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Abstract

Magnetic resonance imaging (MRI) of the brain has revolutionised neuro-

science by opening unique opportunities for studying unknown aspects of brain

organisation, function and pathology-induced dysfunction. Despite the huge

potential, MRI measures can be limited in their consistency, reproducibility

and accuracy which subsequently restricts their quantifiability. Nuisance non-

biological factors, such as hardware, software, calibration differences between

scanners and post-processing options can contribute or drive trends in neu-

roimaging features to an extent that interferes with biological variability and

obstructs scientific explorations and clinical applications. Such lack of consis-

tency, or harmonisation across neuroimaging datasets poses a great challenge

for our capabilities in quantitative MRI. This thesis contributes to better un-

derstanding and addressing it. We specifically build a new resource for com-

prehensively mapping the extent of the problem and objectively evaluating

neuroimaging harmonisation approaches. We use a travelling heads paradigm

consisting of multimodal MRI data of 10 travelling subjects, each scanned at

5 different sites on 6 different 3.0T scanners from all the 3 major vendors

and using 5 imaging modalities. We use this dataset to explore the between-

scanner variability of hundreds of imaging-extracted features and compare

these to within-scanner (within-subject) variability and biological (between-

subject) variability. We identify subsets of features that are/are not reliable

across scanners and use our resource as a testbed to enable new investigations

which until now have been relatively unexplored. Specifically, we identify op-

timal pipeline processing steps that minimise between-scanner variability in

extracted features (implicit harmonisation). We also test the performance of

post-processing harmonisation tools (explicit harmonisation) and specifically

check their efficiency in reducing between-scanner variability against baseline

gold standards provided by our data. Our explorations allow us to come up

with good practice suggestions on processing steps and sets of features where

results are more consistent and reproducible and also set references for future

studies in this field.
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Chapter 1

Introduction

The development of modern neuroimaging has given us novel insights into

human brain anatomy, architecture and function for health and disease. Pre-

viously, such insight was mainly possible through labour-intensive microscopy

techniques (e.g the use of sliced post-mortem tissue (Brodmann 1909)). While

this method aided the understanding of brain structure and cytoarchitecture

greatly, it was limited by its invasive nature and the tendency for tissue to be

disrupted during extraction and preparation. In addition, the destructive na-

ture of these measurements meant that it was not possible to monitor changes

in-vivo, for instance imaging function and response to external stimuli, imag-

ing longitudinal development, ageing or disease.

Magnetic Resonance Imaging (MRI) (Lauterbur 1973, Mansfield & Maudsley

1977) of the brain has made breakthroughs in addressing these limitations as

it allows us to study the living brain non-invasively and in-vivo in healthy par-

ticipants or patients. The technique offers great flexibility by allowing imaging

contrasts that probe different anatomical, functional and physiological prop-

erties and mechanisms of neural tissue.

A common feature of all MRI modalities and contrasts is that they are mostly

indirect. (See Figure 1.1). The signal that is measured is typically a proxy for

1



2 Chapter 1. Introduction

the quantity of interest and some processing or indirect inference may be typi-

cally needed to map what is measured to what one is interested in. This process

can introduce challenges in quantifiability and consistency of MRI-derived mea-

sures (Schilling et al. 2021), such as the introduction of nuisance/uninteresting

confounds, dependence on scanner hardware and software, and dependence on

acquisition and processing steps that can reduce accuracy and precision of the

measurements. Even fully anatomical images that aim to measure allometric

changes can be confounded by MRI geometric distortions (Chang & Fitzpatrick

1990) that can vary across MRI scanners in non-trivial ways.

Figure 1.1: Examples of the variety of contrasts that can be achieved and features
that can be probed with various MRI modalities.

These challenges in quantifiability can reduce the potential of MRI applica-

tions in a number of ways. Firstly, it complicates pooling data together from

multiple studies and sites. The relatively recent emergence of the big data

technologies and open science era has given rise to an increased number of
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studies aiming to integrate numerous datasets across multiple sites, scanners

and populations such as the UK Biobank (Sudlow et al. 2015), ADNI (Jack Jr

et al. 2008), ABIDE (Di Martino et al. 2014) and ABCD (Casey et al. 2018).

The benefits of such multi-site collaborations for collecting neuroimaging datasets

have been well reviewed (Van Horn & Toga 2009). These include increased ac-

cess to different patient types and symptoms resulting in increased statistical

power. Furthermore, multi-site collaborations are of great aid because the in-

creased prevalence of machine learning in MRI (Davatzikos 2019) necessitates

the availability of data sets which are sufficiently rich to train complex models

on.

Secondly, reduced quantifiability can have downstream effects to reproducibil-

ity and accuracy of findings. Even in cases where the same dataset is being

used, differences in analyses between teams can yield inconsistent results (Grif-

fanti, Rolinski, Szewczyk-Krolikowski, Menke, Filippini, Zamboni, Jenkinson,

Hu & Mackay 2016, Botvinik-Nezer et al. 2020). This issue is exacerbated

when data are acquired or pooled from multiple sites as there is often a lack of

reproducibility and consistency in quantitative MRI measurements from data

(Zhu et al. 2011).

Thirdly, the lack of consistency or harmonisation across sites and scanners

impedes MRI to be used quantitatively in clinical applications, for accurate

patient-specific diagnosis and treatment monitoring. For a significant number

of tasks, visual (and therefore subjective) inspection by the local radiologists is

still the preferred way forward (Bruno et al. 2015). These problems can be alle-

viated by harmonising the data so that nuisance effects from scanner variability

are removed/standardised; and imaging features become more consistent, re-

producible and reliable. Developing harmonisation resources for multimodal

brain MRI data across scanners and sites will be the subject of this thesis.
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Harmonisation is a term that has been used to collectively describe approaches

(including image acquisition and post-processing) that aim to remove un-

wanted inter-site/inter-scanner variability from data whilst preserving biolog-

ical variability between subjects. This unwanted variability is caused by a

number of nuisance factors such as scanning protocol, hardware and software,

and data processing and can influence MRI measurements in non-predictable

ways (Takao et al. 2011, Zhu et al. 2011). As shown with examples in Figure

1.2, such lack of harmonisation can cause bias and variance changes in ways

that interfere with biological variability.

Figure 1.2: Illustration of the potential challenges caused by a lack of harmoni-
sation on imaging-derived features, such as scanner-induced bias, scanner-induced
variance and change in subject ranking. The Figure shows an example of 3 different
subjects each scanned on two different scanners.

At the extreme end of these challenges, variability of measures obtained from

the same subject but on different scanners can be as large as biological between-

subject variability. For instance, the variability in diffusion MRI measurements

between sites has been found to vary as much as 15% on the same subject,

while effects of interest can be in the order of 5% (Mirzaalian et al. 2016).
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In such extreme scenarios, imaging features obtained from the same subject

being scanned in different scanners may look as though they are coming from

different subjects, creating obvious interpretation issues and questions on use-

fulness of some of these metrics in real-world scenarios (Rao et al. 2017). Data

which is so strongly associated with the site at which it was acquired is prob-

lematic because it becomes unclear whether observed variance in subjects is

truly biological or merely a scanner related feature.

The goal of this thesis is to build a comprehensive resource for multi-modal

MRI harmonisation and use it to provide novel insights and solutions to the

relevant challenges. To do so we will use a travelling-heads paradigm, healthy

individuals scanned multiple times across multiple imaging sites and MRI scan-

ners. Compared to previous similar approaches this study is unique in con-

sidering scanners from all 3 major vendors, multiple generations of scanners

within each vendor, within-scanner repeats, multiple neuroimaging modalities

and 5 imaging sites in total. This resource will enable us for the first time

to comprehensively evaluate existing processing options and harmonisation al-

gorithms, map consistency and need for harmonisation across thousands of

MRI-derived features and provide a testbed for new developments on reducing

the problem.

1.1 Organisation of Thesis

This thesis is organised in 5 chapters. The next chapter gives a broad overview

of literature on existing harmonisation approaches and groups them based on

the commonalities between them. The following two chapters present the

harmonisation resource we have built and how this can be used to map inter-

site and inter-scanner effects for hundreds of imaging-derived, multi-modal

features. The last research chapter presents an evaluation of existing harmon-

isation approaches and thus demonstrating the power of the harmonisation
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resource, as well as novel insights into harmonisation and processing perfor-

mance. A final chapter summarises the results.

Specifically, Chapter 2 is a background chapter that reviews the current

literature and the harmonisation approaches that have been proposed. The

approaches are split into three groups: 1) techniques which harmonise imag-

ing protocols, 2) techniques which remove scanner specific differences from the

raw data and 3) techniques which harmonise imaging-derived features.

Chapter 3 is the first original research chapter and presents the non-trivial

setup for data collection using a travelling-heads paradigm and 6 scanners in

total, as well as the acquisition protocols and quality control process. It gives

an overview of the scanners and sites used as well as the number of subjects for

which different data were acquired. An overview of the imaging modalities is

also given including protocol details and sequence information. Quality control

(QC) comparisons across the scanners and modalities are also presented with

explorations on how quality differs between vendors due to specific hardware

features.

Chapter 4 builds upon the travelling-heads datasets and explores how inter-

site and inter-scanner effects influence hundreds of multi-modal imaging-derived

features. An overview of the image processing pipelines and imaging features

derived are presented. The between-scanner variability of various imaging

features is explored and this is compared to within-scanner variability and bi-

ological (between-subject) variability. The effects of using different vendors

is demonstrated through various comparisons including the effect on between-

scanner ranking variability. This chapter demonstrates and summarises modal-

ities and groups of imaging-derived features that seem to be more and less

robust against inter-site/inter-scanner effects.
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Chapter 5 is the last research chapter and demonstrates the value of the

built resource when used as a testbed to objectively evaluate for the first time

existing harmonisation approaches. One way is by identifying the optimal

pipelines and processing steps that minimise between-scanner variability in

extracted features compared to e.g. within-scanner variability or biological

variability (implicit harmonisation). Another way is testing performance of

post-processing harmonisation tools (explicit harmonisation) and specifically

checking whether the harmonised features between-scanners are indeed less

variable (and by how much) compared to no harmonisation. This chapter al-

low us to come up with good practice suggestions on processing steps and sets

of features where challenges are mitigated.

Finally, Chapter 6 summarises the thesis and discusses potential directions

for the future.



Chapter 2

Background

2.1 The Challenge of Quantitative Neuroimag-

ing

Imaging the brain using magnetic resonance imaging (MRI) offers great poten-

tial and flexibility by allowing imaging contrasts that probe different anatom-

ical, functional and physiological properties and mechanisms of neural tissue.

However, measurements are indirect, reflecting directly properties of water

molecules within the brain tissue probed in different ways. Hence a mapping of

these measurements to biophysical properties of interest may be needed. More-

over, due to the spatial scale of imaging, images reflect macroscopic views of

tissue and measurements frequently reflect thousands of underlying processes

or microstructures co-occurring within the same observation window. This

makes quantifiability of measurements challenging.

MRI measurements are inherently noisy. Thermal noise (Gudbjartsson & Patz

1995) induces scan-rescan variability in images of the same individual acquired

multiple times from the same scanner (Wrobel et al. 2020). In addition to this

within-scanner variability, the flexibility of MRI scanners can potentially add

to these challenges. Particularly with modern acquisitions and scanning pro-

8
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tocols, hardware and software differences between scanners of the same or dif-

ferent manufacturers can be significant and can add further between-scanner

variability when scanning the same individual across multiple settings (Han

et al. 2006, Zhu et al. 2011).

An attempt to mitigate for these effects is performing quality control and

assessment of scanners using physical phantoms. A range of phantoms

have been developed, both experimental (Palacios et al. 2017) and commercial

(Laun et al. 2009). Phantoms have known geometry and structural properties

and can be used to standardise (or ensure compliance with prior standards).

For instance, they can be useful in ensuring geometric distortions in MRI are

within acceptable limits (Chen et al. 2004), that the gradients are well cali-

brated (Bagherimofidi et al. 2019), or that biophysical properties like diffusion

coefficients (Zhou et al. 2018) can be accurately mapped (Keenan et al. 2016).

Phantoms however are limited to what level of variability they can capture

and how realistic they can be. For example, phantoms can mimic only a

certain type and range of biophysical properties due to construction complex-

ity/infeasibility, they cannot easily capture dynamic biophysical properties or

artefacts related to scanning living humans, such as physiological noise, sub-

ject motion and their interaction with other distortion fields or quantitative

measurements.

As a consequence, variability in MRI measurements and difficulty to stan-

dardise remains a challenge. Measurements can be influenced by “nuisance

factors” such as the scanning protocol, hardware and software which are dif-

ferent between vendors and can vary with site (Han et al. 2006, Zhu et al.

2011). This lack of harmonisation is not simply an inconvenience, but a lim-

iting factor in many occasions for scientific and clinical applications. It has

been shown that variability of measures obtained from the same subject but

on different scanners can be as large as biological between-subject variability.
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For instance, the variability in diffusion MRI measurements between sites has

been found to vary as much as 15%, while effects of interest can be of the order

of 5% (Mirzaalian et al. 2016).

This has been further supported by studies looking into predictability of scan-

ning site from imaging data. When features are derived from images acquired

from multiple scanners, they can show strong association with the scanner on

which they were acquired, rather than with the subject being scanned. This

was demonstrated in (Fortin et al. 2018) where linear discriminant analysis

was used to find a linear combination of features which separate the data into

two or more classes. The study showed that cortical thickness measures cluster

perfectly by site rather than by subject. Further evidence that imaging data

is strongly associated with the scanner on which it has been acquired has been

found by playing the “Name that dataset” game (Torralba & Efros 2011). The

goal of the game is to train a classifier to guess the dataset that an image has

come from. A perfectly unbiased dataset should have a classification accuracy

which is as good as random chance. This game was applied to neuroimag-

ing data in (Wachinger et al. 2021) and results showed that brain scans from

17 large-scale public datasets could be correctly assigned to their respective

datasets with 71.5% accuracy. Similar findings were found in (Glocker et al.

2019) where a random forest binary classifier was trained to distinguish the

origin of T1-weighted images. The classifier was able to predict the origin of

the data with a high degree of accuracy confirming the presence of site effects

in the data.

A way of addressing the complications of having data from multiple scanners

is to attempt to keep the same scanner model/vendor throughout a study.

However it has been shown that even with scanners of the exact same model,

variability in imaging features can exist (Takao et al. 2011). Figure 2.1 has

been reproduced from (Wrobel et al. 2020) and visually illustrates how much
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variability can exist even in such a controlled setting. The histograms of voxel

intensities for 7x2 (scan and rescan) data on single subject across 7 sites is

shown. We see that not only are differences observed between different scan-

ners but also within the same scanner. To the extreme of this approach, one

could attempt to use a single scanner throughout, which was the approach

originally taken by the UK Biobank (Miller et al. 2016). This may work as a

bespoke setting, but it is not a sustainable way forward.

Figure 2.1: Histograms of voxel intensities for scan-rescan data on a single subject
across 7 sites. For each site, a repeat scan has been acquired and the 14 histograms
show the 7x2 (scan and rescan) intensity distributions for a T1-weighted acquisition.
Figure reproduced from (Wrobel et al. 2020)

.

The challenges caused by lack of harmonisation in acquired image intensities

(as seen in the previous figure for instance) can be further exacerbated when

considering imaging-derived features. Due to the indirect nature of MRI mea-

surements, a large number of steps may be needed to map intensities to features

(for instance BOLD signal to neuronal activation summaries in functional MRI,

diffusion-sensitised signal to tracts in diffusion MRI, grey-to-white-matter con-

trast to cortical thickness in anatomical MRI). A number of processing tools

and pipelines exist (Smith et al. 2004, Glasser et al. 2013, Alfaro-Almagro
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et al. 2018, Friston 2007, Esteban, Markiewicz, Blair, Moodie, Isik, Erramuzpe,

Kent, Goncalves, DuPre, Snyder et al. 2019, Desikan et al. 2006, Fischl et al.

2004) as this mapping is not straightforward and typically needs multiple steps

of processing and modelling. Variability in the signal is then propagated down

the processing routines to variability in the features. However the tools them-

selves can add a second layer of variability. It has been well reported that

even in cases where where the same dataset is being used (Griffanti, Rolinski,

Szewczyk-Krolikowski, Menke, Filippini, Zamboni, Jenkinson, Hu & Mackay

2016, Botvinik-Nezer et al. 2020, Schilling et al. 2021), differences in analyses,

processing tools and pipelines can yield inconsistent results. The combination

of pooling data from multiple sites in conjunction with the different permuta-

tions of available processing steps are potential contributors in what has been

termed a “reproducibility crisis”. It is therefore important to concurrently

consider both steps (acquisition and processing) when attempting to solve the

harmonisation problem.

In summary, lack of harmonisation in imaging protocols and features is a sig-

nificant bottleneck for realising the full potential of brain MRI for a number of

applications that rely on quantifiability of imaging measurements. In science

it can lead to lack or difficulty in reproducing studies and results. Lack of

harmonisation is also a significant obstacle for pooling together the plethora of

MRI data that are available across imaging facilities and using them in modern

deep learning applications. In the clinic, it impedes MRI to be used quanti-

tatively for accurate patient-specific diagnosis and treatment monitoring. For

a significant number of tasks, visual (and therefore subjective) inspection by

the local radiologists is still the preferred way forward. Therefore, providing

frameworks and data that subsequently allow to map, evaluate and solve the

problem would be a significant contribution and will be the subject of this

thesis.
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2.2 Harmonisation Approaches

Over the years, a number of harmonisation approaches have been developed to

explicitly mitigate for or reduce these inter-site/scanner effects. In this section

we overview representative groups of these approaches. Collectively, these can

be divided into three groups:

a) Techniques which explicitly aim to harmonise imaging protocols.

b) Techniques which aim to remove scanner specific differences from the raw

signal using post-processing.

c) Techniques which aim to remove the scanner differences from derived imaging-

derived features using post-processing.

The first group of methods aim to match as faithfully as possible the imaging

protocols. Even if in principle this is possible, certain aspects of modern acqui-

sitions are a priori difficult to match. For instance in-plane acceleration recon-

struction algorithms can have many different implementations across vendors,

or different types of filters are adopted by different manufacturers and these

implementations affect and change in different ways the statistical properties

of the signal (Dietrich et al. 2007a). This makes perfect matching impossible.

For this reason, post-processing techniques have been proposed that attempt

to remove or reduce inter-scanner effects post-acquisition. These operate ei-

ther at the raw signal level or at the derived feature level.

Within these 3 broad categories there are various sub-categories which contain

their own harmonisation approaches. For example, approaches which aim to

harmonise the raw signal can be divided into intensity normalisation, alterna-

tive representations of data (such as spherical harmonics) etc. An overview of

this structure is shown in Figure 2.2. The following sections expand on this

structure and provide more detailed information on each of the approaches.
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An alternative way of dividing harmonisation approaches which will be used

extensively in Chapter 5 is by categorising them either as implicit or explicit

harmonisation. Explicit harmonisation refers to post-processing harmonisa-

tion tools which aim to remove or mitigate scanner/site effects. Groups b and

c from the paragraph above fall within this category. Implicit harmonisation

refers to applying optimal pipeline processing steps which minimise between-

scanner variability in extracted features. These approaches are not covered in

this chapter as they are not harmonisation tools in their own right but rather

constitute a framework for the selection of tools.
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2.2.1 Harmonising Imaging Protocols

A major cause of unwanted variability in MRI acquisitions is poor matching

between contrast sensitive parameters such as echo times, repetition times,

flip angles and inversion times. Contrast is a key factor in determining the

outcome of brain analysis tools such as segmentation and registration, so it

is important to reduce, as much as possible, differences in these parameters.

When harmonising neuroimaging protocols, acquisition parameters are care-

fully chosen so that any interaction between effects of interest and sequence

parameters is minimised. This is demonstrated by (Chalavi et al. 2012) in

a 2-site study for T1-weighted volume protocols. A range of pulse sequence

parameters were assessed, based on image quality and the reproducibility of

cortical and subcortical volume measurements, until the optimum parameters

were identified.

In (Duchesne et al. 2019), protocols for T1-weighted and T2-weighted scans

were harmonised across a 16 different scanners spanning the 3 major vendors

(Siemens, Philips, GE). Protocol parameters such as echo time and repeti-

tion time were chosen to obtain images of similar quality in terms of contrast

and resolution. Despite this focused effort, inherent differences in implemen-

tations and hardware between vendors resulted in significant differences in

T1-weighted SNR values and cortical and sub-cortical CNR values. However,

no significant differences were found in total brain volume measures suggest-

ing that the harmonisation of protocols was effective, at least for these very

specific features.

More recently, a substantial effort has been made to harmonise multi-modal

protocols at 3.0T, including T1- and T2-weighted, resting-state functional and

diffusion-weighted MRI (Koike et al. 2021). Travelling heads (healthy sub-

jects scanned in multiple scanners) data was acquired in 5 sites and results
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showed comparable results for three imaging-derived features: cortical thick-

ness, myelin (T1-weighted/T2w ratio) and functional connectivity. Even if

the study used only scanners from the same vendor (Siemens), yet there was

high between-scanner variability for the more complex features (myelin and

functional connectivity) as shown by Figure 2.3 which shows the correlation

matrices of the parcellated cortical thickness and myelin (not biasfield cor-

rected [non BC]) four travelling subjects, scanned by five scanners/sites. It

can be seen that the same subject for more advanced metrics (myelin) can be

as similar to other subjects as to itself, even when the same vendor scanners

have been used
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Figure 2.3: Correlation matrices of parcellated cortical thickness and myelin of
4 travelling subjects, scanned in 5 scanners/sites. Figure shows the difference in
consistency between cortical thickness and myelin. A) Colour ranges are scaled by the
distribution of the correlation coefficients (2% to 98% of histogram) to highlight the
contrast between ‘within-subject’ similarities and ‘across-subject’ similarities, while
in the lower row (B) Colour ranges are scaled by the same absolute values across
all modalities. Spearman’s correlation coefficient (rho) is shown using a colour bar
placed at the bottom. Non BC: non biasfield corrected. Figure from (Koike et al.
2021).
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A similar procedure was carried out for higher field scanners by the UK7T Net-

work to harmonise protocols across 5 different sites consisting of 7T scanners

covering 3 different models provided by 2 different vendors (Clarke et al. 2020).

Protocols were harmonised for T1-weighted, T2-weighted, T2*-weighted con-

trasts and resting-state functional MRI. Data from 1 subject scanned in each

of the 5 sites was used to assess the quality of the harmonisation using various

metrics. The protocol harmonisation successfully reduced inter-site variation

of cortical thickness for T1-weighted images to below 5% in all cortical regions.

Inter-site differences in susceptibility and for T2* derived measures were also

reduced to low levels. For the task and resting-state fMRI, the harmonisation

of the protocols across scanners was successful to the level of the within-scan

variability of a single subject; meaning there was no significant increased vari-

ance in % BOLD measurements in selected ROI’s taken across sites compared

to repeats at a single site.

In summary, a number of coordinated efforts have shown potential and are in

the right direction. The inherent difficulty however to exactly match different

acquisition implementations across scanners and manufacturers makes this an

unresolved problem in the general case. There is also the possibility of “nomi-

nal” rather than true matching of acquisition parameters, as manufacturers do

not typically share exact implementation details of their product sequences,

hence there is a source of uncertainty on what exactly each acquisition pa-

rameter reflects in each scanner. In addition, there is a lack of standardised

ways to evaluate success for these harmonised protocols and for the thousands

of features that can be potentially derived from brain images. Current efforts

on harmonising protocols can be considered a good first step, but as not fully

addressing the challenge, different types of post-processing approaches have

been developed. We overview a representative set of those in the following

sections.
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2.2.2 Harmonising the Raw Signal

A first family of post-processing methods aim to directly harmonise the raw

signal as a post-acquisition task. This can be seen as a pre-processing step

aiming to remove or mitigate between-scanner effects, which can be linear or

nonlinear. We overview some representative examples below.

2.2.2.1 Intensity Normalisation Methods

Histogram matching

One of the simplest approaches to harmonising raw signal involves normali-

sation of measured intensity values by matching histograms. The aim of this

approach is to address the issue that image intensities of separately acquired

images can vary even if they are images of the same patient, obtained on the

same scanner, for the same body region and with the same protocol. (Nyúl &

Udupa 1999) proposed an approach which involved histogram matching. By

averaging the intensity histograms of a reference population a template his-

togram is created onto which the individual histograms of each subject can be

mapped. This method was used by (Gronenschild et al. 2010) to standard-

ise image intensities for segmentation of cortical structures from T1-weighted

images acquired on the same scanner. Such methods are useful in some lim-

ited scenarios but violate “the principles of image normalisation” as defined in

(Shinohara et al. 2014). A major limitation is that the success of the method

relies on the assumption that the distribution of tissue type is the same across

subjects and scanners meaning it will not generalise well to studies involving

multiple scanners.

Alignment cumulative distribution functions

In (Wrobel et al. 2020), data from travelling heads were leveraged to align the

cumulative distribution functions (CDF) of image intensities from images of

the same subject acquired in different scanners to a template. This method
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is based on the assumption that the variability in voxel intensities between

scanners is driven by scanner effects rather than biological differences and

that this difference can be learnt and removed by aligning the distribution of

intensities of each subject to a subject-specific template (for each subject a

baseline scan taken taken at one of the sites was used as the common tem-

plate to which all CDFs within a modality were aligned) This alignment was

performed via a warping function which is estimated using linear interpolation

between the cumulative distribution functions of the subject and the template

at equally spaced intensity values. The authors used this method in conjunc-

tion with White Stripe (Shinohara et al. 2014) (defined in the next section)

and they compare it to the use of White Stripe alone. The efficacy of this

method was assessed by comparing T2 lesion volumes for scan-rescan pairs at

each of 7 scanners, comprising of Siemens systems. On average, this approach

outperformed the use of White Stripe alone though in some individual cases

white-stripe performed better.

Harmonisation by reference region: White Stripe

Expanding upon the idea of histogram matching, (Shinohara et al. 2014) pro-

posed a method that minimises the discrepancy between the distribution of

intensities, while being robust to the effects of acquiring data in multiple sites.

The method, coined White Stripe, uses a section of normal appearing white

matter as a reference tissue region of interest (ROI), to represent a region

least affected by partial volume averaging. The properties of the distribution

of the reference ROI are used to appropriately adjust the distributions in other

tissue ROIs accordingly. The method was assessed on the intensities of WM

and GM areas from T1-weighted and T2-weighted acquisitions. The results of

this method demonstrated increased comparability of white matter histograms

across subjects, but it showed sensitivity to the choice of the reference region,

particularly for harmonising grey matter intensities.
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2.2.2.2 Voxel-based Regression-based Approaches

RAVEL

In order to address the limitation of assuming constant correction factors

within ROIs (as described above), (Fortin et al. 2016) proposed RAVEL, which

takes into account scanner differences at the voxel level. This method is an

extension of White Stripe (Shinohara et al. 2014) and it was tested on the inten-

sities of CSF, WM and GM derived from T1-weighted images. The approach

is to first define a set of control voxels, which are assumed to have relatively

constant intensity. Any variability within these voxels is interpreted as reflect-

ing unknown/unwanted site effects. In that study CSF voxels were chosen as

control voxels because they are not associated with disease. Therefore, any

variation in these is assumed to be non-biological. A regression model is then

used at each voxel to regress out these reference intensities, hence removing

variance explained by non-biological variation in these control voxels. (Fortin

et al. 2016) applied RAVEL in conjunction with White Stripe, and found that

after the correction, the replicability of the voxels known to be associated

with pathology improved compared to just using White Stripe and histogram

matching. This approach proved successful on structural T1-weighted images

but it did not work well for other modalities, such as diffusion MRI. This was

shown in (Fortin et al. 2017) where RAVEL (used because FA values in CSF

should be near 0 for the participants of any study) was successful at reducing

the variability in FA values but it was unable to account for local changes

in MD values. The suggested reason for this was that there was a lack of

correlation between average CSF values and MD values which prevents CSF

intensities from being used as a suitable reference for standardisation of MD

maps.
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2.2.2.3 Alternative Signal Representations: Spherical Harmonics

The first non-scaling-based work that explicitly addressed harmonisation with-

out the use of statistical covariates was performed by (Mirzaalian et al. 2016).

The premise of the approach was to map the signal from different sites to a

single site. During the mapping, one of the scanners was selected as the refer-

ence scanner and the scanner to be harmonised or mapped to the reference was

selected as target scanner. The scanner differences were captured using rota-

tional invariant spherical harmonic (RISH) features using spherical harmonic

coefficients. These features represent the energy of the signal at different angu-

lar frequencies. The harmonisation is done by a two-step process: A learning

part and a harmonisation part. The learning part uses age-and-sex-matched

controls to create scale maps of the voxel-wise average RISH features of each

scanner. The harmonisation step then applies these maps to the data from

the target site to modify the signal. This method was performed on diffusion

data and it was successfully validated on a travelling subject scanned on 6

different scanners with results indicating that statistical differences had been

removed. The limit of this method is that it relies on age-and-sex-matched

controls, rather than travelling subjects, to learn scanner differences which is

not ideal since matching is not always feasible and the features to match can

be very study-specific.

2.2.2.4 Machine/Deep Learning Methods using Travelling Subjects

In light of the limitations of using matched subjects, the ideal case is to have

travelling subjects scanned at each site; i.e. the same volunteers that are

scanned using different scanners, providing therefore measurements that re-

flect how the same individual is depicted by different machines. This allows

for the use of advanced nonlinear strategies such as machine or deep learning

to capture between-scanner differences. In a supervised learning paradigm,

using the travelling subject data for training, the algorithms aim to synthesise
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images from one scan to be similar to the images from a target scanner. The

success of the methods can be assessed against the ground truth from the ac-

tually acquired data in the target scanner.

A deep learning approach using travelling subjects was proposed by (Karayu-

mak, Kubicki & Rathi 2019) for diffusion data. The aim was to learn a non-

linear mapping of Prisma to Connectom scanner using paired RISH features.

The nonlinear mapping between data of multiple scanners was learnt using a

cycle generative adversarial network (CycleGAN) with Prisma RISH features

as inputs and Connectom RISH features as outputs. GANs use two neural net-

works: a generator and a discriminator. The training is done so that the former

generates an image that so closely resembles an image of interest with the aim

of convincing the latter it is genuine, while the discriminator is trained to iden-

tify synthetic from real data. In this way, the generator eventually estimated

an input-to-output scanner mapping. Once this mapping was learnt, it was

applied to the scans of each subject. In the mentioned study, RISH features

of 16 Human Connectome Project (Van Essen et al. 2013) healthy subjects

with dMRI scans obtained from both Siemens Prisma and Skyra Connectom

scanners were used to capture the scanner differences in the training phase

and this was assessed on untouched data from 1 of the subjects in the test-

ing phase. This was done 16 times leaving a different subject out each time.

The results showed that existing scanner differences were minimised after har-

monisation almost to the level of within-scanner variability. A limitation of

the RISH features method, noted by (Zhong et al. 2020) is that the accuracy

of the transformation from diffusion weighted images to the representation of

a spherical harmonic basis depends on a the number of diffusion-sensitising

gradient directions (Descoteaux et al. 2007). Such direction numbers may not

always be achievable or feasible in some studies. Therefore, (Zhong et al. 2020)

propose a method which uses GANs also but is applied on DTI derived metrics

themselves rather than raw signal representations so that the need of a high
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number of gradient directions is removed.

Other deep learning methods trained on data from travelling subjects are pre-

sented in (Tax et al. 2019) where algorithms were developed as part of a com-

petition. Diffusion data from 14 subjects scanned in 3 different scanners were

acquired. Most of the algorithms were based on convolutional neural networks

(CNNs), which were trained on 10 of the subjects to learn the mapping of

the data sets across scanners. The remaining 4 subjects were used to assess

if this learnt mapping generalised to unseen data. These networks consist of

layered structures where input data is propagated through intermediate layers

before reaching an output. The goal of the network is to learn the input-

to-output mapping to minimize error in the output. This learning happens

during a training period where parameters in intermediate layers are adjusted

so that output data for each training sample, well approximate the data from

the actual acquired data. This mapping was then used to estimate what the

data at a target site would look like when given data from a different site as

an input. While the algorithms compared in this study managed to reduce

multi-site variability, the authors pointed out that it would be important to

perform more rigorous testing e.g. in other training sets. In addition, this

study was performed on single-shell data and performance on multi-shell data

is currently unknown. As well as this, the method relies on brains having been

scanned at all sites. (Moyer et al. 2020) point out that while scanning subjects

at multiple sites is advisable to validate harmonisation methods on such data,

it is advisable to limit reliance on this due to the fact that data acquired in

this way are usually not available (and therefore not representative of often

encountered scenarios) and are costly to acquire.

To address the limited availability of travelling head data, (Moyer et al. 2020)

proposed a deep learning method which follows an unsupervised learning

paradigm in that it does not require multiple images of the same subject ac-
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quired at different sites. Their approach was to map diffusion data from one

scanner to another so that, given images from one site, it can be predicted

what they would have looked like had they come from another. The role of

the neural networks is to encode image data from a target to an intermediate

representation which is invariant to any scanner. A separate neural network is

then used to decode the information from the intermediate representation and

reconstruct it to look like data from a site of choice. During training, param-

eters in the network were adjusted such that any reconstruction made from

the intermediate site is still maximally relevant to the input data but contains

no information about the site of origin. Therefore, a crucial component of the

learning period was to make sure that any attempts at predicting which site

the reconstructed data came from performed no better than random chance.

This method was shown to outperform (Mirzaalian et al. 2016). A limitation

however, is that it was demonstrated only in white matter. It’s performance

in grey matter is yet to be assessed.

2.2.3 Harmonisation of Imaging-derived Features

The above approaches focus on harmonising directly the image intensities or

representations of them. Alternatively, a group of techniques aims to reduce

between-scanner variability of imaging-derived features, such as subcortical

structure volumes or microstructural measures in major white matter tracts.

These features are usually obtained after the data have undergone a series of

processing steps, such as distortion corrections, modelling and registration to

an atlas. Techniques which harmonise these features fall into various subcate-

gories, as we see below.
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2.2.3.1 Global scaling approaches

One of the simplest approaches is to first investigate bias in derived features

between the sites. If there is consistent bias, a scaling factor can be applied

to each site to mitigate it. This was the method used by (Vollmar et al. 2010)

where they corrected for consistent inter-site bias of fractional anisotropy mea-

sures in a 2-site study. The corrections they applied successfully shifted the

individual distributions of values obtained for each site and therefore indi-

rectly reduced the variance of inter-site feature values to the point that it was

not significantly different to the variance of intra-site results. The limitation

of this study was that it considered two “nominally identical” scanners with

identical acquisition protocols which, in principle, guaranteed identical hard-

ware, software and firmware between the two sites. Hence, it assumed that the

variability of measurements in each site is identical, which may not be true in

general. Furthermore, this approach assumes that a global linear scaling can

explain all differences, but as pointed out in (Fortin et al. 2017), site differ-

ences are typically region-specific and global scaling approaches are insufficient

to correct for such effects.

An alternative approach suggested by (Pohl et al. 2016) was to use “human

phantoms” (i.e. travelling heads) to obtain an estimate of the scaling factor

between scanners. Their analysis reported tract based spatial statistics of frac-

tional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. In

total, 3 travelling heads made 26 visits across different sites. They then cal-

culated a ratio of the mean values across the visits and used this as a linear

correction factor which they applied to one of the scanners for each of their

obtained features. This method was successful in reducing the standard devia-

tion of DTI metrics for FA by almost half. Apart from the logistical challenge

of acquiring scans from subjects across all scanners used in a study, a further

limitation, as pointed out in (Mirzaalian et al. 2016) is that scanner related
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effects can be nonlinear and their effects vary across regions. This method can

therefore lead to erroneous results in aggregating data with nonlinear differ-

ences of which brain data is a typical example.

2.2.3.2 Regression-based approaches (voxel-based)

A major limitation of global scaling methods is that they depend on an ide-

alised scenario where the scanners and acquisition protocols are identical. Re-

gression based approaches attempt to overcome this assumption. This group of

methods aims to fit regression models to feature values in ways which separate

biological effects and site effects into different variables. The fitted regression

aims to separate the site effects from the biological features of interest by con-

sidering the site effects as regressors in a model. This model is then used to

calculate updated values which are free of site-effects. For instance, a linear

regression model would take the form

Yijf = αf + γif + εijf (2.1)

where Yijf is an image-derived measurement for imaging site i, subject j, and

feature type f . αf is the average value of the feature, γif is an additive site

effect and εijf is the variance. In this case, the parameters would be estimated

by performing a least square regression and the harmonised value of the feature

would be the residual:

eijf = Yijf − γ̂if (2.2)

the input features could be, for example, an array of cortical thicknesses or

fractional anisotropy values for a subject scanned in multiple scanners. This

can be performed within regions of interest or on the voxel level.

ComBat

A major harmonisation approach in the field is ComBat (Fortin et al. 2017).
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Originally used to adjust for batch effects in genomics data (Johnson et al.

2007), ComBat has been adapted to remove differences in data coming from

different scanners. The method has also been shown to work in structural

data for harmonising cortical thickness measurements (Fortin et al. 2018), dif-

fusion derived measures (Fortin et al. 2017) and functional measures (Yu et al.

2018). ComBat models imaging feature measurements as a linear combination

of the biological variables and the site effects. The model assumes that site

effects exist when comparing across sites the mean and variance of (voxelwise

or ROI) derived features. The “true/harmonised” mean and the variance of

each feature are treated as parameters drawn from a prior distribution, and are

assumed to be common across all sites when harmonised. This prior represents

an initial estimate of the distribution of the mean and variance. An empirical

Bayes framework is then used to improve the accuracy of these estimates using

a linear regression model; the observed means and variances from each site are

modelled as a combination of the harmonised mean and variance along with

additive and multiplicative effects. When fitting this model, the harmonised

mean and variance values can be obtained for a given feature, which allows the

whole distribution of feature values to be realigned, thus removing site-effects

in the process. Factors such as age and sex can be included as covariates in the

model to preserve important biological trends, if subjects scanned in multiple

sites are not matched. In (Fortin et al. 2017), when compared to RAVEL (see

section 2.2.2.2), it was found that ComBat reduced more the variability in

measures for several diffusion derived measures. Unlike some of the previously

mentioned regression models where the correction needs to be performed for

individual features separately, ComBat can work on finalised parameter maps

which allows for the adjustment of scanner and site differences across all fea-

tures collectively.

Figure 2.4 gives a visual illustration of of how ComBat takes unharmonised

distributions of feature values and realigns them. The observed multi-site
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feature values are yij measured in volume of interest (VOI) j and scanner i,

α is the average value of the feature, γi is an additive scanner effect, δi is a

multiplicative site effect εij is the error term.

the harmonised feature values are given by

eijf =
yij − α̂− γ̂i

δ̂i
+ α̂ (2.3)

Figure 2.4: Harmonisation using the ComBat method that realigns the distributions
of feature values. Figure extracted from (Orlhac et al. 2021).

Since the inception of ComBat, several approaches have been developed which

expand on the original work. It has been noted that while accounting for

site removes unwanted variation in the data, there is the possibility that it

may remove relevant information. In an effort to address this, the authors in

(Wachinger et al. 2021), augmented the original ComBat model to explicitly

preserve or remove variables of interest. It is noted that besides known ef-

fects such as scanner manufacturer or magnetic field strength, unknown site

effects can also be present, which cannot be explicitly represented, but have
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an effect on differences across sites/scanners. To account for such unobserved

effects, principal components are computed across all imaging features. This

approach is common in genome-wide association studies (GWAS) where prin-

cipal components are added to the regression model to remove unobserved sub-

population structures within the sample. To assess whether this approach was

successful at removing dataset-specific information as well as relevant biologi-

cal information, the authors used the fact that ventricles grow with age while

atrophy of the hippocampus increases. If biologically relevant information was

preserved, then this correlation would be observed in the harmonised data.

Results showed that this developed version of ComBat achieved less than 50%

classification accuracy in name that dataset game (a random forest classifier

was used) while indeed maintaining the positive correlation of lateral ventri-

cle volume with with age and the negative correlation of hippocampus volume

with age. This correlation was present in the unharmonised data and therefore

confirmed to a reasonable degree the preservation of biologically meaningful

measures of interest.

In (Chen et al. 2020), the authors note that the ComBat model does not

address potential covariance in scanner effects. They therefore proposed a

method called Correcting Covariance Batch effects (CovBat) for removing

scanner effects in mean, variance of each site and also covariance between

sites. The concept involves shifting covariance matrices of individual scanners

(covariance of each scanner was set as the sample correlation matrix of corti-

cal thickness observations) to the general covariance across sites in a similar

way to how normal ComBat modifies observations to bring the mean and vari-

ance of each scanner to the pooled variance across sites. In that particular

study, the covariances were calculated for cortical thickness measures. Apply-

ing CovBat significantly decreased the differences between covariance matrices

across scanners. The results showed a scanner classification accuracy of close

to chance in a Monte-Carlo split-sample experiment for prediction of scanner
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manufacturer labels. It was additionally shown that CovBat preserved biolog-

ical associations by using a random forest to predict whether the harmonised

data could correctly detect Alzeimer’s disease status and sex.

Another development of the original ComBat is ComBat-GAM (Pomponio

et al. 2020). ComBat-GAM aims to capture nonlinearities in age-related dif-

ferences in brain structure. A generalised additive model (GAM) is integrated

within the originally proposed ComBat. GAMs allows for the addition of pre-

dictors or features to enter a model in an additive way. The key difference to

the regular form of ComBat is that predictors can be wrapped in a function

with a significant amount of complexity and nonlinearity. The results showed

ComBat-GAM to be effective at removing bias and variance in volumes of se-

lected ROI’s, total grey matter volume and total white matter volume. It was

additionally shown that ROI volumes harmonised by ComBat-GAM outper-

formed ComBat using a linear model in an age prediction task. The improved

performance of GAMs over linear models confirms the existence of nonlinear

trends in brain structures.

A limitation of ComBat and its derivatives is pointed out in (Karayumak,

Bouix, Ning, James, Crow, Shenton, Kubicki & Rathi 2019) where the au-

thors state that the assumption that site-effect parameters follow a particular

parametric prior distribution may not generalise to all scenarios or measures.

This limitation is a specific example of the limitations of regression-based ap-

proaches in general. Scanner effects and how these affect features have to be

defined a-priori to parameterise effects in the regression models. This may be

a good first order approximation but it is unclear how generalisable it is. The

authors also note that it is unclear how nonlinearities in the signal caused by

site-effect propagate through the model fitting procedures.
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2.2.3.3 Regression-based approaches (ROI-based)

Regression-based approaches can also be applied on the ROI level. An exam-

ple is in (Pagani et al. 2010) who conducted a study to assess whether a group

of multiple sclerosis patients could be distinguished from a group of healthy

controls with data originating from 8 different sites having different scanners.

Their analysis was based on DTI-derived metrics (FA, MD, Dax & Drad) in

regions of interest (ROIs) within the Corpus Callosum. Their approach was

to use an analysis of variance (ANOVA) test to determine the independent

influence of factors, such as scanner manufacturer, on the results of derived

features and then to correct for those factors. The aims of the authors were

simply to be able to correct data so that patients and healthy subjects could

be distinguished, and this method proved to be successful in certain regions.

This is a good starting point, but the wider aim of harmonisation is to remove

site related variability while preserving biological variability. The regression

method used in this study did not fulfil that aim entirely since it only went as

far as to separate healthy controls from subjects and it managed this only in

specific ROIs.

In (Venkatraman et al. 2015), regression based approaches are improved upon.

In a study involving 4 different scanners with different field strengths, they were

able to reduce the variability in a large number of ROIs for diffusion measures

(FA and MD). The difference in this method is that it was data-driven. A

linear mixed effects model trained on data from 544 participants was used to

learn scanner differences in different regions. The regression model was used

to estimate differences in measurements due to scanner effects and this was

used to calculate a correction factor, which was then applied to each ROI

to remove the effects. A limitation of applying a single correction factor to

each ROI is that the site effects within an ROI are assumed to be constant.

This may be a harmless assumption to make for structural modalities in sta-
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ble areas but, as (Mirzaalian et al. 2016) point out, this may be inadequate

for analysis of tractography results where tracts travel between distant regions.

ComBat has also been applied on functional connectivity values obtained from

resting-state fMRI data. In (Yu et al. 2018), the connectivity values between

two ROIs were given as inputs to the model which was used to remove additive

and multiplicative site effects. Before performing ComBat harmonisation on

the functional connectivity matrices, all the network connectivity values (es-

timated by Pearson correlation) displayed statistically significant site effects.

After the harmonisation, there were no remaining statistically significant site

effects. (Yamashita et al. 2019) sate that a potential limitation of ComBat is

that site differences are estimated without taking into account sampling bias

(caused by sampling from among different subpopulations) which could result

in biologically meaningful sampling bias being removed.

To address this, (Yamashita et al. 2019) suggested a travelling-subjects ap-

proach for the harmonisation of resting state fMRI data. This allowed a linear

regression model to be used which estimated site-related bias separately from

sampling bias. The site-related bias was quantified as the deviation of the con-

nectivity value for each functional connection from its average across all sites.

This average was determined using travelling subject data and to harmonise

the data, the measurement bias was subtracted from the connectivity values.

Their results indicate that this method removed measurement bias and also

improved signal-to-noise ratios.

2.2.3.4 Machine/Deep learning

Methods like ComBat, as noted by (Garcia-Dias et al. 2020), require sample

sizes which are large enough to be statistically representative of each scanner

included in the study. These conditions could prove a hindrance to clinical

application where assessments and predictions are likely to be made from sin-



35 Chapter 2. Background

gle images and from scanners that are not guaranteed to have been part of

an initial training set. To address this, the authors propose Neuroharmony

(Garcia-Dias et al. 2020), a tool for harmonising unseen data which they ap-

ply on data from T1-weighted images. 15,026 subjects were used to train a

machine learning tool to learn the relationship between image quality metrics

(IQMs) and ComBat-harmonised brain volumes. The image quality metrics,

such as contrast between white matter and grey matter and signal to noise

ratio, are shown to be associated with the scanner used to acquire images.

The mapping between IQMs and corrected volumes, learned using a random

forest, are used to predict features of an image using as inputs IQMs from an

unseen scanner. This is widely generalisable as the chosen IQMs are directly

measurable from individual MRI images. The tool was successful in removing

scanner related bias in brain volume measurements in 101 ROIs. One of the

limitations of the method is that the accuracy of the method differs between

regions. Specifically, regions showing greater variability prove to be more dif-

ficult to harmonise. An additional limitation is that if the value of particular

IQMs falls out of the range of the training sample used, effective harmonisation

cannot be guaranteed.

A more recently developed deep learning approach is presented in (Dinsdale

et al. 2021). The authors leverage a deep learning technique known as do-

main adaptation. The aim of domain adaptation is to find a representation of

features invariant to domain which is subsequently linked to a task of inter-

est. If the domain is made to be an MRI scanner, this can be adapted to a

harmonisation problem and the task can be a specific feature extraction pro-

cess performed by a feature extractor θrepr (See Figure 2.5). In the example

presented the task was structural image segmentation into predefined classes

(WM, GM and CSF). This is performed by a label predictor with parameters

θp. The next component of the architecture is a domain classifier with parame-

ters θd, which aims to predict were the data came from. The network is trained



36 Chapter 2. Background

by minimising the loss on the main task, which in this case is segmentation la-

bel prediction, while maximising the loss on the domain/scanner classification.

The harmonisation is completed when it is no longer possible to predict which

scanner the data came from, while at the same time achieving maximum seg-

mentation accuracy. To assess the quality of the harmonisation the Dice score

was computed between the generated segmentations and segmentations per-

formed by FMRIB’s Automated Segmentation Tool (Zhang et al. 2001) which

served as a proxy for manual segmentation. A Dice score of 0.91 was achieved

and with a scanner classification accuracy of 51% indicating highly accurate

segmentation with results agnostic to the scanner on which they were acquired.

Figure 2.5: General network architecture. The network is formed of three sections:
the feature extractor with parameters θrepr the label predictor with parameters θp and
the domain classifier with parameters θd. Xp represents the input data used to train
the main task with labels yp and Xu represents the input data used to train the steps
involved in unlearning scanner with labels d. Figure extracted from (Dinsdale et al.
2021).

2.2.4 Summary of Existing Methods

We saw a range of methods that have been proposed to solve the harmonisation

challenges from different angles. We summarise the reviewed methods in Figure

2.6, indicating which imaging modalities they have mostly been applied on.

Even if this is not an exhaustive list, it provides a representative picture.

We can see that post-acquisition harmonisation has been explored mostly for
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structural and diffusion modalities and efforts on SWI and functional data

are much less explored. Nevertheless, it is also clear that harmonisation is

still an open challenge and no comprehensive solution exists at the moment.

Generalisability to new features/modalities is far from trivial, while evaluation

of the various approaches seem to be based on ad-hoc, study-specific criteria,

which may not always be objective. We discuss relevant challenges in the

following sections and how the current thesis aims to contribute towards these

directions.

Figure 2.6: Summary table showing different modalities and which groups of re-
viewed methods have worked on harmonising them.

2.3 Thesis Aims

2.3.1 Overcoming the Challenge of Evaluating Harmon-

isation Approaches

Harmonisation aims to remove unwanted variability induced by scanner or site

effects while preserving true biological variability. The previous section high-

lighted a number of approaches which endeavour to harmonise data. There is



38 Chapter 2. Background

however a challenge in evaluating these approaches: there is a lack of a con-

sistent reference and criteria for assessing the harmonisation results against.

One of the simplest methods that has been used is to use the bias and variance

in the distribution of imaging derived metrics derived from travelling subjects,

or human phantoms, scanned in different scanners. A scanner-specific cor-

rection factor is inferred from the human-phantom data and then applied to

feature maps from other scans. This was the method used in (Pohl et al. 2016)

where it was seen that the distributions of diffusion derived metrics after har-

monisation showed a higher degree of overlap than before harmonisation. This

approach serves as good starting point for ensuring groups of data points come

from the same distribution however, it is limited because it fails to assess the

extent of harmonisation on the individual feature level. A further limitation

is that, due to an absence of a ground truth, the harmonisation of data points

is assessed with respect to each scanner. For some applications this may be

enough but other applications may require a more concrete reference point

especially since scanners differ in their ability to produce consistent results

(Vollmar et al. 2010).

In (Vollmar et al. 2010), 2 within-scanner repeats are used as a reference for

assessing the methods reliability. The smaller the difference between the coef-

ficient of variation (or the larger the correlation) of between-scanner measure-

ments and within-scanner measurements the more effective the harmonisation

approach is deemed to be. Although this approach has a “gold standard”, there

are only 2 within-scan repeats which is relatively low. A similar approach with

more within-scan repeats per subject would be ideal, so that within-scanner

variability can be assessed and used as a reference/target for post-harmonised

between-scanner variability.

In addition, a number of studies used the approach of subject matching for
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evaluations in the asbence of a gold standard. For example, in (Mirzaalian

et al. 2016), where raw diffusion signal is harmonised, it is assumed that two

separate groups of individuals matched for age, gender, handedness and socio-

economic status should have similar diffusion profiles and any difference is

attributed to scanner-related inconsistencies. A similar method is is used in

(Fortin et al. 2017) to harmonise derived FA and MD maps from diffusion

data were subjects are matched for age, gender, ethnicity, and handedness. A

limitation of this approach is that a possibility remains that observed differ-

ences between sites may simply reflect differences in participant characteristics.

In this work, we aim to solve the evaluation challenge in two ways: a) Provide

within-scanner variability references for repeated measurements. We scan a

number of subjects 6 times in the same scanner and we use these within-scanner

variability metrics as lower bound for between-scanner variability. b) To avoid

challenges with subject matching we use a travelling heads pradigm. The same

subjects scanned in 6 different scanners to provide metrics of between-scanner

variability for the same anatomical, functional, microstructural features.

2.3.2 Building a Comprehensive Travelling Heads Dataset

As pointed out in (Badhwar et al. 2020) “only a single cohort experiment can

unambiguously capture inter-site differences, with the same individual(s) being

scanned repeatedly at each site”. A number of previous studies have followed

this paradigm, summarised in Table 2.1.

Specifically, in (Hawco et al. 2018) 4 participants were scanned in 5 scanners

(2 Siemens Prisma, 1 Siemens Tim Trio, 1 GE 750w Discovery & 1 GE 750

Signa). T1, dMRI and rfMRI data were collected, but no within-scanner re-

peats were acquired. In (Tax et al. 2019), 14 participants were scanned in 3

scanners (1 Siemens Prisma, 1 Siemens Connectom and 1 GE Signa Ignite).
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Table 2.1: Summary of travelling heads data set.

Dataset/Study No. of
scanners

Scanners
Vendors

Modality No. of
subjects:
between
scanner

No. of
subjects:
within
scanner

(Hawco et al. 2018) 5 Siemens(3)
GE(2)

T1
dMRI
rfMRI

4 N/A

(Tax et al. 2019) 3 Siemens(2)
GE(1)

T1
dMRI

14 N/A

(Kurokawa et al. 2021) 4 Siemens(4) T1
dMRI

9 4

(Duff et al. 2021) 4 Siemens(3)
GE(1)

T1, T2
SWI

dMRI
rfMRI
ASL

8 N/A

(Tanaka et al. 2021) 12 Siemens(7)
Philips(3)

GE(2)

T1
rfMRI

9 N/A

Our Dataset 6 Siemens(3)
Philips(2)

GE(1)

T1, T2
SWI

dMRI
rfMRI

10 4

T1 and dMRI data were collected and there are no within-scanner repeats ac-

quired. In (Kurokawa et al. 2021), 9 participants were scanned in 4 scanners (1

Siemens Prisma, 1 Siemens Prisma fit, 1 Siemens Skyra fit, 1 Siemens Verio).

T1 and dMRI data were collected and within-scanner repeats were acquired

for a separate 4 subjects. In (Duff et al. 2021) 8 participants were scanned

in 4 scanners (3 Siemens Prisma Scanners, 1 GE scanner). T1, T2 FLAIR,

dMRI, SWI, ASL and rfMRI data were acquired and no within-scanner re-

peats were acquired. In (Tanaka et al. 2021) 9 participants were scanned in

12 scanners (1 Siemens Trio, 1 Siemens TimTrio, 1 Siemens Skyra, 2 Siemens

Verio, 1 Siemens VerioDot, 1 Siemens Spectra, 3 Phillips Achieva, 1 GE Signa

HDxt & 1 GE MR750W). T1 and rfMRI data have been acquired, but no

within-scanner repeats were acquired.

Among these studies we see that they typically cover one or two of the ma-

jor MRI vendors (Kurokawa et al. 2021, Duff et al. 2021), with 2-4 scanners
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used in total (Tax et al. 2019). Furthermore the acquired images reflect either

one or maximum of two MRI modalities (Tax et al. 2019). For instance, the

dataset presented in (Tax et al. 2019), is limited to dMRI and T1 modalities

and only 3 scanners from 2 different vendors are used. Similarly, the SRPBS

Travelling Subject MRI dataset (Tanaka et al. 2021) consists of imaging data

acquired from all three major vendors but is limited to rfMRI and T1 modal-

ities. Although the dataset acquired in (Hawco et al. 2018) spans a broader

range of modalities by acquiring structural, diffusion and functional data, it

is limited by the relatively low number of subjects used (N=4) as well as re-

stricted coverage of MRI vendors.

We therefore aimed to acquire a dataset, which is more comprehensive than

before in a number of ways. It includes a) scanners from all vendors and

from two generations within each vendor, b) within-scanner repeats to allow

for relevant evaluations, c) five different imaging modalities in 10 subjects, d)

using scanning protocols that are aligned with one of the few population-level

resources, the UK Biobank.

2.3.3 Mapping the Need for Harmonisation for Thou-

sands of Multi-modal Imaging-derived Features

Existing approaches have explored the need for harmonisation over a very lim-

ited set of features, including mostly cortical thickness and volumes and DTI

metrics, such as FA and MD. However, there are many features that can be

routinely extracted from multi-modal images.

Furthermore, open questions exist, for instance which imaging modalities are

more/less prone to between-scanner effects? And which features extracted

from these modalities are more prone to these site effects? In addition, for

many features there are different processing steps, models and pipelines to
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obtain them from the same data. For example, when extracting the volumes

of subcortical regions one has the option of FreeSurfer-based segmentation or

registration-based segmentation. Another example is found when extracting

DTI-based metrics. One can extract these metrics in ROI’s defined using

an atlas or using tractography. Given this, which is the way to derive these

features that it is more immune to site effects? In this thesis, we will explore

such questions for thousands of multi-modal imaging-derived features.

2.3.4 Testing Harmonisation Approaches

While a number of harmonisation approaches have been developed, what’s

missing is objective ways to evaluate them. This thesis addresses this by identi-

fying the optimal pipelines and processing steps that minimise between-scanner

variability in extracted features and also explicitly testing the performance of

post-processing harmonisation tools and checking whether the harmonised fea-

tures between-scanners are indeed less variable.

This analysis is enabled by the travelling heads data set which we have ac-

quired and what we demonstrate is merely the beginning of the variety of

investigations that can be carried out to assess the multitude of harmonisation

approaches which currently exists and are yet to be developed.



Chapter 3

A Multi-modal Travelling-heads

Harmonisation Resource for

Brain MRI

In the previous chapter, a number of methods and studies that attempt to

provide harmonisation solutions for neuroimaging data were presented. Most

of the previous approaches are unimodal, they are limited in the range of scan-

ners they consider and they typically lack explicit gold standards to compare

the harmonisation results against. In this chapter we present the building of

a resource that aims to address the above challenges. Following a travelling-

heads paradigm (healthy volunteers scanned repeatedly across multiple sites)

we acquired data from 6 scanners, 5 sites and 5 neuroimaging modalities. The

scanners include systems from all vendors that span different within-vendor

generations. To obtain ground-truth on scan-rescan variability, within-scanner

repeats of the same subjects have also been acquired. We present in this chap-

ter the main setup with acquisition protocols, along with multi-modal quality

control procedures. The data acquired will be publicly released in a repository

providing a resource for the community working in development of harmoni-

sation methodology.

43
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3.1 Personal contributions

My personal contribution to the work performed in this chapter came after

the protocols parameters had already been adapted to match those of the UK

Biobank as closely as possible. I contributed to the subsequent data acquisi-

tion and to modifying protocols to resolve issues that were unknown in earlier

testing (Section 3.7)

3.2 Introduction

As reviewed in the previous chapter, there have been multiple recent attempts

for harmonising multi-site neuroimaging data. However, studies have focused

on single modalities at a time, while they typically lack objective ways and

datasets to compare the post-harmonisation results and evaluate them.

Several prominent initiatives such as the UK Biobank (Miller et al. 2016),

ADNI (Jack Jr et al. 2008), ABIDE (Di Martino et al. 2014) and ABCD

(Casey et al. 2018) have provided large human brain MRI datasets and have

acted as testbeds for the evaluation of harmonisation methods (Beer et al.

2020, Dinsdale et al. 2021). Although these datasets comprise of a large num-

ber of participants, they are limited in a number of key ways in being used

for the assessment of harmonisation methods. One of these limitations is that,

even if they comprise of multi-site data, different participants were recruited

at each site. This keeps open the possibility that site effects simply reflect

differences in participant characteristics. On the other hand, having a single

cohort study can unambiguously capture inter-site differences, with the same

individual(s) being scanned repeatedly at each site (Badhwar et al. 2020).

It has therefore been demonstrated that a travelling-heads (or “human phan-
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tom”) paradigm is well suited to evaluating harmonisation approaches (Maikusa

et al. 2021, Yamashita et al. 2019). These are datasets wherein multiple par-

ticipants travel and get scanned at multiple imaging sites. By controlling for

participant effects between sites, the effects of scanner induced bias and vari-

ance can be assessed.

A number of travelling-heads datasets have been previously collected (Tax

et al. 2019, Kurokawa et al. 2021, Hawco et al. 2018, Duff et al. 2021). Typi-

cally however, they have been limited in covering only one or two of the major

MRI vendors (Kurokawa et al. 2021, Duff et al. 2021) , or with 2-3 scanners

used in total (Tax et al. 2019) . Furthermore the acquired images reflect either

one or a maximum of two MRI modalities (Tax et al. 2019). For instance, the

dataset presented in (Tax et al. 2019), is limited to dMRI and T1 modalities

and only 3 scanners from 2 different vendors are used. The SRPBS Travelling

Subject MRI dataset (Kurokawa et al. 2021) consists of imaging data acquired

from all three major vendors but is limited to rfMRI and T1 modalities. Al-

though the dataset acquired in (Hawco et al. 2018) spans a broader range of

modalities by acquiring structural, diffusion and functional data, it is limited

by the relatively low number of subjects used (N=4) as well as restricted cov-

erage of MRI vendors.

In light of these limitations of existing studies, the resource presented here aims

to be more comprehensive in the following ways: i) by acquiring data from all 3

major vendors and from different generations of scanners from the same vendor,

ii) by acquiring data from physically different imaging sites, where radiogra-

phers and practices are different, reflecting a closer-to-reality-scenario, iii) by

acquiring data from many neuroimaging modalities using modern acquisition

protocols and capturing standard anatomical MRI (T1 and T2-weighted), mi-

crostructural and connectivity info (diffusion and susceptibility-weighted MRI)

and functional networks (resting-state functional MRI), iv) by acquiring data
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that allows the assessment of within-scanner, within-subject scan-rescan vari-

ability in addition to between-scanner variability.

This chapter gives an overview of the setup we used, including scanners, sites,

subjects for which different data were acquired. An overview of the imag-

ing modalities is also given including protocol details and sequence informa-

tion. Quality control (QC) comparisons across the scanners and modalities

are also presented with explorations on how quality differs between scanners

and vendors due to specific hardware features. The data presented here will

be anonymised and publicly released to the community, providing a resource

for future developments on neuroimaging harmonisation.

3.3 Methods

3.3.1 Acquisition Strategy

Multi-modal neuroimaging data were obtained from N = 10 travelling heads,

i.e. healthy subjects that were scanned across multiple scanners and sites. We

also acquired an additional 5 repeat scans of some subjects (M = 4) on the

same scanner, to assess scan-rescan within-scanner variability. Figure 3.1 gives

an overview of the overall acquisition strategy.

The data were acquired using six 3.0T scanners physically located at 5 different

imaging sites in Nottingham and Oxford. These scanners span all the 3 major

MRI vendors (Siemens, Philips and GE) and also capture some within-vendor

variability across older and modern systems (for instance Philips Achieva vs

Ingenia, Siemens Trio vs Prisma). The technical specifications of each scanner

are given in Tables 3.1 and 3.2 . As can be seen there is intentional variability

in the type of coil channels used (32 vs 64), in the maximum gradient strength

(40 to 80 mT/m) and bore size (narrow vs wide bore), capturing differences
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Figure 3.1: Overview of overall acquisition strategy. Multi-modal neuroimag-
ing data were obtained from healthy participants scanned in 6 different scanners.
Each scanning session comprised of multiple imaging modalities, including T1 and
T2-weighted, diffusion and resting-state functional MRI and susceptibility-weighted
imaging. The scanners were all 3.0 Tesla and physically located in 5 imaging sites:
i) The SPMIC-QMC in Nottingham, ii) The SPMIC-UP in Nottingham, iii) The
WIN-FMRIB at the John Radcliffe Hospital in Oxford, iv) The WIN-OHBA at the
Warneford Hospital (WH) in Oxford and v) The OCMR at the John Radcliffe Hos-
pital (JRH) in Oxford.

that would be anticipated in a real-world scenario.

3.3.2 Participants and Ethical Approvals

The data were obtained from N = 10 healthy participants (mean age 34 ±

9.4 years; 8 male, 2 female. Each subject was scanned once at each of the 6

scanners. For a 4 of the subjects, an additional 5 repeat scans of the subject

in the same scanner were acquired (see Table 3.3). It was initially attempted

to acquire data from each subject in the shortest possible time frame. Due to

the pandemic, lockdown restrictions and relevant disruptions, data collection
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Table 3.1: The location and technical specifications for each scanner.

Scanner Field
Strength

Bore
Size
[cm]

Max
Gradient
Strength
[mT/m]

Gradient
Slew Rate
[T/m/s]

Coil number of
Channels

3T Siemens
Prisma FMRIB

3T 60 80 200 32

3T Siemens
Prisma WH

3T 60 80 200 64

3T Siemens
Trio JRH

3T 60 45 200 32

3T Philips
Ingenia SPMIC

3T 70 45 200 32

3T Philips
Achieva SPMIC

3T 60 Dual: 40
(80)

200 (100) 32

3T GE MR750
QMC

3T 60 50 200 32

Table 3.2: The software Version for each scanner.

Scanner Software Version

3T Siemens
Prisma FMRIB

syngo MR E11

3T Siemens
Prisma WH

syngo MR E11

3T Siemens
Trio JRH

syngo MR B17

3T Philips
Ingenia SPMIC

5.3.1/5.3.1.0 (subject 03268, 03997, 13192, 13305, 14229, 14230)
and 5.6.1/5.6.1.1 (subject 10975, 12813, 14221, 14482)

3T Philips
Achieva SPMIC

5.3.0/5.3.0.3 (subject 03268, 03997, 13192, 13305, 14229, 14230,
14482) and 5.6.1/5.6.1.1 (subject 10975, 12813, 14221)

3T GE MR750
QMC

DV24.0 R02 1607.b

ended up being particularly challenging and lasted more than intended. Across

the different scanners, scans for each subject were completed within a period

of between 203 and 671 days. The median time to acquire all the scans across

different sites was 438 days. To the contrary, the median time to acquire all

within-scanner rescans was 88 days. Details for each participant are presented

in Table 3.3.

The scans were performed under two ethics protocols for healthy volunteers at

Nottingham (PI: Sotiropoulos, Ethics: FMHS-36-1220-03 H14082014/47) and

Oxford (PI: Jenkinson, Development Ethics). Informed consent was obtained
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Table 3.3: Participant information including time taken to acquire all scans.

Subject ID Sex Age Within-scan
repeats

Between-scan
Interval (days)

Within-scan
Interval (days)

03286 M 48 No 492 N/A
03997 M 37 No 266 N/A
10975 M 25 No 455 N/A
12813 F 24 No 562 N/A
13192 M 47 Yes 314 38 (Prisma FMRIB)
13305 M 42 No 671 N/A
14221 M 25 No 555 N/A
14229 M 35 Yes 298 83 (Prisma WH)
14230 F 25 Yes 203 92 (Trio)
14482 M 24 Yes 500 388 (Achieva)

from all volunteers. Scan time costs were provided in part by the Nottingham

Biomedical Research Centre, by the SPMIC-School of Medicine PhD student

and scan time allocation fund and by the WIN Centre. Scanners were operated

by local radiographers and physicists (Mr Jon Campbell for FMRIB Prisma,

OCMR Trio and FMRIB OHBA, Mr Andrew Cooper for SPMIC-QMC, Dr

Olivier Mougin and Prof Paul Morgan for SPMIC-UP Philips Ingenia and

SPMIC-UP Philips Achieva).

3.3.3 Overview of Multi-modal Acquisition Protocols

As a reference, we followed a modern, yet not bespoke (and therefore appli-

cable to older scanners), multi-modal neuroimaging protocol, as provided by

the UK Biobank Imaging study ((Miller et al. 2016). This represents a good

compromise between richness in features extracted (five imaging modalities),

image quality robustness and acquisition time (relatively short scan time of

30-40 minutes). Also, a population-level cohort (40,000 subjects) is currently

available with this protocol that allows assessments of biological variability.

The acquisition protocols for each scanner followed closely the original UK

Biobank protocols (developed for a Siemens Skyra), respecting however the

good practice policies for each scanner that can render between-vendor dif-

ferences to achieve optimal quality in each scanner. For instance, matching
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blindly acceleration factors for SENSE, GRAPPA and ARC may not always

be optimal for data quality as these parallel imaging reconstructions and their

implementations across vendors can have different artifacts and behaviour.

We used 5 modalities out of the UK Biobank neuroimaging protocol. These

include: i) T1-weighted imaging, a technique which exploits the differences

in T1 relaxation times of tissues to probe overall morphology and show strong

contrast between grey and white matter. ii) T2-weighted FLAIR structural

images, rely on the differences in tissue T2 relaxation times. The contrast be-

tween grey and white matter is subtle relative to T1. Its strength lies in its util-

ity in depicting pathologies such as white matter lesions. iii) Susceptibility-

weighted imaging (SWI), a technique which purposely enhances the effect

of local field variations caused by magnetised tissue constituents, such as iron

content or calcium content. SWI enhances the appearance of veins due to their

inherent deoxyhemoglobin content. iv) Diffusion-weighted imaging, sensi-

tive to the anisotropic nature of thermally-driven motion of water molecules

in biological tissue and can be used to probe tissue micro-structure. Diffusion

metrics (such as DTI) can inform of the integrity of the tissue microstructure

and derived orientation estimates in white matter can be utilised in tractog-

raphy algorithms to give information about the connectivity of brain regions.

v) Resting-state functional MRI, which is sensitive to changes in blood

oxygenation linked to neuronal activation, can be used to study intrinsic os-

cillatory activity in the brain (i.e. at “rest”, in the absence of stimuli) and

extract functional networks. Synchronous fluctuations in different regions of

the brain are indications of regional activations and therefore indirect evidence

of regions communicating with each other as part of the same network.

In addition to these modalities, we also acquired blip-reversed spin-echo for the

generation of fieldmaps used to carry out corrections for susceptibility-induced

artefacts in the EPI acquisitions (Andersson et al. 2003).
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3.3.4 Acquisition Modifications to Accommodate all Scan-

ners

The original acquisition protocol was developed by the UK Biobank consortium

for Siemens Skyra scanners. Where possible, we were able to exactly match

parameters to those in the UK Biobank (for instance spatial resolution, field

of view, contrast timings, temporal and angular resolution in functional and

diffusion MRI, number of echoes and echo times for SWI) but there were also

times when this was not possible due to inherent scanner/vendor differences

(e.g. maximum gradient strength or lack of simultaneous-multislice reconstruc-

tions). In these situations, we strived to reach a reasonable compromise. In

this section we describe the acquisition protocol for each modality, including

explanation in some of the instances where we deviated from the original pro-

tocol for certain scanners. For the majority of these options the choices were a

balance between: a) How close we could get to the UK Biobank, b) How far we

could go from the standard practice on each scanner. Pushing the former over

the latter would in theory create more “harmonised” protocols to start with,

but in practice this can either induce suboptimal quality in some scanners or

create an artificial level of consistency not anticipated in real-world scenarios

when pulling multi-site data together. We therefore attempted to fulfil (a),

without however compromising (b).

T1-weighted

Each subject underwent a magnetisation-prepared rapid gradient-recalled echo

(MPRAGE) T1-weighted scan. The protocol details are presented in Table

3.4. A high-resolution (1 mm3), whole-brain scan was obtained for all scan-

ners. Gradient distortion correction (GDC) was turned off for the Siemens

scanners because the Siemens on-scanner corrections have been found to give
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inconsistent results, particularly for 2D EPI acquisitions (scanner-corrected 3D

and 2D acquisitions of the same subject cannot be successfully aligned with

a rigid body transformation). As a result, these corrections were applied in

the post-imaging processing pipeline for Siemens scanners using a proprietary

file that characterises the spatial distribution of gradient nonlinearities. To our

knowledge, GDC functioned correctly for the non-Siemens scanners so this was

performed on the scanner. This applies for all other modalities we acquired.

For the Philips and GE scanners we used the provided on-scanner GDC cor-

rection option, following best practice in the respective sites. Vendor-provided

pre-scan normalise was used for all scanners. Scan time was in the order of 5

minutes for this modality.
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T2-weighted

With the exception of the GE MR750, all the T2-weighted scans were per-

formed using a 3D T2-weighted-Fluid-Attenuated Inversion Recovery (T2w

FLAIR) sequence that allowed high-resolution data (almost 1 mm3 isotropic).

The protocol details are presented in Table 3.5 The MR750 did not have 3D

T2-weighted FLAIR functionality (could either provide a 3D FLAIR with no

T2-weighting or a 2D T2w FLAIR). We instead ran a 2D T2-weighted FLAIR,

but we had to compromise with spatial resolution due to timing constraints.

Scan time was in the order of 8 minutes for the GE MR750 and 4 minutes

for the rest of the scanners. Same GDC and pre-scan normalise options were

followed as before.

Susceptibility-weighted imaging

The SWIs were acquired using anisotropic, complex data for 2 echoes, roughly

matching around TE1 ∼ 9s and TE2 ∼ 20s. The GE scanner software (SWAN

sequence) acquired 7 echoes and the two echoes closer to TE1 and TE2 were

extracted during processing. For the Siemens scanners, individual coils were

saved separately to enable combination of phase images, and they were com-

bined in post processing whereas for the non-Siemens scanners, these were

combined on the scanner. Magnitude and phase images were saved for all the

scanners. Scan times were in the order of 2.5 minutes for all scanners.
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Diffusion MRI

The diffusion images were acquired with a monopolar pulsed gradient spin echo

(PGSE) echo-planar imaging (EPI) sequence at 2mm isotropic spatial resolu-

tion. The phase encoding direction for all the scanners was in the anterior-

posterior direction and blip-reversed spin-echo EPI images were acquired on

all the scanner in order to generate fieldmaps to carry out geometric distortion

correction for. Differences in gradient strength and simultaneous-multi-slice

(multiband) acceleration capabilities affected the achievable minimum TE and

TR across scanners. Both the Philips Achieva and GE MR750 missed multi-

band capabilities, therefore the resulting TR was above 10 seconds. For the

MR750, we opted for only relatively low b-value data (up to b = 1000s/mm2),

because of the low gradient strength and also the excessively long TR (TR

was also long for the Philips Achieva, but the much stronger gradients allowed

usable data in a reasonable scan time). This precluded the GE datasets from

some of the summary features we extracted as they depended on multi-shell

data (such as NODDI). Notice that in the absence of out-of-plane acceleration

for the Achieva and MR750, in-plane parallel imaging with an acceleration of

2 was used to minimise TE. Angular resolution across b-shells was relatively

constant across scanners. In summary, total scan times were in the order of

6.5 minutes for the Siemens scanners, 7.5 minutes for the Philips Ingenia, 18

minutes for the Philips Achieva and 12 minutes for the GE MR750.
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Resting-state functional MRI

The resting state functional MRI (rfMRI) images were acquired with 2D gra-

dient echo planar imaging (GE EPI). All subjects were asked to keep their

eyes open during scanning. Similarly as in dMRI, the difference in the MB

capabilities of each scanner defined the minimum TR that could be achieved

at a given spatial resolution. For Philips scanners, pushing the MB beyond 4

(it is 8 in Siemens scanners) caused excessive artefacts. We therefore opted for

acquisitions that had the same spatial resolution to the Siemens scanners and

roughly the same number of timepoints (400 in Philips vs 490 in Siemens), but

differed in the temporal resolution and number of slices. For GE, we opted for

the same spatial resolution, but this incurred a large penalty in the TR (no MB

available), so we chose a roughly similar overall scan duration to the Philips

scanners, keeping the number of timepoints to 200. In total the scan times

were 6 minutes for Siemens scanners, 7.5 minutes for the Philips Achieva,

9.5 minutes for the Philips Ingenia and 7.5 minutes for the GE MR750. In

each case, the flip angle was set to the Ernst angle for the corresponding TR,

assuming T1=1500ms for grey matter at 3T.
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3.3.5 Total Readout Time for EPI

Total readout time in EPI acquisitions is needed for performing fieldmap-based

corrections of susceptibility-induced distortions (Andersson et al. 2003). In ad-

dition to the above modalities, spin-echo EPI data were collected with reversed

phase-encode blips, resulting in pairs of images with susceptibility-induced

distortions going in opposite directions. From these pairs, the susceptibility-

induced off-resonance field can be estimated using the method described in

(Andersson et al. 2003) as implemented in FSL’s topup (Jenkinson et al. 2012).

The total readout time for the fieldmap and the acquisition are required in or-

der to estimate and apply this off-resonance field to dMRI and fMRI data and

perform correction of susceptibility-induced distortions. In the simplest case

of non-accelerated 2D acquisitions, this would be trivial to obtain, but the cal-

culation is complicated in the presence of in-plane accelerations and on what

acquisition properties are exactly reported by each vendor in certain DICOM

header tags.

FSL’s topup needs the “effective” total readout time to perform the correct

calculations. This is now automatically calculated by dcm2niix and saved in

json files but it was not at the time of the work hence requring the follwing

calculation.

As defined by the Brain Imaging Data Structure (BIDS) format (Gorgolewski

et al. 2016), the “effective” total read out time is defined as the readout du-

ration that would have generated the data with the given level of distortion.

This is linked to the “effective” echo spacing, which is the sampling interval

between lines in the phase-encoding direction based on the size of the recon-

structed image in the phase-encoding (PE) direction (i.e. taking into account

in-plane accelerations). We computed these terms using a formula given in

(Rorden et al. 2012) which was consistent for all vendors:
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TotalReadoutT imeeff = EchoSpacingeff × (ReconMatrixPE − 1) (3.1)

where the effective echo spacing is provided by dcm2niix (Li et al. 2016) and

takes into account corrections for in-plane accelerations.

3.3.6 Data Quality Control

To characterise the level of consistency in data quality across sites and scan-

ners, we performed quality control (QC) using established frameworks: MRIQC

(Esteban et al. 2017) (for T1w and fMRI) and EDDYQC (Bastiani et al. 2018)

(for dMRI). MRIQC calculates a number of metrics and subsequently uses a

supervised machine learning framework to classify data as either acceptable or

unacceptable. EDDYQC uses the outputs of FSL’s comprehensive distortion

and motion correction package (EDDY) (Andersson & Sotiropoulos 2016) to

extract features that characterise different aspects of dMRI data quality.

A number (35) of Image Quality Metrics (IQMs) calculated by these tools are

summarised in Figure 3.2. Overall, the IQMs can be split into distinct cate-

gories that characterise various aspects of data quality: from noise and signal

levels, to motion, distortions and artefacts. Below, we provide definitions for

each of these metrics.

Noise-Level Measures

The Signal to Noise Ratio (SNR) is amongst the most standard metrics

quantifying the level of true signal with respect to the level of noise. The

measure of SNR proposed by Dietrich et al. (Dietrich et al. 2007a) is used

here for T1w images, where the background of the image is used to estimate

the noise variance (i.e. assuming that no true signal exists in the background

and all signal there is pure noise). Signal is obtained as the average intensity
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Figure 3.2: Summary of IQMs for different categories and the imaging modalities
they are applicable to.

from a homogeneous region containing data (e.g. white or grey matter). An

alternative measure of SNR uses repeats of the same scan (when such repeats

exist, such as in rfMRI or the b=0 volumes in dMRI). In that case, the average

of signal intensities across repeats quantify the signal, while the variance across

repeats qunatifies the noise. SNR for dMRI in b=0 images is calculated that

way.

SNRd =
〈STissue〉
σBackground

(3.2)

and

SNRrepeats =
〈STissue〉
σTissue

, (3.3)

where 〈S〉 is the average signal across repeats. The temporal SNR (tSNR)

(Krüger & Glover 2001) is used to evaluate data quality for fMRI images, and

is based on the SNRrepeats equation, where the number of repeats are as many

as the fMRI timepoints.
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The contrast-to-noise-ratio (CNR) (Magnotta & Friedman 2006) is an im-

portant measure of scanner performance as it quantifies contrast.For anatom-

ical images, the contrast is calculated in the spatial domain depicted by the

difference in the mean intensities between different tissue types, for instance

white matter and grey matter, while the noise can be depicted as the variance

in the intensities of the background. It is calculated in the following way:

〈SGM〉 − 〈SWM〉
σBackground

(3.4)

For dMRI, a different version of CNR is used that quantifies contrast in the

angular (diffusion) domain (Bastiani et al. 2018). This angular CNR quan-

tifies for each b-shell the difference between the min and max dMRI signal

intensity over the noise in the dMRI data.

Intensity-related Measures and Outliers

The Coefficient of Joint Variation (CJV) (Ganzetti et al. 2016) captures

joint Variation between signal intensities of white matter and grey matter in

T1w images. It is calculated the following way :

CVWM =
σ(WM)

µ(WM)
,CVGM =

σ(GM)

µ(GM)
,CJV =

σ(GM) + σ(WM)

µ(WM)− µ(WM)
(3.5)

where σ and µ are the standard deviation and the mean intensity of the given

tissue class respectively. Higher values indicate heavier head motion and/or

the presence of large spatial biases or intensity inhomogeneities.

The Analysis of Functional NeuroImages (AFNI) (Cox 1996, Cox & Hyde 1997)

software is used to compute outliers for fMRI data. AFNI’s outlier ratio

gives the mean fraction of outliers per fMRI volume based on signal intensity.

AFNI’s quality index is a mean quality index across the time series. Small

values of the index are ‘good’, indicating that a particular volume is not very
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different from the norm.

dMRI Outliers summarises the percentage of slices classified as outliers per

dMRI volume and across the whole dataset. Outlier slices are identified by

EDDYQC as those suffering signal dropouts which is usually caused by sub-

ject motion. They are grouped by b-value (for our data either b1000 or b2000).

The first Quality Index (QI1) proposed in (Mortamet et al. 2009) gives the

proportion of voxels with intensities corrupted by artefacts with respect to the

number of voxels in the background. //

Motion-related Measures

Absolute and Relative motion summarise subject motion between volumes

in dMRI, consisting of three translations and three rotations across the x,y and

z axes. Absolute motion for each volume is calculated with respect to a single

reference volume (e.g. first b=0), whereas relative motion is calculated with

respect to the previous volume.

Similar to these definitions, MRIQC outputs the Framewise Displacement

(FD) metric for fMRI data. This is the average motion summarised through-

out the duration of the acquisition. It most closely resembles the absolute

motion from dMRI.

Artefacts and Distortions-related Measures

Eddy current-induced distortions are quantified by EDDYQC as the vari-

ability in these distortions that cause misalignment from volume to volume

across dMRI scans.

Susceptibility-induced distortions caused by off-resonance fields due to

differences in magnetic susceptibility at tissue-air interfaces are quantified by

EDDQYQC for dMRI data.
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Blurring related Measures

The Full-width Half-maximum (FWHM) (Friedman et al. 2008) gives an

estimation of how blurry the image is.

Finally, the Entropy Focused Criterion (EFC) (Atkinson et al. 1997) gives

and indication of ghosting and blurring in the image caused by head motion.

It can be applied for both 3D and 4D images and is returned by MRIQC for

both T1w and fMRI data.

3.3.7 IQM Comparisons within scanners to Assess Con-

sistency of scan-rescan

We used the IQMs derived from dMRI to compare the within scan sessions.

These IQMs provide measures such as subject motion and outliers which will

allows us to directly quantify how stable each of the within-scan repeats were.

3.3.8 IQM Comparisons Between Scanners to Assess

Consistency of Image Quality

For each scanning session, IQMs were calculated which produced summary

measures for anatomical (T1-weighted), microstructural (dMRI) and func-

tional (rfMRI) data. A correlation matrix was constructed which showed the

correlation of IQMs across sessions. This was performed using the data from

the 4 subjects for whom repeat scans were acquired to allow the comparison to

be made between the consistency of IQMs across different scanners and within

the same scanner. For each of the 4 subjects, the 5 between-scanner repeats

were merged with the 6 within-scanner repeats to give a matrix A with dimen-

sions 11 (number of scanning sessions) × 35 IQMs. Each IQM column of data

was z-scored then each row of this matrix was normalised with the magnitude

as to make each row a unit vector. The matrix product of A × A′ gave an
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11× 11 correlation matrix where each element was a correlation of IQMs from

two scanning sessions. The final correlation matrix is displayed in Figure 3.6.

3.4 Results

3.4.1 Examples of Collected Data

In total, 80 scanning sessions were performed (in addition to piloting ones) to

collect multi-modal brain MRI data from 10 subjects in 6 scanners (between-

scanner sessions), while 4 subjects underwent an extra 5 within-scanner re-

peats. In this section we provide representative examples of the acquired data.

Figures 3.3 summarises examples from all between-scanner multi-modal data

for a single subject. We can qualitatively observe relatively decent quality

and contrast for all modalities in all scanners, although as expected there are

appreciable differences. These between-scanner differences can vary with the

type of the imaging modality. Figures 3.4 and 3.5 show examples of modalities

where this between-scanner difference is appreciably high or less noticeable

respectively. Figure 3.4 illustrates how the FA maps from the diffusion data

differ appreciably across scanners, while when the same subjects is scanned in

the same scanner the variability is much less. Specifically, there is a noticeable

difference in contrast between grey matter and white matter (grey matter

regions indicated by yellow arrows). Furthermore, there is less noise and spatial

inhomogeneity in intensities in some scanners compared to others (example

of this in regions indicated by red arrows) and this variability is less in the

within-scanner repeats. On the other hand, Figure 3.5 shows that for T1-

weighted images, the between and within-scanner variabilities are much more

comparable. These results provide an early qualitative demonstration that

inter-site effects and the need for harmonisation are not necessarily equivalent

across imaging modalities and features.
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Figure 3.5: A comparison of acquired T1-weighted images between (A) different
scanners and (B) within the same scanner. There are few noticeable qualitative
differences in the data between scanners. This is comparable to within-scanner data
which is similarly consistent. Intensities of images have been scaled between the
−90th and 90th percentile.

3.4.2 QC and Data Quality Comparisons

Quality control was performed for all the scanning sessions, as described in

methods. For each scanning session, IQMs were calculated that reflected data

quality for anatomical (T1w), microstructural (dMRI) and functional (rfMRI)

data. As expected, IQMs were more variable across the six between-scanner

repeats rather than the six within-scanner repeats for the same subject. Figure

3.6 demonstrates for a set of subjects (those with within-scanner repeats) the

correlation of IQMs between all scanning sessions. As we can see, the within

scanner repeats are more consistent quality wise compared to the between-

scanner sessions as shown by the larger correlation values in the region of the

matrix representing within-scanner repeats.

We further used IQMs to assess the consistency of image quality across scan-

ners. To do that, each quality metric for each subject data was z-scored across

the 6 scanners. The Z-scores were then averaged across the 10 subjects. A

colour-coded map of the z-scored IQMs is shown in Figure 3.8 for each IQM
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Figure 3.6: Correlation matrices depicting correlation of IQMs between scanning
sessions for subjects with repeat scans. On average, within-scanner repeats are more
consistent quality wise than between-scanner sessions. The range of the colour bar is
from the −90th to 90th percentile of values. Outliers and CNR for b = 2000s/mm2

have been excluded.

and scanner, showing consistency of average image quality across scanners for

the different modalities and metrics. We can observe that all metrics for all

scanners are within 2 standard deviations of their respective means, i.e. there

are no major outliers in terms of raw image quality and/or artefacts (73% of

the IQMs are within one standard deviation from their respective means). The

3 Siemens scanners seems to be closer overall to the means (i.e. z scores closer

to zero), but there are modality-specific differences. The Philips Achieva T1-

weighted and dMRI data are also closer to the mean scanner quality, while the

GE rfMRI is closer to the respective rfMRI IQM means.

Similarly to the above analysis, we used the IQMs to assess the consistency

in image quality across subjects. Each quality metric for each scanner was

z-scored across the 10 subjects. The Z-scores were then averaged across the 6

scanners. A colour-coded map of the z-scored IQMs is shown in Figure 3.9 for

each IQM and subject. We can observe that the vast majority of IQMs (93%)

are within one standard deviation from their respective means. This provides

evidence that there were no outlier subjects in our cohort.
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Figure 3.7: Heatmap of Image quality metrics (IQM) across the 6 scanners. Z-
scores were taken of average IQM values across the 6 within scan repeats. Higher
positive or negative values represent large deviations from the mean.

Figure 3.8: Heatmap of Image quality metrics (IQM) across the 6 scanners.Each
quality metric for each subject was z-scored across the 6 scanners. The Z-scores were
then averaged across the 10 subjects. Higher positive or negative values represent
large deviations from the mean. *Single-shell data was acquired on the GE scanner,
hence the absence of b = 2000s/mm2 dMRI quality metrics.

Figure 3.7 shows the degree to which the within-scan repeats were consistent.
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Figure 3.9: Heatmap of Image quality metrics (IQM) across the 10 subjects. Each
quality metric for each subject was z-scored across the 10 subjects. The Z-scores were
then averaged across the 6 scanners. Higher positive or negative values represent
large deviations from the mean. *Single-shell data was acquired on the GE scanner
so those have been excluded from the averaging of the b = 2000s/mm2 dMRI quality
metrics.

The within-scanner repeats obtained from the Philips Achieva were affected

most by relative motion whereas the the repeats obtained from the Siemens

Trio were affected the most by absolute motion. The high degree of motion

associated with the Philips Achieva is likely due to a 4 of these scans being

performed back to back in pairs of 2 (2 scans back to back on one day and

an additional 2 on another day). Prolonged scan times have been known to

contribute to an increase in subject motion (Zaitsev et al. 2015).

3.4.3 QC Across Scanners and Subjects

Figures 3.8 and 3.9 shows that while there is some variability in quality metrics

across scanners and subjects, there are no extreme outliers. This suggests that

the image quality across all scanning sessions was consistent.
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Though there are no extreme outliers, the average FWHM and SNR values for

T1 weighted imaging are lower for the GE MR750 than for the other scanners.

A major difference between the GE scanner and the other scanners is that

that the GE runs a BRAVO sequence for the T1-weighted imaging whereas

the Philips and Siemens scanners run MPRAGE sequences. There is evidence

in literature in support of this as it has been stated in (Bugge et al. 2017) that

MPRAGE sequences were initially restricted to Siemens scanners but have

since then been made available on other vendors.

The IQM trends also indicate a discrepancy between the two methods of de-

termining SNR. The SNR values which use the air background of a reference

(SNRd) suggest that images from the GE scanner have the largest SNR. In

contrast, the SNR values calculated using the standard deviation of tissue as

noise (SNR), suggest that images from the GE scanner have the lowest SNR.

This is pointed out in (Dietrich et al. 2007b) where it is stated that SNR val-

ues calculated using two regions may not agree with the true SNR, as noise in

modern acquisitions varies spatially and therefore using the background to get

noise variance can be suboptimal. Therefore the SNR values calculated using

the standard deviation of tissue as noise are a more appropriate measure for

this scope.

Furthermore, it can be observed from the fMRI quality metrics that there is

a positive correlation between the FWHM in fMRI and tSNR. This is consis-

tent with previous studies (Molloy et al. 2014) which have shown that spatial

smoothing improves temporal SNR.
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3.4.4 Within-vendor QC Differences

We used the IQMs to perform additional comparisons and characterise within-

vendor quality differences. The range of systems and hardware we have con-

sidered in our study allows for a number of comparisons, such as i) the effect

of maximum gradient strength in Siemens Scanners, ii) the effect of bore size

in Philips scanners, iii) the effect of using a 32 vs a 64-channel in Siemens

Prisma scanners. The IQM’s Figure 3.10 were chosen because these are known

to be affected by the hardware features we are considering. For example, it

has been reported that a higher number of coil channels results in higher SNR

(Keil et al. 2013).

Maximum gradient strength

We compared a selection of IQMs between two scanners from the same vendor,

but with different maximum gradient strength. The Siemens Prisma (FMRIB)

has 80mT/m gradients, while the Siemens Trio has 45mT/m. As shown in Fig-

ure 3.10A, the SNR benefits are evident for higher maximum gradient strength.

For T1 and dMRI modalities, there is a gain in total SNR for scanners with

higher gradients. The angular CNR for dMRI and tSNR for rfMRI are also

higher for the system with higher gradients. This confirms the trend reported

(Hidalgo-Tobon 2010) where it is stated that high gradient strengths are ben-

eficial to image quality. Interestingly, dMRI motion is on average less for the

high gradient system. This may seem counter-intuitive, as higher gradients

lead to more shaky acquisitions. But it may reflects the fact that newer gener-

ation scanners (such as the Prisma) actively compensate for the scanner table

motion to improve patient comfort.

Bore size/Maximum gradient strength

To probe the effect of bore size on image quality, we looked into the two

Philips scanners with different magnet bore sizes (which however also had dif-

ferent gradient systems): the wide-bore Philips Ingenia (70cm bore, 45mT/m
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maximum gradients) and the narrow-bore Achieva (60cm bore, 80mT/m max-

imum gradients). Larger bore sizes in principle contribute to patient comfort

(Oztek et al. 2020) and potentially less motion. The comparison is shown in

Figure 3.10B and confirms this expectation, by showing less absolute motion

for dMRI and framewise displacement for rfMRI for the scanner with a wider

bore. For dMRI, the angular CNR is greater for the system with a narrower

bore and a higher gradient which is also as expected.

A slightly unexpected result (Liney et al. 2013) is depicted by the higher T1

SNR for the wide-bore scanner compared to the narrow-bore system. This can

be explained in part by the higher average FWHM of the wide-bore scanner

than the narrow-bore scanner as shown in Figure 3.8. The average FWHM

z-score value for the wide bore Ingenia scanner is 1.6 whereas for the Achieva

it is 0.33. This indicates a higher degree of blurring for the wide-bore system

and therefore causes it to have an “artificially” higher SNR. An additional

contributing factor may be that the Ingenia is a newer system than the Achieva

and due to better patient comfort there are less intensity outliers/overall better

quality index. Evidence of this is shown in Figure 3.8 (CJV z-score of -1.2 for

the Ingenia and 0.86 for the Achieva) meaning less intensity related outliers.

Combined, these factors explain why, eventhough the Ingenia is a wide-bore

system, it outperforms the Acheiva in terms of SNR.

Number of coil channels

The comparison between the Siemens Prisma 1 (FMRIB) and the Siemens

Prisma 2 (OHBA) in Figure 3.10 C demonstrates the effect of a 32 channel

head coil compared to a 64 channel head coil, when effectively everything else

is the same. An increased number of coil channels has been reported to provide

an increase in SNR, particularly at the cortex compared to deeper structures

in the brain (Keil et al. 2013). What can be clearly seen in Figure 3.10 is that,

for all imaging modalities, the opposite is true. This suggests that the 64-ch

Siemens coil may not be implemented to its full potential. For T1-weighted
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images, we report both the SNR in white matter and in grey matter. We

see that there is a decreased difference in SNR between the two coils in grey

matter compared to white matter.
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3.5 Discussion

We have presented the acquisition setup of a novel harmonisation resource for

multi-modal neuroimaging data, based on a travelling-heads paradigm. We

have characterised data quality across the 80 scanning sessions and identified

interesting trends in the data. We have quantitatively presented the image

quality by comparing the variability in image quality between different scan-

ners with the image quality within scanners. To compliment this, we have

qualitatively shown appreciable between-scanner variability in certain imaging

modalities when compared to within-scanner variability of the same modality

for the same subject.

Besides ensuring consistent data quality, we also used derived image quality

metrics to demonstrate how scanner hardware differences quantitatively affect

data quality such as the number of channels in a head coil, the bore size or

the maximum gradient strength of a scanner. For several cases, the results

reflected what is to be expected. Interestingly, there were some cases where

other factors such as having a more modern scanner outweighed the effects of

hardware differences alone.

The QC we performed was limited in that we did not extract metrics for T2

FLAIR and SWI. All of the IQMs extracted from the T1w images could have

also been extracted from T2 images (Esteban, Blair, Nielson, Varada, Marrett,

Thomas, Poldrack & Gorgolewski 2019), which wasn’t readily apparent at

the time of processing. In theory, this could also be performed on the SWI

images. The IQM’s suitable for this would be CNR and SNR as demonstrated

in (Borrelli et al. 2015).

Compared to previous travelling-head studies (Tax et al. 2019, Kurokawa et al.

2021, Hawco et al. 2018, Duff et al. 2021), our study extends them in a num-

ber of ways: i) data is acquired from all 3 major vendors and from different
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generations of scanners from the same vendor, ii) data is acquired from phys-

ically different imaging sites where radiographers and practices are different,

iii) data is acquired from many neuroimaging modalities, iv) scan-rescan data

is acquired which allows the assessment of within-scanner, within-subject vari-

ability in addition to between-scanner variability.

As mentioned previously, the data acquisition was interrupted by the Covid-19

lockdowns, which resulted to longer than intended time intervals between the

repeated scans of some subjects (range of 6 - 22 months, median interval was

15 months). This is longer than the the time interval between scans from other

studies, but not significantly longer taking into account two lockdowns: (Tax

et al. 2019) Average time: 21-22 months, (Kurokawa et al. 2021) Range: 1-5

months , (Hawco et al. 2018) Range: 1-36 months , (Duff et al. 2021) Range:

1-14 days. The relatively large time interval between scans in our study could

introduce nuisance effects due to ageing, however these are expected to be

small due to the young age of the cohort and are not expected to drive results.

Additionally, we do not have QC metrics for SWI as there is no standardised

framework for obtaining SWI image quality metrics. A further limitation is

that there are certain discrepancies in how the data were acquired across the

scanners. Specifically, multi-shell diffusion data was not acquired for all the

scanners, neither did all the scanners have multi-band capabilities. Adjust-

ments were made to account for this yet in some cases, these discrepancies

had clear consequences, namely the omission of NODDI processing from the

GE diffusion data. Nevertheless, these differences represent a realistic scenario.

The dataset and results presented in this chapter are a foundation to the ma-

terial of subsequent chapters. We will explore the vast amount of features that

can be derived per subject as a result of the wide range of imaging modalities

acquired.
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3.6 Summary

This chapter introduced the harmonisation dataset acquired. The value of this

data has been demonstrated by comparing it with current datasets in the liter-

ature and it has been shown that this data is more comprehensive and wields

greater potential for both the assessment and development of harmonisation

techniques and algorithms. This chapter also gave an overview of the protocols

used in the brain imaging component of the UK Biobank Pipeline and some of

the compromises that were made when matching the imaging protocols of the

6 scanners used in this project to those originally used in the UK Biobank. We

have also shown how consistent the imaging data is across the scanners and

subjects. The dataset has been used to assess how within vendor hardware

differences influence image quality showing that the utility of this dataset ex-

tends beyond the field of harmonisation.

This dataset will be used in Chapter 4 to map between-scanner variability for

a large number of imaging-derived features. The within scanner repeats will be

used as a baseline for comparison which will allow assessment of between scan-

ner variability with respect to repeated measurements of the same subject in

the same scanner. Imaging data from multiple subjects from the UK Biobank

brain imaging study will also be used as a baseline for comparison, which will

allow the assessment of between-scanner variability with respect to biological

variability. The multi-modal nature of the data will allow demonstration of

which modalities and imaging features seem to be more and less robust against

inter-site/inter-scanner effects.

Finally, in Chapter 5, the the potential of this dataset will be further displayed

as a testbed to evaluate existing harmonisation approaches, both implicit and

explicit ones. This will be done by identifying optimal pipelines and pro-

cessing steps that minimise between-scanner variability and also by testing
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post-processing harmonisation tools.

3.7 Appendix: Modifications to Philips Achieva

dMRI Data

All b = 0 s/mm2 volumes during the dMRI acquisitions were interspersed

within the full diffusion protocol for all scanners. This is a slightly more opti-

mal approach for distortion and motion correction compared to the alternative

of having all b=0 volumes acquired at the beginning, as it avoids differences in

motion susceptibility (and relevant downstream effects) between b = 0 s/mm2

and DWI images (subjects typically move less at the beginning of a scan).

However, a scanner software glitch on the Philips Achieva did not allow ex-

pected performance when we tried to intersperse the b=0 images in the full

q-space sampling protocol, even if in theory it allowed this interspersion to run

and returned data. In particular, the interspersing caused ghosting for the in-

termediate b = 0 compared to the intensity of the first b = 0. (see Figure 3.11).

To resolve the issue we removed the interspersed b = 0 volumes and instead

modified the Achieva dMRI protocol to acquire extra b = 0 volumes inde-

pendently, before and after the main dMRI protocol (3 just before and 3 just

after) and merged these with the rest of the dMRI data. To alleviate potential

baseline intensity differences between the independent b0s and the full dMRI

data, we matched all bandwidth and timings as close as possible to the full

dMRI protocol ones. This still left some baseline intensity differences, which

we removed by normalising the intensities of the 6 independent b=0 volumes,

Ik=1,2,3,4,5,6 ,to match the intensity of the b = 0 s/mm2 in the full acquisition

Iorig. Specifically, we multiplied each independently acquired b = 0 volume by

the the ratio
Iorig
Ik

. Figure 3.11B shows the time series data before and after

intensity normalisation.
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Figure 3.11: Resolution of artefacts in dMRI data from Philips Achieva. A) The
ghosting caused by having interspersed b = 0 voloumes. B) The intensity difference
between the 3 independently acquired b = 0 volumes before the main protocol and the
first b = 0 volume of the main protocol after and before normalisation.



Chapter 4

Mapping Inter-scanner

Variability for Multi-modal

Imaging-derived Features

In the previous chapter, we presented the acquisition setup of a novel harmon-

isation resource for multi-modal neuroimaging data. We showed the various

ways in which it is more comprehensive than currently existing data sets.

These include the wide range of scanner vendors used, the variety of imaging

modalities, and the travelling heads paradigm utilised. In this chapter, we

use this data to explore how inter-scanner variability is reflected to a large

set of imaging-derived features, such as sub-cortical structure volumes, mi-

cro structural measures and connectivity metrics. Collectively such features

are referred to as Imaging-Derived Phenotypes (IDPs). A modified version

of the UK Biobank Pipeline (Alfaro-Almagro et al. 2018) is used to extract

these IDPs. Accordingly, this chapter also provides details of the processing

pipelines for each modality as well as the necessary modifications made such

as generalising it to accommodate data from all the scanners.

Inter-scanner variability for IDPs is mapped in a number of ways including

comparing it to within-scanner, within-subject variability and between-subject

84
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variability across different imaging modalities. This allows interesting ques-

tions to be answered such as “How robust are the IDPs extracted from one

modality compared to another?” or “To what extent does acquiring data from

the same vendor mitigate between-scanner variability, if at all?”. The matter

of how this variability can be reduced will be the subject of the subsequent

chapter.

4.1 Introduction

A challenge with quantitative imaging is the lack of reproducibility of repeated

measurements. As we saw before, a key part of the problem stems from the

fact that images reflect macroscopic views of tissue and measurements fre-

quently reflect indirectly the microscopic quantities of interest. A number of

image processing and modelling steps are needed to map the measurements to

features of interest. Here we explore in a comprehensive manner how inter-site

variability is propagated through these processing steps.

The field of neuroimage processing and analysis has had explosive growth over

the years. A number of methods underlying specific software packages are

very commonly used in neuroimage processing for extracting features. Exam-

ples include FreeSurfer (Desikan et al. 2006, Fischl et al. 2004) (regional surface

area, volume thickness), FSL (Smith et al. 2004) (multi-modal image process-

ing), SPM (Friston 2007) (multi-modal image processing), AFNI (multi-modal

image processing), fMRIPrep (Esteban, Markiewicz, Blair, Moodie, Isik, Erra-

muzpe, Kent, Goncalves, DuPre, Snyder et al. 2019) (brain region activation

maps) and many more. More recently, a number of multi-modal pipelines

have been developed for optimally combining one or more of these building

blocks. These include the HCP pipeline (Glasser et al. 2013), the UK Biobank

pipeline (Alfaro-Almagro et al. 2018) or more recent integrative environments

such as QuNex (Ji et al. 2022). In combination, these enable the extraction of
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Imaging-Derived Phenotypes (IDPs) which are summary measures and have

the potential to be used as personalised brain signatures, e.g. for diagnosis,

stratification or prognosis.

Despite the potential, inter-site differences such as scanning protocols, hard-

ware, and magnetic field strength can contribute to lack of consistent quan-

tifiability in these IDPs. Scans of the same individual obtained from different

scanners can differ in somewhat unexpected and unpredictable ways, as vari-

ability propagates through the processing in nonlinear manners. Unwanted

bias and variance are then introduced into the measurements and data be-

come strongly associated with the acquisition site/scanner rather than with

true biological variability.

Examples have been presented before. For instance in (Takao et al. 2011), it

was shown that the variability caused by scanning in two different scanners

gave the wrong impression of actual brain volume change over a two year pe-

riod. An increase in mean volume change was observed but this was found

to be a result of scanner hardware and software upgrade rather than actual

brain volume change. In (Reig et al. 2009), it was shown on average that

the variability of volumetric brain data induced by a multi-scanner set up was

as high as 17%. An additional example was demonstrated in (Fortin et al.

2018). Linear discriminant analysis (LDA), used to find a linear combination

of features which separate the data into two or more classes, was performed

on cortical thickness measures and showed that data points clustered almost

perfectly by site illustrating the extent to which scanners induce bias. Exam-

ples of measures from diffusion MRI include the study performed by (Vollmar

et al. 2010). Here it was shown that inter-site variability in FA can be be-

tween 5 and 15% in white grey matter areas yet differences of interest due

to pathology, e.g. in diseases such as schizophrenia, are often of the order of

5% (Mirzaalian et al. 2016). Furthermore, the study in (Hainline et al. 2018)
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demonstrated scanner-induced bias and variance in generalised FA measures

in selected ROIs. It was shown that not every ROI is affected by the same

bias and variance showing that the bias and variance induced by multi-scanner

acquisitions has implications on global brain measures as well as regions which

are more local.

In previous studies, a single or a few imaging-derived features were considered

to assess variability across scanners from one or two modalities (Mirzaalian

et al. 2016, Zhu et al. 2011, Han et al. 2006). Furthermore, a typical issue

in mapping this variability is the lack of some reference to compare against.

For example, in the study performed in (Mirzaalian et al. 2016), a method is

proposed to harmonise the raw signal from diffusion data. It is assumed that

two separate groups of individuals, scanned in different scanners, but who are

matched for age, gender, handedness and socio-economic status should have

similar diffusion profiles and these were therefore used as references for each

other. Another example is in (Fortin et al. 2017) where a method is proposed

to harmonise derived FA and MD maps from diffusion data. Similarly, the

consistency of summary measures across participants matched across studies

for age, gender, ethnicity, and handedness is used to asses the quality of the

proposed harmonisation method. In these examples it is evident that a reliable

and consistent reference is unavailable and the choice of matched subjects is a

compromise.

In this chapter we solve these challenges in more comprehensive ways com-

pared to what has been tried before. First, we are using a rich travelling-

heads dataset that includes all vendors and much more scanners than previous

studies. Second, because we have acquired within-scanner repeats, we can

use within-scanner variability as a reference against between-scanner variabil-

ity. Third, we map variability for thousands of multi-modal IDPs, extracted

using a modified version of the UK Biobank pipeline (Alfaro-Almagro et al.
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2018). We compare not only against within-scanner variability, but also against

between-subject variability (as a proxy to biological variability). Finally, even

if it is well known that acquiring data on different scanners induces bias and

variability, what is less explored is whether or not the ordering of subjects for

specific features remains consistent and to what extent. We perform analyses

towards this direction as well and show that certain modalities are more robust

in preserving cross-subject ranking than others.

4.2 Theory

For each of the acquired scan sessions, we used a modified version of the UK

Biobank pipeline (Miller et al. 2016, Alfaro-Almagro et al. 2018) to extract

thousands of multi-modal imaging features for which we subsequently map

their variability. In this section, we present the main principles of the pipeline,

which is used as a backbone for the data processing. We overview the modifi-

cations we performed in Methods.

4.2.1 UK Biobank Processing Pipeline and IDPs

Coherent and consistent data processing flows are needed to analyse all ac-

quired data and achieve from distortion and motion correction, alignment for

within-subject modalities to multi-modal feature extraction. The UK Biobank

pipeline (Alfaro-Almagro et al. 2018) was specifically designed with that pur-

pose in mind in order to process multi-modal data acquired by the brain imag-

ing component of the UK Biobank (Miller et al. 2016).

Given the differences across vendors, the pipeline (originally designed origi-

nally for Siemens Skyra input data) had to be adjusted in various ways, as

outlined in Methods, to allow processing of all available data. This resulted in

a pipeline that was generally flexible, with the ability to accommodate input

data from all the types of scanners we used which is scheduled to be released
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publicly. Additionally, the pipeline was also augmented to account for new

ways of processing. Yet, the main principles remain the same and we overview

them here.

The pipeline takes input data from each of the modalities, performs prepro-

cessing, such as distortion correction, brain extraction, template normalisa-

tion, and generates IDPs. The IDPs are collections of multimodal features,

including volumes of tissue types, cortical and subcortical volumes, measures

of microstructure in white matter and structural connectivity, iron deposition

proxies in grey matter, and functional connectivity properties. An overview

of the features extracted from each modality is shown in Figure 4.1. In total

the pipeline is capable of generating over 4350 features. A summary of the

processing steps for each of the acquired modalities is now provided.

Figure 4.1: Overview of the features extracted from each modality. The data from
each modality were processed using a modified version of the UK Biobank pipeline to
obtain a comprehensive set of imaging features across all scanning sessions.
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4.2.2 T1-weighted Processing

The T1 processing pipeline begins by reducing the field of view of the original

image. Specifically, it removes empty space around the head and also removes

some of the neck. This ensures a more accurate and standardised initialisation

of the brain extraction which follows immediately afterwards. It also improves

the robustness and accuracy of subsequent registrations. After this, the warp

which transforms the image from native T1 space to a standard reference space

is estimated using FMRIB’s Nonlinear Image Registration Tool (FNIRT) (An-

dersson et al. 2007) . The reference space is the 1mm resolution version of

MNI 152 template. This warp is then inverted so that it takes data from stan-

dard space into native T1 space and is applied to a brain mask. The brain

extraction is performed by applying this mask onto the original brain image.

In addition, a series of steps are performed to transform the actual T1-weighted

original image into standard space. This is done using a compound transforma-

tion which is a combination of 3 separate transformations: 1) The transforma-

tion from distorted to undistorted space, corrected for gradient nonlinearities

(when gradient nonlinearity information is provided by the scanner manufac-

turer), 2) the transformation from the full field of view image to the reduced

field of view image and 3) the transformation from the reduced field of view

image to standard space.

Following template normalisation and brain extraction, there are 3 different

groups of features generated from the T1-weighted processing. The first group

are derived from segmented global tissue measures such as total brain volume,

total volume of WM, GM and CSF and several others. These are generated

using the SIENAX tool (Smith et al. 2002, 2004) for cross-sectional measure-

ments. The second group are cortical parcel volumes which are derived from

quantifying the amount of tissue labelled as grey matter in 139 distinct regions
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of interest. The ROIs are defined by combination of parcellations from sev-

eral atlases: Harvard- Oxford cortical and subcortical atlases, and Diedrichsen

cerebellar atlas. The grey matter is segmented using FMRIB’s Automated

Segmentation Tool (FAST) (Zhang et al. 2001). The third group are subcorti-

cal volumes of 15 structures segmented using FMRIB’s Integrated Registration

and Segmentation Tool (FIRST) (Patenaude et al. 2011). The T1-weighted

processing is summarised in Figure 4.2.

4.2.3 T2-weighted Processing

For the T2-weighted processing, the T2-weighted-FLAIR is first linearly trans-

formed into the space of the T1-weighted image. Then to extract the brain, the

standard space brain mask (previously transformed into T1 space) is applied

to the T2-weighted image. A segmentation of white matter hyperintensities

is subsequently performed by Brain Intensity AbNormality Classification Al-

gorithm (BIANCA) (Griffanti, Zamboni, Khan, Li, Bonifacio, Sundaresan,

Schulz, Kuker, Battaglini, Rothwell et al. 2016) and then thresholded at a

value of 0.8 to generate a single feature of lesion volumes. The classification

of voxels as either legions or non-lesions is based on a k nearest neighbour

algorithm with training data from the UK Biobank. Although the processing

for these IDPs was performed, they were not used in the results due to the age

of the cohort being low (mean 34 ± 9.4 years) and the subjects being healthy.

This is in stark contrast to the mean age of the 2 datasets used in the original

study: 75 ± 7 years and 67.4 ± 14.3 years, thus lesions are not expected in

our participants and the lesion estimates are likely to be dominated by noise.

The T2-weighted processing is summarised in Figure 4.3.
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Figure 4.2: Flowchart of T1-weighted processing showing the steps taken from
input of a raw image to quantitative summary measures. Steps added to the original
pipeline are outlined in green.

4.2.4 SWI Processing

The SWI processing begins by combining data from individual coils into one

image using a root-sum-of-squares approach, in case individual coil data are

provided (e.g. for Siemens scanners). When data are already combined (e.g.
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Figure 4.3: Flowchart of T2-weighted processing showing the steps taken from input
of a raw image to quantitative summary measures.

typical for non-Siemens scanners) this step is not performed. Once combined,

R2* is computed using the log of the ratio of the two echo time images scaled

by the echo time difference and T2* is calculated as the inverse of R2*. Then

a linear transformation is performed to take the data from SWI space and

bring it into T1 space. A brain mask, transformed from the T1 space to the

SWI space is then applied to the T2* image to obtain only the T2* values

within the brain. The generated IDP’s are the T2* values in the 15 sub-

cortical structures segmented by FIRST during the T1-weighted processing.

A venogram generation series of steps is also followed. The phase images are

first high pass filtered before a complex image is generated by summing the

complex data from each coil. This gives a single filtered phase image which

is multiplied by the total magnitude image to get a venogram image with

enhanced appearance of veins. The phase and magnitude images used for this

process are from the second echo since it has greater venous contrast. The

SWI processing is summarised in Figure 4.4.
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Figure 4.4: Flowchart of SWI processing showing the steps taken from input of a
raw image to quantitative summary measures.

4.2.5 dMRI Processing

The first step of the dMRI processing pipeline is to correct for distortions and

subject motion. This is done using the eddy tool (Andersson & Sotiropoulos

2016, Andersson et al. 2016). This accounts for eddy currents, subject motion
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and also corrects susceptibility induced distortions using an off-resonance field

which was calculated earlier (see section 3.3.5 in the previous chapter). After

this, the DTIFIT tool (Basser et al. 1994) is used to apply a diffusion tensor

model to give standard measures such as FA and MD. The data is also fed into

AMICO (Daducci et al. 2015), an approximate nonlinear solver for fitting the

NODDI model (Zhang et al. 2012). This is a multi compartment biophysical

model to obtain measures on different types of microstructural properties, such

as neurite density and fibre orientation dispersion, which are meant to be more

specific than the simpler DTI metrics.

These microstructural features (DTI and NODDI) are summarised within

white matter ROIs and their mean value in each ROI is extracted. ROIs

are defined in two ways: a) Using a white matter atlas, specifically a set of 48

standard space tract masks defined by the JHU Template (Mori et al. 2005,

Wakana et al. 2007). To reduce contamination from partial volume, these ROIs

are further filtered using an FA-skeleton (obtained through the TBSS pipeline

(Smith et al. 2006)), so that only the “core” of each tract is depicted in the

values. B) Using subject-specific tractography.

Before the tractography can be performed, the data first needs to be fed into

a modelling framework to estimate fibre orientations, using the BEDPOSTX

(Behrens et al. 2007, Jbabdi et al. 2012, Hernández et al. 2013) tool. Using

the BEDPOSTX output, probabilistic tractography is then performed by prob-

trackx (Behrens et al. 2007, Hernandez-Fernandez et al. 2019) using protocols

from the Autoptx tool (De Groot et al. 2013). This generates 27 tracts that

define subject-specific ROIs. Mean values of microstructural features within

these tractography-based ROIs are also returned as features. The dMRI pro-

cessing is summarised in Figure 4.5.
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Figure 4.5: Flowchart of dMRI processing showing the steps taken from input of a
raw image to quantitative summary measures. Steps added/modified to the original
pipeline are outlined in green.
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4.2.6 rfMRI Processing

A reference volume is first generated from the existing time series data. This is

an image chosen from one of the first 5 images which correlates the most closely

with the others. This is used for subsequent alignment to other modalities and

motion correction. The field map generated from the spin-echo images is used

here to correct for EPI distortions in the reference image. These corrections

are done by the FEAT pipeline in FSL (Smith et al. 2004).

Independent Component Analysis (ICA) is then used to decompose the data

into resting-state networks, components consisting of a spatial map and a time

series. The components corresponding to noise are removed using FMRIB’s

ICA-based X-noiseifier (FIX) (Beckmann & Smith 2004, Griffanti et al. 2014,

Salimi-Khorshidi et al. 2014). The training data that has been used for FIX

consists of 40 UK Biobank training data sets.

Once FIX denoising has been performed, functional networks are mapped.

Group level spatial maps generated from 4100 subjects from the the UK

Biobank are mapped into the subject space, using the cleaned data. These

define gray matter nodes that are used for connectivity estimation. The gener-

ated IDPs consist of connectivity (i.e. correlations of time series between pairs

of nodes) and the node amplitudes of each regressed ICA component. The

total number of rfMRI IDPs (3432) is the sum of the upper diagonals of two

21 × 21 matrices (partial and full correlations of non-artefactual components

from a 25-dimensional group ICA - 21 independent components kept), the

upper diagonals of two 55 × 55 matrices (partial and full correlations of non-

artefactual components from a 100-dimensional group ICA - 55 independent

components kept) and 21 + 55 node amplitudes of the surviving components.

The rfMRI processing is summarised in Figure 4.6.
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Figure 4.6: Flowchart of rfMRI processing showing the steps taken from input of a
raw image to quantitative summary measures. Steps added/modified to the original
pipeline are outlined in green.



99 Chapter 4. Mapping Inter-scanner Variability for IDPs

4.3 Methods

4.3.1 Alterations Made to the UK Biobank Pipeline

The original pipeline, initially specific to the UK Biobank datasets and scanner

vendor was modified in a number of ways to handle scans from the other ven-

dors or augmented to add additional functionality and derive a greater number

of IDPs. Components of the pipeline which have been thus modified appear

with a green border in Figures 4.2 - 4.6

Data onboarding

A restructuring of the original UK Biobank pipeline was needed so that the

pipeline could accept as inputs data from non-Siemens scanners. Apart from

NIFTI data, accompanied json files are used and the pipeline reads acquisition

meta-data from these json files. Given however that dicom-to-nifti conversion

does not guarantee similar fields of json files to be populated for the same

features from different vendors, we had to accommodate changes accordingly.

At the time of the study we had to manually calculate the effective echo spac-

ing and total read out time as outlined in section 3.3.5, however this is now

performed automatically by dcm2niix (Li et al. 2016). These modifications

facilitate bringing the data to a BIDS format (Gorgolewski et al. 2016), which

will enable wider sharing of the data in the near future, in repositories such as

https://openneuro.org For conversion to NIFTI, the dcm2niix (Li et al. 2016)

tool v1.0.20181114 GCC7.3.0 was used.

Handling corrections for gradient nonlinearities

Gradient nonlinearities cause geometric distortions and they are larger at fur-

ther distances from the iso-center of the scanner. Even if vendors provide

gradient nonlinearity corrections for both 3D and 2D acquisitions on the scan-

ner, the UK Biobank pipeline allows this correction to be performed as a

post-acquisition step, due to inconsistencies identified between the 3D and 2D

https://openneuro.org
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corrections in the Siemens scanners (Alfaro-Almagro et al. 2018). In order

to be able to perform these corrections “offline”, a vendor proprietary file is

needed that characterises the spatial distribution of these inhomogeneities. We

have no access to these files for the non-Siemens scanners and therefore the

online corrections provided by the vendors were performed for the Philips and

GE data. To allow this in the pipeline , we had to add the option of toggling

off the gradient distortion correction (GDC), which occurs at various prepro-

cessing steps and gets merged with all warps. Specifically, toggling on and off

GDC influences how warp fields are estimated between modalities and from a

subject to standard space, and necessary changes were implemented to accom-

modate such change.

Handling SWI (magnitude and phase data from different vendors)

The pipeline was also generalised to accommodate the different SWI data from

the scanners. For the Philips and GE scanners, the coil data had already been

combined so we made the step which combines coils optional. Furthermore,

for the GE data, the complex phase image had already been combined and

filtered so we additionally made these steps optional.

Computing spin-echo fieldmaps

As mentioned in section 3.3.5, the effective echo spacing for the dMRI images

and the rfMRI images also had to be calculated for each scanner at the time

of the study (This is no longer needed as these measures are these are now

automatic outputs of dcm2niix (Li et al. 2016)) , as this was used to correct for

EPI distortions using spin-echo fieldmaps. These would then be used to derive

the readout times. The readout times are necessary for correct application of

the off-resonance field maps during corrections for susceptibility induced dis-

tortions.

Toggling pipeline generated SBREF and acquired
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For rfMRI data, a single band reference volume was acquired (SBRef) on the

Siemens scanners. This has higher between tissue contrast and the same geom-

etry as the rest of the time series data. This is used for subsequent alignment to

other modalities and motion correction. This is not available for all scanners

and also a less aggressive Multiband acceleration was used for non-Siemens

scanners that preserved more contrast. Therefore, we added an option to tog-

gle this on or off based on whether it was acquired on the scanner or not. In

the cases where it was not acquired, a reference volume was generated by the

pipeline from the existing time series data. This is an image chosen from one

of the first 5 images which correlates the most with the others.

Adding additional features to the Pipeline

We also augmented particular parts of the pipeline to take advantage of new de-

velopments. Specifically: 1) In the T1-weighted processing, we added FreeSurfer

reconstructions to allow for cortical thickness, area and volumes using the

subject derived parcellations rather than standard space atlases. 2) In the

dMRI processing we performed two changes. We replaced the legacy Autoptx

(De Groot et al. 2013) protocols with the more state-of-the-art XTRACT

(Warrington et al. 2020) tractography, which has 42 tracts and has been more

widely evaluated. We also replaced AMICO (Daducci et al. 2015) for NODDI

model fitting with cuDIMOT(CUDA diffusion modelling toolbox) (Hernandez-

Fernandez et al. 2019). NODDI nonlinear fitting is very computationally

expensive and slow and cuDIMOT accelerates it by using GPUs to do the

optimisation; while AMICO does a series of linear approximations to the non-

linear model, which reduce accuracy, while being slower than cuDIMOT. 3)

In the rfMRI processing, we added the option of unsupervised denoising us-

ing ICA-AROMA (Pruim, Mennes, van Rooij, Llera, Buitelaar & Beckmann

2015). This is an alternative to FIX which has been trained with Siemens UK

Biobank data and may not be optimal for non-Siemens scanners, compared to

AROMA which is agnostic to vendor.
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4.3.2 Assessing IDP Cross-session Similarity

Once the modified UK Biobank pipeline was ran across all 80 scanning sessions

in our database, we first looked into cross-session similarity of IDP patterns for

each of the four individual subjects that had within-scanner repeats. A proce-

dure similar to that described in Section 3.3.7 was used. For each subject, and

for each scan session, a vector containing a certain set of IDPs was constructed.

These were defined a-priori and consisted of all IDPs excluding those derived

from rfMRI and T2. These were omitted because of these modalities are signif-

icantly more noisy compared to the ones included and their inclusion resulted

in trends being indiscernible. This IDP vector, representative of the session,

was correlated with the respective IDP vectors of all other sessions (11 in total,

including between-scanner and within-scanner sessions) of that subject. IQMs

were z-scored across sessions and the IDP vectors were magnitude-normalised,

before calculating the pairwise correlation of sessions. This was performed to

explore the relationship between between-scanner and within-scanner similar-

ity of IDPs in the same subject.

4.3.3 Testing for Scanner Effects Across IDPs

Scanner effects were statistically tested using repeated-measures ANOVAs.

For each IDP, the null hypotheses was tested that there was no difference in

the group means of IDP values from data acquired in repeated measurements

across different scanners (i.e. repeated measures were the between-scanner re-

peats). Each group consisted of 10 values, representing 10 measurements of

the same IDP obtained in each of the 10 subjects. As there were multiple IDPs

and therefore tests performed, multiple comparison correction was done and

adjusted the threshold for rejecting the null hypothesis using false discovery
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rate (FDR=5%, within each test). The adjusted threshold was determined

according the procedure proposed by Benjamini and Hochberg (Benjamini &

Hochberg 1995). The estimation for scanner effects was performed 3 times: a)

using the data from all 6 scanners (i.e. 6 repeated measures) b) using the data

from the Philips scanners only (i.e. 2 repeated measures) c) using the data

from Siemens scanners only (i.e. 3 repeated measures).

4.3.4 Mapping IDP Between-scanner Variability

We first used the within-scanner data, from subjects that had repeated scans,

to determine the within-scanner coefficient of variation (standard deviation of

measurements divided by mean) of each IDP. This allowed us to gauge which

group of IDPs were most robust in the absence of site effects. We then mapped

between-scanner variability and compared it to a number of references, as ex-

plained below.

With respect to within-scanner variability

We used the within-scanner repeats as a baseline for assessing between-scanner

variability. The assumption is that within-scanner variability reflects a mini-

mum scan-rescan variation that can be observed for a subject, when scanner

hardware, software and operator stay the same, and is therefore mostly driven

by thermal noise. We therefore calculated a bias measure (equation 4.1) and

a relative variability measure (equation 4.2). The bias measure quantified

the difference between the average (median) across between-scanner measure-

ments and the average across within-scanner measurements as a percentage of

the latter. The relative variability measure reflected the difference between the

variability (interquartile range) of between-scanner measurements and within-

scanner repeats as a percentage of the latter.
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Bias =
Median between-scanner − Median within-scanner

Median within-scanner

× 100 (4.1)

Relative Variability =
IQRbetween-scanner − IQRwithin-scanner

IQRwithin-scanner

× 100 (4.2)

With respect to between-subject variability

We also compared the between-scanner variability of IDPs from a single sub-

ject to measures of between-subject variability for the same IDPs. In an ideal

scenario, it is expected that measurements from the same subject across dif-

ferent scanners vary considerably less than measurements from different sub-

jects, which reflect biological variability. To explore this for the set of IDPs

considered here, we used two between-subject variability metrics: a) One that

reflected IDPs from scans of the 10 subjects in our cohort acquired from the

same scanner, b) A close-to-population-level biological variability metric, by

considering IDPs from 1000 subjects randomly-chosen in the UK Biobank and

scanned in the same scanner (Siemens Skyra). For the within-cohort metric,

we used the variability across the 10 subjects when scanned on a Siemens

Prisma scanner. For the UK Biobank derived metric, we accessed data using

UK Biobank Project 43822 (PI: Sotiropoulos, Univ. of Nottingham).

4.3.5 Assessing the Preservation of Subject Ranking between-

scanners

In addition to bias or variance increase in metrics due to inter-scanner effects,

another potential detrimental effect for quantifiability in studies is the inabil-

ity to preserve subject ranking across scanners. Using our data we explored
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this effect. For each IDP, we explored the consistency in subject ranking as

depicted between-scanners.

To do so, for each of the 6 scanners and for each IDP, the 10 subjects were

ranked, leading to 6 ranking vectors of length 10 per IDP. The first vector

simply had the numbers 1-10 in ascending order and the order of the 10 sub-

jects in the other 5 vectors was determined with respect to their order in this

first vector. The consistency in subject ranking for each IDP was calculated

by taking the average Spearman correlation of all the possible pairwise com-

binations of the 6 vectors. We did this for 3 cases: a) considering only the

Siemens scanners b) considering only the Philips scanners d) considering all

the scanners.

To get a lower bound of the consistency of rankings, we computed a null rep-

resenting correlations that would have been obtained from random rankings

of the subjects between the scanners. This was done by simulating 6 random

vectors each containing integers 1-10 and calculating the average Spearman

correlation across all the possible pairs. This was repeated 1000 times to give

a distribution of correlations. We defined the null region as the values between

the −75th and the 75th percentile of that distribution.

4.4 Results

4.4.1 Cross-session IDP Similarity

We computed correlation matrices depicting similarities of IDPs across differ-

ent scanning sessions. The contrast between the two distinct regions shown in

Figure 4.7 confirms the expectation that within-scanner repeats have a higher

correlation with each other than the between-scanner measurements. This il-



106 Chapter 4. Mapping Inter-scanner Variability for IDPs

lustrates a greater consistency in values of IDPs derived from within-scanner

measurements compared to those derived from between-scanner data. Differ-

ences appear to be less prominent for subject 14482, as the IDP values derived

from the within-scanner measurements in the particular scanner (Achieva)

were less consistent than those from the other scanners. A possible reason for

this could be the the large amount of motion associated with the scans from

the Achieva. Results from Figure 3.7 in the previous chapter showed that the

within-scan repeats acquired in the Achieva had the largest amount of subject

motion which would explain this.

A noticeably high correlation exists with the 3 Siemens scanners in subject

14482. It is worth noting that these scans were acquired on the same day

within a 5-hour window which is by far the shortest timeframe among all the

scans in the Figure. In contrast, the Siemens data for subject 13192 was ac-

quired over a 3-day period, subject 14229 was over a 3 month period and

subject 14230 was over a 2 day period.

Nevertheless, on average we can observe that that IDPs from within-scanner

repeats are more similar to each other; and that the two Siemens Prisma ses-

sions are more similar to each other than any other scanner session, followed

by similarity to the Siemens Trio sessions. Interestingly, the Philips Achieva

sessions seem to be closer to the GE MR750 and Siemens Trio (both narrow-

bore scanner), rather than the Philips Ingenia, which is a wide-bore scanner.

4.4.2 ANOVA Results

T1-weighted and SWI IDPs

We tested for mean scanner effects in repeated-measures ANOVAs. Figure

4.8A shows p-values for different groups of IDPs based on structural modal-
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Figure 4.7: Correlation matrix depicting correlations of IDPs across sessions. The
data used is from the 4 subjects for whom repeat scans were acquired. The range of
the colour bar has been set from the −90th the 90th percentile of values.

ities. There is smaller evidence for differences driven by site effects for data

acquired from the same vendor. For a number of these IDPs this remained true

even when data from a combination of vendors was considered. The cortical

parcel volumes and cortical thicknesses in particular showed a greater number

of differences in group means for within-vendor data as well as between-vendor

indicating that these measures were less consistent across different scanners.

dMRI IDPs

Figure 4.8B shows the distribution of p-values for repeated measures ANOVA

performed on diffusion parameters estimated regionally for white matter tracts.

Here we use the results from ROI-based IDPs only to represent what would

typically be expected from diffusion quantitative measures. There is limited

evidence for differences in the group means of values when data is compared

across only Siemens scanners. For Philips scanners, we see a greater number

of p-values representing a significant difference in group means but we see yet

a greater number of significant p-values when the comparison is done across

the different vendors and more site effects than the structural IDPs.
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rfMRI IDPs

IDPs representing functional connectivity strength between different brain re-

gions did not show a high level of reliability across sites (see following Figures).

Therefore, we show results for node amplitudes across scanners in Figure 4.8C.

A small number of p-values showed significant differences in group means when

all scanners were considered, but in general, these IDPs did not show variations

in the mean of the groups acquired from different scanners.

Figure 4.8: A distribution of log-transformed p-values from repeated measures
ANOVA for A) Structural data B) Diffusion data and C) Functional Data. The
solid horizontal line represents the threshold for significance and its value is the p-
value equivalent to FDR=5%. Cases have been considered where IDPs have been
extracted from only Siemens scanners, only Philips scanners or all scanners.
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4.4.3 Mapping IDP Variability

First, we mapped within-scanner and between-scanner variability for all IDPs.

The variability of IDPs within the same scanner was assessed using the scan-

rescan data of each subject. Figure 4.9 shows the coefficient of variation (CoV)

(standard deviation of measurements divided by mean) of IDPs taken across

6 measurements acquired A) within the same scanner B) acquired on each of

the 6 different scanners for a representative subject chosen because their IDP

values matched most closely with the others subjects.

The 3432 rfMRI IDPs include connections between all edges (connection be-

tween nodes) including those which represent weaker or false positive connec-

tions. We therefore considered in these plots only the strongest 5% edges from

the 100-dimensional group ICA using full correlation as a measure of func-

tional connectivity. The strongest edges were determined by ranking the edges

according to mean connectivity strength across within-scanner repeats and

retaining the same top 5% across all comparisons. Nevertheless, the rfMRI

connectivities had much higher coefficients of variation than the rest of the

IDPs thus they appear outside the range of visualisation.

The magnified inserts of Figure 4.9 indicate that most of the imaging features

have higher between-scanner CoV than within-scanner CoV . Qualitatively,

the structural IDPs obtained from FreeSurfer processing show the smallest

difference in variability of within- vs between-scanner repeats and seem to be

more robust to site effects.

It is worth pointing out that we identified a consistent bias in some diffusion

IDPs obtained from the Ingenia sessions. FA and MD values were lower and

higher respectively for a number of regions in the Ingenia scans compared to

the other scanners for the same subject. This trend was particularly evident

in some of the subjects; in fact, the magnitude of the trend seemed to cor-
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Figure 4.9: The CoV of IDPs taken across 6 measurements acquired A) within the
same scanner(acquired on the Siemens Prisma FMRIB scanner) B) acquired on each
of the 6 different scanners for a single subject . The IDPs have been colour-coded
with respect to their modality and they have also been grouped according to how they
were processed. *The GE data has been excluded from ICVF, OD and ISOVF IDPs,
as due to the single-shell protocol, NODDI IDPs cannot be obtained from the GE
data.

relate with head size (the larger the head the higher this Ingenia bias). In

the Appendix 4.6 we show this issue and we discuss it in greater detail. We

tried a few protocol variations in the Ingenia dMRI scans (e.g. changing the

multiband factor and in-plane acceleration combinations, details in Appendix).

However, the issue did not fully resolve when a multiband factor ≥ 2 was used,

pointing to challenges in simultaneous multi-slice dMRI on the wide-bore In-

genia. For these reasons, we decided to not include the Ingenia dMRI IDPs

in the following figures of this chapter, which therefore represent the 5 more

consistently-behaved scanners for dMRI (a version of Figure 4.9 with Ingenia

dMRI IDPs excluded is shown in the Appendix, Figure 4.16).
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Figure 4.10 shows examples of between-scanner variability for specific IDPs

for a single subject. We look at the values obtained from each scanner for

the following features: the volume of the left hippocampus, the total volume

of CSF in the brain, the mean FA in right temporal part of the cingulum

tract and the amplitudes from a chosen connectivity node. From this narrow

selection of IDPs, apart from the node amplitude, we see that values derived

from scanners of the same vendor are more consistent with each other whereas

those obtained from different vendors frequently appear to be more distant.

For example, in the the boxplots for the total volume of CSF and the left hip-

pocampus volume, it is the values obtained from the 3 Siemens scanners which

lie closest to the median. Conversely, this trend is less prominent for the node

amplitudes where it is seen that ordering of the scanners appears more shuffled.

Figure 4.10: Explicitly showing the variation obtained from different scanners for
a selection of IDPs. Considered IDPs are the volume of the left hippocampus, the
total volume of CSF in the brain, the mean FA in right temporal part of the cingulum
tract and the amplitude from a chosen connectivity node.

So far, we have qualitatively mapped differences in IDP variability of within
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vs between-scanner repeats. We subsequently explored the IDP between-

scanner variability more quantitatively against different references.

With respect to within-scanner variability

Figure 4.11 shows a plot of the relative variability for a single subject and

for an average across 4 subjects. We have shown this for 3 different cases:

a) Comparing values from Siemens scanners alone b) comparing values from

Siemens and Philips scanners c) comparing values from all scanners. To aid

visualisation, we include only ROI-based IDPs for diffusion.

Note, from this point forward, the results from tract-based ROIs have been

omitted from these figures. To aid visualisation, we only show ROI-based

IDPs. Furthermore, both sets of IDPs pass a similar message when compared

to IDPs from other modalities. We will reintroduce tract-based IDPs in the

next chapter when we directly compare ROI-based IDPs and ROI-based IDPs.

In all cases, we see that the vast majority of values are positive (for the 4 sub-

ject average and for all scanners, only 11.3% of considered IDPs had negative

values), indicating that imaging features had much higher between-scanner

than within-scanner variability, reaching on average up to 10 times more. The

between- vs within-scanner variability for each IDP category was 71% more

(median values for the average across all 4 subjects) for structural IDPs, 78%

more for SWI, 153% more for dMRI and 36% more for rfMRI. We also observe

that as we begin to compare across different vendors, the relative variability

increases, complementing what was observed in Figure 4.8.

Table 4.1 shows the relative variability of between- vs within-scanner repeats

for finer IDP categories in detail. We see that there are distinct changes in rel-

ative variability from one imaging modality to another. Features derived from

structural MRI show the least relative variability. This is followed by SWI and

then dMRI derived features. Some interesting patterns can be observed in the
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Table 4.1: The median relative variability difference of between- vs within-scanner
repeats for IDP categories (average of 4 subjects).

IDP Category Median Relative Variability

T1 Subcortex Volumes 305%

T1 Tissue Volumes 74.5%

T1 Cortical Areas 70.0%

T1 Cortical Volumes 53.6%

T1 Cortical Thicknesses 71.8%

SWI T2* Subcortex 78.0%

dMRI ROI FA 215%

dMRI ROI MD 166%

dMRI ROI MO 89.7%

dMRI ROI L1 126%

dMRI ROI L2 219%

dMRI ROI L3 215%

dMRI ROI ICVF 204%

dMRI ROI OD 181%

dMRI ROI ISOVF 296%

dMRI Tracts FA 399%

dMRI Tracts MD 156%

dMRI Tracts MO 93.8%

dMRI Tracts L1 110%

dMRI Tracts L2 242%

dMRI Tracts L3 268%

dMRI Tracts ICVF 118%

dMRI Tracts OD 102%

dMRI Tracts ISOVF 93.0%

rfMRI Node Amplitudes 48.6%

rfMRI Connectivities 24.5%

dMRI IDPs that agree with intuition. For instance, FA values are more prone

to site effects than MD values, probably reflecting the fact that FA is a higher-

order statistic (variance) compared to the MD (mean). Another example is

that the variability increases with smaller diffusivities, i.e. L1 has less relative

variability than L2 and less than L3, as the smaller the diffusivity value is,

the more prone to noise. The rfMRI IDPs show comparable consistency even

to those from T1-weighted imaging, however, as noted before, we have only

considered the top 5% of edges and also small differences in variability point

to high within-scanner variability for these features. The rfMRI IDPs also

exhibit a large bias, demonstrated in the next Figure.
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Figure 4.12 shows a comparison of the median values for each IDPs when

considering between-scanner and within-scanner repeats, providing a relative

measure of bias. We can see that the trends oscillate around zero (which cor-

responds to no bias), but for a given subject and most IDPs, the median of

between-scanner measurements is different to the median of within-scanner

repeats by up to 15%. When averaging, these biases values drop, they can

still however be in the order +/- 5%. The rfMRI IDPs are an exception, and

they do show large differences in the average values measured across scanners

compared to scan-rescan measurements.

In summary, the different trends observed for different IDP groups show that

these differences also depend on the imaging modality and the processing used

to extract the features, and both can have a considerable effect on the magni-

tude of this variability.
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With respect to between-subject variability

An interesting comparison is how variable are features extracted from scans

of the same person in different scanners compared to the same features ex-

tracted from scans of different persons. We therefore compared the variability

of IDP values obtained from the same subject being scanned in the 6 differ-

ent scanners against references that represent between-subject variability. We

defined these in two ways: a) IDP variability across the 10 subjects from our

cohort being scanned in the same scanner. The scanner chosen for this was the

Siemens Prisma FMRIB scanner due to the fact it most closely resembled the

the scanner used in the UK Biobank brain imaging project (Siemens Skyra

with 32 3T with a standard Siemens 32-channel RF receive head coil). We

will call this “within-cohort variability”, b) population-level IDP variability,

using 1000 subjects from the UK Biobank, all scanned in a Siemens Skyra

scanner. We will call this “UK Biobank variability”. Figure 4.13 shows com-

parisons across these pools of variance for different IDP categories, where also

the within-scanner variability is presented for reference. As expected, the box-

plots corresponding to within-scanner repeats are the least variable, while the

ones corresponding to 1000 different subjects are the most variable.

Results from statistical tests showed that for most cases there was a significant

difference between the CoV’s of IDPs obtained from within-scanner repeats

and those from all other scenarios. Interestingly, there are a number of cases

where the means of the CoV’s of between-scanner measurements are not sta-

tistically different from those obtained from IDPs within the cohort. These

are the T2* in subcortex regions derived from SWI acquisitions and the MD,

L2, L3 and ISOVF from white matter tracts determined using regions of in-

terests. As can be seen from the ISOVF, there are even cases where the CoV’s

of IDPs obtained from between-scanner measurements of the same subject are

not statistically different from those obtained from 1000 UK Biobank subjects

suggesting that for some IDPs the within-subject, between-scanner variability
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is as large as the within-scanner, between-subject variability.

Figure 4.13: Plots showing the distribution of coefficients of variation for different
types of IDPs. 1* indicates the absence of statistical difference in between-scanner
variability and within-cohort variability. 2 *’s indicate the absence of statistical
difference in between-scanner variability and biological variability as determined by
1000 UK Biobank subjects. A non-parameteric Mann-Whitney U-test was used.

4.4.4 Between-subject Ranking Consistency Across Scan-

ners

For each IDP we explored the consistency in subject ranking as depicted across

scanners. The results are shown in Figure 4.14. A value of 1 means perfect

consistency, i.e. all subjects are ranked in the same way when using IDPs from

different scanners. The red region is a “null consistency” regime that we iden-

tified using simulations of random rankings. We see that ranking is preserved
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more for scanners from the same vendor but this ranking becomes more incon-

sistent when we include scanners from different vendors. Regardless, there are

only a few categories of IDPs that are close to the ideal consistency described

above. Furthermore, the extent to which ranking is preserved varies depend-

ing on the imaging modality. Between-subject ranking is preserved most for

IDPs from structural imaging modalities, followed by diffusion, and least for

functional modalities.

This is true even for IDPs which appeared to have been robust against site

effects in Figure 4.13. A specific example is the cortical areas derived from

T1-weighted measurements which show a non-significant difference between

the CoV’s derived from within-scanner-measurements and those derived from

between-scanner measurements suggesting strong robustness to site effects.

While this is true for the degree of variability, ranking can be affected and sit-

uations can be observed where a person A is measured to have a larger brain

region than person B in one scanner, yet in another scanner the opposite is

the case. This is seen in Figure 4.14 where we see the cortical areas derived

from T1 measurements having a correlation value of less than 1.

Figure 4.14 shows specific examples of IDPs where the relative ranking between

subjects presented. We see in Figure 4.14A that, despite global shifts in the

values, for the total volume of grey matter, the ranking of the subjects is largely

consistent across all scanners. This is in contrast to Figure 4.14B, where we

can see that the the ranking values of the fractional anisotropy in the body of

the Corpus Callosum are preserved to a lesser extent. This is consistent with

the fact that dMRI as modality is more susceptible to scanner effects than

T1-weighted imaging.
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Figure 4.14: Between-scanner consistency of subject ranking for different categories
of IDPs. All ten subjects are ranked using the IDPs from each scanner and the
relative ranking is correlated across scanners. The average of ranking correlations
across IDP categories is depicted in this Figure. Trends have been shown for cases
where only Siemens scanners have been considered and all scanners considered.

Figure 4.15: Selected examples showing the extent to which between-subject ranking
is preserved across scanners. We show here the results for (A) the total volume of
grey matter which show ranking being largely preserved compared to (B) the Mean
FA value in the body of the Corpus Callosum.
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4.5 Discussion

We have used a novel brain MRI harmonisation database to map between-

scanner variability for a large range of multi-modal neuroimaging-derived fea-

tures. We have found that when scanning a subject multiple times, between-

scanner repeats induces variability which can be up to 5-10 times more the

variability of within-scanner repeats, while bias can be in the order of 10-15%.

Importantly, for a number of features this between-scanner variability can be

of the same size as between-subject variability. We also found that consistency

in subject ranking across scanners can be compromised relatively easily, par-

ticularly for certain modalities and features.

Our study maps the need for harmonisation in much a more comprehensive

manner than before. By using a modified and augmented version of the UK

Biobank pipeline, we extracted thousands of multi-modal IDPs and assessed

their behaviour. The data we acquired of the same subject scanned on the

same scanner allowed us to investigate broadly which modalities yielded the

most consistent and reliable results and specifically the groups of IDPs within

those modalities. We saw that IDPs derived from T1-weighted imaging are

the most consistent. This was followed by IDPs derived from dMRI yet even

within these IDPs there was a spectrum of variabilities depending on the type

of measure. The IDPs derived from rfMRI were the least consistent. These

trends are consistent with the extent to which these modalities are affected by

noise and reflect the findings of other studies (Duff et al. 2021) comparing the

variabilities of multi-modal data. We have also shown that the least between-

scanner variability is observed when using scanners from the same vendor, as

anticipated. Introducing different vendors increases the variability in IDPs and

also decreases consistency in ranking of subjects across scanners.

Previous work has reported similar trends as the ones reported here. For in-
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stance, structural imaging metrics were the most reproducible of the imaging

features we present and this is consistent with past findings. High repeatabil-

ity of these metrics has been shown across a range of segmentation approaches

(de Boer et al. 2010), across multiple sites (Jovicich et al. 2006) and across

scanners of varying magnetic field strength (Fujimoto et al. 2014). Cortical

Areas and volumes derived from FreeSurfer have been to shown to even be

robust to different acquisition sequences (Knussmann et al. 2022). It is worth

noting that among the various groups of structural IDPs, a previous study

(Duff et al. 2021) has shown that cortical area and thickness as derived from

FreeSurfer are more robust than the grey matter volumes which were estimated

for 139 ROIs and is in agreement with our findings.

For diffusion related metrics, previous studies have shown that generally, NODDI

parameters have larger between-subject variation than DTI measures. The co-

efficient of variation for ISOVF has been observed to be consistently the largest

among diffusion measures (Chung et al. 2016), which is in agreement with our

results. Unlike structural measures, diffusion measures have been also found

to be less robust against other factors such as magnetic field strength (Farrell

et al. 2007) as DTI based contrasts particularly suffer from form poor accu-

racy as a result of low SNR. At lower field strengths such as 1.5T (Farrell et al.

2007) the discrepancy in reproducibility between of FA measures compared to

MD measures is more stark than at 3T (Chung et al. 2016). The cited results

still show FA measures to exhibit a higher degree of variability which is in

agreement with our results.

For functional IDPs, it has been reported previously that test-retest repro-

ducibility is a limiting factor (Castellanos et al. 2013) and also explains the

small relative variability values we found. The results we have presented

demonstrate that difference in variability of between- vs within-scanner re-

peats in rfMRI was low, as within-scanner variability was already high. Other
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studies which performed similar analysis (Duff et al. 2021) pointed out that

IDPs reflecting pairwise connectivity (as well as node amplitudes) do not show

a high level of reliability across sites. Furthermore in the study performed by

(Jovicich et al. 2016), significant inter-site differences in connectivity scores

were found.

Compared to previous studies, in our work we have considered much more

variability in scanners than before. We have also obtained within-scanner re-

peats so that we can compare directly with scan-rescan measurements. This

provides a more reliable and consistent reference to be used during the assess-

ment or development of harmonisation approaches. It mitigates the need for

using methods such as subject matching which can be inherently challenging.

The large number of travelling heads and variety of scanners used will also

allow harmonisation approaches to be assessed based on their ability to retain

consistency in between-subject ranking which, based on the literature, is rela-

tively unexplored.

Our study had some limitations. For the dMRI IDPs, we identified a consis-

tent bias in the Ingenia sessions and we opted to keep these excluded from the

analyses. In doing so, we effectively excluded a worst-case scenario dataset

and present a lower-bound for IDP variability, which is still very significant.

Furthermore, we have relied on a certain set of IDPs, which is tied to a certain

pipeline and software tools. It is clear that the IDP variability also reflects ro-

bustness of the processing pipeline steps, as well as variability in data quality.

This is exemplified in the difference we found in variability between atlas-

based cortical parcel volumes and Freesurfer-based ones, which are segmen-

tation based. The latter were less variable than the former, which indirectly

shows that segmentation-based methods are more robust to registration-based

methods. Nevertheless, regardless of the pipeline choices, this is still the most

comprehensive mapping of inter-scanner effects on imaging-derived features
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across multiple modalities.

The findings presented here have mapped the extent of the problems the lack of

harmonisation can induce and we hope that they can become a useful resource

and reference for future studies. The next chapter will focus on using the the

dataset we have acquired as a test bed for harmonisation. We will see if, how

and to what extent, the issues highlighted in this chapter can be mitigated by

some of the most established harmonisation approaches in the field.

4.6 Appendix: Bias in Ingenia dMRI Sessions

As mentioned previously in section 4.4.3, FA and MD values were lower and

higher respectively for a number of regions in the Ingenia scans compared

to the other scanners for the same subject. This is shown in Figure 4.16A

which contrasts the effects on a subject with a large Ingenia bias compared

to a subject with small Ingenia Bias. Figure 4.16B shows images of the cor-

responding MD maps for each case. We tried a few protocol variations in the

Ingenia dMRI scans as shown in Table 4.2. The issue did not fully resolve

when a multiband factor ≥ 2 was used. We also explored combinations of

different parallel imaging factors (Sense) and slice acquisition orders. In each

case, there was no noticeable improvement from the default protocol (MB=3,

in-plane SENSE=2). This may point to challenges in simultaneous multi-slice

dMRI on the wide-bore Ingenia. The issues was mostly mitigated without

multiband, but in that case TR was extremely high and the total acquisition

time was prohibitive (more than 25 minutes). Figure 4.17 is a version of Figure

4.9 with the Ingenia data excluded.
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Table 4.2: The various Ingenia protocol options attempted in order to remove bias.

Multi-band Factor Sense Factor Slice Acquisition Order

3 1.5 Sequential

2 1.5 Sequential

2 1.5 Interleaved
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Figure 4.17: The CoV of IDPs taken across 6 measurements acquired A) within
the same scanner (acquired on the Siemens Prisma FMRIB scanner) B) acquired
on each of the 6 different scanners scanners for a single subject excluding data from
the Philips Ingenia. The IDPs have been colour-coded with respect to their modality
and they have also been grouped according to how they were processed. *The GE
data has been excluded from ICVF, OD and ISOVF IDPs, as due to the single-shell
protocol, NODDI IDPs cannot be obtained from the GE data.



Chapter 5

A Testbed for Evaluating

Harmonisation Approaches

5.1 Introduction

In the previous chapter, we used our data resource to quantify the variability of

imaging features of the same subject scanned in different scanners. Whilst the

previous chapter highlighted the extent of the problem, this chapter explores

different ways of addressing the problem of harmonisation.

One way to harmonise neuroimaging data is through approaches which explic-

itly aim to remove or mitigate scanner/site effects. These include frameworks

such as ComBat (Fortin et al. 2017), Neuroharmony (Garcia-Dias et al. 2020)

and the many others reviewed in Chapter 2. A challenge across these studies

is the lack of objective or ground-truth references for evaluating the developed

harmonisation approaches. For example, several prior works have used the ap-

proach of subject matching (Mirzaalian et al. 2016, Fortin et al. 2017) where it

is assumed that two separate groups of individuals matched for characteristics

such as age, gender, handedness and socio-economic, ethnicity, should have

similar feature profiles and any difference between these factors is attributed

to scanner-related inconsistencies.

128
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A more direct approach for assessing the quality of harmonisation is to use

within-scanner repeats. For example, in (Vollmar et al. 2010), 2 within-scanner

repeats are used as a reference for assessing harmonisation reliability. The

assumption is that a good harmonisation algorithm should reduce between-

scanner variability of data or features to levels similar to within-scanner vari-

ability. Therefore, the smaller the difference between the coefficient of vari-

ation (or the greater the correlation) of between-scanner measurements and

within-scanner measurements, the more effective the harmonisation approach

is deemed to be. This approach has a more objective baseline as there is a refer-

ence of “gold standard” or “minimum variability”, although the 2 within-scan

repeats in (Vollmar et al. 2010) was a relatively low number of measurements

to reliably establish this gold standard. The resource that we have developed

is more ideally placed to do this as we have significantly more within-scan re-

peats, the variability of which can be assessed and used as a reference/target

for post-harmonised between-scanner variability. We therefore propose our

dataset as a testbed for evaluating such approaches.

It has been stated that a good preliminary step for achieving reproducible

data is to first ensure harmonisation of scanning protocols across scanners

(Chalavi et al. 2012). In a similar way, a prudent preliminary step before ap-

plying explicit harmonisation approaches is to have as much as possible the

least variance and bias achievable. This can be primarily achieved through

a thoughtful selection of processing tools and pipelines. It has been shown

that using different tools to process the same data can produce significantly

different results. For example, in (Botvinik-Nezer et al. 2020), the authors

show that 70 different teams using different pipelines to analyse rfMRI data

produce widely differing results on the same data. In (Schilling et al. 2021),

when 42 independent teams were given diffusion data to process, the largest

source of variability in the results was the processing tools which they used.
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This variability exceeded the variability caused by differences in scanning pro-

tocol and the differences across the subject themselves. In (Griffanti, Rolinski,

Szewczyk-Krolikowski, Menke, Filippini, Zamboni, Jenkinson, Hu & Mackay

2016), the results of using different artefact removal tools and the choice of

the set of independent components indicated a lack of reproducibility between

different analysis settings. It is therefore evident that there is a need to obtain

optimal pipelines which yield the most reproducible and consistent results. We

term this implicit harmonisation.

Figure 5.1 shows pictorially the main principles of implicit vs explicit har-

monisation, with the anticipation that the latter is more effective in reducing

between-scanner variability, but typically harder to do, as it requires bespoke

algorithmic frameworks. While the former can be a more straightforward task

of optimising preprocessing steps in a way that minimises propagation of data

variability.

Figure 5.1: Outlining the general principles of implicit and explicit harmonisation.
Explicit harmonisation approaches can be applied either to the data directly or to
extracted features, i.e. either before or after any feature extraction pipelines. We
anticipate that between-scanner variability is reduced with implicit harmonisation,
but can be minimised with explicit harmonisation approaches.
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In this chapter, we demonstrate how our database can be used as a testbed

to evaluate and optimise both implicit and explicit harmonisation approaches.

Firstly, we use it to optimise pipelines for structural, diffusion and functional

imaging data. For structural data we assess the reproducibility of extracted

volumes of cortical areas from anatomical images, using a purely atlas-based

approach compared to FreeSurfer, that combines registration with an atlas but

also within-subject landmarks for areal segmentation. Similarly we evaluate

reproducibility of extracted volumes of subcortical areas using unimodal vs

multi-modal segmentation approaches. For dMRI data, we compare the re-

producibility of ROI-wise DTI based metrics in white matter, when ROIs are

defined using a white matter atlas compared to ROIs obtained using subject-

specific tractography. We use our data to assess the impact of denoising on

diffusion data and functional data. Our hypothesis is that in general, results

obtained from data which have been properly denoised will have a higher de-

gree of consistency and between-scanner reproducibility compared to those

obtained from undenoised data.

Secondly, we use our data to assess the efficacy of different explicit harmoni-

sation methods, in particular ComBat (Fortin et al. 2017), as one of the most

typically used harmonisation methods and the more recent, machine learning-

based Neuroharmony (Garcia-Dias et al. 2020). We do this firstly by compar-

ing them against each other and secondly, by assessing the performance of one

the methods on different imaging modalities. We finally explore, for both im-

plicit and explicit harmonisation methods their effect on the between-scanner

consistency of cross-subject ranking.
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5.2 Methods

5.2.1 Implicit Harmonisation

As explained before, we used our data to assess which combinations of data

processing and feature extraction steps are optimal for given imaging modali-

ties and features. A pipeline is assumed to be optimal if the features it produces

demonstrate minimum between-scanner variability for the scans of the same

individual.

5.2.1.1 Cortical areal volumes extracted from T1w data

We assessed how the between-scanner reproducibility of cortical area volumes

varied depending on the pipeline used. We compared two options, cortical

areas/regions of interest (ROIs) obtained using an atlas-based registration

method and FreeSurfer (Desikan et al. 2006, Fischl et al. 2004).

For the registration-based method, which is used in the UK Biobank pipeline

(Alfaro-Almagro et al. 2018), the Harvard-Oxford cortical atlas (Makris et al.

2006) was used to warp cortical areas into subject space. The T1-weighted im-

age of a subject was skull-stripped using FSL’s Brain Extraction Tool (BET)

(Smith 2002). Following brain extraction, the image then underwent a non-

linear registration from native T1 space into standard MNI space using FM-

RIB’s Nonlinear Image Registration Tool (FNIRT) (Andersson et al. 2007).

The cortical labels from the Harvard-Oxford atlas were warped from MNI

space to subject native space to define 97 distinct ROIs. Each of these ROIs

were further restricted into voxels labelled as grey matter using FAST (Zhang

et al. 2001)) tissue segmentation.

For the FreeSurfer derived metrics, the T1-weighted images were processed

using the recon-all function from FreeSurfer version 7.1.0 using the default
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settings. The same random seed was used for all runs to avoid run-rerun com-

pute variability between subjects. FreeSurfer areal volumes were extracted for

two parcellations, one coarser (66 ROIs based on the Desikan-Killiany (DK)

atlas) (Desikan et al. 2006) and one finer (148 ROIs based on the Destrieux

atlas (Destrieux et al. 2010)).

For all extracted cortical areal volumes, we calculated the coefficient of varia-

tion for each ROI obtained from the same subject scanned in the same scanner

and compared these values to those obtained from between-scanner repeats.

We also compared the effects of each approach on the consistency of cross-

subject ranking. The method for calculating the cross subject ranking is the

same as that outlined in section 4.3.5.

5.2.1.2 Subcortical volumes extracted from anatomical MRI data

We performed a similar assessment on the reproducibility of subcortical ROI

volumes extracted using different segmentation tasks. We calculated the re-

producibility of ROI volumes using imaging data from a single modality and

compared this to volumes derived from multi-modal data. The approach for

each method is outlined below.

For unimodal segmentation, we used FMRIB’s Integrated Registration and

Segmentation Tool (FIRST) (Patenaude et al. 2011). The run first all func-

tion was used which operates with the setting tuned (the number of nodes

and boundary conditions) to be optimal for each structure. FIRST was used

to segment T1-weighted images into 10 sub-cortical structures. This was run

after the data had undergone bias field inhomogeneity correction. We also

used FreeSurfer to extract subcortical volumes. Metrics were extracted from

a common set of sub-cortical structures so the comparison between the meth-

ods would be fair. These were the following (left and right side): Thalamus,
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Putamen, Palliduium, Hippocampus, Amygdala

The multi-modal segmentation was performed using FSL’s Multimodal Image

Segmentation Tool (MIST) (Visser et al. 2016). MIST can use complementary

information in different MRI modalities and can therefore be more robust in

cases where the contrast in a single modality is not good enough. MIST is

trained to learn about the appearance of a structure in a particular set of im-

ages, we compared 2 cases of running MIST 1) Training using all 10 subjects

from all 6 scanners (i.e. 60 sessions) 2) Training individually per scanner (i.e

10 sessions per scanner) . Multi-modal data for each subject were aligned with

that subject’s T1-weighted image using a linear rigid body transformation for

T2-weighted data and using boundary-based registration (BBR (Greve & Fis-

chl 2009)) for dMRI data.

We assessed the reproducibility of subcortical volumes extracted from MIST

in two ways: 1) we use the T1-weighted image and the T2-weighted-FLAIR

image of each subject to inform the segmentations 2) we use the T1-weighted

image, the T2-weighted-FLAIR image and the FA image from diffusion data

to inform the segmentations. It is expected that volumes derived with multi-

modal information will be more reproducible than those derived with unimodal

information. We assessed the extent to which this is true by comparing the

coefficient of variation of both methods and the consistency of cross-subject

ranking.

5.2.1.3 Tract-wise DTI microstructure metrics

For dMRI data, we assessed the reproducibility of DTI FA measures averaged

over white matter ROIs. The ROIs were defined by a skeletonised atlas, by

tractography and by skeletonised tractography. The approach for each method

is outlined below.
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For the skeletonised atlas approach, ROIs in white matter were obtained from

the Johns Hopkins (JHU) atlas (Mori et al. 2005, Wakana et al. 2007), which

contains 48 ROIs in standard space. These ROIs were further constrained

using a TBSS WM skeleton, which effectively depicts the main core of white

matter (i.e. regions of WM with the highest FA values)). Using the TBSS

pipeline (Smith et al. 2006), all FA data were non-linearly aligned into stan-

dard space. Each subject’s FA data was then projected onto the TBSS skeleton

in standard space to create a skeletonised version of each subject’s FA. The

skeletonised FA of each subject was then averaged within each JHU ROI.

We defined white matter ROIs using subject-specific tractography. The XTRACT

(Warrington et al. 2020) tool was used with default settings which stores trac-

tography results for each individual subject in standard space. XTRACT

requires as an input crossing fibres data from the BEDPOSTX (Behrens et al.

2007, Jbabdi et al. 2012, Hernández et al. 2013) tool. Using the BEDPOSTX

output, probabilistic tractography was then performed using probtrackx2 (Behrens

et al. 2007, Hernandez-Fernandez et al. 2019) called within XTRACT. This

generated 42 WM tracts for each subject (after thresholding the paths distri-

bution for each tract at 0.1%), within each of which the mean FA was obtained.

We note that a direct and unbiased comparison between these two methods is

a challenge to achieve as the approach of defining ROIs with a skeletonised

atlas inherently has an advantage since the metrics are always calculated

within regions with minimal partial volume (i.e. within the main core of each

tract). Therefore, we subsequently skeletonised the XTRACT-obtained ROIs

and computed the mean FA over these skeletonised tractography masks. Fur-

thermore, rather than considering the full set of ROIs we only considered those

that were common between the two methods which reduced the number to 9

tracts. For each method, we computed the distributions of coefficients of vari-
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ation the consistency in cross-subject ranking.

5.2.1.4 Denoising resting-state functional MRI data

Resting-state fMRI data are typically contaminated by many sources of non-

physiological fluctuations. For instance, the temporal evolution of the signal

may reflect effects of motion, non-neuronal physiology, scanner artefacts and

other nuisance sources (Salimi-Khorshidi et al. 2014). While fMRI denoising

methods have been shown to qualitatively improve image quality and robust-

ness of extracted functional features, what is less explored is the effects of

denoising on achieving consistent and reproducible results across within- and

between-scanner repeats.

We therefore compared two denoising rfMRI methods, one supervised and an-

other unsupervised. These are approaches based on Independent Component

Analysis (ICA), which automatically remove components classified as noise

after the data have been decomposed.

The supervised denoising methods we used was FIX (Beckmann & Smith 2004,

Griffanti et al. 2014, Salimi-Khorshidi et al. 2014). We ran v1.06 which with

the optional flags -m (which cleans up motion confounds) and the highpass

value, -h, was set to 100. The running of FIX requires training data and

in our case this consisted of 40 UK Biobank rfMRI datasets (i.e. acquired

using a Siemens scanner) with the noisy components labelled by hand. We

compared this to ICA-AROMA (Pruim, Mennes, van Rooij, Llera, Buitelaar

& Beckmann 2015) which is an unsupervised method. We run ICA-AROMA

v0.3 beta after spatial smoothing, but prior to temporal filtering within the

fMRI preprocessing pipeline. We compared both of these with each other and

also with respect to no denoising. For each of these instances we computed

the distributions of coefficients of variation for the node amplitudes and the
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consistency in cross-subject ranking.

5.2.1.5 Evaluating the effects of diffusion MRI denoising

Diffusion MRI denoising methods aim to remove thermal noise effects. This

differs from the noise present in rfMRI which reflects multiple sources of struc-

tured noise such as motion. The data that we have acquired allows us to

evaluate the efficacy of dMRI denoising methods by assessing the impact of

denoising on the reproducibility of results obtained from within-scanner re-

peats. If the majority of within-scanner repeat variability is driven by thermal

noise, then a denoising technique is expected to reduce this variability signifi-

cantly.

To assess this, we denoised the diffusion data using Marchenko-Pastur Princi-

pal Component Analysis (MP-PCA) (Veraart et al. 2016). We used dwidenoise

which is part of of the MRtrix3 package v 3.0.3. The denoising was performed

on the raw diffusion data prior to any movement or distortion corrections. Fol-

lowing denoising, the data was fed through the diffusion pipeline described in

section 4.2.5 and IDPs were extracted. We performed this on the subjects for

which we had acquired within-scanner repeats and compared the reproducibil-

ity of the results with those obtained from undenoised data.

5.2.2 Explicit Harmonisation

In this section we assess the effectiveness of existing harmonisation approaches.

Any harmonisation approach that claims to explicitly remove site effects should

inherently reduce between-scanner variability in imaging features compared to

not using harmonisation at all. We evaluate the performance of each method

by comparing the resulting variability with that of within-scanner variability
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which we use as as a reference/benchmark.

We evaluated the performance of two approaches that harmonise directly

imaging-derived features. The first approach is ComBat (Fortin et al. 2017),

which relies on the presence of a representative dataset and harmonises entire

cohorts for any feature that can be derived from the available data. The second

is Neuroharmony (Garcia-Dias et al. 2020) a supervised machine learning ap-

proach, which can harmonise individual datasets only for features it has been

trained on. These two approaches have been chosen because they harmonise

a common set of features which enables a fair comparison between them.

We first tested and compared these methods for features that Neuroharmony

has been trained on. These include the volumes of 101 cortical (DK atlas

(Desikan et al. 2006)) and subcortical (ASEG atlas (Fischl et al. 2002)) ROIs

derived using the recon-all function from FreeSurfer. We ran FreeSurfer on

all scanning sessions for which we had within-scanner repeats. We evaluated

the performance of these methods by comparing them to the variability of the

unharmonised values and using the variance of the within-scanner repeats as

a baseline.

Neuroharmony for brain ROI volumes

Neuroharmony harmonises data on a subject by subject basis using a model

trained to map quality metrics for structural images, extracted from MRIQC

(Esteban et al. 2017), to harmonised values that have been obtained from

ComBat. We run MRIQC version 0.16.1 to obtain 68 Image quality metrics

(IQMs) which we used as inputs for each subject to the pre-trained Neuro-

harmony model (trained on 15,026 subjects). For each subject, we used a

71-element vector (68 IQMs + age, sex and the original relative volumes of

the ROIs) as input variables to predict the ComBat corrections for each ROI.

For each session, the volumes of the 101 ROIs were normalised by dividing the
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volume of each region by the total intracranial volume of the subject, as it was

done in (Garcia-Dias et al. 2020).

ComBat for brain ROI volumes

We run ComBat version 0.2.12. Our input data was a matrix of dimensions

24 (4 subjects × 6 scanners) × 101 (number of FreeSurfer ROI’s) (We note

that ComBat was also ran for the full cohort of 10 subjects, but trends were

very similar to the ones obtained using a subset of 4 subjects that had within-

scanner repeats). For the batch variables (the variables which encode for the

scanner) we had 6 unique variables each representing one of the six scanners

from which the data were acquired. For the categorical variable to be preserved

during harmonisation, we specified gender and for the continuous variable to

be preserved, we specified age. Combat was run with default settings in which

case, empirical Bayes is turned on (information is pooled across features rather

than the harmonisation model being fit for each feature separately) and para-

metric adjustment is performed.

ComBat for other features

Similar to running Combat for the brain ROI volumes, we assessed its efficacy

in harmonising features of other types or from other modalities. Specifically

we applied Combat in subcortical volumes obtained from FIRST, in the T2*

values of subcortical regions extracted from susceptibility-weighted images and

in the FA of white matter ROIs obtained from dMRI. These IDPs are chosen

as they are standard outputs from the UK Biobank pipeline.

5.3 Results

The results we show demonstrate how implicit and explicit harmonisation ap-

proaches perform when compared when using within-scanner variability as a

benchmark. For this reason, the results of subject averages comprise only the
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4 subjects for which within-scan repeats were obtained.

5.3.1 Implicit Harmonisation

5.3.1.1 Variability of cortical area volumes

We first explored how different approaches for obtaining cortical area volumes

affected the within-subject variability of these IDPs across-scanners. We used

the variability of within-scanner repeats for the same subjects as a baseline

reference. Figure 5.2 shows that for images acquired within the same scan-

ner, cortical volumes derived using an atlas-based registration method have

a smaller baseline variability than those derived using FreeSurfer. However,

when looking at variability of IDPs for data acquired on different scanners,

we see that on average, ROI volumes derived using FreeSurfer (both coarse

and fine parcellations) are more robust than the simpler registration-based

approach. The results also show that for FreeSurfer-extracted ROIs, fine par-

cellations are more variable than coarse parcellations, which is expected as the

finer parcellations lead to smaller regions. Nevertheless, even if the number of

regions for Registration-based is smaller than the fine FreeSurfer parcellation

approach (97 vs 148 ROIs respectively), FreeSurfer volumetric measures seem

more robust to between-scanner effects. We also show results for a sub-analysis

where we extracted the metrics for the common ROIs across the an atlas-based

registration and coarse parcellations from FreeSurfer. These results are shown

in Figure 5.3. The common structures are (left and right sided): parahip-

pocampal, postcentral, superiorfrontal, frontalpole and insula.

When looking into preservation of cross-subject ranking across scanning ses-

sions, both approaches show relative high correlation of cross-subject ranking

yet the correlation of subject ranking for FreeSurfer extracted volumes is bet-

ter than the registration-based approach, for both fine and coarse parcellations.
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Table 5.1 shows for each approach, the percentage difference of the values

obtained from images acquired within the same scanner compared to within

different scanners. The results show that on average, the approach with the

highest increase in the median CoV values across the ROIs was for registration-

based methods. Both approaches from FreeSurfer show percentage differences

which are almost the same and about 4 times less than the increase in vari-

ability compared to the registration-based approach.

Figure 5.2: Reproducibility of ROI-wise cortical volumes A) Distribution of CoVs
for Registration based ROIs (97 ROIs) compared to FreeSurfer extracted ROIs
(coarse - 66 ROIs and fine - 148 ROIs) B) Correlation of cross subject ranking for
Registration-based ROIs compared to FreeSurfer-extracted ROIs (coarse and fine).

Table 5.1: Percentage difference of median between-scanner CoV of cortical ROI
volumes with respect to (w.r.t.) the within-scanner CoV.

Approach Increase of between-scanner
CoV w.r.t. within-scanner CoV

Registration-based ROIs 206%

FreeSurfer-extracted ROIs (Coarse) 52.7%

FreeSurfer-extracted ROIs (Fine) 52.1%
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Figure 5.3: Reproducibility of ROI-wise cortical volumes A) Distribution of CoVs
for Registration based ROIs compared to FreeSurfer (coarse) extracted ROIs. Metrics
shown are from a subset of 10 ROIs which are common to both methods. B) Corre-
lation of cross subject ranking for Registration-based ROIs compared to FreeSurfer-
extracted ROIs (coarse).

5.3.1.2 Variability of subcortical volumes

We compared the reproducibility of ROI-wise subcortical volumes derived us-

ing a range of segmentation algorithms, specifically unimodal and multi-modal

segmentation. The results in Figure 5.4A show that, on average, sub-cortical

volumes derived using multimodal segmentation approaches are less variable

than those relying on only one modality for segmentation. This was true re-

gardless of implementation details for the multimodal approach (number of

modalities and number of training sessions considered).

For multi-modal segmentation, our results showed that training MIST on all

scanning sessions was not considerably different in reducing between-scanner

variability compared to training it on many sessions from an individual scanner.
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Multimodal segmentation using data from 2 anatomical modalities resulted in

less variable segmentations than training it on 3 modalities (anatomical and

diffusion) in absolute terms. However, Table 5.2 shows that training MIST on

3 modalities was more successful at preserving the level of variability similar to

that in the within-scanner repeats and in that respect was the more successful

approach.

Figure 5.4B shows that all approaches show a high level of correlation of rank-

ing across subjects. (at least 80%) in all cases. In agreement with the previous

trends, there is a benefit in preserving between-scanner cross-subject rankings

with multimodal segmentations.

Figure 5.4: Reproducibility of ROI-wise subcortical volumes A) Distribution
of CoVs for Segmentation-based ROIs using one modality, two modalities and
three modalities B) Correlation of cross subject ranking for Registration based
Segmentation-based ROIs using one modality, two modalities and three modalities.
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Table 5.2: Percentage difference of median between-scanner CoV of sub-cortical ROI
volumes with respect to (w.r.t.) the within-scanner CoV.

Approach Increase of between-scanner
CoV w.r.t. within-scanner CoV

Unimodal 42.7%

Multimodal (T1,T2) Trained on 1 scanner 62.0%

Multimodal (T1,T2,dMRI) Trained on 1
scanner

19.5%

Multimodal (T1,T2) Trained on all sessions 59.1%

Multimodal (T1,T2,dMRI) Trained on all
sessions

30.1%

5.3.1.3 Variability of Tract-wise DTI FA

Figure 5.5A shows that, on average, DTI FA values, averaged over white mat-

ter ROIs, are more reproducible between-scanners when the ROIs are obtained

from a skeletonised atlas compared to ROIs obtained from subject-specific

tractography. This is true regardless of whether the tractography ROIs are

skeletonised or not.

Table 5.3 shows for each approach, the percentage difference of the median

CoV of ROI-wise FA values obtained from between-scanner vs within-scanner

data. The results confirm the above trends and show the advantage of skele-

tonising the XTRACT-obtained ROIs.

Figure 5.5B shows that for all sessions there is greater consistency in cross-

subject ranking for ROIs obtained from a skeletonised white matter atlas com-

pared to tractography regardless of whether the ROIs were skeletonised. How-

ever, it is important to note that just as skeletonising the ROIs increased

between-scanner reproducibility in Figure 5.5A, doing this also increased con-

sistency in between-scanner subject rankings.
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Figure 5.5: Reproducibility of ROI-wise FA values A) Distribution of coefficients
of variation for ROIs obtained from a skeletonised atlas, tractography and skele-
tonised tractography B) Correlation of cross subject ranking for ROIs obtained from
a skeletonised atlas, tractography and skeletonised tractography.

Table 5.3: Percentage difference of median between-scanner CoV of tract-wise FA
with respect to (w.r.t.) the within-scanner CoV.

Approach Increase of between-scanner
CoV w.r.t. within-scanner CoV

ROIs Skeletonised Atlas 159%

ROIs (Tractography) 407%

ROIs (Skeletonised Tractography) 297%

5.3.1.4 Variability of rfMRI node amplitudes

We compared the effect of different denoising approaches on the reproducibility

of rfMRI node amplitudes. As FIX is a supervised denoising approach that has

been trained on Siemens data, we anticipate that it works better for Siemens

rather than non-Siemens data. We therefore looked separately into subsets of

data and Figure 5.6A shows 2 exemplar subjects: one for which within-scan

repeats have been acquired on a Phillips Achieva scanner (Subject A) and the

other for which within-scan repeats have been acquired on a Siemens Prisma
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scanner (Subject B). Results show that for within-scanner repeats acquired on

a Siemens scanner, FIX denoising is more effective at reducing variability than

ICA-AROMA (i.e. a supervised method trained on Siemens data is better

than an unsupervised method), whereas for within-scanner repeats acquired

on a Phillips scanner, the unsupervised ICA-AROMA denoising is more effec-

tive than FIX. When looking into between-scanner variability, both denoising

approaches reduce variability compared to raw data, but the unsupervised

ICA-AROMA performs better than FIX.

Figure Figure 5.6B shows that the very low between-scanner correlation of

cross-subject ranking of the node amplitudes is not improved and stays low

even after denoising for both approaches. This reflects the magnitude of the

challenge associated with harmonising rfMRI data.

5.3.1.5 The effect of dMRI denoising

Figure 5.7 shows the percentage difference in coefficients of variation of tract-

wise FA values, before and after denoising averaged across 4 subjects. Our

hypothesis was that denoising the data would yield more consistent results

across within-scanner repeats. However, on average, this is true for only 28/48

(58.3%) of the considered IDPs. For a number of IDPs, denoising caused the

opposite effect of what was anticipated, resulting to more variability between

repeats. Figure 5.7 shows the major outliers (a difference of greater than 15%)

and what we note is that these are related to tracts at frontal/inferior parts

of the brain. The specific regions highlighted are the left and right cerebellar

peduncle and the right uncinate fasciculus.

To investigate this further, we investigated the corresponding white matter

ROIs in the denoised and the undenoised data. This comparison is shown in

Figure 5.8. We show the FA maps in standard space derived from denoised
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Figure 5.6: Reproducibility of rfMRI Node Amplitudes based on method of denois-
ing. A) Distribution of CoVs across between-scanner repeats for node amplitudes
comparing raw data with denoising with FIX (supervised) and ICA-AROMA (unsu-
pervised) for 2 subjects (leftmost panel). Coefficient of variation after denoising for
within-scanner repeats for a subject acquired on a Philips scanner (central panel) and
on a Siemens scanner (rightmost panel). B) Correlation of cross-subject ranking for
the denoising approaches.

Figure 5.7: The average across 4 subjects of the difference in within-scan repeat
coefficients of variation of ROI-wise DTI FA before and after dMRI denoising.

and undenoised dMRI data with the left and right cerebellar peduncle high-

lighted. We see that the denoised FA maps in the highlighted regions deviate
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significantly from the region enclosed by the region of interest taken from the

JHU atlas (Mori et al. 2005, Wakana et al. 2007). In the undenoised version,

this is not the case and we see that most of the tissue lies within the ROI,

explaining why FA values from these regions appeared different in the previ-

ous plot. As the main outliers were found in ROIs close to areas with large

susceptibility-induced distortions, the interplay between dMRI (patch-based

as done here) denoising and distortion correction may be a factor contributing

to these observations.

Figure 5.8: FA maps of one subject derived from denoised and undenoised dMRI
data with the left and right cerebellar peduncle highlighted in MNI standard space.
These tracts correspond to the outliers identified in Figure 5.7.

5.3.2 Explicit Harmonisation

In addition to identifying optimal processing steps for pipelines to minimise

between-scanner variability in imaging extracted features (implicit harmonisa-

tion), we used the data to evaluate existing harmonisation approaches, using

the within-scanner variability as a baseline. These are meant to explicitly

reduce between-scanner variability. Figure 5.9 shows how between-scanner

variability from harmonised cortical volumes from Neuroharmony and Com-
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Bat compare to variability in unharmonised data and within-scanner repeats

for the same subjects. Both harmonisation approaches reduce between-scanner

variability (median CoV=0.074) in the considered features, with ComBat (me-

dian CoV=0.051) reducing it more than Neuroharmony (median CoV=0.073).

Even so, they are still higher than within-scanner variability of the same fea-

tures (median CoV=0.027).

Figure 5.9: The effect of harmonising cortical area volumes using ComBat and
Neuroharmony for 4 subjects. For each subject and each imaging feature, a CoV
was computed against 6 repeats (either within-scanner or between-scanner), prior
to harmonisation. Violin plots are made from the CoVs of all considered features.
After harmonisation, the CoVs depict the harmonised between-scanner repeats.

We further explored the effects of explicit harmonisation approaches for other

features. As Neuroharmony is a supervised model trained only for a certain

feature (cortical area volumes), we used only ComBat for different features,

including subcortical volumes obtained from FIRST, the T2* values extracted

from susceptibility-weighted images and the FA of white matter ROIs obtained

from diffusion MRI. These were once again obtained from a common set of

tracts shared by the two approaches.

Figures 5.10, 5.11 and 5.12 present the results. For all features we see that on

average, ComBat reduces the between-scanner variability although this vari-

ability is not always as low as within-scanner variability. Combat seems to be
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Figure 5.10: A) The effect of harmonising subcortical volumes from multi-site data
with ComBat. For each subject and each imaging feature, a CoV is computed against
6 repeats (either within-scanner or between-scanner), prior to harmonisation. Box
plots are made from the CoVs of all considered features. After harmonisation, the
CoVs depict the harmonised between-scanner repeats. B) Correlations in between-
scanner cross-subject ranking for each measure with and without ComBat harmoni-
sation.

more effective in reducing between-scanner variability for some features (e.g.

FA or T2*) compared to others (e.g. subcortical volumes). Interestingly, a

common trend across all features is that between-scanner cross-subject rank-

ings before and after harmonisation are almost identical. Combat modifies

feature values such that variability is reduced, but it is not beneficial in restor-

ing cross-subject ranking between scanners.

5.4 Discussion

We have used our dataset as a testbed to explore and evaluate harmonisa-

tion approaches. Specifically, we have used our data to identify various opti-

mal processing steps used in feature extraction pipelines, such that between-

scanner variability in extracted features is minimised compared to e.g. within-
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Figure 5.11: A) The effect of harmonising T2* values in subcortical ROIs from
multi-site data with ComBat. For each subject and each imaging feature, a CoV
is computed against 6 repeats (either within-scanner or between-scanner), prior to
harmonisation. Box plots are made from the CoVs of all considered features. After
harmonisation, the CoVs depict the harmonised between-scanner repeats. B) Corre-
lations in between-scanner cross-subject ranking for each measure with and without
ComBat harmonisation.

scanner variability (implicit harmonisation). We have also tested performance

of post-processing harmonisation tools (explicit harmonisation) and specifi-

cally checked whether the harmonised features between-scanners are indeed

less variable (and by how much) compared to no harmonisation. For these

tests we also used our data to establish within-scanner variability baselines for

the harmonised features.

For anatomical imaging features, we have found a number of interesting trends.

Cortical area volumes extracted from FreeSurfer and subcortical volumes ex-

tracted from multi-modal segmentation seem to have less between-scanner vari-

ability compared to other approaches explored. Previous studies have shown

that cortical volumes derived from FreeSurfer have a strong degree of robust-

ness against scanner effects. For instance in (Iscan et al. 2015) it is shown
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Figure 5.12: A) The effect of harmonising tract-wise FA values from multi-site
data with ComBat. For each subject and each imaging feature, a CoV is computed
against 6 repeats (either within-scanner or between-scanner), prior to harmonisa-
tion. Box plots are made from the CoVs of all considered features. After harmoni-
sation, the CoVs depict the harmonised between-scanner repeats. B) Correlations in
between-scanner cross-subject ranking for each measure with and without ComBat
harmonisation.

that for the DK atlas, cortical volume measures showed test-retest correla-

tions (scans acquired at 4 different sites) scores of 0.88. This study also showed

higher test-retest correlation and inter-class correlation scores for volumes for

the DK atlas (coarse) than the Destrieux atlas (fine) which is in agreement

with the results we obtained. These results confirm what we expect since re-

gions defined by the DK atlas are larger than those in the Destrieux atlas.

For subcortical volumes, we found volumes derived using a multi-modal seg-

mentation method (MIST) were more reproducible than those derived using a

unimodal approach (FIRST). This is in agreement with the findings in (Visser

et al. 2016) who compared the approach with FIRST and FreeSurfer using a

manual segmentation as a benchmark. Results showed that the dice overlap

was higher for MIST than it was for FIRST indicating that segmentations
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performed using multiple imaging modalities are more robust than than those

which only used a single modality. We also assessed the advantage of train-

ing MIST with data from 3 modalities (T1-weighted,T2-weighted and dMRI

data) compared to training it using 2 (T1-weighted and T2-weighted). Intu-

ition would suggest that leveraging imaging information from more modalities

would result in more reproducible results, however our results show that adding

dMRI data as an input to MIST decreased between-scanner reproducibility.

These findings agree with results in (Visser et al. 2016), who found that in-

creasing the number of modalities used for MIST segmentation can increase

variability. This can happen for regions where the contrast is very clear from

structural images. In this case, segmentations from the structural images alone

are highly reproducible and adding another modality, particularly a more noisy

one like dMRI, introduces new sources of variability. As shown in the previ-

ous chapter the between-scanner variability of dMRI features was considerably

more than that of anatomical features. Finally, we found that MIST performs

better when trained on all scanning sessions compared to when it has only

been trained on one scanner. This confirms intuition as in the former case,

data from all scanners is being used to inform the segmentations which is a

form of an indirect harmonisation.

Our explorations of between-scanner variability of FA measures in white mat-

ter ROIs suggest that FA derived in ROIs defined by a skeletonised atlas

are considerably less variable than in ROIs derived using binarised tractog-

raphy masks, whether skeletonised or otherwise. The increased variability of

tractography-defined ROIs compared to skeletonised-atlas-defined ROIs is ex-

pected due to the fact that in the former, the sizes of ROIs are allowed to

vary whereas in the latter, the sizes of the ROIs are relatively fixed. Pre-

vious studies have also assessed the reproducibility of FA measures in ROIs

(Vollmar et al. 2010, Heiervang et al. 2006). In (Vollmar et al. 2010), it is

reported that methods based on probabilistic tractography can introduce ap-
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proximately 50% more variation compared to methods with predefined ROIs

(akin to the skeletonised ROIs we have here). Despite these large discrepancies

in reproducibility, it is pointed out in (Heiervang et al. 2006) that there is a

need to balance reproducibility with sensitivity. Even though a measure can

have low between-scanner reproducibility, it may have a higher sensitivity to a

relevant changes so we cannot always assess the merit of these methods based

on reproducibility alone. We endeavoured to introduce a middle ground in

this comparison by restricting the tractography masks within a skeleton. As

expected, this increased reproducibility compared to raw tractography results.

Whether this maintains the sensitivity we’d hope to preserve would require

further investigation.

For resting-state functional MRI data, denoising the data with an unsupervised

denoising method was more effective at reducing between-scanner variability

of rfMRI node amplitudes, compared to a supervised method trained on data

from a specific vendor. Previous comparisons of the two approaches have been

conducted (Pruim, Mennes, Buitelaar & Beckmann 2015). ICA-AROMA was

shown to have higher levels of resting state network reproducibility than FIX,

even when FIX was trained with very high quality data from the Human Con-

nectome Project (Van Essen et al. 2012). Thus we see that in the general case

unsupervised denoising may be advantageous across scanners. But when simi-

lar training data is available, it may be optimal to use a supervised approach.

We found a slightly unexpected trend for dMRI denoising using MP-PCA (Ve-

raart et al. 2016). Even within-scanner variability of extracted DTI features

did not always decrease after denoising compared to features extracted from

undenoised data. It is worth pointing out that raw SNR and CNR values do

increase after denoising in this data. The natural question to ask is why then

does variability of features does not improve after denoising? A possible expla-

nation is that we observed a trend that outlier cases where in caudal regions of
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the brain where denoising appeared to have increased variability by more than

15%. These are areas known to be prone to susceptibility artefacts (Andersson

et al. 2003) and therefore distortion correction is more impactful in these ar-

eas. The fact we see these areas significantly affected after denoising suggests

that there is a possible interaction between denoising and distortion correction.

This could happen because, even prior to distortion correction, denoising as-

sumes that the every voxel is in the correct place yet this is not true in the

presence of distortions. As denoising is patch-based, incorrectly placed voxels

would end up influencing the denoising process meaning a distortion correc-

tion like this could lead to misplaced voxels and in slightly different ways for

the different repeats. This suggests that the optimal way of denoising requires

more exploration e.g exploring when in the processing pipeline denoising is

more likely to have the desired effects.

We also compared explicit harmonisation approaches in ways that have not

been evaluated before. We showed that that both Neuroharmony (Garcia-Dias

et al. 2020) and ComBat (Fortin et al. 2017) reduced the between-scanner vari-

ability. It is important to note that with 6 scanning sessions, we were at the

lower end of the recommended number of subjects for good results using Com-

Bat. In (Maikusa et al. 2021) it is stated that it is not ideal to perform ComBat

harmonisation with 20 subjects or less therefore the application of it here was

not to its full potential. Nevertheless, ComBat still managed to improve on

results obtained from Neuroharmony. As Neuroharmony uses pre-trained cor-

rections provided by ComBat to perform harmonisation on unseen data, it is

somewhat expected that it will not perform as well as ComBat which directly

uses data from multiple scans within the cohort to harmonise. However, there

is a trade-off at play in that while ComBat is more effective at harmonising

data, it can not harmonise individual datasets. A limitation of our assess-

ment is that we have been unable to asses the effectiveness of ComBat using

the number of subjects recommended in the literature (Maikusa et al. 2021),
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which would be necessary in order to assess in optimal operation. We however

found small changes when comparing ComBat performance using only the 4

subjects (4 × 6 sessions) that had within-scanner repeats against performance

when considering the full cohort of 10 subjects (10 ×6 sessions). As the 20

subjects recommendation was established using 3 between-scanner sessions, it

may be that using twice the number of between-scanner sessions in our study

makes up for the fewer number of subjects.

Our application of ComBat to other modalities showed that ComBat in general

reduced between-scanner variability although it did not reduce it to levels as

low as within-scanner variability. We observed that ComBat was more effective

at harmonising FA and subcortical T2* features than it was at harmonising

subcortical volumes. The relatively small difference in ComBat corrected sub-

cortical volumes to uncorrected volumes is in agreement with findings from

other studies (Treit et al. 2022). The authors in the mentioned study used

ComBat to reduce systematic variations in brain volumes of 23 travelling sub-

jects scanned in 3 different scanners and they found minimal changes (of less

than 5%) between corrected and raw volumes for several sub-cortical regions

(caudate, globus pallidus, putamen, and thalamus). The authors in (Treit et al.

2022) point out that the degree to which ComBat decreases inter–subject vari-

ability likely depends on the magnitude of site effects in the raw data implying

that that ComBat has less of an effect on results which are most robust to site

effects. Our findings support this notion as of the three features (subcortical

volumes, T2* values and FA values), subcortical volumes had on average the

least between-scanner variability of the three and were affected the least by

ComBat.

Another important finding for explicit harmonisation approaches is that they

did not improve or change inconsistencies in between-scanner cross-subject

rankings. This was true across all modalities and features tested. This was
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not the case for implicit harmonisation approaches which in most cases had a

beneficial effect in that respect, in addition to reducing between-scanner vari-

ability.

The work in this chapter enables future opportunities to evaluate a wider

range of Harmonisation algorithms and extend upon the two approaches that

we considered here. There are significantly more approaches as overviewed

in 2 and most of them have been evaluated using ad-hoc criteria. Our data

provide a testbed for objective evaluation and comparisons, as we illustrated

in this chapter with a number of examples across different imaging modalities

and feature types. Furthermore, optimal pipelines for feature extraction can

be aimed for, with a good example being that of identifying best ways to

denoise dMRI data. We have begun to show how our results an be used to

arrive at a consensus of what the most reproducible and generalisable pipelines

are to process brain MRI data thus help to address the challenge of poor

reproducibility, accuracy and consistency in quantitative MRI. In the final

chapter, these results will be summarised in the form of guidelines which will

provide recommendations of which tools to use in order to obtain the most

consistent and reliable results.



Chapter 6

Summary

6.1 Recommendations and Guidelines

The results of the explorations performed of previous chapter provide the ba-

sis for recommendations and guidelines on which tools use to minimise the

effects of scanner induced variability. While not all possible pipelines have

been explored, this chapter will suggest current best processing tools for use

in pipelines.

Volumetric Features

During our exploration of different approaches for obtaining cortical area vol-

umes, we found that ROI volumes derived using FreeSurfer were more robust

than those derived using FIRST which is a registration-based approach. Ac-

cordingly, we would recommend using FreeSurfer when performing this type of

analysis. Specifically, we would recommend using Desikan-Killiany (DK) (De-

sikan et al. 2006) atlas which has fewer and larger ROIs as these are less suscep-

tible to noise than their finer counterparts from the Destrieux atlas.(Destrieux

et al. 2010).

For sub-cortical regions, if both T1-weighted and T2-weighted imaging data are

available then the recommendation is to use MIST (Visser et al. 2016), which

leverages information from multiple modalities to inform segmentation’s. Al-

158
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though MIST can also take diffusion data as an input we have found that if

the data is not of a high-enough quality, it could compromise repeatability so

we would not recommend this in the first instance as high quality diffusion

data which would aid segmentation would probably be acquired in a bespoke

manner and differ significantly from what is typically acquired. If mutli-modal

data of this kind is not available, FreeSurfer remains the default recommenda-

tion.

Tract-wise DTI microstructure metrics

The results from our assessment of the reproducibility of DTI FA measures

averaged in white matter ROIs indicated that extracting these metrics from

a skeletonised atlas yields more consistent results than extracting them from

subject-specific tractography. We would therefore recommend the TBSS tool

(Smith et al. 2006). It must be noted that higher levels of reproducibility

achieved by this method may be at the expense of subject sensitivity (Heier-

vang et al. 2006). While results from tractography are more subject-specific,

work remains to be done on increasing reproducibility. As advances continue

to be made in tractography, this recommendation may change.

rfMRI derived measures

For the denoising of rfMRI data, our recommendation depends on whether

training data is available for each scanner involved in the study. If this data

is available, FIX (supervised method) (Salimi-Khorshidi et al. 2014) is to

be favoured. If this data is not available then ICA-AROMA (unsupervised

method) (Pruim, Mennes, van Rooij, Llera, Buitelaar & Beckmann 2015) is to

be favoured. Although we have recommended FIX, it’s important to note that

it is uncommon to have training data available for each scanner involved in a

study. Moreover, having training data of a comparable quantity and quality

across all scanners involved in a study is even more uncommon. Given these

stringent criteria, ICA-AROMA should be considered if one is looking for re-
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sults which reflect a more real-life scenario.

Harmonisation Method

Our recommendation for which harmonisation tool to use is data dependent.

If there are more than 10 datasets available, then ComBat (Fortin et al. 2017)

is the reccomended method. For fewer data sets than this, Neuroharmony

(Garcia-Dias et al. 2020) should be used as this is a way of implementing

ComBat on indivudal datastets.

6.2 Conclusions

This thesis contributes to better understanding and addressing the lack of con-

sistency across neuroimaging datasets. To facilitate this, we have built a new

resource for comprehensively mapping the extent of the problem and objec-

tively evaluating neuroimaging harmonisation approaches. This resource ex-

tends previous efforts in a number of ways, by considering more scanners than

before (spanning all major vendors), using more modalities than before, hav-

ing within-scanner variability references and extracting hundreds of imaging

features. We based our acquisition protocols on the UK Biobank multi-modal

imaging protocol, but adjusted them accordingly for each scanner/site. As

implementation and scanner differences only allow a nominal match for acqui-

sition parameters as a whole, we preserved common practice for each scanner

in our protocols, allowing a more realistic (and less bespoke) multi-scanner

dataset.

Using this resource, we mapped between-scanner variability for a range of

multi-modal imaging features and found that this can be up to 5-10 times

more than the variability of within-scanner repeats, while bias can be in the

order of 10-15 %. We found that the least affected features were derived from

T1-weighted and T2-weighted imaging modalities, which were the most re-
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producible across scanners by a margin. This was followed by SWI features,

then dMRI features and then finally by rfMRI features. We also found that in

some cases, the variability of features from a single subject scanned in multi-

ple scanners was comparable to between-subject variability of our study cohort

(N=10) scanned in a in a single scanner; and in the worst of cases comparable

to the variability of a larger population study (N=1000).

In addition, the scope and size of our travelling-heads dataset enabled us to

assess the effects of scanner-induced variance using metrics that have been

relatively unexplored. Specifically, we were able to assess consistency between

scanners in preserving subject ranking of features. We saw even among features

that exhibited the highest degree of between-scanner reproducibility, consis-

tency in subject ranking was not always preserved. This highlights another

challenge in harmonising datasets in that features derived from imaging modal-

ities which may have been generally thought to be reproducible and robust to

scanner effects still require significant attention.

We used our resource as a testbed to evaluate and objectively compare har-

monisation approaches. We demonstrated how adjusting processing steps in

pipelines can minimise between-scanner variability in extracted features com-

pared to e.g. within-scanner variability or biological variability (implicit har-

monisation). We have done this for structural, diffusion and functional imag-

ing modalities. For structural modalities, processing steps have been identified

that minimise between-scanner variability for cortical and sub-cortical segmen-

tation of brain regions. For diffusion MRI, processing steps and tools have been

identified and denoising methods explored which minimise between-scanner

variability of DTI-derived metrics in white matter pathways. For functional

MRI, denoising methods have been explored which reduce inter-scanner vari-

ability in node amplitudes in ways that can generalise to other vendors.
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We have explored and compared the efficacy of two explicit harmonisation

tools in reducing between-scanner variability. Using within-scanner variability

as a baseline reference, we found that harmonisation tools’ efficacy varies con-

siderably between feature types, with examples of working very well (e.g. FA

values in ROIs) to examples of not causing any major differences (e.g. volumes

of subcortical regions). Even so, we found that in cases where harmonisation

has reduced variability between scanners it has little to no effect on the preser-

vation of cross subject ranking compared to raw, unharmonised data. So for

features where the latter is problematic, explicit harmonisation may not solve

the issue. For example, explicit harmonisation would not be a suitable way

to remove the variability incurred from scanning 2 different timepoints in 2

different scanners as part of a longitudinal study as this would be susceptible

to a change of ranking.

This was in contrast to implicit harmonisation approaches that seem to affect

both aspects (reducing between-scanner variability and improving preserva-

tion of subject ranking across scanners). A combination of the two is therefore

likely to be needed to resolve the harmonisation challenge and our resource

can be used to optimise potential solutions.

6.3 Future Perspectives

For current algorithms which claim to harmonise and those yet to come, the

developed resource provides objective ways to evaluate them across a num-

ber of imaging modalities. The availability of sufficiently rich datasets to train

complex models on has led to increased usage of machine learning in MRI (Da-

vatzikos 2019) yet a lack of harmonisation remains a significant obstacle for

pooling together datasets that are often acquired across imaging facilities. As

the amounts of these datasets continue to increase, harmonisation approaches

will inevitably proliferate. Furthermore, there is unlikely to be a one-size-fits
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all harmonisation approach. A more likely scenario, as we have seen in Chapter

2, and confirmed with our results in the previous chapter, is that the success

of a harmonisation approach will be dependent on the application and type of

features.

For example, a multicenter clinical trial would be an ideal candidate for Com-

Bat harmonisation. These studies typically contain a large number of par-

ticipants (100-1000) and would comfortably satisfy the amount of data sets

required for ComBat to operate in an even more optimal way than has been

demonstrated in this thesis. On the other hand, in a case-control group com-

parison, ComBat would be less suitable as it has limited effect on subject-

ranking. For example, in conditions characterised by the enlargement or re-

duction of certain brain regions, (Kang et al. 2020) certain subjects may appear

to exhibit a response because of a scanner effect rather than true biological

variability.

and as such the multi-modal nature of our resource will help identify the right

tool for a given application.

The work presented in this thesis is also an aid in addressing the reproducibil-

ity crisis. Various studies have reported that even in cases where the same

dataset is being used (Griffanti, Rolinski, Szewczyk-Krolikowski, Menke, Fil-

ippini, Zamboni, Jenkinson, Hu & Mackay 2016, Botvinik-Nezer et al. 2020,

Schilling et al. 2021), differences in analyses, processing tools and pipelines

have yielded inconsistent results. Here, we have shown how processing steps

can be objectively compared to reduce between-scanner variability, which is

propagated to features and potentially amplified with different magnitude by

different processing approaches. Our resource can be used to give recommen-

dations and help achieve consensus on what analyses, processing tools and

pipelines should be used. This will increase confidence in comparisons of re-

sults made between different research groups and lead to results which reflect
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underlying biology of interest and are not confounded by processing tools and

pipeline choices.

Another future direction opened up by this work is addressing the challenge of

preserving subject ranking across scanners. Harmonisation is typically thought

of in terms of reducing between-scanner variance and bias but we have shown

that this does not tell the whole-story. ComBat, one of the most popular ex-

plicit harmonisation tools, reduces variance and bias for several applications

(Fortin et al. 2017, 2018) but we have shown that it has a much reduced effect

on restoring cross-subject ranking, which can influence results even in case-

control group comparisons. The travelling heads paradigm adopted in our

data set and the number of participants included allow future harmonisation

algorithms to to be evaluated by their ability to preserve cross-subject ranking

and address it accordingly. Interestingly, we found that implicit harmonisation

approaches are beneficial in this respect, suggesting that it would be interesting

to explore combinations of both groups of methods for optimal harmonisation.

Finally, in acquiring our dataset we have aimed that its scope should represent

the kind of variety expected from multi-site studies as we have acquired data

from all 3 major vendors and from different generations of scanners from the

same vendor. Although we have only acquired data from 10 subjects, this could

still be considered a large enough dataset to design and train modern machine

learning approaches for certain applications. For instance, when harmonised

grey/white matter segmentation is the aim, even cutting-edge deep-learning

harmonisation algorithms (Dinsdale et al. 2021) can be trained on 2D data

with very high generalisability on 3D datasets. Considering in our dataset

slices rather than volumes (which can be further increased further through

data augmentation (Chlap et al. 2021) approaches) can enable developments

in such a direction.
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