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Abstract

This thesis presents research that examines the effectiveness of several different

program synthesis techniques when used to automate the creation of heuristics for a

local search-based Boolean Satisfiability solver.

Previous research focused on the automated creation of heuristics has almost

exclusively relied on evolutionary computation techniques such as genetic program-

ming to achieve its goal. In wider program synthesis research, there are many other

techniques which can automate the creation of programs. However, little effort has

been expended on utilising these alternate techniques in automated heuristic creation.

In this thesis we analyse how three different program synthesis techniques perform

when used to automatically create heuristics for our problem domain. These are

genetic programming, exhaustive enumeration and a new technique called local search

program synthesis. We show how genetic programming can create effective heuristics

for our domain. By generating millions of heuristics, we demonstrate how exhaustive

enumeration can create small, easily understandable and effective heuristics. Through

an analysis of the memoized results from the exhaustive enumeration experiments,

we then describe local search program synthesis, a program synthesis technique based

on the minimum tree edit distance metric. Using the memoized results, we simulate

local search program synthesis on our domain, and present evidence that suggests it

is a viable technique for automatically creating heuristics.

We then define the necessary algorithms required to use local search program

synthesis without any reliance on memoized data. Through experimentation, we show

how local search program synthesis can be used to create effective heuristics for our

domain. We then identify examples of heuristics created that are of higher quality

than those produced from other program synthesis methods. At certain points in

this thesis, we perform a more detailed analysis on some of the heuristics created.

Through this analysis, we show that, on certain problem instances, several of the

heuristics have better performance than some state-of-the-art, hand-crafted heuristics.
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Chapter 1

Introduction

Combinatorial problems require finding groupings, orderings or assignments of discrete

objects that satisfy some conditions or constraints [83, Chapter 1]. They are most

commonly defined as either decision problems or optimisation problems. A decision

problem is formulated as a set of criteria, and the goal when solving such a problem

is to find a satisfying solution - that is, a solution that satisfies all the criteria. An

optimisation problem is defined in terms of an associated objective function, which

assigns each solution a numerical value. Through these values, an ordering of solutions

can be defined. The goal when solving an optimisation problem is to find the optimal

solution - that is, the solution with the best value according to the objective function.

For many combinatorial problems the fastest-known algorithms that are guaranteed

to solve them have a time complexity that scales exponentially with the problem

size. These complete algorithms, so called because they are guaranteed to definitively

and completely solve the problem, are often impractical to use for large problem

instances due to this worst-case running time. Combinatorial problems with this

property are called hard combinatorial problems, due to the difficulty in solving them.

Examples of hard combinatorial problems include the Boolean Satisfiability problem

(a decision problem), the Travelling Salesman problem and the Knapsack problem

(both optimisation problems) [93].

Incomplete algorithms are an alternate technique used to solve hard combinatorial

problems. They provide no guarantee that they will solve the problem - that is

to say, they may not find the optimal solution to an optimisation problem, or the

satisfying solution to a decision problem. However, incomplete algorithms are able to

navigate the search space in such a way that enables “good” solutions to be found

quickly; in optimisation problems this can manifest itself as finding a near-optimal
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solution, and in decision problems finding a satisfying solution more quickly than a

complete algorithm would. Incomplete algorithms can be a viable method to use in

domains where either an optimal solution is not a necessity, or where computational

restrictions preclude the use of a complete algorithm.

One such incomplete algorithm, and the core basis for much of the work in

this thesis, is local search. Local search is a generic algorithm used to solve hard

combinatorial problems, and works by “start[ing] at some location in the search space

and subsequently move[ing] from the present location to a neighbouring location in

the search space” [83, Chapter 1]. Furthermore, unlike complete algorithms, “local

search can visit the same location within the search space more than once”. Through

intelligently selected sequences of movements through the search space, local search

can quickly arrive at high-quality solutions much more quickly than complete methods.

Well-known variants of local search include simulated annealing [65, Chapter 1], tabu

search [70, 65, Chapter 2] and hill-climbing [163].

In many incomplete algorithms (including local search), as well as complete

algorithms, a heuristic function can be used to guide the overarching search process.

Specifically, when a point in the search is arrived at where the overarching algorithm

has no bias on how to progress the search, a heuristic function can be used to make

the choice on how to proceed. They are typically simple, computationally inexpensive

functions. For example, in a local search algorithm employed on an optimisation

problem, a heuristic may be designed to move to the neighbour with the best score

according to the objective function. By augmenting a search algorithm with a well-

designed heuristic, it is possible to vastly improve the quality of solutions found,

either by providing a better quality solution, or by arriving at good solutions more

quickly. This can make the use of an effective heuristic an important component in

designing well-performing algorithms to solve hard combinatorial problems.

While many complete and incomplete algorithms can be viewed as generic algo-

rithmic frameworks, heuristic functions are almost exclusively problem-dependent; a

heuristic that works well in one problem domain will usually not work well in another.

In many cases, it is simply not possible to transform one heuristic described in terms

of one problem domain into equivalent terms of another. Some heuristics which are

designed for a specific problem domain are only effective on certain subclasses of that

problem, and perform poorly on other subclasses.

The development of an effective heuristic can be a time consuming part of the
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overarching algorithm design process, and usually requires domain-specific knowledge.

A user may have to review the literature regarding previously described heuristics

in a particular problem domain to find appropriate candidate heuristics, then test

them to ascertain whether they provide the desired performance, and potentially

refine them if they do not. These issues can be exacerbated for problems that have

little or no research concerning the design of effective heuristic strategies. In these

situations, additional work is required to evaluate the problem. It may be the case

that computationally expensive experiments must be performed in order to determine

what an effective heuristic strategy is.

To expedite the heuristic design process, there has been active research in the

automation of creating, analysing and the selection of effective heuristics. For example,

Fukunaga [60, 63, 61] presented a series of papers detailing systems that automate the

creation of heuristics. These heuristics were used as part of a local search algorithm

to solve the Boolean Satisfiability problem. Another example is research by Burke

et al. [24], where the authors described a system that can automate the selection of

heuristics for the timetabling problem. Historically, these efforts to automate the

heuristic design process have been fragmented, however recently much of this work

has been categorised under the term hyper heuristics. Hyper heuristics are “a set

of approaches that are motivated by the goal of automating the design of heuristic

methods to solve hard computational problems” [28]. Most hyper heuristics can be

classified as one of two types; selective or generative. Selective hyper heuristics are

those systems that aim to choose the most effective heuristic from a known set, while

generative hyper heuristics are those systems that automatically create new heuristics.

In general, there has been comparatively less research undertaken in generative hyper

heuristics when compared to selective hyper heuristics.

The core research area of this thesis is in algorithms that automate the creation

of heuristics. The heuristics created are used as part of a local search algorithm to

solve the Boolean Satisfiability problem. The heuristic creation techniques used in

this thesis can be classified as generative hyper heuristics.

The workload involved in designing a system to automate the creation of heuristics

is much greater than that of designing a single heuristic. When designing a single

heuristic, the heuristic is identified, tested, potentially refined, and then deployed.

To automate the heuristic design process, a system needs to be designed that can

represent heuristics, and automatically run heuristics against problem instances to
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gauge their effectiveness. In addition to this, an overarching algorithm is needed

that can create new heuristics. The first two of these components are nearly always

domain-specific, but there are general, problem-independent techniques that have

previously been used to automatically create heuristics.

Despite the additional work that is required in designing a system that automates

the creation of heuristics, such systems have the potential to offer several advantages

compared to the manual design process of constructing a single heuristic. For

example, such a system could be used to offer tailor-made heuristics for specific

problem instances or subsets of problem instances. Within the aviation industry,

software is used to create schedules of aircraft departures and arrivals for airports.

A schedule’s effectiveness is judged by how closely it mirrors the desired departure

and arrival times, while maintaining safety requirements. Every airport has a specific

number of runways and terminals, with each of these having its own capacity. One

can conceive of a general-purpose search algorithm that is designed to find the best

scheduling of aircraft according to the given requirements. Such an algorithm may

use a heuristic to direct its internal search mechanism. Automated heuristic creation

software could be used to design bespoke heuristics for specific airports, with the aim

of outperforming general-purpose heuristics.

When using automated heuristic creation systems on well-researched problems,

there is also the potential to discover effective heuristics that have previously not been

described. Such systems could also be used to test new ideas in formulating heuristics,

to ascertain whether they are effective when combined with other, previously known

heuristic strategies - in essence becoming a tool to aid in the rapid prototyping of

heuristic design. On problems that have little or no previous literature regarding

effective heuristic design, such an automated system could significantly reduce the

time taken to find effective heuristics in these domains.

As stated, the heuristic creation algorithm is one component of an automated

heuristic creation system that is not problem-dependent. Yet, the choice of heuris-

tic creation algorithm largely depends on the choice of representation used for the

heuristic. One popular representation is that of a tree-like data structure. This

representation is designed to mimic a programming language. In the literature con-

cerning algorithms designed to automatically create heuristics which are represented

as tree-like structures, genetic programming and other closely related evolutionary

algorithms have been predominantly used in previous research [16, 52, 27].
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Genetic programming is a program synthesis technique based on natural selection

that is used to evolve programs. In the context of this thesis, the “programs” are

the heuristics created. This is not the only program synthesis technique used within

wider computer science. Program synthesis is a fragmented discipline, with various

subdisciplines having independently developed techniques to automatically create

programs. For example, in artificial intelligence deductive programming has been used

to create recursive programs [120], and in the functional programming community

exhaustive enumeration has proved to be an effective strategy for creating data

structures from input-output examples [22].

The core research question we ask in this thesis is what, if any, alternate program

synthesis techniques are there that could be used in the automated creation of

heuristics. As previously discussed, we will be testing these techniques on the Boolean

Satisfiability problem. One of the primary reasons for choosing this domain is

that there are several examples of previous work where the overarching goal was to

automatically create heuristics for it [60, 63, 61, 9]. These examples of previous work

provide us with a clear methodology in creating heuristics for this domain, and allow

us to compare the heuristics created from our systems to those created from previous

research. There are also many examples of hand-crafted, highly effective heuristics

for this domain, and one of our goals in this work is to ascertain how effective our

automatically created heuristics are compared to hand-crafted ones.

One of the program synthesis techniques we will use to create heuristics is

exhaustive enumeration. We will then use the created heuristics to perform a large-

scale search space analysis, utilising the minimum tree edit distance to compare

heuristics to each other. To our knowledge, such research has not been undertaken

before. From the observations made through this analysis, we will propose a new,

novel program synthesis method called local search program synthesis. We will

then perform experiments using this method and show that it can be used to create

high-quality heuristics for our domain.

To summarise, this thesis will investigate the applicability several program syn-

thesis techniques have in automating the creation of heuristics for use in solving the

Boolean Satisfiability problem. Particular attention will be given to techniques that

have previously not been used in the automated creation of heuristics.
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1.1 Structure of this Thesis

The structure of this thesis is as follows:

• Chapter 2: Literature Review. This chapter provides an overview of the

pertinent research to this thesis. Succinctly, this is research concerning the

Boolean Satisfiability problem, heuristics for solving the Boolean Satisfiability

problem through local search, the automated creation of heuristics, program

synthesis methods and the minimum tree edit distance problem.

• Chapter 3: Heuristic Representation & Evaluation. This chapter details the

underlying format used to automatically create heuristics in the experiments

presented in this thesis. It provides technical information regarding the systems

that use the heuristics to solve Boolean Satisfiability problem instances. This

chapter also details the fitness function used throughout this thesis to gauge

the effectiveness of a heuristic, and evaluates the performance of previously

existing, hand-crafted heuristics.

• Chapter 4: Exhaustive Enumeration & GP. This chapter presents the method-

ology and results from experiments designed to automatically create heuristics

using exhaustive enumeration and genetic programming. It provides greater

emphasis on the experiments conducted using exhaustive enumeration. This

chapter also looks at individual heuristics created from both methods, and

presents data showing how they perform on larger problem instances.

• Chapter 5: Analysing Heuristics Using the MTED. This chapter presents a

search space analysis performed using the results obtained from the exhaustive

enumeration experiments described in Chapter 4. The minimum tree edit

distance metric is used to compare heuristics, and observations are made

about the landscape of the search space. This chapter also illustrates, through

simulated experiments, how a local search algorithm on the heuristics themselves

could work as a method of program synthesis.

• Chapter 6: Neighbourhood Generation. This chapter details the neighbourhood

generation algorithms for program trees. The neighbourhood of a program tree

is a concept based on the minimum tree edit distance metric. The algorithms

this chapter presents are a vital component in the overarching local search

program synthesis method proposed in Chapter 5.

6
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• Chapter 7: Local Search Program Synthesis. This chapter presents the method-

ology and results from experiments designed to automatically create heuristics

using the local search program synthesis method proposed in Chapter 5. The

experiments use the algorithms detailed in Chapter 6. It also presents auto-

mated heuristic creation experiments that use an alternate language to represent

heuristics. This chapter then highlights some of the created heuristics, and

shows how they perform on larger problem instances.

1.2 Academic Publications Produced

• Andrew Burnett and Andrew Parkes. “Systematic search for local-search SAT

heuristics”. In: Proceedings of the 6th International Conference on Metaheuris-

tics and Nature Inspired Computing, (META ’16). Marrakech, Morocco, June

2016, pp. 268–270.

– This short/abstract paper presents the preliminary research in Chapter 4.

• Andrew W. Burnett and Andrew J. Parkes. “Exploring the landscape of the

space of heuristics for local search in SAT”. In: Proceedings of the 2017 IEEE

Congress on Evolutionary Computation, (CEC 2017). San Sebastián, Spain.

June 2017, pp. 2518-2525.

– This conference paper presents the research in Chapter 5.

• Andrew W. Burnett and Andrew J. Parkes. “Using local search program syn-

thesis to create local search SAT heuristics”. Provisional title, to be submitted

2022.

– This journal paper presents the research in Chapters 6 and 7.
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Chapter 2

Literature Review

2.1 Introduction

In this chapter we provide the reader with an overview of the relevant literature

pertaining to the areas of research within this thesis. Succinctly, these are the

Boolean Satisfiability (SAT) problem, heuristics for use in solving SAT through local

search, previous research in the automated creation of heuristics, program synthesis

techniques and the minimum tree edit distance (MTED) problem. The core aim

of this thesis is to investigate the applicability of previously underused program

synthesis techniques in the automated creation of heuristics. This chapter provides

the context for this work, as well as aiding in the understanding of the experiments

performed, and the domain the created heuristics are deployed in.

We introduce the SAT problem in Section 2.2. This is the domain that we will

test our heuristic creation techniques on. We give a description of the problem, its

uses and an overview of the most common algorithms used to solve it.

In Section 2.3 we give a detailed account of the research in heuristics used to

drive local search algorithms to solve SAT. One of the goals of this thesis is to search

for new, effective local search SAT heuristics by automatically creating them. The

components we use as a basis for these created heuristics are inspired by the analysis

of previously existing, hand-crafted heuristics, which are detailed in this section.

In Section 2.4 we focus on previous work in automating the design of heuristics,

with an emphasis on techniques to automatically create heuristics. We give particular

attention to work that has been performed on the same local search SAT domain

that we will create heuristics for.

8
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Section 2.5 contains an overview of different program synthesis methods. Program

synthesis is an umbrella term that is used to describe techniques to create programs

and program fragments automatically. Some of the techniques used in this thesis to

automatically create heuristics come directly from the work detailed in this section.

In Section 2.6 we provide an overview of the MTED problem. In our work we

use this as a metric to compare created heuristics, and as a basis for the program

synthesis technique described in Chapters 5 to 7. Finally in Section 2.7 we present

the conclusions we draw from the research presented in this chapter.

2.2 Boolean Satisfiability Problem

The SAT problem is a decision problem that asks, given a propositional logic formula

F containing variables v1 . . . vn, does there exist an assignment of variables to values

in the domain {False, True} such that F evaluates to True. We say that if an

assignment exists, then F is satisfiable and that F ∈ SAT. If no assignment exists,

we say that F is unsatisfiable and F /∈ SAT, or that F ∈ UNSAT. It is common

for SAT problem instances to be described in conjunctive normal form (CNF)1,

which can be defined as follows; a propositional formula in CNF contains a set of

clauses {c1 . . . cm} distributed over conjunction. Each clause contains a set of literals

{l1 . . . lk} distributed over disjunction. A literal is either the occurrence of a variable

vi, or its negation ¬vi. We will be using the convention of writing negated literals as

vi for the remainder of this thesis. Figure 2.1 shows two propositional formula; one in

CNF and one not. From this point on we will assume that (unless stated otherwise)

when referring to a SAT problem, we specifically mean a problem represented as

a propositional logic formula in CNF. One notable consequence of presenting SAT

problems in CNF is that an assignment that satisfies the formula requires all clauses

to be satisfied; that is, each clause must evaluate to True.

A restricted variant of the SAT problem called k-SAT refers to those formula

described in CNF whose clauses contain exactly k literals. Figure 2.1a shows a 3-SAT

problem. It should be noted that some authors, when referring to k-SAT, use the

convention that each clause contains at most k literals. We use the former definition.

k-SAT is a known NP-complete problem [45] for all k ≥ 3. Using current methods

1Any arbitrary propositional formula can be converted to CNF through the rules of propositional

logic. Schöning and Torán [155, Chapter 1] provide a detailed overview of the algorithms used to do

this.
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(v1 ∨ v2 ∨ v4) ∧
(v2 ∨ v3 ∨ v4) ∧
(v1 ∨ v3 ∨ v4)

(a) Propositional formula in CNF.

(v1 ∨ v2 ∨ v4) ∧
(v2 ∧ v3 ∨ v4) ∨
(v1 ∨ v3 ∧ v4)

(b) Propositional formula not in CNF. This

is due to the disjunction between the second

and third clause, and conjunctions in each of

these clauses.

Figure 2.1: Two examples of propositional logic formula; one in CNF, one not.

this makes it a computationally expensive problem to solve, with the fastest algorithm

known, PPSZ, running in O(1.308n) [80] on 3-SAT problems that contain n variables.

Despite this exponential worst-case running time, software that can solve SAT

problem instances continues to be used to solve real-world problems through the

use of reductions to SAT. For instance, within the automated design of electronic

circuits, SAT is used to great success. It is used extensively in Automated Test

Pattern Generation (ATPG), a technique used to find faults in circuits [104]. SAT is

also used in the verification of circuit designs through bounded model checking [44].

Marques-Silva [122] provides more information regarding the various uses of SAT in

the automated design of electronic circuits.

Within the scope of operations research, techniques to solve SAT have important

use-cases in answer set programming [69] and the solving of constraint satisfaction

problems (CSPs) [169]. In the wider context of computer science, SAT has uses in

such areas as planning [97] and scheduling, program verification [20] and cryptanalysis

[162], to name but a few. A broad overview of the real-world use of SAT (and its

extensions) can be found in Handbook of Satisfiability [18].

A piece of software designed to answer the question of whether an arbitrary SAT

problem is satisfiable or not is informally called a SAT solver. One common way of

proving a formula is satisfiable is through the construction of an assignment that

satisfies all clauses. Showing a formula is unsatisfiable is more difficult, as it requires

proving that it is impossible to construct a satisfying assignment. One commonly

used method of proving unsatisfiability is through a resolution proof. Sometimes, due

to the properties of a SAT formula, a proof of satisfiability or unsatisfiability can be

trivially constructed [155, Chapter 1].

Usually to construct a proof (of either satisfiability or unsatisfiability) a search is

10
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conducted on the space of solutions of a SAT problem instance. Like in other hard

combinatorial problems, there exist two predominant search techniques underpinning

the algorithmic design used in SAT solvers; complete and incomplete. A complete

search technique is guaranteed to consider the entire search space of solutions and,

when given enough computational resources, provide an answer as to whether a

problem instance is satisfiable. Incomplete solvers offer no such guarantee; there

is no systematic methodology to their search and therefore no guarantee that an

answer will be found. However, some incomplete solvers can be highly effective at

quickly finding satisfying assignments to SAT problem instances that complete solvers

struggle to find in a reasonable amount of time.

These two competing search methods are perhaps best represented by the two

most common algorithms used as the basis for many SAT solvers; the Davis-Putnam-

Logemann-Loveland (DPLL) algorithm and local search. DPLL is a complete search

algorithm that constructs a partial assignment as it explores the search space. It

is used to construct proofs of satisfiability and unsatisfiability. Local search, an

incomplete, perturbative search algorithm, aims to find a satisfying assignment to a

SAT problem instance - and therefore, in this form, it is only able to solve satisfiable

SAT problem instances, and cannot provide a proof of unsatisfiability.

However in truth, this relationship between search paradigms, proof techniques

and algorithms is not always exact. For example, Audemard et al. [6] described a

local search SAT solver that proves unsatisfiability by building a resolution proof.

It is not complete, but offers functionality that is not normally expected of a local

search SAT solver. There are also examples of SAT solvers that (at the time of their

creation) have been considered state-of-the-art which use a hybridisation of local

search and DPLL in their construction. An example is the CADICAL solver which

placed 4th in the 2019 SAT Race [89]2. Other examples of hybrid SAT solvers include

the SparrowToRiss solver [11], the MoRsat solver [54] and the HBISAT solver

[43].

Though not directly relevant to this thesis, there exist several variants of the SAT

problem which are of interest to us, as some of the techniques used to solve them

are related to those discussed in this thesis. MAX-SAT is an optimisation variant of

SAT where, under CNF, rather than trying to find an assignment that satisfies all

clauses, the aim is to maximise the number of satisfied clauses. Weighted MAX-SAT

2Webpage detailing the competition, entrants and results located at http://sat-race-2019.

ciirc.cvut.cz/
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is a further extension of MAX-SAT which assigns each clause a weight. The goal

when solving a Weighted MAX-SAT problem instance is to maximise the sum of the

score of the satisfied clause’s weights.

As an example of this close relationship between techniques, we will consider

a MAX-SAT solver called SATLike-c. This solver is of particular interest as it

won one of the subcompetitions, or tracks, at the International Conference on the

Theory and Application of Satisfiability Testing MAX-SAT Competition held in

20183. The particular subcompetition it won required the submitted solvers to solve

Unweighted MAX-SAT problem instances where a global optimum was not known.

SATLike-c is a hybrid MAX-SAT solver that initially performs local search, then

in a secondary stage uses a complete solver in an attempt to find an optimal solution.

In its local search stage it uses the solver CCLS. This is a local search MAX-SAT

solver based on configuration checking [34] (an overview of which is provided in

Section 2.3.6), a technique that had previously been found to be an effective basis for

solving conventional SAT problems through local search.

The format of the rest of this section is as follows; in Section 2.2.1 we provide an

in-depth overview of DPLL and local search. In Section 2.2.2 we discuss a specific

subclass of SAT problems that local search is highly effective at solving. Finally

in Section 2.2.3 we discuss the conclusions that can be drawn from the literature

presented in this section.

2.2.1 Algorithms to Solve SAT

In this subsection we outline the two most common algorithms used as templates

to design SAT solvers. The two algorithms are DPLL and local search. DPLL, and

the closely related Davis-Putnam algorithm, were described first. Consequently they

were considered the standard method for solving SAT problem instances for nearly

thirty years. However, after research appeared showing that the local search-based

SAT solver GSAT [161] could provide improved performance compared to DPLL,

research interest piqued in this area. As subsequent advancements were made in

the development of the heuristics driving local search-based SAT solvers, which

yielded improved performance, comparatively less attention was given to DPLL.

Yet, DPLL’s inability (at the time) to perform as well as the local search-based

3Webpage detailing the competition, entrants and results located at https:

//maxsat-evaluations.github.io/2018/
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SAT solvers needs to be taken in context; this development came at a time when

the computational resources available meant that many subsequently developed

techniques used to improve DPLL’s performance were not feasible at the time.

Despite this, DPLL continued to remain relevant as it could prove unsatisfiability,

and, through improved technologies and additional techniques, DPLL-based solvers

are now generally preferable to local search-based SAT solvers in domains where

either a proof of unsatisfiability is required, or on problems perceived to be difficult

for local search-based SAT solvers to solve.

To facilitate the understanding of these two algorithms, we begin by introducing

a series of definitions about SAT problems and assignments, before introducing each

algorithm. The definitions are as follows:

Definition 1 (Variable Set)

The variable set of a SAT problem F is the set of all variables in that SAT problem.

For a SAT problem containing n variables, this is usually expressed as {v1 . . . vn}. To

refer to F ’s variable set, we write Vars(F ).

Definition 2 (Clause Set)

The clause set of a SAT problem F is the set of all clauses in that SAT problem. For

a SAT problem containing m clauses, this is usually expressed as {c1 . . . cm}. To refer

to F ’s clause set, we write Clauses(F ).

Definition 3 (Literal Set)

The literal set of a clause c is the set of literals in that clause. For a clause containing

k literals, this is usually expressed as {l1 . . . lk}. To refer to c’s literal set, we write

Lits(c).

Definition 4 (Literal’s Sign/Variable)

A literal l is made up of a sign - either True or False - and a variable v.

A literal’s sign is True if the literal l containing variable v is in the form v, and

False if in the form v. To refer to l’s sign we write Sign(l).

A literal’s variable is the underlying variable in the literal. To refer to l’s variable

we write Var(l).

Definition 5 (Assignment)

An assignment A for a SAT problem F is a map of variables v ∈ Vars(F ) to

values {True, False}. A complete assignment is an assignment where all variables in

Vars(F ) have a value associated with them. A partial assignment is an assignment
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in which some variables may not have associated values set. ∅ represents the empty

partial assignment. We write A[v] to obtain the assignment of v in A. If A is a partial

assignment, and v is unassigned in A, then A[v] = Unset. We write B = Av=True

to signify the partial assignment B obtained by taking A and setting the variable

v to True. We write B = Av to signify the complete assignment B obtained by

taking the complete assignment A and changing the truth variable of v to ¬A[v]. We

refer to changing a variable’s assignment in this manner as “flipping” the variable’s

assignment.

Definition 6 (Satisfied, Unsatisfied and Unset Literal)

A literal l containing a variable v is satisfied under an assignment A if A[v] =

Sign(l). A literal is unsatisfied if A[v] ̸= Sign(l). If A is a partial assignment, and

A[v] =Unset, then we say that a literal containing v is Unset. To refer to the

information about l’s satisfied state, we write Satisfied(A, l).

Definition 7 (Satisfied, Unsatisfied and Unset Clause)

A clause c is satisfied under an assignment A if ∃l ∈ Lits(c), Satisfied(A, l) =

True. It is unsatisfied if ∀l ∈ Lits(c), Satisfied(A, l) = False. If A is a partial

assignment then c is Unset if ¬(∃l ∈ Lits(c), Satisfied(A, l) = True) ∧ (∃l ∈
Lits(c), Satisfied(A, l) = Unset). To refer to the information about c’s satisfied

state, we write Satisfied(A, c).

Definition 8 (Satisfying Assignment)

A SAT formula F is satisfied under an assignment A if ∀c ∈ Clauses(F ),

Satisfied(A, c) = True. To refer to the information about F ’s satisfied state,

we write Satisfied(A, F ).

DPLL

Historically the earliest SAT solvers were based on the Davis-Putnam algorithm [50]

and a refined variant called the DPLL algorithm [49]. Many modern-day, state-of-

the-art complete SAT solvers still use the DPLL algorithm at their core.

When visualising the solution space of a SAT problem as a tree, DPLL can be

thought of as starting at the root of the tree and traversing it in a depth-first search

manner. As it moves downwards through the tree, it constructs a partial assignment

to the problem. If a conflict is found in the current partial assignment - that is to

say, a clause is found to be unsatisfiable - then the algorithm stops and backtracks to
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a previous decision point. The SAT problem is unsatisfiable when all branches in the

tree have been traversed and no satisfying assignment found.

DPLL uses two methods of simplification to reduce overall computation, outlined

as follows:

• Pure Literal Elimination: Given all currently Unset variables vs under a

partial assignment A and SAT problem F , a variable v ∈ vs is a pure literal if

the following holds. For all clauses cs currently Unset in F under A, v only

appears in cs either in the form v or the form v. Pure literals can be assigned to

make all clauses they appear in satisfied, without making any currently satisfied

clauses unsatisfied.

• Unit Clause Propagation: Given all currently Unset clauses cs under a

partial assignment A and SAT problem F , a clause c ∈ cs is a unit clause if

the following holds. There is exactly one literal l ∈ Lits(c) which satisfies the

logical statement Satisfied(A, l) =Unset. For a solution to be found, the

Unset literal in c must be assigned a value in such a manner so as to make c

satisfied.

In Algorithm 2.1 we show an outline of the DPLL algorithm. Modern-day DPLL-

based solvers use sophisticated data structures, heuristics, and techniques such as

conflict driven clause learning (CDCL) to make them highly effective at finding proofs

of satisfiability and unsatisfiability in large SAT problems.

There exist other complete search methods for SAT such as St̊almarck’s method

[164], which are beyond the scope of this thesis. For an overview of modern techniques

to improve the performance of DPLL including detailed examples of CDCL, as well

as the most recent advances in complete solvers, we point the reader to Handbook of

Satisfiability [18] and The Satisfiability Problem: Algorithms and Analyses [155].

Local Search for SAT

The algorithm that underpins most local search SAT (LS-SAT) solvers can be de-

scribed as follows; it is an iterative algorithm that begins by initialising a complete

assignment of all variables in the problem. On each iteration, a perturbation of the

previous assignment is obtained by changing the truth value of one of the variables;

we “flip” a variable’s assignment from False to True or vice versa. A check is

performed on each iteration to deduce whether the assignment now satisfies the
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Algorithm 2.1 DPLL

Input: F SAT problem instance in CNF.

Output: True if F ∈ SAT, False if F /∈ SAT .

algorithm DPLL(F )

assignment = ∅ ▷ Initial empty assignment.

return DPLL-Internal(assignment, F )

algorithm DPLL-Internal(assignment, F )

clauses = Clauses(F )

assignment = Unit-Propagation(assignment, clauses)

assignment = Find-Pure-Literals(assignment, clauses)

if (∀c ∈ clauses, Satisfied(assignment, c) = True) then ▷ All clauses True.

return True

if (∃c ∈ clauses, Satisfied(assignment, c) = False) then ▷ Clause is False.

return False

var = Pick-Var(assignment, F ) ▷ Pick an unassigned variable.

return

DPLL-Internal(assignmentvar=True, F ) ∨
DPLL-Internal(assignmentvar=False, F )
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Algorithm 2.2 Local-Search for SAT

Input: F SAT problem instance in CNF.

maxFlips Maximum number of iterations to run for.

Output: True if a solution is found. null if no solution is found.

algorithm Local-Search(F , maxFlips)

assignment = Initialise-Assignment(F ) ▷ Create initial assignment.

if (Satisfied(assignment, F )) then

return True

for (iteration ∈ {1 . . .maxF lips}) do
varToF lip = Pick-Var(assignment, F )

assignment = assignmentvarToF lip

if (Satisfied(assignment, F )) then ▷ Check if F is satisfied.

return True

return null

formula - specifically, whether all clauses are satisfied. An outline of this algorithm

is shown in Algorithm 2.2. An example of two problem assignments can be seen in

Figure 2.2. The assignment in Figure 2.2b is a perturbation of the assignment in

Figure 2.2a, obtained by flipping the 6th variable.

A local search SAT solver answers the question of whether a formula is satisfiable

by attempting to find an assignment that satisfies it. The difference between complete

and incomplete algorithms is in their guarantee that a definitive answer will be

returned. Local search does not stipulate any ordering on how the variables are

changed, there is no guarantee that all possible solutions will be evaluated, and it

is not uncommon for solutions to be revisited. This is why local search for SAT is

an incomplete search method. Succinctly, if a solution is found, then a formula is

satisfiable. If one is not found, that does not mean that the formula is unsatisfiable.

There exist many variations and augmentations of local search. Many of these

are generic methodologies that are not problem-specific, and some of them have

been used to augment LS-SAT solvers; for example Spears [166] applied simulated

annealing to SAT. However, in much of the work describing advancements in the

effectiveness of LS-SAT solvers, the improvements have come from new heuristics.

When we refer to heuristics in the domain of LS-SAT solvers, we specifically mean the

functions designed to pick the next variable to flip - in Algorithm 2.2, the heuristic

would be called by the function Pick-Var. The way in which this variable is chosen
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Variable 1 2 3 4 5 6 7 8

Assignment False True False True True True False True

(a) An example of an assignment to a SAT problem instance containing 8 variables.

Variable 1 2 3 4 5 6 7 8

Assignment False True False True True False False True

(b) An example of an assignment to a SAT problem instance containing 8 variables. This

has been obtained by taking the assignment in Figure 2.2a and changing the 6th variable

from True to False.

Figure 2.2: Two examples of assignments to a SAT problem instance containing 8

variables. The assignment in Figure 2.2b has been obtained by taking the assignment

in Figure 2.2a and flipping a variable in it.

can drastically effect the performance of an LS-SAT solver. While the initialisation

function can be considered a heuristic function as well, in this thesis we specifically

concentrate on heuristics designed to direct the internal search mechanism.

Local search-based SAT solvers are sometimes referred to as stochastic local

search SAT (SLS-SAT) solvers, and their internal heuristics as SLS-SAT heuristics.

Stochasticity when discussing local search in general refers to variants of local search

that employ non-determinism, and will not always return the same result. This can

be in the form of random restarts, randomness within heuristics, the initialisation

function, and other techniques. In truth nearly all heuristics designed for an LS-SAT

solver use some form of stochasticity in their construction, and there are few examples

of purely deterministic LS-SAT heuristics. Throughout this thesis we use the term

local search SAT (and the acronym LS-SAT), rather than stochastic local search SAT

(and the acronym SLS-SAT).

2.2.2 SAT Problem Hardness

Though DPLL-based solvers can give a definitive answer as to whether a SAT formula

is satisfiable, they find some problems difficult to solve quickly. Local search SAT

solvers excel at solving some of these types of problems. In this subsection we look at

satisfiable k-SAT problem instances in and around the phase transition region that

local search-based solvers generally outperform DPLL-based solvers on.

A phase transition region is an observed phenomenon in the problem space of many
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NP-hard problems, where a significant change in problem difficulty is found. Phase

transition regions have been observed in many domains, such as graph colouring, the

Travelling Salesman problem (TSP) and the finding of Hamilton circuits [42], not to

mention within SAT [67]. Zeng and Lu [179] state that “Many experimental results

have shown that for a class of NP-hard problems one or more “order parameters”

can be defined, and hard instances occur around the critical values of these order

parameters”. This instance hardness is not measured by computational complexity,

but by empirical evaluation of the run-time of complete algorithms on problem

instances. When a complete algorithm is used to solve problem instances further

from a phase transition region, as described by these order parameters, they exhibit

shorter run-times than those problems closer to it.

Within SAT one of the motivations behind investigating local search methods was

the observation that complete algorithms did not perform well on certain randomly

generated k-SAT problem instances [129, 161]. As researchers experimented with

different problem instances, they found that DPLL-based algorithms took much

longer to solve some instances than others. These problems could be categorised

by their ratio of clauses to variables. For 3-SAT, problem instances with a ratio

of around ≈ 4.27 were found to exhibit this behaviour. This region is the phase

transition region for 3-SAT. Phase transition regions have been found for other k

values; for example, 5-SAT’s phase transition region is known to exist at ≈ 21.12,

and for 7-SAT at ≈ 87.79.

These regions mark a stark contrast between not just hardness, but of satisfiability

itself. To illustrate this phenomenon, we created a set of 3-SAT problem instances,

and ran a complete solver on them. Each problem instance had 250 variables, and

from between 900 to 1, 300 clauses with 5 step increments (a total of 81 different

clause values). For each unique clause value, we generated 250 problem instances. The

mapleSAT solver was then ran on each problem instance, until a definitive answer

about satisfiability was found. In Figure 2.3 we show the percentage of satisfiable

formula in, and the run-time required to solve, the set of 250 instances at each clause

value. The reader can clearly see that as the clause-variable ratio approaches 4.27,

the number of satisfiable problems changes from nearly all to nearly none. The reader

can also see that the amount of time it takes for the algorithm to terminate greatly

increases as we approach this clause-variable ratio, before decreasing again.

Historically, these problems at the phase transition region in SAT have been
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(a) Percentage of the SAT formula that

are satisfiable at each clause-variable

value.

(b) Total time to solve all SAT formula

for each clause-variable value.

Figure 2.3: Results from solving 3-SAT problems using the mapleSAT solver. Each

instance contains 250 variables and between 900 and 1, 300 clauses (step increase of

5). For each clause value, we created a set of 250 random formula. We show the %

that are satisfiable and the time taken to solve each set.

difficult for DPLL-based algorithms to solve, but easier for local search-based algo-

rithms to solve. As an example of this, we will look at the results of the 2018 SAT

Competition [151]4. The SAT Competition is a regularly held event where different

SAT solvers are tested against each other to determine which is the most effective.

In the 2018 edition of the competition several tracks were held, each of which tested

the submitted solvers on different types of problem instance. One of these tracks,

called the Random track, focused on randomly created instances, some of which can

be categorised as problems in and around the phase transition region.

The competition was ran as follows; given 255 satisfiable problem instances, each

solver was allowed 30 minutes to solve each problem. The 255 problems were split

into various sets. These sets were named for the origin of the problems contained

within; for example the set named “3SAT” contains problems in and around the phase

transition region for 3-SAT. Other sets contain randomly created SAT problems that

have a non-uniform number of variables in each clause, and therefore a clause-variable

ratio that is not a good indicator of their problem hardness. The largest problems

4Webpage detailing the competition, entrants and results located at http://sat2018.forsyte.

tuwien.ac.at/
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have millions of variables. In Table 2.1 we present a detailed overview of the results.

Though the results show that Sparrow2Riss, a hybrid solver, won the competi-

tion overall, the detailed results also show that it was not the best performing on

all sets of problem instances. In fact, several of the local search solvers were able

to outperform it (as well as the CDCL-based solvers) on certain subsets of the 255

instances; specifically those containing instances at the phase transition region for 3, 5

and 7-SAT. In subsequent competitions the Random track has not been held. We feel

that, while these results show that state-of-the-art hybrid solvers, and CDCL solvers,

are able to outperform LS-SAT solvers on some randomly generated instances, they

also show that local search-based solvers are still more effective at solving k-SAT

problem instances in and around the phase transition region. In addition to this,

their use in hybridised solvers suggests that the continued development of effective

local search-based solvers still has a role to play in the creation of general-purpose

solvers.

2.2.3 Summary & Discussion

In this section we have provided a brief overview of the Boolean Satisfiability problem,

detailed two algorithms used to solve it, touched on its extensions, and discussed a

specific subclass of SAT problem in and around the phase transition region.

When solving a SAT problem instance, currently it is common practice for a

complete algorithm to be invoked at some stage of the solving process. This is

predominantly due to the difficulty that incomplete algorithms, such as local search,

have in constructing a proof of unsatisfiability. Though local search does perform

well when solving certain classes of SAT problem when compared to DPLL, on its

own its use is limited.

Despite this, we feel that we have shown that local search algorithms, and by

extension the heuristics that direct the search within them, still have a role to play

in solving real-world SAT problems. The evidence presented in Section 2.2.2 showed

that local search-based SAT solvers can still solve problems that DPLL-based solvers

struggle to solve. We also provided evidence of the continued role that hybrid solvers

have to play in solving SAT. Well-designed heuristics that drive the local search

algorithm are still required to design such solvers.

Further to this, some algorithms to solve SAT’s optimisation variants make use

of local search and heuristics to guide their internal search mechanisms. We have
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Table 2.1: Detailed results of the 2018 SAT Competition, Random track. Each

problem set is named, and the total number of instances in that set shown. For each

solver, the type of that solver is indicated; CDCL is based on conflict driven clause

learning and DPLL, LS is based on local search, and Hybrid is a combination of the

two. The data shows how many problem instances each solver could solve. Bold

typeface of a result indicates a solver that solved the most of all solvers for that set

of instances.

Solver Type

Random

T
ot
al

(2
55
)

cnf bz2

al
t
(7
)

afl
a-
q
h
id

(5
5)

rn
d
-k
om

b
(5
5)

fl
a-
b
ar
th
el

(5
5)

B
al
in
t
(3
0)

3S
A
T

(2
0)

5S
A
T

(1
3)

7S
A
T

(2
0)

Sparrow2Riss Hybrid 55 55 55 12 0 3 8 0 188

gluHack CDCL 55 55 55 0 0 0 0 0 165

glucose-3 PADC 10 CDCL 55 55 55 0 0 0 0 0 165

glucose-3 PADC 3 CDCL 55 55 55 0 0 0 0 0 165

expGlucoseSilent CDCL 55 55 55 0 0 0 0 0 165

CPSparrow LS 21 55 55 16 0 6 10 0 163

dimetheus LS 12 12 55 20 20 13 16 7 155

probSAT LS 12 14 55 17 18 11 11 0 138

YalSAT LS 12 9 55 15 16 12 10 0 129

lawa LS 12 6 55 0 8 0 0 0 81
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provided an example of how solvers for SAT’s optimisation variants can make use of

heuristics that utilise ideas originally designed for SAT. A system to automatically

design SAT heuristics could be easily and quickly modified to work with SAT’s

optimisation variants. Therefore, the research in such systems could prove useful for

real-world applications that require software to solve these optimisation variants.

In Section 2.2.2 we discussed k-SAT problem instances in and around the phase

transition region. These are the types of problem instances we will be testing the

automatically created heuristics on. They have previously been shown to be difficult

for DPLL-based solvers to solve, and comparatively easy for LS-SAT solvers to solve.

SAT is itself a broad research area and, as we only concentrate on a small area of

it in this thesis, this section can only be considered to be an introduction to the topic

at large. For more information, the reader is directed to The Satisfiability Problem:

Algorithms and Analyses [155], which provides an introduction to many core research

areas in SAT, and discusses in detail the methods used to solve it. Handbook of

Satisfiability [18] provides a detailed and in-depth review of many areas of research

in SAT and its extensions.

2.3 LS-SAT Heuristics

In this section we provide an overview of previously described LS-SAT solvers in

the research literature that have either proven to be effective at solving the SAT

problem, or we deem the work undertaken relevant to this thesis. Our focus is almost

exclusively on the heuristics that drive these LS-SAT solvers. It is through the

literature presented in this section that we identify many of the components we use to

create heuristics in later chapters. We include examples of the pseudocode describing

the heuristic component of several LS-SAT solvers, and not the overarching LS-SAT

algorithm of the described solvers. Each given heuristic has been presented in a

way that, if the provided pseudocode were substituted for the function Pick-Var

in Algorithm 2.2, an LS-SAT solver utilising the substituted heuristic would be

created. Furthermore, at certain points in this section we describe LS-SAT solvers

that require some additional mechanism to function correctly. These additional

mechanisms exclusively concern update functions for auxiliary data structures. These

update functions are clearly labelled and, if they were to be used as part of the

overarching LS-SAT algorithm in Algorithm 2.2, they would be inserted at the end
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of each iteration of the overarching local search loop.

We present the heuristics in a semi-chronological order, as this allows the reader

to identify the research trends as they become more and less relevant. We have

attempted to group the heuristics into several subsections based upon the common

techniques used in their formulation. However this is not always possible as competing

ideas sometimes appeared at the same time, or appeared as bit-parts in heuristics

before later being reused as effective, stand-alone heuristics.

We make an attempt to use uniform terminology in our descriptions, as well as

uniform pseudocode where it is provided. An explanation of the commonly used

functions in the pseudocode is found in Table 2.2. We also provide a set of definitions

about metrics and properties of SAT problems used throughout this section. The

set of definitions in Section 2.2.1 are also used, and we refer the reader to them if

unfamiliar with SAT. These are not the only metrics and descriptions used, but

it does define all those that transcend multiple subsections. The definitions are as

follows:

Definition 9 (True Literals)

For a SAT problem F , clause c ∈ Clauses(F ) and complete assignment A, this is

the number of satisfied literals in c under A. It can be defined as |{l ∈ Lits(c),

Satisfied(A, l) = True}|. To refer to this value we write TrueLits(A, c).

Definition 10 (Variable’s Clause Set)

For a SAT problem F and variable v ∈ Vars(F ), this is the set of clauses that

contain a literal that is either the positive occurrence or negative occurrence of v. It

can be defined as {c ∈ Clauses(F ), (∃l ∈ Lits(c), Var(l) = v)}. To refer to this

set we write ClauseSet(F, v).

Definition 11 (Variable’s True/False Literal Set)

For a SAT problem F , variable v ∈ Vars(F ) and complete assignment A, v’s True

Literal set is defined as the set of clauses that contain a literal l that is both a satisfied

literal and contains v. v’s False Literal set is the set of clauses that contain a literal l

that is both unsatisfied and contains v. It follows that when the variable v is flipped

in a local search algorithm, these sets also flip. The two sets can be described as

{c ∈ ClauseSet(F, v), (∃l ∈ Lits(c), Satisfied(A, l) = True ∧ Var(l) = v)}
and {c ∈ ClauseSet(F, v), (∃l ∈Lits(c), Satisfied(A, l) = False ∧ Var(l) = v)}
respectively. To refer to the True Literal set we write TrueLitSet(F, A, v) and

FalseLitSet(F, A, v) to refer to the False Literal set.
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Definition 12 (Clause Weighting)

A clause weighting scheme W under a SAT problem F is a matrix of positive numbers,

each of which is associated with a clause c ∈ Clauses(F ). Each value represents the

“weight” of the clause c, and a weight of n is analogous to having n copies of c in F .

The “base” (representing the original problem F ) weighting has all values set at 1,

and is written as so. We write Wc = x to change a clause c’s weight to x, W = x to

set all weights to x and W to obtain the mean of all the weights.

Definition 13 (Positive Gain)

For a SAT problem F , variable v ∈ Vars(F ), weighting scheme W and complete

assignment A, this is a metric associated with a variable that represents the number

of currently unsatisfied clauses that will become satisfied if v is flipped. It is also

known as makes. It can be computed as:

∑
c ∈ FalseLitSet(F, A, v)

Wc if TrueLits(A, c) = 0

0 otherwise
(2.1)

To refer to this value, we write PosGainW (A, F, v). If the assignment and SAT

formula are obvious from the context, we write PosGainW (v). If a set of variables are

ordered according to their PosGainW , they are ordered from smallest to largest; the

variable with the largest PosGainW is considered the best. A variable’s PosGainW

is always a positive integer.

Definition 14 (Negative Gain)

For a SAT problem F , variable v ∈ Vars(F ), weighting scheme W and complete

assignment A, this is a metric associated with a variable representing the number of

currently satisfied clauses that will become unsatisfied if v is flipped. It is also known

as breaks. It can be computed as:

∑
c ∈ TrueLitSet(A, v)

Wc if TrueLits(A, c) = 1

0 otherwise
(2.2)

To refer to this value, we write NegGainW (A, F, v). If the assignment and SAT

formula are obvious from the context, we write NegGainW (v). If a set of variables are

ordered according to their NegGainW , they are ordered from largest to smallest; the

variable with the smallest NegGainW is considered the best. A variable’s NegGainW

is always a positive integer.
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Definition 15 (Net Gain)

For a SAT problem F , variable v ∈ Vars(F ), weighting scheme W and complete

assignment A, this is a metric associated with a variable representing the total

difference in number of satisfied clauses if v is flipped. It is also known as score. It

can be computed as:

PosGainW (A, F, v)−NegGainW (A, F, v) (2.3)

To refer to this value, we write NetGainW (A, F, v). If the assignment and SAT

formula are obvious from the context, we write NetGainW (v). If a set of variables are

ordered according to their NetGainW , they are ordered from smallest to largest; the

variable with the largest NetGainW is considered the best. A variable’s NetGainW

can be a positive or negative integer.

Definition 16 (Age)

For a current complete assignment A, initial assignment B, SAT problem F , sequence

of variables vs that detail the variables flipped to obtain A from B, and variable

v ∈ Vars(F ), this is a metric associated with a variable that represents the number

of flips since v was last changed. Specifically this is the distance in vs from the end

to the last occurrence of v. If v ̸∈ vs, then the age of v equals the length of vs. A

variable’s age is always a positive integer.

To refer to this value, we write Age(v). We assume the current assignment is

obvious from the context. If a set of variables are ordered according to their Age, they

are ordered from smallest to largest; the variable with the largest Age is considered

the best.

At various points in the following subsections, we make references to variable metrics.

These can be viewed as metrics that provide some description of a property of a

variable. We use these metrics to order sets of variables. By variable metric, we

specifically refer to the PosGain, NegGain, NetGain and Age metrics defined

above, as well as some additional metrics defined in Section 2.3.6 that are used

exclusively in that subsection.

The reader should also note that, at various points in the following subsections,

we make references to the SAT Competition. This is a regularly held benchmarking

competition that tests various SAT solvers on different types of problems. Rather than

providing the webpage of each individual competition, we point the reader to http:

//www.satcompetition.org/, which contains links to all of the SAT Competition

results referenced in this section.
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Table 2.2: The set of functions used in the pseudocode in Section 2.3. Each entry

shows the function’s name, the function’s type signature, and a short explanation of

that function’s operation.

Order-Vars(f, vs)
Variable Metric → [Variable] →

[Variable]

Given the collection of variable metrics f , each of which has an associated ordering,

the collection of variables vs, Order-Vars does the following; the variables in vs

are sorted in descending order according to the variable metric values in f - the

variable with the best variable metric(s) is placed at the front of the returned list.

To determine the ordering of two variables, the variable metric at the 0th element

of f is used. If the two variables are equal under this variable metric, then the

next element in f is used. If, after exhausting all variable metrics in f , two or

more variables are deemed equal, then the variables are ordered randomly. We

return the variables in vs in this new ordering.

Pick-Random(vs) [Variable] → Variable

Given the collection of variables vs, this function picks one at random from vs.

With-Probability(p) Probability → Bool

With probability p returns True and with probability 1− p returns False.

Pick-Broken() [Variable]

This function picks a single currently unsatisfied clause, and returns all variables

within that clause. Each unsatisfied clause has an equal chance of being picked.

Pick-Weighted-Var(W ) [(Weight×Variable)] → Variable

Given the collection of pairs of weights and variables W , this function performs a

weighted pick on the variables from W using the associated weights, returning

the chosen variable.

Filter(vs, f)
[Variable] → (Variable → Bool) →

[Variable]

Given the collection of variables vs and the function f , which takes a variable and

returns a boolean, this function filters vs using f . It returns all (if any) variables

from vs that satisfy f .
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Algorithm 2.3 GSAT Heuristic

Input: F SAT problem instance in CNF.

A Current assignment.

Output: The variable to be flipped.

algorithm GSAT(F , A)

vars = Order-Vars([NetGain1], Vars(F ))

return vars[0]

2.3.1 GSAT & Variants

Greedy SAT, commonly known as GSAT [161], was one of the first effective local

search-based SAT solvers described. Also independently described by Gu [72] (called

SAT6.0 in that work), it utilises a simple heuristic based on the hill-climbing

algorithms used in generic local search. The heuristic works by choosing the variable

that, if flipped, will maximise the number of satisfied clauses. In the terminology

we use, this is the variable with the maximum NetGain1. The pseudocode for the

GSAT heuristic is shown in Algorithm 2.3. Like all heuristics in this section, this

pseudocode can be substituted into the local search algorithm shown in Algorithm 2.2

to obtain the complete GSAT algorithm.

If it is found that two or more variables have the same NetGain1, ties are

broken by choosing one of them with uniform randomness, thus making the whole

heuristic technically stochastic. The reader should note that, unlike conventional

hill-climbing algorithms in local search, GSAT can pick moves that decrease the

number of satisfied clauses (in terms of how local search is applied to optimisation

problems, this would be analogous to reducing the current fitness), or leave the total

number unchanged.

The authors tested GSAT on satisfiable 3-SAT problem instances around the

phase transition region, and other SAT problem instances created from reductions

from the n-queens problem and the Boolean induction problem. For the 3-SAT

problem instances it was found that GSAT was able to solve more than the compared

complete Davis-Putnam algorithm. Of the problems that the Davis-Putnam algorithm

could solve, GSAT was shown to solve them much more quickly. Through these

results, research interest piqued in local search methods for solving SAT, and its

development inspired subsequent research that was primarily focused on improving

performance.
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This heuristic, in hindsight, can be considered an intensification technique; the

heuristic directs the search to areas of the solution space containing assignments that

satisfy as many clauses as possible, and potentially where a satisfying assignment

may be found.

Although GSAT was shown to be an effective method for solving SAT problem

instances, the authors noted that it could struggle to find a satisfying assignment

under certain circumstances; specifically those where the algorithm got stuck in local

optima. This occurred when the heuristic made a series of choices that put it in

an area of the search space that contained no satisfying assignment, and it could

not escape from the local optima as the heuristic was unable to choose the correct

variable(s) to allow it to do so.

Some of the subsequent research based on GSAT concentrated on mechanisms to

escape local optima. Selman and Kautz [159] described three extensions to GSAT;

one that added random walk, one that added clause weighting, and one that used

a bespoke initialisation function. We discuss the first two of these mechanisms in

Sections 2.3.2 and 2.3.4 respectively.

In this early stage of LS-SAT heuristic research, questions were also asked of how

important the design choices of GSAT were. Gent and Walsh [66, 68] performed

experiments to ascertain the importance of choosing the most greedy variable; that

is to say, whether it is important to pick the variable with the highest NetGain1.

In an attempt to answer this, several augmentations of GSAT were considered as

follows:

• CSAT: In this heuristic two sets of variables are considered. Set 1 contains

all variables in the problem with NetGain1 > 0. Set 2 contains all variables

with NetGain1 = 0. The heuristic works as follows; if Set 1 is not empty, a

variable is chosen at random from it. Else if Set 2 is not empty, a variable is

chosen at random from it. Else a variable is chosen from Vars(F ) at random.

• TSAT: This heuristic works in the same way as CSAT, except the variable

chosen from Set 1 is the variable with the minimum NetGain1. Ties are broken

randomly.

• ISAT: This heuristic works as follows: Set 1 contains all variables with a

NetGain1 ≥ 0. If Set 1 is not empty, then a variable is chosen at random from

it. Else a variable from Vars(F ) is chosen at random.
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Algorithm 2.4 HSAT Heuristic

Input: F SAT problem instance in CNF.

A Current assignment.

Output: The variable to be flipped.

algorithm HSAT(F , A)

vars = Order-Vars([NetGain1, Age], Vars(F ))

return vars[0]

• SSAT: In this heuristic, the variables are split into two sets as in CSAT. The

heuristic works as follows; if Set 2 is not empty, a variable is chosen at random

from it. Else if Set 1 is not empty, a variable is chosen at random from it. Else

a variable from Vars(F ) is chosen at random.

The results presented by the authors showed that the performance of these

heuristics, with the exception of SSAT, was comparable to GSAT. Specifically,

these heuristics were tested on random 3-SAT problem instances near the phase

transition region, and n-queens problems reduced to SAT. This suggested to the

authors that picking the most greedy variable was not necessary; simply picking a

greedy variable was sufficient to progress the search. In Section 2.3.6 we present

examples of state-of-the-art LS-SAT heuristics with mechanisms that split variables

into sets according to their NetGain1 value. The heuristics described here can be

considered precursors to that work.

Gent and Walsh also experimented with variants of these heuristics (including

GSAT) where tie-breaks were broken by the Age of a variable. The pseudocode for

GSAT with this change is called HSAT, and is shown in Algorithm 2.4.

A heuristic called IHSAT was also described, which added this additional tie-

breaking mechanism to ISAT. Both IHSAT and HSAT were found to perform

better than GSAT on the previously used set of SAT problems. This additional

mechanism of incorporating a variable’s Age metric would be further developed in

later described heuristics.

In this subsection we have provided an overview of some of the initial research in

LS-SAT heuristics. Several common techniques have been introduced that have gone

on to inspire mechanisms in more effective LS-SAT heuristics, as we will see in the

following subsections.
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Algorithm 2.5 GWSAT Heuristic

Input: F SAT problem instance in CNF.

A Current assignment.

p Noise parameter.

Output: The variable to be flipped.

algorithm GWSAT(F , A, p)

if (withProbability(p)) then

return pickRandom(pickBroken())

else return GSAT(F , A)

2.3.2 WalkSAT & Variants

In the early days of research into LS-SAT heuristics, several competing ideas were

developed that would later be revisited and combined to create new heuristics. In

the previous subsection we presented the beginnings of LS-SAT heuristic research,

where intensification strategies were found to work well on SAT. Yet, choosing the

best neighbour was known to not be necessary for a heuristic to perform well. In

this subsection we concentrate on the WalkSAT family of heuristics, which use a

different mechanism to progress the search.

Selman and Kautz [159] considered an augmentation to the GSAT heuristic that

added a “random walk” component to it. This heuristic, called GWSAT, can be

described as follows; using a pre-determined probability p5, a random variable from a

randomly chosen unsatisfied clause (or “broken clause”) is chosen as the variable to

flip, and with probability 1− p the variable returned from calling GSAT is chosen.

Pseudocode for GWSAT is shown in Algorithm 2.5.

Random walk, in the context of LS-SAT heuristic research, refers to a heuristic

mechanism that chooses a variable randomly from all the variables in a currently

broken clause. Flipping one of these variables is guaranteed to satisfy the clause

it was chosen from, but may reduce the overall number of satisfied clauses. Yet,

by picking one of these variables, it may allow the overarching search algorithm to

escape local optima. In this way, it can be considered a diversification technique.

The inspiration for the random walk mechanism came from work by Papadimitriou

[140], where it was shown that, for a satisfiable 2-SAT problem instance (a subclass

of SAT problems known to be solvable in polynomial time) containing n variables, a

5In the original work, a value of 0.35 was suggested.
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process that randomly picks a variable from a broken clause will find a satisfiable

solution in O(n2) steps with probability approaching 1.

In experiments performed by the authors, it was found that the GWSAT heuristic

could outperform theGSAT heuristic on SAT problem instances derived from Boolean

induction formulas and planning problems. A further augmentation of GWSAT

with clause weighting (see Section 2.3.4) was able to solve more of these problem

instances than GWSAT.

GWSAT is the first example we’ve shown of a heuristic that uses a pre-determined

parameter in its description. The parameter in this case can be changed to make the

heuristic favour its intensification strategy (GSAT), or its diversification strategy

(random walk). Though the authors did not show experiments using different values

for this parameter, other researchers would build on this work to show the effect

that different parameter values could have on the performance of similar heuristics.

Specifically, through experimentation “tuned” parameter values could be found which

provide the best performance for certain problem instance, or types of problem

instances.

Selman, Kautz, and Cohen [160] further developed this idea of random walk

to describe a heuristic based solely off it. They called this heuristic WalkSAT.

Like GWSAT, WalkSAT uses a pre-determined noise parameter called p in its

construction. WalkSAT works as follows; from a randomly broken clause c, find

the variable v with the smallest NegGain1. If the NegGain1 of v = 0, then v

is returned. Else, with probability p, v is returned and, with probability 1 − p, a

random variable from c is returned. We show the pseudocode for this heuristic in

Algorithm 2.6.

The design of WalkSAT is interesting for several reasons. Primarily, both its

intensification and diversification strategies return variables from an unsatisfied clause.

In its intensification step, rather than try to reduce the overall number of unsatisfied

clauses, it performs what can be described as a “soft” greedy step; it will pick a

variable that does not break any other clauses. Since it is picking a variable from an

unsatisfied clause, it will satisfy at least a single clause. Therefore, the NetGain1

of the chosen variable will be at least 1. This aligns with the observations of Gent

and Walsh [68], who showed that GSAT variants that did not pick the variable

with the best NetGain1, but chose a variable with a positive NetGain1, were still

effective heuristics. If the NegGain1 of the variable with the lowest NegGain1 is
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Algorithm 2.6 WalkSAT Heuristic

Input: F SAT problem instance in CNF.

A Current assignment.

p Noise parameter.

Output: The variable to be flipped.

algorithm WalkSAT(F , A, p)

vs = Pick-Broken()

vars = Order-Vars([NegGain1], vs)

v = vars[0]

if (NegGain1(v) = 0) then return v

else if (With-Probability(p)) then return v

else return Pick-Random(vs)

not 0, WalkSAT will pick a variable according to its diversification strategy. The

diversification strategy in WalkSAT is itself made up of two individual strategies.

How frequently either of these are used is controlled by the pre-determined noise

parameter p. The first strategy still picks the variable with the lowest NegGain1.

The second strategy picks a random variable from the clause. Irrespective of which

strategy is used, the NegGain1 of the chosen variable will be > 0. Therefore it is

not possible to know the overall effect that flipping it will have on the number of

unsatisfied clauses.

One component of LS-SAT heuristic design that we have not touched upon in

this, or the previous, subsection is the speed at which the heuristics perform. Or

more specifically, how fast the auxiliary data structures that are required to compute

the values needed for the heuristic to operate are updated. GSAT-like heuristics

require the overarching local search algorithm to maintain a partial ordering of all

variables in the problem relative to some variable metric. If the problem is large,

this can be computationally expensive to maintain. Heuristics such as WalkSAT

only require knowing the variable metric values of the variables from a single clause,

which is less computationally expensive to maintain. Because of this, they are able

to perform an iteration of local search more quickly, which can allow a solver based

on such a heuristic to solve problem instances quicker.

Through experimentation, Selman, Kautz, and Cohen were able to show that

WalkSAT could outperform (in both number of solved problems and time taken)
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GSAT and GWSAT on the problem sets it was tested on. These were circuit

synthesis problems and circuit diagnosis problems. Seitz, Alava, and Orponen [158]

performed further experiments on WalkSAT to investigate the role of the parameter,

and found that for randomised 3-SAT instances a value of 0.57 appeared to provide

the best performance.

McAllester, Selman, and Kautz [123] observed that many of the (then) recently

described heuristics made use of an intensification and diversification strategy that

could be controlled by a parameter, which when changed could affect the performance

of the heuristic. The authors described additional heuristics that also made use of a

parameter. These heuristics made use of metrics and ideas previously described in

LS-SAT heuristic research, and introduced a new notion of finding the second best

variable according to a variable metric. We provide a description of two heuristics

from this work, Novelty and R Novelty. These heuristics were chosen as they

provided the best performance of those described by the authors. In the given

descriptions, the variable p is the pre-determined noise parameter. The heuristics

can be described as follows:

• Novelty: From an unsatisfied clause c, the variables are ordered by their

NetGain1, breaking ties using the Age of a variable. For the two best variables

v1 and v2 under this ordering do the following; if v1 does not have the minimum

Age among the variables in c return v1. Else with probability p select v2 and

with probability 1 − p pick v1. The pseudocode for Novelty is shown in

Algorithm 2.7.

• R Novelty: From an unsatisfied clause c, the variables are ordered by

their NetGain1, breaking ties using the Age of a variable. For the two

best variables v1 and v2 under this ordering do the following; if v1 does

not have the minimum Age among the variables in c return v1. Else, let

n =NetGain1(v1)−NetGain1(v2) and perform one of the following steps:

1. If p < 0.5 and n > 1 pick v1.

2. If p < 0.5 and n = 1 with probability 2p pick v2, else pick v1.

3. If p ≥ 0.5 and n = 1 pick v2.

4. If p ≥ 0.5 and n > 1 with probability 2(p− 0.5) pick v2, else pick v1.
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Algorithm 2.7 Novelty Heuristic

Input: F SAT problem instance in CNF.

A Current assignment.

p Noise parameter.

Output: The variable to be flipped.

algorithm Novelty(F , A, p)

vs = Pick-Broken()

return Novelty-Internal(F, A, p, vs)

algorithm Novelty-Internal(F , A, p, vs)

vars = Order-Vars([NetGain1, Age], vs)

v1 = vars[0], v2 = vars[1]

if ((min v ∈ vsAge(v)) ̸= v1) then return v1

else if (With-Probability(p)) then return v2

else return v1

Additionally on every 100 flips, a random variable from the problem is chosen

to be flipped. This is to stop the algorithm getting stuck flipping the same

sequence of variables.

The authors performed experiments using these heuristics and WalkSAT which

were designed to determine the effect that the noise parameter had on the performance

of the heuristics. The heuristics were tested on a set of satisfiable 3-SAT problem

instances. From the experiment’s results, the authors observed that there appeared

to be a tuned noise parameter value that existed for each pair of algorithm and

SAT problem instance which yielded the best performance. However, these tuned

parameter values were different for each pair of heuristic and problem instance and,

to find these values, computationally expensive experimentation was required.

The authors performed further experiments with the goal of identifying character-

istics of the parameter value that were “less sensitive to the details of the various

strategies”. Several different measures of the behaviour of LS-SAT heuristics were

described, and it was found that, for a specific SAT problem instance, the mean

variance of the number of satisfied clauses over a run directly correlated with the

noise parameter that yielded the best performance. It was suggested that, when the

optimal mean variance is found for a specific SAT problem instance, that value can
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be used to quickly tune the parameter values of any heuristic for that SAT problem

instance. It was thought of as an alternative to the potentially computationally

expensive testing of many different parameter values. Though we are aware of no

work that makes use of this mechanism, this idea of automatically tuning heuristics

that make use of a parameter would be revisited. We discuss research in this area in

Section 2.3.3.

In the overall context of the continued development of LS-SAT heuristics, the

two heuristics we have described outperformed the heuristic which was considered

the state-of-the-art at the time - WalkSAT. The experiments showing this were

performed on random 3-SAT satisfiable instances, and SAT problems constructed

from planning problem instances and graph colouring instances.

Hoos [85] further developed the theory regarding the performance of LS-SAT

heuristics. It had been empirically observed that for many of the (then) state-of-

the-art LS-SAT heuristics, getting stuck in local optima was a reoccurring issue. To

this end, Hoos described a characteristic of LS-SAT heuristics called probabilistic

asymptotic completeness (PAC). A heuristic with PAC applied to a satisfiable SAT

problem instance will find a satisfying solution with probability approaching 1 when

given enough time. In essence, a heuristic with the PAC property is able to sufficiently

explore the search space, and not get stuck in local optima. It was shown that GSAT,

Novelty and R Novelty are not PAC, and that GWSAT is.

Through these results, Hoos described a mechanism to augment Novelty and

R Novelty to make them PAC. The mechanism uses an additional probability

parameter wp (which should be very small) to choose a random variable from the

chosen broken clause, else run like the original heuristic. These augmented heuristics

are called Novelty+ and R Novelty+6 respectively. The mechanism was designed

to diversify a heuristic in a non-deterministic way. An example of the mechanism

applied to Novelty to create Novelty+ is shown in Algorithm 2.8.

These new heuristics were shown to outperform Novelty and R Novelty on

SAT instances derived from graph colouring problem instances and random 3-SAT

instances. For Novelty+, values of 0.01 and 0.35 for the parameters wp and p were

said to provide good performance.

Li and Huang [107] described two further mechanisms that were used to augment

Novelty and build what would prove to be better performing LS-SAT heuristics.

6In the original paper these heuristics were called Novelty+ and R Novelty+, but some

authors refer to them as just Novelty+ and R Novelty+. We use the latter form in this thesis.
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Algorithm 2.8 Novelty+ Heuristic

Input: F SAT problem instance in CNF.

A Current assignment.

p Noise parameter.

wp Random walk parameter.

Output: The variable to be flipped.

algorithm Novelty+(F , A, p, wp)

vs = Pick-Broken()

if (With-Probability(wp)) then return Pick-Random(vs)

else return Novelty-Internal(F, A, p, vs)

The first mechanism was used to augment Novelty to create the Novelty++

heuristic. The mechanism works by using a parameter wp to determine whether to use

the new strategy or the original heuristic. The new strategy picks the variable in the

broken clause with the highest Age. This mechanism was inspired by observations

of how Novelty+ performs on certain instances. When picking a random variable

from the broken clause, it would usually not pick the “correct” variable to escape local

optima. Novelty++ was tested against Novelty and Novelty+ and, when used

with effective parameter values (values of p = 0.3 and wp = 0.05 were suggested),

outperformed the other heuristics.

The second mechanism described is an intensification strategy that can be used to

augment previously existing heuristics. This mechanism is called G2WSAT and uses

a set of variables we call DecrVars. DecrVars is a dynamic set of variables that

can be described as follows; on initialisation, it contains all variables with NetGain1

> 0. After a variable v is flipped, v is removed from DecrVars (if it was contained

in the set). Any variables currently in the set that now have NetGain1 ≤ 0 are

removed, and any other variables that now have NetGain1 > 0 are added. If the

variable to flip is continually chosen from DecrVars, then the overarching algorithm

will reach local optima quickly. When DecrVars is empty, and a diversification

strategy then used, the algorithm can escape local optima and DecrVars will not

contain the variable just flipped when it is next probed. Succinctly, the mechanism

is designed to reach a state of local optima, escape that state of local optima and not

choose the same variables to return to that state.

The heuristicNovelty++ augmented withG2WSAT can be described as follows;
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Algorithm 2.9 G2WSAT Heuristic

Input: F SAT problem instance in CNF.

A Current assignment.

p Noise parameter.

wp Random walk parameter.

Output: The variable to be flipped.

algorithm G2WSAT(F , A, p, wp)

if (DecrVars ̸= ∅) then
return Order-Vars([NetGain1, Age], DecrVars)[0]

else return Novelty++(F, A, p, wp)

if DecrVars is not empty, pick the variable with the highest NetGain1, breaking

ties by Age. Else pick the variable according to Novelty++. The pseudocode

for this heuristic is shown in Algorithm 2.9. When referring to G2WSAT in later

parts of this thesis, (unless stated otherwise) we mean this specific instantiation of

G2WSAT using the Novelty++ heuristic.

This mechanism can be considered to be almost GWSAT-like, in that it has a

strong intensification mechanism based on picking a variable from the entire problem,

and then a diversification mechanism based on picking a variable from a broken clause.

The reader should note that the instantiation of the G2WSAT heuristic shown in

Algorithm 2.9 may need its parameters to be tuned for the best performance, as it

uses the Novelty++ heuristic as its diversification strategy.

Li and Huang tested the G2WSAT heuristic against the entrants to the 2004 SAT

Competition, where it was found to outperform most of those it was tested against.

However the authors did note that SDF, a solver based on clause weighting [156],

had comparable performance. G2WSAT was entered at the 2005 SAT Competition

[17] where, in the Random track, it placed 2nd.

The last two heuristics presented in this subsection, G2WSAT and Novelty++,

serve as examples of the changing landscape behind the design of LS-SAT heuristics

in the early to mid-2000s. New effective heuristics were found that were either

combinations of previously existing ideas, or the addition of new ideas to previously

found, effective heuristics. As Fukunaga [60] noted, “humans excel at identifying

good potential components of methods to solve problems, but combining them seems

to be a more difficult undertaking”. Many of the components for these heuristics had
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already been described, but the ingenuity to design effective heuristics using them to

maximise performance followed later.

Despite the confusing nomenclature, in this subsection we have shown how effective

heuristics can be designed when choosing a variable from a random unsatisfied clause.

This subsection also shows how the continued development of effective LS-SAT

heuristics was an iterative process, combining previous ideas in new and novel ways

to create new “augmented” variants. Many of the ideas presented are still used in

state-of-the-art LS-SAT heuristics, as we will see in the forthcoming subsections.

2.3.3 Adaptive Heuristics

In the previous subsection we highlighted several heuristics that use a random walk

mechanism in their construction. Every heuristic we highlighted in that subsection

makes use of a pre-determined probability parameter to control how much bias is

given to either its intensification or diversification strategies. Hoos [85] noted how

there is a balance between these two strategies; if there is too much intensification, a

heuristic cannot escape local optima. If there is too little, it cannot find good (or

satisfying) solutions. In this subsection we discuss a further set of heuristics, all

variants of those seen in the previous subsection, that use mechanisms to tune their

parameters automatically as the heuristics are running.

The first of these, described by Hoos [84], is a variant of the Novelty+ heuristic.

In this new heuristic instead of the noise parameter being static throughout the

lifetime of the algorithm, it is a variable that can change as the algorithm progresses.

The author referred to it as an adaptive noise parameter. Inspired by observations

gathered through previous research [85], Hoos proposed a mechanism that allowed

the algorithm to become aware of when it was stuck in local optima. The mechanism

would then change the parameter value so that the heuristic would have more bias

towards one of its strategies. The following rules were proposed regarding the changes

in the noise parameter:

• If no improvement in the objective function - that is, the number of satisfied

clauses - has been observed in the last Θ ·m flips (where m = the number of

clauses), then change the parameter according to wp = wp+ (1− wp) · ϕ.

• If an improvement has been seen since the parameter was last updated, then

change the parameter according to wp = wp− wp · 2 · ϕ.
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Hoos implemented this adaptive noise parameter mechanism in Novelty+ to

create the heuristic adaptNovelty+. In adaptNovelty+ values of Θ = 1/6 and

ϕ = 0.2 were used.

Hoos then compared the performance of the adaptNovelty+ heuristic to the

Novelty+ heuristic. To do this, a set of 3-SAT problem instances and SAT instances

derived from other hard combinatorial problems were used to evaluate the performance

of both heuristics. Novelty+ was ran on each problem instance several times using

different parameter values until one was found that provided the best performance for

that specific problem instance - in essence computationally expensive parameter tuning

was performed. For each problem instance the performance of adaptNovelty+

was compared to the performance of Novelty+ using the tuned parameter value.

While the results showed that the two heuristics had generally similar performance,

overall the tuned Novelty+ heuristic outperformed adaptNovelty+. However,

the authors noted that adaptNovelty+ required no computationally expensive

tuning, and had much better performance than an un-tuned Novelty+ heuristic.

A variant of adaptNovelty+, called R+adaptNovelty+, was entered in the

Random track at the 2005 SAT Competition, where it placed 1st.

Adaptive parameter tuning would continue to be used in the creation of effective

LS-SAT heuristics in the late 2000s. Li, Wei, and Zhang [108] presented research

detailing attempts to improve on the G2WSAT heuristic using this mechanism.

Three new heuristics were proposed by the authors; adaptG2WSAT, G2WSATP

and adaptG2WSATP. adaptG
2WSAT was identical to G2WSAT, except that

it used adaptive parameter tuning in its construction. G2WSATP was created by

making two changes to the G2WSAT heuristic. The first of these changes augmented

the way in which a variable was chosen from the DecrVars set. The second change

substituted the original diversification strategy used, Novelty++, for a new strategy

called Novelty+P. adaptG
2WSATP was an augmentation of G2WSATP that

used adaptive parameter tuning in its construction. In testing the performance of

these heuristics, Li, Wei, and Zhang found that the performance of the adaptive

heuristics was comparable to their non-adaptive variants when used with a tuned

parameter value.

These heuristics were entered in the Random track at the 2007 SAT Competition,

where adaptG2WSAT and adaptG2WSATP placed 3rd and 5th respectively. The

heuristic adaptG2WSAT0 was also entered, and placed 2nd. adaptG2WSAT0
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is nearly identical to adaptG2WSAT, with the only difference being that its

diversification and intensification strategies have been slightly altered. A further aug-

mentation of adaptG2WSAT0, called adaptG2WSAT2009++, was also created.

adaptG2WSAT2009++ used the diversification strategy Novelty++. This was

the diversification strategy originally used by G2WSAT. adaptG2WSAT2009++

was entered in the Random track at the 2009 SAT Competition, where it placed 3rd.

These adaptive heuristics, though they were shown to not perform as well as their

non-adaptive variants with tuned parameter values, offered better overall performance

on a range of problem instances. The heuristics presented in this subsection also

show how the continued application of new ideas to previously described heuristics

drove forward LS-SAT heuristic research, allowing better performing heuristics to

be created. The use of adaptive parameters has continued to be used in LS-SAT

heuristic design, including in state-of-the-art LS-SAT solvers such as those in the

Sparrow [10] family (see Section 2.3.5).

2.3.4 Clause Weighting Schemes

In the previous subsections we have discussed intensification and diversification

techniques, as well as adaptive parameter tuning mechanisms used in LS-SAT heuristic

design. In this subsection we introduce another important mechanism used in modern

LS-SAT heuristic design called clause weighting.

Dynamic local search (DLS) is a local search technique that involves “modify[ing]

the evaluation function whenever a local optimum is encountered in such a way that

further improvement steps become possible” [83, Chapter 2]. Clause weighting in

SAT is a specific form of DLS. Selman and Kautz [159] (and independently Morris

[131]) suggested techniques for enhancing GSAT through adding clause weighting.

Clause weighting has a simple premise. Each clause is assigned a numerical weight

that can change as the overarching local search algorithm progresses. The weight w of

a clause c is used to simulate there being w copies of c in the problem. By changing

the topology of the problem in this way, certain behaviours can be encouraged without

changing the overall satisfiability of the problem instance. For example, by having w

copies of an unsatisfied clause c containing a variable v, v’s PosGain1 is increased.

For heuristics that pick variables based on their PosGain1 value, this could favour v

over other variables, and potentially stop the algorithm getting stuck in cycles, or

help it escape local optima.
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Algorithm 2.10 GSAT+Weights Heuristic & Weight Update Function

Input: F SAT problem instance in CNF.

A Current assignment.

W Clause weights.

Output: The variable to be flipped.

algorithm GSAT+Weights(F , A, W )

v = Order-Vars([NetGainW ], Vars(F ))

return v[0]

algorithm Update-Weights(F, A, W )

for (c ∈ {cl ∈ Clauses(F ), Satisfied(A, cl) = False}) do
Wc = Wc + 1

Selman and Kautz [159] created a variant of GSAT called GSAT+Weights.

GSAT+Weights uses clause weighting and can be described as follows; on initiali-

sation the weights of all clauses are set to 1. The NetGainW of all variables under

the current assignment A and weighting scheme W are computed. The variable with

the greatest NetGainW is chosen to flip. After each iteration, any clauses that

are currently unsatisfied have their weight increased by 1. Pseudocode to show the

heuristic and weight update function are presented in Algorithm 2.10. The weight

update function is called at the end of each iteration of the overarching local search

algorithm.

GSAT+Weights was found to be more effective at solving problem instances

than its weightless counterpart GSAT. However, it was also shown to not be as

effective as WalkSAT. Despite this, researchers continued to experiment with

different strategies for utilising clause weighting in an attempt to create more effective

heuristics. For example, the Discrete Lagrangian Method (DLM) [173] uses an

additional mechanism to stop weights becoming too large and dominating the others.

This mechanism was termed “smoothing” and is designed to ensure that every weight

is within a small factor of the average of the weights. The SDF [173] heuristic uses a

multiplicative, rather than an additive, expression to update its clause weights. The

Exponentiated Sub-Gradient (ESG) method [157] is a variant of SDF which uses

weight update criteria that is dependent on whether a local optima has been found -

in essence it only sometimes updates the clause weights.

The weight smoothing mechanic used by the heuristics ESG and DLM is a
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computationally expensive function that, in those heuristics, is invoked on every

iteration of the local search algorithm. Some variable metrics use dynamic clause

weighting in their formulation. A clause weight update function, such as that shown

in Algorithm 2.10, is relatively computationally inexpensive to perform as it usually

only changes the weights of a small number of clauses. Under these circumstances

only a small number of variable metric values need to be updated. Generally it is less

computationally expensive to update these using the difference between the old and

the new weight when compared to re-computing the value. As a smoothing mechanism

can change all the weights in a problem, it is preferable to re-compute every effected

variable metric when smoothing weights. To be clear, a weight smoothing function is

far more computationally expensive than a weight update function that only changes

a small number of weights. Due to this, a heuristic that uses a smoothing mechanic

which is invoked on every iteration of the overarching local search algorithm may

reduce the overall effectiveness of the heuristic, as it cannot perform as many flips as

other heuristics that do not use the same type of smoothing mechanism.

Hutter, Tompkins, and Hoos described the LS-SAT heuristic SAPS [86], a heuris-

tic similar to ESG that uses a probabilistic smoothing mechanic. A probabilistic

smoothing mechanic only has a small chance of performing the weight smoothing

function on any given iteration. The SAPS heuristic can be described as follows; all

variables that appear in an unsatisfied clause c in the problem F under an assignment

A and weighting scheme W are ordered by their NetGainW . If the variable with

the largest NetGainW in c is greater than 0 then it is chosen. Else, with probability

wp a random variable from c is chosen, otherwise the weights are updated. The

weight update function uses a multiplicative expression in its construction and the

parameter Psmooth to decide how often to smooth the weights. Detailed pseudocode of

SAPS’s weight update function is shown in Algorithm 2.11. The authors suggested

values of α = 1.3, p = 0.8 and Psmooth = 0.05 as examples of parameters that provide

good performance. The authors also presented an adaptive version of SAPS, called

RSAPS. RSAPS uses adaptive parameter tuning to change its Psmooth parameter.

The adaptive mechanism used in RSAPS is similar to that described in Section 2.3.3.

Hutter, Tompkins, and Hoos performed experiments comparing the performance

of SAPS, RSAPS and ESG to one of the (then) state-of-the-art LS-SAT heuristics

Novelty+. It was found that none of the heuristics based on clause weighting were

able to match the performance of Novelty+, and it was concluded that heuristics
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Algorithm 2.11 SAPS Weight Update Function

Input: F SAT problem instance in CNF.

A Current assignment.

W Weights.

p Smoothing factor.

Psmooth Smoothing probability.

α Scaling factor.

Output: None.

algorithm Update-Weights(F , A, W , p, Psmooth, α)

for (c ∈ {cl ∈ Clauses(F ), Satisfied(A, cl) = False}) do
Wc = Wc × α

if (With-Probability(Psmooth)) then

for (c ∈ Clauses(F )) do

Wc = Wc × p+ (1− p)×W

based on clause weighting could still not compete with the then state-of-the-art

LS-SAT solvers.

Thornton et al. [171] described a heuristic called PAWS that uses a clause

weighting mechanism similar to that utilised in SAPS. PAWS uses an additive

update expression, and a much simpler smoothing update mechanism. The weight

update function for PAWS is shown in Algorithm 2.12. The authors found that

PAWS was comparable in performance to SAPS, however when entered in the

Random track at the SAT 2005 Competition, it placed lower than SAPS.

Researchers continued to experiment with clause weighting mechanisms in the cre-

ation of LS-SAT heuristics, and explore their use in augmenting previously described

heuristics. This is perhaps best illustrated by the gNovelty+ heuristic, as described

by Pham et al. [145]. gNovelty+ uses ideas from G2WSAT, adaptNovelty+

and heuristics that use clause weighting mechanisms. gNovelty+ was entered in the

Random track at the 2007 SAT Competition [143] where it placed 1st. gNovelty2

[144], a more efficient version of gNovelty+, was entered in the Random track at

the 2008 SAT Competition, where it placed 2nd. We provide a general outline of the

gNovelty+ heuristic in Section 2.3.5, and in Algorithm 2.13 we show the weight

update function used in gNovelty+ [145]. The reader can see that it is similar to

the PAWS weight update function, but uses the probabilistic smoothing mechanism
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Algorithm 2.12 PAWS Weight Update Function

Input: F SAT problem instance in CNF.

A Current assignment.

W Weights.

MAXinc Weight increase point.

nTimesWeightIncr Number of times weight has been increased.

Output: None.

algorithm Update-Weights(F , A, W , MAXinc, nTimesWeightIncr)

for (c ∈ {cl ∈ Clauses(F ), Satisfied(A, cl) = False}) do
Wc = Wc + 1

nTimesWeightIncr = nTimesWeightIncr + 1

if ((nTimesWeightIncr % MAXinc) = 0) then

for (c ∈ Clauses(F )) do

if (Wc > 1) then

Wc = Wc − 1

originally described for SAPS.

Following the success of the gNovelty+ heuristic, many of the subsequently de-

scribed heuristics use similar weight update functions to that shown in Algorithm 2.13.

Examples of heuristics that have taken inspiration from this update function include

Sparrow2011 (placed 1st in the Random track at the 2011 SAT Competition),

Sparrow2Riss [11] (placed 1st in the Random track at the 2018 SAT Competition)

and the BalancedZ solver [109] (placed 2nd in the Random track at the 2014 SAT

Competition).

We want to be clear that the clause weighting mechanisms described in this

subsection are not the only weighting mechanisms that have been used in the design

of effective LS-SAT heuristics. For example Ishtaiwi et al. [87] introduced a clause

weighting mechanism that swaps weights between clauses, whereas Prestwich [149]

developed a separate mechanism where weights were assigned to variables rather

than clauses, and the heuristic function chose variables based off these weights. An

effective LS-SAT solver called TNM was described that used these two ideas together

with adaptNovelty+ as a base for its heuristic component. TNM was entered in

the Random track at the 2009 SAT Competition where it placed 1st.

Clause weighting has become an important technique used in modern LS-SAT
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Algorithm 2.13 gNovelty+ Weight Update Function

Input: F SAT problem instance in CNF.

A Current assignment.

W Weights.

sp Smoothing probability.

Output: None.

algorithm Update-Weights(F , A, W , sp)

for (c ∈ {cl ∈ Clauses(F ), Satisfied(A, cl) = False}) do
Wc = Wc + 1

if (With-Probability(sp)) then

for (c ∈ Clauses(F )) do

if (Wc > 1) then

Wc = Wc − 1

solvers to diversify solutions, and help them to escape local optima. In conjunction

with other techniques we have presented in previous subsections, it has been used to

push forward the performance of LS-SAT solvers, and is still used in many modern-day

LS-SAT heuristics.

2.3.5 Probability Distribution Heuristics

In the late 2000s, through the combination of ideas from WalkSAT, GSAT, adap-

tive parameter tuning and clause weighting, heuristics such as gNovelty+ were

considered to be the state-of-the-art in LS-SAT heuristic design. A very basic outline

of gNovelty+ can be given as:

1. Intensification using the G2WSAT heuristic.

2. Diversification using the adaptNovelty heuristic.

3. Weight update function similar to that used by PAWS. Weights are only

updated when the variable is chosen from the diversification strategy.

Balint and Fröhlich [10] observed that “One drawback of algorithms that use

adaptNovelty+-like heuristics to escape from local minima is the lack of differen-

tiation between the variables”. In essence Balint and Fröhlich were stating that, if an

assignment A is considered a state of local optima, then whenever A is encountered it
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Table 2.3: The set of functions used in the heuristics in Section 2.3.5. Each function

takes a variable x as input and outputs some weight that is attributed to x. The

sparrow function is used with the Sparrow heuristic, and the exp, exp-break-only,

poly and poly-break-only functions are used with the ProbSAT heuristic. We also

show example constant values that were given in the original descriptions of the

heuristics, which were said to provide good performance. Where applicable, ϵ = 1.

Function Example Values

sparrow = c
NetGainW (x)
1 × (

Age(x)
c3 )c2 + 1

c1 = 2, c2 = 4,

c3 = 105

exp =
c
PosGain1(x)
m

c
NegGain1(x)
b

cb = 3.6, cm = 0.5

exp-break-only = c
−NegGain1(x)
b cb = 3.6

poly =
PosGain1(x)

cm

ϵ+NegGain1(x)
cb cb = 3.1, cm = −0.8

poly-break-only = ϵ+NegGain1(x)
−cb cb = 2.3

is likely that adaptNovelty+ will choose the same variable to flip. In turn, if this

state of local optima is encountered more than once while the overarching local search

algorithm is running, the algorithm may get stuck in a cycle and could be unable

to find a satisfying solution. Though adaptNovelty+ is only one component of

gNovelty+, this observation can still have a detrimental effect on gNovelty+’s

performance.

Balint and Fröhlich developed a new heuristic in an attempt to tackle this

shortcoming. The heuristic the authors designed is called the Sparrow heuristic. It

is identical to the gNovelty+ heuristic, except that it uses a new diversification

strategy. This strategy can be described as follows; a random broken clause c is

chosen. Each of the variables in c have a weight attributed to them according to the

sparrow function as shown in Table 2.3. A weighted pick is then performed on the

variables to choose the variable to flip. In Algorithm 2.14 we show pseudocode that

can be used to create this strategy by substituting f for sparrow.

The authors evaluated Sparrow against two of the best performing heuristics
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Algorithm 2.14 ProbSAT Heuristic

Input: F SAT problem instance in CNF.

A Current assignment.

f Function taking variable and returning weight.

Output: The variable to be flipped.

algorithm ProbSAT(F , A, f)

vs = Pick-Broken()

VW = 0 ▷ Variable weights all set to 0.

for (v ∈ vs) do

VWv = (f(v), v)

return Pick-Weighted-Var(VW )

at the time, gNovelty2T and TNM. The three heuristics were tested on a set

of instances from the Random track of the 2009 SAT Competition. It was found

that Sparrow outperformed both heuristics. Later, a variant of Sparrow called

Sparrow2011 was entered in the Random track at the 2011 SAT Competition,

where it placed 1st. Sparrow is still considered to be a highly effective standalone

heuristic, and variants of it continue to be used as components in state-of-the-art

hybrid solvers. In Section 2.2.2 we discussed how Sparrow2Riss, a hybrid solver

based partially on Sparrow, outperformed all other solvers in the Random track at

the 2018 SAT Competition.

Balint and Schöning [12] described a heuristic called ProbSAT, which used a

design that was inspired by Sparrow’s diversification strategy. Rather than being

contained in a G2WSAT-like heuristic, ProbSAT works by choosing the variable

to flip using only a weighted pick function. The authors presented four variants of

ProbSAT. We can describe any of them using the pseudocode in Algorithm 2.14, by

substituting f for one of the functions exp, exp-break-only, poly or poly-break-only,

as shown in Table 2.3.

Of the four variants of the ProbSAT heuristic described by Balint and Schöning,

two used an f function based around an exponential expression, and two used an

f function based around a polynomial expression. In each pair, one f function

used the NegGain1 variable metric, and the other used both the NegGain1 and

PosGain1 variable metrics. When testing the performance of the different variants of

ProbSAT, the authors found those which only used the NegGain1 variable metric
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were able to complete a single iteration of local search more quickly than those which

used both NegGain1 and PosGain1. This occurred as calculating two variable

metrics is more computationally expensive than calculating one. The authors also

found that there existed constants for each ProbSAT variant which provided the

best performance. When these “tuned” variants were tested against each other, it

was found that those which used NegGain1 outperformed those which used both

NegGain1 and PosGain1.

Balint and Schöning compared the performance of the four variants of the Prob-

SAT heuristic against each other, and against other state-of-the-art LS-SAT heuristics.

The heuristics were ran on a set of problem instances used in the Random track of the

2011 SAT Competition. The results showed that all of the ProbSAT variants were

highly effective heuristics when compared to other state-of-the-art LS-SAT heuristics.

Of the four ProbSAT variants, poly-break-only performed the best.

A version of ProbSAT [13] placed 1st in the Random track at the 2013 SAT

Competition, and a variant of it [14] optimised for parallel platforms won the Parallel

Random track at the 2014 SAT Competition. In the Random track at the 2016 SAT

Competition, an LS-SAT solver partially based off ProbSAT called Dimetheus

[64] placed 1st.

Using a probability distribution to choose variables is a simple premise, but one

that has been found to be highly effective at improving the performance of LS-SAT

solvers. They have been used in augmenting previously described heuristics, and in

the creation of new heuristics. Some modern-day, state-of-the-art LS-SAT solvers

use a probability distribution as an underlying mechanism to drive their overarching

search algorithms.

2.3.6 Configuration Checking

Configuration checking is a recently described technique that has been used to

design intensification strategies in local search-based algorithms for solving hard

combinatorial problems. It has been used to create heuristics which try to avoid

flipping the same sequences of variables, a phenomena known as cycling [127]. The

technique was originally described for the Minimum Vertex Cover problem [39], and

recently several LS-SAT heuristics have been created that make use of it. Researchers

have also used it to create heuristic strategies to solve the MAX-SAT problem [34].

Configuration checking is a mechanism that remembers the “circumstances” of
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a problem when a variable is changed. By using this information, strategies can be

created that only allow a variable to be changed when its circumstances have also

changed. In SAT, researchers have proposed two configuration checking strategies;

the neighbourhood variable configuration checking (NVCC) strategy and the clause

state configuration checking (CSCC) strategy. The NVCC strategy makes use of a

variable’s neighbourhood, defined as follows:

Definition 17 (Neighbourhood of a Variable)

Given a SAT formula F and a variable v ∈ Vars(F ), the neighbourhood of v is the set

of all other variables in x ∈ Vars(F ) that are contained in a clause that also contains v.

It can be defined as {x ∈ Vars(F ), x ̸= v ∧ (∃c ∈ Clauses(F ), c ∈ ClauseSet(F,

x) ∧ c ∈ ClauseSet(F, v))}. To refer to this set we write Nv(v).

The NVCC and CSCC strategies can be visualised as metrics that attribute a

boolean value to a variable. They can be described as follows:

• For a SAT problem F and variable v ∈ Vars(F ), the boolean variable repre-

sented by NVCC(v) is True if any variables in Nv(v) have had their assignment

changed since v was last flipped.

• For a SAT problem F and variable v ∈ Vars(F ), the boolean variable repre-

sented by CSCC(v) is True if any clause c ∈ ClauseSet(F, v) has changed

state - that is to say, gone from satisfied to unsatisfied or vice versa - since v

was last flipped. As noted by Luo et al. [118], the set of variables whose CSCC

value is set to True is a subset of those variables whose NVCC value is set to

True.

Cai and Su [38] described the first LS-SAT heuristic that utilised configuration

checking. This heuristic, called SWcc, is shown in Algorithm 2.15. SWcc can be

described as follows; the set vars containing every variable v whoseNetGainW (v) ≥ 0

and NVCC(v) = True is generated. If vars is non-empty, then the variable in vars

with the highest NetGainW is returned. Otherwise, the clause weights are updated,

and the variable with the highest Age returned from a randomly chosen broken

clause. Its design is similar to G2WSAT, in that it moves to a state of local optima

before employing a diversification strategy to move away from that state.

Cai and Su tested the SWcc heuristic against the TNM heuristic on the instances

used in the Random track at the 2009 SAT Competition, and against the Sparrow
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Algorithm 2.15 SWcc Heuristic

Input: F SAT problem instance in CNF.

A Current assignment.

W Weights.

Output: The variable to be flipped.

algorithm SWcc(F , A, W )

vars = Filter(Vars(F ), (λv →NetGainW (v) ≥ 0 ∧ NVCC(v) = True))

if (vars ̸= ∅) then return Order-Vars([NetGainW ], vars)[0]

else

Update-Weights()

return Order-Vars([Age], Pick-Broken())[0]

heuristic on the instances used in the Random track at the 2011 SAT Competi-

tion. While SWcc outperformed TNM, it did not perform as well as Sparrow.

Researchers continued to develop the SWcc heuristic and subsequently designed a

better performing version called SWCCA [36]. Solvers based on the SWCCA heuristic

were entered in the Random track at the 2012 [32] and 2013 [78] SAT Competitions,

where they placed 1st and 3rd respectively.

Researchers continued to experiment with different ways of utilising the NVCC

strategy in LS-SAT heuristic design. Some used the SWcc algorithm as a basic

template, making small changes to it to create new heuristics. Two augmentations

of SWcc that are particularly relevant to our work are SWCCSubScore [37] and

CScoreSAT [35]. These heuristics make use of the variable metric SubNetGain,

which can be described using the following definitions:

Definition 18 (Sub-Positive Gain)

For a SAT problem F , variable v ∈ Vars(F ), weighting scheme W and complete

assignment A, this is a metric associated with a variable that represents the number of

clauses that currently have 1 satisfied literal, and will have exactly 2 satisfied literals

if v is flipped. It is also known as submakes. It can be computed as:

∑
c ∈ FalseLitSet(F, A, v)

Wc if TrueLits(A, c) = 1

0 otherwise
(2.4)

To refer to this value, we write SubPosGainW (A, F, v). If the assignment and

SAT formula are obvious from the context, we write SubPosGainW (v). If a set
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of variables are ordered according to their SubPosGainW , they are ordered from

smallest to largest; the variable with the largest SubPosGainW is considered the

best. A variable’s SubPosGainW is always a positive integer.

Definition 19 (Sub-Negative Gain)

For a SAT problem F , variable v ∈ Vars(F ), weighting scheme W and complete

assignment A, this is a metric associated with a variable representing the number of

clauses that currently have 2 satisfied literals which will have 1 satisfied literal if v is

flipped. It is also known as subbreaks. It can be computed as:

∑
c ∈ TrueLitSet(A, v)

Wc if TrueLits(A, c) = 2

0 otherwise
(2.5)

To refer to this value, we write SubNegGainW (A, F, v). If the assignment and

SAT formula are obvious from the context, we write SubNegGainW (v). If a set

of variables are ordered according to their SubNegGainW , they are ordered from

largest to smallest; the variable with the smallest SubNegGainW is considered the

best. A variable’s SubNegGainW is always a positive integer.

Definition 20 (Sub-Net Gain)

For a SAT problem F , variable v ∈ Vars(F ), weighting scheme W and complete

assignment A, this is a metric associated with a variable representing the total

difference in number of clauses with exactly 2 satisfied literals if v is flipped. It is also

known as subscore. It can be computed as:

SubPosGainW (A, F, v)− SubNegGainW (A, F, v) (2.6)

To refer to this value, we write SubNetGainW (A, F, v). If the assignment and

SAT formula are obvious from the context, we write SubNetGainW (v). If a set

of variables are ordered according to their SubNetGainW , they are ordered from

smallest to largest; the variable with the largest SubNetGainW is considered the

best. A variable’s SubNetGainW can be a positive or negative integer.

SWCCSubScore and CScoreSAT use the SubNetGain to differentiate between

variables when a tie-break occurs. The authors found that both of these heuristics

were comparable in performance to other configuration checking heuristics they were

tested against. A SAT solver based off these strategies was entered in the Random

track at the 2014 SAT Competition [33], where it placed 5th.
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Though we do not present their construction here, there have been several ef-

fective LS-SAT heuristics described that are based off the CSCC strategy, such as

SWQCC [115] and FRwCb [119, 116]. Additionally, the DCCA solver utilises a

heuristic strategy that uses both NVCC and CSCC in its formulation [118]. Highly

effective LS-SAT heuristics were created from this avenue of research as well; a solver

comprised of DCCA and FRwCb called CSCCSAT [117] placed 2nd at the 2016

SAT Competition.

Configuration checking, as a general technique, has been used to direct the

intensification strategies of LS-SAT heuristics. Compared to other methods described

in this section, it is a more complicated mechanism. Yet, when combined in the

correct way with other techniques, it can be used to create highly effective LS-SAT

solvers.

2.3.7 Summary & Discussion

Though we have provided a broad overview of LS-SAT solvers in this section, in

truth there are many other techniques that have been used in the construction of

LS-SAT solvers that have improved overall performance, not just heuristics. The

choice of data structures and optimisations used can play a role in how effective an

underlying LS-SAT heuristic is. For example, the solver PolyPower [31] is based on

WalkSAT, but its heuristic is designed in an optimised way so as to improve its overall

performance. These changes make it comparable to ProbSAT on some instances.

Some solvers, such as Ranov [5] pre-process problem instances, which can have a

positive effect on how well some LS-SAT heuristics perform. Additional techniques

include utilising strategies from complete solvers such as unit clause elimination [81],

the use of message passing frameworks [64], and evolutionary computation techniques

such as genetic algorithms (GAs) [113].

We believe that we have given a detailed account of the many different techniques

used by researchers to create LS-SAT heuristics. Much of the research presented

here will be useful in understanding the systems built to represent LS-SAT heuristics,

described in later chapters in this thesis.
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2.4 Automated Creation of Heuristics

In Chapter 1 we discussed how heuristics can be an important component when

designing effective algorithms to solve hard combinatorial problems, and in Section 2.3

we provided examples of hand-crafted heuristics that have been used to build effective

local search algorithms to solve SAT. In this section we review the literature pertaining

to the automated design of heuristics that are used to solve hard combinatorial

problems. We specifically focus on research where the overarching goal was to

automatically create new heuristics.

Some of the earliest work in the automated design of heuristics involved automat-

ically selecting a heuristic from a given set of hand-crafted ones. For example, Fisher

[56] and Crowston, Glover, Trawick, et al. [47] described techniques using probabilistic

learning to automatically select heuristics for solving the job-shop scheduling problem.

While the automated selection of heuristics has been an active part of research for

over fifty years, historically comparatively less attention has been given to systems

that are designed to automatically create new heuristics.

Recently, the term hyper heuristics has been used to classify research in the

automated design of heuristics, as well as retroactively re-classify previously existing

research. This term was first used to describe “heuristics to choose heuristics” [46],

and recently defined by Gendreau and Potvin [65] as “an automated methodology for

selecting or generating heuristics to solve computational search problems”. However,

we feel that Burke et al.’s definition [28] of hyper heuristics as being “a set of

approaches that are motivated by the goal of automating the design of heuristic

methods to solve hard computational problems” best captures the intention behind

hyper heuristic research.

In much of the literature concerning hyper heuristic research, the created systems

are classified as one of two types. These are outlined as follows:

• Selective hyper heuristic. A methodology for choosing or selecting a heuristic.

• Generative hyper heuristic. A methodology for automatically creating new

heuristics.

Using these definitions, the work in this thesis can be considered to be in the

research area of generative hyper heuristics.

In the following subsections we review previous research whose aim was to auto-

matically create heuristics - that is to say, research in the domain of generative hyper
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Figure 2.4: An overview of the control flow of a system designed to automate the

creation of heuristics.

heuristics. In Section 2.4.1 we concentrate on research where the goal was to create

heuristics that had a role in solving hard combinatorial problems, paying particular

attention to the representation of heuristics and the techniques used to automatically

create them. In Section 2.4.2 we focus on previous work in the automated creation of

heuristics that are used as part of an LS-SAT solver - research that is of particular

relevance to the work contained in this thesis. Finally in Section 2.4.3 we discuss how

the research presented in this section relates to the overall body of work contained

within this thesis.

2.4.1 Automated Creation of Heuristics for Hard Problems

Many systems designed to automatically create heuristics can be said to have a

similar overarching design; an initial set of heuristics are created, the heuristics are

then evaluated against some problem instances and a fitness value extrapolated from

those results. The system then decides if some pre-determined termination criteria

has been met. If it has not, then the system creates a new set of heuristics which

are evaluated, and the process continues until the termination criteria is met. In

Figure 2.4 we show a visualisation of this design.

When designing a system to automatically create heuristics, the way in which
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the heuristic is represented, and how this representation will be used as part of

an overarching algorithm to solve a hard combinatorial problem, must be taken

into consideration. The techniques used to create new heuristics and the heuristic

representation are also intrinsically linked; the choice of representation can dictate

which creation methods are viable for that domain. There is generally no obvious,

natural representation of a heuristic for a specific problem. Some ways of representing

a heuristic are problem-specific, while others are general enough to be reused in other

domains. In turn, generalised representations can be used with generalised methods

to create new heuristics.

Some of the simplest representations imagine a heuristic as an assignment problem,

whereby through some post-processing this representation is converted into a heuristic

function. For example, Özcan and Parkes [138] described a system that automatically

creates heuristics for the online bin packing problem. The authors represented

heuristics as fixed-size two-dimensional matrices containing numerical data. An

element’s two indices correspond to the bin sizes remaining and the size of the

element to be inserted. The matrices were used to choose which bins to put items

into. When given an item of size b, the matrix was used as a lookup table, with

the column of data for that b value used to assign a numerical value to each bin.

The item was assigned to the bin with the highest numerical value. The matrices

themselves were created using a simple GA.

One disadvantage to this approach is that the created heuristics are not general-

purpose online bin packing heuristics - they are designed for bin packing problems

with a fixed number of bins, meaning that new heuristics would have to be created

for different sized problems. Yet the authors found this technique to be effective for

those instances it was tested on.

It is more common in automated heuristic creation to use a representation

that closely mirrors a programming language, as this is how heuristics are created

by software engineers. The resulting heuristics can be generalised for arbitrarily

sized problems. One commonly used representation is a list-based (or array-based)

structure that simulates an imperative programming language, or a set of machine

code instructions. Poli, Woodward, and Burke [148] represented a heuristic for the

offline bin packing problem as a set of domain-specific machine instructions. The

created program fragments represented a function which was used as part of a wider

heuristic strategy. The authors used linear genetic programming (GP) [21] to create
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new heuristics. This is a general-purpose program synthesis technique specifically

designed for use with this type of program representation. Keller and Poli [98] also

used an array-based representation with linear GP to create heuristics for the TSP.

Unlike the work of Poli, Woodward, and Burke, the created heuristics were designed

to be the entirety of the heuristic function, and not just a component of it.

Perhaps the most popular [26] representation technique used when creating heuris-

tics is a tree-based representation, emulating a functional paradigm of programming.

In such a representation, each node contains a term from a (usually) domain-specific

language (DSL). Together they are used to describe heuristics, or heuristic compo-

nents, for a specific problem domain. One advantage that tree-based representations

have over array-based representations is that they can potentially be of unbounded

size. Should an effective heuristic exist that is represented by a large tree, it is

possible to create it using a tree-based representation. It also has an effect on the

search space of heuristics that can be described using a specific language, as it can

potentially become infinite.

There have been several types of tree-based representation used in automated

heuristic creation, the simplest of which we term the “untyped” tree representation.

These are tree-based representations used in conjunction with a DSL that has no

additional rules regarding the composition of terms within that language. It is

the most commonly used form of representation within systems that automatically

create heuristics. For example, Burke, Hyde, and Kendall [27, 25, 150] used this

representation to create heuristics for use with the online bin packing problem.

The created heuristics were represented as arithmetic expressions, which were then

used to assign numerical values to items. These numerical values were analysed to

determine which bin to insert the item into. As the internal DSL only contained

arithmetic terms, all of the terms having the same “type” was a valid choice for that

domain. The authors used untyped “Koza-style” GP [102] to create the heuristics.

Within automated heuristic creation, this way of representing and method of creating

heuristics has historically been widely used, and continues to be used today. There

are recent examples of similar research in the job-shop scheduling problem [174, 141],

the multi-skill resource constrained project scheduling problem [110, 88, 82], resource

constrained scheduling problems [40], in online resource allocation [170], bin packing

[3] and in solving bi-level optimisation problems [101].

In an untyped language like that used by Privosnik, there are no specific rules

57



CHAPTER 2. LITERATURE REVIEW

regarding which terms can be used as the arguments to other terms. That is to

say, any term in the language can be used as the argument to another. However,

this does not model some types of programming language very well. As a general

example, a string cannot be used as an argument to a function that requires an integer.

For some heuristic domains with more complicated control structures or typing, an

untyped representation is not appropriate, as it may allow ill-formed heuristics to be

created. To alleviate this, some DSLs are defined in ways that describe what terms

can be used as the arguments to others. In automated heuristic creation, perhaps the

most common way of defining a language which can prohibit ill-formed programs is

through a context-free grammar (CFG). Examples of research which used a CFG to

automatically create heuristics include work by Sosa-Ascencio et al. [165], who used

a CFG with grammar-based GP [102, 125] to create heuristics to solve CSPs, Sabar

et al. [153], who used a CFG with gene expression programming [55] to develop a

generalised system to create heuristics for several hard combinatorial problems, and

Fajfar, Bürmen, and Puhan [53], who used a CFG with grammatical evolution [152]

to create heuristics for solving real valued optimisation problems.

Typically in the literature associated with heuristic creation, CFGs are used to

simulate a strong type system. However, the program synthesis methods designed

to work on CFGs are distinctly separate from those program synthesis methods

designed to work on languages described in terms of a type system. We discuss this

relationship in further detail in Section 2.5.2.

In this subsection we have presented various examples of research where the goal

was to automatically create heuristics to solve combinatorial problems. We have

discussed several different examples of the types of heuristic representation used,

and the methods used to create heuristics for these representations. In the next

subsection, we discuss examples of work where the goal was to create heuristics for

an LS-SAT solver.

2.4.2 Automated Design of LS-SAT Heuristics

In this subsection we provide an overview of research in the automated creation of

LS-SAT heuristics. This work is directly relevant to this thesis, as this is the domain

that we will be creating heuristics for. The observations from the work examined

in this subsection have a direct effect on the design choices for our experiments, the

way we evaluate our created heuristics, and the way we represent heuristics.
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H = IfRandLt prob H H

| IfVarCompare cmp gt H H

| IfVarCond cmp gt int H H

| GetOldestVar H H

| IfTabu age H H

| IfNotMinAge varset H H

| GetBestVar varset gt

| GetBestVarSnd varset gt

| GetBestVar2 varset gt gt

| PickRandomVar varset

prob = ∈ {0.0 . . . 1.0}
varset = RBC-0 | RBC-1 | WFF
gt = NetGain | NegGain | PosGain
age = ∈ N
int = ∈ N
cmp = < | ≤ | =

Figure 2.5: The language used by Fukunaga [60, 61, 63] to automatically create

LS-SAT heuristics. Fukunaga used a type system when describing this language,

however we present it as a CFG. There is no difference between the set of heuristics

that can be created using this CFG and Fukunaga’s original language. Note that

some names of terms differ to those used in the original work, to align with the

terminology we use in this thesis.

Fukunaga [60, 63, 61], in a series of papers, described research concerning algo-

rithms used to automatically create LS-SAT heuristics. In this work, the heuristics

were encoded using a tree-based structure, with an associated type system used to

prohibit ill-formed heuristics. The created heuristics were designed to be general-

purpose LS-SAT heuristics, and required no post-processing to be used for their

intended domain. We show the language Fukunaga used in Figure 2.5, presented as a

CFG for brevity.

The design of Fukunaga’s language was inspired by previously described LS-SAT

heuristics. In relation to our work, the heuristics which inspired Fukunaga’s language

are all of those described in Section 2.3.1 and a portion of those in Section 2.3.2 (up

to Novelty). The author noted of the terms used in their language that “all of these
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primitives were proposed in the literature by 1993, shortly after the introduction

of GSAT” [60], and that the “history of SAT local search algorithms shows that

significant advances do not require the invention of entirely new “ideas” – discovering

a new combination of existing building blocks has resulted in some of the best known

SAT local search algorithms” [61]. We made a similar observation in Section 2.3,

where we provided evidence that some effective heuristics use components from

previously described LS-SAT heuristics. The “building blocks” - that is to say, the

metrics and control structures - were described separately, and it took several years

of research before they were combined into the examples of effective heuristics seen.

Since Fukunaga’s work was published, and from our analysis in Section 2.3, it could

be argued that this trend has continued; new metrics and control structures have

been described for LS-SAT heuristics, yet expert knowledge was required to combine

these ideas to create the most effective heuristics.

The fitness function used by Fukunaga to score the created heuristics was designed

as follows; the heuristics were ran as part of an LS-SAT solver on two sets of problem

instances. The second set contained larger problem instances than the first. The

fitness function had an early termination mechanism built into it. This allowed

it to terminate early if it was found that a heuristic could not solve many of the

problem instances. This design choice was made to reduce the overall running time,

as evaluating a heuristic is computationally expensive.

The heuristic creation technique used by Fukunaga was a bespoke GP algorithm

which used a steady-state GP model. It also used a domain-specific crossover

operator, which combined previously created heuristics with the functions IfRandLt,

IfVarCompare, IfVarCond, GetOldestVar, IfTabu and IfNotMinAge to create the

next set of heuristics for consideration. Fukunaga stated, regarding his bespoke GP

algorithm, that “we currently lack principled, analytical meta-heuristics that can be

used to guide a systematic meta-level search algorithm”. Therefore, this is why the

author used “a population-based search algorithm to search for good variable selection

heuristics”. Fukunaga also noted that some attempts were made with conventional

GP, however these were unsuccessful. In Figure 3.2h we show an example of one of

the heuristics created from this work.

Like Fukunaga, Bader-El-Den and Poli [9] performed experiments using evolution-

ary computation to create LS-SAT heuristics. However those authors used standard

grammar-based GP in their work. While Fukunaga’s goal was to create generalised
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heuristics for LS-SAT, Bader-El-Den and Poli’s goal was to design a system that

could create an effective heuristic for solving fixed-sized 3-SAT problem instances

near the phase transition region. However, the size of the problems the heuristics

were trained on was relatively small, containing at most 1, 000 variables.

The authors noted of the heuristics created from their work that “individuals

representing GSAT, HSAT and GWSAT were created . . . in almost all experiments

we did”. Further to this, the authors stated that “GP was always able to eventually

discover new and better heuristics”. This work suggests that a standard GP algorithm

is a viable technique for creating heuristics in this domain.

Some researchers experimented with using other techniques to automatically create

LS-SAT heuristics. KhudaBukhsh et al. [100, 99] developed SATenstein, a system

designed to create LS-SAT heuristics using automated algorithmic configuration. In

that work, a “skeleton” of a heuristic was described, with specific terms and functions

in the skeleton left blank. By using parameter tuning, these uninitialised functions

and terms were filled, and heuristics created from the skeleton. However, this meant

that compared to the work of Fukunaga, Bader-El-Den and Poli, the set of possible

heuristics that could be created was finite. The heuristics created from this work

were highly effective, and could compete with modern heuristics such as Sparrow.

However, this research sits slightly outside the scope of our own; we intend to use

program synthesis to create LS-SAT heuristics, rather than algorithmic configuration

techniques. This work can also be considered a successor to SATZilla [175, 176], a

SAT solver that selects a heuristic based on an analysis of the provided SAT problem

instance.

In this subsection we have provided an overview of the pertinent research concern-

ing the automated creation of LS-SAT heuristics. Though there are few examples of

research in this area, the existence of such work allows us to contextualise the research

in this thesis, and to draw inspiration from previously performed experiments when

designing our own.

2.4.3 Summary & Discussion

In this section we have provided an overview of research in the area of automated

heuristic creation. We have introduced several different types of heuristic repre-

sentation, as well as discussed the associated techniques used to create heuristics.

In Section 2.4.2 we focused on work with a similar goal to our own - that is, the
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automated creation of LS-SAT heuristics.

From the research presented in this section, we can draw several conclusions

that directly affect the trajectory of our research. In Section 2.3 we described

several LS-SAT heuristics, and presented pseudocode for some of those described. We

presented the pseudocode in an imperative programming style, which has traditionally

been the way in which heuristics for LS-SAT have been created. This would suggest

that a heuristic representation which mirrors this style, together with any associated

heuristic creation techniques, would be a viable area to concentrate our research in

when looking for alternative methods of program synthesis.

However, the research presented in Section 2.4.2 almost exclusively used tree-

based representations for the heuristics created for LS-SAT. Specifically, those

examples use languages that prohibit the combination of certain terms in the created

heuristics. In the examples shown, this is done through a CFG and a type system.

The work presented in that subsection, particularly that by Fukunaga, showed us

that representing heuristics as program trees is a viable representation technique, and

that GP can be used to create effective heuristics under this representation. This

work also showed us that, by using a language that prohibits the combination of

certain terms, complicated control structures can be safely combined to create new

heuristics.

For these reasons, we choose to pursue a similar avenue to these previous re-

searchers, and use a tree-based representation together with some constraints on the

underlying language that prohibit the combination of certain terms. This in turn

directs our research in the next section, which will look at program synthesis methods

designed to operate on this representation. We also note that the early termination

mechanism used in the fitness function in Fukunaga’s work may be a useful technique

for our research. Evaluating heuristics can be computationally expensive, and using

such a methodology could help reduce the overall time spent evaluating heuristics

that do not perform well.

This section only serves as an introduction to systems that automate the creation

of heuristics, and hyper heuristic research at large. For more information regarding

hyper heuristics, we direct the reader to the following resources; “Hyper-Heuristics:

An emerging direction in modern search technology” [29] presents an early intro-

duction to hyper heuristic research. Search Methodologies: Introductory Tutorials

in Optimization and Decision Support Techniques [23, Chapter 20] contextualises
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the potential benefits of hyper heuristics, as well as providing detailed examples of

previous research in both generative and selective hyper heuristics. “Hyper-heuristics:

A survey of the state of the art” [28] provides an analysis on the (then) state-of-the-art

in hyper heuristic research, and Handbook of Metaheuristics [65, Chapter 14] gives a

modern overview of current research trends in hyper heuristics.

2.5 Program Synthesis

Program synthesis, otherwise known as synthetic programming or automated pro-

gramming, refers to the task of automatically finding or creating programs that satisfy

some user defined criteria [76]. It is a fragmented discipline, with areas of research

in artificial intelligence [120, 132, 57, 121], programming theory [154, 94, 95, 22]

and evolutionary computation [102, 152, 55]. Though program synthesis has been

an active research area for over fifty years [120, 121], it is only relatively recently

that, through a renewed focus, program synthesis techniques have been deployed in

real-world applications.

In Section 2.4 we provided examples of how heuristic creation techniques have

been used to automatically create heuristics for solving hard combinatorial problems.

We believe that all of the techniques described in that section can be considered

program synthesis techniques.

Automated heuristic creation is not the only domain that has made use of program

synthesis. For example within data modelling, there is a continued need for functions

that can transform data from one format to another - such as when normalising the

textual content of strings to a consistent format. To the end user of a data modelling

system with little experience of programming, it would not be easy to create such

a function. Program synthesis techniques have been used to automatically create

functions for these types of simple data modelling problems. End users provide

examples of input and expected output of the required function, and the program

synthesizer creates a function that meets this specification. FlashFill is a program

synthesizer, provided as part of the Microsoft Excel program, that is able to create

simple functions from user provided input-output data [73, 75].

Another example of the emerging use of program synthesis in the real-world is

found in automated patch generation [133, 48, 112, 106]. Automated patch generators

are systems that are designed to automatically fix incorrect software. When a defect
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is detected in a piece of software, perhaps through the use of an automated testing

suite, an automated patch generator can detect which parts of the software may have

caused the defect, and can use program synthesis techniques to apply changes to

these parts with the aim of producing a “patch” for the software. One example of a

program synthesis technique used in automated patch generation is GP [106].

Researchers have also made use of program synthesis in other areas of computer

science. Within programming theory, it has been used to create superoptimising

compilers [154] and in the automated completion of computer code [180]. In graphic

design, program synthesis has been used to aid in the completion of structured

drawings [41]. We point the reader to several resources detailing other applications of

program synthesis. Gulwani et al. [77] provided an overview of the real-world use-cases

of inductive programming, a form of program synthesis. Koza [103] conducted a

survey on areas in which GP has created programs that are competitive with human

designed ones. Finally, Gulwani, Polozov, and Singh [76] gave a detailed account of

various use-cases where program synthesis has been applied successfully.

Some readers may not be as familiar with the term “program synthesis” as they

are with evolutionary computation techniques to create programs like GP. To be

clear, GP is one of many program synthesis methods.

The format of this section is as follows; in Section 2.5.1 we discuss the key

components of a program synthesis system. In Section 2.5.2 we detail the type of

program representation that we work with in this thesis - a tree-based program

representation. In Section 2.5.3 we discuss methods that navigate the search space

of programs in a methodical manner, and in Section 2.5.4 we provide an overview

of GP, a method of program synthesis realised through the sampling of the search

space. Finally in Section 2.5.5 we present the discussions and conclusions from the

research presented in this section.

2.5.1 Preliminaries

Due to the various research areas within computer science with a vested interest in

program synthesis, there are several competing definitions of how a program synthesis

problem is described. Gulwani [74] suggested three characteristics of all program

synthesis systems. These are the user intent, the solution space, and the search

technique. We describe what is meant by these terms below.
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div(i, j), rem(i, j) ⇐ find(y, z)

such that i = y × j + z ∧ 0 ≤ z ∧ z < j

where 0 ≤ i ∧ 0 < j

Figure 2.6: Example of a program specification written in predicate logic. It can be

read as follows; from the inputs i and j, find a program that returns two outputs y

and z which adhere to the logical predicates shown. This specification can be satisfied

by a program that performs integer division, returning the quotient and remainder

as output.

User Intent

This is the specification of the program to be created, or the criteria by which a

created program is judged. Problem specifications can differ greatly depending on the

domain they are to be used in, and some search techniques are only compatible with

certain types of specification. Some of the earliest work [120] in program synthesis

described the specification of the required program as a logical statement in predicate

logic. An example of this is shown in Figure 2.6. With such a specification, the

goal of a program synthesizer is to find a program that would provably have the

required behaviour. This type of specification is not just limited to domains where

the goal is to find a simple function like that shown in Figure 2.6, it can also be used

to describe the requirements of recursive programs, as well as the desired behaviour

of data structures. One major disadvantage of this type of specification is that it

requires a great deal of expert knowledge to write correct logical statements that

express the requirements of the program. It also requires systems with the ability to

automatically reason about the created programs, which in turn requires additional

expert knowledge.

Another method of defining a program’s specification is through the use of input-

output examples, also known as Programming by Example (PbE). The specification

is expressed as a set of pairs, where each pair contains an example of input and

expected output. The examples can also be expressed as a function representing a

subset of possible input, and a property of the desired output. FlashFill uses PbE

to allow its users to describe the required program’s behaviour in this manner. PbE,

like deductive programming, has also been used to learn recursive programs [59, 167]

using a search technique called inductive programming. Specifications of programs
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expressed using PbE require a lower threshold of expertise compared to those formal

methods we discussed previously. However when using such a system, the desired

program may not be created due to discrepancies in the specification - for example,

incorrectly described output, or there not being enough examples provided to reliably

describe the intended program’s behaviour.

Both of these specification types are best used for problems where there is a clear

definition of the correct behaviour a program should produce. However, in some

domains there may be no clear description of desired behaviour - and therefore no

binary test that can be constructed to determine the success of the created programs.

A fitness function is an alternative method for measuring a candidate program’s

effectiveness that can be useful in domains where success is difficult to measure. It is

typically realised through performing some experiment with the created programs and

quantifying their performance as some numerical value. This type of specification is

useful in domains where there is no “correct” or “best” program that can be created,

instead it is only known that some programs are more effective than others. An

example of specification criteria that utilises a fitness function can be found in the

research discussed in Section 2.4.2. This work was primarily focused on automated

heuristic creation for solving SAT through local search. To determine a heuristic’s

effectiveness, it was ran as part of a local search algorithm on a set of problem

instances, and a numerical value computed from how many instances it solved.

Solution Space

A candidate solution in a program synthesis problem is an instance of a created

program, and is defined by some abstract structure. This structure is called the

problem’s program representation. The set of all possible candidate solutions, also

called the solution space or search space, is defined by this representation, and the

characteristics of how the representation is defined describe the size and shape of the

search space. Some representations of programs may describe an infinite search space,

or search spaces that grow more quickly than others. The program representation

is usually inspired by some real-world programming language or paradigm. There

are always two distinct components of a program representation; the language -

conceptually a set of unique identifiers - and the underlying data structure used to

contain and compose elements of this language.

The definition of a language can be domain-specific to the problem that is to be
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tackled, or it can be abstract enough to be used to solve multiple problems. The

language is designed by a human expert, and should contain constructs that it is

believed will allow the program synthesizer to solve the required problem. A language

can contain general-purpose programmatic primitives, or can be constrained to a

domain-specific language. The specific elements inside a language are usually chosen

carefully; the language should be expressive enough to provide some flexibility in

the possible solutions, yet not too flexible so as to make the search space difficult to

navigate.

The choice of data structure that is used to represent candidate programs can have

a direct effect on which search techniques can be used in the program synthesizer. Tree

data structures are a commonly used underlying structure for program representation

as they can provide a high-level of generalisation. For example, they can emulate both

imperative and functional programming styles. Many search techniques in program

synthesis are designed with a tree-based representation in mind. However, for most

languages, when used with this type of representation, the search space is infinite.

This can make it difficult to explore effectively. Graphs [128], lists and arrays [79] are

other examples of data structure that have been used as a component in a program

synthesizer.

Some languages come with an additional parameter that describes which com-

position of terms in a candidate program are considered to be valid. One example

used with a tree-based representation would be a type system, designed to emulate

a strongly typed programming language. Another would be a CFG, designed to

emulate an imperative programming language.

Search Technique

A search technique in a program synthesizer is the methodology used to explore the

search space of possible programs. Succinctly, its function is to create new candidate

programs. Whether a search technique is appropriate for a program synthesizer can

depend on the type of program representation and user specification used. Using

the work of Gulwani, Polozov, and Singh [76, Chapter 1] as a basis, we separate

the available search techniques into three broad categories. The reader should note

that these categories are not distinct as some search techniques can be viewed as

belonging to multiple categories. The categories are:
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• Direct Search Techniques: These methods visualise the search space of

programs as a search tree, and directly work on this representation of the

solution space. Like algorithms for solving assignment problems, some search

techniques work on complete solutions (complete programs), and some work on

partial solutions (partial programs). The search techniques that work on partial

programs require some ability to reason logically about them. By doing so,

there exists the potential for additional search strategies to be employed. An

example is deductive programming [120, 121] that, by reasoning about partial

programs, is able to recognise program equivalence and prune search branches

[120, 58]. One particularly effective (and perhaps surprising) search technique

used in inductive programming [22] is the enumeration of the search space to

find candidate program trees. More advanced techniques such as Monte Carlo

tree search [95] have also been used to explore the solution space of programs.

• Constraint Solving: Methods that use constraint solving in program synthesis

require the ability to describe the “specification and the syntactic program

restrictions in a single formula so that any true model corresponds to a correct

program” [76]. These types of search techniques require a formal specification of

a program’s requirements, as well as formal logic pertaining to the effects that

a program or partial program has on the input parameters. Through the use of

some external logic deduction technique, the model can be solved, and the correct

program extracted. Examples exist where program synthesis is conducted in

this manner using automated theorem provers [120] and Satisfiability modulo

theories (SMT) solvers [4].

• Stochastic Methods: Stochastic methods refer to search techniques that

sample the search space of programs and, through this sampling, attempt to

learn the distribution of the search space and use this information to find

candidate programs. Examples include GP [102], machine learning [126] and

grammatical evolution [152].

In the next subsection, we formally define the program tree representation used

in this thesis. The reasoning behind the use of this representation was laid out in

Section 2.4.3. In Sections 2.5.3 and 2.5.4 we give a broad overview of two search

techniques designed to work with this representation.
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2.5.2 Tree-based Program Representation

Some of the first work in program synthesis (such as in deductive programming [121]

and GP [102]) used a tree structure as the basis for their program’s representation.

In this early work, the program representation’s language component was given as

a simple set of identifiers. These identifiers, or terms, were split into two sets; the

non-terminal set and terminal set. The only rules these representations had regarding

term placement was that non-terminals had to inhabit the nodes in a tree, and

terminals the leaves. This representation closely resembles a functional programming

style approach, where the non-terminals were analogous to functions, and terminals to

constants. A consequence of this representation is that any terminal or non-terminal

should be able to be used as an argument to a non-terminal, an assumption those in

the GP community call closure. This is the same untyped style of language discussed

in Section 2.4.1.

However, this assumption of closure can make it difficult to design languages that,

at least conceptually, have more than one data type. As noted by Montana [130];

“forcing a problem which uses multiple data types to fit the closure constraint can

severely and unnecessarily hurt the performance of genetic programming on that

problem”. For example, in a language that uses an integer for all its arguments, it

may be difficult to add an “if” statement non-terminal that requires a boolean as an

argument. When running the created programs, there needs to be an understanding

of how to convert an arbitrary integer to a boolean which, in the context of the

domain the program is deployed in, may be unnatural.

In a similar way to how type systems were introduced in early programming

languages to ensure that programs were correctly typed before running them, re-

searchers began to introduce program representations that prohibited the combination

of certain terms in the created programs. For example, strongly typed GP (STGP)

[130] uses an associated type system that is designed in such a way as to prohibit

ill-formed programs. STGP is designed with a monomorphic type system in mind

that prohibits currying. It is this kind of type system that we will be using in this

thesis in tandem with our language to describe LS-SAT heuristics.

As an example, Figure 2.7a contains the Language EX-1, which is described

in our desired form. The reader can clearly see that each term has an associated

type signature. We describe the type system of a given language as having several

characteristics, which are described as follows:
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• A set of principle types pt. Conceptually this is a set of unique symbols. This

set describes all the identifiers used in the type signatures in the language.

• A type signature t is a non-empty list of size n containing principle types

{t1 . . . tn}. The return type of t is tn. The argument type of t is {t1 . . . tn−1}.
The argument type can potentially be empty. The arity of t is n− 1. A type

signature is typically written as t1 → t2 → · · · → tn.

• A set of unique terms L. Each term e ∈ L has an associated type signature.

• A tree structure where each node is labelled with a term ∈ L is valid under L if

the following rules hold for all nodes in the tree. For a given node a containing

the term e that has the type signature containing principle types {t1 . . . tm},
and where a has a collection of children {c1 . . . cn}, the criteria are; firstly,

n = m− 1. Secondly, for each child ci ∈ {c1 . . . cn}, the return type of the term

in ci must equal ti. The return type of the whole tree structure is the return

type of the root node.

Two examples of trees written in Language EX-1 are shown in Figure 2.8. One

adheres to the type rules in Figure 2.7a, and one does not. We show an algorithm to

check that a program tree is valid under a language in Algorithm 2.16. This algorithm

performs a process known as type checking.

A language designed without a type system - that is to say, an untyped language -

can be augmented to have one by introducing a single dummy type d. Each terminal

is given the type d, and each function with arity n is given a type signature of

d1 → · · · → dn → dn+1. The reader may also note that CFGs can be formulated in

such a way as to emulate a language that uses this kind of type system [125]. As an

example, Language EX-1 is shown as a CFG in Figure 2.7b.

Though not the goal of this subsection, we have introduced several notions used

within the functional programming community, specifically concerning type systems.

Program synthesis techniques have also been formulated for languages with more

complicated type systems; for example, lambda calculus [177] and System F [22]. For

more information regarding the theory of type systems and functional programming

languages, we refer the reader to The Implementation of Functional Programming

Languages [90].
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Term Type Signature

0 Int

1 Int

+ Int → Int → Int

− Int → Int → Int

negate Int → Int

coinFlip Bool

intIf Bool → Int → Int → Int

lessThan Int → Int → Bool

(a) The set of terms in Language EX-1. Each term is annotated with its type signature.

The principle types of the language are {Bool, Int}.

E = intIf B E1 E2

| + E1 E2

| − E1 E2

| negate E

| 0

| 1

B = coinFlip

| lessThan E1 E2

(b) Language EX-1, described in terms of a CFG.

Figure 2.7: The Language EX-1. We show it in two forms; the first as a list of terms,

each with an associated type signature. The second as a CFG. Both forms of the

language describe the same set of programs.
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+

+

1 1

1

(a) An example of a program tree

written using Language EX-1 that

adheres to the rules of the language.

+

1

+ 1

coinFlip

(b) An example of a program tree

written using Language EX-1 that

does not adhere to the rules of the

language. Specifically, the left node

under the root has a term requiring

no arguments, yet it has two. The

right term under the root has a re-

turn type of type Bool, but the root

requires a term with an Int type from

its second argument.

Figure 2.8: Two examples of program trees written using Language EX-1, shown in

Figure 2.7. One is correct according to the rules of the language, one is not.
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Algorithm 2.16 Type-Check Algorithm

Input: L The language. Conceptually a map of terms to their associated

type signature, which is represented as a vector.

tree A tree with an unbounded number of children. Each node is

labelled with a term from L. It is this tree that the algorithm

will type check.

t The required type to check against.

Output: True if the tree has the required type t, False otherwise.

algorithm Type-Check(L, tree, t)

returnType = Type-Inference(L, tree)

if ((returnType = null) ∨ (returnType ̸= t)) then return False

else return True

algorithm Type-Inference(L, tree)

termsType = L.At(t) ▷ Finds the type of the node of the tree.

children = tree.Children()

if (termsType.Size()− 1 ̸= children.Size()) then return null

if (children.Size() > 0) then

for (i ∈ {0 . . . termsType.Size()− 2}) do
returnType = Type-Inference(L, children[i])

if ((returnType = null) ∨ (returnType ̸= termsType[i])) then

return null

return termsType[termsType.Size()− 1] ▷ Returns the last index.
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2.5.3 Direct Search Techniques

In this subsection we review the literature pertaining to direct search techniques for

program synthesis. By direct search techniques, we specifically refer to those methods

that imagine the search space of programs as a search tree, and directly navigate

through it to find candidate solutions - that is, potential programs that are solutions

to the overarching program synthesis problem.

To illustrate the methods described in this subsection, we will use Language

EX-1, described in Figure 2.7. In Figure 2.9 we show a small portion of the search

space described by Language EX-1. Since Language EX-1 describes a search space

containing an infinite number of programs, it is not possible to show the complete

search tree. However, the reader can clearly see that some small, full programs inhabit

leaves in the search tree, and partial programs inhabit the nodes.

The search space, when visualised in this manner, shows us some interesting

properties that may not be immediately obvious. We can see that there are distinct

repeating patterns in the search tree. Specifically, smaller complete programs are

reused in the formulation of larger ones. A simple example of this can be seen by

noting that the program trees representing 0 and 1 are reused at deeper levels in the

search tree as arguments to +. This pattern continues in the unseen portions of the

search tree; the complete program tree of + {0, 1} will eventually be re-generated

and reused as a child node in other complete program trees.

The examples of partial programs in the search tree introduce us to the concept

of the type hole. A type hole is a node in a program tree that is not instantiated

with a term. For the program to be correct according to the type rules (or the rules

enforced by a CFG), it requires a term. In the program trees in Figure 2.9, type

holes are shown using a ⋆.

Like other types of search trees, breadth-first search (BFS) and depth-first search

(DFS) are the two most obvious ways of traversing this tree. We present a unified

search algorithm, called Top-Down-Search, that is able to traverse this tree in

either a BFS or DFS manner. It is shown in Algorithm 2.17. It is inspired by an

identically named algorithm described by Gulwani, Polozov, and Singh [76]. Whereas

that algorithm was designed for languages that use a CFG, ours is designed for

languages that use a type system. Another difference between the two algorithms

is in how they instantiate type holes; ours instantiates them one at a time, whereas

Gulwani, Polozov, and Singh’s algorithm instantiates them all at once. The node

74



CHAPTER 2. LITERATURE REVIEW

⋆

0 1

+

⋆ ⋆

+

0 ⋆

+

0 0

+

0 1

. . .

+

1 ⋆

. . .

. . .

−

⋆ ⋆

. . .

. . .

Figure 2.9: An example of a search tree for the set of programs in Language EX-1,

shown in Figure 2.7. Each node in the tree contains a tree, representing either a

partial or complete program tree. The complete program trees can be found in the

leaves. The nodes with dots in them represent areas of the search space not visualised

- as this is an infinite search space, there is no way to visualise the whole search tree.

In each program tree, nodes which have no argument yet are given a placeholder,

denoted by ⋆.
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Algorithm 2.17 Top-Down-Search Algorithm

Input: L The language. Represented as a mapping of principle types t to a

set of terms that have t as a return type.

ϕ Specification criteria.

r Required type of the program tree to be created.

Output: A program that satisfies ϕ.

algorithm Top-Down-Search(L, ϕ, r)

P = [⋆] ▷ List of tree nodes to search.

Pv = {⋆} ▷ Set of partial programs seen.

while (P.Size() > 0) do

p = P.Pop()

if (ϕ(p)) then return p ▷ Required program found.

α = Find-First-Type-Hole(p) ▷ Find type hole.

t = Find-Required-Type-Hole(α, r) ▷ Find required type of α.

for (b ∈ L.At(t)) do

p′ = p[α → b] ▷ Replace α with b.

if (¬Subsumed(Pv, p
′, ϕ)) then

P.Insert(p′)

Pv = Pv.Insert(p
′)

which we insert a new term into is the first type hole that is found when conducting

an in-order traversal of the partial program tree.

Top-Down-Search works by maintaining a list of nodes P in the search tree

that have yet to be explored, and searches them one by one to create successor

program trees. On initialisation, the initial program tree (⋆) is added to this list,

and then the algorithm proceeds through a while loop. On each iteration, if P is

non-empty, then an element p is removed from it. A check is performed to ascertain

whether p passes the specification. If not, then the first (if there are any) type hole

α in p is found by performing an in-order traversal of p, the required type t of α

deduced and the language L probed for all terms that satisfy t. New partial programs

are created by inserting any terms in the language that satisfy t into α’s position, and

the new partial programs are then checked to see whether they have been subsumed.

If not, they are inserted into P .

A program - either partial or full - is subsumed if, for whatever reason, the

76



CHAPTER 2. LITERATURE REVIEW

algorithm has determined that it should not be added to P . In essence it is pruned

from the search space. Pruning criteria may be determined by partial program

equivalence; as an example, a partial program in the form + {0, α} will generate

the same set of programs as α, and a system with enough information about the

domain could prune that program. Or, the system may be able to determine that

two programs in the form + {α, β} and + {β, α} are equivalent, and remove one of

them.

Where successor states are inserted into P changes how Top-Down-Search

operates. If the new elements are inserted at the front of the list, the algorithm

becomes a DFS. If they are inserted at the end of the list, the algorithm becomes a

BFS. The reader should note that, for either method of insertion, there would have

to be some limiting factor on how large the program trees could be, or the algorithm

would not be guaranteed to terminate.

In Algorithm 2.18 we present Bottom-Up-Search. Bottom-Up-Search can

create the same set of program trees that Top-Down-Search can, however it works

in a fundamentally different way. Bottom-Up-Search is an augmented version of

an identically named algorithm presented by Gulwani, Polozov, and Singh [76]. The

version of Bottom-Up-Search presented in Algorithm 2.18 is designed to work

on languages that are represented using a type system, whereas that presented by

Gulwani, Polozov, and Singh is designed for use with CFGs.

The Bottom-Up-Search algorithm uses a function called Enumerate-Prog-

rams. Enumerate-Programs should, when given an integer i, return all correctly

typed full programs of exactly size i. It does this through recursion, and making

use of memoized results. The overarching Bottom-Up-Search algorithm works

as follows; for each program size i from 1 to the maximum bound m, the programs

are enumerated for i using Enumerate-Programs. After that set of programs

ps has been enumerated, each program p ∈ ps is checked to see whether it passes

the specification criteria. If it does, then p is returned and Bottom-Up-Search

terminates. Otherwise, if p is not equivalent to any program in E, it is added to E.

The E set is then used by Enumerate-Programs when it is next invoked, so that

previously created programs can be used in the creation of new ones. This is done to

reduce the overall computation time. As Bottom-Up-Search only operates on full

programs, it is unable to check for the equivalence of partial programs.

Both the Top-Down-Search and Bottom-Up-Search algorithms have their
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Algorithm 2.18 Bottom-Up-Search Algorithm

Input: L The language. Represented as a mapping of principle types t in

the language to sets of terms that have t as a return type.

ϕ Specification criteria.

m Maximum size of program.

Output: A program that satisfies ϕ.

algorithm Bottom-Up-Search(L, ϕ, m)

E = [] ▷ Memoized results.

for (i ∈ {1 . . .m}) do
ps = Enumerate-Programs(E, L, i)

for (p ∈ ps) do

if (ϕ(p)) then return p

if (¬E.Equivalent(p)) then

E.Insert(p)

advantages and disadvantages; Top-Down-Search requires less memory as results

are not memoized, however it is generally more computationally expensive. On the

other hand, Bottom-Up-Search can be memory intensive, but much faster at

returning results. Bottom-Up-Search’s ability to prune the search space is less

powerful when compared to Top-Down-Search, as it does not operate on partial

programs.

Some research [96, 22, 1] has found that a simple enumeration of the search space

can be used to perform program synthesis. Instead of pruning parts of the search tree

or using heuristics to direct the search, all valid programs are found and returned.

They are then tested to check whether they meet the specification criteria. However,

this method can be computationally expensive.

Another example of direct tree search that has proven to be effective is bi-

directional search. Top-Down-Search can be described as a forward search -

setting the first term in a program first - and Bottom-Up-Search can be described

as a backwards search, as it first finds the smallest subtrees that will be inserted

at the bottom of the synthesised program tree. Bi-directional search utilises these

two algorithms working together, and has proven to be effective in certain domains

[75, 146]. A further example of an effective search technique employed in program

synthesis is Monte Carlo tree search, which has been used to sample portions of the
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search space. Through this sampling, the overarching algorithm is then guided to

areas of the search space where it believes programs exist which meet the problem

specification [95].

2.5.4 Genetic Programming

GP is a program synthesis technique inspired by natural evolution [102]. Unlike

the program synthesis techniques we looked at in the previous subsection, it is a

population-based, sampling algorithm. GP is closely related to the GA. Whereas a

GA operates on fixed-sized strings, GP operates on solutions that represent programs

as trees. In this subsection we provide an overview of GP.

In Algorithm 2.19 we show the basic design of a GP algorithm. It can be described

as follows; at the start of the algorithm, an initial population of candidate solutions

are constructed, and each solution in that population tested against the specification

criteria. The algorithm then proceeds in an iterative manner; it creates a new

population from the previous one through the use of genetic operators, and tests

this new population against the specification criteria. The termination criteria is a

problem dependant mechanism that denotes when the algorithm terminates. Some

examples of commonly used termination criteria include those that are satisfied when

a set number of iterations have been performed, and those that are satisfied when a

solution has been created that sufficiently meets the specification criteria.

The algorithms we discussed in the previous subsection are designed with a generic

specification criteria in mind. GP differs from these, as it is usually associated with

program synthesis problems whose specification is defined in terms of a fitness function.

A fitness function attributes a value to each candidate solution that signifies how well

it meets the specification. Some of the mechanisms used in GP require the fitness value

of a program to operate correctly. However, GP can be used with program synthesis

problems whose candidate solutions either pass or fail their associated specification

[124]. In cases where the specification has been defined in this manner, a fitness value

can be extracted from how well a candidate program performs - for example, if a

specification was given as a set of input-output examples, and a candidate program

could only pass the specification if it satisfied all the examples, then a fitness value

for that program could be extrapolated from how many of the examples it satisfied.

In its original description, GP was described in terms of an untyped language [102].

The associated language was split into a terminal set and a function set. Elements
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Algorithm 2.19 Genetic-Programming Algorithm

Input: L Language.

ϕ Specification criteria.

r Required type of the program trees to be created.

p Parameters to GP algorithm.

Output: A program that satisfies ϕ.

algorithm Genetic-Programming(L, ϕ, r, p)

nextPop = Initialise(L, r, p)

pop = Evaluate-Population(nextPop, ϕ)

for (e ∈ pop) do

if (ϕ(e)) then return e ▷ An individual passes the specification.

while (¬Termination-Criteria-Met(p)) do

nextPop = Create-New-Population(L, pop, r)

pop = Evaluate-Population(nextPop, ϕ)

for (e ∈ pop) do

if (ϕ(e)) then return e

return pop.Best() ▷ Returns the best individual found.
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in the function set could only inhabit nodes in a program tree, and elements in the

terminal set could only inhabit the leaves. We retain the use of these definitions to

remain consistent with the literature.

In the remaining part of this subsection we describe the types of genetic operators,

initialisation functions and selection functions commonly used in GP. In this thesis

our focus is on languages that use an associated type system. We pay particular

attention to any additional constraints or mechanisms that must be taken into account

when using STGP [130], the GP variant designed for such languages.

Initialisation

There are three commonly referenced methods of initialising a population of candidate

solutions in GP. All of them work with a parameter d, which refers to the depth of

a node in a tree. The “full” method works by initially choosing a random function

from the language, then working recursively to populate the required children. Only

when the depth of the node being assigned = d can a terminal be chosen. The

“grow” method works similarly, except that at any point a terminal can be chosen. A

terminal must be chosen when the depth of the node being assigned = d. Finally,

the “ramped half-and-half” method works by populating half the population with

the grow method, and the other half with the full method. The created programs

from the full method are balanced trees, whereas those built using the grow method

may be unbalanced.

In STGP, when choosing terminals and functions, the initialisation method must

take care to only choose language terms that will create trees that are type correct.

Sometimes, it is not possible to create trees in this manner, depending on the terms

in the language and the types that need to be fulfilled. Therefore, the user must be

aware of the formulation of their language when choosing which initialisation function

to use, to ensure that the desired effect is achieved.

Selection Function

Genetic operators are used to create the next population in a GP algorithm. Some

genetic operators use individuals from the previous population in their formulation,

and a selection function is used to pick these individuals. There are many different

selection functions described in the literature. Objectively, the three most commonly

used are random selection, proportional selection and tournament selection. Random
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selection is simple, as it just chooses an individual from the previous population at

random. Proportional selection assigns each individual a weight based on its fitness

value, then chooses one using a weighted pick function. In tournament selection, a

set number of individuals are chosen at random from the previous population, and

the best of these according to their fitness is chosen as the selected individual.

Genetic Operators

On each iteration of the GP algorithm, a new population is created through the use

of genetic operators. Most genetic operators work by applying some algorithm to

a set of program trees from the previous generation to create a new set of program

trees. The selection function (described above) is used to select these individuals.

The four most commonly used genetic operators are crossover, mutation, repro-

duction and elitism. They can be described as follows:

Crossover In standard crossover, two individuals are selected and they are recom-

bined to create two new individuals. To create the two new individuals, a point in

each program tree is selected. The two new individuals are created by swapping the

subtrees rooted at the selected points with each other. Figure 2.10 shows an example

of how this is performed.

In STGP, additional care must be taken to ensure that the created offspring are

type correct. This is achieved by, after picking the point in the first tree, ensuring

that the subtree selected in the second program has the same return type as the

subtree selected in the first.

Mutation The mutation operator uses one program tree from the previous popu-

lation, and creates a single new program tree. A node is chosen at random in the

original program tree, it is removed and a new subtree is created in its place. We

show an example of this in Figure 2.11. This operator is primarily used to ensure

that new genetic material is inserted into the population, as sometimes a population

can be dominated by many similar individuals.

Reproduction Reproduction refers to a mechanism that creates new program

trees using the initialisation function. To be clear, it requires no individuals from the

previous population. It is designed to insert new genetic material into the population.
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+

negate

1

0

(a) An example program

tree selected for crossover.

The subtree selected as the

crossover point is highlighted

in grey.

+

−

1 1

intIf

coinFlip 1 0

(b) A second example program tree that has

been selected for crossover, with the subtree

selected as the crossover point highlighted

in grey. Nodes highlighted blue could have

been selected to be a crossover point. Nodes

highlighted red could not.

+

−

1 1

0

+

negate

1

intIf

coinFlip 1 0

(c) The program trees created from an application of crossover using the trees in

Figures 2.10a and 2.10b.

Figure 2.10: An example of the crossover operator being applied to two trees written

in Language EX-1. In the input trees in Figures 2.10a and 2.10b the crossover point is

indicated by the grey labelling of a node. To be clear, the subtrees being substituted

are those rooted at the highlighted nodes.
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1 1

0

(a) An example program tree selected

for mutation. The subtree that

will be removed and replaced is high-

lighted in grey.

+

−

1 1

negate

1

(b) The program tree created from an

application of mutation. The high-

lighted subtree in Figure 2.11a has

been removed and a new subtree cre-

ated and inserted in its place.

Figure 2.11: An example of the mutation operator being applied to a program tree

written in Language EX-1.

Elitism Elitism refers to when an element is chosen from the previous generation

to be copied to the new one. It is common for this operator to be used to retain one

or more of the best individuals from the previous generation, to ensure that good

program trees are not lost from generation to generation.

This subsection does not aim to be a complete guide to GP, only providing a

brief introduction to its concepts. For more information regarding GP, as well as an

overview of other closely related techniques such as gene expression programming [55],

and grammatical evolution [152], we refer the reader to A Field Guide to Genetic

Programming [147].

2.5.5 Summary & Discussion

In this section we have discussed program synthesis from a high-level perspective, then

highlighted two specific examples of techniques that create programs automatically -

direct search techniques and GP. Throughout the proceeding subsections, we have

provided the reader with additional resources to each of the methods that we have

focused on. We point the reader to “Program synthesis” [76], which we used as a

basis for our descriptions in Section 2.5.1, for a general overview of program synthesis.
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In the context of our work in LS-SAT, and in the wider research area of combi-

natorial problems, we note several similarities between program synthesis problems

and hard combinatorial problems. The way in which a hard combinatorial problem is

usually defined is in terms of either an optimisation problem or a decision problem.

This categorisation mirrors the different types of specification criteria of a program

synthesis problem; some program synthesis problems are defined in terms of a specific

expected behaviour of the created program, and the specification given as a binary

criteria. Others use a fitness function to gauge the created program’s effectiveness.

From the major characteristics of a program synthesizer laid out in Section 2.5.1,

it is clear that several of the given methodologies do not apply to the creation of

heuristics. As far as we are aware, there is no “correct” specification of a heuristic in

the domain of LS-SAT solvers or indeed any hard combinatorial problem. Or more

specifically, any function that could correctly direct the search to the exact sequence

of changes to move to a satisfying solution would be, to our knowledge, exponential in

its running time. Therefore, like the previous work in creating LS-SAT heuristics [60,

62, 61, 9], it is reasonable to assume that the specification criteria for our candidate

programs (or heuristics) should be a fitness measure of how well they perform on

actual problem instances.

We noted in Section 2.4.2 that GP had previously been used to create LS-SAT

heuristics, and its inclusion in this section is due to that research, as it is one of the

previously used methods in our domain. Concerning the direct search techniques

discussed in Section 2.5.3, we believe that some of them may be applicable to our

research - specifically techniques that navigate the search tree of programs, and

strategies for pruning parts of the search space. However, while creating a system

that can reason about partial heuristics and prune parts of the search space is possible,

it would require a high-level of expertise. This is exacerbated by the stochasticity

employed by LS-SAT heuristics, as such a system would be reasoning about stochastic

partial programs. On the other hand, exhaustive enumeration appears to be a practical

technique to use as it requires relatively little expert knowledge, and may also provide

us with insight into alternative methods that can be used to effectively navigate the

search space of heuristics.
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2.6 Minimum Tree Edit Distance Problem

In this section we give a broad overview of the minimum tree edit distance problem.

We provide details concerning how it is defined, and present an efficient algorithm

to solve it. The MTED problem discussed in this section is used extensively in

Chapters 5 to 7.

The format of this section is as follows; in Section 2.6.1 we provide a definition of

the MTED problem. In Section 2.6.1 we present an efficient algorithm used to solve

it. Finally in Section 2.6.3 we present the conclusions to this section.

2.6.1 Definition

Originally described by Tai [168], and also known as the tree-to-tree problem, the

minimum tree edit distance problem can be described as follows; given an alphabet

Σ, a cost function γ and two ordered, labelled trees t1 and t2 (where each label in

each tree is an element of Σ), find the minimum cost of tree edits, as given by γ, to

transform t1 to t2. A tree edit can be one of the following:

• Relabel(l1, l2): A node in the tree has its label changed from l1 to l2. We write

γ(l1 → l2) to show the cost of a relabel.

• Insert(l, i, j): A new node l is inserted into the tree. Specifically, it is inserted

at some point in the tree under a previously existing node n, at position i in the

sequence of n’s children and taking a subsequence of n’s children (from point

i onward, and of size j) as its own. If n had k children originally described

as {n1 . . . nk}, then after insertion, n now has (k − j) + 1 children in the form

{n1 . . . ni−1, l, ni+j, . . . , nk−j+1}. l’s j children are in the form {ni . . . ni+j}. We

write γ(→ l) to show the cost of an insertion. If no nodes exist in the tree, this

edit inserts the node l as the root of the new tree.

• Delete(l, i): A node l is removed from the tree. Specifically, if the ith

child from the parent node n, which originally had k children {n1 . . . nk},
is to be deleted, then the sequence of l’s m children {l1 . . . lm} are inserted

at position i under node n. n now has (k + m) − 1 children in the form

{n1 . . . ni−1, l1 . . . lm, ni+1 . . . nk}. We write γ(l →) to show the cost of a dele-

tion.
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Figure 2.12: Examples of tree edits between trees. Each node in each tree is labelled

with its index according to a post-order traversal. Relabels are shortened to “rlbl”,

and have two additional arguments pertaining to the index of the node to be relabelled

and the new label for the node. Deletions are shortened to “del” and give the index

of the node to delete. Insertions are shortened to “ins” and have four additional

arguments. The first is the index of the node that will become the inserted node’s

parent. We designate this node e. The second argument is the node to be inserted,

the third is the index of e’s children that the inserted node will become, and the

fourth is the number of e’s children the inserted node will take as its children.

For any two trees, there are many possible edit sequences that can transform one

tree to the other. A trivial method would be removing all the nodes from the initial

tree t1, then inserting all the required nodes to create the tree t2. The goal of the

MTED problem is to find the edit sequence with the minimum cost according to γ.

In Figure 2.12 we show some examples of tree edits, to familiarise the reader with

the concept.

MTED algorithms have found uses in several areas, including in the analysis of

GP [134] and bioinformatics [2], and within database design [7]. The reader should

note that the edits laid out above are not the only way of describing a tree edit and,

by extension, the MTED problem. Other tree edit definitions exist; for example,

those described by Lu [114], where a different set of moves are used to edit trees. In

this thesis, we only consider the “classic” MTED problem for ordered trees, and not

any extensions of it.
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δ(θ, θ) = 0

δ(F1, θ) = δ(F1 − v, θ) + γ(v →)

δ(θ, F2) = δ(θ, F2 − w) + γ(→ w)

(2.7)

(2.8)

(2.9)

δ(F1, F2) = min



δ(F1 − v, F2) + γ(v →)

δ(F1, F2 − w) + γ(→ w)

if F1 ∧ F2 are trees

δ(F1 − v, F2 − w) + γ(v → w)

otherwise

δ(F1(v), F2(w)) + δ(F1 − T1(v), F2 − T2(w))

(2.10)

(2.11)

(2.12)

(2.13)

Figure 2.13: A recursive solution to the MTED problem, designed to operate on

forests. We write F − x to denote deleting the node x in forest F . v and w are

the rightmost roots (if any) in F1 and F2 respectively. We use F (x) as notation for

obtaining the rightmost tree x from F . We write F − T (x) to mean removing the

entire rightmost tree x from F . θ is used as a synonym for the empty forest.

2.6.2 Algorithm

The MTED problem for (ordered) trees can be solved in polynomial time. For trees

with m and n nodes, the best known MTED algorithm [51] has a time complexity of

O(n2m(1 + log m
n
)). However, the details of that algorithm are far beyond the scope

of this thesis, and instead in this subsection we present a dynamic programming (DP)

solution that has O(m2n2) time complexity [181]. The algorithms presented in this

subsection follow from the recursive equations shown in Figure 2.13.

The reader should note that in this section, all edits (insertions, relabels and

deletions) have a cost of 1, except the edit which relabels a node with itself, which has

a cost of 0. For the MTED to remain consistent, the cost function must have several

properties. We refer the reader to work by Spears [139], which showed that the cost

function must adhere to the non-negativity property, the self-equality property, the

discernibility property, the symmetry property and the triangular inequality property.

The authors also noted that if the cost function has these properties, then the tree

edit distance metric defined from the cost function also has these properties.

The recursive solution outlined in Figure 2.13 is designed to work on forests rather
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than trees. A forest is a collection of trees, and a tree can be thought of as a forest

containing a single element. Therefore, this solution is consistent with the definition

of the MTED problem outlined in Section 2.6.1.

The recursive solution in Figure 2.13 works by deconstructing the forest into

subforests and single nodes, and then computing the distance between these de-

constructed parts. When single nodes are encountered, the cost function γ is used

to compute the distance. This process continues until the base-case is reached in

Equation (2.7).

The reader should note that three distinct deconstructions can be identified in

the recursive solution shown in Figure 2.13; one that is constructed from the input

forest with the rightmost root node removed (used in Equations (2.8) to (2.12), and

denoted by F − x) and two that are created by splitting a forest containing k + 1

trees into a forest containing the first k trees, and a singleton containing the last tree,

(used in Equation (2.13) and denoted by F (x) and F − T (x) respectively).

To provide some intuition as to how these subforests are created, consider the

two trees in Figure 2.14, which are labelled with indices according to a post-order

traversal. When a forest is labelled in this manner, the subforest constructed by

removing the rightmost root node can be created by removing the node with the

highest index. For the two subforests that are required by Equation (2.13), these

can be created by splitting the input forest into the last tree in the forest, and the

remaining elements. Using a post-order indexing of a forest containing k + 1 trees,

this can be abstractly represented as, for a forest with n nodes, there being an index

m < n such that the nodes with indices 1 . . .m are in the subforest representing the

first k trees, and the nodes m + 1 . . . n are in the forest representing the singleton

tree.

One important point concerning these equations, and specifically about the

splitting of the forest in Equation (2.13), is that the rightmost rooted singleton tree

will always be a subtree of the original input tree given to the problem.

Though these equations could be followed through from the original input trees

to find the MTED between them, the time complexity of such an algorithm would

be exponential. Instead, a DP solution exists that allows the MTED to be computed

in O(m2n2) time complexity. The pseudocode for this DP solution is shown in

Algorithms 2.20 and 2.21.
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(b) Tree et2.

Figure 2.14: Two trees that are used in Section 2.6.2 to illustrate how the MTED

algorithm works. In each node in each tree we mark the index according to a post-

order traversal.

Algorithm 2.20 MTED Algorithm

Input: t1 Input tree.

t2 Output tree.

γ Cost function.

Output: Number representing minimum edit distance between t1 and t2.

algorithm MTED(t1, t2, γ)

k1 = Key-Roots(t1)

k2 = Key-Roots(t2)

td = [t1.Size(), t2.Size()] ▷ Initialise tree distance table.

for (kl ∈ k1) do

for (kr ∈ k2) do

Tree-Dist(kl, kr, γ)

return td[t1.Size()− 1, t2.Size()− 1]
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Algorithm 2.21 Tree-Dist Algorithm

Input: t1 Input subtree.

t2 Output subtree.

γ Cost function.

Output: None.

algorithm Tree-Dist(t1, t2, γ)

fd = [t1.Size() + 1, t2.Size() + 1] ▷ Local forest distance table.

fd[0][0] = 0

for (i ∈ {1 . . . t1.Size()}) do
fd[i][0] = fd[i− 1][0] + γ(t1[i] →)

for (j ∈ {1 . . . t2.Size()}) do
fd[0][j − 1] = fd[0][j − 1] + γ(→ t2[j])

for (i ∈ {1 . . . t1.Size()}) do
f1 = Create-Forest(t1, i) ▷ Create forest from post-order index i

for (j ∈ {1 . . . t2.Size()}) do onward.

f2 = Create-Forest(t2, j)

if (f1.Is-Tree() ∧ f2.Is-Tree()) then

fd[i][j] = min(

fd[i− 1][j] + γ(f1[i] →),

fd[i][j − 1] + γ(→ f2[j]),

fd[i− 1][j − 1] + γ(f1[i] → f2[j]))

td[f1.Get-Tree-Index()][f2.Get-Tree-Index()] = fd[i][j]

else

(fs1, ft1) = Split-Forest(f1)

(fs2, ft2) = Split-Forest(f2)

fd[i][j] = min(

fd[i− 1][j] + γ(f1[i] →),

fd[i][j − 1] + γ(→ f2[j]),

fd[fs1.Get-Forest-Index()][fs2.Get-Forest-Index()]+

td[ft1.Get-Tree-Index()][ft2.Get-Tree-Index()])
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The MTED algorithm works by initially identifying each key-root in both the

input and output trees. A node n in a tree is a key-root if its leftmost descendant (a

leaf’s leftmost descendant is itself) is unique among all leftmost descendants found

from the set of trees that are the ancestors of n. For the trees in Figure 2.14, the

key-roots for tree et1 are at post-order indices 3, 5 and 6 and et2’s are at post-order

indices 2, 5 and 6.

We then find each pair of subtrees rooted at each key-root k1 and k2, where

k1 ∈ key-roots(t1) and k2 ∈ key-roots(t2). For each pair k1 and k2, we let the

size of k1 = m and the size of k2 = n. We then label k1 and k2 with an index

according to a post-order traversal. These are distinct from the post-order indexes

of the original trees. Pairs of forests are then extracted of size i ∈ {0 . . . n} and

j ∈ {0 . . .m}, such that the pair of forests of size i and j contains the nodes labelled

({1 . . . i}, {1 . . . j}) according to each subtree’s post-order traversal. An i or j of 0

represents the empty forest, ∅. For each of these forests, the MTED is then computed

between them.

While this method may appear computationally expensive, in practice, computing

the MTED for each pair of forests can be performed in constant time if the solutions

to the required subproblems have already been calculated. As an example, we will

show the calculations required to compute the MTED between the key-roots of et1

and et2 in Figure 2.14. For each pair of subtrees located at the key-roots, a DP

table is shown in Table 2.4. Each cell (i, j) in each table refers to the minimum

edit distance between the forests as described in the previous paragraph. As an

example, in Table 2.4c, at cell (6, 2), the MTED is 4. This means that the forest

described by the nodes {1 . . . 2} in k1 (the tree rooted at post-order index 2 in et1)

has a minimum edit distance to the forest described by nodes {1 . . . 6} in k2 (the tree

rooted at post-order index 6 in et2) of 4.

By visualising the problem in this manner, we can quickly fill in each table. The

cell at (∅, ∅) is always 0 (according to Equation (2.7)). The cells at (∅, j) use the

value at (∅, j − 1) and add the cost of deleting the node j using the γ cost function.

Similarly, the cells at (i, ∅) use the value at (i− 1, ∅) and add the cost of inserting the

node i using the γ cost function. These correspond to the Equations (2.8) and (2.9).

All other cells are calculated according to Equations (2.10) to (2.13). For a cell at

(i, j), we take the minimum of three values; first, the cell at (i− 1, j) added to the

cost of inserting node i. Second, the cell at (i, j − 1) added to the cost of deleting
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Table 2.4: MTED subproblems calculated when computing the tree edit distance

between the trees et1 and et2 shown in Figure 2.14. Each table represents a subproblem

computing the MTED between a key-root k1 in et1 and a key-root k2 in et2. Each

cell at (i, j) in each table shows the MTED between the forests containing nodes

{1 . . . i} and {1 . . . j} as found through a post-order traversal of the key-roots k1 and

k2 respectively. We use ∅ to refer to the empty forest. Certain cells are highlighted,

which show when that value has been used to update the tree distance table in

Table 2.5.

(a) MTED table be-

tween subtrees at index

2 in et1 and 3 in et2.

∅ 1

∅ 0 1

1 1 0

2 2 1

(b) MTED table be-

tween subtrees at index

2 in et1 and 5 in et2.

∅ 1

∅ 0 1

1 1 1

2 2 2

(c) MTED table between sub-

trees at index 2 in et1 and 6

in et2.

∅ 1 2 3 4 5 6

∅ 0 1 2 3 4 5 6

1 1 1 1 2 3 4 5

2 2 2 2 2 2 3 4

(d) MTED table be-

tween subtrees at index

5 in et1 and 3 in et2.

∅ 1

∅ 0 1

1 1 1

(e) MTED table be-

tween subtrees at index

5 in et1 and 5 in et2.

∅ 1

∅ 0 1

1 1 0

(f) MTED table between sub-

trees at index 5 in et1 and 6

in et2.

∅ 1 2 3 4 5 6

∅ 0 1 2 3 4 5 6

1 1 1 2 3 4 4 5

(g) MTED table be-

tween subtrees at index

6 in et1 and 3 in et2.

∅ 1

∅ 0 1

1 1 1

2 2 1

3 3 2

4 4 3

5 5 4

6 6 5

(h) MTED table be-

tween subtrees at index

6 in et1 and 5 in et2.

∅ 1

∅ 0 1

1 1 1

2 2 2

3 3 3

4 4 4

5 5 4

6 6 5

(i) MTED table between sub-

trees at index 6 in et1 and 6

in et2.

∅ 1 2 3 4 5 6

∅ 0 1 2 3 4 5 6

1 1 0 1 2 3 4 5

2 2 1 0 1 2 3 4

3 3 2 1 2 3 4 5

4 4 3 2 1 2 3 4

5 5 4 3 2 3 2 3

6 6 5 4 3 3 3 2
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Table 2.5: Tree distance table used when calculating the MTED between the trees et1

and et2 shown in Figure 2.14. Each cell (i, j) shows the MTED between the subtrees

rooted at post-order indices i and j in et1 and et2 respectively. When computing the

distance between the key-roots, as shown in Table 2.4, when it is known that the two

forests being compared to each other are also trees, we can update a value in this

table. The colour of each cell shows where that cell’s value came from.

1 2 3 4 5 6

1 0 1 2 3 1 5

2 1 0 2 3 1 5

3 2 1 2 2 2 4

4 3 3 1 2 4 4

5 1 1 3 4 0 5

6 5 5 3 3 5 2

node j, and one additional value. If the two forests being compared are also trees,

then this additional value is computed as the value at (i − 1, j − 1) plus the cost

of relabelling node i with the label in node j. If they are not both trees, then we

break both forests into a pair (fs, ft), where fs represents the subforest and ft the

singleton tree. We compute the edit distance between fsi and fsj, and fti and ftj,

and add the costs of these two subproblems. If we proceed by filling in this table

row by row, we can guarantee that the MTED of fsi to fsj will have already been

computed - though deducing which cell contains this value may not be obvious. For

the cost of the singleton trees, an additional DP table contains these values, which we

call the tree distance table. For the trees in Figure 2.14, this is shown in Table 2.5.

However, as of yet we have not discussed how to fill in the tree distance table.

This table is read differently to the other tables. Specifically, the cell (i, j) refers to

the MTED between the subtree rooted at post-order index i in et1 and the subtree

rooted at post-order index j in et2.

We do not need to perform any additional computation to fill in these values,

as they are already computed when we are finding the minimum edit distance for

the other tables. If we hit the case in Equation (2.12) where two trees are being

compared, we know that a corresponding cell in the tree distance table can be filled

in. In the DP tables in Table 2.4, there are several coloured cells that correspond to

identically coloured cells in Table 2.5, which show that a value has been copied to
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the tree distance table.

We can guarantee that the required values in the tree distance table will already

have been computed when they are required by the key-root computations, as shown

in Table 2.4, by ensuring that the MTED between key-roots are computed in a

specific order. If we iterate over each key-root in t1 ordered by their post-order index,

and all the key-roots in k2, then for any pair of key-roots at post-order indices (i, j),

any required subtree computations will have already been computed. This is because,

by using a post-order traversal, we will be working from a bottom up approach, and

any tree distance calculations required will be rooted at post-order index (i′, j′) such

that i′ < i and j′ < j.

Finally, to conclude the algorithm, the value of the MTED between the input

trees t1 and t2 can be found in the bottom rightmost cell in the tree distance table.

In Algorithms 2.20 and 2.21 we have shown the pseudocode for these processes, which

allow the MTED to be computed for two trees. It is this algorithm that we use, when

required, in this thesis.

2.6.3 Summary & Discussion

The MTED problem is a broad subject, and in truth this section only serves as an

introduction to the topic at large. We point the reader to several resources which

provide more detailed information. Bille [19] gives a survey of the MTED problem

and provides an overview of several variants of the problem. Paaßen [139] presents

an in-depth overview of the problem, showing various algorithms to calculate it, and

explains in detail how they work. Finally, Zhang and Shasha [181] present the original

description of the algorithm contained in this section.

2.7 Conclusions

The goal of this chapter was to provide the context for the work contained in

this thesis. We have discussed literature relating to SAT, LS-SAT heuristics, the

automated creation of heuristics, program synthesis and the MTED problem.

Research in automated heuristic creation has predominantly focused on using

population-based approaches of program synthesis, such as GP, to achieve its goal.

However, this is not the only form of program synthesis that has been developed in

wider computer science. It can be reasoned other techniques could have a role to play
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in heuristic creation.

The domain that we create heuristics for in this thesis, LS-SAT, is a domain

that previous researchers have attempted to automatically create heuristics for.

This previous work gives us some context regarding how to represent a heuristic

in this domain, how to evaluate the created heuristics, and previous examples of

heuristics that have been automatically created. In turn, this previous work forms

the cornerstone of our research; how can these automated heuristic creation strategies

be improved, what alternate techniques can be employed, and is it possible to create

more effective heuristics.

LS-SAT heuristic development has progressed since this previous work was un-

dertaken. There have been many advances in this area, which provides us with the

opportunity to consider heuristic components that previous authors were unaware

of, and to consider whether they are applicable for automated heuristic creation. It

also raises the question of how do we represent some of these constructs in a general

language for describing heuristics, as well as how to develop a system that can have

these different techniques cooperating together.

In Section 2.6 we reviewed the literature concerning the MTED problem. Though

its relevance may not be clear in the context of the rest of the work in this chapter,

this section is vitally important for understanding the research in Chapters 5 to 7. In

the next chapter, we provide details showing how we represent and evaluate heuristics

in this thesis, which provides the foundation for the work undertaken in all subsequent

chapters.
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Chapter 3

Heuristic Representation &

Evaluation

3.1 Introduction

In this chapter we describe the way in which we represent and evaluate LS-SAT

heuristics in this thesis. The core aims of this chapter are to give a formal description

of our representation of heuristics, and to show how a heuristic is evaluated through

a fitness function and a testing set. In later chapters we use program synthesis

techniques on the described representation to automatically create heuristics, which

are evaluated using the given fitness function.

In Section 3.2 we introduce the reader to the heuristic representation used in this

thesis, as well as providing descriptions of how each heuristic component is evaluated.

This section references the literature in Sections 2.2, 2.3 and 2.5.2, and assumes

a familiarity with LS-SAT heuristic design and simple type systems. Section 3.3

provides the reader with an account of how the heuristics are used as part of an

overarching local search algorithm to solve a SAT problem instance. This section also

shows how the local search algorithm is designed, and the methods used to ensure

that the heuristics are evaluated in an efficient manner. In Section 3.4 we detail how

we evaluate the performance of the heuristics. This is done through a fitness function

and a testing set. We also evaluate the performance of several hand-crafted heuristics.

In later chapters, these results allow us to compare the performance of automatically

created heuristics to these hand-crafted ones. Finally in Section 3.5 we present the

discussions and conclusions from the research described in this chapter.
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3.2 Heuristic Representation

In this section we detail the representation we use to formulate LS-SAT heuristics

in this thesis. Like the heuristic representations described in Section 2.4.1, our

representation consists of two components; a DSL - conceptually a set of terms - and

a data structure used to compose elements of the DSL. We use a tree data structure

to construct heuristics from the DSL. Each node in the tree must be labelled with a

term from the DSL, and can have an unbounded number of children.

In Section 2.5 when discussing program synthesis techniques, we referred to the

created candidate solutions as program trees. The structures that are created from

the representation described in this section are both program trees and LS-SAT

heuristics; in the context of program synthesis, they are arbitrary program trees.

In the context of the target domain, they are LS-SAT heuristics. While the two

terms can be used interchangeably, we make an attempt to use the correct one when

appropriate.

The design of our heuristic representation takes inspiration from previous work

in the design of systems to automate the creation of LS-SAT heuristics [60, 62, 61,

9]. We use a type system to prohibit the combination of certain terms in the DSL.

This allows us to ensure that language terms which conceptually mean very different

things are not combined in ways that we do not intend. The type system we use is

identical to that laid out in Section 2.5.2. A requirement of this type system is that

each term in the language must have an associated type signature.

Some work within program synthesis research describes the associated language

as a CFG, which is used to prohibit the combination of certain terms in the same way

a type system does. The DSL that we present in this section could be formulated as

a CFG, and the same set of program trees would be able to be expressed. However,

we choose to use a type system for several reasons. Firstly, we have found it to be

easily extendable, as it allows us to add new terms and types to the language quickly,

as well as perform experiments using subsets of the DSL without having to construct

a new CFG. Secondly, it allows the work we undertake to remain consistent with the

literature on program synthesis in Section 2.5. Finally, though the type system we

use is simple, it could be easily extended with more complicated mechanics such as

polymorphic typing. Achieving the same effect with a CFG would be more difficult.

In previous research [30], the DSL we used was presented as a CFG. To be clear to

the reader, there is no difference between the set of expressible program trees that
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can be created from the CFG presented in that work, and the equivalent set of terms

in the DSL presented in this section.

The DSL is presented in two tables. In Table 3.1 we show the functions in the

DSL with their type signature and an explanation of how they are evaluated. In

Table 3.2 we show the terminals in the language. From these two tables, the set of

principle types can be constructed, which is shown in Figure 3.1. The reader should

note that throughout this thesis different subsets of the DSL are used as the focus

of particular experiments. We note to the reader at the time what terms are under

consideration in that experiment.

We do not include an explanation of the terms in Table 3.2, and the meaning of

some may not be immediately obvious. In Section 3.2.1 we describe explicitly what is

meant by each of those terms. In Section 3.2.2 we discuss the inspiration behind the

terms in the language, and provide some examples of previously known, hand-crafted

heuristics written using the DSL.

Table 3.1: The set of functions in the DSL used in this thesis to create LS-SAT

heuristics.

PickRandomVar(vs) VarSet → Var

Given the non-empty set of variables vs, this function returns a randomly chosen

variable from vs.

GetBestVar(vs, g) VarSet → GainType → Var

Given the non-empty set of variables vs and the variable metric g, this function

returns the variable v1. To compute v1, we do the following. Compute g(v) for

each v ∈ vs, and let v1 = the variable with the best value in vs according to the

ordering imposed by g. If there are multiple variables with the same g value as v1,

pick from these randomly.

GetBestVarSnd(vs, g) VarSet → GainType → Var

Given the non-empty set of variables vs and the variable metric g, this function

returns the variable v2. To compute v2, we do the following. Compute g(v) for

each v ∈ vs, and let v2 = the variable with the second best value in vs according

to the ordering imposed by g. If there are multiple variables with the same g value

as v2, pick from these randomly.

Continued on next page
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Table 3.1: The set of functions in the DSL used in this thesis to create LS-SAT

heuristics. (Continued)

GetBestVarAge(vs, g) VarSet → GainType → Var

Given the non-empty set of variables vs and the variable metric g, this function

returns the variable v1. To compute v1, we do the following. Compute g(v) for

each v ∈ vs, and let v1 = the variable with the best value in vs according to the

ordering imposed by g. If there are multiple variables with the same g value as v1,

pick the variable with the maximum Age, breaking ties randomly.

GetBestVar2(vs, g1, g2) VarSet → GainType → GainType → Var

Given the non-empty set of variables vs and the variable metrics g1 and g2, this

function returns the variable v1. To compute v1, we do the following. Compute

g1(v) and g2(v) for each v ∈ vs, and let v1 = the variable with the best value

according to the ordering imposed first by g1, then g2 to resolve tie-breaks. If there

are multiple variables with the same g values as v1, pick from these randomly.

PickOldest(vs) VarSet → Var

Given the non-empty set of variables vs, this function returns the variable v1. To

compute v1, we do the following. Find the Age value for each v ∈ vs, and let v1 =

the variable with the maximum Age. If there are multiple variables with the same

Age value as v1, pick from these randomly.

WeightedVarPick(vs, gen, ls) VarSet → VarProb → List VarProb → Var

Given the non-empty set of variables vs, the VarProb element gen which represents

a function that creates numeric values from a variable, and the potentially empty

list of additional VarProb elements ls of size n, this function returns the variable

vw. To compute vw, we do the following. For each of the variables v ∈ vs, let

dv,0 = gen(v). For each additional li ∈ ls, let dv,i = dv,i−1 × li(v). Then, using

each dv,n value as the weight of v, let vw be the result of performing a weighted

pick on the variables in vs. If all weights are 0, pick from vs randomly.

PickRandomM(vs) Maybe VarSet → Maybe Var

Given the potentially empty set of variables vs, pick a variable from vs randomly.

If vs is empty, return nullopt.

Continued on next page
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Table 3.1: The set of functions in the DSL used in this thesis to create LS-SAT

heuristics. (Continued)

GetBestVarM(vs, g) Maybe VarSet → GainType → Maybe Var

Given the potentially empty set of variables vs and the variable metric g, this

function returns the variable v1. To compute v1, we do the following. Compute

g(v) for each v ∈ vs, and let v1 = the variable with the best value according to

the ordering imposed by g. If there are multiple variables with the same g value

as v1, pick from these randomly. If vs is empty, return nullopt.

GetBestVarAgeM(vs, g) Maybe VarSet → GainType → Maybe Var

Given the potentially empty set of variables vs and the variable metric g, this

function returns the variable v1. To compute v1, we do the following. Compute

g(v) for each v ∈ vs, and let v1 = the variable with the best value according to

the ordering imposed by g. If there are multiple variables with the same g value

as v1, pick the variable with the maximum Age, breaking ties randomly. If vs is

empty, return nullopt.

Filter(cmp, g, i, vs)
Comparator → GainType → Integer →

VarSet → Maybe VarSet

Given the comparison operator cmp, the variable metric g, the integer i and the

non-empty set of variables vs, this function filters the variables in vs, creating the

return value ls. To compute ls, we do the following. Compute g(v) for each v ∈ vs.

Then compare g(v) to i using the comparison operator cmp. If the result of this

expression is True, add v to ls. If, after evaluating all vs, ls is empty, return

nullopt, else return ls.

GetOldestVar(v1, v2) Var → Var → Var

Given the variables v1 and v2, pick the variable with the maximum Age. If both

variables have the same Age value, pick one randomly.

IfIsNull(v1, v2) Maybe Var → Var → Var

Given the potentially null variable v1 and the variable v2, if v1 is nullopt, return

v2, else return v1.

Continued on next page
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Table 3.1: The set of functions in the DSL used in this thesis to create LS-SAT

heuristics. (Continued)

IfNotMinAge(vs, v1, v2) VarSet → Var → Var → Var

Given the non-empty set of variables vs, and the variables v1 and v2, if v1’s Age

is not equal to the minimum Age among the variables in vs, return v2, else return

v1.

IfRandLt(p, v1, v2) Probability → Var → Var → Var

Given the probability p and the variables v1 and v2, with probability p pick v1,

and with probability 1− p pick v2.

IfTabu(a, v1, v2) Age → Var → Var → Var

Given the Age value a and the variables v1 and v2, if the Age of variable v1 is

less than a, return v2 else return v1.

IfVarCompare(cmp, g, v1, v2) Comparator → GainType → Var → Var → Var

Given the comparison operator cmp, the variable metric g and the variables v1 and

v2, let gv,1 = g(v1) and gv,2 = g(v2). Compare gv,1 to gv,2 using the comparison

operator cmp. If the resulting expression is True, then return v1, else return v2.

IfVarCond(cmp, g, i, v1, v2)
Comparator → GainType → Integer → Var

→ Var → Var

Given the comparison operator cmp, the variable metric g, the integer i and the

variables v1 and v2, let gv,1 = g(v1). Compare i to gv,1 using the comparison

operator cmp. If the resulting expression is True return v1 else return v2.

ExponentFunction(fp, g) FloatingPoint → GainType → VarProb

Given the number fp, and the variable metric g, a VarProb element is created

that represents the function f which takes a variable v as its input.

f(v) =


fp−g(v) if Base-Gain-Type(g) ∧

g.b = True (see Definition 21)

fpg(v) otherwise

(3.1)

Continued on next page
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{ VarSet , Var , GainType , Comparator ,

Integer , Probability , Age , FloatingPoint ,

List VarProb , VarProb , Maybe Var , Maybe VarSet }

Figure 3.1: The set of principle types in the DSL used in this thesis to create LS-SAT

heuristics.

Table 3.1: The set of functions in the DSL used in this thesis to create LS-SAT

heuristics. (Continued)

Polynomial(fp, g) FloatingPoint → GainType → VarProb

Given the number fp, and the variable metric g, a VarProb element is created

that represents the function f which takes a variable v as its input.

f(v) =

 ( 1
|g(v)|+1

)fp if g(v) < 0

g(v)fp otherwise
(3.2)

PolynomialNegative(fp, g) FloatingPoint → GainType → VarProb

Given the number fp, and the variable metric g, a VarProb element is created

that represents the function f which takes a variable v as its input.

f(v) =

 ( 1
g(v)+1

)−fp if g(v) > 0

(1 + |g(v)|)−fp otherwise
(3.3)

NextElement(x, xs) VarProb → List VarProb → List VarProb

Given the VarProb element x and the list of VarProb elements xs, this function

creates a single VarProb list containing x followed by xs.

UpdatePAWS(v) Var → Var

Given the variable v, returns v. However, the use of this function anywhere in a

heuristic has an effect on the overall heuristic. If this function is used, then the

dynamic clause weights are only updated at the end of each local search loop if

this node is evaluated. If it is not used in a heuristic, then the dynamic clause

weights are updated at the end of every loop of the overarching local search.
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Table 3.2: The set of terminals in the DSL used in this thesis. The meaning of these

terminals can be found in Section 3.2.1.

Type Possible Values

Integer Z

Probability {0.0 . . . 1.0}+ {Adapt}

VarSet {RBC-N, RBC WA-N, CONF, WFF}

Age N

Comparator {<,≤,=,≥, >}

FloatingPoint R− {0.0}

GainType

{PosGain, NegGain, NetGain, PosGain WA, NegGain WA,

NetGain WA, SubPosGain, SubNegGain, SubNetGain,

SubPosGain WA, SubNegGain WA, SubNetGain WA }

List VarProb {EndList}

Maybe VarSet {DecrVars, DecrVars WA, SubDecrVars, SubDecrVars WA}
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3.2.1 Language Details

In Table 3.2 we presented the set of terminals in the DSL used in this thesis. The

meaning of some of those terminals may be obvious to the reader, as they directly

reference concepts introduced in Section 2.3, while others may not. In this subsection

we describe explicitly what is meant by each of the terminals in Table 3.2.

For brevity, some of the terminals are simple to understand, and their meaning

can be given in a single sentence. These are as follows:

• Terminals with an Integer type are whole numbers that can either be positive

or negative.

• Excluding Adapt, terminals with a Probability type are real numbers between

0.0 and 1.0.

• Terminals with an Age type are whole numbers that can only be positive.

• Terminals with a Comparator type represent functions that compare two num-

bers and return a boolean result. They are used as arguments to the functions

Filter, IfVarCompare and IfVarCond.

• Terminals with a FloatingPoint type are real numbers and can be positive or

negative. They are used exclusively as arguments to the functions Exponent-

Function, Polynomial and PolynomialNegative. We explicitly prohibit the

number 0 being used, as the function ExponentFunction is defined in such a

way that using 0 with it could create weights that were set at ∞.

• The terminal EndList has a List VarProb type and represents the empty list.

It is used in conjunction with NextElement and WeightedVarPick to end a list

of VarProb functions.

In the remaining parts of this subsection, we detail the meaning behind the rest

of the terminals in Table 3.2.

Clause Weighting

There are several pairs of terminals in the DSL that have nearly identical names. For

example PosGain and PosGain WA. In each pair, one has a WA suffix and one does

not. Each terminal in each pair represents some concept or idea that uses a clause’s

105



CHAPTER 3. HEURISTIC REPRESENTATION & EVALUATION

weight in its description. Those terminals without the WA suffix use static clause

weighting (referred to as BaseWeight) and those with the WA suffix use dynamic

clause weighting (referred to as PAWSWeight). In Definition 12 we referred to a

static weighting scheme as 1. This shorthand is interchangeable with BaseWeight.

To be clear to the reader, when we refer to static clause weighting, we refer to clause

weights that do not change. On initialisation, each clause’s weight is set at 1 and

remains constant as the local search algorithm runs.

Dynamic clause weighting refers to clause weights that change as the overarching

local search algorithm progresses. As discussed in Section 2.3.4, there are many

different dynamic clause weighting schemes that have been proposed. We use a

single dynamic clause weighting scheme in our DSL, which is described as follows; on

initialisation, all weights are set at 1. The weight update function used is that shown

in Algorithm 2.13. We use specific rules regarding when the weight update function

is invoked, given as follows:

• If the terminal UpdatePAWS is contained within the heuristic, then the weights

are only updated at the end of each iteration of local search if the UpdatePAWS

terminal has been evaluated. Otherwise, they are not updated.

• If the heuristic does not contain the UpdatePAWS terminal, then the clause

weights are updated at the end of each iteration of the local search loop.

These rules allow us to design heuristics whose weights update either on every

epoch of the local search, or only when certain criteria has been met.

Throughout the remainder of this subsection, we explain what is meant by each

of the terminals that use static or dynamically weighted clauses in their formulation.

Gain Type

“Gain type”, a term first used by Fukunaga [60], is the name we attribute to the type

signature of terminals that represent some metric associated with a variable. For

a variable v and gain type g, we write g(v) to obtain v’s g value. Each gain type

value g(v) represents some change that flipping v will have on the overall solution.

For example, the gain type NetGain computes the overall change in the number of

satisfied clauses should the variable v be flipped. All of the gain types in Table 3.2 are

either directly represented by, or directly inspired by, previously described variable
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metrics in Section 2.3. We refer the reader to Definitions 13 to 15 and 18 to 20 for

details. In our DSL we have a static and dynamic weighted variant of each gain type.

We use two generic definitions which, when instantiated with the correct arguments,

can be used to formally define what is meant by each of the twelve gain types in the

DSL. These definitions are also used in Section 3.3.3, when showing how a generic

gain type is updated efficiently. The definitions are as follows:

Definition 21 (Base Gain Type Metric)

A base gain type g is a triple of (W, b, i), where W is a clause weighting scheme, b

is a boolean value, and i is an integer.

For a SAT problem F , variable v ∈ Vars(F ) and complete assignment A, this is

a metric associated with a variable that represents the number of clauses that would

transition between specific states if v is flipped. If b is True, it represents the number

of clauses whose number of True variables will transition from i to some other number

if v is flipped. If b is False, it represents the number of clauses whose number of

True variables will transition from some other number to i if v is flipped. It can be

computed as:

∑
c ∈ (b ? TrueLitSet(F, A, v) : FalseLitSet(F, A, v))

Wc TrueLits(A, c) = i

0 otherwise
(3.4)

To refer to this value, we write gW (A, F, v). If the assignment, SAT formula and

weighting scheme are obvious from the context, we write g(v). If a set of variables

are ordered according to g, they are ordered from smallest to largest if b is False and

largest to smallest if b is True. All base gain type values are positive integers.

Definition 22 (Compound Gain Type Metric)

A compound gain type g consists of a pair of base gain types g1 and g2.

For a SAT problem F , variable v ∈ Vars(F ) and complete assignment A, this is

a metric associated with a variable that represents the difference between the number

of clauses that would transition between the states described by g1 and g2 if v is flipped.

It can be computed as:

g(v) = g1(v)− g2(v) (3.5)

To refer to this value, we write gW (A, F, v). If the assignment, SAT formula and

weighting scheme are obvious from the context, we write g(v). If a set of variables

are ordered according to g, they are ordered from smallest to largest. Compound gain

type values can be positive or negative integers.
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Table 3.3: All of the gain type metrics defined in the DSL, described in terms of

Definitions 21 and 22. Each compound gain type has two entries. The upper entry is

g1 and the lower is g2. For each we show its W , b and i values.

Name Type W b i

PosGain Base BaseWeight False 0

NegGain Base BaseWeight True 1

NetGain Compound
BaseWeight False 0

BaseWeight True 1

PosGain WA Base PAWSWeight False 0

NegGain WA Base PAWSWeight True 1

NetGain WA Compound
PAWSWeight False 0

PAWSWeight True 1

SubPosGain Base BaseWeight False 1

SubNegGain Base BaseWeight True 2

SubNetGain Compound
BaseWeight True 2

BaseWeight False 1

SubPosGain WA Base PAWSWeight False 1

SubNegGain WA Base PAWSWeight True 2

SubNetGain WA Compound
PAWSWeight True 2

PAWSWeight False 1

In Table 3.3 we show the parameters required to instantiate the twelve gain types in

the DSL using these definitions.

For the majority of the functions in Table 3.1 that require a gain type terminal,

their implementation details are relatively simple to understand, as the way in which

they are defined follows from the research presented in Chapter 2. The exceptions are

the functions ExponentFunction, Polynomial and PolynomialNegative. These are

functions inspired by the exp, exp-break-only, poly and poly-break-only functions

described by Balint and Schöning [12] (see Section 2.3.5). In that original work, the

authors designed the functions to be used exclusively with variable metrics represented

as positive integers. The functions were used to assign weights to variables, and

therefore the output had to also be a positive number.

In our language we were unable to create exact copies of the functions described
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by Balint and Schöning. This is because some of the variable metrics in the DSL

return negative numbers. Instead, we designed three functions ExponentFunction,

Polynomial and PolynomialNegative that could be used to create functions analo-

gous to the exp, exp-break-only, poly and poly-break-only functions. Our functions

were extended so that they could take negative integers as input. When given a

negative number, a very small positive number is given as output. We believe that

this is the most intuitive design choice we could make, and is in keeping with the

intentions of Balint and Schöning.

Finally, the reader may question why we do not use a variable metric representing

the Age of a variable. This is because we felt that the Age metric would be difficult to

resolve with some of the used functions - for example, IfVarCond and IfVarCompare.

Instead, we included specialised functions that can either pick a variable with the

maximum Age (PickOldest), use the Age to determine tie-breaks (GetBestVarAge,

GetBestVarAgeM), or use the Age to pick from two variables (IfTabu, IfNotMinAge,

GetOldestVar).

Broken Clauses

RBC-N and RBC WA-N are two terminals that represent a currently unsatisfied clause

in the SAT problem. The “N” in each is a placeholder, that in a language is replaced

with a positive integer. This allows multiple broken clauses to be used in a single

heuristic.

RBC-N returns a currently unsatisfied clause, chosen from all unsatisfied clauses

with equal probability. RBC WA-N also returns a currently unsatisfied clause, but

picks the clause in a different way. Each clause’s dynamic weight is used as part of a

weighted pick to choose the unsatisfied clause. This is intended to have the effect of

making highly weighted clauses more likely to be picked. This specific form of clause

selection is not one that we have seen described in the literature previously.

To be clear to the reader, if we have the terminal RBC-0 appearing twice in a

heuristic, then every time that the heuristic is invoked, a random broken clause c is

chosen to represent RBC-0. Every occurrence of RBC-0 is then substituted for c. In

addition to this, if we have two broken clauses (for example RBC-0 and RBC-1), it is

possible that on a single invocation of the heuristic, they could both choose the same

clause.
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Other Variable Sets

DecrVars, its Sub and dynamically weighted variants are dynamic sets of variables

that can potentially be empty. They all have a type signature of Maybe VarSet. By

“dynamic sets of variables”, we mean that the variables in these sets can change as the

local search algorithm progresses. Each of the variable sets are described as follows:

• DecrVars is defined exactly as is described by the dynamic set DecrVars in

Section 2.3.2.

• DecrVars WA is defined exactly as is described by the dynamic set DecrVars in

Section 2.3.2, except it usesNetGainPAWSWeight instead of NetGainBaseWeight

to fill its set.

• SubDecrVars is defined exactly as is described by the dynamic set Decr-

Vars in Section 2.3.2, except it uses SubNetGainBaseWeight instead of Net-

GainBaseWeight to fill its set.

• SubDecrVars WA is defined exactly as is described by the dynamic set De-

crVars in Section 2.3.2, except it uses SubNetGainPAWSWeight instead of

NetGainBaseWeight to fill its set.

The two remaining variable sets in the DSL can never be empty, and have a type

signature of VarSet. They are described as follows:

• CONF is the set of variables whose NVCC (see Section 2.3.6) value is set to

True.

• WFF is the complete set of variables in the SAT problem.

Adaptive Probability

In Table 3.2 there is a single terminal listed that has a type of Probability called

Adapt. This terminal corresponds to an adaptive probability variable, such as those

in Section 2.3.3. It works as follows; on initialisation, the variable is set at 0.5.

The criteria for a change in probability and the update function that are used are

those described in Section 2.3.3. We also use the example constants provided in that

subsection.
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3.2.2 Example Heuristics

The DSL we have described can be viewed as an extension of the DSLs used by

Fukunaga [60, 62, 61]. Our language uses several constructs from more modern

LS-SAT solvers; for example, the DecrVars and CONF terminals reference the dynamic

set of variables DecrVars and the configuration checking metric NVCC, which

we described in Sections 2.3.2 and 2.3.6 respectively. These two constructs are used

to create the G2WSAT and SWcc heuristics. We have also included a method of

choosing a variable using a weighted pick function, a mechanism used in the Sparrow

and ProbSAT heuristics.

In our DSL, we have chosen to include some novel and (as far as we are aware)

previously unused mechanisms, for which we have no prior evidence that they will

be effective components in the creation of heuristics. Specifically, these are the

SubDecrVars, SubDecrVars WA and RBC WA-N terminals. We chose to include them

as, due to the generic nature of the software created, we found it simple to add the

functionality to evaluate these terms. The inspiration behind their inclusion was

from our belief that they could potentially be effective components. The Sub variants

of DecrVars represent sets of variables that have a positive SubNetGain value.

Picking from this set could prove useful as, for example, a diversification strategy.

The RBC WA-N term represents picking a broken clause according to the dynamic

clause weights, which could prove useful in satisfying a clause that has previously

spent much of the local search algorithm unsatisfied.

In Figure 3.2 we show examples of some previously described heuristics created

using the DSL. In Figure 3.3 we show WalkSAT in its tree-form. We choose to

describe the heuristics in this thesis using the form in Figure 3.2, as these are more

succinct than showing the complete trees, and we believe easier to understand.

Our DSL can express all of the heuristics described in Fukunaga’s work [60,

62, 61]. One of these heuristics, called Depth-2-2, is shown in Figure 3.2h. The

DSL we have created does have some limitations, as some previously described

LS-SAT heuristics cannot be represented using it. Any of the heuristics described

in Section 2.3.6 that utilise the CSCC method of configuration checking cannot be

described. The Sparrow heuristic, introduced in Section 2.3.5, cannot be described

as its diversification strategy cannot be formulated in our DSL. Many of the heuristics

in Section 2.3.4 that use dynamic clause weighting schemes, other than the PAWS-like

scheme we have included in our language, cannot be described.
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In addition to this, it is possible to write many heuristics in an imperative style

using the functions laid out in Table 2.2 that cannot be represented by our DSL. In

designing our DSL, we did not aim for it to be a comprehensive format that could

describe all possible heuristics, rather the aim was to design a language that could

be used to represent many currently existing heuristics in a general enough format

that allowed other, potentially more effective, heuristics to be represented.

3.3 Running a Heuristic on a Problem Instance

The heuristic representation described in the previous section is designed for use with

program synthesis techniques. The representation is not designed in such a manner

as to describe heuristics that can be easily used as part of an overarching LS-SAT

solver. When used in an LS-SAT solver, a heuristic’s purpose is to direct the internal

search, and it may need to be evaluated millions of times on a single problem instance.

It is our desire for the heuristics that we automatically create, when used as part of

an LS-SAT solver, to run as efficiently as possible.

Heuristics designed by hand are usually written in a low-level programming

language such as C, and the overarching LS-SAT solver compiled with a high degree of

optimisation. The compiled program that is created will be in low-level machine code.

While it would be possible to convert our heuristic representation to a representation

that a compiler could comprehend, and then automatically build the heuristics, such a

process would be computationally expensive as it can take several seconds to compile

one program. Instead, we evaluate the heuristics at a software level.

It would be impractical to provide the same types of optimisations in our software

solution that a compiler such as C can. Yet, we do make an attempt to ensure the

heuristics run as fast as is reasonably possible. We perform some post-processing

on the created heuristics, and utilise them as part of an efficiently designed LS-SAT

solver. By doing this, while we may not achieve the same performance a compiled

heuristic would provide, we do reduce the overall time it takes to run the created

heuristics on problem instances.

In this section we describe the techniques we use to ensure the heuristic is evaluated

efficiently. Key to this are three steps:

• Deduce which auxiliary data structures are required to be maintained for a

specific heuristic to operate correctly.
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GetBestVar WFF NetGain

(a) GSAT heuristic.

WeightedVarPick

RBC -0

PolyNomialNegative 2.4 NegGain

EndList

(b) ProbSAT heuristic using the poly-

break-only function with a constant of

2.4.

IfVarCond = NegGain 0

GetBestVar RBC -0 NegGain

IfRandLt 0.5

GetBestVar RBC -0 NegGain

PickRandomVar RBC -0

(c) WalkSAT heuristic with a noise pa-

rameter value of 0.5.

IfNotMinAge RBC -0

GetBestVar RBC -0 NetGain

IfRandLt 0.5

GetBestVarSnd RBC -0 NetGain

GetBestVar RBC -0 NetGain

(d) Novelty heuristic with a noise pa-

rameter value of 0.5.

IfIsNull

GetBestVarAgeM DecrVars NetGain

IfRandLt 0.01

PickOldest RBC -0

IfNotMinAge RBC -0

GetBestVar RBC -0 NetGain

IfRandLt Adapt

GetBestVarSnd RBC -0

NetGain

GetBestVar RBC -0 NetGain

(e) G2WSAT heuristic, using adapt-

Novelty++ as its internal diversifica-

tion strategy.

IfRandLt 0.01

PickRandomVar RBC -0

IfIsNull

GetBestVarAgeM DecrVars_WA

NetGain_WA

UpdatePAWS

IfNotMinAge RBC -0

GetBestVar RBC -0

NetGain_WA

IfRandLt Adapt

GetBestVarSnd

RBC -0 NetGain_WA

GetBestVar RBC -0

NetGain_WA

(f) gNovelty+ heuristic.

Figure 3.2: Eight examples of previously described, hand-crafted heuristics formulated

using the DSL described in Tables 3.1 and 3.2.
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IfIsNull

GetBestVarAgeM

Filter > NetGain_WA 0

CONF

NetGain_WA

UpdatePAWS

PickOldest RBC -0

(g) SWcc heuristic.

GetOldestVar

GetOldestVar

GetBestVar RBC -1 PosGain

GetBestVar RBC -0 NetGain

GetOldestVar

GetBestVar RBC -0 NegGain

GetBestVar RBC -1 NegGain

(h) Depth-2-2 heuristic.

Figure 3.2: Eight examples of previously described, hand-crafted heuristics formulated

using the DSL described in Tables 3.1 and 3.2. (Continued)

IfVarCond

= NegGain 0 IfRandLt

0.5 GetBestVar

RBC-0 NegGain

PickRandomVar

RBC-0

Figure 3.3: The WalkSAT heuristic, shown in Figure 3.2c, visualised as a program

tree.
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• Convert the heuristic to a format that is suitable for the (potentially) millions

of evaluations performed when solving a SAT problem.

• Design the overarching local search algorithm in such a way as to update the

required auxiliary data structures correctly.

In the next three subsections, we show how these steps are achieved.

3.3.1 Deduction of a Heuristic’s Requirements

The aim of this step is to analyse the heuristic and deduce which auxiliary data

structures are required, and therefore need to be maintained as the overarching

LS-SAT solver is running. By auxiliary data structure, we specifically mean those

mechanisms that underpin the choosing of randomly broken clauses, the maintenance

of dynamic sets of variables, the storage of gain type values and dynamic clause

weights, and the maintenance of adaptive probability data. We do this by identifying

terms in the heuristic which correspond to clear requirements about which specific

auxiliary data structures are required.

To record which of these are needed, and the relationship between them, a data

structure called Data-Required is used. The components of the Data-Required

structure are described in Table 3.4.

Table 3.4: The set of member variables in theData-Required structure, together

with an explanation of their meaning. The information stored concerns

which auxiliary data structures are required by a heuristic, as well as

identifying the relationships between the components.

clauses set<Clause>

This is the set of unique identifiers that correspond to randomly chosen clauses

required by the heuristic. Their inclusion in this set means that the mechanisms

to pick and store them must be in place.

Continued on next page
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Table 3.4: The set of member variables in theData-Required structure, together

with an explanation of their meaning. The information stored concerns

which auxiliary data structures are required by a heuristic, as well as

identifying the relationships between the components. (Continued)

variable sets set<VarSet>

This is the set of variable sets that are required by the heuristic. By “variable

set”, we refer to any set of variables that are not broken clauses. Most of

these are dynamic sets, whose members can change after each iteration of the

overarching local search algorithm. Their inclusion in this set means that the

mechanisms to store and maintain them must be in place.

weights set<Weight>

This is the set of clause weights that are required by the heuristic. In our

implementation, there are only two types - BaseWeight and PAWSWeight.

Their inclusion in this set means that the mechanisms to store and maintain

them must be in place. For each weight, we also store at which point in the

algorithm they are updated (see Section 3.2.1 for more information regarding

this).

gain types set<GainType>

This is the set of gain types that are required by the heuristic. Their inclusion

in this set means that the mechanisms to store and maintain them must be in

place.

adapt probability Bool

This is a boolean variable denoting whether an adaptive probability variable is

required by the heuristic. If this is set to True, it means that the mechanisms

to store and maintain an adaptive probability variable must be in place.

Continued on next page
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Table 3.4: The set of member variables in theData-Required structure, together

with an explanation of their meaning. The information stored concerns

which auxiliary data structures are required by a heuristic, as well as

identifying the relationships between the components. (Continued)

gt vs requirement map<(GainType,VarSet),Requirement>

This is a mapping from a pair of gain type and variable set to a requirement.

This is for variable sets that are either partially sorted or filtered according to

a gain type. By storing this relationship, we can communicate that when a

gain type is updated, so are these orderings. Their inclusion in this set means

that the mechanisms to store and maintain the variable sets with the given

requirements must be in place.

gt clause requirement map<(GainType,Clause),Requirement>

This is a mapping from a pair of gain type and clause to a requirement. We

do not keep information pertaining to any orderings or filtering of clauses

as the algorithm runs, as there may be many clauses, and this would be

computationally expensive to maintain. Instead, we store the information

about how many times a gain type ordering or filtering of a clause may be

needed by a heuristic. By doing this, we can memoize this data if it’s needed

more than once.

gt vs update map<GainType,vector<VarSet>>

This is a mapping of gain types to vectors of variable sets. Some dynamic

variable sets (such as DecrVars) are defined in terms of a gain type, and when

this gain type is updated, so is the dynamic set. By storing this relationship,

we can inform the algorithm that, when a gain type changes, a dynamic set

should also be updated.

weight gt update map<Weight,vector<GainType>>

This is a mapping of weights to vectors of gain types. Some gain types (such

as NegGain WA) are defined in terms of a clause weighting. By storing the

relationship between gain types and weights, we can inform the algorithm that,

when a specific clause weight changes, certain gain type values should also be

updated.
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We do not show the algorithm to compute the Data-Required data structure.

However, we show an example of how it is instantiated in Table 3.5. The instantiation

is for the gNovelty+ heuristic, shown in Figure 3.2f. This instantiation follows

from the following observations:

• The heuristic requires a single unsatisfied clause to be chosen.

• The heuristic requires the dynamic variable set DecrVars WA be maintained.

• The heuristic requires the dynamic clause weighting scheme PAWSWeight

be maintained. This can be seen from the use of the terminals NetGain WA and

DecrVars WA.

• The heuristic requires the NetGain WA gain type be maintained, as it is used in

both the unsatisfied clause and the DecrVars WA dynamic set.

• An adaptive probability is required for this heuristic.

• The heuristic requires that the DecrVars WA dynamic set be partially ordered,

as the best variable according to the NetGain WA is required.

• The two best variables in the chosen broken clause under the ordering imposed

by NetGain WA may be required. If this is computed, this data should be

memoized as it is used more than once.

• Due to the use of DecrVars WA, when the NetGain WA is updated, this dynamic

set may also need to be updated.

• Due to the use of the dynamic clause weighting in NetGain WA, when clause

weights are updated, this gain type will also need to be updated.

This part of the heuristic evaluation process identifies the data structures required

for a heuristic to operate correctly, as well as the relationships describing how the data

is updated. We have designed an LS-SAT solver that can understand this information.

It sets up both the correct ordering of the update functions and the memory locations

for the required data. In the next subsection, we show how a heuristic is converted

to a format that can be used with this LS-SAT solver.
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Table 3.5: The instantiation of the Data-Required structure for the heuristic

gNovelty+.

Member Variable Value

clauses {RBC-0}
variable sets {DecrVars WA}
weights {PAWSWeight(defaultUpdate = False)}
gain types {NetGain WA}
adapt probability True

gt vs requirement {((DecrVars WA, NetGain WA) →
(sortF irstN = 1, calls = 1))}

gt clause requirement {((RBC-0, NetGain WA) →
(sortF irstN = 2, calls = 3))}

gt vs update {(NetGain WA → [DecrVars WA]}
weight gt update {(PAWSWeight → [NetGain WA]}

3.3.2 Evaluating the Heuristic Function

After the heuristic has been analysed, the required data identified, and the rela-

tionships regarding when data is to be updated calculated, the heuristic is then

post-processed to a machine-code-like format designed to be efficient to run.

We call this format the internal-form of the heuristic. Conceptually it is repre-

sented as a list of bespoke instructions. Each instruction performs some operation

that is part of the overarching variable selection function. Evaluation begins at the

start of the list, and proceeds to the end of the list. There are some instructions

that change the control flow - by jumping to a later instruction. When all the

instructions have been evaluated, the variable to be flipped will have been inserted

into a pre-determined place in memory - always general data[0].

While it would be possible to use the original tree-based variant of the heuristic to

compute the variable to flip, by using this format we reduce the overall computational

overhead considerably. Traversing the tree-form of the heuristic is itself computa-

tionally expensive (in comparison to traversing an array) and, when evaluating a

heuristic millions of times, this overhead reduces overall efficiency of the local search

algorithm.

While we do not provide details of the internal-form representation, great care
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Algorithm 3.1 Detailed Local-Search for SAT

Input: F SAT problem instance in CNF.

maxFlips Maximum number of iterations to run for.

h Heuristic to be used.

Output: Pair of boolean and integer. Boolean is True if solution is

found, False otherwise. The integer denotes the number

of flips local search undertook.

algorithm Local-Search(F, maxF lips, h)

assignment = Initialise(F )

if (Satisfied(assignment, F )) then return {True, 0}

for (iteration ∈ {1 . . .maxF lips}) do
varToF lip = Run(h)

Update-Data(varToF lip)

assignment[varToF lip] = ¬assignment[varToF lip]

if (Satisfied(assignment, F )) then return {True, age}

Update-Weights()

return {False, maxF lips}

was taken to ensure that it produces the correct values and is consistent with the

descriptions of the DSL given in Section 3.2. An example of the internal-form of

a heuristic is shown in Figure 3.4. It shows the internal-form of the gNovelty+

heuristic. It has been simplified to make it human-readable.

3.3.3 Overarching Local Search Algorithm

After it has been determined what data is required of a heuristic h, and h converted

into a format that can be quickly evaluated, these two parts are brought together

to create the overarching local search algorithm utilising h that can be ran on SAT

problem instances. In this subsection we explain how the local search algorithm

works.

In Algorithm 3.1 we present the pseudocode of the local search algorithm. It can

be considered a more detailed version of the pseudocode shown in Algorithm 2.2. It

contains five functions, which are described as follows:
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Index Instruction Memory Locations Numeric Data

1 PICK CLAUSE NO WEIGHT {clauses[0]} −
2 SMALL SORT MEMOIZED {smallSorts[0], −

gaintype data[0],

clauses[0]}
3 IF RAND LT {instr[6]} 0.01

4 PURE 1 RND RND CLG {clauses[0], −
general data[0]}

5 JUMP {instr[15]} −
6 MAYBE 1 GBV AGE SET {large data[0], −

general data[0],

gaintype data[0]}
7 IF IS NULL {general data[0], −

instr[15]}
8 FORCE WEIGHT UPDATE {weights[0]} −
9 PURE 1 GBV RND CLM {small sorts[0], −

general data[0]}
10 IF NOT MIN AGE CLAUSE {clauses[0], −

general data[0]

instr[15]}
11 IF RND LT ADAPT {adapt[0], −

instr[14]}
12 PURE 2 GBV RND CLM {small sorts[0], −

general data[0]}
13 JUMP {instr[15]} −
14 PURE 1 GBV RND CLM {small sorts[0], −

general data[0]}

Figure 3.4: The internal-form of the heuristic gNovelty+, shown in Figure 3.2f.

The instructions are processed in the order they are presented. Each instruction has

a set of arguments referring to pre-determined locations in memory where results

are either stored or are to be stored. Some instructions require additional numerical

data, such as IF RAND LT.
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• Initialise: This function initialises each variable in the assignment with a

randomly chosen boolean value.

• Satisfied: This function checks whether the assignment satisfies the SAT

problem.

• Run: This function evaluates the internal-form of the heuristic h. It returns

the variable to be flipped.

• Update-Data: This function updates the internal data that will change when

the variable varToF lip is flipped.

• Update-Weights: This function updates the weights of the clauses if it

is required. This can change many other auxiliary data structures in the

algorithm such as gain types that rely on weights. The relationships that

describe what data needs to be updated are detailed in the Data-Required

structure, described in Table 3.4.

Below we detail how two components of the function Update-Data are for-

mulated, and then provide an outline of the Update-Data function. These two

components are the clause data update function and the gain type data update

function. The clause data update function keeps track of which clauses are currently

satisfied, and the gain type data update function updates arbitrary gain type data

when a variable is flipped.

Clause Data Update Function

Conceptually, the goal of an LS-SAT algorithm is to satisfy all clauses - thus proving

the formula to be True. The naive method to identify when this occurs would be to

check all clauses after each iteration of the local search loop, yet this would obviously

be computationally expensive to continually perform. Instead, we maintain two data

structures that allow us to do this efficiently. The first is called N-True-Vars. This

is a matrix containing integers. Each index of the matrix represents the numerical

identifier of a clause c, and the contained element shows the total number of literals

within c that evaluate to True. The second is called N-True-Sets, which is a

matrix of sets of clauses. Each index of the matrix corresponds to the total number

of True literals that all clauses contained within that element have. By probing the

size of the 0th element in N-True-Sets, we can quickly see whether the formula
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is satisfied - as if there are no clauses with zero True literals, the assignment must

satisfy the formula as all clauses will have at least one satisfied literal. This is how

the Satisfied function checks to see whether the formula is satisfied.

When a variable v is flipped, we update these data structures in the following

way. As we know that all the clauses in the TrueLitSet(v) set will have their

N-True-Vars value reduced by 1, and those in the FalseLitSet(v) set will have

their value increased by 1, we can update N-True-Sets using these sets, and quickly

deduce whether an assignment satisfies the formula. An example of this is shown in

Figure 3.5.

Gain Type Update Function

For any given heuristic, its Data-Required structure describes which gain type

values will need to be maintained. By “maintained” we mean that, the correct gain

type values for each variable in a given problem may be required by the heuristic. In

our implementation the gain type data is kept in a matrix. Whenever a variable is

flipped or a clause’s dynamic weight changes, this can change the gain type values

for some variables in the problem, and therefore they will need to be updated.

Rather than re-computing these values from scratch every time they change, it is

more efficient to only compute the changes in the values. When a dynamic weight

changes, this is relatively easy to do. For a gain type g represented by the triple (W,

b, i), when the weight Wc of a clause c changes by d, then for each l ∈ Lits(c) the

gain type of g(Var(l)) changes by d.

When a variable is flipped, the changes in gain type value are harder to compute.

Other researchers [15, 62] have considered update functions for a single (what we call)

gain type metric, such as NegGain or PosGain. We use a generalised technique

which follows from our generalised definitions of gain types that allow us to maintain

and update all the different gain types described in our DSL.

As an example, let us consider SubNegGain1 (represented by the terminal

SubNegGain). When a clause c has 2 True literals, all of the True literals “fire” in

that clause c. That is to say, the SubNegGain1 value for the variables in those

literals includes the weight of c. For a variable v in the SAT problem, its associated

SubNegGain1 value is the sum of the weight of every clause that has exactly 2

True literals in, which also contains v in a literal that evaluates to True. When a

clause c’s N-True-Vars value changes from 2 (to either 3 or 1), the True literals
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Clause Index 1 2 3 4 5 6 7 8 9 10

# True Literals 3 0 1 1 2 1 0 2 1 2

# True Variables Clauses

0 {2,7}
1 {3,4,6,9}
2 {5,8,10}
3 {1}

(a) An example of the N-True-Vars (upper) and N-True-Sets (lower) data structures

at a point in an LS-SAT algorithm. The formula is unsatisfied by the current assignment,

as there are currently clauses with zero True literals.

Clause Index 1 2 3 4 5 6 7 8 9 10

# True Literals 2 1 1 2 2 1 0 1 0 3

# True Variables Clauses

0 {7,9}
1 {2,3,6,8}
2 {1,4,5}
3 {10}

(b) An example of the N-True-Vars (upper) and N-True-Sets (lower) data structures

at a point in an LS-SAT algorithm. These examples show the changes made to the two

data structures compared to those shown in Figure 3.5a after a variable has been flipped.

The variable flipped had a TrueLitSet containing clauses {1, 8, 9} and a FalseLitSet

containing clauses {2, 4, 10}. In N-True-Vars green indicates clauses whose number of

satisfied literals has increased, while red denotes clauses whose number of satisfied literals

has decreased.

Figure 3.5: Examples of two arbitrary N-True-Vars and N-True-Sets data

structures at a point in an LS-SAT algorithm. The data structures in Figure 3.5b are

obtained from the data structures in Figure 3.5a after a variable has been flipped.
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within c have to subtract c’s weight from their respective variable’s SubNegGain1

value - that is to say, the gain type metric needs to be updated. When a clause c

whose N-True-Vars value becomes 2 after a variable is flipped, all the True literal’s

variables in that clause must now add the weight of c to their SubNegGain1 value.

To generalise this for any gain type, we use that gain type’s threshold value -

from Definition 21, this is i. When a clause c’s number of True literals equals the

threshold value, all of the True (or False) literal’s variables in c must now fire. If

the gain type’s b value is True, all the True literals in c’s variables fire. If b is False,

all the False literals in c’s variables fire. This corresponds to increasing the gain

type values for the literal’s variables according to the weight of c. When c’s number

of True literals moves away from the threshold value, all the literal’s whose variables

are firing must now stop - that is, their gain type value must decrease. For compound

gain types, there are two threshold values. We use two separate update functions for

them, but point them at the same memory location when changing the gain type

values.

To update the gain type value of all of the relevant literal’s variables in a clause c,

we need a structure that can return all of the current variables which are part of a

True literal in c, and all of the current variables which are part of a False literal in

c. This is done using a data structure called Var-Pos. Var-Pos is a matrix, where

each index represents a clause c’s numerical identifier. The elements of Var-Pos are

conceptually pairs of sets; the first element in the pair is the set of variables which

are part of a current True literal in c, and the second element is the set of variables

which are part of a current False literal in c. In reality the two sets are represented

as a single fixed-sized array. The N-True-Vars[c] value informs us of the boundary

between the two sets. Two examples of the Var-Pos data structure are shown in

Figure 3.6.

As the local search algorithm progresses, the Var-Pos structure will need to

be updated. This occurs when a literal in a clause c changes from being satisfied

to unsatisfied (or vice versa). When this happens, c’s Var-Pos sets need to be

updated. In our LS-SAT solver we perform this update operation in Θ(1) time. When

a variable v is flipped, we change Var-Pos[c]’s flat array by moving v from wherever

it was to the new boundary value (denoted by N-True-Vars[c]). However, since we

do not know where v was originally in Var-Pos[c], we have to locate its index in

Var-Pos[c]. A naive search in a clause of size l would take O(l) time.
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To perform this update operation in Θ(1) time, we maintain an additional data

structure called Var-Pos-Pos. Conceptually Var-Pos-Pos is a matrix of matrices;

each outer index refers to a clause c, and each inner index to a variable v. Var-

Pos-Pos’s [c][v] value informs the algorithm of where v is in Var-Pos[c]. When v’s

position changes in Var-Pos[c], we can update Var-Pos-Pos[c][v]’s value with its

new position.

Usually, when given a SAT problem F , the size of F ’s clauses are small in

comparison to the number of variables in F . Under these circumstances, Var-Pos-

Pos will be a sparse matrix. We take advantage of this to reduce Var-Pos-Pos’s

memory footprint significantly by storing multiple clause’s Var-Pos-Pos elements

in a single outer array index - as long as a set of clauses do not share a single

variable, they can be stored in the same Var-Pos-Pos element. Two examples of

the Var-Pos-Pos data structure are shown in Figure 3.6.

The remaining functions we use to update a SAT problem’s data structures are

relatively simple to understand. Therefore, we do not include an explanation of

their construction. However, an outline of the Update-Data algorithm is shown

in Algorithm 3.2. The structure of Update-Data is inspired by update algorithms

described by Fukunaga [62] and Balint et al. [15].

3.4 Evaluating a Heuristic’s Performance

In this section we provide details regarding the fitness function and testing set used

throughout this thesis. The format of this section is as follows; in Section 3.4.1 we

present the fitness function used to evaluate heuristics. In Section 3.4.2 we present the

results from running some well-known, hand-crafted heuristics on the fitness function.

Finally in Section 3.4.3 we present the testing set used to evaluate a heuristic’s

performance on a wider range of problems. We also present the results from running

some well-known heuristics on the testing set.

3.4.1 Fitness Function

To compute the fitness of a heuristic h, it is used with the LS-SAT solver shown in

Algorithm 3.1 to solve a set of SAT problem instances. The set of problem instances

is broken up into subsets based on each problem’s number of clauses and variables.
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Position Index 1 2 3 4 5

Variable 10 15 20 21 22

Variable 10 . . . 15 . . . 20 21 22

Position 1 . . . 2 . . . 3 4 5

(a) Example of the Var-Pos (upper) and Var-Pos-Pos (lower) matrices for a single clause.

Position Index 1 2 3 4 5

Variable 10 15 22 21 20

Variable 10 . . . 15 . . . 20 21 22

Position 1 . . . 2 . . . 5 4 3

(b) Example of the Var-Pos (upper) and Var-Pos-Pos (lower) matrices for a single clause.

These are obtained from the data structures in Figure 3.6a after the variable 22 has been

flipped. In this clause, this meant its corresponding literal now evaluates to True.

Figure 3.6: Examples of two arbitrary Var-Pos and Var-Pos-Pos data structures at

a point in an LS-SAT algorithm. The green variables in the Var-Pos data structures

signify literals containing that variable which currently evaluate to True. The red

denote those that currently evaluate to False. The data structures in Figure 3.6b

are obtained from the data structures in Figure 3.6a after the variable 22 has been

flipped.
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Algorithm 3.2 LS-SAT Update-Data Function

Input: v Variable being flipped.

Output: None.

algorithm Update-Data(v)

for (c ∈ TrueLitSet(v)) do ▷ Literals that were True become False.

Internal-Update(v, c, −1)

for (c ∈ FalseLitSet(v)) do ▷ Literals that were False become True.

Internal-Update(v, c, +1)

algorithm Internal-Update(v, c, change)

n = N-True-Vars[c]

for (g ∈ Gain-Types) do

if (g.i = n) then

Unfire-Gain-Type(g, v, c)

Update-Var-Pos-Matrix(v, c)

N-True-Vars[c] = N-True-Vars[c] + change

Update-N-True-Sets(c)

for (g ∈ Gain-Types) do

if (g.i = n+ change) then

Fire-Gain-Type(g, v, c)
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Table 3.6: The set of problems used in the fitness function, which are broken up into

five subsets of problem instances. All of the problems are 3-SAT problem instances

around the phase transition region. We show the relevant data for each subset. “Max

Flips” refers to the maximum number of flips allowed before termination. “Pass

Criteria” describes the criteria used to decide whether to run the heuristic on the

next subset of problems. A heuristic terminates early if it cannot solve a single SAT

problem in the first, then the second subset of problem instances.

Problem

Subset

Name

Size of

Subset
Variables Clauses

Max

Flips

Pass

Criteria

uf50 10 50 218 500 # solved > 0

uf100 15 100 430 750 # solved > 0

uf150 20 150 645 1,000 None

uf200 25 200 860 2,000 None

uf250 30 250 1,065 3,000 None

In Table 3.6 we show details of the problem sets which make up the fitness function.

All of the SAT problem instances have been taken from the SAT benchmark suite1.

When a heuristic is ran on a problem, the LS-SAT algorithm creates an initial

problem assignment randomly. In Table 3.6 each subset has an entry titled “Max

Flips”, which tells the LS-SAT algorithm the maximum number of flips every problem

within that subset can run for before the algorithm will terminate.

In the fitness function we use a mechanism that allows the fitness evaluation of a

heuristic to terminate early. It works by analysing the number of instances solved in

the current set and, if it’s deemed insufficient, the evaluation terminates early. In

Table 3.6 there is a column titled “Pass Criteria”. This column shows the criteria

used to judge whether to terminate early. If a heuristic is unable to solve any of the

SAT problem instances in the first set, it terminates early. This also occurs in the

second set of SAT problem instances. This early termination mechanism is inspired

by a similar technique used by Fukunaga [60, 63, 61]. We use this mechanism to

ensure that we do not spend unnecessary time evaluating ineffective heuristics.

1Located at http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html. Specifically the sets uf50,

uf100, uf150, uf200 and uf250. The problems used are the first N from these sets.
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Table 3.7: The fitness values of the heuristics shown in Figure 3.2 according to

Equations (3.6) and (3.7).

Heuristic Fitness

GSAT 6.800543

WalkSAT 21.500070

Novelty 26.800062

G2WSAT 31.000062

gNovelty+ 33.000054

ProbSAT 22.400061

SWcc 46.100031

Depth-2-2 30.300056

Once h has been ran on all the required problem instances, the results are used

to compute F (h) according to Equation (3.6).

F (h) = # problems solved+
1

# flips on satisfying runs
(3.6)

Five separate F (h) values are calculated. The fitness f of a heuristic h is calculated

according to Equation (3.7).

f(h) =
1

5

5∑
i=1

Fi(h) (3.7)

f ’s range is be between 0 and 101. The reader should note that, since the heuristics

are stochastic functions, a heuristic will not necessarily report the same fitness every

time it is ran through the fitness function.

3.4.2 Fitness of Known Heuristics

In this subsection we use previously known, effective heuristics to “benchmark” our

fitness function. When designing the fitness function, we wanted previously known

heuristics to report a reasonable score, while leaving room for new heuristics to

improve on this. The results in this subsection will allow us to compare the fitness

values of heuristics found through program synthesis to hand-crafted ones. We tested

the fitness function against the set of known SAT heuristics shown in Figure 3.2, the

results of which are presented in Table 3.7.
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We can see from these results that the reported fitnesses for these known heuristics

are relatively low; from a maximum score of 101 no heuristic is able to achieve a score

even half of this. The best performing heuristic according to the fitness function

is SWcc. The earlier described heuristics - GSAT, WalkSAT and Novelty -

reported the lowest fitness values, while the more modern heuristics - G2WSAT and

gNovelty+ - reported slightly higher fitness values. The automatically created

heuristic Depth-2-2 performs similarly to the more modern heuristics. ProbSAT

is described as one of the state-of-the-art LS-SAT heuristics in Section 2.3, yet it

performs relatively poorly in comparison to the other heuristics on the fitness function.

In the next subsection we describe the testing set of SAT problem instances, and

run the heuristics shown in Figure 3.2 on them.

3.4.3 Testing Set

The fitness function described in Section 3.4.1 will be used to assign a fitness to

the automatically created heuristics. However, the SAT problem instances in the

fitness function are small and relatively easy to solve. We use a testing set of

problem instances to perform a more rigorous evaluation of some of the created

heuristics. Through the testing set, we hope to gain insight into how the created

heuristics perform on larger problem instances, and how their performance compares

to hand-crafted heuristics.

The testing set of SAT problems is outlined in Table 3.8. Like the fitness function,

it is comprised of several subsets of problem instances. The first five subsets are

taken from the SATLIB2, and the remaining subsets are from the Random track at

the 2009 SAT Competition3. All of the problems are 3-SAT instances in and around

the phase transition region.

The termination criteria for the testing set is based on time rather than the

maximum number of flips. Each subset in Table 3.8 has an entry titled “Max Time”,

which is how long each heuristic is ran on each problem instance before it terminates.

The testing set uses this termination criteria as, in a real-world setting, flips are

not necessarily a good indicator of a heuristic’s performance. Some heuristics use

many additional data structures in their formulation, which have to be updated as

2The sets of SAT problem instances can be found at http://www.cs.ubc.ca/~hoos/SATLIB/

benchm.html.
3The sets of SAT problem instances can be found at http://www.satcompetition.org/2009/.
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Table 3.8: The set of problems used in the testing set, which are broken up into

eleven subsets of problem instances. All of the problems are 3-SAT problem instances

around the phase transition region. We show data for each subset. “Max Time” is

the maximum time in seconds allocated to each of the problem instances in that set.

Problem

Subset

Name

Size of

Subset
Variables Clauses

Max

Time

uf50 1,000 50 218 1

uf100 100 100 430 10

uf150 100 150 645 10

uf200 100 200 860 10

uf250 100 250 1,065 10

ufv4000 10 4,000 16,800 100

ufv7000 10 7,000 29,400 100

ufv10000 10 10,000 42,000 100

ufv13000 10 13,000 54,600 100

ufv16000 10 16,000 67,200 100

ufv19000 10 19,000 79,800 100

the algorithm is running. This can increase the overall computation time of a single

iteration of local search. By measuring against time, we gain a better understanding

of how effective the heuristics truly are.

In Table 3.9 we show how the heuristics in Figure 3.2 perform on the testing set.

From these results, we can see that generally all of the heuristics perform well on the

first five subsets of problem instances, with the exception of GSAT. These subsets

contain smaller SAT problem instances, which are usually easier to solve than larger

ones. If we look at the timing information, we can see that SWcc could consistently

find satisfying solutions more quickly than the other heuristics, though it was unable

to solve as many instances as the most effective heuristics.

On the first five subsets of problem instances, gNovelty+ was the best perform-

ing heuristic. It could consistently solve all problem instances in each subset (apart

from on uf200, which WalkSAT was able to outperform it on), and do this more

quickly than the other heuristics that also solved all of the problem instances.

On the subsets containing larger problem instances, most of the heuristics were
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Table 3.9: Results from running the heuristics in Figure 3.2 on the testing set. For

each problem p and heuristic h, we ran h on p five times. We report the average

percentage of problems solved in each subset, and the average time (in seconds)

each heuristic took to solve those problem instances. Bold typeface shows the best

performing heuristic on that subset of problem instances.

Heuristic

Subset Name

G
S
A
T
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l
k
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A
T
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e
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T
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y
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o
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A
T

S
W

c
c

D
e
p
t
h
-2
-2

uf50
43.0 100.0 99.8 100.0 100.0 100.0 99.6 99.7

0.0004 0.0008 0.0011 0.0008 0.0005 0.0008 0.0006 0.0005

uf100
33.0 100.0 100.0 100.0 100.0 100.0 97.4 98.8

0.0008 0.0046 0.0051 0.0049 0.0027 0.0039 0.0024 0.0022

uf150
16.0 100.0 100.0 100.0 100.0 100.0 98.0 99.0

0.0045 0.0168 0.0286 0.0244 0.0085 0.0132 0.0081 0.0198

uf200
13.0 99.6 98.8 99.0 99.2 99.0 92.4 95.4

0.0465 0.1518 0.111 0.1107 0.059 0.0666 0.0255 0.0813

uf250
13.0 99.8 99.8 99.0 100.0 99.0 97.0 93.2

0.0715 0.0701 0.1369 0.0782 0.1069 0.04 0.054 0.2197

ufv4000
0.0 12.0 40.0 10.0 74.0 80.0 0.0 0.0

0.0 3.8668 24.0208 0.9327 21.5379 16.234 0.0 0.0

ufv7000
0.0 6.0 0.0 2.0 60.0 90.0 0.0 0.0

0.0 4.6592 0.0 0.5891 19.8728 21.9236 0.0 0.0

ufv10000
0.0 0.0 0.0 0.0 8.0 34.0 0.0 0.0

0.0 0.0 0.0 0.0 6.4685 15.2547 0.0 0.0

ufv13000
0.0 0.0 0.0 0.0 0.0 26.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 22.1408 0.0 0.0

ufv16000
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ufv16000
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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unable to solve many of the problems. The exceptions to this were gNovelty+

and ProbSAT. However both heuristic’s performance degraded as larger problems

were considered, with gNovelty+ unable to solve any instances in any subset after

ufv10000, and ProbSAT unable to solve any instances in any subset after ufv13000.

If we compare and contrast these results to those shown in Table 3.7, we can state

that, in general, the performance of the heuristics on the testing set correlates with

their performance on the fitness function with two clear exceptions. SWcc doesn’t

perform as well as its fitness suggested, and ProbSAT performs much better than

its fitness suggested. For the former of these, we believe that SWcc reported a much

higher fitness due to the way in which the fitness function is formulated. SWcc

requires the updating of auxiliary data structures that are relatively computationally

expensive to maintain. When evaluating its performance through time taken, we

can see that when it does find a solution, it does so quickly. We believe that these

auxiliary data structures slow the running of the heuristic, and since the fitness

function relies on flips, this is not apparent in its reported fitness. It is still an

effective heuristic, but one that relies on picking the “correct” variable, rather than

quickly moving through the search space.

On the other hand ProbSAT does not use data structures that require compu-

tationally expensive update operations. It is designed to be able to move through

the search space quickly and consider many different solutions in order to find a

satisfying one. When used on the fitness function, it is unable to do this, as it is

limited by the number of flips it can perform. However on the testing set, we believe

it is able to consider many more states than other heuristics and, when combined

with its effective design, appears to be highly successful at solving many different

sized problem instances.

3.5 Discussions & Conclusions

In this chapter we have provided an overview of how we represent heuristics in this

thesis, described the underlying architecture that allows us to run these heuristics,

and shown the way in which we evaluate heuristics using a fitness function and a

testing set of SAT problem instances.

This chapter is technical in nature, however there are some key observations

that can be drawn from the work described. Through our representation, we have
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designed a language that can describe many different types of heuristic in a single

form. We are able to write representations of many previously existing heuristics, yet

the representation allows us to compose these different heuristic methodologies in a

unified manner. This was one of our goals in the design of our heuristic evaluation

software, as we can now apply program synthesis techniques to this domain, and

potentially create new, effective heuristics.

To design a system that can evaluate any potential heuristic that could be

represented by this language, we had to develop methods of analysing these heuristics,

as well as design an LS-SAT solver that could react to the requirements of a heuristic.

Through this work, we identified a general method of defining gain types, and

presented mechanisms used to maintain the auxiliary data structures required by

each heuristic. Of particular note are the algorithms designed to update an arbitrary

gain type metric in constant time. In our research, we are aware of mechanisms to

compute the weighted and non-weighted PosGain, NegGain and NetGain in

constant time [15], however we have found no descriptions of algorithms that can do

this for the Sub variants we use.

Using the results obtained from the evaluation of previously described heuristics

on the fitness function and the testing set, we will now be able to compare the

performance of automatically created heuristics to these previously known LS-SAT

heuristics. These results have also provided us with evidence that a heuristic which

performs well on the fitness function may not necessarily be successful at solving

many different sized problem instances. SWcc reported a high fitness value, yet did

not provide a high-level of performance on the testing set of problem instances. On

the other hand, ProbSAT did not report one of the higher fitness values on the

fitness function, but outperformed all other heuristics on the larger problem instances

in the testing set.

In the next chapter we use the systems we have developed in this chapter with

two program synthesis methods, exhaustive enumeration and GP, to automatically

create LS-SAT heuristics.
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Chapter 4

Exhaustive Enumeration & Genetic

Programming

4.1 Introduction

In the previous chapter we provided the reader with specific details on how we

represent and evaluate heuristics. In Section 2.5 we described several program

synthesis techniques, and in the conclusions to that section discussed which methods

we believed to be relevant to our work. Succinctly, we stated that, of the methods

described which had not been previously used to automatically create heuristics,

exhaustive enumeration appeared to be the most appropriate for the task. In this

chapter, we perform exhaustive enumeration on subsets of the DSL described in

Section 3.2. The aim of the work in this chapter is to ascertain whether exhaustive

enumeration is an appropriate technique to automate the heuristic creation process.

The enumeration of heuristics also provides us with the opportunity to perform an

analysis on the search space of heuristics described by the subset of the DSL we use.

In this chapter we also perform experiments using GP. GP is an established

methodology for automatically creating LS-SAT heuristics. Through the results from

the exhaustive enumeration and GP experiments, we are able to compare the two

methods of program synthesis for our use-case.

As stated previously, the experiments presented in this chapter are performed on

subsets of the DSL described in Section 3.2. We refer to each subset of the DSL as

a language. The languages used in this chapter are Language A and Language A1.

The set of terms in each language are shown in Table 4.1.
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Table 4.1: Languages A and A1. All terms shown here are contained in Language

A1. Language A does not contain those terms with a star next to them. Specifically,

it does not contain WFF. In regards to the GP experiments in Section 4.3, terms with

a grey background are in the terminal set, and those with a white background are in

the function set.

Type Signature Terms

VarSet → GainType → Var {GetBestVar, GetBestVarSnd}
VarSet → Var {PickRandomVar}
Probability → Var → Var → Var {IfRandLt}
VarSet → Var → Var → Var {IfNotMinAge}
Var → Var → Var {GetOldestVar}
Age → Var → Var → Var {IfTabu}
Comparator → GainType → Var → Var

{IfVarCompare}
→ Var

Comparator → GainType → Integer →
{IfVarCond}

Var → Var → Var

GainType {PosGain, NegGain, NetGain}
Age {5, 10, 20, 30, 40, 50}
Probability {0.1, 0.3, 0.5, 0.7, 0.9}
Integer {−2,−1, 0, 1, 2, 3, 4, 5}
Comparator {<,≤,=}
VarSet {RBC-0, WFF⋆}
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The terms used in Language A were chosen for two primary reasons. Firstly,

the set of heuristics that can be created using this language contains two previously

known, effective heuristics - WalkSAT and Novelty. When performing exhaustive

enumeration, if we enumerate enough of the search space, we are guaranteed to find

these previously known heuristics. Secondly, the experiments described by Fukunaga

[60, 63, 61] were performed on a similar language to Language A, and several examples

of effective heuristics were reported. By using a similar language, we can compare

the effectiveness of the heuristics created from our experiments and those created

from Fukunaga’s work.

Language A1 is almost identical to Language A, except that it includes the

additional term WFF. Language A can be described as a subset of Language A1 -

all terms that appear in Language A appear in Language A1. The addition of

the WFF term allows us to explore a search space that contains other previously

described heuristics such as GSAT. It also allows us to compare the two languages,

and determine the effect that this additional term has on the topology of the search

space. In addition to this, the inclusion of WFF means that Language A1 more closely

resembles the language used by Fukunaga [60, 63, 61].

The reader may note that in Section 3.2 we stated that our DSL could describe

the same set of heuristics that Fukunaga’s language could. Yet in this chapter we

only use languages that can represent a proportion of the heuristics described by

Fukunaga’s language. In Fukunaga’s work [60, 63, 61], there was no information

given pertaining to the range of values that terms with a type of Age, Integer or

Probability could have. In our languages, we include a range of terms with these

type signatures, however it is unlikely that the chosen terms are identical to those

used by Fukunaga, and therefore we cannot be certain that any language we create is

identical to that used by Fukunaga.

The format of this chapter is as follows; in Section 4.2 we present the exhaustive

enumeration experiments, and in Section 4.3 the GP experiments. In each of those

sections we show the methodology used and the results obtained from that section’s

experiments. We also highlight some of the best performing heuristics which were

created, and run them on the testing set of problem instances described in Section 3.4.3.

Finally in Section 4.4 we present our discussions and conclusions from the work

described in this chapter.
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4.2 Exhaustive Enumeration Experiments

In this section we detail the exhaustive enumeration experiments performed using

Languages A and A1.

The format of this section is as follows; in Section 4.2.1 we discuss the number

of heuristics that could potentially be created by an exhaustive enumeration of the

languages, and from this data determine how much of the search space we enumerate.

In Section 4.2.2 we detail the methodology of the exhaustive enumeration experiments.

In Sections 4.2.3 to 4.2.6 we present the results of the experiments. In Section 4.2.3

we present the results in the order in which they are generated. In Section 4.2.4

we show results pertaining to the distribution of the fitness values of the evaluated

heuristics. In Section 4.2.5 we present data gathered concerning how quickly the

created heuristics were evaluated. Finally in Section 4.2.6 we show specific examples

of heuristics reported to be effective according to the fitness function, and show how

they perform on the testing set.

4.2.1 Search Space Size

The search space of the languages described in Table 4.1 is infinite, and therefore

an enumeration of all heuristics is impossible. We must determine what limitations

are to be placed on the exhaustive enumeration experiments to ensure that they

terminate in a reasonable amount of time. We will use the size of a heuristic to

determine whether it is to be evaluated, thereby making the search space finite.

To be clear to the reader, when we refer to the size of a heuristic, we refer to the

number of terms in that heuristic’s program tree representation.

To aid our understanding of the size of the search space of an arbitrary language,

we created an algorithm based on Bottom-Up-Search (see Algorithm 2.18) that,

when given a language L and size d, can determine the number of program trees of

exactly size d in L. In Table 4.2 we show the exact number of heuristics in Languages

A and A1 of specific sizes, and in Figure 4.1 we show this data graphically. These

results show that, for both languages, the number of heuristics grows exponentially

in relation to the size of the heuristic, and tells us that it would be impractical to

enumerate all heuristics of a large size.

We can also make an observation about how the size of the search space of

Language A and Language A1 differs. Language A1 is virtually identical to Language

139



CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Table 4.2: The number of heuristics of a specific size in Languages A and A1. For

each size d, we show the exact number of program trees of size d in each language.

d Language A Language A1

1 0 0

2 1 2

3 6 12

4 0 0

5 1 4

6 24 100

7 189 804

8 614 2,608

9 1,272 5,456

10 3,996 22,576

d Language A Language A1

11 12,173 108,368

12 62,238 558,144

13 223,155 2,017,536

14 714,542 7,155,312

15 2,264,475 29,360,224

16 8,040,276 133,042,608

17 32,104,239 585,809,872

18 116,861,220 2,331,681,856

19 414,649,530 9,448,276,608

20 1,440,234,132 40,105,399,680

A, and only contains one additional term. Yet, the number of heuristics in Language

A1 is much larger than in Language A. We assume that, if we were to use the complete

DSL in Section 3.2, the search space will grow even more quickly, and at low sizes,

enumeration would not be a suitable strategy for program synthesis.

Based on this data, we decided on a maximum size of 17 for exhaustively enu-

merating Language A, and a maximum size of 15 for Language A1. As Language A1

contains all terms in Language A, by enumerating Language A1 we will enumerate all

heuristics in Language A. Therefore in conducting these experiments we will evaluate

exactly 79,375,663 unique heuristics. We note that even at this size, several previously

described heuristics will be recreated; specifically, WalkSAT (size 13), Novelty

(size 14) and, exclusively for Language A1, GSAT (size 3).

4.2.2 Methodology

The methodology of the exhaustive enumeration experiments we describe as follows;

given a size d and a language L, we used an algorithm based on the Top-Down-

Search algorithm (see Algorithm 2.17) to enumerate all program trees in L containing

exactly d terms. Each created program tree was then evaluated against the fitness

function described in Section 3.4.1. We repeated the experiment for the range of d

values required to obtain the desired set of results for Languages A and A1.
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Figure 4.1: The number of heuristics of a specific size in Languages A and A1.

When performing the experiments, we provided an explicit ordering of terms

in the language to the enumeration algorithm, which affected the order that the

heuristics were enumerated in. We present some of the results using this ordering.

The algorithm that enumerated the program trees works by conceptually exploring a

search tree like that shown in Figure 2.9. When progressing the search, for any type

hole in a partial program, all possible instantiations of that type hole are made, and

the new partial program trees put back into the set of unprocessed partial program

trees. This means that the heuristics from our experiments were created in a specific

order, with all heuristics with the same first term grouped together, then the same

first two terms and so on. In effect, if we were to consider the results as a stream,

any heuristic in the stream when compared to the previous would usually only differ

by a single term.

The ordering of terms that we used to instantiate a type hole can be described as

follows; for any terms with the correct return type, the terms are ordered first by

type signature size, then the term’s type signature’s lexicographical ordering and, if

both are the same, then the term’s lexicographical ordering.

The experiments were conducted on a computer with 2 Intel Xeon E5-2630

processors with 6 cores (12 threads) each, running at 2.6GHz. The system uses a

64-bit operating system and has 32GB of RAM. The software is written in C++, and
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is able to utilise all the cores on the machine it is ran on. In total, these experiments

took 13 days to run on this machine.

4.2.3 Results in Generated Order

In this subsection we show some of the results obtained from the exhaustive enumera-

tion of Languages A and A1. The heuristics in this section are presented in the order

that they are generated in by the enumeration algorithm.

Small Sized Heuristics

In Table 4.2 we showed the number of heuristics of specific sizes in the two languages.

For very small sizes (≤ 5), the heuristics can be listed, as there are few in number.

In Table 4.3 we show these heuristics.

We can see from these results that, when compared to the fitness values reported in

Section 3.4.2 for hand-crafted heuristics, these are not particularly effective heuristics.

We can also see that the heuristic GSAT is recreated. However, it is not the best

performing of the heuristics shown. In a rather surprising result, two heuristics that

choose the second best variable according to NetGain1 and NegGain1 perform

slightly better than GSAT. However compared to other heuristics, such as those seen

in Section 3.4.2, these heuristics have a relatively low fitness value.

Larger Sized Heuristics

The number of heuristics of a larger size are much greater in number. Listing them

all would be impractical, and we therefore show the results in a series of graphs.

The full set of graphs can be found in Appendix A. We present some results in this

subsection. Specifically, we show the results for Language A at sizes 10, 17, 13 and

14 in Figures 4.2, 4.3, 4.6 and 4.7a respectively. We also present partial results for

the heuristics in Language A1 of size 14 in Figure 4.7b. To be clear to the reader, in

all these graphs each data point represents the fitness of an individual heuristic.
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Table 4.3: The set of heuristics of a small size in Languages A and A1. The index on

the left represents the order in which the heuristics were generated in for that size.

The first number is the index of the heuristic in Language A1, and the second in

Language A.

Index Size Heuristic Fitness

1 (1)
2

PickRandomVar { RBC-0 } 0.4

2 (-) PickRandomVar { WFF } 0.0

1 (1)

3

GetBestVar { RBC-0, NegGain } 4.0

2 (2) GetBestVar { RBC-0, NetGain } 4.0

3 (3) GetBestVar { RBC-0, PosGain } 1.0

4 (-) GetBestVar { WFF, NegGain } 0.4

5 (-) GetBestVar { WFF, NetGain } 8.6

6 (-) GetBestVar { WFF, PosGain } 0.0

7 (4) GetBestVarSnd { RBC-0, NegGain } 11.8

8 (5) GetBestVarSnd { RBC-0, NetGain } 10.8

9 (6) GetBestVarSnd { RBC-0, PosGain } 1.8

10 (-) GetBestVarSnd { WFF, NegGain } 0.4

11 (-) GetBestVarSnd { WFF, NetGain } 2.0

12 (-) GetBestVarSnd { WFF, PosGain } 0.2

1 (1)

5

GetOldestVar { PickRandomVar { RBC-0 },
0

PickRandomVar { RBC-0 }}

2 (-)
GetOldestVar { PickRandomVar { RBC-0 },

0
PickRandomVar { WFF }}

3 (-)
GetOldestVar { PickRandomVar { WFF },

0
PickRandomVar { RBC-0 }}

4 (-)
GetOldestVar { PickRandomVar { WFF },

0
PickRandomVar { WFF }}
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Figure 4.2: Results from the exhaustive enumeration experiments, showing the fitness

values for all heuristics in Language A of size 10. The heuristics are presented in the

order they are generated in.
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Analysis of Results

In later subsections we discuss the distribution of fitnesses, as well as specific examples

of effective heuristics. However, there are some interesting observations that can be

made from the heuristics presented in the order they were generated in.

When examining the results in general, what is perhaps most striking is the

density and distribution of heuristics. Comparatively, there are many effective and

poorly performing heuristics of all sizes. Effective heuristics exist at many areas in

the search space, and are not clustered in a single area. Some graphs have clear peaks

- areas where there are many heuristics with a high fitness value. Figure 4.3 contains

many examples of these peaks. In Figure 4.4 we show a subset of the heuristics from

index 500, 000 to 550, 000 in Language A of size 14. In that graph we can clearly

see several distinct areas where there are many effective heuristics, and areas where

there are none at all. For example, between index 500, 000 and 510, 000 there are two

peaks, where concentrations of effective heuristics are clustered together in “strips”.

As the order that the heuristics are generated in controls the topology of the

results when visualised in this manner, this ordering is key to understanding these

peaks. The relationship between one heuristic and the next can be defined as an

“increment” of the first heuristic. By this we mean, the last term is incremented

according to the ordering imposed by the language. If it is not possible to do so, then

the terminal is removed, the second to last term that was instantiated is incremented,

and the last term instantiated with the first valid term according to the ordering of

the language.

Terms close to each other in the order generated can be grouped together according

to how many of their first n terms are the same. To illustrate this, in Figures 4.5

and 4.6 we present all heuristics in Language A of size 13 in a series of graphs. In

Figure 4.5 we present the heuristics coloured according to their first term, and in

Figure 4.6 we present the same heuristics, but colour them according to their leading

2 and 3 terms. In the graphs in Figure 4.6 we alternate between red and blue when

any one of these first n terms changes compared to the previous heuristic, as showing

an individual colour for each unique set of terms would be impractical.

The separation of peaks becomes more pronounced when the heuristics are

presented like this. We can clearly see in Figures 4.6a and 4.6b there are peaks that

are only one colour, suggesting that they exclusively contain heuristics with the same

leading 2 or 3 terms. This is not always the case; there are also examples of peaks
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Figure 4.4: Results from the exhaustive enumeration experiments, showing the fitness

values for a subset of heuristics in Language A of size 14. We show the heuristics

from index 500, 000 to index 550, 000.

Figure 4.5: Results from the exhaustive enumeration experiments, showing the fitness

values for all heuristics in Language A of size 13. Each heuristic has been coloured

according to its first term.
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(a) Results from the exhaustive enumeration experiments. Each heuristic has been coloured

according to its first two terms.

(b) Results from the exhaustive enumeration experiments. Each heuristic has been coloured

according to its first three terms.

Figure 4.6: Results from the exhaustive enumeration experiments, showing the fitness

values for all heuristics in Language A of size 13. We colour each heuristic according

to its leading n terms. Colours change between red and blue whenever a heuristic’s

leading n terms change when compared to the previous heuristic’s leading n terms.
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that transcend several different colours. However, we can state that some peaks

only contain program trees with a very specific formulation of leading terms, which

correspond to effective heuristics.

We want to be clear that this relationship between leading term(s) and heuristic

fitness is not exact; there are many examples of poorly performing heuristics with the

same leading term(s) as effective heuristics. However, these results do suggest that

analysing the search space by examining a heuristic’s neighbours could be an effective

strategy for finding and navigating these peaks, which could in turn lead to heuristics

with a high fitness value. For sizes of heuristic greater than those considered in this

chapter, it could be a viable alternative to enumeration of the search space.

In Figure 4.7 we show the results obtained for heuristics of size 14 from Languages

A and A1. Figure 4.7a shows the heuristics in Language A, and Figure 4.7b shows

the heuristics in Language A1 which are not in Language A. The heuristics shown in

Figure 4.7a are indexed according to their generation ordering from Language A1.

This gives us some indication as to the effect that adding the WFF term to Language

A1 had on the results when compared to Language A.

We can clearly see that the graphs are generally similar to each other. That is to

say, the peaks and troughs in both graphs are at the same indexes. For example, at

around index 1, 000, 000 there is a clear peak in both graphs. However in Figure 4.7b

the peak is wider and contains a greater number of data points at lower fitness

values. At around index 6, 000, 000 in Figure 4.7b there is a clear peak of heuristics

with high fitness values, yet in Figure 4.7a this area contains very few high-quality

heuristics. The similarity between graphs suggests to us that there are core structures

of program tree which correspond to heuristics with high fitness values. Which term

is used to instantiate nodes that require a term with a type signature of VarSet is

not necessarily important; rather it is how the other terminals are combined together

that play a greater role in the overall effectiveness of the heuristic. However, areas

of the graph relative to each other where there are less effective heuristics reported

suggests that this is not always true. The picking of a random broken clause may be

imperative to how effective a heuristic is, and this cannot be substituted for a WFF

terminal without degrading the heuristic’s quality.

There is one other interesting phenomenon that we would like to draw the attention

of the reader to. Returning to the results in Figure 4.2, we can clearly see there are

examples of horizontal “lines” of heuristics with, seemingly, the exact same fitness.
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(a) Results from the exhaustive enumeration experiments, showing the fitness values for all

heuristics in Language A of size 14. Each heuristic’s index is derived from its generation

ordering according to Language A1.

(b) Results from the exhaustive enumeration experiments, showing the fitness values for all

heuristics in Language A1 of size 14 that are not in Language A.

Figure 4.7: Results from the exhaustive enumeration experiments, showing heuristics

of size 14 in Languages A and A1.
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Index Heuristic Fitness

581

IfVarCond = PosGain −1

9.6GetBestVar RBC-0 NegGain

GetBestVarSnd RBC-0 NetGain

587

IfVarCond = PosGain −1

9.6GetBestVar RBC-0 NetGain

GetBestVarSnd RBC-0 NetGain

593

IfVarCond = PosGain −1

9.6GetBestVar RBC-0 PosGain

GetBestVarSnd RBC-0 NetGain

Figure 4.8: Three examples of heuristics of size 10 in Language A that return the

same fitness value due to the formulation of the language.

By examining these heuristics with our knowledge about SAT and Language A, the

reasoning behind these results becomes clear.

In Figure 4.8 we show three examples of heuristics that exist on one of the

horizontal planes seen in Figure 4.2. These heuristics all have the same form; get

the best variable according to some gain type metric, and compare that variable’s

PosGain1 to an integer. The integers in question are all negative. PosGain1’s

possible values an only be ≥ 0, therefore, the IfVarCond expression will always

evaluate to False and return the right subtree. We can see that in Figure 4.8, the

right subtrees of all three heuristics are exactly the same. Thus, all heuristics in this

form will return the same variable to flip each time. It is, in essence, a phenomenon

created by the formulation of the language. We discuss this in further detail in

Section 4.4, and highlight potential techniques to stop heuristics like this being

created.

4.2.4 Fitness Results

In this subsection we present data regarding the heuristic’s fitness values. We look at

the distribution and the variance of the fitness values reported.

The absolute best heuristic found from the exhaustive enumeration experiments

had a fitness of 48.0. This fitness value is higher than any reported from the hand-

crafted heuristics considered in Section 3.4.2. In Figure 4.9 we show the heuristics in
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Languages A and A1 of size ≤ 12, 13 and 14, presented in fitness order. The data

presented in this manner makes it much easier to see the range of fitnesses compared

to the results presented in the previous subsection. We can clearly see that there

are many poorly performing heuristics, and it is only a very small number that are

actually effective. We can also see that for Language A1, the proportion of poorly

performing heuristics is much greater than for Language A.

In Table 4.4 (for Language A) and Table 4.5 (for the heuristics in Language A1

not in Language A) we separate the heuristics into groups according to their fitness.

From these tables, we can see the distribution of the heuristic’s fitness values.

We can see that the percentage of heuristics in both languages that are actually

effective according to the fitness function is tiny. Heuristics that have a fitness value

> 30 (around the fitness of Novelty according to the results in Section 3.4.2)

account for approximately 0.97% of all heuristics in Language A, and approximately

0.16% of all the heuristics in Language A1 that are not in Language A.

In the results for Language A, the heuristics with a fitness of 0 are not the biggest

set, it is those heuristics with a fitness > 0 and ≤ 5. Since these heuristics are based

on random walk, we wonder if these are just heuristics that have got “lucky”, and

been able to solve a single instance. The proportion of the heuristics in Language

A1 not in Language A that have a fitness of 0 is much greater than the proportion

in Language A. In Section 2.3.2 we showed how even simple heuristics which work

by picking a random variable from a broken clause were often more effective than

GSAT-like heuristics. This could provide an explanation for these “lucky” heuristics;

by continually picking a variable from a broken clause, they were able to solve a small

number of the SAT problems in the fitness function simply through chance.

The number of low-quality heuristics in both sets suggests that our decision to use

a fitness function that employs an early termination mechanism was a correct one. It

undoubtedly saved us many computational hours, as we would have had to evaluate

many poorly performing heuristics on all problem instances if we had not used it.

In general, as we consider sets containing heuristics of greater size, we can see

by comparing the best heuristics in each subsequent set to the previous, that the

number of highly effective heuristics increases. Further to this, we can see that as we

consider heuristics of larger sizes, the fitness of the absolute “best” heuristic in those

sets increases. Yet, we do wonder whether there is an upper limit for these scores and

this fitness function, as we never encountered any heuristics with a fitness above 50.
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(a) All heuristics in Language A of size ≤ 14, ordered by their fitness.

(b) All heuristics in Language A1 of size ≤ 14, ordered by their fitness.

Figure 4.9: All heuristics in Languages A and A1 of size ≤ 14. We separate the

heuristics in each language into subsets based on their size, and order them by their

fitness value.
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Table 4.4: The fitness distribution of heuristics in Language A of size ≤ 10 and 11 -

17. We use f(h) to refer to a heuristic’s fitness.

(a) The fitness distribution of heuristics in Language A of size ≤ 10, 11 and 12.

size ≤ 10 size = 11 size = 12

Fitness Group Total % Total % Total %

f(h) = 0 371 6.08 785 6.45 5, 375 8.64

0 < f(h) ≤ 5 4, 095 67.10 7, 623 62.62 34, 560 55.53

5 < f(h) ≤ 10 1, 101 18.04 2, 189 17.98 12, 405 19.93

10 < f(h) ≤ 15 320 5.24 703 5.78 4, 620 7.42

15 < f(h) ≤ 20 146 2.39 345 2.83 2, 309 3.71

20 < f(h) ≤ 25 53 0.87 261 2.14 1, 478 2.37

25 < f(h) ≤ 30 6 0.10 190 1.56 905 1.45

30 < f(h) ≤ 35 10 0.16 55 0.45 454 0.73

35 < f(h) ≤ 40 1 0.02 19 0.16 126 0.20

40 < f(h) ≤ 45 0 0 3 0.02 6 0.01

(b) The fitness distribution of heuristics in Language A of size 13 - 15.

size = 13 size = 14 size = 15

Fitness Group Total % Total % Total %

f(h) = 0 73, 154 32.78 250, 573 35.07 792, 527 35.00

0 < f(h) ≤ 5 87, 961 39.42 309, 010 43.25 1, 073, 836 47.42

5 < f(h) ≤ 10 28, 840 12.92 75, 058 10.50 220, 561 9.74

10 < f(h) ≤ 15 13, 586 6.09 37, 241 5.21 75, 510 3.33

15 < f(h) ≤ 20 8, 730 3.91 22, 512 3.15 48, 608 2.15

20 < f(h) ≤ 25 4, 505 2.02 8, 937 1.25 22, 626 1.00

25 < f(h) ≤ 30 3, 391 1.52 5, 741 0.80 16, 208 0.72

30 < f(h) ≤ 35 1, 993 0.89 3, 621 0.51 12, 571 0.56

35 < f(h) ≤ 40 963 0.43 1, 846 0.26 1, 995 0.09

40 < f(h) ≤ 45 32 0.01 3 > 0.00 32 > 0.00

45 < f(h) ≤ 50 0 0.00 0 0 1 > 0.00
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Table 4.4: The fitness distribution of heuristics in Language A of size ≤ 10 and 11 -

17. We use f(h) to refer to a heuristic’s fitness. (Continued)

(c) The fitness distribution of heuristics in Language A of size 16 and 17.

size = 16 size = 17

Fitness Group Total % Total %

f(h) = 0 2, 747, 171 34.17 10, 619, 758 33.08

0 < f(h) ≤ 5 3, 816, 696 47.47 13, 855, 443 43.16

5 < f(h) ≤ 10 813, 416 10.12 3, 698, 471 11.52

10 < f(h) ≤ 15 274, 884 3.42 1, 552, 900 4.84

15 < f(h) ≤ 20 162, 651 2.02 965, 498 3.01

20 < f(h) ≤ 25 103, 201 1.28 624, 049 1.94

25 < f(h) ≤ 30 74, 022 0.92 439, 287 1.37

30 < f(h) ≤ 35 35, 394 0.44 245, 073 0.76

35 < f(h) ≤ 40 11, 531 0.14 91, 931 0.29

40 < f(h) ≤ 45 1, 298 0.02 11, 712 0.04

45 < f(h) ≤ 50 12 > 0.00 117 > 0.00

Variance

If we recall the fitness function f described in Section 3.4.1, it is calculated as the

average of five repetitions of the F function. The F function computes a numerical

value from running the heuristic on the set of problem instances described in Table 3.6.

If we were to consider each F value as an individual fitness, then we can study the

overall variance of a heuristic’s reported fitness value. That is to say, we can determine

how reliable each heuristic is at returning a similar F value for each repetition, and

whether their reported fitness value has come from a large or small range of F values.

To do this, we took the results from all heuristics in Language A and those in

Language A1 not in Language A, and plotted the mean square variance of their F

values against their reported fitness values. These results can be seen in Figure 4.10.

A high variance reported would suggest that a heuristic is not necessarily reliable. A

low variance would suggest a heuristic consistently performs well.

By studying these graphs, we can see that generally the variance of the reported

fitness values is low. We can also see that there is no correlation between fitness

and variance; if there was a positive correlation, this would suggest that heuristics
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Table 4.5: The fitness distribution of heuristics in Language A1 not in Language A

of size ≤ 10 and 11 - 15. We use f(h) to refer to a heuristic’s fitness.

(a) The fitness distribution of heuristics in Language A1 not in Language A of size ≤ 10, 11

and 12.

size ≤ 10 size = 11 size = 12

Fitness Group Total % Total % Total %

f(h) = 0 10, 345 40.63 35, 484 36.89 133, 999 27.02

0 < f(h) ≤ 5 11, 701 45.96 42, 696 44.38 223, 604 45.09

5 < f(h) ≤ 10 2, 617 10.28 10, 556 10.97 79, 675 16.07

10 < f(h) ≤ 15 626 2.46 3, 720 3.87 31, 994 6.45

15 < f(h) ≤ 20 132 0.52 1, 789 1.86 14, 019 2.83

20 < f(h) ≤ 25 25 0.10 1, 059 1.10 7, 495 1.51

25 < f(h) ≤ 30 11 0.04 602 0.63 3, 580 0.72

30 < f(h) ≤ 35 2 0.01 236 0.25 1, 331 0.27

35 < f(h) ≤ 40 2 > 0.00 51 0.05 207 0.04

40 < f(h) ≤ 45 0 0.00 2 > 0.00 2 > 0.00

(b) The fitness distribution of heuristics in Language A1 not in Language A of size 13 - 15.

size = 13 size = 14 size = 15

Fitness Group Total % Total % Total %

f(h) = 0 735, 977 41.02 3, 051, 394 47.38 13, 803, 597 50.94

0 < f(h) ≤ 5 581, 945 32.43 2, 232, 749 34.67 9, 510, 047 35.10

5 < f(h) ≤ 10 211, 224 11.77 612, 621 9.51 2, 153, 291 7.95

10 < f(h) ≤ 15 128, 178 7.14 299, 145 4.64 877, 292 3.24

15 < f(h) ≤ 20 72, 312 4.03 141, 729 2.20 433, 867 1.60

20 < f(h) ≤ 25 41, 194 2.30 72, 274 1.12 199, 663 0.74

25 < f(h) ≤ 30 16, 870 0.94 21, 644 0.34 81, 683 0.30

30 < f(h) ≤ 35 5, 667 0.32 7, 553 0.12 30, 532 0.11

35 < f(h) ≤ 40 992 0.06 1, 649 0.03 5, 632 0.02

40 < f(h) ≤ 45 22 > 0.00 12 > 0.00 145 > 0.00
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which performed well according to our fitness function were unreliable at consistently

finding solutions. There are several unreliable heuristics, however there appears to be

no trend between an unreliable heuristic and a high scoring heuristic. These results

suggest to us that the five repetitions of the fitness function were perhaps too many;

a smaller number could have provided us with a fitness value that is just as reliable.

One additional point of interest concerning these results is that the heuristics

that can only be described using Language A1 appear to be more reliable than those

from Language A. That is to say, it appears that the WFF terminal can be used to

create more reliable heuristics. Yet, we also know that the WFF terminal cannot create

heuristics that are as effective as those created using a randomly chosen broken clause

(at least on the search space of heuristics that we have considered). We know from

the literature presented in Section 2.3 that modern-day heuristics generally do not

use strategies that consider all variables in a SAT problem. While the effectiveness of

the heuristics created using the WFF terminal suggests that this is a sensible decision,

these results also suggest that strategies using the WFF terminal can have a beneficial

effect on the reliability of a heuristic.

4.2.5 Timing Results

In Section 2.3 we noted how several researchers had succeeded in creating more

efficient heuristics by decreasing the computational overhead of the heuristic function

itself. While the heuristics evaluated in our software will never be as efficient as a

hand-written variant (as we discussed in Section 3.3), we have taken great care to

ensure that they are efficient in terms of how they update their required auxiliary

data structures. Our fitness function measures how many flips a heuristic performs,

paying no attention to the total time taken to solve a problem instance. When

performing the exhaustive enumeration experiments, we collected additional data

about the average time it took each heuristic to perform a flip in the overarching

local search algorithm. In this subsection we analyse that data.

By plotting a heuristic’s nanosecond-per-flip data against its reported fitness, we

can determine which heuristics are not just effective, but fast. Fast and effective

heuristics, we believe, are more preferable to slow and effective heuristics as, in a

real-world setting, the faster heuristic could evaluate more assignments in a SAT

problem, and potentially find a satisfying solution more quickly. We plotted this

information for the enumerated heuristics with a fitness value > 10 in Language A
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(a) All heuristics in Language A, showing the fitness of each heuristic plotted against that

heuristic’s fitness variance.

(b) All heuristics in Language A1 that are not in Language A, showing the fitness of each

heuristic plotted against that heuristic’s fitness variance.

Figure 4.10: All heuristics in Languages A and A1, showing the fitness of each

heuristic plotted against that heuristic’s fitness variance.
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(total 4,926,816 heuristics) and for those in Language A1 not in Language A (total

2,504,809 heuristics) in Figure 4.11.

In both graphs there appears to be no correlation, general grouping or clustering

of data points. However, we can identify a set of heuristics that appear to be distinctly

separate from all other heuristics in Figure 4.11a, at around the 750 nanosecond-

per-flip value. We were able to ascertain that many of the heuristics in this area

used a smaller number of gain type metrics in their construction when compared

to the heuristics in other areas. In future work we believe it may be beneficial to

take this data into consideration when designing a fitness function, as it may help in

identifying effective heuristics.

By comparing the two graphs, we can see that generally the heuristics that contain

the WFF terminal take longer to complete an iteration of local search. We believe

this is due to many of these heuristics needing to maintain a partial ordering of all

variables according to a gain type, which adds considerable computational overhead

to the heuristic function.

4.2.6 Individual Results

In this subsection we present examples of heuristics created from the exhaustive

enumeration experiments which reported a high fitness. We also run these heuristics

on the testing set, to ascertain how effective they are at solving different sized problem

instances to the ones they were trained on.

We chose six heuristics from the enumeration of Language A and six from the

enumeration of Language A1. We specifically chose heuristics from the enumeration

of Language A1 that cannot be represented by Language A. The heuristics are shown

in Figures 4.12 and 4.13.

There are several similarities that can be seen in the chosen heuristics. Firstly,

nearly all the presented heuristics use the GetOldestVar function in their construction

(the exception being SS-A1-3 in Figure 4.13c). This specific term was first described

in work by Fukunaga [60, 63, 61]. From these results, it appears to be an effective

component in the creation of LS-SAT heuristics. Several of the heuristics that used

GetOldestVar extensively (SS-A-1, SS-A-4, SS-A1-1 and SS-A1-6 in Figures 4.12a,

4.12d, 4.13a and 4.13f respectively) are similar in their general construction to one

of the heuristics automatically created in the systems designed by Fukunaga. We

showed that heuristic, Depth-2-2, in Figure 3.2h. As this pattern has been seen
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(a) All heuristics in Language A with fitness > 10, showing the fitness of each heuristic

plotted against that heuristic’s nanoseconds-per-flip value.

(b) All heuristics in Language A1 not in Language A with fitness > 10, showing the fitness

of each heuristic plotted against that heuristic’s nanoseconds-per-flip value.

Figure 4.11: All heuristics in Languages A and A1 with fitness > 10, showing the

fitness of each heuristic plotted against that heuristic’s nanoseconds-per-flip value.
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GetOldestVar

GetBestVar RBC -0 PosGain

GetOldestVar

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 NetGain

(a) Heuristic SS-A-1. Fitness value of

42.2.

GetOldestVar

GetBestVar RBC -0 NetGain

IfTabu 10

GetBestVar RBC -0 NegGain

IfNotMinAge RBC -0

GetBestVar RBC -0 PosGain

GetBestVar RBC -0 NegGain

(b) Heuristic SS-A-2. Fitness value of

48.0.

IfNotMinAge RBC -0

IfVarCompare < NegGain

GetBestVar RBC -0 NegGain

GetBestVarSnd RBC -0 PosGain

GetBestVar RBC -0 PosGain

(c) Heuristic SS-A-3. Fitness value of

41.0.

GetOldestVar

GetOldestVar

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 NegGain

IfNotMinAge RBC -0

GetBestVar RBC -0 NetGain

GetBestVar RBC -0 PosGain

(d) Heuristic SS-A-4. Fitness value of

45.8.

IfTabu 50

GetBestVar RBC -0 NetGain

GetOldestVar

IfNotMinAge RBC -0

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 PosGain

GetBestVar RBC -0 NegGain

(e) Heuristic SS-A-5. Fitness value of

47.8.

IfTabu 20

GetBestVar RBC -0 NetGain

GetOldestVar

GetBestVar RBC -0 NegGain

IfTabu 40

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 PosGain

(f) Heuristic SS-A-6. Fitness value of

47.4.

Figure 4.12: Six heuristics that reported a high fitness value from the enumeration of

Language A.
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GetOldestVar

GetOldestVar

GetBestVar RBC -0 NegGain

GetBestVar WFF PosGain

GetBestVar WFF NetGain

(a) Heuristic SS-A1-1. Fitness value of

40.6.

GetOldestVar

IfNotMinAge RBC -0

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 PosGain

GetBestVar WFF PosGain

(b) Heuristic SS-A1-2. Fitness value of

43.0.

IfTabu 20

GetBestVar RBC -0 NegGain

IfTabu 10

GetBestVar RBC -0 PosGain

GetBestVar WFF NetGain

(c) Heuristic SS-A1-3. Fitness value of

44.0.

GetOldestVar

GetBestVar RBC -0 PosGain

IfVarCond <= NegGain 0

GetBestVarSnd WFF PosGain

GetBestVar RBC -0 NegGain

(d) Heuristic SS-A1-4. Fitness value of

45.0.

GetOldestVar

GetBestVar RBC -0 PosGain

IfVarCond = PosGain 1

GetBestVar WFF NegGain

GetBestVar RBC -0 NegGain

(e) Heuristic SS-A1-5. Fitness value of

40.2.

GetOldestVar

GetOldestVar

GetBestVar WFF NetGain

GetBestVar WFF PosGain

GetOldestVar

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 NetGain

(f) Heuristic SS-A1-6. Fitness value of

43.2.

Figure 4.13: Six heuristics that reported a high fitness value from the enumeration of

Language A1.
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several times in both our work and that by Fukunaga, this suggests to us that this

mechanism could prove to be useful in the design of hand-crafted heuristics. Perhaps

it could be used to augment previously existing heuristics, or to design entirely new

ones.

We found it quite surprising that many of the heuristics which reported a high

fitness value used the IfTabu term, as we did not believe that it would prove to be

particularly effective. There are few examples of modern LS-SAT heuristics which

use tabu mechanisms in their construction, instead relying on alternate techniques to

prohibit the choosing of variables which have recently been flipped.

Few of the heuristics we highlighted used any of the functions other than

GetOldestVar, IfTabu, IfNotMinAge and GetBestVar. There are some exceptions

to this such as SS-A-3, SS-A1-4 and SS-A1-5 (shown in Figures 4.12c, 4.13d

and 4.13e respectively). We found it quite surprising that none of these heuris-

tics used the functions PickRandomVar or IfRandLt. The mechanisms which these

functions represent have been widely used in the creation of hand-crafted LS-SAT

heuristics which can be represented by Languages A and A1. For example, WalkSAT

and Novelty use IfRandLt, while WalkSAT uses PickRandomVar.

In Table 4.6 we show the results from running the chosen heuristics on the testing

set presented in Table 3.8.

Let us first consider the results in Table 4.6a. We can see that all six heuristics

performed well on the initial five subsets of problem instances, with there being no

clear best performing heuristic. We can state that every heuristic was able to solve at

least 95% of the problems in these subsets. On the subsets containing larger problem

instances, we can see that SS-A-1, SS-A-3 and SS-A-4 had good performance, with

SS-A-4 performing the best and able to solve at least 50% of the SAT problems it

was ran on. The terms used in the construction of the heuristics that performed well

on the larger problem instances is noteworthy, as none of them used the IfTabu term

discussed previously. As the language contains terms which correspond to relatively

low Age values, perhaps these heuristics would perform better on larger problem

instances if they had used terms which correspond to larger Age values. The best

performing heuristic on all problem instances, SS-A-4, used a combination of several

GetOldestVar functions, together with picking the best variable from a randomly

chosen broken clause according to several gain type metrics.

When considering the results in Table 4.6b, we can see that the six heuristics from
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Table 4.6: Results from running the heuristics in Figures 4.12 and 4.13 on the testing

set. For each problem p and heuristic h, we ran h on p five times. We report the

average percentage of problems solved in each subset, and the average time (in

seconds) each heuristic took to solve those problem instances. Bold typeface shows

the best performing heuristic on that subset of problem instances.

(a) Results from running the heuristics in Figure 4.12 on the testing set.

Heuristic

Subset Name

S
S
-A

-1

S
S
-A

-2

S
S
-A

-3

S
S
-A

-4

S
S
-A

-5

S
S
-A

-6

uf50
99.6 99.7 99.7 99.7 99.9 99.9

0.0006 0.0005 0.0005 0.0006 0.0006 0.0005

uf100
99.0 98.8 99.2 99.2 100.0 99.0

0.0038 0.0028 0.0032 0.002 0.0022 0.0031

uf150
99.0 100.0 100.0 100.0 99.0 99.4

0.0122 0.0088 0.0096 0.0088 0.009 0.0091

uf200
96.8 96.8 95.0 97.0 98.6 95.8

0.0257 0.0215 0.0215 0.0461 0.025 0.0311

uf250
99.0 98.2 97.6 98.6 99.6 96.6

0.0376 0.0381 0.033 0.0298 0.0474 0.0406

ufv4000
70.0 10.0 72.0 72.0 48.0 20.0

9.4255 4.2608 10.3856 9.4374 12.3256 7.3924

ufv7000
98.0 0.0 98.0 90.0 10.0 0.0

23.1846 0.0 22.1826 19.0177 7.4578 0.0

ufv10000
78.0 0.0 88.0 76.0 0.0 0.0

15.9632 0.0 27.5494 16.1754 0.0 0.0

ufv13000
44.0 0.0 48.0 50.0 0.0 0.0

15.8781 0.0 21.9421 15.4293 0.0 0.0

ufv16000
32.0 0.0 50.0 50.0 0.0 0.0

23.7888 0.0 33.5542 26.0793 0.0 0.0

ufv16000
42.0 0.0 38.0 54.0 0.0 0.0

20.3257 0.0 25.0816 29.4342 0.0 0.0

164



CHAPTER 4. EXHAUSTIVE ENUMERATION & GP

Table 4.6: Results from running the heuristics in Figures 4.12 and 4.13 on the testing

set. For each problem p and heuristic h, we ran h on p five times. We report the

average percentage of problems solved in each subset, and the average time (in

seconds) each heuristic took to solve those problem instances. Bold typeface shows

the best performing heuristic on that subset of problem instances. (Continued)

(b) Results from running the heuristics in Figure 4.13 on the testing set.

Heuristic

Subset Name

S
S
-A

1
-1

S
S
-A

1
-2

S
S
-A

1
-3

S
S
-A

1
-4

S
S
-A

1
-5

S
S
-A

1
-6

uf50
99.9 99.8 99.9 99.8 99.8 100.0

0.0009 0.0006 0.0009 0.0008 0.0007 0.0009

uf100
100.0 99.8 100.0 99.2 99.8 100.0

0.0054 0.003 0.0051 0.004 0.0044 0.0067

uf150
100.0 99.8 100.0 100.0 99.8 100.0

0.0289 0.017 0.0184 0.0224 0.013 0.018

uf200
99.6 97.0 99.8 95.2 96.0 100.0

0.1233 0.0296 0.1496 0.0432 0.0292 0.0971

uf250
99.6 98.2 99.8 99.2 97.2 100.0

0.1125 0.0579 0.066 0.0594 0.0612 0.1062

ufv4000
2.0 10.0 0.0 80.0 72.0 18.0

1.2015 9.69 0.0 15.2965 22.6692 6.5506

ufv7000
0.0 0.0 0.0 92.0 90.0 0.0

0.0 0.0 0.0 31.0538 36.927 0.0

ufv10000
0.0 0.0 0.0 58.0 30.0 0.0

0.0 0.0 0.0 26.7388 13.6374 0.0

ufv13000
0.0 0.0 0.0 20.0 0.0 0.0

0.0 0.0 0.0 12.1084 0.0 0.0

ufv16000
0.0 0.0 0.0 10.0 0.0 0.0

0.0 0.0 0.0 7.9136 0.0 0.0

ufv16000
0.0 0.0 0.0 10.0 0.0 0.0

0.0 0.0 0.0 5.6826 0.0 0.0
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the enumeration of Language A1 also performed well on the initial five subsets of

problem instances. In comparison to the results in Table 4.6a, these heuristics were

more consistent, as a larger number of the heuristics were able to solve all instances

in these five subsets. SS-A1-6 performed the best on these, solving 100% of the

instances. However, the timing data shows us that the heuristics from Language A1

took longer to solve these problem instances. We believe this can be attributed to the

use of subtrees in the form GetBestVar {WFF, g}. To calculate the variable returned

from a subtree such as this, a partial ordering of all variables according to the gain

type metric g is required. This is computationally expensive to maintain for problem

instances with a larger number of variables.

When we look at the results from running these heuristics on the larger problem

instances, we can see that most of the heuristics were unable to solve many problems.

Only two heuristics, SS-A1-3 and SS-A-4, were able to solve a notable number

of these instances. However, their performance was notably worse on the largest

problem instances when compared to those heuristics shown in Table 4.6a.

Finally, we compare these results to the results of evaluating hand-crafted heuristics

on the testing set, the results of which were shown in Table 3.9.

On the subsets containing smaller problem instances, the performance of the

automatically created heuristics and the best performing of the hand-crafted heuristics

is generally similar. The automatically created heuristics from Language A have

comparable performance to gNovelty+, however they are less consistent - that is

to say, they do not solve as many instances. The automatically created heuristics

from Language A1 perform better than gNovelty+ on these subsets - for example

SS-A1-6 is more consistent than gNovelty+. We can see that the automatically

created heuristics perform better than the other hand-crafted heuristics on the subsets

containing smaller problem instances.

In Table 3.9 we saw that ProbSAT had the best performance of the hand-

crafted heuristics on the subsets containing larger problem instances. Comparing the

performance of the automatically created heuristics to ProbSAT, we can see that

several of them appear to offer better performance on these subsets. Specifically the

heuristics SS-A-1, SS-A-3, SS-A-4 and SS-A1-4.
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Table 4.7: The parameters used in the GP experiments in Section 4.3.

Parameter Value

Population Size 1,000

Generations 100

Initialisation Method Grow (Max Depth = 7)

Selection Method Tournament

Crossover 80%

Mutation 10%

Reproduction 5%

Elite Programs 5%

4.3 Genetic Programming Experiments

In this section we show the methodology used and results obtained from our GP

experiments performed using Language A and A1. We also show results detailing

how some of the heuristics created from GP perform on the testing set of problem

instances.

4.3.1 Methodology

We used a software suite called EpochX [137] to build the GP software that is the

focus of the experiments detailed in this section. It is a general-purpose software

library that aids in the construction of GP systems. The parameters for our GP

experiments are shown in Table 4.7. We performed 5 repetitions of the GP experiment

for both Languages A and A1.

In total each repetition of the GP algorithm evaluated 101, 000 heuristics. This

additional 1, 000 is attributed to the initial population of heuristics. The terminal set

and function set used are highlighted in Table 4.1. The reader may note that we use

the grow method of initialising our population. This was done for a very specific reason.

Our language contains several functions that are not “balanced” - that is to say, a

function such as IfVarCond requires several arguments. Some of these arguments

can only be instantiated with a terminal, for example, Comparator. Other arguments

to IfVarCond can only be other functions. In preliminary experiments, populations

created through the full method did not utilise these “unbalanced” functions in their

created program trees. In turn, when using this method (or the ramped half-and-half
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method), many heuristics created used functions from a small subset of the language,

and the overall populations were not particularly diverse. The grow method provided

us with more varied heuristics to initialise our population, and we made the decision

to use this initialisation technique.

The GP experiments were performed on the same computer described in Sec-

tion 4.2.2. Each repetition of each experiment took around 4 hours to run, for a total

of 40 hours for all experiments.

4.3.2 Results

In this subsection we present the results from the GP experiments performed using

Languages A and A1. We provide general data about each of the 5 repetitions

performed using each language, and give more detailed data about the best of these

repetitions. By “best” we mean the repetition that reported the fittest overall

heuristic. For Language A this was repetition 5, and for Language A1 this was

repetition 3. In Table 4.8 we show some general data about the population at various

points in each GP repetition. In Figures 4.14 and 4.15 we show detailed information

regarding the general fitness distribution and size of the heuristics created from each

of the best repetitions from Languages A and A1.

We can see from the results in Table 4.8 that the fittest heuristic reported from each

repetition had a higher fitness than the fittest heuristic found through exhaustive

enumeration. Compared to the tens of millions of heuristics evaluated in those

experiments, these results were obtained from only 101, 000 heuristic evaluations.

Indeed, by generation 50 in nearly all repetitions, the heuristics generated were of a

higher quality than those produced by exhaustive enumeration.

If we look at the results in Figure 4.14 we can see how repetition 5 for Language

A and repetition 3 for Language A1 progressed. At the beginning of the algorithm,

the mean fitness of the population grew quickly yet, as time went on, the gains made

in the overall mean fitness slowed. It is clear that in the final generation, there are

many high-quality heuristics. The general way in which these algorithms progressed

is consistent with other work in GP.

The results in Figure 4.15 show us information pertaining to the size of the

heuristics created in each generation for the repetitions highlighted previously. We

can see that the heuristics were of a very large size, and grew as the algorithm

progressed. In the GP community, this phenomenon is known as bloat [172]. We
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Table 4.8: Statistical data pertaining to the GP experiments performed using Lan-

guages A and A1. For each repetition, we show the best heuristic’s fitness, the

best heuristic’s size, the mean fitness of the population, and the mean size of the

population for specific generations. These are the initial generation, the 25th, 50th,

75th and the 100th generation.

(a) Statistical data pertaining to the GP experiments performed using Language A.

Repetition

1 2 3 4 5

In
it
ia
l
G
en

Best Heuristic’s Fitness 37.6 37.2 38.8 34.6 38.8

Best Heuristic’s Size 107 18 79 69 25

Mean Fitness 2.32 2.57 2.33 2.26 2.49

Mean Size 45.15 47.60 50.84 50.10 47.88

25
th

G
en

Best Heuristic’s Fitness 50.6 48.2 49.6 52.4 51.4

Best Heuristic’s Size 149 116 316 206 304

Mean Fitness 39.34 36.94 38.1 39.53 40.46

Mean Size 120.86 100.42 109.88 107.32 85.86

50
th

G
en

Best Heuristic’s Fitness 52.6 50.8 52.2 53.8 53.4

Best Heuristic’s Size 612 243 226 477 331

Mean Fitness 42.97 41.02 43.01 43.57 45.49

Mean Size 228.57 156.06 189.99 213.69 190.35

75
th

G
en

Best Heuristic’s Fitness 54.4 53.0 54.2 54.4 55.2

Best Heuristic’s Size 1,008 617 498 573 302

Mean Fitness 46.37 43.28 46.2 46.99 48.26

Mean Size 442.92 226.86 328.01 347.24 379.07

10
0t

h
G
en

Best Heuristic’s Fitness 55.4 54.8 56.0 55.2 57.0

Best Heuristic’s Size 1,059 632 1,152 486 1,004

Mean Fitness 49.5 48.55 48.65 49.05 50.86

Mean Size 612.26 487.96 558.02 480.68 639.71
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Table 4.8: Statistical data pertaining to the GP experiments performed using Lan-

guages A and A1. For each repetition, we show the best heuristic’s fitness, the

best heuristic’s size, the mean fitness of the population, and the mean size of the

population for specific generations. These are the initial generation, the 25th, 50th,

75th and the 100th generation. (Continued)

(b) Statistical data pertaining to the GP experiments performed using Language A1.

Repetition

1 2 3 4 5

In
it
ia
l
G
en

Best Heuristic’s Fitness 35.8 30.6 37.0 27.4 33.2

Best Heuristic’s Size 102 18 48 27 70

Mean Fitness 2.17 2.24 2.05 1.9 2.0

Mean Size 46.73 49.12 51.37 48.94 48.01

25
th

G
en

Best Heuristic’s Fitness 48.0 46.6 45.6 47.2 49.2

Best Heuristic’s Size 77 78 114 38 56

Mean Fitness 34.97 37.06 33.61 35.62 37.15

Mean Size 107.31 95.82 127.46 77.86 92.19

50
th

G
en

Best Heuristic’s Fitness 51.2 49.4 52.2 50.8 53.6

Best Heuristic’s Size 194 214 212 252 106

Mean Fitness 41.18 43.11 42.25 41.48 43.35

Mean Size 143.59 137.83 171.56 168.44 140.89

75
th

G
en

Best Heuristic’s Fitness 54.2 50.6 55.4 51.6 54.0

Best Heuristic’s Size 319 201 1,121 512 589

Mean Fitness 44.26 45.01 48.03 45.43 47.6

Mean Size 261.26 206.08 342.76 276.42 280.28

10
0t

h
G
en

Best Heuristic’s Fitness 55.8 51.8 57.4 52.6 55.8

Best Heuristic’s Size 807 168 1,122 806 903

Mean Fitness 48.19 45.42 52.39 47.38 48.97

Mean Size 484.34 233.42 603.97 380.28 411.08
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(a) Graph showing the fitness data from the 5th GP repetition performed using Language

A.

(b) Graph showing the fitness data from the 3rd GP repetition performed using Language

A1.

Figure 4.14: Fitness data from the best repetitions of the GP experiments performed

using Languages A and A1. For each generation in each repetition, we show a boxplot

detailing the distribution of fitness values in that generation, with outliers shown.

We also show the mean fitness and the best heuristic’s fitness.
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(a) Graph showing the size data from the 5th GP repetition performed using Language A.

(b) Graph showing the size data from the 3rd GP repetition performed using Language A1.

Figure 4.15: Size data from the best repetitions of the GP experiments performed

using Languages A and A1. For each generation in each repetition, we show the

mean size of the population’s heuristics, and the size of the fittest heuristic.
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Table 4.9: Statistical data concerning the frequency of terms used in the fittest

heuristic returned from each repetition of the GP experiments performed using

Languages A and A1. We only show terms that are functions, variable sets or gain

types.

Term

G
P
-A

-1

G
P
-A

-2

G
P
-A

-3

G
P
-A

-4

G
P
-A

-5

G
P
-A

1
-1

G
P
-A

1
-2

G
P
-A

1
-3

G
P
-A

1
-4

G
P
-A

1
-5

PickRandomVar 51 38 46 16 71 36 4 54 43 40

GetBestVar 86 37 111 54 72 75 17 95 70 89

GetBestVarSnd 71 51 69 24 61 44 10 73 43 54

GetOldestVar 34 18 23 12 47 30 2 48 24 40

IfNotMinAge 51 28 57 20 25 11 5 18 20 51

IfTabu 23 14 29 21 37 31 3 33 29 31

IfRandLt 29 16 54 14 26 17 6 54 21 17

IfVarCond 36 11 31 20 36 35 7 48 34 27

IfVarCompare 34 38 31 6 32 30 7 20 27 16

RBC-0 259 154 283 114 229 91 20 161 93 162

WFF - - - - - 75 16 79 83 72

PosGain 66 39 42 30 70 51 10 64 54 55

NegGain 83 54 99 44 56 53 20 74 58 61

NetGain 78 44 101 30 75 80 11 98 62 70

can see from the results in Table 4.8 that each repetition in both GP experiments

appeared to suffer from it. We can say that generally, across all repetitions, the best

heuristic’s size grew as the algorithm progressed, though not as uniformly as the

mean, and it decreased on several occasions.

In Table 4.9 we show the number of times each term is used in the best heuristic

reported from each repetition. These heuristics are named, with each name derived

from the repetition of the experiment it originated from. We collected this data to

determine if there were any terms that were being used more than others. However,

it appears that there is no discernible pattern from these results, and no heavily

favoured term.
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4.3.3 Individual Results

In this subsection we look at how the fittest heuristics created from each GP repetition

perform on the testing set described in Section 3.4.3.

We do not present any of these heuristics in this subsection, as they are very large.

However, we do present the fittest heuristic created from each of the GP experiments

performed using Language A and A1 in Appendix B. These heuristics are GP-A-5

and GP-A1-3. GP-A-5 reported a fitness of 57.0 and contains 1, 004 terms, while

GP-A1-3 reported a fitness of 57.4 and contains 1, 122 terms.

In Table 4.10 we show the results obtained from evaluating the best heuristics

created from each repetition on the testing set. Like those heuristics considered in

Section 4.2.6, the heuristics based on Language A1 generally performed better on

the smaller problem instances (the first five subsets) than those from Language A.

However, they took longer to solve these instances than those created from Language

A. On the six subsets containing larger problem instances, none of the heuristics

performed well, with few being able to solve many of those problem instances.

Generally we would state that both sets of heuristics performed similarly to each

other. Of all heuristics tested, GP-A-4 and GP-A1-2 had the best performance.

By comparing these results to those shown in Section 4.2.6, we can see that

the heuristics created using GP perform slightly better on the initial five subsets of

problem instances in regards to the number of problems solved, but slightly worse

when we look at the time taken to solve them. We had assumed that this would

be the case, as larger heuristics are generally more computationally expensive to

evaluate, which in turn would mean that they would take longer to complete a single

iteration of local search, and potentially take longer to find satisfying solutions.

On the larger problem instances, those heuristics created from exhaustive enumer-

ation outperformed those from GP. From exhaustive enumeration we found several

examples of heuristics that performed well on the larger problem instances. From our

GP experiments, we only found two heuristics that were able to solve any notable

proportion of those problem instances. Both of these heuristics performed much

worse than the best performing heuristics from exhaustive enumeration.
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Table 4.10: Results from running the heuristics created from GP using Languages A

and A1 on the testing set. For each problem p and heuristic h, we ran h on p five

times. We report the average percentage of problems solved in each subset, and the

average time (in seconds) each heuristic took to solve those problem instances. Bold

typeface shows the best performing heuristic on that subsets.

(a) Results from running the heuristics created from GP and Language A on the testing set.

Heuristic

Subset Name
G
P
-A

-1

G
P
-A

-2

G
P
-A

-3

G
P
-A

-4

G
P
-A

-5

uf50
99.9 99.9 100.0 99.9 99.7

0.0011 0.0011 0.0008 0.0009 0.0009

uf100
98.8 99.0 100.0 99.2 99.6

0.0049 0.0051 0.0036 0.0041 0.0041

uf150
100.0 99.4 100.0 100.0 100.0

0.0228 0.031 0.0124 0.022 0.0189

uf200
97.2 96.4 100.0 97.6 97.2

0.0625 0.0758 0.1339 0.0401 0.0384

uf250
98.6 98.8 99.0 97.4 97.6

0.1006 0.1118 0.062 0.0597 0.0576

ufv4000
12.0 32.0 34.0 50.0 30.0

1.9523 4.1525 13.092 10.1234 16.8937

ufv7000
0.0 18.0 14.0 30.0 0.0

0.0 7.0373 4.5718 7.9705 0.0

ufv10000
0.0 0.0 10.0 28.0 0.0

0.0 0.0 6.233 17.5356 0.0

ufv13000
0.0 0.0 0.0 2.0 0.0

0.0 0.0 0.0 1.6226 0.0

ufv16000
0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

ufv16000
0.0 0.0 0.0 10.0 0.0

0.0 0.0 0.0 4.8211 0.0
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Table 4.11: Results from running the heuristics created from GP using Languages A

and A1 on the testing set. For each problem p and heuristic h, we ran h on p five

times. We report the average percentage of problems solved in each subset, and the

average time (in seconds) each heuristic took to solve those problem instances. Bold

typeface shows the best performing heuristic on that subset. (Continued)

(a) Results from running the heuristics created from GP and Language A1 on the testing

set.

Heuristic

Subset Name
G
P
-A

1
-1

G
P
-A

1
-2

G
P
-A

1
-3

G
P
-A

1
-4

G
P
-A

1
-5

uf50
100.0 100.0 100.0 100.0 100.0

0.002 0.001 0.0012 0.0011 0.001

uf100
100.0 100.0 100.0 100.0 100.0

0.008 0.0046 0.0057 0.0053 0.005

uf150
100.0 100.0 100.0 100.0 100.0

0.0326 0.0211 0.0335 0.0265 0.0264

uf200
98.4 98.8 99.0 99.0 99.0

0.1764 0.1169 0.1604 0.1281 0.1103

uf250
98.8 99.2 99.8 99.0 99.2

0.2157 0.076 0.1768 0.0694 0.075

ufv4000
20.0 62.0 66.0 2.0 40.0

15.4998 18.5151 23.3641 1.0264 14.7485

ufv7000
0.0 80.0 44.0 0.0 10.0

0.0 48.2407 23.5909 0.0 2.6482

ufv10000
0.0 30.0 30.0 0.0 0.0

0.0 18.8682 26.2578 0.0 0.0

ufv13000
0.0 10.0 0.0 0.0 0.0

0.0 8.4459 0.0 0.0 0.0

ufv16000
0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

ufv16000
0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0
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4.4 Discussions & Conclusions

In this chapter we have presented experiments that have automated the heuristic

creation process through exhaustive enumeration and GP. We have shown that both

of these methodologies can be used to create effective LS-SAT heuristics. We have

provided analysis on the millions of heuristics produced from exhaustive enumeration,

as well as some analysis on the GP experiments conducted.

In our analysis on exhaustive enumeration, our primary finding was that there

exist areas in the search space where effective heuristics are concentrated together.

In our results, these areas were represented as peaks in the landscape of heuristics

when presented in the order they are generated. For any two heuristics that are next

to each other in this ordering, they are almost always nearly identical to each other,

usually only deviating by a single term.

On the use of Language A1 in comparison to Language A, there was no discernible

difference when comparing the highest quality of heuristic created from each experi-

ment. However, when comparing the distribution of the quality of heuristics found

through exhaustive enumeration, we could see that those heuristics exclusively in

Language A1 reported a lower fitness value on average. There was some difference

when comparing the variance of the fitness quality of both sets of heuristics, with

those created from Language A1 appearing to be more consistent in regards to their

reported fitness. When examining the timing data of both sets, on average the

heuristics that were solely in Language A1 took longer to run.

We evaluated a set of heuristics taken from the exhaustive enumeration experiments

on the testing set. We found these heuristics performed very well on problem instances

of a similar size to those they were trained on. On larger instances, several of these

heuristics performed well, and we would suggest that they are worthy of more focused

research, as they have the potential to be used as general-purpose heuristics. The

tested heuristics that could only be described using Language A1 performed slightly

better on problems of similar size to those they were trained on, and heuristics based

solely on Language A appeared to perform better on the larger problem instances.

We believe the heuristics created from Language A1 reported worse performance

on the larger problem instances as they frequently contained subtrees in the form

GetBestVar {WFF, g}. Heuristics containing subtrees in this form would need to

maintain a partial ordering of all variables in the problem according to the gain type

metric g. For large problem instances, this would be computationally expensive to
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do. In turn, these heuristics would perform less iterations of local search in the time

allocated, and be unable to perform as well as they do on smaller problem instances.

Heuristics that use the WFF terminal are rarely used in modern-day heuristics, with

researchers using other methods to represent large sets of variables, such as through

configuration checking. The data concerning the large number of heuristics evaluated

in this chapter may lend some credence to this choice, as the best heuristics in our

data set that used the WFF terminal generally performed poorly on large problem

instances when compared to those built from random walk components.

In the GP experiments performed, the best reported heuristic from each repetition

had a higher fitness value than any of those created through exhaustive enumeration.

However, the heuristics created were very large, and compared to those created from

exhaustive enumeration, not easy to understand. When evaluating these heuristics

on the testing set, we saw that the performance of the heuristics on smaller problem

instances was comparable to those created from exhaustive enumeration, however few

performed well when ran on the larger problem instances. Without further analysis

of the heuristics, it would be difficult to determine why they did not perform well.

However it may be the case that the created heuristics are overfitted, hence their

performance is poor on the larger problem instances, which are unlike those they

were trained on.

In general, we would state that our fitness function is not appropriate for identifying

LS-SAT heuristics which are effective on problem instances larger than those they are

trained on. Though we found some examples of heuristics that perform well on larger

sized problem instances, we have also seen many examples that do not perform well.

In both cases, the heuristics have reported a high fitness value. It may also be the

case that the fitness function has reported a lower fitness value for a heuristic that

is effective at solving larger problem instances. In the rest of this thesis, we do not

experiment with alternative fitness functions. However, we believe that a potential

future avenue of research could be in investigating the role the fitness function has on

the quality of the heuristics created. Such research could help us to design a fitness

function that can identify heuristics which are effective on problem instances larger

than those they are trained on.

As to whether enumeration is a viable alternate methodology to GP, we would

have to state that it would depend on the use-case. The fittest heuristics created from

GP reported a higher fitness value than those created from exhaustive enumeration.
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Yet, those created from exhaustive enumeration are much smaller and easier to

understand. It would be much easier to use them in a hand-crafted LS-SAT solver,

or as a bit-part in a larger heuristic. Therefore we believe that, for our use-case,

exhaustive enumeration has some advantages over GP. The obvious disadvantage of

using exhaustive enumeration is that it takes much longer to run than GP.

There are two core discrepancies with how exhaustive enumeration interacts with

the languages we used. Firstly, there is the issue of program trees which have branches

of terms that are redundant. An example of this was shown in Figure 4.8. This

occurred due to an oversight regarding the range of certain gain type metrics. There

are two ways to solve this issue; either create a more verbose language that prohibits

certain integers being compared to certain gain types, or use a more verbose typing

system to ensure that these type of programs cannot be formed. Both of these

solutions, we feel, are a large undertaking for comparatively little reward.

Secondly, there are groups of heuristics that are, semantically, the same heuristic.

For example, heuristics in the form IfRandLt {p, v1, v2} are equivalent to IfRandLt

{(1− p), v2, v1}. There are other examples of equivalent programs using other terms,

and groups of terms. To create a generalised solution to alleviate this issue, we

would require some way of reasoning about partial and complete heuristics. Like

the previous issue, we deem the benefit to be small, though the issue of semantic

equivalence in what are stochastic functions is an interesting topic in itself.

Though the exhaustive enumeration technique applied to heuristic creation was

computationally expensive to perform, we feel that we have gained invaluable data

regarding the structure of well-performing heuristics. We have also shown several

examples of heuristics that perform well on large problem instances. While the

heuristics created do not outperform those created from GP in regards to the fitness

function, they are small and simple to understand. In the next chapter we use a subset

of the data we have presented here to explore the relationship between heuristics

using the MTED metric.
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Chapter 5

Analysing Heuristics Using the

Minimum Tree Edit Distance

5.1 Introduction

In the previous chapter we performed a series of experiments using program synthesis

to create LS-SAT heuristics, the majority of which were conducted using exhaustive

enumeration. In this chapter we perform an analysis on a subset of the heuristics

created from those exhaustive enumeration experiments using the MTED metric,

which we introduced in Section 2.6. Through this analysis, we propose a new program

synthesis technique, and perform simulations evaluating its performance.

To be clear to the reader, all of the experiments contained within this chapter are

performed using heuristics and fitness results taken from the exhaustive enumeration

experiments described in the previous chapter.

The format of this chapter is as follows. In Section 5.2 we describe our initial

observations about the search space of heuristics when analysed using the MTED

metric, as well as defining the neighbourhood of a heuristic. In Section 5.3 we perform

a more in-depth analysis on a heuristic’s neighbourhood, and evaluate its potential

as a method of moving through the search space. In Section 5.4 we present a set

of experiments which simulate local search on heuristics. Finally in Section 5.5 we

present our conclusions from the research presented in this chapter.
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5.2 Initial Observations

In Figures 4.5 and 4.6 we presented all the heuristics in Language A of size 14 in

the order that they were generated. In those figures the heuristics were coloured

according to their leading n terms, for n values of 1, 2 and 3. We discussed then that

some of the peaks in the graphs, where there are concentrations of heuristics with

a high fitness, appeared to be separate from other groups of heuristics near them

according to their leading n terms.

This measurement of closeness by generation ordering does not completely describe

how effective heuristics can be grouped together by their structure. Figures 4.12

and 4.13 contained examples of effective heuristics from Languages A and A1. Though

we only presented a small number of heuristics, some of them have similarities in both

their structure and ordering of terms. For example, SS-A1-4 and SS-A1-5 (shown

in Figures 4.13d and 4.13e respectively) have a similar “core structure”; they both

have a root of GetOldestVar, and the second argument to the root is the IfVarCond

function, but nearly all other terms used in each heuristic differ from each other.

In Section 2.6 we introduced the MTED metric, which is used to calculate the

minimum number of edits required to transform one tree to another. In this chapter

we use this distance metric to analyse the similarity between any two heuristic’s

underlying program tree representations. This allows us to compare arbitrary program

trees of different sizes, irrespective of their generation ordering or even language. It

is through this metric that we analyse the search space of heuristics.

To begin, let us consider the four heuristics in Figure 5.1. Each heuristic has been

hand-picked with the criteria that the chosen heuristic has a distinct quality of fitness

different from the others. We then compared each heuristic to every other heuristic

in Language A of size ≤ 15 using the MTED metric. That is to say, the MTED

was found between each candidate heuristic in Figure 5.1 and every other heuristic

in the subset of heuristics considered. All the heuristics were then separated into

sets based on their MTED from the candidate heuristic. For a candidate heuristic h

and MTED n, we refer to the set containing all heuristics whose MTED to h is n as

h’s MTED(n) set. In Figure 5.2 we show the distribution of fitness values in all the

MTED sets for the heuristics shown in Figure 5.1, and in Table 5.1 we show the size

of those MTED sets.

We can see that the size of each MTED(n) set generally correlates with its n value.

The distribution of the size of these sets is a little surprising; we had assumed that the
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Table 5.1: The size of the MTED(n) sets for the heuristics shown in Figure 5.1.

Candidate heuristic

n EX-1 EX-2 EX-3 EX-4

1 24 13 25 25

2 256 82 275 275

3 1,639 325 1,786 1,786

4 7,093 1,042 7,698 7,698

5 22,144 3,421 23,388 23,388

6 52,520 11,211 52,024 52,024

7 100,548 31,443 87,710 87,710

8 167,143 77,133 119,786 119,764

9 255,609 177,302 158,822 158,253

10 365,161 362,097 259,850 256,067

11 483,001 601,816 469,656 457,837

12 583,090 753,790 692,133 673,611

13 597,483 678,780 704,678 695,392

14 429,301 384,652 444,226 463,099

15 169,757 154,363 180,963 199,293

16 41,879 45,215 64,440 68,967

17 6,023 0 15,225 17,496

18 14 0 0 0
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IfVarCond < NegGain 3

IfRandLt 0.9

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 PosGain

GetBestVarSnd RBC -0 NetGain

(a) Heuristic EX-1. Fitness value of 0.

IfRandLt 0.9

GetBestVar RBC -0 PosGain

GetOldestVar

GetBestVarSnd RBC -0 NetGain

GetOldestVar

GetBestVarSnd RBC -0 PosGain

PickRandomVar RBC -0

(b) Heuristic EX-2. Fitness value of 7.2.

IfTabu 5

GetBestVar RBC -0 NegGain

IfVarCond = NegGain 0

GetBestVar RBC -0 NegGain

GetBestVarSnd RBC -0 PosGain

(c) Heuristic EX-3. Fitness value of 19.2.

IfTabu 30

GetBestVar RBC -0 PosGain

IfVarCond < PosGain 0

GetBestVar RBC -0 PosGain

GetBestVar RBC -0 NegGain

(d) Heuristic EX-4. Fitness value of

35.2.

Figure 5.1: Four heuristics from the enumeration of Language A.

highest n values would correspond to the largest MTED(n) sets. Instead, the highest

n values correspond to relatively small MTED(n) sets. We believe this occurred

because these sets were constructed from a subset of the heuristics in Language A.

We assume that if we were to consider the infinite set of heuristics in the language,

then higher n values would always correspond to larger sized MTED(n) sets.

When we consider the distribution of fitness values in each set, generally we can

say that the highest fitness value found in each MTED(n) set correlates with n, and

that the median, lower quartile and upper quartile fitness values negatively correlate

with n. We can also state that each set contains some heuristics with a high-quality

fitness, but that the majority of the heuristics are of a low quality.

For each of the candidate heuristics considered we can see that, for n ≤ 4, many

of their MTED(n) sets contain heuristics with a higher fitness than the candidate.

This is more pronounced for heuristics with a lower fitness, such as heuristic EX-1.

Heuristic EX-1’s MTED(1) set contains several heuristics that have a higher fitness

than heuristic EX-1. Even the fittest candidate heuristic, heuristic EX-4, has some

heuristics in its MTED(1) set which have a higher fitness than it. These sets are also

relatively small. When we consider the four candidate heuristics shown in Figure 5.1,
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(a) Distribution of the fitness values of the heuristics in EX-1’s MTED(n) sets. Heuristic

EX-1 is shown in Figure 5.1a and has a fitness of 0.

(b) Distribution of the fitness values of the heuristics in EX-2’s MTED(n) sets. EX-2 is

shown in Figure 5.1b and has a fitness of 7.0.

Figure 5.2: The distribution of the fitness values in four heuristic’s MTED(n) sets.

The sets are created from all heuristics in Language A of size ≤ 15. For each set, we

show the median, minimum, maximum lower and upper quartile fitness values.
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(c) Distribution of the fitness values of the heuristics in EX-3’s MTED(n) sets. Heuristic

EX-3 is shown in Figure 5.1c and has a fitness of 23.8.

(d) Distribution of the fitness values of the heuristics in EX-4’s MTED(n) sets. Heuristic

EX-4 is shown in Figure 5.1d and has a fitness of 31.4.

Figure 5.2: The distribution of the fitness values in four heuristic’s MTED(n) sets.

The sets are created from all heuristics in Language A of size ≤ 15. For each set,

we show the median, minimum, maximum, lower and upper quartile fitness values.

(Continued)
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and n values ≤ 4, the largest MTED(n) sets are the MTED(4) sets for the heuristics

EX-3 and EX-4, which both contain 7, 698 heuristics.

From the observations made in this subsection, we can see that, for small n

values, a heuristic h’s MTED(n) set could potentially be used to find heuristics with

a higher fitness than h. We now define the neighbourhood of a program tree. The

neighbourhood of a program tree is a similar concept to a heuristic’s MTED(n) set,

but is defined in more general terms. Its definition is as follows:

Definition 23 (Neighbourhood of a Program Tree)

Given a language L, a candidate program tree h and an integer representing the upper

neighbourhood bound n, the neighbourhood N(h, n) is defined as all valid program

trees under L that can be obtained from h through a series of tree edits with a cost

of at most n. We assume that each tree edit has a cost of 1. If the program tree is

obvious from the context, we write N(n).

In Definition 23 we do not stipulate that the tree edits have to be the ones described

in Section 2.6, and it is feasible that this definition could be used with other types of

tree edits. However, for the remainder of this thesis, we only use this definition with

the edits described in Section 2.6. We have deliberately defined the neighbourhood

in such a way so that it mirrors the MTED(n) set described previously, however

the neighbourhood is a more general concept. The key difference between the

neighbourhood and the MTED(n) set is that the MTED(n) set contains heuristics

exactly n edits away from the candidate, while the neighbourhood contains program

trees requiring edits with a cost of at most n to obtain from the candidate.

In the remaining sections in this chapter we use the neighbourhood of a heuristic

in several experiments. We do not have an algorithm to calculate the neighbourhood

of an arbitrary program tree, so we instead use the memoized results from the

exhaustive enumeration experiments described in Chapter 4 to create each heuristic’s

neighbourhoods. Specifically, we use the heuristics in Language A of size ≤ 15. We

use Algorithm 5.1 to create all the heuristic’s neighbourhoods once, then memoize

the results so they can be reused. Constructing the required neighbourhoods took 14

hours using the system described in Section 4.2.2.

The evidence laid out in this section suggests that neighbourhoods with upper

bounds of at most 4 could be well suited for finding higher quality heuristics, or

neighbours, and we hypothesise that this could be used as a form of program synthesis.

In the next section we perform experiments to explore this relationship further, with
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Algorithm 5.1 Memoize-Neighbourhoods

Input: H Vector of memoized heuristics.

n Maximum neighbourhood bound used.

Output: A map of pairs of heuristics h and integers i to sets of heuris-

tics. Each map element describes the set of heuristics in h’s N(i)

neighbourhood.

algorithm Memoize-Neighbourhoods(H, n)

m = [] ▷ Initialise map.

for (i ∈ {0 . . . H.Size()− 1}) do
h1 = H[i]

for (j ∈ {i+ 1 . . . H.Size()− 1}) do
h2 = H[j]

dist = MTED(h1, h2, γ) ▷ Cost function γ is identical to that used

if (dist ≤ n) then in Section 2.6.

m.At({h1, dist}).Append(h2) ▷ As the MTED is symmetric, only

m.At({h2, dist}).Append(h1) one comparison is needed.

return m

the goal of ascertaining whether the exploration of a heuristic’s neighbourhood is a

feasible basis for program synthesis.

5.3 Analysing a Heuristic’s Neighbourhood

In this section we perform a set of experiments designed to ascertain whether exploring

the neighbourhood of a heuristic could be used as the basis for a program synthesis

method. The experiments described in this section make use of the memoized results

from Chapter 4, using all heuristics in Language A of size ≤ 15. To be clear, the

candidate heuristics and the neighbourhoods created only contain heuristics of size

≤ 15 - we do not consider any neighbours that are of a larger size.

The outline of this section is as follows; in Section 5.3.1 we examine the percentage

of a candidate heuristic’s neighbourhood that have a higher fitness than the candidate.

In Section 5.3.2 we examine the size of a heuristic’s neighbourhood. Finally in

Section 5.3.3 we examine candidate heuristic’s neighbourhoods to determine the

number of evaluations required to find a fitter neighbour.
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5.3.1 Percentage of Fitter Neighbours

We begin by performing a set of experiments examining a heuristic h’s neighbourhood

to determine what percentage of h’s neighbours have a higher fitness than h. This

experiment is performed to determine the chance of finding a fitter neighbour if we

were to probe the neighbourhood randomly.

The experiment is designed as follows; we split every heuristic in Language A of

size ≤ 15 into sets. Each heuristic h with fitness f(h) is put into one of the following

sets: f(h) = 0, 0 < f(h) ≤ 10, 10 < f(h) ≤ 20, . . . , 40 < f(h) ≤ 50. From each of

these sets we chose 100 heuristics randomly, and found the neighbourhood N(h, n)

for n ∈ {1 . . . 4}. From the set of heuristics described by each neighbourhood, we

determined the percentage of those heuristics that had a higher fitness than h. In

Figure 5.3 we show these results.

We can see that in each graph, there are many heuristics with a high proportion

of neighbours that are fitter - that is to say, with higher fitness than the candidate

heuristic. We can also see that there is generally a negative correlation between the

proportion of a heuristic h’s neighbourhood that are fitter, and h’s fitness. This

becomes more pronounced as we consider neighbourhoods with a higher n bound. In

essence, a higher fitness corresponds to less neighbours that are fitter. This result

was somewhat expected; we know from Table 4.4b that this set contains a small

number of heuristics with a high fitness. It stands to reason that for heuristics with

an already high fitness, there are fewer neighbours that have a higher fitness.

We can also see that for all neighbourhoods considered, there are some heuristics

that have no fitter neighbours. We consider these heuristics to be the “optimum”

heuristic in its neighbourhood. As we consider larger neighbourhood bounds, the

number of optimum heuristics decreases. Yet, even for heuristics with a high fitness

(> 40), there are still some heuristics whose N(4) neighbourhoods contain no fitter

neighbours. For lower n values, the proportion of candidate heuristics that have a

low fitness value and a low proportion of fitter neighbours increases. This suggests

to us that the smallest n values may be insufficient for consistently finding fitter

neighbours.

Generally we can see that, as we consider higher bounded neighbourhoods, the

proportion of a heuristic’s neighbourhood that are fitter decreases. Yet for lower

bounded neighbourhoods, the number of heuristics with no fitter neighbours increases.

This suggests that there is a balance between neighbourhood upper bound and
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(a) The percentage of heuristics in neighbourhoods described by N(1) that are fitter than

the candidate heuristic.

(b) The percentage of heuristics in neighbourhoods described by N(2) that are fitter than

the candidate heuristic.

Figure 5.3: The percentage of heuristics in neighbourhoods described by N(n), where

n ∈ {1 . . . 4}. The candidate heuristics are in Language A of size ≤ 15. The same

candidate heuristics are used in each experiment.
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(c) The percentage of heuristics in neighbourhoods described by N(3) that are fitter than

the candidate heuristic.

(d) The percentage of heuristics in neighbourhoods described by N(4) that are fitter than

the candidate heuristic.

Figure 5.3: The percentage of heuristics in neighbourhoods described by N(n), where

n ∈ {1 . . . 4}. The candidate heuristics are in Language A of size ≤ 15. The same

candidate heuristics are used in each experiment. (Continued)
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neighbourhood fitness quality; too small a neighbourhood bound, and there may

be no fitter neighbours. Too large a bound and it may be difficult to find a fitter

neighbour. In the next subsection we analyse the size of these neighbourhoods.

5.3.2 Size of Neighbourhood

In this subsection we present data concerning the size of the neighbourhoods of a set

of heuristics, with the goal of understanding what the relationship is between the

size of a heuristic and the size of its neighbourhood. We performed an experiment

described as follows; we split all the heuristics in Language A of size ≤ 15 into

sets according to their size. Each heuristic h with size s(h) was put into one of the

sets s(h) ≤ 10, s(h) = 11, s(h) = 12, . . . , s(h) = 15. We then chose 100 heuristics

randomly from each set, and calculated their neighbourhoods N(n) for n ∈ {1 . . . 4}.
In Table 5.2 we present statistical data regarding the size of these neighbourhoods.

From these results, we can draw two clear conclusions; firstly, for any neighbour-

hood N(h, n), the size of the neighbourhood increases compared to the size of N(h,

n − 1). This data reinforces our observations from Section 5.2. Secondly, larger

heuristics generally have more neighbours. However, this is not always true, and we

believe this will depend on the structure of the heuristic and the language used. For

example, in Tables 5.2a and 5.2b we show the statistical data for N(1) and N(2).

From that data we can see that for the heuristics of size ≤ 10, the neighbourhood

size average is greater than that for heuristics of size 11.

We can also see that the difference between the neighbourhood sizes for N(h, n)

and N(h, n− 1) is not constant, and appears to grow exponentially. In the previous

subsection we noted that there is a balance between the neighbourhood bound and

the percentage of fitter neighbours. The data presented in this subsection suggests

that higher neighbourhood upper bounds will produce much larger neighbourhoods,

and so this should be taken into account when deciding what neighbourhood bound

to use.

5.3.3 Finding a Fitter Neighbour

In this subsection we use the data about the size and quality of the heuristics in a

neighbourhood to determine how quickly a fitter neighbour can be found if probing

the neighbourhood randomly. The experiment we perform is described as follows; we

split all heuristics in Language A of size ≤ 15 into sets. These sets are based on a
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Table 5.2: Statistical data pertaining to the neighbourhood size of different sized

heuristics. For each neighbourhood bound n ∈ {1 . . . 4} we split all the heuristics into

sets according to their size, picked 100 heuristics from these sets randomly, generated

those heuristic’s neighbourhoods, and then calculated statistical data about the size

of the neighbourhoods.

(a) Statistical data concerning the size of neighbourhoods described by N(1).

Size of Heuristics in Set Average Min Q1 Median Q3 Max

≤10 12.08 0 8.0 11.0 17.0 17

11 10.57 6 10.0 11.0 12.0 13

12 13.3 4 11.0 14.0 15.0 16

13 16.18 6 14.0 17.0 18.25 19

14 18.8 7 17.75 21.0 22.0 22

15 20.87 9 17.0 22.5 25.0 25

(b) Statistical data concerning the size of neighbourhoods described by N(2).

Size of Heuristics in Set Average Min Q1 Median Q3 Max

≤10 85.39 24 57.0 67.0 131.0 131

11 79.04 51 75.0 81.5 89.0 97

12 108.63 58 86.0 115.0 125.0 136

13 145.64 71 119.0 150.0 171.75 184

14 190.17 73 165.5 217.0 234.0 234

15 220.28 54 149.0 243.5 281.0 300

(c) Statistical data concerning the size of neighbourhoods described by N(3).

Size of Heuristics in Set Average Min Q1 Median Q3 Max

≤10 367.31 83 264.0 343.0 552.0 552

11 429.87 282 416.0 445.0 462.0 500

12 605.77 307 498.0 625.0 677.0 736

13 846.72 441 692.0 897.0 988.0 1,066

14 1,194.57 446 1,024.25 1,357.0 1,477.0 1,478

15 1,367.96 180 760.0 1,472.5 1,919.0 2,087
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Table 5.2: Statistical data pertaining to the neighbourhood size of different sized

heuristics. For each neighbourhood bound n ∈ {1 . . . 4} we split all the heuristics into

sets according to their size, picked 100 heuristics from these sets randomly, generated

those heuristic’s neighbourhoods, and then calculated statistical data about the size

of the neighbourhoods. (Continued)

(d) Statistical data concerning the size of neighbourhoods described by N(4).

Size of Heuristics in Set Average Min Q1 Median Q3 Max

≤10 1,345.12 370 1,063.0 1,488.0 1,746.0 1,746

11 2,102.26 1,505 2,015.25 2,146.0 2,260.25 2,433

12 2,700.54 1,584 2,471.5 2,867.0 2,973.5 3,263

13 3,783.28 2,139 3,173.75 4,090.0 4,396.5 4,489

14 5,458.1 1,853 4,865.5 6,127.0 6,640.0 6,673

15 5,864.28 482 2,710.0 6,137.5 9,012.0 9,818

heuristic’s fitness value and size. In total there are 36 sets. Each set can be described

as a pair (s, f), where s denotes the size of the heuristics contained in the set and f

the fitness grouping of the heuristics contained within the set. The fitness and size

values are those used in Sections 5.3.1 and 5.3.2. From each set (where possible) we

chose 100 heuristics randomly. We then calculated the neighbourhood N(n) for each

heuristic for n ∈ {1 . . . 4}. From the information about the neighbourhood of each

heuristic, we calculated the number of evaluations required to have a 50% chance of

finding a fitter neighbour. In Figure 5.4 we show the results from this experiment.

In comparison to the other graphs, the results for N(1) in Figure 5.4a are the

most striking. There appears to be no heuristic that has a neighbourhood which

would require a large number of evaluations to find a fitter neighbour - apart from

those neighbourhoods that have no fitter neighbours.

However, for the larger neighbourhood bounds, we can see examples of heuristics

that require many more evaluations than others in the same graph. In Figure 5.4b we

can see that there is one heuristic that requires nearly 150 evaluations to have a 50%

chance of finding a fitter neighbour, yet the majority of the other heuristics require far

less evaluations. This trend continues as we consider higher neighbourhood bounds,

and in Figure 5.4d for N(4) some heuristics require several thousand evaluations to

have a 50% chance of finding a fitter neighbour.
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(a) The number of evaluations required to have a 50% chance of finding a neighbour fitter

than the candidate heuristic in neighbourhoods described by N(1).

(b) The number of evaluations required to have a 50% chance of finding a neighbour fitter

than the candidate heuristic in neighbourhoods described by N(2).

Figure 5.4: The number of evaluations required to have a 50% chance of finding a

neighbour fitter than the candidate heuristic in neighbourhoods described by N(n),

for n ∈ {1 . . . 4}. The candidate heuristics are in Language A of size ≤ 15. We also

show the size of each candidate heuristic.
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(c) The number of evaluations required to have a 50% chance of finding a neighbour fitter

than the candidate heuristic in neighbourhoods described by N(3).

(d) The number of evaluations required to have a 50% chance of finding a neighbour fitter

than the candidate heuristic in neighbourhoods described by N(4).

Figure 5.4: The number of evaluations required to have a 50% chance of finding a

neighbour fitter than the candidate heuristic in neighbourhoods described by N(n),

for n ∈ {1 . . . 4}. The candidate heuristics are in Language A of size ≤ 15. We also

show the size of each candidate heuristic. (Continued)
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Apart from N(1), all graphs show some change in the number of required evalua-

tions as we pass a fitness of around 40. This was somewhat expected, as we already

know that a tiny proportion of all heuristics have a fitness > 40, and it stands to

reason that to find fitter neighbours, a larger number of evaluations will be required.

Yet, we note that it is still possible to find fitter neighbours at these high fitness

values, even if the number of evaluations may be comparatively high in number.

The reader may note that the data in Figure 5.4 is coloured according to the

candidate heuristic’s size. This data was collected to ascertain whether there was

any noticeable difference in the number of required evaluations for different sized

heuristics. Generally we see no evidence for this across the whole data set. However,

for high fitness values there appear to be some heuristics of size ≤ 14 that require

more evaluations to find a fitter neighbour than some heuristics of size 15. We believe

this discrepancy is due to the fact that our subset of heuristics is bound at size 15.

Therefore, we are not considering the heuristics of size 15’s “true” neighbourhood, as

they likely contain heuristics of larger sizes which are not taken into consideration in

our experiments. We assume that we would see some change in these results if we

had access to the complete neighbourhood.

In this section we have performed several experiments analysing the neighbour-

hoods of heuristics. Through these experiments, we believe that we have shown it is

possible to find fitter heuristics by analysing a neighbourhood, that neighbourhoods

are not too large to explore, and that generally the number of evaluations required to

find a fitter neighbour is relatively small. From this data we believe that the upper

bound on the neighbourhood size should be set at 3 for Language A. A heuristic’s

N(n) neighbourhood appears to grow exponentially with n, and from these results

N(4) seems to offer little advantage compared to N(3) when finding fitter heuristics.

In the next section we perform experiments that are a continuation of those seen

here, where we consider a local search algorithm that moves through the space of

heuristics by continually probing the neighbourhood.

5.4 Simulated Local Search Experiments

In the previous section we presented data suggesting that the neighbourhood of

a heuristic (defined in terms of the MTED metric) could be used to find fitter

heuristics. In this section we perform experiments which simulate an iterative
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Algorithm 5.2 Local-Search-Greedy

Input: f Specification criteria represented as a fitness function.

L The language.

Output: The program tree with the highest fitness found according to f .

algorithm Local-Search-Greedy(f, L)

currentProgram = Initialise(L) ▷ Create initial program tree.

while (¬Termination-Criteria-Met()) do

nextPrograms = Neighbourhood-Generation(currentProgram)

change = False

bestProgramFromSet = currentProgram

for (program ∈ nextPrograms) do

if (f(program) > f(currentProgram)) then

bestProgramFromSet = program

change = True

if (change = False) then return currentProgram

else

currentProgram = bestProgramFromSet

return currentProgram

algorithm that repeatedly explores neighbourhoods, where the candidate heuristic used

in each iteration is the heuristic found from the previous iteration’s neighbourhood

exploration. In this way, we describe a method of program synthesis that we consider

to be analogous to local search.

Such a local search algorithm is simple in its formulation; an initial heuristic

is created and set as the candidate heuristic. Its neighbourhood is generated, and

explored until a fitter heuristic found. That fitter heuristic is made the new candidate

heuristic, and the process continues. We consider two local search algorithms in

this section; one “greedy” (picking the fittest heuristic in a neighbourhood) and

one “random” (picking the first heuristic found that is fitter). Pseudocode for

these two algorithms, which we call Local-Search-Greedy and Local-Search-

Rnd, is shown in Algorithms 5.2 and 5.3. The reader should note that, when the

neighbourhood is generated in both algorithms, the ordering of the returned heuristics

is randomised. This is to ensure no bias is introduced into the results through the

ordering of the heuristics.
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Algorithm 5.3 Local-Search-Rnd

Input: f Specification criteria represented as a fitness function.

L The language.

Output: The program tree with the highest fitness found according to f .

algorithm Local-Search-Rnd(f, L)

currentProgram = Initialise(L) ▷ Create initial program tree.

while (¬Termination-Criteria-Met()) do

nextPrograms = Neighbourhood-Generation(currentProgram)

change = False

for (program ∈ nextPrograms) do

if (f(program) > f(currentProgram)) then

currentProgram = program

change = True

break

if (change = False) then return currentProgram

return currentProgram

The format of this section is as follows; in Section 5.4.1 we describe the method-

ology used in the local search experiments, and in Section 5.4.2 we present each

experiment’s results.

5.4.1 Methodology

Each local search experiment is described by the triple (ls, n, s), where ls is a

local search algorithm, n is a neighbourhood bound and s is a heuristic size. Each

experiment is performed as follows; the local search algorithm ls is initialised with

a heuristic chosen randomly from all heuristics in Language A of size ≤ s. The

local search algorithm then progresses, with the neighbourhood generated on each

iteration described by N(n). The local search algorithm continues to termination.

We note that the neighbourhoods created can only contain heuristics of size ≤ s.

Each experiment is performed 1, 000 times.

The local search algorithm ls used in each experiment is either Local-Search-

Greedy or Local-Search-Rnd, the n value used is in the integer range {1 . . . 3},
and the s value used in the integer range ∈ {13 . . . 15}. In total, 18 simulated local

search experiments were performed. Together, these experiments took 4 hours to run

198



CHAPTER 5. ANALYSING HEURISTICS USING THE MTED

using the system described in Section 4.2.2. In Figure 5.5 we show the results from

this experiment. Those graphs show the fitness value of the final heuristic found from

each repetition. They are also ordered according to the fitness of the final heuristics.

By visualising the results in this manner, we are able to make observations about the

distribution of the final heuristic’s fitness values found from each experiment.

At an implementation level, these experiments are simulations, performed using

the results from the experiments described in Chapter 4, and the neighbourhoods

created from Algorithm 5.1. To be clear to the reader, the heuristics that can be

created from these experiments are only those which have been previously memoized

- therefore, it is impossible for these experiments to produce any new heuristics.

5.4.2 Results

Each of the data points in each of the graphs in Figure 5.5 represents the fitness

of the final heuristic found from a single repetition of local search. Using the

terminology from Section 5.3, we could refer to these heuristics as the optimum in

their neighbourhood. However, as we are emulating a local search algorithm, we feel

the term “local optima” is more appropriate for these heuristics that have no fitter

neighbours.

We can make two observations immediately about these results; firstly, the higher

neighbourhood bound n used, the better the final quality of heuristic found. Secondly,

the larger size of heuristics we consider, the better the quality of final heuristic found.

Of particular interest to us is the distribution of the final heuristic’s fitness in

each experiment. We had expected there to be some uniformity to this data; perhaps

it would be somewhat linear, or plateau at high fitness values. Instead, there appear

to be areas where there are many more heuristics with similar fitness values clustered

together. These are not plateaus concentrated around higher fitness values, but at

somewhat “average” fitness values. An example can be seen in the n = 2 and n = 3

simulations at a fitness value of ≈ 20 in Figure 5.5a. The distribution of fitness values

initially rises quickly, then plateaus, before rising again. Our interpretation of this is

that these heuristics are in basins. The overarching algorithm has been unable to

select the correct sequence of edits to create a heuristic with a higher fitness value.

However, as to why there is a basin at this fitness value is perplexing to us; no other

data we have seen gives any indication as to why there would be a greater number of

heuristics at this fitness value that have no fitter neighbours.
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(a) Results from the simulated local search experiments performed on heuristics in Language

A of size ≤ 13 using the algorithm Local-Search-Rnd.

(b) Results from the simulated local search experiments performed on heuristics in Language

A of size ≤ 14 using the algorithm Local-Search-Rnd.

Figure 5.5: Results from the simulated local search experiments performed on various

subsets of heuristics in Language A. Each data point represents the final fitness of

the heuristic found from that repetition of local search. For each experiment 1, 000

repetitions were performed.
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(c) Results from the simulated local search experiments performed on heuristics in Language

A of size ≤ 15 using the algorithm Local-Search-Rnd.

(d) Results from the simulated local search experiments performed on heuristics in Language

A of size ≤ 13 using the algorithm Local-Search-Greedy.

Figure 5.5: Results from the simulated local search experiments performed on various

subsets of heuristics in Language A. Each data point represents the final fitness of

the heuristic found from that repetition of local search. For each experiment 1, 000

repetitions were performed. (Continued)
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(e) Results from the simulated local search experiments performed on heuristics in Language

A of size ≤ 14 using the algorithm Local-Search-Greedy.

(f) Results from the simulated local search experiments performed on heuristics in Language

A of size ≤ 15 using the algorithm Local-Search-Greedy.

Figure 5.5: Results from the simulated local search experiments performed on various

subsets of heuristics in Language A. Each data point represents the final fitness of

the heuristic found from that repetition of local search. For each experiment 1, 000

repetitions were performed. (Continued)
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When we compare the algorithms Local-Search-Greedy and Local-Search-

Rnd to each other, we would state that there appears to be no clear difference between

the two regarding the quality of results. In Figure 5.6 we show data pertaining to

the number of evaluations required for all repetitions and neighbourhood bounds

of both local search algorithms using heuristics in Language A of size ≤ 15. This

data shows us that when using the Local-Search-Rnd algorithm, the number

of evaluations required to find the local optima is much less than when using the

Local-Search-Greedy algorithm. In turn, this suggests that the Local-Search-

Greedy algorithm may be less desirable for real-world use. Though we do not

present the data, this trend was seen in all comparisons of the two algorithms. We

can also see from this data that there is no correlation between final heuristic fitness

and the number of evaluations required for the local search to terminate. This tells

us that, at least for the subset of heuristics considered, the best heuristics do not

necessarily require more computational resources to find.

In Figure 5.7 we show the results from Figure 5.5 with the duplicate final heuristics

removed. In these graphs we can clearly see that there are far fewer unique data

points, which tells us that many search derivations are reaching the same local optima.

This effect is more pronounced for larger neighbourhood bounds - for example, only

310 unique heuristics were found from all repetitions of the local search experiment

described by the triple (Local-Search-Rnd, 3, 15).

To explore this relationship further, we calculated the MTED between these 310

unique heuristics. We did this to gain insight into how “close” they are to each other

under this metric. For example, if they are just outside the neighbourhood bound

used, it would suggest that the heuristics are in basins relatively close to each other.

If they are further away, it would suggest that there are multiple areas of the search

space where there are heuristics with high fitness values.

In Figure 5.8 we show each heuristic’s MTED to the fittest of the 310 heuristics

plotted against its fitness. We can see that many heuristics are not near the bound

of the neighbourhood (3), instead appearing to be much further away. We also

calculated the fitness distance correlation from this data [91] and note that this

suggests that there is some correlation between fitness and distance.

In Figure 5.9 we show the MTED between the fittest 20 heuristics from this

set. Though this is only a snapshot of the full matrix, we can see that the distance

between most heuristics is quite large, and very few lie just above the neighbourhood
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(a) The number of evaluations performed in each repetition of the simulated local search

experiments performed on heuristics in Language A of size ≤ 15. These results are from

the experiments that used the algorithm Local-Search-Rnd.

(b) The number of evaluations performed in each repetition of the simulated local search

experiments performed on heuristics in Language A of size ≤ 15. These results are from

the experiments that used the algorithm Local-Search-Greedy.

Figure 5.6: The number of evaluations performed in each simulated repetition of

local search using heuristics in Language A of size ≤ 15.
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(a) Results from the simulated local search experiments performed on heuristics in Language

A of size ≤ 13 using the algorithm Local-Search-Rnd, with duplicate results removed.

(b) Results from the simulated local search experiments performed on heuristics in Language

A of size ≤ 14 using the algorithm Local-Search-Rnd, with duplicate results removed.

Figure 5.7: Results from the simulated local search experiments performed on various

subsets of heuristics in Language A, with duplicate results removed. Each data point

represents the final fitness of the heuristic found from that repetition of local search.

For each experiment 1, 000 repetitions were performed.

205



CHAPTER 5. ANALYSING HEURISTICS USING THE MTED

(c) Results from the simulated local search experiments performed on heuristics in Language

A of size ≤ 15 using the algorithm Local-Search-Rnd, with duplicate results removed.

(d) Results from the simulated local search experiments performed on heuristics in Language

A of size ≤ 13 using the algorithm Local-Search-Greedy, with duplicate results removed.

Figure 5.7: Results from the simulated local search experiments performed on various

subsets of heuristics in Language A, with duplicate results removed. Each data point

represents the final fitness of the heuristic found from that repetition of local search.

For each experiment 1, 000 repetitions were performed. (Continued)
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(e) Results from the simulated local search experiments performed on heuristics in Language

A of size ≤ 14 using the algorithm Local-Search-Greedy, with duplicate results removed.

(f) Results from the simulated local search experiments performed on heuristics in Language

A of size ≤ 15 using the algorithm Local-Search-Greedy, with duplicate results removed.

Figure 5.7: Results from the simulated local search experiments performed on various

subsets of heuristics in Language A, with duplicate results removed. Each data point

represents the final fitness of the heuristic found from that repetition of local search.

For each experiment 1, 000 repetitions were performed. (Continued)

207



CHAPTER 5. ANALYSING HEURISTICS USING THE MTED

bound. Of interest to the reader may be the two entries where the MTED is reported

as being below the bound 3. Upon further investigation it was found that both pairs

of heuristics were semantically identical to each other, and had reported the exact

same fitness. Since our local search method only moves to the fitter heuristic, both

heuristics in each pair are local optima, and exist on a plateau together.

Other researchers have performed experiments using the fitness distance correlation

to analyse the relationship between heuristics, such as Ochoa, Qu, and Burke [136].

This work is much more comprehensive in scale than ours, and performed on a

solution space that is enumerable - whereas the work described here is performed

on a partial search space which is computationally expensive to produce. In future

work, a more comprehensive analysis on the landscape of heuristics when analysed

using the MTED metric could provide invaluable insight into how to improve our

local search algorithm, and allow us to produce more effective LS-SAT heuristics.

5.5 Discussions & Conclusions

In this chapter we have performed an analysis on the heuristics in Language A of

size ≤ 15 using the MTED metric. We have shown that neighbourhoods of heuristics

can be defined through this metric, and illustrated how these neighbourhoods can be

probed to find fitter heuristics. We then showed how, through the sequencing of the

probing of neighbourhoods, we can simulate local search on this subset of heuristics.

Through these simulations, we presented evidence suggesting that local search is a

viable method of program synthesis.

From the results in Section 5.3 we surmised that, while a large neighbourhood

bound would produce fitter neighbours, it could be considered too large to explore

effectively. A neighbourhood described by N(3) was considered to be the most

effective; providing opportunities for fitter neighbours to be found, but not requiring

a large number of evaluations to do so. In Section 5.4 we showed how highly effective

heuristics could be created using two different local search algorithms. However, we

found that the algorithm Local-Search-Greedy produced results that required

many more evaluations to obtain than Local-Search-Rnd. Generally the quality

of heuristics produced from all local search experiments was high, with those that

used larger neighbourhood bounds producing the fittest heuristics.

Some of the results have shown us that larger neighbourhood bounds generally
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Figure 5.8: Graph showing the fitness distance data for the 310 unique heuristics

found from the 1, 000 runs of the local search experiment described by the triple

(Local-Search-Rnd, 3, 15). For each heuristic h we show the fitness of h plotted

against the MTED from h to the fittest of the 310 heuristics. The fitness distance

correlation [91] - the relationship between fitness and distance - is -0.62749, suggesting

some correlation between distance and fitness.
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0

7 0

7 4 0

6 8 9 0

10 10 7 10 0

6 9 10 6 11 0

8 5 4 9 7 9 0

7 7 6 5 8 8 6 0

9 6 7 8 8 8 7 8 0

9 5 7 9 10 9 9 10 7 0

9 10 9 9 7 7 8 7 8 11 0

10 10 8 7 10 7 8 6 9 11 10 0

10 10 8 7 10 7 8 6 9 11 10 2 0

10 7 9 7 12 10 10 9 7 9 12 10 10 0

10 7 9 7 12 10 10 9 7 9 12 10 10 2 0

9 8 5 9 5 9 5 7 5 9 7 7 7 8 8 0

8 10 9 9 9 11 10 6 8 12 7 11 11 12 12 9 0

10 10 9 5 11 7 8 6 10 11 10 6 6 10 10 8 11 0

7 7 8 7 7 6 8 4 6 9 7 8 8 9 9 7 6 9 0

6 9 9 10 10 6 10 9 10 10 11 10 10 12 12 11 12 8 6 0

Figure 5.9: Matrix showing the MTED between the fittest 20 unique heuristics

returned from the 1, 000 runs of the local search experiment described by the triple

(Local-Search-Rnd, 3, 15). As the MTED is symmetric, we only show the lower

half of the matrix.

contain fitter heuristics. However, they have also shown us that large neighbourhood

bounds can produce large neighbourhoods. As a potential avenue of future research,

we suggest that an algorithm which uses a dynamic neighbourhood bound could prove

to be effective at navigating the search space of heuristics. That is, a neighbourhood

bound that changes as the algorithm progresses - for example, if the algorithm can

find no fitter neighbours. Such an algorithm could partially alleviate concerns about

the sizes of neighbourhoods with large bounds, yet would still allow them to be

explored. In essence such an algorithm would equate to a variable neighbourhood

search (VNS).

Through the experiments presented in this chapter, we believe we have provided

enough evidence that local search on program trees, or local search program synthesis,

is a viable technique for creating LS-SAT heuristics. However, in all the experiments

that we have conducted, we have used memoized results, and performed computa-

tionally expensive calculations to find the MTED for all the heuristics in the set

considered. For this local search algorithm to perform in a real-world setting, we

require an algorithm to generate a neighbourhood. In the next chapter we present

such an algorithm.
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Chapter 6

Neighbourhood Generation

6.1 Introduction

In the previous chapter we showed how LS-SAT heuristics created using Language

A could be compared to each other using the MTED metric. For a heuristic p and

integer n representing the upper neighbourhood bound, we defined the neighbourhood

of p as containing all heuristics that have a MTED cost of at most n from p. Taking

a small subset of the results obtained in Chapter 4, we calculated the neighbourhoods

for these heuristics and used them to perform local search on this subset of the search

space. Through these results we provided evidence that, using this definition of a

neighbourhood, local search is a viable method of program synthesis for this domain.

However, the method used to compute a heuristic’s neighbourhood is impractical

for a real-world local search algorithm. To understand why, let us examine the

methodology again; first we created a set of heuristics Sm defined as all those

heuristics containing at most m terms. Using the Cartesian product Sm × Sm we

computed the MTED value between all unique pairs in this set. Finally, to find the

neighbourhood of a heuristic p with a MTED cost of at most n from p, we filtered

the results that met this criteria. In Algorithm 5.1 we showed pseudocode for this

process.

Perhaps the most obvious reason for this being an impractical methodology

concerns the size of the search space, as we know that it is infinite. Therefore

algorithms based on this methodology will never be able to explore the entire search

space. Even if we limited the search to only those heuristics with up to m terms,

for many languages used with program synthesis techniques, the number of program
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trees in relation to m grows exponentially. As this methodology requires storing

all enumerated heuristics, for large values of m the storage requirement becomes

impractically large.

The second step in this methodology requires the calculation of the MTED cost

between all possible pairs in Sm. As the MTED metric is symmetric, for a set of size

k, exactly k2−k
2

calls to the MTED algorithm are needed. As the size of Sm grows

exponentially with m, and the number of required calls grows quadratically with the

size of the input set, it is infeasible to perform all the required MTED calculations

for large values of m.

Through these observations, we believe that the method of computing a heuris-

tic’s neighbourhood described in Algorithm 5.1 to be impractical for a real-world

local search algorithm. For our use-case, we require an algorithm that can create

a heuristic’s neighbourhood efficiently. We also require it to work on heuristics

containing a reasonably large number of terms, so that the search is not constrained

when exploring the infinite search space. Finally, we would like our method to be

generalised enough that it can be used for any generic program tree - specifically,

program trees written under languages that use a type system, as described in Sec-

tion 2.5.1. From this point on, we refer to a program tree’s neighbourhood, rather

than a heuristic’s neighbourhood, so as to remain consistent with the literature in

Section 2.5 concerning program synthesis. In this chapter, we present an algorithm

that meets these criteria.

The format of this chapter is as follows; in Section 6.2 we analyse the requirements

of the neighbourhood generation algorithm, before formalising the inputs and outputs

in a function prototype. We present this in an object-orientated paradigm, and call

the object Neighbourhood-Generation. The function prototype consists of a

constructor and the function that returns a neighbourhood, GenerateSuccessors.

Informally in Section 6.3, we consider two different methods of generating the

neighbourhood for a program tree; one that considers the entire input program tree

as valid for performing edits on, and the other that relies on recognising patterns in

a program tree, and re-using previously discovered edit sequences. We show how the

first of these is infeasible.

In Section 6.4, we take the remaining methodology considered in the previous

section, and use it to define GenerateSuccessors. We specifically formalise

the idea of the pattern and edit sequence, before abstracting these concepts. We
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show how patterns are recognised and edits applied to the input program tree. In

Section 6.5 we describe a randomised version of GenerateSuccessors, which

allows the neighbourhood of a program tree to be probed without constructing the

entire neighbourhood.

In Section 6.6, we show how the constructor for Neighbourhood-Generation

is defined. Succinctly, it works by enumerating all possible patterns that could be

encountered in a program tree, and then finds all possible edit sequences that could

be relevant for generating any output program trees. Finally in Section 6.7 we present

our conclusions from the research presented in this chapter.

6.2 Function Signature

In this section we analyse our use-case of the neighbourhood generation algorithm;

that is to say, its role as a generator of a neighbourhood in a local search algorithm.

Using the observations from this analysis, we show a function signature that we

feel fulfils our needs from such an algorithm. We also re-introduce Language EX-1

(originally introduced in Figure 2.7), which is used in this chapter to show examples

of how the algorithm works. We then discuss the limitations of the algorithm -

specifically, those regarding what types of languages can be used with it. To be clear

to the reader, the algorithm described in this chapter is a generic algorithm, for use

with any typed language - not just those we use it with in this thesis.

To begin, let us formalise exactly what is required of the algorithm. In the intro-

duction to this chapter, we stated that the algorithm Memoize-Neighbourhoods

(see Algorithm 5.1) can be used to memoize the neighbourhoods of a set of program

trees. This memoized data allows us to, when given a program tree p and a maximum

neighbourhood bound n, get the set of program trees whose MTED from p is less

than or equal to n. It is this functionality that we wish to emulate.

However, there are several generalisations we can make to this initial specification.

In Chapter 5 we assumed that each edit had a cost of 1. However, in some MTED

algorithms, different cost functions can be used. A cost function in the context of

an MTED algorithm describes an attributed cost for each insertion and deletion of

a node, as well as the cost of relabelling one node with another. For example, an

insertion of a node t may have a cost of 3. There are some requirements of such a

cost function for use with an MTED algorithm, which we discussed in Section 2.6.
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The algorithm we describe in this chapter does not allow an arbitrary cost function

to be used with it, but we do describe it in a form that allows some generalised use

that retains consistency with the cost function requirements given in Section 2.6.

Each term t in a language L has an associated cost, which we reference by writing

Cost(t). The cost of an insertion or deletion of t is Cost(t). The cost of relabelling

t1 with t2 is given as max(Cost(t1), Cost(t2)). Relabelling a node with itself has a

cost of 0.

Rather than the algorithm returning a single set of program trees, we design it

so that it returns a structure that contains information pertaining to the cost and

number of edits from the input program tree to each output program tree. The

structure is in the form of a collection, where each element contains a map, which

in turn contains a set of program trees. Each outer collection is indexed by k and

each map indexed by i. A set of program trees at a specific k and i contains all

program trees with an MTED from p that has a combined cost of k, and uses exactly

i edits. This way, we can either consider the returned program trees as sets separated

by the cost of the edits to create them, or as a single set through some inexpensive

post-processing.

Throughout Chapter 5 we can observe that the n values given to the experiments

were taken from a small pool of values. In all of the local search experiments

performed, we generated program trees whose cost of edits was from between 1 and 3

from the candidate program tree. We assume that the maximum n value is known

beforehand, and can be used to initialise the neighbourhood generation algorithm.

Though it may seem an obvious assertion, the input program trees provided to

the algorithm, and those returned, should all be consistent with the type rules of the

language; that is to say, they should be type safe.

Concerning the language that the program trees are written in, the methodology

presented in Chapter 5 only makes use of the language when it is enumerating all

program trees. However, for our neighbourhood generation algorithm, the language

is a required input. We will need to relabel and insert nodes into program trees, and

will need a complete library of all terms that are in the language.

Based on these observations, we have created a function prototype in an object-

orientated design called Neighbourhood-Generation, shown in Algorithm 6.1.

It contains a constructor, and the function that returns the neighbourhood, Gener-

ateSuccessors.

214



CHAPTER 6. NEIGHBOURHOOD GENERATION

Algorithm 6.1 Neighbourhood-Generation Object Prototype

Constructor

Input: L The language. Conceptually a list of pairs and a cost function.

Each element in each pair contains a term and a type signature.

nmax The upper bound on the maximum cost of edits allowed.

GenerateSuccessors

Input: p The input program tree. Each node contains a term from L.

n The maximum cost of the edits allowed from p to any output

program tree.

Output: The set of trees that can be created from p using tree edits with

a combined cost of at most n. It is represented as a collection.

Each element at index k ∈ {0 . . . n} contains a map. Each

element of the map contains an integer i mapping to a set of

trees. The edit sequences to obtain any of the program trees in

the set at (k, i) from p have a combined cost of exactly k using

exactly i edits. Each returned edit sequence has the minimum

cost of all edit sequences which would create the same tree.

The reader should note that this is an initial function prototype and in Section 6.4.7

we change the function signature of GenerateSuccessors, as additional details

about the underlying algorithm become clear.

6.2.1 Mock Language

Throughout the rest of this chapter we will be using examples of program trees to

illustrate to the reader how the algorithms described work. We will be using Language

EX-1 in those examples. This language was previously introduced in Figure 2.7, and

is outlined again in Figure 6.1, where we also show the Cost value associated with

each term in the language.

The reader may question why we do not use Language A in the examples given

in this chapter, as it has been used extensively in previous chapters. Due to the

many terms and functions in Language A, we feel that a smaller language with less

principle types will aid in the understanding of the algorithms.

As an introduction to the notation used in this chapter to describe program trees,

as well as providing an example of a program tree written in Language EX-1, we
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Term Type Signature Cost

0 Int 1

1 Int 1

+ Int → Int → Int 1

− Int → Int → Int 1

negate Int → Int 1

coinFlip Bool 1

intIf Bool → Int → Int → Int 1

lessThan Int → Int → Bool 1

Figure 6.1: The Language EX-1. We use this language to show examples of the

neighbourhood generation algorithm described in this chapter. We show each term

with its associated type signature and Cost value. The set of principle types in

Language EX-1 is {Bool, Int}.

show two identical program trees in Figure 6.2. The program tree in Figure 6.2a is

presented as the other program trees have been in this thesis; that is to say, each

node contains a term from the language. In the program tree in Figure 6.2b, each

node contains a term and that term’s relevant typing information. Above each term

t is the return type of t. Below t are the required types of the arguments to t. This

visualisation allows us to quickly look at a program tree and see whether it is valid

under a language’s typing rules; that is to say that it is type safe, or it type checks.

We will be using this representation (or variants of it) for the remainder of this

chapter, as we believe it aids in the understanding of the algorithms.

The types of language that the neighbourhood generation algorithm described

in this chapter can be used with are those explicitly described in Section 2.5.2.

Succinctly, it can be used with those languages with a monomorphic type system

that prohibit currying.
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+

−

1 1

negate

1

(a) An example of a program tree

written in Language EX-1. Each

node in the tree is annotated with

a term from the language.

Int

+

Int Int

Int

−
Int Int

Int

1

Int

1

Int

negate

Int

Int

1

(b) An example of a program tree

written in Language EX-1. Each

node is annotated with a term, the

terms return type (above) and the

terms arguments (below). We can see

that this program tree type checks.

Figure 6.2: An example program tree under Language EX-1 that type checks. It is

shown in two alternate representations. The left shows just the terms in each node.

The right shows additional typing information.
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6.3 Example Neighbourhood Generation

Algorithms

In this section we informally describe two methods of creating the GenerateSuc-

cessors algorithm. The observations made in this section allow us to create an

implementation of Neighbourhood-Generation in Section 6.4 and Section 6.6.

In Section 6.3.1 we show some examples of input and output from Generate-

Successors, and introduce a DSL that is used to formulate sequences of tree

edits.

In Section 6.3.2 we informally describe one potential way that GenerateSuc-

cessors could be defined. We term this the “naive method”, and show that it is

impractical to use as it requires the exploration of a search space that would be

intractable for large program trees.

In Section 6.3.3 we show how patterns of terms can reoccur in program trees. It

is this key observation that serves as an introduction to how the Neighbourhood-

Generation algorithm is implemented in Section 6.4 and Section 6.6.

6.3.1 Notation & Example Output

In Figure 6.3 we show two program trees. This figure illustrates the process of taking

the program tree in Figure 6.2 and applying 2 edits to it. The program tree after

the first edit is shown in Figure 6.3a, and the program tree after the second edit in

Figure 6.3b. The program tree in Figure 6.3b is an example of a program tree that

would be returned from GenerateSuccessors when given the input program tree

in Figure 6.2, and an n value of at least 2. The edits themselves are both insertions

of new nodes, which are highlighted with blue borders. The reader can see that after

the first insertion, the program tree is not type safe. It is only after the second node

is inserted that it becomes type safe.

The input program tree can be seen as the start state, and all of the output

program trees seen as the end states. The sequence of program trees between a start

and an end state corresponds to a sequence of edits that identify each change made

from one program tree to the next in the sequence. To describe edit sequences, we use

the DSL TE-1 in Table 6.1. This language is designed to work on generic trees, rather

than program trees under a specific language. Each edit is performed in relation to a

current node, or context - that is to say, each edit is performed relative to a node in
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Int

+

Int Int

Int

*+

Int Int

Int

−
Int Int

Int

1

Int

1

Int

negate

Int

Int

1

(a) The program tree after a single node has been inserted into the program tree in Figure 6.2.

This program tree does not type check and is considered an intermediary state in this

sequence of program trees.

Int

+

Int Int

Int

+

Int Int

Int

−
Int Int

Int

1

Int

1

Int

*1

Int

negate

Int

Int

1

(b) The program tree after a second node has been inserted into the program tree in

Figure 6.3a. This program tree type checks and is considered the end state in this sequence

of program trees. When the function GenerateSuccessors is given the program tree in

Figure 6.2 and an n value of at least 2, this program tree would be an example of output

returned.

Figure 6.3: A pair of program trees written in Language EX-1. Together with the

program tree in Figure 6.2, they can be viewed as a sequence. Each tree is obtained

by inserting a node into the previous. In each tree the inserted node is shown by a

blue outline. The node with an asterisk in is the current context.
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Table 6.1: The Language TE-1. This DSL is designed to describe tree edits in relation

to a current node or context. It is formulated in a generic manner, so that it can be

used on generic trees. Sequences of edits can be chained together to perform multiple

edits on a tree.

Edit Arguments Description

Insert

t The node to insert Inserts node t underneath the current con-

text c at position k. i subsequent children

of c after position k are taken as t’s chil-

dren. t becomes the new context.

k Insertion position

i Number of arguments

Delete

k Deletion position Delete node at index k under the current

context c. The sequence of children that

the node at k had are inserted where k was

under c. The context does not change.

Relabel

t The new label Relabels the node under the current con-

text c at position k with the label t. t

becomes the new context.

k Relabel position

b Boolean variable. Used

for type-based edits

MoveUp
None Moves the context to the parent of the

current node.

MoveDown
k Move position Moves the context to the kth child of the

current context.

the tree. At the beginning of a sequence of edits, the context is set to the root, and

it changes as edits are performed. The DSL includes two primitives used for moving

through a tree without making any edits; MoveUp for moving to a parent node and

MoveDown for moving to an indexed child node.

We call an edit sequence that operates on terms defined by a language a term-based

edit sequence. An example of a term-based edit sequence is presented in Figure 6.4.

It shows the sequence of tree edits that correspond to the intermediary steps shown

in Figure 6.3. In the program trees in Figure 6.3 the node with the current context is

shown by an asterisk.
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Move Name t k i b

Insert + 0 1 N/A

Insert 1 1 0 N/A

Figure 6.4: A term-based edit sequence. It can be used to transform the program tree

in Figure 6.2 into the program tree in Figure 6.3b via the program tree in Figure 6.3a.

It is described in terms of the DSL TE-1, an overview of which is given in Table 6.1.

6.3.2 Naive Method

The sequence of program tree states shown in Figure 6.3 illustrates one possible

way that GenerateSuccessors could work - that is, by treating the generation

of output trees as a search problem. By this we mean, the input program tree is

considered the start state, and all possible next steps in the search are found by

performing every possible edit on this start state. Every subsequent successor state

in turn has every possible edit applied to it, creating a new set of successor states.

This process continues until the cost of the sum of edits is at most n. Any valid

output program trees (or in this context, end states) that are found are returned.

In this subsection we will analyse this method, and show why it is not viable due

to the exponentially large search space. Each one of the edits that can be performed

(insert, relabel and delete) are analysed below to calculate the number of successor

states that will be created for a generic program tree with k nodes, each of which

contains a term from a language that has a total of |L| terms. We will assume in this

subsection that each edit has a cost of 1 and therefore, the cost of n edits will be

exactly n.

Deletion

The number of successor states for a given program tree that are created when deleting

a single node is simple to compute; since there are k nodes, k different deletions can

occur, and therefore there are k possible successor states.

Relabel

For a single node in a tree, it can be relabelled to |L| − 1 different terms. The −1

comes from the fact that the node cannot be relabelled with itself. Since there are k

terms, the number of possible successor states is k(|L| − 1).
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Insertion

The number of possible successor states that are created when an insertion occurs

is much harder to compute. It is impossible to know the exact number of successor

states for a tree with k nodes. However, we can determine an upper bound.

To do so, rather than calculating the number of successor states found from

inserting terms from a language L, we will consider the number of successor states

that can be found from inserting an unlabelled node. Later we will consider how the

language changes the number of successor states.

Let us first consider a node a with m children. We can state that there are

the following number of successor states that can be created from inserting a single

unlabelled node underneath a:

• m+1 insertions of a node with no children. In each successor state a has m+1

children.

• m insertions of a node with a single previously existing child. In each successor

state a has m children.

• m− 1 insertions of a node with 2 previously existing children. In each successor

state a has m− 1 children.

• . . .

• 2 insertions of a node with m− 1 previously existing children. In each successor

state a has 2 children.

• 1 insertion of a node with all previously existing children. In the successor state

a now has 1 child.

Using the arithmetic series, we can state that there are 1
2
(m+ 2)(m+ 1) possible

successor states created by inserting an unlabelled node under a.

In general for any tree, inserting a single unlabelled node above the root will

create a single successor state. For a tree with l leaves, inserting an unlabelled node

underneath any of these leaves will create l successor states.

We know from the arithmetic series and the deductions in the previous paragraph

that, given a tree with k nodes, where k−1 of these nodes are the children of the root,

there are k + 1
2
(k + 1)k possible successor states created by inserting an unlabelled
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node. We call this tree configuration c1. We will now prove that, for an arbitrary

tree with k nodes, this is the upper bound on the number of successor states created

from inserting an unlabelled node.

Let us begin by considering a tree with k nodes in a different configuration to

c1. We call this configuration c2. In this tree the root node has k − s− 1 children,

where 0 < s < k − 1. One of the children of the root itself has s children. c2 can be

thought of as being created by splitting c1’s k − 1 nodes into two sets. The number

of successor states found from the insertion of an unlabelled node for c2 is given by

k − 1 + 1
2
(k − s+ 1)(k − s) + 1

2
(s+ 2)(s+ 1).

Below we show that there are more successor states created from the insertion of

an unlabelled node in c1 than there are from the insertion of an unlabelled node in c2.

k +
1

2
(k + 1)k > k − 1 +

1

2
(k − s+ 1)(k − s) +

1

2
(s+ 2)(s+ 1) (6.1)

Expand brackets

k +
1

2
(k2 + k) > k − 1 +

1

2
(k2 − 2ks+ s2 + k − s) +

1

2
(s2 + 3s+ 2) (6.2)

Expand brackets

k +
k2

2
+

k

2
> k − 1 +

k2

2
− ks+

s2

2
+

k

2
− s

2
+

s2

2
+

3s

2
+ 1 (6.3)

Simplify and subtract k + k2

2
+ k

2
from both sides

0 > −ks+
s2

2
− s

2
+

s2

2
+

3s

2
(6.4)

Simplify and add ks to both sides

ks > s2 + s (6.5)

Divide both sides by s then subtract 1

k − 1 > s (6.6)

We know from our description of c2 that k − 1 > s is always true, therefore we can

state that inserting an unlabelled node into c1 will always create more successor states

than inserting an unlabelled node into c2.

We can take the tree configuration c1 and split its k nodes into two subsets in the

same manner as described for c2. By repeatedly performing this splitting of nodes,

it is possible to describe any tree configuration with k nodes. As we have shown

inserting an unlabelled node into a tree split in this way will create less successor

states than inserting an unlabelled node into the original tree, it follows that the

upper bound on the number of successor states from inserting an unlabelled node in

a tree with k nodes is k + 1
2
(k + 1)k.
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Returning to our original goal, we can state that, for a language L, there are at

most |L|(1
2
(k + 1)k) + k successor states that will be created from the insertion of a

node into a tree containing k terms.

Number of States

By taking the summation of these results, we can state that there is an absolute

maximum of (|L|(1
2
(k + 1)k) + k) + k + k(|L| − 1) successor states for a single edit.

It is obvious that insertion makes this quadratic in complexity. We can state that

(|L|(1
2
(k + 1)k) + k) + k + k(|L| − 1) ∈ O(k2|L|). For n edits, this means that the

number of end states is ∈ O(k2n|L|n).
We feel that this provides enough evidence that this method is impractical for

large program trees, or program trees written under languages with many terms.

Attempts were made to construct an algorithm using this methodology, but it quickly

became apparent that it was infeasible as it took several minutes to compute results

for a single program tree. For this reason, we focused our efforts on alternative

methodologies for creating the Neighbourhood-Generation algorithm.

6.3.3 Identifying Common Patterns

In this subsection we illustrate to the reader an alternate methodology for generating a

program tree’s neighbourhood. Let us consider Figure 6.5, which shows a term-based

edit sequence and a program tree. The edit sequence in Figure 6.5b can be applied

to the program tree in Figure 6.2 to obtain the program tree shown in Figure 6.5a.

This program tree and edit sequence are vitally important for understanding the

methodology used in this chapter for generating a program tree’s neighbourhood.

The reader can see that the edit sequences in Figures 6.4 and 6.5b are nearly identical.

The only difference is that in the edit sequence in Figure 6.5b, the context is moved

downwards initially. The edits themselves can be seen as being performed on the same

“core” part of a program tree; that is to say, at the point where the first insertion is

performed, one could interpret the contexts as being the same. They are both at

a point where their current node requires two Int arguments and has two children,

both of which return an Int argument. A visualisation of this pattern can be seen in

Figure 6.6a, which can be considered the start state. By applying the edit sequence

in Figure 6.4, we can produce the intermediary state and end state program trees in

Figures 6.6b and 6.6c.
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Int

+

Int Int

Int

-

Int Int

Int

+

Int Int

Int

1

Int

1

Int

1

Int

negate

Int

Int

1

(a) A program tree written in Language EX-1. When the function GenerateSuccessors

is given the program tree in Figure 6.2 and an n value of at least 2, this program tree would

be an example of output returned.

Move Name t k i b

MoveDown N/A 0 N/A N/A

Insert + 0 1 N/A

Insert 1 1 0 N/A

(b) A term-based edit sequence. It can be used to transform the program tree in Figure 6.2

into the program tree in Figure 6.5a. It is described in terms of the DSL TE-1, an overview

of which is given in Table 6.1.

Figure 6.5: An example of a program tree and a term-based edit sequence. The edit

sequence can be used to transform the program tree in Figure 6.2 into the program

tree in Figure 6.5a.

225



CHAPTER 6. NEIGHBOURHOOD GENERATION

* Int Int

Int Int

(a) A tree representing a pattern of nodes in the program tree in Figure 6.2. The pattern

type checks and is considered the start state in this sequence of trees.

Int Int

Int

* +

Int Int

Int

Int

(b) The tree representing the pattern in Figure 6.6a after a single node has been inserted

into it. This pattern does not type check and is considered an intermediary state in this

sequence of trees.

Int Int

Int

+

Int Int

Int
Int

* 1

Int

(c) The tree representing the pattern in Figure 6.6b after a second node has been inserted

into it. This pattern type checks and is considered the end state in this sequence of trees.

Figure 6.6: Three trees, each an abstract representation of a part of a program tree

written in Language EX-1. They can be viewed as a sequence. Each tree is obtained

by inserting a node into the previous tree. The edit sequence in Figure 6.4 can be

used to transform the start state tree into the end state tree. In each tree the inserted

node is shown by a blue outline. The node with an asterisk in is the current context.
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This use of patterns illustrates one way that the Neighbourhood-Generation

algorithm may work. Rather than directly searching an input program tree, patterns

are identified. A search is conducted on these patterns for valid sequences of edits

that lead to type safe, end state patterns. The edit sequences can then be directly

applied to the original program tree, to produce new program trees. This has the

major advantage of allowing previously found results to be reused, which should

reduce the amount of search required considerably.

For a language L and maximum score nmax, we can generate all possible start

state patterns that could appear in any type safe program tree under that language.

We can search these start state patterns to find valid end state patterns that can be

moved to using edits with a cost of at most nmax. When input program trees are

given to the algorithm, and these patterns recognised in the input program tree, the

corresponding edit sequences can be applied to produce output program trees. This

is the method we use in this chapter to create Neighbourhood-Generation; the

generation and search of the patterns occurs in the constructor, and the identification

of a pattern and the application of a pattern’s corresponding edit sequences performed

in the function GenerateSuccessors. In the following three sections, we give

details as to how these ideas are formalised, and provide pseudocode showing how

the constructor and GenerateSuccessors are defined.

6.4 Defining Generate Successors

In Section 6.3.3 we provided an example of a pattern that could be extrapolated

from two separate parts of the same program tree. We showed how this pattern

could have tree edits applied to it, creating an end state pattern that was type safe.

These patterns could be recognised in an input program tree, and their associated

edits applied to produce type safe output program trees without any additional

computation being required - essentially allowing the edit sequences to be reused. We

stated that this is the way in which the Neighbourhood-Generation algorithm

that is described in this chapter will work. We also stated that the search for patterns

and edit sequences would be conducted in the constructor, and the application of the

edit sequences in the function GenerateSuccessors. In this section, we show how

GenerateSuccessors is defined.

This section’s contents can be described as follows; in Section 6.4.1 we formalise
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the patterns that we recognise in a program tree. In Section 6.4.2 we describe an

abstraction of these patterns that allows multiple patterns to be contained in a single

structure, and show how this extends to edit sequences. In Section 6.4.3 we discuss

the maximum size of the patterns that we will be required to recognise and search,

which is based off the maximum cost of edits allowed. In Section 6.4.4 we describe

an algorithm to find all the patterns in a given input program tree. In Section 6.4.5

we identify an edge case of our pattern identification strategy, and show how to

augment the input program tree to accommodate it. In Section 6.4.6 we show how

edit sequences are applied to a given input program tree. Finally, in Section 6.4.7 we

finish off defining GenerateSuccessors, and show how, to create the correct set

of output program trees, the algorithm may have to identify multiple patterns and

apply multiple edit sequences.

6.4.1 Formalising Patterns

In the previous section, we informally described patterns contained within a program

tree. We call these abstract representations, or patterns, partially-typed partial-

program trees. We define them as follows:

Definition 24 (Partially-Typed Partial-Program Tree)

A partially-typed partial-program tree (PTPPT) under a language L is a tree with

the following properties. The root of the tree must contain a non-empty vector of

principle types from L. All child nodes of the root are rootless PTPPTs (RPTPPTs).

An RPTPPT is a tree where each node is either a named node or a typed node. A

named node contains a term from L. A typed node contains a single principled type

from L. Typed nodes cannot have child nodes.

Using this definition of a PTPPT, we can see that the trees in Figure 6.6 are PTPPTs.

Figure 6.6a is a start state PTPPT, and Figure 6.6c is an end state PTPPT. We

can also see that PTPPTs can be type checked, in a similar manner to how type

checking is performed on full program trees. The PTPPTs in Figures 6.6a and 6.6c

type check, and the intermediary PTPPT in Figure 6.6b does not.

To be clear to the reader, start state PTPPTs can contain named nodes, not just

typed nodes. Figure 6.7 shows an example of a start state and an end state PTPPT,

together with an edit sequence to move between them. We can see that the start

state contains a named node. An example of this pattern applied to the program

tree in Figure 6.2 is shown in Figure 6.8.
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Int Int

Int

−
Int Int

Int
Int

1

Int

(a) A PTPPT representing a pattern of nodes in the program tree shown in Figure 6.2.

This PTPPT type checks and is considered the start state in this sequence of PTPPTs.

Int Int

Int Int

(b) The PTPPT after two nodes have been deleted from the PTPPT shown in Figure 6.7a.

This PTPPT type checks and is considered the end state in this sequence of PTPPTs.

Move Name t k i b

Delete N/A 0 N/A N/A

Delete N/A 1 N/A N/A

(c) A term-based edit sequence. It can be used to transform the PTPPT in Figure 6.7a

into the PTPPT in Figure 6.7b. It is described in terms of the DSL TE-1, an overview of

which is given in Table 6.1.

Figure 6.7: A start state PTPPT, end state PTPPT and edit sequence. The edit

sequence can be used to transform the start state into the end state. The start state

PTPPT mirrors a configuration of nodes in the program tree shown in Figure 6.2.
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Int

+

Int Int

Int

1

Int

negate

Int

Int

1

Figure 6.8: A program tree written in Language EX-1. When the function Gener-

ateSuccessors is given the program tree in Figure 6.2 and an n value of at least 2,

this program tree would be an example of output returned. It can be obtained by

taking the program tree in Figure 6.2, moving the context to the left subtree of the

root, and then applying the edit sequence in Figure 6.7c.

6.4.2 Abstracting Patterns

The reader may assume that we would now present the algorithms showing how to

identify PTPPTs in program trees, and how to apply their associated edit sequences

to create new program trees. However, our implementation of Neighbourhood-

Generation does not work like this. Instead of using PTPPTs and term-based

edit sequences, we use abstractions of these constructs. These abstractions are used

because they reduce the complexity of the search for valid edit sequences, performed

in the constructor. Further detail of this is provided in Section 6.6.

To begin, we will show the intuition behind the abstractions. Consider the three

end state PTPPTs in Figure 6.9 that can be obtained from the PTPPT in Figure 6.6a

using edits with a cost of 2. Together with the PTPPT in Figure 6.6c, we can observe

that these four PTPPTs are similar to each other. They have all had nodes inserted

in the same positions in their original trees, and the nodes inserted had identical

type signatures. Specifically, the first element inserted had a type signature of Int

→ Int→ Int and the second a type signature of Int. This is made clearer by

the term-based edit sequences shown in Figure 6.10 for the PTPPTs in Figure 6.9,

together with the edit sequence shown in Figure 6.4 for the PTPPT in Figure 6.6c.
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Int Int

Int

−
Int Int

Int
Int

1

Int

(a) A PTPPT constructed by applying the edit sequence in Figure 6.10a to the PTPPT in

Figure 6.6a. This PTPPT type checks and is considered an end state PTPPT.

Int Int

Int

+

Int Int

Int
Int

0

Int

(b) A PTPPT constructed by applying the edit sequence in Figure 6.10b to the PTPPT in

Figure 6.6a. This PTPPT type checks and is considered an end state PTPPT.

Int Int

Int

−
Int Int

Int
Int

0

Int

(c) A PTPPT constructed by applying the edit sequence in Figure 6.10c to the PTPPT in

Figure 6.6a. This PTPPT type checks and is considered an end state PTPPT.

Figure 6.9: Three PTPPTs that can be constructed by applying the edit sequences

in Figure 6.10 to the PTPPT in Figure 6.6a.
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Move Name t k i b

Insert − 0 1 N/A

Insert 1 1 0 N/A

(a) A term-based edit sequence. It can be used to transform the PTPPT in Figure 6.6a

into the PTPPT in Figure 6.9a.

Move Name t k i b

Insert + 0 1 N/A

Insert 0 1 0 N/A

(b) A term-based edit sequence. It can be used to transform the PTPPT in Figure 6.6a

into the PTPPT in Figure 6.9b.

Move Name t k i b

Insert − 0 1 N/A

Insert 0 1 0 N/A

(c) A term-based edit sequence. It can be used to transform the PTPPT in Figure 6.6a

into the PTPPT in Figure 6.9c.

Figure 6.10: Three term-based edit sequences that can be used to transform the

PTPPT in Figure 6.6a into the PTPPTs shown in Figure 6.9. They are described in

terms of the DSL TE-1, an overview of which is given in Table 6.1.
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We now introduce abstractions of the PTPPT and term-based edit sequence

called the typed partial-program tree and type-based edit sequence. The typed

partial-program tree is defined as follows:

Definition 25 (Typed Partial-Program Tree)

A typed partial-program tree (TPPT) under a language L is a tree with the following

properties. The root of the tree must contain a non-empty vector of principle types

from L. All child nodes of the root are rootless TPPTs (RTPPTs). An RTPPT is a

tree where each node is either a typed-named node or a typed node. A typed-named

node contains a pair of type signature and cost that belongs to at least one of the

terms in L. A typed node contains a single principled type from L. Typed nodes

cannot have child nodes. The cost of an RTPPT is the sum of the costs of all the

typed-named nodes contained within. The cost of a TPPT is the sum of the costs of

all child RTPPTs.

A type-based edit sequence is an edit sequence defined in terms of the DSL EX-1 in

Table 6.1. It inserts, deletes and relabels nodes that contain a pair of type signature

and cost. This pairing of type signature and cost must belong to at least one of the

terms in the language L. A type-based edit sequence can be applied to a TPPT to

produce a new TPPT.

In Figure 6.11 we show two examples of TPPTs, and a type-based edit sequence

accompanying them. The edit sequence in Figure 6.11c can be applied to the TPPT in

Figure 6.11a to produce the TPPT in Figure 6.11b. These TPPTs and edit sequence

capture the essence of the PTPPTs shown in Figures 6.6c and 6.9 and term-based edit

sequences in Figures 6.4 and 6.10. They highlight the basis of our abstractions; the

TPPT represents multiple PTPPTs with an identical structure. The nodes in these

PTPPTs contain terms which have identical type signatures and costs. In a similar

way, type-based edit sequences can be thought of as representing multiple term-based

edit sequences. To be clear to the reader, any TPPT represents at minimum a

single PTPPT, and any type-based edit sequence represents at minimum a single

term-based edit sequence.

The reader may note that the distinction between the different nodes in a TPPT

is more fine-grained than in a PTPPT. In a TPPT, a typed-named node and a typed

node can have similar labelling. This is because there are principle types that are also

the type signatures of terms in the language. Language EX-1 has a principle type of

Int, but also has terms with that type signature. Figure 6.11b shows an example of
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Int Int

Int Int

(a) A TPPT. This TPPT is representative of a single PTPPT shown in Figure 6.6a, itself

a representation of a pattern of nodes identified in the program tree shown in Figure 6.2.

This TPPT type checks and is considered the start state in this sequence of TPPTs.

Int Int

Int

cost = 1

Int Int

Int
Int

cost = 1

Int

(b) The TPPT after two nodes have been inserted into the TPPT shown in Figure 6.11a.

It is representative of the PTPPTs shown in Figures 6.6c and 6.9. This TPPT type checks

and is considered the end state in this sequence of TPPTs.

Move Name t k i b

Insert (Int → Int → Int, 1) 1 0 N/A

Insert (Int, 1) 0 0 N/A

(c) A type-based edit sequence. It can be used to transform the TPPT in Figure 6.11a into

the TPPT in Figure 6.11b. It is described in terms of the DSL TE-1, an overview of which

is given in Table 6.1.

Figure 6.11: A start state TPPT, end state TPPT and edit sequence to transform

the start state into the end state. The start state and end state can be said to be

abstractions of PTPPTs.
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this. To make the distinction between the two clear, we colour typed-named nodes

grey, and typed nodes white.

Through these abstractions, the way in which theNeighbourhood-Generation

algorithm works changes slightly; it recognises TPPTs and applies type-based edit

sequences. Since TPPTs do not mirror an input program tree directly, some additional

processing is required. This is also true of the type-based edit sequences. We still

assume that, in the constructor, the complete set of all patterns and associated edit

sequences are generated, but these patterns are now the TPPT and the term-based

edit sequence.

6.4.3 Size of TPPTs

Though we have identified what a TPPT is, and by extension what needs to be

recognised in an input program tree, we have not discussed any limitation on the

size of the TPPTs that need to be recognised. Since the maximum cost of the edits

we can make is bounded, the maximum size of any relevant TPPT is too. Yet, the

definition of a TPPT places no limit on their size. Theoretically, if the TPPTs we

were searching for could be as big as the input program tree, there would not be much

difference between our algorithm and the naive method outlined in Section 6.3.2.

Consider an invocation of the neighbourhood generation algorithm that allows

edits with a cost of up to 2. An example edit sequence under Language EX-1 could

consist of 2 insertions, each with a cost of 1. A start state TPPT that had this edit

sequence applied to it would not need to identify any typed-named nodes, as there are

no deletions or relabels in the edit sequence. Similarly, an edit sequence consisting of

2 relabels (or deletions), each with a cost of 1, would definitively require exactly 2

typed-named nodes with a cost of 1 to work from.

In general, for invocations of GenerateSuccessors that allow edits with a

combined cost of at most n, all TPPTs with a cost of at most n are required that

can be found in the input program tree. It would depend on the set of start state

TPPTs and edit sequences found in the constructor as to whether all of these would

be used to create output program trees, however since it is possible that any of them

may be start state TPPTs known to have an associated type-based edit sequence,

they must all be identified.

As to how many TPPTs there are in a program tree with l nodes that have a

cost of n, it is impossible to answer definitively, as we would need to know the exact
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configuration of the tree to answer this. However, we can provide some information

about how many TPPTs there are for a single node with k children, where every

node has a cost of 1. Assuming that each node has no children, the number of TPPTs

that can be identified is described by Equation (6.7).

n∑
i=0

(
k

i

)
(6.7)

It shows the number of different combinations of nodes that can be created by

picking from between 0 and n of the k nodes to be the typed-named nodes in a

TPPT. For any configuration where any of the k children have children themselves,

this number would increase further. In the next subsection, we show the algorithm

to find all the TPPTs that have a cost of at most n.

6.4.4 Finding TPPTs

In this section we show the algorithms that allow us to identify the TPPTs in an

input program tree that have a cost of at most n. To do this, the tree is traversed

and the algorithm Find-TPPTs called on every node, which identifies the TPPTs

from that node and its children. Find-TPPTs itself consists of two parts; the first

constructs the RTPPT portions of all TPPTs. The second part constructs the root

for all the RTPPTs to create the set of TPPTs. When a TPPT has been identified,

the algorithm notes the position of where it has been found in the input program tree,

so that the type-based edit sequences can be applied at that point. In Section 6.4.6

we show the algorithm that allows type-based edit sequences to be applied to the

input program tree to produce the output program trees. To be clear to the reader,

the TPPT at this point has no use other than for identification of a pattern.

Algorithm 6.2 contains the first component of the overarching algorithm to find

TPPTs called Find-RTPPTs. It takes two arguments; a cost value n and the current

node in the input program tree p. It identifies all relevant sequences of RTPPTs that

represent the children of p which have a cost of at most n. It returns a vector of

collections of sequences of RTPPTs. Each vector element’s index represents the sum

of the cost of every sequence of RTPPTs contained within that element’s collection.

Find-RTPPTs works in two parts; a recursive part that calls itself on each child

c of p, and a second part that builds every relevant sequence of RTPPTs using the

recursive results. If p has no children, then the function returns an empty collection.
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Algorithm 6.2 Find-RTPPTs

Input: n The maximum cost of the typed-named nodes allowed in the output.

p A node in the input program tree.

Output: A vector of collections of sequences of RTPPTs. Each vector ele-

ment’s index i is in the range {0 . . . n}, representing the total cost

of all the sequences of RTPPTs contained in that element’s results.

algorithm Find-RTPPTs(n, p)

results = []

if (p.Children().Size() = 0) then results[0] = []

nextLevel = []

for (i ∈ {0 . . . p.Children().Size()− 1}) do
c = p.Children()[i]

nodeCost = Cost(c)

recResults = Find-RTPPTs(n− nodeCost, c)

nextLevel[0][i] = [Get-Return-Type(c)]

for (nlocal ∈ {0 . . . n− nodeCost}) do
for (result ∈ recResults[nlocal]) do

tree = Make-Tree(c, result)

nextLevel[nodeCost+ nlocal][i].Append(tree)

for (nlocal ∈ {0 . . . n}) do
results[nlocal] = All-Combinations(nlocal, nextLevel)

return results
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In the first part, for each child c of p, the algorithm works as follows; it calls

Find-RTPPTs recursively on c with an n value of n−Cost(c). This returns all

possible sequences of RTPPTs that can be found underneath c which have a combined

cost of at most n−Cost(c). It then takes each sequence of RTPPTs s and creates

an RTPPT with a typed-named representative of c as its root with s as its children.

This creates a collection of RTPPTs with a cost of at most n. Finally, the algorithm

adds one additional result; an RTPPT containing the typed node variant of c with

no children.

This process can be confusing, so we will show an example. Consider the input

program tree in Figure 6.2, with the context set at the root and an n value of 2.

For each of the 2 children c, for values 0 . . . n, there are a set of RTPPTs which are

created from combining the typed-named node representation of c with the recursive

results. These are shown in Figure 6.12. The reader may note the ni = 0 case, where

no recursive results are used and each subtree is represented by a single typed node.

The second part to Find-RTPPTs takes these results, and, using only one result

from each child of p, builds all possible sequences of RTPPTs containing typed-named

nodes with a cost of at most n. That is to say, each sequence of RTPPTs contains

only one recursive result from each child, creating a sequence of RTPPTs that mirrors

the children under p.

For example, consider the recursive results in Figure 6.12 and n = 2. The

sequences of RTPPTs returned would have typed-named nodes with a combined cost

of at most n. In Table 6.2 we show the various valid configurations of sequences of

RTPPTs that would be returned.

The reader may note that the pseudocode for Find-RTPPTs contains several

functions that we have not defined. These can be described as follows:

• Get-Return-Type. Given a type signature and cost, finds the return type of

the type signature.

• Make-Tree. Given a label t and a vector of trees vs, creates a tree with the

root having a label of t and the vector vs as its children.

• Append. Given a vector and an element, appends the element to the vector.
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ni Left Subtree Results Right Subtree Results

0

Int Int

1

Int
cost = 1
Int Int

Int Int

Int
cost = 1
Int

Int

2

Int
cost = 1
Int Int

Int
cost = 1

Int

Int
cost = 1
Int Int

Int
Int

cost = 1

Int
cost = 1
Int

Int
cost = 1

Figure 6.12: The set of results stored in the nextLevel variable in the Find-RTPPTs

algorithm when given a context set at the root of the program tree in Figure 6.2, and

an n value of 2. For each ni ∈ {0 . . . n}, and for each child, there are a set of results.

We refer to each result using either L or R, and two numbers. For example, L-2-2

refers to the second result of the left subtree’s results at ni = 2, while L-2-1 refers to

the first.
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Table 6.2: All the collections of sequences of RTPPTs created from Find-RTPPTs

when given a context set at the root of the program tree in Figure 6.2, and an n value

of 2. For each ni ∈ {0 . . . n} we show the collection of sequences that correspond to

that ni value. These results are extrapolated from the RTPPTs shown in Figure 6.12,

which also introduces the shorthand used.

ni Collection of sequences of RTPPTs whose Cost = ni

0 [[L-0-1,R-0-1]]

1 [[L-1-1,R-0-1], [L-0-1,R-1-0]]

2
[[L-2-1,R-0-1], [L-2-2,R-0-1],

[L-0-1,R-2-1], [L-1-1,R-1-1]]

• All-Combinations. Takes as input a cost value ncost and a two-dimensional

vector of RTPPTs, where the outer index i is in the range {0 . . . n} and

the inner index j references the jth child of the input tree p in the range

{0 . . . p.Children().Size() − 1}. This function builds a vector of sequences

of RTPPTs which all have the following properties; they are of exactly size

p.Children().Size()− 1, the sum of their RTPPTs is exactly ncost, and they

have been constructed by taking exactly one RTPPT from each child c ∈ p’s

recursive results.

The second stage of the overarching algorithm Find-TPPTs is much simpler.

It takes each RTPPT treeV ect from calling Find-RTPPTs on p’s children, and

calculates the root for each, building a collection of TPPTs. The pseudocode for

Find-TPPTs is shown in Algorithm 6.3. The 7 TPPTs that are generated from the

RTPPTs presented in Figure 6.12 are shown in Figure 6.13.

In practice, there are many ways in which we can make these algorithms more

efficient; we can call Find-RTPPTs once on every node in the tree, and memoize

the results. We can also reduce the required computation time when generating all

combinations of results in Find-RTPPTs by keeping a local copy of the data structure,

and only changing one element at a time. However, for ease of understanding, we

have attempted to keep the explanation of the algorithms relatively simple and omit

these additional optimisations in our explanations.
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Int Int

Int Int

(a) A TPPT with a cost of 0.

Int Int

Int

cost = 1

Int Int

Int Int

Int

(b) A TPPT with a cost of 1. It has

been created from the subtrees L-1-1

and R-0-1 in Figure 6.12.

Int Int

Int

Int

cost = 1

Int

Int

(c) A TPPT with a cost of 1. It has

been created from the subtrees L-0-1

and R-1-1 in Figure 6.12.

Int Int

Int

cost = 1

Int Int

Int
Int

cost = 1

Int

(d) A TPPT with a cost of 2. It has

been created from the subtrees L-2-1

and R-0-1 in Figure 6.12.

Int Int

Int

cost = 1

Int Int

Int

cost = 1
Int

Int

(e) A TPPT with a cost of 2. It has

been created from the subtrees L-2-2

and R-0-1 in Figure 6.12.

Int Int

Int

Int

cost = 1

Int

Int

cost = 1

(f) A TPPT with a cost of 2. It has

been created from the subtrees L-0-1

and R-2-1 in Figure 6.12.

Figure 6.13: The set of TPPTs returned from the Find-RTPPTs algorithm when

given a context set at the root of the program tree in Figure 6.2, and an n value of 2.

241



CHAPTER 6. NEIGHBOURHOOD GENERATION

Algorithm 6.3 Find-TPPTs

Input: n The maximum cost of the TPPTs returned.

p A node in the input program tree.

Output: A collection of TPPTs. Each returned TPPT has a cost of at most

n.

algorithm Find-TPPTs(n, p)

vects = Find-RTPPTs(n, p)

retV al = []

for (set ∈ vects) do

for (treeV ect ∈ set) do

rootNode = [] ▷ The vector of types used as the root.

for (tree ∈ treeV ect) do

returnType = Get-Return-Type(tree)

rootNode.Append(returnType)

tree = Make-Tree(rootNode, treeV ect)

retV al.Append(tree)

return retV al

Int Int

Int

cost = 1

Int Int

Int Int

Int

cost = 1

Int

Int

(g) A TPPT with a cost of 2. It has been created from the subtrees L-1-1 and R-1-1 in

Figure 6.12.

Figure 6.13: The set of TPPTs returned from the Find-RTPPTs algorithm when

given a context set at the root of the program tree in Figure 6.2, and an n value of 2.

(Continued)
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Int

negate

Int

Int

+

Int Int

Int

−
Int Int

Int

1

Int

1

Int

negate

Int

Int

1

Figure 6.14: A program tree written in Language EX-1. When the function Gener-

ateSuccessors is given the program tree in Figure 6.2 and an n value of at least 1,

this program tree would be an example of output returned.

6.4.5 Pre-processing

In Figure 6.14 we show a program tree that serves as an example of output that

should be obtained from GenerateSuccessors when given the program tree in

Figure 6.2 and an n value of at least 1. The start state and end state TPPTs that

represent the pattern and edit sequence used to obtain this output tree are shown in

Figure 6.15.

Using the algorithm Find-TPPTs in the previous section, we would not be able

to identify a TPPT that allows us to create this output. It is not possible because in

the output program tree the new node is inserted above the root of the input program

tree. To recognise a TPPT, its root node must be representative of a currently

existing node. As there is no node above the root, the start state TPPT cannot be

identified and the edit sequence cannot be applied.

To allow us to identify this TPPT, the input program tree requires some additional

pre-processing. Specifically, a new root node is set, making the previous root node

its only child. The term in this node is a new placeholder term we call the identity

function. It has a type signature that takes the return type of the old root, and

returns the same type. In the case of the program tree in Figure 6.2, this is Int →
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Int

Int

(a) A TPPT. This TPPT is representa-

tive of a pattern of nodes in Figure 6.2.

It type checks and is considered the

start state in this sequence of TPPTs.

Int

Int

cost = 1

Int

Int

(b) The TPPT after a node has been

inserted into the TPPT shown in Fig-

ure 6.15a. It type checks and is consid-

ered the end state in this sequence of

TPPTs.

Figure 6.15: A start state and end state TPPT. The start state is representative of a

pattern of nodes above the root in Figure 6.2.

Int. An example of the program tree in Figure 6.2 with this pre-processing step

applied to it is shown in Figure 6.16.

We stipulate that this new root cannot be deleted or relabelled. All output

program trees have this new root node removed from them.

6.4.6 Applying Edit Sequences

After a TPPT has been identified in a program tree, we can discard it. We only need

to use the type-based edit sequences that are associated with the TPPT. It is these

that are applied to the input program tree to create the output set of program trees.

The methodology behind the application of an edit sequence is relatively simple;

by analysing the language and each type-based edit, we can extrapolate all term-based

edits from that single edit. For example, a typed-based edit which inserts a term

in the form (Int → Int → Int, 1) can be instantiated in two possible ways as a

term-based edit under Language EX-1. To make this process easier to understand, it

is advantageous to consider an alternate representation of the language.

In Figure 6.17 we show the type-compressed form of Language EX-1. A type-

compressed form of a language groups terms with identical type signatures and costs

together in sets. Each element in each set is also given a numerical identifier.
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+

Int Int

Int

−
Int Int

Int

1
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1

Int

negate

Int

Int

1

Figure 6.16: The program tree shown in Figure 6.2 after it has been pre-processed.

This pre-processing step involves adding an additional node that becomes the new

root of the tree. The new node is removed from all output program trees.

Terms Cardinality Type Signature Cost

{ 00, 11 } 2 Int 1

{ +0,−1} 2 Int → Int → Int 1

{negate0} 1 Int → Int 1

{ coinFlip0} 1 Bool 1

{intIf0} 1 Bool → Int → Int → Int 1

{lessThan0} 1 Int → Int → Bool 1

Figure 6.17: Language EX-1 in its type-compressed form. Terms with the same type

signature and cost are grouped together in sets. We also show the cardinality of each

set.
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The algorithm Create-Output-Trees creates the set of output trees from a

given edit sequence. It takes as arguments a type-based edit sequence seq and a

context within a program tree p. Its pseudocode is shown in Algorithm 6.4. It works

as follows; upon initialisation, a copy of p is created and put into the collection progs.

For each type-based edit in seq, a set of new output program trees is created from

the previous set progs, and the previous set discarded. This continues, increasing the

number of trees in progs as more edits are consumed, until the sequence is finished.

The elements in progs are returned as the output program trees.

Create-Output-Trees makes use of some additional functions which we do

not provide pseudocode for. Those not described in previous sections are given as

follows:

• Create-Copy. This function creates a copy of a program tree and context.

• Insert-Node. Inserts a node into a tree at that tree’s context.

• Delete-Node. Deletes a node from a tree at that tree’s context.

We have purposefully not included the pseudocode for the Relabel edit inCreate-

Output-Trees. This is because there is a subtle issue regarding the relabelling of

nodes, which is addressed below.

Relabelling

In Figure 6.18 we show a start state and end state PTPPT, together with the term-

based edit sequence to obtain the end state PTPPT from the start state PTPPT. In

Figure 6.19 we show a start state and end state TPPT, together with the type-based

edit sequence to obtain the end state TPPT from the start state TPPT. These

examples are designed to mirror each other; one uses PTPPTs and a term-based edit

sequence, while the other represents these constructs as TPPTs and a type-based

edit sequence.

A naive approach to processing a Relabel edit could be to use the same method

as when processing an Insert edit. That is to say, the set of terms ts that match the

pair of type signature and cost are generated, and then the successor trees constructed

from relabelling the original term with elements in ts. Using this approach, a set of

term-based edit sequences obtained from the type-based edit sequence in Figure 6.19c

are shown in Figure 6.20. However, there is a glaring error in the term-based edit

246



CHAPTER 6. NEIGHBOURHOOD GENERATION

Algorithm 6.4 Create-Output-Trees

Input: seq A type-based edit sequence.

p A program tree and a context. The context denotes where seq’s

associated TPPT was recognised.

Output: The set of output program trees created.

algorithm Create-Output-Trees(seq, p)

progs = [Create-Copy(p)] ▷ The original program tree.

for (edit ∈ seq) do ▷ For each edit.

newProgs = []

for (prog ∈ progs) do ▷ For each program.

rtrndProgs = Process-Edit(edit, L, prog) ▷ The language L is a

newProgs.Append(rtrndProgs) member variable..

progs = newProgs

return progs

algorithm Process-Edit(edit, L, p)

retV al = []

pcopy = Create-Copy(p)

switch (edit.MoveName()) do

case Insert:

for (term ∈ L.At(edit.T())) do

pcopy.Insert-Node(term, edit.K(), edit.I())

retV al.Append(pcopy)

return retV al

case Relabel:

retV al = Process-Relabel(L, edit, pcopy)

return retV al

case Delete:

pcopy.Delete-Node(edit.K())

retV al.Append(pcopy)

return retV al
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Int

Int

−
Int Int

Int Int

(a) A PTPPT. This PTPPT type checks and is considered the start state in this sequence

of PTPPTs.

Int

Int

+

Int Int

Int Int

(b) The PTPPT after a node has been relabelled in the PTPPT shown in Figure 6.18a.

This PTPPT type checks and is considered the end state in this sequence of PTPPTs.

Move Name t k i b

Relabel + 0 N/A N/A

(c) A term-based edit sequence. It can be used to transform the PTPPT in Figure 6.18a

into the PTPPT in Figure 6.18b. It is described in terms of the DSL TE-1, an overview of

which is given in Table 6.1.

Figure 6.18: A start state PTPPT, end state PTPPT and edit sequence to transform

the start state into the end state.
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Int

Int

cost = 1

Int Int

Int Int

(a) A TPPT. This TPPT type checks and is considered the start state in this sequence of

TPPTs.

Int

Int

cost = 1

Int Int

Int Int

(b) The TPPT after a node has been relabelled in the TPPT shown in Figure 6.19a. This

TPPT type checks and is considered the end state in this sequence of TPPTs. It is exactly

the same as the start state.

Move Name t k i b

Relabel (Int → Int → Int, 1) 0 N/A N/A

(c) A type-based edit sequence. It can be used to transform the TPPT in Figure 6.19a into

the TPPT in Figure 6.19b. It is described in terms of the DSL TE-1, an overview of which

is given in Table 6.1.

Figure 6.19: A start state TPPT, end state TPPT and edit sequence to transform

the start state into the end state.
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Move Name t k i b

Relabel + 0 0 N/A

(a) A term-based edit sequence. It has been extracted from the type-based edit sequence

shown in Figure 6.19c.

Move Name t k i b

Relabel − 0 0 N/A

(b) A term-based edit sequence. It has been extracted from the type-based edit sequence

shown in Figure 6.19c. This is an incorrect result, as the term that is being relabelled was

originally a −.

Figure 6.20: The set of term-based edit sequences that can be extracted from the type-

based edit sequence shown in Figure 6.19c. They have been created by substituting

the t term in the single edit in Figure 6.19c for every term that unifies with t’s type

signature and cost. The edit sequences are described in terms of the DSL TE-1, an

overview of which is given in Table 6.1. The results are incorrect, as one of the edit

sequences relabels a node with the term originally in that node.

sequences; there are more of them than there should be. Specifically the term-based

edit sequence in Figure 6.20b would relabel a term in the PTPPT in Figure 6.18a

with itself, and should have been omitted. If this term-based edit sequence were

applied to a program tree, it would return the same original input program tree, thus

the entire algorithm would produce incorrect results.

The core issue with processing relabels in this way is that, when a relabel edit

appears in a type-based edit sequence, we do not know what the original type of the

term being relabelled was. If the node is being relabelled with a term that has the

same type signature and cost as the original, then we require a mechanism to ensure

that the case where the algorithm tries to relabel a term t with t is not performed.

We can correct this easily. In the DSL TE-1 in Table 6.1 we included a boolean

variable in the relabel edit. When creating the type-based edit sequences, if relabelling

a node with a type signature and cost that is the same as before the edit, then the

boolean variable should be set to True. By doing this, the algorithm that processes

relabels can then check the original term to ensure that it does not relabel that term

with itself. The amended type-based edit sequence for the TPPTs in Figure 6.19 can

be seen in Figure 6.21, and pseudocode to process relabels is shown in Algorithm 6.5.
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Move Name t k i b

Relabel (Int → Int → Int, 1) 0 N/A True

Figure 6.21: A type-based edit sequence. It has been changed when compared

to the edit sequence shown in Figure 6.19c, to ensure that incorrect term-based

edit sequences are not created from it. It can be used to transform the TPPT in

Figure 6.19a into the TPPT in Figure 6.19b. It is described in terms of the DSL

TE-1, an overview of which is given in Table 6.1.

Algorithm 6.5 Process-Relabel

Input: L A map of the language. Each key corresponds to the type and

cost of a term. Each element is a vector of terms that have that

type signature and cost.

edit A type-based edit.

p A program tree and a context.

Output: The set of output program trees created.

algorithm Process-Relabel(L, edit, p)

retV al = []

if (edit.B() = True) then

prevNode = p.Children()[edit.K()]

for (term ∈ L.At(edit.T())) do

if (term ̸= prevNode) then

pcopy = Create-Copy(p)

Relabel-Node(pcopy, edit.K(), term)

retV al.Append(pcopy)

else

for (term ∈ L.At(edit.T())) do

pcopy = Create-Copy(p)

Relabel-Node(pcopy, edit.K(), term)

retV al.Append(pcopy)

return retV al
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Algorithm 6.6 Build-Trees

Input: p The current input program tree.

maxedit Maximum number of edits allowed.

maxsum Maximum sum of the cost of edits allowed.

maxSES Maximum cost allowed of each edit sequence.

Output Set of output program trees.

algorithm Build-Trees(p, maxedit, maxsum, maxSES)

output = []

treeContextsStack = [Get-Position(p)]

do

ctxt = treeContextsStack.Pop() ▷ Get context.

tppts = Find-TPPTs(Cost-Allowed(ctxt, maxSES, maxsum), ctxt)

for (tppt ∈ tppts) do

for (seq ∈ tppt.Get-Sequences()) do

results = Create-Output-Trees(seq, ctxt)

output.Insert(results, maxedit, maxsum, maxSES)

moveContextDown = Move-Context-Down(ctxt)

treeContextsStack.Append-All(moveContextDown)

while (treeContextsStack.Size() > 0)

return output

6.4.7 Compound Moves & Final Algorithms

At this stage in our explanation of GenerateSuccessors, we now have two

algorithms; Find-TPPTs which identifies TPPTs, and Create-Output-Trees

which applies type-based edit sequences. In this subsection, we use these to build the

algorithm Build-Trees that, given an input program tree p, applies edit sequences

to p to create the output set of program trees. The pseudocode for Build-Trees is

shown in Algorithm 6.6.

Informally, Build-Trees can be described as follows; the input program tree p

is traversed, and at each node a search is conducted for TPPTs. For any that are

found, their associated type-based edit sequences are used to generate the output

program trees. These new trees are added to the set of output trees returned, and

the algorithm moves to the next node in the search.
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Build-Trees uses several functions we have not introduced previously. These

can be described as follows:

• Move-Context-Down. This function takes the current context given as an

argument and returns a set of new contexts. The new contexts are set at the

child of the context given as the argument.

• Cost-Allowed. This function computes the n argument to give to Find-

TPPTs from the parameters of Build-Trees.

The reader may note that Build-Trees uses several parameters that have not

been referenced before. These parameters are described in the rest of this subsection,

where we discuss compound moves.

Compound Moves

In this part of the subsection we provide details about the structure that contains the

returned output program trees, as well as providing pseudocode for GenerateSuc-

cessors - which was the function that we set out to create in this section. However

to do either of these, we must first discuss compound moves.

Up to this point, we have assumed that output program trees are created by

applying a single edit sequence to an input program tree. However, we will now show

an example of a program tree that is within a set cost of edits n that is created by

two separate edit sequences being applied at different points in the original program

tree.

Consider the three program trees in Figure 6.22. The program tree in Figure 6.22a

can be created by applying an edit sequence with a cost of 2 to the program tree in

Figure 6.2. The program tree in Figure 6.22b can be created by applying an edit

sequence with a cost of 1 to the program tree in Figure 6.2. The program tree in

Figure 6.22c can be created from the program tree in Figure 6.2 in two distinct ways;

either by creating the program tree in Figure 6.22a and then applying a further edit

sequence with a cost of 1, or by creating the program tree in Figure 6.22b and then

applying a further edit sequence with a cost of 2. Both of these ways of obtaining

the program tree in Figure 6.22c use edits with a cost of 3.

This can be seen clearly by the diagram shown in Figure 6.23, which illustrates

the two different methods that can be used to obtain the program tree in Figure 6.22c.

In both of these methods the final program tree is obtained by first creating an
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(a) A program tree written in Language EX-1. When the function GenerateSuccessors

is given the program tree in Figure 6.2 and an n value of at least 2, this program tree would

be an example of output returned.

Int

+

Int Int

Int

−
Int Int

Int

1
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1

Int

negate

Int

Int

0

(b) A program tree written in Language EX-1. When the function GenerateSuccessors

is given the program tree in Figure 6.2 and an n value of at least 1, this program tree would

be an example of output returned.

Figure 6.22: Three program trees written in Language EX-1. When the function

GenerateSuccessors is given the program tree in Figure 6.2 and an n value of at

least 3, these program trees would be examples of output returned.
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(c) A program tree written in Language EX-1. When the function GenerateSuccessors

is given the program tree in Figure 6.2 and an n value of at least 3, this program tree would

be an example of output returned.

Figure 6.22: Three program trees written in Language EX-1. When the function

GenerateSuccessors is given the program tree in Figure 6.2 and an n value of at

least 3, these program trees would be examples of output returned. (Continued)
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Figure 6.2start

Figure 6.22a

Figure 6.22b

Figure 6.22c

Insert +

Insert 1

Relabel 0

Relabel 0

Insert +

Insert 1

Figure 6.23: Diagram showing two ways in which edit sequences can be chained

together to move via intermediary trees to transform the program tree in Figure 6.2

into the program tree in Figure 6.22c.

intermediary program tree. The reader should note that both intermediary trees

would also be returned from GenerateSuccessors.

Figure 6.23 serves as an example of the way in which more than one edit sequence

can be applied to a program tree to produce an output program tree. We call an

edit sequence that is made up of two or more singular edit sequences, each of which

could be applied individually to a type correct program tree to produce another type

correct program tree, a compound move. Consequently, this suggests the need for

another layer to the GenerateSuccessors algorithm; one which takes each of the

created output program trees, and applies further edits to them if there are valid edit

sequences that can be made according to the parameters imposed by the algorithm.

We can reduce the additional computational overhead this adds with the following

technique; after a TPPT t is recognised and t’s associated edit sequence applied to

an input program tree to produce an output program tree p, any subsequent edits

applied to p must be performed after the node in p that corresponds to the root node

of t. By “after”, we mean the ordering of nodes as described by a pre-order traversal.

The additional parameters in Build-Trees come from the use of compound

moves. Instead of having one cost parameter n in the algorithm, we now have three;
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maxedit, maxsum and maxSES. maxedit refers to how large the cost of a single edit

sequence can be. maxsum refers to how large the sum of all of the edit sequences can

be, and is analogous to the original n value. maxSES refers to how many individual

edit sequences can be applied to the original program tree.

In Algorithm 6.7 we show the final component of the algorithms described in

this section, GenerateSuccessors. It works as follows; first, it adds the initial

tree to the stack of unexplored type safe program trees, then proceeds to a do-while

loop. On each iteration of the loop, an element is removed from the stack. This

element is then added to the output collection if the cost of the edit sequences to

create it are appropriate according to the input parameters. We then pass this tree

to Build-Trees. The reader should note that the language L is a variable in the

object Neighbourhood-Generation, and we are therefore able to reference it.

All output generated from Build-Trees is added to the stack, and this process

continues until the stack is empty.

The reader should note that the function GenerateSuccessors has changed

compared to the function prototype shown in Algorithm 6.1. We have added addi-

tional parameters maxsum, maxedit and maxSES. Their meaning is identical to that

described above, however the reader should note that, to use GenerateSucces-

sors to generate a neighbourhood according to N(n), the parameters would have

to be instantiated as follows; maxedit = n, maxsum = n and maxSES = n. We have

discussed previously how the constructor of Neighbourhood-Generation is given

the nmax variable. We stipulate as a precondition that the maxsum and maxSES

variables cannot be greater than nmax.

This concludes our explanation of the GenerateSuccessors algorithm. In

the next section we present a randomised version of the GenerateSuccessors

algorithm called GenerateSuccessors-Rnd.

6.5 Generate Successors Randomly

In the previous section we described GenerateSuccessors, an algorithm for

creating the neighbourhood of a program tree. However, as we have seen in Chapter 5,

some neighbourhoods can be very large and to generate all neighbours may require

computational resources that are not available to us. In this section, we describe an

algorithm that probes a neighbourhood randomly, without generating all neighbours.
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Algorithm 6.7 GenerateSuccessors

Input: p The input program tree.

maxedit Maximum amount of edit sequences allowed.

maxsum Maximum sum of all edit sequences allowed.

maxSES Maximum sum of each individual edit sequence allowed.

Output: Returns a collection of output program trees which can be

created from p using edit sequences seq which meet the fol-

lowing criteria; seq contains no more than maxedit individual

edit sequences. Any single edit sequence in seq has a cost

of no more than maxSES. The maximum sum of the edit

sequences in seq is at most maxsum.

algorithm GenerateSuccessors(p, maxedit, maxsum, maxSES)

output = []

stack = [p]

do

tree = stack.Pop()

output.Insert(tree)

res = Build-Trees(tree, maxedit, maxsum, maxSES)

for (t ∈ res) do

outputAppend(t)

while (stack.Size() > 0)

return output
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The randomised algorithm described in this section is similar to the algorithm

described in the previous, and therefore we do not provide the same level of in-

depth explanation. The algorithm, called GenerateSuccessors-Rnd, is shown in

Algorithm 6.8.

GenerateSuccessors-Rnd works as follows; using some user defined criteria,

the algorithm first decides how many compound moves it will attempt to make. This

value, called nMovesToMake, is in the range {1 . . .maxedit}. The algorithm then

proceeds in a loop, which is completed nMovesToMake times. On each iteration the

algorithm takes the previous type safe tree and applies an edit sequence to it. On the

first iteration, the previous tree is the input tree. The algorithm picks a context at

random in the tree, then finds any TPPTs that can be recognised at that point. From

all those TPPTs that have been found, it picks a term-based edit sequence at random

from one of the type-based edit sequences. It then applies this edit sequence to the

previous tree, creating a new tree. This process continues until either the number of

required compound moves have been performed, or some other input parameter has

been exceeded.

GenerateSuccessors-Rnd may sometimes be unable to find a program tree,

due to the TPPT chosen not having any valid edit sequences, or the randomly chosen

node in the tree not having any associated TPPTs. Though we do not show it here,

there are mechanisms in place to ensure that if a tree cannot be created for any reason,

then a new attempt is made. This continues until some pre-defined termination

criteria is met.

The reader should note that the program trees returned from GenerateSucc-

essors-Rnd may not be created through an edit sequence with the minimum cost.

That is to say, they will still be within the bounds described by the input parameters,

but the edit sequence used to obtain a program tree may have a cost that is not the

minimum of all possible edit sequences that could be used to obtain that program tree.

In the experiments performed in Chapter 5, we did not make any distinction between

the program trees in the neighbourhood that were obtained through edit sequences

with different costs, and therefore using this method of generating the neighbourhood

in those experiments would not fundamentally change how the program trees were

picked. However, if further experiments were performed that took the cost of the edit

sequences into consideration, then this randomised algorithm may not be appropriate

for those needs. Our randomised algorithm cannot guarantee that it will find the
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Algorithm 6.8 GenerateSuccessors-Rnd

Input: p The input program tree.

maxedit Maximum amount of edit sequences allowed.

maxsum Maximum sum of all edit sequences allowed.

maxSES Maximum sum of each individual edit sequence allowed.

rnd Random generator.

Output: Returns an output program tree which can be created from

p using edit sequences seq which meet the following criteria;

seq contains no more than maxedit individual edit sequences.

Any single edit sequence in seq has a cost of no more than

maxSES. The maximum sum of the edit sequences in seq is

at most maxsum.

algorithm GenerateSuccessors-Rnd(p, maxedit, maxsum, maxSES, rnd)

nMovesToMake = Pick-Moves(maxedit, rnd)

currentTree = p

for (i ∈ {1 . . . nMovesToMake}) do
treeCxt = Pick-Node-In-Tree-Rnd(currentTree, rnd)

tppts = Find-TPPTs(

Cost-Allowed(treeCxt, maxSES, maxsum), treeCxt)

tppt = tppts[rnd.RandomNumber(tppts.Size())]

sequences = tppt.Get-Sequences()

seq = sequences[rnd.RandomNumber(sequences.Size())]

results = Create-Output-Trees(seq, treeCxt)

result = results[rnd.RandomNumber(results.Size())]

currentTree = result

return currentTree
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edit sequence with the minimum cost because, as we do not store all neighbours, the

algorithm is unable to tell if the edit sequence used has the minimum cost of all edit

sequences that could be used to obtain that program tree.

6.6 Searching for Edit Sequences

In Section 6.2 we introduced the object Neighbourhood-Generation and two

function signatures that make up the algorithm to find the neighbours of a given

input program tree. In Section 6.4, we described one of these functions, Gener-

ateSuccessors. In this section, we describe how the second of these functions,

the constructor to Neighbourhood-Generation, is formulated. It is designed to

identify all possible start state TPPTs that can be created with a cost of up to nmax,

and search them to find all type-based edit sequences that lead to type safe end state

TPPTs. It is these start state TPPTs that are recognised in GenerateSuccessors

and the accompanying edit sequences applied to input program trees.

This section is broken up into four parts; in Section 6.6.1, we show how we

generate every possible type safe start state TPPT for a language. In Section 6.6.2 we

discuss some properties of the MTED problem and type systems that direct the design

of our algorithm. In Section 6.6.3 we show some examples of how single edits are

considered in the overarching algorithm. In Section 6.6.4 we provide the pseudocode

for finding all edit sequences. Finally in Section 6.6.5 we provide some empirical data

concerning the algorithm’s performance when generating all edit sequences for some

of the languages used in this thesis.

6.6.1 Finding all TPPTs

In this subsection we detail the methodology used when finding all possible start state

TPPTs for a given language L and maximum sum of edits score nmax. It is these

that we use as the start point to search for end state TPPTs and edit sequences.

The recognition of TPPTs is one of the core components of our algorithm to

generate a program tree’s neighbourhood. It allows us to identify patterns in a

program tree, so that we can apply the correct edit sequences to the input program.

It is vitally important that we generate all possible type safe TPPTs and explore

them, so that we can generate the neighbourhood to any provided candidate tree. As

we use a closed language in the algorithm, it is possible for us to generate all possible
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{ [Int, Int] ,

[Int] ,

[Bool, Int, Int] ,

[Bool] }

Figure 6.24: The set of unique vectors that are used as the root nodes when generating

every possible TPPT for Language EX-1.

start state TPPTs that would ever be encountered in an input program tree.

The algorithm is recursive in nature, and similar in design to the algorithm to

generate all programs exhaustively shown in Algorithm 2.17. It is split into three parts.

The first Create-All-Roots generates all possible roots of all required TPPTs.

The second algorithm, Create-RTPPTs, generates all possible configurations of

RTPPTs for a given TPPT root. Finally, in Create-TPPTs these two algorithms

are combined to create all possible TPPTs.

Create-All-Roots

In the example TPPTs (and PTPPTs) we have seen up to this point, all root nodes

consist of a vector of types. Every input tree given to the GenerateSuccessors

function should type check, and therefore when finding TPPTs within an input

program tree, we can assume that we will only scan for type safe TPPTs. The set

of initial TPPTs that we create in the constructor will only be those TPPTs that

type check. The root node of every (type safe) TPPT directly mirrors a term in

the language. Or more specifically, directly mirrors the arguments of that term. To

generate all roots, we simply need to scan the language and extract every unique

vector of arguments from each term. As an example, we show the set of unique

vectors of arguments for Language EX-1 in Figure 6.24.

The reader may note two things; firstly, terms that have no arguments are not

considered - so there are no empty vectors. Secondly, not every unique term in

Language EX-1 is directly mirrored by a vector. For example, lessThan has the same

required arguments as + and −, yet no distinction between these terms is required.

Several additional vectors must also be added to this set. These vectors represent

the identity function that is added to all input program trees in GenerateSuc-

cessors (see Section 6.4.5). This allows the GenerateSuccessors algorithm to

operate on any function described under a given language L. For example a function
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Algorithm 6.9 Create-All-Roots

Input: None.

Output: A set of vectors. Each vector’s elements are principle types from the

language L.

algorithm Create-All-Roots()

set = []

for (t ∈ L) do ▷ The language L is a member variable.

vector = Get-Args(t)

set.Insert(vector)

identityFunc = Get-Return-Type(t)

set.Insert([identityFunc])

return set

could be given to GenerateSuccessors that has a type of Bool. In Figure 6.24,

only one additional vector is added to the set of roots through this process, that of

[Bool].

The algorithm to realise this process is called Create-All-Roots and is pre-

sented in Algorithm 6.9. Its functionality is simple; it iterates through every term

in the language and adds a vector representative of that term’s arguments to the

set to be returned. It also iterates through each return type of every function, to

ensure that a TPPT root that mirrors the identity function is represented for any

potential input program tree.

Create-RTPPTs

The algorithm we describe here, called Create-RTPPTs, creates all sequences of

RTPPTs that have the required cost and adhere to the types specified in the root,

which is provided as an argument. It works in a recursive manner, similar in style

to Find-RTPPTs, which was shown in Algorithm 6.2. Each invocation takes a

cost value n, a vector of return types vector that the created sequences of RTPPTs

should satisfy, and returns a vector of collections of sequences of RTPPTs. That is to

say, for each cost ∈ {0 . . . n} multiple sequences of RTPPTs may be returned. The

pseudocode for Create-RTPPTs is shown in Algorithm 6.10.

The algorithm has two main steps; a recursive step, and a building step. The

recursive step works as follows; for each element v ∈ vector, all typed-named nodes
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Algorithm 6.10 Create-RTPPTs

Input: n The maximum cost of the RTPPTs to be created.

vector Vector of types.

Output: A vector of collections of sequences of RTPPTs. The vector

index i is in the range {0 . . . n}, signifying the total cost that

all the sequences of RTPPTs contained within i’s collection

have.

algorithm Create-RTPPTs(n, vector)

results = []

if (vector.Size() = 0) then results[0] = []

nextLevel = []

for (i ∈ {0 . . . vector.Size()− 1}) do
c = vector[i]

nextLevel[0][i] = [Get-Return-Type(c)]

for (tnt ∈ Get-Unified-Types(n, c)) do

cost = Cost(tnt)

newArgs = tnt.Get-Args()

recResults = Create-RTPPTs(n− cost, newArgs)

for (nlocal ∈ {0 . . . n− nodeCost}) do
for (result ∈ recResults[nlocal]) do

tree = Make-Tree(c, result)

nextLevel[cost+ nlocal][i].Append(tree)

for (nlocal ∈ {0 . . . n}) do
results[nlocal] = All-Combinations(nlocal, nextLevel)

return results
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ts are generated that have a return type equal to v, and whose cost is ≤ n. For all of

ts, Create-RTPPTs is called on the set of argument types of each t ∈ ts, with an

updated maximum cost. These recursive results are then paired together with their

respective t to create a set of singular RTPPTs with t as their root.

In Figure 6.25 we show all singular RTPPTs generated from the principle type

Int and an n value of 2 in Language EX-1.

The second part of Create-RTPPTs considers all combinations of results, such

that their total cost is at most n and their root nodes directly mirror the required

types in vector. This is achieved in a similar manner to that shown in Algorithm 6.2.

From the trees shown in Figure 6.25, the total number of RTPPTs for [Int] with a

cost of at most 2 would be 27, and for [Int, Int] 65.

We can see that, even for a small n value, and with Language EX-1 being a small

language, there are many possible RTPPTs. This also illustrates why we decided

to use TPPTs instead of PTPPTs; the number of RPTPPTs would be even greater,

increasing the computational overhead when searching for edit sequences.

Create-TPPTs

We can now create an algorithm to build all TPPTs. This algorithm, called Create-

TPPTs, is shown in Algorithm 6.11. It works as follows; it calls Create-All-Roots

to generate the set of roots, then calls Create-RTPPTs on each root. It then adds

the correct root to each result. It is similar to Find-TPPTs shown in Section 6.4.4.

This algorithm will build all possible TPPTs that will be relevant for a given

language, up to a cost of nmax. In the next subsections it is these TPPTs that we

will use as the starting point to search for type-based edit sequences.

6.6.2 Searching TPPTs: Intuition

Up to this point in our description of the algorithms in the preceding sections, we

have presumed that the type-based edit sequences have been generated. In this

subsection, Sections 6.6.3 and 6.6.4 we detail how the search for valid edit sequences

is conducted.

Broadly, this search can be considered a microcosm of the initial problem; given

a program tree, find the type safe program trees within a set cost of edits from the

initial tree. Rather than working on program trees, we are working on the TPPT
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ni RTPPTs of cost ni

0
Int

1

Int
cost = 1

Int
cost = 1
Int Int

Int Int

Int
cost = 1
Int

Int

Int
cost = 1

Bool Int Int

Bool Int Int

2

Int
cost = 1
Int Int

Int
cost = 1

Int

Int
cost = 1
Int Int

Int
Int

cost = 1

Figure 6.25: The set of results stored in the nextLevel variable in the Create-

RTPPTs algorithm when given the vector = [Int] and an n value of 2. For each

ni ∈ {0 . . . n}, a set of results are shown for each element in vector.
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Figure 6.25: The set of results stored in the nextLevel variable in the Create-

RTPPTs algorithm when given the vector = [Int] and an n value of 2. For each

ni ∈ {0 . . . n}, a set of results are shown for each element in vector. (Continued)
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Figure 6.25: The set of results stored in the nextLevel variable in the Create-

RTPPTs algorithm when given the vector = [Int] and an n value of 2. For each

ni ∈ {0 . . . n}, a set of results are shown for each element in vector. (Continued)
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Figure 6.25: The set of results stored in the nextLevel variable in the Create-

RTPPTs algorithm when given the vector = [Int] and an n value of 2. For each

ni ∈ {0 . . . n}, a set of results are shown for each element in vector. (Continued)
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Algorithm 6.11 Generate-TPPTs

Input: nmax The maximum cost of the created TPPTs.

Output: The set of start state TPPTs that are used to search for edit

sequences.

algorithm Generate-TPPTs(nmax)

retV al = []

roots = Create-All-Roots()

for (root ∈ roots) do

tpptChildrenV ect = Create-RTPPTs(nmax, root)

for (tpptChildren ∈ tpptChildrenV ect) do

tppt = Make-Tree(root, tpptChildren)

retV al.Append(tppt)

return retV al

representation. To be clear, our goal is, given a start state TPPT, to find all end state

TPPTs, for which the cost of the edit sequences are within the bounds stipulated.

In this subsection we make several observations about the problem, to provide

intuition to the reader about the design choices made when constructing the algorithm.

Type Checking TPPTs

Our first observation is about type systems, and specifically type checking TPPTs.

A TPPT contains all the required typing information to be type checked; a node

p containing a type signature {t1 . . . tn} and children ci ∈ {c1 . . . cn−1} is correct

according to the type system if each ci’s return type is identical to ti. A type checking

algorithm could be created for TPPTs, similar to that shown in Algorithm 2.16. The

key observation from such an algorithm is that the types of the children of a node

can be checked in any order, and the correct result will be produced.

This suggests to us that, if an ordering were imposed on where edits could be

made, for example using a pre-order traversal, then we could use this ordering to

type check nodes as we make edits. By doing so, we could prune search derivations if

they do not type check, rather than having to finish the search derivation before type

checking.
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MTED Intuition

It is important to note that, when computing a sequence of edits to transform one

tree to another, the ordering of these edits can be important. While it is not true

for all edit sequences, for some there are insertions and deletions that must occur

in a specific order. The relabelling of a node can occur at any time, but it is of no

consequence to the observations we make here.

In Figure 2.13 we presented a recursive solution for computing the MTED between

two trees. In that solution, all possible edit sequences to move between the two trees

are computed, and that which has the minimum cost is returned. Remembering that

this solution operates on forests rather than trees, the nodes in the forest are visited

from right-to-left, with the solutions to the subproblems computed before moving to

the previous element in the forest. Some algorithms [142] used to solve the MTED

problem consider trees in a left-to-right order in the forest, and solve the subproblems

for one tree before progressing to the next. This is in essence, a pre-order traversal.

Our second observation about the MTED metric concerns the undoing of edits.

After an edit has been made to a node in a tree, that node is not considered for

further editing. Consider the term-based edit sequence in Figure 6.26b which, when

applied to the program tree in Figure 6.26a, produces the same program tree. This

kind of edit sequence should not be produced by our algorithm, as it would not be

the edit sequence with the minimum cost - the empty edit sequence would have the

minimum cost.

In general, undoing a previous edit will not progress the search. A deleted node

should not be re-inserted, an inserted node not deleted or relabelled, and a relabelled

node not re-relabelled or deleted. For our algorithm, we stipulate that after a node

has been edited - either inserted or relabelled - it should not be considered for further

edits. We do not stipulate that deleted nodes should not be re-inserted. Re-inserting

a deleted node only creates a single successor state, whereas those we do prohibit -

re-relabelling for example - can create an exponential number of redundant successor

states.

Bounds on Edits

In Section 6.4.4 we described an algorithm that can create all TPPTs. It is TPPTs that

will be the start states for our search algorithm. However, as noted in Section 6.4.3,

if an edit sequence is only comprised of insertions, then no typed-named nodes
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Int

negate

Int

Int

1

Int Int

(a) A program tree written in Language EX-1.

Move Name t k i b

Delete N/A 0 N/A N/A

Insert negate 0 1 N/A

(b) A term-based edit sequence. It is described in terms of the DSL TE-1, an overview of

which is given in Table 6.1. When applied to the program tree in Figure 6.26a, the same

output tree is produced.

Figure 6.26: A start state program tree and an edit sequence. When the edit sequence

is applied to the program tree in Figure 6.26a, the same program tree is produced.

are required. In fact, the format of the TPPT that we use provides us with the

opportunity to limit which types of edits are allowed. Specifically, if a TPPT has a

cost of n, then the maximum cost of the deletions or relabels we can perform is n,

and the maximum cost of the insertions we can perform is nmax − n.

It is these observations that direct our choices when designing the search algorithm.

In the next subsection we describe conceptually how the search algorithm works, and

provide examples of how specific edits effect the progression of the search.

6.6.3 Searching TPPTs: Examples

In this subsection we describe conceptually how the algorithm to find all valid edit

sequences works. We also show, through examples, how each edit is processed by the

algorithm.

The algorithm itself is simple in nature; from a high-level viewpoint, it can be

considered a search on the set of start state TPPTs for any valid end state TPPTs.

Every edit is considered on one TPPT to create a set of successor TPPTs, and any

that are found to lead to type safe TPPTs are returned with their accompanying edit

sequence.
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However, from a low-level viewpoint, the way in which the algorithm works is

more nuanced. On initialisation, a context is set at the root of the start state TPPT.

From the algorithm’s viewpoint, it can only see the root node and its children, no

other nodes. Edits are only considered on this context in the tree. Instead of an edit

occurring and a new TPPT being created, every time an edit occurs the TPPT is

split into either one or two subproblems, depending on the edit that took place.

These subproblems are TPPTs in their own right, created from parts of the parent

problem. This process continues, with edits taking place and new subproblems being

created. Any that are found to create type safe TPPTs are returned, with their

accompanying edit sequence. The edit sequences from these subproblems are then

combined, and returned to the previous subproblem. This continues until all valid

edit sequences are returned to the start state TPPT.

From our observations in the previous subsection, we know that once an edit

has been performed, any additional edits cannot occur before that initial edit. We

enforce this by creating subproblems that have removed any nodes before the edit

according to a pre-order traversal. These removed nodes must be type checked, as this

removed part of the problem may be incorrectly typed, and therefore any returned

subproblems would not lead to type safe TPPTs. We also stipulate which edits can

occur, which follow from the observations we made about the bounds on the different

types of edits allowed.

In the remainder of this subsection we consider each of the three edits that can

occur, and discuss how the algorithm creates subproblems from these edits.

Insert

Let us consider the TPPT shown in Figure 6.27. To our algorithm, all contexts in

every TPPT are visualised in this manner; it can only see the parent node and the

child nodes. It is only when subproblems are created and contexts changed that the

rest of the tree may be considered. The algorithm is only aware of the return type

of the child nodes, whether each child node is a typed-named node or not, and the

argument types of the root.

When an insertion edit occurs, two subproblems are created, and one set of nodes

must be type checked. If a node t is inserted under a root r at position k with i of

r’s children as its new children, then the subproblems created and the nodes that

need to be type checked can be described as follows:
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Int Int

Int Int

Figure 6.27: A TPPT. This TPPT type checks.

• One subproblem is created underneath the inserted node. This subproblem is

represented by the TPPT tp. t’s argument types become the root of tp. The i

children that previously belonged to r become the sequence of RTPPTs that

are tp’s children. Where appropriate, we indicate the nodes and types that

make up this TPPT by colouring them purple.

• One subproblem is created to the right of the inserted node. This subproblem

is represented by the TPPT rt. rt’s root node is a subvector of r’s root node,

from position k onward. rt’s child nodes are the subvector of r’s child nodes

from position k + i onward. Where appropriate, we indicate the nodes and

types that make up this TPPT by colouring them blue.

• One set of nodes must be type checked. This set of nodes can be represented

by the TPPT tc. tc’s root node is a subvector of r’s root node, from position

0 to k − 1. tc’s child nodes are the subvector of r’s child nodes from 0 to

k − 1. These nodes must be type checked before any subproblems are created,

as if they do not type check, then none of the subproblems solutions are valid.

Where appropriate, we indicate the nodes and types that make up this TPPT

by colouring them orange.

To begin, let us consider the insertion of an unlabelled node. We use an unlabelled

node to show the various configurations of insertions that can occur, and show

examples of how the subproblems and nodes to type check are formulated. In

Figure 6.28 we show the six possible successor states of the TPPT in Figure 6.27

after an unlabelled insertion has occurred. In each configuration of nodes we show

the TPPTs tc and rt.

We can see that one of the configurations of nodes after insertion will not lead

to a type safe end state. The third configuration of nodes will create a subproblem

represented by the TPPT rt that has an empty vector as its root and a single child.
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Int Int

Int Int

Int Int

Int Int

Int Int

Int Int

Int
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Int Int

Int

Int

Int Int

Int Int

Figure 6.28: The six possible successor states created by inserting an unlabelled node

into the TPPT shown in Figure 6.27. In each successor state we show the subproblem

represented by the TPPT rt, highlighted in blue, and the TPPT tc that needs to

be type checked for the search to continue, highlighted in orange. The reader may

note in the final TPPT that there is a blue type in the root, but no blue child. The

subproblem created here is one that requires an Int type, but has no child nodes.
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Int Int

Int

cost = 1

Int Int

Int

Int

(a) The TPPT after a node has been

inserted in the TPPT shown in Fig-

ure 6.27. It is a valid successor state

and shows the two subproblems cre-

ated.

Int Int

Bool

cost = 1

Int Int

Int

Int

(b) The TPPT after a node has been

inserted in the TPPT shown in Fig-

ure 6.27. It is an invalid successor

state, as the label inserted does not

satisfy the root’s type. This search

derivation would terminate.

Figure 6.29: Two TPPTs created by inserting a node into the TPPT in Figure 6.27.

One is a valid successor state, one is not.

Though we do not know what we have inserted, we know that we cannot delete this

node, and therefore it must have a type, which cannot be satisfied by the root.

As to which nodes can be inserted, we use the type-compressed form of Language

EX-1 shown in Figure 6.17 to find appropriate typed-named nodes to insert. We can

only insert a node as the kth child that has a return type which is the same as the kth

type in the vector in the root. We can see two examples of successor state TPPTs

in Figure 6.29 with a node inserted; one that is representative of the terms with a

type signature of Int → Int → Int, and one that is representative of the terms

with a type signature of Int → Int → Bool. The first is a valid successor state,

and the second is not. Since we cannot perform further edits before the previously

edited node (as we have stipulated that edits must occur in a pre-order traversal),

the type inconsistency in the TPPT in Figure 6.29b cannot be resolved, and this

search derivation can be pruned from the search space.

Relabel

When a relabel edit occurs, two subproblems are created, and one set of nodes must

be type checked. It is performed in a similar way to how an insertion is performed.
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If a node t is relabelled with a new label lnew under a root r at position k, then the

subproblems created and the nodes that need to be type checked can be described as

follows:

• One subproblem is created underneath the relabelled node. This subproblem is

represented by the TPPT tp. lnew’s argument types become the root of tp. t’s

children become tp’s children. Where appropriate, we indicate the nodes and

types that make up this TPPT by colouring them purple.

• One subproblem is created to the right of the relabelled node. This subproblem

is represented by the TPPT rt. rt’s root node is a subvector of r’s root node,

from position k onward. rt’s child nodes are the subvector of r’s child nodes

from position k onward. Where appropriate, we indicate the nodes and types

that make up this TPPT by colouring them blue.

• One set of nodes must be type checked. This set of nodes can be represented

by the TPPT tc. tc’s root node is a subvector of r’s root node, from position 0

to k − 1. tc’s child nodes are the subvector of r’s child nodes from 0 to k − 1.

These nodes must be type checked before any subproblems are created, as

if they do not type check, then none of the subproblem’s solutions are valid.

Where appropriate, we indicate the nodes and types that make up this TPPT

by colouring them orange.

When we relabel a node at position k under the root, the node we relabel with

must have a type that satisfies the kth node in the root of the start state TPPT. In

Figure 6.30 we show an example of a relabel edit.

Delete

When a delete edit occurs, a single subproblem is created, and one set of nodes must

be type checked. If the node t at position k is deleted under a root r, then the

subproblem created and the nodes that need to be type checked can be described as

follows:

• The subproblem created from a deletion is represented by the TPPT ds. r’s

root nodes from position k onward become the root nodes of ds. ds’s child

nodes can be described as the child nodes of t concatenated with the subvector
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(a) A TPPT. This TPPT type checks

and is considered the start state.

Int Int Int

Int

Int

cost = 1

Int Int

Int

Int

(b) The TPPT after a node has been

relabelled in the TPPT shown in Fig-

ure 6.30a. It is a valid successor state

and shows the two subproblems cre-

ated, as well as the set of nodes that

need to be type checked.

Figure 6.30: A start state TPPT and a valid successor state TPPT created by

relabelling a node.

of r’s children from position k + 1 onward. Where appropriate, we indicate the

nodes and types that make up this TPPT by colouring them blue.

• One set of nodes must be type checked. This set of nodes can be represented

by the TPPT tc. tc’s root node is a subvector of r’s root node, from position

0 to k − 1. tc’s child nodes are the subvector of r’s child nodes from 0 to

k − 1. These nodes must be type checked before the subproblem is created, as

if they do not type check, then none of the subproblem’s solutions are valid.

Where appropriate, we indicate the nodes and types that make up this TPPT

by colouring them orange.

In Figure 6.31 we show an example of a deletion edit.

This concludes the explanations for each of the edits that can occur in an edit

sequence. In the next subsection we show the pseudocode for the process to create

the edit sequences, which follow from the examples shown here.
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Int Int Int

Int

Int

cost = 1

Int

Int

Int

(a) A TPPT. This TPPT type checks

and is considered the start state.

Int Int Int

Int Int Int

(b) The TPPT after a node has been

deleted in the TPPT shown in Fig-

ure 6.31a. It is a valid successor state

and shows the subproblem created,

as well as the set of nodes that need

to be type checked.

Figure 6.31: A start state TPPT and a valid successor state TPPT created by deleting

a node.

6.6.4 Generating Edit Sequences

Through the examples in the previous subsections, we have explained conceptually

how the algorithm to find end state TPPTs and edit sequences works. It can be

described as a top-down DP algorithm, where the edit sequences found from a TPPT

are stored for future use. In this subsection we show the pseudocode for this algorithm.

A broad outline of the algorithm can be given as:

• For a given start state TPPT, all possible edits are performed on that TPPT.

For each edit, some subproblems will be created, and a set of nodes will need

to be type checked.

• If the nodes that should type check do not, terminate this search derivation.

• If any of the created subproblems type check before any additional edits have

been performed, return the empty edit sequence that is used to obtain them.

Any additional edits to this subproblem would constitute a compound edit

sequence, which we deal with separately in GenerateSuccessors.
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Algorithm 6.12 Create-All-Edit-Sequences

Input: n The maximum cost of edits allowed.

Output: A map of start state TPPTs to sets of edit sequences.

algorithm Create-All-Edit-Sequences(n)

tppts = Generate-TPPTs(n)

rv = [] ▷ The map to be returned.

map = [] ▷ The map of results from Create-Edit-Sequences.

for (tppt ∈ tppts) do

rv.Insert(tppt, Create-Edit-Sequences(n, tppt, T rue, map))

return rv

• Otherwise, search the subproblems represented as TPPTs. A set of edit se-

quences will be returned for each subproblem that corresponds to a type safe

TPPT.

• Combine the edit sequences for each subproblem, moving back through the

search until we reach the start state TPPT. All the edit sequences at this point

will lead to end state TPPTs that type check.

• To be clear, the results for a given TPPT and n value are memoized. This is to

ensure that if they are seen more than once then their results do not need to

be re-computed.

The algorithm to create all edit sequences is calledCreate-All-EditSequences.

It is invoked from the constructor for Neighbourhood-Generation. Its pseu-

docode, and the algorithms that it uses, are shown in Algorithms 6.12 to 6.16.

These algorithms use several functions we have not explained previously in this

chapter. For clarity, we outline them as follows:

• Can-Insert. This function checks whether an insertion is allowed by checking

the n value against the nmax value.

• Get-Unified-Types. This function scans the language and returns any type

signature and cost pair ts that is representative of a term in the language,

which also meets the following criteria. Firstly ts’s type’s return type must

unify with the given type argument t. Secondly ts’s cost must be no greater

than the given cost argument n.
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Algorithm 6.13 Create-Edit-Sequences

Input: n The maximum cost of edits allowed.

p The input TPPT.

startState Boolean denoting whether this is a start state TPPT or

not.

map Reference to map of previous results from calling Create-

Edit-Sequences.

Output: A collection of valid edit sequences that have a cost of

at most n. Each edit sequence creates a valid end state

TPPT.

algorithm Create-Edit-Sequences Algorithm(n, p, startState, map)

if (¬map.Contains({n, p, startState}) then
if (Type-Check(p) ∧ startState = False) then

return [[]] ▷ Return a single empty edit sequence.

else

res = []

if (n > 0) then

res.Append(Create-Insertions(n, p, map))

res.Append(Create-Deletions(n, p, map))

res.Append(Create-Relabels(n, p, map))

map.Insert({n, p, startState}, res)

return map.At({n, p, startState})
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Algorithm 6.14 Create-Insertions

Input: n The maximum cost of edits allowed.

p The input TPPT.

map Reference to map of previous results from calling Create-Edit-

Sequences.

Output: A collection of valid edit sequences that have a cost of at most

n. Each edit sequence creates a valid end state TPPT.

algorithm Create-Insertions(n, p, map)

if (¬Can-Insert(n, p)) then

return []

rootTypes = p.Node()

children = p.Children()

res = []

for (pos ∈ {0 . . . children.Size()}) do
typesToInsert = Get-Unified-Types(n, rootTypes[pos])

if (¬Type-Check(rootTypes.Sub-Vector(0, pos− 1)) ∨
typesToInsert = []) then

continue

for (args ∈ {0 . . . children.Size()− pos− 1}) do
takenChildren = children.Sub-Vector(pos, pos+ args)

remChildren = children.Sub-Vector(pos+args+1, children.Size())

problem1 = Create-Tree(rootTypes.Sub-Vector(pos+ args+ 1,

rootTypes.Size()), remChildren)

for (type ∈ typesToInsert) do

newRootTypes = type.Get-Args()

problem2 = Create-Tree(newRootTypes, takenChildren)

c = n−Cost(type)

res1 = Create-Edit-Sequences(c, problem1, False, map)

res2 = Create-Edit-Sequences(c, problem2, False, map)

allV alidEdits = Make-Valid-Edit-Sequences(

n, (Insert, type, args, pos), res1, res2)

res.Append(allV alidEdits)

return res
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Algorithm 6.15 Create-Relabels

Input: n The maximum cost of edits allowed.

p The input TPPT.

map Reference to map of previous results from calling Create-Edit-

Sequences.

Output: A collection of valid edit sequences that have a cost of at most

n. Each edit sequence creates a valid end state TPPT.

algorithm Create-Relabels(n, p, map)

rootTypes = p.Node()

children = p.Children()

res = []

for (pos ∈ {0 . . . children.Size()− 1}) do
if (¬Is-Typed-Named-Term(children[pos])) then

continue

typesToRelabel = Get-Unified-Types(n, rootTypes[pos])

if (¬Type-Check(rootTypes.Sub-Vector(0, pos− 1)) ∨
typesToRelabel = []) then

continue

remChildren = children.Sub-Vector(pos+ 1, children.Size())

problem1 = Create-Tree(rootTypes.Sub-Vector(pos+ 1,

rootTypes.Size()), remChildren)

for (type ∈ typesToRelabel) do

newRootTypes = type.Get-Args()

problem2 = Create-Tree(newRootTypes, children[pos].Children())

c = n−Cost(type)

res1 = Create-Edit-Sequences(c, problem1, False, map)

res2 = Create-Edit-Sequences(c, problem2, False, map)

allV alidEdits = Make-Valid-Edit-Sequences(

n, (Relabel, type, pos), res1, res2)

res.Append(allV alidEdits)

return res
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Algorithm 6.16 Create-Deletions

Input: n The maximum cost of edits allowed.

p The input TPPT.

map Reference to map of previous results from calling Create-Edit-

Sequences.

Output: A collection of valid edit sequences that have a cost of at most

n. Each edit sequence creates a valid end state TPPT.

algorithm Create-Deletions(n, p, map)

rootTypes = p.Node()

children = p.Children()

res = []

for (pos ∈ {0 . . . children.Size()− 1}) do
if (¬Is-Typed-Named-Term(children[pos])) then

continue

if (¬Type-Check(rootTypes.Sub-Vector(0, pos− 1)) then

continue

nodeCost = Cost(children[pos])

childrenOfDeleted = children[pos].Children()

remChildren = children.Sub-Vector(pos, children.Size())

allChildren = childrenOfDeleted.Append(remChildren)

problem = Create-Tree(rootTypes.Sub-Vector(pos,

rootTypes.Size()), allChildren)

res = Create-Edit-Sequences(n− nodeCost, problem, False, map)

allV alidEdits = Make-Valid-Edit-Sequences-Single(

n, (Delete, pos), res)

res.Append(allV alidEdits)

return res
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• Sub-Vector. This function takes the vector v and the indexes i and j and

constructs a new vector containing the elements from i to j in v.

• Make-Valid-Edit-Sequences. This function takes a cost value n, a single

edit e, and at most two vectors of edit sequences S1 and S2. It works as follows;

first the Cartesian product S = S1 × S2 is constructed. Then e is appended

to every s ∈ S. Every sequence with cost > n is removed from S. Finally the

function returns S.

• Make-Valid-Edit-Sequences-Single. This function works identically to

Make-Valid-Edit-Sequences, except that it only takes a single vector of

edit sequences S, and doesn’t construct a Cartesian product of edit sequences.

We feel that the algorithms and explanations presented in this section should be

sufficient to understand how we generate all edit sequences. This is a computationally

expensive algorithm. However, as we will see in the next subsection, the strategies

employed ensure that it terminates in a reasonable amount of time - at least for the

languages we use in this thesis.

6.6.5 Testing

In this subsection we provide data about the generation of edit sequences for Languages

A and A1 using various nmax values. In Table 6.3 we show these results.

In this chapter we have not provided any information regarding the complexity of

the algorithms presented. By analysing this data, it appears that the time taken and

number of subproblems to solve grows exponentially in relation to the nmax value.

In Section 5.3.3 we presented evidence that larger neighbourhood bounds produced

exponentially larger neighbourhoods, and we therefore chose to limit the neighbour-

hood bound to 3 in subsequent experiments in that chapter. In the data shown in

Table 6.3, we can see that a larger neighbourhood bound drastically increases the

time taken to find all relevant edit sequences for a language. If we were to perform

the local search experiments with any higher bound than 3 on Language A, it would

be difficult to justify the additional time taken to create the edit sequences required.

Therefore, this data lends further justification to our choice of neighbourhood bound.

The results in Table 6.3 also shows us that the number of subproblems and

start states created for an nmax value and either Language A and A1 are identical.

This was expected due to the design of the algorithm. Succinctly, as it uses the
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Table 6.3: Data gathered when calling Create-All-Edit-Sequences on different

languages and nmax values. For each language (L), we show the number of functions

(F) and terminals (T) in that language. In brackets are the number of terms with a

unique type signature in each set. For each call to Create-All-Edit-Sequences

we show the size of the set of TPPT start states, the total number of TPPTs for

which all the edit sequences were found (we refer to these as problems solved), and

the time taken to compute the edit sequences. Languages and A1 are described in

Table 4.1.

L F T nmax Start States Problems Solved Time taken (ms)

A
9

(8)

26

(6)

1 134 433 10

2 2, 042 11, 971 408

3 38, 016 526, 630 29, 685

4 767, 945 162, 509, 300 7, 401, 569

A1
9

(8)

27

(6)

1 134 433 14

2 2, 042 11, 971 407

3 38, 016 526, 630 28, 639

4 767, 945 162, 509, 300 7, 404, 107

286



CHAPTER 6. NEIGHBOURHOOD GENERATION

TPPT representation, it is the number of terms with a unique type in a language

that effects how many start states created and subproblems solved when creating a

neighbourhood’s edit sequences.

In preliminary work when designing this algorithm, we attempted to use the

PTPPT representation to search for edit sequences. However, we found that in this

form the algorithm had to re-search what were essentially identical search derivations.

In turn, this increased the overall computation time. It was this observation that

directed us towards using the TPPT.

6.7 Discussions & Conclusions

In this chapter we have provided a thorough explanation of how the neighbourhood

generation algorithm that we have designed works. Specifically, we have discussed

our use-case of such an algorithm, the intuition behind the algorithm, and then

described the two core components of the algorithm; the component which recognises

patterns in the input program tree and applies edit sequences, and the component

that searches for edit sequences.

We have taken great care throughout this chapter to describe the algorithms

in terms of program synthesis and generic languages, rather than those specific

languages used in this thesis. We believe that the methods described in this chapter

could be utilised in other domains where program synthesis has found use, not just

in automated heuristic creation. For example, patch generation [112] is an area

where probing the neighbourhood of a program tree could prove to be an effective

strategy in the overarching goal of automating the editing of programs. Much of the

work in this area uses either generic, hand-written rules or evolutionary computation

techniques such as GP when automatically editing a program. Our neighbourhood

generation algorithm could provide an alternate methodology in this domain. The

hand-written rules in patch generation are usually generic schema designed to edit

a program fragment in a small way. Neighbourhood generation and local search

program synthesis could be used as a method of automating this creation of rules,

allowing for further generalisation without the need for a human expert.

Some of the work in this chapter raises additional questions relating to the experi-

ments described in Chapter 5. In that chapter we considered different neighbourhoods

according to various neighbourhood bounds. We also discussed how we considered
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the program synthesis method we were simulating to be analogous to local search.

However, the use of compound moves in Section 6.4.7 suggests that our definition of a

neighbourhood in Definition 23 could be refined to include additional parameters that

allow us to more accurately describe the set of moves that describe a neighbourhood.

To that end, we consider the following revision to the definition of a neighbourhood.

Definition 26 (Neighbourhood of a Program Tree (Revised))

Given a language L, a candidate program tree h, an integer representing the maximum

bound of a single edit ns, two integers representing the minimum and maximum number

of compound moves nm0 and nm and an integer representing the sum of the costs

that all edits can have nsum, the revised neighbourhood Nr(h, ns, nm0 , nm, nsum) is

defined as all valid program trees under L that can be obtained from h through a series

of sequences of tree edits with the following properties. Each sequence of tree edits

describes a transformation between two valid program trees under L. Each sequence

of tree edits has a cost of at most ns. We assume that each edit has a cost of 1.

There are between nm0 and nm sequences of tree edits. The total sum of the cost of

all sequences of tree edits is at most nsum. If the program tree is obvious from the

context, we write Nr(ns, nm0 , nm, nsum).

Any neighbourhood defined using Definition 23 as N(n) can be redefined using

Definition 26 as Nr(n, 1, n, n).

This revised definition tells us that in the experiments described in Chapter 5, the

neighbourhoods could be considered to be composed of the application of multiple

smaller edit sequences. We believe that the local search algorithms used as a basis for

those experiments can be more appropriately described as variable-depth search (VDS)

[83, Chapter 2] algorithms. Algorithms based on VDS have been found to be highly

effective in certain domains - for example, the Lin-Kerringham algorithm for TSP

can be considered a VDS algorithm [111]. We do not perform any experiments in

this thesis that consider using a neighbourhood only comprised of program trees

obtained through the application of single edit sequences. However, in future work

we believe it may be worth exploring the role that the use of compound moves has

on the quality of results obtained from local search program synthesis.

Regarding the definition of our algorithms, there are several potential improve-

ments that could be made to the algorithm that generates all edit sequences which

could reduce the overall computation time. For starters, our algorithms do not make

use of multithreading. It would be simple to augment our algorithms to do so, by
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having each thread search a single start state TPPT. Secondly, we are aware of some

TPPTs that are encountered in the search for edit sequences which are similar to

others. We believe it may be possible to exploit these similarities to reduce overall

computation. For example, consider a language L with a principle type a, and two

start state TPPTs in the form [a]{a} and [a, a]{a, a}. In this notation, each child

node of each TPPT is a typed node. We believe that many of the results from

calculating the edit sequences for [a]{a} could be reused when calculating the edit

sequences for [a, a]{a, a}.
We also believe there may potentially be a less computationally expensive method

of generating all edit sequences. When we are generating the set of start state

TPPTs, we noticed that they were all used as an end state TPPT for some other

start state TPPT. Rather than performing any search on the start state TPPTs, it

may be less computationally expensive to use a MTED algorithm to compare all start

state TPPTs to each other, find those within the bounds stipulated by the input

parameters, and then generate the edit sequences between them. At one point in

our research, we experimented with this approach. However, we found the created

algorithm to be more computationally expensive than our final algorithm. In future

work, it may be worth revisiting this approach with the goal of finding methods to

reduce its computational overhead - for example, through the application of more

sophisticated MTED algorithms.

In the next chapter we use the neighbourhood generation algorithm described in

this chapter to perform local search on the space of LS-SAT heuristics. As we now

have a method of generating a neighbourhood without requiring memoized results, we

can evaluate local search as a method of program synthesis without being constrained

by the size of the program tree.
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Local Search Program Synthesis

7.1 Introduction

In Chapter 5 we performed experiments simulating local search on a subset of the

space of heuristics described by Language A. In those simulations we used the

memoized results from the experiments performed in Chapter 4 to create a heuristic’s

neighbourhood. Creating the neighbourhoods in this way was a computationally

expensive calculation. The neighbourhoods were constrained in that they could only

contain heuristics that had been memoized. In turn, this limited which heuristics

could be created from the overarching local search algorithm.

In Chapter 6 we described algorithms that can be used to build the neighbourhood

of a program tree without requiring any memoized data. In this chapter we will

use those neighbourhood generation algorithms to automatically create heuristics

through local search. We will perform experiments evaluating this local search-based

method of program synthesis, which in Section 5.5 we termed local search program

synthesis (LSPS). The goal of this chapter is to determine whether LSPS is a viable

technique for automatically creating LS-SAT heuristics.

The format of this chapter is as follows. In Section 7.2 we present a series of

experiments that use LSPS to create LS-SAT heuristics using Language A. These

experiments are designed as a series, where each subsequent experiment changes

a single parameter compared to the previous. In Section 7.3 we present an LSPS

experiment that uses the randomised neighbourhood generation algorithm described

in Section 6.5. In Section 7.4 we present an LSPS experiment that uses an alternate

definition of a neighbourhood. In Section 7.5 we present a series of program synthesis
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experiments that use an alternate language, Language B. In Section 7.6 we present

some of the heuristics created from the experiments described in this chapter. Finally

in Section 7.7 we present our discussions and conclusions from the research described

in this chapter.

7.2 Initial Experiments

In this section we present the methodology and results from four experiments. Each

experiment can broadly be described as a set of repetitions of LSPS. The first

experiment mimics one of the simulated experiments in Chapter 5. Each subsequent

experiment changes a single parameter when compared to the previous. The final

experiment in the series is designed to use no memoized data, and places no limits

on the size of the heuristics that can be created.

The format of this section is as follows. In Section 7.2.1 we present the methodology

and results from Experiments A1 and A2, two LSPS experiments which impose a

bound on how large the created heuristics can be. In Section 7.2.2 we present the

methodology and results from Experiments A3 and A4, two LSPS experiments which

place no bound on the size of the created heuristics. Finally in Section 7.2.3 we

provide a summary of the work undertaken in this section.

7.2.1 Bounded Experiments

In this subsection we describe the methodology and present the results from Experi-

ments A1 and A2.

Methodology

Experiments A1 and A2 consist of a set of repetitions of an LSPS algorithm. Each

experiment creates LS-SAT heuristics using Language A. Each experiment’s under-

lying LSPS algorithm is based on Local-Search-Rnd (see Algorithm 5.2). Each

repetition is initialised by randomly choosing a heuristic from Language A with

size ≤ 15. We use the memoized results from Chapter 4 to perform this step. The

neighbourhood generation algorithm GenerateSuccessors is used to create the

entire neighbourhood for each candidate heuristic. The neighbourhood defined as

N(3) is used. This neighbourhood can also be described as Nr(3, 1, 3, 3) in terms of

Definition 26. Each neighbourhood is filtered after it is created. In Experiment A1
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all heuristics with size > 15 are removed, and in Experiment A2 all heuristics with

size > 17 are removed.

The heuristics are evaluated using the fitness function described in Section 3.4.1.

Termination occurs either after all heuristics in the current neighbourhood have been

evaluated and no fitter heuristic found, or after 100, 000 total heuristic evaluations

have been performed. The heuristic with the highest fitness is returned from the

algorithm. We call this returned heuristic the repetition’s final heuristic. Both

experiments consist of 100 repetitions. Experiments A1 and A2 were ran on the same

system described in Section 4.2.2. Experiment A1 took 9 hours to terminate, and

Experiment A2 took 13 hours.

Results & Analysis

In Figure 7.1 we present three graphs; one shows the quality of the heuristics created

from each repetition of each experiment, and the other two show how ten of the “best”

and “worst” repetitions from each experiment progressed. We define the best and

worst repetitions as those whose final heuristic had the highest and lowest fitness

values respectively. In Table 7.1 we show additional statistical data pertaining to

each experiment.

Throughout this chapter we compare the distributions of fitness values obtained

from various experiments. When we refer to an experiment’s distribution of fitness

values, we specifically refer to the set of final heuristic’s fitness values, derived from

each repetition of the experiment. In this chapter we present this data in graphical

form, as can be seen in Figure 7.1a. In these graphs we order the fitness values

from lowest to highest. By visualising the fitness values in this way, we can provide

detailed insight into the quality of the heuristics created by a specific experiment.

We can see that the heuristics returned from Experiment A2 have a higher fitness

than those returned from Experiment A1. This is clear from the data presented

in Figure 7.1a and the statistics shown in Table 7.1. This result was expected, as

Experiment A1 considers a subset of the heuristics under consideration in Experiment

A2. A heuristic that is a local optima under Experiment A1’s algorithm may have a

fitter neighbour under Experiment A2’s algorithm. Under Experiment A2’s algorithm,

this fitter neighbour would become the candidate heuristic, which may also have

fitter neighbours. On average over all repetitions, we can see that this larger search

space yielded fitter heuristics.
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(a) Final results from Experiments A1 and A2. Each data point represents the fitness of

the final heuristic returned from that repetition of the local search algorithm. We also show

an overlay of the results from the simulated local search experiment described by the triple

(Local-Search-Rnd, 3, 15), originally shown in Figure 5.5c.

(b) Ten of the best and worst repetitions

from Experiment A1.

(c) Ten of the best and worst repetitions

from Experiment A2.

Figure 7.1: Results from Experiments A1 and A2. In Figures 7.1b and 7.1c each

sequence of data points represents a single repetition.
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Table 7.1: Statistical data from Experiments A1 and A2. We show the steps (number

of times the candidate heuristic changes), the number of evaluations, the start, end

and difference in size (s) and fitness (f) of the initial (h1) and final heuristic (hfinal),

the MTED and SMTED between the first and final heuristic, and the number of

evaluations required to find the final heuristic.

(a) Statistical data from Experiment A1.

Mean Min Q1 Median Q3 Max

Steps 13.19 4 10.00 13.00 16.00 30

Evals 1,882.68 191 1,222.50 1,719.00 2,369.75 5,575

f(h1) 2.65 0.00 0.00 0.50 2.06 35.80

f(hfinal) 34.01 9.60 30.25 35.40 39.45 42.80

∆f 31.36 3.20 24.85 33.70 38.60 41.40

Evals to hfinal 870.11 3 379.00 618.50 1,126.25 4,293

s(h1) 14.59 11 14.00 15.00 15.00 15

s(hfinal) 14.40 11 14.00 15.00 15.00 15

∆s -0.19 -3 -1.00 0.00 0.00 3

MTED(h1,hfinal) 7.51 2 6.00 7.00 9.00 12

SMTED(h1,hfinal) 1.71 0 0.00 2.00 3.00 6

(b) Statistical data from Experiment A2.

Mean Min Q1 Median Q3 Max

Steps 15.40 7 12.00 15.00 18.00 29

Evals 2,896.52 899 1,993.50 2,550.00 3,414.25 9,137

f(h1) 3.25 0.00 0.00 0.60 3.55 37.20

f(hfinal) 38.01 16.80 37.50 40.50 41.80 47.40

∆f 34.76 3.80 27.65 38.50 41.00 46.40

Evals to hfinal 1,470.94 68 533.25 1,186.50 2,063.25 6,339

s(h1) 14.61 12 14.00 15.00 15.00 15

s(hfinal) 15.54 12 14.00 16.00 17.00 17

∆s 0.93 -2 0.00 1.00 2.00 4

MTED(h1,hfinal) 9.43 5 8.00 9.00 11.00 15

SMTED(h1,hfinal) 2.67 0 1.00 2.00 4.00 8
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In Figure 7.1a we show an overlay of the results obtained from one of the simulated

local search experiments described in Chapter 5. Specifically this is the simulation

described by the triple (Local-Search-Rnd, 3, 15). This simulation was chosen

as its methodology is similar to that used for Experiment A1. The overlay is

extrapolated from the 1, 000 repetitions of the simulation. We have condensed the

data points so that the distribution of fitness values can be easily compared to

that obtained from Experiment A1. We can see that the two experiment’s fitness

distributions are remarkably similar. The only difference between Experiment A1

and the simulated experiment is that the GenerateSuccessors algorithm is used

instead of the computationally expensive Memoize-Neighbourhoods algorithm.

As the experiments produced similar results, we believe that this provides strong

evidence that GenerateSuccessors achieves its design goals - it emulates the

algorithm Memoize-Neighbourhoods.

We can also see a similarity between the two distributions of fitness values obtained

from Experiments A1 and A2. We would describe both distributions as plateauing

at various points, before tailing upward to the next plateau. Both distributions tail

upward at the highest fitness values. Like in the simulated experiments, Experiments

A1 and A2 produced duplicate final heuristics. In Experiment A1 there were 79

unique final heuristics reported from all repetitions, and 80 for Experiment A2. In

comparison to the results reported in Section 5.4, these proportions are quite high.

However, without more data it is difficult to draw any conclusion as to whether these

are typical values for the number of repetitions performed.

In Figures 7.1b and 7.1c we show how some of the repetitions of each experiment

progressed. What is most striking from these examples is how quickly high-quality

heuristics were created. For the majority of repetitions considered, the final heuristic

was created in under 5, 000 evaluations. While these repetitions did not terminate at

this point, they did not create any better heuristics - in essence, they had arrived at

the local optimum.

The results shown in Table 7.1 provide us with data to reinforce these observations,

and afford us the opportunity to make further ones. We can see that all repetitions in

both experiments terminated after less than 10, 000 heuristic evaluations. To find the

local optima in all repetitions required under 6, 500 heuristic evaluations. However, if

we look at the other statistical data, we can see that there are some outliers - both

very high and very low values - that skews this evaluation data significantly. By
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analysing the mean data from Experiment A2, we can see that on average just under

1, 500 evaluations are required to find the local optima, and on average under 3, 000

evaluations required for the repetitions to terminate. The data from Experiment

A1 reported these values as under 900 and under 2, 000 evaluations respectively.

The large difference between these values was expected. This is because any given

heuristic p will have at least as many neighbours under the LSPS algorithm described

by Experiment A2 as that described by Experiment A1. Therefore, to explore p’s

entire neighbourhood, the LSPS algorithm described by Experiment A2 will require

more heuristic evaluations than that described by Experiment A1.

In Table 7.1 we include data showing how the structure of the final heuristic

changes compared to the initial heuristic. We include three metrics; the size of the

heuristic, the MTED between the initial and the final heuristic, and the structured

MTED (SMTED) between the initial and final heuristic. The SMTED is a form

of MTED we describe as follows; given two trees a and b, the SMTED between a

and b is computed as the MTED between strip(a) and strip(b). The function strip

removes all labels from a tree. The SMTED metric provides a measurement of how

different the structure of two trees are to each other, while ignoring how the nodes

are labelled.

We can see from the structural data that in both experiments there are examples

of heuristics that grow and shrink in size, and whose MTED and SMTED between the

initial and final heuristic is large. In essence as LSPS is creating effective heuristics, it

is also fundamentally changing the structure of the program trees as it moves through

the search space, and not necessarily just making small changes such as relabelling

nodes. We note that in Experiment A2 the values regarding the structural changes

are greater than those seen in Experiment A1.

In Table 7.1a, which details the statistical data from Experiment A1, we can see

that the average change in the size of the heuristics is negative. Though this may

seem unintuitive, when we consider the experiment’s methodology, we can see why

this is correct. To initialise the first heuristic, the experiment is picking from all

heuristics in Language A of size ≤ 15. From the data in Table 4.2, we know that the

vast majority of the chosen heuristics will be of size 15. Therefore, it would only take

a small number of repetitions which have a final heuristic of size < 15 for the average

change in size to become negative.

In the next subsection we present two experiments which are similar to those
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described here, except that there is no limit placed on the size of the heuristics which

can inhabit a neighbourhood.

7.2.2 Unbounded Experiments

In this subsection we describe the methodology and present the results from Experi-

ments A3 and A4.

Methodology

Experiments A3 and A4 are nearly identical to Experiments A1 and A2. Instead of

providing a complete description of their methodology, we give a brief description of

their differences compared to other experiments.

• Experiment A3 is formulated in exactly the same manner as Experiments A1

and A2, except that the neighbourhood is not filtered after it is generated.

• Experiment A4 is formulated in exactly the same way as Experiment A3, except

that the initial heuristic is created in a different way. The grow method from

GP (see Section 2.5.4) is used, with a maximum depth of 4.

We consider Experiments A1 and A2 to be the realisation of the simulated experi-

ments described in Chapter 5. The experiments described here are unconstrained

versions of those experiments. In Section 4.2.1 we discussed how Language A describes

a search space containing an infinite number of heuristics. As Experiments A3 and

A4 do not enforce any constraints on which heuristics can inhabit a neighbourhood,

they are - at least theoretically - able to navigate to any heuristic in the infinite

search space described by Language A.

Experiment A4 removes the reliance that Experiments A1 to A3 had on an

initialisation function that is difficult to implement without memoized data. In those

experiments, we chose a heuristic with size ≤ 15 by using the enumerated data from

Chapter 4. In a real-world setting this data would not be available. In addition to

this, using this method of initialisation may have introduced unintended bias into the

algorithm, as, in the set of heuristics with size ≤ 15, the vast majority of elements

have a size of exactly 15 - therefore, heuristics of size 15 are highly likely to be chosen.

For these reasons, we felt it prudent to use an alternate initialisation function with

Experiment A4.
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Experiments A3 and A4 were ran on the same system described in Section 4.2.2.

In total Experiment A3 took 24 hours to terminate, and Experiment A4 61 hours.

Results & Analysis

In Figure 7.2 we present three graphs; one shows the quality of the heuristics created

from each repetition of each experiment, and the other two show how ten of the

best and worst repetitions from each experiment progressed. In Table 7.2 we show

additional statistical data pertaining to each experiment.

We can see from the data in Figure 7.2a that the heuristics created from Experi-

ments A3 and A4 are generally of higher quality than those created from Experiment

A2. The highest quality heuristics created also have a higher fitness than the high-

est quality heuristics created from exhaustive enumeration. We can see that the

distribution of fitness values from both Experiments A3 and A4 is very different to

the distribution from Experiment A2. In Experiment A2, there is a relatively flat

plateau between fitness scores 20 and 30 encompassing the first 20 heuristics. The

distribution then tails upward to the next plateau. In Experiments A3 and A4 the

plateau between fitness scores 20 and 30 is much smaller in size. Experiment A4

has a large plateau between fitness scores 30 and 40 which does not appear in the

other experiments. After these plateaus, each experiment’s fitness distribution has

an upward trajectory.

As observed previously, there is a large plateau in Experiment A4’s distribution

between fitness scores 30 and 40. Unlike the other plateaus we have seen, it appears

to be flat. The repetitions which make up this plateau - from index 9 to 34 - all

returned one of two heuristics. These heuristics had nearly identical fitness scores,

which made the plateau appear flat. The number of unique heuristics returned from

Experiment A3 was 82 and from Experiment A4 70. This tells us that the vast

majority of the duplicate results returned from Experiment A4 are contained in this

plateau.

The only difference between Experiments A3 and A4 is in the way that their

local search algorithm is initialised. Experiment A3 initialises its first heuristic by

picking one randomly that has size ≤ 15, while Experiment A4 uses the grow method

from GP. To help us understand why these plateaus have appeared, in Figure 7.3

we present the results from Experiment A4 with additional information about the

size of the initial heuristic used in that repetition. From this data, we can see that
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(a) Final results from Experiments A3 and A4. Each data point represents the fitness of

the final heuristic returned from that repetition of the local search algorithm. We also show

the results from Experiment A2 for comparison.

(b) Ten of the best and worst repetitions

from Experiment A3.

(c) Ten of the best and worst repetitions

from Experiment A4.

Figure 7.2: Results from Experiments A3 and A4. In Figures 7.2b and 7.2c each

sequence of data points represents a single repetition.
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Table 7.2: Statistical data from Experiments A3 and A4. We show the steps (number

of times the candidate heuristic changes), the number of evaluations, the start, end

and difference in size (s) and fitness (f) of the initial (h1) and final heuristic (hfinal),

the MTED and SMTED between the first and final heuristic, and the number of

evaluations required to find the final heuristic.

(a) Statistical data from Experiment A3.

Mean Min Q1 Median Q3 Max

Steps 19.02 8 14.00 18.00 22.25 42

Evals 5,343.31 1,184 2,524.25 3,454.00 6,739.25 24,733

f(h1) 2.95 0.00 0.00 0.40 3.75 32.20

f(hfinal) 41.68 22.80 40.40 41.60 44.85 49.00

∆f 38.73 8.80 36.80 40.80 44.20 49.00

Evals to hfinal 2,691.99 51 1,003.50 1,478.50 3,442.00 16,242

s(h1) 14.50 11 14.00 15.00 15.00 15

s(hfinal) 17.61 13 14.00 18.00 20.00 30

∆s 3.11 -2 0.00 3.00 5.00 16

MTED(h1,hfinal) 11.56 4 9.00 11.00 14.00 25

SMTED(h1,hfinal) 4.43 0 2.00 4.00 6.00 16

(b) Statistical data from Experiment A4.

Mean Min Q1 Median Q3 Max

Steps 17.86 4 10.00 16.50 24.00 43

Evals 13,481.60 151 327.75 5,578.50 22,000.75 85,500

f(h1) 2.30 0.00 0.00 0.80 2.80 25.40

f(hfinal) 41.31 21.80 36.80 41.70 46.40 49.80

∆f 39.00 20.79 35.79 39.40 44.75 49.80

Evals to hfinal 6,182.75 9 187.75 1,748.00 6,608.50 59,740

s(h1) 16.03 2 3.00 17.00 26.00 40

s(hfinal) 19.93 7 8.00 19.50 30.00 41

∆s 3.90 -2 1.00 4.00 5.00 17

MTED(h1,hfinal) 12.05 3 6.00 12.00 17.25 26

SMTED(h1,hfinal) 4.90 0 3.00 4.50 6.00 17
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Figure 7.3: Final results from Experiment A4. Each data point represents the fitness

of the final heuristic returned from that repetition of the local search algorithm. The

data points are coloured according to the size of the initial heuristic of that repetition.

the majority of the heuristics in the plateaus come from repetitions which use initial

heuristics with a very small size - either 2 or 3. It appears that when these small

heuristics are used as a starting point, it is more likely that the final heuristic arrived

at will be one of a small number of heuristics. From here, the search is evidently

unable to progress further, making these plateaus appear.

The grow method to create program trees works by randomly picking a term

- either a function or a terminal - then recursively populating the child nodes of

that term. This process continues until the depth from the root to the current node

being assigned is greater than the given depth parameter, then only terminals can be

chosen. In this way, a full program tree is created. Language A has certain functions

that, if chosen at any point when creating a program tree, will constrain the size

of that program tree. For example, if GetBestVar is chosen then none of its child

nodes can be functions. If it is chosen as the root of a created program tree, then,

irrespective of the depth parameter used, the created program tree will be of size 3.

We believe that it is due to the way in which the language is formulated that causes

these small heuristics to be created, which in turn limits the effectiveness of LSPS on

these repetitions.
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If we look at the graphs regarding the best and worst repetitions from Experiments

A3 (Figure 7.2b) and A4 (Figure 7.2c), we can see that for the small number of results

considered, the number of evaluations performed far exceeds those values reported

from Experiments A1 and A2 - with the exception of the worst repetitions from

Experiment A4. If we consider only the best repetitions, we can see that in creating

the final heuristics from Experiment A4, the number of evaluations performed far

exceeds that reported from Experiment A3. We know that the largest initial heuristic

used in Experiments A1 to A3 was size 15. From the data shown in Figure 7.3, we

know that the size of the initial heuristics used for the best repetitions was much

larger than 15, with some heuristics having an initial size ≥ 31. If the results in

Section 5.3.2 are indicative for all program trees in Language A, then it stands to

reason that heuristics at this size will have a far greater number of neighbours.

In Figure 7.2c we can see that, for Experiment A4, nearly all of the worst

repetitions use a small number of evaluations. These data points are difficult to

discern compared to those for the best repetitions. Upon further analysis, we found

that all of the worst repetitions - apart from one - terminated in under 200 evaluations.

We know from Figure 7.3 that the majority of these repetitions began with an initial

heuristic that had a small size. Together, this tells us that those repetitions which

began with a small initial heuristic found their final heuristic in a small number of

evaluations.

The data in Table 7.2 shows us more detailed information regarding Experiments

A3 and A4. The number of evaluations for each of the experiments far exceeds those

reported from Experiments A1 and A2, with the average number of evaluations over

all runs being reported at just under 5, 500 for Experiment A3 and just under 13, 500

for Experiment A4. We can see that these averages have been somewhat skewed by

outliers in both experiments, however the effect is more pronounced for Experiment

A4. This is illustrated by the median, and the lower and upper quartile values. This

skewing of data is also seen in the values reported for the number of evaluations

required to obtain the final heuristics in both experiments.

We can see that the change in the size, MTED and SMTED values reported from

Experiments A3 and A4 exceed those values reported from Experiments A1 and A2.

However, we are somewhat surprised that these values are not higher, and that we

did not see examples of final heuristics that had much larger changes compared to

their starting heuristic. The results for both experiments are relatively similar to

302



CHAPTER 7. LOCAL SEARCH PROGRAM SYNTHESIS

each other. We feel in future work that it may be beneficial to investigate the role

that the size of the starting heuristic has on how the heuristic’s structure changes

through a repetition of LSPS. This may help provide insight into how to design more

appropriate initialisation algorithms for this method of program synthesis.

The experiments described in this subsection illustrate to the reader how LSPS

can be used to automatically create heuristics for our domain, without any constraints

placed on the size of the created heuristics, and (for Experiment A4) no memoized

data required.

7.2.3 Summary

In this section we have performed several experiments to understand how LSPS

performs when used to create LS-SAT heuristics. The initial experiments can be

considered a realisation of the simulated experiments described in Chapter 5, while

Experiments A3 and A4 are able to navigate the entire search space of heuristics as

described by Language A. We have shown how these experiments have created many

high-quality heuristics using far less evaluations than the exhaustive enumeration

and GP experiments described in Chapter 4. While the LSPS experiments described

in this section were unable to produce heuristics with a higher fitness than those

created from GP, they did create fitter heuristics than those created from exhaustive

enumeration. Unlike those created from GP, the heuristics created from LSPS are

human readable and relatively small. While there was a tendency for the heuristics

to grow in size, this growth was far smaller than that reported from GP.

In the next section we perform a further LSPS experiment which uses the ran-

domised neighbourhood generation algorithm described in Section 6.5.

7.3 Randomised Neighbourhood Generation

In the previous section we performed a series of experiments using LSPS and Language

A to create LS-SAT heuristics. We began with Experiment A1, which emulated a

simulated local search experiment described in Chapter 5. Each subsequent experiment

relaxed a constraint imposed by the previous. This process culminated in Experiment

A4, which required no memoized data, and imposed no constraints on the size of the

created heuristics.

The overarching goal of this section is to perform an experiment that is designed
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to emulate Experiment A4. This experiment, designated Experiment A5, will use the

function GenerateSuccessors-Rnd (see Algorithm 2.5) to generate a heuristic’s

neighbours. Experiments A1 to A4 used the function GenerateSuccessors to

do this. GenerateSuccessors generates the entire neighbourhood of a heuristic,

whereas GenerateSuccessors-Rnd randomly generates a single neighbour. We

want to analyse the difference between the results from Experiments A4 and A5, to

determine how effective GenerateSuccessors-Rnd is compared to Generate-

Successors.

The format of this section is as follows. In Section 7.3.1 we discuss the motiva-

tions behind the use of GenerateSuccessors-Rnd. We also discuss two issues

that the use of GenerateSuccessors-Rnd introduces when used as part of an

overarching LSPS algorithm. In Section 7.3.2 we describe two mechanisms to be

used alongside GenerateSuccessors-Rnd, which are designed to alleviate the

two issues highlighted in Section 7.3.1. In Section 7.3.3 we present Experiment A5,

an LSPS experiment that uses GenerateSuccessors-Rnd. We also present our

analysis on the results from that experiment. Finally in Section 7.3.4 we provide a

summary of the work undertaken in this section.

7.3.1 Observations

The local search algorithms used in the simulated experiments described in Chapter 4,

and those experiments described in Section 7.2, have a similar format. That is to

say, they work by generating the entire neighbourhood of a candidate heuristic, then

choosing heuristics randomly from that neighbourhood. To be clear, the heuristics

are removed from the neighbourhood after they have been chosen. This process

continues until either a fitter heuristic is found and made the new candidate, or

the neighbourhood is empty and the entire algorithm terminates. This mechanism

acts as a form of “early termination”, and is used as the algorithm cannot progress

any further from its current position. It is distinctly separate from how the local

search algorithm would usually terminate - when the allocated maximum number of

evaluations had been reached.

In general, local search is commonly associated with problems that represent their

candidate solutions as fixed-sized arrays. Each element in the array usually represents

some variable in the problem, and has a domain of possible values associated with it.

For a specific problem instance, all candidate solutions are the same size. A common
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Figure 7.4: Size of the neighbourhoods of the candidate heuristics from all repetitions

of Experiments A3 and A4. The neighbourhoods can be described by N(3).

definition of a neighbourhood used with a fixed-sized array is that which allows any

variable’s value to be changed for any other valid value. Under this definition, all

candidate solutions have the same number of neighbours.

Our domain does not have these characteristics. We have seen invocations of local

search where the size of the candidate solution (in our domain, these are program

trees or heuristics) changes. Using data collected from Experiments A3 and A4, in

Figure 7.4 we present data showing the size of the N(3) neighbourhood for different

sized heuristics. This data suggests that the size of a heuristic’s neighbourhood grows

exponentially in relation to the size of the underlying program tree - at least for

Language A and N(3). It also shows us that all heuristics of size n do not have the

same number of neighbours. In Section 5.3.2 we presented data showing this trend,

however not for heuristics of such a large size.

Up to this point, the experiments described in this chapter have used the function

GenerateSuccessors to generate the neighbourhood of a candidate heuristic.

Assuming that the trends seen in Figure 7.4 continue, at some point we would

encounter a large enough heuristic whose neighbourhood we would be unable to

store, due to the computational resources required to do so. In addition to this, if

we were to consider neighbourhoods described by larger neighbourhood bounds, or
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neighbourhoods described by different languages, we may encounter the same problem.

In Section 7.4 we perform experiments using a different definition of a neighbourhood,

and in Section 7.5 we perform experiments using a larger language. In preliminary

work, we attempted to use GenerateSuccessors to perform those experiments,

however we found it was not possible to store the neighbourhoods created using the

computational resources available to us.

In Section 6.5 we presented a randomised neighbourhood generation algorithm

called GenerateSuccessors-Rnd. This algorithm works by creating an individual

randomly instead of generating all neighbours. Its major advantage over Gener-

ateSuccessors is that it can create neighbours without having to generate an

entire neighbourhood. This allows us to use an arbitrarily large program tree as the

candidate while using far less computational resources.

However, GenerateSuccessors-Rnd has two major disadvantages compared

to GenerateSuccessors. The first of these is to do with its role in a local

search algorithm. GenerateSuccessors conceptually returns the set of unique

neighbours. When used as part of an LSPS algorithm, all the neighbours can be

evaluated individually, and the algorithm can terminate early if no fitter neighbour

found. All repetitions in Experiments A1 to A4 used this early termination mechanism.

GenerateSuccessors-Rnd may return the same neighbour more than once, and

cannot inform the wider local search algorithm when all neighbours have been

evaluated. Therefore, if we were to substitute it for GenerateSuccessors, an

invocation of local search using it would only terminate when the maximum number

of evaluations had been reached. This would be undesirable for many repetitions of

Experiments A1 to A4, where the heuristic that was returned was found quickly.

The second disadvantage is a more nuanced issue regarding the way in which a

neighbour is chosen. If we consider a neighbourhood of size k, when choosing an

element randomly from that neighbourhood, the chance that any neighbour would

be chosen is 1
k
. It is not simple to instantiate GenerateSuccessors-Rnd in such

a way so as to provide the same chance that a neighbour would be chosen.

There are several reasons for this, however we will concentrate on how the use of

compound moves makes this difficult. In Section 6.7 we discussed how the simulated

experiments we performed in Chapter 5 could be considered a form of VDS. In

Definition 26 we introduced an alternate definition for a neighbourhood that allowed

us to write N(n) as Nr(n, 1, n, n). Using set notation, we observe that this can be
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rewritten as shown in Equation (7.1).

Nr(n, 1, n, n) = Nr(n, 1, 1, n) +Nr(n, 2, 2, n) + · · ·+Nr(n, n, n, n) (7.1)

Using the shorthand Nk(n, i) for Nr(n, i, i, n), we can represent a neighbourhood as

shown in Equation (7.2).

N(n) = Nk(n, 1) +Nk(n, 2) + · · ·+Nk(n, n) (7.2)

Returning to GenerateSuccessors-Rnd, we would observe that the algorithm

is written in such a way so as to allow the use of a custom function for choosing

how many compound moves i to perform when generating a neighbour. If we knew

how many elements are in each set Nk(n, 1) . . . Nk(n, n), we could use these values

to perform a weighted pick to choose i. If we could then probe the Nk(n, i) set

uniformly, we could instantiate GenerateSuccessors-Rnd in such a way that it

would be analogous to GenerateSuccessors, but without generating the entire

neighbourhood.

However, the use of compound moves means that even if we knew the size of each

Nk neighbourhood, we would not be able to calculate their weights correctly so that

they could be used with GenerateSuccessors-Rnd. As we saw in Section 6.4.7,

some program trees can only be created through using compound moves. If there are

two separate edit sequences which create the same program tree that use a different

number of compound moves, they will be placed in different Nk neighbourhoods.

Without enumerating all neighbourhoods and checking for the existence of duplicate

program trees, we would be unable to attribute weights to each Nk neighbourhood

such that they could be used in the way intended.

In truth, we do not know whether the way that GenerateSuccessors picks

a neighbour is a behaviour that is beneficial for LSPS in general, and therefore we

do not know whether GenerateSuccessors-Rnd having a different behaviour

is a disadvantage or not. However, we believe it prudent to attempt to emulate

the behaviour of GenerateSuccessors as it is unbiased. If we ever desired to

augment the choosing of a neighbour with some additional heuristic mechanism, we

would know that if we used GenerateSuccessors (or any function that could

approximate it), then no additional bias would be introduced by its use.

In the next subsection we identify mechanisms to be used with GenerateSucc-

essors-Rnd to alleviate the issues that we have highlighted in this subsection.
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7.3.2 Using Randomised Neighbourhood Generation

In the previous subsection we highlighted two disadvantages that using Generate-

Successors-Rnd has when compared to using GenerateSuccessors. In this

subsection we identify additional mechanisms to be used withGenerateSuccessors-

Rnd that we believe can alleviate these issues.

Early Termination

In the LSPS algorithms that underpin Experiments A1 to A4, early termination

occurred if all neighbours had been evaluated and no fitter heuristic found. Without

this functionality, each of those experiments would have performed 108 heuristic

evaluations in total, many of which would have been redundant. Using this early

termination mechanism significantly reduced this number - for example Experiment

A4 performed approximately 1.3× 106 heuristic evaluations in total.

When using GenerateSuccessors-Rnd, we cannot determine when a neigh-

bourhood has been fully evaluated. Therefore the mechanism described in the previous

paragraph is not applicable when using it. Instead, we propose an alternate early ter-

mination mechanism. It is described as follows; if no fitter neighbour has been found

after evaluating e elements of the current candidate program tree’s neighbourhood,

then early termination occurs.

For the experiment we will perform in this section - previously designated Ex-

periment A5 - we require an appropriate e value. Generally it would be preferable

to use a value which will provide a good chance of finding the fittest heuristics,

while not spending unnecessary time evaluating neighbourhoods containing no fitter

neighbours.

To find an appropriate e value for Experiment A5, instead of performing compu-

tationally expensive experiments with different e values, we will perform experiments

which simulate re-running Experiment A4. These simulations are designed to show

how using the previously described early termination mechanism would have changed

the results of Experiment A4 if it had been used as part of Experiment A4’s overar-

ching LSPS algorithm. Each simulation uses a different e value. Because we have

memoized detailed results from Experiment A4, these simulations can be quickly

performed, allowing us to test several different e values and find one that meets our

criteria. As Experiment A5 is almost identical to Experiment A4, we believe that

these simulations will provide us with an appropriate e value.
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To be clear, the experiments we perform do not simulate using GenerateSucc-

essors-Rnd instead of GenerateSuccessors in Experiment A4’s overarching

LSPS algorithm. Instead they simulate augmenting Experiment A4’s overarching

LSPS algorithm with the previously described early termination mechanism. It

is Experiment A5 that will use GenerateSuccessors-Rnd in place of Gener-

ateSuccessors. The simulated experiments can be seen as an intermediary step

between Experiments A4 and A5.

Before describing the set of simulated experiments, we must first introduce some

notation. Consider the formula in Equation (7.3).

f(R, smin) =
∑
r∈R

h(rfinal) if s(r1) > smin

0 otherwise
(7.3)

The function f in Equation (7.3), when given the experiment results R and integer

smin, describes the sum of the heuristic quality across all repetitions of R. The

experiment results R can be visualised as a set. For each repetition r ∈ R, h(rfinal)

represents the final heuristic’s fitness from r, and s(r1) represents the size of the

initial heuristic from r. We use the size parameter to omit some repetitions from f

by comparing the smin value to the s(r1) value.

We write simR,e to refer to the results produced from simulating experiment

R using the previously described early termination mechanism with a parameter

value of e. The reader may assume that we next perform a set of simulations with

different e values, with the goal of finding one which meets some performance criteria.

Instead, the simulations take the following form; when given the parameter p (where

0 ≤ p ≤ 1), the experiment results R and the integer smin, we find the minimum e

value that satisfies the formula in Equation (7.4).

f(R, smin)× p ≥ f(simR,e, smin) (7.4)

All the simulations we perform use R = Experiment A4 and smin = 4. Each simulation

uses a different p value. In essence, these simulations allow us to find the minimum

e value which produces heuristics with a quality that is within a percentage of the

original result’s heuristic quality. This percentage is represented by p. In Section 7.2.2

we noted how some repetitions created small initial heuristics, and many of them

arrived at the same final heuristic. The smin value of 4 is used to disregard those

results from these simulations.
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Table 7.3: Data from simulated re-runs of Experiment A4 using the termination

mechanism described in Section 7.3.1. We show data from six simulations, which

we have named Experiment A4-Sx, for x values ∈ {1 . . . 6}. Each simulation has an

associated p value, which is used to calculate the maximum e value that satisfies

Equation (7.4). For each simulation we show its p value, the calculated e value, and

the total number of evaluations performed over all repetitions of that simulation. We

also show the total number of evaluations used over all repetitions of Experiment A4.

Name p e Sum of Evals

Experiment A4 - - 1,330,691

Experiment A4-S1 1.0 22,860 886,717

Experiment A4-S2 0.999 17,469 813,413

Experiment A4-S3 0.995 7,062 567,074

Experiment A4-S4 0.99 5,120 421,734

Experiment A4-S5 0.98 3,163 282,691

Experiment A4-S6 0.96 1,576 162,972

In Table 7.3 we show details of the six simulations performed. Each simulation

has a name in the form Experiment A4-Sx for x values ∈ {1 . . . 6}. We show each

simulation’s p value, the calculated e value, and the sum of all evaluations performed

in that simulation. In Figure 7.5 we show the distribution of heuristic fitness values

produced from each simulation.

These results show us that a small change in p equates to a much larger change

in e. For example, to obtain heuristics with a quality that is 99% of the quality of

the heuristics returned from Experiment A4, an e value of just over 5, 000 is required,

yet to obtain heuristics with a quality that is 98% of the quality of the heuristics

returned from Experiment A4, an e value of just over 3, 000 is required.

Based on these results, we believe that an e value of 7, 500 is appropriate for our

needs. The data in Table 7.3 shows us that it produces heuristics that are within

99.5% of the quality of those produced from Experiment A4. Yet, the total number

of evaluations required is less than 62% of what was originally performed.
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Figure 7.5: The fitness values of the final heuristics created from the simulations of

Experiment A4. The simulations model re-running Experiment A4 augmented with

the early termination mechanism described in Section 7.3.1. Each simulation uses

a different e parameter value, which we give in Table 7.3. We only simulate the 65

repetitions from Experiment A4 whose initial heuristic was of size > 4.
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Picking Neighbours Randomly

The second mechanism described in this subsection is designed to address the issue

regarding how a heuristic is chosen from a neighbourhood. Specifically, we want

the way that GenerateSuccessors-Rnd picks a neighbour to be as similar as

possible to the method used in Experiments A1 to A4. In those experiments, after

GenerateSuccessors created a neighbourhood of size k, each neighbour had a 1
k

chance of being chosen.

It is difficult to create an algorithm that does this without memoizing the neigh-

bourhood. There are many reasons for this - for example, in Section 7.3.1 we discussed

how compound moves make this difficult. Another issue we have not addressed is

that in Experiments A1 to A4 elements were removed from the neighbourhood after

they had been chosen. GenerateSuccessors-Rnd does not take this into account.

Therefore, it is not possible to use GenerateSuccessors-Rnd in such a way so that

it is semantically identical to GenerateSuccessors. Instead, we try to instantiate

GenerateSuccessors-Rnd so that it approximates picking an element from a

neighbourhood with uniform randomness, ignoring previously selected neighbours.

To do this we use previous results to approximate the size of the Nk neighbour-

hoods, which we use as the weights for the number of compound moves to perform in

GenerateSuccessors-Rnd, as discussed in Section 7.3.1.

To find an appropriate way of approximating the size of these neighbourhoods,

we collected all candidate heuristics from Experiments A3 and A4. We separated

them into subsets based on their size. For each heuristic in each subset, we generated

their Nk(3, i) neighbourhoods for i ∈ {1, 2, 3}. We then calculated the average sizes

of each of these neighbourhoods for each subset. In Figure 7.6 we show this size data

plotted against the size of the heuristics.

We can identify two clear trends from this data. Firstly, the number of neigh-

bours in Nk(3, 1) best resembles a polynomial function when plotted against the

candidate heuristic’s size. Nk(3, 2) and Nk(3, 3) appear to grow exponentially. In

Equations (7.5) to (7.7) we show functions that best approximate the data for each

Nk(3, i) neighbourhood. In those equations the s variable is the size of the heuristic.

|N(3, 1)k| = 2.37s+ 2.37 (7.5)

|N(3, 2)k| = 28.9s× 0.038s (7.6)

|N(3, 3)k| = 28.8s× 0.084s (7.7)
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Figure 7.6: The average number of neighbours in each Nk neighbourhood for all

candidate heuristics from Experiments A3 and A4. We also show lines of best fit for

each neighbourhood.

It is the functions in Equations (7.5) to (7.7) that we will use to approximate the

size of the Nk neighbourhoods in Experiment A5, and the rest of the experiments in

this chapter.

Finally, we would like to be clear to the reader that even if we were able to

calculate the exact size of the Nk neighbourhoods, using them as weights with

GenerateSuccessors-Rnd would still not emulate GenerateSuccessors per-

fectly. This is because GenerateSuccessors-Rnd does not select an element from

each Nk neighbourhood uniformly, instead it picks a point in the input program tree

to identify a TPPT from, and then selects an edit sequence randomly from any that

match with that TPPT. We believe that it may be possible to select an element from

the Nk neighbourhood uniformly, however our attempts to create such an algorithm

were unsuccessful.

In the next subsection we present Experiment A5, which uses theGenerateSucc-

essors-Rnd neighbourhood generation algorithm together with the mechanisms laid

out in this subsection.
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7.3.3 Randomised Neighbourhood Generation Experiment

In this subsection we describe the methodology and present the results from Experi-

ment A5.

Methodology

Experiment A5 is a series of repetitions of an LSPS algorithm, used to create LS-

SAT heuristics using Language A. Experiment A5’s overarching algorithm is based

on Local-Search-Rnd. Each repetition is initialised using the grow method

from GP, with a maximum depth of 4. The neighbourhood generation algorithm

GenerateSuccessors-Rnd is used to generate neighbours. The functions in

Equations (7.5) to (7.7) are used by GenerateSuccessors-Rnd to decide how

many compound moves to use for any given neighbour. The neighbourhood defined

by N(3) is used.

The heuristics are evaluated using the fitness function described in Section 3.4.1.

The algorithm can terminate in one of two ways; either when 7, 500 neighbours of the

current heuristic have been evaluated and no fitter neighbour found, or when a total

of 100, 000 heuristics have been evaluated. Experiment A5 consists of 100 repetitions.

Experiment A5 is designed to be similar to Experiment A4, except that the function

GenerateSuccessors-Rnd is used to generate the neighbours. We also use the two

mechanisms described in the previous subsection to alleviate the two disadvantages

highlighted in Section 7.3.1 regarding the use of GenerateSuccessors-Rnd.

Experiment A5 was ran on the system described in Section 4.2.2. In total, it took

45 hours to terminate.

Results & Analysis

In Figure 7.7 we present two graphs; one shows the quality of the heuristics created

from each repetition of the experiment, and the other shows how ten of the best and

worst repetitions from the experiment progressed. In Table 7.4 we show additional

statistical data pertaining to the experiment.

From the data shown in Figure 7.7a, we can see that the distribution of heuristic

values reported from Experiment A5 is similar to that reported from Experiment

A4. Both begin with a set of heuristics with low fitness values in a flat plateau. The

remaining results trend steadily upwards. On average, the heuristics from Experiment

A4 reported a higher fitness, though Experiment A5 produced the fittest heuristics.
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(a) Final results from Experiment A5. Each data point represents the fitness of the final

heuristic returned from that repetition of the local search algorithm. We also show the

results from Experiment A4 for comparison.

(b) Ten of the best and worst repetitions from Experiment A5. Each sequence of data

points represents a single repetition.

Figure 7.7: Results from Experiment A5.
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Table 7.4: Statistical data from Experiment A5. We show the steps (number of

times the candidate heuristic changes), the number of evaluations, the start, end

and difference in size (s) and fitness (f) of the initial (h1) and final heuristic (hfinal),

the MTED and SMTED between the first and final heuristic, and the number of

evaluations required to find the final heuristic.

Mean Min Q1 Median Q3 Max

Steps 15.79 4 9.00 14.50 22.00 36

Evals 9,890.45 7,503 7,717.00 8,177.50 10,984.25 23,273

f(h1) 2.34 0.00 0.00 0.80 2.70 23.40

f(hfinal) 40.42 21.80 36.80 40.00 45.00 51.20

∆f 38.08 16.40 34.60 36.80 42.60 50.19

Evals to hfinal 2,390.45 3 217.00 677.50 3,484.25 15,773

s(h1) 14.56 2 3.00 14.50 23.00 39

s(hfinal) 18.50 7 8.00 18.00 27.00 39

∆s 3.94 -1 2.00 4.00 5.00 19

MTED(h1,hfinal) 10.84 3 6.00 10.00 15.00 27

SMTED(h1,hfinal) 4.62 0 3.00 4.00 5.00 19

This suggests to us that the LSPS algorithm underpinning Experiment A5 is generally

less effective than that underpinning Experiment A4, and on average appears to

create heuristics of a lower quality.

We had expected Experiment A5 to produce heuristics with a lower fitness than

Experiment A4, as the neighbourhood generation algorithm used in Experiment A4

is able to systematically search all neighbours, thereby providing a guarantee that if

a fitter neighbour exists it will be found. Experiment A5 provides no such guarantee,

and therefore it is possible that a fitter neighbour won’t be found. These results

appear to reinforce our assumptions about how Experiment A5’s overarching LSPS

algorithm performs.

In Figure 7.7b we show the ten best and worst repetitions from Experiment A5.

Compared to those from Experiment A4, Experiment A5’s worst repetitions required

many more evaluations to terminate, yet the quality of heuristics found is similar. We

attribute the large difference in the number of heuristic evaluations to the different

mechanisms that each experiment used to terminate early. In Experiment A5, the

LSPS algorithm terminates early only if 7, 500 neighbours have been evaluated and no
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fitter neighbour found. On further analysis, we found that the ten worst performing

repetitions all arrived at a small final heuristic which had a small neighbourhood.

Therefore we can conclude that, in those repetitions, a large number of unnecessary

heuristic evaluations were performed. This is an unforeseen effect that introducing the

early termination mechanism described in Section 7.3.2 had on the results. In future

work, it may be prudent to use the approximated size of a heuristic’s neighbourhood

to determine the number of evaluations to perform before early termination occurs.

By doing so, we may be able to reduce the number of unnecessary heuristic evaluations

performed for those neighbourhoods with fewer members.

When we look at the repetitions that produced the best heuristics from Experiment

A5, we can see a clear difference in the number of evaluations performed compared

to the best repetitions from Experiment A4. In both experiments, we can see that

the trajectory of the best repetitions is to rise to a high fitness value quickly, after

which any improvements to a heuristic’s fitness is small. In Experiment A5, for

the repetitions highlighted, the number of evaluations performed is far less than for

Experiment A4.

The data in Table 7.4 shows us more detailed information regarding Experiment

A5. In regards to the data concerning the sizes of heuristics, the fitnesses of heuristics

and the change in structure of the heuristics, there is little difference between the

results from Experiments A4 and A5. However, across all metrics concerned with

the number of evaluations performed, Experiment A5 reported substantially different

values compared to those reported from Experiment A4. For example, in Experiment

A4 the mean number of evaluations and evaluations required to obtain hfinal was

reported as just below 13, 500 and just over 6, 000 respectively, whereas for Experiment

A5 these values were reported as just under 10, 000 and a little over 2, 000. If we look

at the upper quartile value for the number of evaluations performed, Experiment A5

reported a value less than half that reported from Experiment A4, and if we look at

the minimum and lower quartile values for the number of evaluations, Experiment

A5 reported a substantially higher value than those reported from Experiment A4.

It stands to reason that the difference in results can be attributed to the differences

in Experiment A5 compared to Experiment A4. For those repetitions that reported

a final heuristic with a lower fitness, as highlighted previously, we believe that the

much greater number of evaluations performed in Experiment A5 is due to the early

termination mechanism. For the repetitions whose final heuristic had a higher fitness,
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Experiment A5 reported that they required a substantially smaller number of heuristic

evaluations. We were surprised by this result. While we had expected there to be a

smaller number of evaluations performed, we had not expected such a large difference.

Yet, when looking at the quality of heuristics found, it appears that the smaller

number of evaluations performed did not overly effect the ability of the algorithm to

find effective LS-SAT heuristics.

The experiment presented in this subsection shows the reader how the randomised

neighbourhood generation algorithm can be used to navigate the search space of

heuristics. While the results we have seen suggest that the heuristics created from

Experiment A5 are of worse quality than those created from Experiment A4, we are

satisfied that Experiment A5’s LSPS algorithm is still able to effectively navigate

the search space of heuristics, and the mechanisms introduced appear to work as

intended.

7.3.4 Summary

In this section we have illustrated the reasoning behind the use of GenerateSucc-

essors-Rnd, shown several undesirable effects its use may have on the overarching

LSPS algorithm, and described two mechanisms to alleviate these effects. We then

described Experiment A5, and presented the results from it.

The experiment performed in this section can be seen as an extension to those

performed in Section 7.2. Across all repetitions, the heuristics created from Exper-

iment A5 were not of as high quality as those created from Experiment A4. Yet,

we are satisfied that when using GenerateSuccessors-Rnd, we are still able to

navigate the search space of heuristics, and find effective candidate solutions. This

method of neighbourhood generation can consider neighbourhoods of much larger

size than GenerateSuccessors, as it does not require storing all neighbours. In

all remaining LSPS experiments performed in this chapter, we use this method of

neighbourhood generation.

In the next section we present an LSPS experiment that uses neighbourhoods far

larger than those used in any experiment described previously.
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7.4 Using an Alternate Cost Function

In the previous section we described Experiment A5, an LSPS experiment that

used GenerateSuccessors-Rnd. GenerateSuccessors-Rnd can probe an

arbitrarily sized neighbourhood without having to store it. This gives it an advan-

tage compared to GenerateSuccessors, used in Experiments A1 to A4. Using

GenerateSuccessors-Rnd, we can now consider neighbourhoods of virtually

limitless size.

In this section we consider an LSPS experiment which would not be possible to

perform using GenerateSuccessors. The experiment detailed in this section uses

an alternate definition of a neighbourhood. This definition increases the number of

edit sequences associated with a specific language and neighbourhood bound. The

sizes of the neighbourhoods under consideration with this definition are much larger

than those considered in Experiments A1 to A5, and those experiments performed

in Chapter 5. Hence, with the computational resources available to us, it is only

possible to perform this experiment using GenerateSuccessors-Rnd.

The format of this section is as follows; In Section 7.4.1 we discuss the motivation

behind considering an alternate way of defining a neighbourhood, before providing

the definition we use in this section. In Section 7.4.2 we detail the methodology

behind Experiment A6, the experiment we describe in this section, and present the

results from it. Finally in Section 7.4.3 we provide a summary of the work undertaken

in this section.

7.4.1 Observations

In the proceeding sections in this chapter, all of the experiments we have described have

used the definition of a neighbourhood provided in Definition 23. In Definition 26

we gave an alternate definition of a neighbourhood, however we only performed

experiments which used neighbourhoods that could be defined in terms of Definition 23.

The neighbourhood definition in Definition 23 has been used successfully in our

experiments; we have seen many examples of LSPS repetitions which have created

heuristics with a high fitness. In this subsection we give our rationale behind the use

of an alternate definition of a neighbourhood for use with an LSPS algorithm.

To begin, we will provide evidence which suggests that the neighbourhood defini-

tion used in Experiments A1 to A5 constricts the overarching LSPS algorithm. In all
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experiments, this was the N(3) neighbourhood. In Tables 7.2 and 7.4 we presented

statistical data for Experiments A3 to A5. We highlight these experiments as they

placed no constraints on the size of heuristic that could be created. As noted in

Section 7.2.2, the change in the size of the final heuristic compared to the initial

heuristic was quite small for Experiments A3 and A4, and this trend continued in

Experiment A5. Of the three experiments, the highest average change in size was

reported as just under 4, the upper quartile value reported as exactly 5, and the

largest change in size observed was 19. We had expected there to be many more

examples of repetitions which had reported a large change in heuristic size. For the

reported SMTED data, the values are similar to those reported for the change in size.

While the MTED data values reported are much larger, we believe this is due to the

relabelling of nodes, which the other size metrics do not take into account. In general,

we would state that there are few examples of repetitions which have created a final

heuristic that has a substantially different structure compared to that repetition’s

initial heuristic - at least according to the metrics outlined here.

As to why there are not many examples of repetitions showing larger changes in

heuristic size, we believe that it may be due to the way in which the neighbourhood

is defined. In Table 7.5 we show statistical data pertaining to all edit sequences found

in the N(3) neighbourhood for Language A. To be clear to the reader, these edit

sequences are comprised of edits with a cost of exactly 1, and have a cost of at most

3. In this data we show how many edit sequences correspond to a change in an input

program tree’s size. We calculated this by counting the number of insertions and

deletions in each edit sequence. Though this data does not take into account the

application of compound moves, it does show us that there are relatively few edit

sequences that change the size of an input program tree by any number greater than

1. This suggests to us that, on average, the majority of the neighbours of an input

program tree will be the same size, or have a size difference of 1. We believe that

with fewer opportunities to make larger edits, there will be fewer repetitions which

show large changes in program tree size when the final program tree is compared to

the initial program tree.

The second point we would like to draw the attention of the reader to concerns

specific examples of edit sequences found within neighbourhoods. In Figure 7.8

we show three PTPPTs. The PTPPT in Figure 7.8a corresponds to a specific

configuration of nodes in Language A. This configuration represents the two arguments
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Table 7.5: Data concerning the frequency of different types of edit sequences in N(3).

To compute this data, the edit sequences were separated into groups based on how

they change a program tree’s size. We show how many edit sequences are in each

group. This data only takes into account the application of single edit sequences, not

compound moves. As there is a reciprocal for every edit sequence, the number in a

set that increases by n or decreases by n is identical.

Change in Size +/-3 +/-2 +/-1 0 Total

# Edit Sequences 40 143 1,910 1,338 5,804

that the GetOldestVar function requires. The observations we make below are also

applicable to PTPPTs that represent the arguments for the IfRandLt, IfNotMinAge,

IfVarCompare, IfVarCond and IfTabu functions, albeit with additional typed nodes

used to represent the additional arguments these functions require.

In Figures 7.8b and 7.8c we show two PTPPTs that can be created from the

PTPPT in Figure 7.8a. This can be done using edit sequences which we refer to

as edita,b and edita,c respectively. In addition, there is an edit sequence that can

be used to transform the PTPPT in Figure 7.8b into the PTPPT in Figure 7.8c,

which we refer to as editb,c. edita,b and editb,c have a cost of 3, while edita,c has a

cost of 5. edita,b and editb,c are in the set of edit sequences described by the N(3)

neighbourhood, while all three edit sequences are in the N(5) neighbourhood.

edita,b and edita,c are representative of a specific type of edit sequence. They both

add a new branch to a program tree that has a Var return type. These edit sequences

can be repeatedly applied to a program tree to grow it indefinitely. Reciprocals of

these edit sequences also exist, which delete Var branches.

Consider the program tree ta, which contains a node p. Node p is the root of a

configuration of nodes in ta that is analogous to the PTPPT in Figure 7.8a. The

program tree tb is obtained by applying edita,b to ta at node p. The program tree tc

is obtained by applying editb,c to tb at node p. tc can also be obtained by applying

edita,c to ta at node p. In order to obtain tc under N(3) from ta by applying edita,b

then editb,c, ta, tb and tc’s fitness values must be in a specific ordering. This ordering

is shown in Equation (7.8).

f(ta) < f(tb) < f(tc) (7.8)

However, if f(tb) < f(ta) then tc would not be obtained. While it is reasonable to
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Var Var

Var Var

(a) A PTPPT written under Language

A. It type checks, and is considered a

start state PTPPT.

Var Var

Var

GetOldestVar

Var Var

Var

PickRandomVar

VarSet

VarSet

WFF

Var

Var

(b) The PTPPT after three nodes have

been inserted into the PTPPT shown in

Figure 7.8a. It type checks, and is con-

sidered an end state PTPPT. The edit

sequence to obtain this PTPPT from the

PTPPT in Figure 7.8a has a cost of 3.

Var Var

Var

IfVarCompare

Comparator GainType Var Var

Comparator

<=

GainType

NegGain

Var

PickRandomVar

VarSet

VarSet

RBC-0

Var

Var

(c) The PTPPT after five nodes have been inserted into the PTPPT shown in Figure 7.8a.

It type checks, and is considered an end state PTPPT. The edit sequence to obtain this

PTPPT from the PTPPT in Figure 7.8a has a cost of 5.

Figure 7.8: A start state PTPPT and two end state PTPPTs written using Language

A.
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assume that tc could be obtained from ta by some other sequence of edit sequences,

we note that edita,b and editb,c are the most direct way of creating tc from ta under

N(3).

Under N(3) and Language A there are many other examples of start state PTPPTs

(s1) and pairs of edit sequences (edit1 and edit2) with the following properties; edit1

can be applied to s1 to create s2. edit2 can be applied to s2 to create s3. edit1 contains

three insertions, one of which is an insertion of the function GetOldestVar. The

other inserted nodes in edit1 create a new Var branch. edit2 relabels the previously

inserted GetOldestVar function and inserts at most 2 new nodes underneath it.

The example in Figure 7.8 describes a start state PTPPT and pair of edit

sequences with these properties. In that example the function IfVarCompare is the

node GetOldestVar was relabelled with, but this could be substituted for other

functions such as IfNotMinAge, IfRandLt or IfTabu.

These PTPPTs and edit sequences can be extrapolated to full program trees.

However, the start, intermediary and end state program trees must have a fitness

relationship which mirrors that described in Equation (7.8) in order to obtain the

end state program tree in edits with the minimum cost. This tells us that there are

output program trees under Language A and N(3) which, in order to create from an

input program tree using edits with a minimum cost, rely on a single intermediary

program tree’s fitness being less than the end state program tree’s fitness and greater

than the input program tree’s fitness.

We believe that, due to the composition of the language, the N(3) neighbourhood

may be limiting the opportunities that the overarching LSPS algorithm has to create

certain heuristics, some of which may have a high fitness value. This could mean that

the algorithm is getting stuck in local optima when there are higher quality heuristics

which are relatively close by, as the algorithm is unable to create them.

For these reasons, we think that it is worth investigating whether using a neigh-

bourhood which includes more edit sequences like edita,c, as well as edit sequences

which make larger changes to a candidate program tree, can be used with an LSPS

algorithm to create higher quality heuristics. The reader may assume that we would

create such a neighbourhood by increasing the neighbourhood bound. However in

Table 6.3 we saw that calculating N(4) required nearly 2 hours of computation time,

and we believe any neighbourhoods with a larger bound would be impractical to

calculate. Instead, we redefine the neighbourhood to include a cost function as
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a parameter, and then instantiate a neighbourhood with a cost function designed

specifically for our needs. The alternate definition for the neighbourhood is given as

follows:

Definition 27 (Cost-Parameterised Neighbourhood of a Program Tree)

Given a language L, a candidate program tree h, a number representing the maximum

bound of a single edit ns, two integers representing the minimum and maximum

number of compound moves nm0 and nm, a number representing the sum of the costs

that all edits can have nsum, and a cost function f which attributes a cost to each edit,

the cost-parameterised neighbourhood NC(h, f, ns, nm0 , nm, nsum) is defined as all

valid program trees under L that can be obtained from h through a series of sequences

of tree edits with the following properties. Each sequence of tree edits describes a

transformation between two valid program trees under L. Each sequence of tree edits

has a cost of at most ns under f . There are between nm0 and nm sequences of tree

edits. The total sum of the cost of all sequences of tree edits under f is at most nsum.

If the program tree is obvious from the context, we write NC(f, ns, nm0 , nm, nsum).

As with Definitions 23 and 26, Definition 27 does not explicitly mention the tree

edits described in Section 2.6. However, it is our intention that it is used with those

tree edits. Consequently, any cost function used with Definition 27 must also be

defined in terms of these edits. Care must be taken to ensure that any cost function

used remains consistent with the cost function requirements of the MTED metric,

laid out in Section 2.6. Doing so ensures that the neighbourhood definition and the

neighbourhood generation algorithm remain consistent with each other.

Instead of instantiating the cost-parameterised neighbourhood definition with

a specific cost function, we use the function Cost in this chapter. It is defined in

Equation (7.9).

Cost(f, edit) =



f(label(edit)) if insert(edit) ∨ delete(edit)

max(f(label1(edit)), if relabel(edit) ∧

f(label2(edit))) label1(edit) ̸= label2(edit)

0 otherwise

(7.9)

Equation (7.9) uses several functions whose meaning may not be immediately obvious.

These functions can be described as follows; insert, delete and relabel return True

if the edit argument is an insertion, deletion or a relabel edit respectively, and False

324



CHAPTER 7. LOCAL SEARCH PROGRAM SYNTHESIS

otherwise. label gets the term to be inserted or deleted. label1 gets the term that is

to be relabelled, while label2 gets the new term for the relabelled node.

Cost takes two arguments; a function f and the edit to compute the cost of, edit.

edit is defined in terms of the MTED edits laid out in Section 2.6. The function f

takes an element in the language L and returns an integer representing a cost. For

a function f , we write c = Cost(f) to represent partially instantiating Cost with

f . We consider c to be in the correct form for use with Definition 27. In Section 6.2

we informally described a generalised cost function for use with the neighbourhood

generation algorithm. The cost function shown in Equation (7.9) is designed to be

analogous to that cost function.

In Equation (7.10) we show the function fbasic.

fbasic(term) = 1 (7.10)

Using fbasic, we can define the N(3) neighbourhood used throughout this thesis in

terms of Definition 27. It is shown in Equation (7.11).

N(3) = NC(Cost(fbasic), 3, 1, 3, 3) (7.11)

In Equation (7.12) we show the function falt. falt uses the function function, which

returns True if its argument is a function and False otherwise.

falt(term) =

 1 if function(term)

0.1 otherwise
(7.12)

Using falt we can define the Nalt neighbourhood. This is the neighbourhood we will

be using in this section. Nalt is shown in Equation (7.13).

Nalt = NC(Cost(falt), 2.8, 1, 3, 2.8) (7.13)

While the way that Nalt is constructed may appear to be unintuitive compared to the

other neighbourhoods we have considered, it has been specifically designed with the

observations made in this subsection in mind. Informally, in Nalt each edit operation

that uses a function has a cost of 1, and those using a terminal a cost of 0.1. The

desired effect of this cost function is that the neighbourhood will contain many edit

sequences that consist of edits operating on terminals, and at most 2 that operate on

functions.

In Table 7.6 we show data regarding the Nalt neighbourhood for Language A.

Through analysing N(3) and Nalt, we found that Nalt contains 5, 672 of the 5, 804
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edit sequences in N(3). In total, there are 1, 211, 108 edit sequences in Nalt, one

of which is edita,c. This is obviously a much larger number of edit sequences than

N(3) contains. It would not be practical to generate the entire neighbourhood of any

program tree using this neighbourhood definition, instead we will have to use the

randomised neighbourhood generation algorithm. The data in Table 7.6b shows us

that Nalt contains many more edit sequences which correspond to a large change in

program tree size when compared to N(3). In Table 7.6a we can see that it took much

longer to compute Nalt than N(3). In the next subsection we describe Experiment A6,

which is an LSPS experiment that uses the Nalt neighbourhood. Through analysing

the results from Experiment A6, we aim to ascertain whether the additional time

required to generate the edit sequences for Nalt can be justified by the quality of

heuristics created.

7.4.2 Alternate Cost Function Experiment

In this subsection we describe the methodology and present the results from Experi-

ment A6.

Methodology

Experiment A6 is nearly identical to Experiment A5. Instead of providing a complete

description of its methodology, we give a brief description of it in terms of its

differences compared to Experiment A5.

• Experiment A6 is formulated in exactly the same manner as Experiment A5,

except that the neighbourhood used is the Nalt neighbourhood, instead of the

N(3) neighbourhood.

Experiment A6 was ran on the system described in Section 4.2.2. In total, it took

115 hours to terminate. Through performing Experiment A6, we aim to ascertain

the effect that the Nalt neighbourhood has on the results. Specifically, we want

to investigate the difference in the fitness and size of the created heuristics when

compared to those created from other experiments.

Results & Analysis

In Figure 7.9 we present two graphs; one shows the quality of the heuristics created

from each repetition of the experiment, and the other shows how ten of the best and
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Table 7.6: Data concerning the neighbourhood Nalt for Language A. We show statistics

the neighbourhood generation algorithm reported when constructing Nalt, as well as

statistical data concerning the edit sequences in Nalt.

(a) Data gathered when calling Create-All-Edit-Sequences on Language A us-

ing the neighbourhoods N(3) and Nalt. We assume that the language parameter to

Neighbourhood-Generation contains the cost function used. So that our definitions

remain consistent, the ns parameter in Definition 27 is analogous to the nmax parameter

in Create-All-Edit-Sequences. For the language used (L), we show the number of

functions (F) and terminals (T) in that language. In brackets are the number of terms

with a unique type signature in each set. For each call to Create-All-Edit-Sequences,

as described by the ns value and cost function, we show the size of the set of TPPT start

states, the total number of TPPTs for which all the edit sequences were found (we refer to

these as problems solved), and the time taken to compute the edit sequences.

L F T ns

Cost

Function

Start

States

Problems

Solved

Time

taken

(ms)

A 9 (8) 26 (6)
3 Cost(mbasic) 38, 016 526, 630 29, 685

2.8 Cost(malt) 49, 931 60, 259, 738 1, 012, 797

(b) Data concerning the frequency of different types of edit sequences in Nalt for Language

A. To compute this data, the edit sequences were separated into groups based on how they

change a program tree’s size. We show how many edit sequences are in each group. This

data only takes into account the application of single edit sequences, not compound moves.

As there is a reciprocal for every edit sequence, the number in a set that increases by n or

decreases by n is identical.

Change in Size +/-7 +/-6 +/-5 +/-4 +/-3

# Edit Sequences 82,944 45,090 17,568 1,548 2,560

Change in Size +/-2 +/-1 0 Total

# Edit Sequences 34,533 299,354 243,914 1,211,108
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Table 7.7: Statistical data from Experiment A6. We show the steps (number of

times the candidate heuristic changes), the number of evaluations, the start, end

and difference in size (s) and fitness (f) of the initial (h1) and final heuristic (hfinal),

the MTED and SMTED between the first and final heuristic, and the number of

evaluations required to find the final heuristic.

Mean Min Q1 Median Q3 Max

Steps 39.62 12 27.00 36.00 47.00 88

Evals 24,917.88 8,797 13,568.00 20,752.00 30,948.00 72,931

f(h1) 3.06 0.00 0.00 0.80 2.60 32.00

f(hfinal) 47.54 39.00 46.00 47.80 50.00 54.20

∆f 44.48 18.60 43.00 46.00 48.50 54.20

Evals to hfinal 17,417.88 1,297 6,068.00 13,252.00 23,448.00 65,431

s(h1) 16.53 2 3.00 17.50 25.00 40

s(hfinal) 73.20 20 47.75 66.00 87.00 201

∆s 56.67 5 34.75 48.00 70.75 182

MTED(h1,hfinal) 63.43 16 40.00 56.00 77.50 184

SMTED(h1,hfinal) 57.45 9 35.75 49.00 70.75 182

worst repetitions from the experiment progressed. In Table 7.7 we show additional

statistical data pertaining to the experiment.

In the results shown in Figure 7.9a, we can immediately see that the distribution

of fitness values reported from Experiment A6 is strikingly different to those reported

from Experiment A5. We can see that the minimum, maximum and average fitness

value of the heuristics obtained from Experiment A6 are greater than those obtained

from Experiment A5. In addition to this, there are no duplicate heuristics in the

results obtained from Experiment A6, whereas from Experiment A5 there were 33.

In Experiments A4 and A5 we saw large plateaus of heuristics concentrated around

relatively low fitness values. This feature has only appeared in experiments which

used the grow method to initialise their heuristics. As discussed in Section 7.2.2, we

believe this feature to be a consequence of two things; the grow method creating

a large number of very small heuristics, and the LSPS algorithm being unable to

move beyond this area of the search space. In Experiment A6 we can see that there

is no large plateau. When compared to Experiments A4 and A5, we can confirm

that a similar proportion of repetitions from Experiment A6 were initialised with
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(a) Final results from Experiment A6. Each data point represents the fitness of the final

heuristic returned from that repetition of the local search algorithm. We also show the

results from Experiment A5 for comparison.

(b) Ten of the best and worst repetitions from Experiment A6. Each sequence of data

points represents a single repetition.

Figure 7.9: Results from Experiment A6.
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heuristics of a small size. We surmise that, due to the use of the Nalt neighbourhood,

repetitions from Experiment A6 which were initialised with a small heuristic were

able to escape the area of the search space that repetitions in Experiments A4 and

A5 could not, which in turn increased the overall quality of the heuristics created.

In Figure 7.9b we show how the ten best and worst repetitions from Experiment

A6 progressed. This data is very different to the ten best and worst repetitions

reported from Experiment A5. The majority of the final heuristics from the worst

repetitions in Experiment A5 are contained within a large plateau of low-quality

heuristics. In those repetitions the algorithm quickly created a relatively high-quality

heuristic, but after several hundred evaluations the final heuristic was obtained and

no further improvement was made. In the results for Experiment A6, the worst

repetitions also create relatively high-quality heuristics, but not as quickly as in

Experiment A5. However, improvements continue to be made, and the repetitions

do not terminate as early as those shown for Experiment A5. A similar comparison

can be made using the best repetitions from both experiments, but the difference

between those results is more pronounced. Experiment A6 reported some repetitions

that continued to find fitter heuristics after 50, 000 evaluations.

Table 7.7 shows us detailed statistical data regarding Experiment A6. This data

backs up the observations made so far in this subsection. For every statistical metric

considered, the fitness values reported from Experiment A6 are higher than those

reported from every other experiment. This trend is seen in other values reported

from Experiment A6 - for example, the number of steps, evaluations to obtain the

final heuristic and the total number of evaluations performed are higher than those

reported from any other experiment. It is worth noting that in Experiment A4 the

reported values concerning the total number of evaluations are far closer to those

reported from Experiment A6. However, in that experiment all neighbours were

evaluated before termination occurred, and many unnecessary heuristic evaluations

were performed.

On average, the heuristics created from Experiment A6 are far larger than those

created from any other experiment. We can also see that the values reported for

the difference in size, MTED and SMTED between the first and final heuristic are

far larger than those reported from all other experiments. It is worth noting that

the heuristics created from Experiment A6 are somewhat similar in size to those

created from the GP experiments described in Section 4.3. One heuristic created

330



CHAPTER 7. LOCAL SEARCH PROGRAM SYNTHESIS

from Experiment A6 contains over 200 terms. While it is difficult to judge a heuristic

arbitrarily, we would be surprised if it is as easily understood as those heuristics

created from experiments described in previous sections. In the experiments described

in this chapter we have made no attempt to control the size of the created heuristics.

However in future work when using the Nalt neighbourhood, it may be necessary to

do so in order to create heuristics that can be easily understood.

From the results presented in this subsection, we would state that the amount of

time taken to create the Nalt neighbourhood is justified. However, the use of the Nalt

neighbourhood does have some disadvantages; the number of evaluations required is

far greater than in other experiments, and some of the created heuristics are very

large in comparison to those created using the N(3) neighbourhood.

The experiment described in this subsection illustrates how an alternate neigh-

bourhood definition can be used to augment the LSPS algorithm to navigate the

search space of heuristics in a more effective manner. The results have shown us that

the heuristics created from Experiment A6 are of higher quality than those created

from any other experiment. They are also far larger than those created from any

other experiment.

7.4.3 Summary

In this section we have described an alternate neighbourhood definition, and intro-

duced the Nalt neighbourhood. This neighbourhood contains a far greater number of

edit sequences than the neighbourhood previously considered.

The results from Experiment A6 showed that the heuristics created using Nalt were

of higher quality than those created from N(3). We are satisfied that the additional

time taken to create the Nalt neighbourhood is justified. The results in this section

illustrate to the reader the potential of the algorithms described in Chapter 6. We

can consider very large numbers of edit sequences, which can be used to navigate the

solution space and, for Language A, create high-quality solutions.

In the next section we perform LSPS experiments using an alternate language,

Language B.
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7.5 Using an Alternate Language

In the previous sections we described experiments that used Language A and LSPS

to create LS-SAT heuristics. In Chapter 3 we described the components that make

up Language A. In that chapter we described many other components for building

LS-SAT heuristics which have so far not been used in this thesis.

In this section we perform experiments using a different language. This language is

called Language B. Like Language A, Language B is used to create LS-SAT heuristics.

It is a larger language than Language A, and contains terms that correspond to more

modern LS-SAT heuristic mechanisms than those used in Language A. We perform

three program synthesis experiments using Language B; two LSPS experiments and

one GP experiment.

The motivation behind the experiments we describe in this section is twofold; firstly,

we want to ascertain whether the systems we have built are able to automatically

create heuristics more effective than those hand-crafted by human experts. We believe

that utilising a language which contains constructs used in modern heuristic design

should provide us with the best chance of achieving this goal. Secondly, we want to

know how the systems we have built for LSPS behave when given a vastly different

language, and whether the observations we have made from the LSPS experiments

using Language A are also seen when using Language B.

The format of this section is as follows. In Section 7.5.1 we introduce Language

B, the language we use in this section. In Section 7.5.2 we present the methodology

and results from the GP experiment performed using Language B. In Section 7.5.3

we present the methodology and results from Experiments B1 and B2, two LSPS

experiments that use Language B. Finally in Section 7.5.4 we provide a summary of

the work undertaken in this section.

7.5.1 Language B

In this subsection we present Language B, the language we use in this section to

create LS-SAT heuristics. In Table 7.8 we show the terms used in Language B.

One of the motivations behind the experiments described in this section is to

automatically create more effective LS-SAT heuristics. When designing Language B,

we chose terms which we believed would help us to achieve this goal. The majority of

the terminals and functions we chose have been used in previously existing LS-SAT
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Table 7.8: Language B. All terms shown here are contained within the language, in

addition to all terms in Language A except the following: the Integer terms −2, −1,

1 . . . 5, all Age terms, and the functions IfTabu and IfNotMinAge. In regards to the

GP experiments in this chapter, terms with a grey background are in the terminal

set, and those with a white background in the function set.

Type Signature Terms

VarSet → GainType → GainType → Var {GetBestVar2}
VarSet → GainType → Var {GetBestVarAge}
VarSet → Var {PickOldest}
Var → Var {UpdatePAWS}
Maybe Var → Var → Var {IfIsNull}
Comparator → GainType → Integer → VarSet

{Filter}
→ Maybe VarSet

Maybe VarSet → Maybe Var {PickRandomM}
Maybe VarSet → GainType → Maybe Var {GetBestVarM, GetBestVarAgeM}
VarSet → VarProb → List VarProb → Var {WeightedVarPick}

FloatingPoint → GainType → VarProb
{ExponentFunction, Polynomial,
PolynomialNegative}

VarProb → List VarProb → List VarProb {NextElement}

GainType

{SubPosGain, SubNegGain, SubNetGain,
PosGain WA, NegGain WA, NetGain WA,

SubPosGain WA, SubNegGain WA,

SubNetGain WA}
VarSet {CONF, RBC-1, RBC WA-0, RBC WA-1}

Maybe VarSet
{DecrVars, DecrVars WA, SubDecrVars,

SubDecrVars WA}
Probability {Adapt}
Comparator {>,≥}
FloatingPoint {0.2, 0.4 . . . 3.8, 4.0} − {0.0}
List VarProb {EndList}
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heuristics. The reader is referred to Chapters 2 and 3 for more information regarding

their meaning and examples of their previous use.

There are some functions and terminals which were included in Languages A and

A1 which have been omitted from Language B. These are IfNotMinAge, IfTabu, WFF,

all of the terminals with an Integer type signature (except 0), and all terminals with

an Age type signature.

IfTabu was not included as many of the previously created heuristics which used

this function did not perform well on larger problem instances. We believe this to be

due to the much larger number of heuristic evaluations performed when solving these

larger problems. Over time, we think this changes how the heuristics which use the

IfTabu function operate. Due to it not being included, all terminals which have an

Age type signature were also omitted.

The WFF terminal was omitted due to the results from the exhaustive enumeration

experiment performed using Language A1. The heuristics which used the WFF terminal

were generally less effective than those which only used the RBC-0 terminal. We also

know that including it could cause a program synthesis technique to create a subtree

in the form GetBestVar {WFF, g}, where g is a gain type metric. Subtrees like this

would require the overarching local search algorithm to maintain a partial ordering

of all variables according to g. For large problem instances, this is computationally

expensive to maintain, thus increasing the time taken for an iteration of local search

to evaluate, and potentially reducing the overall effectiveness of the heuristic.

We decided to omit the majority of the terminals with an Integer type signature

due to the results from Experiment A6. We noted that some of the created heuristics

contained many combinations of terms using the IfVarCompare function together

with different terms with an Integer type signature. In Section 7.6 we discuss this

in greater detail, and why these combinations of terms are undesirable. To stop these

combinations of terms being created in the results for the experiments which use

Language B, we omitted the majority of the terms with an Integer type signature

from the language.

However, we did include the Integer terminal 0. Both the functions Filter

and IfVarCompare require a terminal with an Integer type in order to be used. In

the examples of hand-crafted heuristics seen which use the IfVarCompare or Filter

terminal, the Integer 0 has been used. We also included additional comparators, to

increase the number of expressions that could be created using these functions.
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We also decided to omit the IfNotMinAge function. This function takes three

arguments; vs (which has a type signature of VarSet), v1 and v2 (which both have

the type signature Var). IfNotMinAge checks to see if v1 has the minimum age

among the variables in vs. If it does, v2 is returned, else return v1. In the results

from the exhaustive enumeration experiments performed using Language A1, we

found evidence of this terminal being used in heuristics which had little semantic

meaning. For example, given an arbitrary gain type g and variable v2, a heuristic

in the form IfNotMinAge {WFF, GetBestVar {RBC-0, g}, v2} has little meaning. It

is difficult to know what the intention is behind comparing the Age of a variable

obtained from RBC-0 to the Age of the variables in WFF. Language B contains many

more terminals with a VarSet type signature, and allows variables to be created

with a Maybe VarSet type signature. Due to this, we found little reason to include

IfNotMinAge in Language B.

In Section 7.5.3 we present the results from the experiments performed using

LSPS on Language B. We will describe two experiments in that subsection, one

using the N(3) neighbourhood and the other using the Nalt neighbourhood. In

Table 7.9 we present data pertaining to the construction of the edit sequences in

those neighbourhoods, and in Table 7.10 we present data concerning the frequency of

different types of edit sequences in those neighbourhoods.

From the data in Table 7.9, we can see that the reported time taken to construct

the edit sequences for the Nalt neighbourhood is somewhat similar to that reported

for the Nalt neighbourhood for Language A. This data is quite surprising, as the

number of subproblems solved for Language B is around 1.5 times that reported

for Language A. Concerning the N(3) neighbourhood, the number of subproblems

solved for Language B is more than 20 times that reported for Language A, however

the time taken is less than double. Together, this data suggests that the number of

subproblems solved does not necessarily correlate with the time taken. In future work,

we believe it may be useful to investigate this further using different neighbourhoods

and languages, in order to more accurately determine what the relationship is between

the size of the language, the number of subproblems solved and the time taken.

In Table 7.10 we show the frequency data for the edit sequences contained in

the N(3) and Nalt neighbourhoods for Language B. We can see there are significant

differences when comparing this data to that reported for Language A in Table 7.5.

The N(3) neighbourhood for Language B contains around 10 times as many edit
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Table 7.9: Data gathered when calling Create-All-Edit-Sequences on Language

B using the neighbourhoods N(3) and Nalt. We assume that the language parameter

to Neighbourhood-Generation contains the cost function used. So that our

definitions remain consistent, the ns parameter in Definition 27 is analogous to the

nmax parameter in Create-All-Edit-Sequences. For the language used (L), we

show the number of functions (F) and terminals (T) in that language. In brackets

are the number of terms with a unique type signature in each set. For each call to

Create-All-Edit-Sequences, as described by the ns value and cost function, we

show the size of the set of TPPT start states, the total number of TPPTs for which

all the edit sequences were found (we refer to these as problems solved), and the time

taken to compute the edit sequences.

L F T ns

Cost

Function

Start

States

Problems

Solved

Time

taken

(ms)

B
21

(15)

54

(7)

3 Cost(mbasic) 31, 281 11, 438, 377 55, 250

2.8 Cost(malt) 56, 698 93, 907, 713 1, 187, 167

Table 7.10: Data concerning the frequency of different types of edit sequences in

N(3) and Nalt for Language B. To compute this data, the edit sequences in each

neighbourhood were separated into groups based on how they change a program

tree’s size. We show how many edit sequences are in each group. This data only

takes into account the application of single edit sequences, not compound moves. As

there is a reciprocal for every edit sequence, the number in a set that increases by n

or decreases by n is identical.

(a) Frequency data for the N(3) neighbourhood for Language B.

Change in Size +/-3 +/-2 +/-1 0 Total

# Edit Sequences 324 5,230 5,260 9,200 30,828

(b) Frequency data for the Nalt neighbourhood for Language B.

Change in Size +/-8 +/-7 +/-6 +/-5 +/-4

# Edit Sequences 2,592,000 3,866,400 1,821,600 2,191,200 2,827,128

Change in Size +/-3 +/-2 +/-1 0 Total

# Edit Sequences 1,653,844 991,390 3,336,668 10,777,082 49,337,542
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sequences than the N(3) neighbourhood for Language A. It also contains a greater

number of edit sequences that make a large change to an input program tree’s size.

The data for the Nalt neighbourhood is the most surprising. It contains nearly

5× 108 edit sequences. This is over 40 times the number of edit sequences in the Nalt

neighbourhood for Language A. In addition to this, a much greater proportion of the

edit sequences make a larger change to an input program tree’s size. We believe the

large difference in the number of edit sequences is due to the much greater number

of terms in Language B with identical type signatures. Consider a type-based edit

which inserts a terminal with a type signature of GainType. Under Language A this

would correspond to 3 unique term-based edits, while under Language B it would

correspond to 12. In general, for an arbitrary type-based edit sequence, the number

of term-based edit sequences which could be extrapolated from it under Language B

would be much larger than the number extrapolated under Language A.

The language given here is one which can describe a much larger number of

heuristics than Languages A or A1. As we have seen, the systems built to create

neighbourhoods are able to function with this much larger language. In the next

subsections we use GP and LSPS with Language B to automatically create LS-SAT

heuristics.

7.5.2 GP Language B Experiment

In this subsection we present the GP experiment performed using Language B.

Methodology

The methodology of the GP experiment described in this subsection is exactly the

same as the experiments described in Section 4.3, except that we use Language

B instead of Language A or A1. The core motivation behind performing a GP

experiment using Language B is so that we are able to compare the results with those

obtained from LSPS.

Results & Analysis

In Table 7.11 and Figure 7.10 we present the results from the experiment. Table 7.11

shows some general data about the population at various points in each GP repetition.

The repetition which reported the heuristic with the highest fitness value was repetition
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5. In Figure 7.10 we show detailed information on how repetition 5 progressed, as

well as data showing how the size of the heuristics in the population changed in that

repetition.

We can see from the results in Table 7.11 that the best performing heuristic from

all repetitions had a reported fitness value of 65.0. This fitness value is higher than

any fitness value reported from any other heuristic in this thesis. Table 7.11 also

shows us that the size of the heuristics created from this GP experiment are noticeably

different than those created from the GP experiments detailed in Section 4.3. Those

experiments, which used Languages A and A1, had initial populations with average

sizes of between 45 and 51. The GP experiment detailed in this subsection had initial

populations with average sizes of between 10 and 13.

We believe these small initial average program tree sizes to be a consequence of the

grow method and the terms in Language B. Language B includes a greater number of

functions which, if chosen to inhabit a node at any point when using the grow method,

will guarantee that the size of the subtree rooted at that node is bounded. That

is to say, the subtree cannot grow indefinitely. Examples of such functions include

PickOldest, GetBestVar and GetBestVarAge. Because of this, we believe that a

larger proportion of the heuristics in the initial population were smaller than those

seen in the other GP experiments, which reduced the average significantly. A similar

effect was seen in some of the LSPS experiments, and discussed in Section 7.2.2.

In comparison to the results reported for the GP experiments which used Lan-

guages A and A1, the size of the heuristics created from the experiment detailed in

this subsection are generally smaller. We believe this to be a consequence of the

smaller initial program trees, however it could also be due to the way that Language

B is formulated. The average size of the heuristics in the final generation was reported

as being between 200 and 450, while for the experiments which used Languages A

and A1 it was reported as being between 200 and 650.

In Figure 7.10a we show how repetition 5 of the GP experiment performed using

Language B progressed. This graph is similar to that shown for the best repetitions

of the GP experiments performed using Languages A and A1, which we presented in

Figure 4.14. However, there are some clear differences between the graphs. Firstly,

we can see that the fitness of the created heuristics from Language B is higher than

those created from Languages A and A1. Secondly, in the first few generations, we

can see that the fitness of the population doesn’t grow as quickly as in the other
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Table 7.11: Statistical data pertaining to the GP experiments ran using Language

B. For each repetition, we show the best heuristic’s fitness, the best heuristic’s size,

the mean fitness of the population, and the mean size of the population for specific

generations. These are the initial generation, the 25th, 50th, 75th and the 100th

generation.

Repetition

1 2 3 4 5

In
it
ia
l
G
en

Best Heuristic’s Fitness 45.2 45.2 45.2 41.2 45.2

Best Heuristic’s Size 3 3 3 16 3

Mean Fitness 1.49 1.55 1.61 1.82 1.59

Mean Size 11.24 12.03 12.06 11.82 11.95

25
th

G
en

Best Heuristic’s Fitness 56.0 59.0 56.0 56.2 56.6

Best Heuristic’s Size 55 36 45 11 18

Mean Fitness 40.08 44.81 40.33 41.08 38.55

Mean Size 38.02 25.75 33.9 30.99 27.84

50
th

G
en

Best Heuristic’s Fitness 58.2 62.2 59.2 58.2 60.0

Best Heuristic’s Size 241 162 92 168 106

Mean Fitness 48.3 51.36 48.87 47.12 50.08

Mean Size 82.43 63.41 84.38 62.29 69.68

75
th

G
en

Best Heuristic’s Fitness 60.8 63.8 61.2 59.8 62.6

Best Heuristic’s Size 584 810 304 159 200

Mean Fitness 52.86 58.34 53.28 50.33 55.07

Mean Size 228.1 148.32 188.22 134.52 198.87

10
0t

h
G
en

Best Heuristic’s Fitness 62.4 64.4 62.4 60.6 65.0

Best Heuristic’s Size 1,146 956 450 296 1,437

Mean Fitness 58.41 58.94 55.99 52.96 58.52

Mean Size 419.84 329.52 344.59 222.89 434.83
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(a) Graph showing the fitness data from the 5th GP repetition. For each generation we

show a boxplot detailing the distribution of fitness values in that generation, with outliers

shown. We also show the mean fitness and the best heuristic’s fitness.

(b) Graph showing the size data from the 5th GP repetition. We show how the mean size

of the population’s heuristics change as the algorithm progressed, as well as the size of the

best heuristic in each generation.

Figure 7.10: Results from the 5th GP repetition performed using Language B.
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GP experiments. We believe this may be an effect of the relatively small size of the

program trees created in the initial generation.

In Figure 7.10b we show the graph detailing the size of the heuristics in the

population as repetition 5 progressed. This graph is similar to those shown in

Figure 4.15 for the GP experiments performed using Languages A and A1. However,

as noted previously, the size of the heuristics for the GP experiment performed

using Language B does not grow as quickly as in the experiments performed using

Languages A and A1.

In Section 7.6 we present additional data pertaining to some of the heuristics

created from the experiment detailed in this subsection.

From these results we would state that the use of GP with Language B has been

successful. We have been able to create heuristics which have reported a higher

fitness than those created using Languages A or A1. However, in future work we

would suggest that alternate initialisation techniques be considered, to ascertain

whether there are more appropriate choices for this language. In the next subsection

we describe LSPS experiments designed to automatically create LS-SAT heuristics

using Language B.

7.5.3 LSPS Language B Experiment

In this subsection we describe the methodology and present the results from the

two LSPS experiments performed using Language B. We call these experiments

Experiment B1 and Experiment B2.

Methodology

The methodology behind Experiments B1 and B2 is similar to the methodologies used

for other experiments in this chapter. We describe them in terms of their differences

compared to two previous experiments. Experiments B1 and B2 can be described as

follows:

• Experiment B1 is formulated in exactly the same manner as Experiment A5,

except that instead of using Language A, Language B is used.

• Experiment B2 is formulated in exactly the same manner as Experiment A6,

except that instead of using Language A, Language B is used.
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Both experiments were ran on the system described in Section 4.2.2. In total,

Experiment B1 took 133 hours to terminate, and Experiment B2 410 hours.

Results & Analysis

In Figure 7.11 we present three graphs; one shows the quality of the heuristics created

from each repetition of both experiments, and the other two show how ten of the

best and worst repetitions from each experiment progressed. In Table 7.12 we show

additional statistical data pertaining to the experiments.

From the results in Figure 7.11, we can see that the minimum, maximum and

average fitness value of the heuristics obtained from Experiments B1 and B2 is

greater than those reported by any previous LSPS experiment. One heuristic from

Experiment B2 has a fitness value of 65.2, which is greater than the highest heuristic

fitness value reported from the GP experiment described in the previous subsection.

The fitness distributions reported by Experiments B1 and B2 are relatively similar

to each other, however there are some subtle differences. When we consider the lowest

quality heuristics from both experiments, those from Experiment B1 have a higher

fitness. As we consider a greater number of repetitions, the two distributions move

closer together, suggesting similar performance. Of the two experiments, Experiment

B2 created the fittest heuristics.

Due to the similarity in their design, it makes sense to compare the results from

Experiment A5 to Experiment B1, and from Experiment A6 to Experiment B2.

Though the quality of the heuristics reported from Experiment B2 is higher than

those reported from Experiment A6, the distributions are generally similar.

However, the same cannot be said for Experiments A5 and B1. In Experiments

A4 and A5, we saw a plateau in the distributions of final heuristic fitness values. In

Section 7.2.2 we surmised that its appearance was caused by the use of the grow

method, and the inability of the overarching LSPS algorithm to escape from the

area of the search space containing small sized heuristics. That Experiment B1 does

not have a plateau is surprising. From the results in Table 7.12a, we know that a

large proportion of the starting heuristics used in Experiment B1 were small. We

can surmise that the adverse effect the grow method has on the size of the created

heuristics is also present when using Language B. As to why there is no plateau, we

believe this is due to the N(3) neighbourhood for Language B containing a far greater

number of edit sequences than the N(3) neighbourhood for Language A, as shown in
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(a) Final results from Experiments B1 and B2. Each data point represents the fitness of

the final heuristic returned from that repetition of the local search algorithm.

(b) Ten of the best and worst repetitions

from Experiment B1.

(c) Ten of the best and worst repetitions

from Experiment B2.

Figure 7.11: Results from Experiments B1 and B2. In Figures 7.11b and 7.11c each

sequence of data points represents a single repetition.
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Table 7.12: Statistical data from Experiments B1 and B2. We show the steps (number

of times the candidate heuristic changes), the number of evaluations, the start, end

and difference in size (s) and fitness (f) of the initial (h1) and final heuristic (hfinal),

the MTED and SMTED between the first and final heuristic, and the number of

evaluations required to find the final heuristic.

(a) Statistical data from Experiment B1.

Mean Min Q1 Median Q3 Max

Steps 22.78 7 14.75 20.00 30.00 48

Evals 10,586.88 7,580 7,945.00 8,901.50 12,448.75 22,085

f(h1) 1.04 0.00 0.00 0.00 0.80 14.00

f(hfinal) 53.49 30.20 52.55 54.00 55.20 61.00

∆f 52.45 28.20 51.10 52.80 54.00 61.00

Evals to hfinal 3,086.88 80 445.00 1,401.50 4,948.75 14,585

s(h1) 9.29 2 3.00 4.00 14.25 38

s(hfinal) 19.28 7 10.00 18.00 26.00 59

∆s 9.99 0 6.00 8.50 13.00 27

MTED(h1,hfinal) 16.02 4 9.00 14.00 20.25 43

SMTED(h1,hfinal) 10.43 0 6.00 9.50 13.00 27

(b) Statistical data from Experiment B2.

Mean Min Q1 Median Q3 Max

Steps 47.57 8 25.75 38.50 65.00 186

Evals 24,637.49 7,712 12,864.00 18,386.50 31,810.00 100,000

f(h1) 1.51 0.00 0.00 0.20 1.01 14.00

f(hfinal) 52.04 37.00 48.20 52.60 55.60 65.20

∆f 50.53 32.80 47.15 50.80 54.45 63.80

Evals to hfinal 17,154.07 212 5364.00 10,886.50 24,310.00 94,158

s(h1) 9.27 2 3.00 6.00 14.00 34

s(hfinal) 83.13 18 39.50 63.50 110.75 276

∆s 73.86 8 33.75 56.50 100.00 259

MTED(h1,hfinal) 79.20 18 36.00 59.00 108.50 264

SMTED(h1,hfinal) 74.06 10 33.75 57.50 100.00 259

344



CHAPTER 7. LOCAL SEARCH PROGRAM SYNTHESIS

Table 7.10a. From the data shown in Figure 7.11, evidently the greater number of edit

sequences allows the LSPS algorithm to escape areas of the search space containing

small sized heuristics. Under the N(3) neighbourhood for Language A, it was not

able to do this. In short, these results suggest that the N(3) neighbourhood is better

suited for navigating Language B than for navigating Language A.

The reader should note that Experiment B1 contains 17 duplicate heuristics,

however they are not concentrated in one area as they were in the results for

Experiments A4 and A5. Experiment B2 contains no duplicate heuristics.

When comparing the results from Experiments A5 and A6, we saw that the

heuristics reported from Experiment A6 were of far higher quality. When comparing

Experiments B1 and B2, there is no large difference in heuristic quality. This can be

partly attributed to there being no large plateau in the results for Experiment B1.

However, even when taking this into account, it appears that the N(3) neighbourhood

produces heuristics of a similar quality to those produced by the Nalt neighbourhood

when using Language B.

In Figures 7.11b and 7.11c we show how the ten best and worst repetitions

from Experiments B1 and B2 progressed. We can see that the repetitions under

consideration from Experiment B2 took much longer to terminate than those from

Experiment B1. These graphs also further illustrate the difference in heuristic quality

at the extreme ends of the fitness distributions. By this we mean the best repetitions

in Experiment B2 having a higher quality than the ten best from Experiment B1,

and the ten worst from Experiment B2 having a lower quality than the ten worst

from Experiment B1.

Due to the similarities between Experiments A5 and B1, and Experiments A6 and

B2, it is natural to compare these results to those shown in Figures 7.7b and 7.9b.

There are similarities in the results for each pair. Experiments A5 and B1 use a

similar number of evaluations for their best repetitions. When considering the worst

repetitions, the results for Experiment B1 are more varied than those for Experiment

A5. This was expected, as there is no large plateau in the results for Experiment B1.

The results from Experiments A6 and B2 are strikingly similar. There are

examples of repetitions in both sets of results which find fitter heuristics after tens of

thousands of evaluations. Of the two, the repetitions from Experiment B2 require

more evaluations to terminate. In the results for Experiment B2 we can also see an

example of a repetition which used the global termination mechanism, exiting after
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exactly 100, 000 heuristic evaluations.

Table 7.12 shows us detailed statistical data regarding Experiments B1 and B2.

We can see that there is not much difference between the average fitness values

reported from either experiment. However, when we look at the other data, we can

see that our previously made observations are reinforced; that is, Experiment B2

reported heuristics with a larger range in quality than those reported from Experiment

B1. This is illustrated by comparing the minimum, lower quartile, upper quartile

and maximum data points for the f(hfinal) statistic in each experiment.

Despite the similar average fitness scores reported, in every other data metric

considered there are large differences between the experiments. The number of

evaluations required is much larger in Experiment B2, as is the number of steps. The

difference in size, MTED and SMTED between the first and final heuristic is also

much larger in Experiment B2. In addition to this, we note that some of the created

heuristics from Experiment B2 are comparable in size to some of the heuristics created

from GP.

The differences in statistical data between Experiments B1 and B2 are similar to

the differences we saw when we compared Experiments A5 and A6 in Section 7.4.2.

If we describe the parameters and algorithm used by each experiment as that experi-

ment’s program synthesizer, then we can ask which is the best to use for creating

LS-SAT heuristics. Generally, given two program synthesizers that can create heuris-

tics with the same or similar quality, it would be preferable to use the synthesizer

which requires less heuristic evaluations. To facilitate our understanding of the

heuristics created, it would also be beneficial to use the synthesizer which creates the

smaller heuristics.

We can justify the use of Experiment A6’s synthesizer over Experiment A5’s as

the quality of heuristics created by Experiment A6 was much better. However it

is more difficult to justify the use of Experiment B2’s synthesizer over Experiment

B1’s. Though Experiment B2 did produce some heuristics with a higher quality than

those produced by Experiment B1, on average the experiments produced heuristics of

similar quality. However, Experiment B1 did this using far fewer evaluations. Based

on this, we would state that Experiment B1’s synthesizer is the more preferable to

use.

From the results in this subsection, we can state that LSPS was able to create more

effective heuristics than GP. However, we would not state that LSPS outperformed
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GP. Any claim that it does would be based on a single heuristic from Experiment B2

reporting a higher fitness than the fittest heuristic produced from the GP experiment

described in Section 7.5.2. The difference in fitness between these heuristics was 0.2.

A better comparison between the two methods would be to consider the average

fitness of the heuristics produced from each program synthesis method. Across all 100

repetitions of Experiments B1 and B2, the average fitness of the heuristics produced

was 53.49 and 52.04 respectively. The average of the fittest heuristics produced from

the GP experiment was 62.96. These results tell us that, on average, GP produced

heuristics with the highest fitness.

Despite this, we would say that the results given in this subsection are positive.

Firstly, though it may seem like a rudimentary point, they show us that LSPS is

effective on a language other than Language A. The experiments described in this

subsection were performed with the same parameters used in two previous experiments

for Language A. The LSPS algorithm was still able to navigate the solution space

effectively, and produce high-quality heuristics. We wonder if, with additional tuning

for Language B, we would be able to create more effective program synthesizers.

Secondly, the experiments described in this subsection have provided us with

additional data regarding the use of different neighbourhood definitions. In Section 7.4,

we saw how the use of Nalt produced heuristics of higher quality than those created

using the N(3) neighbourhood. Yet in this subsection we have seen that for Language

B, N(3) and Nalt produce heuristics with a similar quality to each other. This raises

the question of what type of neighbourhood definition is the best to use with a

specific language. In truth, there may be neighbourhood definitions which we have

not considered that produce higher quality heuristics. While we cannot determine this

based on the results here, the data in this subsection does provide us with evidence

that the use of neighbourhoods containing a larger number of edit sequences does

not necessarily correlate with the creation of higher quality heuristics.

7.5.4 Summary

In this section we have described Language B, a language used to construct LS-SAT

heuristics. We then described the GP and LSPS experiments we performed using

this language, and showed the results from these experiments.

We have seen from the GP and LSPS experiments that both program synthesis

techniques are able to create higher quality heuristics than those created using
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Language A - at least according to the fitness function. We have also seen that, in the

two LSPS experiments performed, the different neighbourhoods used had differing

effects on how the LSPS algorithm progressed. By this we mean the larger heuristics

that were created using Experiment B2. Despite this, the quality of heuristics created

was, on average, surprisingly similar. Though LSPS was not able to outperform

GP, LSPS did produce one heuristic that reported a higher fitness than the fittest

heuristic found from GP.

In the next section we present examples of heuristics created from the experiments

described in this chapter.

7.6 Examples of Created Heuristics

In this section we look in detail at some of the heuristics created by the experiments

described in this chapter, and run some of the created heuristics on the testing set

of problem instances outlined in Section 3.4.3. Each heuristic we present in this

section has a name which describes its origin. For example, LS-A-3-1 is a heuristic

which was produced by Experiment A3. Another example is GP-B-3, which is the

heuristic with the highest fitness created from the 3rd repetition of the GP experiment

described in Section 7.5.2.

The format of this section is as follows; in Section 7.6.1 we present and discuss

several heuristics created from Experiments A3 to A6. In Section 7.6.2 we present

and discuss heuristics created from Experiments B1 and B2, as well as show some

statistical data concerning the heuristics created from the GP experiment described in

Section 7.5.2. In Section 7.6.3 we present the results from running the heuristics shown

in this section on the testing set outlined in Section 3.4.3. Finally in Section 7.6.4 we

summarise the work in this section.

7.6.1 Heuristics Created Using Language A

In this subsection we present several heuristics created from the experiments described

in this chapter which used Language A. Specifically we consider heuristics from

Experiments A3 to A6. As Experiments A1 and A2 were bounded by a maximum

size of 17, all the heuristics created by those experiments have been considered

in Chapter 4. Therefore, we do not present any heuristics created from those

experiments. In Figure 7.12 we show the heuristics we have selected from those
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created by Experiments A3 to A6. All of the selected heuristics reported a high

fitness value.

The design of the heuristics shown is varied, with little evidence of there being a

distinct “pattern” that is indicative of a heuristic which reports a high fitness value.

However, there are some similarities between the heuristics. Many of them make

use of the IfTabu and IfNotMinAge terms, with some heuristics using them several

times, making the resulting heuristic somewhat difficult to decipher. For example,

LS-A-4-1 (shown in Figure 7.12c) contains three instances of the IfTabu function.

Of the heuristics shown in previous chapters which use the IfTabu function, few of

them have been effective at solving larger problem instances. However, as discussed

in Section 4.4, we have previously seen evidence that suggests the fitness function

is not particularly effective at identifying heuristics which perform well on larger

problem instances, so it is not surprising that these heuristics have been created.

Some of the heuristics created from Experiment A6 were very different to the

heuristics created from the other experiments. LS-A-6-3 (shown in Figure 7.12j)

serves as an example of this. It contains several instances of the IfVarCond term

grouped together with different terminals that have a type signature of Integer

and GainType. Because of these groupings of terms, we would suggest that these

heuristics are highly specialised, and appear difficult to comprehend. Though we

do not show more examples here, heuristics like this were relatively common in the

results from Experiment A6. Experiment A5 is identical to Experiment A6, except

that it uses the N(3) neighbourhood instead of the Nalt neighbourhood. As few of the

heuristics created from Experiment A5 contained terminals in groupings we would

describe as specialised, we believe that it is because of the Nalt neighbourhood that

these types of heuristics were created by Experiment A6.

Some of the heuristics highlighted contain redundancies in their design. Specifically,

LS-A-5-3, LS-A-6-1, LS-A-6-2 and LS-A-6-3 (shown in Figures 7.12g to 7.12j

respectively) contain groups of terms that have no effect on which variable the

heuristic picks. For example, LS-A-6-3 contains a composition of terms in the form

IfVarCond {=, NegGain, −1, a, b}. From the description of the IfVarCond function

in Chapter 5, we know that the subtree denoted by b will always be returned, as the

domain of the gain type representative of NegGain (NegGain1) is strictly positive. In

Section 4.4 we suggested two possible ways of alleviating this issue when encountered

in exhaustive enumeration. One was to use methods of detecting program equivalence
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IfVarCompare <= NegGain

GetOldestVar

GetBestVar RBC -0 NegGain

IfVarCompare < NegGain

IfTabu 5

PickRandomVar RBC -0

GetBestVarSnd RBC -0

NegGain

GetOldestVar

GetBestVarSnd RBC -0

NetGain

PickRandomVar RBC -0

GetBestVar RBC -0 PosGain

(a) Heuristic LS-A-3-1. Fitness value

46.6.

IfVarCompare < NegGain

IfNotMinAge RBC -0

GetBestVar RBC -0 NegGain

IfVarCond = NegGain 5

GetBestVarSnd RBC -0 NetGain

GetBestVar RBC -0 PosGain

GetOldestVar

IfNotMinAge RBC -0

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 PosGain

GetBestVarSnd RBC -0 NetGain

(b) Heuristic LS-A-3-2. Fitness value

49.0.

IfTabu 20

IfTabu 50

IfRandLt 0.7

GetBestVar RBC -0 NegGain

GetBestVarSnd RBC -0 NetGain

IfTabu 10

GetBestVar RBC -0 NetGain

GetBestVar RBC -0 NetGain

GetOldestVar

GetBestVar RBC -0 NetGain

IfTabu 5

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 PosGain

(c) Heuristic LS-A-4-1. Fitness value

49.2.

IfTabu 20

GetBestVar RBC -0 NegGain

IfNotMinAge RBC -0

IfTabu 30

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 NetGain

IfNotMinAge RBC -0

GetBestVar RBC -0 PosGain

GetBestVar RBC -0 PosGain

(d) Heuristic LS-A-4-2. Fitness value

49.4.

Figure 7.12: Ten heuristics that reported a high fitness value from Experiments A3,

A4, A5 and A6.
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IfVarCompare < NegGain

IfVarCond = NetGain 1

IfVarCond < PosGain 3

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 NetGain

GetBestVar RBC -0 PosGain

IfNotMinAge RBC -0

IfTabu 20

GetBestVarSnd RBC -0 NetGain

GetBestVar RBC -0 PosGain

IfTabu 5

GetBestVar RBC -0 NegGain

GetBestVarSnd RBC -0 NegGain

(e) Heuristic LS-A-5-1. Fitness value

48.2.

IfNotMinAge RBC -0

IfTabu 10

IfVarCompare <= NegGain

GetBestVarSnd RBC -0 NegGain

GetBestVar RBC -0 NegGain

IfVarCompare < NegGain

GetBestVar RBC -0 NetGain

GetOldestVar

PickRandomVar RBC -0

PickRandomVar RBC -0

IfVarCond = NegGain 0

GetBestVar RBC -0 PosGain

GetOldestVar

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 PosGain

(f) Heuristic LS-A-5-2. Fitness value

48.6.

IfNotMinAge RBC -0

IfTabu 20

IfVarCond = PosGain -1

GetBestVarSnd RBC -0 NetGain

GetBestVar RBC -0 NetGain

GetOldestVar

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 NetGain

IfVarCompare < NegGain

IfNotMinAge RBC -0

GetBestVar RBC -0 NetGain

GetBestVar RBC -0 PosGain

GetOldestVar

GetBestVarSnd RBC -0 NetGain

GetBestVar RBC -0 PosGain

(g) Heuristic LS-A-5-3. Fitness value

50.6.

IfNotMinAge RBC -0

GetBestVar RBC -0 NegGain

IfVarCompare < PosGain

IfVarCond < NetGain -2

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 PosGain

GetOldestVar

GetBestVar RBC -0 PosGain

IfVarCompare = PosGain

IfTabu 30

IfVarCond < PosGain -2

PickRandomVar RBC -0

GetBestVarSnd RBC -0 NetGain

GetBestVarSnd RBC -0 NetGain

GetBestVar RBC -0 PosGain

(h) Heuristic LS-A-6-1. Fitness value

48.6.

Figure 7.12: Ten heuristics that reported a high fitness value from Experiments A3,

A4, A5 and A6. (Continued)
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IfVarCompare < NegGain

IfNotMinAge RBC -0

IfVarCompare <= NegGain

IfRandLt 0.9 { PickRandomVar RBC -0 }

IfVarCompare < NetGain { GetBestVarSnd RBC -0 NetGain }

PickRandomVar RBC -0

GetBestVar RBC -0 NetGain

GetBestVar RBC -0 PosGain

IfTabu 30 { GetBestVarSnd RBC -0 NetGain }

IfTabu 10 { GetBestVar RBC -0 PosGain }

GetBestVarSnd RBC -0 PosGain

(i) Heuristic LS-A-6-2. Fitness value 50.6.

IfNotMinAge RBC -0

IfVarCompare <= NegGain

IfTabu 20 { GetBestVar RBC -0 NegGain }

IfTabu 30 { GetBestVarSnd RBC -0 NetGain }

GetBestVar RBC -0 PosGain

IfVarCond < NetGain 2

IfVarCond = NegGain -1 { GetBestVar RBC -0 NegGain }

IfVarCond <= NetGain 5 { GetBestVar RBC -0 PosGain }

IfVarCond <= PosGain 3

IfVarCond = PosGain 1 { GetBestVarSnd RBC -0 NetGain }

IfVarCond < NetGain 1 {GetBestVarSnd RBC -0 PosGain }

GetBestVarSnd RBC -0

PosGain

IfVarCond <= NegGain 2 { GetBestVarSnd RBC -0 NetGain }

GetBestVarSnd RBC -0 PosGain

GetBestVar RBC -0 NetGain

GetBestVar RBC -0 NetGain 0

(j) Heuristic LS-A-6-3. Fitness value 53.4.

Figure 7.12: Ten heuristics that reported a high fitness value from Experiments A3,

A4, A5 and A6. (Continued)
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and the other was to use a more expressive type system that prohibits comparisons

like this. For LSPS, only the latter of these methods would be appropriate.

In Section 7.6.3 we present the results from running the heuristics shown here on

the testing set of problem instances outlined in Section 3.4.3.

7.6.2 Heuristics Created Using Language B

In this subsection we look in greater detail at some of the heuristics created from

Experiments B1, B2, and the GP experiment described in Section 7.5.2.

GP Created Heuristics

The fittest heuristics created from the GP experiment performed using Language

B are too large to present here, with some heuristics containing over 1, 000 terms.

However, in Appendix B we present the fittest of them, GP-B-5.

Though we do not show all of the heuristics created by the GP experiment, we

do present some data which provides insight into their construction. In Table 7.13

we show the number of times specific terms appear in each of the fittest heuristics

created from each repetition. By presenting frequency data in this manner, we are

able to see if any terms are more or less prevalent in the created heuristics.

We can see that there are some terms in Language B which are not often used. Two

examples are the SubDecrVars and SubDecrVars WA terms. When designing these

two specific language components, we had no prior evidence that the mechanisms

which these terms represent would be effective in LS-SAT heuristic design. Therefore,

we are not particularly surprised they were seldom used. However, we were surprised

that the Filter function was not utilised more often. In Section 2.3 we saw an

example of an effective, hand-crafted heuristic that used a filtering mechanism, which

the Filter function was based on. Because of this, we had anticipated that it would

be a more commonly used component in the automatically created heuristics.

There are some terms in Language B which are used frequently in some heuristics,

and hardly used in others. For example, the WeightedVarPick function is used 33

times in GP-B-1, 13 times in GP-B-3 but only 3 times in the other heuristics.

Other terms which are used often in some heuristics but not often in others include

PickRandomVar, PickOldest, UpdatePAWS, PickRandomM and GetBestVar. We were

somewhat surprised that there were such large differences in the number of times

these terms were used in each heuristic.
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Table 7.13: Statistical data concerning the frequency of terms used in the fittest

heuristic returned from each repetition of the GP experiments performed using

Language B. We show all functions and all those terminals which are not numerical

values or comparators.

Term

G
P
-B

-1

G
P
-B

-2

G
P
-B

-3

G
P
-B

-4

G
P
-B

-5

Term

G
P
-B

-1

G
P
-B

-2

G
P
-B

-3

G
P
-B

-4

G
P
-B

-5

PickRandomVar 12 0 1 0 16 RBC-1 35 27 1 11 37

GetBestVar 8 23 8 7 23 RBC WA-0 9 28 5 0 13

GetBestVarSnd 15 4 2 4 25 RBC WA-1 42 8 20 3 26

GetOldestVar 24 13 14 11 31 CONF 37 61 18 20 91

IfRandLt 62 50 15 15 30 PosGain 13 25 4 8 22

IfVarCond 40 20 18 13 77 NegGain 39 24 15 4 28

IfVarCompare 27 57 4 3 40 NetGain 34 50 14 12 21

UpdatePAWS 57 0 16 0 5 SubPosGain 8 4 2 3 32

PickOldest 17 0 4 0 9 SubNegGain 15 0 1 2 20

GetBestVarAge 53 87 20 19 65 SubNetGain 18 5 5 1 18

GetBestVar2 16 24 4 10 38 PosGain WA 21 19 4 3 6

IfIsNull 19 34 23 11 88 NegGain WA 5 39 4 0 33

PickRandomM 0 0 8 2 10 NetGain WA 35 62 27 26 117

GetBestVarM 5 25 6 4 40 SubPosGain WA 35 40 9 5 42

GetBestVarAgeM 14 9 9 5 38 SubNegGain WA 8 8 5 7 25

Filter 1 0 0 1 3 SubNetGain WA 15 0 5 8 26

WeightedVarPick 33 3 13 3 3 Adapt 7 1 3 7 14

NextElement 18 0 7 0 0 EndList 33 3 13 3 3

ExponentFunction 10 3 3 0 3 DecrVars 9 15 16 9 56

Polynomial 21 0 7 3 0 SubDecrVars 4 0 0 0 0

PolynomialNegative 20 0 10 0 0 DecrVars WA 5 14 7 0 29

RBC-0 32 17 8 10 15 SubDecrVars WA 0 5 0 1 0
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The final point we would like to draw the attention of the reader to concerns how

often the twelve terminals which have a GainType type signature were used. Terms

that represent the three “base” gain type metrics were the most frequently used,

then came terms which represent the dynamically weighted variants of those base

metrics. We had assumed that the weighted variants would be used more frequently,

as dynamic clause weighting is commonly used in some highly effective hand-crafted

LS-SAT heuristics. All six terms that represent the Sub gain type variants were used

far less frequently than the others. In hand-crafted heuristics these metrics have

previously been used in tie-breaking mechanisms (see Section 2.3.6), and we were

slightly surprised they were not more frequently used in the heuristics created from

the GP experiments.

LSPS Created Heuristics

In Figure 7.13 we show four heuristics taken from the results of Experiments B1 and

B2. These heuristics have been chosen as they reported some of the highest fitness

values from the experiments under consideration.

We can see several similarities between the heuristics created from both experi-

ments. All heuristics presented contain at least one term that uses dynamic weighting,

and one occurrence of the CONF term. We can also see that heuristics created from

both experiments contain several instances of terms that represent the Sub variants

of the gain type metrics. We were somewhat surprised by this, as the heuristics

created from GP did not use these terminals very often. Like those heuristics pre-

sented in Section 7.6.1, the heuristics from both experiments frequently used terms

from a small subset of the language; for Experiment B1 the terms GetOldestVar,

UpdatePAWS, IfIsNull and IfVarCompare were used most often. For Experiment

B2, the frequently used terms were IfVarCond, WeightedVarPick, IfIsNull and

IfRandLt. Though we do not show them here, these trends were seen in the other

heuristics created from both experiments.

When we created Language B, we only included one term with an Integer type

signature. We made this design choice with the intention of reducing the number

of times the created heuristics could use the IfVarCond function. We did this as,

when analysing the heuristics created from Experiment A6, we found that some used

that function many times, and in configurations that appeared to make the heuristic

highly specialised. An example of this was seen in LS-A-6-3 (shown in Figure 7.12j).
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UpdatePAWS

IfVarCompare > NetGain

GetOldestVar

GetBestVarAge RBC -0 PosGain

IfIsNull

GetBestVarAgeM DecrVars_WA

SubNetGain

GetBestVar2 RBC -0

SubNetGain_WA NegGain

IfIsNull

GetBestVarAgeM DecrVars

NegGain

GetBestVarAge CONF NetGain_WA

(a) Heuristic LS-B-1-1. Fitness value

59.0.

UpdatePAWS

IfIsNull

GetBestVarM DecrVars

SubNetGain_WA

IfVarCompare >= NetGain_WA

GetOldestVar

GetBestVarAge RBC_WA -0

NetGain_WA

GetBestVar2 CONF

NetGain_WA SubNetGain_WA

PickOldest CONF

(b) Heuristic LS-B-1-2. Fitness value

59.6.

IfVarCond >= NetGain_WA 0

IfRandLt 0.7 { GetBestVarAge CONF NetGain_WA }

IfIsNull { GetBestVarM DecrVars SubPosGain }

IfVarCond >= NetGain_WA 0

IfVarCond > SubPosGain_WA 0

GetBestVar2 CONF NegGain_WA SubNetGain

GetBestVar2 CONF NetGain SubNegGain_WA

GetBestVar2 CONF SubNetGain_WA NetGain_WA

IfVarCond > SubPosGain_WA 0

IfVarCond > SubPosGain_WA 0

GetBestVar2 RBC -0 SubNegGain SubNegGain_WA

IfVarCond >= SubNetGain_WA 0

GetBestVar2 RBC -0 SubNetGain NetGain

GetBestVar2 CONF NetGain SubNegGain_WA

IfVarCond <= SubPosGain 0

WeightedVarPick CONF { Polynomial 2.6 NetGain } EndList

GetBestVar2 CONF SubPosGain_WA SubNetGain

(c) Heuristic LS-B-2-1. Fitness value 59.2.

Figure 7.13: Four heuristics that reported a high fitness value from Experiments B1

and B2.
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let A =

IfVarCond > NetGain_WA 0

IfVarCond <= SubNetGain 0

IfVarCond >= PosGain 0

IfVarCompare < SubPosGain

GetBestVar2 RBC -1 SubNetGain SubPosGain_WA

IfVarCond >= NetGain 0 { PickRandomVar RBC -0 }

IfVarCond <= SubNetGain_WA 0

GetBestVar2 RBC_WA -0 PosGain PosGain_WA

GetBestVar2 RBC_WA -1 SubPosGain PosGain_WA

GetBestVar2 RBC_WA -1 SubNegGain_WA SubNetGain

IfVarCond > SubNetGain_WA 0

IfVarCond >= NetGain_WA 0

GetBestVar2 RBC -1 NetGain SubPosGain_WA

IfVarCond = SubNegGain 0

WeightedVarPick RBC -1 { ExponentFunction 2.0 SubNegGain_WA }

NextElement { Polynomial 2.8 NegGain_WA }

NextElement { ExponentFunction 3.8 SubNetGain } EndList

IfVarCond <= PosGain_WA 0 { GetBestVar2 RBC -0 NegGain PosGain }

GetBestVar2 CONF NetGain NetGain_WA

IfVarCond >= SubNetGain 0

IfVarCond < SubNetGain 0

IfVarCond <= SubNegGain_WA 0

IfVarCompare <= SubNegGain_WA

GetBestVar2 RBC_WA -1 NegGain_WA NegGain

IfIsNull { GetBestVarM DecrVars SubNegGain }

IfVarCond >= SubNetGain 0

GetBestVar2 CONF NegGain_WA NetGain

IfVarCond <= SubNegGain 0 { PickRandomVar RBC_WA -1 }

GetBestVar2 RBC_WA -0 NetGain PosGain

PickOldest RBC -1

GetBestVar2 RBC_WA -0 SubPosGain SubPosGain_WA

WeightedVarPick RBC_WA -0 { Polynomial 3.2 PosGain_WA }

NextElement { ExponentFunction 0.4 NetGain }

NextElement { ExponentFunction 0.8 SubNegGain } EndList

GetBestVar2 CONF NetGain_WA NegGain_WA

(d) Part A of the heuristic LS-B-2-2. Fitness value 65.2.

Figure 7.13: Four heuristics that reported a high fitness value from Experiments B1

and B2. (Continued)
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UpdatePAWS

IfRandLt 0.1

IfRandLt 0.7

IfIsNull

GetBestVarAgeM SubNetGain { Filter = NetGain 0 CONF }

IfVarCond = SubNegGain_WA 0

IfVarCond >= NetGain_WA 0

IfVarCond <= SubPosGain 0

IfRandLt 0.3 { GetBestVar2 CONF SubNegGain_WA NegGain }

IfVarCond = PosGain 0 { PickOldest CONF }

WeightedVarPick RBC -1 { Polynomial 2.6 PosGain }

NextElement { Polynomial 3.4 SubPosGain } EndList

WeightedVarPick RBC -1 { Polynomial 1.4 SubPosGain_WA }

NextElement { ExponentFunction 2.0 NegGain_WA } EndList

PickOldest RBC_WA -0

GetBestVar CONF NegGain

IfVarCond > SubPosGain_WA 0

IfVarCond > NetGain_WA 0

IfIsNull

GetBestVarAgeM PosGain_WA { Filter = NegGain_WA 0 RBC -1 }

A

IfVarCond > SubNetGain_WA 0

IfVarCond > SubNegGain 0 { GetBestVar2 RBC -0 PosGain NetGain }

IfVarCond > SubNegGain 0

GetBestVar2 RBC_WA -1 SubNetGain_WA SubNegGain_WA

GetBestVar2 RBC -0 SubNetGain_WA PosGain_WA

GetBestVar2 RBC_WA -0 SubPosGain_WA SubPosGain

GetBestVar2 RBC_WA -0 NegGain PosGain_WA

GetBestVarAge CONF NetGain_WA

(e) Final part of the heuristic LS-B-2-2. Fitness value 65.2.

Figure 7.13: Four heuristics that reported a high fitness value from Experiments B1

and B2. (Continued)
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Despite our attempts to direct the program synthesis methods away from heuris-

tics containing many instances of IfVarCond, we can see that Experiment B2 still

produced some heuristics like this. For example, LS-B-2-1 and LS-B-2-2 (shown

in Figures 7.13c to 7.13e) contain 6 and 23 instances of the IfVarCond function

respectively. Like Experiment A6, Experiment B2 used the Nalt neighbourhood. In

future work we believe it may be beneficial to investigate this phenomenon further,

in an attempt to identify strategies that would ensure less specialised heuristics were

created when using the Nalt neighbourhood.

Finally, we would like to draw the attention of the reader back to the heuristic

LS-B-2-2. This heuristic reported the highest fitness value of any heuristic in this

thesis. It is also very large in comparison to other heuristics created from LSPS. We

believe its size makes it difficult to understand how its various components work

together.

However, the composition of this heuristic does have one interesting property.

If we look at the second line in Figure 7.13e, we can see that a large portion of

the heuristic is only evaluated 10% of the time. The other branch of this IfRandLt

function is evaluated 90% of the time. That other branch is represented by the

subtree GetBestVarAge {CONF, NetGain WA}. This is a heuristic in its own right, and

has a fitness value of 45. This heuristic serves as a stark reminder of the difficulty we

have in understanding effective heuristic design; it appears unintuitive that a part of

the heuristic that is only evaluated 10% of the time can have such a large effect on

its overarching quality.

In the next subsection we present the results from running the heuristics shown

here on the testing set of problem instances outlined in Section 3.4.3.

7.6.3 Testing Set Results

In this subsection we present the results from running the heuristics presented in

this section on the testing set outlined in Section 3.4.3. In Table 7.14 we show the

results from running the heuristics shown in Figures 7.12 and 7.13, and the heuristics

created from the GP experiment detailed in Section 7.5.2, on the testing set.

Like those heuristics from the exhaustive enumeration and GP experiments in

Chapter 4, all of the tested heuristics performed well on the first five subsets of

problem instances. These subsets contain problems that are of a similar size to those

used in the fitness function. Some of the heuristics were particularly effective on these
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Table 7.14: Results from running the heuristics in Figures 7.12 and 7.13, and those

created from the GP experiment using Language B on the testing set. For each

problem p and heuristic h, we ran h on p five times. We report the average percentage

of problems solved in each subset, and the average time (in seconds) each heuristic

took to solve those problem instances. Bold typeface shows the best performing

heuristic on that subset of problem instances.

(a) Results from running the heuristics in Figures 7.12a to 7.12g on the testing set.

Heuristic

Subset Name

L
S
-A

-3
-1

L
S
-A

-3
-2

L
S
-A

-4
-1

L
S
-A

-4
-2

L
S
-A

-5
-1

L
S
-A

-5
-2

L
S
-A

-5
-3

uf50
99.9 100.0 100.0 99.9 99.9 99.8 100.0

0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0006

uf100
99.8 100.0 100.0 98.4 99.2 99.6 99.8

0.0031 0.0027 0.003 0.003 0.0022 0.0021 0.0026

uf150
99.2 99.0 100.0 99.2 100.0 99.8 99.8

0.0117 0.0106 0.0112 0.012 0.0132 0.0105 0.0082

uf200
96.8 97.0 99.8 96.8 95.8 96.8 97.6

0.0247 0.0285 0.096 0.0307 0.0263 0.0336 0.0278

uf250
100.0 98.0 100.0 98.2 97.4 96.6 97.0

0.0582 0.0383 0.0776 0.0542 0.0366 0.0357 0.0271

ufv4000
70.0 60.0 36.0 28.0 64.0 82.0 72.0

18.9605 13.8333 13.6875 6.947 18.469 10.5402 10.4821

ufv7000
52.0 50.0 6.0 0.0 62.0 96.0 70.0

17.1531 17.0128 3.3386 0.0 24.7351 26.5143 17.9449

ufv10000
40.0 26.0 0.0 0.0 36.0 82.0 70.0

19.0713 20.4782 0.0 0.0 21.3834 29.2845 26.8335

ufv13000
0.0 10.0 0.0 0.0 4.0 34.0 38.0

0.0 6.8313 0.0 0.0 2.4962 17.8564 18.2735

ufv16000
0.0 0.0 0.0 0.0 0.0 30.0 0.0

0.0 0.0 0.0 0.0 0.0 15.2063 0.0

ufv19000
10.0 10.0 0.0 0.0 0.0 22.0 20.0

9.2854 2.3986 0.0 0.0 0.0 7.0932 11.9442
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Table 7.14: Results from running the heuristics in Figures 7.12 and 7.13, and those

created from the GP experiment using Language B on the testing set. For each

problem p and heuristic h, we ran h on p five times. We report the average percentage

of problems solved in each subset, and the average time (in seconds) each heuristic

took to solve those problem instances. Bold typeface shows the best performing

heuristic on that subset of problem instances. (Continued)

(b) Results from running the heuristics in Figures 7.12h to 7.12j and 7.13 on the testing set.

Heuristic

Subset Name

L
S
-A

-6
-1

L
S
-A

-6
-2

L
S
-A

-6
-3

L
S
-B

-1
-1

L
S
-B

-1
-2

L
S
-B

-2
-1

L
S
-B

-2
-2

uf50
99.7 99.8 99.9 100.0 100.0 100.0 100.0

0.0006 0.0006 0.0008 0.0013 0.0014 0.0021 0.0019

uf100
99.0 99.4 99.6 100.0 100.0 100.0 100.0

0.0029 0.003 0.0026 0.008 0.0062 0.0095 0.0113

uf150
99.0 99.6 100.0 100.0 100.0 100.0 100.0

0.0108 0.011 0.0155 0.0305 0.0325 0.0431 0.052

uf200
95.2 96.6 96.0 99.4 98.8 98.6 98.8

0.0296 0.0493 0.0248 0.1738 0.1628 0.2125 0.2398

uf250
99.2 99.2 100.0 98.8 99.6 99.2 99.0

0.0383 0.0451 0.0668 0.1263 0.2128 0.2809 0.2527

ufv4000
80.0 68.0 24.0 0.0 0.0 0.0 0.0

15.8297 17.574 6.1259 0.0 0.0 0.0 0.0

ufv7000
92.0 58.0 8.0 0.0 0.0 0.0 0.0

24.7882 21.588 7.1471 0.0 0.0 0.0 0.0

ufv10000
78.0 36.0 0.0 0.0 0.0 0.0 0.0

26.0185 18.1516 0.0 0.0 0.0 0.0 0.0

ufv13000
58.0 6.0 0.0 0.0 0.0 0.0 0.0

27.8722 3.7854 0.0 0.0 0.0 0.0 0.0

ufv16000
70.0 0.0 0.0 0.0 0.0 0.0 0.0

35.2942 0.0 0.0 0.0 0.0 0.0 0.0

ufv19000
70.0 4.0 0.0 0.0 0.0 0.0 0.0

41.4527 3.6851 0.0 0.0 0.0 0.0 0.0
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Table 7.14: Results from running the heuristics in Figures 7.12 and 7.13, and those

created from the GP experiment using Language B on the testing set. For each

problem p and heuristic h, we ran h on p five times. We report the average percentage

of problems solved in each subset, and the average time (in seconds) each heuristic

took to solve those problem instances. Bold typeface shows the best performing

heuristic on that subset of problem instances. (Continued)

(c) Results from running the heuristics created from GP and Language B on the testing set.

Heuristic

Subset Name
G
P
-B

-1

G
P
-B

-2

G
P
-B

-3

G
P
-B

-4

G
P
-B

-5

uf50
100.0 100.0 100.0 100.0 100.0

0.004 0.0035 0.0029 0.0027 0.0048

uf100
100.0 100.0 100.0 100.0 100.0

0.0253 0.0277 0.016 0.0178 0.0249

uf150
100.0 98.2 100.0 100.0 100.0

0.0911 0.0678 0.063 0.0504 0.1339

uf200
98.4 88.2 99.0 99.0 97.8

0.305 0.2453 0.2257 0.1793 0.3243

uf250
99.0 92.0 99.8 99.0 99.0

0.4082 0.273 0.338 0.2439 0.4035

ufv4000
0.0 0.0 10.0 0.0 6.0

0.0 0.0 6.0337 0.0 3.2716

ufv7000
0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

ufv10000
0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

ufv13000
0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

ufv16000
0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

ufv19000
0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0
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problem instances; for example, LS-A-3-1 was the best performing of all heuristics

considered in this thesis on uf250. LS-A-3-2, LS-A-4-1 and LS-A-6-1 also had

good general performance on these smaller instances.

When looking at the heuristic’s performance on the five subsets containing smaller

problem instances, we can see that the heuristics created from Language B did not

perform as well as those created from Language A. Those from Language B were

generally slower at solving problem instances, and unable to solve as many as those

heuristics from Language A. This was seen in the results for the heuristics created

from GP and LSPS. There are several terms in Language B which, when included

in a heuristic, change that heuristic’s update function. For example DecrVars and

CONF, two terminals which represent dynamic sets of variables, require additional

mechanisms to ensure the sets representing their variables are maintained correctly.

These additional update mechanisms can be computationally expensive to perform.

Other examples of terms which can add additional computational overhead to the

overarching update function are those which use dynamic clause weighting, such as

NetGain WA. We believe that this is why these heuristics performed worse on the

subsets of problem instances containing smaller problems when compared to the

heuristics created from Language A.

We can also see that the heuristics created from Language B were unable to

solve any notable number of elements in the subsets containing larger problem

instances. This is true for the heuristics created from both GP and LSPS. This

result is particularly disappointing, as we had hoped that a more verbose language

would allow higher quality heuristics to be created that would excel at solving larger

problem instances. We believe the reason these heuristics aren’t particularly effective

is due to the additional time they require to update their auxiliary data structures.

In future work it may be worth refining Language B by removing those terms whose

update mechanisms incur a large computational overhead. Such a refined language

may make it easier for effective heuristics to be automatically created.

We can also see that some of the heuristics from Language A were not particularly

effective on the subsets containing larger problem instances. As we discussed in

Section 4.4, we do not believe our fitness function to be well suited for identifying

heuristics that are effective on larger problem instances. It may be the case that

the fitness function played a role in the creation of ineffective heuristics from the

experiments performed using Language B.
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There were some heuristics created from Language A that are highly effective on

the larger problem instances. We would highlight LS-A-5-2 and LS-A-6-1 as having

the best performance. Specifically, LS-A-5-2 had the best performance on ufv4000

of all heuristics tested in this thesis, and very good performance on ufv7000, however

on the largest problem instances it did not perform as well. LS-A-6-1 had the best

performance of any heuristic on ufv10000, ufv13000, ufv16000 and ufv19000. Of

all the heuristics we have tested in this thesis, we would state that it appears to have

the best performance.

7.6.4 Summary

In this section we have looked in detail at some of the heuristics created from the LSPS

and GP experiments described in this chapter. We have also ran these highlighted

heuristics on the testing set, to determine how effective they are at solving a range of

different sized problem instances.

We have seen that the highest quality heuristics created from the experiments were

generally different to each other, with there appearing to be no common structure or

grouping of terms indicative of an effective heuristic. We also saw how some heuristics

included redundancies in their design. Of particular note were the heuristics created

using the Nalt neighbourhood, some of which appeared to be overfitted and highly

specialised for the fitness function.

The performance of the heuristics on the testing set reinforced our observations

from Chapter 4, in that heuristics which reported a high fitness value were not

necessarily effective at solving large problem instances. We note that none of the

heuristics created using Language B were particularly effective on the testing set.

However, some created from Language A were. Of particular note is the heuristic LS-

A-6-1, which had the best performance on the testing set of all heuristics considered

in this thesis.

In the next section we summarise the work in this chapter, and discuss potential

avenues of future research.

7.7 Discussions & Conclusions

In this chapter we have performed eight experiments using LSPS. The first four of

these built on the work in Chapter 5, creating an LSPS algorithm which requires no
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memoized data. The results from these experiments showed that LSPS is effective

on our domain, and able to create high-quality LS-SAT heuristics. The remaining

four LSPS experiments can be considered extensions to the initial four. These

extensions utilised a randomised neighbourhood generation algorithm, an alternate

neighbourhood definition and an alternate language. We have also shown examples

of heuristics created through LSPS which appear to have good performance on large

problem instances. In the results from running them on the testing set, some were

able to solve a greater proportion of the larger problem instances than any other

heuristics considered in this thesis.

The core goal of this chapter was to determine whether LSPS is a viable technique

for creating LS-SAT heuristics. Based on the results we have seen, we would state

categorically that it is. We have also shown that it is a flexible technique, as we

have been able to use different languages, neighbourhood generation algorithms and

neighbourhood definitions with it. However, we would say there is one shortcoming

with its use. When analysing the results from the GP experiments performed in this

thesis, the heuristics created had consistently high fitness values. Whereas for each

of the LSPS experiments whose results we have reported, the created heuristics had

fitness values which spanned a relatively wide range. The majority of these heuristics

had fitness values below those reported by the GP experiments. In essence, the LSPS

algorithm may need to be ran several times to find a high-quality solution.

The LSPS experiments that have been described in this chapter have given us

insight into how the neighbourhood generation algorithm can be used as a program

synthesizer. This work directly links back to one of our original goals of finding alter-

nate methodologies for automating the creation of heuristics. Whereas Experiments

A1 to A4 concentrate on creating LS-SAT heuristics using Language A, we feel that

the other experiments illustrate the neighbourhood generation algorithm’s flexibility.

To us they also suggest that LSPS may be amenable to being deployed in different

problem domains to automatically create heuristics, or to potentially solve general

program synthesis problems.

There are many outstanding research questions about LSPS beyond which other

domains it can be used in. Perhaps the most obvious of these are asked as a direct

consequence of LSPS’s similarity to generic local search. One pertinent question for

our research is what effect do different initialisation functions have on the overall

quality of the solutions created. The LSPS algorithms we have used in our experiments
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can be described as hill-climbing algorithms, as they always move to a fitter neighbour.

One potential avenue of future research could be to investigate what effect would

allowing the algorithm to move to lower quality neighbours have on the quality

of solutions created. We could also consider augmenting the algorithm with other

generic local search mechanisms such as tabu lists or random restarts.

There are other questions that can be asked regarding the components used in

LSPS. In Section 7.3 we used the randomised neighbourhood generation algorithm to

generate neighbours, and continued to use it in subsequent sections. We used data

gathered from previous experiments to approximate weights, which were then used

with a weighted pick function to find the number of compound moves to perform. We

believe that there may be ways of augmenting this algorithm to make it fairer in how

it decides how many compound moves it performs. We also believe that it can be

made fairer in how it decides which edit sequences to apply to an input program tree.

While these changes may not improve the quality of solutions created, they would

help in removing bias from the randomised neighbourhood generation algorithm.

In turn, this could allow further strategies to be used to direct the neighbourhood

generation algorithm in the choosing of neighbours.

In Section 6.7 we stated that, in this thesis, we do not perform experiments

with neighbours that can only be obtained from the application of a single edit

sequence. However, we believe it could be beneficial to understand how the results

obtained from the experiments performed in this chapter would change if a different

number of compound moves were used. We also feel that the results presented in

this chapter raise additional research questions regarding the relationship between

neighbourhood definitions and languages. We saw that for Language A, the Nalt

neighbourhood created heuristics with a higher quality than those created using

the N(3) neighbourhood. However for Language B, both neighbourhoods created

heuristics of a similar quality. Understanding why this is the case could help us

to successfully use LSPS in other domains, as well as allow us to consider other

neighbourhood definitions that could improve the quality of the created heuristics.

There is also the potential for using LSPS to augment other program synthesis

methods. For example, it is entirely possible to take the heuristics obtained from

GP and use LSPS on them, in an attempt to create heuristics with a higher fitness.

LSPS could also be used to diversify the population in a GP run, or even as a genetic

operator. One of the drawbacks of using GP is that it can suffer from bloat. We have
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seen in the experiments performed that LSPS can create final solutions which are

very large - in essence, it appears to have its own issues with bloat. One potential

way of alleviating this is to control the size of the heuristics that can be created

using LSPS. As an alternate to using a hard limit on the number of terms allowed

in a heuristic, we could augment the neighbourhood generation algorithm to favour

heuristics with a smaller size over larger ones, but still allow large ones to be created

if it is deemed necessary to progress the search.

The suggestions made here only serve as examples of the possible areas of future

research that could be performed using LSPS. While the results shown in this chapter

are promising, they only provide evidence that LSPS can be effectively used in a

single domain. We believe that the primary goal in any future research should be to

use LSPS on other domains. By doing so, we can begin to ascertain how viable it is

as a general-purpose program synthesis technique.

This concludes the final research chapter in this thesis. In the next chapter we

present our conclusions to the work in this thesis, as well as highlight potential

avenues of future research
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Conclusions

8.1 Context

Work in automated heuristic creation, usually categorised as being in generative

hyper heuristics, is often focused on the use of evolutionary computation techniques

to achieve its goal. To date, research has predominantly focused on genetic program-

ming [148, 98, 27, 40, 101], with some examples of other evolutionary computation

techniques being used such as grammatical evolution [53] and gene expression pro-

gramming [153]. Within wider program synthesis research, there are many other

techniques which can be used to automatically create programs or program fragments,

however there has been little effort expended in utilising them in the domain of

automated heuristic creation. The core focus of this thesis is in the use of alternate

program synthesis methods to automatically create heuristics. This is a topic of

particular research interest, as alternate program synthesis methods may be more

effective than those used currently, and may be able to create higher quality heuristics.

This thesis has analysed how three program synthesis methods perform when

used to automatically create heuristics for a local search-based SAT solver. These

methods were genetic programming, exhaustive enumeration and local search program

synthesis. We found that, while the heuristics created from exhaustive enumeration

and local search program synthesis were of lower quality than those created from

genetic programming, they were also smaller and easier to understand. These two

methods also produced heuristics which, on the testing set of problem instances, were

able to outperform state-of-the-art, hand-crafted heuristics.

There are several examples of previous research where the goal was to automate
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the creation of LS-SAT heuristics. Fukunaga [60, 63, 61] used a bespoke GP im-

plementation to achieve this goal, while Poli et al. [147] used a grammar-based GP

approach. KhudaBukhsh et al. [100, 99] described SATenstein, a system that uses

automated algorithmic configuration to automatically create LS-SAT heuristics. The

language used by SATenstein contains terms which correspond to mechanisms used

in modern LS-SAT heuristic design such as clause weighting. In this way, it shares

some similarities with the extended language we used in Chapter 7. However, the

number of heuristics that can be created by SATenstein is finite, unlike our system

which can create an infinite number of heuristics.

One of the program synthesis methods used in this thesis was a new method which

we called local search program synthesis. While we have used it to create heuristics,

it has been described in such a way so that it can be used with any program synthesis

problem whose associated language is defined in terms of a type system, and we

believe it is easily augmented to work with a CFG. Within wider program synthesis

research, there has been relatively little work in utilising local search-based methods.

However, there are some examples, such as work by Azad and Ryan [8], who described

a form of local search on program trees termed “hyper mutation”. Hyper mutation

works by trying to optimise the functions in a candidate program tree, in an attempt

to find the combination which provides the best performance. Other researchers

have described similar experiments where the algorithm was designed to optimise the

combination of leaves in a program tree, rather than the functions [71, 182].

Some researchers have identified local search mechanisms similar to those used

in this thesis. For example, Juárez-Smith, Castelli, and Z.-Flores [92] described

a domain-specific local search mechanism for symbolic regression, which works by

augmenting the candidate program tree by inserting a new root node above the

previously existing one. O’Reilly [135] used hill-climbing and simulated annealing

as the basis for creating program synthesizers. The author used a generalised local

search mechanism based on the same tree edits used in this thesis. However, that

research was based on languages that used an untyped program representation, and

worked by performing random edits on the trees to ensure they were syntactically

correct. Yuan and Banzhaf [178] presented a local search mechanism similar to that

described in this thesis, designed to work on languages which use a type system. The

authors used the same tree edits as this work, however like O’Reilly, they also used

random edits to ensure that the created trees were syntactically correct.
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The majority of the previous work utilising local search in program synthesis used

the created techniques as part of a wider strategy. Typically local search was used to

augment a genetic programming algorithm, in essence creating a memetic algorithm.

For example, some authors [92] used local search as an additional genetic operator,

while others [178] used it as a step in an overarching program synthesis algorithm.

In our work, the local search technique was used on its own, and not as part of a

wider strategy. However, we believe that LSPS is more generalised than the other

local search techniques that have been used, and could be easily deployed on many

other problem domains either on its own, or as part of a memetic algorithm.

8.2 Summary

8.2.1 Chapter 3

Chapter 3 detailed the way that we represent and evaluate heuristics in this thesis. It

provided the necessary material for understanding the heuristics automatically created

in later chapters, as well as offering a point of reference for how previously described

heuristics perform on the fitness function and testing set. The DSL described can be

considered an extension to those previously used for creating LS-SAT heuristics [147,

60, 63, 61]. The mechanisms and algorithms used to evaluate the heuristics may be

of interest to the research community, as they are designed with efficiency in mind.

Though not the overarching goal of this thesis, we believe that the generalised

mechanism for updating arbitrary gain type metrics may be of particular interest

to the LS-SAT community. While efficient, the update mechanisms in the literature

[15] are only described in terms of a small number of gain type metrics, whereas

the update mechanism we presented is described efficiently for all gain type metrics

considered in this thesis.

8.2.2 Chapter 4

In Chapter 4 we performed a series of program synthesis experiments to create

LS-SAT heuristics using two languages. The second of these languages can be

considered an extended version of the first. The two program synthesis methods used

were exhaustive enumeration and genetic programming. The genetic programming

experiments provided further evidence that it is a viable program synthesis method
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for creating LS-SAT heuristics. The exhaustive enumeration experiments, while

computationally expensive, provided us with data about tens of millions of heuristics.

From these results, we found evidence of the clustering of heuristics in the search

space. The heuristics appeared to be clustered in groups based on the order they were

generated in by the exhaustive enumeration algorithm. Through our understanding

of this ordering, we were able to ascertain that this clustering was categorised by

the leading terms in the heuristics. We also described several examples of heuristics

which appeared to outperform state-of-the-art hand-crafted heuristics on the testing

set of problem instances described in Chapter 3.

The examples of clustering described in the exhaustive enumeration experiments

directed our research in the subsequent chapters. In the conclusions to this chapter

we reasoned that, if an algorithm were able to locate and navigate these clusters,

then such an algorithm may be able to find effective heuristics far more quickly than

exhaustive enumeration.

8.2.3 Chapter 5 - 7

The research described in Chapters 5 to 7 is difficult to compartmentalise, as each

chapter is effectively part of a larger body of work. In effect, these three chapters

describe the motivations behind, the description of, and the evaluation of LSPS.

Because of this, we summarise these chapters together.

In Chapter 5 we presented empirical evidence which showed that the minimum

tree edit distance metric could be used to describe the neighbourhood of a heuristic.

This metric was used as it could capture the notion of clustering discussed in

the previous chapter, as well as other examples of similarity observed. Through

further experimentation, we found that many of these neighbourhoods contained

heuristics with a higher fitness. Using the results from the exhaustive enumeration

experiments described in Chapter 4, we performed a simulated local search using

these neighbourhoods. In the results from these simulations, we found that this

technique could consistently produce high-quality heuristics.

However, the simulated experiments relied on the use of memoized data. To

apply this program synthesis technique to any candidate heuristic, we would need an

algorithm that could construct the neighbourhood using only a candidate heuristic,

and not rely on memoized data.

Chapter 6 described the algorithm we developed to create neighbourhoods based
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on the minimum tree edit distance metric. We showed how, through the recognition

of patterns in a program tree, the algorithm is able to apply pre-computed edit

sequences to an input program tree to create output program trees. These output

program trees are guaranteed to be syntactically correct. We then described how

the pre-computed edit sequences are constructed. Throughout this chapter, we gave

the descriptions of the various algorithms in terms of generic program trees and

languages, rather than any of the heuristic representations used in this thesis. The

algorithms were described in this manner so that they can be easily used in other

program synthesis problems, not just those considered in this thesis.

In Chapter 7 we used the neighbourhood generation algorithms to perform a set of

LSPS experiments. These experiments were designed to ascertain how effective LSPS

is as a program synthesis technique. In total we performed eight experiments, using

different languages, neighbourhood definitions, neighbourhood generation algorithms,

initialisation functions and bounds on the size of the created heuristics. The results

from these experiments provided strong evidence that LSPS is a viable program

synthesis technique. We also showed several examples of highly effective, automatically

created heuristics. One of these heuristics had the highest reported fitness of all those

considered in this thesis, while another reported the best overall performance on the

testing set.

8.3 Extensions & Future Work

In this section we suggest several potential avenues for future research.

8.3.1 Improved Fitness Function

The results in Chapters 4 and 7 showed us that many of the heuristics which reported

a high fitness value were not effective at solving the larger problem instances in the

testing set. As these heuristics were not trained on problem instances of this size, this

is not surprising, however we had hoped that a heuristic’s fitness value would provide

some indication as to how effective it is on larger instances. While some heuristics

which reported high fitness values did perform well on the larger instances, others did

not. In essence, we believe the fitness function was ill-suited for accurately identifying

heuristics that are effective across a range of different sized problem instances.

Other researchers have expressed a similar desire for automatically created heuris-
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tics that are effective across a range of different sized problem instances [138]. In a

similar way, within the LS-SAT community some researchers have described heuristics

that appear to be effective on smaller problem instances, however on larger ones their

performance degrades significantly [160, 161].

We believe that the systems we have developed and the data gathered through

exhaustive enumeration could prove invaluable in identifying mechanisms for designing

robust, accurate and computationally inexpensive fitness functions which can identify

LS-SAT heuristics that are effective on a range of different sized problem instances.

Such a fitness function could be used to design effective LS-SAT heuristics using

the program synthesis systems described in this thesis, and could prove useful when

designing fitness functions for other domains.

8.3.2 Language

In Chapter 3 we provided details regarding the DSL used throughout this thesis. In

subsequent chapters we used parts of it to design languages, which were then used to

automatically create LS-SAT heuristics. While we believe that the DSL we created is

more verbose than those designed by other researchers, there are still several ways

that it could be improved.

When designing Language B in Chapter 6, we chose not to include several

of the terms we had used in Language A. This was due to our belief that doing

so may create either ineffective or overfitted heuristics. We believe that these

issues could be alleviated by redesigning some of the components. For example, the

IfNotMinAge function could be re-formulated to remove its VarSet argument, instead

being redesigned so that it can automatically determine what its VarSet argument

should be based on the source of its v1 argument. We believe this change would allow

it to always have semantic meaning, irrespective of the contents of its child nodes.

Another example of a term that could be redesigned is the IfTabu function -

or more specifically, the types of terminals with an Age type signature included in

the language. Instead of including terms which represent constant Age values, we

could instead include a set of terms which represent proportions of the overall Age

of the local search algorithm, which may allow the heuristics to perform better on

larger problem instances. In addition to this, we could experiment with adaptive

Age variables, which could allow an Age value to adapt as the heuristic is running.

Apart from reformulating currently included terms, we could also introduce
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mechanisms from other LS-SAT heuristics. For example, terms which represent other

types of clause weighting, variable weighting (see Section 2.3.4) or different types

of configuration checking (see Section 2.3.6) could be easily added to the language.

Doing so may allow the program synthesizers to create higher quality heuristics.

8.3.3 Improving the LS-SAT Solver

We have used the LS-SAT solver described in Chapter 3 throughout this thesis and,

while it has proven to be capable of evaluating complicated heuristics on large SAT

problems, there are some improvements which could be made to its design.

One improvement that could be made is in how the solver evaluates heuristics.

Currently it uses a bespoke software solution to do this. As discussed in Section 3.3,

we do not think it would be practical to use a language such as C to compile and

evaluate automatically created heuristics. However, recent advances in compiler

technologies mean that it may be possible to create a software solution which is much

more efficient than that currently used. For example, using a toolchain such as LLVM

[105] could allow us to compile the heuristic function into low-level machine code.

We could then call this function as part of an overarching LS-SAT solver. We believe

a system designed in this manner would allow us to evaluate heuristics much more

efficiently than is currently possible.

Another improvement that could be made is in how the LS-SAT solver updates

the data structures required by a heuristic. Currently the system decides how to

update these structures using rules based on an analysis of the heuristic, taking into

account which combinations of gain types, clause weights and variable sets are used

together. However, it doesn’t take into consideration how the semantic meaning of a

heuristic may cause a different update function to be more efficient. For example, the

root of a heuristic may be in the form IfRandLt {0.1, GetBestVar {WFF, NegGain},
b}. If no subtree in b requires an ordering of all variables in the problem according to

the NegGain1, it may be more efficient to only calculate this ordering when it is

required by the subtree GetBestVar {WFF, NegGain}. In adding this functionality,

we may be able to evaluate automatically created heuristics more efficiently than

we currently can. Such a system could also prove to be useful when designing hand-

crafted heuristics, as it could be used to automatically identify optimisations in a

heuristic’s update function. We have seen little work in the literature automating

this part of the heuristic design process, however we know that the efficiency of a
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heuristic plays a large role in how effective that heuristic is when solving problem

instances. Therefore, formulating strategies to automate this part of the heuristic

design process could allow higher quality heuristics to be created.

One final improvement that could be made to the LS-SAT solver is regarding

the types of problems it is designed to work with. Currently it is designed for use

with SAT, but we believe that it would be relatively easy to extend it to work with

MAX-SAT and Weighted MAX-SAT. Through this functionality, we may be able to

automatically create effective heuristics for other domains.

8.3.4 Using Other Program Synthesis Methods

One of the research aims of this thesis was to identify alternate program synthesis

techniques that could be used to automatically create heuristics. While we believe we

have achieved this goal, through this work we have also identified other techniques

that may be applicable to our domain.

In Section 2.5.3 we discussed several techniques which view program synthesis as a

search problem. GP and exhaustive enumeration are two such techniques; GP works

by sampling the leaves in a search tree, whereas exhaustive enumeration imposes

an ordering on the leaves, then iterates through them using this ordering. We also

considered algorithms, such as Top-Down-Search (see Algorithm 2.17) and bi-

directional search, which operate on nodes in the search tree. To be clear, these

nodes are partially constructed program trees or, in our domain, partially constructed

heuristics. Strategies such as pruning have been used to remove branches of the

search tree using these algorithms. However, as stated in Section 2.5.5, pruning is

difficult to use in our domain. It would require being able to automatically reason

about stochastic programs, which would require extensive expert knowledge.

There are other search techniques that could be used to reason about partially

constructed heuristics. One example is Monte Carlo tree search. By sampling the

fitness of the leaves descended from a particular node n, a numerical value could be

calculated to represent the effectiveness of the heuristics underneath n. By applying

this strategy to multiple nodes, an ordering could be constructed. An overarching

algorithm could then use this ordering to direct the search to areas where it believes

effective heuristics reside. We note that the results in Section 4.2.3, which showed

that the leading terms in a heuristic could be used to ascertain that heuristic’s

effectiveness, suggest that this strategy may be a viable alternative to the other
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methods we have considered.

As a technique to create heuristics, we believe that LSPS is worthy of further

research. One potential extension to the LSPS algorithm could be to use some

strategy to order a heuristic’s neighbours, instead of doing so randomly. For example,

a numerical value could be assigned to a heuristic through some computationally

inexpensive analysis. These values could be used to order a neighbourhood and

direct the search - in essence we would consider such a strategy to be analogous to

utilising a heuristic method on the search space of heuristics. By leveraging this with

a technique such as Monte Carlo tree search, we may be able to design algorithms

that can quickly navigate the search space of heuristics in a controlled manner, and

refine any promising heuristics found. Such algorithms could provide an alternative

to those methods currently used, which, as we have discussed, are predominantly

based on evolutionary computation.

The research we have conducted in this thesis could provide a major advantage

when designing such algorithms. The heuristics gathered from the exhaustive enumer-

ation experiments described in Chapter 4 could be used to perform computationally

inexpensive simulations of any new algorithms, in a similar way to how the simulations

described in Chapter 5 were used to ascertain the effectiveness of LSPS.
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8.4 Final Remarks

To summarise, there are three core achievements of this thesis. Firstly, and perhaps

most importantly, we have presented a new, novel, generalised method of program

synthesis called local search program synthesis. Secondly, we have illustrated how

two previously unused program synthesis methods, exhaustive enumeration and the

aforementioned local search program synthesis, are able to create effective heuristics

for our target domain. Finally, we have created effective, previously unknown LS-SAT

heuristics, some of which outperform state-of-the-art, hand-crafted heuristics. These

three core achievements mirror the three subdisciplines that intersect within the

contents of this thesis; that of program synthesis, automated heuristic creation and

SAT.
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[53] Iztok Fajfar, Árpád Bürmen, and Janez Puhan. “Grammatical evolution as a

hyper-heuristic to evolve deterministic real-valued optimization algorithms”.

In: Genetic Programming and Evolvable Machines 19.4 (2018), pp. 473–504.

[54] Lei Fang and Michael S. Hsiao. “A new hybrid solution to boost SAT solver

performance”. In: 2007 Design, Automation and Test in Europe Conference

and Exposition. Nice, France, Apr. 2007, pp. 1307–1313.

[55] Cândida Ferreira. “Gene expression programming: A new adaptive algorithm

for solving problems”. In: Complex Systems 13.2 (2001), pp. 87–129.

[56] Henry Fisher. “Probabilistic learning combinations of local job-shop scheduling

rules”. In: Industrial Scheduling (1963), pp. 225–251.

[57] Peter A Flach. “The logic of learning: A brief introduction to inductive

logic programming”. In: Proceedings of the CompulogNet Area Meeting on

Computational Logic and Machine Learning. Manchester, UK, June 1998,

pp. 1–17.

383



BIBLIOGRAPHY

[58] Pierre Flener. “Inductive logic program synthesis with DIALOGS”. In: Induc-

tive Logic Programming, 6th International Workshop, ILP-96, Selected Papers.

Stockholm, Sweden, Aug. 1996, pp. 175–198.

[59] Pierre Flener and Ute Schmid. “An introduction to inductive programming”.

In: Artificial Intelligence Review 29.1 (2008), pp. 45–62.

[60] Alex S. Fukunaga. “Automated discovery of composite SAT variable-selection

heuristics”. In: Proceedings of the 18th National Conference on Artificial

Intelligence and the 14th Innovative Applications of Artificial Intelligence

Conference, (AAAI/IAAI’02). Edmonton, Canada, Aug. 2002, pp. 641–648.

[61] Alex S. Fukunaga. “Automated discovery of local search heuristics for Satisfi-

ability testing”. In: Evolutionary Computation 16.1 (2008), pp. 31–61.

[62] Alex S. Fukunaga. “Efficient implementations of SAT local search”. In: Pro-

ceedings of the 7th International Conference on Theory and Applications of

Satisfiability Testing, (SAT 2004). Vancouver, Canada, May 2004.

[63] Alex S. Fukunaga. “Evolving local search heuristics for SAT using genetic pro-

gramming”. In: Proceedings of the 6th ACM Annual Genetic and Evolutionary

Computation Conference, (GECCO’04). Seattle, USA, June 2004, pp. 483–494.

[64] Oliver Gableske. “Dimetheus”. In: Proceedings of SAT Competition 2016:

Solver and Benchmark Descriptions. Bordeaux, France, July 2016, pp. 37–38.

[65] M. Gendreau and J.Y. Potvin. Handbook of Metaheuristics. International

Series in Operations Research & Management Science. Springer International

Publishing, 2018. isbn: 978-3-319-91086-4.

[66] Ian Gent and Toby Walsh. The enigma of SAT hill-climbing procedures. Tech.

rep. 605. Department of AI, University of Edinburgh, 1992.

[67] Ian P. Gent and Toby Walsh. “The SAT phase transition”. In: Proceedings of

the Eleventh European Conference on Artificial Intelligence. Amsterdam, the

Netherlands, Aug. 1994, pp. 105–109.

[68] Ian P. Gent and Toby Walsh. “Towards an understanding of hill-climbing

procedures for SAT”. In: Proceedings of the 11th National Conference on Arti-

ficial Intelligence and the 5th Innovative Applications of Artificial Intelligence

Conference, (AAAI/IAAI’07). Washington, USA, July 1993, pp. 28–33.

384



BIBLIOGRAPHY

[69] Enrico Giunchiglia, Yuliya Lierler, and Marco Maratea. “Answer set pro-

gramming based on propositional Satisfiability”. In: Journal of Automated

Reasoning 36.4 (2006), pp. 345–377.

[70] Fred W. Glover. “Tabu search - part I”. In: ORSA Journal on Computing 1.3

(1989), pp. 190–206.

[71] Mario Graff, Rafael Peña, and Aurelio Medina. “Wind speed forecasting using

genetic programming”. In: Proceedings of the IEEE Congress on Evolutionary

Computation, (CEC 2013). Cancun, Mexico, June 2013, pp. 408–415.

[72] Jun Gu. “Efficient local search for very large-scale Satisfiability problems”. In:

SIGART Bulletin 3 (1992), pp. 8–12.

[73] Sumit Gulwani. “Automating string processing in spreadsheets using input-

output examples”. In: Proceedings of the 38th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, (POPL 2011). Austin,

USA, Jan. 2011, pp. 317–330.

[74] Sumit Gulwani. “Dimensions in program synthesis”. In: Proceedings of the

12th International ACM SIGPLAN Conference on Principles and Practice of

Declarative Programming. Hagenberg, Austria, July 2010, pp. 13–24.

[75] Sumit Gulwani, William R. Harris, and Rishabh Singh. “Spreadsheet data

manipulation using examples”. In: Communications of the ACM 55.8 (2012),

pp. 97–105.

[76] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. “Program synthesis”.

In: Foundations and Trends in Programming Languages 4.1-2 (2017), pp. 1–

119.

[77] Sumit Gulwani et al. “Inductive programming meets the real world”. In:

Communications of the ACM 58.11 (2015), pp. 90–99.

[78] Djamal Habet, Donia Toumi, and André Abrame. “Ncca+: Configuration
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Appendix A

Exhaustive Enumeration Results

In this appendix we present all results from the exhaustive enumeration experiments

using Language A and Language A1 in Chapter 4. We present these results as a

series of graphs. The graphs contain all results for a specific size of heuristic for a

specific language.

For Language A we show graphs for sizes 6-9 and 11-16 in Figure A.1. The graphs

for sizes 10 and 17 are shown in Chapter 4. For Language A1 we show graphs for

sizes 6-15 in Figure A.2.
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APPENDIX A. EXHAUSTIVE ENUMERATION RESULTS

(a) Exhaustive enumeration results, showing heuristics of size 6.

(b) Exhaustive enumeration results, showing heuristics of size 7.

(c) Exhaustive enumeration results, showing heuristics of size 8.

Figure A.1: Results from the exhaustive enumeration experiment performed on

Language A, as detailed in Chapter 4. Each point in each graph represents the fitness

of a heuristic.
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APPENDIX A. EXHAUSTIVE ENUMERATION RESULTS

(d) Exhaustive enumeration results, showing heuristics of size 9.

(e) Exhaustive enumeration results, showing heuristics of size 11.

(f) Exhaustive enumeration results, showing heuristics of size 12.

Figure A.1: Results from the exhaustive enumeration experiment performed on

Language A, as detailed in Chapter 4. Each point in each graph represents the fitness

of a heuristic. (Continued)
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APPENDIX A. EXHAUSTIVE ENUMERATION RESULTS

(g) Exhaustive enumeration results, showing heuristics of size 13.

(h) Exhaustive enumeration results, showing heuristics of size 14.

Figure A.1: Results from the exhaustive enumeration experiment performed on

Language A, as detailed in Chapter 4. Each point in each graph represents the fitness

of a heuristic. (Continued)
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APPENDIX A. EXHAUSTIVE ENUMERATION RESULTS

(i) Exhaustive enumeration results, showing heuristics of size 15.

(j) Exhaustive enumeration results, showing heuristics of size 16.

Figure A.1: Results from the exhaustive enumeration experiment performed on

Language A, as detailed in Chapter 4. Each point in each graph represents the fitness

of a heuristic. (Continued)
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APPENDIX A. EXHAUSTIVE ENUMERATION RESULTS

(a) Exhaustive enumeration results, showing heuristics of size 6.

(b) Exhaustive enumeration results, showing heuristics of size 7.

(c) Exhaustive enumeration results, showing heuristics of size 8.

Figure A.2: Results from the exhaustive enumeration experiment performed on

Language A1, as detailed in Chapter 4. Each point in each graph represents the

fitness of a heuristic.
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APPENDIX A. EXHAUSTIVE ENUMERATION RESULTS

(d) Exhaustive enumeration results, showing heuristics of size 9.

(e) Exhaustive enumeration results, showing heuristics of size 10.

(f) Exhaustive enumeration results, showing heuristics of size 11.

Figure A.2: Results from the exhaustive enumeration experiment performed on

Language A1, as detailed in Chapter 4. Each point in each graph represents the

fitness of a heuristic. (Continued)
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APPENDIX A. EXHAUSTIVE ENUMERATION RESULTS

(g) Exhaustive enumeration results, showing heuristics of size 12.

(h) Exhaustive enumeration results, showing heuristics of size 13.

Figure A.2: Results from the exhaustive enumeration experiment performed on

Language A1, as detailed in Chapter 4. Each point in each graph represents the

fitness of a heuristic. (Continued)
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APPENDIX A. EXHAUSTIVE ENUMERATION RESULTS

(i) Exhaustive enumeration results, showing heuristics of size 14.

(j) Exhaustive enumeration results, showing heuristics of size 15.

Figure A.2: Results from the exhaustive enumeration experiment performed on

Language A1, as detailed in Chapter 4. Each point in each graph represents the

fitness of a heuristic. (Continued)
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Appendix B

Genetic Programming Created

Heuristics

In this Appendix we show three heuristics created from the genetic programming

experiments detailed in Chapters 4 and 7. Each heuristic shown here is the heuristic

with the highest reported fitness from one of the GP experiments performed using

Language A, Language A1 and Language B. In Figure B.1 the heuristic called GP-

A-5 is shown, created from the GP experiments performed using Language A. In

Figure B.2 the heuristic called GP-A1-3 is shown, created from the GP experiments

performed using Language A1. In Figure B.3 the heuristic called GP-B-5 is shown,

created from the GP experiments performed using Language B.
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APPENDIX B. GENETIC PROGRAMMING CREATED HEURISTICS

let A =

IfVarCompare < PosGain

IfVarCond < NegGain 4

IfVarCond = NetGain 4

GetBestVarSnd RBC -0 NetGain

IfRandLt 0.9

PickRandomVar RBC -0

GetBestVar RBC -0 PosGain

GetBestVarSnd RBC -0 NegGain

GetOldestVar

IfTabu 10

IfVarCompare = NegGain

PickRandomVar RBC -0

IfTabu 10

IfTabu 20

IfVarCond < NetGain -2

GetBestVar RBC -0 NetGain

GetOldestVar

GetBestVar RBC -0 NegGain

GetBestVarSnd RBC -0

NegGain

GetOldestVar

IfVarCond < NetGain 3

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 PosGain

GetOldestVar

PickRandomVar RBC -0

PickRandomVar RBC -0

GetBestVar RBC -0 NegGain

IfTabu 30

GetBestVarSnd RBC -0 NegGain

GetBestVar RBC -0 NetGain

IfVarCompare = NetGain

IfNotMinAge RBC -0

GetBestVarSnd RBC -0 PosGain

GetBestVarSnd RBC -0 PosGain

GetBestVar RBC -0 NegGain

(a) Part A of the GP-A-5 heuristic.

let B =

IfVarCompare < PosGain

IfVarCond < NegGain 4

IfVarCond = NetGain 4

GetBestVarSnd RBC -0 NetGain

IfRandLt 0.9

PickRandomVar RBC -0

GetBestVar RBC -0 PosGain

GetBestVarSnd RBC -0 NegGain

GetOldestVar

IfTabu 10

IfVarCompare = NetGain

PickRandomVar RBC -0

IfTabu 10

IfTabu 20

IfVarCond < NetGain -2

GetBestVar RBC -0 NetGain

GetOldestVar

GetBestVar RBC -0 NegGain

GetBestVarSnd RBC -0

NegGain

IfNotMinAge RBC -0

IfNotMinAge RBC -0

PickRandomVar RBC -0

IfRandLt 0.7

PickRandomVar RBC -0

GetBestVar RBC -0 PosGain

GetBestVar RBC -0 PosGain

GetBestVar RBC -0 NegGain

IfTabu 30

GetBestVarSnd RBC -0 NegGain

GetBestVar RBC -0 NetGain

IfVarCompare = NegGain

IfNotMinAge RBC -0

GetBestVarSnd RBC -0 PosGain

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 NegGain

(b) Part B of the GP-A-5 heuristic.

Figure B.1: The GP-A-5 heuristic. Fitness value of 57.0.
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let C =

IfVarCond < PosGain 3

IfRandLt 0.7

GetOldestVar

IfVarCompare = NetGain

IfVarCond = PosGain 5

IfVarCond = PosGain -2 { B }

GetBestVarSnd RBC -0 NegGain

IfTabu 20

IfVarCompare = PosGain

PickRandomVar RBC -0

PickRandomVar RBC -0

IfVarCompare < NetGain

GetOldestVar

IfRandLt 0.5

PickRandomVar RBC -0

IfVarCond <= NetGain -1

PickRandomVar RBC -0

GetBestVarSnd RBC -0

PosGain

IfNotMinAge RBC -0

PickRandomVar RBC -0

GetBestVar RBC -0 NetGain

IfTabu 10

IfTabu 30

GetBestVarSnd RBC -0

PosGain

GetBestVar RBC -0 PosGain

IfVarCompare <= NetGain

GetBestVar RBC -0 PosGain

PickRandomVar RBC -0

GetBestVar RBC -0 NegGain

IfTabu 40

PickRandomVar RBC -0

GetBestVar RBC -0 PosGain

PickRandomVar RBC -0

GetBestVar RBC -0 NegGain

(c) Part C of the GP-A-5 heuristic.

let D =

IfNotMinAge RBC -0

IfVarCond = NegGain 5

IfVarCond = PosGain -2

A

GetBestVarSnd RBC -0 NegGain

GetOldestVar

IfTabu 5

IfVarCompare = NegGain

IfTabu 40

IfVarCond <= NetGain -1

PickRandomVar RBC -0

GetBestVarSnd RBC -0

NegGain

PickRandomVar RBC -0

IfTabu 40

PickRandomVar RBC -0

GetBestVar RBC -0 NetGain

PickRandomVar RBC -0

IfTabu 10

IfRandLt 0.1

GetBestVarSnd RBC -0 PosGain

GetOldestVar

IfVarCond < NetGain 3

GetBestVar RBC -0 NetGain

GetBestVar RBC -0 PosGain

GetOldestVar

PickRandomVar RBC -0

PickRandomVar RBC -0

IfVarCond = NegGain 2

PickRandomVar RBC -0

PickRandomVar RBC -0

GetBestVarSnd RBC -0 NetGain

(d) Part D of the GP-A-5 heuristic.

Figure B.1: The GP-A-5 heuristic. Fitness value of 57.0. (Continued)
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let E =

IfTabu 10

IfNotMinAge RBC -0

GetBestVar RBC -0 NegGain

GetBestVarSnd RBC -0 PosGain

IfVarCond < PosGain 4

IfRandLt 0.7

IfTabu 30

IfRandLt 0.7

GetBestVar RBC -0 NetGain

GetBestVar RBC -0 PosGain

IfVarCompare <= NetGain

GetBestVarSnd RBC -0 PosGain

GetBestVarSnd RBC -0 PosGain

IfTabu 40

GetBestVarSnd RBC -0 NegGain

IfNotMinAge RBC -0

GetBestVar RBC -0 PosGain

GetBestVar RBC -0 PosGain

IfNotMinAge RBC -0

IfRandLt 0.1

GetBestVar RBC -0 NegGain

GetBestVarSnd RBC -0 NegGain

IfRandLt 0.1

IfVarCompare = NetGain

GetBestVarSnd RBC -0 NetGain

PickRandomVar RBC -0

GetOldestVar

PickRandomVar RBC -0

PickRandomVar RBC -0

(e) Part E of the GP-A-5 heuristic.

let F =

IfRandLt 0.1

IfVarCond < NegGain 0

GetOldestVar

GetBestVar RBC -0 PosGain

GetOldestVar

IfNotMinAge RBC -0

E

IfVarCompare < NetGain

IfVarCompare < NegGain

GetOldestVar

PickRandomVar RBC -0

GetBestVarSnd RBC -0

NetGain

PickRandomVar RBC -0

PickRandomVar RBC -0

GetBestVar RBC -0 PosGain

IfVarCompare = NetGain

IfRandLt 0.3

GetBestVarSnd RBC -0 NetGain

GetBestVar RBC -0 PosGain

IfRandLt 0.3

GetBestVar RBC -0 PosGain

GetBestVar RBC -0 NegGain

GetOldestVar

GetOldestVar

PickRandomVar RBC -0

GetOldestVar

GetBestVarSnd RBC -0 PosGain

GetBestVar RBC -0 NetGain

PickRandomVar RBC -0

(f) Part F of the GP-A-5 heuristic.

Figure B.1: The GP-A-5 heuristic. Fitness value of 57.0. (Continued)
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let G =

IfVarCompare = NetGain

GetOldestVar

IfNotMinAge RBC -0

IfNotMinAge RBC -0

IfRandLt 0.1

GetBestVarSnd RBC -0 PosGain

GetOldestVar

IfVarCond < NetGain 2

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 PosGain

GetOldestVar

PickRandomVar RBC -0

PickRandomVar RBC -0

IfNotMinAge RBC -0

GetBestVarSnd RBC -0 NetGain

PickRandomVar RBC -0

IfRandLt 0.7

IfRandLt 0.3

GetBestVar RBC -0 PosGain

GetBestVarSnd RBC -0 NegGain

GetOldestVar

GetBestVarSnd RBC -0 NegGain

GetBestVarSnd RBC -0 NetGain

GetBestVarSnd RBC -0 NetGain

B

(g) Part G of the GP-A-5 heuristic.

let H =

IfVarCompare <= PosGain

D

IfNotMinAge RBC -0

IfNotMinAge RBC -0

IfVarCompare = NegGain

GetBestVar RBC -0 PosGain

PickRandomVar RBC -0

IfVarCond < NegGain -2

IfNotMinAge RBC -0 { G }

IfVarCond <= NegGain 3

GetBestVarSnd RBC -0 PosGain

IfVarCond = PosGain 2

IfVarCompare <= PosGain

GetBestVar RBC -0 NegGain

IfRandLt 0.5

IfVarCompare < PosGain

GetBestVar RBC -0

PosGain

PickRandomVar RBC -0

IfVarCond <= NetGain 2

GetBestVar RBC -0

NegGain

GetBestVar RBC -0

PosGain

GetBestVar RBC -0 NetGain

GetBestVarSnd RBC -0 NetGain

IfVarCompare = NegGain

IfTabu 10

IfVarCond <= PosGain -1

GetBestVarSnd RBC -0 NetGain

GetBestVarSnd RBC -0 PosGain

PickRandomVar RBC -0

IfTabu 40

PickRandomVar RBC -0

GetBestVar RBC -0 NetGain

(h) Part H of the GP-A-5 heuristic.

Figure B.1: The GP-A-5 heuristic. Fitness value of 57.0. (Continued)
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let I =

IfRandLt 0.1

GetBestVarSnd RBC -0 NegGain

GetOldestVar

IfVarCond < NetGain 5

GetBestVar RBC -0 NetGain

IfTabu 30

PickRandomVar RBC -0

GetOldestVar

H

IfRandLt 0.1

IfVarCond < NetGain 2

GetOldestVar

GetBestVar RBC -0 NetGain

GetOldestVar

PickRandomVar RBC -0

GetBestVar RBC -0 PosGain

IfVarCond <= NetGain -2

PickRandomVar RBC -0

IfVarCompare < NetGain

GetOldestVar

GetBestVarSnd RBC -0

NetGain

PickRandomVar RBC -0

GetOldestVar

PickRandomVar RBC -0

GetBestVar RBC -0 NetGain

GetOldestVar

GetOldestVar

GetBestVarSnd RBC -0 PosGain

GetOldestVar

GetBestVarSnd RBC -0 PosGain

GetBestVar RBC -0 NetGain

PickRandomVar RBC -0

GetOldestVar

PickRandomVar RBC -0

PickRandomVar RBC -0

(i) Part I of the GP-A-5 heuristic

let J =

IfTabu 30

IfRandLt 0.1

GetBestVarSnd RBC -0 NetGain

GetOldestVar

IfVarCond < NetGain 5 { I }

IfTabu 30

PickRandomVar RBC -0

GetOldestVar

IfVarCompare <= PosGain

IfVarCompare <= NegGain

PickRandomVar RBC -0

IfTabu 40

GetBestVarSnd RBC -0

NegGain

IfNotMinAge RBC -0

GetBestVar RBC -0

PosGain

GetBestVar RBC -0

PosGain

IfNotMinAge RBC -0

GetBestVarSnd RBC -0

PosGain

IfVarCond <= NegGain 0

GetBestVarSnd RBC -0

NegGain

IfRandLt 0.1

GetBestVarSnd RBC -0

NetGain

PickRandomVar RBC -0

F

GetOldestVar

PickRandomVar RBC -0

PickRandomVar RBC -0

IfVarCond = NetGain 4

PickRandomVar RBC -0

PickRandomVar RBC -0

(j) Part J of the GP-A-5 heuristic.

Figure B.1: The GP-A-5 heuristic. Fitness value of 57.0. (Continued)
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let K =

IfTabu 5

IfVarCompare = NegGain

GetOldestVar

GetBestVarSnd RBC -0 NetGain

GetBestVar RBC -0 PosGain

GetBestVarSnd RBC -0 PosGain

IfNotMinAge RBC -0

IfNotMinAge RBC -0

IfVarCond = PosGain 3

GetOldestVar

GetBestVar RBC -0 NetGain

GetBestVar RBC -0 PosGain

GetOldestVar

IfTabu 5

IfVarCompare = NegGain

IfTabu 20

IfVarCond <= NetGain -1

PickRandomVar RBC -0

GetBestVarSnd RBC -0

PosGain

PickRandomVar RBC -0

IfTabu 40

PickRandomVar RBC -0

GetBestVar RBC -0 NetGain

PickRandomVar RBC -0

J

GetBestVarSnd RBC -0 NetGain

IfVarCond <= NetGain 0

GetBestVarSnd RBC -0 PosGain

GetBestVar RBC -0 PosGain

(k) Part K of the GP-A-5 heuristic.

let L =

GetOldestVar

GetBestVarSnd RBC -0 PosGain

IfTabu 20

IfVarCompare = PosGain

PickRandomVar RBC -0

PickRandomVar RBC -0

IfVarCompare < NetGain

GetOldestVar

IfRandLt 0.5

PickRandomVar RBC -0

IfVarCond <= NetGain -1

PickRandomVar RBC -0

GetBestVarSnd RBC -0 PosGain

IfNotMinAge RBC -0

PickRandomVar RBC -0

GetBestVar RBC -0 NetGain

IfTabu 10

IfTabu 30

GetBestVarSnd RBC -0 PosGain

GetBestVar RBC -0 PosGain

IfVarCompare <= NetGain

GetBestVar RBC -0 PosGain

PickRandomVar RBC -0

(l) Part L of the GP-A-5 heuristic.

Figure B.1: The GP-A-5 heuristic. Fitness value of 57.0. (Continued)
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let M =

IfNotMinAge RBC -0

IfVarCond <= NegGain 4

GetBestVar RBC -0 NetGain

GetOldestVar

GetBestVar RBC -0 NetGain

IfRandLt 0.7

PickRandomVar RBC -0

IfRandLt 0.1

GetBestVarSnd RBC -0 NetGain

PickRandomVar RBC -0

IfRandLt 0.1

PickRandomVar RBC -0

GetOldestVar

GetOldestVar

GetBestVarSnd RBC -0 PosGain

GetBestVarSnd RBC -0 NegGain

IfTabu 50

GetBestVarSnd RBC -0 PosGain

PickRandomVar RBC -0

(m) Part M of the GP-A-5 heuristic.

IfVarCompare <= NegGain

IfTabu 20

IfTabu 20

GetBestVar RBC -0 NetGain

IfNotMinAge RBC -0

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 NegGain

IfNotMinAge RBC -0

IfTabu 40

IfRandLt 0.1 { K }

IfTabu 20

IfVarCond = NetGain 5

PickRandomVar RBC -0

GetOldestVar

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 NegGain

IfNotMinAge RBC -0

GetOldestVar

GetBestVarSnd RBC -0

NetGain

GetBestVarSnd RBC -0

NetGain

IfVarCompare < NetGain

GetOldestVar

GetBestVarSnd RBC -0

NetGain

PickRandomVar RBC -0

PickRandomVar RBC -0

M

L

GetOldestVar

GetBestVar RBC -0 NetGain

GetBestVar RBC -0 PosGain

(n) The final part of the GP-A-5 heuristic.

Figure B.1: The GP-A-5 heuristic. Fitness value of 57.0. (Continued)
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let A =

IfVarCompare < PosGain

IfVarCond < NegGain 4

IfVarCond = NetGain 4

GetBestVarSnd RBC -0 NetGain

IfRandLt 0.9

PickRandomVar RBC -0

GetBestVar RBC -0 PosGain

GetBestVarSnd RBC -0 NegGain

GetOldestVar

IfTabu 10

IfVarCompare = NegGain

PickRandomVar RBC -0

IfTabu 10

IfTabu 20

IfVarCond < NetGain -2

GetBestVar RBC -0 NetGain

GetOldestVar

GetBestVar RBC -0 NegGain

GetBestVarSnd RBC -0

NegGain

GetOldestVar

IfVarCond < NetGain 3

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 PosGain

GetOldestVar

PickRandomVar RBC -0

PickRandomVar RBC -0

GetBestVar RBC -0 NegGain

IfTabu 30

GetBestVarSnd RBC -0 NegGain

GetBestVar RBC -0 NetGain

IfVarCompare = NetGain

IfNotMinAge RBC -0

GetBestVarSnd RBC -0 PosGain

GetBestVarSnd RBC -0 PosGain

GetBestVar RBC -0 NegGain

(a) Part A of the GP-A1-3 heuristic.

let B =

IfVarCompare < PosGain

IfVarCond < NegGain 4

IfVarCond = NetGain 4

GetBestVarSnd RBC -0 NetGain

IfRandLt 0.9

PickRandomVar RBC -0

GetBestVar RBC -0 PosGain

GetBestVarSnd RBC -0 NegGain

GetOldestVar

IfTabu 10

IfVarCompare = NetGain

PickRandomVar RBC -0

IfTabu 10

IfTabu 20

IfVarCond < NetGain -2

GetBestVar RBC -0 NetGain

GetOldestVar

GetBestVar RBC -0 NegGain

GetBestVarSnd RBC -0

NegGain

IfNotMinAge RBC -0

IfNotMinAge RBC -0

PickRandomVar RBC -0

IfRandLt 0.7

PickRandomVar RBC -0

GetBestVar RBC -0 PosGain

GetBestVar RBC -0 PosGain

GetBestVar RBC -0 NegGain

IfTabu 30

GetBestVarSnd RBC -0 NegGain

GetBestVar RBC -0 NetGain

IfVarCompare = NegGain

IfNotMinAge RBC -0

GetBestVarSnd RBC -0 PosGain

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 NegGain

(b) Part B of the GP-A1-3 heuristic.

Figure B.2: The GP-A1-3 heuristic. Fitness value of 57.4.
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let C =

IfVarCond < PosGain 3

IfRandLt 0.7

GetOldestVar

IfVarCompare = NetGain

IfVarCond = PosGain 5

IfVarCond = PosGain -2 { B }

GetBestVarSnd RBC -0 NegGain

IfTabu 20

IfVarCompare = PosGain

PickRandomVar RBC -0

PickRandomVar RBC -0

IfVarCompare < NetGain

GetOldestVar

IfRandLt 0.5

PickRandomVar RBC -0

IfVarCond <= NetGain -1

PickRandomVar RBC -0

GetBestVarSnd RBC -0

PosGain

IfNotMinAge RBC -0

PickRandomVar RBC -0

GetBestVar RBC -0 NetGain

IfTabu 10

IfTabu 30

GetBestVarSnd RBC -0

PosGain

GetBestVar RBC -0 PosGain

IfVarCompare <= NetGain

GetBestVar RBC -0 PosGain

PickRandomVar RBC -0

GetBestVar RBC -0 NegGain

IfTabu 40

PickRandomVar RBC -0

GetBestVar RBC -0 PosGain

PickRandomVar RBC -0

GetBestVar RBC -0 NegGain

(c) Part C of the GP-A1-3 heuristic.

let D =

IfNotMinAge RBC -0

IfVarCond = NegGain 5

IfVarCond = PosGain -2

A

GetBestVarSnd RBC -0 NegGain

GetOldestVar

IfTabu 5

IfVarCompare = NegGain

IfTabu 40

IfVarCond <= NetGain -1

PickRandomVar RBC -0

GetBestVarSnd RBC -0

NegGain

PickRandomVar RBC -0

IfTabu 40

PickRandomVar RBC -0

GetBestVar RBC -0 NetGain

PickRandomVar RBC -0

IfTabu 10

IfRandLt 0.1

GetBestVarSnd RBC -0 PosGain

GetOldestVar

IfVarCond < NetGain 3

GetBestVar RBC -0 NetGain

GetBestVar RBC -0 PosGain

GetOldestVar

PickRandomVar RBC -0

PickRandomVar RBC -0

IfVarCond = NegGain 2

PickRandomVar RBC -0

PickRandomVar RBC -0

GetBestVarSnd RBC -0 NetGain

(d) Part D of the GP-A1-3 heuristic.

Figure B.2: The GP-A1-3 heuristic. Fitness value of 57.4. (Continued)

416



APPENDIX B. GENETIC PROGRAMMING CREATED HEURISTICS

let E =

IfTabu 10

IfNotMinAge RBC -0

GetBestVar RBC -0 NegGain

GetBestVarSnd RBC -0 PosGain

IfVarCond < PosGain 4

IfRandLt 0.7

IfTabu 30

IfRandLt 0.7

GetBestVar RBC -0 NetGain

GetBestVar RBC -0 PosGain

IfVarCompare <= NetGain

GetBestVarSnd RBC -0 PosGain

GetBestVarSnd RBC -0 PosGain

IfTabu 40

GetBestVarSnd RBC -0 NegGain

IfNotMinAge RBC -0

GetBestVar RBC -0 PosGain

GetBestVar RBC -0 PosGain

IfNotMinAge RBC -0

IfRandLt 0.1

GetBestVar RBC -0 NegGain

GetBestVarSnd RBC -0 NegGain

IfRandLt 0.1

IfVarCompare = NetGain

GetBestVarSnd RBC -0 NetGain

PickRandomVar RBC -0

GetOldestVar

PickRandomVar RBC -0

PickRandomVar RBC -0

(e) Part E of the GP-A1-3 heuristic.

let F =

IfRandLt 0.1

IfVarCond < NegGain 0

GetOldestVar

GetBestVar RBC -0 PosGain

GetOldestVar

IfNotMinAge RBC -0

E

IfVarCompare < NetGain

IfVarCompare < NegGain

GetOldestVar

PickRandomVar RBC -0

GetBestVarSnd RBC -0

NetGain

PickRandomVar RBC -0

PickRandomVar RBC -0

GetBestVar RBC -0 PosGain

IfVarCompare = NetGain

IfRandLt 0.3

GetBestVarSnd RBC -0 NetGain

GetBestVar RBC -0 PosGain

IfRandLt 0.3

GetBestVar RBC -0 PosGain

GetBestVar RBC -0 NegGain

GetOldestVar

GetOldestVar

PickRandomVar RBC -0

GetOldestVar

GetBestVarSnd RBC -0 PosGain

GetBestVar RBC -0 NetGain

PickRandomVar RBC -0

(f) Part F of the GP-A1-3 heuristic.

Figure B.2: The GP-A1-3 heuristic. Fitness value of 57.4. (Continued)
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let G =

IfVarCompare = NetGain

GetOldestVar

IfNotMinAge RBC -0

IfNotMinAge RBC -0

IfRandLt 0.1

GetBestVarSnd RBC -0 PosGain

GetOldestVar

IfVarCond < NetGain 2

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 PosGain

GetOldestVar

PickRandomVar RBC -0

PickRandomVar RBC -0

IfNotMinAge RBC -0

GetBestVarSnd RBC -0 NetGain

PickRandomVar RBC -0

IfRandLt 0.7

IfRandLt 0.3

GetBestVar RBC -0 PosGain

GetBestVarSnd RBC -0 NegGain

GetOldestVar

GetBestVarSnd RBC -0 NegGain

GetBestVarSnd RBC -0 NetGain

GetBestVarSnd RBC -0 NetGain

C

(g) Part G of the GP-A1-3 heuristic.

let H =

IfVarCompare <= PosGain { D }

IfNotMinAge RBC -0

IfNotMinAge RBC -0

IfVarCompare = NegGain

GetBestVar RBC -0 PosGain

PickRandomVar RBC -0

IfVarCond < NegGain -2

IfNotMinAge RBC -0 { G }

IfVarCond <= NegGain 3

GetBestVarSnd RBC -0 PosGain

IfVarCond = PosGain 2

IfVarCompare <= PosGain

GetBestVar RBC -0 NegGain

IfRandLt 0.5

IfVarCompare < PosGain

GetBestVar RBC -0

PosGain

PickRandomVar RBC -0

IfVarCond <= NetGain 2

GetBestVar RBC -0

NegGain

GetBestVar RBC -0

PosGain

GetBestVar RBC -0 NetGain

GetBestVarSnd RBC -0 NetGain

IfVarCompare = NegGain

IfTabu 10

IfVarCond <= PosGain -1

GetBestVarSnd RBC -0 NetGain

GetBestVarSnd RBC -0 PosGain

PickRandomVar RBC -0

IfTabu 40

PickRandomVar RBC -0

GetBestVar RBC -0 NetGain

(h) Part H of the GP-A1-3 heuristic.

Figure B.2: The GP-A1-3 heuristic. Fitness value of 57.4. (Continued)
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let I =

IfRandLt 0.1

GetBestVarSnd RBC -0 NegGain

GetOldestVar

IfVarCond < NetGain 5

GetBestVar RBC -0 NetGain

IfTabu 30

PickRandomVar RBC -0

GetOldestVar { H }

IfRandLt 0.1

IfVarCond < NetGain 2

GetOldestVar

GetBestVar RBC -0 NetGain

GetOldestVar

PickRandomVar RBC -0

GetBestVar RBC -0 PosGain

IfVarCond <= NetGain -2

PickRandomVar RBC -0

IfVarCompare < NetGain

GetOldestVar

GetBestVarSnd RBC -0

NetGain

PickRandomVar RBC -0

GetOldestVar

PickRandomVar RBC -0

GetBestVar RBC -0 NetGain

GetOldestVar

GetOldestVar

GetBestVarSnd RBC -0 PosGain

GetOldestVar

GetBestVarSnd RBC -0

PosGain

GetBestVar RBC -0 NetGain

PickRandomVar RBC -0

GetOldestVar

PickRandomVar RBC -0

PickRandomVar RBC -0

(i) Part I of the GP-A1-3 heuristic.

let J =

IfTabu 30

IfRandLt 0.1

GetBestVarSnd RBC -0 NetGain

GetOldestVar

IfVarCond < NetGain 5 { I }

IfTabu 30

PickRandomVar RBC -0

GetOldestVar

IfVarCompare <= PosGain

IfVarCompare <= NegGain

PickRandomVar RBC -0

IfTabu 40

GetBestVarSnd RBC -0

NegGain

IfNotMinAge RBC -0

GetBestVar RBC -0

PosGain

GetBestVar RBC -0

PosGain

IfNotMinAge RBC -0

GetBestVarSnd RBC -0

PosGain

IfVarCond <= NegGain 0

GetBestVarSnd RBC -0

NegGain

IfRandLt 0.1

GetBestVarSnd RBC -0

NetGain

PickRandomVar RBC -0

F

GetOldestVar

PickRandomVar RBC -0

PickRandomVar RBC -0

IfVarCond = NetGain 4

PickRandomVar RBC -0

PickRandomVar RBC -0

(j) Part J of the GP-A1-3 heuristic.

Figure B.2: The GP-A1-3 heuristic. Fitness value of 57.4. (Continued)

419



APPENDIX B. GENETIC PROGRAMMING CREATED HEURISTICS

let K =

IfTabu 5

IfVarCompare = NegGain

GetOldestVar

GetBestVarSnd RBC -0 NetGain

GetBestVar RBC -0 PosGain

GetBestVarSnd RBC -0 PosGain

IfNotMinAge RBC -0

IfNotMinAge RBC -0

IfVarCond = PosGain 3

GetOldestVar

GetBestVar RBC -0 NetGain

GetBestVar RBC -0 PosGain

GetOldestVar

IfTabu 5

IfVarCompare = NegGain

IfTabu 20

IfVarCond <= NetGain -1

PickRandomVar RBC -0

GetBestVarSnd RBC -0

PosGain

PickRandomVar RBC -0

IfTabu 40

PickRandomVar RBC -0

GetBestVar RBC -0 NetGain

PickRandomVar RBC -0

J

GetBestVarSnd RBC -0 NetGain

IfVarCond <= NetGain 0

GetBestVarSnd RBC -0 PosGain

GetBestVar RBC -0 PosGain

(k) Part K of the GP-A1-3 heuristic.

let L =

GetOldestVar

GetBestVarSnd RBC -0 PosGain

IfTabu 20

IfVarCompare = PosGain

PickRandomVar RBC -0

PickRandomVar RBC -0

IfVarCompare < NetGain

GetOldestVar

IfRandLt 0.5

PickRandomVar RBC -0

IfVarCond <= NetGain -1

PickRandomVar RBC -0

GetBestVarSnd RBC -0 PosGain

IfNotMinAge RBC -0

PickRandomVar RBC -0

GetBestVar RBC -0 NetGain

IfTabu 10

IfTabu 30

GetBestVarSnd RBC -0 PosGain

GetBestVar RBC -0 PosGain

IfVarCompare <= NetGain

GetBestVar RBC -0 PosGain

PickRandomVar RBC -0

(l) Part L of the GP-A1-3 heuristic.

Figure B.2: The GP-A1-3 heuristic. Fitness value of 57.4. (Continued)

420



APPENDIX B. GENETIC PROGRAMMING CREATED HEURISTICS

let M =

IfNotMinAge RBC -0

IfVarCond <= NegGain 4

GetBestVar RBC -0 NetGain

GetOldestVar

GetBestVar RBC -0 NetGain

IfRandLt 0.7

PickRandomVar RBC -0

IfRandLt 0.1

GetBestVarSnd RBC -0 NetGain

PickRandomVar RBC -0

IfRandLt 0.1

PickRandomVar RBC -0

GetOldestVar

GetOldestVar

GetBestVarSnd RBC -0 PosGain

GetBestVarSnd RBC -0 NegGain

IfTabu 50

GetBestVarSnd RBC -0 PosGain

PickRandomVar RBC -0

(m) Part M of the GP-A1-3 heuristic.

IfVarCompare <= NegGain

IfTabu 20

IfTabu 20

GetBestVar RBC -0 NetGain

IfNotMinAge RBC -0

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 NegGain

IfNotMinAge RBC -0

IfTabu 40

IfRandLt 0.1

K

IfTabu 20

IfVarCond = NetGain 5

PickRandomVar RBC -0

GetOldestVar

GetBestVar RBC -0 NegGain

GetBestVar RBC -0 NegGain

IfNotMinAge RBC -0

GetOldestVar

GetBestVarSnd RBC -0

NetGain

GetBestVarSnd RBC -0

NetGain

IfVarCompare < NetGain

GetOldestVar

GetBestVarSnd RBC -0

NetGain

PickRandomVar RBC -0

PickRandomVar RBC -0

M

L

(n) The final part of the GP-A1-3 heuristic.

Figure B.2: The GP-A1-3 heuristic. Fitness value of 57.4. (Continued)
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let A =

IfIsNull { GetBestVarM DecrVars SubNegGain_WA }

GetOldestVar

IfIsNull { GetBestVarAgeM DecrVars_WA SubPosGain_WA }

IfVarCompare >= SubPosGain

IfIsNull { GetBestVarM DecrVars_WA NegGain }

IfIsNull { GetBestVarAgeM DecrVars NetGain_WA }

IfRandLt 0.9

GetOldestVar

IfIsNull { GetBestVarM DecrVars_WA NetGain_WA }

IfRandLt 0.9

GetBestVar2 CONF NetGain_WA SubNegGain_WA

IfVarCompare >= SubPosGain

IfRandLt 0.3 { GetBestVar2 RBC -0 NegGain PosGain }

IfRandLt 0.9 { GetBestVarAge CONF NetGain_WA }

GetBestVarSnd RBC_WA -0 SubNetGain_WA

IfIsNull

GetBestVarAgeM SubNetGain_WA

Filter > SubPosGain 0 CONF

GetBestVarAge CONF NegGain

IfIsNull { GetBestVarAgeM DecrVars NetGain_WA }

GetBestVarSnd RBC_WA -0 NetGain

GetBestVar CONF NetGain_WA

IfVarCond = SubNetGain 0

GetBestVar2 CONF SubNetGain_WA NegGain

IfVarCond = NegGain 0

IfVarCond >= NegGain 0 { PickRandomVar RBC -1 }

IfVarCond > SubPosGain_WA 0

GetBestVar2 RBC -1 NetGain SubPosGain_WA

GetBestVarSnd RBC -1 NegGain_WA

IfRandLt 0.9 { GetBestVar2 CONF NetGain NetGain_WA }

IfIsNull { GetBestVarM DecrVars_WA NetGain_WA }

IfVarCompare = SubNegGain

GetBestVar CONF NetGain_WA

GetBestVarAge CONF NetGain_WA

IfIsNull { GetBestVarM DecrVars SubPosGain }

GetBestVarAge RBC_WA -1 NetGain_WA

(a) Part A of the GP-B-5 heuristic.

Figure B.3: The GP-B-5 heuristic. Fitness value of 65.0.
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let B =

IfVarCond = SubNetGain 0

GetOldestVar

IfIsNull { GetBestVarM DecrVars NetGain_WA }

IfRandLt 0.9 { GetBestVar2 CONF NetGain SubNegGain_WA }

IfVarCompare > SubNetGain_WA

IfRandLt 0.3 { GetBestVarAge CONF PosGain_WA }

IfRandLt Adapt { GetBestVarAge CONF NetGain_WA }

GetBestVarSnd RBC_WA -0 SubNetGain_WA

IfIsNull

GetBestVarAgeM SubNetGain_WA

Filter > SubPosGain 0 RBC_WA -1

GetBestVarAge CONF PosGain_WA

IfIsNull { GetBestVarAgeM DecrVars NetGain_WA }

IfVarCompare > NetGain_WA

IfVarCompare >= NetGain_WA

GetOldestVar { GetBestVarSnd CONF SubNegGain }

GetOldestVar { GetBestVarSnd RBC_WA -0 NetGain }

GetBestVarAge CONF SubNetGain

GetBestVar CONF NetGain_WA

IfVarCond > SubPosGain_WA 0

IfIsNull { GetBestVarM DecrVars SubPosGain_WA }

GetBestVarAge CONF NetGain_WA

IfRandLt 0.3

IfRandLt 0.3 { GetBestVarAge RBC -1 NetGain_WA }

GetBestVar RBC_WA -1 NetGain_WA

GetBestVar CONF NetGain_WA

IfVarCond = NegGain 0

IfVarCond >= SubNetGain 0 { PickRandomVar RBC -1 }

IfVarCond > SubPosGain_WA 0

GetBestVar2 RBC -1 NetGain SubPosGain_WA

GetBestVarSnd RBC -1 NegGain_WA

IfRandLt 0.9 { GetBestVar2 CONF NetGain NetGain_WA }

IfIsNull { PickRandomM DecrVars }

IfVarCompare = SubNegGain { GetBestVar CONF NetGain_WA }

GetBestVarAge CONF NetGain_WA

(b) Part B of the GP-B-5 heuristic.

Figure B.3: The GP-B-5 heuristic. Fitness value of 65.0. (Continued)
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let C =

IfVarCond >= NegGain_WA 0

IfIsNull { GetBestVarM DecrVars NetGain_WA }

GetOldestVar

IfIsNull { GetBestVarM DecrVars_WA NetGain }

IfVarCompare >= SubPosGain

GetBestVar2 CONF NegGain_WA SubNetGain

GetBestVarAge RBC -1 NetGain_WA

UpdatePAWS

IfVarCond >= SubPosGain_WA 0

IfVarCond >= NetGain_WA 0

IfIsNull { GetBestVarM DecrVars_WA NetGain_WA }

IfIsNull { GetBestVarM DecrVars SubNegGain_WA }

GetOldestVar

IfIsNull { PickRandomM DecrVars }

IfVarCompare >= SubPosGain

IfIsNull { GetBestVarM DecrVars_WA NegGain }

PickRandomVar RBC -0

B

IfIsNull { GetBestVarM DecrVars SubPosGain }

GetBestVarAge RBC_WA -1 NetGain_WA

IfVarCompare >= SubNegGain

IfIsNull { PickRandomM DecrVars }

GetBestVarAge RBC -1 NetGain_WA

IfVarCond > SubPosGain_WA 0

IfIsNull { GetBestVarM DecrVars_WA NetGain_WA }

GetBestVarSnd RBC -0 SubNetGain_WA

PickRandomVar CONF

GetOldestVar { GetBestVar2 RBC_WA -1 SubPosGain SubNegGain }

GetBestVar2 CONF NegGain_WA NegGain

IfVarCompare >= SubNegGain

IfIsNull { GetBestVarAgeM DecrVars_WA SubPosGain_WA }

GetBestVarAge RBC -1 NetGain_WA

IfVarCond > SubPosGain 0

IfIsNull { GetBestVarAgeM DecrVars NetGain_WA }

GetBestVarSnd CONF SubNetGain_WA

PickRandomVar CONF

(a) Part C of the GP-B-5 heuristic.

Figure B.4: The GP-B-5 heuristic. Fitness value of 65.0. (Continued)
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let D =

IfVarCond = NegGain 0

IfVarCond > SubNetGain 0 { PickRandomVar RBC -1 }

IfVarCond > SubPosGain_WA 0

GetBestVar2 RBC -1 NetGain SubPosGain_WA

GetBestVarSnd CONF SubNegGain_WA

IfRandLt 0.9 { GetBestVar2 CONF NetGain NetGain_WA }

IfIsNull { PickRandomM DecrVars }

IfVarCompare = SubNegGain { GetBestVar CONF NetGain_WA }

GetOldestVar

IfIsNull { GetBestVarAgeM DecrVars NegGain_WA }

IfRandLt Adapt

IfIsNull { GetBestVarM DecrVars SubNegGain_WA }

IfVarCond = SubPosGain_WA 0

GetBestVarAge CONF NetGain_WA

GetBestVarAge RBC -1 SubNetGain

IfIsNull { GetBestVarM DecrVars_WA NegGain_WA }

IfVarCompare >= SubPosGain

IfVarCond = NetGain_WA 0

GetBestVar2 RBC -0 SubNetGain_WA NegGain

IfVarCond > PosGain 0

IfIsNull { GetBestVarAgeM DecrVars_WA NetGain_WA }

WeightedVarPick RBC -1

{ ExponentFunction 3.6 SubPosGain } EndList

IfIsNull { GetBestVarAgeM DecrVars SubNetGain_WA }

IfRandLt Adapt { PickOldest RBC_WA -1 }

GetOldestVar

IfIsNull { GetBestVarAgeM DecrVars_WA NetGain_WA }

GetBestVar RBC_WA -1 NetGain_WA

IfVarCond = SubNetGain 0

GetBestVarAge CONF NetGain_WA

GetBestVarAge CONF NetGain_WA

GetBestVarAge RBC -1 SubNegGain_WA

GetOldestVar { GetBestVarSnd CONF NegGain }

GetBestVarAge RBC_WA -1 NetGain_WA

(a) Part D of the GP-B-5 heuristic.

Figure B.5: The GP-B-5 heuristic. Fitness value of 65.0. (Continued)
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let E =

IfVarCompare >= NegGain

IfVarCond <= SubPosGain_WA 0 { GetBestVar CONF NetGain }

GetBestVarSnd CONF NegGain_WA

IfIsNull { GetBestVarM DecrVars SubNegGain_WA }

IfVarCompare >= NetGain_WA

IfIsNull { GetBestVarM DecrVars SubPosGain }

GetBestVarAge RBC_WA -0 NegGain_WA

IfVarCond = SubNetGain 0

GetBestVar2 CONF SubNetGain_WA NegGain

IfVarCond >= SubPosGain_WA 0

IfVarCond >= NegGain_WA 0

IfIsNull { GetBestVarM DecrVars NetGain_WA }

GetOldestVar

IfIsNull { GetBestVarM DecrVars_WA NetGain }

IfVarCompare >= NegGain

GetBestVar2 CONF NegGain_WA SubNetGain

GetBestVarAge RBC -1 NetGain_WA

IfVarCond >= SubPosGain_WA 0

IfVarCond >= NegGain_WA 0

IfIsNull { GetBestVarM DecrVars_WA NetGain_WA } A

IfVarCompare >= SubNegGain

IfIsNull { PickRandomM DecrVars }

GetBestVarAge RBC -1 NetGain_WA

IfVarCond > SubPosGain_WA 0

IfIsNull { GetBestVarM DecrVars_WA NetGain_WA }

GetBestVarSnd RBC -0 SubNetGain_WA

PickRandomVar CONF

GetOldestVar

GetBestVar2 RBC_WA -1 SubPosGain SubNegGain

GetBestVar2 CONF NegGain_WA SubNetGain

D

GetOldestVar { GetBestVarAge CONF NetGain_WA }

IfVarCond >= SubPosGain_WA 0

GetBestVar2 CONF SubPosGain NetGain_WA

GetBestVarAge CONF NetGain_WA

(a) Part E of the GP-B-5 heuristic.

Figure B.6: The GP-B-5 heuristic. Fitness value of 65.0. (Continued)
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let F =

IfVarCond > PosGain 0

IfVarCond <= PosGain 0 { GetBestVarSnd CONF NegGain_WA }

IfVarCompare = PosGain_WA

GetOldestVar { GetBestVar2 CONF NetGain_WA SubNegGain_WA }

IfVarCond >= PosGain 0

IfVarCond >= NetGain 0 { PickRandomVar RBC -1 }

IfVarCompare = SubNegGain { GetBestVar CONF NetGain_WA }

GetBestVarAge CONF NetGain_WA

E

IfIsNull { GetBestVarM DecrVars SubNegGain_WA }

IfVarCond > SubPosGain_WA 0

GetOldestVar

IfVarCond >= SubPosGain_WA 0

IfVarCond >= NegGain_WA 0

IfIsNull { GetBestVarM DecrVars NetGain_WA }

GetOldestVar

IfIsNull { GetBestVarAgeM DecrVars NetGain_WA }

GetBestVarSnd RBC -0 SubNetGain_WA

GetOldestVar

GetBestVar2 CONF SubNetGain_WA NegGain

IfIsNull { GetBestVarM DecrVars SubPosGain }

GetBestVarAge RBC_WA -1 NetGain_WA

IfVarCompare >= SubNegGain

IfIsNull { GetBestVarAgeM DecrVars_WA SubPosGain_WA }

GetBestVarAge RBC -1 NetGain_WA

IfVarCond > SubPosGain 0

IfIsNull { GetBestVarAgeM DecrVars SubNegGain_WA }

GetBestVarSnd CONF SubNetGain_WA

PickRandomVar CONF

GetOldestVar { GetBestVarAge CONF NetGain_WA }

IfVarCond >= SubPosGain_WA 0

GetBestVar2 CONF SubNegGain NetGain_WA

GetBestVarAge CONF NetGain_WA

GetBestVar2 CONF NetGain_WA NegGain

GetBestVarSnd RBC -1 NegGain_WA

GetBestVarAge RBC_WA -0 NetGain_WA

(a) Part F of the GP-B-5 heuristic.

Figure B.7: The GP-B-5 heuristic. Fitness value of 65.0. (Continued)
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let G =

IfIsNull { GetBestVarAgeM DecrVars NetGain_WA }

IfIsNull { GetBestVarAgeM DecrVars } SubNegGain_WA

IfRandLt Adapt { PickOldest RBC_WA -1 }

IfRandLt Adapt F

IfIsNull { GetBestVarM DecrVars SubNegGain_WA }

IfVarCompare >= SubPosGain

IfVarCompare >= NetGain_WA

GetOldestVar

IfIsNull { PickRandomM DecrVars }

IfRandLt Adapt

IfIsNull { GetBestVarM DecrVars SubNegGain_WA }

IfVarCond = SubPosGain_WA 0

GetBestVarAge CONF NetGain_WA

GetBestVarAge RBC -1 SubNetGain

IfIsNull { GetBestVarM DecrVars_WA NetGain }

IfVarCompare >= SubPosGain

IfVarCond = SubPosGain 0

GetBestVar2 RBC -0 SubNetGain_WA NegGain

IfVarCond > PosGain 0

IfIsNull { GetBestVarAgeM DecrVars_WA NetGain_WA }

WeightedVarPick RBC -1

{ ExponentFunction 3.6 SubPosGain } EndList

IfIsNull { GetBestVarAgeM DecrVars SubNetGain_WA }

IfRandLt Adapt { PickOldest RBC -1 }

GetOldestVar

IfIsNull { GetBestVarAgeM DecrVars NetGain_WA }

GetBestVar RBC_WA -1 NetGain_WA

IfVarCond = SubNetGain 0

GetBestVarAge RBC_WA -1 NetGain_WA

GetBestVarAge CONF NetGain_WA

GetBestVarAge RBC -1 SubNegGain_WA

GetBestVar2 RBC -0 SubNetGain_WA NegGain

GetBestVar CONF NetGain_WA

IfVarCond = NetGain_WA 0 { GetBestVar RBC_WA -0 NegGain_WA }

GetBestVarAge RBC -0 PosGain

(a) Part G of the GP-B-5 heuristic.

Figure B.8: The GP-B-5 heuristic. Fitness value of 65.0. (Continued)
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let H =

IfIsNull { GetBestVarM DecrVars SubNegGain_WA }

IfRandLt Adapt

IfIsNull { GetBestVarAgeM DecrVars NetGain_WA }

IfVarCond = PosGain 0

IfVarCond >= SubPosGain_WA 0

IfVarCond >= NegGain_WA 0

IfVarCompare >= SubNegGain

IfIsNull { GetBestVarAgeM DecrVars_WA SubPosGain_WA }

GetBestVarAge RBC -1 NetGain_WA

IfVarCond > SubPosGain 0

IfIsNull { GetBestVarAgeM DecrVars NetGain_WA }

GetBestVarSnd CONF SubNetGain_WA

PickRandomVar CONF

IfVarCompare >= SubNegGain

IfIsNull { GetBestVarAgeM DecrVars_WA SubPosGain_WA }

GetBestVarAge RBC -1 NetGain_WA

IfVarCond > SubPosGain_WA 0

IfIsNull { GetBestVarAgeM DecrVars PosGain }

GetBestVarSnd RBC -0 SubNetGain_WA

IfVarCond > SubNetGain 0 { PickRandomVar RBC -1 }

IfVarCond > SubPosGain_WA 0

GetBestVar2 RBC -1 NetGain SubPosGain_WA

IfVarCompare >= SubNegGain

IfIsNull { GetBestVarAgeM DecrVars_WA SubPosGain_WA }

PickOldest RBC_WA -1

IfVarCond > SubPosGain_WA 0 G

PickRandomVar CONF

GetOldestVar { GetBestVarAge CONF NetGain_WA }

IfVarCond >= SubPosGain_WA 0 { PickRandomVar CONF }

GetBestVarAge CONF NetGain_WA

GetBestVarAge RBC -1 SubNegGain_WA

IfIsNull { GetBestVarM DecrVars_WA NetGain }

IfVarCompare >= SubPosGain

GetBestVar2 RBC -1 NegGain_WA PosGain

GetBestVarAge RBC -0 PosGain_WA

(a) Part H of the GP-B-5 heuristic.

Figure B.9: The GP-B-5 heuristic. Fitness value of 65.0. (Continued)
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let I =

IfIsNull { GetBestVarM DecrVars_WA NetGain_WA }

IfRandLt 0.9 { GetBestVar2 CONF NetGain_WA SubNegGain_WA }

IfVarCompare >= SubPosGain

IfRandLt 0.3

IfIsNull { GetBestVarAgeM DecrVars_WA SubPosGain_WA }

GetBestVarAge RBC_WA -1 NetGain_WA

IfRandLt 0.9 { GetBestVarAge CONF NetGain_WA }

GetBestVarSnd RBC_WA -0 SubNetGain_WA

IfIsNull

GetBestVarAgeM NegGain

Filter > SubPosGain 0 RBC_WA -1

IfVarCond = NetGain_WA 0

GetBestVar2 RBC -0 SubNetGain_WA NegGain

IfVarCond > PosGain 0

IfIsNull { GetBestVarAgeM DecrVars_WA NetGain_WA }

WeightedVarPick RBC -1

{ ExponentFunction 3.0 NetGain_WA } EndList

IfIsNull { GetBestVarAgeM DecrVars SubNetGain_WA }

IfRandLt Adapt { PickOldest RBC_WA -1 }

IfRandLt Adapt { GetBestVar RBC_WA -1 NegGain_WA }

IfVarCompare <= SubNegGain

GetBestVarAge CONF PosGain

GetOldestVar

IfIsNull { GetBestVarM DecrVars NegGain_WA }

IfVarCond > SubPosGain_WA 0

IfVarCond <= PosGain 0

GetBestVarSnd CONF NegGain_WA

H

GetBestVarAge RBC_WA -0 NetGain_WA

IfVarCond >= PosGain 0 { GetBestVar RBC_WA -1 NegGain_WA }

GetBestVarAge RBC_WA -0 NegGain_WA

(a) Part I of the GP-B-5 heuristic.

Figure B.10: The GP-B-5 heuristic. Fitness value of 65.0. (Continued)
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let J =

IfVarCond > PosGain 0

IfVarCond <= PosGain 0 { GetBestVarSnd CONF NegGain_WA }

IfVarCompare = PosGain_WA

GetOldestVar

IfVarCond >= PosGain 0

IfVarCond >= PosGain 0 { PickRandomVar RBC -1 }

PickOldest CONF

IfVarCompare >= PosGain_WA

IfVarCond <= SubPosGain_WA 0

GetBestVar CONF NetGain

GetBestVarSnd CONF NegGain_WA

IfIsNull { GetBestVarM DecrVars SubNegGain_WA }

IfVarCompare >= NetGain_WA

IfIsNull { GetBestVarM DecrVars SubPosGain }

GetBestVarAge RBC_WA -0 NegGain_WA

IfVarCond = SubNetGain 0

GetBestVar2 CONF SubNetGain_WA NegGain

UpdatePAWS

IfVarCond >= SubPosGain_WA 0 B

GetOldestVar { GetBestVarAge CONF NetGain_WA }

IfVarCond >= SubPosGain_WA 0

GetBestVar2 CONF SubNegGain NetGain_WA

GetBestVarAge CONF NetGain_WA

GetBestVar2 CONF NetGain_WA SubNegGain_WA

IfIsNull { GetBestVarM DecrVars SubNegGain_WA }

IfVarCond > NetGain 0

GetOldestVar

IfIsNull { PickRandomM DecrVars }

GetBestVarAge CONF NetGain_WA

GetBestVar2 CONF NetGain_WA NegGain

GetBestVarSnd RBC -1 NegGain_WA

GetBestVarAge RBC_WA -0 NetGain_WA

(a) Part J of the GP-B-5 heuristic.

Figure B.11: The GP-B-5 heuristic. Fitness value of 65.0. (Continued)
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let K =

IfIsNull { PickRandomM DecrVars }

IfIsNull { GetBestVarAgeM DecrVars SubPosGain }

IfRandLt Adapt { PickOldest RBC_WA -1 }

IfRandLt Adapt J

IfIsNull { GetBestVarM DecrVars SubNegGain_WA }

IfVarCompare >= SubPosGain

IfVarCompare >= NetGain_WA

GetOldestVar

IfIsNull { GetBestVarAgeM DecrVars NegGain_WA }

IfRandLt Adapt

IfIsNull { GetBestVarM DecrVars SubNegGain_WA }

IfVarCond = SubPosGain_WA 0

GetBestVarAge CONF NetGain_WA

GetBestVarAge RBC -1 PosGain

IfIsNull { GetBestVarM DecrVars_WA NetGain }

IfVarCompare >= SubPosGain

IfVarCond = NetGain_WA 0

GetBestVar2 RBC -0 SubNetGain_WA NegGain

IfVarCond > PosGain 0

GetBestVarAge RBC -0 NegGain_WA

IfIsNull { GetBestVarAgeM DecrVars NetGain_WA }

IfRandLt Adapt { PickOldest RBC_WA -1 }

GetOldestVar

IfIsNull

GetBestVarAgeM DecrVars_WA SubNegGain_WA

GetBestVar RBC_WA -1 NetGain_WA

IfVarCond = SubNetGain 0

GetBestVarAge RBC_WA -1 NetGain_WA

GetBestVarAge CONF NetGain_WA

GetBestVarAge RBC -1 SubNegGain_WA

GetOldestVar { GetBestVarSnd CONF NegGain }

GetBestVarAge RBC_WA -1 NetGain_WA

GetBestVar CONF NetGain_WA

IfVarCond = NetGain_WA 0 { GetBestVar RBC_WA -0 SubNegGain }

GetBestVarAge RBC -0 PosGain

(a) Part K of the GP-B-5 heuristic.

Figure B.12: The GP-B-5 heuristic. Fitness value of 65.0. (Continued)
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UpdatePAWS

GetOldestVar

IfIsNull { PickRandomM DecrVars }

IfVarCompare >= SubPosGain

IfIsNull { GetBestVarM DecrVars_WA NegGain_WA }

IfIsNull { GetBestVarAgeM DecrVars NetGain_WA }

IfRandLt 0.9

GetOldestVar I

IfIsNull { GetBestVarAgeM DecrVars NetGain_WA }

IfVarCompare >= SubPosGain

IfVarCompare >= NetGain_WA

GetBestVarAge CONF NetGain_WA

GetBestVar CONF NetGain_WA

IfVarCond = NegGain_WA 0

GetBestVar2 CONF NegGain_WA NegGain

IfIsNull { GetBestVarAgeM DecrVars NetGain_WA }

GetBestVar CONF PosGain

GetBestVar CONF NetGain_WA

IfVarCond = SubNetGain 0

GetBestVar2 CONF SubNetGain_WA NegGain

IfVarCond = NegGain 0

IfVarCond > SubNetGain 0 { PickRandomVar RBC -1 }

IfVarCond > SubPosGain_WA 0

GetBestVar2 RBC -1 NetGain SubPosGain_WA

IfVarCompare >= SubNegGain

IfIsNull { GetBestVarAgeM DecrVars_WA SubPosGain_WA }

PickOldest RBC_WA -1

IfVarCond > SubPosGain_WA 0 K { PickRandomVar CONF }

IfRandLt 0.9 { GetBestVar2 CONF NetGain NetGain_WA }

IfIsNull { PickRandomM DecrVars }

IfVarCompare = SubNegGain

GetBestVar CONF NetGain_WA

GetBestVarAge CONF NetGain_WA

IfIsNull { GetBestVarM DecrVars SubPosGain }

GetBestVarAge RBC_WA -1 NetGain_WA

(a) Final part of the GP-B-5 heuristic.

Figure B.13: The GP-B-5 heuristic. Fitness value of 65.0. (Continued)
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