Automated Heuristic Generation By Intelligent

Search
Andrew W. Burnett

Thesis submitted to The University of Nottingham
for the degree of Doctor of Philosophy

March 2021

Abstract

This thesis presents research that examines the effectiveness of several different
program synthesis techniques when used to automate the creation of heuristics for a
local search-based Boolean Satisfiability solver.

Previous research focused on the automated creation of heuristics has almost
exclusively relied on evolutionary computation techniques such as genetic program-
ming to achieve its goal. In wider program synthesis research, there are many other
techniques which can automate the creation of programs. However, little effort has
been expended on utilising these alternate techniques in automated heuristic creation.

In this thesis we analyse how three different program synthesis techniques perform
when used to automatically create heuristics for our problem domain. These are
genetic programming, exhaustive enumeration and a new technique called local search
program synthesis. We show how genetic programming can create effective heuristics
for our domain. By generating millions of heuristics, we demonstrate how exhaustive
enumeration can create small, easily understandable and effective heuristics. Through
an analysis of the memoized results from the exhaustive enumeration experiments,
we then describe local search program synthesis, a program synthesis technique based
on the minimum tree edit distance metric. Using the memoized results, we simulate
local search program synthesis on our domain, and present evidence that suggests it
is a viable technique for automatically creating heuristics.

We then define the necessary algorithms required to use local search program
synthesis without any reliance on memoized data. Through experimentation, we show
how local search program synthesis can be used to create effective heuristics for our
domain. We then identify examples of heuristics created that are of higher quality
than those produced from other program synthesis methods. At certain points in
this thesis, we perform a more detailed analysis on some of the heuristics created.
Through this analysis, we show that, on certain problem instances, several of the

heuristics have better performance than some state-of-the-art, hand-crafted heuristics.

Acknowledgements

My deepest and sincere thanks go to my supervisors, Dr. Andrew Parkes and Professor
Dario Landa-Silva, for their time, energy, and invaluable insight during the time it
has taken me to complete my thesis. I am particularly thankful to Dr. Parkes, whose
discussions have allowed me to focus my efforts, as well as helping to provide the
necessary motivation required to complete this body of research.

I would also like to thank those within the University who have helped to keep
me engaged, driven, and focused on the task at hand. Particular thanks go to Vlad,
Alexandra, Jason and Liam.

Finally I would like to extend my deepest thanks towards my family and friends,
who, through their continued belief and council, have provided me with the necessary
tools to overcome the challenges encountered while completing this thesis. Particular
thanks go to my parents, Branwell, Natalie, Michael, Becky and James. Finally I
would like to thank Tilly, whose continued curiosity has provided me with a unique

perspective on my work.

Contents

[List of Figures|

[List of Tables|

[List of Algorithms|

[2.2 Boolean Satishability Problem|
[2.2.1 Algorithms to Solve SAT|.

[2.3.3 Adaptive Heuristics| L.
[2.3.4 Clause Weighting Schemes|
[2.3.5 Probability Distribution Heuristics)
[2.3.6 Configuration Checking|.

[2.3.7 Summary & Discussion|.

[2.4.2 Automated Design of LS-SAT Heuristics|

[2.4.3 Summary & Discussion|. 0oL

11

viii

Xiv

xVvil

CONTENTS

[2.5 Program Synthesis| Lo 63
2.5.1 Preliminaries L. 64
[2.5.2 Tree-based Program Representation 69
[2.5.3 Direct Search Techniques|. 74
[2.5.4 Genetic Programmingl 79
[2.5.5 Summary & Discussion|.o 84

2.6 Minimum Tree Edit Distance Problem| 86
2.6.1 Definition| 86
[2.6.2 Algorithm| o 88
[2.6.3 Summary & Discussion|. 95

7 Conclusions 95

[3 Heuristic Representation & Evaluation| 97

3.1 Introductionl 97

[3.2 Heuristic Representationl 98
[3.2.1 Language Details| 105
[3.2.2 Example Heuristics| 111

[3.3 Running a Heuristic on a Problem Instance. 112
[3.3.1 Deduction of a Heuristic’'s Requirements| 115
[3.3.2 Ewvaluating the Heuristic Function| 119
[3.3.3 Overarching Local Search Algorithm| 120

[3.4 Evaluating a Heuristic’s Performance| 126
(.41 Fitness Functionlo oo oL 126
[3.4.2 Fitness of Known Heuristicsl 130
[3.4.3 Testing Set| oo 131

8.5 Discussions & Conclusionslo 0oL 134

4__Exhaustive Enumeration & GPI 136

4.1 Introductionlo 136

[4.2 Exhaustive Enumeration Experiments/. 139
[4.2.1 Search Space Size| Lo 139
[4.2.2 Methodology| o 140
4.2.3 Results in Generated Orderl 142
4.2.4 Fitness Resultslo 151
[4.2.5 Timing Results| 157

v

CONTENTS

4.2.6 Individual Resultsl.o 159

[4.3 Genetic Programming Experiments| 167
[4.3.1 Methodology| 167
4.3.2 Resultsl. 168
4.3.3 Individual Results. 174

4.4 Discussions & Conclusions L 177
[> Analysing Heuristics Using the MTED) 180
b1 Introductionl 180
(0.2 Initial Observationsl oo 181
[>.3 Analysing a Heuristic’s Neighbourhood| 187
[5.3.1 Percentage of Fitter Neighbours| 188
[5.3.2 Size of Neighbourhood| 191
[5.3.3 Finding a Fitter Neighbour| 191

[>.4 Simulated Local Search Experiments| 196
[.4.1 Methodology| 198
h.4.2 Resultsl. 199

6.5 Discussions & Conclusionslo oo 208
[6 Neighbourhood Generation| 211
6.1 Introductionl. 211
[6.2 Function Signaturel Lo 213
[6.2.1 Mock Languagel L. 215

(6.3 Example Neighbourhood Generation Algorithms 218
[6.3.1 Notation & Example Output|. 218
6.3.2 Naive Methodl 221
[6.3.3 Identitying Common Patterns| 224

[6.4 Defining Generate Successors| 227
[6.4.1 Formalising Patterns| 228
[6.4.2 Abstracting Patterns| 230
6.43 Size of TPPTIS. o 235
[6.4.4 Finding TPPTs, 236
[6.4.5 Pre-processing|. 243
[6.4.6 Applying Edit Sequences| 244
[6.4.7 Compound Moves & Final Algorithms| 252

CONTENTS

[6.5 Generate Successors Randomly| 257
[6.6 Searching for Edit Sequences|.o 261
[6.6.1 Finding all TPPT's 261
[6.6.2 Searching TPPTs: Intuition| 265
[6.6.3 Searching TPPTs: Examples 272
[6.6.4 Generating Edit Sequences| 279
[6.6.5 Testing|. 285

6.7 Discussions & Conclusions| L. 287
[7 Local Search Program Synthesis| 290
[(.1 Introductionl 290
(7.2 Imitial Experiments| oL 291
[7.2.1 Bounded Experiments| 291
[7.2.2 Unbounded Experiments| 297
[7.2.3 Summary| 303

[7.3 Randomised Neighbourhood Generation| 303
[7.3.1 Observations, 304
[7.3.2 Using Randomised Neighbourhood Generation| 308
[7.3.3 Randomised Neighbourhood Generation Experiment| 314
[7.3.4 Summary| 318

7.4 Using an Alternate Cost Function| 319
(.41 Observations 319
[7.4.2 Alternate Cost Function Experiment| 326
[7.4.3 Summary| 331

[7.5 Using an Alternate Languagel 332
[(.5.1 Language B| 332
[7.5.2 GP Language B Experiment| 337
[7.5.3 LSPS Language B Experiment|{. 341
[7.5.4 Summary| 347

[7.6 Examples of Created Heuristics| 348
[7.6.1 Heuristics Created Using Language Al. 348
[7.6.2 Heuristics Created Using Language B 353
[7.6.3 Testing Set Results|, 359
[7.6.4 Summary| 364
[[.7_Discussions & Conclusions| oL 364

vi

CONTENTS

8 Conclusions 368
BI Confextl o 368
(8.2 Summary|l 370

[8.2.1 Chapter 3| 370
[8.2.2 Chapter 4| 370
[8.2.3 Chapter5-7 371
8.3 Extensions & Future Worklo 372
[8.3.1 Improved Fitness Function| 372
[8.3.2 Language| 373
[8.3.3 Improving the LS-SAT Solver| 374
[8.3.4 Using Other Program Synthesis Methods| 375
8.4 Final Remarksl. oo 377

(Bibliography| 378

[A_Exhaustive Enumeration Results| 398

[B Genetic Programming Created Heuristics| 407

vii

List of Figures

[2.1 Two examples of propositional logic formula; one in CNF', one not.|. . 10
[2.2 Two examples of assignments to a SA'T problem instance containing 8 |
[variables). L 18
[2.3 Results from solving 3-SA'T" problems using the MAPLESA'T" solver.| 20
[2.4 An overview of the control flow of a system designed to automate the |
[creation of heuristics)o oo 59
[2.5 The language used by Fukunaga (60, |61, |63] to automatically create |
[LS-SAT heuristics) 59
[2.6 Example of a program specification written in predicate logic.| 65
[2.7 The Language EX-1.| 71
[2.8 Two examples of program trees written using Language EX-1, shown [
| in Figure 2.7 72
2.9 An example of a search tree for the set of programs in Language EX-1, |
| shown in Figure 2.7 75
[2.10 An example of the crossover operator being applied to two trees written [
[in Language EX-1.[. o000 83
[2.11 An example of the mutation operator being applied to a program tree |
| written in Language EX-1. 000000 84
[2.12 Examples of tree edits between trees.| 87
[2.13 A recursive solution to the M'TED problem, designed to operate on |
[forests) 88

1T] [Sechion PGt] e NITED l

algorithm works.|o 0. 90
[3.1 The set of principle types in the DSL used in this thesis to create |
LS-SAT heuristics) 103

viil

LIST OF FIGURES

[3.2 Eight examples of previously described, hand-crafted heuristics formu- |
lated using the DSL described 1n Tables|3.1jand |3.2f. 113

[3.3 The WALKSA'T heuristic, shown in Figure[3.2¢, visualised as a program |
L oreel o oo 114

[3.4 'The internal-form of the heuristic GNOVELTY+, shown in Figure [3.21| 121

[3.5 Examples of two arbitrary N-TRUE-VARS and N-TRUE-SETS data |
structures at a point in an L5-SAT algorithm.| 124
[3.6 Examples of two arbitrary VAR-POs and VAR-P0s-Pos data struc- [
tures at a point in an LS-SAT algorithm. 127
[4.1 The number of heuristics of a specific size in Languages A and Al.|. . 141
[4.2 Results from the exhaustive enumeration experiments, showing the |
fitness values for all heuristics in Language A of size 10.|. 144
4.3 Results from the exhaustive enumeration experiments, showing the |
fitness values for all heuristics in Language A of size 17.[. 145
[4.4 Results from the exhaustive enumeration experiments, showing the |
fitness values for a subset of heuristics in Language A of size 14.| . . . 147
[4.5 Results from the exhaustive enumeration experiments, showing the |
fitness values tor all heuristics in Language A of size 13. Each heuristic [
has been coloured according to its first term.| 147
[4.6 Results from the exhaustive enumeration experiments, showing the |
fitness values for all heuristics in Language A of size 13. We colour |
each heuristic according to its leading n terms.|. 148
[4.7 Results from the exhaustive enumeration experiments, showing heuris- |
tics of size 14 in Languages A and A1.| 150
[4.8 'Three examples of heuristics of size 10 in Language A that return the |
same fitness value due to the formulation of the language.|. 151
[4.9 All heuristics in Languages A and Al of size < 14.[. 153
[4.10 All heuristics in Languages A and Al, showing the fitness of each |
heuristic plotted against that heuristic’s fitness variance.| 158
[4.11 All heuristics in Languages A and Al with fitness > 10, showing the [
fitness of each heuristic plotted against that heuristic’s nanoseconds- |
per-tlip value.|o 160
[4.12 Six heuristics that reported a high fitness value from the enumeration |
of Language A.| 161

1X

LIST OF FIGURES

I3

Six heuristics that reported a high fitness value from the enumeration |

of Language AL1.|. 162

T4

Fitness data from the best repetitions of the GP experiments pertformed |

using Languages A and A1.] 171

[4.15 Size data from the best repetitions of the GP experiments performed |
using Languages A and A1.| 172
[>.1 Four heuristics from the enumeration of Language A.| 183
[5.2 The distribution of the fitness values in four heuristic’s MTED(n) sets.[184
[5.3 The percentage of heuristics in neighbourhoods described by N(n), |
wheren e {1...4}] 189
[5.4 The number of evaluations required to have a 50% chance of finding |
a neighbour fitter than the candidate heuristic in neighbourhoods |
described by N(n), forne {1...4}|. 194
[5.5 Results from the simulated local search experiments pertformed on [
various subsets of heuristics in Language A.| 200
[.6 The number of evaluations performed in each simulated repetition of |
local search using heuristics in Language A of size <15 204
[5.7 Results from the simulated local search experiments pertformed on [
various subsets of heuristics in Language A, with duplicate results |
removed. 205
[>.8 Graph showing the fitness distance data for the 310 unique heuristics |
found from the 1,000 runs of the local search experiment described by [
the triple (LOCAL-SEARCH-RND, 3, 15).| 209
[5.9 Matrix showing the MTED between the fittest 20 unique heuristics |
returned from the 1,000 runs of the local search experiment described |
by the triple (LOCAL-SEARCH-RND, 3, 15)[. 210
[6.1 The Language EX-1.| 216
[6.2 An example program tree under Language EX-1 that type checks.| . . 217
[6.3 A pair of program trees written in Language EEX-1. Together with the |
program tree in Figure 6.2, they can be viewed as a sequence.| 219
[6.4 A term-based edit sequence. It can be used to transtorm the program |

tree in Figure[6.2/into the program tree in Figure[6.3b] via the program [

tree in Figure[6.3al|o 221

LIST OF FIGURES

[6.5

An example of a program tree and a term-based edit sequence.|

225

[6.6

Three trees, each an abstract representation of a part of a program

tree written in Language EX-1. They can be viewed as a sequence.

Each tree is obtained by inserting a node into the previous tree| . . .

226

6.7

A start state PI'PP'T', end state PTPPT and edit sequence. The edit

sequence can be used to transform the start state into the end state.|.

229

6.8

A program tree written in Language EX-1. When the function (GEN-

ERATESUCCESSORS is given the program tree in Figure 6.2l and an n

value of at least 2, this program tree would be an example of output

returnedl

(6.9

Three PTPP'T's that can be constructed by applying the edit sequences

in Figure|6.10[to the PTPPT in Figure(6.6al|

6.10

Three term-based edit sequences that can be used to transtorm the

PTPPT in Figure|6.6ainto the PTPP'T's shown in Figurel6.9

6.11

A start state TPPT, end state TPPT and edit sequence to transtorm

the start state into the end statel

[6.12

The set of results stored in the nextlevel variable in the FIND-

RTPPTSs algorithm when given a context set at the root of the

program tree in Figure 6.2, and an n valueot 2.

[6.13

The set of TPPTs returned from the FIND-RTPPT's algorithm when

given a context set at the root of the program tree in Figure[6.2] and

annvalue of 2 L.

6.14

A program tree written in Language EX-1. When the function (GEN-

ERATESUCCESSORS is given the program tree in Figure 6.2l and an n

value of at least 1, this program tree would be an example of output

returnedlo L

6.15

A start state and end state TPP'T. The start state is representative of

a pattern of nodes above the root in Figure|6.2l|

6.16

'T'he program tree shown in Figure [6.2] after it has been pre-processed.| 245

6.17

Language EX-1 in its type-compressed form.|

245

.18

A start state PTPP'T', end state PTPPT" and edit sequence to transform

the start state into the end statel

6.19

A start state TPP'T, end state TPP'T" and edit sequence to transform

the start state into the end statel

x1

LIST OF FIGURES

[6.20 The set of term-based edit sequences that can be extracted from the |

type-based edit sequence shown in Figure|6.19¢| 250

[6.21 A type-based edit sequence. It has been changed when compared |

to the edit sequence shown in Figure [6.19¢, to ensure that incorrect [

term-based edit sequences are not created fromit.|. 251

[6.22 Three program trees written in Language EX-1. When the function |

(GENERATESUCCESSORS 18 given the program tree in Figure [6.2] and |

an n value of at least 3, these program trees would be examples of [

output returned.] 254

[6.23 Diagram showing two ways in which edit sequences can be chained |

together to move via intermediary trees to transform the program tree |

in Figure [6.2] into the program tree in Figure|6.22¢| 256

[6.24 The set of unique vectors that are used as the root nodes when gener- |

ating every possible TPPT for Language EX-1.| 262

625 T [] EnE I eoe] arable e C - l

RTPPTS algorithm when given the vector = [Int| and an n value of |

2. For each n; € {0...n}, a set of results are shown for each element |

IN VECtor 266

[6.26 A start state program tree and an edit sequence. When the edit |

sequence 1s applied to the program tree in Figure [6.26a), the same [

program tree i1s produced.| 272

6.2 . is type checks.|o 274

[6.28 The six possible successor states created by inserting an unlabelled |

node into the TPPT shown in Figure|6.27 275

[6.29 T'wo T'PP'T's created by inserting a node into the TPPT in Figure [6.27/[276
[6.30 A start state TPPT and a valid successor state TPPT created by |

relabelling anode| o 0oL 278
[6.31 A start state TPP'T and a valid successor state TPPT created by [
deleting anode| oo 279
[7.1 Results from Experiments A1 and A2.| 293
[7.2 Results from Experiments A3 and A4.] 299

[7.3 Final results from Experiment A4. The data points are coloured |

according to the size of the initial heuristic of that repetition.| 301

xii

LIST OF FIGURES

!

Size of the neighbourhoods of the candidate heuristics from all repeti- |

tions of Experiments A3 and A4, 305

T ThcT] e Fnal Toiiat, I ESTmETs l

of Experiment A4l 311

[7.6 The average number of neighbours in each /Ny neighbourhood for all |
candidate heuristics from Experiments A3 and A4.| 313

[7.7 Results from Experiment A5.| 315
[7.8 A start state PTPPT and two end state PTPPTs written using Lan- [
guage Al . . . L L 322

[7.9 Results from Experiment A6.| 329
[7.10 Results from the 5" GP repetition performed using Language B.|. . . 340
[7.11 Results from Experiments B1 and B2,|. 343
[7.12 Ten heuristics that reported a high fitness value from Experiments A3, |
A4, Aband AG.| 350

[7.13 Four heuristics that reported a high fitness value from Experiments |
Bland B2l 356

[A.1 Results from the exhaustive enumeration experiment performed on |
Language A, as detailed in Chapterdl| 399

[A.2 Results from the exhaustive enumeration experiment performed on |
Language Al, as detailed in Chapterd}| 403
1P-A-5 heuristic) oo 408

B.2 The GP-A1-3 heuristicl 0oL 415
B.3 The GP-B-5 heuristic) oL 422

xlil

List of Tables

[2.1 Detailed results of the 2018 SAT Competition, Random track.| 22
[2.2 'The set of functions used in the pseudocode in Section 2.3l 27
2.3 The set of functions used in the heuristics in Section 2.3.5l 47

2.4 MTED subproblems calculated when computing the tree edit distance |

| between the trees et; and et shown in Figure|2.14{] 93
[2.5 'Iree distance table used when calculating the MTED between the |
| trees ety and ety shown in Figure[2.141 94

BT TI rT 5 0 The DSI s s [SSAT l

[heuristics) 99
3.2 The set of terminals in the DSI used i this thesis| 104
[3.3 All of the gain type metrics defined in the DSL, described in terms of |

[Definitions Plland 2. o000 108

[3.4 The set of member variables in the DATA-REQUIRED structure, to- [

[gether with an explanation of their meaning.| 115

[3.5 The mstantiation of the DATA-REQUIRED structure for the heuristic |

| GNOVELTY .| o 119

[3.6 The set of problems used in the fitness function, which are broken up [

[into five subsets of problem instances.|. 129

[3.7 The fitness values of the heuristics shown in Figure |3.2| according to |
| Equations (3.6) and (3.7) oo 130

[3.8 The set of problems used in the testing set, which are broken up into [

[eleven subsets of problem instances.| 132
[3.9 Results from running the heuristics in Figure |3.2 on the testing set.| . 133
[4.1 Languages A and AL.|. 137

[4.2 'The number of heuristics ot a specific size in Languages A and Al.|. . 140

X1v

LIST OF TABLES

[4.3 The set of heuristics of a small size in Languages A and A1.| 143
[4.4 'The fitness distribution of heuristics in Language A of size < 10 and |
|) 1 52 154
[4.5 The fitness distribution of heuristics in Language A1 not in Language [
| Aotsize<lOand 11-15). 156
[4.6 Results from running the heuristics in Figures |4.12l and |4.13| on the |
[testing set.|. 164
[4.7 The parameters used in the GP experiments in Section[4.3{f 167
[4.8 Statistical data pertaining to the GP experiments performed using |
[Languages A and AL|., 169
[4.9 Statistical data concerning the frequency of terms used in the fittest |
| heuristic returned from each repetition ot the GP experiments per- [
[formed using Languages A and A1 173
[4.10 Results from running the heuristics created from GP using Languages |
| A and Al on the testingset.| 175
[5.1 The size of the MTED(n) sets for the heuristics shown in Figure[5.1}| 182
[5.2 Statistical data pertaining to the neighbourhood size ot different sized |
[heuristics) 192
6.1 The Language TE-1.| 220
(6.2 All the collections of sequences of RT'PPT's created from FIND-R'T'- [
| PP'T's when given a context set at the root of the program tree in |
| Figure[6.2, and an n valueof 2./ 240
[6.3 Data gathered when calling CREATE-ALL-EDIT-SEQUENCES on dif- |
| ferent languages and n,,,q, values,|o 000000 286
[7.1 Statistical data from Experiments Al and A2 294
[7.2 Statistical data from Experiments A3 and A4.| 300
[7.3 Data from simulated re-runs ot Experiment A4 using the termination |
[mechanism described in Section [7.3.1] 310
[7.4 Statistical data from Experiment A5, 316
[7.5 Data concerning the frequency of different types of edit sequences in [
| N(3)|. o 321
7.6 Data concerning the neighbourhood N,; for Language A 327
[7.7 Statistical data from Experiment A6.| 328

XV

LIST OF TABLES

[7.8 Language B.|. 333
[7.9 Data gathered when calling CREATE-ALL-EDIT-SEQUENCES on Lan- |

guage B using the neighbourhoods N(3) and Ny 336
[7.10 Data concerning the frequency of different types of edit sequences in [

N(3) and N, for Language B.f. 336
[7.11 Statistical data pertaining to the GP experiments ran using Language B.[339
[7.12 Statistical data from Experiments Bl and B2.| 344

[7.13 Statistical data concerning the frequency of terms used in the fittest [

heuristic returned from each repetition of the GP experiments per- |

formed using Language B.| 0. 354

[7.14 Results from running the heuristics in Figures|7.12land [7.13], and those |

created from the GP experiment using Language B on the testing set.| 360

Xvi

List of Algorithms

2.1 DPLL Algorithm| 16
[2.2 LocAL-SEARCH Algorithm for SAT|. 17
2.3 GSAT Heuristid o 28
24 HSAT Heuristid 30
25 GWSAT Heuristido 0o oo 31
2.6 WALKSAT Heuristic] 33
27 NovELTY Heuristid 35
2.8 NOVELTY+ Heuristic|. 37
2.9 G*WSAT Heuristic] 38
[2.10 GSATH+WEIGHTS Heuristic & Weight Update Function| 42
2.11 SAPS Weight Update Function| 44
2.12 PAWS Weight Update Function|. 45
[2.13 ¢NovELTY+ Weight Update Function| 46
2.14 PrROBSAT Heuristid o 48
[2.15 SWco Heuristicl o o 51
2.16 TyPE-CHECK Algorithm|. 73
[2.17 Tor-DOWN-SEARCH Algorithm|. 76
[2.18 BorTOM-UP-SEARCH Algorithm| 78
[2.19 GENETIC-PROGRAMMING Algorithm| 80
2.20 MTED Algorithm! 90
[2.21 TrREE-DI1ST Algorithm| 91
[3.1 Detailed LoCcAL-SEARCH Algorithm for SAT|. 120
(3.2 LS-SAT UPDATE-DATA Functionl 128
[>.1 MEMOIZE-NEIGHBOURHOODS Algorithm|. 187
[>.2 LOCAL-SEARCH-GREEDY Algorithm| 197
[>.3 LOCAL-SEARCH-RND Algorithm| 198
[6.1 NEIGHBOURHOOD-GENERATION Object Prototype] 215

Xvil

LIST OF ALGORITHMS

[6.2 FIND-RTPPTSs Algorithm| 237
[6.3 FIND-TPPTSs Algorithm|. 242
6.4 CREATE-OUTPUT-TREES Algorithm| 247
6.5 PROCESS-RELABEL Algorithm|. 251
6.6 BuiLD-TREES Algorithm|. 252
[6.7 GENERATESUCCESSORS Algorithm| 258
[6.8 GENERATESUCCESSORS-RND Algorithm| 260
6.9 CrREATE-ALL-RooTs Algorithml. 263
[6.10 CREATE-RTPPTs Algorithm| 264
[6.11 GENERATE-TPPT'S Algorithm| 270
[6.12 CREATE-ALL-EDIT-SEQUENCES Algorithm| 280
[6.13 CREATE-EDIT-SEQUENCES Algorithm| 281
[6.14 CREATE-INSERTIONS Algorithml 282
[6.15 CREATE-RELABELS Algorithm| 283
[6.16 CREATE-DELETIONS Algorithm| 284

xXviil

Chapter 1
Introduction

Combinatorial problems require finding groupings, orderings or assignments of discrete
objects that satisfy some conditions or constraints [83, Chapter 1]. They are most
commonly defined as either decision problems or optimisation problems. A decision
problem is formulated as a set of criteria, and the goal when solving such a problem
is to find a satisfying solution - that is, a solution that satisfies all the criteria. An
optimisation problem is defined in terms of an associated objective function, which
assigns each solution a numerical value. Through these values, an ordering of solutions
can be defined. The goal when solving an optimisation problem is to find the optimal
solution - that is, the solution with the best value according to the objective function.
For many combinatorial problems the fastest-known algorithms that are guaranteed
to solve them have a time complexity that scales exponentially with the problem
size. These complete algorithms, so called because they are guaranteed to definitively
and completely solve the problem, are often impractical to use for large problem
instances due to this worst-case running time. Combinatorial problems with this
property are called hard combinatorial problems, due to the difficulty in solving them.
Examples of hard combinatorial problems include the Boolean Satisfiability problem
(a decision problem), the Travelling Salesman problem and the Knapsack problem
(both optimisation problems) [93].

Incomplete algorithms are an alternate technique used to solve hard combinatorial
problems. They provide no guarantee that they will solve the problem - that is
to say, they may not find the optimal solution to an optimisation problem, or the
satisfying solution to a decision problem. However, incomplete algorithms are able to
navigate the search space in such a way that enables “good” solutions to be found

quickly; in optimisation problems this can manifest itself as finding a near-optimal

CHAPTER 1. INTRODUCTION

solution, and in decision problems finding a satisfying solution more quickly than a
complete algorithm would. Incomplete algorithms can be a viable method to use in
domains where either an optimal solution is not a necessity, or where computational
restrictions preclude the use of a complete algorithm.

One such incomplete algorithm, and the core basis for much of the work in
this thesis, is local search. Local search is a generic algorithm used to solve hard
combinatorial problems, and works by “start|ing] at some location in the search space
and subsequently move[ing] from the present location to a neighbouring location in
the search space” [83, Chapter 1]. Furthermore, unlike complete algorithms, “local
search can visit the same location within the search space more than once”. Through
intelligently selected sequences of movements through the search space, local search
can quickly arrive at high-quality solutions much more quickly than complete methods.
Well-known variants of local search include simulated annealing [65, Chapter 1], tabu
search |70} 65, Chapter 2] and hill-climbing [163].

In many incomplete algorithms (including local search), as well as complete
algorithms, a heuristic function can be used to guide the overarching search process.
Specifically, when a point in the search is arrived at where the overarching algorithm
has no bias on how to progress the search, a heuristic function can be used to make
the choice on how to proceed. They are typically simple, computationally inexpensive
functions. For example, in a local search algorithm employed on an optimisation
problem, a heuristic may be designed to move to the neighbour with the best score
according to the objective function. By augmenting a search algorithm with a well-
designed heuristic, it is possible to vastly improve the quality of solutions found,
either by providing a better quality solution, or by arriving at good solutions more
quickly. This can make the use of an effective heuristic an important component in
designing well-performing algorithms to solve hard combinatorial problems.

While many complete and incomplete algorithms can be viewed as generic algo-
rithmic frameworks, heuristic functions are almost exclusively problem-dependent; a
heuristic that works well in one problem domain will usually not work well in another.
In many cases, it is simply not possible to transform one heuristic described in terms
of one problem domain into equivalent terms of another. Some heuristics which are
designed for a specific problem domain are only effective on certain subclasses of that
problem, and perform poorly on other subclasses.

The development of an effective heuristic can be a time consuming part of the

CHAPTER 1. INTRODUCTION

overarching algorithm design process, and usually requires domain-specific knowledge.
A user may have to review the literature regarding previously described heuristics
in a particular problem domain to find appropriate candidate heuristics, then test
them to ascertain whether they provide the desired performance, and potentially
refine them if they do not. These issues can be exacerbated for problems that have
little or no research concerning the design of effective heuristic strategies. In these
situations, additional work is required to evaluate the problem. It may be the case
that computationally expensive experiments must be performed in order to determine
what an effective heuristic strategy is.

To expedite the heuristic design process, there has been active research in the
automation of creating, analysing and the selection of effective heuristics. For example,
Fukunaga [60, (63, 61] presented a series of papers detailing systems that automate the
creation of heuristics. These heuristics were used as part of a local search algorithm
to solve the Boolean Satisfiability problem. Another example is research by Burke
et al. [24], where the authors described a system that can automate the selection of
heuristics for the timetabling problem. Historically, these efforts to automate the
heuristic design process have been fragmented, however recently much of this work
has been categorised under the term hyper heuristics. Hyper heuristics are “a set
of approaches that are motivated by the goal of automating the design of heuristic
methods to solve hard computational problems” [28]. Most hyper heuristics can be
classified as one of two types; selective or generative. Selective hyper heuristics are
those systems that aim to choose the most effective heuristic from a known set, while
generative hyper heuristics are those systems that automatically create new heuristics.
In general, there has been comparatively less research undertaken in generative hyper
heuristics when compared to selective hyper heuristics.

The core research area of this thesis is in algorithms that automate the creation
of heuristics. The heuristics created are used as part of a local search algorithm to
solve the Boolean Satisfiability problem. The heuristic creation techniques used in
this thesis can be classified as generative hyper heuristics.

The workload involved in designing a system to automate the creation of heuristics
is much greater than that of designing a single heuristic. When designing a single
heuristic, the heuristic is identified, tested, potentially refined, and then deployed.
To automate the heuristic design process, a system needs to be designed that can

represent heuristics, and automatically run heuristics against problem instances to

CHAPTER 1. INTRODUCTION

gauge their effectiveness. In addition to this, an overarching algorithm is needed
that can create new heuristics. The first two of these components are nearly always
domain-specific, but there are general, problem-independent techniques that have
previously been used to automatically create heuristics.

Despite the additional work that is required in designing a system that automates
the creation of heuristics, such systems have the potential to offer several advantages
compared to the manual design process of constructing a single heuristic. For
example, such a system could be used to offer tailor-made heuristics for specific
problem instances or subsets of problem instances. Within the aviation industry,
software is used to create schedules of aircraft departures and arrivals for airports.
A schedule’s effectiveness is judged by how closely it mirrors the desired departure
and arrival times, while maintaining safety requirements. Every airport has a specific
number of runways and terminals, with each of these having its own capacity. One
can conceive of a general-purpose search algorithm that is designed to find the best
scheduling of aircraft according to the given requirements. Such an algorithm may
use a heuristic to direct its internal search mechanism. Automated heuristic creation
software could be used to design bespoke heuristics for specific airports, with the aim
of outperforming general-purpose heuristics.

When using automated heuristic creation systems on well-researched problems,
there is also the potential to discover effective heuristics that have previously not been
described. Such systems could also be used to test new ideas in formulating heuristics,
to ascertain whether they are effective when combined with other, previously known
heuristic strategies - in essence becoming a tool to aid in the rapid prototyping of
heuristic design. On problems that have little or no previous literature regarding
effective heuristic design, such an automated system could significantly reduce the
time taken to find effective heuristics in these domains.

As stated, the heuristic creation algorithm is one component of an automated
heuristic creation system that is not problem-dependent. Yet, the choice of heuris-
tic creation algorithm largely depends on the choice of representation used for the
heuristic. One popular representation is that of a tree-like data structure. This
representation is designed to mimic a programming language. In the literature con-
cerning algorithms designed to automatically create heuristics which are represented
as tree-like structures, genetic programming and other closely related evolutionary

algorithms have been predominantly used in previous research [16, [52} 27].

CHAPTER 1. INTRODUCTION

Genetic programming is a program synthesis technique based on natural selection
that is used to evolve programs. In the context of this thesis, the “programs” are
the heuristics created. This is not the only program synthesis technique used within
wider computer science. Program synthesis is a fragmented discipline, with various
subdisciplines having independently developed techniques to automatically create
programs. For example, in artificial intelligence deductive programming has been used
to create recursive programs [120], and in the functional programming community
exhaustive enumeration has proved to be an effective strategy for creating data
structures from input-output examples [22].

The core research question we ask in this thesis is what, if any, alternate program
synthesis techniques are there that could be used in the automated creation of
heuristics. As previously discussed, we will be testing these techniques on the Boolean
Satisfiability problem. One of the primary reasons for choosing this domain is
that there are several examples of previous work where the overarching goal was to
automatically create heuristics for it [60, 63, 61, 9]. These examples of previous work
provide us with a clear methodology in creating heuristics for this domain, and allow
us to compare the heuristics created from our systems to those created from previous
research. There are also many examples of hand-crafted, highly effective heuristics
for this domain, and one of our goals in this work is to ascertain how effective our
automatically created heuristics are compared to hand-crafted ones.

One of the program synthesis techniques we will use to create heuristics is
exhaustive enumeration. We will then use the created heuristics to perform a large-
scale search space analysis, utilising the minimum tree edit distance to compare
heuristics to each other. To our knowledge, such research has not been undertaken
before. From the observations made through this analysis, we will propose a new,
novel program synthesis method called local search program synthesis. We will
then perform experiments using this method and show that it can be used to create
high-quality heuristics for our domain.

To summarise, this thesis will investigate the applicability several program syn-
thesis techniques have in automating the creation of heuristics for use in solving the
Boolean Satisfiability problem. Particular attention will be given to techniques that

have previously not been used in the automated creation of heuristics.

CHAPTER 1. INTRODUCTION

1.1 Structure of this Thesis

The structure of this thesis is as follows:

e Chapter [2} [Literature Review] This chapter provides an overview of the

pertinent research to this thesis. Succinctly, this is research concerning the
Boolean Satisfiability problem, heuristics for solving the Boolean Satisfiability
problem through local search, the automated creation of heuristics, program

synthesis methods and the minimum tree edit distance problem.

e Chapter [3} [Heuristic Representation & Evaluation] This chapter details the

underlying format used to automatically create heuristics in the experiments
presented in this thesis. It provides technical information regarding the systems
that use the heuristics to solve Boolean Satisfiability problem instances. This
chapter also details the fitness function used throughout this thesis to gauge
the effectiveness of a heuristic, and evaluates the performance of previously

existing, hand-crafted heuristics.

e Chapter [} [Exhaustive Enumeration & GP| This chapter presents the method-

ology and results from experiments designed to automatically create heuristics
using exhaustive enumeration and genetic programming. It provides greater
emphasis on the experiments conducted using exhaustive enumeration. This
chapter also looks at individual heuristics created from both methods, and

presents data showing how they perform on larger problem instances.

e Chapter [5} [Analysing Heuristics Using the MTED] This chapter presents a

search space analysis performed using the results obtained from the exhaustive
enumeration experiments described in Chapter [} The minimum tree edit
distance metric is used to compare heuristics, and observations are made
about the landscape of the search space. This chapter also illustrates, through
simulated experiments, how a local search algorithm on the heuristics themselves

could work as a method of program synthesis.

e Chapter [6} [Neighbourhood Generation] This chapter details the neighbourhood

generation algorithms for program trees. The neighbourhood of a program tree
is a concept based on the minimum tree edit distance metric. The algorithms
this chapter presents are a vital component in the overarching local search

program synthesis method proposed in Chapter 5]

6

CHAPTER 1. INTRODUCTION

e Chapter [7} [Local Search Program Synthesisl This chapter presents the method-

ology and results from experiments designed to automatically create heuristics
using the local search program synthesis method proposed in Chapter 5] The
experiments use the algorithms detailed in Chapter [6] It also presents auto-
mated heuristic creation experiments that use an alternate language to represent
heuristics. This chapter then highlights some of the created heuristics, and

shows how they perform on larger problem instances.

1.2 Academic Publications Produced

e Andrew Burnett and Andrew Parkes. “Systematic search for local-search SAT
heuristics”. In: Proceedings of the 6th International Conference on Metaheuris-
tics and Nature Inspired Computing, (META ’16). Marrakech, Morocco, June
2016, pp. 268-270.

— This short/abstract paper presents the preliminary research in Chapter .

e Andrew W. Burnett and Andrew J. Parkes. “Exploring the landscape of the
space of heuristics for local search in SAT”. In: Proceedings of the 2017 IEEE
Congress on Evolutionary Computation, (CEC 2017). San Sebastian, Spain.
June 2017, pp. 2518-2525.

— This conference paper presents the research in Chapter 5]

e Andrew W. Burnett and Andrew J. Parkes. “Using local search program syn-
thesis to create local search SAT heuristics”. Provisional title, to be submitted
2022.

— This journal paper presents the research in Chapters [6] and

Chapter 2

Literature Review

2.1 Introduction

In this chapter we provide the reader with an overview of the relevant literature
pertaining to the areas of research within this thesis. Succinctly, these are the
Boolean Satisfiability (SAT) problem, heuristics for use in solving SAT through local
search, previous research in the automated creation of heuristics, program synthesis
techniques and the minimum tree edit distance (MTED) problem. The core aim
of this thesis is to investigate the applicability of previously underused program
synthesis techniques in the automated creation of heuristics. This chapter provides
the context for this work, as well as aiding in the understanding of the experiments
performed, and the domain the created heuristics are deployed in.

We introduce the SAT problem in Section [2.2] This is the domain that we will
test our heuristic creation techniques on. We give a description of the problem, its
uses and an overview of the most common algorithms used to solve it.

In Section we give a detailed account of the research in heuristics used to
drive local search algorithms to solve SAT. One of the goals of this thesis is to search
for new, effective local search SAT heuristics by automatically creating them. The
components we use as a basis for these created heuristics are inspired by the analysis
of previously existing, hand-crafted heuristics, which are detailed in this section.

In Section we focus on previous work in automating the design of heuristics,
with an emphasis on techniques to automatically create heuristics. We give particular
attention to work that has been performed on the same local search SAT domain

that we will create heuristics for.

CHAPTER 2. LITERATURE REVIEW

Section contains an overview of different program synthesis methods. Program
synthesis is an umbrella term that is used to describe techniques to create programs
and program fragments automatically. Some of the techniques used in this thesis to
automatically create heuristics come directly from the work detailed in this section.

In Section we provide an overview of the MTED problem. In our work we
use this as a metric to compare created heuristics, and as a basis for the program
synthesis technique described in Chapters [f] to [7l Finally in Section [2.7] we present

the conclusions we draw from the research presented in this chapter.

2.2 Boolean Satisfiability Problem

The SAT problem is a decision problem that asks, given a propositional logic formula
F' containing variables v; ... v,, does there exist an assignment of variables to values
in the domain {False, True} such that F evaluates to True. We say that if an
assignment exists, then F' is satisfiable and that F' € SAT. If no assignment exists,
we say that F' is unsatisfiable and F' ¢ SAT, or that FF € UNSAT. It is common
for SAT problem instances to be described in conjunctive normal form (CNF)E],
which can be defined as follows; a propositional formula in CNF contains a set of
clauses {ci ... cp} distributed over conjunction. Each clause contains a set of literals
{l; .. .1} distributed over disjunction. A literal is either the occurrence of a variable
v, Or its negation —wv;. We will be using the convention of writing negated literals as
v; for the remainder of this thesis. Figure [2.1| shows two propositional formula; one in
CNF and one not. From this point on we will assume that (unless stated otherwise)
when referring to a SAT problem, we specifically mean a problem represented as
a propositional logic formula in CNF. One notable consequence of presenting SAT
problems in CNF is that an assignment that satisfies the formula requires all clauses
to be satisfied; that is, each clause must evaluate to True.

A restricted variant of the SAT problem called k-SAT refers to those formula
described in CNF whose clauses contain exactly £ literals. Figure shows a 3-SAT
problem. It should be noted that some authors, when referring to k-SAT, use the
convention that each clause contains at most k literals. We use the former definition.
k-SAT is a known NP-complete problem [45] for all k& > 3. Using current methods

! Any arbitrary propositional formula can be converted to CNF through the rules of propositional
logic. Schéning and Tordn [155, Chapter 1] provide a detailed overview of the algorithms used to do
this.

CHAPTER 2. LITERATURE REVIEW

(Ty V. vy Vo) A Ty V. vy Vo) A
(e V T3 V Ty A Uy AN T3 V Ty V
(Ty V. vz Vo) (U1 V. vz A wy)
(a) Propositional formula in CNF. (b) Propositional formula not in CNF. This

is due to the disjunction between the second
and third clause, and conjunctions in each of

these clauses.

Figure 2.1: Two examples of propositional logic formula; one in CNF, one not.

this makes it a computationally expensive problem to solve, with the fastest algorithm
known, PPSZ, running in O(1.308") [80] on 3-SAT problems that contain n variables.

Despite this exponential worst-case running time, software that can solve SAT
problem instances continues to be used to solve real-world problems through the
use of reductions to SAT. For instance, within the automated design of electronic
circuits, SAT is used to great success. It is used extensively in Automated Test
Pattern Generation (ATPG), a technique used to find faults in circuits [104]. SAT is
also used in the verification of circuit designs through bounded model checking [44].
Marques-Silva [122] provides more information regarding the various uses of SAT in
the automated design of electronic circuits.

Within the scope of operations research, techniques to solve SAT have important
use-cases in answer set programming [69] and the solving of constraint satisfaction
problems (CSPs) [169]. In the wider context of computer science, SAT has uses in
such areas as planning [97] and scheduling, program verification [20] and cryptanalysis
[162], to name but a few. A broad overview of the real-world use of SAT (and its
extensions) can be found in Handbook of Satisfiability [18].

A piece of software designed to answer the question of whether an arbitrary SAT
problem is satisfiable or not is informally called a SAT solver. One common way of
proving a formula is satisfiable is through the construction of an assignment that
satisfies all clauses. Showing a formula is unsatisfiable is more difficult, as it requires
proving that it is impossible to construct a satisfying assignment. One commonly
used method of proving unsatisfiability is through a resolution proof. Sometimes, due
to the properties of a SAT formula, a proof of satisfiability or unsatisfiability can be
trivially constructed |155, Chapter 1].

Usually to construct a proof (of either satisfiability or unsatisfiability) a search is

10

CHAPTER 2. LITERATURE REVIEW

conducted on the space of solutions of a SAT problem instance. Like in other hard
combinatorial problems, there exist two predominant search techniques underpinning
the algorithmic design used in SAT solvers; complete and incomplete. A complete
search technique is guaranteed to consider the entire search space of solutions and,
when given enough computational resources, provide an answer as to whether a
problem instance is satisfiable. Incomplete solvers offer no such guarantee; there
is no systematic methodology to their search and therefore no guarantee that an
answer will be found. However, some incomplete solvers can be highly effective at
quickly finding satisfying assignments to SAT problem instances that complete solvers
struggle to find in a reasonable amount of time.

These two competing search methods are perhaps best represented by the two
most common algorithms used as the basis for many SAT solvers; the Davis-Putnam-
Logemann-Loveland (DPLL) algorithm and local search. DPLL is a complete search
algorithm that constructs a partial assignment as it explores the search space. It
is used to construct proofs of satisfiability and unsatisfiability. Local search, an
incomplete, perturbative search algorithm, aims to find a satisfying assignment to a
SAT problem instance - and therefore, in this form, it is only able to solve satisfiable
SAT problem instances, and cannot provide a proof of unsatisfiability.

However in truth, this relationship between search paradigms, proof techniques
and algorithms is not always exact. For example, Audemard et al. [6] described a
local search SAT solver that proves unsatisfiability by building a resolution proof.
It is not complete, but offers functionality that is not normally expected of a local
search SAT solver. There are also examples of SAT solvers that (at the time of their
creation) have been considered state-of-the-art which use a hybridisation of local
search and DPLL in their construction. An example is the CADICAL solver which
placed 4" in the 2019 SAT Race [89}. Other examples of hybrid SAT solvers include
the SPARROWTORISS solver [11], the MORSAT solver [54] and the HBISAT solver
[43].

Though not directly relevant to this thesis, there exist several variants of the SAT
problem which are of interest to us, as some of the techniques used to solve them
are related to those discussed in this thesis. MAX-SAT is an optimisation variant of
SAT where, under CNF, rather than trying to find an assignment that satisfies all

clauses, the aim is to maximise the number of satisfied clauses. Weighted MAX-SAT

2Webpage detailing the competition, entrants and results located at http://sat-race-2019.

ciirc.cvut.cz/

11

http://sat-race-2019.ciirc.cvut.cz/
http://sat-race-2019.ciirc.cvut.cz/

CHAPTER 2. LITERATURE REVIEW

is a further extension of MAX-SAT which assigns each clause a weight. The goal
when solving a Weighted MAX-SAT problem instance is to maximise the sum of the
score of the satisfied clause’s weights.

As an example of this close relationship between techniques, we will consider
a MAX-SAT solver called SATLIKE-C. This solver is of particular interest as it
won one of the subcompetitions, or tracks, at the International Conference on the
Theory and Application of Satisfiability Testing MAX-SAT Competition held in
201&3_‘"]. The particular subcompetition it won required the submitted solvers to solve
Unweighted MAX-SAT problem instances where a global optimum was not known.
SATLIKE-C is a hybrid MAX-SAT solver that initially performs local search, then
in a secondary stage uses a complete solver in an attempt to find an optimal solution.
In its local search stage it uses the solver CCLS. This is a local search MAX-SAT
solver based on configuration checking [34] (an overview of which is provided in
Section , a technique that had previously been found to be an effective basis for
solving conventional SAT problems through local search.

The format of the rest of this section is as follows; in Section we provide an
in-depth overview of DPLL and local search. In Section we discuss a specific
subclass of SAT problems that local search is highly effective at solving. Finally
in Section 2.2.3 we discuss the conclusions that can be drawn from the literature

presented in this section.

2.2.1 Algorithms to Solve SAT

In this subsection we outline the two most common algorithms used as templates
to design SAT solvers. The two algorithms are DPLL and local search. DPLL, and
the closely related Davis-Putnam algorithm, were described first. Consequently they
were considered the standard method for solving SAT problem instances for nearly
thirty years. However, after research appeared showing that the local search-based
SAT solver GSAT |161] could provide improved performance compared to DPLL,
research interest piqued in this area. As subsequent advancements were made in
the development of the heuristics driving local search-based SAT solvers, which
yielded improved performance, comparatively less attention was given to DPLL.

Yet, DPLL’s inability (at the time) to perform as well as the local search-based

3Webpage detailing the competition, entrants and results located at https:
//maxsat-evaluations.github.io/2018/

12

https://maxsat-evaluations.github.io/2018/
https://maxsat-evaluations.github.io/2018/

CHAPTER 2. LITERATURE REVIEW

SAT solvers needs to be taken in context; this development came at a time when
the computational resources available meant that many subsequently developed
techniques used to improve DPLL’s performance were not feasible at the time.
Despite this, DPLL continued to remain relevant as it could prove unsatisfiability,
and, through improved technologies and additional techniques, DPLL-based solvers
are now generally preferable to local search-based SAT solvers in domains where
either a proof of unsatisfiability is required, or on problems perceived to be difficult
for local search-based SAT solvers to solve.

To facilitate the understanding of these two algorithms, we begin by introducing
a series of definitions about SAT problems and assignments, before introducing each

algorithm. The definitions are as follows:

Definition 1 (Variable Set)
The variable set of a SAT problem F is the set of all variables in that SAT problem.
For a SAT problem containing n variables, this is usually expressed as {vy...v,}. To

refer to F'’s variable set, we write VARS(F).

Definition 2 (Clause Set)
The clause set of a SAT problem F' is the set of all clauses in that SAT problem. For
a SAT problem containing m clauses, this is usually expressed as {c; ...cpn}. To refer

to F'’s clause set, we write CLAUSES(F).

Definition 3 (Literal Set)
The literal set of a clause c is the set of literals in that clause. For a clause containing

k literals, this is usually expressed as {ly...l;}. To refer to ¢’s literal set, we write
LiTs(c).

Definition 4 (Literal’s Sign/Variable)
A literal | is made up of a sign - either True or False - and a variable v.

A literal’s sign is True if the literal | containing variable v is in the form v, and
False if in the form ©. To refer to l’s sign we write SIGN(I).

A literal’s variable is the underlying variable in the literal. To refer to l’s variable

we write VAR(]).

Definition 5 (Assignment)
An assignment A for a SAT problem F is a map of variables v € VARS(F) to
values {True, False}. A complete assignment is an assignment where all variables in

VARS(F) have a value associated with them. A partial assignment is an assignment

13

CHAPTER 2. LITERATURE REVIEW

in which some variables may not have associated values set. () represents the empty
partial assignment. We write Alv] to obtain the assignment of v in A. If A is a partial
assignment, and v is unassigned in A, then Alv] = UNSET. We write B = Ay—rrue
to signify the partial assignment B obtained by taking A and setting the variable
v to True. We write B = A, to signify the complete assignment B obtained by
taking the complete assignment A and changing the truth variable of v to ~Alv]. We
refer to changing a variable’s assignment in this manner as “flipping” the variable’s

assignment.

Definition 6 (Satisfied, Unsatisfied and Unset Literal)

A literal | containing a variable v is satisfied under an assignment A if Afv] =
SIGN(1). A literal is unsatisfied if A[v] # SIGN(l). If A is a partial assignment, and
Alv] =UNSET, then we say that a literal containing v is UNSET. To refer to the

information about l’s satisfied state, we write SATISFIED(A, [).

Definition 7 (Satisfied, Unsatisfied and Unset Clause)

A clause c is satisfied under an assignment A if 3l € L1TS(c), SATISFIED(A, [) =
True. It is unsatisfied if ¥Vl € L1TS(c), SATISFIED(A, 1) = False. If A is a partial
assignment then c¢ is UNSET if =(3l € LiTS(c), SATISFIED(A, 1) = True) A (3 €
LiTs(c), SATISFIED(A, [) = UNSET). To refer to the information about c¢’s satisfied
state, we write SATISFIED(A, c).

Definition 8 (Satisfying Assignment)
A SAT formula F is satisfied under an assignment A if Ve € CLAUSES(F),
SATISFIED(A, ¢) = True. To refer to the information about F’s satisfied state,

we write SATISFIED(A, F).

DPLL

Historically the earliest SAT solvers were based on the Davis-Putnam algorithm [50]
and a refined variant called the DPLL algorithm [49]. Many modern-day, state-of-
the-art complete SAT solvers still use the DPLL algorithm at their core.

When visualising the solution space of a SAT problem as a tree, DPLL can be
thought of as starting at the root of the tree and traversing it in a depth-first search
manner. As it moves downwards through the tree, it constructs a partial assignment
to the problem. If a conflict is found in the current partial assignment - that is to

say, a clause is found to be unsatisfiable - then the algorithm stops and backtracks to

14

CHAPTER 2. LITERATURE REVIEW

a previous decision point. The SAT problem is unsatisfiable when all branches in the
tree have been traversed and no satisfying assignment found.
DPLL uses two methods of simplification to reduce overall computation, outlined

as follows:

e Pure Literal Elimination: Given all currently UNSET variables vs under a
partial assignment A and SAT problem F', a variable v € vs is a pure literal if
the following holds. For all clauses ¢s currently UNSET in F under A, v only
appears in cs either in the form v or the form ¥. Pure literals can be assigned to
make all clauses they appear in satisfied, without making any currently satisfied

clauses unsatisfied.

e Unit Clause Propagation: Given all currently UNSET clauses ¢s under a
partial assignment A and SAT problem F', a clause ¢ € c¢s is a unit clause if
the following holds. There is exactly one literal [€ LiTS(c) which satisfies the
logical statement SATISFIED(A,!) =UNSET. For a solution to be found, the
UNSET literal in ¢ must be assigned a value in such a manner so as to make c
satisfied.

In Algorithm we show an outline of the DPLL algorithm. Modern-day DPLL-
based solvers use sophisticated data structures, heuristics, and techniques such as
conflict driven clause learning (CDCL) to make them highly effective at finding proofs
of satisfiability and unsatisfiability in large SAT problems.

There exist other complete search methods for SAT such as Stalmarck’s method
[164], which are beyond the scope of this thesis. For an overview of modern techniques
to improve the performance of DPLL including detailed examples of CDCL, as well
as the most recent advances in complete solvers, we point the reader to Handbook of
Satisfiability |18] and The Satisfiability Problem: Algorithms and Analyses [155].

Local Search for SAT

The algorithm that underpins most local search SAT (LS-SAT') solvers can be de-
scribed as follows; it is an iterative algorithm that begins by initialising a complete
assignment of all variables in the problem. On each iteration, a perturbation of the
previous assignment is obtained by changing the truth value of one of the variables;
we “flip” a variable’s assignment from False to True or vice versa. A check is

performed on each iteration to deduce whether the assignment now satisfies the

15

CHAPTER 2. LITERATURE REVIEW

Algorithm 2.1 DPLL

Input: F SAT problem instance in CNF.
Output: True if F € SAT, False if F' ¢ SAT.

algorithm DPLL(F)
assignment = () > Initial empty assignment.

return DPLL-INTERNAL(assignment, F)

algorithm DPLL-INTERNAL(assignment, F)

clauses = CLAUSES(F)

assignment = UNIT-PROPAGATION(assignment, clauses)

assignment = FIND-PURE-LITERALS(assignment, clauses)

if (Ve € clauses, SATISFIED (assignment, ¢) = True) then > All clauses True.
return True

if (3¢ € clauses, SATISFIED (assignment, ¢) = False) then > Clause is False.
return False

var = PICK-VAR(assignment, F') > Pick an unassigned variable.

return

DPLL-INTERNAL(assignment,ogr—rrye, F) V

DPLL-INTERNAL(assignment o= raise, F')

16

CHAPTER 2. LITERATURE REVIEW

Algorithm 2.2 LOCAL-SEARCH for SAT
Input: F SAT problem instance in CNF.

maxFlips Maximum number of iterations to run for.

Output: True if a solution is found. null if no solution is found.

algorithm LOCAL-SEARCH(F', maxFlips)
assignment = INITIALISE-ASSIGNMENT(F') > Create initial assignment.
if (SATISFIED(assignment, F')) then
return True
for (iteration € {1...maxFlips}) do
varToFlip = PICK-VAR(assignment, F)
assignment = assignmentyq,ToFlip
if (SATISFIED(assignment, I')) then > Check if F' is satisfied.
return True

return null

formula - specifically, whether all clauses are satisfied. An outline of this algorithm
is shown in Algorithm [2.2] An example of two problem assignments can be seen in
Figure 2.2l The assignment in Figure is a perturbation of the assignment in
Figure , obtained by flipping the 6" variable.

A local search SAT solver answers the question of whether a formula is satisfiable
by attempting to find an assignment that satisfies it. The difference between complete
and incomplete algorithms is in their guarantee that a definitive answer will be
returned. Local search does not stipulate any ordering on how the variables are
changed, there is no guarantee that all possible solutions will be evaluated, and it
is not uncommon for solutions to be revisited. This is why local search for SAT is
an incomplete search method. Succinctly, if a solution is found, then a formula is
satisfiable. If one is not found, that does not mean that the formula is unsatisfiable.

There exist many variations and augmentations of local search. Many of these
are generic methodologies that are not problem-specific, and some of them have
been used to augment LS-SAT solvers; for example Spears [166] applied simulated
annealing to SAT. However, in much of the work describing advancements in the
effectiveness of LS-SAT solvers, the improvements have come from new heuristics.
When we refer to heuristics in the domain of LS-SAT solvers, we specifically mean the
functions designed to pick the next variable to flip - in Algorithm [2.2] the heuristic

would be called by the function PICK-VAR. The way in which this variable is chosen

17

CHAPTER 2. LITERATURE REVIEW

Variable 1 2 3 4) 6 7 8

Assignment | False | True | False | True | True | True | False | True

(a) An example of an assignment to a SAT problem instance containing 8 variables.

Variable 1 2 3 4) 6 7 8

Assignment | False | True | False | True | True | False | False | True

(b) An example of an assignment to a SAT problem instance containing 8 variables. This
has been obtained by taking the assignment in Figure and changing the 6" variable

from True to False.

Figure 2.2: Two examples of assignments to a SAT problem instance containing 8
variables. The assignment in Figure has been obtained by taking the assignment
in Figure and flipping a variable in it.

can drastically effect the performance of an LS-SAT solver. While the initialisation
function can be considered a heuristic function as well, in this thesis we specifically
concentrate on heuristics designed to direct the internal search mechanism.

Local search-based SAT solvers are sometimes referred to as stochastic local
search SAT (SLS-SAT) solvers, and their internal heuristics as SLS-SAT heuristics.
Stochasticity when discussing local search in general refers to variants of local search
that employ non-determinism, and will not always return the same result. This can
be in the form of random restarts, randomness within heuristics, the initialisation
function, and other techniques. In truth nearly all heuristics designed for an LS-SAT
solver use some form of stochasticity in their construction, and there are few examples
of purely deterministic LS-SAT heuristics. Throughout this thesis we use the term
local search SAT (and the acronym LS-SAT), rather than stochastic local search SAT
(and the acronym SLS-SAT).

2.2.2 SAT Problem Hardness

Though DPLL-based solvers can give a definitive answer as to whether a SAT formula
is satisfiable, they find some problems difficult to solve quickly. Local search SAT
solvers excel at solving some of these types of problems. In this subsection we look at
satisfiable £-SAT problem instances in and around the phase transition region that
local search-based solvers generally outperform DPLL-based solvers on.

A phase transition region is an observed phenomenon in the problem space of many

18

CHAPTER 2. LITERATURE REVIEW

NP-hard problems, where a significant change in problem difficulty is found. Phase
transition regions have been observed in many domains, such as graph colouring, the
Travelling Salesman problem (TSP) and the finding of Hamilton circuits [42], not to
mention within SAT [67]. Zeng and Lu [179] state that “Many experimental results
have shown that for a class of AN"P-hard problems one or more “order parameters”
can be defined, and hard instances occur around the critical values of these order
parameters”. This instance hardness is not measured by computational complexity,
but by empirical evaluation of the run-time of complete algorithms on problem
instances. When a complete algorithm is used to solve problem instances further
from a phase transition region, as described by these order parameters, they exhibit
shorter run-times than those problems closer to it.

Within SAT one of the motivations behind investigating local search methods was
the observation that complete algorithms did not perform well on certain randomly
generated k-SAT problem instances [129, [161]. As researchers experimented with
different problem instances, they found that DPLL-based algorithms took much
longer to solve some instances than others. These problems could be categorised
by their ratio of clauses to variables. For 3-SAT, problem instances with a ratio
of around =~ 4.27 were found to exhibit this behaviour. This region is the phase
transition region for 3-SAT. Phase transition regions have been found for other &
values; for example, 5-SAT’s phase transition region is known to exist at ~ 21.12,
and for 7-SAT at ~ 87.79.

These regions mark a stark contrast between not just hardness, but of satisfiability
itself. To illustrate this phenomenon, we created a set of 3-SAT problem instances,
and ran a complete solver on them. Each problem instance had 250 variables, and
from between 900 to 1,300 clauses with 5 step increments (a total of 81 different
clause values). For each unique clause value, we generated 250 problem instances. The
MAPLESAT solver was then ran on each problem instance, until a definitive answer
about satisfiability was found. In Figure [2.3| we show the percentage of satisfiable
formula in, and the run-time required to solve, the set of 250 instances at each clause
value. The reader can clearly see that as the clause-variable ratio approaches 4.27,
the number of satisfiable problems changes from nearly all to nearly none. The reader
can also see that the amount of time it takes for the algorithm to terminate greatly
increases as we approach this clause-variable ratio, before decreasing again.

Historically, these problems at the phase transition region in SAT have been

19

CHAPTER 2. LITERATURE REVIEW

Clause-variable ratio

Clause-variable ratio

2100 | — 200 A
<] 2} ® x
Q0 . x = xx x
8 80 x g 150 . N &xx
A % g %
<9 60 1 2 x "&
s N v 100 A * w
£ 40 : E x y
8 x = %,
3 % ~ 50 1 o
n 20 A x] o
bS o - i
x 01 : E—— 0 | o
3.6 4.0 4.4 4.8 5.2 3.6 4.0 4.4 4.8 5.2

(a) Percentage of the SAT formula that (b) Total time to solve all SAT formula

are satisfiable at each clause-variable for each clause-variable value.

value.

Figure 2.3: Results from solving 3-SAT problems using the MAPLESAT solver. Each
instance contains 250 variables and between 900 and 1,300 clauses (step increase of
5). For each clause value, we created a set of 250 random formula. We show the %

that are satisfiable and the time taken to solve each set.

difficult for DPLL-based algorithms to solve, but easier for local search-based algo-
rithms to solve. As an example of this, we will look at the results of the 2018 SAT
Competition [151]E|. The SAT Competition is a regularly held event where different
SAT solvers are tested against each other to determine which is the most effective.
In the 2018 edition of the competition several tracks were held, each of which tested
the submitted solvers on different types of problem instance. One of these tracks,
called the Random track, focused on randomly created instances, some of which can
be categorised as problems in and around the phase transition region.

The competition was ran as follows; given 255 satisfiable problem instances, each
solver was allowed 30 minutes to solve each problem. The 255 problems were split
into various sets. These sets were named for the origin of the problems contained
within; for example the set named “3SAT” contains problems in and around the phase
transition region for 3-SAT. Other sets contain randomly created SAT problems that
have a non-uniform number of variables in each clause, and therefore a clause-variable

ratio that is not a good indicator of their problem hardness. The largest problems

“Webpage detailing the competition, entrants and results located at http://sat2018.forsyte.

tuwien.ac.at/

20

http://sat2018.forsyte.tuwien.ac.at/
http://sat2018.forsyte.tuwien.ac.at/

CHAPTER 2. LITERATURE REVIEW

have millions of variables. In Table we present a detailed overview of the results.

Though the results show that SPARROW2RISS, a hybrid solver, won the competi-
tion overall, the detailed results also show that it was not the best performing on
all sets of problem instances. In fact, several of the local search solvers were able
to outperform it (as well as the CDCL-based solvers) on certain subsets of the 255
instances; specifically those containing instances at the phase transition region for 3, 5
and 7-SAT. In subsequent competitions the Random track has not been held. We feel
that, while these results show that state-of-the-art hybrid solvers, and CDCL solvers,
are able to outperform LS-SAT solvers on some randomly generated instances, they
also show that local search-based solvers are still more effective at solving k-SAT
problem instances in and around the phase transition region. In addition to this,
their use in hybridised solvers suggests that the continued development of effective
local search-based solvers still has a role to play in the creation of general-purpose

solvers.

2.2.3 Summary & Discussion

In this section we have provided a brief overview of the Boolean Satisfiability problem,
detailed two algorithms used to solve it, touched on its extensions, and discussed a
specific subclass of SAT problem in and around the phase transition region.

When solving a SAT problem instance, currently it is common practice for a
complete algorithm to be invoked at some stage of the solving process. This is
predominantly due to the difficulty that incomplete algorithms, such as local search,
have in constructing a proof of unsatisfiability. Though local search does perform
well when solving certain classes of SAT problem when compared to DPLL, on its
own its use is limited.

Despite this, we feel that we have shown that local search algorithms, and by
extension the heuristics that direct the search within them, still have a role to play
in solving real-world SAT problems. The evidence presented in Section showed
that local search-based SAT solvers can still solve problems that DPLL-based solvers
struggle to solve. We also provided evidence of the continued role that hybrid solvers
have to play in solving SAT. Well-designed heuristics that drive the local search
algorithm are still required to design such solvers.

Further to this, some algorithms to solve SAT’s optimisation variants make use

of local search and heuristics to guide their internal search mechanisms. We have

21

CHAPTER 2. LITERATURE REVIEW

Table 2.1: Detailed results of the 2018 SAT Competition, Random track. Each
problem set is named, and the total number of instances in that set shown. For each
solver, the type of that solver is indicated; CDCL is based on conflict driven clause
learning and DPLL, LS is based on local search, and Hybrid is a combination of the
two. The data shows how many problem instances each solver could solve. Bold
typeface of a result indicates a solver that solved the most of all solvers for that set

of instances.

Random
cnf bz2
—~)

— G 0O - 3
Solver Type :Lg/ R K § /0—_.9\ § = | =

= = B2 | B H |3

S 2 5 E 2227 F

s L 58 8 |8\ E

S| 8| =

==

SPARROW2RISS Hybrid || 55 | 55 | 55 | 12 0 3 8|1 0| 188
GLUHACK CDCL || 55 | 55 | 55 0 0 0 0] 0] 165
GLUCOSE-3_PADC_10 | CDCL || 55 | 55 | 55 0 0 0| 0] 165
GLUCOSE-3_PADC_3 CDCL || 55 | 55 | 55 0 0 0 0| 0] 165
EXPGLUCOSESILENT CDCL || 55 | 55 | 55 0 0 0] 0] 165
CPSPARROW LS 21| 55| 55| 16 0 6| 10| 0] 163
DIMETHEUS LS 121121552020 (13|16 | 7| 155
PROBSAT LS 1214 | 55| 17| 18| 11| 11 0] 138
YALSAT LS 12 9155 15| 16| 12| 10| 0] 129
LAWA LS 12 6| 55 0 8 0 0] O 81

22

CHAPTER 2. LITERATURE REVIEW

provided an example of how solvers for SAT’s optimisation variants can make use of
heuristics that utilise ideas originally designed for SAT. A system to automatically
design SAT heuristics could be easily and quickly modified to work with SAT’s
optimisation variants. Therefore, the research in such systems could prove useful for
real-world applications that require software to solve these optimisation variants.

In Section we discussed k-SAT problem instances in and around the phase
transition region. These are the types of problem instances we will be testing the
automatically created heuristics on. They have previously been shown to be difficult
for DPLL-based solvers to solve, and comparatively easy for LS-SAT solvers to solve.

SAT is itself a broad research area and, as we only concentrate on a small area of
it in this thesis, this section can only be considered to be an introduction to the topic
at large. For more information, the reader is directed to The Satisfiability Problem:
Algorithms and Analyses [155], which provides an introduction to many core research
areas in SAT, and discusses in detail the methods used to solve it. Handbook of
Satisfiability [18] provides a detailed and in-depth review of many areas of research

in SAT and its extensions.

2.3 LS-SAT Heuristics

In this section we provide an overview of previously described LS-SAT solvers in
the research literature that have either proven to be effective at solving the SAT
problem, or we deem the work undertaken relevant to this thesis. Our focus is almost
exclusively on the heuristics that drive these LS-SAT solvers. It is through the
literature presented in this section that we identify many of the components we use to
create heuristics in later chapters. We include examples of the pseudocode describing
the heuristic component of several LS-SAT solvers, and not the overarching LS-SAT
algorithm of the described solvers. Each given heuristic has been presented in a
way that, if the provided pseudocode were substituted for the function PICK-VAR
in Algorithm [2.2] an LS-SAT solver utilising the substituted heuristic would be
created. Furthermore, at certain points in this section we describe LS-SAT solvers
that require some additional mechanism to function correctly. These additional
mechanisms exclusively concern update functions for auxiliary data structures. These
update functions are clearly labelled and, if they were to be used as part of the
overarching LS-SAT algorithm in Algorithm [2.2] they would be inserted at the end

23

CHAPTER 2. LITERATURE REVIEW

of each iteration of the overarching local search loop.

We present the heuristics in a semi-chronological order, as this allows the reader
to identify the research trends as they become more and less relevant. We have
attempted to group the heuristics into several subsections based upon the common
techniques used in their formulation. However this is not always possible as competing
ideas sometimes appeared at the same time, or appeared as bit-parts in heuristics
before later being reused as effective, stand-alone heuristics.

We make an attempt to use uniform terminology in our descriptions, as well as
uniform pseudocode where it is provided. An explanation of the commonly used
functions in the pseudocode is found in Table We also provide a set of definitions
about metrics and properties of SAT problems used throughout this section. The
set of definitions in Section are also used, and we refer the reader to them if
unfamiliar with SAT. These are not the only metrics and descriptions used, but
it does define all those that transcend multiple subsections. The definitions are as

follows:

Definition 9 (True Literals)

For a SAT problem F, clause ¢ € CLAUSES(F') and complete assignment A, this is
the number of satisfied literals in ¢ under A. It can be defined as |{l € LiTs(c),
SATISFIED(A, [) = True}|. To refer to this value we write TRUELITS(A, ¢).

Definition 10 (Variable’s Clause Set)

For a SAT problem F and variable v € VARS(F'), this is the set of clauses that
contain a literal that is either the positive occurrence or negative occurrence of v. It
can be defined as {¢c € CLAUSES(F'), (3l € Lits(c), VAR(l) =v)}. To refer to this
set we write CLAUSESET(F, v).

Definition 11 (Variable’s True/False Literal Set)

For a SAT problem F, variable v € VARS(F') and complete assignment A, v’s True
Literal set is defined as the set of clauses that contain a literal | that is both a satisfied
literal and contains v. v’s False Literal set is the set of clauses that contain a literal
that is both unsatisfied and contains v. It follows that when the variable v is flipped
in a local search algorithm, these sets also flip. The two sets can be described as
{c € CLAUSESET(F, v), (3l € LiTs(c), SATISFIED(A, [) = True A VAR(l) = v)}
and {c € CLAUSESET(F, v), (3] €L1Ts(c), SATISFIED(A,) = False A VAR(l) = v)}
respectively. To refer to the True Literal set we write TRUELITSET(F, A, v) and
FALSELITSET(F, A, v) to refer to the False Literal set.

24

CHAPTER 2. LITERATURE REVIEW

Definition 12 (Clause Weighting)

A clause weighting scheme W under a SAT problem F' is a matriz of positive numbers,
each of which is associated with a clause ¢ € CLAUSES(F). Fach value represents the
“weight” of the clause ¢, and a weight of n is analogous to having n copies of ¢ in F.
The “base” (representing the original problem F') weighting has all values set at 1,
and 1is written as so. We write W, = x to change a clause c¢’s weight to x, W = x to

set all weights to x and W to obtain the mean of all the weights.

Definition 13 (Positive Gain)

For a SAT problem F, variable v € VARS(F'), weighting scheme W and complete
assignment A, this is a metric associated with a variable that represents the number
of currently unsatisfied clauses that will become satisfied if v is flipped. It is also

known as makes. It can be computed as:

W. if TRUELITS(A, ¢) =0
> | 21
¢ € FALSELITSET(F, A, v) 0 otherwise
To refer to this value, we write POSGAINy (A, F, v). If the assignment and SAT
formula are obvious from the context, we write POSGAINy (v). If a set of variables are
ordered according to their POSGAINyy, they are ordered from smallest to largest; the
variable with the largest POSGAINy, is considered the best. A wvariable’s POSGAINy,

15 always a positive integer.

Definition 14 (Negative Gain)

For a SAT problem F, variable v € VARS(F'), weighting scheme W and complete
assignment A, this is a metric associated with a variable representing the number of
currently satisfied clauses that will become unsatisfied if v is flipped. It is also known

as breaks. It can be computed as:

W, if TRUELITS(A, ¢) =1
> | 22
¢ € TrueLitser(4, v) | 0 otherwise
To refer to this value, we write NEGGAINy (A, F, v). If the assignment and SAT
formula are obvious from the context, we write NEGGAINy (v). If a set of variables are
ordered according to their NEGGAINy,, they are ordered from largest to smallest; the
variable with the smallest NEGGAINyy, is considered the best. A variable’s NEGGAINy,

15 always a positive integer.

25

CHAPTER 2. LITERATURE REVIEW

Definition 15 (Net Gain)

For a SAT problem F, variable v € VARS(F), weighting scheme W and complete
assignment A, this is a metric associated with a variable representing the total
difference in number of satisfied clauses if v is flipped. It is also known as score. It

can be computed as:
PosGaNy (A, F, v) — NEGGAINy (A, F, v) (2.3)

To refer to this value, we write NETGAINy (A, F, v). If the assignment and SAT
formula are obvious from the context, we write NETGAINy (v). If a set of variables are
ordered according to their NETGAINy,, they are ordered from smallest to largest; the
variable with the largest NETGAINy, is considered the best. A variable’s NETGAINy,
can be a positive or negative integer.

Definition 16 (Age)

For a current complete assignment A, initial assignment B, SAT problem F', sequence
of variables vs that detail the variables flipped to obtain A from B, and variable
v € VARS(F), this is a metric associated with a variable that represents the number
of flips since v was last changed. Specifically this is the distance in vs from the end
to the last occurrence of v. If v € vs, then the age of v equals the length of vs. A
variable’s age is always a positive integer.

To refer to this value, we write AGE(v). We assume the current assignment is
obvious from the context. If a set of variables are ordered according to their AGE, they
are ordered from smallest to largest; the variable with the largest AGE is considered
the best.

At various points in the following subsections, we make references to variable metrics.
These can be viewed as metrics that provide some description of a property of a
variable. We use these metrics to order sets of variables. By variable metric, we
specifically refer to the POSGAIN, NEGGAIN, NETGAIN and AGE metrics defined
above, as well as some additional metrics defined in Section that are used
exclusively in that subsection.

The reader should also note that, at various points in the following subsections,
we make references to the SAT Competition. This is a regularly held benchmarking
competition that tests various SAT solvers on different types of problems. Rather than
providing the webpage of each individual competition, we point the reader to http:
//www .satcompetition.org/, which contains links to all of the SAT Competition

results referenced in this section.

26

http://www.satcompetition.org/
http://www.satcompetition.org/

CHAPTER 2. LITERATURE REVIEW

Table 2.2: The set of functions used in the pseudocode in Section . Each entry
shows the function’s name, the function’s type signature, and a short explanation of

that function’s operation.

Variable Metric — [Variable| —
ORDER- VARS(f, vs)

[Variable]

Given the collection of variable metrics f, each of which has an associated ordering,
the collection of variables vs, ORDER-VARS does the following; the variables in vs
are sorted in descending order according to the variable metric values in f - the
variable with the best variable metric(s) is placed at the front of the returned list.
To determine the ordering of two variables, the variable metric at the 0*" element
of f is used. If the two variables are equal under this variable metric, then the
next element in f is used. If, after exhausting all variable metrics in f, two or
more variables are deemed equal, then the variables are ordered randomly. We

return the variables in vs in this new ordering.

P1ck-RANDOM(vs) [Variable| — Variable

Given the collection of variables vs, this function picks one at random from vs.

WITH-PROBABILITY (p) Probability — Bool

With probability p returns True and with probability 1 — p returns False.

P1ck-BROKEN() [Variable]

This function picks a single currently unsatisfied clause, and returns all variables

within that clause. Each unsatisfied clause has an equal chance of being picked.

P1cK-WEIGHTED-VAR(W) | [(Weight xVariable)] — Variable

Given the collection of pairs of weights and variables W, this function performs a
weighted pick on the variables from W using the associated weights, returning

the chosen variable.

[Variable| — (Variable — Bool) —
FILTER(vs, f) Variable]
ariable

Given the collection of variables vs and the function f, which takes a variable and

returns a boolean, this function filters vs using f. It returns all (if any) variables

from vs that satisfy f.

27

CHAPTER 2. LITERATURE REVIEW

Algorithm 2.3 GSAT Heuristic
Input: F SAT problem instance in CNF.

A Current assignment.

Output: The variable to be flipped.

algorithm GSAT(F, A)
vars = ORDER-VARS(|NETGAIN;|, VARS(F))

return vars[0]

2.3.1 GSAT & Variants

Greedy SAT, commonly known as GSAT [161], was one of the first effective local
search-based SAT solvers described. Also independently described by Gu [72] (called
SAT6.0 in that work), it utilises a simple heuristic based on the hill-climbing
algorithms used in generic local search. The heuristic works by choosing the variable
that, if flipped, will maximise the number of satisfied clauses. In the terminology
we use, this is the variable with the maximum NETGAIN;. The pseudocode for the
GSAT heuristic is shown in Algorithm [2.3] Like all heuristics in this section, this
pseudocode can be substituted into the local search algorithm shown in Algorithm
to obtain the complete GSAT algorithm.

If it is found that two or more variables have the same NETGAIN;, ties are
broken by choosing one of them with uniform randomness, thus making the whole
heuristic technically stochastic. The reader should note that, unlike conventional
hill-climbing algorithms in local search, GSAT can pick moves that decrease the
number of satisfied clauses (in terms of how local search is applied to optimisation
problems; this would be analogous to reducing the current fitness), or leave the total
number unchanged.

The authors tested GSAT on satisfiable 3-SAT problem instances around the
phase transition region, and other SAT problem instances created from reductions
from the n-queens problem and the Boolean induction problem. For the 3-SAT
problem instances it was found that GSAT was able to solve more than the compared
complete Davis-Putnam algorithm. Of the problems that the Davis-Putnam algorithm
could solve, GSAT was shown to solve them much more quickly. Through these
results, research interest piqued in local search methods for solving SAT, and its
development inspired subsequent research that was primarily focused on improving

performance.

28

CHAPTER 2. LITERATURE REVIEW

This heuristic, in hindsight, can be considered an intensification technique; the
heuristic directs the search to areas of the solution space containing assignments that
satisfy as many clauses as possible, and potentially where a satisfying assignment
may be found.

Although GSAT was shown to be an effective method for solving SAT problem
instances, the authors noted that it could struggle to find a satisfying assignment
under certain circumstances; specifically those where the algorithm got stuck in local
optima. This occurred when the heuristic made a series of choices that put it in
an area of the search space that contained no satisfying assignment, and it could
not escape from the local optima as the heuristic was unable to choose the correct
variable(s) to allow it to do so.

Some of the subsequent research based on GSAT concentrated on mechanisms to
escape local optima. Selman and Kautz [159] described three extensions to GSAT;
one that added random walk, one that added clause weighting, and one that used

a bespoke initialisation function. We discuss the first two of these mechanisms in

Sections [2.3.2| and [2.3.4] respectively.

In this early stage of LS-SAT heuristic research, questions were also asked of how
important the design choices of GSAT were. Gent and Walsh [66, 68| performed
experiments to ascertain the importance of choosing the most greedy variable; that
is to say, whether it is important to pick the variable with the highest NETGAIN;.
In an attempt to answer this, several augmentations of GSAT were considered as

follows:

e CSAT: In this heuristic two sets of variables are considered. Set 1 contains
all variables in the problem with NETGAIN; > 0. Set 2 contains all variables
with NETGAIN; = 0. The heuristic works as follows; if Set 1 is not empty, a
variable is chosen at random from it. Else if Set 2 is not empty, a variable is

chosen at random from it. Else a variable is chosen from VARS(F') at random.

e TSAT: This heuristic works in the same way as CSAT, except the variable
chosen from Set 1 is the variable with the minimum NETGAIN;. Ties are broken

randomly.

e ISAT: This heuristic works as follows: Set 1 contains all variables with a
NETGAIN; > 0. If Set 1 is not empty, then a variable is chosen at random from

it. Else a variable from VARS(F) is chosen at random.

29

CHAPTER 2. LITERATURE REVIEW

Algorithm 2.4 HSAT Heuristic
Input: F SAT problem instance in CNF.

A Current assignment.

Output: The variable to be flipped.

algorithm HSAT(F, A)
vars = ORDER-VARS([NETGAIN;, AGE|, VARS(F))

return vars[0]

e SSAT: In this heuristic, the variables are split into two sets as in CSAT. The
heuristic works as follows; if Set 2 is not empty, a variable is chosen at random
from it. Else if Set 1 is not empty, a variable is chosen at random from it. Else

a variable from VARS(F) is chosen at random.

The results presented by the authors showed that the performance of these
heuristics, with the exception of SSAT, was comparable to GSAT. Specifically,
these heuristics were tested on random 3-SAT problem instances near the phase
transition region, and n-queens problems reduced to SAT. This suggested to the
authors that picking the most greedy variable was not necessary; simply picking a
greedy variable was sufficient to progress the search. In Section we present
examples of state-of-the-art LS-SAT heuristics with mechanisms that split variables
into sets according to their NETGAIN; value. The heuristics described here can be
considered precursors to that work.

Gent and Walsh also experimented with variants of these heuristics (including
GSAT) where tie-breaks were broken by the AGE of a variable. The pseudocode for
GSAT with this change is called HSAT, and is shown in Algorithm

A heuristic called IHSAT was also described, which added this additional tie-
breaking mechanism to ISAT. Both IHSAT and HSAT were found to perform
better than GSAT on the previously used set of SAT problems. This additional
mechanism of incorporating a variable’s AGE metric would be further developed in
later described heuristics.

In this subsection we have provided an overview of some of the initial research in
LS-SAT heuristics. Several common techniques have been introduced that have gone
on to inspire mechanisms in more effective LS-SAT heuristics, as we will see in the

following subsections.

30

CHAPTER 2. LITERATURE REVIEW

Algorithm 2.5 GWSAT Heuristic
Input: F SAT problem instance in CNF.

A Current assignment.
p Noise parameter.
Output: The variable to be flipped.
algorithm GWSAT(F, A, p)

if (WITHPROBABILITY(p)) then

)
return PICKRANDOM(PICKBROKEN())
else return GSAT(F, A)

2.3.2 WalkSAT & Variants

In the early days of research into LS-SAT heuristics, several competing ideas were
developed that would later be revisited and combined to create new heuristics. In
the previous subsection we presented the beginnings of LS-SAT heuristic research,
where intensification strategies were found to work well on SAT. Yet, choosing the
best neighbour was known to not be necessary for a heuristic to perform well. In
this subsection we concentrate on the WALKSAT family of heuristics, which use a
different mechanism to progress the search.

Selman and Kautz [159] considered an augmentation to the GSAT heuristic that
added a “random walk” component to it. This heuristic, called GWSAT, can be
described as follows; using a pre-determined probability]ﬂ a random variable from a
randomly chosen unsatisfied clause (or “broken clause”) is chosen as the variable to
flip, and with probability 1 — p the variable returned from calling GSAT is chosen.
Pseudocode for GWSAT is shown in Algorithm [2.5]

Random walk, in the context of LS-SAT heuristic research, refers to a heuristic
mechanism that chooses a variable randomly from all the variables in a currently
broken clause. Flipping one of these variables is guaranteed to satisfy the clause
it was chosen from, but may reduce the overall number of satisfied clauses. Yet,
by picking one of these variables, it may allow the overarching search algorithm to
escape local optima. In this way, it can be considered a diversification technique.
The inspiration for the random walk mechanism came from work by Papadimitriou
[140], where it was shown that, for a satisfiable 2-SAT problem instance (a subclass

of SAT problems known to be solvable in polynomial time) containing n variables, a

5In the original work, a value of 0.35 was suggested.

31

CHAPTER 2. LITERATURE REVIEW

process that randomly picks a variable from a broken clause will find a satisfiable
solution in O(n?) steps with probability approaching 1.

In experiments performed by the authors, it was found that the GWSAT heuristic
could outperform the GSAT heuristic on SAT problem instances derived from Boolean
induction formulas and planning problems. A further augmentation of GWSAT
with clause weighting (see Section was able to solve more of these problem
instances than GWSAT.

GWSAT is the first example we’ve shown of a heuristic that uses a pre-determined
parameter in its description. The parameter in this case can be changed to make the
heuristic favour its intensification strategy (GSAT), or its diversification strategy
(random walk). Though the authors did not show experiments using different values
for this parameter, other researchers would build on this work to show the effect
that different parameter values could have on the performance of similar heuristics.
Specifically, through experimentation “tuned” parameter values could be found which
provide the best performance for certain problem instance, or types of problem
instances.

Selman, Kautz, and Cohen [160] further developed this idea of random walk
to describe a heuristic based solely off it. They called this heuristic WALKSAT.
Like GWSAT, WALKSAT uses a pre-determined noise parameter called p in its
construction. WALKSAT works as follows; from a randomly broken clause ¢, find
the variable v with the smallest NEGGAIN;. If the NEGGAIN; of v = 0, then v
is returned. Else, with probability p, v is returned and, with probability 1 — p, a
random variable from c is returned. We show the pseudocode for this heuristic in
Algorithm [2.6]

The design of WALKSAT is interesting for several reasons. Primarily, both its
intensification and diversification strategies return variables from an unsatisfied clause.
In its intensification step, rather than try to reduce the overall number of unsatisfied
clauses, it performs what can be described as a “soft” greedy step; it will pick a
variable that does not break any other clauses. Since it is picking a variable from an
unsatisfied clause, it will satisfy at least a single clause. Therefore, the NETGAIN;
of the chosen variable will be at least 1. This aligns with the observations of Gent
and Walsh [68], who showed that GSAT variants that did not pick the variable
with the best NETGAIN;, but chose a variable with a positive NETGAIN{, were still
effective heuristics. If the NEGGAIN; of the variable with the lowest NEGGAIN; is

32

CHAPTER 2. LITERATURE REVIEW

Algorithm 2.6 WALKSAT Heuristic
Input: F SAT problem instance in CNF.

A Current assignment.
p Noise parameter.
Output: The variable to be flipped.
algorithm WALKSAT(F, A, p)
vs = PICK-BROKEN()

vars = ORDER-VARS([NEGGAIN |, vs)

v = vars|0]

if (NEGGAIN;(v) = 0) then return v

else if (WITH-PROBABILITY(p)) then return v

else return P1ck-RANDOM(vs)

not 0, WALKSAT will pick a variable according to its diversification strategy. The
diversification strategy in WALKSAT is itself made up of two individual strategies.
How frequently either of these are used is controlled by the pre-determined noise
parameter p. The first strategy still picks the variable with the lowest NEGGAIN;.
The second strategy picks a random variable from the clause. Irrespective of which
strategy is used, the NEGGAIN; of the chosen variable will be > 0. Therefore it is
not possible to know the overall effect that flipping it will have on the number of
unsatisfied clauses.

One component of LS-SAT heuristic design that we have not touched upon in
this, or the previous, subsection is the speed at which the heuristics perform. Or
more specifically, how fast the auxiliary data structures that are required to compute
the values needed for the heuristic to operate are updated. GSAT-like heuristics
require the overarching local search algorithm to maintain a partial ordering of all
variables in the problem relative to some variable metric. If the problem is large,
this can be computationally expensive to maintain. Heuristics such as WALKSAT
only require knowing the variable metric values of the variables from a single clause,
which is less computationally expensive to maintain. Because of this, they are able
to perform an iteration of local search more quickly, which can allow a solver based
on such a heuristic to solve problem instances quicker.

Through experimentation, Selman, Kautz, and Cohen were able to show that

WALKSAT could outperform (in both number of solved problems and time taken)

33

CHAPTER 2. LITERATURE REVIEW

GSAT and GWSAT on the problem sets it was tested on. These were circuit
synthesis problems and circuit diagnosis problems. Seitz, Alava, and Orponen [15§]
performed further experiments on WALKSAT to investigate the role of the parameter,
and found that for randomised 3-SAT instances a value of 0.57 appeared to provide
the best performance.

McAllester, Selman, and Kautz [123] observed that many of the (then) recently
described heuristics made use of an intensification and diversification strategy that
could be controlled by a parameter, which when changed could affect the performance
of the heuristic. The authors described additional heuristics that also made use of a
parameter. These heuristics made use of metrics and ideas previously described in
LS-SAT heuristic research, and introduced a new notion of finding the second best
variable according to a variable metric. We provide a description of two heuristics
from this work, NOVELTY and R_NOVELTY. These heuristics were chosen as they
provided the best performance of those described by the authors. In the given
descriptions, the variable p is the pre-determined noise parameter. The heuristics

can be described as follows:

e NOVELTY: From an unsatisfied clause ¢, the variables are ordered by their
NETGAINy, breaking ties using the AGE of a variable. For the two best variables
v1 and vy under this ordering do the following; if v; does not have the minimum
AGE among the variables in ¢ return v;. Else with probability p select vy and

with probability 1 — p pick v;. The pseudocode for NOVELTY is shown in
Algorithm 2.7

e R_.NOVELTY: From an unsatisfied clause ¢, the variables are ordered by
their NETGAIN;, breaking ties using the AGE of a variable. For the two
best variables v; and v, under this ordering do the following; if v; does
not have the minimum AGE among the variables in ¢ return v;. Else, let
n =NETGAIN; (v1)—~NETGAIN; (v2) and perform one of the following steps:

1. If p< 0.5 and n > 1 pick v;.
2. If p < 0.5 and n = 1 with probability 2p pick vs, else pick v;.
3. If p> 0.5 and n =1 pick vs.

4. If p > 0.5 and n > 1 with probability 2(p — 0.5) pick vy, else pick v;.

34

CHAPTER 2. LITERATURE REVIEW

Algorithm 2.7 NOVELTY Heuristic
Input: F SAT problem instance in CNF.

A Current assignment.
p Noise parameter.

Output: The variable to be flipped.

algorithm NOVELTY(F, A, p)
vs = PICK-BROKEN()
return NOVELTY-INTERNAL(F, A, p, vs)

algorithm NOVELTY-INTERNAL(F, A, p, vs)
vars = ORDER-VARS([NETGAIN;, AGE], vs)
vy = vars|0], ve = vars|l]
if ((min , ¢ »sAGE(v)) # v;) then return v,
else if (WITH-PROBABILITY(p)) then return v,

else return v

Additionally on every 100 flips, a random variable from the problem is chosen
to be flipped. This is to stop the algorithm getting stuck flipping the same

sequence of variables.

The authors performed experiments using these heuristics and WALKSAT which
were designed to determine the effect that the noise parameter had on the performance
of the heuristics. The heuristics were tested on a set of satisfiable 3-SAT problem
instances. From the experiment’s results, the authors observed that there appeared
to be a tuned noise parameter value that existed for each pair of algorithm and
SAT problem instance which yielded the best performance. However, these tuned
parameter values were different for each pair of heuristic and problem instance and,
to find these values, computationally expensive experimentation was required.

The authors performed further experiments with the goal of identifying character-
istics of the parameter value that were “less sensitive to the details of the various
strategies”. Several different measures of the behaviour of LS-SAT heuristics were
described, and it was found that, for a specific SAT problem instance, the mean
variance of the number of satisfied clauses over a run directly correlated with the
noise parameter that yielded the best performance. It was suggested that, when the

optimal mean variance is found for a specific SAT problem instance, that value can

35

CHAPTER 2. LITERATURE REVIEW

be used to quickly tune the parameter values of any heuristic for that SAT problem
instance. It was thought of as an alternative to the potentially computationally
expensive testing of many different parameter values. Though we are aware of no
work that makes use of this mechanism, this idea of automatically tuning heuristics
that make use of a parameter would be revisited. We discuss research in this area in
Section 2.3.3

In the overall context of the continued development of LS-SAT heuristics, the
two heuristics we have described outperformed the heuristic which was considered
the state-of-the-art at the time - WALKSAT. The experiments showing this were
performed on random 3-SAT satisfiable instances, and SAT problems constructed
from planning problem instances and graph colouring instances.

Hoos [85] further developed the theory regarding the performance of LS-SAT
heuristics. It had been empirically observed that for many of the (then) state-of-
the-art LS-SAT heuristics, getting stuck in local optima was a reoccurring issue. To
this end, Hoos described a characteristic of LS-SAT heuristics called probabilistic
asymptotic completeness (PAC). A heuristic with PAC applied to a satisfiable SAT
problem instance will find a satisfying solution with probability approaching 1 when
given enough time. In essence, a heuristic with the PAC property is able to sufficiently
explore the search space, and not get stuck in local optima. It was shown that GSAT,
NoveELTY and R_NOVELTY are not PAC, and that GWSAT is.

Through these results, Hoos described a mechanism to augment NOVELTY and
R_NOVELTY to make them PAC. The mechanism uses an additional probability
parameter wp (which should be very small) to choose a random variable from the
chosen broken clause, else run like the original heuristic. These augmented heuristics
are called NOVELTY+ and R_NOVELTY | respectively. The mechanism was designed
to diversify a heuristic in a non-deterministic way. An example of the mechanism
applied to NOVELTY to create NOVELTY+ is shown in Algorithm [2.§]

These new heuristics were shown to outperform NOVELTY and R_NOVELTY on
SAT instances derived from graph colouring problem instances and random 3-SAT
instances. For NOVELTY+, values of 0.01 and 0.35 for the parameters wp and p were
said to provide good performance.

Li and Huang [107] described two further mechanisms that were used to augment

NoVELTY and build what would prove to be better performing LS-SAT heuristics.

5In the original paper these heuristics were called NovELTY' and R_NOVELTY', but some

authors refer to them as just NOVELTY+ and R_NOVELTY+. We use the latter form in this thesis.

36

CHAPTER 2. LITERATURE REVIEW

Algorithm 2.8 NOVELTY+ Heuristic
Input: F SAT problem instance in CNF.

A Current assignment.

p Noise parameter.

wp Random walk parameter.
Output: The variable to be flipped.

algorithm NOVELTY+(F, A, p, wp)
vs = PICK-BROKEN()
if (WITH-PROBABILITY(wp)) then return PICK-RANDOM(vs)
else return NOVELTY-INTERNAL(F, A, p, vs)

The first mechanism was used to augment NOVELTY to create the NOVELTY++
heuristic. The mechanism works by using a parameter wp to determine whether to use
the new strategy or the original heuristic. The new strategy picks the variable in the
broken clause with the highest AGE. This mechanism was inspired by observations
of how NOVELTY+ performs on certain instances. When picking a random variable
from the broken clause, it would usually not pick the “correct” variable to escape local
optima. NOVELTY++ was tested against NOVELTY and NOVELTY+ and, when used
with effective parameter values (values of p = 0.3 and wp = 0.05 were suggested),
outperformed the other heuristics.

The second mechanism described is an intensification strategy that can be used to
augment previously existing heuristics. This mechanism is called G2WSAT and uses
a set of variables we call DECRVARS. DECRVARS is a dynamic set of variables that
can be described as follows; on initialisation, it contains all variables with NETGAIN;
> (0. After a variable v is flipped, v is removed from DECRVARS (if it was contained
in the set). Any variables currently in the set that now have NETGAIN; < 0 are
removed, and any other variables that now have NETGAIN; > 0 are added. If the
variable to flip is continually chosen from DECRVARS, then the overarching algorithm
will reach local optima quickly. When DECRVARS is empty, and a diversification
strategy then used, the algorithm can escape local optima and DECRVARS will not
contain the variable just flipped when it is next probed. Succinctly, the mechanism
is designed to reach a state of local optima, escape that state of local optima and not
choose the same variables to return to that state.

The heuristic NOVELTY+4 augmented with GZWSAT can be described as follows;

37

CHAPTER 2. LITERATURE REVIEW

Algorithm 2.9 G?*WSAT Heuristic
Input: F SAT problem instance in CNF.

A Current assignment.

p Noise parameter.
wp Random walk parameter.
Output: The variable to be flipped.
algorithm G*WSAT(F, A, p, wp)
if (DECRVARS#) then
return ORDER-VARS([NETGAIN;, AGE], DECRVARS)|[0]

else return NOVELTY++(F, A, p, wp)

if DECRVARS is not empty, pick the variable with the highest NETGAIN;, breaking
ties by AGE. Else pick the variable according to NOVELTY++. The pseudocode
for this heuristic is shown in Algorithm When referring to GZWSAT in later
parts of this thesis, (unless stated otherwise) we mean this specific instantiation of
G2?WSAT using the NOVELTY++ heuristic.

This mechanism can be considered to be almost GWSAT-like, in that it has a
strong intensification mechanism based on picking a variable from the entire problem,
and then a diversification mechanism based on picking a variable from a broken clause.
The reader should note that the instantiation of the GEWSAT heuristic shown in
Algorithm may need its parameters to be tuned for the best performance, as it
uses the NOVELTY++ heuristic as its diversification strategy.

Li and Huang tested the G?WSAT heuristic against the entrants to the 2004 SAT
Competition, where it was found to outperform most of those it was tested against.
However the authors did note that SDF, a solver based on clause weighting [156],
had comparable performance. G2WSAT was entered at the 2005 SAT Competition
[17] where, in the Random track, it placed 2.

The last two heuristics presented in this subsection, G2WSAT and NOVELTY++,
serve as examples of the changing landscape behind the design of LS-SAT heuristics
in the early to mid-2000s. New effective heuristics were found that were either
combinations of previously existing ideas, or the addition of new ideas to previously
found, effective heuristics. As Fukunaga [60] noted, “humans excel at identifying
good potential components of methods to solve problems, but combining them seems

to be a more difficult undertaking”. Many of the components for these heuristics had

38

CHAPTER 2. LITERATURE REVIEW

already been described, but the ingenuity to design effective heuristics using them to
maximise performance followed later.

Despite the confusing nomenclature, in this subsection we have shown how effective
heuristics can be designed when choosing a variable from a random unsatisfied clause.
This subsection also shows how the continued development of effective LS-SAT
heuristics was an iterative process, combining previous ideas in new and novel ways
to create new “augmented” variants. Many of the ideas presented are still used in

state-of-the-art LS-SAT heuristics, as we will see in the forthcoming subsections.

2.3.3 Adaptive Heuristics

In the previous subsection we highlighted several heuristics that use a random walk
mechanism in their construction. Every heuristic we highlighted in that subsection
makes use of a pre-determined probability parameter to control how much bias is
given to either its intensification or diversification strategies. Hoos [85] noted how
there is a balance between these two strategies; if there is too much intensification, a
heuristic cannot escape local optima. If there is too little, it cannot find good (or
satisfying) solutions. In this subsection we discuss a further set of heuristics, all
variants of those seen in the previous subsection, that use mechanisms to tune their
parameters automatically as the heuristics are running.

The first of these, described by Hoos [84], is a variant of the NOVELTY+ heuristic.
In this new heuristic instead of the noise parameter being static throughout the
lifetime of the algorithm, it is a variable that can change as the algorithm progresses.
The author referred to it as an adaptive noise parameter. Inspired by observations
gathered through previous research [85], Hoos proposed a mechanism that allowed
the algorithm to become aware of when it was stuck in local optima. The mechanism
would then change the parameter value so that the heuristic would have more bias
towards one of its strategies. The following rules were proposed regarding the changes

in the noise parameter:

e If no improvement in the objective function - that is, the number of satisfied
clauses - has been observed in the last © - m flips (where m = the number of

clauses), then change the parameter according to wp = wp + (1 — wp) - ¢.

e If an improvement has been seen since the parameter was last updated, then

change the parameter according to wp = wp —wp - 2 - ¢.

39

CHAPTER 2. LITERATURE REVIEW

Hoos implemented this adaptive noise parameter mechanism in NOVELTY+ to
create the heuristic ADAPTNOVELTY+. In ADAPTNOVELTY+ values of © = 1/6 and
¢ = 0.2 were used.

Hoos then compared the performance of the ADAPTNOVELTY+ heuristic to the
NOVELTY+ heuristic. To do this, a set of 3-SAT problem instances and SAT instances
derived from other hard combinatorial problems were used to evaluate the performance
of both heuristics. NOVELTY+ was ran on each problem instance several times using
different parameter values until one was found that provided the best performance for
that specific problem instance - in essence computationally expensive parameter tuning
was performed. For each problem instance the performance of ADAPTNOVELTY+
was compared to the performance of NOVELTY+ using the tuned parameter value.
While the results showed that the two heuristics had generally similar performance,
overall the tuned NOVELTY+ heuristic outperformed ADAPTNOVELTY-+. However,
the authors noted that ADAPTNOVELTY+ required no computationally expensive
tuning, and had much better performance than an un-tuned NOVELTY+ heuristic.
A variant of ADAPTNOVELTY+, called R+ADAPTNOVELTY+, was entered in the
Random track at the 2005 SAT Competition, where it placed 1.

Adaptive parameter tuning would continue to be used in the creation of effective
LS-SAT heuristics in the late 2000s. Li, Wei, and Zhang [108] presented research
detailing attempts to improve on the G?WSAT heuristic using this mechanism.
Three new heuristics were proposed by the authors; ADAPTG2WSAT, G2WSATp
and ADAPTG?WSATp. ADAPTG?WSAT was identical to G2ZWSAT, except that
it used adaptive parameter tuning in its construction. GZWSATp was created by
making two changes to the GZWSAT heuristic. The first of these changes augmented
the way in which a variable was chosen from the DECRVARS set. The second change
substituted the original diversification strategy used, NOVELTY++, for a new strategy
called NOVELTY+p. ADAPTG2?WSATp was an augmentation of GZWSATp that
used adaptive parameter tuning in its construction. In testing the performance of
these heuristics, Li, Wei, and Zhang found that the performance of the adaptive
heuristics was comparable to their non-adaptive variants when used with a tuned
parameter value.

These heuristics were entered in the Random track at the 2007 SAT Competition,
where ADAPTG?WSAT and ADAPTG?WSAT) placed 3* and 5 respectively. The
heuristic ADAPTG?WSATO was also entered, and placed 2", ADAPTG?WSATO

40

CHAPTER 2. LITERATURE REVIEW

is nearly identical to ADAPTG?WSAT, with the only difference being that its
diversification and intensification strategies have been slightly altered. A further aug-
mentation of ADAPTG?WSATO, called ADAPTGZWSAT2009++, was also created.
ADAPTG2WSAT2009+4+ used the diversification strategy NOVELTY-++-. This was
the diversification strategy originally used by G?WSAT. ADAPTGZWSAT2009++
was entered in the Random track at the 2009 SAT Competition, where it placed 3.

These adaptive heuristics, though they were shown to not perform as well as their
non-adaptive variants with tuned parameter values, offered better overall performance
on a range of problem instances. The heuristics presented in this subsection also
show how the continued application of new ideas to previously described heuristics
drove forward LS-SAT heuristic research, allowing better performing heuristics to
be created. The use of adaptive parameters has continued to be used in LS-SAT
heuristic design, including in state-of-the-art LS-SAT solvers such as those in the
SPARROW [10] family (see Section [2.3.5).

2.3.4 Clause Weighting Schemes

In the previous subsections we have discussed intensification and diversification
techniques, as well as adaptive parameter tuning mechanisms used in LS-SAT heuristic
design. In this subsection we introduce another important mechanism used in modern
LS-SAT heuristic design called clause weighting.

Dynamic local search (DLS) is a local search technique that involves “modify[ing]
the evaluation function whenever a local optimum is encountered in such a way that
further improvement steps become possible” [83, Chapter 2|. Clause weighting in
SAT is a specific form of DLS. Selman and Kautz [159] (and independently Morris
[131]) suggested techniques for enhancing GSAT through adding clause weighting.

Clause weighting has a simple premise. Each clause is assigned a numerical weight
that can change as the overarching local search algorithm progresses. The weight w of
a clause c is used to simulate there being w copies of ¢ in the problem. By changing
the topology of the problem in this way, certain behaviours can be encouraged without
changing the overall satisfiability of the problem instance. For example, by having w
copies of an unsatisfied clause ¢ containing a variable v, v’s POSGAIN; is increased.
For heuristics that pick variables based on their POSGAIN; value, this could favour v
over other variables, and potentially stop the algorithm getting stuck in cycles, or

help it escape local optima.

41

CHAPTER 2. LITERATURE REVIEW

Algorithm 2.10 GSAT+WEIGHTS Heuristic & Weight Update Function
Input: F SAT problem instance in CNF.

A Current assignment.
W Clause weights.
Output: The variable to be flipped.
algorithm GSAT+WEIGHTS(F, A, W)
v = ORDER-VARS([NETGAINy/|, VARS(F'))

return v[0]
algorithm UPDATE-WEIGHTS(F, A, W)
for (¢ € {cl € CLAUSES(F'), SATISFIED(A, cl) = False}) do
W.=W.+1

Selman and Kautz [159] created a variant of GSAT called GSAT+WEIGHTS.
GSAT+WEIGHTS uses clause weighting and can be described as follows; on initiali-
sation the weights of all clauses are set to 1. The NETGAINy, of all variables under
the current assignment A and weighting scheme W are computed. The variable with
the greatest NETGAINy, is chosen to flip. After each iteration, any clauses that
are currently unsatisfied have their weight increased by 1. Pseudocode to show the
heuristic and weight update function are presented in Algorithm [2.10] The weight
update function is called at the end of each iteration of the overarching local search
algorithm.

GSAT+WEIGHTS was found to be more effective at solving problem instances
than its weightless counterpart GSAT. However, it was also shown to not be as
effective as WALKSAT. Despite this, researchers continued to experiment with
different strategies for utilising clause weighting in an attempt to create more effective
heuristics. For example, the Discrete Lagrangian Method (DLM) [173] uses an
additional mechanism to stop weights becoming too large and dominating the others.
This mechanism was termed “smoothing” and is designed to ensure that every weight
is within a small factor of the average of the weights. The SDF [173] heuristic uses a
multiplicative, rather than an additive, expression to update its clause weights. The
Exponentiated Sub-Gradient (ESG) method [157] is a variant of SDF which uses
weight update criteria that is dependent on whether a local optima has been found -
in essence it only sometimes updates the clause weights.

The weight smoothing mechanic used by the heuristics ESG and DLM is a

42

CHAPTER 2. LITERATURE REVIEW

computationally expensive function that, in those heuristics, is invoked on every
iteration of the local search algorithm. Some variable metrics use dynamic clause
weighting in their formulation. A clause weight update function, such as that shown
in Algorithm is relatively computationally inexpensive to perform as it usually
only changes the weights of a small number of clauses. Under these circumstances
only a small number of variable metric values need to be updated. Generally it is less
computationally expensive to update these using the difference between the old and
the new weight when compared to re-computing the value. As a smoothing mechanism
can change all the weights in a problem, it is preferable to re-compute every effected
variable metric when smoothing weights. To be clear, a weight smoothing function is
far more computationally expensive than a weight update function that only changes
a small number of weights. Due to this, a heuristic that uses a smoothing mechanic
which is invoked on every iteration of the overarching local search algorithm may
reduce the overall effectiveness of the heuristic, as it cannot perform as many flips as
other heuristics that do not use the same type of smoothing mechanism.

Hutter, Tompkins, and Hoos described the LS-SAT heuristic SAPS [86], a heuris-
tic similar to ESG that uses a probabilistic smoothing mechanic. A probabilistic
smoothing mechanic only has a small chance of performing the weight smoothing
function on any given iteration. The SAPS heuristic can be described as follows; all
variables that appear in an unsatisfied clause ¢ in the problem F’ under an assignment
A and weighting scheme W are ordered by their NETGAINy, . If the variable with
the largest NETGAINy, in ¢ is greater than 0 then it is chosen. Else, with probability
wp a random variable from c¢ is chosen, otherwise the weights are updated. The
weight update function uses a multiplicative expression in its construction and the
parameter Py,.on to decide how often to smooth the weights. Detailed pseudocode of
SAPS’s weight update function is shown in Algorithm [2.11} The authors suggested
values of « = 1.3, p = 0.8 and Pi,,00tn = 0.05 as examples of parameters that provide
good performance. The authors also presented an adaptive version of SAPS, called
RSAPS. RSAPS uses adaptive parameter tuning to change its Py,,o0tn parameter.
The adaptive mechanism used in RSAPS is similar to that described in Section [2.3.3]

Hutter, Tompkins, and Hoos performed experiments comparing the performance
of SAPS, RSAPS and ESG to one of the (then) state-of-the-art LS-SAT heuristics
NovELTY+. It was found that none of the heuristics based on clause weighting were

able to match the performance of NOVELTY+, and it was concluded that heuristics

43

CHAPTER 2. LITERATURE REVIEW

Algorithm 2.11 SAPS Weight Update Function

Input: F SAT problem instance in CNF.
A Current assignment.
W Weights.
D Smoothing factor.
Piootnn - Smoothing probability.
« Scaling factor.
Output: None.

algorithm UPDATE-WEIGHTS(F, A, W, p, Psnooth, @)
for (c € {cl € CLAUSES(F'), SATISFIED(A, cl) = False}) do
W.=W. X«
if (WITH-PROBABILITY (Pyno0tn)) then
for (c € CLAUSES(F')) do
W.=W,xp+(1—p)xW

based on clause weighting could still not compete with the then state-of-the-art
LS-SAT solvers.

Thornton et al. [171] described a heuristic called PAWS that uses a clause
weighting mechanism similar to that utilised in SAPS. PAWS uses an additive
update expression, and a much simpler smoothing update mechanism. The weight
update function for PAWS is shown in Algorithm [2.12] The authors found that
PAWS was comparable in performance to SAPS, however when entered in the
Random track at the SAT 2005 Competition, it placed lower than SAPS.

Researchers continued to experiment with clause weighting mechanisms in the cre-
ation of LS-SAT heuristics, and explore their use in augmenting previously described
heuristics. This is perhaps best illustrated by the GNOVELTY+ heuristic, as described
by Pham et al. [145]. GNOVELTY+ uses ideas from G*WSAT, ADAPTNOVELTY +
and heuristics that use clause weighting mechanisms. GNOVELTY+ was entered in the
Random track at the 2007 SAT Competition [143] where it placed 1%*. GNOVELTY2
[144], a more efficient version of GNOVELTY+, was entered in the Random track at
the 2008 SAT Competition, where it placed 2™, We provide a general outline of the
GNOVELTY+ heuristic in Section [2.3.5] and in Algorithm we show the weight
update function used in GNOVELTY+ [145]. The reader can see that it is similar to

the PAWS weight update function, but uses the probabilistic smoothing mechanism

44

CHAPTER 2. LITERATURE REVIEW

Algorithm 2.12 PAWS Weight Update Function

Input: F SAT problem instance in CNF.
A Current assignment.
W Weights.
MAX;,. Weight increase point.

nTimesWeightIncr Number of times weight has been increased.

Output: None.

algorithm UPDATE-WEIGHTS(F', A, W, M AX;,., nTimesWeightIncr)

for (c € {cl € CLAUSES(F'), SATISFIED(A, cl) = False}) do

We=W.+1
nTimesWeightIncr = nTimesWeightIncr + 1
if (nTimesWeightIner % MAX;,.) = 0) then

for (c € CLAUSES(F')) do

if (W, > 1) then
We=W.—1

originally described for SAPS.

Following the success of the GNOVELTY+ heuristic, many of the subsequently de-
scribed heuristics use similar weight update functions to that shown in Algorithm [2.13]
Examples of heuristics that have taken inspiration from this update function include
SPARROW2011 (placed 1% in the Random track at the 2011 SAT Competition),
SPARROW2RISS [11] (placed 1°* in the Random track at the 2018 SAT Competition)
and the BALANCEDZ solver [109] (placed 2°¢ in the Random track at the 2014 SAT
Competition).

We want to be clear that the clause weighting mechanisms described in this
subsection are not the only weighting mechanisms that have been used in the design
of effective LS-SAT heuristics. For example Ishtaiwi et al. [87] introduced a clause
weighting mechanism that swaps weights between clauses, whereas Prestwich [149]
developed a separate mechanism where weights were assigned to variables rather
than clauses, and the heuristic function chose variables based off these weights. An
effective LS-SAT solver called TNM was described that used these two ideas together
with ADAPTNOVELTY+ as a base for its heuristic component. TNM was entered in
the Random track at the 2009 SAT Competition where it placed 1%,

Clause weighting has become an important technique used in modern LS-SAT

45

CHAPTER 2. LITERATURE REVIEW

Algorithm 2.13 GNOVELTY+ Weight Update Function
Input: F SAT problem instance in CNF.

A Current assignment.

W Weights.

sp Smoothing probability.
Output: None.

algorithm UPDATE-WEIGHTS(F', A, W, sp)
for (c € {cl € CLAUSES(F'), SATISFIED(A, cl) = False}) do
W.=W.+1
if (WITH-PROBABILITY(sp)) then
for (c € CrAuUSEs(F)) do
if (W, > 1) then
W.e=W.—-1

solvers to diversify solutions, and help them to escape local optima. In conjunction
with other techniques we have presented in previous subsections, it has been used to
push forward the performance of LS-SAT solvers, and is still used in many modern-day
LS-SAT heuristics.

2.3.5 Probability Distribution Heuristics

In the late 2000s, through the combination of ideas from WALKSAT, GSAT, adap-
tive parameter tuning and clause weighting, heuristics such as GNOVELTY+ were
considered to be the state-of-the-art in LS-SAT heuristic design. A very basic outline
of GNOVELTY+ can be given as:

1. Intensification using the GZWSAT heuristic.
2. Diversification using the ADAPTNOVELTY heuristic.

3. Weight update function similar to that used by PAWS. Weights are only

updated when the variable is chosen from the diversification strategy.

Balint and Frohlich [10] observed that “One drawback of algorithms that use
ADAPTNOVELTY+-like heuristics to escape from local minima is the lack of differen-
tiation between the variables”. In essence Balint and Frohlich were stating that, if an

assignment A is considered a state of local optima, then whenever A is encountered it

46

CHAPTER 2. LITERATURE REVIEW

Table 2.3: The set of functions used in the heuristics in Section [ﬂl Each function
takes a variable x as input and outputs some weight that is attributed to x. The
sparrow function is used with the SPARROW heuristic, and the exp, exp-break-only,
poly and poly-break-only functions are used with the PROBSAT heuristic. We also
show example constant values that were given in the original descriptions of the

heuristics, which were said to provide good performance. Where applicable, € = 1.

Function Example Values

_ NeETGAINw(z) _ AGE(2).,, a=2,c=4

sparrow = ¢ X (0—3) +1 ¢ = 10°
CPOSGAINl(x)

exp = CNEGGAINl(aj) c = 3.6,¢, = 0.5

b

exp-break-only = cb_NEGGAINl(x) ¢, = 3.6
POsSGAIN (z)m

l = =3.1,¢, =-038

poty ¢ + NEGGAIN, (7)) @ ¢
poly-break-only = € + NEGGAIN; (x) e = 2.3

is likely that ADAPTNOVELTY+ will choose the same variable to flip. In turn, if this
state of local optima is encountered more than once while the overarching local search
algorithm is running, the algorithm may get stuck in a cycle and could be unable
to find a satisfying solution. Though ADAPTNOVELTY+ is only one component of
GNOVELTY+, this observation can still have a detrimental effect on GNOVELTY+"s
performance.

Balint and Frohlich developed a new heuristic in an attempt to tackle this
shortcoming. The heuristic the authors designed is called the SPARROW heuristic. It
is identical to the GNOVELTY+ heuristic, except that it uses a new diversification
strategy. This strategy can be described as follows; a random broken clause c is
chosen. Each of the variables in ¢ have a weight attributed to them according to the
sparrow function as shown in Table A weighted pick is then performed on the
variables to choose the variable to flip. In Algorithm we show pseudocode that
can be used to create this strategy by substituting f for sparrow.

The authors evaluated SPARROW against two of the best performing heuristics

47

CHAPTER 2. LITERATURE REVIEW

Algorithm 2.14 PROBSAT Heuristic
Input: F SAT problem instance in CNF.

A Current assignment.

f Function taking variable and returning weight.
Output: The variable to be flipped.
algorithm PROBSAT(F, A, f)
vs = PICK-BROKEN()
VW =0 > Variable weights all set to 0.
for (v € vs) do
VW, = (f(v), v)

return P1CK-WEIGHTED-VAR(VIV)

at the time, GNOVELTY2T and TINM. The three heuristics were tested on a set
of instances from the Random track of the 2009 SAT Competition. It was found
that SPARROW outperformed both heuristics. Later, a variant of SPARROW called
SPARROW2011 was entered in the Random track at the 2011 SAT Competition,
where it placed 1%*. SPARROW is still considered to be a highly effective standalone
heuristic, and variants of it continue to be used as components in state-of-the-art
hybrid solvers. In Section we discussed how SPARROW2RISS, a hybrid solver
based partially on SPARROW, outperformed all other solvers in the Random track at
the 2018 SAT Competition.

Balint and Schoning [12] described a heuristic called PROBSAT, which used a
design that was inspired by SPARROW’s diversification strategy. Rather than being
contained in a GZWSAT-like heuristic, PROBSAT works by choosing the variable
to flip using only a weighted pick function. The authors presented four variants of
PROBSAT. We can describe any of them using the pseudocode in Algorithm [2.14] by
substituting f for one of the functions exp, exp-break-only, poly or poly-break-only,
as shown in Table 2.3

Of the four variants of the PROBSAT heuristic described by Balint and Schoning,
two used an f function based around an exponential expression, and two used an
f function based around a polynomial expression. In each pair, one f function
used the NEGGAIN; variable metric, and the other used both the NEGGAIN; and
PosGAIN; variable metrics. When testing the performance of the different variants of

PROBSAT, the authors found those which only used the NEGGAIN; variable metric

48

CHAPTER 2. LITERATURE REVIEW

were able to complete a single iteration of local search more quickly than those which
used both NEGGAIN; and POSGAIN;. This occurred as calculating two variable
metrics is more computationally expensive than calculating one. The authors also
found that there existed constants for each PROBSAT variant which provided the
best performance. When these “tuned” variants were tested against each other, it
was found that those which used NEGGAIN; outperformed those which used both
NEGGAIN; and PosGAIN;.

Balint and Schoning compared the performance of the four variants of the PROB-
SAT heuristic against each other, and against other state-of-the-art LS-SAT heuristics.
The heuristics were ran on a set of problem instances used in the Random track of the
2011 SAT Competition. The results showed that all of the PROBSAT variants were
highly effective heuristics when compared to other state-of-the-art LS-SAT heuristics.
Of the four PROBSAT variants, poly-break-only performed the best.

A version of PROBSAT (13| placed 1% in the Random track at the 2013 SAT
Competition, and a variant of it [14] optimised for parallel platforms won the Parallel
Random track at the 2014 SAT Competition. In the Random track at the 2016 SAT
Competition, an LS-SAT solver partially based off PROBSAT called DIMETHEUS
[64] placed 1%.

Using a probability distribution to choose variables is a simple premise, but one
that has been found to be highly effective at improving the performance of LS-SAT
solvers. They have been used in augmenting previously described heuristics, and in
the creation of new heuristics. Some modern-day, state-of-the-art LS-SAT solvers
use a probability distribution as an underlying mechanism to drive their overarching

search algorithms.

2.3.6 Configuration Checking

Configuration checking is a recently described technique that has been used to
design intensification strategies in local search-based algorithms for solving hard
combinatorial problems. It has been used to create heuristics which try to avoid
flipping the same sequences of variables, a phenomena known as cycling [127]. The
technique was originally described for the Minimum Vertex Cover problem [39], and
recently several LS-SAT heuristics have been created that make use of it. Researchers
have also used it to create heuristic strategies to solve the MAX-SAT problem [34].

Configuration checking is a mechanism that remembers the “circumstances” of

49

CHAPTER 2. LITERATURE REVIEW

a problem when a variable is changed. By using this information, strategies can be
created that only allow a variable to be changed when its circumstances have also
changed. In SAT, researchers have proposed two configuration checking strategies;
the neighbourhood variable configuration checking (NVCC) strategy and the clause
state configuration checking (CSCC) strategy. The NVCC strategy makes use of a

variable’s neighbourhood, defined as follows:

Definition 17 (Neighbourhood of a Variable)

Given a SAT formula F' and a variable v € VARS(F'), the neighbourhood of v is the set
of all other variables in x € VARS(F') that are contained in a clause that also contains v.
It can be defined as {x € VARS(F'), x # v A (3c € CLAUSES(F'), ¢ € CLAUSESET(F,
x) A c € CLAUSESET(F, v))}. To refer to this set we write N,(v).

The NVCC and CSCC strategies can be visualised as metrics that attribute a

boolean value to a variable. They can be described as follows:

e For a SAT problem F' and variable v € VARS(F'), the boolean variable repre-
sented by NVCC(v) is T'rue if any variables in N, (v) have had their assignment

changed since v was last flipped.

e For a SAT problem F' and variable v € VARS(F'), the boolean variable repre-
sented by CSCC(v) is True if any clause ¢ € CLAUSESET(F, v) has changed
state - that is to say, gone from satisfied to unsatisfied or vice versa - since v
was last flipped. As noted by Luo et al. [118], the set of variables whose CSCC
value is set to T'rue is a subset of those variables whose NVCC value is set to

True.

Cai and Su [38] described the first LS-SAT heuristic that utilised configuration
checking. This heuristic, called SWe, is shown in Algorithm [2.15] SW can be
described as follows; the set vars containing every variable v whose NETGAINy, (v) > 0
and NVCC(v) = True is generated. If vars is non-empty, then the variable in vars
with the highest NETGAINy, is returned. Otherwise, the clause weights are updated,
and the variable with the highest AGE returned from a randomly chosen broken
clause. Its design is similar to G2WSAT, in that it moves to a state of local optima
before employing a diversification strategy to move away from that state.

Cai and Su tested the SW heuristic against the TNM heuristic on the instances
used in the Random track at the 2009 SAT Competition, and against the SPARROW

20

CHAPTER 2. LITERATURE REVIEW

Algorithm 2.15 SW . Heuristic
Input: F SAT problem instance in CNF.

A Current assignment.
W Weights.
Output: The variable to be flipped.
algorithm SW.(F, A, W)
vars = FILTER(VARS(F'), (Av =NETGAINy (v) > 0 A NVCC(v) = True))
if (vars # () then return ORDER-VARS([NETGAINy/], vars)[0]

else
UPDATE-WEIGHTS()
return ORDER-VARS(|AGE]|, PICK-BROKEN())[0]

heuristic on the instances used in the Random track at the 2011 SAT Competi-
tion. While SW. outperformed TNM, it did not perform as well as SPARROW.
Researchers continued to develop the SW heuristic and subsequently designed a
better performing version called SWeea [36]. Solvers based on the SW¢ca heuristic
were entered in the Random track at the 2012 [32] and 2013 [78] SAT Competitions,
where they placed 15 and 3" respectively.

Researchers continued to experiment with different ways of utilising the NVCC
strategy in LS-SAT heuristic design. Some used the SW. algorithm as a basic
template, making small changes to it to create new heuristics. Two augmentations
of SW that are particularly relevant to our work are SWCCSubScore [37] and
CScoreSAT [35]. These heuristics make use of the variable metric SUBNETGAIN,

which can be described using the following definitions:

Definition 18 (Sub-Positive Gain)

For a SAT problem F, variable v € VARS(F'), weighting scheme W and complete
assignment A, this is a metric associated with a variable that represents the number of
clauses that currently have 1 satisfied literal, and will have exactly 2 satisfied literals

if v is flipped. It is also known as submakes. It can be computed as:

W. if TRUELITS(A, ¢) =1

> (2.4)

¢ € FALSELITSET(F, A, v) 0 otherwise

To refer to this value, we write SUBPOSGAINy (A, F, v). If the assignment and
SAT formula are obvious from the context, we write SUBPOSGAINy, (v). If a set

o1

CHAPTER 2. LITERATURE REVIEW

of variables are ordered according to their SUBPOSGAINy,, they are ordered from
smallest to largest; the variable with the largest SUBPOSGAINy, is considered the

best. A wvariable’s SUBPOSGAINy, is always a positive integer.

Definition 19 (Sub-Negative Gain)

For a SAT problem F, variable v € VARS(F'), weighting scheme W and complete
assignment A, this is a metric associated with a variable representing the number of
clauses that currently have 2 satisfied literals which will have 1 satisfied literal if v is

flipped. It is also known as subbreaks. It can be computed as:

W. if TRUELITS(A, ¢) =2

> (2.5)

¢ € TRUELITSET(A, v) 0 otherwise

To refer to this value, we write SUBNEGGAINy (A, F, v). If the assignment and
SAT formula are obvious from the context, we write SUBNEGGAINy (v). If a set
of variables are ordered according to their SUBNEGGAINy, they are ordered from
largest to smallest; the variable with the smallest SUBNEGGAINy, is considered the

best. A wvariable’s SUBNEGGAINy, is always a positive integer.

Definition 20 (Sub-Net Gain)

For a SAT problem F, variable v € VARS(F'), weighting scheme W and complete
assignment A, this is a metric associated with a variable representing the total
difference in number of clauses with exactly 2 satisfied literals if v is flipped. It is also

known as subscore. It can be computed as:
SUBPOSGAINy (A, F, v) — SUBNEGGAINy (A, F, v) (2.6)

To refer to this value, we write SUBNETGAINy (A, F, v). If the assignment and
SAT formula are obvious from the context, we write SUBNETGAINy (v). If a set
of variables are ordered according to their SUBNETGAINy,, they are ordered from
smallest to largest; the variable with the largest SUBNETGAINy, s considered the

best. A wvariable’s SUBNETGAINy, can be a positive or negative integer.

SWCCSubScore and CScoreSAT use the SUBNETGAIN to differentiate between
variables when a tie-break occurs. The authors found that both of these heuristics
were comparable in performance to other configuration checking heuristics they were
tested against. A SAT solver based off these strategies was entered in the Random

track at the 2014 SAT Competition [33], where it placed 5.

52

CHAPTER 2. LITERATURE REVIEW

Though we do not present their construction here, there have been several ef-
fective LS-SAT heuristics described that are based off the CSCC strategy, such as
SWqcce [115] and FRwCB [119, [116]. Additionally, the DCCA solver utilises a
heuristic strategy that uses both NVCC and CSCC in its formulation [118]. Highly
effective LS-SAT heuristics were created from this avenue of research as well; a solver
comprised of DCCA and FRWCB called CSCCSAT [117] placed 2°¢ at the 2016
SAT Competition.

Configuration checking, as a general technique, has been used to direct the
intensification strategies of LS-SAT heuristics. Compared to other methods described
in this section, it is a more complicated mechanism. Yet, when combined in the
correct way with other techniques, it can be used to create highly effective LS-SAT

solvers.

2.3.7 Summary & Discussion

Though we have provided a broad overview of LS-SAT solvers in this section, in
truth there are many other techniques that have been used in the construction of
LS-SAT solvers that have improved overall performance, not just heuristics. The
choice of data structures and optimisations used can play a role in how effective an
underlying LS-SAT heuristic is. For example, the solver POLYPOWER [31] is based on
WALKSAT, but its heuristic is designed in an optimised way so as to improve its overall
performance. These changes make it comparable to PROBSAT on some instances.
Some solvers, such as RANOV [5] pre-process problem instances, which can have a
positive effect on how well some LS-SAT heuristics perform. Additional techniques
include utilising strategies from complete solvers such as unit clause elimination [81],
the use of message passing frameworks [64], and evolutionary computation techniques
such as genetic algorithms (GAs) [113].

We believe that we have given a detailed account of the many different techniques
used by researchers to create LS-SAT heuristics. Much of the research presented
here will be useful in understanding the systems built to represent LS-SAT heuristics,

described in later chapters in this thesis.

93

CHAPTER 2. LITERATURE REVIEW

2.4 Automated Creation of Heuristics

In Chapter [1] we discussed how heuristics can be an important component when
designing effective algorithms to solve hard combinatorial problems, and in Section
we provided examples of hand-crafted heuristics that have been used to build effective
local search algorithms to solve SAT. In this section we review the literature pertaining
to the automated design of heuristics that are used to solve hard combinatorial
problems. We specifically focus on research where the overarching goal was to
automatically create new heuristics.

Some of the earliest work in the automated design of heuristics involved automat-
ically selecting a heuristic from a given set of hand-crafted ones. For example, Fisher
[56] and Crowston, Glover, Trawick, et al. [47] described techniques using probabilistic
learning to automatically select heuristics for solving the job-shop scheduling problem.
While the automated selection of heuristics has been an active part of research for
over fifty years, historically comparatively less attention has been given to systems
that are designed to automatically create new heuristics.

Recently, the term hyper heuristics has been used to classify research in the
automated design of heuristics, as well as retroactively re-classify previously existing
research. This term was first used to describe “heuristics to choose heuristics” [46],
and recently defined by Gendreau and Potvin [65] as “an automated methodology for
selecting or generating heuristics to solve computational search problems”. However,
we feel that Burke et al.’s definition [28] of hyper heuristics as being “a set of
approaches that are motivated by the goal of automating the design of heuristic
methods to solve hard computational problems” best captures the intention behind
hyper heuristic research.

In much of the literature concerning hyper heuristic research, the created systems

are classified as one of two types. These are outlined as follows:
e Selective hyper heuristic. A methodology for choosing or selecting a heuristic.

e Generative hyper heuristic. A methodology for automatically creating new

heuristics.

Using these definitions, the work in this thesis can be considered to be in the
research area of generative hyper heuristics.
In the following subsections we review previous research whose aim was to auto-

matically create heuristics - that is to say, research in the domain of generative hyper

54

CHAPTER 2. LITERATURE REVIEW

Create Initial Evaluate
Heuristics Heuristics
no Create New
Start — ..
Heuristics
yes
Stop

Figure 2.4: An overview of the control flow of a system designed to automate the

creation of heuristics.

heuristics. In Section we concentrate on research where the goal was to create
heuristics that had a role in solving hard combinatorial problems, paying particular
attention to the representation of heuristics and the techniques used to automatically
create them. In Section we focus on previous work in the automated creation of
heuristics that are used as part of an LS-SAT solver - research that is of particular
relevance to the work contained in this thesis. Finally in Section we discuss how
the research presented in this section relates to the overall body of work contained
within this thesis.

2.4.1 Automated Creation of Heuristics for Hard Problems

Many systems designed to automatically create heuristics can be said to have a
similar overarching design; an initial set of heuristics are created, the heuristics are
then evaluated against some problem instances and a fitness value extrapolated from
those results. The system then decides if some pre-determined termination criteria
has been met. If it has not, then the system creates a new set of heuristics which
are evaluated, and the process continues until the termination criteria is met. In
Figure [2.4) we show a visualisation of this design.

When designing a system to automatically create heuristics, the way in which

95

CHAPTER 2. LITERATURE REVIEW

the heuristic is represented, and how this representation will be used as part of
an overarching algorithm to solve a hard combinatorial problem, must be taken
into consideration. The techniques used to create new heuristics and the heuristic
representation are also intrinsically linked; the choice of representation can dictate
which creation methods are viable for that domain. There is generally no obvious,
natural representation of a heuristic for a specific problem. Some ways of representing
a heuristic are problem-specific, while others are general enough to be reused in other
domains. In turn, generalised representations can be used with generalised methods
to create new heuristics.

Some of the simplest representations imagine a heuristic as an assignment problem,
whereby through some post-processing this representation is converted into a heuristic
function. For example, Ozcan and Parkes [138] described a system that automatically
creates heuristics for the online bin packing problem. The authors represented
heuristics as fixed-size two-dimensional matrices containing numerical data. An
element’s two indices correspond to the bin sizes remaining and the size of the
element to be inserted. The matrices were used to choose which bins to put items
into. When given an item of size b, the matrix was used as a lookup table, with
the column of data for that b value used to assign a numerical value to each bin.
The item was assigned to the bin with the highest numerical value. The matrices
themselves were created using a simple GA.

One disadvantage to this approach is that the created heuristics are not general-
purpose online bin packing heuristics - they are designed for bin packing problems
with a fixed number of bins, meaning that new heuristics would have to be created
for different sized problems. Yet the authors found this technique to be effective for
those instances it was tested on.

It is more common in automated heuristic creation to use a representation
that closely mirrors a programming language, as this is how heuristics are created
by software engineers. The resulting heuristics can be generalised for arbitrarily
sized problems. One commonly used representation is a list-based (or array-based)
structure that simulates an imperative programming language, or a set of machine
code instructions. Poli, Woodward, and Burke [148| represented a heuristic for the
offline bin packing problem as a set of domain-specific machine instructions. The
created program fragments represented a function which was used as part of a wider

heuristic strategy. The authors used linear genetic programming (GP) [21] to create

o6

CHAPTER 2. LITERATURE REVIEW

new heuristics. This is a general-purpose program synthesis technique specifically
designed for use with this type of program representation. Keller and Poli |98] also
used an array-based representation with linear GP to create heuristics for the TSP.
Unlike the work of Poli, Woodward, and Burke, the created heuristics were designed
to be the entirety of the heuristic function, and not just a component of it.

Perhaps the most popular [26] representation technique used when creating heuris-
tics is a tree-based representation, emulating a functional paradigm of programming.
In such a representation, each node contains a term from a (usually) domain-specific
language (DSL). Together they are used to describe heuristics, or heuristic compo-
nents, for a specific problem domain. One advantage that tree-based representations
have over array-based representations is that they can potentially be of unbounded
size. Should an effective heuristic exist that is represented by a large tree, it is
possible to create it using a tree-based representation. It also has an effect on the
search space of heuristics that can be described using a specific language, as it can
potentially become infinite.

There have been several types of tree-based representation used in automated
heuristic creation, the simplest of which we term the “untyped” tree representation.
These are tree-based representations used in conjunction with a DSL that has no
additional rules regarding the composition of terms within that language. It is
the most commonly used form of representation within systems that automatically
create heuristics. For example, Burke, Hyde, and Kendall |27} |25, [150] used this
representation to create heuristics for use with the online bin packing problem.
The created heuristics were represented as arithmetic expressions, which were then
used to assign numerical values to items. These numerical values were analysed to
determine which bin to insert the item into. As the internal DSL only contained
arithmetic terms, all of the terms having the same “type” was a valid choice for that
domain. The authors used untyped “Koza-style” GP [102] to create the heuristics.
Within automated heuristic creation, this way of representing and method of creating
heuristics has historically been widely used, and continues to be used today. There
are recent examples of similar research in the job-shop scheduling problem 174} 141],
the multi-skill resource constrained project scheduling problem [110, 88, 82], resource
constrained scheduling problems [40], in online resource allocation [170], bin packing
[3] and in solving bi-level optimisation problems [101].

In an untyped language like that used by Privosnik, there are no specific rules

57

CHAPTER 2. LITERATURE REVIEW

regarding which terms can be used as the arguments to other terms. That is to
say, any term in the language can be used as the argument to another. However,
this does not model some types of programming language very well. As a general
example, a string cannot be used as an argument to a function that requires an integer.
For some heuristic domains with more complicated control structures or typing, an
untyped representation is not appropriate, as it may allow ill-formed heuristics to be
created. To alleviate this, some DSLs are defined in ways that describe what terms
can be used as the arguments to others. In automated heuristic creation, perhaps the
most common way of defining a language which can prohibit ill-formed programs is
through a context-free grammar (CFG). Examples of research which used a CFG to
automatically create heuristics include work by Sosa-Ascencio et al. [165], who used
a CFG with grammar-based GP [102, 125] to create heuristics to solve CSPs, Sabar
et al. [153], who used a CFG with gene expression programming [55] to develop a
generalised system to create heuristics for several hard combinatorial problems, and
Fajfar, Biirmen, and Puhan [53], who used a CFG with grammatical evolution [152]
to create heuristics for solving real valued optimisation problems.

Typically in the literature associated with heuristic creation, CFGs are used to
simulate a strong type system. However, the program synthesis methods designed
to work on CFGs are distinctly separate from those program synthesis methods
designed to work on languages described in terms of a type system. We discuss this
relationship in further detail in Section [2.5.2]

In this subsection we have presented various examples of research where the goal
was to automatically create heuristics to solve combinatorial problems. We have
discussed several different examples of the types of heuristic representation used,
and the methods used to create heuristics for these representations. In the next

subsection, we discuss examples of work where the goal was to create heuristics for
an LS-SAT solver.

2.4.2 Automated Design of LS-SAT Heuristics

In this subsection we provide an overview of research in the automated creation of
LS-SAT heuristics. This work is directly relevant to this thesis, as this is the domain
that we will be creating heuristics for. The observations from the work examined
in this subsection have a direct effect on the design choices for our experiments, the

way we evaluate our created heuristics, and the way we represent heuristics.

o8

CHAPTER 2. LITERATURE REVIEW

H = IfRandLt prob H H
| IfVarCompare cmp gt H H
| IfVarCond cmp gt int H H
| GetOldestVar H H
| IfTabu age H H
| IfNotMinAge varset H H
| GetBestVar varset gt
| GetBestVarSnd varset gt
| GetBestVar?2 varset gt gt
| PickRandomVar varset

prob = €{0.0...1.0}

varset = RBC-0 | RBC-1 | WFF

gt = DNetGain | NegGain | PosGain

age = €N

int = €N

cmp = <[<[=

Figure 2.5: The language used by Fukunaga [60, 61} 63] to automatically create
LS-SAT heuristics. Fukunaga used a type system when describing this language,
however we present it as a CFG. There is no difference between the set of heuristics
that can be created using this CFG and Fukunaga’s original language. Note that
some names of terms differ to those used in the original work, to align with the

terminology we use in this thesis.

Fukunaga [60, |63} 61], in a series of papers, described research concerning algo-
rithms used to automatically create LS-SAT heuristics. In this work, the heuristics
were encoded using a tree-based structure, with an associated type system used to
prohibit ill-formed heuristics. The created heuristics were designed to be general-
purpose LS-SAT heuristics, and required no post-processing to be used for their
intended domain. We show the language Fukunaga used in Figure presented as a
CFG for brevity.

The design of Fukunaga’s language was inspired by previously described LS-SAT
heuristics. In relation to our work, the heuristics which inspired Fukunaga’s language
are all of those described in Section and a portion of those in Section m (up

to NOVELTY). The author noted of the terms used in their language that “all of these

99

CHAPTER 2. LITERATURE REVIEW

primitives were proposed in the literature by 1993, shortly after the introduction
of GSAT” [60], and that the “history of SAT local search algorithms shows that
significant advances do not require the invention of entirely new “ideas” — discovering
a new combination of existing building blocks has resulted in some of the best known
SAT local search algorithms” [61]. We made a similar observation in Section [2.3]
where we provided evidence that some effective heuristics use components from
previously described LS-SAT heuristics. The “building blocks” - that is to say, the
metrics and control structures - were described separately, and it took several years
of research before they were combined into the examples of effective heuristics seen.
Since Fukunaga’s work was published, and from our analysis in Section [2.3] it could
be argued that this trend has continued; new metrics and control structures have
been described for LS-SAT heuristics, yet expert knowledge was required to combine
these ideas to create the most effective heuristics.

The fitness function used by Fukunaga to score the created heuristics was designed
as follows; the heuristics were ran as part of an LS-SAT solver on two sets of problem
instances. The second set contained larger problem instances than the first. The
fitness function had an early termination mechanism built into it. This allowed
it to terminate early if it was found that a heuristic could not solve many of the
problem instances. This design choice was made to reduce the overall running time,
as evaluating a heuristic is computationally expensive.

The heuristic creation technique used by Fukunaga was a bespoke GP algorithm
which used a steady-state GP model. It also used a domain-specific crossover
operator, which combined previously created heuristics with the functions IfRandLt,
IfVarCompare, IfVarCond, GetOldestVar, IfTabu and IfNotMinAge to create the
next set of heuristics for consideration. Fukunaga stated, regarding his bespoke GP
algorithm, that “we currently lack principled, analytical meta-heuristics that can be
used to guide a systematic meta-level search algorithm”. Therefore, this is why the
author used “a population-based search algorithm to search for good variable selection
heuristics”. Fukunaga also noted that some attempts were made with conventional
GP, however these were unsuccessful. In Figure we show an example of one of
the heuristics created from this work.

Like Fukunaga, Bader-El-Den and Poli [9] performed experiments using evolution-
ary computation to create LS-SAT heuristics. However those authors used standard

grammar-based GP in their work. While Fukunaga’s goal was to create generalised

60

CHAPTER 2. LITERATURE REVIEW

heuristics for LS-SAT, Bader-El-Den and Poli’s goal was to design a system that
could create an effective heuristic for solving fixed-sized 3-SAT problem instances
near the phase transition region. However, the size of the problems the heuristics
were trained on was relatively small, containing at most 1,000 variables.

The authors noted of the heuristics created from their work that “individuals
representing GSAT, HSAT and GWSAT were created . ..in almost all experiments
we did”. Further to this, the authors stated that “GP was always able to eventually
discover new and better heuristics”. This work suggests that a standard GP algorithm
is a viable technique for creating heuristics in this domain.

Some researchers experimented with using other techniques to automatically create
LS-SAT heuristics. KhudaBukhsh et al. [100, 99] developed SATENSTEIN, a system
designed to create LS-SAT heuristics using automated algorithmic configuration. In
that work, a “skeleton” of a heuristic was described, with specific terms and functions
in the skeleton left blank. By using parameter tuning, these uninitialised functions
and terms were filled, and heuristics created from the skeleton. However, this meant
that compared to the work of Fukunaga, Bader-El-Den and Poli, the set of possible
heuristics that could be created was finite. The heuristics created from this work
were highly effective, and could compete with modern heuristics such as SPARROW.
However, this research sits slightly outside the scope of our own; we intend to use
program synthesis to create LS-SAT heuristics, rather than algorithmic configuration
techniques. This work can also be considered a successor to SATZILLA [175] 176], a
SAT solver that selects a heuristic based on an analysis of the provided SAT problem
instance.

In this subsection we have provided an overview of the pertinent research concern-
ing the automated creation of LS-SAT heuristics. Though there are few examples of
research in this area, the existence of such work allows us to contextualise the research
in this thesis, and to draw inspiration from previously performed experiments when

designing our own.

2.4.3 Summary & Discussion

In this section we have provided an overview of research in the area of automated
heuristic creation. We have introduced several different types of heuristic repre-
sentation, as well as discussed the associated techniques used to create heuristics.

In Section we focused on work with a similar goal to our own - that is, the

61

CHAPTER 2. LITERATURE REVIEW

automated creation of LS-SAT heuristics.

From the research presented in this section, we can draw several conclusions
that directly affect the trajectory of our research. In Section we described
several LS-SAT heuristics, and presented pseudocode for some of those described. We
presented the pseudocode in an imperative programming style, which has traditionally
been the way in which heuristics for LS-SAT have been created. This would suggest
that a heuristic representation which mirrors this style, together with any associated
heuristic creation techniques, would be a viable area to concentrate our research in
when looking for alternative methods of program synthesis.

However, the research presented in Section almost exclusively used tree-
based representations for the heuristics created for LS-SAT. Specifically, those
examples use languages that prohibit the combination of certain terms in the created
heuristics. In the examples shown, this is done through a CFG and a type system.
The work presented in that subsection, particularly that by Fukunaga, showed us
that representing heuristics as program trees is a viable representation technique, and
that GP can be used to create effective heuristics under this representation. This
work also showed us that, by using a language that prohibits the combination of
certain terms, complicated control structures can be safely combined to create new
heuristics.

For these reasons, we choose to pursue a similar avenue to these previous re-
searchers, and use a tree-based representation together with some constraints on the
underlying language that prohibit the combination of certain terms. This in turn
directs our research in the next section, which will look at program synthesis methods
designed to operate on this representation. We also note that the early termination
mechanism used in the fitness function in Fukunaga’s work may be a useful technique
for our research. Evaluating heuristics can be computationally expensive, and using
such a methodology could help reduce the overall time spent evaluating heuristics
that do not perform well.

This section only serves as an introduction to systems that automate the creation
of heuristics, and hyper heuristic research at large. For more information regarding
hyper heuristics, we direct the reader to the following resources; “Hyper-Heuristics:
An emerging direction in modern search technology” [29] presents an early intro-
duction to hyper heuristic research. Search Methodologies: Introductory Tutorials

in Optimization and Decision Support Techniques |23, Chapter 20] contextualises

62

CHAPTER 2. LITERATURE REVIEW

the potential benefits of hyper heuristics, as well as providing detailed examples of
previous research in both generative and selective hyper heuristics. “Hyper-heuristics:
A survey of the state of the art” |28] provides an analysis on the (then) state-of-the-art
in hyper heuristic research, and Handbook of Metaheuristics |65, Chapter 14] gives a

modern overview of current research trends in hyper heuristics.

2.5 Program Synthesis

Program synthesis, otherwise known as synthetic programming or automated pro-
gramming, refers to the task of automatically finding or creating programs that satisfy
some user defined criteria [76]. It is a fragmented discipline, with areas of research
in artificial intelligence [120, (132, 57, [121], programming theory [154, 94, (95| 22]
and evolutionary computation [102} 152, [55]. Though program synthesis has been
an active research area for over fifty years [120, [121], it is only relatively recently
that, through a renewed focus, program synthesis techniques have been deployed in
real-world applications.

In Section we provided examples of how heuristic creation techniques have
been used to automatically create heuristics for solving hard combinatorial problems.
We believe that all of the techniques described in that section can be considered
program synthesis techniques.

Automated heuristic creation is not the only domain that has made use of program
synthesis. For example within data modelling, there is a continued need for functions
that can transform data from one format to another - such as when normalising the
textual content of strings to a consistent format. To the end user of a data modelling
system with little experience of programming, it would not be easy to create such
a function. Program synthesis techniques have been used to automatically create
functions for these types of simple data modelling problems. End users provide
examples of input and expected output of the required function, and the program
synthesizer creates a function that meets this specification. FLASHFILL is a program
synthesizer, provided as part of the Microsoft Excel program, that is able to create
simple functions from user provided input-output data |73} |75].

Another example of the emerging use of program synthesis in the real-world is
found in automated patch generation [133} 48, 112} [L06]. Automated patch generators

are systems that are designed to automatically fix incorrect software. When a defect

63

CHAPTER 2. LITERATURE REVIEW

is detected in a piece of software, perhaps through the use of an automated testing
suite, an automated patch generator can detect which parts of the software may have
caused the defect, and can use program synthesis techniques to apply changes to
these parts with the aim of producing a “patch” for the software. One example of a
program synthesis technique used in automated patch generation is GP [106].

Researchers have also made use of program synthesis in other areas of computer
science. Within programming theory, it has been used to create superoptimising
compilers [154] and in the automated completion of computer code [180]. In graphic
design, program synthesis has been used to aid in the completion of structured
drawings [41]. We point the reader to several resources detailing other applications of
program synthesis. Gulwani et al. [77] provided an overview of the real-world use-cases
of inductive programming, a form of program synthesis. Koza [103] conducted a
survey on areas in which GP has created programs that are competitive with human
designed ones. Finally, Gulwani, Polozov, and Singh [76] gave a detailed account of
various use-cases where program synthesis has been applied successfully.

Some readers may not be as familiar with the term “program synthesis” as they
are with evolutionary computation techniques to create programs like GP. To be
clear, GP is one of many program synthesis methods.

The format of this section is as follows; in Section [2.5.1] we discuss the key
components of a program synthesis system. In Section [2.5.2| we detail the type of
program representation that we work with in this thesis - a tree-based program
representation. In Section [2.5.3| we discuss methods that navigate the search space
of programs in a methodical manner, and in Section [2.5.4] we provide an overview
of GP, a method of program synthesis realised through the sampling of the search
space. Finally in Section [2.5.5] we present the discussions and conclusions from the

research presented in this section.

2.5.1 Preliminaries

Due to the various research areas within computer science with a vested interest in
program synthesis, there are several competing definitions of how a program synthesis
problem is described. Gulwani [74] suggested three characteristics of all program
synthesis systems. These are the user intent, the solution space, and the search

technique. We describe what is meant by these terms below.

64

CHAPTER 2. LITERATURE REVIEW

div(i,j),rem(i,j) ~ flnd(yVZ)
such that i=yx 7+ 2A0<2zA2<]
where 0<i1N0<y

Figure 2.6: Example of a program specification written in predicate logic. It can be
read as follows; from the inputs 7 and j, find a program that returns two outputs y
and z which adhere to the logical predicates shown. This specification can be satisfied
by a program that performs integer division, returning the quotient and remainder

as output.

User Intent

This is the specification of the program to be created, or the criteria by which a
created program is judged. Problem specifications can differ greatly depending on the
domain they are to be used in, and some search techniques are only compatible with
certain types of specification. Some of the earliest work [120] in program synthesis
described the specification of the required program as a logical statement in predicate
logic. An example of this is shown in Figure With such a specification, the
goal of a program synthesizer is to find a program that would provably have the
required behaviour. This type of specification is not just limited to domains where
the goal is to find a simple function like that shown in Figure [2.6] it can also be used
to describe the requirements of recursive programs, as well as the desired behaviour
of data structures. One major disadvantage of this type of specification is that it
requires a great deal of expert knowledge to write correct logical statements that
express the requirements of the program. It also requires systems with the ability to
automatically reason about the created programs, which in turn requires additional
expert knowledge.

Another method of defining a program’s specification is through the use of input-
output examples, also known as Programming by Example (PbE). The specification
is expressed as a set of pairs, where each pair contains an example of input and
expected output. The examples can also be expressed as a function representing a
subset of possible input, and a property of the desired output. FLASHFILL uses PbE
to allow its users to describe the required program’s behaviour in this manner. PbE,
like deductive programming, has also been used to learn recursive programs [59, (167]

using a search technique called inductive programming. Specifications of programs

65

CHAPTER 2. LITERATURE REVIEW

expressed using PbE require a lower threshold of expertise compared to those formal
methods we discussed previously. However when using such a system, the desired
program may not be created due to discrepancies in the specification - for example,
incorrectly described output, or there not being enough examples provided to reliably
describe the intended program’s behaviour.

Both of these specification types are best used for problems where there is a clear
definition of the correct behaviour a program should produce. However, in some
domains there may be no clear description of desired behaviour - and therefore no
binary test that can be constructed to determine the success of the created programs.
A fitness function is an alternative method for measuring a candidate program’s
effectiveness that can be useful in domains where success is difficult to measure. It is
typically realised through performing some experiment with the created programs and
quantifying their performance as some numerical value. This type of specification is
useful in domains where there is no “correct” or “best” program that can be created,
instead it is only known that some programs are more effective than others. An
example of specification criteria that utilises a fitness function can be found in the
research discussed in Section [2.4.2] This work was primarily focused on automated
heuristic creation for solving SAT through local search. To determine a heuristic’s
effectiveness, it was ran as part of a local search algorithm on a set of problem

instances, and a numerical value computed from how many instances it solved.

Solution Space

A candidate solution in a program synthesis problem is an instance of a created
program, and is defined by some abstract structure. This structure is called the
problem’s program representation. The set of all possible candidate solutions, also
called the solution space or search space, is defined by this representation, and the
characteristics of how the representation is defined describe the size and shape of the
search space. Some representations of programs may describe an infinite search space,
or search spaces that grow more quickly than others. The program representation
is usually inspired by some real-world programming language or paradigm. There
are always two distinct components of a program representation; the language -
conceptually a set of unique identifiers - and the underlying data structure used to
contain and compose elements of this language.

The definition of a language can be domain-specific to the problem that is to be

66

CHAPTER 2. LITERATURE REVIEW

tackled, or it can be abstract enough to be used to solve multiple problems. The
language is designed by a human expert, and should contain constructs that it is
believed will allow the program synthesizer to solve the required problem. A language
can contain general-purpose programmatic primitives, or can be constrained to a
domain-specific language. The specific elements inside a language are usually chosen
carefully; the language should be expressive enough to provide some flexibility in
the possible solutions, yet not too flexible so as to make the search space difficult to
navigate.

The choice of data structure that is used to represent candidate programs can have
a direct effect on which search techniques can be used in the program synthesizer. Tree
data structures are a commonly used underlying structure for program representation
as they can provide a high-level of generalisation. For example, they can emulate both
imperative and functional programming styles. Many search techniques in program
synthesis are designed with a tree-based representation in mind. However, for most
languages, when used with this type of representation, the search space is infinite.
This can make it difficult to explore effectively. Graphs [128], lists and arrays [79] are
other examples of data structure that have been used as a component in a program
synthesizer.

Some languages come with an additional parameter that describes which com-
position of terms in a candidate program are considered to be valid. One example
used with a tree-based representation would be a type system, designed to emulate
a strongly typed programming language. Another would be a CFG, designed to

emulate an imperative programming language.

Search Technique

A search technique in a program synthesizer is the methodology used to explore the
search space of possible programs. Succinctly, its function is to create new candidate
programs. Whether a search technique is appropriate for a program synthesizer can
depend on the type of program representation and user specification used. Using
the work of Gulwani, Polozov, and Singh [76, Chapter 1] as a basis, we separate
the available search techniques into three broad categories. The reader should note
that these categories are not distinct as some search techniques can be viewed as

belonging to multiple categories. The categories are:

67

CHAPTER 2. LITERATURE REVIEW

e Direct Search Techniques: These methods visualise the search space of
programs as a search tree, and directly work on this representation of the
solution space. Like algorithms for solving assignment problems, some search
techniques work on complete solutions (complete programs), and some work on
partial solutions (partial programs). The search techniques that work on partial
programs require some ability to reason logically about them. By doing so,
there exists the potential for additional search strategies to be employed. An
example is deductive programming 120, [121] that, by reasoning about partial
programs, is able to recognise program equivalence and prune search branches
[120} |58]. One particularly effective (and perhaps surprising) search technique
used in inductive programming [22] is the enumeration of the search space to
find candidate program trees. More advanced techniques such as Monte Carlo

tree search [95] have also been used to explore the solution space of programs.

e Constraint Solving: Methods that use constraint solving in program synthesis
require the ability to describe the “specification and the syntactic program
restrictions in a single formula so that any true model corresponds to a correct
program” [76]. These types of search techniques require a formal specification of
a program’s requirements, as well as formal logic pertaining to the effects that
a program or partial program has on the input parameters. Through the use of
some external logic deduction technique, the model can be solved, and the correct
program extracted. Examples exist where program synthesis is conducted in
this manner using automated theorem provers [120] and Satisfiability modulo
theories (SMT) solvers [4].

e Stochastic Methods: Stochastic methods refer to search techniques that
sample the search space of programs and, through this sampling, attempt to
learn the distribution of the search space and use this information to find
candidate programs. Examples include GP [102], machine learning [126] and

grammatical evolution [152].

In the next subsection, we formally define the program tree representation used
in this thesis. The reasoning behind the use of this representation was laid out in
Section [2.4.3] In Sections [2.5.3| and [2.5.4] we give a broad overview of two search

techniques designed to work with this representation.

68

CHAPTER 2. LITERATURE REVIEW

2.5.2 Tree-based Program Representation

Some of the first work in program synthesis (such as in deductive programming [121]
and GP [102]) used a tree structure as the basis for their program’s representation.
In this early work, the program representation’s language component was given as
a simple set of identifiers. These identifiers, or terms, were split into two sets; the
non-terminal set and terminal set. The only rules these representations had regarding
term placement was that non-terminals had to inhabit the nodes in a tree, and
terminals the leaves. This representation closely resembles a functional programming
style approach, where the non-terminals were analogous to functions, and terminals to
constants. A consequence of this representation is that any terminal or non-terminal
should be able to be used as an argument to a non-terminal, an assumption those in
the GP community call closure. This is the same untyped style of language discussed
in Section 2.4.1]

However, this assumption of closure can make it difficult to design languages that,
at least conceptually, have more than one data type. As noted by Montana [130];
“forcing a problem which uses multiple data types to fit the closure constraint can
severely and unnecessarily hurt the performance of genetic programming on that
problem”. For example, in a language that uses an integer for all its arguments, it
may be difficult to add an “if” statement non-terminal that requires a boolean as an
argument. When running the created programs, there needs to be an understanding
of how to convert an arbitrary integer to a boolean which, in the context of the
domain the program is deployed in, may be unnatural.

In a similar way to how type systems were introduced in early programming
languages to ensure that programs were correctly typed before running them, re-
searchers began to introduce program representations that prohibited the combination
of certain terms in the created programs. For example, strongly typed GP (STGP)
[130] uses an associated type system that is designed in such a way as to prohibit
ill-formed programs. STGP is designed with a monomorphic type system in mind
that prohibits currying. It is this kind of type system that we will be using in this
thesis in tandem with our language to describe LS-SAT heuristics.

As an example, Figure contains the Language EX-1, which is described
in our desired form. The reader can clearly see that each term has an associated
type signature. We describe the type system of a given language as having several

characteristics, which are described as follows:

69

CHAPTER 2. LITERATURE REVIEW

A set of principle types pt. Conceptually this is a set of unique symbols. This

set describes all the identifiers used in the type signatures in the language.

A type signature t is a non-empty list of size n containing principle types
{t1...t,}. The return type of t is t,,. The argument type of ¢ is {t1...¢,_1}.
The argument type can potentially be empty. The arity of ¢t isn — 1. A type

signature is typically written as t; — to — -+ — 1,,.

A set of unique terms L. Each term e € L has an associated type signature.

A tree structure where each node is labelled with a term € L is valid under L if

the following rules hold for all nodes in the tree. For a given node a containing
the term e that has the type signature containing principle types {t;...t,},
and where a has a collection of children {c;...c,}, the criteria are; firstly,
n =m — 1. Secondly, for each child ¢; € {¢;...¢,}, the return type of the term
in ¢; must equal ¢;. The return type of the whole tree structure is the return

type of the root node.

Two examples of trees written in Language EX-1 are shown in Figure 2.8} One
adheres to the type rules in Figure [2.7a), and one does not. We show an algorithm to
check that a program tree is valid under a language in Algorithm [2.16| This algorithm
performs a process known as type checking.

A language designed without a type system - that is to say, an untyped language -
can be augmented to have one by introducing a single dummy type d. Each terminal
is given the type d, and each function with arity n is given a type signature of
dy — -+ —d, — d,1. The reader may also note that CFGs can be formulated in
such a way as to emulate a language that uses this kind of type system [125]. As an
example, Language EX-1 is shown as a CFG in Figure 2.75]

Though not the goal of this subsection, we have introduced several notions used
within the functional programming community, specifically concerning type systems.
Program synthesis techniques have also been formulated for languages with more
complicated type systems; for example, lambda calculus |[177] and System F [22]. For
more information regarding the theory of type systems and functional programming
languages, we refer the reader to The Implementation of Functional Programming

Languages [90].

70

CHAPTER 2. LITERATURE REVIEW

Term Type Signature
0 Int
1 Int
+ Int — Int — Int
— Int — Int — Int
negate Int — Int
coinFlip Bool
intIf Bool — Int — Int — Int
lessThan Int — Int — Bool

(a) The set of terms in Language EX-1. Each term is annotated with its type signature.
The principle types of the language are {Bool, Int}.

E = intlf B F4 Ey
|+ B E,
| - BB
| negate E
|0
|1
B = coinFlip
| lessThan E; F,

(b) Language EX-1, described in terms of a CFG.

Figure 2.7: The Language EX-1. We show it in two forms; the first as a list of terms,
each with an associated type signature. The second as a CFG. Both forms of the

language describe the same set of programs.

71

CHAPTER 2. LITERATURE REVIEW

N\ /
A =

(a) An example of a program tree (b) An example of a program tree
written using Language EX-1 that written using Language EX-1 that
adheres to the rules of the language. does not adhere to the rules of the

language. Specifically, the left node
under the root has a term requiring
no arguments, yet it has two. The
right term under the root has a re-
turn type of type Bool, but the root
requires a term with an Int type from

its second argument.

Figure 2.8: Two examples of program trees written using Language EX-1, shown in

Figure . One is correct according to the rules of the language, one is not.

72

CHAPTER 2. LITERATURE REVIEW

Algorithm 2.16 TyYPE-CHECK Algorithm

Input: L The language. Conceptually a map of terms to their associated
type signature, which is represented as a vector.
tree A tree with an unbounded number of children. Each node is
labelled with a term from L. It is this tree that the algorithm
will type check.
t The required type to check against.
Output: True if the tree has the required type t, False otherwise.

algorithm TYPE-CHECK(L, tree, t)
returnType = TYPE-INFERENCE(L, tree)
if ((returnType = null) V (returnType # t)) then return False

else return True

algorithm TYPE-INFERENCE(L, tree)
termsType = L.AT(t) > Finds the type of the node of the tree.
children = tree.CHILDREN()
if (termsType.S1ZE() — 1 # children.S1ZE()) then return null

if (children.S1zE() > 0) then
for (i € {0...termsType.S1ZE() — 2}) do
returnType = TYPE-INFERENCE(L, childrenl|i))
if ((returnType = null) V (returnType # termsTypeli])) then
return null

return termsTypeltermsType.S1ZE() — 1] > Returns the last index.

73

CHAPTER 2. LITERATURE REVIEW

2.5.3 Direct Search Techniques

In this subsection we review the literature pertaining to direct search techniques for
program synthesis. By direct search techniques, we specifically refer to those methods
that imagine the search space of programs as a search tree, and directly navigate
through it to find candidate solutions - that is, potential programs that are solutions
to the overarching program synthesis problem.

To illustrate the methods described in this subsection, we will use Language
EX-1, described in Figure In Figure [2.9 we show a small portion of the search
space described by Language EX-1. Since Language EX-1 describes a search space
containing an infinite number of programs, it is not possible to show the complete
search tree. However, the reader can clearly see that some small, full programs inhabit
leaves in the search tree, and partial programs inhabit the nodes.

The search space, when visualised in this manner, shows us some interesting
properties that may not be immediately obvious. We can see that there are distinct
repeating patterns in the search tree. Specifically, smaller complete programs are
reused in the formulation of larger ones. A simple example of this can be seen by
noting that the program trees representing 0 and 1 are reused at deeper levels in the
search tree as arguments to +. This pattern continues in the unseen portions of the
search tree; the complete program tree of + {0, 1} will eventually be re-generated
and reused as a child node in other complete program trees.

The examples of partial programs in the search tree introduce us to the concept
of the type hole. A type hole is a node in a program tree that is not instantiated
with a term. For the program to be correct according to the type rules (or the rules
enforced by a CFG), it requires a term. In the program trees in Figure , type
holes are shown using a *.

Like other types of search trees, breadth-first search (BFS) and depth-first search
(DFS) are the two most obvious ways of traversing this tree. We present a unified
search algorithm, called TOP-DOWN-SEARCH, that is able to traverse this tree in
either a BFS or DFS manner. It is shown in Algorithm [2.17] It is inspired by an
identically named algorithm described by Gulwani, Polozov, and Singh [76]. Whereas
that algorithm was designed for languages that use a CFG, ours is designed for
languages that use a type system. Another difference between the two algorithms
is in how they instantiate type holes; ours instantiates them one at a time, whereas

Gulwani, Polozov, and Singh’s algorithm instantiates them all at once. The node

74

CHAPTER 2. LITERATURE REVIEW

Figure 2.9: An example of a search tree for the set of programs in Language EX-1,
shown in Figure 2.7 Each node in the tree contains a tree, representing either a
partial or complete program tree. The complete program trees can be found in the
leaves. The nodes with dots in them represent areas of the search space not visualised
- as this is an infinite search space, there is no way to visualise the whole search tree.

In each program tree, nodes which have no argument yet are given a placeholder,

denoted by *.

5

CHAPTER 2. LITERATURE REVIEW

Algorithm 2.17 TorP-DOWN-SEARCH Algorithm

Input: L The language. Represented as a mapping of principle types t to a
set of terms that have t as a return type.
¢ Specification criteria.

r Required type of the program tree to be created.

Output: A program that satisfies ¢.
algorithm TOP-DOWN-SEARCH(L, ¢, r)
P =[] > List of tree nodes to search.
P, ={x} > Set of partial programs seen.
while (P.S1zg() > 0) do
p = P.Pop()
if (¢(p)) then return p > Required program found.
a = FIND-FIRST-TYPE-HOLE(p) > Find type hole.
t = FIND-REQUIRED-TYPE-HOLE(a, 1) > Find required type of a.
for (b€ L.AT(t)) do
P = pla — b > Replace a with b.

if (-SuBSUMED(P,, p', ¢)) then
P.INSERT(p)
P, = P,.INSERT(p')

which we insert a new term into is the first type hole that is found when conducting
an in-order traversal of the partial program tree.

ToP-DOWN-SEARCH works by maintaining a list of nodes P in the search tree
that have yet to be explored, and searches them one by one to create successor
program trees. On initialisation, the initial program tree (x) is added to this list,
and then the algorithm proceeds through a while loop. On each iteration, if P is
non-empty, then an element p is removed from it. A check is performed to ascertain
whether p passes the specification. If not, then the first (if there are any) type hole
a in p is found by performing an in-order traversal of p, the required type ¢ of «
deduced and the language L probed for all terms that satisfy t. New partial programs
are created by inserting any terms in the language that satisfy ¢ into a’s position, and
the new partial programs are then checked to see whether they have been subsumed.
If not, they are inserted into P.

A program - either partial or full - is subsumed if, for whatever reason, the

76

CHAPTER 2. LITERATURE REVIEW

algorithm has determined that it should not be added to P. In essence it is pruned
from the search space. Pruning criteria may be determined by partial program
equivalence; as an example, a partial program in the form + {0, a} will generate
the same set of programs as «, and a system with enough information about the
domain could prune that program. Or, the system may be able to determine that
two programs in the form + {«, 8} and + {3, a} are equivalent, and remove one of
them.

Where successor states are inserted into P changes how TOP-DOWN-SEARCH
operates. If the new elements are inserted at the front of the list, the algorithm
becomes a DFS. If they are inserted at the end of the list, the algorithm becomes a
BFS. The reader should note that, for either method of insertion, there would have
to be some limiting factor on how large the program trees could be, or the algorithm
would not be guaranteed to terminate.

In Algorithm we present BOTTOM-UP-SEARCH. BOTTOM-UP-SEARCH can
create the same set of program trees that TOP-DOWN-SEARCH can, however it works
in a fundamentally different way. BoTTOM-UP-SEARCH is an augmented version of
an identically named algorithm presented by Gulwani, Polozov, and Singh [76]. The
version of BOTTOM-UP-SEARCH presented in Algorithm is designed to work
on languages that are represented using a type system, whereas that presented by
Gulwani, Polozov, and Singh is designed for use with CFGs.

The BorTOM-UP-SEARCH algorithm uses a function called ENUMERATE-PROG-
RAMS. ENUMERATE-PROGRAMS should, when given an integer ¢, return all correctly
typed full programs of exactly size i. It does this through recursion, and making
use of memoized results. The overarching BOTTOM-UP-SEARCH algorithm works
as follows; for each program size i from 1 to the maximum bound m, the programs
are enumerated for ¢ using ENUMERATE-PROGRAMS. After that set of programs
ps has been enumerated, each program p € ps is checked to see whether it passes
the specification criteria. If it does, then p is returned and BoTTOM-UP-SEARCH
terminates. Otherwise, if p is not equivalent to any program in F, it is added to F.
The F set is then used by ENUMERATE-PROGRAMS when it is next invoked, so that
previously created programs can be used in the creation of new ones. This is done to
reduce the overall computation time. As BOTTOM-UP-SEARCH only operates on full
programs, it is unable to check for the equivalence of partial programs.

Both the ToP-DOWN-SEARCH and BOTTOM-UP-SEARCH algorithms have their

7

CHAPTER 2. LITERATURE REVIEW

Algorithm 2.18 BoTTOM-UP-SEARCH Algorithm
Input: L The language. Represented as a mapping of principle types ¢ in

the language to sets of terms that have ¢ as a return type.
¢ Specification criteria.
m Maximum size of program.

Output: A program that satisfies ¢.

algorithm BoTTOM-UP-SEARCH(L, ¢, m)
E =] > Memoized results.
for (ie{1...m}) do
ps = ENUMERATE-PROGRAMS(E, L, 1)
for (p € ps) do
if (¢(p)) then return p
if (-E.EQUIVALENT(p)) then
E.INSERT(p)

advantages and disadvantages; TOP-DOWN-SEARCH requires less memory as results
are not memoized, however it is generally more computationally expensive. On the
other hand, BOTTOM-UP-SEARCH can be memory intensive, but much faster at
returning results. BOTTOM-UP-SEARCH’s ability to prune the search space is less
powerful when compared to TOP-DOWN-SEARCH, as it does not operate on partial
programs.

Some research |96, 22, [1] has found that a simple enumeration of the search space
can be used to perform program synthesis. Instead of pruning parts of the search tree
or using heuristics to direct the search, all valid programs are found and returned.
They are then tested to check whether they meet the specification criteria. However,
this method can be computationally expensive.

Another example of direct tree search that has proven to be effective is bi-
directional search. TOP-DOWN-SEARCH can be described as a forward search -
setting the first term in a program first - and BOTTOM-UP-SEARCH can be described
as a backwards search, as it first finds the smallest subtrees that will be inserted
at the bottom of the synthesised program tree. Bi-directional search utilises these
two algorithms working together, and has proven to be effective in certain domains
[75, |146]. A further example of an effective search technique employed in program

synthesis is Monte Carlo tree search, which has been used to sample portions of the

78

CHAPTER 2. LITERATURE REVIEW

search space. Through this sampling, the overarching algorithm is then guided to
areas of the search space where it believes programs exist which meet the problem

specification [95].

2.5.4 Genetic Programming

GP is a program synthesis technique inspired by natural evolution [102]. Unlike
the program synthesis techniques we looked at in the previous subsection, it is a
population-based, sampling algorithm. GP is closely related to the GA. Whereas a
GA operates on fixed-sized strings, GP operates on solutions that represent programs
as trees. In this subsection we provide an overview of GP.

In Algorithm we show the basic design of a GP algorithm. It can be described
as follows; at the start of the algorithm, an initial population of candidate solutions
are constructed, and each solution in that population tested against the specification
criteria. The algorithm then proceeds in an iterative manner; it creates a new
population from the previous one through the use of genetic operators, and tests
this new population against the specification criteria. The termination criteria is a
problem dependant mechanism that denotes when the algorithm terminates. Some
examples of commonly used termination criteria include those that are satisfied when
a set number of iterations have been performed, and those that are satisfied when a
solution has been created that sufficiently meets the specification criteria.

The algorithms we discussed in the previous subsection are designed with a generic
specification criteria in mind. GP differs from these, as it is usually associated with
program synthesis problems whose specification is defined in terms of a fitness function.
A fitness function attributes a value to each candidate solution that signifies how well
it meets the specification. Some of the mechanisms used in GP require the fitness value
of a program to operate correctly. However, GP can be used with program synthesis
problems whose candidate solutions either pass or fail their associated specification
[124]. In cases where the specification has been defined in this manner, a fitness value
can be extracted from how well a candidate program performs - for example, if a
specification was given as a set of input-output examples, and a candidate program
could only pass the specification if it satisfied all the examples, then a fitness value
for that program could be extrapolated from how many of the examples it satisfied.

In its original description, GP was described in terms of an untyped language [102].

The associated language was split into a terminal set and a function set. Elements

79

CHAPTER 2. LITERATURE REVIEW

Algorithm 2.19 GENETIC-PROGRAMMING Algorithm

Input: L Language.
¢ Specification criteria.
r Required type of the program trees to be created.
p Parameters to GP algorithm.

Output: A program that satisfies ¢.

algorithm GENETIC-PROGRAMMING(L, ¢, r, p)
nextPop = INITIALISE(L, r, p)
pop = EVALUATE-POPULATION(nextPop, ¢)
for (e € pop) do
if (¢(e)) then return e > An individual passes the specification.
while (=TERMINATION-CRITERIA-MET(p)) do
nextPop = CREATE-NEW-POPULATION(L, pop, r)
pop = EVALUATE-POPULATION(next Pop, ¢)
for (e € pop) do
if (¢(e)) then return e

return pop.BEST() > Returns the best individual found.

80

CHAPTER 2. LITERATURE REVIEW

in the function set could only inhabit nodes in a program tree, and elements in the
terminal set could only inhabit the leaves. We retain the use of these definitions to
remain consistent with the literature.

In the remaining part of this subsection we describe the types of genetic operators,
initialisation functions and selection functions commonly used in GP. In this thesis
our focus is on languages that use an associated type system. We pay particular
attention to any additional constraints or mechanisms that must be taken into account

when using STGP [130], the GP variant designed for such languages.

Initialisation

There are three commonly referenced methods of initialising a population of candidate
solutions in GP. All of them work with a parameter d, which refers to the depth of
a node in a tree. The “full” method works by initially choosing a random function
from the language, then working recursively to populate the required children. Only
when the depth of the node being assigned = d can a terminal be chosen. The
“orow” method works similarly, except that at any point a terminal can be chosen. A
terminal must be chosen when the depth of the node being assigned = d. Finally,
the “ramped half-and-half” method works by populating half the population with
the grow method, and the other half with the full method. The created programs
from the full method are balanced trees, whereas those built using the grow method
may be unbalanced.

In STGP, when choosing terminals and functions, the initialisation method must
take care to only choose language terms that will create trees that are type correct.
Sometimes, it is not possible to create trees in this manner, depending on the terms
in the language and the types that need to be fulfilled. Therefore, the user must be
aware of the formulation of their language when choosing which initialisation function

to use, to ensure that the desired effect is achieved.

Selection Function

Genetic operators are used to create the next population in a GP algorithm. Some
genetic operators use individuals from the previous population in their formulation,
and a selection function is used to pick these individuals. There are many different
selection functions described in the literature. Objectively, the three most commonly

used are random selection, proportional selection and tournament selection. Random

81

CHAPTER 2. LITERATURE REVIEW

selection is simple, as it just chooses an individual from the previous population at
random. Proportional selection assigns each individual a weight based on its fitness
value, then chooses one using a weighted pick function. In tournament selection, a
set number of individuals are chosen at random from the previous population, and

the best of these according to their fitness is chosen as the selected individual.

Genetic Operators

On each iteration of the GP algorithm, a new population is created through the use
of genetic operators. Most genetic operators work by applying some algorithm to
a set of program trees from the previous generation to create a new set of program
trees. The selection function (described above) is used to select these individuals.
The four most commonly used genetic operators are crossover, mutation, repro-

duction and elitism. They can be described as follows:

Crossover In standard crossover, two individuals are selected and they are recom-
bined to create two new individuals. To create the two new individuals, a point in
each program tree is selected. The two new individuals are created by swapping the
subtrees rooted at the selected points with each other. Figure [2.10| shows an example
of how this is performed.

In STGP, additional care must be taken to ensure that the created offspring are
type correct. This is achieved by, after picking the point in the first tree, ensuring
that the subtree selected in the second program has the same return type as the

subtree selected in the first.

Mutation The mutation operator uses one program tree from the previous popu-
lation, and creates a single new program tree. A node is chosen at random in the
original program tree, it is removed and a new subtree is created in its place. We
show an example of this in Figure This operator is primarily used to ensure
that new genetic material is inserted into the population, as sometimes a population

can be dominated by many similar individuals.

Reproduction Reproduction refers to a mechanism that creates new program
trees using the initialisation function. To be clear, it requires no individuals from the

previous population. It is designed to insert new genetic material into the population.

82

CHAPTER 2. LITERATURE REVIEW

& |

(a) An example program

tree selected for crossover.

The subtree selected as the
crossover point is highlighted

in grey.

) A second example program tree that has
been selected for crossover, with the subtree
selected as the crossover point highlighted
in grey. Nodes highlighted blue could have

been selected to be a crossover point. Nodes

highlighted red could not.

(¢) The program trees created from an application of crossover using the trees in

Figures |2.103{ and |2.10b}

Figure 2.10: An example of the crossover operator being applied to two trees written
in Language EX-1. In the input trees in Figures [2.10a] and [2.10b] the crossover point is
indicated by the grey labelling of a node. To be clear, the subtrees being substituted
are those rooted at the highlighted nodes.

83

CHAPTER 2. LITERATURE REVIEW

(a) An example program tree selected (b) The program tree created from an
for mutation. The subtree that application of mutation. The high-
will be removed and replaced is high- lighted subtree in Figure has
lighted in grey. been removed and a new subtree cre-

ated and inserted in its place.

Figure 2.11: An example of the mutation operator being applied to a program tree

written in Language EX-1.

Elitism Elitism refers to when an element is chosen from the previous generation
to be copied to the new one. It is common for this operator to be used to retain one
or more of the best individuals from the previous generation, to ensure that good

program trees are not lost from generation to generation.

This subsection does not aim to be a complete guide to GP, only providing a
brief introduction to its concepts. For more information regarding GP, as well as an
overview of other closely related techniques such as gene expression programming [55],
and grammatical evolution [152], we refer the reader to A Field Guide to Genetic

Programming [147).

2.5.5 Summary & Discussion

In this section we have discussed program synthesis from a high-level perspective, then
highlighted two specific examples of techniques that create programs automatically -
direct search techniques and GP. Throughout the proceeding subsections, we have
provided the reader with additional resources to each of the methods that we have
focused on. We point the reader to “Program synthesis” [76], which we used as a

basis for our descriptions in Section [2.5.1} for a general overview of program synthesis.

84

CHAPTER 2. LITERATURE REVIEW

In the context of our work in LS-SAT, and in the wider research area of combi-
natorial problems, we note several similarities between program synthesis problems
and hard combinatorial problems. The way in which a hard combinatorial problem is
usually defined is in terms of either an optimisation problem or a decision problem.
This categorisation mirrors the different types of specification criteria of a program
synthesis problem; some program synthesis problems are defined in terms of a specific
expected behaviour of the created program, and the specification given as a binary
criteria. Others use a fitness function to gauge the created program’s effectiveness.

From the major characteristics of a program synthesizer laid out in Section [2.5.1
it is clear that several of the given methodologies do not apply to the creation of
heuristics. As far as we are aware, there is no “correct” specification of a heuristic in
the domain of LS-SAT solvers or indeed any hard combinatorial problem. Or more
specifically, any function that could correctly direct the search to the exact sequence
of changes to move to a satisfying solution would be, to our knowledge, exponential in
its running time. Therefore, like the previous work in creating LS-SAT heuristics |60,
62, 61, 9], it is reasonable to assume that the specification criteria for our candidate
programs (or heuristics) should be a fitness measure of how well they perform on
actual problem instances.

We noted in Section that GP had previously been used to create LS-SAT
heuristics, and its inclusion in this section is due to that research, as it is one of the
previously used methods in our domain. Concerning the direct search techniques
discussed in Section [2.5.3] we believe that some of them may be applicable to our
research - specifically techniques that navigate the search tree of programs, and
strategies for pruning parts of the search space. However, while creating a system
that can reason about partial heuristics and prune parts of the search space is possible,
it would require a high-level of expertise. This is exacerbated by the stochasticity
employed by LS-SAT heuristics, as such a system would be reasoning about stochastic
partial programs. On the other hand, exhaustive enumeration appears to be a practical
technique to use as it requires relatively little expert knowledge, and may also provide
us with insight into alternative methods that can be used to effectively navigate the

search space of heuristics.

85

CHAPTER 2. LITERATURE REVIEW

2.6 Minimum Tree Edit Distance Problem

In this section we give a broad overview of the minimum tree edit distance problem.
We provide details concerning how it is defined, and present an efficient algorithm
to solve it. The MTED problem discussed in this section is used extensively in
Chapters [f] to

The format of this section is as follows; in Section we provide a definition of
the MTED problem. In Section we present an efficient algorithm used to solve
it. Finally in Section we present the conclusions to this section.

2.6.1 Definition

Originally described by Tai [168], and also known as the tree-to-tree problem, the
minimum tree edit distance problem can be described as follows; given an alphabet
Y, a cost function v and two ordered, labelled trees t; and ¢y (where each label in
each tree is an element of X), find the minimum cost of tree edits, as given by v, to

transform ¢; to t5. A tree edit can be one of the following:

e Relabel(l}, l): A node in the tree has its label changed from l; to l. We write
~v(l; = l3) to show the cost of a relabel.

e Insert(l, i, j): A new node [is inserted into the tree. Specifically, it is inserted
at some point in the tree under a previously existing node n, at position ¢ in the
sequence of n’s children and taking a subsequence of n’s children (from point
i onward, and of size j) as its own. If n had k children originally described
as {ny ...ny}, then after insertion, n now has (k — j) + 1 children in the form
{ny...ni—1,1,niyg, ... ;ni—ji1 b Us g children are in the form {n;...n;1;}. We
write v(— [) to show the cost of an insertion. If no nodes exist in the tree, this

edit inserts the node [as the root of the new tree.

e Delete(l, i): A node [is removed from the tree. Specifically, if the i
child from the parent node n, which originally had k children {n;...n;},
is to be deleted, then the sequence of I’'s m children {l;...l,} are inserted
at position ¢ under node n. n now has (k + m) — 1 children in the form
{ni...ni—, 0oy mygr - omg b We write y(I —) to show the cost of a dele-

tion.

86

CHAPTER 2. LITERATURE REVIEW

ribl; f deI3 del1
r|b|5 a insy «InS4p02 - "153 ,0,0

Figure 2.12: Examples of tree edits between trees. Each node in each tree is labelled
with its index according to a post-order traversal. Relabels are shortened to “rlbl”,
and have two additional arguments pertaining to the index of the node to be relabelled
and the new label for the node. Deletions are shortened to “del” and give the index
of the node to delete. Insertions are shortened to “ins” and have four additional
arguments. The first is the index of the node that will become the inserted node’s
parent. We designate this node e. The second argument is the node to be inserted,
the third is the index of e’s children that the inserted node will become, and the

fourth is the number of e’s children the inserted node will take as its children.

For any two trees, there are many possible edit sequences that can transform one
tree to the other. A trivial method would be removing all the nodes from the initial
tree t1, then inserting all the required nodes to create the tree t5. The goal of the
MTED problem is to find the edit sequence with the minimum cost according to ~.
In Figure 2.12| we show some examples of tree edits, to familiarise the reader with
the concept.

MTED algorithms have found uses in several areas, including in the analysis of
GP |134] and bioinformatics [2], and within database design [7]. The reader should
note that the edits laid out above are not the only way of describing a tree edit and,
by extension, the MTED problem. Other tree edit definitions exist; for example,
those described by Lu [114], where a different set of moves are used to edit trees. In
this thesis, we only consider the “classic” MTED problem for ordered trees, and not

any extensions of it.

87

CHAPTER 2. LITERATURE REVIEW

5(0,0) =0 2.7)
0(F1,0) =0(F1 —v,0) +~v(v —) (2.8)
30, Fy) = 6(0, F» —w) + v(— w) (2.9)

(6(F) — v, Fy) + (v —) (2.10)
I(F1, Fy —w) +v(— w) (2.11)
5(Fy. Fy) — min if F1 A F, are trees
S —v, Fy —w) + (v — w) (2.12)
otherwise
L O(Fi(v), Fo(w)) + 6(Fy — T (v), Fy — Th(w)) (2.13)

Figure 2.13: A recursive solution to the MTED problem, designed to operate on
forests. We write F' — x to denote deleting the node x in forest F. v and w are
the rightmost roots (if any) in F} and F» respectively. We use F'(z) as notation for
obtaining the rightmost tree x from F. We write F' — T'(x) to mean removing the

entire rightmost tree x from F. 6 is used as a synonym for the empty forest.

2.6.2 Algorithm

The MTED problem for (ordered) trees can be solved in polynomial time. For trees
with m and n nodes, the best known MTED algorithm [51] has a time complexity of
O(n*m(1 + log)). However, the details of that algorithm are far beyond the scope
of this thesis, and instead in this subsection we present a dynamic programming (DP)
solution that has O(m?n?) time complexity [181]. The algorithms presented in this
subsection follow from the recursive equations shown in Figure [2.13

The reader should note that in this section, all edits (insertions, relabels and
deletions) have a cost of 1, except the edit which relabels a node with itself, which has
a cost of 0. For the MTED to remain consistent, the cost function must have several
properties. We refer the reader to work by Spears [139], which showed that the cost
function must adhere to the non-negativity property, the self-equality property, the
discernibility property, the symmetry property and the triangular inequality property.
The authors also noted that if the cost function has these properties, then the tree
edit distance metric defined from the cost function also has these properties.

The recursive solution outlined in Figure is designed to work on forests rather

38

CHAPTER 2. LITERATURE REVIEW

than trees. A forest is a collection of trees, and a tree can be thought of as a forest
containing a single element. Therefore, this solution is consistent with the definition
of the MTED problem outlined in Section [2.6.1}

The recursive solution in Figure [2.13| works by deconstructing the forest into
subforests and single nodes, and then computing the distance between these de-
constructed parts. When single nodes are encountered, the cost function v is used
to compute the distance. This process continues until the base-case is reached in
Equation ([2.7)).

The reader should note that three distinct deconstructions can be identified in
the recursive solution shown in Figure [2.13 one that is constructed from the input
forest with the rightmost root node removed (used in Equations to , and
denoted by F' — x) and two that are created by splitting a forest containing k + 1
trees into a forest containing the first k trees, and a singleton containing the last tree,
(used in Equation and denoted by F(z) and F' — T'(z) respectively).

To provide some intuition as to how these subforests are created, consider the
two trees in Figure [2.14] which are labelled with indices according to a post-order
traversal. When a forest is labelled in this manner, the subforest constructed by
removing the rightmost root node can be created by removing the node with the
highest index. For the two subforests that are required by Equation , these
can be created by splitting the input forest into the last tree in the forest, and the
remaining elements. Using a post-order indexing of a forest containing k£ + 1 trees,
this can be abstractly represented as, for a forest with n nodes, there being an index
m < n such that the nodes with indices 1...m are in the subforest representing the
first k trees, and the nodes m + 1...n are in the forest representing the singleton
tree.

One important point concerning these equations, and specifically about the
splitting of the forest in Equation , is that the rightmost rooted singleton tree
will always be a subtree of the original input tree given to the problem.

Though these equations could be followed through from the original input trees
to find the MTED between them, the time complexity of such an algorithm would
be exponential. Instead, a DP solution exists that allows the MTED to be computed

in O(m?n?) time complexity. The pseudocode for this DP solution is shown in

Algorithms and [2.21]

89

CHAPTER 2. LITERATURE REVIEW

(a) Tree et;. (b) Tree ets.

Figure 2.14: Two trees that are used in Section to illustrate how the MTED
algorithm works. In each node in each tree we mark the index according to a post-

order traversal.

Algorithm 2.20 MTED Algorithm
Input: t1 Input tree.

to Output tree.
~v Cost function.

Output: Number representing minimum edit distance between ¢; and 5.

algorithm MTED(ty, to,)
k1 = KEY-ROOTS(1;)
ks = KEY-ROOTS(t2)
td = [t;.S12E(), t2.S1ZE()] > Initialise tree distance table.
for (k; € k1) do
for (k. € ky) do
TREE-DiIST(ky, kyy)

return td[t;.S1ZE() — 1, £5.S12E() — 1]

90

CHAPTER 2. LITERATURE REVIEW

Algorithm 2.21 TREE-DisT Algorithm
Input: t; Input subtree.

to Output subtree.
~ Cost function.

Output: None.

algorithm TREE-DIST(t1, t3,)
fd = [t1.S1zE() + 1, t5.S12E() + 1] > Local forest distance table.
fd[0][0] =0
for (i € {1...¢,.S1zE()}) do
fdld][0] = fdfi = 1][0] + y(t:[] =)
for (j € {1...t,.S1ZE()}) do
fd(0][7 = 1] = fd[0][j — 1] + (= ta[5])
for (i € {1...t,.S1zE()}) do
f1 = CREATE-FOREST(t1, 7) > Create forest from post-order index i
for (j € {1...1,.51zE()}) do onward.
5 = CREATE-FOREST(t9, j)
if (f1.Is-TREE() A fo.IS-TREE()) then
fdli][j] = min(
fdli = 1][j1+~(fili] =),
fdlilli =1 +~(= f2l)),
fdli =1][j = 1 +~(Al] = f205])
td[f1.GET-TREE-INDEX()][fo. GET-TREE-INDEX()| = fd[i][J]
else
(fs1, ft1) = SPLIT-FOREST(f)
(fsa, fta) = SPLIT-FOREST(/)
f[i)[j] = min
fli = 1] + (A1l =),
fdlilli =1 +(= f2l)),
fd[fs1.GET-FOREST-INDEX()][f 2. GET-FOREST-INDEX()]+
td[ft;.GET-TREE-INDEX()|[fto. GET-TREE-INDEX()])

91

CHAPTER 2. LITERATURE REVIEW

The MTED algorithm works by initially identifying each key-root in both the
input and output trees. A node n in a tree is a key-root if its leftmost descendant (a
leaf’s leftmost descendant is itself) is unique among all leftmost descendants found
from the set of trees that are the ancestors of n. For the trees in Figure [2.14], the
key-roots for tree et; are at post-order indices 3,5 and 6 and ety’s are at post-order
indices 2,5 and 6.

We then find each pair of subtrees rooted at each key-root k; and ks, where
ki € KEY-ROOTS(t1) and ks € KEY-ROOTS(t3). For each pair k; and ks, we let the
size of k; = m and the size of k; = n. We then label k; and k; with an index
according to a post-order traversal. These are distinct from the post-order indexes
of the original trees. Pairs of forests are then extracted of size i € {0...n} and
j € {0...m}, such that the pair of forests of size ¢ and j contains the nodes labelled
({1...7},{1...7}) according to each subtree’s post-order traversal. An i or j of 0
represents the empty forest, (). For each of these forests, the MTED is then computed
between them.

While this method may appear computationally expensive, in practice, computing
the MTED for each pair of forests can be performed in constant time if the solutions
to the required subproblems have already been calculated. As an example, we will
show the calculations required to compute the MTED between the key-roots of et;
and ety in Figure 2.14] For each pair of subtrees located at the key-roots, a DP
table is shown in Table 2.4, Each cell (i,j) in each table refers to the minimum
edit distance between the forests as described in the previous paragraph. As an
example, in Table , at cell (6,2), the MTED is 4. This means that the forest
described by the nodes {1...2} in k; (the tree rooted at post-order index 2 in et)
has a minimum edit distance to the forest described by nodes {1...6} in ky (the tree
rooted at post-order index 6 in ety) of 4.

By visualising the problem in this manner, we can quickly fill in each table. The
cell at (0,0) is always 0 (according to Equation (2.7))). The cells at (0, 7) use the
value at (0,7 — 1) and add the cost of deleting the node j using the ~ cost function.
Similarly, the cells at (i, () use the value at (i — 1, () and add the cost of inserting the
node ¢ using the ~ cost function. These correspond to the Equations and (2.9)).

All other cells are calculated according to Equations (2.10]) to (2.13)). For a cell at
(1,7), we take the minimum of three values; first, the cell at (: — 1, 7) added to the
cost of inserting node i. Second, the cell at (i,7 — 1) added to the cost of deleting

92

CHAPTER 2. LITERATURE REVIEW

Table 2.4: MTED subproblems calculated when computing the tree edit distance
between the trees et; and ety shown in Figure[2.14] Each table represents a subproblem
computing the MTED between a key-root k; in et; and a key-root ks in ety. Each
cell at (7,7) in each table shows the MTED between the forests containing nodes
{1...4i} and {1...5} as found through a post-order traversal of the key-roots k; and
ks respectively. We use) to refer to the empty forest. Certain cells are highlighted,

which show when that value has been used to update the tree distance table in

Table

(a) MTED table be-
tween subtrees at index

2 in ety and 3 in ets.

01
Dol
1{|1]0
2201

(d) MTED table be-
tween subtrees at index

5 in ety and 3 in eto.

011
0llol1
111

(g) MTED table be-
tween subtrees at index

6 in et; and 3 in ets.

DO =W~ =
DU W IN | =] O|=
G B | W (NN =R =]

(b) MTED table be-
tween subtrees at index

2 in ety and 5 in ets.

01
Dol
1{[1]1
201212

(e) MTED table be-
tween subtrees at index

5 in ety and 5 in eto.

011
gllol1
110110

(h) MTED table be-
tween subtrees at index

6 in et; and 5 in ets.

01
Dol
111
21212
3133
4 4[4
5154
616|5

93

(¢) MTED table between sub-
trees at index 2 in et; and 6

in eto.

314156
314156
213|415

N | DN

1
1
1

0
0o
11
2212|2223 |4

(f) MTED table between sub-
trees at index 5 in ety and 6

in ets.

Ml1123|4|5|6

llol11213(4]/5]|6
101]11]21(3]4]4]5

(i) MTED table between sub-

trees at index 6 in et; and 6

in eto.
011123456
Dllo[1]2[3[4|5]|6
1110112345
2121110111234
3113212345
41483121112 3|4
5006141312 (13]2]3
61615 4F3133]|2

CHAPTER 2. LITERATURE REVIEW

Table 2.5: Tree distance table used when calculating the MTED between the trees et;
and ety shown in Figure [2.14 Each cell (4, j) shows the MTED between the subtrees
rooted at post-order indices ¢ and j in et; and ety respectively. When computing the
distance between the key-roots, as shown in Table [2.4] when it is known that the two
forests being compared to each other are also trees, we can update a value in this

table. The colour of each cell shows where that cell’s value came from.

112131456
1401112315
21110123 |1]|5
312111222 |4
4131312 44
o111 13[4(0|5
6119|5335]2

node j, and one additional value. If the two forests being compared are also trees,
then this additional value is computed as the value at (i — 1,7 — 1) plus the cost
of relabelling node i with the label in node j. If they are not both trees, then we
break both forests into a pair (fs, ft), where fs represents the subforest and ft the
singleton tree. We compute the edit distance between fs; and fs;, and ft; and ft;,
and add the costs of these two subproblems. If we proceed by filling in this table
row by row, we can guarantee that the MTED of fs; to fs; will have already been
computed - though deducing which cell contains this value may not be obvious. For
the cost of the singleton trees, an additional DP table contains these values, which we
call the tree distance table. For the trees in Figure [2.14] this is shown in Table

However, as of yet we have not discussed how to fill in the tree distance table.
This table is read differently to the other tables. Specifically, the cell (i, j) refers to
the MTED between the subtree rooted at post-order index ¢ in et; and the subtree
rooted at post-order index j in ets.

We do not need to perform any additional computation to fill in these values,
as they are already computed when we are finding the minimum edit distance for
the other tables. If we hit the case in Equation (2.12)) where two trees are being
compared, we know that a corresponding cell in the tree distance table can be filled
in. In the DP tables in Table [2.4] there are several coloured cells that correspond to

identically coloured cells in Table [2.5] which show that a value has been copied to

94

CHAPTER 2. LITERATURE REVIEW

the tree distance table.

We can guarantee that the required values in the tree distance table will already
have been computed when they are required by the key-root computations, as shown
in Table [2.4] by ensuring that the MTED between key-roots are computed in a
specific order. If we iterate over each key-root in ¢; ordered by their post-order index,
and all the key-roots in ko, then for any pair of key-roots at post-order indices (3, j),
any required subtree computations will have already been computed. This is because,
by using a post-order traversal, we will be working from a bottom up approach, and
any tree distance calculations required will be rooted at post-order index (i', j') such
that i < i and j' < j.

Finally, to conclude the algorithm, the value of the MTED between the input
trees t; and t can be found in the bottom rightmost cell in the tree distance table.
In Algorithms [2.20| and we have shown the pseudocode for these processes, which
allow the MTED to be computed for two trees. It is this algorithm that we use, when

required, in this thesis.

2.6.3 Summary & Discussion

The MTED problem is a broad subject, and in truth this section only serves as an
introduction to the topic at large. We point the reader to several resources which
provide more detailed information. Bille [19] gives a survey of the MTED problem
and provides an overview of several variants of the problem. Paaien [139] presents
an in-depth overview of the problem, showing various algorithms to calculate it, and
explains in detail how they work. Finally, Zhang and Shasha |181] present the original

description of the algorithm contained in this section.

2.7 Conclusions

The goal of this chapter was to provide the context for the work contained in
this thesis. We have discussed literature relating to SAT, LS-SAT heuristics, the
automated creation of heuristics, program synthesis and the MTED problem.
Research in automated heuristic creation has predominantly focused on using
population-based approaches of program synthesis, such as GP, to achieve its goal.
However, this is not the only form of program synthesis that has been developed in

wider computer science. It can be reasoned other techniques could have a role to play

95

CHAPTER 2. LITERATURE REVIEW

in heuristic creation.

The domain that we create heuristics for in this thesis, LS-SAT, is a domain
that previous researchers have attempted to automatically create heuristics for.
This previous work gives us some context regarding how to represent a heuristic
in this domain, how to evaluate the created heuristics, and previous examples of
heuristics that have been automatically created. In turn, this previous work forms
the cornerstone of our research; how can these automated heuristic creation strategies
be improved, what alternate techniques can be employed, and is it possible to create
more effective heuristics.

LS-SAT heuristic development has progressed since this previous work was un-
dertaken. There have been many advances in this area, which provides us with the
opportunity to consider heuristic components that previous authors were unaware
of, and to consider whether they are applicable for automated heuristic creation. It
also raises the question of how do we represent some of these constructs in a general
language for describing heuristics, as well as how to develop a system that can have
these different techniques cooperating together.

In Section [2.6] we reviewed the literature concerning the MTED problem. Though
its relevance may not be clear in the context of the rest of the work in this chapter,
this section is vitally important for understanding the research in Chapters [§| to[7] In
the next chapter, we provide details showing how we represent and evaluate heuristics
in this thesis, which provides the foundation for the work undertaken in all subsequent

chapters.

96

Chapter 3

Heuristic Representation &

Evaluation

3.1 Introduction

In this chapter we describe the way in which we represent and evaluate LS-SAT
heuristics in this thesis. The core aims of this chapter are to give a formal description
of our representation of heuristics, and to show how a heuristic is evaluated through
a fitness function and a testing set. In later chapters we use program synthesis
techniques on the described representation to automatically create heuristics, which
are evaluated using the given fitness function.

In Section |3.2) we introduce the reader to the heuristic representation used in this
thesis, as well as providing descriptions of how each heuristic component is evaluated.
This section references the literature in Sections [2.2] and [2.5.2] and assumes
a familiarity with LS-SAT heuristic design and simple type systems. Section
provides the reader with an account of how the heuristics are used as part of an
overarching local search algorithm to solve a SAT problem instance. This section also
shows how the local search algorithm is designed, and the methods used to ensure
that the heuristics are evaluated in an efficient manner. In Section B.4] we detail how
we evaluate the performance of the heuristics. This is done through a fitness function
and a testing set. We also evaluate the performance of several hand-crafted heuristics.
In later chapters, these results allow us to compare the performance of automatically
created heuristics to these hand-crafted ones. Finally in Section we present the

discussions and conclusions from the research described in this chapter.

97

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

3.2 Heuristic Representation

In this section we detail the representation we use to formulate LS-SAT heuristics
in this thesis. Like the heuristic representations described in Section [2.4.1] our
representation consists of two components; a DSL - conceptually a set of terms - and
a data structure used to compose elements of the DSL. We use a tree data structure
to construct heuristics from the DSL. Each node in the tree must be labelled with a
term from the DSL, and can have an unbounded number of children.

In Section when discussing program synthesis techniques, we referred to the
created candidate solutions as program trees. The structures that are created from
the representation described in this section are both program trees and LS-SAT
heuristics; in the context of program synthesis, they are arbitrary program trees.
In the context of the target domain, they are LS-SAT heuristics. While the two
terms can be used interchangeably, we make an attempt to use the correct one when
appropriate.

The design of our heuristic representation takes inspiration from previous work
in the design of systems to automate the creation of LS-SAT heuristics [60, |62, 61,
9]. We use a type system to prohibit the combination of certain terms in the DSL.
This allows us to ensure that language terms which conceptually mean very different
things are not combined in ways that we do not intend. The type system we use is
identical to that laid out in Section A requirement of this type system is that
each term in the language must have an associated type signature.

Some work within program synthesis research describes the associated language
as a CFG, which is used to prohibit the combination of certain terms in the same way
a type system does. The DSL that we present in this section could be formulated as
a CFG, and the same set of program trees would be able to be expressed. However,
we choose to use a type system for several reasons. Firstly, we have found it to be
easily extendable, as it allows us to add new terms and types to the language quickly,
as well as perform experiments using subsets of the DSL without having to construct
a new CFG. Secondly, it allows the work we undertake to remain consistent with the
literature on program synthesis in Section [2.5] Finally, though the type system we
use is simple, it could be easily extended with more complicated mechanics such as
polymorphic typing. Achieving the same effect with a CFG would be more difficult.
In previous research [30], the DSL we used was presented as a CFG. To be clear to

the reader, there is no difference between the set of expressible program trees that

98

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

can be created from the CFG presented in that work, and the equivalent set of terms
in the DSL presented in this section.

The DSL is presented in two tables. In Table we show the functions in the
DSL with their type signature and an explanation of how they are evaluated. In
Table we show the terminals in the language. From these two tables, the set of
principle types can be constructed, which is shown in Figure [3.1 The reader should
note that throughout this thesis different subsets of the DSL are used as the focus
of particular experiments. We note to the reader at the time what terms are under
consideration in that experiment.

We do not include an explanation of the terms in Table [3.2], and the meaning of
some may not be immediately obvious. In Section we describe explicitly what is
meant by each of those terms. In Section we discuss the inspiration behind the
terms in the language, and provide some examples of previously known, hand-crafted

heuristics written using the DSL.

Table 3.1: The set of functions in the DSL used in this thesis to create LS-SAT

heuristics.

PickRandomVar(vs) VarSet — Var

Given the non-empty set of variables vs, this function returns a randomly chosen

variable from vs.

GetBestVar(vs, g) VarSet — GainType — Var

Given the non-empty set of variables vs and the variable metric g, this function
returns the variable v;. To compute vy, we do the following. Compute g(v) for
each v € vs, and let v; = the variable with the best value in vs according to the
ordering imposed by g. If there are multiple variables with the same ¢ value as vy,

pick from these randomly.

GetBestVarSnd(vs, g) VarSet — GainType — Var

Given the non-empty set of variables vs and the variable metric g, this function
returns the variable vy. To compute v9, we do the following. Compute g(v) for
each v € vs, and let vy = the variable with the second best value in vs according
to the ordering imposed by ¢. If there are multiple variables with the same g value

as vy, pick from these randomly.

Continued on next page

99

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

Table 3.1: The set of functions in the DSL used in this thesis to create LS-SAT

heuristics. (Continued)

GetBestVarAge(vs, g) VarSet — GainType — Var

Given the non-empty set of variables vs and the variable metric g, this function
returns the variable v;. To compute vy, we do the following. Compute g(v) for
each v € vs, and let v; = the variable with the best value in vs according to the
ordering imposed by g. If there are multiple variables with the same g value as vy,

pick the variable with the maximum AGE, breaking ties randomly.

GetBestVar2(vs, g1, g2) VarSet — GainType — GainType — Var

Given the non-empty set of variables vs and the variable metrics g; and g9, this
function returns the variable v;. To compute vy, we do the following. Compute
g1(v) and go(v) for each v € vs, and let v; = the variable with the best value
according to the ordering imposed first by g;, then g, to resolve tie-breaks. If there

are multiple variables with the same ¢ values as vy, pick from these randomly.

Pick0ldest(vs) VarSet — Var

Given the non-empty set of variables vs, this function returns the variable v;. To
compute vy, we do the following. Find the AGE value for each v € vs, and let v; =
the variable with the maximum AGE. If there are multiple variables with the same

AGE value as vy, pick from these randomly.

WeightedVarPick(vs, gen, [s) VarSet — VarProb — List VarProb — Var

Given the non-empty set of variables vs, the VarProb element gen which represents
a function that creates numeric values from a variable, and the potentially empty
list of additional VarProb elements [s of size n, this function returns the variable
vy. To compute v, we do the following. For each of the variables v € vs, let
dyo = gen(v). For each additional l; € Is, let d,; = d,;—1 % [;(v). Then, using
each d,, value as the weight of v, let v,, be the result of performing a weighted

pick on the variables in vs. If all weights are 0, pick from vs randomly.

PickRandomM(vs) Maybe VarSet — Maybe Var

Given the potentially empty set of variables vs, pick a variable from vs randomly.

If vs is empty, return nullopt.

Continued on next page

100

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

Table 3.1: The set of functions in the DSL used in this thesis to create LS-SAT

heuristics. (Continued)

GetBestVarM(vs, g) Maybe VarSet — GainType — Maybe Var

Given the potentially empty set of variables vs and the variable metric g, this
function returns the variable v;. To compute vy, we do the following. Compute
g(v) for each v € vs, and let v; = the variable with the best value according to
the ordering imposed by g. If there are multiple variables with the same g value

as vy, pick from these randomly. If vs is empty, return nullopt.

GetBestVarAgeM(vs, g) Maybe VarSet — GainType — Maybe Var

Given the potentially empty set of variables vs and the variable metric g, this
function returns the variable v;. To compute vy, we do the following. Compute
g(v) for each v € vs, and let v; = the variable with the best value according to
the ordering imposed by g. If there are multiple variables with the same g value
as vy, pick the variable with the maximum AGE, breaking ties randomly. If vs is

empty, return nullopt.

Comparator — GainType — Integer —
Filter(cmp, g, i, vS)
VarSet — Maybe VarSet

Given the comparison operator cmp, the variable metric g, the integer ¢ and the
non-empty set of variables vs, this function filters the variables in vs, creating the
return value ls. To compute s, we do the following. Compute g(v) for each v € vs.
Then compare gv) to i using the comparison operator cmp. If the result of this
expression is True, add v to [s. If, after evaluating all vs, [s is empty, return

nullopt, else return [s.

GetOldestVar(vy, vs) Var — Var — Var

Given the variables v; and v, pick the variable with the maximum AGE. If both

variables have the same AGE value, pick one randomly.

IfIsNull(vy, vy) Maybe Var — Var — Var

Given the potentially null variable v; and the variable vy, if v; is nullopt, return

Vo, else return vy.

Continued on next page

101

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

Table 3.1: The set of functions in the DSL used in this thesis to create LS-SAT

heuristics. (Continued)

IfNotMinAge(vs, vy, vs) VarSet — Var — Var — Var

Given the non-empty set of variables vs, and the variables v; and vs, if v;’s AGE
is not equal to the minimum AGE among the variables in vs, return v, else return

V1.

IfRandLt(p, vy, vg) Probability — Var — Var — Var

Given the probability p and the variables v; and vy, with probability p pick vy,
and with probability 1 — p pick v,.

IfTabu(a, vy, ve) Age — Var — Var — Var

Given the AGE value a and the variables v; and v, if the AGE of variable vy is

less than a, return v, else return v;.

IfVarCompare(cmp, g, vy, Us) Comparator — GainType — Var — Var — Var

Given the comparison operator cmp, the variable metric g and the variables v; and
vy, let g,1 = g(v1) and g, 2 = g(v2). Compare g, to g, 2 using the comparison

operator cmp. If the resulting expression is True, then return vy, else return v,.

Comparator — GainType — Integer — Var
IfVarCond(cmp, g, i, vi, v2)

— Var — Var

Given the comparison operator cmp, the variable metric g, the integer ¢ and the
variables vy and vy, let ¢,1 = g(v1). Compare i to g,; using the comparison

operator cmp. If the resulting expression is True return vy else return v,.

ExponentFunction(fp, g) FloatingPoint — GainType — VarProb

Given the number fp, and the variable metric g, a VarProb element is created
that represents the function f which takes a variable v as its input.
fp9® if BASE-GAIN-TYPE(g) A
flv) = g.b = True (see Definition (3.1)

fp9® otherwise

Continued on next page

102

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

{ VarSet , Var , GainType , Comparator ,
Integer , Probability , Age , FloatingPoint |
List VarProb , VarProb , Maybe Var , Maybe VarSet }

Figure 3.1: The set of principle types in the DSL used in this thesis to create LS-SAT

heuristics.

Table 3.1: The set of functions in the DSL used in this thesis to create LS-SAT

heuristics. (Continued)

Polynomial(fp, g) FloatingPoint — GainType — VarProb

Given the number fp, and the variable metric g, a VarProb element is created

that represents the function f which takes a variable v as its input.

()’ ifglv) <0

g(v)fP otherwise

fv) = (3.2)

PolynomialNegative(fp, g) FloatingPoint — GainType — VarProb

Given the number fp, and the variable metric g, a VarProb element is created

that represents the function f which takes a variable v as its input.

flo) = ¢ @ (3.3)

NextElement(x, xs) VarProb — List VarProb — List VarProb

Given the VarProb element x and the list of VarProb elements xs, this function

creates a single VarProb list containing x followed by xs.

UpdatePAWS(v) Var — Var

Given the variable v, returns v. However, the use of this function anywhere in a
heuristic has an effect on the overall heuristic. If this function is used, then the
dynamic clause weights are only updated at the end of each local search loop if

this node is evaluated. If it is not used in a heuristic, then the dynamic clause

weights are updated at the end of every loop of the overarching local search.

103

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

Table 3.2: The set of terminals in the DSL used in this thesis. The meaning of these
terminals can be found in Section m

Type Possible Values

Integer Z

Probability {0.0...1.0} + {Adapt}
VarSet {RBC-N, RBC_WA-N, CONF, WFF}
Age N

Comparator {<,<,=,>,>}

FloatingPoint || R — {0.0}

{PosGain, NegGain, NetGain, PosGain WA, NegGain WA,
GainType NetGain_WA, SubPosGain, SubNegGain, SubNetGain,

SubPosGain WA, SubNegGain WA, SubNetGain WA }

List VarProb {EndList}

Maybe VarSet {DecrVars, DecrVars_WA, SubDecrVars, SubDecrVars WA}

104

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

3.2.1 Language Details

In Table we presented the set of terminals in the DSL used in this thesis. The
meaning of some of those terminals may be obvious to the reader, as they directly
reference concepts introduced in Section while others may not. In this subsection
we describe explicitly what is meant by each of the terminals in Table [3.2]

For brevity, some of the terminals are simple to understand, and their meaning

can be given in a single sentence. These are as follows:

e Terminals with an Integer type are whole numbers that can either be positive

or negative.

e Excluding Adapt, terminals with a Probability type are real numbers between
0.0 and 1.0.

e Terminals with an Age type are whole numbers that can only be positive.

e Terminals with a Comparator type represent functions that compare two num-
bers and return a boolean result. They are used as arguments to the functions

Filter, IfVarCompare and IfVarCond.

e Terminals with a FloatingPoint type are real numbers and can be positive or
negative. They are used exclusively as arguments to the functions Exponent-
Function, Polynomial and PolynomialNegative. We explicitly prohibit the
number 0 being used, as the function ExponentFunction is defined in such a

way that using 0 with it could create weights that were set at oco.

e The terminal EndList has a List VarProb type and represents the empty list.
It is used in conjunction with NextElement and WeightedVarPick to end a list

of VarProb functions.

In the remaining parts of this subsection, we detail the meaning behind the rest
of the terminals in Table 3.2
Clause Weighting

There are several pairs of terminals in the DSL that have nearly identical names. For
example PosGain and PosGain WA. In each pair, one has a _WA suffix and one does

not. Each terminal in each pair represents some concept or idea that uses a clause’s

105

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

weight in its description. Those terminals without the WA suffix use static clause
weighting (referred to as BASEWEIGHT) and those with the _WA suffix use dynamic
clause weighting (referred to as PAWSWEIGHT). In Definition [12| we referred to a
static weighting scheme as 1. This shorthand is interchangeable with BASEWEIGHT.
To be clear to the reader, when we refer to static clause weighting, we refer to clause
weights that do not change. On initialisation, each clause’s weight is set at 1 and
remains constant as the local search algorithm runs.

Dynamic clause weighting refers to clause weights that change as the overarching
local search algorithm progresses. As discussed in Section [2.3.4] there are many
different dynamic clause weighting schemes that have been proposed. We use a
single dynamic clause weighting scheme in our DSL, which is described as follows; on
initialisation, all weights are set at 1. The weight update function used is that shown
in Algorithm We use specific rules regarding when the weight update function

is invoked, given as follows:

e [f the terminal UpdatePAWS is contained within the heuristic, then the weights
are only updated at the end of each iteration of local search if the UpdatePAWS

terminal has been evaluated. Otherwise, they are not updated.

e If the heuristic does not contain the UpdatePAWS terminal, then the clause

weights are updated at the end of each iteration of the local search loop.

These rules allow us to design heuristics whose weights update either on every
epoch of the local search, or only when certain criteria has been met.
Throughout the remainder of this subsection, we explain what is meant by each

of the terminals that use static or dynamically weighted clauses in their formulation.

Gain Type

“Gain type”, a term first used by Fukunaga [60], is the name we attribute to the type
signature of terminals that represent some metric associated with a variable. For
a variable v and gain type g, we write g(v) to obtain v’s g value. Each gain type
value g(v) represents some change that flipping v will have on the overall solution.
For example, the gain type NETGAIN computes the overall change in the number of
satisfied clauses should the variable v be flipped. All of the gain types in Table 3.2 are

either directly represented by, or directly inspired by, previously described variable

106

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

metrics in Section 2.3l We refer the reader to Definitions [13] to I3 and 8] to 20 for
details. In our DSL we have a static and dynamic weighted variant of each gain type.

We use two generic definitions which, when instantiated with the correct arguments,
can be used to formally define what is meant by each of the twelve gain types in the
DSL. These definitions are also used in Section |3.3.3, when showing how a generic

gain type is updated efficiently. The definitions are as follows:

Definition 21 (Base Gain Type Metric)
A base gain type g is a triple of (W, b, i), where W is a clause weighting scheme, b
18 a boolean value, and i is an integer.

For a SAT problem F, variable v € VARS(F') and complete assignment A, this is
a metric associated with a variable that represents the number of clauses that would
transition between specific states if v is flipped. If b is True, it represents the number
of clauses whose number of True variables will transition from i to some other number
if v is flipped. If b is False, it represents the number of clauses whose number of
True variables will transition from some other number to i if v is flipped. It can be

computed as:

W. TRUELITS(A, ¢) =1

> (3.4)

¢ € (b 7 TRUELITSET(F, A, v) : FALSELITSET(F, A, v)) 0 otherwise

To refer to this value, we write gw (A, F, v). If the assignment, SAT formula and
weighting scheme are obvious from the context, we write g(v). If a set of variables
are ordered according to g, they are ordered from smallest to largest if b is False and

largest to smallest if b is True. All base gain type values are positive integers.

Definition 22 (Compound Gain Type Metric)
A compound gain type g consists of a pair of base gain types g1 and gs.

For a SAT problem F, variable v € VARS(F') and complete assignment A, this is
a metric associated with a variable that represents the difference between the number
of clauses that would transition between the states described by g1 and go if v is flipped.

It can be computed as:

9(v) = g1(v) = g2(v) (3.5)
To refer to this value, we write gw (A, F, v). If the assignment, SAT formula and
weighting scheme are obvious from the context, we write g(v). If a set of variables

are ordered according to g, they are ordered from smallest to largest. Compound gain

type values can be positive or negative integers.

107

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

Table 3.3: All of the gain type metrics defined in the DSL, described in terms of
Definitions |21} and Each compound gain type has two entries. The upper entry is

g1 and the lower is go. For each we show its W, b and ¢ values.

Name Type W b 7
PosGain Base BASEWEIGHT False | 0
NegGain Base BASEWEIGHT | True |1

BASEWEIGHT False | 0
NetGain Compound

BASEWEIGHT True |1
PosGain_WA Base PAWSWEIGHT | False | 0
NegGain WA Base PAWSWEIGHT | True |1

PAWSWEIGHT | False | 0
NetGain_WA Compound

PAWSWEIGHT | True |1
SubPosGain Base BASEWEIGHT False | 1
SubNegGain Base BASEWEIGHT | True | 2

BASEWEIGHT True | 2
SubNetGain Compound

BASEWEIGHT False | 1
SubPosGain_WA || Base PAWSWEIGHT | False | 1
SubNegGain WA || Base PAWSWEIGHT | True | 2

PAWSWEIGHT | True | 2
SubNetGain WA || Compound

PAWSWEIGHT | False | 1

In Table [3.3| we show the parameters required to instantiate the twelve gain types in
the DSL using these definitions.

For the majority of the functions in Table that require a gain type terminal,
their implementation details are relatively simple to understand, as the way in which
they are defined follows from the research presented in Chapter 2l The exceptions are
the functions ExponentFunction, Polynomial and PolynomialNegative. These are
functions inspired by the exp, exp-break-only, poly and poly-break-only functions
described by Balint and Schoning [12] (see Section [2.3.5). In that original work, the
authors designed the functions to be used exclusively with variable metrics represented
as positive integers. The functions were used to assign weights to variables, and
therefore the output had to also be a positive number.

In our language we were unable to create exact copies of the functions described

108

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

by Balint and Schoning. This is because some of the variable metrics in the DSL
return negative numbers. Instead, we designed three functions ExponentFunction,
Polynomial and PolynomialNegative that could be used to create functions analo-
gous to the exp, exp-break-only, poly and poly-break-only functions. Our functions
were extended so that they could take negative integers as input. When given a
negative number, a very small positive number is given as output. We believe that
this is the most intuitive design choice we could make, and is in keeping with the
intentions of Balint and Schoning.

Finally, the reader may question why we do not use a variable metric representing
the AGE of a variable. This is because we felt that the AGE metric would be difficult to
resolve with some of the used functions - for example, IfVarCond and IfVarCompare.
Instead, we included specialised functions that can either pick a variable with the
maximum AGE (Pick0Oldest), use the AGE to determine tie-breaks (GetBestVarAge,
GetBestVarAgeM), or use the AGE to pick from two variables (IfTabu, IfNotMinAge,
GetOldestVar).

Broken Clauses

RBC-N and RBC_WA-N are two terminals that represent a currently unsatisfied clause
in the SAT problem. The “N” in each is a placeholder, that in a language is replaced
with a positive integer. This allows multiple broken clauses to be used in a single
heuristic.

RBC-N returns a currently unsatisfied clause, chosen from all unsatisfied clauses
with equal probability. RBC_WA-N also returns a currently unsatisfied clause, but
picks the clause in a different way. Each clause’s dynamic weight is used as part of a
weighted pick to choose the unsatisfied clause. This is intended to have the effect of
making highly weighted clauses more likely to be picked. This specific form of clause
selection is not one that we have seen described in the literature previously.

To be clear to the reader, if we have the terminal RBC-0 appearing twice in a
heuristic, then every time that the heuristic is invoked, a random broken clause c is
chosen to represent RBC-0. Every occurrence of RBC-0 is then substituted for c¢. In
addition to this, if we have two broken clauses (for example RBC-0 and RBC-1), it is
possible that on a single invocation of the heuristic, they could both choose the same

clause.

109

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

Other Variable Sets

DecrVars, its Sub and dynamically weighted variants are dynamic sets of variables
that can potentially be empty. They all have a type signature of Maybe VarSet. By
“dynamic sets of variables”, we mean that the variables in these sets can change as the

local search algorithm progresses. Each of the variable sets are described as follows:

e DecrVars is defined exactly as is described by the dynamic set DECRVARS in
Section 2.3.2

e DecrVars_WA is defined exactly as is described by the dynamic set DECRVARS in
Section [2.3.2), except it uses NETGAINpawswrienr instead of NETGAINB xspwricHT
to fill its set.

e SubDecrVars is defined exactly as is described by the dynamic set DECR-
VARS in Section [2.3.2] except it uses SUBNETGAINg spwricnr instead of NET-

GAINBASEWEIGHT tO ﬁll itS Set.

e SubDecrVars WA is defined exactly as is described by the dynamic set DE-
CRVARS in Section [2.3.2] except it uses SUBNETGAINpawswecnr instead of

The two remaining variable sets in the DSL can never be empty, and have a type

signature of VarSet. They are described as follows:

e CONF is the set of variables whose NVCC (see Section [2.3.6) value is set to

True.

e WEF is the complete set of variables in the SAT problem.

Adaptive Probability

In Table there is a single terminal listed that has a type of Probability called
Adapt. This terminal corresponds to an adaptive probability variable, such as those
in Section [2.3.3] It works as follows; on initialisation, the variable is set at 0.5.
The criteria for a change in probability and the update function that are used are
those described in Section [2.3.3] We also use the example constants provided in that

subsection.

110

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

3.2.2 Example Heuristics

The DSL we have described can be viewed as an extension of the DSLs used by
Fukunaga [60, 62, |61]. Our language uses several constructs from more modern
LS-SAT solvers; for example, the DecrVars and CONF terminals reference the dynamic

set of variables DECRVARS and the configuration checking metric NVCC, which

we described in Sections [2.3.2] and [2.3.6| respectively. These two constructs are used
to create the GZWSAT and SW. heuristics. We have also included a method of
choosing a variable using a weighted pick function, a mechanism used in the SPARROW
and PROBSAT heuristics.

In our DSL, we have chosen to include some novel and (as far as we are aware)

previously unused mechanisms, for which we have no prior evidence that they will
be effective components in the creation of heuristics. Specifically, these are the
SubDecrVars, SubDecrVars_WA and RBC_WA-N terminals. We chose to include them
as, due to the generic nature of the software created, we found it simple to add the
functionality to evaluate these terms. The inspiration behind their inclusion was
from our belief that they could potentially be effective components. The Sub variants
of DecrVars represent sets of variables that have a positive SUBNETGAIN value.
Picking from this set could prove useful as, for example, a diversification strategy.
The RBC_WA-N term represents picking a broken clause according to the dynamic
clause weights, which could prove useful in satisfying a clause that has previously
spent much of the local search algorithm unsatisfied.

In Figure [3.2] we show examples of some previously described heuristics created
using the DSL. In Figure we show WALKSAT in its tree-form. We choose to
describe the heuristics in this thesis using the form in Figure |3.2] as these are more
succinct than showing the complete trees, and we believe easier to understand.

Our DSL can express all of the heuristics described in Fukunaga’s work [60,
62, 61]. One of these heuristics, called DEPTH-2-2, is shown in Figure . The
DSL we have created does have some limitations, as some previously described
LS-SAT heuristics cannot be represented using it. Any of the heuristics described
in Section that utilise the CSCC method of configuration checking cannot be
described. The SPARROW heuristic, introduced in Section [2.3.5] cannot be described
as its diversification strategy cannot be formulated in our DSL. Many of the heuristics
in Section that use dynamic clause weighting schemes, other than the PAW S-like

scheme we have included in our language, cannot be described.

111

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

In addition to this, it is possible to write many heuristics in an imperative style
using the functions laid out in Table that cannot be represented by our DSL. In
designing our DSL, we did not aim for it to be a comprehensive format that could
describe all possible heuristics, rather the aim was to design a language that could
be used to represent many currently existing heuristics in a general enough format

that allowed other, potentially more effective, heuristics to be represented.

3.3 Running a Heuristic on a Problem Instance

The heuristic representation described in the previous section is designed for use with
program synthesis techniques. The representation is not designed in such a manner
as to describe heuristics that can be easily used as part of an overarching LS-SAT
solver. When used in an LS-SAT solver, a heuristic’s purpose is to direct the internal
search, and it may need to be evaluated millions of times on a single problem instance.
It is our desire for the heuristics that we automatically create, when used as part of
an LS-SAT solver, to run as efficiently as possible.

Heuristics designed by hand are usually written in a low-level programming
language such as C, and the overarching LS-SAT solver compiled with a high degree of
optimisation. The compiled program that is created will be in low-level machine code.
While it would be possible to convert our heuristic representation to a representation
that a compiler could comprehend, and then automatically build the heuristics, such a
process would be computationally expensive as it can take several seconds to compile
one program. Instead, we evaluate the heuristics at a software level.

It would be impractical to provide the same types of optimisations in our software
solution that a compiler such as C can. Yet, we do make an attempt to ensure the
heuristics run as fast as is reasonably possible. We perform some post-processing
on the created heuristics, and utilise them as part of an efficiently designed LS-SAT
solver. By doing this, while we may not achieve the same performance a compiled
heuristic would provide, we do reduce the overall time it takes to run the created
heuristics on problem instances.

In this section we describe the techniques we use to ensure the heuristic is evaluated

efficiently. Key to this are three steps:

e Deduce which auxiliary data structures are required to be maintained for a

specific heuristic to operate correctly.

112

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

GetBestVar WFF NetGain

WeightedVarPick

RBC-0

PolyNomialNegative 2.4 NegGain
EndList

(a) GSAT heuristic.

(b) PROBSAT heuristic using the poly-

break-only function with a constant of
2.4.

IfVarCond = NegGain O
GetBestVar RBC-0 NegGain
IfRandLt 0.5
GetBestVar RBC-0 NegGain
PickRandomVar RBC-0

IfNotMinAge RBC-0
GetBestVar RBC-0 NetGain
IfRandLt 0.5
GetBestVarSnd RBC-0 NetGain
GetBestVar RBC-0 NetGain

(c) WALKSAT heuristic with a noise pa-

rameter value of 0.5.

(d) NOVELTY heuristic with a noise pa-

rameter value of 0.5.

IfIsNull
GetBestVarAgeM DecrVars NetGain
IfRandLt 0.01
PickOldest RBC-0
IfNotMinAge RBC-0
GetBestVar RBC-0 NetGain
IfRandLt Adapt
GetBestVarSnd RBC-0
NetGain
GetBestVar RBC-0 NetGain

IfRandLt 0.01
PickRandomVar RBC-0
IfIsNull
GetBestVarAgeM DecrVars_WA
NetGain_WA
UpdatePAWS
IfNotMinAge RBC-0
GetBestVar RBC-0
NetGain_WA
IfRandLt Adapt
GetBestVarSnd
RBC-0 NetGain_WA
GetBestVar RBC-0
NetGain_WA

(e) G2WSAT heuristic, using ADAPT-
NOVELTY-++ as its internal diversifica-

tion strategy.

(f) cNOVELTY+ heuristic.

Figure 3.2: Eight examples of previously described, hand-crafted heuristics formulated
using the DSL described in Tables and .

113

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

IfIsNull GetOldestVar
GetBestVarAgeM GetOldestVar
Filter > NetGain_WA O GetBestVar RBC-1 PosGain
CONF GetBestVar RBC-0 NetGain
NetGain_WA GetOldestVar
UpdatePAWS GetBestVar RBC-0 NegGain
PickOldest RBC-0 GetBestVar RBC-1 NegGain
(g) SWc heuristic. (h) DEPTH-2-2 heuristic.

Figure 3.2: Eight examples of previously described, hand-crafted heuristics formulated

using the DSL described in Tables [3.1{ and . (Continued)

IfVarCond

IfRandLt

{GetBestVar} {PickRandomVar}

]][

Figure 3.3: The WALKSAT heuristic, shown in Figure visualised as a program

tree.

114

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

e Convert the heuristic to a format that is suitable for the (potentially) millions

of evaluations performed when solving a SAT problem.

e Design the overarching local search algorithm in such a way as to update the

required auxiliary data structures correctly.

In the next three subsections, we show how these steps are achieved.

3.3.1 Deduction of a Heuristic’s Requirements

The aim of this step is to analyse the heuristic and deduce which auxiliary data
structures are required, and therefore need to be maintained as the overarching
LS-SAT solver is running. By auxiliary data structure, we specifically mean those
mechanisms that underpin the choosing of randomly broken clauses, the maintenance
of dynamic sets of variables, the storage of gain type values and dynamic clause
weights, and the maintenance of adaptive probability data. We do this by identifying
terms in the heuristic which correspond to clear requirements about which specific
auxiliary data structures are required.

To record which of these are needed, and the relationship between them, a data
structure called DATA-REQUIRED is used. The components of the DATA-REQUIRED
structure are described in Table [3.41

Table 3.4: The set of member variables in the DATA-REQUIRED structure, together
with an explanation of their meaning. The information stored concerns
which auxiliary data structures are required by a heuristic, as well as

identifying the relationships between the components.

clauses set<Clause>

This is the set of unique identifiers that correspond to randomly chosen clauses

required by the heuristic. Their inclusion in this set means that the mechanisms

to pick and store them must be in place.

Continued on next page

115

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

Table 3.4: The set of member variables in the DATA-REQUIRED structure, together
with an explanation of their meaning. The information stored concerns
which auxiliary data structures are required by a heuristic, as well as

identifying the relationships between the components. (Continued)

variable_sets set<VarSet>

This is the set of variable sets that are required by the heuristic. By “variable
set”, we refer to any set of variables that are not broken clauses. Most of
these are dynamic sets, whose members can change after each iteration of the
overarching local search algorithm. Their inclusion in this set means that the

mechanisms to store and maintain them must be in place.

weights set<Weight>

This is the set of clause weights that are required by the heuristic. In our
implementation, there are only two types - BASEWEIGHT and PAWSWEIGHT.
Their inclusion in this set means that the mechanisms to store and maintain
them must be in place. For each weight, we also store at which point in the
algorithm they are updated (see Section for more information regarding
this).

gain_types set<GainType>

This is the set of gain types that are required by the heuristic. Their inclusion
in this set means that the mechanisms to store and maintain them must be in

place.

adapt_probability Bool

This is a boolean variable denoting whether an adaptive probability variable is

required by the heuristic. If this is set to T'rue, it means that the mechanisms

to store and maintain an adaptive probability variable must be in place.

Continued on next page

116

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

Table 3.4: The set of member variables in the DATA-REQUIRED structure, together
with an explanation of their meaning. The information stored concerns
which auxiliary data structures are required by a heuristic, as well as

identifying the relationships between the components. (Continued)

gt_vs_requirement map<(GainType,VarSet) ,Requirement>

This is a mapping from a pair of gain type and variable set to a requirement.
This is for variable sets that are either partially sorted or filtered according to
a gain type. By storing this relationship, we can communicate that when a
gain type is updated, so are these orderings. Their inclusion in this set means
that the mechanisms to store and maintain the variable sets with the given

requirements must be in place.

gt_clause_requirement map<(GainType,Clause) ,Requirement>

This is a mapping from a pair of gain type and clause to a requirement. We
do not keep information pertaining to any orderings or filtering of clauses
as the algorithm runs, as there may be many clauses, and this would be
computationally expensive to maintain. Instead, we store the information
about how many times a gain type ordering or filtering of a clause may be
needed by a heuristic. By doing this, we can memoize this data if it’s needed

more than once.

gt_vs_update map<GainType,vector<VarSet>>

This is a mapping of gain types to vectors of variable sets. Some dynamic
variable sets (such as DecrVars) are defined in terms of a gain type, and when
this gain type is updated, so is the dynamic set. By storing this relationship,
we can inform the algorithm that, when a gain type changes, a dynamic set
should also be updated.

weight_gt_update map<Weight,vector<GainType>>

This is a mapping of weights to vectors of gain types. Some gain types (such
as NegGain WA) are defined in terms of a clause weighting. By storing the
relationship between gain types and weights, we can inform the algorithm that,
when a specific clause weight changes, certain gain type values should also be

updated.

117

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

We do not show the algorithm to compute the DATA-REQUIRED data structure.
However, we show an example of how it is instantiated in Table[3.5] The instantiation
is for the GNOVELTY+ heuristic, shown in Figure This instantiation follows

from the following observations:

e The heuristic requires a single unsatisfied clause to be chosen.
e The heuristic requires the dynamic variable set DecrVars WA be maintained.

e The heuristic requires the dynamic clause weighting scheme PAWSWEIGHT
be maintained. This can be seen from the use of the terminals NetGain_WA and
DecrVars_WA.

e The heuristic requires the NetGain WA gain type be maintained, as it is used in

both the unsatisfied clause and the DecrVars WA dynamic set.
e An adaptive probability is required for this heuristic.

e The heuristic requires that the DecrVars_WA dynamic set be partially ordered,

as the best variable according to the NetGain WA is required.

e The two best variables in the chosen broken clause under the ordering imposed
by NetGain WA may be required. If this is computed, this data should be

memoized as it is used more than once.

e Due to the use of DecrVars WA, when the NetGain WA is updated, this dynamic

set may also need to be updated.

e Due to the use of the dynamic clause weighting in NetGain WA, when clause

weights are updated, this gain type will also need to be updated.

This part of the heuristic evaluation process identifies the data structures required
for a heuristic to operate correctly, as well as the relationships describing how the data
is updated. We have designed an LS-SAT solver that can understand this information.
It sets up both the correct ordering of the update functions and the memory locations
for the required data. In the next subsection, we show how a heuristic is converted

to a format that can be used with this LS-SAT solver.

118

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

Table 3.5: The instantiation of the DATA-REQUIRED structure for the heuristic

GNOVELTY+.
Member Variable Value
clauses {RBC-0}
variable_sets {DecrVars WA}
weights {PAWSWEIGHT(de faultUpdate = False)}
gain_types {NetGain WA}
adapt_probability True
gt_vs_requirement {((DecrVars_WA, NetGain WA) —

(sortFirstN =1, calls = 1))}
gt_clause_requirement || {((RBC-0, NetGain WA) —
(sortFirstN = 2, calls = 3))}
gt_vs_update {(NetGain WA — [DecrVars WA|}
weight_gt_update {(PAWSWEIGHT — [NetGain WA]}

3.3.2 Evaluating the Heuristic Function

After the heuristic has been analysed, the required data identified, and the rela-
tionships regarding when data is to be updated calculated, the heuristic is then
post-processed to a machine-code-like format designed to be efficient to run.

We call this format the internal-form of the heuristic. Conceptually it is repre-
sented as a list of bespoke instructions. Each instruction performs some operation
that is part of the overarching variable selection function. Evaluation begins at the
start of the list, and proceeds to the end of the list. There are some instructions
that change the control flow - by jumping to a later instruction. When all the
instructions have been evaluated, the variable to be flipped will have been inserted
into a pre-determined place in memory - always general _data[0].

While it would be possible to use the original tree-based variant of the heuristic to
compute the variable to flip, by using this format we reduce the overall computational
overhead considerably. Traversing the tree-form of the heuristic is itself computa-
tionally expensive (in comparison to traversing an array) and, when evaluating a
heuristic millions of times, this overhead reduces overall efficiency of the local search
algorithm.

While we do not provide details of the internal-form representation, great care

119

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

Algorithm 3.1 Detailed LOCAL-SEARCH for SAT

Input: F SAT problem instance in CNF.
maxFlips Maximum number of iterations to run for.
h Heuristic to be used.
Output: Pair of boolean and integer. Boolean is T'rue if solution is

found, False otherwise. The integer denotes the number

of flips local search undertook.

algorithm LOCAL-SEARCH(F, maxF'lips, h)
assignment = INITIALISE(F)
if (SATISFIED(assignment, F)) then return {True,0}

for (iteration € {1...maxFlips}) do
varToFlip = RUN(h)
UPDATE-DATA (varToFlip)
assignment[varToFlip] = —assignment[varToFlip)
if (SATISFIED(assignment, F)) then return {True, age}

UPDATE-WEIGHTS()

return {False, maxFlips}

was taken to ensure that it produces the correct values and is consistent with the
descriptions of the DSL given in Section [3.2] An example of the internal-form of
a heuristic is shown in Figure [3.4] It shows the internal-form of the GNOVELTY-+

heuristic. It has been simplified to make it human-readable.

3.3.3 Overarching Local Search Algorithm

After it has been determined what data is required of a heuristic h, and h converted
into a format that can be quickly evaluated, these two parts are brought together
to create the overarching local search algorithm utilising i that can be ran on SAT
problem instances. In this subsection we explain how the local search algorithm
works.

In Algorithm we present the pseudocode of the local search algorithm. It can
be considered a more detailed version of the pseudocode shown in Algorithm [2.2] Tt

contains five functions, which are described as follows:

120

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

Index | Instruction Memory Locations | Numeric Data

1 PICK_CLAUSE_NO_WEIGHT {clauses[0]} —

2 SMALL_SORT_MEMOIZED {smallSorts|0], —
gaintype_datal0],
clauses|0]}

IF_RAND_LT {instr[6]} 0.01

PURE_1_RND_RND_CLG {clauses|0], -
general data[0]}

5 JUMP {instr[15]} —

6 MAYBE_1_GBV_AGE_SET {large_data[0], —
general data[0],
gaintype_datal0]}

7 IF_IS_NULL {general data0], -
instr[15]}

FORCE_WEIGHT_UPDATE {weights[0]} —

PURE_1_GBV_RND_CLM {small_sorts|0], -
general datal0]}

10 IF_NOT_MIN_AGE_CLAUSE {clauses|0], —
general data[0]
instr[15]}

11 IF _RND_LT_ADAPT {adapt[0], —
instr[14]}

12 | PURE_2_GBV_RND_CLM {small_sorts[0], -
general data[0]}

13 JUMP {instr[15]} —

14 PURE_1_GBV_RND_CLM {small_sorts|0], —
general data[0]}

Figure 3.4: The internal-form of the heuristic GNOVELTY+, shown in Figure .
The instructions are processed in the order they are presented. Each instruction has
a set of arguments referring to pre-determined locations in memory where results
are either stored or are to be stored. Some instructions require additional numerical

data, such as IF_RAND_LT.

121

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

e INITIALISE: This function initialises each variable in the assignment with a

randomly chosen boolean value.

e SATISFIED: This function checks whether the assignment satisfies the SAT

problem.

e RUN: This function evaluates the internal-form of the heuristic h. It returns

the variable to be flipped.

e UPDATE-DATA: This function updates the internal data that will change when

the variable varToFlip is flipped.

e UPDATE-WEIGHTS: This function updates the weights of the clauses if it
is required. This can change many other auxiliary data structures in the
algorithm such as gain types that rely on weights. The relationships that
describe what data needs to be updated are detailed in the DATA-REQUIRED
structure, described in Table [3.4]

Below we detail how two components of the function UPDATE-DATA are for-
mulated, and then provide an outline of the UPDATE-DATA function. These two
components are the clause data update function and the gain type data update
function. The clause data update function keeps track of which clauses are currently
satisfied, and the gain type data update function updates arbitrary gain type data

when a variable is flipped.

Clause Data Update Function

Conceptually, the goal of an LS-SAT algorithm is to satisfy all clauses - thus proving
the formula to be True. The naive method to identify when this occurs would be to
check all clauses after each iteration of the local search loop, yet this would obviously
be computationally expensive to continually perform. Instead, we maintain two data
structures that allow us to do this efficiently. The first is called N-TRUE-VARS. This
is a matrix containing integers. Each index of the matrix represents the numerical
identifier of a clause ¢, and the contained element shows the total number of literals
within ¢ that evaluate to True. The second is called N-TRUE-SETS, which is a
matrix of sets of clauses. Each index of the matrix corresponds to the total number
of T'rue literals that all clauses contained within that element have. By probing the

size of the 0" element in N-TRUE-SETS, we can quickly see whether the formula

122

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

is satisfied - as if there are no clauses with zero True literals, the assignment must
satisfy the formula as all clauses will have at least one satisfied literal. This is how
the SATISFIED function checks to see whether the formula is satisfied.

When a variable v is flipped, we update these data structures in the following
way. As we know that all the clauses in the TRUELITSET(v) set will have their
N-TRUE-VARS value reduced by 1, and those in the FALSELITSET(v) set will have
their value increased by 1, we can update N-TRUE-SETS using these sets, and quickly

deduce whether an assignment satisfies the formula. An example of this is shown in
Figure [3.5

Gain Type Update Function

For any given heuristic, its DATA-REQUIRED structure describes which gain type
values will need to be maintained. By “maintained” we mean that, the correct gain
type values for each variable in a given problem may be required by the heuristic. In
our implementation the gain type data is kept in a matrix. Whenever a variable is
flipped or a clause’s dynamic weight changes, this can change the gain type values
for some variables in the problem, and therefore they will need to be updated.

Rather than re-computing these values from scratch every time they change, it is
more efficient to only compute the changes in the values. When a dynamic weight
changes, this is relatively easy to do. For a gain type g represented by the triple (W,
b, 1), when the weight W, of a clause ¢ changes by d, then for each [€ LiTs(c) the
gain type of g(VAR(l)) changes by d.

When a variable is flipped, the changes in gain type value are harder to compute.
Other researchers [15] |62] have considered update functions for a single (what we call)
gain type metric, such as NEGGAIN or POSGAIN. We use a generalised technique
which follows from our generalised definitions of gain types that allow us to maintain
and update all the different gain types described in our DSL.

As an example, let us consider SUBNEGGAIN; (represented by the terminal
SubNegGain). When a clause ¢ has 2 True literals, all of the True literals “fire” in
that clause c. That is to say, the SUBNEGGAIN; value for the variables in those
literals includes the weight of ¢. For a variable v in the SAT problem, its associated
SUBNEGGAIN; value is the sum of the weight of every clause that has exactly 2
True literals in, which also contains v in a literal that evaluates to True. When a

clause ¢’s N-TRUE-VARS value changes from 2 (to either 3 or 1), the True literals

123

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

Clause Index 1121314567819 10
True Literals | 3|01]|1[2|1]02[1]2

True Variables || Clauses

0 {2,7}

1 {3,4,6,9}
2 {5,8,10}
3 {1}

(a) An example of the N-TRUE-VARS (upper) and N-TRUE-SETS (lower) data structures
at a point in an LS-SAT algorithm. The formula is unsatisfied by the current assignment,

as there are currently clauses with zero True literals.

Clause Index 11234567]8]9]10
True Literals || 21 |1(2[2|1|0f1/0]3

True Variables || Clauses
0 {7,9}

1 {2,3,6,8}
2 {1,4,5}

3 {10}

(b) An example of the N-TRUE-VARS (upper) and N-TRUE-SETS (lower) data structures
at a point in an LS-SAT algorithm. These examples show the changes made to the two
data structures compared to those shown in Figure after a variable has been flipped.
The variable flipped had a TRUELITSET containing clauses {1, 8,9} and a FALSELITSET
containing clauses {2,4,10}. In N-TRUE-VARS green indicates clauses whose number of
satisfied literals has increased, while red denotes clauses whose number of satisfied literals

has decreased.

Figure 3.5: Examples of two arbitrary N-TRUE-VARS and N-TRUE-SETS data
structures at a point in an LS-SAT algorithm. The data structures in Figure [3.5b] are
obtained from the data structures in Figure after a variable has been flipped.

124

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

within ¢ have to subtract ¢’s weight from their respective variable’s SUBNEGGAIN;
value - that is to say, the gain type metric needs to be updated. When a clause ¢
whose N-TRUE-VARS value becomes 2 after a variable is flipped, all the T'rue literal’s
variables in that clause must now add the weight of ¢ to their SUBNEGGAIN; value.

To generalise this for any gain type, we use that gain type’s threshold value -
from Definition [21] this is . When a clause ¢’s number of True literals equals the
threshold value, all of the T'rue (or False) literal’s variables in ¢ must now fire. If
the gain type’s b value is T'rue, all the True literals in ¢’s variables fire. If b is False,
all the False literals in ¢’s variables fire. This corresponds to increasing the gain
type values for the literal’s variables according to the weight of ¢. When ¢’s number
of T'rue literals moves away from the threshold value, all the literal’s whose variables
are firing must now stop - that is, their gain type value must decrease. For compound
gain types, there are two threshold values. We use two separate update functions for
them, but point them at the same memory location when changing the gain type
values.

To update the gain type value of all of the relevant literal’s variables in a clause ¢,
we need a structure that can return all of the current variables which are part of a
True literal in ¢, and all of the current variables which are part of a False literal in
c. This is done using a data structure called VAR-P0S. VAR-POS is a matrix, where
each index represents a clause ¢’s numerical identifier. The elements of VAR-POS are
conceptually pairs of sets; the first element in the pair is the set of variables which
are part of a current True literal in ¢, and the second element is the set of variables
which are part of a current False literal in c. In reality the two sets are represented
as a single fixed-sized array. The N-TRUE-VARS|c| value informs us of the boundary
between the two sets. Two examples of the VAR-POs data structure are shown in
Figure [3.6]

As the local search algorithm progresses, the VAR-P0S structure will need to
be updated. This occurs when a literal in a clause ¢ changes from being satisfied
to unsatisfied (or vice versa). When this happens, ¢’'s VAR-POS sets need to be
updated. In our LS-SAT solver we perform this update operation in ©(1) time. When
a variable v is flipped, we change VAR-P0s|c|’s flat array by moving v from wherever
it was to the new boundary value (denoted by N-TRUE-VARS|c|). However, since we
do not know where v was originally in VAR-P0s]c|, we have to locate its index in

VAR-POs|c]. A naive search in a clause of size [would take O(I) time.

125

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

To perform this update operation in ©(1) time, we maintain an additional data
structure called VAR-P0s-Pos. Conceptually VAR-P0s-Pos is a matrix of matrices;
each outer index refers to a clause ¢, and each inner index to a variable v. VAR-
Pos-Pos’s [c][v] value informs the algorithm of where v is in VAR-Po0s][c|. When v’s
position changes in VAR-POs|c|, we can update VAR-P0s-Pos|c][v]’s value with its
new position.

Usually, when given a SAT problem F, the size of F’s clauses are small in
comparison to the number of variables in F'. Under these circumstances, VAR-POSs-
Pos will be a sparse matrix. We take advantage of this to reduce VAR-P0s-Po0s’s
memory footprint significantly by storing multiple clause’s VAR-P0S-Po0s elements
in a single outer array index - as long as a set of clauses do not share a single
variable, they can be stored in the same VAR-P0S-P0S element. Two examples of

the VAR-P0S-Pos data structure are shown in Figure (3.6

The remaining functions we use to update a SAT problem’s data structures are
relatively simple to understand. Therefore, we do not include an explanation of
their construction. However, an outline of the UPDATE-DATA algorithm is shown
in Algorithm [3.2] The structure of UPDATE-DATA is inspired by update algorithms
described by Fukunaga [62] and Balint et al. |15].

3.4 Evaluating a Heuristic’s Performance

In this section we provide details regarding the fitness function and testing set used
throughout this thesis. The format of this section is as follows; in Section we
present the fitness function used to evaluate heuristics. In Section we present the
results from running some well-known, hand-crafted heuristics on the fitness function.
Finally in Section we present the testing set used to evaluate a heuristic’s
performance on a wider range of problems. We also present the results from running

some well-known heuristics on the testing set.

3.4.1 Fitness Function

To compute the fitness of a heuristic h, it is used with the LS-SAT solver shown in
Algorithm to solve a set of SAT problem instances. The set of problem instances

is broken up into subsets based on each problem’s number of clauses and variables.

126

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

Position Index || 1 2 3 4 5

Variable 10 | 15 | 20 | 21 | 22
Variable || 10 15 20 | 21 | 22
Position || 1 2 3 |14 |5

(a) Example of the VAR-P0OS (upper) and VAR-P0s-Pos (lower) matrices for a single clause.

Position Index || 1 2 |3 |4 |5
Variable 10 [15| 22 | 21 | 20
Variable || 10 15 201 21 | 22

Position || 1 2 5 4 3

(b) Example of the VAR-POS (upper) and VAR-P0S-P0s (lower) matrices for a single clause.
These are obtained from the data structures in Figure after the variable 22 has been

flipped. In this clause, this meant its corresponding literal now evaluates to True.

Figure 3.6: Examples of two arbitrary VAR-P0s and VAR-P0s-Po0s data structures at

a point in an LS-SAT algorithm. The green variables in the VAR-P0S data structures

signify literals containing that variable which currently evaluate to True. The red

denote those that currently evaluate to False. The data structures in Figure |3.6b

are obtained from the data structures in Figure |3.6a| after the variable 22 has been

flipped.

127

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

Algorithm 3.2 LS-SAT UPDATE-DATA Function

Input: v Variable being flipped.
Output: None.

algorithm UPDATE-DATA(v)
for (¢ € TRUELITSET(v)) do > Literals that were True become False.

INTERNAL-UPDATE(v, ¢, —1)

for (¢ € FALSELITSET(v)) do > Literals that were False become True.
INTERNAL-UPDATE(v, ¢, +1)

algorithm INTERNAL-UPDATE(v, ¢, change)
n = N-TRUE-VARS|(]
for (¢ € GAIN-TYPES) do
if (9.t = n) then
UNFIRE-GAIN-TYPE(g, v, ¢)
UPDATE-VAR-POS-MATRIX (v, ¢)
N-TRUE-VARS[c| = N-TRUE-VARS|[c] + change
UPDATE-N-TRUE-SETS(c)
for (¢ € GAIN-T'YPES) do
if (g9.i = n + change) then
FIRE-GAIN-TYPE(g, v, ¢)

128

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

Table 3.6: The set of problems used in the fitness function, which are broken up into
five subsets of problem instances. All of the problems are 3-SAT problem instances
around the phase transition region. We show the relevant data for each subset. “Max
Flips” refers to the maximum number of flips allowed before termination. “Pass
Criteria” describes the criteria used to decide whether to run the heuristic on the
next subset of problems. A heuristic terminates early if it cannot solve a single SAT

problem in the first, then the second subset of problem instances.

Problem

Size of Max Pass
Subset Variables | Clauses

Subset Flips Criteria
Name
uf50 10 50 218 500 | # solved > 0
uf100 15 100 430 750 | # solved > 0
uf150 20 150 645 | 1,000 None
uf200 25 200 860 | 2,000 None
uf250 30 250 1,065 | 3,000 None

In Table we show details of the problem sets which make up the fitness function.
All of the SAT problem instances have been taken from the SAT benchmark suitd}

When a heuristic is ran on a problem, the LS-SAT algorithm creates an initial
problem assignment randomly. In Table [3.6| each subset has an entry titled “Max
Flips”, which tells the LS-SAT algorithm the maximum number of flips every problem
within that subset can run for before the algorithm will terminate.

In the fitness function we use a mechanism that allows the fitness evaluation of a
heuristic to terminate early. It works by analysing the number of instances solved in
the current set and, if it’s deemed insufficient, the evaluation terminates early. In
Table [3.6] there is a column titled “Pass Criteria”. This column shows the criteria
used to judge whether to terminate early. If a heuristic is unable to solve any of the
SAT problem instances in the first set, it terminates early. This also occurs in the
second set of SAT problem instances. This early termination mechanism is inspired
by a similar technique used by Fukunaga [60, |63, 61]. We use this mechanism to

ensure that we do not spend unnecessary time evaluating ineffective heuristics.

Located at http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html. Specifically the sets uf50,
uf100, uf150, uf200 and uf250. The problems used are the first IV from these sets.

129

http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

Table 3.7: The fitness values of the heuristics shown in Figure according to

Equations and .

Heuristic Fitness
GSAT 6.800543
WALKSAT 21.500070
NOVELTY 26.800062

G2WSAT 31.000062
GNOVELTY-+ || 33.000054
PROBSAT 22.400061
SWec 46.100031
DEPTH-2-2 30.300056

Once h has been ran on all the required problem instances, the results are used

to compute F'(h) according to Equation ({3.6)).

1

F(h) = bl lved
(h) = # problems solved + # flips on satisfying runs

(3.6)

Five separate F'(h) values are calculated. The fitness f of a heuristic h is calculated

according to Equation (3.7)).

HORES WD)

f’s range is be between 0 and 101. The reader should note that, since the heuristics
are stochastic functions, a heuristic will not necessarily report the same fitness every

time it is ran through the fitness function.

3.4.2 Fitness of Known Heuristics

In this subsection we use previously known, effective heuristics to “benchmark” our
fitness function. When designing the fitness function, we wanted previously known
heuristics to report a reasonable score, while leaving room for new heuristics to
improve on this. The results in this subsection will allow us to compare the fitness
values of heuristics found through program synthesis to hand-crafted ones. We tested
the fitness function against the set of known SAT heuristics shown in Figure [3.2] the

results of which are presented in Table [3.7]

130

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

We can see from these results that the reported fitnesses for these known heuristics
are relatively low; from a maximum score of 101 no heuristic is able to achieve a score
even half of this. The best performing heuristic according to the fitness function
is SW¢e. The earlier described heuristics - GSAT, WALKSAT and NOVELTY -
reported the lowest fitness values, while the more modern heuristics - G2ZWSAT and
GNOVELTY+ - reported slightly higher fitness values. The automatically created
heuristic DEPTH-2-2 performs similarly to the more modern heuristics. PROBSAT
is described as one of the state-of-the-art LS-SAT heuristics in Section [2.3] yet it
performs relatively poorly in comparison to the other heuristics on the fitness function.

In the next subsection we describe the testing set of SAT problem instances, and

run the heuristics shown in Figure |3.2] on them.

3.4.3 Testing Set

The fitness function described in Section will be used to assign a fitness to
the automatically created heuristics. However, the SAT problem instances in the
fitness function are small and relatively easy to solve. We use a testing set of
problem instances to perform a more rigorous evaluation of some of the created
heuristics. Through the testing set, we hope to gain insight into how the created
heuristics perform on larger problem instances, and how their performance compares
to hand-crafted heuristics.

The testing set of SAT problems is outlined in Table 3.8 Like the fitness function,
it is comprised of several subsets of problem instances. The first five subsets are
taken from the SATLIBP, and the remaining subsets are from the Random track at
the 2009 SAT Competition®} All of the problems are 3-SAT instances in and around
the phase transition region.

The termination criteria for the testing set is based on time rather than the
maximum number of flips. Each subset in Table has an entry titled “Max Time”,
which is how long each heuristic is ran on each problem instance before it terminates.
The testing set uses this termination criteria as, in a real-world setting, flips are
not necessarily a good indicator of a heuristic’s performance. Some heuristics use

many additional data structures in their formulation, which have to be updated as

2The sets of SAT problem instances can be found at http://www.cs.ubc.ca/~hoos/SATLIB/

benchm.html.
SThe sets of SAT problem instances can be found at http://www.satcompetition.org/2009/.

131

http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
http://www.satcompetition.org/2009/

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

Table 3.8: The set of problems used in the testing set, which are broken up into
eleven subsets of problem instances. All of the problems are 3-SAT problem instances
around the phase transition region. We show data for each subset. “Max Time” is

the maximum time in seconds allocated to each of the problem instances in that set.

Problem

Size of Max
Subset Variables | Clauses

Subset Time
Name
uf50 1,000 50 218 1
uf100 100 100 430 10
uf150 100 150 645 10
uf200 100 200 860 10
uf250 100 250 1,065 10
ufv4000 10 4,000 | 16,800 100
ufv7000 10 7,000 | 29,400 100
ufv10000 10 10,000 | 42,000 100
ufv13000 10 13,000 | 54,600 100
ufv16000 10 16,000 | 67,200 100
ufv19000 10 19,000 | 79,800 100

the algorithm is running. This can increase the overall computation time of a single
iteration of local search. By measuring against time, we gain a better understanding
of how effective the heuristics truly are.

In Table |3.9 we show how the heuristics in Figure perform on the testing set.
From these results, we can see that generally all of the heuristics perform well on the
first five subsets of problem instances, with the exception of GSAT. These subsets
contain smaller SAT problem instances, which are usually easier to solve than larger
ones. If we look at the timing information, we can see that SW. could consistently
find satisfying solutions more quickly than the other heuristics, though it was unable
to solve as many instances as the most effective heuristics.

On the first five subsets of problem instances, GNOVELTY+ was the best perform-
ing heuristic. It could consistently solve all problem instances in each subset (apart
from on uf200, which WALKSAT was able to outperform it on), and do this more
quickly than the other heuristics that also solved all of the problem instances.

On the subsets containing larger problem instances, most of the heuristics were

132

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

Table 3.9: Results from running the heuristics in Figure on the testing set. For
each problem p and heuristic h, we ran h on p five times. We report the average
percentage of problems solved in each subset, and the average time (in seconds)
each heuristic took to solve those problem instances. Bold typeface shows the best

performing heuristic on that subset of problem instances.

Heuristic
> 5 iy = 2
= | 3| S5 5 5 | &8
Subset Name % X & = S 2 = i
@) < ®) ™) = wn [al
= z © Z £ A
50 43.0 100.0 99.8 100.0 100.0 100.0 99.6 99.7
u
0.0004 | 0.0008 0.0011 | 0.0008 | 0.0005 0.0008 0.0006 | 0.0005
£100 33.0 100.0 100.0 100.0 100.0 100.0 97.4 98.8
u
0.0008 | 0.0046 0.0051 | 0.0049 | 0.0027 0.0039 0.0024 | 0.0022
£150 16.0 100.0 100.0 100.0 100.0 100.0 98.0 99.0
" 0.0045 | 0.0168 0.0286 | 0.0244 | 0.0085 0.0132 0.0081 | 0.0198
£900 13.0 99.6 98.8 99.0 99.2 99.0 92.4 95.4
" 0.0465 | 0.1518 0.111 0.1107 0.059 0.0666 0.0255 | 0.0813
£050 13.0 99.8 99.8 99.0 100.0 99.0 97.0 93.2
" 0.0715 | 0.0701 0.1369 | 0.0782 | 0.1069 0.04 0.054 | 0.2197
0.0 12.0 40.0 10.0 74.0 80.0 0.0 0.0
ufv4000
0.0 3.8668 | 24.0208 | 0.9327 | 21.5379 | 16.234 0.0 0.0
0.0 6.0 0.0 2.0 60.0 90.0 0.0 0.0
ufv7000
0.0 4.6592 0.0 0.5891 | 19.8728 | 21.9236 0.0 0.0
0.0 0.0 0.0 0.0 8.0 34.0 0.0 0.0
ufv10000
0.0 0.0 0.0 0.0 6.4685 | 15.2547 0.0 0.0
0.0 0.0 0.0 0.0 0.0 26.0 0.0 0.0
ufv13000
0.0 0.0 0.0 0.0 0.0 22.1408 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ufv16000
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ufv16000
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

133

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

unable to solve many of the problems. The exceptions to this were GNOVELTY+
and PROBSAT. However both heuristic’s performance degraded as larger problems
were considered, with GNOVELTY+ unable to solve any instances in any subset after
ufv10000, and PROBSAT unable to solve any instances in any subset after ufv13000.

If we compare and contrast these results to those shown in Table[3.7, we can state
that, in general, the performance of the heuristics on the testing set correlates with
their performance on the fitness function with two clear exceptions. SW. doesn’t
perform as well as its fitness suggested, and PROBSAT performs much better than
its fitness suggested. For the former of these, we believe that SW reported a much
higher fitness due to the way in which the fitness function is formulated. SW_
requires the updating of auxiliary data structures that are relatively computationally
expensive to maintain. When evaluating its performance through time taken, we
can see that when it does find a solution, it does so quickly. We believe that these
auxiliary data structures slow the running of the heuristic, and since the fitness
function relies on flips, this is not apparent in its reported fitness. It is still an
effective heuristic, but one that relies on picking the “correct” variable, rather than
quickly moving through the search space.

On the other hand PROBSAT does not use data structures that require compu-
tationally expensive update operations. It is designed to be able to move through
the search space quickly and consider many different solutions in order to find a
satisfying one. When used on the fitness function, it is unable to do this, as it is
limited by the number of flips it can perform. However on the testing set, we believe
it is able to consider many more states than other heuristics and, when combined
with its effective design, appears to be highly successful at solving many different

sized problem instances.

3.5 Discussions & Conclusions

In this chapter we have provided an overview of how we represent heuristics in this
thesis, described the underlying architecture that allows us to run these heuristics,
and shown the way in which we evaluate heuristics using a fitness function and a
testing set of SAT problem instances.

This chapter is technical in nature, however there are some key observations

that can be drawn from the work described. Through our representation, we have

134

CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

designed a language that can describe many different types of heuristic in a single
form. We are able to write representations of many previously existing heuristics, yet
the representation allows us to compose these different heuristic methodologies in a
unified manner. This was one of our goals in the design of our heuristic evaluation
software, as we can now apply program synthesis techniques to this domain, and
potentially create new, effective heuristics.

To design a system that can evaluate any potential heuristic that could be
represented by this language, we had to develop methods of analysing these heuristics,
as well as design an LS-SAT solver that could react to the requirements of a heuristic.
Through this work, we identified a general method of defining gain types, and
presented mechanisms used to maintain the auxiliary data structures required by
each heuristic. Of particular note are the algorithms designed to update an arbitrary
gain type metric in constant time. In our research, we are aware of mechanisms to
compute the weighted and non-weighted POSGAIN, NEGGAIN and NETGAIN in
constant time [15], however we have found no descriptions of algorithms that can do
this for the SUB variants we use.

Using the results obtained from the evaluation of previously described heuristics
on the fitness function and the testing set, we will now be able to compare the
performance of automatically created heuristics to these previously known LS-SAT
heuristics. These results have also provided us with evidence that a heuristic which
performs well on the fitness function may not necessarily be successful at solving
many different sized problem instances. SW reported a high fitness value, yet did
not provide a high-level of performance on the testing set of problem instances. On
the other hand, PROBSAT did not report one of the higher fitness values on the
fitness function, but outperformed all other heuristics on the larger problem instances
in the testing set.

In the next chapter we use the systems we have developed in this chapter with
two program synthesis methods, exhaustive enumeration and GP, to automatically
create LS-SAT heuristics.

135

Chapter 4

Exhaustive Enumeration & Genetic

Programming

4.1 Introduction

In the previous chapter we provided the reader with specific details on how we
represent and evaluate heuristics. In Section we described several program
synthesis techniques, and in the conclusions to that section discussed which methods
we believed to be relevant to our work. Succinctly, we stated that, of the methods
described which had not been previously used to automatically create heuristics,
exhaustive enumeration appeared to be the most appropriate for the task. In this
chapter, we perform exhaustive enumeration on subsets of the DSL described in
Section [3.2] The aim of the work in this chapter is to ascertain whether exhaustive
enumeration is an appropriate technique to automate the heuristic creation process.
The enumeration of heuristics also provides us with the opportunity to perform an
analysis on the search space of heuristics described by the subset of the DSL we use.

In this chapter we also perform experiments using GP. GP is an established
methodology for automatically creating LS-SAT heuristics. Through the results from
the exhaustive enumeration and GP experiments, we are able to compare the two
methods of program synthesis for our use-case.

As stated previously, the experiments presented in this chapter are performed on
subsets of the DSL described in Section 3.2l We refer to each subset of the DSL as
a language. The languages used in this chapter are Language A and Language A1l.
The set of terms in each language are shown in Table [4.1]

136

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Table 4.1: Languages A and Al. All terms shown here are contained in Language
Al. Language A does not contain those terms with a star next to them. Specifically,
it does not contain WFF. In regards to the GP experiments in Section [4.3] terms with

a grey background are in the terminal set, and those with a white background are in

the function set.

Type Signature

Terms

VarSet — GainType — Var

{GetBestVar, GetBestVarSnd}

Var — Var — Var

VarSet — Var {PickRandomVar}
Probability — Var — Var — Var {IfRandLt}
VarSet — Var — Var — Var {IfNotMinAge}
Var — Var — Var {GetOldestVar}
Age — Var — Var — Var {IfTabu}
Comparator — GainType — Var — Var

{IfVarCompare}
— Var
Comparator — GainType — Integer —

{IfVarCond}

GainType {PosGain, NegGain, NetGain}
Age (5,10, 20,30, 40, 50}
Probability {0.1,0.3,0.5,0.7,0.9}

Integer {-2,-1,0,1,2,3,4,5}
Comparator {<,<,=}

VarSet {RBC-0, WFF*}

137

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

The terms used in Language A were chosen for two primary reasons. Firstly,
the set of heuristics that can be created using this language contains two previously
known, effective heuristics - WALKSAT and NOVELTY. When performing exhaustive
enumeration, if we enumerate enough of the search space, we are guaranteed to find
these previously known heuristics. Secondly, the experiments described by Fukunaga
[60, 63}, |61] were performed on a similar language to Language A, and several examples
of effective heuristics were reported. By using a similar language, we can compare
the effectiveness of the heuristics created from our experiments and those created
from Fukunaga’s work.

Language Al is almost identical to Language A, except that it includes the
additional term WFF. Language A can be described as a subset of Language Al -
all terms that appear in Language A appear in Language Al. The addition of
the WFF term allows us to explore a search space that contains other previously
described heuristics such as GSAT. It also allows us to compare the two languages,
and determine the effect that this additional term has on the topology of the search
space. In addition to this, the inclusion of WFF means that Language A1 more closely
resembles the language used by Fukunaga [60, 63, |61].

The reader may note that in Section we stated that our DSL could describe
the same set of heuristics that Fukunaga’s language could. Yet in this chapter we
only use languages that can represent a proportion of the heuristics described by
Fukunaga’s language. In Fukunaga’s work [60, 63, |61], there was no information
given pertaining to the range of values that terms with a type of Age, Integer or
Probability could have. In our languages, we include a range of terms with these
type signatures, however it is unlikely that the chosen terms are identical to those
used by Fukunaga, and therefore we cannot be certain that any language we create is
identical to that used by Fukunaga.

The format of this chapter is as follows; in Section we present the exhaustive
enumeration experiments, and in Section the GP experiments. In each of those
sections we show the methodology used and the results obtained from that section’s
experiments. We also highlight some of the best performing heuristics which were
created, and run them on the testing set of problem instances described in Section [3.4.3]
Finally in Section we present our discussions and conclusions from the work

described in this chapter.

138

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

4.2 Exhaustive Enumeration Experiments

In this section we detail the exhaustive enumeration experiments performed using
Languages A and Al.

The format of this section is as follows; in Section we discuss the number
of heuristics that could potentially be created by an exhaustive enumeration of the
languages, and from this data determine how much of the search space we enumerate.
In Section [4.2.2] we detail the methodology of the exhaustive enumeration experiments.
In Sections to we present the results of the experiments. In Section
we present the results in the order in which they are generated. In Section
we show results pertaining to the distribution of the fitness values of the evaluated
heuristics. In Section [4.2.5] we present data gathered concerning how quickly the
created heuristics were evaluated. Finally in Section we show specific examples
of heuristics reported to be effective according to the fitness function, and show how

they perform on the testing set.

4.2.1 Search Space Size

The search space of the languages described in Table is infinite, and therefore
an enumeration of all heuristics is impossible. We must determine what limitations
are to be placed on the exhaustive enumeration experiments to ensure that they
terminate in a reasonable amount of time. We will use the size of a heuristic to
determine whether it is to be evaluated, thereby making the search space finite.

To be clear to the reader, when we refer to the size of a heuristic, we refer to the
number of terms in that heuristic’s program tree representation.

To aid our understanding of the size of the search space of an arbitrary language,
we created an algorithm based on BOTTOM-UP-SEARCH (see Algorithm that,
when given a language L and size d, can determine the number of program trees of
exactly size d in L. In Table we show the exact number of heuristics in Languages
A and A1l of specific sizes, and in Figure 4.1| we show this data graphically. These
results show that, for both languages, the number of heuristics grows exponentially
in relation to the size of the heuristic, and tells us that it would be impractical to
enumerate all heuristics of a large size.

We can also make an observation about how the size of the search space of

Language A and Language A1 differs. Language Al is virtually identical to Language

139

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Table 4.2: The number of heuristics of a specific size in Languages A and Al. For

each size d, we show the exact number of program trees of size d in each language.

d Language A Language Al d Language A Language Al
1 0 0 11 12,173 108,368
2 1 2 12 62,238 558,144
3 6 12 13 223,155 2,017,536
4 0 0 14 714,542 7,155,312
5 1 4 15 2,264,475 29,360,224
6 24 100 16 8,040,276 133,042,608
7 189 804 17 32,104,239 585,809,872
8 614 2,608 18 116,861,220 2,331,681,856
9 1,272 5,456 19 414,649,530 9,448,276,608
10 3,996 22,576 20 || 1,440,234,132 | 40,105,399,680

A, and only contains one additional term. Yet, the number of heuristics in Language
A1 is much larger than in Language A. We assume that, if we were to use the complete
DSL in Section [3.2] the search space will grow even more quickly, and at low sizes,
enumeration would not be a suitable strategy for program synthesis.

Based on this data, we decided on a maximum size of 17 for exhaustively enu-
merating Language A, and a maximum size of 15 for Language Al. As Language Al
contains all terms in Language A, by enumerating Language Al we will enumerate all
heuristics in Language A. Therefore in conducting these experiments we will evaluate
exactly 79,375,663 unique heuristics. We note that even at this size, several previously
described heuristics will be recreated; specifically, WALKSAT (size 13), NOVELTY
(size 14) and, exclusively for Language A1, GSAT (size 3).

4.2.2 Methodology

The methodology of the exhaustive enumeration experiments we describe as follows;
given a size d and a language L, we used an algorithm based on the TOP-DOWN-
SEARCH algorithm (see Algorithm to enumerate all program trees in L containing
exactly d terms. Each created program tree was then evaluated against the fitness
function described in Section [3.4.1] We repeated the experiment for the range of d

values required to obtain the desired set of results for Languages A and Al.

140

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Number of Heuristics in Languages A & Al

1015 Language A

Language Al
1012 .

109 .

106 .

Number of Heuristics

103 .

100 1 1 1 I

0 5 10 15 20 25 30
Size of Heuristics

Figure 4.1: The number of heuristics of a specific size in Languages A and Al.

When performing the experiments, we provided an explicit ordering of terms
in the language to the enumeration algorithm, which affected the order that the
heuristics were enumerated in. We present some of the results using this ordering.
The algorithm that enumerated the program trees works by conceptually exploring a
search tree like that shown in Figure 2.9 When progressing the search, for any type
hole in a partial program, all possible instantiations of that type hole are made, and
the new partial program trees put back into the set of unprocessed partial program
trees. This means that the heuristics from our experiments were created in a specific
order, with all heuristics with the same first term grouped together, then the same
first two terms and so on. In effect, if we were to consider the results as a stream,
any heuristic in the stream when compared to the previous would usually only differ
by a single term.

The ordering of terms that we used to instantiate a type hole can be described as
follows; for any terms with the correct return type, the terms are ordered first by
type signature size, then the term’s type signature’s lexicographical ordering and, if
both are the same, then the term’s lexicographical ordering.

The experiments were conducted on a computer with 2 Intel Xeon E5-2630
processors with 6 cores (12 threads) each, running at 2.6GHz. The system uses a
64-bit operating system and has 32GB of RAM. The software is written in C++, and

141

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

is able to utilise all the cores on the machine it is ran on. In total, these experiments

took 13 days to run on this machine.

4.2.3 Results in Generated Order

In this subsection we show some of the results obtained from the exhaustive enumera-
tion of Languages A and Al. The heuristics in this section are presented in the order

that they are generated in by the enumeration algorithm.

Small Sized Heuristics

In Table we showed the number of heuristics of specific sizes in the two languages.
For very small sizes (< 5), the heuristics can be listed, as there are few in number.
In Table [4.3 we show these heuristics.

We can see from these results that, when compared to the fitness values reported in
Section for hand-crafted heuristics, these are not particularly effective heuristics.
We can also see that the heuristic GSAT is recreated. However, it is not the best
performing of the heuristics shown. In a rather surprising result, two heuristics that
choose the second best variable according to NETGAIN; and NEGGAIN; perform
slightly better than GSAT. However compared to other heuristics, such as those seen
in Section [3.4.2] these heuristics have a relatively low fitness value.

Larger Sized Heuristics

The number of heuristics of a larger size are much greater in number. Listing them
all would be impractical, and we therefore show the results in a series of graphs.
The full set of graphs can be found in Appendix [A] We present some results in this
subsection. Specifically, we show the results for Language A at sizes 10, 17, 13 and
14 in Figures [4.2] [4.3] and [4.7a] respectively. We also present partial results for
the heuristics in Language A1 of size 14 in Figure [1.7b] To be clear to the reader, in

all these graphs each data point represents the fitness of an individual heuristic.

142

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Table 4.3: The set of heuristics of a small size in Languages A and Al. The index on
the left represents the order in which the heuristics were generated in for that size.

The first number is the index of the heuristic in Language A1, and the second in

Language A.
Index | Size | Heuristic Fitness
1(1)) PickRandomVar { RBC-0 } 0.4
2 (-) PickRandomVar { WFF } 0.0
1(1) GetBestVar { RBC-0, NegGain } 4.0
2 (2) GetBestVar { RBC-0, NetGain } 4.0
3 (3) GetBestVar { RBC-0, PosGain } 1.0
4 (-) GetBestVar { WFF, NegGain } 0.4
5(-) GetBestVar { WFF, NetGain } 8.6
6 (-) 5 GetBestVar { WFF, PosGain } 0.0
7(4) GetBestVarSnd { RBC-0, NegGain } 11.8
8 (5) GetBestVarSnd { RBC-0, NetGain } 10.8
9 (6) GetBestVarSnd { RBC-0, PosGain } 1.8
10 (-) GetBestVarSnd { WFF, NegGain } 0.4
11 (-) GetBestVarSnd { WFF, NetGain } 2.0
12 (-) GetBestVarSnd { WFF, PosGain } 0.2
L) GetOldestVar { PickRandomVar { RBC-0 }, 0
PickRandomVar { RBC-0 }}
2 () GetOldestVar { PickRandomVar { RBC-0 }, 0
PickRandomVar { WFF }}
30) ° GetOldestVar { PickRandomVar { WFF }, 0
PickRandomVar { RBC-0 }}
40 GetOldestVar { PickRandomVar { WFF }, 0
PickRandomVar { WFF }}

143

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Exhaustive Enumeration Results, Language A, Size 10

50

40 A

30

Fitness

10 -

3,500 4,000

1,500 2,000 2,500 3,000
Heuristic Index (in Order Generated)

Figure 4.2: Results from the exhaustive enumeration experiments, showing the fitness

values for all heuristics in Language A of size 10. The heuristics are presented in the

order they are generated in.

144

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Ul POJRIOUSS IR A9([) IOPIO oY) Ul pajuasard oxe SOIISLINOY oY, "L OZIS

JO Yy oSenguer] Ul SOIISLIMAY [[€ I0] SoN[eA Ssouly oY) SUIMOYS ‘SIUOWLIOdXD UOIYRIDWNUS SATISTIRYXS 9} WOIJ SHNSAY € oINII

L0T X (pejeIouar) IOpI() Ul) XopuUJ OIISLINOY
0°¢ g¢'c 0¢ a1 01 g0 00

LT 071G ‘Y odengduer] ‘s)Msoy] UOTJRISWINUG] OAT)SIRIXH

SSOUNL

0¢

145

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Analysis of Results

In later subsections we discuss the distribution of fitnesses, as well as specific examples
of effective heuristics. However, there are some interesting observations that can be
made from the heuristics presented in the order they were generated in.

When examining the results in general, what is perhaps most striking is the
density and distribution of heuristics. Comparatively, there are many effective and
poorly performing heuristics of all sizes. Effective heuristics exist at many areas in
the search space, and are not clustered in a single area. Some graphs have clear peaks
- areas where there are many heuristics with a high fitness value. Figure contains
many examples of these peaks. In Figure we show a subset of the heuristics from
index 500,000 to 550,000 in Language A of size 14. In that graph we can clearly
see several distinct areas where there are many effective heuristics, and areas where
there are none at all. For example, between index 500, 000 and 510, 000 there are two
peaks, where concentrations of effective heuristics are clustered together in “strips”.

As the order that the heuristics are generated in controls the topology of the
results when visualised in this manner, this ordering is key to understanding these
peaks. The relationship between one heuristic and the next can be defined as an
“increment” of the first heuristic. By this we mean, the last term is incremented
according to the ordering imposed by the language. If it is not possible to do so, then
the terminal is removed, the second to last term that was instantiated is incremented,
and the last term instantiated with the first valid term according to the ordering of
the language.

Terms close to each other in the order generated can be grouped together according
to how many of their first n terms are the same. To illustrate this, in Figures
and we present all heuristics in Language A of size 13 in a series of graphs. In
Figure 4.5 we present the heuristics coloured according to their first term, and in
Figure 4.6 we present the same heuristics, but colour them according to their leading
2 and 3 terms. In the graphs in Figure [4.6| we alternate between red and blue when
any one of these first n terms changes compared to the previous heuristic, as showing
an individual colour for each unique set of terms would be impractical.

The separation of peaks becomes more pronounced when the heuristics are
presented like this. We can clearly see in Figures and there are peaks that
are only one colour, suggesting that they exclusively contain heuristics with the same

leading 2 or 3 terms. This is not always the case; there are also examples of peaks

146

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Exhaustive Enumeration Results, Language A, Size 14, between Indexes 500,000

and 550,000
50
40 A .
s
w301 % ?‘:.
20 - 3
3
Lh
01 By

(- = :
500,000 510,000 520,000 530,000 540,000 550,000

Heuristic Index (in Order Generated)

Figure 4.4: Results from the exhaustive enumeration experiments, showing the fitness

values for a subset of heuristics in Language A of size 14. We show the heuristics

from index 500, 000 to index 550, 000.

Exhaustive Enumeration Results,
Language A, Size 13, Heuristics Coloured by Leading Term

50

. s IR
o FMATEVN > Ul PP PUE BT, *

Lo u®

200,000

0 50,000 100,000 150,000

Heuristic Index (in Order Generated)
= IfVarCond ——— IfTabu GetOldestVar
IfVarCompare IfNotMinAge — IfRandLt

Figure 4.5: Results from the exhaustive enumeration experiments, showing the fitness

values for all heuristics in Language A of size 13. Each heuristic has been coloured

according to its first term.

147

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Exhaustive Enumeration Results,
Language A, Size 13, Heuristics Coloured by Leading 2 Terms

50

40 A

30 1

Fitness

20 A

S & o s s
e "

10

0 50,000 100,000 150,000 200,000
Heuristic Index (in Order Generated)

(a) Results from the exhaustive enumeration experiments. Each heuristic has been coloured
according to its first two terms.

Exhaustive Enumeration Results,
Language A, Size 13, Heuristics Coloured by Leading 3 Terms

50

40 -

30 1

Fitness

20 -

10 -

0 50,000 100,000 150,000 200,000
Heuristic Index (in Order Generated)

(b) Results from the exhaustive enumeration experiments. Each heuristic has been coloured

according to its first three terms.

Figure 4.6: Results from the exhaustive enumeration experiments, showing the fitness
values for all heuristics in Language A of size 13. We colour each heuristic according
to its leading n terms. Colours change between red and blue whenever a heuristic’s

leading n terms change when compared to the previous heuristic’s leading n terms.

148

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

that transcend several different colours. However, we can state that some peaks
only contain program trees with a very specific formulation of leading terms, which
correspond to effective heuristics.

We want to be clear that this relationship between leading term(s) and heuristic
fitness is not exact; there are many examples of poorly performing heuristics with the
same leading term(s) as effective heuristics. However, these results do suggest that
analysing the search space by examining a heuristic’s neighbours could be an effective
strategy for finding and navigating these peaks, which could in turn lead to heuristics
with a high fitness value. For sizes of heuristic greater than those considered in this
chapter, it could be a viable alternative to enumeration of the search space.

In Figure we show the results obtained for heuristics of size 14 from Languages
A and Al. Figure shows the heuristics in Language A, and Figure [4.7b| shows
the heuristics in Language A1 which are not in Language A. The heuristics shown in
Figure [4.74] are indexed according to their generation ordering from Language Al.
This gives us some indication as to the effect that adding the WFF term to Language
A1 had on the results when compared to Language A.

We can clearly see that the graphs are generally similar to each other. That is to
say, the peaks and troughs in both graphs are at the same indexes. For example, at
around index 1,000, 000 there is a clear peak in both graphs. However in Figure {4.7b
the peak is wider and contains a greater number of data points at lower fitness
values. At around index 6,000,000 in Figure [£.7D] there is a clear peak of heuristics
with high fitness values, yet in Figure this area contains very few high-quality
heuristics. The similarity between graphs suggests to us that there are core structures
of program tree which correspond to heuristics with high fitness values. Which term
is used to instantiate nodes that require a term with a type signature of VarSet is
not necessarily important; rather it is how the other terminals are combined together
that play a greater role in the overall effectiveness of the heuristic. However, areas
of the graph relative to each other where there are less effective heuristics reported
suggests that this is not always true. The picking of a random broken clause may be
imperative to how effective a heuristic is, and this cannot be substituted for a WFF
terminal without degrading the heuristic’s quality.

There is one other interesting phenomenon that we would like to draw the attention
of the reader to. Returning to the results in Figure 4.2 we can clearly see there are

examples of horizontal “lines” of heuristics with, seemingly, the exact same fitness.

149

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Exhaustive Enumeration Results, Language A, Size 14

50

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
Heuristic Index (in Order Generated according to Language A1) x10°

(a) Results from the exhaustive enumeration experiments, showing the fitness values for all

heuristics in Language A of size 14. Each heuristic’s index is derived from its generation
ordering according to Language Al.

Exhaustive Enumeration Results, Language A1, Size 14, Containing Term WFF

50

40 A

30

Fitness

10 -

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
Heuristic Index (in Order Generated) x10°

(b) Results from the exhaustive enumeration experiments, showing the fitness values for all

heuristics in Language A1 of size 14 that are not in Language A.

Figure 4.7: Results from the exhaustive enumeration experiments, showing heuristics

of size 14 in Languages A and Al.

150

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Index | Heuristic Fitness

IfVarCond = PosGain —1

o981 GetBestVar RBC-0 NegGain 9.6
GetBestVarSnd RBC-0 NetGain

IfVarCond = PosGain —1

o87 GetBestVar RBC-0 NetGain 9.6
GetBestVarSnd RBC-0 NetGain

IfVarCond = PosGain —1

593 GetBestVar RBC-0 PosGain 9.6

GetBestVarSnd RBC-0 NetGain

Figure 4.8: Three examples of heuristics of size 10 in Language A that return the

same fitness value due to the formulation of the language.

By examining these heuristics with our knowledge about SAT and Language A, the
reasoning behind these results becomes clear.

In Figure [4.8] we show three examples of heuristics that exist on one of the
horizontal planes seen in Figure [£.2] These heuristics all have the same form; get
the best variable according to some gain type metric, and compare that variable’s
PosGAIN; to an integer. The integers in question are all negative. POSGAIN;’s
possible values an only be > 0, therefore, the IfVarCond expression will always
evaluate to False and return the right subtree. We can see that in Figure [4.8] the
right subtrees of all three heuristics are exactly the same. Thus, all heuristics in this
form will return the same variable to flip each time. It is, in essence, a phenomenon
created by the formulation of the language. We discuss this in further detail in
Section [4.4] and highlight potential techniques to stop heuristics like this being

created.

4.2.4 Fitness Results

In this subsection we present data regarding the heuristic’s fitness values. We look at
the distribution and the variance of the fitness values reported.

The absolute best heuristic found from the exhaustive enumeration experiments
had a fitness of 48.0. This fitness value is higher than any reported from the hand-
crafted heuristics considered in Section 3.4.2] In Figure [£.9) we show the heuristics in

151

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Languages A and Al of size < 12, 13 and 14, presented in fitness order. The data
presented in this manner makes it much easier to see the range of fitnesses compared
to the results presented in the previous subsection. We can clearly see that there
are many poorly performing heuristics, and it is only a very small number that are
actually effective. We can also see that for Language Al, the proportion of poorly
performing heuristics is much greater than for Language A.

In Table 4.4] (for Language A) and Table [4.5| (for the heuristics in Language Al
not in Language A) we separate the heuristics into groups according to their fitness.
From these tables, we can see the distribution of the heuristic’s fitness values.

We can see that the percentage of heuristics in both languages that are actually
effective according to the fitness function is tiny. Heuristics that have a fitness value
> 30 (around the fitness of NOVELTY according to the results in Section
account for approximately 0.97% of all heuristics in Language A, and approximately
0.16% of all the heuristics in Language A1l that are not in Language A.

In the results for Language A, the heuristics with a fitness of 0 are not the biggest
set, it is those heuristics with a fitness > 0 and < 5. Since these heuristics are based
on random walk, we wonder if these are just heuristics that have got “lucky”, and
been able to solve a single instance. The proportion of the heuristics in Language
A1l not in Language A that have a fitness of 0 is much greater than the proportion
in Language A. In Section [2.3.2] we showed how even simple heuristics which work
by picking a random variable from a broken clause were often more effective than
GSAT-like heuristics. This could provide an explanation for these “lucky” heuristics;
by continually picking a variable from a broken clause, they were able to solve a small
number of the SAT problems in the fitness function simply through chance.

The number of low-quality heuristics in both sets suggests that our decision to use
a fitness function that employs an early termination mechanism was a correct one. It
undoubtedly saved us many computational hours, as we would have had to evaluate
many poorly performing heuristics on all problem instances if we had not used it.

In general, as we consider sets containing heuristics of greater size, we can see
by comparing the best heuristics in each subsequent set to the previous, that the
number of highly effective heuristics increases. Further to this, we can see that as we
consider heuristics of larger sizes, the fitness of the absolute “best” heuristic in those
sets increases. Yet, we do wonder whether there is an upper limit for these scores and

this fitness function, as we never encountered any heuristics with a fitness above 50.

152

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Exhaustive Enumeration Results, Language A, Size < 14, Ordered by Fitness

50
40 - ‘ :
30
99}
&
o
+~
= 20 -
10 A — Size <12
—— Size =13
0 - — Size =14
0 100,000 200,000 300,000 400,000 500,000 600,000 700,000
Heuristic Index (in Fitness Order)
(a) All heuristics in Language A of size < 14, ordered by their fitness.
Exhaustive Enumeration Results, Language A1, Size < 14, Ordered by Fitness
50
40 - ‘ '
30 A
n
&
<
+~
= 20 -
10 - — Size <12
— Size =13
0 1 ———-"'/ —— Size =14

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6,000,000 7,000,000
Heuristic Index (in Fitness Order)

(b) All heuristics in Language A1l of size < 14, ordered by their fitness.

Figure 4.9: All heuristics in Languages A and Al of size < 14. We separate the

heuristics in each language into subsets based on their size, and order them by their

fitness value.

153

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Table 4.4: The fitness distribution of heuristics in Language A of size < 10 and 11 -
17. We use f(h) to refer to a heuristic’s fitness.

(a) The fitness distribution of heuristics in Language A of size < 10, 11 and 12.

size < 10 size = 11 size = 12
Fitness Group || Total % | Total % | Total %
f(h)=0 371 | 6.08 785 | 6.45 | 5,375 | 8.64

0< f(h)<5 | 4,095 |67.10 | 7,623 | 62.62 | 34,560 | 55.53
5< f(h) <10 | 1,101 | 18.04 | 2,189 | 17.98 | 12,405 | 19.93

10< f(h)<15| 320| 524 | 703| 578 | 4,620 | 7.42
15< f(h)<20 | 146 | 239 | 345| 2.83| 2,309 | 3.71
20 < f(h) < 25 53| 0.87| 261 | 214 | 1,478 | 237
25 < f(h) < 30 6| 0.10| 190 | 1.56| 905| 1.45
30 < f(h) < 35 10| 016| 55| 045| 454 | 0.73
35 < f(h) < 40 0.02 19| 0.16 126 | 0.20
40 < f(h) < 45 0 0 3| 0.02 6| 0.01

(b) The fitness distribution of heuristics in Language A of size 13 - 15.

size = 13 size = 14 size = 15
Fitness Group Total % Total % Total %
f(h) =0 73,154 | 32.78 | 250,573 | 35.07 792,527 | 35.00
0< f(h)<5 87,961 | 39.42 | 309,010 | 43.25| 1,073,836 | 47.42
5 < f(h) <10 28,840 | 12.92 | 75,058 10.50 220, 561 9.74
10 < f(h) <15 13,586 | 6.09 | 37,241 5.21 75,510 3.33
15 < f(h) <20 8,730 | 3.91 | 22,512 3.15 48,608 2.15
20 < f(h) <25 4,505 | 2.02 8,937 1.25 22,626 1.00
25 < f(h) <30 3,391 1.52 5,741 0.80 16,208 0.72
30 < f(h) <35 1,993 | 0.89 3,621 0.51 12,571 0.56
35 < f(h) <40 963 | 0.43 1,846 0.26 1,995 0.09
40 < f(h) <45 32| 0.01 31 >0.00 32 | > 0.00
45 < f(h) <50 01| 0.00 0 0 1] >0.00

154

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Table 4.4: The fitness distribution of heuristics in Language A of size < 10 and 11 -
17. We use f(h) to refer to a heuristic’s fitness. (Continued)

(c) The fitness distribution of heuristics in Language A of size 16 and 17.

size = 16 size = 17
Fitness Group Total % Total %
f(h)=0 2,747,171 34.17 | 10,619,758 | 33.08
0<f(h)<5 | 3,816,696 | 47.47 | 13,855,443 | 43.16
5< f(h) <10 813,416 10.12 | 3,698,471 11.52
10 < f(h) <15 274,884 3.42 | 1,552,900 4.84
15 < f(h) <20 162, 651 2.02 965, 498 3.01
20 < f(h) <25 103, 201 1.28 624,049 1.94
95 < f(R) <30 || 74,022 | 092| 439,287 | 1.37
30 < f(h) <35 35,394 0.44 245,073 0.76
35 < f(h) < 40 11,531 | 0.14 91,931 | 0.29
40 < f(h) < 45 1,208 | 0.02 11,712 | 0.04
45 < f(h) < 50 12 | > 0.00 117 | > 0.00

Variance

If we recall the fitness function f described in Section [3.4.1] it is calculated as the
average of five repetitions of the F' function. The F' function computes a numerical
value from running the heuristic on the set of problem instances described in Table|3.6|
If we were to consider each F' value as an individual fitness, then we can study the
overall variance of a heuristic’s reported fitness value. That is to say, we can determine
how reliable each heuristic is at returning a similar F' value for each repetition, and
whether their reported fitness value has come from a large or small range of F' values.

To do this, we took the results from all heuristics in Language A and those in
Language Al not in Language A, and plotted the mean square variance of their F'
values against their reported fitness values. These results can be seen in Figure [£.10]
A high variance reported would suggest that a heuristic is not necessarily reliable. A
low variance would suggest a heuristic consistently performs well.

By studying these graphs, we can see that generally the variance of the reported
fitness values is low. We can also see that there is no correlation between fitness

and variance; if there was a positive correlation, this would suggest that heuristics

155

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Table 4.5: The fitness distribution of heuristics in Language A1l not in Language A
of size <10 and 11 - 15. We use f(h) to refer to a heuristic’s fitness.

(a) The fitness distribution of heuristics in Language A1l not in Language A of size < 10, 11
and 12.

size < 10 size = 11 size = 12
Fitness Group Total % | Total % Total %
f(h)=0 10,345 | 40.63 | 35,484 | 36.89 | 133,999 | 27.02

0< f(h)<5b 11,701 | 45.96 | 42,696 | 44.38 | 223,604 | 45.09
5< f(h) <10 2,617 | 10.28 | 10,556 | 10.97 | 79,675 | 16.07

10 < f(h) <15 626 246 | 3,720 3.87 | 31,994 6.45
15 < f(h) <20 132 0.52 | 1,789 1.86 | 14,019 2.83
20 < f(h) <25 25 0.10 | 1,059 1.10 7,495 1.51
25 < f(h) <30 11 0.04 602 0.63 3,580 0.72
30 < f(h) <35 2 0.01 236 0.25 1,331 0.27
35 < f(h) <40 2| >0.00 o1 0.05 207 0.04
40 < f(h) <45 0 0.00 21 >0.00 21 >0.00

(b) The fitness distribution of heuristics in Language Al not in Language A of size 13 - 15.

size = 13 size = 14 size = 15
Fitness Group Total % Total % Total %
f(h)=0 735,977 | 41.02 | 3,051,394 | 47.38 | 13,803,597 | 50.94

0< f(h)<5 081,945 | 32.43 | 2,232,749 | 34.67 | 9,510,047 | 35.10
b< f(h) <10 | 211,224 | 11.77 612,621 9.51 | 2,153,291 7.95

10 < f(h) <15 || 128,178 7.14 299, 145 4.64 877,292 3.24
15 < f(h) <20 | 72,312 4.03 141,729 2.20 433,867 1.60
20 < f(h) <25 41,194 2.30 72,274 1.12 199, 663 0.74
25 < f(h) <30 16,870 0.94 21,644 0.34 81,683 0.30
30 < f(h) <35 5,667 0.32 7,553 0.12 30,532 0.11
35 < f(h) <40 992 0.06 1,649 0.03 9,632 0.02
40 < f(h) <45 22 | > 0.00 12 | > 0.00 145 | > 0.00

156

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

which performed well according to our fitness function were unreliable at consistently
finding solutions. There are several unreliable heuristics, however there appears to be
no trend between an unreliable heuristic and a high scoring heuristic. These results
suggest to us that the five repetitions of the fitness function were perhaps too manys;
a smaller number could have provided us with a fitness value that is just as reliable.

One additional point of interest concerning these results is that the heuristics
that can only be described using Language A1l appear to be more reliable than those
from Language A. That is to say, it appears that the WFF terminal can be used to
create more reliable heuristics. Yet, we also know that the WFF terminal cannot create
heuristics that are as effective as those created using a randomly chosen broken clause
(at least on the search space of heuristics that we have considered). We know from
the literature presented in Section that modern-day heuristics generally do not
use strategies that consider all variables in a SAT problem. While the effectiveness of
the heuristics created using the WFF terminal suggests that this is a sensible decision,
these results also suggest that strategies using the WFF terminal can have a beneficial

effect on the reliability of a heuristic.

4.2.5 Timing Results

In Section we noted how several researchers had succeeded in creating more
efficient heuristics by decreasing the computational overhead of the heuristic function
itself. While the heuristics evaluated in our software will never be as efficient as a
hand-written variant (as we discussed in Section [3.3)), we have taken great care to
ensure that they are efficient in terms of how they update their required auxiliary
data structures. Our fitness function measures how many flips a heuristic performs,
paying no attention to the total time taken to solve a problem instance. When
performing the exhaustive enumeration experiments, we collected additional data
about the average time it took each heuristic to perform a flip in the overarching
local search algorithm. In this subsection we analyse that data.

By plotting a heuristic’s nanosecond-per-flip data against its reported fitness, we
can determine which heuristics are not just effective, but fast. Fast and effective
heuristics, we believe, are more preferable to slow and effective heuristics as, in a
real-world setting, the faster heuristic could evaluate more assignments in a SAT
problem, and potentially find a satisfying solution more quickly. We plotted this

information for the enumerated heuristics with a fitness value > 10 in Language A

157

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Variance of Heuristics in Language A

50

40 1

10 -

0 50 100 150 200
Variance of Heuristic’s Fitness
(a) All heuristics in Language A, showing the fitness of each heuristic plotted against that

heuristic’s fitness variance.

Variance of Heuristics in Language A1l that Contain the Term WFF

50

40 1

10 +

O T T T T T T T
0 20 40 60 80 100 120 140 160
Variance of Heuristic’s Fitness

(b) All heuristics in Language Al that are not in Language A, showing the fitness of each

heuristic plotted against that heuristic’s fitness variance.

Figure 4.10: All heuristics in Languages A and A1, showing the fitness of each

heuristic plotted against that heuristic’s fitness variance.

158

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

(total 4,926,816 heuristics) and for those in Language A1l not in Language A (total
2,504,809 heuristics) in Figure m

In both graphs there appears to be no correlation, general grouping or clustering
of data points. However, we can identify a set of heuristics that appear to be distinctly
separate from all other heuristics in Figure [f.11a] at around the 750 nanosecond-
per-flip value. We were able to ascertain that many of the heuristics in this area
used a smaller number of gain type metrics in their construction when compared
to the heuristics in other areas. In future work we believe it may be beneficial to
take this data into consideration when designing a fitness function, as it may help in
identifying effective heuristics.

By comparing the two graphs, we can see that generally the heuristics that contain
the WFF terminal take longer to complete an iteration of local search. We believe
this is due to many of these heuristics needing to maintain a partial ordering of all
variables according to a gain type, which adds considerable computational overhead

to the heuristic function.

4.2.6 Individual Results

In this subsection we present examples of heuristics created from the exhaustive
enumeration experiments which reported a high fitness. We also run these heuristics
on the testing set, to ascertain how effective they are at solving different sized problem
instances to the ones they were trained on.

We chose six heuristics from the enumeration of Language A and six from the
enumeration of Language A1l. We specifically chose heuristics from the enumeration
of Language A1 that cannot be represented by Language A. The heuristics are shown
in Figures and (.13

There are several similarities that can be seen in the chosen heuristics. Firstly,
nearly all the presented heuristics use the Get0ldestVar function in their construction
(the exception being SS-A1-3 in Figure . This specific term was first described
in work by Fukunaga |60} 63, |61]. From these results, it appears to be an effective
component in the creation of LS-SAT heuristics. Several of the heuristics that used
GetOldestVar extensively (SS-A-1, SS-A-4, SS-A1-1 and SS-A1-6 in Figures

14.12d} [4.13al and |4.13f| respectively) are similar in their general construction to one

of the heuristics automatically created in the systems designed by Fukunaga. We
showed that heuristic, DEPTH-2-2, in Figure [3.2hl As this pattern has been seen

159

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Nanoseconds-per-flip Values for Heuristics in Language A

3,500 A

1,000

||||||||||||||||||||||m|||im| I

5 10 15 20 25 30 35 40 45 50
Fitness

oo
=)
S S
S 3
1 1

Nanoseconds-per-flip
JM
jan)
jan)
(an)
1

(a) All heuristics in Language A with fitness > 10, showing the fitness of each heuristic

plotted against that heuristic’s nanoseconds-per-flip value.

Nanoseconds-per-flip Values for Heuristics in Language A1 that Contain the

Term WFF
4,000
3,500 - ,
S
= 3,000 A
5]
o,
22,500
o)
a
S 2,000 1
2
2 1,500 +
o]
Z,
1,000 1
500 - I
5 10 25 30 35 40 45 50

(b) All heuristics in Language A1l not in Language A with fitness > 10, showing the fitness

of each heuristic plotted against that heuristic’s nanoseconds-per-flip value.

Figure 4.11: All heuristics in Languages A and Al with fitness > 10, showing the

fitness of each heuristic plotted against that heuristic’s nanoseconds-per-flip value.

160

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

GetOldestVar
GetBestVar RBC-0 PosGain
GetOldestVar
GetBestVar RBC-0 NegGain
GetBestVar RBC-0 NetGain

GetOldestVar
GetBestVar RBC-0 NetGain
IfTabu 10
GetBestVar RBC-0 NegGain
IfNotMinAge RBC-0
GetBestVar RBC-0 PosGain
GetBestVar RBC-0 NegGain

(a) Heuristic SS-A-1. Fitness value of
42.2.

(b) Heuristic SS-A-2. Fitness value of
48.0.

IfNotMinAge RBC-0
IfVarCompare < NegGain
GetBestVar RBC-0 NegGain
GetBestVarSnd RBC-0 PosGain
GetBestVar RBC-0 PosGain

GetOldestVar
GetOldestVar
GetBestVar RBC-0 NegGain
GetBestVar RBC-0 NegGain
IfNotMinAge RBC-0
GetBestVar RBC-0 NetGain
GetBestVar RBC-0 PosGain

(c) Heuristic SS-A-3. Fitness value of
41.0.

(d) Heuristic SS-A-4. Fitness value of

45.8.

IfTabu 50

GetBestVar RBC-0 NetGain

GetOldestVar
IfNotMinAge RBC-0
GetBestVar RBC-0 NegGain
GetBestVar RBC-0 PosGain
GetBestVar RBC-0 NegGain

IfTabu 20
GetBestVar RBC-0 NetGain
GetOldestVar
GetBestVar RBC-0 NegGain
IfTabu 40
GetBestVar RBC-0 NegGain
GetBestVar RBC-0 PosGain

(e) Heuristic SS-A-5. Fitness value of
47.8.

(f) Heuristic SS-A-6. Fitness value of
47.4.

Figure 4.12: Six heuristics that reported a high fitness value from the enumeration of

Language A.

161

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

GetOldestVar

GetOldestVar
GetBestVar RBC-0 NegGain
GetBestVar WFF PosGain
GetBestVar WFF NetGain

GetOldestVar
IfNotMinAge
GetBestVar

RBC-0

RBC-0 NegGain
RBC-0 PosGain
GetBestVar WFF PosGain

GetBestVar

(a) Heuristic SS-A1-1. Fitness value of
40.6.

(b) Heuristic SS-A1-2. Fitness value of
43.0.

IfTabu 20
GetBestVar RBC-0 NegGain
IfTabu 10
GetBestVar RBC-0 PosGain
GetBestVar WFF NetGain

GetOldestVar

GetBestVar RBC-0 PosGain
IfVarCond <= NegGain O
GetBestVarSnd WFF PosGain
GetBestVar RBC-0 NegGain

(c) Heuristic SS-A1-3. Fitness value of
44.0.

(d) Heuristic SS-A1-4. Fitness value of
45.0.

GetOldestVar

GetBestVar RBC-0 PosGain
IfVarCond =
GetBestVar WFF NegGain
GetBestVar RBC-0 NegGain

PosGain 1

GetOldestVar
GetOldestVar
GetBestVar WFF NetGain
GetBestVar WFF PosGain
GetOldestVar
GetBestVar RBC-0 NegGain
GetBestVar RBC-0 NetGain

(e) Heuristic SS-A1-5. Fitness value of
40.2.

(f) Heuristic SS-A1-6. Fitness value of
43.2.

Figure 4.13: Six heuristics that reported a high fitness value from the enumeration of

Language Al.

162

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

several times in both our work and that by Fukunaga, this suggests to us that this
mechanism could prove to be useful in the design of hand-crafted heuristics. Perhaps
it could be used to augment previously existing heuristics, or to design entirely new
ones.

We found it quite surprising that many of the heuristics which reported a high
fitness value used the IfTabu term, as we did not believe that it would prove to be
particularly effective. There are few examples of modern LS-SAT heuristics which
use tabu mechanisms in their construction, instead relying on alternate techniques to
prohibit the choosing of variables which have recently been flipped.

Few of the heuristics we highlighted used any of the functions other than
GetOldestVar, IfTabu, IfNotMinAge and GetBestVar. There are some exceptions
to this such as SS-A-3, SS-A1-4 and SS-A1-5 (shown in Figures ,
and respectively). We found it quite surprising that none of these heuris-
tics used the functions PickRandomVar or IfRandLt. The mechanisms which these
functions represent have been widely used in the creation of hand-crafted LS-SAT
heuristics which can be represented by Languages A and Al. For example, WALKSAT
and NOVELTY use IfRandLt, while WALKSAT uses PickRandomVar.

In Table we show the results from running the chosen heuristics on the testing
set presented in Table [3.8|

Let us first consider the results in Table [£.6al We can see that all six heuristics
performed well on the initial five subsets of problem instances, with there being no
clear best performing heuristic. We can state that every heuristic was able to solve at
least 95% of the problems in these subsets. On the subsets containing larger problem
instances, we can see that SS-A-1, SS-A-3 and SS-A-4 had good performance, with
SS-A-4 performing the best and able to solve at least 50% of the SAT problems it
was ran on. The terms used in the construction of the heuristics that performed well
on the larger problem instances is noteworthy, as none of them used the IfTabu term
discussed previously. As the language contains terms which correspond to relatively
low AGE values, perhaps these heuristics would perform better on larger problem
instances if they had used terms which correspond to larger AGE values. The best
performing heuristic on all problem instances, SS-A-4, used a combination of several
Get0OldestVar functions, together with picking the best variable from a randomly
chosen broken clause according to several gain type metrics.

When considering the results in Table we can see that the six heuristics from

163

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Table 4.6: Results from running the heuristics in Figures and on the testing
set. For each problem p and heuristic h, we ran h on p five times. We report the
average percentage of problems solved in each subset, and the average time (in
seconds) each heuristic took to solve those problem instances. Bold typeface shows

the best performing heuristic on that subset of problem instances.

(a) Results from running the heuristics in Figure 4.12/on the testing set.

Heuristic
D D ? > B Q?
Subset Name <.: <.: <F <F <’.: <.:
w0 w0 w0 w0 p) w0
n n wn wn n wn
50 99.6 99.7 99.7 99.7 99.9 99.9
u
0.0006 | 0.0005 0.0005 0.0006 0.0006 | 0.0005
99.0 98.8 99.2 99.2 100.0 99.0
uf100
0.0038 | 0.0028 0.0032 0.002 0.0022 | 0.0031
150 99.0 100.0 100.0 100.0 99.0 99.4
u
0.0122 | 0.0088 | 0.0096 0.0088 0.009 0.0091
96.8 96.8 95.0 97.0 98.6 95.8
uf200
0.0257 | 0.0215 0.0215 0.0461 0.025 0.0311
99.0 98.2 97.6 98.6 99.6 96.6
uf250
0.0376 | 0.0381 0.033 0.0298 0.0474 | 0.0406
70.0 10.0 72.0 72.0 48.0 20.0
ufv4000
9.4255 | 4.2608 | 10.3856 9.4374 | 12.3256 | 7.3924
98.0 0.0 98.0 90.0 10.0 0.0
ufv7000
23.1846 0.0 22.1826 | 19.0177 | 7.4578 0.0
78.0 0.0 88.0 76.0 0.0 0.0
ufv10000
15.9632 0.0 27.5494 | 16.1754 0.0 0.0
44.0 0.0 48.0 50.0 0.0 0.0
ufv13000
15.8781 0.0 21.9421 | 15.4293 0.0 0.0
32.0 0.0 50.0 50.0 0.0 0.0
ufv16000
23.7888 0.0 33.5542 | 26.0793 0.0 0.0
42.0 0.0 38.0 54.0 0.0 0.0
ufv16000
20.3257 0.0 25.0816 | 29.4342 0.0 0.0

164

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Table 4.6: Results from running the heuristics in Figures and [4.13| on the testing
set. For each problem p and heuristic h, we ran h on p five times. We report the
average percentage of problems solved in each subset, and the average time (in
seconds) each heuristic took to solve those problem instances. Bold typeface shows

the best performing heuristic on that subset of problem instances. (Continued)

(b) Results from running the heuristics in Figure [4.13|on the testing set.

Heuristic
— ™ P < 0 ©
—_ —_ —_ —_ —_ —_
Subset Name <IC <IC <IC <IC <IE <|:
w0 w0 w0 w0 w0 0p)
wn wn wn wn wn 5]
£50 99.9 99.8 99.9 99.8 99.8 100.0
h 0.0009 | 0.0006 | 0.0009 | 0.0008 0.0007 | 0.0009
£100 100.0 99.8 100.0 99.2 99.8 100.0
u
0.0054 | 0.003 | 0.0051 0.004 0.0044 | 0.0067
150 100.0 99.8 100.0 100.0 99.8 100.0
u
0.0289 | 0.017 | 0.0184 | 0.0224 0.013 0.018
99.6 97.0 99.8 95.2 96.0 100.0
uf200
0.1233 | 0.0296 | 0.1496 | 0.0432 0.0292 | 0.0971
99.6 98.2 99.8 99.2 97.2 100.0
uf250
0.1125 | 0.0579 | 0.066 0.0594 0.0612 | 0.1062
2.0 10.0 0.0 80.0 72.0 18.0
ufv4000
1.2015 9.69 0.0 15.2965 | 22.6692 | 6.5506
0.0 0.0 0.0 92.0 90.0 0.0
ufv7000
0.0 0.0 0.0 31.0538 | 36.927 0.0
0.0 0.0 0.0 58.0 30.0 0.0
ufv10000
0.0 0.0 0.0 26.7388 | 13.6374 0.0
0.0 0.0 0.0 20.0 0.0 0.0
ufv13000
0.0 0.0 0.0 12.1084 0.0 0.0
0.0 0.0 0.0 10.0 0.0 0.0
ufv16000
0.0 0.0 0.0 7.9136 0.0 0.0
0.0 0.0 0.0 10.0 0.0 0.0
ufv16000
0.0 0.0 0.0 5.6826 0.0 0.0

165

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

the enumeration of Language A1 also performed well on the initial five subsets of
problem instances. In comparison to the results in Table these heuristics were
more consistent, as a larger number of the heuristics were able to solve all instances
in these five subsets. SS-A1-6 performed the best on these, solving 100% of the
instances. However, the timing data shows us that the heuristics from Language Al
took longer to solve these problem instances. We believe this can be attributed to the
use of subtrees in the form GetBestVar {WFF, g}. To calculate the variable returned
from a subtree such as this, a partial ordering of all variables according to the gain
type metric g is required. This is computationally expensive to maintain for problem
instances with a larger number of variables.

When we look at the results from running these heuristics on the larger problem
instances, we can see that most of the heuristics were unable to solve many problems.
Only two heuristics, SS-A1-3 and SS-A-4, were able to solve a notable number
of these instances. However, their performance was notably worse on the largest
problem instances when compared to those heuristics shown in Table [4.6al

Finally, we compare these results to the results of evaluating hand-crafted heuristics
on the testing set, the results of which were shown in Table |3.9]

On the subsets containing smaller problem instances, the performance of the
automatically created heuristics and the best performing of the hand-crafted heuristics
is generally similar. The automatically created heuristics from Language A have
comparable performance to GNOVELTY+, however they are less consistent - that is
to say, they do not solve as many instances. The automatically created heuristics
from Language A1 perform better than GNOVELTY+ on these subsets - for example
SS-A1-6 is more consistent than GNOVELTY+. We can see that the automatically
created heuristics perform better than the other hand-crafted heuristics on the subsets
containing smaller problem instances.

In Table [3.9] we saw that PROBSAT had the best performance of the hand-
crafted heuristics on the subsets containing larger problem instances. Comparing the
performance of the automatically created heuristics to PROBSAT, we can see that

several of them appear to offer better performance on these subsets. Specifically the

heuristics SS-A-1, SS-A-3, SS-A-4 and SS-A1-4.

166

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Table 4.7: The parameters used in the GP experiments in Section .

Parameter Value
Population Size 1,000
Generations 100
Initialisation Method || Grow (Max Depth = 7)
Selection Method Tournament
Crossover 80%
Mutation 10%
Reproduction 5%
Elite Programs 5%

4.3 Genetic Programming Experiments

In this section we show the methodology used and results obtained from our GP
experiments performed using Language A and Al. We also show results detailing
how some of the heuristics created from GP perform on the testing set of problem

mstances.

4.3.1 Methodology

We used a software suite called EPOCHX [137] to build the GP software that is the
focus of the experiments detailed in this section. It is a general-purpose software
library that aids in the construction of GP systems. The parameters for our GP
experiments are shown in Table[4.7] We performed 5 repetitions of the GP experiment
for both Languages A and Al.

In total each repetition of the GP algorithm evaluated 101,000 heuristics. This
additional 1,000 is attributed to the initial population of heuristics. The terminal set
and function set used are highlighted in Table 4.1} The reader may note that we use
the grow method of initialising our population. This was done for a very specific reason.
Our language contains several functions that are not “balanced” - that is to say, a
function such as IfVarCond requires several arguments. Some of these arguments
can only be instantiated with a terminal, for example, Comparator. Other arguments
to IfVarCond can only be other functions. In preliminary experiments, populations
created through the full method did not utilise these “unbalanced” functions in their

created program trees. In turn, when using this method (or the ramped half-and-half

167

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

method), many heuristics created used functions from a small subset of the language,
and the overall populations were not particularly diverse. The grow method provided
us with more varied heuristics to initialise our population, and we made the decision
to use this initialisation technique.

The GP experiments were performed on the same computer described in Sec-
tion [£.2.2] Each repetition of each experiment took around 4 hours to run, for a total

of 40 hours for all experiments.

4.3.2 Results

In this subsection we present the results from the GP experiments performed using
Languages A and Al. We provide general data about each of the 5 repetitions
performed using each language, and give more detailed data about the best of these
repetitions. By “best” we mean the repetition that reported the fittest overall
heuristic. For Language A this was repetition 5, and for Language Al this was
repetition 3. In Table we show some general data about the population at various
points in each GP repetition. In Figures and we show detailed information
regarding the general fitness distribution and size of the heuristics created from each
of the best repetitions from Languages A and Al.

We can see from the results in Table [4.8|that the fittest heuristic reported from each
repetition had a higher fitness than the fittest heuristic found through exhaustive
enumeration. Compared to the tens of millions of heuristics evaluated in those
experiments, these results were obtained from only 101,000 heuristic evaluations.
Indeed, by generation 50 in nearly all repetitions, the heuristics generated were of a
higher quality than those produced by exhaustive enumeration.

If we look at the results in Figure |4.14] we can see how repetition 5 for Language
A and repetition 3 for Language A1 progressed. At the beginning of the algorithm,
the mean fitness of the population grew quickly yet, as time went on, the gains made
in the overall mean fitness slowed. It is clear that in the final generation, there are
many high-quality heuristics. The general way in which these algorithms progressed
is consistent with other work in GP.

The results in Figure show us information pertaining to the size of the
heuristics created in each generation for the repetitions highlighted previously. We
can see that the heuristics were of a very large size, and grew as the algorithm

progressed. In the GP community, this phenomenon is known as bloat [172]. We

168

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Table 4.8: Statistical data pertaining to the GP experiments performed using Lan-
guages A and Al. For each repetition, we show the best heuristic’s fitness, the
best heuristic’s size, the mean fitness of the population, and the mean size of the
population for specific generations. These are the initial generation, the 25, 50,

75" and the 100" generation.

(a) Statistical data pertaining to the GP experiments performed using Language A.

Repetition
1 2 3 4 5

= Best Heuristic’s Fitness 37.6 37.2 38.8 34.6 38.8
© | Best Heuristic’s Size 107 18 79 69 25
9::6 Mean Fitness 2.32 2.57 2.33 2.26 2.49
s Mean Size 45.15 | 47.60 | 50.84 | 50.10 | 47.88
- Best Heuristic’s Fitness 50.6 48.2 49.6 52.4 51.4
QGB Best Heuristic’s Size 149 116 316 206 304
i | Mean Fitness 39.34 | 36.94 | 38.1| 39.53 | 40.46

Mean Size 120.86 | 100.42 | 109.88 | 107.32 | 85.86
- Best Heuristic’s Fitness 52.6 50.8 52.2 53.8 53.4
& | Best Heuristic’s Size 612 | 243 | 226| 477 | 331
% Mean Fitness 42.97 | 41.02 | 43.01 | 43.57 | 45.49

Mean Size 228.57 | 156.06 | 189.99 | 213.69 | 190.35
- Best Heuristic’s Fitness 54.4 53.0 54.2 54.4 55.2
(% Best Heuristic’s Size 1,008 617 498 573 302
i | Mean Fitness 46.37 | 43.28 | 46.2 | 46.99 | 48.26

Mean Size 442.92 | 226.86 | 328.01 | 347.24 | 379.07
~ | Best Heuristic’s Fitness 55.4 54.8 56.0 55.2 57.0
8 Best Heuristic’s Size 1,059 632 | 1,152 486 | 1,004
ﬁg Mean Fitness 49.5 | 48.55 | 48.65 | 49.05 | 50.86
™ | Mean Size 612.26 | 487.96 | 558.02 | 480.68 | 639.71

169

CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Table 4.8: Statistical data pertaining to the GP experiments performed using Lan-
guages A and Al. For each repetition, we show the best heuristic’s fitness, the
best heuristic’s size, the mean fitness of the population, and the mean size of the
population for specific generations. These are the initial generation, the 25, 50,

75% and the 100" generation. (Continued)

(b) Statistical data pertaining to the GP experiments performed using Language Al.

Repetition
1 2 3 4 5

= Best Heuristic’s Fitne<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>