that some 

are recovering from the oil spill's impact, which could restore some of the lost species 

that live in mangroves though some have suffered irreversible damage. The result of this 

research can help policymakers make policies that could alleviate the impact of oil spills 

on the environment. 

 

8.3 Limitations 

Although this research has achieved its aims, some limitations affect the studies in one 

way or the other. 

 For the analysis of oil spill hotspots and the spatial analysis of oil facilities, the 

oil spill data are from 2007, which did not cover the same land cover change 

modelling period. The oil well map was produced in 2007, which may not 

include some current oil facilities. Many oil spill data were not complete, spill 

data without coordinates made them unusable, and in most cases, the cause of 

the spill was not recorded. These challenges could affect the analysis. 

 To determine the effect of soil hydrocarbon properties on vegetation: Leaf Scale, 

access to sample collection sites was limited due to security challenges. Samples 

were collected only from locations the locals were willing to allow access to, 

which made the samples collected in River's state only instead of the three states 

covering the study area. Additionally, there were no data on chlorophyll in the 
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leaf samples to validate the potency of the HVIs. The chlorophyll of the leaf 

sample would have enabled the validation of the suitability of HVIs in detecting 

the impact of soil hydrocarbon properties on different plant species. 

 For monitoring the impact of oil spills on vegetation at the plot scale using the 

normalised difference vegetation index (NDVI), most satellite derived NDVIs 

have Landsat GAP errors and cloud cover, limiting the temporal analysis of the 

impact of oil spills on vegetation. Additionally, some oil spill data used lack the 

oil spill volume attribute. 

 Cloud cover and spectral similarities were limitations for land cover change 

modelling, although they have already been mentioned in chapter seven. Data 

on gas flaring and illegal oil refineries were not available to determine their 

effect on land cover changes. The absence of socioeconomic data on farming 

activities and lumbering could affect land cover change modelling. 

8.4 Future work and replication of the study 

This study could be applied to the whole state in the Niger Delta and other oil spill-

impacted locations worldwide. Therefore, future research should focus on the following.  

 The oil spill hotspot analysis should include the volume of spills. It could help 

better understand the impact of oil spills on land cover changes. Unlike the oil 

spill point, the volume, depending on topography and proximity to the water 

body, could travel a longer distance from the spill point, affecting vegetation 

kilometres away from the oil spill point. Some of the observed changes in the 

land cover, far away from oil-extracted activities, might have been affected by 

the propagated oil spill that travelled from the spill point. 

 A field chlorophyll measurement should accompany the spectral measurement 

of the leaf sample to validate the HVI in future studies, which could also be used 

to develop plant specific HVIs in the Niger Delta. Additionally, plant DNA 

should be used to determine the level of tolerance and resistance that some plants 

might have developed to the impact of hydrocarbons, especially for plants 

exposed to continuous hydrocarbon contamination for several years. 

 Some observed changes not close to the oil extraction could result from other 

activities. For instance, an illegal oil refinery could cause environmental damage 

than spills from known oil facilities. The activities of illegal refineries are not 
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regulated and cause soot (a mass of impure carbon particles that result from the 

incomplete burning of hydrocarbons, especially from illegal refineries and gas 

flaring), which also affects the vegetation. This variable could also have some 

impact on the land cover. Therefore, socioeconomic data, gas flaring locations, 

and illegal oil refinery data should be used to model their impact on land cover 

changes. 

 Higher-resolution satellite images should be explored for land cover mapping to 

minimise spectral similarities in the Niger Delta. Similarly, RADAR sensors can 

be used for land cover mapping to overcome the cloud problem, although the 

temporal resolution is low compared to the Landsat archives. Another alternative 

is using a hyperspectral satellite image (Hyperion), especially for determining 

the effect of oil spills on vegetation at plot scale and land cover mapping to 

overcome the problem of cloud cover. It offers more spectral bands than 

Landsat, which could be used to develop satellite-based Hyperspectral 

Vegetation indices(HVIs). But the problem is that it has a low temporal 

resolution and the same spatial resolution as Landsat. Also, it might not be 

suitable for land cover mapping of a large area like the Niger Delta due to its 

standard scene having a width of 7.7 kilometres and a length of 42 kilometres. 

 A study on the impact of oil spills on the land surface temperature, especially 

the vegetation in the Niger Delta, should be carried out. The derived surface 

temperature map can be integrated with oil extraction data and NDVI map to 

determine the influence of oil extracted on the surface temperature of vegetation. 

The success of this research could be replicated to study the impact of both natural and 

manmade environmental factors. Among them are: 

 Characterisation of the impact of climate changes on the land cover change or 

land degradation, especially vegetation in North East Nigeria or any part of the 

world facing desertification. The rainfall and temperature data could be used 

instead of the oil spill data to correlate them with the vegetation map health map 

(e.g. NDVI) and urban heat island to determine the extent of their relationship.

      

 The impact of mining activities such as gold and coal mines on the land cover 

changes at leaf, plot and landscape scale. The soil sample could examine the 
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amount of lead and other toxic substances and how that impacts the vegetation's 

health. The NDVI of vegetation near the mine could be analysed as well, and the 

land cover change map would reveal general changes in the land cover around 

the mine. 

8.5 Conclusion 

The oil extraction activities in the Niger Delta have impacted the land cover through oil 

spills, clearing and destroying the vegetation to construct oil facilities such as pipelines 

and oil wells. This research has characterised the impact of oil extraction activities on 

land change, especially the vegetation in the Niger Delta at multi-scale levels. The land 

cover, especially the vegetation in the Niger Delta, is seriously affected by oil extraction 

activities. All three vegetation studies show that oil spill extraction activities affect land 

cover, especially vegetation. 

The results of the oil spill hotspot show that 88% of oil spill incidences in Nigeria 

occurred in the traditional Niger Delta: Bayelsa, Rivers, and Delta states, with highly 

statistically significant oil spill clusters and oil facilities on some parts of the Niger 

Delta. 

For leaf-scale analysis, among the plant species/types, mangroves are the most affected 

plant by the impact of hydrocarbons and toxicity in the Niger Delta, while Mango is the 

most tolerant plant to TPH. The oil palm trees are the most tolerant to soil pollutants. 

Additionally, Mango can withstand a harsher environment than the other plant types in 

the Niger Delta by growing even on soil with low total organic carbon, unlike Awolowo 

grass. However, for monitoring the impact of oil spills at the plot scale using vegetation 

groups instead of plane species, sparse vegetation is the vegetation type most affected 

by the volume of spill and the time it takes to recover from an oil spill. The sparse 

vegetation includes the Awolowo grass and the Elephant grass. 

The land cover change detection shows that dense vegetation (natural forest) is 

continuously depleting, while the built-up areas are experiencing a significant increase. 

This is important because the natural forest serves as a home to diverse wildlife, trees, 

etc. The economic importance of such forests to the inhabitants of the Niger Delta 

cannot be overemphasised. There is a need for stakeholders to design a program to 

mitigate the depletion of forests through afforestation. 
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Last, to minimise the problem of spectral similarities on the classified map, post-

classification cleaning is recommended. This research could help address the 

environmental problems in the Niger Delta, such as land pollution, degradation and land 

cover change, prioritising programs such as oil spill cleans up or remediation, among 

others. 
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Appendices 

Appendix A Hydrocarbons and soil parameter data 

  
Microtox Total Organic Carbon Petroleum Hydrocarbons (Nonvolatile) 

Plot 

No Plants Types 

EC50 mg 

L-1 
TOC (%) Resin Aromatic Aliphatic 

P1 AG,EG, OP 27899 1.58 450 91 550 

P2 AG,EG 19561 1.66 2020 332 1915 

P3 AG,EG, OP 27309 1.86 1515 168 1340 

P4 AG,EG, OP 18922 1.24 <443 <58 <119 

P5 AG,EG, OP 23128 2.15 <443 <58 136 

P6 AG,EG, OP 36496 1.38 <443 <58 122 

P7 AG,EG, MT, OP 40423 0.8 <443 68 144 

P8 AG,EG, MT, OP 33671 0.5 <443 <58 134 

P9 AG,EG, OP 13278 1.29 987 608 1997 

P10 AG,EG, MT, OP 7986 1.27 <443 219 551 

P11 AG,EG, MT, OP 20364 1.37 <443 <58 <119 

P12 AG,EG, MT, OP 37792 0.96 <443 <58 <119 

P13 AG,EG, MT, OP 10975 2.21 930 219 955 

P14 MG 4848 13.98 2373 69 327 

P15 MG 2525 26.17 1115 <58 <119 

P16 MG 3990 13.63 4021 463 1424 

P17 MG 2992 17.06 932 145 254 

P18 MG 2672 15.74 1137 120 273 

P19 MG 19168 1.97 1030 176 820 

P20 MG 14248 13.85 25483 12549 30446 

P21 MG 29720 0.61 <443 75 254 

P22 MG 6455 12.83 2437 196 629 
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Appendix B The HVIs that correlated better with each soil 

hydrocarbon parameter and the strongest R values for each plant 

type/species. 

SHP Awolowo Elephant Mango Oil Palm 

HVIs R-value HVIs R-value HVIs R-value HVIs 

TPH NDVVI844,447 0.179 mND 750 -0.311 MDATT index -0.582 PRI 

EC50 MDATT index -0.301 NDVVI844,447 -0.344 MDATT index -0.657 NDVVI844,447 

TOC NDVVI844,447 0.621 MDATT index -0.286 mND 750 -0.725 MDATT index 

Please Note. The MDATT index sign means the opposite, i.e., A negative sign indicates 

a positive correlation. 

SHP=Soil hydrocarbon parameter 
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Appendix C Land cover maps 

C.1 Land cover persistence map 

 

Land cover persistence map (a)1987-2002 and (b) 2002-2016 

A 

B 
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C.2 Land gains and losses 
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Gains and losses from 1987-2002: (a) water, (b) built ups, (c) dense, (d) sparse, (e) 

mangrove, (f) sand dune and (g) bare soil. 
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Gains and losses from 2002-2016: (a) water, (b) built ups, (c) dense, (d) sparse, (e) 

mangrove, (f) sand dune and (g) bare soil 

 

 

 

 


