
Bootstrapping Extensionality
University of Nottingham

Filippo Sestini

August 7, 2023

2

Abstract

Intuitionistic type theory is a formal system designed by Per Martin-Löf to be a
full-fledged foundation in which to develop constructive mathematics. One partic-
ular variant, intensional type theory (ITT), features nice computational properties
like decidable type-checking, making it especially suitable for computer implemen-
tation. However, as traditionally defined, ITT lacks many vital extensionality
principles, such as function extensionality. We would like to extend ITT with the
desired extensionality principles while retaining its convenient computational be-
haviour. To do so, we must first understand the extent of its expressive power,
from its strengths to its limitations.

The contents of this thesis are an investigation into intensional type theory, and
in particular into its power to express extensional concepts. We begin, in the first
part, by developing an extension to the strict setoid model of type theory with a
universe of setoids. The model construction is carried out in a minimal intensional
type theoretic metatheory, thus providing a way to bootstrap extensionality by
“compiling” it down to a few building blocks such as inductive families and proof-
irrelevance.

In the second part of the thesis we explore inductive-inductive types (ITTs) and
their relation to simpler forms of induction in an intensional setting. We develop a
general method to reduce a subclass of infinitary IITs to inductive families, via an
encoding that can be expressed in ITT without any extensionality besides proof-
irrelevance. Our results contribute to further understand IITs and the expressive
power of intensional type theory, and can be of practical use when formalizing
mathematics in proof assistants that do not natively support induction-induction.

3

4

Acknowledgements

I would like to extend my sincere thanks to the many people that have contributed
to make my PhD studies and my stay in Nottingham the pleasant experience that
it has been.

I am first of all very grateful to my supervisor, Thorsten Altenkirch, for giving
me freedom to explore my research interests while always being there to give helpful
advice and discuss new ideas. I am also thankful to the many people in the type
theory community that have helped me grow, and especially Ambrus Kaposi, with
whom I have collaborated on a paper and had many insightful conversations.

I would like to express my sincere gratitude to all members of the Functional
Programming Lab, particularly the past and present postdocs and PhD students,
for making it an enjoyable and friendly environment where to learn a lot and have
fun.

Finally, special thanks to the Nottingham Japanese Society, for being a source
of many good friends and a weekly distraction from the inevitable stress of research.

6

Contents

I Introduction 11

1 Overview 13

2 Background 17
2.1 Type Theory . 17

2.1.1 Identity types . 22
2.1.2 Strict propositions and h-propositions 23
2.1.3 Uniqueness of identity proofs 24

2.2 Models of Type Theory . 24
2.2.1 Categories with Families . 25
2.2.2 Presheaf model of Type Theory 26
2.2.3 Models of type theory within presheaves 27

3 Induction-induction 31
3.1 Reducing multi-sorted IITs . 33
3.2 Reducing finitary induction-induction 34

4 This thesis 41
4.1 Contributions . 41
4.2 Structure . 42

II Setoids and extensionality 45

5 The setoid model of type theory 47
5.1 MLTTProp . 49
5.2 Strict setoid model . 50
5.3 Setoid Type Theory . 51

6 The setoid universe 53
6.1 Design choices . 54
6.2 Inductive-recursive universes . 55

7

8 CONTENTS

6.3 Inductive-recursive setoid universe 56
6.4 Inductive-inductive setoid universe 58
6.5 Inductive setoid universe . 62
6.6 Inductive setoid universe with general eliminators 64

6.6.1 Universe induction . 65

7 Conclusion of Part II 69
7.1 Formalization . 69
7.2 Future work . 70
7.3 Related work . 71

III Inductive-inductive types 73

8 Infinitary induction-induction 75
8.1 Example: contexts and types . 76

8.1.1 Recursive predicates and relations 81
8.2 Example: the setoid universe IIT 85

9 Generalizing the encoding 93
9.1 Scope of the encoding . 94
9.2 Target inductive-inductive types . 97
9.3 Metatheory and target theory . 99

9.3.1 Metatheory . 100
9.3.2 Target theory . 100

9.4 Specifying Inductive-Inductive Types 103
9.4.1 Type Theory as a datatype of specifications 103
9.4.2 Linear infinitary IITs . 105
9.4.3 Specifying linearity . 110

10 Algebras of IITs 113
10.1 Algebras . 114
10.2 Morphisms, sections, and induction 118

10.2.1 Displayed algebras . 119
10.2.2 Sections . 123

11 Constructing IIT algebras 129
11.1 Erased types . 130

11.1.1 Algebras of erased types . 130
11.1.2 Displayed algebras of erased types 133
11.1.3 Sections of erased algebras 137
11.1.4 Existence of erased types . 140

CONTENTS 9

11.2 Well-formedness predicates . 146
11.2.1 Algebras of well-formedness predicates 146
11.2.2 Inversion principles . 150
11.2.3 Existence of predicate types 151

11.3 IIT Σ-algebra . 154
11.3.1 Σ-construction . 155
11.3.2 Existence of IIT algebras . 159

12 Defining the IIT eliminators 161
12.1 Eliminator relations . 162

12.1.1 Relation algebras . 162
12.1.2 Inversion principles . 165
12.1.3 Existence of the relations . 166

12.2 Left-totality of the relations . 174
12.2.1 Specifying left-totality . 174
12.2.2 Proving left-totality . 177

12.3 Constructing the sections . 182

13 Conclusion of Part III 187
13.1 Beyond linear and infinitary IITs 187

13.1.1 Finitary IITs . 188
13.1.2 Linearization of non-linear IITs 188

13.2 Formalization . 190
13.3 Future work . 191
13.4 Related work . 193

10 CONTENTS

Part I

Introduction

11

Chapter 1

Overview

Intuitionistic type theory is a formal system designed by Per Martin-Löf to be
a full-fledged foundation in which to develop constructive mathematics [Mar75,
Mar84]. A central aspect of type theory is the coexistence of two notions of
equality. On the one hand definitional equality, the computational equality that is
built into the formalism. On the other hand “propositional” equality, the internal
notion of equality that is actually used to state and prove equational theorems
within the system. The precise balance between these two notions is at the center of
type theory research; however, it is generally understood that to properly support
formalization of mathematics, one should aim for a notion of propositional equality
that is as extensional as possible.

Two extensionality principles seem particularly desirable, since they arguably
constitute the bare minimum for type theory to be comparable to set theory as a
foundational system for set-level mathematics, in terms of power and ergonomics.
One is function extensionality (or funext), according to which functions are equal if
point-wise equal. Another is propositional extensionality (or propext), that equates
all propositions that are logically equivalent.

Type theory with equality reflection, also known as extensional type theory
(ETT) does support extensional reasoning to some degree, but unfortunately
equality reflection makes the problem of type-checking ETT terms computationally
unfeasible: it is undecidable.

On the other hand, intensional type theory (ITT) has nice computational prop-
erties like decidable type checking that can make it more suitable for computer
implementation, but as usually defined (for example, in [Mar75]) it severely lacks
extensionality. It is known from model constructions that extensional principles
like funext are consistent with ITT. Moreover, ITT extended with the principle
of uniqueness of identity proofs (UIP) and funext is known to be as powerful as
ETT [Hof96]. We could recover the expressive power of ETT by adding these
principles to ITT as axioms, however destroying some computational properties

13

14 CHAPTER 1. OVERVIEW

like canonicity.

What we would like instead is a formulation of ITT that supports extension-
ality, while retaining its convenient computational behaviour. Unfortunately, this
vision does not seem attainable if we want our theory to enjoy canonicity while
also implementing equality as the standard Martin-Löf’s identity type inductively
defined from reflexivity: in that setting, canonicity implies that if two terms are
propositionally equal in the empty context, then they are also definitionally equal.
This is incompatible with function extensionality, since that would allow, for exam-
ple, to equate the otherwise intensionally distinct functions λx . x+0 and λx . 0+x.
One first step towards a solution is to give up the idea of propositional equality as
a single inductive definition given generically for arbitrary types. Instead, equal-
ity should be specific to each type former in the type theory, or in other words,
every type former should be introduced alongside an explanation of what counts
as equality for its elements.

This idea of pairing types together with their own equality relation goes back
to the notion of setoid or Bishop set. Setoids provide a quite natural and useful
semantic domain in which to interpret type theory. An early version of the setoid
model was proposed by Hofmann to justify function extensionality without rely-
ing on funext in the metatheory [Hof95], however the model posed issues when
attempting to introduce universes and large elimination.

An alternative variant of the setoid model was published by Altenkirch in
[Alt99]. The construction is carried out in a type-theoretic metatheory with a uni-
verse of definitionally proof-irrelevant propositions, which results in a model that
validates all the necessary equations strictly1, and that supports universes/large
elimination. This model, which we refer to as the strict setoid model, was later
shown in [ABKT19] to validate a universe of strict, definitionally-proof irrelevant
propositions internalizing the metatheoretic one.

The strict setoid model satisfies all the extensionality principles that we would
like to have in a set-level type theory2, but it is not a syntactic theory and therefore
inadequate for mathematical reasoning as-is. The question is thus whether we can
formulate a version of intensional type theory inspired by this model, that supports
setoid reasoning and consequently the forms of extensionality enabled by it.

This question was revisited and answered in Altenkirch et al. [ABKT19]. In this
paper, the authors define Setoid Type Theory (SeTT), an extension of intensional
Martin-Löf type theory with constructs for setoid reasoning, where funext and
propext hold by definition. SeTT is based on the strict setoid model, the strictness
of which makes it possible to show consistency via a syntactic translation. This is
in contrast with other type theories based on the setoid model, like Observational

1A strict model is one where every equation holds definitionally.
2In the sense of HoTT we mean a type theory limited to h-sets.

15

Type Theory (OTT) [AMS07], which instead rely on ETT for their justification.
A major property of SeTT is thus to illustrate how to bootstrap extensionality,
by translation into a minimal intensional core. In the same lineage of SeTT is
XTT [SAG19], an version of intensional MLTT presenting a cubical reconstruction
of OTT. With similar goals and scope, XTT provides an alternative to SeTT as
a syntactic theory of setoids, although with quite different syntactic style and
semantic justification.

SeTT as defined in [ABKT19] is already a rich theory, but its universes are
limited to propositions. We would like to extend the theory with a universe of
setoids, so as to properly internalise the notion of type. This goal brings up
several questions, one of which has to do with the notion of equality with which the
universe should come equipped: the universe of setoids is itself a setoid (since any
type is) so it certainly cannot be univalent, as setoids lack the necessary structure.
Another issue is the way such universe can be justified by the setoid model, and in
particular what principles are needed in the metatheory to do so. The appeal of
the original strict setoid model [Alt99] is that it explains extensionality by reducing
it to a core intensional theory, so it seems desirable to implement any extension
to it in a way that would preserve this property.

We thus have this tension between wanting our metatheory to be expressive,
while at the same time keeping the set of core primitives as minimal as possible. A
way to achieve this is to encode seemingly complex constructs in terms of simpler
ones. A typical example is the reduction of inductive families to (indexed) W-
types, a corollary of which is that merely extending a type theory with a single
type constructor (that is, W-types) equips it with the full expressive power of
arbitrary inductive definitions [Dyb97,Hug21].

These encoding/reduction methods are often of interest in the metatheoretic
study of type theory. One reason is that they further our understanding of the
concept being reduced, by explaining it in terms of well-understood building blocks.
Moreover, they strengthen metatheorems, by showing that some assumptions can
either be simplified or eliminated.

There are also practical reasons, like simplified exposition: these reductions
allow us to replace a type theory with another that is equivalent in expressive
power, but syntactically simpler. This is certainly desirable in metatheoretic stud-
ies, where type theories are the objects of our statements and proofs. For example,
when studying the metatheory of type theory with inductive types, it is much more
convenient to just assume the presence of W types rather than to work with general
definition schemas.

Another practical benefit of these encodings is that they inspire ways to extend
the capabilities of existing type-theoretic proof-assistants beyond their original
design. Inductive-inductive types (IITs) [NF13] are a particularly evident example,

16 CHAPTER 1. OVERVIEW

since several well-known and widely-used proof assistants like Coq or Lean do
not directly support them. Some forms of induction-induction are known to be
reducible to plain inductive families [KKL20,vR19], which means that these proof-
assistants could be made to support them (for example, via metaprogramming)
without the need to change the core foundational theory [vR22].

The theme of reducing and explaining complex structures in terms of simpler
building blocks is central to this thesis’s work. In a modest attempt to pursue this
general idea, we contribute a few novel results targeting two distinct but related
topics.

We begin by presenting work towards equipping SeTT with a universe of se-
toids. Specifically, we show how to extend the strict setoid model with semantics
for such universe. In line with the design choices of previous formulations of
the model [Alt99,ABKT19], we try to keep the metatheory as minimal and inten-
sional as possible. Accordingly, we construct the setoid universe in multiple stages,
first by relying on complex forms of induction-recursion and infinitary induction-
induction which are gradually reduced to simpler forms of induction. The final
result is a setoid universe that can be encoded via plain inductive families, in a
modest extension of intensional type theory. The universe is shown to validate
judgmental closure under type formers, in addition to universe induction/typecase
principle with propositional β-laws. We accompany our work with a complete
Agda formalization.

The aforementioned universe construction process goes through the reduction
of an infinitary inductive-inductive type to its encoding as plain inductive families.
Despite the relative complexity of the “source” IIT we were able to carry out our
encoding with only modest extensions to the metatheory, which notably does not
include function-extensionality nor propositional extensionality, let alone equality
reflection. A question that naturally arises is thus whether the same encoding
can be applied to other infinitary IITs in addition to the one used for the setoid
universe. Our second major contribution is work towards answering this question.
We present and formalize a general method to reduce a subclass of infinitary IITs to
inductive families, and encode them in an intensional type theory without funext.
The construction draws from a known method to reduce finitary IITs to inductive
families [vR19], adapting it to apply to the infinitary case.

Chapter 2

Background

2.1 Type Theory

Intuitionistic Type Theory is a formal system designed by Per Martin-Löf to
provide a precise and rigorous framework for developing constructive mathemat-
ics [Mar75,Mar84]. The main constructions in type theory are types and elements
of types. Its inference rules specify how to derive judgments, which are used to
assert that something is a type, a term of a certain type, and that two types or
terms are equal by definition. A fundamental aspect of type theory is that types
constitute the primitive structure, on top of which logic is derived. The imple-
mentation of logic in type theory is based on the propositions-as-types principle,
where propositions are identified with (certain) types, and proofs of a proposition
with elements of the representing type.

Traditionally, type theory has often been presented as a form of typed λ-
calculus, usually in a set-theoretic metatheory. These systems are defined by a
set of grammar rules for untyped terms giving the “raw” syntax, and a set of
“typing” inference rules that assign typing to the raw terms. For example, the
simply-typed λ-calculus can be defined as the following set of untyped terms Tm
and typing rules:

Tm 3 t, s ::= x | λx.t | t s

Γ, x : A,∆ ` x : A

Γ, x : A ` t : B

Γ ` λx.t : A→ B
Γ ` t : A→ B Γ ` s : A

Γ ` t s : B

This style of presentation is also called extrinsic, since the notion of type is
applied to the syntax post-facto. We will instead present type theory in an intrin-
sic style, where the syntactic terms are defined together with their typing. This
approach is equivalent to defining type theory as a finitely-presented generalized
algebraic theory [Car86]. We have sorts for contexts, types, and terms, as well as
corresponding judgments about objects of these sorts:

17

18 CHAPTER 2. BACKGROUND

• A sort Con of contexts; the judgment Γ : Con states that Γ is a context;

• A sort Sub of substitutions, for any contexts Γ,∆ : Con; the judgment σ :
Sub Γ ∆ states that σ is a substitution between contexts Γ,∆;

• A sort Ty Γ of types, for any context Γ : Con; the judgment A : Ty Γ states
that A is a type in context Γ;

• A sort Tm Γ A of terms, for any context Γ : Con and type A : Ty Γ; the
judgment t : Tm Γ A states that t is a term in context Γ, of type A;

• Given types A,B of equal sort, or terms t, s of equal sort, the judgments
A = B and t = s state definitional equality between the types and terms
respectively.

Remark 2.1.1. If the specification of sorts and judgments shown above looks
like the specification of an inductive type, that is because it precisely is one
[AK16]. More specifically, the syntax of type theory can be alternatively pre-
sented as the signature of a Quotient Inductive-Inductive Type (QIIT), with the
sorts Con,Ty,Tm, Sub given as type constructors of the QIIT, and the definitional
equalities given as path constructors. �

In addition to these forms of judgment, we also have inference rules specifying
how to construct evidence for these judgments. For example, we have context
formation rules explaining how to derive valid contexts, as well as substitution
rules governing how substitutions are formed, applied, and computed. In addition,
for every type former T to be included in the theory, we have

• Formation rules, explaining how to show that T is a well-formed type;

• Introduction rules, explaining how to construct well-typed elements of T
called canonical forms;

• Elimination rules, explaining how to use elements of T to define new expres-
sions of other types with elimination forms;

• Equations, stipulating when a certain configuration of terms should be con-
sidered definitionally equal to another.

We now give some examples of rules for each of the categories mentioned above.

Rules for context formation Well-formed contexts are either the empty con-
text or a context obtained by extension.

• : Con
Γ : Con A : Ty Γ

Γ . A : Con

2.1. TYPE THEORY 19

Rules for substitutions Substitution rules both specify how substitutions are
built, as well as how they interact with the terms of the type theory. This treatment
of substitutions is close to what is known as explicit substitutions [ACCL89] in the
context of λ-calculi.

We have rules for applying substitutions to types and terms:

A : Ty Γ σ : Sub ∆ Γ

A[σ] : Ty ∆
t : Tm Γ A σ : Sub ∆ Γ

t[σ] : Tm ∆ (A[σ])

Then we have introduction rules for substitutions.

Γ : Con
id : Sub Γ Γ

Γ : Con
ε : Sub Γ •

σ : Sub Γ ∆ t : Tm ∆ A[σ]

σ, t : Sub Γ (∆ . A)

σ : Sub Γ ∆ τ : Sub Ω Γ
τ ◦ σ : Sub Ω ∆

σ : Sub Γ (∆, A)

π1 σ : Sub Γ ∆

σ : Sub Γ (∆, A)

π2 σ : Tm Γ (A[π1 σ])

We employ a nameless syntax where explicit variable names are replaced by
De Bruijn indices [de 72], built up from the free variable vz and weakening wk:

wk : Sub (Γ, A) Γ vz : Tm (Γ . A) (A[wk])

wk :≡ π1 id vz :≡ π2 id

Thus for instance we can index the free variable of type A in a context Γ . A .
B . C as:

vz[wk ◦ wk] : Tm (Γ . A . B . C) (A[wk ◦ wk ◦ wk])

We can and will occasionally write explicitly named variables as a matter of
convenience, taking it as syntactic sugar for the equivalent nameless notation. We
may also drop weakening substitutions if they can be inferred from context. As
an illustrative example, we can compactly rewrite the judgment above as:

a : Tm (Γ . a : A . b : B . c : C) A

We have equality judgments explaining how to compute with substitutions

id ◦ σ = σ (σ ◦ τ) ◦ φ = σ ◦ (τ ◦ φ)

σ ◦ id = σ (δ, t) ◦ σ = (δ ◦ σ), t[σ]

π1 (δ, t) = δ (π1 δ, π2 δ) = δ

σ = ε (for σ : Sub Γ •)

20 CHAPTER 2. BACKGROUND

and how substitutions interact with types and terms

A[id] = A A[δ][σ] = A[δ ◦ σ]

t[id] = t t[δ][σ] = t[δ ◦ σ]

π2 (δ, a) = a

The components given so far constitute a standard presentation of a substitution
calculus for type theory. Its structure directly follows from our understanding of
models of type theory as certain kinds of categories (such as CwFs). In those
settings we require, for example, contexts to form a category with a terminal
object, types Ty to be a presheaf on contexts, and terms Tm to be a presheaf on∫

Ty. A simple unfolding of these constraints gives rise to the constructors and
equations shown above.

Rules for type formers For each type former that we want to include in the
theory, we provide rules of formation, introduction, and elimination, in addition
to computation equations.

As an example, we now give rules for Π-types and Σ-types. Π-types, or depen-
dent function types, are a dependently typed generalization of function types, in
which the type of the codomain can depend on the value of the argument to the
function.

A : Ty Γ B : Ty (Γ . A)

Π A B : Ty Γ

t : Tm (Γ . A) B

λ t : Tm Γ (Π A B)

t : Tm Γ (Π A B)

app t : Tm (Γ . A) B

app (λ t) = t (β)

λ (app t) = t (η)

Note that we define application as the inverse of λ-abstraction. We can derive
the more familiar application operator from the current one:

t : Tm Γ (Π A B) u : Tm Γ A

t · u :≡ (app t)[id, u] : Tm Γ (B[id, u])

Σ-types, or dependent pairs, are a dependently typed generalization of the
cartesian product, where the type of the second component of the pair can depend
on the value of the first component of the pair. We overload the projection symbols
π1, π2.

2.1. TYPE THEORY 21

A : Ty Γ B : Ty (Γ . A)

Σ A B : Ty Γ

a : Tm Γ A b : Tm Γ B[id, a]

〈a, b〉 : Tm Γ (Σ A B)

p : Tm Γ (Σ A B)

π1 p : Tm Γ A

p : Tm Γ (Σ A B)

π2 p : Tm Γ B[Id, π1 p]

π1 〈a, b〉 = a (β1)

π2 〈a, b〉 = b (β2)

〈π1 p, π2 p〉 = p (η)

In addition to these rules, we also have rules explaining how substitutions
interact with the new type and term formers. For example:

(Π A B)[σ] = Π (A[σ])(B[σ ↑ A]) (Σ A B)[σ] = Σ (A[σ])(B[σ ↑ A])

〈a, b〉[σ] = 〈p[σ], q[σ]〉 (lam t)[σ] = lam (t[σ ↑ A])

where σ ↑ A = (σ ◦ π1 id), π2 id.

Rules for the universe With the rules seen so far we can construct types and
their elements, but we cannot formulate and prove statements about types them-
selves within the system. We thus introduce a universe U of types, whose elements
are codes standing for types of the theory. We turn codes into the corresponding
types by an operation E l, together with a rule stating that if A : U is a well-formed
code for a type, then E l A is a well-formed type. Types in the universe are also
called small types, to distinguish them from large types like U itself which must
not be contained in U to avoid paradoxes.

Γ : Con
U : Ty Γ

A : Tm Γ U
E l A : Ty Γ

This presentation of universes is called á la Tarski. A universe á la Russell is
one where universe codes and the corresponding types are syntactically identified.

We usually consider universes that are closed under the same type-forming
operations of the Ty judgment. For example, to close U under Π-types we can add
a π constructor with a rule

A : Tm Γ U B : Tm (Γ . E l A) U
π A B : Tm Γ U

22 CHAPTER 2. BACKGROUND

We then usually require that E l commutes with the constructors of U . For
example, in the case of Π-types:

E l(π A B) = Π (E l A) (E l B)

This is sometimes called judgmental closure under type formers.

2.1.1 Identity types

A crucial aspect of Martin-Löf Type Theory is the identity type, the elements of
which are proofs that two terms of a given type are equal.

A : Ty Γ a : Tm Γ A b : Tm Γ A

IdA a b : Ty Γ
a : Tm Γ A

refl a : Tm Γ (IdA a a)

Given terms a, b of some type A, one can form a new type IdA a b of proofs that
a and b are equal. The only constructor is refl a : IdA a a, witnessing reflexivity.

The J eliminator gives the induction principle of identity types, stating that
to define a term depending on a proof of equality, it is sufficient to consider the
reflexivity case.

M : Ty (Γ . x : A . p : IdA a x)
m : Tm Γ M [a, refl a]

a : Tm Γ A b : Tm Γ A p : Tm Γ (IdA a b)

JM mp : Tm Γ M [id, b, p]

There are different, essentially equivalent ways to formulate the J eliminator.
The version shown above is due to Paulin-Mohring [PM93], and fixes one of the
two endpoints of the identity proof as a parameter, while leaving the other free as
an index. Another version has both endpoints ranging as indices.

The computation rule expresses that J applied to refl is exactly what we have
specified it to be for the reflexivity case.

JM m (refl a) = m

Some formulations of type theory [Mar84] include, in addition to identity types,
a so-called reflection rule which stipulates that any propositional equality can be
considered definitional.

p : Tm Γ (IdA a b)

a = b

2.1. TYPE THEORY 23

Adding a reflection rule to a type theory makes its definitional equality unde-
cidable, as equality becomes contingent on proofs of inhabitation of identity types,
which is generally an undecidable problem.

Systems of type theory including the reflection rule are usually referred to
as Extensional Type Theory (ETT). In contrast, we talk about Intensional Type
Theory when the rule is not included.

2.1.2 Strict propositions and h-propositions

Under a literal interpretation of the propositions-as-types paradigm, the notion of
proposition isn’t a primitive aspect of the theory: the types are primitive, and we
take some of them to represent propositions, with their terms and proofs.

Nevertheless, not all types are morally propositions, and in a type theory with
identity types we can internalize the notion of proposition as a type with at most
one element, or equivalently, one where all its elements are equal.

isProp A :≡ Π (x : A) Π (y : A) (IdA x y)

By this definition, being a proposition is an emergent property of types that
requires proof. This kind of propositions are also known as h-propositions [The13].

An alternative approach is to have a judgment stipulating how to derive propo-
sitions. In this setting, being a proposition is a static property evident by con-
struction rather than proof. We call propositions of this kind strict propositions

A way to implement this idea is to have a universe of strict propositions

Γ : Con
P : Ty Γ

P : Tm Γ P
E lP P : Ty Γ

so that a term P is a strict proposition whenever P : Tm Γ P is derivable.
Strict propositions are derived similarly to types, with formation, introduction,
elimination, and computation rules. For example:

P : Tm Γ P Q : Tm Γ P
P ∧Q : Tm Γ P

p : Tm Γ (E lP P) q : Tm Γ (E lP Q)

〈p, q〉 : Tm Γ (E lP (P ∧Q))

The static nature of strict propositions makes it easier to imbue them with addi-
tional features like definitional proof-irrelevance, an extensionality principle which
stipulates that any two elements of a strict proposition are equal by definition.

p1 : Tm Γ (E lP P) p2 : Tm Γ (E lP P)
p1 = p2

Strict propositions are less flexible than h-propositions: we cannot dynamically
turn a proof-relevant type into a strict proposition by proving its propositionality,

24 CHAPTER 2. BACKGROUND

nor we can eliminate strict propositions in a proof-relevant context. However,
they have the advantage of allowing additional computation via definitional proof-
irrelevance, by which any two proofs of the same proposition can be automatically
replaced with one another as part of the type-checking phase.

Strict propositions are featured in the Lean theorem prover [dMKA+15], and
have recently found their way into Coq and Agda [GCST19].

2.1.3 Uniqueness of identity proofs

Uniqueness of identity proofs (UIP) is the statement that any two proof terms
of the same equality type are identified. In classical mathematics this principle
wouldn’t even deserve a name, since equality is always a proposition. In type
theory, however, equality is a type, and its propositionality must be established
by proof unless baked into the system itself. UIP is not directly provable in type
theory, as shown by Hofmann and Streicher with a counterexample in groupoids
[HS98]. It can, however, be consistently added to some forms of type theory, and
it may be desirable to do so in some scenarios. For instance, ETT is conservative
over intensional type theory with function extensionality and UIP [Hof96].

2.2 Models of Type Theory

We will use category theory as a framework to define abstract notions of semantics
of dependent type theory. The advantage of this kind of abstraction is that it makes
easier to show that a given mathematical structure models type theory, by showing
that it is an instance of the abstract framework [Hof97].

We will consider one notion of model of type theory due to Dybjer, namely
categories with families (CwFs) [Dyb95].

We use Extensional Type Theory (ETT) as the metalanguage; we write x : A
for a term x of type A; we write (x : A)→ B for the type of dependent functions,
and Σ(x : A) B for the type of dependent pairs; we write = for equality. We
construct functions via abstraction λx . t and pairs by pairing x, y. As part of
the tools of ETT, we recall function extensionality and uniqueness of identity
proofs (UIP), to which we add schemas for inductive definitions and a cumulative
hierarchy of universes Type0,Type1, ... closed under the standard type formers.

We assume some basic background of category theory. For a category C, we
write |C| or simply C for the type1 of objects, and C(c, c′) for the set of morphisms
between objects c and c′ in C, and sometimes just c→ c′ when C is clear from the
context. Given a functor F , object c and morphism f of the appropriate types,
we write F c and F f for the functorial action. We write Sets for the category

1Note that our types here are all “sets” in the sense of HoTT.

2.2. MODELS OF TYPE THEORY 25

of types and functions between them; we abuse notation and implicitly take Sets
to be parametric over universe levels, thus allowing it to be used for “sets” larger
than those in Type0.

Given a presheaf F : Cop −→ Sets , we define the category of elements of F as
|
∫
F | :≡ Σ(c : C)(F c) and (

∫
F)((c, x), (c′, x′)) :≡ Σ(f : C(c, c′))(F f x′ = x).

When applying a functor of the form H :
∫
F −→ D, we often omit the equality

proofs and write H f instead of H (f, p).

2.2.1 Categories with Families

A category with families (CwF) is comprised of the following:

• A category C of semantic contexts and context morphisms (substitutions),
with a terminal object to model empty contexts;

• A presheaf Ty : Cop −→ Sets mapping semantic contexts to a collection of
types; for A : Ty Γ and σ : C(∆,Γ), we write A[σ] ≡ Ty σ A;

• A presheaf Tm : (
∫

Ty)op −→ Sets on the category of elements of Ty, mapping
semantic types in a context to a collection of terms of that type; for t :
Tm (Γ, A) and σ : C(∆,Γ), we write t[σ] ≡ Tm σ t

• For Γ and A : Ty Γ, a context extension Γ.A : C together with projections
pA : C(Γ.A,Γ) and vA : Tm(Γ.A,A[pA]) such that for each σ : C(∆,Γ)
and M : Tm(∆, A[σ]), there exists a unique morphism 〈σ,M〉A : C(∆,Γ.A)
satisfying pA ◦ 〈σ,M〉A = σ and vA[〈σ,M〉A] = M .

We will often write σ : Γ −→ ∆ in place of σ : C(Γ,∆) for morphisms, when
the category C is clear from the context.

Weakening Given σ : ∆ −→ Γ and A : Ty Γ, we can define the weakening of σ
by A, q(σ,A) : ∆.A[σ] −→ Γ.A, as follows

q(σ,A) :≡ 〈σ ◦ pA[σ], vA[σ]〉A

A weakening map is a morphism of the form pA : Γ.A −→ Γ, or of the form
q(w,A) where w is a weakening map. Syntactically, it corresponds to the usual
weakening of a context of assumptions.

We sometimes write A+ and M+ for A[w] and M [w] if w is a weakening map
that is clear from the context, and σ+ for q(σ,A).

26 CHAPTER 2. BACKGROUND

Semantic type formers

The definition of a CwF only considers the rules that are common to all systems
of dependent types, in particular those about typing judgments and substitutions.
In order to interpret type formers, we must give specifications for semantic type
formers that a CwF must be equipped with in order to faithfully match the syntax.
We give such specification for Π-types and identity types, referring the reader
to [Hof97] for the full details of these and other type formers.

Π-types A CwF supports Π-types if for any Γ : C and semantic types A : Ty Γ
and B : Ty (Γ.A), there exists a semantic type ΠAB : Ty Γ, a semantic abstrac-
tion operation lam : Tm(Γ.A,B) → Tm(Γ,ΠAB), and a semantic application
operation app : Tm(Γ,ΠAB) → Tm(Γ.A,B), such that the following equations
hold

app(lam M) = M (lam M)[σ] = lam(M [q(σ,A)])

lam(app M) = M (app M)[σ] = app(M [p ◦ σ])

(ΠAB)[σ] = Π (A[σ]) (B[q(σ,A)])

We can recover the familiar binary application operator · from the available
app: for t : Tm (Γ,Π A B) and u : Tm (Γ, A), we define t · u :≡ (app t)〈id, u〉A.

2.2.2 Presheaf model of Type Theory

Given a category C, the category Ĉ of presheaves on C admits a CwF structure
and is therefore a model of type theory. We now sketch the construction using
[Hof97,Lao17] as a reference, where more details can be found.

We model contexts as presheaves, and substitutions as natural transformations.
Given a context Γ, we define Ty Γ as the type of presheaves on

∫
Γ. In both

cases, we define presheaves to be ranging over some sort/universe Type in the
metatheory2. We have a context extension operation defined as follows

(Γ.A) c :≡ Σ (γ : Γ c)(A (c, γ))

(Γ.A) f (γ, a) :≡ Γ f γ,A f a

We define a term a : Tm Γ A to be a function a : (c : C)(γ : Γ c)→ A (c, γ) such
that for all i, j : C, f : C(j, i), and γ : Γ i, the equation A f (a i γ) = a j (Γ f γ)
holds.

2We avoid discussing size and universe levels in too much detail, however we do point out
that the size of Ty as a presheaf is clearly larger than any presheaf A : Ty Γ, as the type of small
presheaves is not small.

2.2. MODELS OF TYPE THEORY 27

Given σ : Γ −→ ∆, we obtain σ′ : (
∫

Γ)op −→ (
∫

∆)op in the obvious way. We
thus define substitution as A[σ] :≡ A◦σ′. For terms, we define (t[σ]) c :≡ t c◦(σ c).

We can also model all the usual type formers, like Π and Σ-types. For example,
given Γ : Con, A : Ty Γ, B : Ty (Γ.A), we define:

(Π A B) (c, γ) :≡ ∀ c′ (h : C(c′, c))(a : A (c′,Γ h γ))→ B (c′,Γ h γ, a)

We can also model extensional (in the sense of the reflection rule) identity
types:

(IdA x y) (c, γ) :≡ x c γ = y c γ

Universes

If the metatheory is equipped with a cumulative hierarchy of universes [Mar75,
Pal98] Type0 : Type1 : ... : Typen : ... : Type, these can be lifted to universes in
a presheaf category [HS97]. In particular, we obtain a hierarchy of presheaves Tyi
for all i. Similarly to Ty, we define Tyi Γ as the type of Typei-small presheaves
on

∫
Γ, i.e. presheaves H such that H x is a type in Typei for all x.

We thus extend the CwF structure of Ĉ with types Ui : Ty Γ and families
Ei : Tm ΓUi → Ty Γ for all i, such that Ui is closed under the same type formers
as Typei.

Recall the Yoneda embedding y : C −→ Ĉ, mapping c : C to the presheaf yc
such that yc x :≡ C(x, c). We define a universe presheaf U i as U i x :≡ Tyi (y x).
Note that from any presheaf H, we can obtain a constant type K H : Ty Γ in the
obvious way. Hence we define Ui :≡ K U i, and Ei a c :≡ a c idc.

We have the following representation isomorphism Tyi Γ ∼= Tm Γ Ui, or equiv-
alently, since Ui is constant, Tyi Γ ∼= Ĉ(Γ,U), both natural in Γ [Lao17].

2.2.3 Models of type theory within presheaves

As shown in the previous paragraphs, for any category C the presheaf category Ĉ
is a model of extensional type theory. This allows us to use type-theoretic syntax
as the internal language of Ĉ to express constructions in it.

When C is equipped with a CwF structure, we can use the internal language
of Ĉ to talk about constructions in the CwF C in a succinct way.

For example, we can reflect the semantic types Ty : PSh(C) and terms Tm :
PSh(

∫
Ty) of C as the following (internal) terms:

Ty : U
Tm : Ty→ U

28 CHAPTER 2. BACKGROUND

Viewed externally, this requires us to define natural transformations Ty : Ĉ(1,U)
and Tm : Ĉ(1,Ty→ U). By U ’s representation equivalence, Ĉ(1,U) ∼= PSh(

∫
1) ∼=

PSh(C), hence we have

Ty : PSh(C)
Ty :≡ Ty

Similarly, by U ’s representation equivalence and cartesian closure, Ĉ(1,Ty →
U) ∼= Ĉ(Ty,U) ∼= PSh(

∫
Ty) = PSh(

∫
Ty), hence we have:

Tm : PSh(∫ Ty)

Tm :≡ Tm

We can similarly reflect the type formers of C’s CwF structure in Ĉ. For
instance, we can represent Π : (A : Ty Γ) → Ty (Γ . A) → Ty Γ internally as
follows:

Π : (A : Ty)→ (TmA→ Ty)→ Ty

Note that the reflected terms do not make any mention of contexts and sub-
stitutions in C; these have been hidden under the presheaf structure of Ĉ, which
ensures that any construction we carry out automatically respects the CwF struc-
ture of C and its laws. Moreover, as shown in Π, we express type dependency by
exploiting the dependent function type of the internal language, in a way that is
reminiscent of higher-order abstract syntax [PE88].

This idea of abstracting CwF structures via presheaves goes both ways: instead
of using presheaves to describe and talk about a specific existing model, we can
use it to specify type theories and their notion of models ex novo, in a way that is
equivalent to CwFs but that saves us from mentioning contexts and substitutions
at all. We start by specifying the sorts, type, and term formers of our type theory
using the internal language of presheaf categories. For example, the following list
specifies a type theory with (extensional) Π-types.

Ty : U
Tm : Ty→ U
Π : (A : Ty)→ (Tm A→ Ty)→ Ty

app : ∀AB, Tm (ΠAB) ' ((a : TmA)→ Tm (B a))

2.2. MODELS OF TYPE THEORY 29

where ' is isomorphism. A model of this theory is then given by a category C
with a terminal object, and an interpretation of the terms above in Ĉ.

If we unfold this notion of model internal to Ĉ, what we obtain externally is
the same as the structure of a CwF on top of C specifying the type theory above3,
or equivalently an algebra for the signature of a quotient inductive-inductive type
(QIIT) describing the theory. Both the CwF structure and the QIIT are signif-
icantly more verbose since they include sorts and constructors for contexts and
substitutions, as well as equations governing them, all of which are implicit in the
internal model presentation [BKS21]. This internal formulation is therefore very
convenient when one wants to prove meta-theorems about a type theory by reason-
ing about its models: by working in the internal language of presheaves categories,
we can define and reason about such models in a succinct way, without having to
keep track of contexts and stability under substitutions.

3Actually, for this formulation of models to be equivalent to the full structure of a CwF,
and in particular to obtain the property of context extension such that C(Γ,∆ . A) ' Σ(γ :
C(Γ,∆))(Tm ΓA[σ]), we need to define Tm as a family of locally-representable presheaves. This
can be done by defining a suitable sub-universe U∗ and asking for a U∗-valued family Tm [BKS21].

30 CHAPTER 2. BACKGROUND

Chapter 3

Induction-induction

Induction-induction is a schema in type theory that allows one to inductively define
a type A : Type mutually with a family B : A→ Type over A [NF13]. Inductive-
inductive types (IITs) come equipped with elimination principles induced by their
inductive structure. Consider an arbitrary IIT (A : Type, B : A → Type); the
most general form of (dependent) eliminator is given by functions

elimA : (a : A)→ F a

elimB : (a : A)→ (b : B a)→ G a b (elimA a)

for each pair of motives1 F : A → Type and G : (a : A) → (b : B a) → F a →
Type.

Note that the form of type dependency in the sorts of the IIT is naturally
reflected in the type of its eliminators: that is, one of the functions above, elimA,
appears in the type of the other, elimB. We say that the two functions are recursive-
recursive, after [NF13].

A simpler notion of eliminator does not require the second component of the
motive to mention the first: for motives F : A→ Type and G : (a : A)→ B a→
Type, we have functions

elim′A : (a : A)→ F a

elim′B : (a : A)(b : B a)→ G a b

Note that this elimination principle—that we call simple elimination after
[NF13]—is no longer recursive-recursive, since elimA is not mentioned in the type
of elimB.

Induction-induction allows for an arbitrary number of sorts to be defined si-
multaneously. An example of multi-sorted IIT is given by the intrinsic definition

1We refer to the target types and terms of the induction as motives and methods, respectively.

31

32 CHAPTER 3. INDUCTION-INDUCTION

of a dependent type theory in type theory, where each sort implements a different
form of judgment [Cha09, AK16]. We illustrate this with a minimal syntax with
contexts Con, types Ty, and terms Tm (and no equations):

Con : Type

Ty : Con→ Type

Tm : (Γ : Con)(A : Ty Γ)→ Type

nil : Con

ext : (Γ : Con)→ Ty Γ→ Con

iota : (Γ : Con)→ Ty Γ

pi : (Γ : Con)(A : Ty Γ)→ Ty (ext Γ A)→ Ty Γ

lam : ∀{Γ A B} → Tm (ext Γ A) B → Tm Γ (pi Γ A B)

What characterizes IITs in contrast to other forms of induction is that con-
structors can refer to other constructors that are defined within the same mutual
definition. For example, in the signature shown above the type constructor pi
refers to context extension ext, whereas lam refers to both ext and pi.

Recursion-recursion In dependent type theory, recursive definitions are usu-
ally expressed as instantiations of the elimination principle of some inductive type.
The elimination principle for inductive families is strong enough to express a wide
variety of recursive definitions, including many forms of mutual recursion.

A mutual recursion schema that does not seem to arise from inductive families is
recursion-recursion. Informally, we say that a group of mutually-defined functions
is recursive-recursive when some of those functions appear in the type of other
functions in the same group. We have seen this pattern of dependency just now,
in the general eliminators for inductive-inductive types: recall that, for example,
given an IIT A : Type, B : A → Type and motives F : A → Type and G : (a :
A) → (b : B a) → F a → Type, the corresponding general eliminators can be
expressed as the following pair of functions

elimA : (a : A)→ F a

elimB : (a : A)→ (b : B a)→ G a b (elimA a)

Thus, one way to make the concept of recursion-recursion precise is to frame it
as the form of recursion induced by the induction principle of IITs [NF13]. From
this point of view, “recursion-recursion” is simply an informal label for particular
instantiations of IIT eliminators. We are not aware of alternative treatments of

3.1. REDUCING MULTI-SORTED IITS 33

recursion-recursion outside the context of induction-induction; therefore, in this
thesis we will largely use recursion-recursion in conjunction with IITs, in the sense
just described. An exception to this is Section 6.2, where we give a first approxi-
mation of a universe construction in the strict setoid model of type theory as an
inductive-recursive-recursive (IRR) type; given the difficultly to express IRR def-
initions in terms of well-understood forms of induction, we will quickly proceed,
in Section 6.4, to reduce this first universe construction to one that only relies on
induction-induction and its induction principles.

3.1 Reducing multi-sorted IITs

Many instances of multi-sorted IITs can be reduced to equivalent two-sorted IITs,
via a systematic reduction method originally observed by Zongpu (Szumi) Xie
[Kap19]. We are not aware of a formal proof of this construction for arbitrary IITs,
but we conjecture that it does apply to all instances of induction-induction and
consequently that it shows two-sorted IITs are enough to represent any specifiable
IIT.

We illustrate the idea of this reduction with an example. Let us consider the
small type-theoretic syntax Con,Ty,Tm defined a few paragraphs above. We define
a two-sorted IIT V : Type,F : V → Type, with the idea to use V to encode the
sorts of the multi-sorted IIT, and F to encode its constructors:

ConV : V

TyV : F ConV → V

TmV : (Γ : F ConV)→ F (TyV Γ)→ V

nilF : F ConV

extF : (Γ : F ConV)→ F (TyV Γ)→ F ConV

iotaF : (Γ : F ConV)→ F (TyV Γ)

piF : (Γ : F ConV)(A : F (TyV Γ))→ F (TyV (extF Γ A))→ F (TyV Γ)

lamF : ∀{Γ A B} → F (TmV (extF Γ A) B)→ F (TmV Γ (piF Γ A B))

We can easily model the types of the original IIT by defining

Con :≡ F ConV Ty Γ :≡ F (TyV Γ) Tm Γ A :≡ F (TmV Γ A)

Modeling the constructors is straightforward, as they are just exactly their V/F
counterparts: nil :≡ nilF, ext :≡ extF, etc.

34 CHAPTER 3. INDUCTION-INDUCTION

The eliminators follow just as easily from the induction principle of V/F. For
example, given motives ConD,TyD,TmD and methods nilD, extD, iotaD, ..., we can
define the eliminators for Con/Ty/Tm

elimCon : (Γ : Con)→ ConD Γ

elimTy : (A : Ty Γ)→ TyD (elimCon Γ)

elimTm : (t : Tm Γ A)→ TmD (elimCon Γ) (elimTy A)

by mutual recursion-recursion:

elimCon nilF :≡ nilD

elimCon (extF Γ A) :≡ extD (elimCon Γ) (elimTy A)

elimTy (iotaF Γ) :≡ iotaD (elimCon Γ)

...

3.2 Reducing finitary induction-induction

Induction-induction is as powerful as it is complex, and both the syntax and se-
mantics of IITs is topic for current research. Because of this, a question that
naturally arises is whether we can reduce some forms of induction-induction to
simpler objects, like inductive families. There are several reasons for doing this,
ranging from pure theoretical interest to mere practical needs. On the practical
side, it should be noted that some of the more popular proof-assistants based on
type theory, like Coq and Lean, do not currently support inductive-inductive def-
initions out of the box. In those systems, encoding IITs as inductive types is the
only way to work with induction-induction.

It is known that finitary inductive-inductive definitions can be reduced to in-
ductive families [AKKvR19, AKKvR18, KKL20]. To illustrate the process, let us
consider a well-known example of a finitary inductive-inductive type, the by-now
familiar intrinsic encoding of type theory in type theory. We consider a minimal
version with just contexts Con : Type and types Ty : Con→ Type, as those alone
are already enough to require induction-induction.

The reduction method showcased in this section is essentially the one described
in [vR19]. We assume to be working in a sufficiently strong version of intensional
type theory with inductive types, equality, and UIP.

Remark 3.2.1. We will use Agda-style notation and write (x : A) → B x for
dependent function types, using curly brackets {a : A} → B x for implicit quan-
tification. We write λx . t to construct functions, and , as infix constructor for
dependent pairs. We also make extensive use of (dependent) pattern-matching

3.2. REDUCING FINITARY INDUCTION-INDUCTION 35

definitions. We sometimes explicitly name patterns, writing x@(p ...) to give the
pattern (p ...) a scoped name x. We also write f {x} y z... in function definitions
to bring an implicit parameter x in scope. We use underscores notation like in
Agda, i.e. as stand-ins for unnamed parameters to function definitions, as well
as arguments to function applications when their value can be inferred from con-
text/unification. We do however depart from Agda notation in writing ≡ and :≡
for definitional equality, and = for propositional equality. �

Contexts in Con are formed out of empty contexts • and context extension . .
Types in Ty are either the base type ι or dependent function types π̄.

• : Con ι : (Γ : Con)→ Ty Γ

. : (Γ : Con)→ Ty Γ→ Con π̄ : {Γ : Con}(A : Ty Γ)→ Ty (Γ . A)→ Ty Γ

The general method to eliminate induction-induction is to split the original IIT
into a type of codes— we call them erased types— and associated well-formedness
predicates. In our Con/Ty example, we have erased types Con0,Ty0 : Type and
predicates Con1 : Con0 → Type,Ty1 : Con0 → Ty0 → Type.

The definition of the erased and predicate types follows that of the original
inductive-inductive type, and can be derived systematically from it. More impor-
tantly, they can be defined without induction-induction.

•0 : Con0

.0 : Con0 → Ty0 → Con0

ι0 : Con0 → Ty0

π̄0 : Con0 → Ty0 → Ty0 → Ty0

•1 : Con1 •0
.1 : ∀{Γ0 A0} → Con1 Γ0 → Ty1 Γ0 A0

→ Con1 (Γ0 .0 A0)

ι1 : ∀{Γ0} → Con1 Γ0 → Ty1 Γ0 (ι0 Γ0)

π̄1 : ∀{Γ0 A0 B0} → Con1 Γ0

→ Ty1 Γ0 A0 → Ty1 (Γ0 .0 A0) B0

→ Ty1 Γ0 (π̄0 Γ0 A0 B0)

Because erasing the indices loses information, there are generally more erased
expressions of type Con0,Ty0 than there are of the original Con/Ty IIT. The well-
formedness predicates serve the purpose to constrain the value of erased elements
that they predicate over, so that we only accept as well-formed those erased ex-
pressions that could have been equivalently obtained via the constructors of the
original IIT.

By induction on well-formedness proofs we can expose these constraints, and
in particular we have the following equational inversion principles:

inv-ι1 : ∀{Γ0 Γ′0} → Ty1 Γ0 (ι0 Γ′0)→ Γ0 = Γ′0

36 CHAPTER 3. INDUCTION-INDUCTION

inv-π̄1 : ∀{Γ0 Γ′0 A0 B0} → Ty1 Γ0 (π̄0 Γ′0 A0 B0)→ Γ0 = Γ′0

Moreover, we can prove that the well-formedness predicates are h-propositions,
by straightforward induction/pattern-matching. Propositionality of the predicates
will play a crucial role later, when we derive the eliminators for the encoded IIT.

We can recover the original inductive-inductive type as Con :≡ Σ (Γ0 : Con0) (Con1 Γ0)
and Ty Γ :≡ Σ (A0 : Ty0) (Ty1 (π1 Γ) A0). Recovering the constructors is straight-
forward:

• :≡ (•0, •1)

(Γ0,Γ1) . (A0, A1) :≡ ((Γ0 .0 A0), (Γ1 .1 A1))

ι (Γ0,Γ1) :≡ (ι0 Γ0, ι1 Γ1)

π̄ {Γ0,Γ1}(A0, A1)(B0, B1) :≡ (π̄0 Γ0 A0 B0, π̄1 Γ1 A1 B1)

If we were to define the type above as an IIT, this would come equipped with
an inductive principle, i.e. eliminators, reflecting the inductive structure of the
type [NF13]. In order to write down the eliminators for this IIT, we look at
displayed algebras over Con and Ty, which are given by indexed types:

ConD : Con→ Type TyD : {Γ : Con} → ConD Γ→ Ty Γ→ Type

and functions corresponding to each constructor:

•D : ConD •
.D : ∀{Γ A}(ΓD : ConD Γ)→ TyD ΓD A→ ConD (Γ . A)

ιD : ∀{Γ}(ΓD : ConD Γ)→ TyD ΓD (ι Γ)

π̄D : ∀{Γ A B}(ΓD : ConD Γ)(AD : TyD ΓD A)(BD : TyD (ΓD .D A) B)

→ TyD ΓD (π̄ Γ A B)

The general eliminators have the following signatures:

elimCon : (Γ : Con)→ ConD Γ

elimTy : {Γ : Con}(A : Ty Γ)→ TyD (elimCon Γ) A

In addition, we have β-equations that explain the computational behaviour of
the eliminators on constructors:

elimCon • ≡ •D

3.2. REDUCING FINITARY INDUCTION-INDUCTION 37

elimCon (Γ . A) ≡ elimCon Γ .D elimTy A

elimTy (ι Γ) ≡ ιD (elimCon Γ)

elimTy(π̄ Γ A B) ≡ π̄D (elimCon Γ) (elimTy A) (elimTy B)

The general eliminators can be derived from our encoding of Con and Ty via
untyped codes and well-typing predicates. Unfortunately it is not possible to define
them directly, as the induction principle of the erased and predicate types cannot
express the recursive-recursive structure of the eliminators. Instead, we first define
the graph of the eliminators in the form of inductively-generated relations:

ConR : (Γ : Con)→ ConD Γ→ Type

TyR : {Γ : Con}(ΓD : ConD Γ)(A : Ty Γ)→ TyD Γ A ΓD → Type

•R : ConR • •D

.R : ∀{Γ ΓD A AD} → ConR Γ ΓD → TyR ΓD A AD

→ ConR (Γ . A) (ΓD .D AD)

ιR : ∀{Γ ΓD} → ConR Γ ΓD → TyR ΓD (ι Γ) (ιD ΓD)

π̄R : ∀{Γ ΓD A AD B BD} → ConR Γ ΓD → TyR ΓD A AD

→ TyR (ΓD .D AD) B BD

→ TyR ΓD (π̄ Γ A B) (π̄D ΓD AD BD)

The next step is to prove that these relations are functional, by induction on the
untyped codes Con0 and Ty0. We split functionality into mutual proofs Con∃,Ty∃

of left-totality, and proofs Con!,Ty! of right-uniqueness.

Con∃ : ∀ Γ→ Σ(ConD Γ)(ConR Γ)

Ty∃ : ∀{Γ ΓD}(A : Ty Γ)→ ConR Γ ΓD → Σ(TyD Γ A ΓD)(TyR A ΓD)

Con! : ∀ {Γ ΓD ΓD
′} → ConR Γ ΓD → ConR Γ ΓD

′ → ΓD = ΓD
′

Ty! : ∀ {Γ ΓD AAD AD
′} → TyRAΓD AD → TyRAΓD AD

′ → AD = AD
′

We will not go through the entire definition of these terms. Instead, let us
consider a couple of illustrative examples, beginning with the proof of left-totality
in the case of the ι constructor. Pattern-matching on the first component of the
pair A given as input to Ty∃ leads to the following:

38 CHAPTER 3. INDUCTION-INDUCTION

Ty∃ {Γ ΓD} A@(ι0 Γ0, A1) r :≡ ?

We would like to conclude the proof with the pair (ιD ΓD, ιR r). Alas, the type
of this expression does not match the goal type. We cannot proceed in any way
unless we first establish that the input term A is equal to the expected canonical
form ι Γ. We prove this equation component-wise, beginning with π1 (ι Γ) =
π1 A. By injectivity of ι0, this reduces to π1 Γ ≡ Γ0, which we can prove by
inversion on A1 (using inv-ι1), or alternatively by dependent pattern-matching.
We now need to prove π2 (ι Γ) = π2 A, that is, π2 Γ = Γ1. This equation follows
from propositionality of the well-formedness predicates, which we have established
previously.

We can thus informally rewrite the incomplete definition as:

Ty∃ {Γ ΓD} (ι Γ) r :≡ ?

We conclude the proof with (ιD ΓD, ιR r).
Let us now consider the case of the π̄ constructor. Again, we pattern-match of

the first component of the Ty argument to Ty∃, which yields the following

Ty∃ {Γ ΓD} A@(π̄0 Γ0 X0 Y0, A1) r :≡ ?

As before, just pattern matching on the erased component of A is not enough,
as we cannot proceed any further with the proof unless we first prove that the
input term A is equal to a canonical expression formed by the IIT constructor π̄,
under context Γ. Like in the previous case, we prove Γ = (Γ0,Γ1) by inversion
and propositionality, where the well-formedness proof Γ1 : Con1 Γ0 is obtained by
inversion on A1, along with X1 : Ty1 Γ0 X0 and Y1 : Ty1 (Γ0 .0 X0) Y0. We set
X :≡ (X0, X1) and Y :≡ (Y0, Y1).

By induction, we obtain displayed terms and relatedness proofs:

XD : TyD Γ X ΓD XR : TyR X XD

Y D : TyD (Γ . X) Y (ΓD .D XD) Y R : TyR Y Y D

with which we conclude the left-totality proof

Ty∃ {Γ ΓD} (π̄ Γ X Y) r :≡ (π̄D ΓD XD Y D, π̄R r XR Y R)

Defining the eliminators is immediate from functionality of the relations:

elimCon Γ :≡ π1 (Con∃ Γ)

elimTy {Γ} A :≡ π1 (Ty∃ A (π2 (Con∃ Γ)))

3.2. REDUCING FINITARY INDUCTION-INDUCTION 39

These eliminators also admit the β-equations discussed above. However, if the
ambient theory is intensional as in the current case, then the β-equations only
hold up to propositional equality, due to the transports involved in the proofs of
functionality of the relations. We observe, however, that some of these transports
can in fact be reduced away by employing an equality type with a strong notion
of UIP, and in particular equipped with a transport operation that computes to
the identity function on arbitrary reflexive proofs p : x = x. We will explore
this further in Chapter 8, where we consider a reduction method relying on a
definitionally proof-irrelevant identity type.

Note, moreover, that we did not need to invoke right-uniqueness of the elimi-
nator relations to prove left-totality in this example. This is due to the “shape”
of the type Con/Ty and will not be the case for every IIT, and in particular for
the so called non-linear IITs as discussed further down in Section 9.1. Proving
right-uniqueness would thus appear to be necessary in the general case.

40 CHAPTER 3. INDUCTION-INDUCTION

Chapter 4

This thesis

4.1 Contributions

This thesis contains the following main contributions:

• We extend the strict setoid model of intensional type theory with a universe
of setoids. We define the universe in multiple stages, first as an inductive-
recursive definition, which is then translated to an inductive-inductive defi-
nition and finally to an inductive family. Notably, the first definition of the
universe uses a unique combination of large induction-recursion, recursion-
recursion, and proof-irrelevance. While useful to give an intuitive presenta-
tion of the universe, this complex form of induction-recursion-recursion is not
currently properly understood. A core contribution of this thesis is to show
how to define a setoid universe without relying on any form of induction-
recursion or recursion-recursion. We present this work in Chapter 6.

The material covered in Chapter 6 up to Section 6.5 is joint work with Al-
tenkirch, Boulier, Kaposi, and Sattler, and has been published in the paper
at [ABK+21]. While the paper does present a definition of the setoid uni-
verse in terms of an infinitary IIT encoded via inductive families, it notably
does not derive the general eliminators for it. We improve on the results of
the paper and construct full dependent eliminators for the aforementioned
universe IIT (Section 6.6). We then show that the setoid universe defined
via this IIT supports universe induction (Section 6.6.1.)

• We contribute a method to systematically reduce a wide class of infinitary
IITs to inductive families, using an encoding that does not rely on function
extensionality in the encoding theory. We first demonstrate the reduction
with two concrete examples (Chapter 8). The method we employ is a modi-

41

42 CHAPTER 4. THIS THESIS

fied version of the reduction method for finitary IITs [vR19], with two main
novelties that make it applicable to infinitary types:

– careful control over the proof of left-totality of the eliminator relations,
so that proving right-uniqueness becomes unnecessary;

– use of a universe of definitionally proof-irrelevant propositions and a
proof irrelevant identity type with a strong transport rule targeting
proof-relevant types. These allow to define predicates that are proposi-
tional by definition, and to achieve definitional β-rules for the encoded
eliminators even in an intensional setting.

We identify a subclass of all infinitary IIT specifications, and generalize the
reduction method demonstrated in Chapter 8 to arbitrary specifications in
this class (Chapter 9). After making formal how to specify the IITs we are
targeting, we show how to encode the types, constructors, and eliminators of
any specifiable IIT, in any model of intensional type theory supporting in-
ductive families and a universe of definitionally proof-irrelevant propositions
(Chapter 11, Chapter 12).

• We provide Agda formalizations [Ses23] for the entire mathematical content
of Part II (first contribution point), and for most of the mathematical content
of Part III (second and third contribution points.)

4.2 Structure

The rest of the thesis is divided into two parts, Part II and Part III, with Part
I concluding with this section. Part II will cover our work on the setoid model
and its extension with a universe of setoids, while Part III will cover our work on
reducing infinitary IITs to inductive families.

We begin Part II in Chapter 5 with an introductory discussion of setoid models
of type theory, with a focus on the strict setoid model [Alt99] and its syntactic
manifestation SeTT [ABKT19]. We then extend the strict setoid model with a
universe of setoids in Chapter 6. We wrap up our work on the setoid model and
Part II with Chapter 7.

We move on to Part III with Chapter 8, which presents some examples of
encoding infinitary IITs as inductive families in an intensional ambient theory.
Chapter 9 sets the stage for the generalization of such encoding method from
concrete examples to arbitrary IIT specifications. We frame the general reduction
method as a construction on algebras: we begin by defining algebras of IITs (Chap-
ter 10), then show that for any specifiable IIT, we can construct a corresponding

4.2. STRUCTURE 43

algebra (Chapter 11) that enjoys the expected induction principle (Chapter 12).
We finally wrap Part III and the thesis with Chapter 13.

44 CHAPTER 4. THIS THESIS

Part II

Setoids and extensionality

45

Chapter 5

The setoid model of type theory

Extensionality is the ability to treat mathematical objects that behave the same
way in every situation as equal. Extensional reasoning is not concerned with
details of encoding and implementation, but only considers the qualities exposed
by objects to the outside. This is in contrast with intensionality, where we do pay
attention to how objects are constructed, and accordingly distinguish between
them.

Extensional reasoning is ubiquitous in mathematical practice. In fact, math-
ematicians reason extensionally all the time, when they identify point-wise equal
functions, sets with the same elements, or isomorphic algebraic structures. Exten-
sional reasoning is greatly facilitated by the ability of the formal system to enforce
layers of abstraction: replacing one object with another with the same external
interface but different implementation is only safe if the external “clients” are not
allowed to peek at the implementation. When these interface boundaries are not
enforced by the formal system, extensional reasoning becomes an unsafe opera-
tion, and must be justified on a case-by-case basis by ensuring that no parts of the
construction depend on the implementation details. An example of this scenario
is reasoning about isomorphic sets in the context of set theory: while it is often
desirable to consider isomorphic sets as extensionally equal and therefore identical
and replaceable with one another, there is nothing in the formal rules of set theory
preventing the objects relying on these sets to look at their implementation, and
potentially distinguishing between two isomorphic ones.

Arguably, the point of types is to establish and enforce contracts and layers of
abstraction. It wouldn’t be surprising then to expect dependent type theory to
support various forms of extensional reasoning, since the infrastructure is already
there. As it turns out, type theory does in fact have the potential for extensional
reasoning, as it is not possible to construct type-theoretic terms that distinguish
between extensionally equivalent structures like point-wise equal functions or iso-
morphic sets and groups. Alas, “vanilla” type theory does not allow us to internally

47

48 CHAPTER 5. THE SETOID MODEL OF TYPE THEORY

prove two equivalent structures equal; we thus have the potential for extensional
reasoning, but no way to make actual use of it. Historically, this aspect has been
a hindrance to the use of type theory for formalizing mathematics: even basic ex-
tensionality principles like function extensionality had to be added as postulates,
or via alternative means.

Setoids, i.e. sets (or types) equipped with an equivalence relation, have found
widespread application in type theory precisely as a tool to overcome its limita-
tions with respect to extensional reasoning. Setoids form a model of type theory,
where contexts/closed types are interpreted as setoids, and dependent types are
interpreted as dependent/indexed setoids. A first setoid model for intensional
type theory was presented by M. Hofmann [Hof95], with the goal to provide a
semantics for extensionality principles such as function extensionality and propo-
sitional extensionality. Alas, that version of the setoid model did not allow for an
interpretation of universes.

In this thesis we will be focusing on a setoid model construction due to Al-
tenkirch [Alt99], which we refer to as the strict setoid model. The metatheory used
is an extension of a very minimal intensional Martin-Löf Type Theory with a def-
initionally proof-irrelevant universe of propositions, as well as η-rules for Π-types
and Σ-types. Notably, we do not require inductive types nor identity types. The
resulting setoid model validates all the expected type formers and equalities, in
addition to function extensionality, a universe of propositions with propositional
extensionality, and quotient types. Moreover, it is a strict model, in the sense that
all the model equations hold by definition in the metatheory.

The strict setoid model provides a way to bootstrap and “explain” extension-
ality, since the construction effectively gives an implementation of various exten-
sionality principles in terms of a core intensional theory. For the same reason, it
also appears to be an ideal starting point to design a type theory inspired by it
— a sort of synthetic theory of setoids — where principles like funext are valid
and computational. Setoid Type Theory (SeTT) is a recently developed formal
system derived from this model construction [ABKT19]. Observational Type The-
ory (OTT) [AMS07] is a syntax for the strict setoid model differing from SeTT in
the use of a different notion of heterogeneous equality. Moreover, the consistency
proof for OTT relies on Extensional Type Theory, whereas for SeTT it is obtained
via a syntactic translation. XTT [SAG19] is a cubical variant of OTT where the
equality type is defined using an interval pretype.

One important component that is missing from SeTT is a universe of setoids,
allowing for a proper internalization of the notion of type (i.e. setoid). In this
part of the thesis, we will present work towards extending SeTT with a universe
of setoids. More specifically we will tackle the first necessary step, which is to
extend the semantic foundation of SeTT, i.e. the strict setoid model, with such a

5.1. MLTTPROP 49

universe construction. After describing the metatheory that we will use throughout
this part of the thesis (Section 5.1), we briefly revisit Altenkirch’s strict setoid
model [ABKT19] in the framework of Categories with Families (Section 5.2). We
then quickly discuss the rules of Setoid Type Theory (Section 5.3). The chapter
that follows will describe our novel extension of the strict setoid model with a
universe of setoids.

5.1 MLTTProp

This section describes MLTTProp, the ambient metatheory where the model con-
struction will take place. We employ Agda notation to write down MLTTProp

terms throughout this part of the thesis.

One of the main appeals of Altenkirch’s setoid model is that it can justify
several useful extensionality principles while being defined in a minimal intensional
metatheory. We tried to stay true to this idea when figuring out the necessary
metatheoretical tools for the universe construction in this thesis. In particular,
we wanted to avoid having to assume strong definition schemas that go beyond
inductive families. MLTTProp is thus a type theory in the style of intensional
Martin-Löf type theory with some extra components.

We have sorts Typei of types and Propi of strict propositions for i ∈ {0, 1}.
Here, i = 0 means “small” (and we will omit the subscript) and i = 1 means
“large”. We have implicit lifting from i = 0 to i = 1, but do not assume type
formers are preserved. Type1 has universes for Type and Prop. We do not
distinguish notationally between universes and sorts. We continue to describe only
the case i = 0; everything introduced has an analogue at level i = 1. Propositions
lift to types via Lift : Prop → Type, with constructor lift : {P : Prop} → P →
Lift P and destructor unlift : {P : Prop} → Lift P → P .

We have standard type formers Π,Σ,Bool,0,1 in Type. Σ-types are defined
negatively by pairing , and projections π1, π2. We have definitional η-rules for Π-,
Σ-, 1-types. We also require indexed W-types, both in Type and Prop: W� : (S :
I → Type)→ ((i : I)→ S i→ I → Type)→ I → � where � ∈ {Type,Prop}.
The elimination principle of WProp only allows defining functions into elements
of Prop. From WProp we can define a strict truncation operator (also known as
squash) ‖ ‖ : Type → Prop, with constructor | | : {A : Type} → A → ‖A‖ and
eliminator elim‖ ‖ : {P : Prop} → (A→ P)→ ‖A‖ → P .

In addition to type formers in Type, we will need the propositional versions
of 0, 1, Π, and Σ. The latter three can be defined from their Type counterparts
via truncation. That is, given P : Prop and Q : P → Prop:

1Prop :≡ ‖1‖

50 CHAPTER 5. THE SETOID MODEL OF TYPE THEORY

ΠProp P Q :≡ ‖Π (Lift P) (Lift ◦Q ◦ unlift)‖
ΣProp P Q :≡ ‖Σ (Lift P) (Lift ◦Q ◦ unlift)‖

We assume that we have 0Prop : Prop together with exfalsoProp : {A : Type} →
0Prop → A.

We use Agda-style notation, with the notational conventions described in Sec-
tion 3.2, Remark 3.2.1. We will also often omit implicit quantifications, thus for
instance write F x→ G x instead of ∀{x} → F x→ G x, whenever the nature of
x as implicitly quantified is clear from context.

5.2 Strict setoid model

The strict setoid model can be framed categorically as a CwF with extra structure
for the various type and term formers. Recall the core structure of a CwF:

Con : Type

Ty : (Γ : Con)→ Type

Sub : (Γ ∆ : Con)→ Type

Tm : (Γ : Con)→ Ty Γ→ Type

Our contexts are setoids, that is, types together with an equivalence relation.
A key point of the model is that the equivalence relation is valued in Prop and is
thus definitionally proof-irrelevant. We define a semantic context/setoid Γ : Con
as the following record type:

|Γ| : Type

Γ∼ : |Γ| → |Γ| → Prop

refl Γ : (γ : |Γ|)→ Γ∼ γ γ

sym Γ : ∀{γ0 γ1} → Γ∼ γ0 γ1 → Γ∼ γ1 γ0

trans Γ : ∀{γ0 γ1 γ2} → Γ∼ γ0 γ1 → Γ∼ γ1 γ2 → Γ∼ γ0 γ2

Types in a context Γ are given by displayed setoids over Γ with a fibration condi-
tion represented by coe and coh. Given Γ : Con, we define a semantic type/indexed
setoid A : Ty Γ as the following record type:

|A| : |Γ| → Type

A∼ : ∀ {γ0 γ1} → Γ∼ γ0 γ1 → |A|γ0 → |A|γ1 → Prop

refl* : (a : |A| γ)→ A∼ (refl Γ γ) a a

sym* : {p : Γ∼ γ0 γ1} → A∼ p a0 a1 → A∼ (sym Γ p) a1 a0

5.3. SETOID TYPE THEORY 51

trans* : A∼ p0 a0 a1 → A∼ p1 a1 a2 → A∼ (trans Γ p0 p1) a0 a2

coe : Γ∼ γ0 γ1 → |A|γ0 → |A|γ1

coh : (p : Γ∼ γ0 γ1)(a : |A|γ0)→ A∼ p a (coeApa)

This definition of types in the setoid model is different from the one in [Alt99],
but it is equivalent to it [Bou18, Section 1.6.1]. The main difference here is in the
use of a heterogeneous equivalence relation A∼ in the definition of types.

Substitutions are interpreted as functors between the corresponding setoids,
whereas terms of type A in context Γ are sections of the type seen as a setoid
fibration Γ.A→ Γ. Note that we only need to include components for the functorial
action on objects and morphisms, since the functor laws hold by definition from
proof-irrelevance in the metatheory.

We interpret substitutions σ : Sub Γ ∆ and terms t : Tm Γ A as the following
record types:

|σ| : |Γ| → |∆|
σ∼ : Γ∼ ρ0 ρ1 → ∆∼ (|σ|ρ0) (|σ|ρ1)

|t| : (γ : |Γ|)→ |A| γ
t∼ : (p : Γ∼ γ0 γ1)→ A∼ p (|t|γ0) (|t|γ1)

5.3 Setoid Type Theory

The setoid model presented in the previous section is strict, that is, every equation
of the CwF structure holds by definition. One advantage of strict models is that
they can be turned into syntactic translations, in which the syntactic objects being
modeled are interpreted as their counterparts in another target theory. In the case
of the setoid model, this gives rise to a setoid translation, where source contexts
are interpreted as target contexts together with a target type representing the
equivalence relation, and so on.

A setoid translation is used in [ABKT19] to justify Setoid Type Theory (SeTT),
an extension of intensional MLTT with equality types for contexts and dependent
types that reflect the setoid equality of the model.

We recall the rules of SeTT that extend regular MLTT below.
We have a universe of propositions Prop defined as follows:

Γ : Con
Prop : Ty Γ

P : Tm Γ Prop

P : Ty Γ

u : Tm Γ P v : Tm Γ P

u = v

Equality type constructors for contexts and dependent types internalize the
idea that every context and type comes equipped with a setoid equivalence relation.

52 CHAPTER 5. THE SETOID MODEL OF TYPE THEORY

As in the model, equality for dependent types is indexed over context equality.

Γ : Con ρ0, ρ1 : Sub ∆ Γ

Γ∼ ρ0 ρ1 : Tm ∆ Prop

A : Ty Γ ρ01 : Tm ∆ Γ∼ ρ0 ρ1

a0 : Tm ∆ A[ρ0] a1 : Tm ∆ A[ρ1]

A∼ ρ01 a0 a1 : Tm ∆ Prop

We have rules witnessing that these are indeed equivalence relations. We only
recall reflexivity:

ρ : Sub ∆ Γ

R ρ : Tm ∆ Γ∼ ρ ρ

A : Ty Γ ρ : Sub ∆ Γ a : Tm ∆ A[ρ]

R a : Tm Γ A∼ (R ρ) a a

We also have rules representing the fact that every construction in SeTT re-
spects setoid equality, so that we can transport along any such equality:

A : Ty Γ ρ0, ρ1 : Sub ∆ Γ p : Tm ∆ Γ∼ ρ0 ρ1 a : Tm ∆ A[ρ0]

coeA p a : Tm ∆ A[ρ1]
cohA p a : Tm ∆ A∼ p a (coeA p a)

Notably, equality types in SeTT compute definitionally on concrete type for-
mers. In particular, they compute to their obvious intended meaning, so that an
equality of pairs is a pair of equalities, an equality of functions is a map of equali-
ties, and so on. From this, we get definitional versions of function and propositional
extensionality:

(Π(a : A) B)∼ p f0 f1 = Π(a0 a1 : A)Π(q : A∼ p a0 a1)(B∼ (p, q) (f0 a0) (f1 a1))

(Σ A B)∼ p (a0, b0) (a1, b1) = Σ (q : A∼ p a0 a1)(B∼ (p, q) b0 b1)

Prop∼ p P Q = (P ⇒ Q)× (Q⇒ P)

where we write ⇒ and × for the non-dependent version of Π and Σ in SeTT.
We can easily recover the usual Martin-Löf identity type from setoid equality,

with transport implemented via coercion.

A : Ty Γ a0, a1 : Tm Γ A

IdA a0 a1 :≡ A∼ (R Γ) a0 a1 : Tm Γ Prop

P : Ty (Γ.A) p : Tm Γ IdA a0 a1 t : Tm Γ P [a0]

transp P p t :≡ coe P (R id, p) t : Tm Γ P [a1]

We can also derive Martin-Löf’s J eliminator for this homogeneous identity
type. The only caveat is that transp and the J eliminator do not compute def-
initionally on reflexivity, although the rules can be consistently added as shown
in [ABKT19].

Chapter 6

The setoid universe

Setoid Type Theory as presented in [ABKT19] and summarized in Section 5.3 is
limited by the lack of universes internalizing the notion of setoid. In this chapter
we will work towards extending SeTT with a universe of setoids; since SeTT is
a direct syntactic reflection of the setoid model, this extension requires first and
foremost to show that we can extend the setoid model with a semantics for a
universe of setoids with the desired structure.

We begin our discussion with various design choices related to the setoid uni-
verse (Section 6.1). We then recall inductive-recursive (IR) universes, and the
way they can be equivalently defined as a plain inductive definition (Section 6.2).
We provide a first complete definition of the setoid universe using a combina-
tion of induction-recursion and recursion-recursion (Section 6.2) that we may call
induction-recursion-recursion (IRR) as its recursive components are mutually and
recursively-recursively defined. While recursion-recursion can be understood as
the induction principle of IITs (see Chapter 3), this form of IRR clearly goes be-
yond standard induction-induction, and does not seem to be an instance of known
axiomatizations of IR (such as [Dyb03]); moreover, we are not aware of a gen-
eral method to reduce it to plain inductive types, like it is the case for small IR.
Therefore, while recognizing its quality as a pedagogical device, we will limit our
use of IRR to Section 6.2, and move away from induction-recursion and recursion-
recursion in Section 6.4 with an alternative definition of the universe that relies
instead on infinitary induction-induction. This inductive-inductive encoding of the
universe is obtained from the IRR one, following a transformation that is similar
to what described in Section 6.2.

We continue the series of universe constructions with a purely inductive defi-
nition of the setoid universe. This version of the universe does not rely on IRR or
II, and is obtained from the universe IIT from Section 6.5 via a novel application
of a known encoding method of finitary IITs in terms of inductive families. To
successfully apply this method, we rely on an extension of the metatheory with a

53

54 CHAPTER 6. THE SETOID UNIVERSE

definitionally proof-irrelevant identity type with a strong transport rule that allows
to eliminate into arbitrary proof-relevant families.

The encoded IIT is powerful enough to support the definition of a setoid uni-
verse, even its simple elimination principle alone [ABK+21]. Moreover, it can be
equipped with general eliminators, as discussed in Section 6.6, which makes it an
equivalent, full encoding of the IIT from Section 6.4. We use the full induction
principle to justify universe induction/typecase (Section 6.6.1.)

6.1 Design choices

Extending the strict setoid model with a universe of setoids opens several questions
and possible design choices, starting with the very definition of the universe itself:
as any type in the setoid model, this universe must be a setoid and thus come
equipped with an equivalence relation. However, unlike the universe of proposi-
tions, a universe of setoids cannot be univalent, since this would force it to be a
groupoid. The obvious choice is therefore to have a non-univalent universe, and
instead define the universe’s relation so that it reflects a simple syntactic equality
of codes rather than setoid equivalence.

Another question has to do with the metatheoretic tools required to carry out
the construction of the universe. In fact, one of the main aspects of the strict setoid
model is that it can be carried out in a very minimal type theoretic metatheory,
thus providing a way to reduce extensionality to a minimal intensional core. We
would like to stay faithful to this ideal when constructing this setoid universe.

A known and established method for defining universes in type theory relies on
induction-recursion (IR), a definition schema developed by Dybjer [Dyb03,DS99].
Inductive-recursive definitions can be found throughout the literature, from the
already mentioned type theoretic universes, including the original formulation à
la Tarski by Martin-Löf [Mar84], to metamathematical tools like computability
predicates.

Although universe constructions in type theory—including our own setoid universe—
are naturally presented as inductive-recursive definitions, they may not necessarily
require a metatheory with a general definition schema for IR. In fact, it is possible
to reduce some instances of IR to plain induction (more specifically, inductive fam-
ilies), including some universe definitions. We recall this reduction in Section 6.2.

Other design choices on the setoid universe are less essential, but still require
careful consideration. For instance, one question is whether the setoid universe
should be equipped with universe induction, exposing the inductive structure of
the codes. Universe induction [NPS90], aka type-case, is known to clash with
extensionality principles like univalence and parametricity. Nevertheless, we would
like to have it as an option, especially in the context of SeTT where univalence

6.2. INDUCTIVE-RECURSIVE UNIVERSES 55

is already precluded in any case. Although the published version of the setoid
universe did not come with universe induction [ABK+21], in this thesis we include
an alternative formulation that does (Section 6.6.1.)

Another design choice has to do with how the setoid universe relates to the other
universes. One could provide a code for Prop in the setoid universe. Moreover, the
setoid universes could form a hierarchy, possibly cumulative.

Yet another choice is whether to have two separate sorts, one for propositions
and one for sets (with propositions convertible to sets) or a single sort of types
(sets), with propositions given by elements of a universe of propositions, which
is a (large) type. We have chosen to present the second option to fit with the
standard notion of (unisorted) CwF. However, this has downsides: to even talk
about propositions, we need to have a notion of large types. The first option is
more symmetric: we can have parallel hierarchies for propositions and sets.

6.2 Inductive-recursive universes

An inductive-recursive universe is given by a type of codes U : Type, and a
family El : U→ Type that assigns, to each code corresponding to some type, the
metatheoretic type of its elements. The resulting definition is inductive-recursive
because the inductive type of codes is defined simultaneously with the recursive
function El.

An example is the following definition of a small universe with booleans and
dependent function types:

data U : Type

bool : U

pi : (A : U)→ (El A→ U)→ U

El : U→ Type

El bool :≡ 2
El (pi A B) :≡ (a : El A)→ El (B a)

Induction-recursion is arguably a natural way to define internal universes in
type theory, althought it may not always be required. We can translate basic
instances of IR into inductive families using the equivalence of I-indexed families
of types and types over I (that is, A : Type with A → I) [MAG+13]. However,
this equivalence is not exact, and only applies when the result of the construction
A is allowed to be larger than the index I, as also noted in [Cap04].

In the case of our simple example, we can encode U as an inductive type inU
that carves out all types in Type that are in the image of El. In other words, inU
is a predicate that holds for any type that would have been obtained via El in the
inductive-recursive definition. As El is indexed by the type of codes, the definition
of inU reflects the inductive structure of codes.

56 CHAPTER 6. THE SETOID UNIVERSE

data inU : Type→ Type1

inBool : inU 2

inPi : inU A→ ((a : A)→ inU (B a))→ inU ((a : A)→ (B a))

U and El can be given by U :≡ Σ (A : Type) (in-U A) and El :≡ π1.
Note that this construction gives rise to a universe in Type1, rather than Type,

since the definition of U quantifies over all possible types in Type. It follows that
this kind of construction requires a metatheory with at least one universe.

6.3 Inductive-recursive setoid universe

In this section we give a first definition of the setoid universe, as a direct generaliza-
tion of the simple IR definition just shown. We only consider a very small universe
with bool type 2 and Π for simplicity; a more realistic universe that includes more
type formers can be found in the Agda formalization [Ses23].

To construct the universe of setoids in the setoid model, we first of all need
to define a type U : Ty Γ for every Γ : Con, and for every A : Tm Γ U a type
El A : Ty Γ. Recalling Section 5.2, these are essentially record types made of
several components. Since U is a closed type, it requires the same data of a
setoid; in particular, we need a type of codes together with an equivalence relation
reflecting equality of codes, in addition to proofs that these are indeed equivalence
relations:

data U : Type1

∼U : U → U → Prop1

reflU : (A : U)→ A ∼U A
symU : A ∼U B → B ∼U A
transU : A ∼U B → B ∼U C → A ∼U C

El is given by a family of setoids indexed over the universe, that is, a way to
assign to each code in the universe a carrier set and an equivalence relation.

El : U → Type

` ∼El : {a a′ : U} → a ∼U a′ → El a→ El a′ → Prop

Note that ` ∼El is indexed over equality on the universe, because E l is a
displayed setoid over U , hence in particular it must respect the setoid equality of
U . We also require data and proofs that make sure we get setoids out of E l:

reflEl : (A : U)(x : El A)→ reflU A ` x ∼El x
symEl : p ` x ∼El x′ → symU p ` x′ ∼El x
transEl : p ` x ∼El x′ → q ` x′ ∼El x′′ → transU p q ` x ∼El x′′

6.3. INDUCTIVE-RECURSIVE SETOID UNIVERSE 57

data U : Type1

bool : U
pi : (A : U)(B : El A→ U)

→ ({x x′ : El A} → reflU A ` x ∼El x′

→ B x ∼U B x′)→ U

bool ∼U bool :≡ >
piAB p ∼U piA′B′ p′ :≡

Σ(a∼ : A ∼U A′)
(∀xx′, a∼ ` x ∼El x′ → B x ∼U B′ x′)

reflU bool :≡ tt

reflU (piAB p∼) :≡ reflU A, λ . p∼

El bool :≡ 2
El (pi A B h) :≡

Σ (f : (a : El A)→ El (B a))

(∀{x x′}(p : reflU A ` x ∼El x′)
→ h p ` f x ∼El f x′)

a∼ ` x0 ∼El x0 :≡ x0
?
=2 x1 (bool case)

(a∼, b∼) ` (f0,) ∼El (f1,) :≡ (pi case)

∀x0 x1 (x∼ : a∼ ` x0 ∼El x1),

b∼ x∼ ` f0 x0 ∼El f1 x1

Figure 6.1: Core definitions for the inductive-recursive setoid universe

coeEl : A ∼U B → El A→ El B
cohEl : (p : A ∼U A′) (x : El A)→ p ` x ∼El coeEl p x

We give an inductive definition of U , mutually with a recursive definition of
the 4 functions ∼U , reflU , E l and ` ∼El (Figure 6.1). Note that ∼U appears
in the type of reflU , thus making this definition inductive-recursive-recursive. We

write
?
=2 for the Prop-valued predicate of decidable equality between booleans.

The remaining functions are then recursively defined: reflEl by itself, then symU
and symEl by mutual recursion-recursion, and finally transU , transEl, coeEl and
cohEl again by mutual recursion-recursion. While reflEl, symU and symEl are fairly
straightforward, the other definitions are quite technical. We point the reader to
the Agda formalization [Ses23] for the gritty details.

Note that in the definition of U we require that the family B : E l A→ U be a
setoid morphism, respecting the setoid equalities involved. This choice is crucial
for the definition of E l to go through, in particular since we eliminate the code
for Π-types into the setoid of functions that map equal elements to equal results.
To state this mapping property we need to compare elements in different types,
coming from applying f to different arguments x and x′. We know that x and x′

are equal, but to conclude B x ∼U B x′ we need to know that B respects setoid
equality. This is exactly what we get from our definition of U .

We give a full definition of the setoid universe, and of El A for any A : Tm Γ U,

58 CHAPTER 6. THE SETOID UNIVERSE

|U| :≡ λ γ.U
U∼ :≡ λ px y. x ∼U y
refl U :≡ reflU

sym U :≡ symU

trans U :≡ transU

coe U :≡ λ p a. a
coh U :≡ λ p. reflU

|El A| :≡ λ γ. El (|A| γ)

(El A)∼ :≡ λ px y.A∼ p ` x ∼El y
refl (El A) :≡ reflEl

sym (El A) {γ01} :≡ symEl{p = t∼ a γ01}
trans (El A) {γ01 γ12} :≡ transEl {p = t∼ a γ01}{t∼ a γ12}
coe (El A) :≡ λ p. coeEl (A

∼ p)

coh (El A) :≡ λ p. cohEl (A
∼ p)

Figure 6.2: Inductive-recursive setoid universe

in Figure 6.2.

We can show that U is judgmentally closed under dependent function types
and booleans. The universe can be closed under more constructions if more codes
are added to U . This gives a complete definition of a universe of setoids; however,
the full definition is inductive-recursive, and some of its recursive components
depend on each other in a recursive-recursive way. This combination of IR and
recursion-recursion is not obviously reducible to well-understood axiomatizations
of IR like the one described in [DS99]. In any case, we would like to avoid extending
the metatheory with general definition schemas for induction-recursion-recursion
(IRR), in order to keep the metatheory as minimal as possible.

In the next section we will transform our current universe definition to one that
does not use IR of any form. The reduction is inspired by the well-known trick
to eliminate IR described in Section 6.2, but modified in a novel way to account
for the presence of Prop-valued types and recursion-recursion. To our knowledge,
this is the first time this reduction method is applied to an IRR type of this kind.

6.4 Inductive-inductive setoid universe

We follow the method outlined in Section 6.2, and apply it to our current IRR def-
inition of the setoid universe components, i.e. U , E l, etc. As the reduced IRR type
includes recursion-recursion, the result of this reduction is an inductive-inductive
type. Specifically, in addition to inU for defining U , we also have a family inU∼ of
binary relations between types in the universe, from which we then define ∼U .
The full definition of this universe IIT is given in Figure 6.3.

Just as the role of inU is, as before, to classify all types that are image of E l,
in the same way inU∼ a a′ classifies all relations of type A→ A′ → Prop that are
image of ` ∼El , given proofs a : inU A, a′ : inU A′. In particular, this definition
of inU∼ states that the appropriate equivalence for boolean elements is the obvious

6.4. INDUCTIVE-INDUCTIVE SETOID UNIVERSE 59

data inU : Type→ Type1

bool : inU 2

pi : (a : inU A)→ inU∼ a a A01 → (b : (x : A)→ inU (B x))

→ (∀{x0 x1}(x01 : A01 x0 x1)→ inU∼ (b x0) (b x1) (B01 x01))

→ inU (Σ (f : (x : A)→ B x)

((x0 x1 : A)(x01 : A01 x0 x1)→ B01 x01 (f x0) (f x1)))

data inU∼ : {A A′ : Type} → inU A→ inU A′ → (A→ A′ → Prop)→ Type1

bool∼ : inU∼ bool bool (
?
=2)

pi∼ : {b0 : (x0 : A0)→ inU (B0 x0)}{b1 : (x1 : A1)→ inU (B1 x1)}
{a00 : inU∼ a0 a0 A00}{a11 : inU∼ a1 a1 A11}
{b00 : ∀{x0 x1}(x01 : A00 x0 x1)→ inU∼ (b0 x0) (b0 x1) (B00 x01)}
{b11 : ∀{x0 x1}(x01 : A11 x0 x1)→ inU∼ (b1 x0) (b1 x1) (B11 x01)}

→ inU∼ a0 a1 A01

→ (∀{x0 x1}(x01 : A01 x0 x1)→ inU∼ (b0 x0) (b1 x1) (B01 x01))

→ inU∼ (pi a0 a00 b0 b00) (pi a1 a11 b1 b11)

(λf0 f1 . ∀(x0 x1)→ A01 x0 x1 → B01 x01 (π1 f0 x0) (π1 f1 x1))

Figure 6.3: Inductive-inductive translation of the setoid universe

syntactic equality
?
=2 , whereas functions are to be compared point-wise. Note

that inU appears in the sort of inU∼. Since these types are mutually defined, they
form an instance of induction-induction.

As in the universe example in Section 6.2, we now define U as a Σ-type, and
E l as the corresponding first projection.

U : Type1 El : U → Type

U :≡ Σ (X : Type) (inU X) El :≡ π1

What is left now is to define the setoid equality relation on the universe, as
well as the setoid equality relation on E l A for any A in U . Two codes A,B in
the universe U are equal when there exists a setoid equivalence relation on their
respective sets E l A and E l B. Intuitively, since elements of a setoid are only ever
compared to elements of the same setoid, this should only be possible if A and B
are codes for the same setoid, that is, if A ∼U B. Existence and well-formedness of
such relations is expressed via the type inU∼ just defined, hence we would expect

60 CHAPTER 6. THE SETOID UNIVERSE

A ∼U B to be defined as follows:

(A, a) ∼U (B, b) :≡ Σ (R : A→ B → Prop) (inU∼ a b R)

Unfortunately this definition only manages to capture the idea, but does not
actually typecheck. In fact, ∼U should be a Prop1-valued relation, so A ∼U B
should be a proposition. However, the Σ-type shown above clearly is not, since
it quantifies over a type of relations, which is not a proposition. One possible
solution is actually quite simple, and it just involves truncating the Σ-type above
to force it to be in Prop1.

∼U : U → U → Prop1

(A, a) ∼U (B, b) :≡ ‖Σ (R : A→ B → Prop) (inU∼ a b R)‖

We are now left to define the indexed equivalence relation on E l:
` ∼El : {A B : U} → A ∼U B → El A→ El B → Prop

p ` x ∼El y :≡ ?

In the definition above, p has type ‖Σ (R : E l A → E l B → Prop) (. . .)‖.
If the type were not propositionally truncated, we could define p ` x ∼El y by
extracting the relation out of the first component of p, and apply it to x, y. That
is, p ` x ∼El y :≡ π1 p x y. This would make the definition of ∼U and ` ∼El
in line with how we defined U and E l.

Alas this does not work: since the type of p is propositionally truncated, it
cannot be eliminated to construct a proof-relevant object. Fortunately, we can
work around this limitation by defining p ` x ∼El y by induction on the codes
A B : U , in a way that ends up being logically equivalent to the proposition we
would have obtained by π1 p x y if there were no truncation. More precisely, we
need to construct proofs that for any concrete R and inR, the types |(R, inR)| `
x ∼El y and R x y are logically equivalent.

out : (a01 : inU∼ a0 a1 A01)→ |(A01, a01)| ` x0 ∼El x1 → A01 x0 x1

in : (a01 : inU∼ a0 a1 A01)→ A01 x0 x1 → |(A01, a01)| ` x0 ∼El x1

These in turn need to be defined mutually with ` ∼El .

out bool∼ x01 :≡ x01

out (pi∼ a01 b01) f01 x01 :≡
out (b01 x01) (f01 (in a01 x01))

in bool∼ x01 :≡ x01

in (pi∼ a01 b01) f01 x01 :≡
in (b01 (out a01 x01))(f01 (out a01 x01))

` x0 ∼El x1 :≡ if x0 then (if x1 then > else ⊥) else (if x1 then ⊥ else >) (bool case)

6.4. INDUCTIVE-INDUCTIVE SETOID UNIVERSE 61

(, pi∼ a01 b01) ` (f0,) ∼El (f1,) :≡ (pi case)

∀x0 x1 (x01 : | , a01| ` x0 ∼El x1) . | , b01 (out a01 x01)| ` (f0 x0) ∼El (f1 x1)

We can prove that any relation constructed via ∼El is “valid” as established by
inU∼:

inj : (w : (A0, a0) ∼U (A1, a1))→ inU∼ a0 a1 (λx y . w ` x ∼El y)

inj bool bool :≡ bool∼
inj (pi a0 a00 b0 b00) (pi a1 a11 b1 b11) | , pi∼ a01 b01| :≡

pi∼ (inj a0 a1 | , a01|) (λx01 . inj | , b01 (out a01 x01)|)

Remark 6.4.1. We abuse notation and pattern-match on the proof of ∼U in
the second clause of ∼El and inj; this does not violate consistency as we only use
the terms exposed by the pattern to construct other proof-irrelevant terms. �

The full definition of the universe is concluded with the remaining functions,
like reflU , reflEl, etc., which can be adapted from their IR counterparts more or less
straightforwardly. For example,

reflU : (A : U)→ A ∼U A
reflU (, bool) :≡ | , bool∼|
reflU (, pi a a01 b b01) :≡ | , pi∼ a01 b01|

As before, we can close the universe under dependent functions and booleans:

2U : Tm Γ U

|2U| :≡ , bool

2
∼
U :≡ | , bool∼|

ΠU : (A : Tm Γ U)→ Tm (Γ . El A) U→ Tm Γ U

|ΠU A B|γ :≡ , pi (π2(|A|γ)) (inj (reflU (|A|γ)))

(λx . π2 (|B| (γ, x)))

(λx01 . inj (B∼ (refl Γ γ, x01)))

(ΠU A B)∼ γ01 :≡ | , pi∼ (inj (A∼ γ01)) (λx01 . inj (B∼ (γ01, x01)))|

We direct the reader to the Agda formalization [Ses23] for the full details
of these definitions, as they are quite technical. The final result does not use

62 CHAPTER 6. THE SETOID UNIVERSE

induction-recursion, but it is nevertheless an instance of infinitary induction-induction.
The ability to define arbitrary, infinitary inductive-inductive types clashes, again,
with our objective of keeping the core metatheory as minimal as possible. The
next step is therefore to reduce this inductive-inductive universe to one that does
not require any form of induction-induction.

6.5 Inductive setoid universe

The goal of this section is to construct the inductive-inductive universe of setoids
from the previous section without assuming arbitrary inductive-inductive defini-
tions. Practically, this entails reducing the universe IIT to simpler principles, like
inductive families, that are available in the metatheory.

Finitary IITs are known to be reducible to inductive families, via a systematic
method illustrated in Section 3.2. It is not yet clear, however, whether this method
can be applied to infinitary types like our universe IIT. Of course, the absence of a
general reduction method does not mean that we cannot reduce particular concrete
instances of infinitary induction-induction, which is exactly what we hope for our
universe construction.

The obvious challenge in successfully completing this reduction is to avoid the
need for extensionality in the metatheory. In fact, consider the simple infinitary
inductive-inductive type obtained from the previous Con/Ty example by replacing
the finitary constructor Π with an infinitary one: Π∞ : {Γ : Con} → (N →
Ty Γ)→ Ty Γ. Already with this simple example, we run into problems as soon as
we try to define the eliminator. One issue is that the definition of the eliminators
relies on proving that the well-typing predicates are propositional, that is, any
two of their elements are equal. We have seen an example of this phenomenon in
Section 3.2, where propositionality of the predicates was a critical requirement even
for the simpler cases of the left-totality proofs. Without further assumptions on
the nature of the predicates, proving propositionality must be done by induction;
alas, this process requires function extensionality in our case, since the predicates
for the universe IIT are infinitary and thus include higher-order constructors.

One way to get around this is to define the well-typing predicates as Prop-
valued families, rather than in Type:

data inU0 : Type→ Type1

data inU∼0 : {A A′ : Type} → (A→ A′ → Prop)→ Type1

data inU1 : (A : Type)→ inU0 A→ Prop1

data inU∼1 : {A A′ : Type}{R : A→ A′ → Prop}
→ inU0 A→ inU0 A

′ → inU∼0 R→ Prop1

6.5. INDUCTIVE SETOID UNIVERSE 63

The constructors of these types are technically verbose but conceptually straight-
forward, as they are just systematically derived from the original definition of inU
and inU∼ via the same process of erasure described in Section 3.2 for finitary IITs.
We only give the boolean cases below:

bool0 : inU0 2 bool∼0 : inU∼0 (
?
=2)

bool1 : inU1 bool0 bool∼1 : inU∼1 bool0 bool0 bool∼0

Using Prop avoids the issue of proving propositionality altogether, since the
predicates are now propositional by definition. However, it introduces a different
issue. In order to define the eliminators for inU and inU∼, we need to be able to
define inversion principles on inU1 and inU∼1 expressing equational constraints on
their indices, as well as transport along those equations. Again, we have already
seen examples of this in Section 3.2, where the inversion principles arising from
the well-formedness proofs were crucial in defining left-totality of the eliminator
relations1.

For example, when defining the eliminator for inU∼ in the case of bool∼, we
need an inversion principle on inU∼1 stating that the bool∼0 constructor is well-
formed if and only if the inU0 indices are themselves constructed via bool0:

inv-bool∼1 : inU∼1 x y bool∼0 → x = bool0 × y = bool0

In order to even be able to express these inversion principles, we need to extend
the metatheory with some kind of identity type. However, this type cannot live in
Type, since proving the inversions would require arbitrary elimination of proof-
irrelevant predicates into a proof-relevant identity type, which is not possible for
consistency reasons.

Instead, we extend the metatheory with the following definitionally proof-
irrelevant identity type

Id : {A : Type} → A→ A→ Prop

refl : {A : Type}(a : A)→ Id a a

1Actually, in the example of Section 3.2 we have used dependent pattern matching instead of
explicit inversion principles, as the two were completely equivalent in that case. In the current
case, however, proof-irrelevance prevents us from being able to pattern match of well-formedness
proofs.

64 CHAPTER 6. THE SETOID UNIVERSE

transp : {A : Type}(C : A→ Type){a0 a1 : A} → Id a0 a1 → C a0 → C a1

with the computation rule transp C e u ≡ u whenever e is a reflexive equation.
With Id we can now state and prove all the necessary inversion principles, as

well as transport over them. We are now left to define the actual eliminators for the
encoded IIT. Perhaps surprisingly, the simple (i.e. non-recursive-recursive) elim-
ination principle is sufficient for our purposes: all functions described in Section
6.4 can be defined just using the simple eliminator without recursion-recursion.
The simple eliminator itself can be defined by pattern matching on the untyped
codes, and does not require extensionality or any extra principles beyond Prop and
strong transport. Once the inductive encoding of the inductive-inductive universe
is done, the setoid universe can be defined just as in Section 6.4.

6.6 Inductive setoid universe with general elim-

inators

The inductive setoid universe thus described is proposed in our published work
[ABK+21], on which we based this chapter until now. The paper version of the
universe IIT does not include an encoding of the fully general eliminators, but
instead constructs the setoid universe using the simple eliminators. The reason for
this omission was a suspicion that deriving the general eliminators would require
function extensionality.

Being able to define the setoid universe with just the simple elimination prin-
ciple is certainly a remarkable result in its own right; however, because we were
forced to work with a less powerful elimination principle, the definitions themselves
ended up being quite technical and arguably not very easy on the reader. Partially
for this reason, we won’t discuss its details here and instead refer the reader to the
Agda formalization [Ses23].

Having said that, it is natural to ask ourselves if deriving the general eliminators
for the universe IIT is truly out of the question. As it turns out, despite our fears
we can in fact derive them. While a “naive” application of the finitary reduction
method to the universe IIT would fail without funext in the encoding metatheory,
we realize that there are ways to circumvent the difficulties that arise. The two
major stumbling blocks when encoding infinitary IITs in an intensional setting are
the proof of propositionality of the well-formedness predicates and the proof of
right-uniqueness of the eliminator relations, both of which require funext. While
we have established that we can avoid proving propositionality of the predicates
by defining them in Prop, it is not yet clear how to get away from proving right-
uniqueness. We will see in the following sections that many infinitary IITs can
be encoded via eliminator relations without having to prove right-uniqueness, by

6.6. INDUCTIVE SETOID UNIVERSE WITH GENERAL ELIMINATORS 65

careful use of the induction hypotheses and the inputs to the proof term of left-
totality. Fortunately, the universe IIT inU/inU∼ happens to be one of these types.
We defer discussing the details of the encoding until Section 8.2. In the meantime,
we will assume to have the general induction principle for inU/inU∼ at our disposal,
and take a look at some useful applications of it, namely the derivation of universe
induction, in the next section.

6.6.1 Universe induction

Universes have introduction rules expressing how types belonging to that universe
can be formed, however there usually is no formal enforcement that types can only
be constructed from that specific set of constructors. When this is the case, we
say that the universe is open.

An alternative to open universes is to equip them with an induction princi-
ple expressing that all types belonging to that universe are a result of repeated
application of the introduction rules [NPS90]. We then say that the universe is
closed.

For example, given a universe of small sets S : Type,T : S → Type with
codes bool, prod, fun for booleans, products, and functions, an eliminator for S is a
term:

C : S→ Type
c1 : C bool

c2 : ∀{a b} , C a→ C b→ C (prod a b)
c3 : ∀{a b} , C a→ ((x : T a)→ C (b x))→ C (pi a b)

f ≡ elimC c1 c2 c3 : (s : S)→ C s

such that f bool ≡ c1, f (prod a b) ≡ c2 (f a) (f b), and f (pi a b) ≡ c2 (f a) (λx . f (b x)).
Whether to adopt closed or open universes is a matter of trade off, as both

approaches have advantages and disadvantages. An advantage and common use
case of closed inductive universes is generic programming. For example, we can
take our universe S and write a generic program that curries any term:

curry-fun-ty : S→ S→ S

curry-fun-ty :≡ elim (λ . S→ S) (pi bool) (λha hb . ha ◦ hb) (λ {a b} . pi (pi a b))

curry-ty :≡ elim (λx.x) (λ {a b} . curry-fun-ty a b) : S→ S

curry-fun : (a b : S)→ T (fun a b)→ T (curry-fun-ty a b)

curry-fun :≡ elim (λ f . f) (λha hb f . ha (λx . hb (λy . f (x, y)))) (λ f . f)

curry : (s : S)→ T s→ T (curry-ty s)

curry :≡ elim (λx . x) (λ x . x) (λ {a b} . curry-fun a b)

66 CHAPTER 6. THE SETOID UNIVERSE

A drawback of universe induction, aka type-case, is that it clashes with other
principles like univalence and parametricity. These principles are strongly tied to
the notion of types as black boxes representing and enforcing layers of abstraction,
which is in contradiction with the ability to inspect and perform case analysis on
types.

Universe induction is employed in systems like OTT [AMS07] and XTT [SAG19]
to generically compute the structure of equality types for any given type in the
universe. Both these systems are based on a setoid model, thus we wonder if the
same principle can be added to our own setoid universe in the context of SeTT. As
it turns out, the stronger elimination principle that we have implemented for the
universe IIT inU/inU∼ now allows us to model universe induction for our setoid
universe U.

Given a family F : Ty (Γ .U) over the universe, and methods2:

fb : Tm Γ F [2U]

fp : Tm (Γ . A : U . B : Π (a : El A)U . F [A] . Π (a : El A)F [B · a]) F [ΠUAB]

We define a dependent function

Elim : Tm Γ (Π U F)

by induction on its argument. We sketch the core part of the definition, i.e. the
component |Elim| : (γ : |Γ|)(x : |U|γ)→ |F |(γ, x).

|Elim| γ (, bool) = |fb|γ
|Elim| γ (, pi {A} {B} {A01} {B01} a a01 b b01) = ?

The boolean case is immediate. On the function case, we construct the follow-
ing by induction hypothesis

ha :≡ |Elim| γ (, a)

hb :≡ (λx . |Elim| γ (, b a)), (λx01 .Elim∼ (refl Γ γ) | , b01 (out a01 x01)|)
h :≡ |fp| (, ha, hb)

The term h is the result we want, but its type is not quite right as some of its
indices are only extensionally equal (i.e., up to setoid equality) to those of the goal

2Recall the definition of · on CwFs from Section 2.2.1. As we are presenting the setoid
model as a CwF with extra structure, we assume here to have a corresponding term · .

6.6. INDUCTIVE SETOID UNIVERSE WITH GENERAL ELIMINATORS 67

type. Let tmA : Tm ΓU and tmB : Tm (Γ .El tmA)U be setoid terms internalizing
the codes a and b as elements of U. The type of h results in

|F |(γ, |ΠU tmA tmB|γ)

whereas the goal type is just

|F |(γ, (, pi a a01 b b01))

Unfortunately these two types are not definitionally equal, as a consequence of
our use of the out and in operators to define the universe, and in particular the
ΠU constructor. While these operators establish equivalences between different
relations, they certainly need not establish definitional equalities.

Nevertheless, we can prove a setoid equality between the two codes, as wit-
nessed by the following proof:

e : inU∼ (pi a a01 b b01) (π2 (|Π tmA tmB|γ))

e :≡ pi∼ (inj | , a01|) (λx01 . inj | , b01 (out a01 x01)|)

We thus coerce along e, and conclude with coe F (refl Γ γ, | , e|) h.
The second and final ingredient to define Elim is a proof Elim∼ that |Elim|

respects setoid equality:

Elim∼ : (p : Γ∼ γ0 γ1)→ (Π U F)∼ p (|Elim| γ0) (|Elim| γ1)

We refer the reader to the formalization [Ses23] for its definition. We do note,
however, that Elim∼ is defined by induction on inU∼, and mutually with |Elim|
which also appears in its type. This recursive-recursive definition of Elim thus
crucially relies on the general induction principle of inU/inU∼.

We can prove the relevant β-equations for the eliminator thus defined. We have
a definitional equation for the boolean case:

Elim · 2U ≡ fb

However, because of the extra coercion in the definition of Elim for the depen-
dent function case, we only obtain a computation rule up to internal propositional
equality:

Tm Γ (Id (Elim · ΠUAB)

(fp[A,B,Elim · A, lam (Elim ·B[vz])]))

68 CHAPTER 6. THE SETOID UNIVERSE

Chapter 7

Conclusion of Part II

In this part of the thesis we have described the construction of a universe of se-
toids in the strict setoid model of type theory; the universe is derived in several
steps, first as an inductive-recursive definition, then as an inductive-inductive def-
inition, and finally as an inductive type. Every encoding is obtained from the
previous by adapting known datatype transformation methods in a novel way that
accounts for the peculiarities of our construction. This part of the thesis, there-
fore, not only contributes a setoid universe construction, but also demonstrates
how our initial inductive-recursive-recursive definition of the universe can be en-
coded as a purely inductive construction that does not rely on induction-recursion
or recursion-recursion, as well as function extensionality.

Part of the content presented here has already been published as joint work
in [ABK+21]. We have improved upon, and added to it with (1) an implementation
of general eliminators with definitional β-equations for the universe IIT encoded via
inductive families, as well as (2) an implementation of universe induction/typecase
for the setoid universe defined in terms of such IIT.

7.1 Formalization

All the mathematical content of Chapter 6 has been formalized in the Agda proof
assistant. The files can be found in the permanent repository [Ses23], inside the
directory setoid-univ.

The portion of formalization covering the material up to Section 6.5 has been
previously published as part of [ABK+21], and can be found unchanged in [Ses23].
In addition to that, we include a complete formalization of the content of Sec-
tion 6.6, Section 6.6.1, and Section 8.2. We refer the interested reader to the file
Readme.agda for a guide on the contents of the formalization. We emphasize in
particular the Agda files relevant to the two major contributions original to this

69

70 CHAPTER 7. CONCLUSION OF PART II

part of the thesis, namely

• the encoding of the types and term constructors of the universe IIT in terms
of inductive families, in the module Setoit.Sets.lib;

• the implementation of the general eliminators for the aforementioned en-
coded IIT (Section 8.2), in the module Setoid.Sets.gen-elim;

• the implementation of the universe elimination principle/typecase (Section 6.6.1)
for the setoid universe constructed via the universe IIT (as presented in Sec-
tion 6.4), in the module Setoid.UnivElim-SetsII.

7.2 Future work

The work presented in this part of the thesis offers several opportunities for im-
provement and future work, which we summarize below:

• The obvious next step is to extend the rules of SeTT as written in [ABKT19]
with rules for a universe reflecting the semantics presented here.

• In Section 6.6.1 we have demonstrated that the IIT formulation of the setoid
universe can support universe induction; however, we only managed to prove
the β-rule for the code of function types up to setoid equality, i.e. SeTT’s
internal propositional equality. We would like to investigate whether this
equation can be made definitional, perhaps via a different formulation of the
setoid universe.

• The inductive version of the universe IIT inU/inU∼ relies on the presence of a
proof-irrelevant identity type with a strong transport rule. While universes of
definitionally proof-irrelevant propositions are a relatively common and well-
understood tool supported by proof-assistants like Agda and Coq [GCST19],
proof-irrelevant identity types have received less attention. We would like
to study the metatheory of type theories with this kind of identity type,
since previous work on the topic seems to suggest that is represents a non-
trivial addition [AC19]. We think consistency can be established by modeling
Prop as h-propositions, however canonicity and normalization would require
further work.

• Both SeTT [ABKT19] and XTT [SAG19] are syntactic presentations of the
setoid model with similar design choices, like definitional proof-irrelevance
and heterogeneous equality types. Moreover, as we have shown in this thesis,
SeTT universes can support universe induction, which is a crucial ingredient

7.3. RELATED WORK 71

of XTT. We would like to know whether their respective notions of models
are equivalent, that is, if we can obtain an XTT model from a SeTT model,
and vice versa.

7.3 Related work

There are several alternative approaches to constructing universes of setoids in
the literature. We recall OTT and XTT, which were previously mentioned in
Chapter 6. In [AMS07], the authors define an inductive-recursive universe for
OTT, and rely on ETT for its justification; on the other hand, we construct
our inductive-recursive-recursive universe by reducing it to an indexed inductive
definition that can be fully expressed in intensional MLTT extended with strict
propositions and proof-irrelevant identity types.

In addition to OTT’s universes and our own, XTT [SAG19] also features
inductive-recursive universes supporting a form of type-case. It should be noted,
however, that while completely optional in our setting, type-case in OTT and XTT
seems to be necessary to make equality proofs and coercions compute as intended.
Similarly to our universe, XTT universes are presented in an inductive-recursive
style, but are actually defined using simpler building blocks such as W types and
Σ-types.

In [AR14a], the authors give a formalized account of Allen’s PER seman-
tics [All87] for a hierarchy of type universes for Nuprl, carried out in the Coq proof
assistant (see Section 4.2 of the technical report [AR14b] for a detailed account).
In this semantics, typehood (which terms are types) and member equality (which
terms are equal elements of some type) would have to be given mutually, giving rise
to an inductive-recursive definition. In the attempt to avoid induction-recursion
(IR), the authors follow Allen’s approach and encode the mutual definition as a
purely inductive construction, relegating IR — which is, in any case, not currently
supported by Coq — to a purely explanatory role. Their encoding can be un-
derstood as an instance of Capretta’s method to reduce (small) IR to induction
in the Calculus of Inductive Constructions [Cap04], and undoubtedly bears many
similarities with our work in its general approach; however, our novel combina-
tion of large IR with constructs such as strict propositions and recursion-recursion
arguably brings on a unique set of challenges and related solutions.

On the broader topic of bootstrapping extensionality from an intensional base,
we must mention the Minimalist Foundation by Maietti and Sambin [MS05,Mai09].
This system is implemented in two levels: an extensional level emTT—a variation
of ETT with quotients, proof irrelevance, and a notion of collection — and an
intensional level — a variation of intensional MLTT with a notion of collection,
and a weaker notion of conversion that does not include the ξ rule for λ-terms. The

72 CHAPTER 7. CONCLUSION OF PART II

extensional level is built on top of the intensional one via a setoid model. One of the
core design principles of the Minimalist Foundation, shared by SeTT, is to alleviate
the burden of working with extensional concepts in intensional type theory, by
offering instead a more ergonomic system that hides the complex setoid machinery
under the hood, while also guaranteeing soundness with respect to a particular
setoid model construction. One crucial difference between SeTT and emTT is that
emTT is a version of ETT and thus has undecidable type-checking, whereas SeTT
is an attempt to add extensionality to intensional type theory without sacrificing
decidability.

Part III

Inductive-inductive types

73

Chapter 8

Infinitary induction-induction

Induction-induction [NF13] is a powerful form of induction that can be used to
define complex structures like the syntax of dependent type theory [AK16]. In
a type theory that does not support induction-induction as a primitive notion,
like the one underlying the proof-assistants Coq and Lean, it is not possible to
just define IITs directly as a single inductive definition. Still, if the theory is
rich enough it might be possible to instead encode the components that constitute
the IIT by explicitly defining its types, constructors, and eliminators using the
building blocks available. One example of this process of reduction is when we
encode arbitrary inductive types as a particular instantiation of W-types [Dyb97].

It is known that finitary inductive-inductive definitions can be reduced to in-
ductive families [AKKvR19,AKKvR18,KKL20]. We have seen an instance of this
construction in Section 3.2, where we applied the reduction method described
in [vR19] to a minimal type-theoretic syntax with two sorts Con,Ty.

On the other hand, the problem of reducing infinitary IITs to simpler forms of
induction has received comparatively less attention, and most works that do touch
on the topic tend, perhaps unsurprisingly, to presuppose an extensional setting
(see discussion in Section 13.4). We are interested in the reduction of infinitary
IITs withing ambient encoding theories that are intensional, and that in particular
do not admit function extensionality.

We have ventured into the infinitary territory in Section 6.5, where we have
managed to apply the finitary encoding method as per Section 3.2 outside of
its intended scope. Specifically, we targeted the universe IIT inU/inU∼, a fairly
complex infinitary IIT, and carried out the encoding in an intensional metatheory
without funext. Although we did succeed in our goal it wasn’t all smooth sailing, as
we had to tweak the encoding method (and the metatheory) by adding definitional
proof-irrelevance and a proof-irrelevant identity type.

Our endeavours to reduce the universe IIT to inductive families raised some
questions:

75

76 CHAPTER 8. INFINITARY INDUCTION-INDUCTION

• is it possible to encode the general eliminators for the universe IIT inU/inU∼?

• is it possible to generalize the encoding method we used on the universe to
a wider class of infinitary IITs?

The chapters that follow serve as our answers. An answer to the first question
was already hinted at in Section 6.6, where we deferred discussing the details of
the encoding until this chapter. We finally do so in Section 8.2. We complement
that in Section 8.1 with an in-depth illustrative encoding of a simple but realistic
infinitary IIT: a version of the Con/Ty IIT with an additional infinitary constructor
for dependent function types quantifying over the natural numbers. We will use
this running example as a reference in the later chapters, when generalizing the
encoding method to arbitrary IIT specifications.

Chapters 9 to 12 will cover the main contribution of Part III, and tackle the sec-
ond of the questions above. By looking at our encoding examples from Section 8.1
and 8.2 we identify some sufficient conditions for an infinitary IIT to be reducible
to inductive families without having to assume funext in the encoding metatheory
(Section 9.1). Accordingly, we fix a suitable “target” subclass of all IITs (Sec-
tion 9.2) and formally define how to specify IITs in such class (Section 9.4). The
remaining chapters will go into the details of the generalized encoding. We first
identify what constitutes the IIT corresponding to given a specification, by defin-
ing a notion of IIT algebra (Chapter 10). We then show that for any specifiable
IIT we can encode a corresponding algebra, i.e. its types and constructors (Chap-
ter 11). We conclude by showing that the algebras thus constructed can always
be equipped with general eliminators with definitional β-rules (Chapter 12).

8.1 Example: contexts and types

In this section we revisit the reduction example from Section 3.2 in an infinitary
setting. The idea is to test how much of the construction showcased in Section 3.2
can be applied to infinitary IITs, and what alterations to the encoding theory are
required to make the method work.

We start from the same metatheory/encoding theory as in Section 3.2: this is
intensional Martin-Löf Type Theory with universes Typei (at least two) equipped
with (mutual) inductive families and Π,Σ types. Learning our lesson from the
universe IIT encoding attempts in Section 6.5, we further extend the metathe-
ory with two components: (1) a universe Prop of definitionally proof-irrelevant
propositions, containing >,Π,Σ; (2) a proof-irrelevant identity type with strong
transport rule

Id : (A : Type)→ A→ A→ Prop

8.1. EXAMPLE: CONTEXTS AND TYPES 77

refl : {A : Type}(x : A)→ Id A a a

transp : {A : Type}(B : A→ Type){x y : A} → Id A x y → B x→ B y

transp B (refl x) b ≡ b

We also have a lifting operator Lift : Prop→ Type with constructor lift : {P :
Prop} → P → Lift P and destructor unlift : {P : Prop} → Lift P → P , which we
use to implicitly coerce propositions into types as convenient.

We take the already familiar Con/Ty IIT and add a higher-order constructor π̂
that makes it infinitary.

• : Con

. : (Γ : Con)→ Ty Γ→ Con

ι : (Γ : Con)→ Ty Γ

π̄ : (Γ : Con)(A : Ty Γ)(B : Ty (Γ . A))→ Ty Γ

π̂ : (Γ : Con)→ (N→ Ty Γ)→ Ty Γ

A real-world example of such an infinitary constructor can be found in the
specification syntax for QIITs proposed by Kaposi et al. [KKA19]: they define
a type theory of signatures as a QIIT, which includes sorts Con and Ty, and a
constructor Π̂ : (T : Type) → (T → Ty Γ) → Ty Γ to express non-inductive
parameters. Our constructor π̂ is just Π̂ instantiated to T :≡ N.

As an IIT, we would expect Con/Ty to be equipped with eliminators. To state
them, we consider a displayed algebra over Con and Ty, which is given by indexed
types

ConD : Con→ Type

TyD : {Γ : Con} → ConD Γ→ Ty Γ→ Type

and functions corresponding to each constructor:

•D : ConD •
.D : ∀{Γ A}(ΓD : ConD Γ)→ TyD ΓD A→ ConD (Γ . A)

ιD : {Γ : Con}(ΓD : ConD Γ)→ TyD ΓD (ι Γ)

π̄D : {Γ A B}(ΓD : ConD Γ)(AD : TyD ΓD A)(BD : TyD (ΓD .D A) B)

→ TyD ΓD (π̄ Γ A B)

π̂D : {Γ : Con}{F : N→ Ty Γ}(ΓD : ConD Γ)→ ((n : N)→ TyD ΓD (F n))

→ TyD ΓD (π̂ Γ F)

The general eliminators have the following signatures:

78 CHAPTER 8. INFINITARY INDUCTION-INDUCTION

elimCon : (Γ : Con)→ ConD Γ

elimTy : {Γ : Con}(A : Ty Γ)→ TyD (elimCon Γ) A

In addition, we have computation rules that explain the computational be-
haviour of the eliminators on constructors:

elimCon • ≡ •D

elimCon (Γ . A) ≡ elimCon Γ .D elimTy A

elimTy (ι Γ) ≡ ιD (elimCon Γ)

elimTy(π̄ Γ A B) ≡ π̄D (elimCon Γ) (elimTy A) (elimTy B)

elimTy(π̂ Γ F) ≡ πD∞ (elimCon Γ) (λn . elimTy (F n))

Following what we did in Section 3.2, we now split the IIT specification into
erased types Con0,Ty0 : Type and well-formedness predicates Con1 : Con0 →
Prop,Ty1 : Con0 → Ty0 → Prop, with the important difference that now Con1,Ty1

are defined in Prop.

•0 : Con0

.0 : Con0 → Ty0 → Con0

ι0 : Con0 → Ty0

π̄0 : Con0 → Ty0 → Ty0 → Ty0

π̂0 : Con0 → (N→ Ty0)→ Ty0

•1 : Con1 •0
.1 : Con1 Γ0 → Ty1 Γ0 A0 → Con1 (Γ0 .0 A0)

ι1 : Con1 Γ0 → Ty1 Γ0 (ι0 Γ0)

π̄1 : Con1 Γ0 → Ty1 Γ0 A0 → Ty1 (Γ0 .0 A0) B0

→ Ty1 Γ0 (π̄0 Γ0 A0 B0)

π̂1 : Con1 Γ0 → (∀n.Ty1 Γ0 (F0 n))

→ Ty1 Γ0 (π̂0 Γ0 F0)

The predicate types can be defined as a mutual inductive definition, or al-
ternatively by (large) recursion over the erased types. More details about this
construction later in Section 8.1.1.

We have inversion principles expressing that well-formedness of a compound
term implies well-formedness of its components:

inv-.1-Con : ∀{Γ0 A0} → Con1 (Γ0 .0 A0)→ Con1 Γ0

inv-.1-Ty : ∀{Γ0 A0} → Con1 (Γ0 .0 A0)→ Ty1 Γ0 A0

inv-π̂-Con : ∀{Γ0 A0} → Ty1 Γ0 (π̂0 Γ0 A0)→ Con1 Γ0

inv-π̂-Ty : ∀{Γ0 A0} → Ty1 Γ0 (π̂0 Γ0 A0)→ Ty1 Γ0 A0

inv-π̄1-Dom : ∀{Γ0A0B0} → Ty1 Γ0 (π̄0 Γ0A0B0)→ Ty1 Γ0A0

8.1. EXAMPLE: CONTEXTS AND TYPES 79

inv-π̄1-Cod : ∀{Γ0A0B0} → Ty1 Γ0 (π̄0 Γ0A0B0)→ Ty1 (Γ0 .0 A0)B0

As with the finitary Con/Ty, we can recover the original inductive-inductive
type as Con :≡ Σ (Γ0 : Con0) (Con1 Γ0) and Ty Γ :≡ Σ (A0 : Ty0) (Ty1 (π1 Γ) A0).
We only show the new constructor:

π̂ (Γ0,Γ1)F :≡ (π̂0 Γ0 (λn.π1(F n)), π̂1 Γ1 (λn.π2(F n)))

Next, we give the graph of the eliminators as a pair of mutually-defined rela-
tions. Except π̂R, the rest of the definition is just like the finitary case.

ConR : (Γ : Con)→ ConD Γ→ Type

TyR : {Γ : Con}(ΓD : ConD Γ)(A : Ty Γ)→ TyD Γ A ΓD → Type

•R : ConR • •D

.R : ConR Γ ΓD → TyR ΓD A AD → ConR (Γ . A) (ΓD .D AD)

ιR : ConR Γ ΓD → TyR ΓD (ι Γ) (ιD ΓD)

π̄R : ConR Γ ΓD → TyR ΓD A AD → TyR (ΓD .D AD) B BD

→ TyR ΓD (π Γ A B) (πD ΓD AD BD)

π̂R : ConR Γ ΓD → ((n : N)→ TyR ΓD (F n) (FD n))

→ TyR ΓD (π̂ Γ F) (π̂D ΓD FD)

Like the predicate types, these relations can be defined inductively, or by re-
cursion over the erased types. A recursive definition is given later in Section 8.1.1.

We now prove that these relations are left-total. This is done by mutual in-
duction on the erased components of the Con and Ty inputs, respectively:

Con∃ : ∀ Γ0 Γ1 → Σ (ΓD : ConD (Γ0,Γ1))(ConR (Γ0,Γ1) ΓD)

Ty∃ : ∀{Γ ΓD}(A0 : Ty0)(A1 : Ty1 (π1 Γ) A0)→ ConR Γ ΓD

→ Σ(AD : TyD Γ (A0, A1) ΓD)(TyR (A0, A1) ΓD AD)

Proving Con∃ is fairly straightforward:

Con∃ •0 p :≡ (•D, •R)

Con∃ (Γ0 .0 A0) p :≡ (π1 h .
D π1 h

′), (π2 h .
R π2 h

′)

where in the second clause we obtain h and h′ by induction hypothesis:

h :≡ Con∃ Γ0 (inv-.1-Con p)

80 CHAPTER 8. INFINITARY INDUCTION-INDUCTION

h′ :≡ Ty∃ A0 (inv-.1-Ty p) (π2 h)

Proving Ty∃ isn’t conceptually different, however we now have to pay attention
to the fact that Γ both appears as a standalone input as well as data to construct
A : Ty Γ. For example:

Ty∃ {Γ0,Γ1} {ΓD} (ι0 Γ′0) p r :≡ ?

At this point, both Γ0 and Γ′0 appear in the goal type, therefore it’s impossible
for us to conclude the proof via ιD and ι-R unless we equate these two contexts.

Recall that we encountered the same stumbling block in Section 3.2 for the
finitary version of Con/Ty. Like in that case, we should be able to conclude that
Γ0 equals Γ′0 from inversion on p. Here is where the proof-irrelevant identity type
with strong transport rule becomes necessary: because Ty1 is a strict proposition,
any inversion principle from a proof of type Ty1 can only ever provide us with an
equality in Prop. In our case, we express this equality via the Id type, which we
also write as =.

We have the following equational inversion principles on predicate types:

inv-ι1 : ∀{Γ0 Γ′0} → Ty1 Γ0 (ι0 Γ′0)→ Γ0 = Γ′0
inv-π̂1 : ∀{Γ0 Γ′0 F0} → Ty1 Γ0 (π̂0 Γ′0 F0)→ Γ0 = Γ′0
inv-π̄1 : ∀{Γ0 Γ′0 A0 B0} → Ty1 Γ0 (π0 Γ′0 A0 B0)→ Γ0 = Γ′0

After transporting via inv-ι1, the proof of left-totality for the ι case concludes
like in the finitary example of Section 3.2, with a pair (ιD ΓD, ιR r). Actually,
unlike in the finitary example we do not need to further transport along proofs of
propositionality of the predicate types, since definitional proof-irrelevance makes
it trivial.

We quickly go through the remaining cases of Ty∃, which are all fairly similar
in execution.

Ty∃ {Γ} (π̂0 Γ′0 F0) p r :≡ ?

After transporting along inv-π̂1 p to establish π1 Γ = Γ′0, the goal type becomes

Σ(AD : TyD ΓD (π̂ Γ F))(TyR AD)

where F1 :≡ inv-π̂-Ty p and F :≡ λn . (F0 n, F1 n). By inductive hypothesis, we
have h :≡ λn .Ty∃ (F0 n) (F1 n) r. We conclude with

(π̂D ΓD (π1 ◦ h), π̂R r (π2 ◦ h))

The π̄ case is similar:

Ty∃ (π̄0 Γ′0 A0 B0) p :≡ ?

8.1. EXAMPLE: CONTEXTS AND TYPES 81

After transporting along inv-π̄1 p, the goal type becomes

Σ(TyD ΓD (π̄ Γ A B))(TyR)

where A1, B1 are obtained by inversion on p, and A :≡ (A0, A1), B :≡ (B0, B1).
By inductive hypothesis, we have

hA :≡ Ty∃ A0 A1 r

hB :≡ Ty∃ B0 B1 (r .R π2 hA)

from which we easily conclude

(π̄D ΓD (π1 hA) (π1 hB) , π̄R r (π2 hA) (π2 hB))

The detailed definition of Ty∃, with explicit transports, in shown in Figure 8.1.
Having proved left-totality of the eliminator relations, we can finally define the

eliminators as simple projections:

elimCon Γ :≡ π1 (Con∃ Γ)

elimTy {Γ} A :≡ π1 (Ty∃ A (π2 (Con∃ Γ)))

Thanks to our use of Prop to define the predicates, all the expected β-equations
on the eliminators as defined above hold by definition.

8.1.1 Recursive predicates and relations

The well-formedness predicates and eliminator relations that we used to encode
the Con/Ty IIT can be defined by (large) elimination on erased types, without the
need for Prop to be closed under arbitrary inductive definitions.

We start with the well-formedness predicate types.

Con1 : Con0 → Prop

Ty1 : Con0 → Ty0 → Prop

Defining Con1 is pretty straightforward: for any erased context, the predicate
should hold if it also holds for all the sub-components:

Con1 •0 :≡ >
Con1 (Γ0 .0 A0) :≡ Con1 Γ0 × Ty1 Γ0 A0

82 CHAPTER 8. INFINITARY INDUCTION-INDUCTION

T : Ty0 → Con0 → Type

T A0 Γ0 :≡ (Γ1 : Con1 Γ0)(A1 : Ty1 Γ0 A0)(ΓD : ConD (Γ0,Γ1))

→ ConR ΓD → Σ(AD : TyD ΓD (A0, A1))(TyR AD)

Ty∃ {Γ0,Γ1} (ι0 Γ′0) p :≡ transp (T y0) e h Γ1 p

where

h : T (ι0 Γ′0) Γ′0

h :≡ λ Γ′1 Γ′D r → ιD ΓD, ιR r

e : Γ′0 = Γ0

e :≡ sym (inv-ι1 p)

Ty∃ (π̂0 Γ′0 F0) p :≡ transp (T (π̂0 Γ′0 F0)) e h p

where

h : T (π̂0 Γ′0 F0) Γ′0

h :≡ λ Γ′1 p Γ′D r → π̂D ΓD (λn.π1 (hn)), π̂R r (λn.π2 (hn))

where

ih :≡ λn.Ty∃ (F0 n) (inv-π-Ty p n) r

Ty∃ (π̄0 Γ′0 A0 B0) p :≡ transp (T (π̄0 Γ′0 A0 B0)) e h p

where

h : T (π̄0 Γ′0 A0 B0) Γ′0

h :≡ λ Γ′1 p Γ′D r → π̄D ΓD (π1 ih) (π1 ih′) , π̄R r (π2 ih) (π2 ih′)

where

ih :≡ Ty∃ A0 (inv-π̄-Dom p) r

ih ′ :≡ Ty∃ B0 (inv-π̄-Cod p) (r .R π2 h)

Figure 8.1: Detailed definition of Ty∃

The definition of Ty1 Γ0 A0 is almost the same, with the addition of equational
constraints between Γ0 and A0 which express when Γ0 is a valid index for A0:

Ty1 Γ0 (ι0 Γ′0) :≡ Con1 Γ′0 × (Γ0 = Γ′0)

8.1. EXAMPLE: CONTEXTS AND TYPES 83

Ty1 Γ0 (π̂0 Γ′0 F0) :≡ Con1 Γ′0 × ((n : N)→ Ty1 Γ′0 (F0 n))× (Γ0 = Γ′0)

Ty1 Γ0 (π̄0 Γ′0 A0 B0) :≡ Con1 Γ′0 × Ty1 Γ′0 A0 × Ty1 (Γ′ .0 A0) B0 × (Γ0 = Γ′0)

We can easily define all the expected constructors:

•1 :≡ tt π̂1 Γ1 F1 :≡ Γ1, F1, refl

Γ1 .1 A1 :≡ Γ1, A1 π̄1 Γ1 A1 B1 :≡ Γ1, A1, B1, refl

ι1 Γ1 :≡ Γ1, refl

We can also define all the inversion principles used in the encoding, by simple
projection. We omit the details.

Eliminator relations are a bit more involved, but follow the same line of rea-
soning. We first recursively define the following intermediate relations:

ConRrec : (Γ0 : Con0)(Γ1 : Con1)→ ConD (Γ0,Γ1)→ Type

TyRrec : {Γ : Con}(A0 : Ty0)(A1 : Ty1 (π1 Γ) A0)(ΓD : ConD Γ)

→ TyD ΓD (A0, A1)→ Type

Defining ConRrec is relatively straightforward: we relate a context Γ and a dis-
played context ΓD whenever there are displayed terms for each sub-component of
Γ which are also related. Moreover, if Γ is obtained from some constructor, then
ΓD should be also obtained via the function in the displayed algebra corresponding
to that constructor. For example, the context (Γ . A) and some displayed object
xD are related whenever xD is actually equal to ΓD .D AD for some ΓD, AD, such
that Γ is related to ΓD and A is related to AD. The notion of relatedness for each
of the sub-components is available via inductive hypothesis, since the statements
pertain recursively smaller objects.

On the other hand, when defining TyRrec {Γ}A0A1 ΓD AD, we encounter the
same issue that we had when defining Ty∃, in that when doing induction on the
input erased type A0, this exposes a discrepancy between the context Γ obtained
as input to the function itself, and the context exposed when pattern-matching on
A0.

For example, suppose we are given contexts Γ : Con,ΓD : ConD Γ, and types
(A0, A1) : Ty Γ, AD : TyD ΓD (A0, A1), and that by case analysis we discover
that A0 ≡ ι0 Γ′0. The natural way to define this case of the relation is proceed

84 CHAPTER 8. INFINITARY INDUCTION-INDUCTION

T :≡ λA0 Γ0 . ∀Γ1A1 (ΓD : ConD (Γ0,Γ1))→ TyD ΓD (A0, A1)→ Type

x
q

= y :≡ transp (λ z .TyD z) q x = y

TyRrec (ι0 Γ0) p :≡
transp (T (ι0 Γ0)) e h p

where

e :≡ sym (inv-ι1 p)

h : T (ι0 Γ0) Γ0

h Γ1 p x
D yD :≡

(ΓD : ConD (Γ0,Γ1))×
ConRrec Γ0 Γ1 ΓD×

(q : ΓD = xD)× ιD ΓD
q

= yD

TyRrec (π̂0 Γ0 F0) p :≡
transp (T (π̂0 Γ0 F0)) e h p

where

e :≡ sym (inv-π̂1 p)

h : T (π̂0 Γ0 F0) Γ0

h Γ1 p x
D yD :≡

(ΓD : ConD (Γ0,Γ1))×
(FD : ∀n.TyD ΓD (F0 n, F1 n))×
ConRrec Γ0 Γ1 ΓD×
(∀n.TyRrec (F0 n) (F1 n) ΓD (FD n))×

(q : ΓD = xD)× π̂D ΓD FD
q

= yD

where F1 :≡ inv-π̂1-Ty p

TyRrec (π̄0 Γ0 A0 B0) p :≡
transp (T (π̄0 Γ0 A0 B0)) e h p

where

e :≡ sym (inv-π̄1 p)

h : T (π̄0 Γ0 A0 B0) Γ0

h Γ1 p x
D yD :≡

(ΓD : ConD (Γ0,Γ1))×
(AD : TyD ΓD (A0, A1))×
(BD : TyD (ΓD .D AD) (B0, B1))×
ConRrec Γ0 Γ1 ΓD×
TyRrec A0 A1 ΓD AD×
TyRrec B0 B1 (ΓD .D AD) BD×

(q : ΓD = xD)× π̄D ΓD AD BD q
= yD

where

A1 :≡ inv-π̄1-Dom p

B1 :≡ inv-π̄1-Cod p

Figure 8.2: Recursive eliminator relations for Con/Ty

recursively, adding a constraint AD = ιD ΓD, and requiring that (Γ′0,Γ
′
1) be related

to ΓD.

TyRrec {Γ} (ι0 Γ′0)A1 ΓD AD :≡ ConRrec (Γ′0,Γ
′
1) ΓD × AD = ιD ΓD

However, for this to typecheck we need to establish that π1 Γ = Γ′0. Luckily

8.2. EXAMPLE: THE SETOID UNIVERSE IIT 85

this equation follows by inversion on A1; we transport along it to change the goal
type to one where these two contexts actually match.

Figure 8.2 shows the gory details of these two definitions. Note that we pull
out the type of TyRrec and explicitly define it as T , so that we can easily transport
over it. The definition of TyRrec thus looks very similar to that of ConRrec, with the
exception of the extra step of transporting along the appropriate equality between
erased contexts. Moreover, since TyRrec relates both ConD and TyD variables, we
have one more equational constraint compared to ConRrec.

We can now recover the expected types and constructors of the eliminator
relations from the recursively defined ones.

ConR (Γ0,Γ1) ΓD :≡ ConRrec Γ0 Γ1 ΓD

TyR ΓD (A0, A1) AD :≡ TyRrec A0 A1 ΓD AD

•R :≡ refl

r .R r′ :≡ , , r, r′, refl

ιR r :≡ , r, refl, refl

π̄R rΓ rA rB :≡ , , , rΓ, rA, rB, refl, refl

π̂R r r′ :≡ , , r, r′, refl, refl

We have shown the recursive definitions of ConR and TyR in painstaking detail,
which makes them look quite technical and perhaps more complicated than they
actually, conceptually are. In fact, they look closer to what a code generator
would produce. This is on purpose, and in anticipation of Chapter 12 where we
will indeed define algorithmic procedures generalizing this recursive definition of
predicate and relation types to arbitrary IIT specifications. The way we presented
this concrete example here will hopefully contribute to clarify how the general
procedure directly relates to, and generalizes it.

8.2 Example: the setoid universe IIT

Despite its extreme simplicity, the Con/Ty example allows us to talk about non-
trivial nuances of the reduction that realistically apply to many examples of
induction-induction. Nevertheless, it is still fair to expect “real-world” instances of
induction-induction to be generally more complex than that; we might then won-
der whether this reduction still works for more complex use cases, and moreover if
there are any interesting examples of infinitary IITs taking place in a metatheory
without extensionality, which would therefore benefit from the reduction method
presented here.

86 CHAPTER 8. INFINITARY INDUCTION-INDUCTION

The setoid universe IIT from Section 6.6 provides an anecdotal answer to both
questions. The context of this construction is the strict setoid model of type the-
ory, originally presented in [Alt99] as a way to justify extensionality principles in
intensional type theory, and later revisited as a type-theoretic syntax in [ABKT19].
One of the appeals of the strict setoid model is that it can be defined in an inten-
sional type theoretic metatheory without function extensionality, thus effectively
representing a way to “compile” extensionality into a small computational core.

Chapter 6 tackled the issue of extending the setoid model, and thus SeTT, with
a universe of setoids, in a way that does not sacrifice the philosophical appeal of
a minimal, intensional, core metatheory. Particularly, we did not want to extend
the metatheory with inductive definitions schemas beyond inductive families, let
alone funext.

The answer we reached was to define the universe in terms of a certain infinitary
inductive-inductive type which we encoded in the ambient theory using inductive
families.

data inU : Type→ Type1

data inU∼ : {A A′ : Type} → inU A→ inU A′ → (A→ A′ → Prop)→ Type1

We now equip these types with the expected elimination principle, by encoding
its general eliminators.

We begin with presenting the erased types inUp/inU∼p and well-formedness
predicates inUt/inU∼t, which are systematically generated from the signature of
inU/inU∼1.

data inUp : Type→ Type1

data inU∼p : (A0 A1 : Type)(A01 : A0 → A1 → Prop)→ Type1

data inUt : inUp A→ Prop1

data inU∼t : (a0 : inUp A0)(a1 : inUp A1)→ inU∼p A0 A1 A01 → Prop1

Figure 8.3 shows their term constructors.
The types of the target IIT are recovered via Σ-construction:

inU X :≡ Σ (x0 : inUp X) (inUt x0)

1We use subscript p and t, instead of 0 and 1, to mark erased and well-formedness objects
respectively, to avoid clashing with other uses of subscript 0 and 1.

8.2. EXAMPLE: THE SETOID UNIVERSE IIT 87

inU∼ a0 a1 A01 :≡ Σ (a01 : inU∼p A0 A1 A01) (inU∼t (π1 a0) (π1 a1) a01)

Their constructors are also easily recovered from the erased/well-formedness
components:

bool :≡ boolp , boolt

pi a a01 b b01 :≡ , pit (π2 a) (π2 a01) (π2 ◦ b) (π2 ◦ b01)

bool∼ :≡ bool∼p, bool∼t
pi∼ {a0 a00 a1 a11 b0 b00 b1 b11} a01 b01 :≡

, pi∼t (π2 a0) (π2 a00) (π2 a1) (π2 a11) (π2 a01)

(π2 ◦ b0) (π2 ◦ b00) (π2 ◦ b1) (π2 ◦ b11) (π2 ◦ b01)

We now show that inU/inU∼ thus encoded supports the expected general elim-
inators. To do this, we define a notion of displayed algebra over inU/inU∼, as
well as eliminator relations between inU/inU∼ and an arbitrary displayed algebra.
Figure 8.4 provides the signatures of these components.

Assuming we are given an arbitrary displayed algebra inUD, inU∼D, and defined
eliminator relations inUR, inU∼R as per Figure 8.4, our goal is now to prove that
the eliminator relations have the left-totality property, that is, for any element on
the left of the relation there exists a related element on the right:

inU∃ : (a : inUA)→ Σ(inUD a)(inUR a)

inU∼∃ : (r0 : inUR x0 x
D
0)(r1 : inUR x1 x

D
1)(x01 : inU∼x0 x1X01)

→ Σ(inU∼D xD0 xD1 x01)(inU∼R x01)

Let us take a look at the proof of inU∃. The boolean case is immediate.

inU∃ (boolp , q) :≡ , boolR

For the function case, we define

inU∃ (pip ap a01p bp b01p , q) :≡ , piR (π2 ha) (π2 ha01) (π2 ◦ hb) (π2 ◦ hb01)

by first deriving the well-formedness proofs at, a01t, bt, b01t by inversion on q, and
subsequently applying the inductive hypothesis:

ha :≡ inU∃ (ap , at)

ha01 :≡ inU∼∃ (π2 ha) (π2 ha) (a01p , a01t)

88 CHAPTER 8. INFINITARY INDUCTION-INDUCTION

hb :≡ λx . inU∃ (bp x , bt x)

hb01 :≡ λ {x0 x1}x01 . inU∼∃ (π2 (hb x0)) (π2 (hb x1)) (b01p x01 , b01t x01)

The boolean case of inU∼∃ is, again, straightforward:

inU∼∃ boolR boolR (bool∼p , q) :≡ , bool∼R

Note that we pattern match on the input proofs of relatedness r0, r1 to expose
them as build our of the constructor boolR.

The clause for pi∼ requires some more work.

inU∼∃ {x0 x1 x
D
0 xD1 } r0 r1 (pi∼p a0p a00p a1p a11p a01p b0p b00p b1p b11p b01p , q) :≡ ?

Let

a0 :≡ (a0p, a0t) b0 :≡ λx . (b0p x , b0t x)

a00 :≡ (a00p, a00t) b00 :≡ λ {x0 x1}x01 . (b00p x01 , b00t x01)

a1 :≡ (a1p, a1t) b1 :≡ λx . (b1p x , b1t x)

a11 :≡ (a11p, a11t) b11 :≡ λ {x0 x1}x01 . (b11p x01 , b11t x01)

a01 :≡ (a01p, a01t) b01 :≡ λ {x0 x1}x01 . (b01p x01 , b01t x01)

where the well-formedness components a0t, a00t, a1t, a11t, b0t, b00t, b1t, b11t, a01t, b01t

are obtained from q by inversion.
We would like to inhabit the goal type via pi∼D and pi∼R, however this would

not type-check unless we can prove that the fixed variables x0, x1, x
D
0 , x

D
1 are them-

selves expressions obtained from the constructors pi and piD.
By inversion on q, we prove the equations

π1 x0 = pip a0p a00p b0p b00p

π1 x1 = pip a1p a11p b1p b11p

hence by proof-irrelevance, we have a0 = pi a0 a00 b0 b00 and a1 = pi a1 a11 b1 b11.
Transporting r0, r1 along these equations allows us to do inversion on them, which
exposes the following displayed terms and relatedness proofs

aR0 : inUR a0 a
D
0 bR0 : ∀x . inUR (b0 x) (bD0 x)

aR00 : inU∼R a00 a
D
00 bR00 : ∀ {x0 x1}x01 . inU∼R (b00 x01) (bD00 x01)

aR1 : inUR a1 a
D
1 bR1 : ∀x . inUR (b1 x) (bD1 x)

8.2. EXAMPLE: THE SETOID UNIVERSE IIT 89

aR11 : inU∼R a11 a
D
11 bR11∀ {x0 x1}x01 . inU∼R (b11 x01) (bD11 x01)

as well as the equations xD0 = piD aD0 aD00 b
D
0 bD00 and xD1 = piD aD1 aD11 b

D
1 bD11.

We have the inductive hypotheses

ha :≡ inU∼∃ aR0 aR1 a01

hb :≡ λ {x0 x1}x01 . inU∼∃ (bD0 x0) (bD1 x1) (b01 x01)

from which we derive

aD01 :≡ π1 ha bD01 :≡ π1 ◦ hb
aR01 :≡ π2 hb bR01 :≡ π2 ◦ hb

We finally inhabit the goal type with the following pair

pi∼D aD0 aD00 a
D
1 aD11 a

D
01 b

D
0 bD00 b

D
1 bD11 b

D
01 , pi∼R aR0 aR00 a

R
1 aR11 a

R
01 b

R
0 bR00 b

R
1 bR11 b

R
01

The eliminators are, as usual, simple projections out of the proofs of left-
totality. It is immediate to verify that the expected β-equalities hold by definition.

eliminU : (a : inUA)→ inUD a

eliminU a :≡ π1 (inU∃ a)

eliminU∼ : (a01 : inU∼ a0 a1A01)→ inU∼D (eliminU a0) (eliminU a1) a01

eliminU∼ {a0 a1} a01 :≡ π1 (inU∼∃ (π2 (inU∃ a0)) (π2 (inU∃ a1)) a01)

90 CHAPTER 8. INFINITARY INDUCTION-INDUCTION

boolp : inUp 2

pip : inUp A→ inU∼p A A A01 → (∀x . inUp (B x))

→ (∀ {x0 x1}x01 . inU∼p (B x0) (B x1) (B01 x01))

→ inUp (FunABA01B01)

bool∼p : inU∼p 2 2 (
?
=2)

pi∼p : inUp A0 → inU∼p A0 A0 A00 → inUp A1 → inU∼p A1 A1 A11

→ inU∼p A0 A1 A01

→ (∀x . inUp (B0 x))→ (∀ {x0 x1}x01 . inU∼p (B0 x0) (B0 x1) (B00 x01))

→ (∀x . inUp (B1 x))→ (∀ {x0 x1}x01 . inU∼p (B1 x0) (B1 x1) (B11 x01))

→ (∀ {x0 x1}x01 . inU∼p (B0 x0) (B1 x1) (B01 x01))

→ inU∼p (FunA0B0A00B00) (FunA1B1A11B11)

(λf0 f1 . ∀(x0 x1)→ A01 x0 x1 → B01 x01 (π1 f0 x0) (π1 f1 x1))

boolt : inUt boolp

pit : inUt a→ inU∼t a a a01 → (∀x . inUt (b x))

→ (∀ {x0 x1}x01 . inU∼t (b x0) (b x1) (b01 x01))

→ inUt (pip a a01 b b01)

bool∼t : inU∼t boolp boolp bool∼p
pi∼t : inUt a0 → inU∼t a0 a0 a00 → inUt a1 → inU∼t a1 a1 a11

→ inU∼t a0 a1 a01

→ (∀x . inUt (b0 x))→ (∀ {x0 x1}x01 . inU∼t (b0 x0) (b0 x1) (b00 x01))

→ (∀x . inUt (b1 x))→ (∀ {x0 x1}x01 . inU∼t (b1 x0) (b1 x1) (b11 x01))

→ (∀ {x0 x1}x01 . inU∼t (b0 x0) (b1 x1) (b01 x01))

→ inU∼t (pip a0 a00 b0 b00) (pip a1 a11 b1 b11)

(pi∼p a0 a00 a1 a11 a01 b0 b00 b1 b11 b01)

where FunABA01B01 :≡ Σ (f : (x : A)→ B x)(∀{x0 x1}x01 . B01 x01 (f x0) (f x1))

Figure 8.3: Constructors of the erased and predicate types generated by inU, inU∼

8.2. EXAMPLE: THE SETOID UNIVERSE IIT 91

inUD : inUA→ Type

inU∼D : inUD a0 → inUD a1 → inU∼ a0 a1A01 → Type

boolD : inUD bool

piD : (aD : inUD a)→ inU∼D aD aD a01 → (bD : ∀x . inUD (b x))

→ (∀ {x0 x1}x01 . inU∼D (bD x0) (bD x1) (b01 x01))

→ inUD (pi a a01 b b01)

bool∼D : inU∼D boolD boolD bool∼
pi∼D : (aD0 : inUD a0)(aD00 : inU∼D aD0 aD0 a00)(aD1 : inUD a1)(aD11 : inU∼D aD1 aD1 a11)

(aD01 : inU∼D aD0 aD1 a01)

(bD0 : ∀x . inUD (b0 x)) (bD00 : ∀ {x0 x1}x01 . inU∼D (bD0 x0) (bD0 x1) (b00 x01))

(bD1 : ∀x . inUD (b1 x)) (bD11 : ∀ {x0 x1}x01 . inU∼D (bD1 x0) (bD1 x1) (b11 x01))

(bD01 : ∀ {x0 x1}x01 . inU∼D (bD0 x0) (bD1 x1) (b01 x01))

→ inU∼D (piD aD0 aD00 b
D
0 bD00) (piD aD1 aD11 b

D
1 bD11) (pi∼ a01 b01)

inUR : (a : inUA)→ inUD a→ Type

inU∼R : ∀{aD0 aD1 }(a01 : inU∼ a0 a1A01)→ inU∼D aD0 aD1 a01 → Type

boolR : inUR bool boolD

piR : inUR a aD → inU∼R a01 a
D
01

→ (∀x . inUR (b x) (bD x))→ (∀ {x0 x1}x01 . inU∼R (b01 x01) (bD01 x01))

→ inUR (pi a a01 b b01) (piD aD aD01 b
D bD01)

bool∼R : inU∼R boolD boolD bool∼ bool∼D

pi∼R : inUR a0 a
D
0 → inU∼R a00 a

D
00 → inUR a1 a

D
1 → inU∼R a11 a

D
11 → inU∼R a01 a

D
01

→ (∀x . inUR (b0 x) (bD0 x))→ (∀ {x0 x1}x01 . inU∼R (b00 x01) (bD00 x01))

→ (∀x . inUR (b1 x) (bD1 x))→ (∀ {x0 x1}x01 . inU∼R (b11 x01) (bD11 x01))

→ (∀ {x0 x1}x01 . inU∼R (b01 x01) (bD01 x01))

→ inU∼R (pi∼ a01 b01) (pi∼D a0 a
D
00 a

D
1 aD11 a

D
01 b

D
0 bD00 b

D
1 bD11 b

D
01)

Figure 8.4: Specification of displayed algebras and eliminator relations

92 CHAPTER 8. INFINITARY INDUCTION-INDUCTION

Chapter 9

Generalizing the encoding

Chapter 8 demonstrated a method of encoding infinitary IITs in a suitable ex-
tension of intensional MLTT, by way of two concrete examples. We begun in
Section 8.1 with an infinitary version of the Con/Ty IIT, which served as an in-
depth example of the encoding method targeting a simple yet non-trivial infinitary
IIT. We then looked at the detailed encoding of the universe IIT first defined in
Section 6.6, as an example of a complex, “real-world” case.

It is natural to ask ourselves whether the same construction can be carried out
for different IITs. We would like to identify a sub-class of infinitary IITs that are
amenable to encoding via our method, and give a general constructive proof that
this reduction can be applied systematically to arbitrary types in that sub-class.
We will do so in the chapters that follow.

We begin by pointing out the kind of IITs that we may not be able to encode
with our method. We then lay out some sufficient (although not necessary) con-
ditions for our method to work (Section 9.1), and define the target class of IITs
accordingly (Section 9.2).

A general reduction from a class of type to another is a meta-theorem about a
particular theory — the target or encoding theory where the encoding takes place
— and as such it usually cannot be stated nor proved inside that theory itself;
instead, one can work in a metatheory where the target theory exists as a first-class
entity and can become the subject of meta-theorems of interest, which are stated
externally.

We discuss the distinction between the so-called meta-level and target-level in
Section 9.3. We define the “ambient” metatheory where all our reasoning takes
place. Inside the metatheory, we define a datatype of specifications, which for-
malizes the class of IITs that we intend to target in the general reduction proof
(Section 9.4). We then define the target theory, or rather its models. The idea
is to prove the reduction as a property of target-theory models: for any model
and IIT specification, there exist semantic types and terms corresponding to the

93

94 CHAPTER 9. GENERALIZING THE ENCODING

specified IIT.
The chapters that follow will make precise what we mean by IIT in the gen-

eral case. In the examples considered so far the target IIT was fixed, so it was
clear what types, constructors, and eliminators we needed to encode. When gen-
eralizing the reduction, however, the target IIT is represented by some abstract
specification, i.e. an element of the aforementioned specification datatype. Before
even beginning to talk about encoding such IIT in the target theory, we need to
define what it means for this IIT to exist, i.e. what are its types, constructors,
and eliminators. In the tradition of theoretical studies of data types, we do this by
assigning a notion of algebra indexed by IIT specifications: for any specification
we obtain a type of algebras, and take the specified IIT to be one particular in-
stance satisfying a suitable property, which in our case will turn out to be section
induction (Chapter 10.)

Having made clear what constitutes a target-level IIT for any given specifica-
tion, we then focus on the building blocks of the encoding: these are the erased
types and the well-formedness predicates that we have familiarized ourselves with
in the previous chapters. The idea of the reduction was as follows: given suitable
erased and predicate types, we defined the types and constructors of the target
IIT; moreover, from the induction principle of the erased types and the inversion
principles of the predicates we derived eliminators for the target IIT.

We generalize the concept of erased type and well-formedness predicate sim-
ilarly to how we generalized the notion of IITs, that is, we define the notion of
erased algebras and predicate algebras indexed by specifications. The general en-
coding method thus becomes a construction on algebras: given a pair of an erased
algebra and a predicate algebra for some specification, we construct an IIT al-
gebra (Chapter 11); moreover, we prove that if the input algebras are equipped
with suitable induction and inversion principles, then we can derive an induction
principle for the IIT algebra so constructed (Chapter 12).

9.1 Scope of the encoding

We take a closer look at what made the reduction in Section 8.1 work, in an attempt
to identify some sufficient conditions, on both the encoding theory and the subclass
of infinitary IITs that we are going to target, that ensure the applicability of the
encoding method for arbitrary IITs.

Propositionality of the predicates In the finitary case, propositionality of
the well-formedness predicates can be proved a posteriori, by induction/pattern
matching on the erased types. Our work, however, targets potentially infinitary
types, for which such a proof requires function extensionality in general. In order

9.1. SCOPE OF THE ENCODING 95

to escape funext and thus fulfill our requirements, we instead defined the predicates
inside Prop, thus making propositionality hold by definition.

This convenience doesn’t come for free: we now cannot use inversion or pattern
matching on proof terms of the predicate types in proof-relevant contexts, in par-
ticular when constructing the proofs of left-totality of the eliminator relations. As
we have seen in the examples, this limitation can be circumvented by equipping
the encoding type theory with a strictly propositional identity type with a strong
transport rule allowing elimination into proof-relevant types.

A pleasant side-effect of using Prop-valued well-formedness predicates is that
the β-laws of the encoded IIT eliminators hold definitionally. This does not seem
to be the case for (finitary) encodings where propositionality of the predicates is
proved a posteriori up to propositional equality, like in [vR19].

A possible alternative solution to the issue could have been to define the well-
formedness predicates as higher inductive types (HITs), with propositional trun-
cation as a path constructor, however this would still lead to weak β-laws. We
have not investigated this option enough to comment on its viability.

Right-uniqueness and non-linearity The reduction method discussed in [vR19]
comprises the important step of proving functionality of the eliminator relations,
i.e. left-totality and right-uniqueness. On the other hand, in our examples we
never prove nor need right-uniqueness of the eliminator relations to prove their
left-totality, and therefore to construct the eliminators. This aspect is due to
the particular IIT specifications considered in those examples, and our reduction
method crucially relies on it, since proving right-uniqueness requires function ex-
tensionality in the infinitary case.

The fact that we were able to make do without proving right-uniqueness of
the eliminator relations in all our examples suggests that there exists a subclass of
infinitary IITs for which this proof is simply not needed. Characterizing this sub-
class is vital for of our work, as any IIT outside of it would inevitably require funext
to be encoded, and therefore fall outside the scope of our method. Determining
the precise boundaries of this subclass might be challenging, but we attempt at a
partial answer to the question by identifying a property of IIT specifications that
seems to necessitate right-uniqueness when encoding them. This property is the
presence of constructors with a non-linear occurrence of variables in the codomain.
The epitomical example is the reflexivity constructor of the inductively-defined
identity type.

refl : {x : A} → x = x

In the type of refl, the variable x appears non-linearly in the codomain x = x,
thus making the constructor non-linear in our sense.

96 CHAPTER 9. GENERALIZING THE ENCODING

To illustrate the issue with non-linear constructors, let us consider the previous
Con/Ty type extended with a bogus constructors that make the definition non-
linear:

pair : Con→ Con→ Con

non-lin : (Γ : Con)→ Ty (pair Γ Γ)

Assume we are given a displayed algebra ConD,TyD, which therefore comes with
a term non-linD : (ΓD : ConD Γ) → TyD (pairD ΓD ΓD) (non-lin Γ). When proving
left-totality of the eliminator relation TyR in the case of the (non-lin Γ) constructor,
we are given as input a proof r : ConR (pair Γ Γ) ∇D for some∇D : ConD (pair Γ Γ),
and we need to show the existence of some yD : TyD∇D (non-lin Γ) which is TyR-
related to non-lin Γ. We might attempt this by constructing ΓD : ConD Γ via
inductive hypothesis on Γ and defining yD :≡ non-linD ΓD, however this does not
typecheck since the ConD-valued index of this expression, pairD ΓD ΓD, is not the
same as the expected ∇D.

Alternatively, we might try to proceed by inversion/pattern matching on r,
from which we get two objects ΓD1 ,Γ

D
2 and proofs r1 : ConR Γ ΓD1 and r2 :

ConR Γ ΓD2 , as well as ∇D ≡ pairD ΓD1 ΓD2 . Although now we know that ∇D is
a term constructed via displayed pairing pairD, unfortunately this is now enough,
as we cannot complete the proof without establishing that ΓD,ΓD1 ,Γ

D
2 are all equal

to each other. While this would certainly be possible to prove via right-uniqueness
of ConR, we do not see a way to prove it without.

Because of these issues with non-linear constructors, here we will focus on
infinitary IITs that are linear. We leave open the question of whether a different
reduction method can be applied to non-linear IITs.

Remark 9.1.1. We have defined the notion of linear constructor in a very syn-
tactic way, in terms of variable occurrence in the codomain type. This definition
is informal and might not fully capture what we mean. For example, take the
constructor

non-lin-eq : (Γ0 Γ1 : Con)→ Γ0 = Γ1 → Ty (pair Γ0 Γ1)

The constructor non-lin-eq should be considered non-linear, even though the
free variables in its codomain are syntactically distinct. �

In addition to linearity, another aspect of our reduction method that allows
to prove left-totality of the relations absent of right-uniqueness is the controlled
and careful use of the inductive hypothesis. To illustrate this, consider again the
Con/Ty IIT with its constructor:

9.2. TARGET INDUCTIVE-INDUCTIVE TYPES 97

ι : (Γ : Con)→ Ty Γ

To prove left-totality of TyR in the case of ι, we need to produce evidence
of TyR (ιΓ) (ιD ΓD) for some ΓD such that r : ConR Γ ΓD. We are given two
alternatives to construct the proof r: (1) use the term ΓD and proof r that are
already given to Ty∃ as input, or (2) construct different ΓD

′
and r′ : ConR Γ ΓD

′

by induction on Γ. Because ΓD is fixed and appears as an index in the goal
type, option 2 is only viable if we can prove that ΓD = ΓD

′
, which again needs

right-uniqueness of ConR.
We distill this example into a general rule that we shall follow when encoding

the eliminators of an IIT of the form A : Type, B : A→ Type, for some displayed
algebra AD, BD and eliminator relations AR, BR. The rule specifically applies when
proving left-totality of BR for the case of a constructor c applied to arguments
x1, ..., xn: in this scenario, we are given as input a term yD : AD y and a proof r
relating y :≡ c x1 ... xn to yD; to prove the goal, we need to construct displayed
terms xDi and corresponding proofs ri relating each xi to xDi for all i. The rule is
then the following:

If xi appears as an index in the type of y then the displayed algebra
element xDi and the proof ri that xi and xDi are related must be obtained
from the input relation r, either by taking r as-is or by inversion on it.
Otherwise, xDi and ri must be obtained by inductive hypothesis.

Adding this condition to the reduction method inevitably complicates its gen-
eralization to arbitrary IITs, since it means we have to introduce some form of
conditional branching in the algorithm, which now has to make an informed deci-
sion based on the particular shape of the IIT constructors involved.

9.2 Target inductive-inductive types

In light of the previous paragraphs we now identify a suitable class of infinitary
IITs to be targeted by our general reduction proof. This is a subclass of all
infinitary IITs obtained by imposing certain restrictions, some of which we believe
are necessary for the reduction method to work, while others are purely for the
sake of simplifying the proofs and the exposition.

We consider (infinitary) IITs that are:

1. two-sorted, i.e. of the form A : Type, B : A → Type, with no additional
indices or parameters;

98 CHAPTER 9. GENERALIZING THE ENCODING

2. linear (see Definition 9.2.1);

3. small (i.e. with no universe quantification), and with limited access to ex-
ternal types

We define a linear IIT as follows:

Definition 9.2.1. A specification of a two-sorted IIT A : Type, B : A → Type
is linear if the index of the conclusion type of all constructors of B is either a
variable or a constructor of A applied to a linear list of variables, i.e. one where
no variable appears more than once. �

Condition (2) seems necessary for the reduction method to work, for the rea-
sons discussed in the previous section. Note that the definition of linearity in
Definition 9.2.1 is a bit more restrictive than what one would normally consider
linear. In particular, we disallow nested constructors in addition to non-linear oc-
currences of variables, even though it would be possible to nest constructors and
still result in a linear expression. The reason for this limitation is purely technical:
this restricted formulation of linearity is much simpler to formalize, especially in
a computer-assisted setting.

On the other hand, we believe that limiting ourselves to two sorts (as per Con-
dition (1)) does not impact the generality of the reduction too much, as we can
reduce any multi-sorted IIT to an equivalent two-sorted IIT via Szumi’s reduction
(see Section 3.1.) We do realize, however, that by Condition (2) many two-sorted
IITs obtained via Szumi’s reduction may fall out of the scope of our current imple-
mentation of the encoding method. Allowing for a more liberal notion of linearity
that can cover those cases is certainly an important point for future work.

A consequence of Condition (1) is that we also do not allow sorts to be param-
eterized/indexed by external types. We believe the reduction method described in
this thesis can be extended to various externally indexed IITs — the universe IIT
encoding showcased in Section 8.2 is such an instance — although we leave this to
future work.

By Condition (3), we restrict ourselves to small types, and only allow constant
small types to be used in a constructor’s list of parameters. For example, we don’t
allow a constructor for A of the form c : (n : N)→ Fin n→ A, although we allow
the equivalent c : Σ(n : N)(Fin n) → A. We do not allow type-level applications
for external types, so in particular constructors taking proofs of equality as argu-
ments are not allowed. Note that this condition excludes, as expected, non-linear
constructors like non-lin-eq shown above, which Definition 9.2.1 alone would fail
to exclude.

Condition (3) is also included to simplify presentation, and again we believe
extending our construction to more refined IIT specifications would be a technical

9.3. METATHEORY AND TARGET THEORY 99

challenge more than a conceptual one. One piece of anecdotal evidence for our
claims about Conditions (1) and (3) is provided by the example from Section 8.2,
where we successful reduce an IIT violating both conditions.

From now on, when we talk about inductive-inductive types, it will be implied
we are referring to IITs in the specific subclass just outlined, which is the intended
target of our reduction. The description above is informal and not sufficient to
grasp all the details of the kind of IITs that we will be targeting. Things shall
be clearer when we give a fully formal definition of IIT specifications later in
Section 9.4.2.

9.3 Metatheory and target theory

Our aim for this part of the thesis is to show that we can encode the required
types, constructors, and eliminators of any specifiable infinitary IIT inside any
sufficiently equipped intensional type theory.

For individual concrete instances, like in the examples we have seen so far,
it was enough to work directly in the intensional theory and simply exhibit the
encoding of the IIT, whose specification was fixed and informally understood. In
other words, we only ever had to deal with a single type theory, the intensional
type theory where the encoding took place.

Such a limited point of view may work for a few concrete examples, but does
not scale to our goal, which is to give a rigorous demonstration of this encoding
that applies generically and parametrically for arbitrary IIT specifications. To
give a generic account of this reduction, we need at the very least a notion of IIT
specification over which to quantify, and a way to reason about the computational
(that is, judgmental) behaviour of the encoded IITs. While the encoding of any
concrete IIT is an internal construction in the intensional type theory of choice, the
general reduction method and its proof of correctness is an external, metatheoretic
statement about the target theory. Consequently, we shall carry out our results
over two different levels:

• The target theory (also called object theory or encoding theory): this is the
theory were the IIT encodings will take place. Concretely, it is an extension of
intensional MLTT with universes for types and definitionally proof-irrelevant
propositions, inductive families, and an proof-irrelevant identity type with a
strong transport rule as seen in Section 8.1;

• The metatheory : this is our ambient language in which we state and prove our
results about the target theory and the IIT encodings it supports. It is a rich,
extensional language corresponding to the usual ground-level mathematics.

100 CHAPTER 9. GENERALIZING THE ENCODING

Concretely, we will take it to be some version of extensional type theory with
quotient inductive-inductive types (QIITs).

We will perform all our constructions in the metatheory, and define the target
theory as a first class entity internal to the metalanguage. We will achieve so by
defining a notion of model of the target theory as a metatheoretic structure (Sec-
tion 9.3.2): our results can therefore be equivalently understood as a construction
on models of the target theory.

This separation in two levels not only allows us to be precise about where the
encoding takes place, as opposed to the reasoning about the encoding, but also
allows the ambient metalanguage to be as expressive and extensional as we need,
without fear of this extensionality leaking into the target theory and destroying its
intensional nature, thus jeopardizing the entire premise of this whole endevour.

The next two sections will give a detailed description of the metatheory and
target theory, with their respective notational conventions.

9.3.1 Metatheory

While the goal of our reduction is to show how to encode infinitary IITs in a re-
stricted intensional type theory, the metalanguage in which we reason about these
encodings need not be restricted at all. We will thus rely on a rich metatheory, con-
cretely taken to be a version of extensional type theory equipped with an hierarchy
of universes and QIITs, in addition with the usual tools of MLTT. An example
of such a theory is Setoid Type Theory [ABKT19] extended with QIITs [KX21],
which is as expressive as ETT by Hofmann’s conservativity result [Hof96]. An-
other example is given by the theory arising as the internal language of presheaf
categories (see Section 2.2.2).

We use pseudo-Agda syntax for metatheoretic constructions, with all the no-
tational conventions listed in Remark 3.2.1. In addition, for dependent sum types
we sometimes use the infix notation (x : A)× (Bx) instead of Σ (x : A)(Bx) when
it benefits formatting. We write 1 and ?, respectively, for the metatheoretic unit
type and its constructor. We have η-equality for unit types, as well as dependent
pairs and functions. We also have sum types A+B with constructors left and right.
We sometimes refer to h-propositions, i.e. types A : Type for which ∀x y . x = y
holds, as weak propositions.

9.3.2 Target theory

Since we want to express our encoding method as a metatheorem about the target
theory, it follows that we need a way to define and manipulate the target theory
as an internal, first class entity in the metalanguage. Rather than fixing the target

9.3. METATHEORY AND TARGET THEORY 101

theory directly as a syntactic object, we will instead define a notion of model of
the target theory, and state our theorems for an arbitrary such model.

We specify the models of the target theory using a form of higher-order ab-
stract syntax, relying on the meta-theoretic function space to express binding
(Section 2.2.3.) This can be justified by imagining to work in the internal lan-
guage of the category Ĉ of presheaves over some arbitrary fixed category C. Ĉ is
a model of type theory (Section 2.2.2), and in particular it enjoys the same prop-
erties of the ambient metatheory (where Type lives). We abuse notation, and
treat the internal language of Ĉ as being itself our metatheory. In particular, we
shall from now on consider the notation regarding the metatheory to be describing
constructions in the language of Ĉ.

We can now define what constitutes a model of the target theory in a com-
pletely context-free way (as per Section 2.2.3): an (external) interpretation of the
(internal) signature outlined below. We begin with sorts Type of (large) types, and
universes of small types and propositions:

Type : Type

Term : Type→ Type

U ,P : Type

ElU : U → Type

ElP : P → Type

We abbreviate SType :≡ Term U , SProp :≡ Term P , STerm A :≡ Term (ElU A),
PTerm P :≡ Term (ElP P). We will often just write Term instead of STerm,PTerm
when there is no ambiguity, as well as just El instead of ElU and ElP . Moreover,
we will write pAq as compact notation for TermA.

We allow to lift propositions into small types, with functions going back and
forth:

Lift : SProp→ SType

lift : {A : SProp} → TermA→ Term (LiftA)

unlift : {A : SProp} → Term (LiftA)→ TermA

lift (unlift x) = x

We require dependent function types between large types, as well as function
and pair types between small types:

ΠT : (A : Type)→ (Term A→ Type)→ Type

102 CHAPTER 9. GENERALIZING THE ENCODING

Πu,u′ : (A : Term u)→ (Term (El u)→ Term u′)→ Term u′

Σu,u′ : (A : Term u)→ (Term (El u)→ Term u′)→ Term u

where u, u′ ∈ {U ,P}. We will write Π for both ΠT and Πu,u′ , and Σ for Σu,u′ ,
whenever the subscripts can be inferred from context. We will frequently write
Π (x : A) (B x) for ΠAB, and similarly Σ (x : A) (B x) for ΣAB.

We have the following constructors for dependent functions and pairs:

λ : ((a : Term A)→ Term (B a))→ Term (Π A B)

app : Term (Π A B)→ (a : Term A)→ Term (B a)

〈 , 〉 : (a : Term A)(b : Term (B a))→ Term (Σ A B)

fst : Term (Σ A B)→ Term A

snd : (p : Term (Σ A B))→ Term (B (fst p)

with β/η equations

app (λ f) = f

λ (app t) = t

fst 〈a, b〉 = a

snd 〈a, b〉 = b

〈fst p, snd p〉 = p

We write λx . t for λ (λx . t), and f ·x for app f x. We use a bold cross symbol
A×B for the target-level non-dependent product.

We also include unit types 1 : SType and > : SProp, with constructors
∗ : Term 1, truth : Term >, and η-equation stating t = ∗ for all t : Term 1.

We assume the existence of arbitrary indexed inductive definitions in both U
and Type. Rather than equipping the model with W-types or a definition schema
right now, once and for all, we will instead extend it with concrete inductive
definitions as we go. We do however assume right away to have natural numbers
in U , which we write as Nat.

Finally, we require a propositional identity type with a strong transport rule

Id : (A : SType)→ Term A→ Term A→ SProp

Refl : {A : SType}(a : Term A)→ Id A a a

Transp : {A : SType}(B : Term A→ Type)

9.4. SPECIFYING INDUCTIVE-INDUCTIVE TYPES 103

{x y : Term A} → Term (Id A x y)→ Term (B x)→ Term (B y)

that computes on any reflexive equation:

Transp B (Refl x) u = u

Remark 9.3.1. Note that the target theory (or rather, its notion of model) is given
as an internal construction in the metatheory, and hence it is clearly separate from
it. As mentioned in Section 9.3, this allows us to make sure that the extensionality
of the metalanguage does not impact the intensional nature of the target language.
In particular, we have no way to construct a proof term of funext for the target
identity type Id, as Id is essentially akin to an abstract data type which inhabitants
can only be constructed from the tools we have carefully selected. On the other
hand target-level definitional equality is, as expected, fully extensional, since it is
expressed in terms of the meta-level identity type. �

We will often write Id omitting the type and using infix notation, as x ≈ y.
From transport we derive proof terms for symmetry Sym and transitivity Trans

in the obvious way. With the lifting operator Lift we can extend Transp to a term
TranspP acting on families of propositions.

Thanks to η-equality in the target theory, we can arbitrarily replace variables
of product types with explicit tuples. For example, we can and will write tuple
patterns in target-level function definitions like λ 〈x, y〉 . t, and bind patterns to
variables à la Agda like λ p@〈x, y〉 . t.

The general reduction we seek to prove is a metatheorem about models of the
target theory. We thus now assume we are given one such model; that is, we
assume we have terms Type,Term,Π, etc., satisfying the necessary equations, and
state our metatheorems over that model. Because the model we fixed is completely
arbitrary, it follows that the metatheorems hold for all models.

9.4 Specifying Inductive-Inductive Types

In this section we discuss formal ways to specify IITs, including the formal speci-
fication of linear IITs that we will be using for our developments. The idea is to
define a datatype of specifications, with its elements giving a syntactic description
of the types and constructors of the specified IIT.

9.4.1 Type Theory as a datatype of specifications

Inductive-inductive types and their constructors exhibit a complex dependency
structure that closely resembles dependent types and type-theoretic contexts. It is

104 CHAPTER 9. GENERALIZING THE ENCODING

not surprising, then, that type theory itself would serve as a good tool to specify
IITs.

The idea to use small-scale type theories as domain specific languages to specify
IITs has been proposed and refined in several works that take a syntactic approach
to IIT specifications (see Section 13.4 for a literature review.) The advantage
of this approach is in its expressive power, as it can be used to specify many
forms of induction-induction, from regular IITs [AKKvR18, AKKvR19, vR19] to
QIITs [KKA19] and higher IITs [KK18].

We now take a brief look at how these specification type theories look like,
using [vR19] as the reference of choice. The datatype of specifications is presented
as a small type-theoretic syntax, with contexts, types, terms, and substitutions,
including the following constructors:

Con : Type

Ty : Con→ Type

Tm : (Γ : Con)→ Ty Γ→ Type

...

• : Con

B : (Γ : Con)→ Ty Γ→ Con

U : Ty Γ

El : Tm Γ U→ Ty Γ

π : (A : Tm Γ U)→ Ty (Γ,El A)→ Ty Γ

ap : Tm Γ (π A B)→ Tm (Γ, A) B

...

A specification then corresponds to a well-formed context in such a syntax. For
example, we can specify natural numbers as the following context: 1

•, N : U, z : El N, s : π N (El N)

The universe U of small types is used to list the sorts of the specified IIT. It
also serves to enforce strict positivity, as the type of π prevents us from declaring
constructor parameters ranging over the IIT being defined.

This presentation of specifications as type-theoretic contexts plays really well
with inductive-inductive types, because it allows to represent the full spectrum of
dependency between sorts and constructors that characterizes induction-induction.
For example, we can specify the Con/Ty IIT from Section 3.2 as follows (we write
� for the usual binary application operator, which can easily be defined from ap):

1Here we make use of named variables, and ignore explicit weakenings for the sake of legibility.

9.4. SPECIFYING INDUCTIVE-INDUCTIVE TYPES 105

•,Con : U,Ty : π Con U, nil : El Con, ext : π Con (π Ty (El Con)),

iota : π Con (El (ap Ty)),

pi : π(Γ : Con)(π(A : Ty � Γ)(π (Ty � (ext � Γ� A))(Ty � Γ)))

Figure 9.1

This kind of type-theoretic specification syntax comes in different incarnations
(see Section 13.4), and although each of them features slight differences depending
on the class of IITs that is being targeted, they all share the same core CwF
structure. We will refer to this style of IIT specification as “Kaposi-Kovács-style
syntax”.

9.4.2 Linear infinitary IITs

We now define a QIIT that serves as the datatype of specifications for the IITs
targeted by our general reduction method. Figure 9.2 and Figure 9.3 give the
complete list of all the constructors for this QIIT, including type constructors, term
constructors, and equality constructors. A few symbols in these definitions are
overloaded, and rely on metavariable names to disambiguate. Name conventions
for metavariables are illustrated later on.

Our specifications datatype is inspired by the Kaposi-Kovács-style syntax, but
differs from it in a few crucial ways. The first difference is the absence of a
universe U in our specifications. In the Kaposi-Kovács syntax the universe is used
to define the sorts of the specified IIT, as well as to subsequently refer to them in
the constructors. Since we only consider two-sorted IITs, there is no use for this
universe in our specifications. The two sorts are “hard coded” in our specification
datatype as constructors of the type Ty of “inner” types, which specifies all the
types that can appear within IIT constructors. We have two constructors T1,T2,
corresponding, respectively, to the “non-indexed” and the “indexed” type of the
IIT being specified. We refer to these two types as the base types.

The second notable aspect of our QIIT concerns the implementation of con-
texts. In our specifications, we distinguish between “outer” (or “global”) contexts
that accumulate constructors of the IIT being specified, and “inner” (or “local”)
contexts that accumulate parameters local to a single constructor. To see what
we mean, consider the pi constructor from in the example specification from Fig-
ure 9.1: here, under our terminology, the constructor terms nil , ext , iota would be
part of the “outer” context, whereas parameters like Γ and A, which are only in
scope within pi , would be part of the “inner” context of pi .

106 CHAPTER 9. GENERALIZING THE ENCODING

Spec : Type Ty : (Γ : Spec)→ Params Γ→ Type

Wk : Spec→ Spec→ Type Tm : ∀Γ ∆→ Ty Γ ∆→ Type

Ctor : Spec→ Type CTm : ∀Γ→ Ctor Γ→ Type

Params : Spec→ Type Sub : ∀{Γ} → Params Γ→ Params Γ→ Type

Base : (Γ : Spec)→ Params Γ→ Type isBase : Ty Γ ∆→ Type

data Spec where

� : Spec

B : ∀Γ→ Ctor Γ→ Spec

data Params where

• : Params Γ

.. : ∀∆→ Ty Γ ∆→ Params Γ

[] : Params Ω→Wk Γ Ω→ Params Γ

data Ty where

ext : SType→ Ty Γ ∆

π : ∀A→ Base Γ (∆ .. ext A)→ Ty Γ ∆

T1 : Ty Γ ∆

T2 : Tm Γ ∆ T1 → Ty Γ ∆

[] : Ty Γ∆→ Sub ∇ ∆→ Ty Γ ∆

[] : Ty Γ∆→Wk Ω Γ→ Ty Ω (∆[w])

data Wk where

id : Wk Γ Γ

drop : Wk (Γ B C) Γ

◦ : Wk Γ Ω→Wk Ω Θ→Wk Γ Θ

data Sub where

id : Sub ∆ ∆

ext : (σ : Sub ∆ ∇)→ Tm Γ ∆ (A[σ])

→ Sub ∆ (∇ .. A)

drop : Sub (∆ .. A) ∆

◦ : Sub Γ ∆→ Sub ∆ ∇ → Sub Γ ∇
[] : Sub ∇ ∆→ (w : Wk Γ Ω)

→ Sub (∇[w]) (∆[w])

isBase {Γ ∆}A :≡ (A = T1) + Σ (t : TmΓ ∆T1) (A = T2 t)

Base Γ ∆ :≡ Σ(Ty Γ ∆) isBase

Ctor Γ :≡ (∆ : Params Γ)× (Base Γ ∆)

ctor : (∆ : Params Γ)→ Base Γ ∆→ Ctor Γ

ctor ∆ X :≡ (∆, X)

data Tm where

vz : Tm Γ (∆ .. A) (A[drop])

vs : Tm Γ ∆ A

→ Tm Γ (∆ .. B) (A[drop])

ext : pXq→ Tm Γ ∆ (ext X)

capp : CTm Γ (ctor ∆ A)→ (σ : Sub ∇ ∆)

→ Tm Γ ∇ (A[σ])

ap : Tm Γ ∆ (π A B)→ Tm (∆ .. ext A) B

lm : Tm (∆ .. ext A) B → Tm Γ ∆ (π A B)

[] : Tm Γ ∆ A→ (σ : Sub ∇ ∆)

→ Tm Γ ∇ (A[σ])

[] : Tm Γ ∆ A→ (w : Wk Ω Γ)

→ Tm Ω (∆[w]) (A[w])

data CTm where

cvz : CTm (Γ B C)(C[drop])

cvs : ∀{C′} .CTm Γ C → CTm (Γ B C′)(C[drop])

[] : CTm Γ C → (w : Wk Ω Γ)→ CTm Ω (C[w])

Figure 9.2: Type and term constructors of the QIIT specification type

In contrast, global and local contexts are unified in the Kaposi-Kovács-style
syntax: for example, the codomain of iota is “typechecked” in context (nil B
ext B Γ), which includes both “global” constructors and “local” parameters. Our
decision to implement two notions of contexts is driven by convenience, as more
fine-grained control over contexts makes it significantly easier to formalize the
notion of linear constructor specifications (see Section 9.4.3.)

We thus define the type Spec of “outer” contexts (which correspond to specifica-
tion contexts Con in Kaposi-Kovács syntax), and the type Params : Spec→ Type

9.4. SPECIFYING INDUCTIVE-INDUCTIVE TYPES 107

• [w] = •
(∆ .. T)[w] = ∆[w] .. T [w]

∆[w1][w2] = ∆[w2 ◦ w1]

∆[id] = ∆

(ext X)[σ] = ext X

(ext X)[w] = ext X

(π A B)[σ] = π A (B[ext (drop ◦ σ) vz])

(π A B)[w] = π A (B[w])

T [σ][τ] = T [τ ◦ σ]

T [w1][w2] = T [w2 ◦ w1]

T [σ][w] = T [w][σ[w]]

T [id] = T

T1[σ] :≡ T1

T1[w] :≡ T1

(T2 t)[σ] :≡ T2 (t[σ])

(T2 t)[w] :≡ T2 (t[w])

id ◦ w = w

w ◦ id = w

(w1 ◦ w2) ◦ w3 = w1 ◦ (w2 ◦ w3)

τ ◦ ext σ t = ext (τ ◦ σ) (t[τ])

ext σ t ◦ drop = σ

id[w] = id

drop[w] = drop

(ext σ t)[w] = ext (σ[w]) (t[w])

σ[w1][w2] = σ[w2 ◦ w1]

σ[id] = σ

(ctor ∆ B)[w] :≡ ctor(∆[w])(B[w])

t[id] = t

(ext X x)[σ] = ext X x

(ext X x)[w] = ext X x

(capp c σ)[τ] = capp c (τ ◦ σ)

(capp c σ)[w] = capp (c[w])(σ[w])

(ap t)[ext (drop ◦ σ) vz] = ap(t[σ])

(ap t) [w] = ap(t[w])

(lm t)[σ] = lm (t[ext (drop ◦ σ) vz])

(lm t)[w] = lm (t[w])

ap (lm t) = t

lm (ap t) = t

t[σ][τ] = t[τ ◦ σ]

t[w1][w2] = t[w2 ◦ w1]

t[σ][w] = t[w][σ[w]]

vz[ext σ t] = t

(vs t)[ext σ s] = t[σ]

c[id] = c

c[drop ◦ w] = vs (c[w])

c[w1][w2] = c[w2 ◦ w1]

Figure 9.3: Equality constructors of the IIT of specifications

of inner contexts (or, parameters). Note that parameters are indexed by an outer
context, which reflects the fact that each constructor (and therefore its list of
parameters) is allowed to depend on previously specified constructors within the
same IIT specification.

Two kinds of contexts naturally call for two kinds of “types” that make up

108 CHAPTER 9. GENERALIZING THE ENCODING

these contexts: we extend outer contexts with constructors of type Ctor : Spec→
Type, and extend parameters with “local types” of type Ty : (Γ : Spec) →
Params Γ→ Type. We render these two notions of context extension asB and .. ,
respectively. The locality of .. is confirmed by its type, which does not alter the
global context. Note that types of parameters local to a specific constructor depend
on all constructors specified up to that point, in addition to all the parameters
specified up to that point locally to that constructor ; hence the double index on Ty.
This structure of parameters and local types resembles type-theoretic telescopes.

A constructor in outer context Γ is specified by giving a list of parameters,
i.e. a telescope of inner types ∆, and a base type depending on these parame-
ters, in addition to all previously defined constructors: ctor : (∆ : Params Γ) →
Base Γ ∆ → Ctor Γ. Here we define Base as a subtype of Ty, via the predicate
isBase, and Ctor as a simple dependent pair:

Base Γ ∆ :≡ Σ(Ty Γ ∆) isBase

Ctor Γ :≡ Σ(∆ : Params Γ)(Base Γ ∆)

We then define ctor to be just pairing.
This use of Base in the specification of constructors reflects the idea that the

codomain of any constructor of the IIT being specified is necessarily one of the
two types that constitute it.

Remark 9.4.1. We can prove that isBase is a proposition, by induction on Ty
and injectivity of its constructors. We will thus treat Base as a subtype of Ty
and implicitly coerce between the two whenever the operation can be justified,
without explicitly writing down proofs of isBase. For example, we will write T1

and T2 as if they were Base constructors. Moreover, we can justify weakening and
substitution operations on base types, as there are proofs isBaseT → isBase (T [w])
and isBaseT → isBase (T [σ]) for any T,w, σ, both constructed by case analysis on
the disjunctive proof, and application of the equality constructors of the QIIT. �

The iota constructor from Figure 9.1 would be specified, in our own syntax, as
follows:

iota : Ctor (� B nil B ext)

iota :≡ ctor (• .. T1) (T2 vz)

Note that the codomain T2 vz of iota is typed as

Base (� B nil B ext) (• .. T1)

where we have a clear distinction between the “outer” context of constructors, and
the “inner” context of parameters local to the constructor itself.

9.4. SPECIFYING INDUCTIVE-INDUCTIVE TYPES 109

Inner types Ty specify what types can be assigned to individual parameters of
a IIT constructor. These can be an external type in SType, a function space out
of an external type (to account for infinitary IITs), or a base type.

Functional inner types are formed with the π constructor. The domain of such
functions is always an external type, ensuring strict positivity. We can form terms
of an external type by indexing into an existing parameter (using vz and vs), or
by giving it as a literal constant (using ext).

Remark 9.4.2. The scope of expressions of external types that we support is
quite limited. For example, we can specify a constructor like c : (f : N → A)(n :
N)→ f n→ A, but not c : (f : N→ A)(n : N)→ f (n+ 5)→ A. We could have
fixed this by adding more constructors for external term formation, however we
decided to opt for simplicity as we believe the gained expressiveness would have
no impact on whether the specified IIT is reducible to inductive families. In other
words, allowing more expressive external terms wouldn’t make the problem more
“interesting”. �

Our specification syntax uses explicit substitutions, and we distinguish two
kinds of substitutions that apply to the two kinds of contexts. As it turns out, we
only need full-fledged substitutions for parameters contexts, whereas weakenings
are sufficient for outer contexts. We have constructors [] for applying specification
terms to substitutions and weakenings, plus equations governing how these terms
compute and propagate on canonical forms. We overload most of the symbols
involved, and use [] as well as id, drop for both weakenings and substitutions,
relying on metavariable names to disambiguate. Some metavariable names we
use consistently are w for weakenings, σ, τ for substitutions, ∆,∇ for parameter
telescopes, Γ,Ω for specification contexts, T and B for inner types and base types,
and t and c for terms and constructor terms.

We extend weakenings to ctor is the obvious way: (ctor ∆ T)[w] :≡ ctor ∆[w] T [w].
All the expected laws, like C[w1][w2] = C[w2 ◦w1] for any C : Ctor Γ, easily follow
by congruence.

We define two kinds of terms indexing into the two kinds of contexts: we have
constructor terms CTm : (Γ : Spec) → Ctor Γ → Type, that index constructors
out of a given outer context, and local terms (or just terms) Tm : (Γ : Spec)(∆ :
Params Γ) → Ty Γ ∆ → Type, that instead index arguments within a given
local context. In addition to indexing (vz, vs) and external terms (ext), we can
form local terms by abstraction/application (ap, lm), substitution/weakening, or
by applying a constructor term c to a list of arguments σ (capp).

Remark 9.4.3. The datatype of specifications Spec is a QIIT, hence its elimina-
tion principle would require us to check that every function defined by induction
on it maps equal inputs to equal outputs. We will omit these equality checks in

110 CHAPTER 9. GENERALIZING THE ENCODING

the text, and only write down the data components of the induction. Although we
expect most, if not all, of these checks to be easily verifiable, we haven’t actually
verified all of them. See Section 13.3 for further discussion on this. �

9.4.3 Specifying linearity

We call a term Γ of type Spec a specification. As an example, we can now give the
specification of our toy infinitary Con/Ty IIT from Section 8.1 as a term Θ : Spec
defined as follows2:

Θ :≡ � B ctor • T1

B ctor (• .. T1 .. T2 vz) T1

B ctor (• .. T1) (T2 vz)

B ctor (• .. T1 .. (π Nat (T2 vz))) (T2 (vs vz))

B ctor (• .. T1 .. T2 vz .. T2 (capp (cvs cvs cvz) id))

(T2 (vs vz))

As discussed in Section 9.2, our work focuses on linear IITs as the target for
our reduction. However, nothing in our datatype Spec of specifications mentions
any linearity conditions, and in particular it allows to specify non-linear IITs.

We now formalize linear specifications by defining a suitable predicate on Spec
that implements Definition 9.2.1. We rely on the notion of telescope-prefix, which
is a relation between parameter telescopes where one can be seen as the prefix on
the other. We first define a predicate of weakening substitutions:

Γ : Spec ∆ ∇ : Params Γ σ : Sub ∆ ∇
PWk σ : Type PWk id

PWk σ
PWk (drop ◦ σ)

A proof of PWk σ for some σ : Sub ∆ ∇ states that ∆ is obtained from ∇ by
repeated extension. Thus, ∇ can be viewed as a sub-telescope of ∆ and also its
prefix.

We define weakening substitutions as the subtype WkSub ∆ ∇ :≡ Σ(Sub ∆ ∇) PWk.
We lift the constructors id, drop to WkSub in the obvious way, and implicitly coerce
between WkSub and Sub when convenient.

2As usual, we rely on equality reflection in the metatheory and omit writing most of the
transports that would otherwise be necessary.

9.4. SPECIFYING INDUCTIVE-INDUCTIVE TYPES 111

Weakening substitutions provide an easy way to state linearity: as an example,
let A : Type, B : A → Type be an IIT with a A-constructor cA and a B-
constructor cB : (−→x : ∆) → B (cA

−→y), where −→y is a sequence of variables, and
(−→x : ∆) is short for a telescope of assumptions (x1 : X1) . . . (xn : Xn) where
∆ :≡ X1, ..., Xn. Then, cB is linear (in the sense of Definition 9.2.1) if and only
if −→y is a (not necessarily contiguous) substring of −→x , that is, −→y can be obtained
from −→x by dropping some elements. However, if this is the case then we can
always reshuffle −→x into some −→z so that −→y appears as a contiguous prefix of −→z .
We can therefore state, without loss of generality, that constructors of the form of
cB are linear if and only if −→y appears as a contiguous prefix of −→x .

When the constructor cB is specified as ctor ∆ (T2 (capp cA σ)) for some
cA : CTm Γ (ctor ∇ T1), linearity of cB can thus be stated as ∇ being a prefix of
∆, or equivalently as the existence of a weakening substitution WkSub ∆ ∇.

We finally get to the following general definition: a linear constructor with a
telescope of parameters ∆ is one where the codomain is either T1, or T2 (capp c σ)
where c is a T1-valued constructor term and σ is a linear selection of variables
from ∆, i.e. a weakening substitution.

Γ : Spec C : Ctor Γ

LinearCtor C : Type LinearCtor (ctor ∆ T1)

c : CTm Γ (ctor ∇ T1) σ : WkSub ∆ ∇
LinearCtor (ctor ∆ (T2 (capp c σ))) LinearCtor (ctor (∆ .. T1) (T2 vz))

A linear specification is one that is only made of linear constructors.

Γ : Spec
LinearSpec Γ : Type LinearSpec �

LinearSpec Γ LinearCtor C

LinearSpec (Γ B C)

It follows that indexing from a linear specification yields a linear constructor:

Lemma 9.4.1. For any Γ : Spec, C : Ctor Γ, c : CTm Γ C, if LinearSpec Γ holds
then LinearCtor C holds. �

Proof. By induction on Γ and c.

Most of the definitions and proofs throughout the paper are orthogonal to the
linearity issue, and will apply to specifications Γ : Spec with no imposed linearity
condition. Linearity will play an important role when we discuss the general
encoding of IIT eliminators in Chapter 12.

From now on, we will refer to specifications as terms Γ of the Spec datatype,
thus potentially including non-linearity. We will then call linear specifications
those specifications Γ for which the predicate LinearSpec Γ holds.

112 CHAPTER 9. GENERALIZING THE ENCODING

Chapter 10

Algebras of IITs

In the previous chapter we have discussed how to formally specify IITs within the
subclass of interest. Since our goal is to demonstrate how to encode any IIT as
a target-level object, we now have to actually define what it means for an IIT
of a given specification to exist in the target theory. In other words, we need a
way to map an IIT specification to signatures of target-level types and terms that
constitute the intended IIT’s type formers, constructors, and eliminators.

A standard approach in the theoretical study of datatypes is to characterize
inductive types as certain kinds of algebras. For simple inductive types, one can
consider algebras of certain endofunctors. For instance, the functor F : Type →
Type defined as

F :≡ λX.1 +X

specifies the natural numbers as inductively generated by either 0 of successor.
This functorial specification gives rise to a notion of algebra of natural numbers,
i.e. pairs of a type X together with a function FX → X, as well as a notion
of morphism between algebras. F -algebras and morphisms between them form a
category; the inductive type being specified, i.e. the natural numbers, is then taken
to be one of such algebras, the initial algebra, which turns out to be unique up to
isomorphism.

We take a similar approach and characterize IITs as certain kinds of algebras.
Rather than using functor algebras, we will define a mapping from IIT specifi-
cations to the corresponding type of algebras by recursion on specifications; we
thus have a type family Alg indexed over specifications, where Alg Γ is the type of
algebras of the IIT specified by Γ, and the elements of Alg Γ are the algebras of
such IIT.

Similarly to how we characterize simple inductive types as initial algebras, we
will characterize the IIT specified by some Γ : Spec as an algebra X : Alg Γ with a

113

114 CHAPTER 10. ALGEBRAS OF IITS

suitable section induction property [ACD+18] that ensures the algebra is equipped
with the induction principle expected of an IIT. We call such algebras inductive
or section-inductive.

In Section 10.1 below we will lay out a systematic way to derive a notion of
algebra for a given IIT specification. This will be followed by Section 10.2.2, where
we define displayed IIT algebras and sections of algebras, leading to the notion of
section-induction. Section 10.2.2 also discusses the difference between section-
induction and initiality, and the reason why we use the former to characterize
IITs.

10.1 Algebras

Before defining IIT algebras in the general case, we want to first present concrete
instances of algebras for our running example Con/Ty, both as metatheoretic con-
structions and as target-theory constructions. These will serve as running exam-
ples for the rest of the Section, where we generalize these examples into a general
notion of IIT algebra parametric over arbitrary specifications.

Example 10.1.1 (metatheory). As a meta-level construction, an algebra of the
IIT Con/Ty is given by a pair of types C : Type, T : C → Type, and terms giving
the algebra operations corresponding to each constructor of the IIT:

• : C

. : (c : C)→ T c→ C

ι : (c : C)→ T c

π̂ : (c : C)→ (N→ T c)→ T c

π̄ : (c : C)(a : T c)→ T (c . a)→ T c

�

Example 10.1.2 (target theory). An algebra of the IIT Con/Ty in the target
theory is given by (small) types C : SType, T : pCq→ SType, and terms:

• : pCq

. : pΠ (c : C) (T c⇒ C)q

ι : pΠC Tq

π̂ : pΠ (c : C) ((Nat⇒ T c)⇒ T c)q

10.1. ALGEBRAS 115

π̄ : pΠ (c : C) Π (a : T c) (T (. · c · a)⇒ T c)q

We can see that the structure shown above is a direct, 1-to-1 target-theory
translation of the metatheoretic algebra structure in Example 10.1.1.

Note that we use Nat for the type of natural numbers in the target theory. �

We now assign a notion of algebra to arbitrary IIT specifications. For Γ : Spec
we want to calculate the type of algebras for the IIT specified by Γ, including its
carrier types and the signature of algebra operations.

All specifiable IITs are made of two sorts; the type of carriers Ca : Type of an
IIT algebra is then easily defined once and for all, independent of the specification:
Ca :≡ Σ (A : SType) (pAq → SType). Given a specification Γ and carriers F : Ca,
we define a type ΓA

F : Type of algebra operations induced by the constructors in
Γ. This structure is essentially an iterated product of target-theory types, one for
each constructor.

We define ΓA
F mutually with auxiliary algebra operators for each sort of the

specification QIIT. Each of these operators define a family of (target-level) types,
indexed by algebra structures of the corresponding indices.

Γ : Spec ` ΓA
F : Type

C : Ctor Γ ` CA
F : ΓA

F → SType

∆ : Params Γ ` ∆A
F : ΓA

F → SType

T : Ty Γ ∆ ` TA
F : (γ : ΓA

F)→ p∆A
F γq→ SType

We also define algebra operators lifting the action of weakenings/substitutions
and (constructor) terms to algebra structures:

w : Wk Ω Γ ` wA
F : ΩA

F → ΓA
F

σ : Sub ∆ ∇ ` σA
F : (γ : ΓA

F)→ p∆A
F γq→ p∇A

F γq

t : Tm Γ ∆ T ` tAF : (γ : ΓA
F) (δ : p∆A

F γq)→ pTA
F γ δq

c : CTm Γ C ` cAF : (γ : ΓA
F)→ pCA

F γq

Remark 10.1.1. We overload the symbol A, and rely on metavariables for dis-
ambiguation. We will often drop the subscript F when clear from context. �

We define ΓA
F by induction on Γ, building up the iterated pair type via a

recursive process:

116 CHAPTER 10. ALGEBRAS OF IITS

� A
F :≡ 1

(Γ B C)AF :≡ Σ (γ : ΓA
F)(pCA γq)

Here CA γ takes the specification of a constructor C, and produces the type of
algebra operations corresponding to C. As we are dealing with algebra structures
in the target theory, these operations are target-level terms belonging to some
target-level types, hence why the operator CA produces a STerm. Constructor
algebras are always functions from algebras of their parameters, to algebras of
their conclusion type. Specifically, they are a Π-type from a Σ-type of parameters
as domain, and one of the two carrier types as codomain:

(ctor ∆ T)A :≡ Π (δ : ∆A γ)(TA γ δ)

Here, ∆A γ recursively builds up the target-level product of parameters, ac-
cording to their specification:

•A γ :≡ 1

(∆ .. T)A γ :≡ Σ (δ : ∆A γ)(TA γ δ)

(∆[w])A :≡ ∆A (wA γ)

We do similarly for parameter types and base types. Note that base types in
the algebra structure are always, as expected, one of the two carrier types.

(π A B)A γ δ :≡ Π (a : A) (BA γ 〈δ, a〉)
(X[w])A γ δ :≡ XA (wA γ) δ

(X[σ])A γ δ :≡ XA γ (σA γ δ)

(ext X)A :≡ X

(T1)AF γ δ :≡ π1 F

(T2 t)AF γ δ :≡ π2 F (tA γ δ)

In the case of a base type T2 t, we apply the second carrier type to the algebra
of t.

The algebra operators on terms act as indexing functions, taking the algebra
of a context as input, and returning its contents at the specified index.

10.1. ALGEBRAS 117

vzA γ δ :≡ snd δ

(vs t)A γ δ :≡ tA γ (fst δ)

(capp c σ)A γ δ :≡ cA γ · δ
(ext x)A γ δ :≡ x

(lm f)A γ δ :≡ λx . tA γ 〈δ, x〉
(ap f)A γ 〈δ, x〉 :≡ tA γ δ · x
(t[w])A γ δ :≡ tA (wA γ) δ

(t[σ])A γ δ :≡ tA γ (σA γ δ)

cvzA γ :≡ π2 γ

(cvs c)A γ :≡ cA (π1 γ)

(c[w])A γ :≡ cA (wA γ)

Finally, the operators on weakenings and substitutions transform algebras in
the same way weakenings and substitutions transform contexts.

idA γ δ :≡ δ

dropA γ δ :≡ fst δ

(ext σ t)A γ δ :≡ 〈σA γ δ, tA γ δ〉
(σ ◦ τ)A γ δ :≡ τA γ (σA γ δ)

(σ[w])A γ δ :≡ σA (wA γ) δ

idA γ :≡ γ

dropA γ :≡ π1 γ

(w1 ◦ w2)A γ :≡ w2
A (w1

A γ)

Example 10.1.3. Consider the specification Θ : Spec of Con/Ty as defined in
Section 9.4.3. Given carrier types C : SType, T : pCq → SType, the expression
ΘA

(C,T) computes to the following type

1×
(• : p1⇒ Cq)×
(. : p(1×Σ C T)⇒ Cq)×
(ι : pΠ (δ : 1× C) (T (snd δ))q)×
(π̂ : pΠ (δ : 1×Σ (c : C) (Nat⇒ T c)) (T (fst (snd δ)))q)×
(π̄ : pΠ (δ : 1×Σ (c : C) Σ(a : T c)(T (. · 〈c, a〉))) (T (fst (snd δ)))q)

Being the result of what is essentially a simple code generation algorithm, this
type isn’t particularly readable and contains many spurious elements, like products

118 CHAPTER 10. ALGEBRAS OF IITS

with the unit type. After some simplification, we obtain the following equivalent
type

(• : pCq)×
(. : pΠ (Σ C T) Cq)×
(ι : pΠ C Tq)×
(π̂ : pΠ (p : Σ (c : C) (Nat⇒ T c)) (T (fst p))q)×
(π̄ : pΠ (p : Σ (c : C) Σ(a : T c)(T (. · 〈c, a〉))) (T (fst p))q)

It is easy to see that this structure is just an equivalent, uncurried version of
that presented in Example 10.1.2. �

Remark 10.1.2. As observed in Example 10.1.3, the structures that are “code-
generated” by the algebra operators may appear syntactically different from what
we would expect when specifying algebras by hand within concrete examples. The
difference is, however, semantically meaningless, as we can find straightforward
definitional equivalences going back and forth between the different representa-
tions. From now on we will regard these different forms as completely equivalent
representations for the same object, choosing to use one over the other for pure
convenience of presentation. �

We wrap up the section with a formal definition of IIT algebras.

Definition 10.1.1. For a specification Γ : Spec, an algebra Alg Γ of the IIT
specified by Γ is a dependent pair, given by carriers F : Ca and a structure γ :
ΓA
F . �

10.2 Morphisms, sections, and induction

Defining the algebras is only one step in characterizing what counts as an IIT. Any
inductive type has, generally, many algebras, not all of which correspond to the
type itself. Consider, for example, the whole collection of algebras of the natural
numbers, which includes many types (like the reals) much “larger” than them.

What we are looking for are algebras that are the “smallest” in a suitable sense.
This property can be characterized as an induction principle. When formulating
the rules of type theory, this induction principle is usually expressed in the form
of elimination rules and eliminator functions, together with computation rules
expressing some definitional equations that the eliminators satisfy. As exemplified
in Section 8.1, eliminators take input data in the form of types (aka motives) and

10.2. MORPHISMS, SECTIONS, AND INDUCTION 119

functions (aka methods) describing the target and computational behaviour of the
induction. These data closely match the structure of the IIT and are indexed by
it.

Induction can be framed categorically by organizing algebras into a category:
given the category of algebras of some inductive type, the inductive type itself is
identified with the initial algebra, with the unique morphism out of it represent-
ing the non-dependent induction principle. Initiality implies uniqueness (up to
isomorphism), hence we can refer to it as the initial algebra.

Initiality implements a non-dependent elimination principle, which is provably
equivalent to the dependent one in an extensional setting. Unfortunately funext is
not available in our setting, so we cannot define IITs to be initial objects in their
respective category of algebras, as this would not be sufficient to equip them with
the dependent eliminators.

We instead rely on the notion of section, which we define as a mapping between
an algebra and displayed algebras over it. Displayed algebras are essentially indexed
versions of regular algebras, and as shown in Section 8.1 they can be used to exactly
provide the data of motives and methods of eliminators. Sections can be though of
as a straightforward dependent generalization of an algebra morphism, as the only
essential difference is that the codomain algebra of the mapping “depends” on the
domain algebra. In fact, we can define algebra morphisms as sections targeting
constant displayed algebras.

Sections precisely capture the notion of dependent eliminators, hence allowing
us to specify what we mean by “inductive-inductive type”:

Definition 10.2.1. Given a specification Γ, an algebra alg : Alg Γ is section-
inductive if for any displayed algebra over alg there exists a section between them.

�

Definition 10.2.2. Given a specification Γ, an IIT specified by Γ is a section-
inductive algebra in alg : Alg Γ. �

Note that we refer to section-inductive algebras as “an IIT” rather than “the
IIT” fitting a given specification. This is because section-induction, unlike initial-
ity, does not necessarily imply uniqueness (see Remark 10.2.2.)

In Section 10.2.1 down below we formally define displayed algebras generally for
any IIT specification, similarly to what we did in Section 10.1 for regular algebras.
Section 10.2.2 then defines sections between regular and displayed IIT algebras.

10.2.1 Displayed algebras

Displayed algebras can be understood as algebras indexed over regular algebras.
We take a look at a couple of concrete examples before tackling the general case.

120 CHAPTER 10. ALGEBRAS OF IITS

Example 10.2.1 (metatheory). Section 8.1 already provided the specification of
displayed algebras over a Con/Ty algebra (Con,Ty, •, . , ι, π̄, π̂) as the following
collection of types and operations:

ConD : Con→ Type

TyD : ConD Γ→ Ty Γ→ Type

•D : ConD •
.D : (ΓD : ConD Γ)→ TyD ΓD A→ ConD (Γ . A)

ιD : (ΓD : ConD Γ)→ TyD ΓD (ι Γ)

π̄D : (ΓD : ConD Γ)(AD : TyD ΓD A)(BD : TyD (ΓD .D A) B)

→ TyD ΓD (π̄ Γ A B)

π̂D : (ΓD : ConD Γ)→ ((n : N)→ TyD ΓD (F n))→ TyD ΓD (π̂ Γ F)

�

Example 10.2.2 (target theory). Let us consider a target-level Con/Ty-algebra
made of carriers C, T , and algebra structure •, ., ι, π̂, π̄, as shown in Example 10.1.2.
A target-level Con/Ty displayed algebra indexed over it then consists of a pair of
families

CD : pCq→ SType

TD : (c : pCq) (cD : pCD cq)→ pT cq→ SType

and displayed algebra operations:

•D :pCD •q
.D :pΠ(c : C)(t : T c)(cD : CD c)(TD c cD t⇒ CD (. · c · t))q
ιD : pΠ (c : C)(cD : CD c)(TD c cD (ι · c))q
π̂D :pΠ (c : C)(f : Nat⇒ T c)(cD : CD c)(fD : Π(n : Nat)(TD c cD (f · n)))

(TD c cD (π̂ · c · f))q

π̄D :pΠ (c : C)(a : T c)(b : T (. · c · a))

(cD : CD c)(aD : TD c cD a)(bD : TD (. · c · a) (.D · c · a · cD · aD) b)

(TD c cD (π̄ · c · a · b))q

The structure above is a direct target-level translation of the structure in Ex-
ample 10.2.1, modulo the absence of implicit parameters which are spelled out
explicitly here.

10.2. MORPHISMS, SECTIONS, AND INDUCTION 121

�

We now want to define displayed algebras in the general case, for arbitrary IIT
specifications. We define operators that, given Γ : Spec and an object in Alg Γ,
calculate the type of displayed algebras over it.

Carriers of displayed algebras are easily calculated as families indexed over
regular carriers:

CaD : Ca→ Type

CaD (A,B) :≡ Σ (AD : pAq→ SType)

((a : pAq)→ pAD aq→ pB aq→ SType)

We define a displayed algebra operator D on specifications such that if (F, γ) :
Alg Γ is an IIT algebra and D : CaD F are displayed carriers, then ΓD

D γ : Type
is the signature of the displayed algebra structure on D, i.e. an iterated product
of the types of algebra operations. Example 10.2.2 provides an example of this
iterated product for the Con/Ty case.

Similarly to the algebra operators for regular IIT algebras (Section 10.1), we
define a displayed algebra operator for each sort of the QIIT of specifications. For
any F : Ca, D : CaD F , we define:

Γ : Spec ` ΓD
D : ΓA

F → Type

C : Ctor Γ ` CD
D : ΓD

D γ → pCA
F γq→ SType

∆ : Params Γ ` ∆D
D : ΓD

D γ → p∆A
F γq→ SType

T : Ty Γ ∆ ` TD
D : (γD : ΓD

D γ)(δD : p∆D
D γD δq)→ pTA

F γ δq→ SType

These are defined together with operators lifting the action of weakenings,
substitutions, and (constructor) terms to displayed algebras:

t : Tm Γ ∆ T ` tDD : {γD : ΓD
D γ}(δD : p∆D

D γD δq)→ pTD
D γD δD (tAF γ δ)q

c : CTm Γ C ` cDD : (γD : ΓD
D γ)→ pCD

D γD (cAF γ)q

w : Wk Γ Ω ` wD
D : ΓD

D γ → ΩD
D (wA

F γ)

σ : Sub ∆ ∇ ` σD
D : {γD : ΓD

D γ} → p∆D
D γD δq→ p∇D

D γD (σA
F γ δ)q

In line with the idea of displayed algebras as indexed over regular algebras,
the displayed algebra operators are themselves an indexed version of the regular
algebra operators defined in the previous section. We summarize their definitions

122 CHAPTER 10. ALGEBRAS OF IITS

�DD :≡ 1

(Γ B C)DD (γ, c) :≡ Σ (γD : ΓD
D γ) pCD γD cq

(ctor ∆ X)D γD c :≡
Π(δ : ∆A)(∆D γD δ ⇒ XD γD δD (c · δ))

•D :≡ 1

(∆ .. T)D γD 〈δ, x〉 :≡
Σ(δD : ∆D γD δ)(TD γD δD x)

(∆[w])D γD δ :≡ ∆D (wD γD) δ

(ext A)D γD δD a :≡ 1

(π A B)D γD δD f :≡
Π(x : A)(BD γD 〈δD, ∗〉 (f · x))

(A[σ])D γD δD a :≡ AD γD (σD δD) a

(A[w])D γD δD a :≡ AD (wD γD) δD a

(T1)DD γD δD x :≡ π1 D x

(T2 t)DD {γ} γD {p} δD y :≡
π2 D (tA γ p) (tD γD δD) y

cvzD γD :≡ π2 γ
D

(cvs c)D γD :≡ cD (π1 γ
D)

(c[w])D γD :≡ cD (wD γD)

idD δD :≡ δD

dropD δD :≡ fst δD

(ext σ t)D δD :≡ 〈σD δD, tD δD〉
(σ ◦ τ)D δD :≡ τD (σD δD)

(σ[w])D {γD} δD :≡ σD {wD γD} δD

idD γD :≡ γD

dropD γD :≡ π1 γ
D

(w1 ◦ w2)D γD :≡ w2
D (w1

D γD)

vzD δD :≡ snd δD

(vs t)D δD :≡ tD (fst δD)

(ext A x)D δD :≡ ∗
(capp c σ)D {γD} δD :≡ cD γD · · σD δD

(ap t)D {δ} δD :≡ tD (fst δD) · fst δ

(lm t)D {δ} δD :≡ λx . tD {〈δ, x〉}〈δD, ∗〉
(t[σ])D δD :≡ tD (σD γD δD)

(t[w])D {γD} δD :≡ tD {wD γD} δD

Figure 10.1: Displayed IIT algebra operators

in Figure 10.1. Note that the displayed algebra of an external type (ext A) is trivial,
as displayed algebras can only index over the regular carriers in F . The other
definitions are straightforward generalizations of the operators from Section 10.1.

Example 10.2.3. Let ((C, T), θ) : Alg Θ be a Con/Ty algebra1. Given displayed
carriers CD, TD, the displayed algebra structure computed by ΘD

(CD,TD) θ is pre-

cisely the structure listed in Example 10.2.2, modulo the usual curried/uncurried
functions and spurious multiplications by the unit type.

1Recall that Θ is the formal specification of Con/Ty as a term of Spec

10.2. MORPHISMS, SECTIONS, AND INDUCTION 123

�

We conclude with a formal definition of IIT displayed algebras.

Definition 10.2.3. For a specification Γ : Spec, and an algebra (F, γ) : Alg Γ, a
displayed algebra over (F, γ) is a dependent pair given by carrier types D : CaD F
and displayed algebra structure γD : ΓD

D γ. �

The next section will relate IIT algebras and their corresponding displayed
algebras via the notion of section. We will see how displayed algebras can be used
to specify the data of eliminators for IITs, and how sections can be used to specify
the existence of eliminators given that data.

10.2.2 Sections

The data of an algebra morphism between two algebras comprises maps between
the respective carriers, together with proofs that these maps “respect” the algebra
operations. The data of a section are a generalized, indexed version of that of an
algebra morphism. We illustrate this with a couple of examples.

Example 10.2.4 (metatheory). We have already encountered an instance of a
section in the context of the Con/Ty example of Section 8.1, where we specified the
elimination principle for Con/Ty: for any displayed algebra (CD, TD, •D, .D, ιD, π̄D, π̂D)
over the IIT, we had a pair of functions into the carriers of the displayed algebra:

elimCon : (Γ : Con)→ ConD Γ

elimTy : {Γ : Con}(A : Ty Γ)→ TyD Γ (elimCon Γ) A

such that these functions commute with the IIT constructors and the correspond-
ing displayed functions:

elimCon • ≡ •D

elimCon (Γ . A) ≡ elimCon Γ .D elimTy A

elimTy (ι Γ) ≡ ιD (elimCon Γ)

elimTy(π̂ Γ F) ≡ π̂D (elimCon Γ) (λn.elimTy (F n))

elimTy(π̄ Γ A B) ≡ π̄D (elimCon Γ) (elimTy A) (elimTy B)

The structure above specifies none other than a section between the “initial”
algebra Con/Ty, and the assumed displayed algebra over it.

�

124 CHAPTER 10. ALGEBRAS OF IITS

Example 10.2.5 (target theory). Take a Con/Ty algebra (C, T, •, ., ι, π̂, π̄) and
displayed algebra (CD, TD, •D, .D, ιD, π̂D, π̄D) over it, instances of which are shown
in Example 10.1.2 and Example 10.2.2. A section between these algebras is given
by the data of a pair of functions between the respective carriers:

fC : pΠ C CDq

fT : pΠ (c : C) Π (t : T c)(TD c (fC · c) t)q

such that these functions “respect” the algebra structure arising from the con-
structors. In other words, we require the functions fC , fT to satisfy the following
meta-level equations:

fC · • = •D

fC · (. · c · t) = .D · c · t · (fC · c) · (fT · c · t)
fT · c · (ι · c) = ιD · c · (fC · c)
fT · c · (π̂ · c · f) = π̂D · c · f · (fC · c) · (λn . fT · c · (f · n))

fT · c · (π̄ · c · a · b) = π̄D · c · a · b · (fC · c) · (fT · c · a)(fT · (. · c · a) · b)

Note that the equations above are meta-theoretic identifications between target-
level terms. From the point of view of the target theory, this means that section
maps respect the algebra structure strictly, i.e. up to target-level definitional
equality.

�

We now want to calculate the structure of a section, with its functions and
equations, for arbitrary IIT specifications Γ : Spec and pairs of algebras (F, γ) :
Alg Γ and (D, γD) : AlgD Γ (F, γ).

The functional component is straightforward: we define a structure MapF D :
Type between F : Ca and D : CaD F as a pair of target-level function terms:

Map : (F : Ca)→ CaD F → Type

Map (A,B) (AD, BD) :≡
Σ (fA : pΠ A ADq) (pΠ (a : A) Π (b : B a)(BD a (fA · a) b)q)

To determine the equational part of the section structure we define section op-
erators, one for each sort of the datatype of specifications. Each of these operators
compute the effect of applying the section maps to IIT algebras. Reflecting the

10.2. MORPHISMS, SECTIONS, AND INDUCTION 125

nature of sections as relations, the types of section operators are indexed by pairs
of algebras and displayed algebras on some carriers F,D, as well as section maps
f : Map F D:

Γ : Spec ` ΓS
f : (γ : ΓA

F)→ ΓD
D γ → Type

C : Ctor Γ ` CS
f : (s : ΓS

f γ γ
D)(c : pCA

F γq)→ CD
D γD c→ Type

∆ : Params Γ ` ∆S
f : (s : ΓS

f γ γ
D)(δ : p∆A

F γq)→ p∆D
D γD δq

T : Ty Γ ∆ ` T S
f : (s : ΓS

f γ γ
D)(x : pTA

F γ δq)→ pTD
D γD (∆S

f s δ) xq

w : Wk Γ Ω ` wS
f : ΓS

f γ γ
D → ΩS

f (wA
F γ) (wD

D γD)

c : CTm Γ C ` cSf : (s : ΓS
f γ γ

D)→ CS
f s (cAF γ) (cDD γD)

These operators are defined by mutual induction on the QIIT of specifications,
together with equational properties about them that we compile as Lemma 10.2.1
and Lemma 10.2.2 below.

On a specification Γ : Spec, the expression ΓS
f computes the iterated product

of meta-theoretic equations on f that are required by the section structure. We
define it by induction on specification contexts.

� S
f γ γ

D :≡ 1
(Γ B C)Sf (γ, c) (γD, cD) :≡ Σ(s : ΓS

f γ γ
D)(CS

f s c c
D)

For a constructor C : Ctor Γ and pair of algebras c, cD, the equation generated
by CS s c cD is the statement that applying the functions in f to c · δ — that is,
the constructor algebra c applied to some arguments — is the same as applying
f to each of the arguments δ first, and then applying the displayed constructor
algebra cD to the result. In other words, the section functions f commute with
the constructor algebras:

(ctor ∆ T)Sf s c c
D :≡ ∀ δ → T S

f s (c · δ) = cD · δ ·∆S
f s δ

Note that whether we need to apply π1 f or π2 f to c · δ depends on the base
type T , hence the helper function T S

f s which just selects the correct component
of f to apply according to T :

(T1)Sf s x :≡ π1 f · x
(T2 t)Sf {δ} s x :≡ π2 f · tA δ · x

Moreover, in order to apply f to a list δ of arguments to the constructor,
we define ∆S

f s which just recursively applies the function f to δ in the obvious
recursive way.

126 CHAPTER 10. ALGEBRAS OF IITS

� S
f γ γ

D :≡ 1
(Γ B C)Sf (γ, c) (γD, cD) :≡

Σ(s : ΓS
f γ γ

D)(CS
f s c c

D)

(ctor ∆ T)Sf s c c
D :≡

∀ δ . T S
f s (c · δ) = cD · δ ·∆S

f s δ

(ext X)Sf :≡ ∗
(π A B)Sf s f :≡ λ (x : A)(BS

f s (f · x))

(T [σ])Sf s x :≡ T S
f s x

(T [w])Sf s x :≡ T S
f (wS

f s) x

(T1)Sf s x :≡ π1 f · x
(T2 t)Sf {δ} s x :≡ π2 f · tA δ · x

•Sf :≡ tt

(∆ .. T)Sf s 〈δ, x〉 :≡ 〈∆S
f s δ, T

S
f s x〉

(∆[w])Sf s :≡ ∆S
f (wS

f s)

idS
f s :≡ s

dropS
f s :≡ π1 s

(w1 ◦ w2)Sf s :≡ w2
S
f (w1

S
f s)

cvzSf s :≡ π2 s

(cvs c)Sf s :≡ cSf (π1 s)

(c[w])Sf s :≡ cSf (wS
f s)

Figure 10.2: IIT section operators

•Sf :≡ tt

(∆ .. T)Sf s 〈δ, x〉 :≡ 〈∆S
f s δ, T

S
f s x〉

(∆[w])Sf s :≡ ∆S
f (wS

f s)

Note that to type-check the definition of (T2 t)Sf we rely on Lemma 10.2.1
proved later in this section.

On the remaining types T : Ty Γ ∆, the operator T S just implements the action
of the section functions on Ty-algebras. Again, to type-check the definition of
(T [σ])S we rely on Lemma 10.2.2 given below. We summarize all section operators
in Figure 10.2.

All these section structure functions are defined simultaneously, mutually, by
induction on the IIT of specifications, together with the following equational prop-
erties about the section operators themselves:

Lemma 10.2.1. For any t : Tm Γ ∆X, f : Map F D, s : ΓS
f γ γ

D and δ : p∆A
F γq,

XS
f s (tAF δ) = tDD (∆S

f s δ) �

10.2. MORPHISMS, SECTIONS, AND INDUCTION 127

Proof. By induction on t.

Lemma 10.2.2. For any σ : Sub ∆ ∇, f : Map F D, s : ΓS
f γ γ

D and δ : p∆A
F γq,

∇S
f s (σA

F δ) = σD
D (∆S

f s δ) �

Proof. By induction on σ.

Remark 10.2.1. Since the section structure operator computes a product of iden-
tity types by recursion over specifications, it is straightforward to show that ΓS

constitutes a family of (weak) propositions. �

Example 10.2.6. Let C, T, CD, TD carriers, and Con/Ty algebra structures θ :
ΘA

(C,T) and θD : ΘD
(CD,TD) θ. Given functions f : Map (C, T) (CD, TD), we can easily

verify that the expression ΘS
f θ θ

D computes to (a straightforwardly equivalent
version of) the section structure shown in Example 10.2.5.

�

Definition 10.2.4. Given an IIT specification Γ : Spec, a regular algebra (F, γ) :
Alg Γ, and a displayed algebra (D, γD) : AlgD Γ (F, γ), a section between (F, γ)
and (D, γD) is a pair of functions f : Map F D, and a proof of ΓS

f γ γ
D. �

Having defined what sections are, we can finally formalize what it means for
an IIT algebra to support the intended induction principle.

Definition 10.2.5. Given an IIT specification Γ : Spec, we say than an algebra
a : Alg Γ is inductive, or section inductive, when for any displayed algebra d :
AlgD Γ a there exists a section between them. �

Remark 10.2.2 (uniqueness). Section induction is also considered in [ACD+18] in
the context of QIITs. There, the authors establish an equivalence between section
induction and initiality, thus showing that inductive algebras, similarly to initial
algebras, can be characterized as being unique (up to isomorphism). They work
in an extensional setting, in particular assuming function extensionality.

We will not concern ourselves with uniqueness properties of inductive IIT al-
gebras in this work, as our goal is to establish the existence of some inductive
IIT algebra for any given specification. Nevertheless, the question is interest-
ing and certainly worth future investigation. In particular, we wonder if we can
establish some uniqueness property of our notion of inductive algebras similarly
to [ACD+18].

When discussing uniqueness of algebras, the intensional nature of our setting
poses an extra challenge, particularly in deciding what we mean by equality and

128 CHAPTER 10. ALGEBRAS OF IITS

at what “level” (meta vs target) we mean it. On the one hand metatheoretic
equality would be too strict, failing to relate anything beyond definitional identity.
On the other hand the intensional target-level identity type is too weak to properly
compare infinitary objects. We believe the appropriate way to relate IIT algebras
would be via their embedding into the setoid model/SeTT, which provides a fitting,
extensional form of equality.

�

We have formally defined what counts as an IIT in the target theory, for any
given IIT specification. In the chapters that follow we will proceed to our main re-
sult, which is not only to establish that all specifiable IITs always exist — i.e. there
always exists a corresponding inductive algebra — but that we have a systematic
way to construct it.

Our aims for this part of the thesis can be summarized as the following theorem:

Theorem 10.2.1. Given any IIT specification Γ : Spec, there exists an inductive
algebra for it. That is,

1. There exists an algebra a : Alg Γ

2. such that for any displayed algebra d : AlgD Γ a, there exists a section
(f, s) : Sect Γ a d. �

We will tackle both points of this theorem in the sections that follow. Specifi-
cally, we will address the first point in Chapter 11, where we show how to construct
an IIT algebra given any IIT specification, and the second point in Chapter 12,
where we show that the algebra constructed in Chapter 11 is actually inductive.

Chapter 11

Constructing IIT algebras

In Chapter 10 we have formalized how to specify IITs, and defined what constitutes
an IIT for a given specification. In this Chapter we tackle the next step, which is
to show that we can in fact always define target-level types and terms encoding
any specifiable IIT. This corresponds to the first point of Theorem 10.2.1.

In Section 8.1 we encoded the type formers and constructors of our running
example, Con/Ty, in terms of type formers and constructors of so-called erased
types and a well-formedness predicates. Technically, the encoding was as simple
as pairing together erased constructors and their corresponding well-formedness
proofs. We referred to this pairing as Σ-construction, after [vR19].

Although the Con/Ty example deals with a single concrete IIT, the process of
deriving the erased types and well-formedness predicates, as well as their combina-
tion via the Σ-construction, wasn’t specific to that example and can be systemati-
cally applied to any IIT specification. The aim of this chapter is demonstrate this
claim. That is, to give a general account of erased types, well-formedness predi-
cates, and the Σ-construction, that applies in general to arbitrary specifications.

Similarly to our general account of IITs, we tackle erased and predicate types
by framing them as certain kinds of algebras. We define families of erased algebras
and predicate algebras indexed over IIT specifications, then restrict our attention
to those particular algebras that exhibit some property of interest, like section
induction or the presence of suitable inversion principles.

We then define the Σ-construction as a generic operation on algebras ; that is,
for any specification we show how to construct an IIT algebra given any pair of an
erased algebra and predicate algebra. A direct consequence of the Σ-construction
is that if erased and predicate algebras always exist, then IIT algebras do as well.

We first deal with erased types and their algebras in Section 11.1, followed by
an account of well-formedness predicates in Section 11.2. Both sections conclude
with arguments for the existence of erased and predicate algebras, respectively,
for any given specification. We finally wrap things up with the Σ-construction in

129

130 CHAPTER 11. CONSTRUCTING IIT ALGEBRAS

Section 11.3.1.

11.1 Erased types

Every (two-sorted) IIT specification automatically induces the specification of two
mutually-defined inductive types. This process of erasure works by simply strip-
ping the type and term constructors of the original IIT of all its indices, to produce
what we call erased types.

Erasure is a systematic process that can be carried out irrespective of the par-
ticular IIT. We now give a general account of erasure for arbitrary specifications.
We first assign a notion of erased algebra to IIT specifications, and complement
it with displayed algebras and sections. We then define “erased types” to be the
section-inductive algebras.

11.1.1 Algebras of erased types

To get an idea of the structure of erased algebras, let us revisit our running ex-
ample, the Con/Ty IIT, both as the familiar metatheoretic construction and as a
target level one:

Example 11.1.1 (metatheory). Recall the constructors for the erased types Con0,Ty0

shown in the example of Section 8.1:

•0 : Con0

.0 : Con0 → Ty0 → Con0

ι0 : Con0 → Ty0

π̂0 : Con0 → (N→ Ty0)→ Ty0

π̄0 : Con0 → Ty0 → Ty0 → Ty0

As a metatheoretic construction, an algebra of Con0,Ty0 is essentially like the
structure above, with Con0,Ty0 replaced by arbitrary carrier types. In other words,
algebras are a pair of types C0 : Type, T0 : Type plus an element of the following
product

C0 × (C0 → T0 → C0)× (C0 → T0)

× (C0 → (N→ T0)→ T0)× (C0 → T0 → T0 → T0)

�

11.1. ERASED TYPES 131

Example 11.1.2 (target theory). As a target-level structure, an algebra of Con0/Ty0

is similarly a pair of small types C0 : SType, T0 : SType plus a term of the product
type

pC0q× pC0 ⇒ T0 ⇒ C0q× pC0 ⇒ T0q

× pC0 ⇒ (Nat⇒ T0)⇒ T0q× pC0 ⇒ T0 ⇒ T0 ⇒ T0q

It is immediate to see that the structure above is a direct target-level translation
of the one shown in Example 11.1.1. �

We now define how to calculate the structure of erased algebras for an arbitrary
specification. Since we are only considering IITs of fixed sorts, the type of carriers
of an erased algebra is always just a pair of target-level small types Ca0 :≡ SType×
SType. Given Γ : Spec and carriers F0 : Ca0, we define the corresponding erased
algebra structure ΓE

F0
, together with dedicated erased algebra operators for each

specification type.

Γ : Spec ` ΓE
F0

: Type

C : Ctor Γ ` CE
F0

: SType

∆ : Params Γ ` ∆E
F0

: SType

T : Ty Γ ∆ ` T E
F0

: SType

Remark 11.1.1. The erased algebra operators refer to each other in a non-circular
way in their definition, and not at all in their types. They are, therefore, not
mutually defined, unlike the IIT algebra operators of the previous Chapter. �

ΓE
F0

should be an iterated product of algebra operations similar to Figure 11.1.2,
but specific to Γ and F0. Just like the operators ΓA

F and ΓD
D, we define ΓE

F0
by

recursion on specifications:

� E
F0

:≡ 1
(Γ B C)EF0

:≡ ΓE
F0
× pCE

F0
q

The erased algebra for a constructor C is a function type from a tuple of
parameters to one of the two erased carrier types:

(ctor ∆ T)EF0
:≡ ∆E

F0
⇒ T E

F0

Erased parameter algebras are given by a straightforward recursion:

132 CHAPTER 11. CONSTRUCTING IIT ALGEBRAS

•EF0
:≡ 1

(∆ .. T)EF0
:≡ ∆E

F0
× T E

F0

(∆[w])EF0
:≡ ∆E

F0

Note that (∆[w])E simply ignores the weakening, reflecting the fact that erased
types (and therefore their algebras) arise from forgetting all type dependency in-
formation. The same holds for inner type and base type algebras:

(ext X)EF0
:≡ X

(π A B)EF0
:≡ A⇒ BE

F0

(T [w])EF0
:≡ T E

F0

(T [σ])EF0
:≡ T E

F0

(T1)
E

F0
:≡ π1 F0

(T2 t)EF0
:≡ π2 F0

We have additional algebra operators for (constructor) terms and weaken-
ings/substitutions:

t : Tm Γ ∆ T ` tEF0
: ΓE

F0
→ p∆E

F0
q→ pT E

F0
q

c : CTm Γ C ` cEF0
: ΓE

F0
→ pCE

F0
q

w : Wk Γ Ω ` wE
F0

: ΓE
F0
→ ΩE

F0

σ : Sub ∆ ∇ ` σE
F0

: ΓE
F0
→ p∆E

F0
q→ p∇E

F0
q

As usual, the operators on weakenings and substitutions lift the action of these
operations to context and parameter algebras.

idE γ0 δ0 :≡ δ0

(ext σ t)E γ0 δ0 :≡ 〈σE γ0 δ0, t
E γ0 δ0〉

dropE γ0 δ0 :≡ fst δ0

(σ ◦ τ)E γ0 δ0 :≡ τE γ0 (σE γ0 δ0)

(σ[w])E γ0 δ0 :≡ σE (wEγ0) δ0

idE γ0 :≡ γ0

dropE γ0 :≡ π1 γ0

(w1 ◦ w2)Eγ0 :≡ w2
E (w1

E γ0)

Moreover, the algebra operators on terms express indexing into algebras of
contexts.

11.1. ERASED TYPES 133

vzE γ0 δ0 :≡ snd δ0

(vs t)E γ0 δ0 :≡ tEγ0 (fst δ0)

(ext A x)E γ0 δ0 :≡ x

(capp c σ)E γ0 δ0 :≡ cE γ0 · σE γ0 δ0

(ap t)E γ0 〈δ0, x〉 :≡ tE γ0 δ0 · x
(lm t)E γ0 δ0 :≡ λx . tE γ0 〈δ0, x〉
(t[σ])E γ0 δ0 :≡ tE γ0 (σE γ0 δ0)

(t[w])E γ0 δ0 :≡ tE (wE γ0) δ0

cvzE γ0 :≡ π2 γ0

(cvs c)E γ0 :≡ cE (π1 γ0)

(c[w])E γ0 :≡ cE (wE γ0)

Example 11.1.3. Given carriers C0, T0 from Example 11.1.2, we can easily verify
that the expression ΘE

(C0,T0) computes to the erased algebra structure defined in
that example. �

We wrap things up with a definition of erased algebras.

Definition 11.1.1. Given an IIT specification Γ : Spec, an erased algebra Alg0 Γ
is a pair of carrier types F0 : Ca0, and a term γ0 : ΓE

F0
. �

Erased types, and therefore erased algebras, constitute the building blocks of
our encoding of IITs in terms of inductive families. However, not all erased algebras
are suitable for this role, as their induction principle might not be strong enough.
We are specifically interested in those algebras that are section-inductive.

In accordance to this requirement, the next sections will tackle the definition
of displayed erased algebras and erased sections, from which we derive the notion
of section-inductive erased algebras.

11.1.2 Displayed algebras of erased types

Example 11.1.4 (metatheory). Recall the Con0/Ty0 erased algebra from Exam-
ple 11.1.1, given by types C0, T0 : Type and terms •0, .0, ι0, π̂0, π̄0. A meta-
theoretic displayed algebra over it is a pair of indexed types, and terms indexed
over the erased constructors:

CD
0 : C0 → Type

TD0 : T0 → Type

•D0 : CD
0 •0

134 CHAPTER 11. CONSTRUCTING IIT ALGEBRAS

.D0 : CD
0 Γ0 → T0 A0 → CD

0 (Γ0 .0 A0)

ιD0 : CD
0 Γ0 → TD0 (ι0 Γ0)

π̂D0 : CD
0 Γ0 → ((n : N)→ TD0 (F0 n))→ TD0 (π̂0 Γ0 F0)

π̄D0 : CD
0 Γ0 → TD0 A0 → TD0 B0 → TD0 (π̄0 Γ0 A0 B0)

�

Example 11.1.5 (target theory). Consider an target-level Con/Ty erased algebra,
as shown in Example 11.1.2: this is given by types C0 : SType, T0 : SType, and
terms •0, .0, ι0, π̂0, π̄0. A displayed erased algebra over this algebra is then given
by indexed carrier types

CD
0 : pC0q→ Type, TD0 : pT0q→ Type

and terms for each constructor:

•D0 : pCD
0 •0q

.D0 : pΠ (δ0 : C0)(t0 : T0)(CD
0 c0× TD0 t0 ⇒ CD

0 (.0 · δ0))q

ιD0 : pΠ(c0 : C0)(CD
0 c0 ⇒ TD0 (ι0 · c0))q

π̂D0 : pΠ (c0 : C0)(f0 : Nat⇒ T0)

(CD
0 c0 ⇒ Π (n : Nat) (TD0 (f0 · n))⇒ TD0 (π̂0 · c0 · f0))q

π̄D0 : pΠ (c0 : C0)(a0 : T0)(b0 : T0)

(CD
0 c0 ⇒ TD0 a0 ⇒ TD0 b0 ⇒ TD0 (π̄0 · c0 · a0 · b0))q

One can see that the structure above is a direct target-level translation of the
structure in Example 11.1.4. �

We now want to assign a notion of displayed algebra to any specification. We
thus define algebra operators that calculate the carrier types and the term structure
of a displayed algebra given an arbitrary IIT specification and erased algebra for
it.

We begin by defining displayed carriers as a type indexed by regular erased
carriers:

CaD0 : Ca0 → Type

CaD0 (A0, B0) :≡ (pA0q→ Type)× (pB0q→ Type)

Note that we allow the displayed carriers to be families of large types. This
is because we will need to do large elimination our of erased algebras later in our
development.

11.1. ERASED TYPES 135

We now define displayed algebra operators ED on specifications, so that ΓED
D0
γ0

calculates the displayed algebra structure over the carriers, as an iterated product
of algebra operations like in Figure 11.1.5. As with all the previous algebra defi-
nitions, we define an algebra operator for each sort of the specification QIIT. The
type of each of these operators is indexed by the carrier types, as well as a regular
erased algebra of the corresponding specification sort:

Γ : Spec ` ΓED
D0

: ΓE
F0
→ Type

C : Ctor Γ ` CED
D0

: pCE
F0
q→ Type

∆ : Params Γ ` ∆ED
D0

: p∆E
F0
q→ Type

T : Ty Γ ∆ ` XED
D0

: pT E
F0
q→ Type

In addition, we have operators for (constructor) terms and weakenings/substitutions:

c : CTm Γ C ` cEDD0
: ΓED

D0
γ0 → pCED

D0
q

t : Tm Γ ∆ T ` tEDD0
: ΓED

D0
γ0 → p∆ED

D0
δ0q→ pT ED

D0
(tEγ0 δ0)q

w : Wk Ω Γ ` wED
D0

: ΩED
D0
γ0 → ΓED

D0
(wEγ0)

σ : Sub ∆ ∇ ` σED
D0

:→ ΩED
D0
γ0 → p∆ED

D0
δ0q→ p∇ED

D0
(σEγ0 δ0)q

Similarly to displayed algebras for IITs (Section 10.2.1), displayed erased alge-
bras are essentially an indexed generalization of regular erased algebras, or equiva-
lently, an erased version of displayed IIT algebras. Most of these definitions require
little discussion. One notable difference with the previous treatment of algebra op-
erators is that for specification contexts Γ : Spec, we define the type ΓED without
recursion on the specification, but instead as the following equivalent type:

ΓED
D0
γ0 :≡ ∀{C}(c : CTm Γ C)→ pCED

D0
(cEγ0)q

This is similar to defining the type of tuples of natural numbers of size n as
Fin n → N, instead of the equivalent Vec N n, using Fin n as an index. Here we
are using CTm ΓC as an index into Γ. This direct, non-recursive definition of ΓED

will make a few constructions easier later on. Still, even though the elements of
ΓED are functions, we will often write them in the more convenient tuple notation
(c0, c1, ..., cn).

Remark 11.1.2. Such compact definition of ΓED is possible because the erased
algebra operators are not recursive-recursive, unlike IIT algebra operators. An
equivalent expression for IIT algebras would have been:

136 CHAPTER 11. CONSTRUCTING IIT ALGEBRAS

ΓED
D0

γ0 :≡ ∀{C}(c : CTm Γ C)→ pCED
D0

(cEγ0)q

(ctor ∆ T)ED c0 :≡ Π(δ0 : ∆E) (∆ED δ0 ⇒ TED (c0 · δ0))

•ED δ0 :≡ 1

(∆ .. T)ED〈δ0, x0〉 :≡ ∆ED δ0× TED x0

(∆[w])EDδ0 :≡ ∆EDδ0

(ext)ED :≡ 1

(π A B)EDf0 :≡ Π(a : A)(BED(f0 · a))

(T [σ])EDx0 :≡ TEDx0

(T [w])EDx0 :≡ TEDx0

(T1)EDD0
a0 :≡ π1 D0 a0

(T2)EDD0
b0 :≡ π2 D0 b0

idEDγD0 :≡ γD0
dropEDγD0 :≡ π1 (γD0)

(w1 ◦ w2)EDγD0 :≡ w2
ED(w1

EDγD0)

cEDγD0 :≡ γD0 c

idEDγD0 δD0 :≡ δ0

(ext σ t)EDγD0 δD0 :≡
〈σEDγD0 δD0 , t

EDγD0 δD0 〉
dropEDγD0 δD0 :≡ fst δD0

(σ ◦ τ)EDγD0 δD0 :≡ τEDγD0 (σEDγD0 δD0)

(σ[w])EDγD0 δD0 :≡ σED(wEDγD0) δD0

vzEDγD0 δD0 :≡ snd δD0

(vs t)EDγD0 δD0 :≡ tEDγD0 (fst δD0)

(ext A x)EDγD0 δD0 :≡ x
(capp c σ)EDγD0 δD0 :≡ cEDγD0 · · σEDγD0 δD0

(ap t)EDγD0 {δ0} δD0 :≡
(tEDγD0 (fst δD0)) · (snd δ0)

(lm t)EDγD0 {δ0} δD0 :≡
λx.tEDγD0 {〈δ0, x〉} 〈δD0 , ∗〉

(t[σ])EDγD0 δD0 :≡ tEDγD0 (σEDγD0 δD0)

(t[w])EDγD0 δD0 :≡ tED(wEDγD0) δD0

Figure 11.1: Displayed erased algebra operators

ΓA
F :≡ ∀{C}(c : CTm Γ C)→ pCA

F (cA γ)q

This would not work, because cA takes a structure γ : ΓA
F as argument, but ΓA

F

is precisely what is being defined. �

Because of how ΓED is defined, constructor term algebra operators cED on a
context term c : CTm Γ C simply reduce to function application:

cEDγD0 :≡ γD0 c

We summarize all the displayed erased algebra operators in Figure 11.1.

11.1. ERASED TYPES 137

Example 11.1.6. Let (C0, T0, θ0) : Alg0 Θ be a Con0/Ty0 erased algebra, and let
(CD

0 , T
D
0) : CaD0 (C0, T0) be displayed carriers. We can easily verify that the type

of θD0 : ΘED
(CD

0 ,T
D
0)
θ0 computes to (an equivalent version of) the structure shown in

Example 11.1.5. �

We finally wrap up with a formal definition:

Definition 11.1.2. Given Γ : Spec and (F0, γ0) : Alg0 Γ, a displayed algebra
AlgD0 Γ (F0, γ0) over (F0, γ) is a pair of carrier types D0 : CaD0 F0, and a term of
type ΓED

D0
γ0. �

11.1.3 Sections of erased algebras

We now relate erased algebras and their displayed version by the notion of erased
sections. Like sections between IIT algebras, a section between erased algebras is
a dependent mapping between the carrier types of the algebras that respects the
algebra structure arising from the constructors. We will use the notion of erased
section to imbue erased algebras with the necessary induction principles that are
required by the general reduction proof.

Example 11.1.7 (metatheory). Consider once again the erased types Con0/Ty0.
Given a metatheoretical erased algebra (C0, T0, •0, .0, ι0, π̄0, π̂0) and displayed al-
gebra (C0, T0, •D0 , .D0 , ιD0 , π̄D0 , π̂D0) over it, a section between the two is a pair of
functions

fC : (c0 : C0)→ CD
0 c0

fT : (t0 : T0)→ TD0 t0

respecting the algebraic structure of the constructors, as witnessed by the following
equations

fC •0 = •D0
fC (c0 .0 t0) = (fC c0) .D0 (fT t0)

fT (ι0 c0) = ιD0 (fC c0)

fT (π̂0 c0 f0) = π̂D0 (fC c0) (λn.fT (f0 n))

fT (π̄0 c0 a0 b0) = π̄D0 (fC c0) (fT a0) (fT b0)

�

Example 11.1.8 (target theory). Consider now the same erased types Con0/Ty0

in the setting of the target theory. Let ((C0, T0), (•0, .0, ι0, π̂0, π̄0)) be an erased

138 CHAPTER 11. CONSTRUCTING IIT ALGEBRAS

algebra and ((CD
0 , T

D
0), (•D0 , .D0 , ιD0 , π̂D0 , π̄D0)) an erased displayed algebra over it. A

section between them is a pair of function terms

fC : pΠ C0 C
D
0 q

fT : pΠ T0 T
D
0 q

Such that the following equations hold:

fC · •0 = •D0
fC · (.0 · c0 · t0) = .D0 · (fC · c0) · (fT · t0)

fT · (ι0 · c0) = ιD0 · (fC · c0)

fT (π̂0 · c0 · f0) = π̂D0 · (fC · c0) · (λn . fT · (f0 · n))

fT (π̄0 · c0 · a0 · b0) = π̄D0 · (fC · c0) · (fT · a0) · (fT · b0)

�

We shall now define, given an arbitrary IIT specification Γ and erased algebras
a : Alg0 Γ, d : AlgD0 Γ a, how to calculate the structure of a section between them.
This will consist of the type of maps between the respective carriers, as well as an
iterated product of equations that these maps must satisfy.

The functional part of a section is given by the operator Map0, which is a type
family indexed over the carriers of the algebras related by the section:

Map0 : (F0 : Ca0)→ CaD0 F0 → Type

Map0(A0, B0)(AD0 , B
D
0) :≡ pΠ A AD0 q× pΠ B0 B

D
0 q

We then define erased section operators that calculate the structure of a section
for arbitrary specifications. As usual, we define a section operator for each sort of
the specification datatype.

For carriers F0, D0 and f0 : Map0 F0 D0, we define:

Γ : Spec ` ΓES
f0

: (γ0 : ΓE
F0

)→ pΓED
D0
γ0q→ Type

C : Ctor Γ ` CES
f0

: (c0 : CE
F0

)→ pCED
D0
c0q→ Type

∆ : Params Γ ` ∆ES
f0

: (δ0 : ∆E
F0

)→ p∆ED
D0
δ0q

T : Ty Γ ∆ ` T ES
f0

: (x0 : T E
F0

)→ pT ED
D0

x0q

w : Wk Γ Ω ` wES
f0

: ΓES
f0
γ0 γ

D
0 → ΩES

f0
(wE

F0
γ0) (wED

D0
γD0)

11.1. ERASED TYPES 139

ΓES
f0
γ0 γ

D
0 :≡ ∀{C}(c : CTm Γ C)→ CES

f0
(CEγ0) (CEDγD0)

(ctor ∆ B)ESf0
c0 c

D
0 :≡ ∀ δ0 → BES

f0
(c0 · δ0) = cD0 · δ0 · (∆ES

f0
δ0)

•ES δ0 :≡ 1

(∆ .. T)ES〈δ0, x0〉 :≡ 〈∆ESδ0, T
ESx0〉

(∆[w])ESδ0 :≡ ∆ESδ0

(T1)ESf0
x0 :≡ π1 f0 · x0

(T2 t)ESf0
x0 :≡ π2 f0 · x0

(ext A)ESa0 :≡ ∗
(π A B)ESf0 :≡ λ (λx.BES(f0 · x))

(T [σ])ESx0 :≡ T ESx0

(T [w])ESx0 :≡ T ESx0

Figure 11.2: Erased section operators

We could alternatively see the section operators defined above as a non-indexed
counterpart of those in Section 10.2.2.

Given constructor algebras c0, c
D
0 , the type CED

f0
c0 c

D
0 is the section equation

relative to the constructor specified by C, stating that the functions in f0 “respect”
the algebra structure when applied to c0, c

D
0 and their arguments. The type ΓES

m0

is then the product of all these equations, one for each constructor in the specifi-
cation; it would thus be natural to define ΓES

f0
by recursion on specifications, like

we did for ΓS. Instead, we use a simpler, equivalent definition that quantifies over
constructor terms.

ΓES
f0
γ0 γ

D
0 :≡ ∀{C}(c : CTm Γ C)→ CES

f0
(CEγ0) (CEDγD0)

Thus, we can just define wESs0 :≡ λc.s0 (c[w]). The remaining operators are
just an erased version of IIT section operators. We summarize all of them in
Figure 11.2.

We prove the following lemmata about erased sections, which are mutually
stated and proved:

Lemma 11.1.1. For any σ : Sub ∆ ∇, f0 : Map0 F0 D0, algebras γ0, γ
D
0 , δ0, and

proof s0 : ΓES
f0
γ0 γ

D
0 ,

∇ES
f0

(σEγ0 δ0) = σEDγD0 (∆ES
f0
δ0) �

Proof. By induction on σ, and Lemma 11.1.2.

Lemma 11.1.2. For any t : Tm Γ ∆ T , f0 : Map0 F0 D0, algebras γ0, γ
D
0 , δ0, and

proof s0 : ΓES
f0
γ0 γ

D
0 ,

140 CHAPTER 11. CONSTRUCTING IIT ALGEBRAS

T ES
f0

(tEγ0 δ0) = tEDγD0 (∆ES
f0
δ0) �

Proof. By induction on t, and Lemma 11.1.1.

Remark 11.1.3. For any Γ, f0, γ0, γ
D
0 , the type ΓES

f0
γ0 γ

D
0 is an iterated product

of metatheoretical identity types, and therefore a (weak) proposition. �

Definition 11.1.3. For any Γ : Spec, erased algebra (F0, γ0) : Alg0 Γ, and erased
displayed algebra (D0, γ

D
0) : AlgD0 Γ (F0, γ0), the type Sect0 Γ (F0, γ0) (D0, γ

D
0) of

sections between them is given by pairs of functions f0 : Map0 F0 D0 and a proof
s0 : ΓES

f0
γ0 γ

D
0 . �

Erased sections allow us to talk about erased algebras that are inductive, in
the sense that they support the induction principle expected of erased inductive
types.

Definition 11.1.4. Given an IIT specification Γ : Spec, an erased algebra alg0 :
Alg0 Γ is inductive, or section inductive, when for any erased displayed algebra
algD0 : AlgD0 Γ alg0 there exists a section Sect0 Γ alg0 algD0 . �

11.1.4 Existence of erased types

In the previous sections we have generalized the idea of erased types, by defining a
general notion of erased algebra indexed over IIT specifications. Still, just defining
the algebras is not enough for our objective, which is not only to show that IIT
algebras can be reduced to pairs of erased and predicate algebras, but also that
such IIT algebras always exist for any specification. To show that this is the case,
we must first establish that erased algebras always exist, as they constitute the
building blocks for all our encoded IIT algebras. This existence result for erased
algebras is the topic of this section. In particular, we will show that the type
Alg0 Γ is inhabited for any Γ : Spec, and that the inhabitant is section inductive.

We proceed by internalizing the specification syntax and the algebra operators
as target-level inductive types.

Spec0,Params0,Ty0,Wk0,Ctor0 : Type

CTm0 : pSpec0q→ pCtor0q→ Type

11.1. ERASED TYPES 141

�0 : pSpec0q

B0 : pSpec0q→ pCtor0q→ pSpec0q

•0 : pParams0q

..0 : pParams0q→ pTy0q→ pParams0q

T1
0 : pTy0q

T2
0 : pTy0q

ext0 : SType→ pTy0q

π0 : SType→ pTy0q→ pTy0q

ctor1
0 : pParams0q→ pCtor0q

ctor2
0 : pParams0q→ pCtor0q

id0 : pWk0q

drop0 : pWk0q

◦0 : pWk0q→ pWk0q→ pWk0q

cvz0 : pCTm0 (Γ0 B0 C0) C0q

cvs0 : pCTm0 Γ0 C0q

→ pCTm0 (Γ0 B0 C
′
0) C0q

These types are clearly definable as inductive families; we thus assume their
existence in the target theory. Being inductive, these types come equipped with in-
duction principles. We will slightly abuse notation and define internal, target-level
functions by induction on these types with the same notation as meta-level pattern
matching, with the implicit understanding that such definitions can easily be trans-
lated to completely equivalent uses of the internal pattern matching/eliminators
in the target theory.

As an example of function definition by internal pattern matching, we define
weakening of internal constructor terms:

[]0 : pCTm0 Γ0 C0q→ pWk0 Ω0 Γ0q→ pCTm0 Ω0 C0q

c[id0]0 := c

c[drop0]0 := cvs0 c

c[w1 ◦0 w2]0 := (c[w2]0)[w1]0

We define internal versions of the erased algebra operators, by induction on
erased specifications (Figure 11.3). We define regular and displayed versions of
the operators, and like their external counterparts we parameterize them by erased
carriers F0 : Ca0 and D : CaD0 F0.

Given any erased specification Ω0 : pSpec0q, there exist the following target-
level types Erased : Ca0 generated by constructors erased1, erased2:

Erased1 : SType, Erased2 : SType, Er :≡ (Erased1,Erased2)

erased1 : (∆0 : pParams0q)→ pCTm0 Ω0 (ctor1
0 ∆0)q→ p∆0

E
Erq→ pErased1q

erased2 : (∆0 : pParams0q)→ pCTm0 Ω0 (ctor2
0 ∆0)q→ p∆0

E
Erq→ pErased2q

142 CHAPTER 11. CONSTRUCTING IIT ALGEBRAS

Γ0 : pSpec0q ` Γ0
E
F0

: Type ∆0 : pParams0q ` ∆0
E
F0

: SType

C0 : pCtor0q ` C0
E
F0

: SType T0 : pTy0q ` T0
E
F0

: SType

w0 : pWk0 Ω0 Γ0q ` w0
E
F0

: pΩ0
E
F0
q→ pΓ0

E
F0
q

Γ0
E := Π (C0 : Ctor0)(CTm0 Γ0C0 ⇒ C0

E)

(ctor1
0 ∆0)E := ∆0

E
F0
⇒ π1 F0

(ctor2
0 ∆0)E := ∆0

E
F0
⇒ π2 F0

id0
E γ0 := γ0

drop0
E γ0 := λ c . γ0 · · cvs0 c

(w1 ◦0 w2)E γ0 := w1
E (w2

E γ0)

•0E := 1

(∆ ..0 A0)E := ∆0
E×A0

E

(ext0 X)E := X

(π0 A0 B0)E := A0 ⇒ B0
E

T1
0
E

:= π1 F0

T2
0
E

:= π2 F0

Γ0 : pSpec0q ` Γ0
ED
D0

: pΓ0
E
F0
q→ Type C0 : pCtor0q ` C0

ED
D0

: pC0
E
F0
q→ Type

∆0 : pParams0q ` ∆0
ED
D0

: p∆0
E
F0
q→ Type T0 : pTy0q ` T0

ED
D0

: pT0
E
F0
q→ Type

c0 : CTm0 Γ0 C0 ` c0
ED
D0

: (γ0 : pΓ0
E
F0
q)pΓ0

ED
D0

γ0q→ pC0
ED
D0
q

�0ED := 1

(Γ0 B0 C0)ED γ0 :=

Γ0
ED (λ c . γ0 · cvs0 c)× C0

ED (γ0 · cvz0)

(ctor1
0 ∆0)ED c0 :=

Π(δ0 : ∆0
E) (∆0

ED δ0 ⇒ π1D0 (c0 · δ0))

(ctor2
0 ∆0)ED c0 :=

Π(δ0 : ∆0
E) (∆0

ED δ0 ⇒ π2D0 (c0 · δ0))

•0EDδ0 := 1

(∆0 ..0 T0)ED〈δ0, x0〉 := ∆0
ED δ0× T0

ED x0

(ext0)ED := 1

(π0 A0 B0)EDf0 :=

Π (a : A0)(B0
ED(f0 · a))

T1
0
ED
x0 := π1 D0 x0

T2
0
ED
x0 := π2 D0 x0

cvz0
ED γD0 := snd γD0

(cvs0 c)
ED γD0 := cED (fst γD0)

Figure 11.3: Internal erased algebra operators

The list of terms above specifies a simple mutual inductive definition, therefore
we can assume the existence of these terms in the target theory. Note that the

11.1. ERASED TYPES 143

self-reference in the expression ∆0
E
Er does not pose problems to this definition, since

λX .∆0
E
X is strictly positive for any ∆0.

We can generalize the constructors as the following recursive function:

erased : (C0 : pCtor0q)(c : pCTm0 Ω0 C0q)→ pC0
E
Erq

erased (ctor1
0 ∆0) c := λ (erased1 ∆0 c)

erased (ctor2
0 ∆0) c := λ (erased2 ∆0 c)

Definition 11.1.5. There is an internal erased algebra ω0 : pΩ0
E
Erq on the pair Er:

ω0 :≡ λC0 .λ c0 . erasedC0 c0 �

Definition 11.1.6. For any internal displayed algebra with carriers D0 : CaD0 Er

and structure ωD0 : pΩ0
ED
D0
q, there are functions f 1

0 , f
2
0 defined recursively and

mutually with the following:

f1
0 : (x : pErased1q)→ pπ1D0 xq T0

ES : (x0 : pT0
E
Erq)→ pT0

ED
D0
x0q

f2
0 : (x : pErased2q)→ pπ2D0 xq ∆0

ES : (δ0 : p∆0
E
Erq)→ p∆0

ED
D0
δ0q

f1
0 (erased1 ∆0 c δ0) := cEDD0

ωD0 · δ0 ·∆0
ES
D0
δ0

f2
0 (erased2 ∆0 c δ0) := cEDD0

ωD0 · δ0 ·∆0
ES
D0
δ0

•0ES := ∗

(∆0 ..0 T0)ES 〈δ0, x0〉 := 〈∆0
ES δ0, T0

ES x0〉

(ext0X)ES := ∗

(π0 B0)ES f0 := λx .B0
ES (f0 · x)

T1
0
ES
x0 := f1

0 x0

T2
0
ES
x0 := f2

0 x0

We thus obtain maps f0 : Map0 ErD0 as f0 :≡ (λ f 1
0 ,λ f

2
0). �

We now relate external and internal algebra operators and specifications, start-
ing with the erasure operators in Figure 11.4.

We can relate internal and external algebra operators directly, when the internal
algebra is calculated on erased IIT specifications:

Lemma 11.1.3. Given F0 : Ca0, D0 : CaD0 F0, the following holds:

∆E
F0

= (∆↓)
E

F0
, ∆ED

D0
δ0 = (∆↓)

ED

D0
δ0, for all ∆ : Params Γ, δ0

T E
F0

= (T ↓)
E

F0
, T ED

D0
x0 = (T ↓)

ED

D0
x0, for all T : Ty Γ ∆, x0

�

144 CHAPTER 11. CONSTRUCTING IIT ALGEBRAS

Γ : Spec ` Γ↓ : pSpec0q T : Ty Γ ∆ ` T ↓ : pTy0q

C : Ctor Γ ` C↓ : pCtor0q w : Wk Γ Ω ` w↓ : pWk0 Γ↓ Ω↓q

∆ : Params Γ ` ∆↓ : pParams0q c : Ctor Γ C ` c↓ : pCTm0 Γ↓ C↓q

�↓ :≡ �0

(Γ B C)↓ :≡ Γ↓ B0 C
↓

•↓ :≡ •0

(∆ .. T)↓ :≡ ∆↓ .. 0 T
↓

∆[w]↓ :≡ ∆↓

(extX)↓ :≡ ext0X

(π AB)↓ :≡ π0AB
↓

T1↓ :≡ T1
0

(T2 t)
↓

:≡ T2
0

T [w]↓ :≡ T ↓

T [σ]↓ :≡ T ↓

cvz↓ :≡ cvz0

(cvs c)↓ :≡ cvs0 c
↓

c[w]↓ :≡ c↓[w↓]0

id↓ :≡ id0

drop↓ :≡ drop0

(w1 ◦ w2)↓ :≡ w↓1 ◦0 w
↓
2

Figure 11.4: Specification of erasure operators

Proof. By straightforward induction on ∆, T .

As a consequence of Lemma 11.1.3, we also prove the following similar results
for section maps:

Lemma 11.1.4. Let f0 :≡ (λ f 1
0 ,λ f

2
0) be the maps structure defined as per

Definition 11.1.6. Then the following holds

∆ESδ0 f0 = (∆↓)ESδ0 for ∆ : Params Γ, δ0 : p∆E
Erq

T ESx0 f0 = (T ↓)ESx0 for T : Ty Γ ∆, x0 : pT E
Erq

�

Proof. By straightforward induction on ∆, T .

We have functions relating whole algebra structures on the external and internal
levels, for any F0, D0:

Γ : Spec, γ : p(Γ↓)EF0
q ` γ↑ : ΓE

F0

11.1. ERASED TYPES 145

Γ : Spec, γ : p(Γ↓)EF0
q, γD : ΓED

D0
(γ↑) ` γD

↓
: p(Γ↓)EDD0

γq

We define both by induction on external specification contexts Γ : Spec:

γ↑ :≡ ? for Γ ≡ �

γ↑ :≡ (drop0
Eγ)↑, γ · · cvz0 for Γ ≡ Γ′ B C

γD
↓

:≡ ∗ for Γ ≡ �

γD
↓

:≡ 〈(dropEDγD)↓, γD · cvz〉 for Γ ≡ Γ′ B C

Lemma 11.1.5. Let Γ : Spec, and algebras γ0 : (Γ↓)
E

F0
and γD0 : ΓED

D0
(γ0
↑). The

following holds for all c : CTm Γ C:

γ0 · C↓ · c↓ = cEF0
(γ0
↑), c↓

ED

D0
γ0 (γD0

↓
) = γD0 c �

Proof. By induction on c.

We finally wrap everything up with the main result of this section:

Theorem 11.1.1. Let Ω : Spec be a specification. There exists a section inductive
erased algebra alg0 : Alg0 Ω. �

Proof. Let Ω0 :≡ Ω↓. By Definition 11.1.5, there are target-level types Er : Ca0 and

an internal structure ω0 : pΩ0
E
Erq. Thus, we obtain an external algebra structure

ω0 : ΩE
Er as ω0 :≡ ω0

↑. We now show that the algebra (Er, ω0) is section induc-
tive. Assume we are given a displayed algebra (D0, ω

D
0) : AlgD0 Ω (Er, ω0). Via

erasure, we obtain an internal displayed algebra ωD0 : pΩ0
ED
q ω0, therefore by Defi-

nition 11.1.6 we have maps f0 : Map0 ErD0. We are left to prove that f0 constitutes
a section, which amounts to show the following equation for any B : Base Ω ∆,
c : CTm Ω (ctor ∆ B), δ0 : p∆E

Erq:

BES
f0

(cE ω0 · δ0) = ωD0 c · δ0 ·∆ES
f0
δ0

We prove it by case analysis on B, starting with B :≡ T1:

(T1)
ES

f0
(cE ω0 · δ0)

146 CHAPTER 11. CONSTRUCTING IIT ALGEBRAS

= { Lemma 11.1.3, Lemma 11.1.5 }
f 1

0 (erased1 c↓ δ0)

≡

c↓
ED
ω0 ω

D
0 · δ0 · (∆↓)ES δ0

= { Lemma 11.1.4 }

c↓
ED
ω0 ω

D
0 · δ0 ·∆ES δ0

= { Lemma 11.1.5 }
ωD0 c · δ0 ·∆ES δ0

The other case of B is identical, except we have f 2
0 instead of f 1

0 .

11.2 Well-formedness predicates

We now give a general account of well-formedness predicates. As we did for IITs
and erased types, we will begin by defining predicate algebras, before pinpointing
what particular properties we require of those algebras to be useful for our IIT
encoding.

11.2.1 Algebras of well-formedness predicates

As usual, let us revisit our running example, Con/Ty, and generalize from there.

Example 11.2.1 (metatheory). The predicate types from Section 8.1 were defined
as follows:

Con1 : Con0 → Prop

Ty1 : Con0 → Ty0 → Prop

•1 : Con1 •0

.1 : Con1 Γ0 → Ty1 Γ0 A0 → Con1 (Γ0 .0 A0)

ι1 : Con1 Γ0 → Ty1 Γ0 (ι0 Γ0)

π̂1 : Con1 Γ0 → (∀n.Ty1 Γ0 (F0 n))→ Ty1 Γ0 (π̂0 Γ0 F0)

π̄1 : Con1 Γ0 → Ty1 Γ0A0 → Ty1 (Γ0 .0 A0)B0 → Ty1 Γ0 (π̄0 Γ0A0B0)

We can read the list above as simply a description of an algebra of the predicate
types specified by Con/Ty. Just like predicates are indexed by erased types, this
algebra is indexed by the erased algebra (Con0,Ty0, •0, ...). �

11.2. WELL-FORMEDNESS PREDICATES 147

Example 11.2.2 (target theory). Given ((C0, T0), (•0, .0, ι0, π̂0, π̄0)) : Alg0 Θ, a
target-level predicate algebra indexed by it consists of carriers

C1 : pC0q→ SProp

T1 : pC0q→ pT0q→ SProp

and a term of the iterated product type:

•1 : pC1 •0q

.1 : pΠ (c0 : C0)(t0 : T0)(C1 c0 ⇒ T1 c0 t0 ⇒ C1(.0 · c0 · t0))q

ι1 : pΠ(c0 : C0)(C1 c0 ⇒ T1 (ι0 · c0))q

π̂1 : pΠ(c0 : C0)(f0 : Nat⇒ T0)

(C1 c0 ⇒ Π(n : Nat)(T1 c0 (f0 · n))⇒ T1 (π̂0 · c0 · f0))q

π̄1 : pΠ (c0 : C0)(a0 : T0)(b0 : T0)

(C1 c0 ⇒ T1 c0 a0 ⇒ T1 (.0 · c0 · a0) b0 ⇒ T1 c0 (π̄0 · c0 · a0 · b0))q

�

We now want to generalize predicate algebras to arbitrary IIT specifications.
We first define an operator Ca1 that calculates the carrier types of the predicate
algebra given carrier types of the erased algebra.

Ca1 : Ca0 → Type

Ca1(A0, B0) :≡ (pA0q→ SProp)× (pA0q→ pB0q→ SProp)

We then define an operator W that calculates the predicate algebra structure
of terms. For a specification Γ and erased algebra (F0, γ0), and predicate carriers
F1 : Ca1 F0, the type ΓW

F1
γ0 is a product of target-level types, one for each term of

the predicate algebra. We define ΓW along with auxiliary operators that compute
the algebra types for each component of an IIT specification.

Γ : Spec ` ΓW
F1

: ΓE
F0
→ Type

C : Ctor Γ ` CW
F1

: ΓE
F0
→ pCE

F0
q→ SProp

∆ : Params Γ ` ∆W
F1

: ΓE
F0
→ p∆E

F0
q→ SProp

T : Ty Γ ∆ ` TW
F1

: ΓE
F0
→ p∆E

F0
q→ pT E

F0
q→ SProp

148 CHAPTER 11. CONSTRUCTING IIT ALGEBRAS

We also have operators that lift the action of terms and weakenings/substitutions
to algebras:

σ : Sub ∆ ∇ ` σW : ΓWγ0 → p∆Wγ0 δ0q→ p∇Wγ0 (σEγ0 δ0)q

w : Wk Ω Γ ` wW : ΩWγ0 → ΓW(wEγ0)

t : Tm Γ ∆ A ` tW : ΓWγ0 → p∆Wγ0 δ0q→ pAWγ0 δ0 (tEγ0 δ0)q

c : CTm Γ C ` cW : ΓWγ0 → pCW γ0 (cEγ0)q

Most of these functions are just a slight variation of their erased algebras coun-
terparts, to account for the additional algebra components in the indices. One
important difference with erased algebras is that the predicate algebra component
for external types is trivial. This is expected, as there is no need to enforce any
kind of well-formedness on external types:

(ext)W :≡ >

Algebras for base types just correspond to the respective carrier types applied
to suitable erased terms. In the case of a base type of the form T2 t, the first index
depends on t and thus is calculated from it.

(T2 t)WF1
γ0 δ0 x0 :≡ π2 F2 (tEγ0 δ0) x0

The remaining operators are a straightforward generalization of the erased ones
to account for additional indexing. We summarize all of them in Figure 11.5.

Example 11.2.3. To check our work, we can easily verify that given θ0 : ΘE
(C0,T0)

such that θ0 ≡ (•0, .0, ι0, π̂0, π̄0), the type of θ1 : ΘW
(C1,T1) θ0 computes to the one

in Example 11.2.21. �

Remark 11.2.1. Note that for any Γ, F1, γ0, the type ΓW
F1
γ0 is an iterated product

of target-level propositional terms. By definition Term P is a meta-level (weak)
proposition for any target-level proposition P , thus we can easily show that ΓW

F1
γ0

is a meta-level (weak) proposition. �

We would like to have a way to construct predicate algebras ΓW in a more
direct way that doesn’t rely on induction on specifications. We thus prove the
following:

1As usual, up to straightforward equivalences.

11.2. WELL-FORMEDNESS PREDICATES 149

�W γ0 :≡ 1
(Γ B C)W(γ0, c0) : ≡ ΓWγ0 × pCWγ0 c0q

(ctor ∆ T)Wγ0 f0 :≡
Π(δ0 :) (∆Wγ0 δ0 ⇒ TWγ0 δ0 (f0 · δ0))

•W γ0 δ0 :≡ >
(∆ .. T)Wγ0 〈δ0, x0〉 :≡

∆Wγ0 δ0× TWγ0 δ0 x0

(∆[w])Wγ0 δ0 :≡ ∆W(wEγ0) δ0

(ext)Wγ0 δ0 a0 :≡ >
(π A B)Wγ0 δ0 f0 :≡

Π(x : A)(BWγ0 〈δ0, x〉 (f0 · x))

(T [σ])Wγ0 δ0 x0 :≡ TWγ0 (σE γ0 δ0) x0

(T [w])Wγ0 δ0 x0 :≡ TW (wE γ0) δ0 x0

idWγ1 :≡ γ1

dropWγ1 :≡ π1 γ1

(w1 ◦ w2)Wγ1 :≡ w2
W(w1

Wγ1)

(T1)WF1
γ0 δ0 x0 :≡ π1 F1 x0

(T2 t)WF1
γ0 δ0 x0 :≡ π2 F2 (tE γ0 δ0) x0

idWγ1 δ1 :≡ δ1

(ext σ t)Wγ1 δ1 :≡ 〈σWγ1 δ1, t
Wγ1 δ1〉

dropWγ1 δ1 :≡ fst δ1

(σ ◦ τ)Wγ1 δ1 :≡ τWγ1 (σWγ1 δ1)

(σ[w])Wγ1 δ1 :≡ σW(wWγ1) δ1

vzWγ1 δ1 :≡ snd δ1

(vs t)Wγ1 δ1 :≡ tWγ1 (fst δ1)

(ext A x)Wγ1 δ1 :≡ truth

(capp c σ)Wγ1 δ1 :≡ cWγ1 · · σWγ1 δ1

(ap t)Wγ1 {δ0} δ1 :≡ tWγ1 (fst δ1) · snd δ0

(lm t)Wγ1 {δ0} δ1 :≡ λx.tWγ1 〈δ0, x〉 〈δ1, 〉
(t[σ])Wγ1 δ1 :≡ tWγ1 (σWγ1 δ1)

(t[w])Wγ1 δ1 :≡ tW(wWγ1) δ1

cvzWγ1 :≡ π2 γ1

(cvs c)Wγ1 :≡ cW(π1 γ1)

(c[w])Wγ1 :≡ cW(wWγ1)

Figure 11.5: Well-formedness predicate algebra operators

Lemma 11.2.1. Let F0 : Ca0 and F1 : Ca1 F0. For any Γ : Spec, we have the
following propositional equivalence:

[∀ (C : Ctor Γ) (c : CTm Γ C)→ pCW
F1
γ0 (cEγ0)q] ↔ ΓW

F1
γ0 �

Proof. By induction on Γ.

Definition 11.2.1. Given a specification Γ and erased algebra (F0, γ0), a predicate
algebra Alg1 Γ (F0, γ0) is a pair of predicates F1 : Ca1 F0 and an element of
ΓW
F1
γ0. �

150 CHAPTER 11. CONSTRUCTING IIT ALGEBRAS

11.2.2 Inversion principles

We have generalized well-formedness predicates to arbitrary IITs, by defining a
notion of predicate algebra indexed over specifications.

As we will see in Section 11.3.1, a pair of an erased algebra and a predicate
algebra is enough to construct an IIT algebra via the so-called Σ-construction.
However, it will become clear in Chapter 12 that a mere algebra is not enough
for the purpose of our encoding. In particular, given a pair of erased and predi-
cate algebras, the IIT algebra Σ-constructed from them is not necessarily section
inductive, unless the source algebras come with additional structure.

In the case of erased algebras, the extra structure we require is section induc-
tion. To get an idea of what this could be for predicate algebras, let us look back
at the Con/Ty example of Section 8.1. Unlike erased types, we did not require the
predicate types to be inductively defined, however we did ask for some inversion
principles. These can be summarized into two kinds, one relating well-formedness
of a compound and well-formedness of its components, and another establishing
an equational constraint on the erased indices of the predicate type.

We now state the inversion principles in general.

Definition 11.2.2. Let (F0, γ0) : Alg0 Γ, and (F1, γ1) : Alg1 Γ (F0, γ0). We say that
(F1, γ1) supports inversions if there exist functions of the following types:

pred-inv : (c : CTm Γ (ctor ∆ T)) (δ0 : p∆E
F0
q)

→ pTW
F1
γ0 δ0 (cEγ0 · δ0)q

→ p∆W
F1
γ0 δ0q

pred-ix-inv : (c : CTm Γ (ctor ∆ (T2 t))) (δ0 : p∆E
F0
q) (a0 : pπ1 F0q)

→ pπ2 F1 a0 (cEγ0 · δ0)q

→ pa0 ≈ tEγ0 δ0q

�

The first inversion principle states that given any proof of predicate type ap-
plied to an erased term obtained by applying a constructor c to some arguments
δ0, then we can extract a proof that the predicate holds for all the arguments δ0.

The second inversion principle states that for predicates A1, B1, if we have a
proof of B1 a0 b0, then a0 is completely determined by b0.

11.2. WELL-FORMEDNESS PREDICATES 151

11.2.3 Existence of predicate types

In order to reduce IIT algebras to their erased and predicate components, we need
to argue for the existence of erased and predicate algebras. We have discussed
the existence of erased algebras in Section 11.1.4. We now tackle predicate alge-
bras, showing that the type Alg1 Γ alg0 is inhabited for any Γ : Spec and section
inductive alg0 : Alg0 Γ, and that the inhabitant has IIT inversions as prescribed in
Definition 11.2.2.

We fix an arbitrary specification Ω : Spec, and inductive erased algebra (F0, ω0) :
Alg0 Ω. The goal is to define a pair of predicates P1 : Ca1 F0, as well as a proof
term ω1 : ΩW

P1
ω0, such that the predicate algebra (P1, ω1) has inversion principles.

We define the predicate types P1 by recursion on their erased indices F0, gen-
eralizing the construction from Section 8.1.1. As per definition of inductive erased
algebras, induction on F0 amounts to defining a suitable displayed erased algebra
(PD0 , ω

D
0) giving the motives and methods of the induction. We define the motives

as the following pair PD0 :

PD0 : CaD0 F0

PD0 :≡ ((λ .P), (λ → ElU (π1 F0)⇒ P))

The methods are given as a displayed erased algebra structure ωD0 :

ωD0 : ∀{C : Ctor Ω}(c : CTm Ω C)→ pCED
PD

0
ω0q

We define ωD0 by case analysis on C, starting from C ≡ ctor ∆ T1 for some ∆:

ωD0 {ctor ∆ T1} c :≡ λ δ0.λ δ
D
0 . ?

Here we are asked to define well-formedness of the canonical expression given by
applying the erased constructor algebra of c to arguments δ0; that is, π1 P1 (cEF0

c ·
δ0). Well-formedness on canonical forms should be defined recursively in terms of
well-formedness of the subcomponents. We thus seek a way to recurse on δ0 and
apply the inductively generated predicates to each of its elements. Recall that this
is exactly how we defined Con1 recursively in Section 8.1.1. For instance:

Con1 (Γ0 .0 A0) :≡ Con1 Γ0 × Ty1 Γ0 A0

We implement this recursive traversal via the auxiliary operator ∆ih δ0 δD0 ,
which takes a list δD0 : ∆ED δ0 and produces a target-level proposition. Conceptu-
ally, δD0 is a list of recursively generated well-formedness predicates, one for each
type in ∆, applied to their respective arguments in δ0. ∆ih δ0 δ

D
0 thus recursively

traverses this list, fully applies those predicates that are only partially applied, and

152 CHAPTER 11. CONSTRUCTING IIT ALGEBRAS

combines them into an iterated logical conjunction to form a single proposition.
The ωD0 {ctor ∆ T1} c clause is thus given as

ωD0 {ctor ∆ T1} c :≡ λ δ0.λ δ
D
0 .∆

ih δ0 δ
D
0

We define ∆ih in Figure 11.6, mutually with similar operators for local type
and base type specifications (with overloaded names). Their definition is relatively
straightforward: we do recursion on parameter telescopes and local types until we
reach a base type, at which point we end up with the “current” inductive hypothesis
already applied to its designated arguments. In the T1 case, this is exactly the
proposition we need, and we return it as is; in the T2 case the inductive hypothesis
is a binary relation, thus we apply it further to the appropriate term algebra.
Since we cannot do recursion over the fixed Ω, all operators are parameterized by
a weakening w : Wk Ω Γ, which we omit writing when the identity.

The other case C ≡ ctor ∆ (T2 t) is similar, with the addition of an equational
constraint.

ωD0 {ctor ∆ (T2 t)} c :≡
λ δ0.λ δ

D
0 .λ a0. ∆ih δ0 δ

D
0 × a0 ≈ tE γ0 δ0

Here, we use the erased algebra operator tE to compute the constraint on the
index a0 according to the specified term t. Again, this is not unlike the definition
of Ty1 in Section 8.1.1. For instance:

Ty1 Γ0 (π̄0 Γ′0 A0 B0) :≡ Con1 Γ′0 ×Ty1 Γ′0 A0 ×Ty1 (Γ′ .0 A0) B0 × Γ0 =P Γ′0

In addition to recursive statements of well-formedness, we constrained the index
Γ0 obtained as input to the predicate (corresponding to a0 above) to be equal to
the context Γ′0 argument to the constructor π̄0 (corresponding to tE γ0 · δ0 above.)

This concludes the definition of ωD0 . Thus, by induction (Definition 10.2.5), we
have a pair of functions f0 : Map0 F0 PD0 with a proof s0 : ΓES

f0
γ0 γ

D
0 . From these

functions we immediately obtain a pair of predicates P1 : Ca1 F0 on the erased
types F0:

P1 : Ca1 F0

P1 :≡ (λa0.π1 f0 · a0 , λ a0 b0 . (π2 f0) · b0 · a0)

We now need to confirm that P1 constitutes a predicate algebra, i.e., that
there exists an algebra structure ω1 : ΩW

P1
ω0. We begin with a lemma stating that

the action of the inductive hypotheses operators is actually the same as predicate
algebras operators on the carriers P1.

Lemma 11.2.2. For all w : Wk Ω Γ,∆ : Params Γ and δ0 : ∆E
F0

:

11.2. WELL-FORMEDNESS PREDICATES 153

∆ : Params Γ ` ∆ih
w : (δ0 : p∆E

F0
q)→ p∆ED

PD
0
δ0q→ SProp

T : Ty Γ ∆ ` T ih
w : (δ0 : p∆E

F0
q){x0 : pT E

F0
q} → pT ED

PD
0
x0q→ SProp

•ihw δD0 :≡ >
(∆ .. T)ihw 〈δ0, x0〉 〈δD0 , xD0 〉 :≡ ∆ih

w δ0 δ
D
0 × T ih

w δ0 x
D
0

(∆[w2])ihw1
δ0 δ

D
0 :≡ ∆ih

(w1 ◦w2) δ0 δ
D
0

(ext)ihw δ0 a
D
0 :≡ >

(π A B)ihw δ0 f
D
0 :≡ Π (x : A)(Bih

w 〈δ0, x〉 (fD0 · x))

(T [σ])ihw δ0 x
D
0 :≡ T ih

w (σE(wEγ0) δ0) xD0

(T [w2])ihw1
δ0 x

D
0 :≡ T ih

(w1◦w2) δ0 x
D
0

(T1)ihw δ0 x0 :≡ x0

(T2 t)ihw δ0 x0 :≡ x0 · tE(wEγ0) δ0

Figure 11.6: Inductive hypothesis operators for recursive predicates

• ∆ih
w (∆ES

f0
δ0) = ∆W

P1
(wEγ0) δ0

• T ih
w δ0 (T ES

f0
x0) = TW

P1
(wEγ0) δ0 x0, for T : Ty Γ ∆, x0 : T E

F0 �

Proof. By straightforward mutual induction and reflexivity.

We finally establish the existence of a suitable algebra structure.

Lemma 11.2.3. There exists a proof of ΩW
P1
ω0. �

Proof. We apply Lemma 11.2.1 and instead prove the following statement:

∀ (C : Ctor Ω)(c : CTm Ω C)→ pCW
P1
ω0 (cEF0

ω0)q

We proceed by case analysis on C. Both cases are proved immediately after
rewriting via Lemma 11.2.2.

We now show that the algebra just defined, which we temporarily label ω1, has
the necessary inversion principles as stated in Definition 11.2.2:

Lemma 11.2.4. The algebra (P1, ω1) has IIT-inversions. �

154 CHAPTER 11. CONSTRUCTING IIT ALGEBRAS

Proof. From our construction, we have a section structure s0 : ΓES
f0
ω0 ω

D
0 . From

s0 and by the way we defined P1, we know that for all c : CTm Ω (ctor ∆ T) and
δ0 : ∆E

F0
, the following holds

TW
P1
ω0 δ0 (cE ω0 · δ0) = ωD0 c · δ0 ·∆ES

f0
δ0

We substitute this equation in the statement of the inversion principles, and
further rewrite via Lemma 11.2.2. Defining the inversions is then a straightforward
application of projections.

We can finally put everything together, and state the main result of this last
part.

Theorem 11.2.1. Let Γ : Spec, and alg0 : Alg0 Γ an inductive erased algebra.
Then, there exists a predicate algebra P : Alg1 Γ alg0 that has inversions. �

Proof. This whole section is a detailed description of how to construct such pred-
icate algebra from a fixed specification and associated erased algebra. Since the
fixed components are totally arbitrary, it follows that the construction works for
any choice of these components.

11.3 IIT Σ-algebra

In this section we prove the first point of Theorem 10.2.1, and one of the fundamen-
tal results of this part of the thesis. That is, we show that for any IIT specification
we can construct a corresponding IIT algebra, obtained by packing together suit-
able erased terms and well-formedness proofs. This process is a generalization of
the Σ-construction employed in Section 8.1.

The beauty of the Σ-construction is its generality, in that it can be defined
purely as an operation on algebras: given an IIT specification and any arbitrary
erased algebra and predicate algebra over it, we construct an IIT algebra. In
particular, we do not require any extra structure or property, like induction or
inversion principles, on the input algebras. A corollary of the Σ-construction is
that if erased and predicate algebras always exist for any specification, then IIT
algebras also exist.

We explain the general Σ-construction in Section 11.3.1 that follows. We make
use of it in Section 11.3.2 to show that IIT algebras always exist for any given
specification.

11.3. IIT Σ-ALGEBRA 155

11.3.1 Σ-construction

The idea of the Σ-construction is that any inductive-inductive definition can be
split into a definition of some erased types representing the untyped core structure
of the IIT, and a definition of predicates on the erased types that carve out all the
combinations of untyped terms that correspond to the original inductive-inductive
definition. The original IIT, with its type formers and constructors, can then be
recovered by pairing the erased and predicate types.

We take a look at two examples, where we apply the Σ-construction to the
Con/Ty IIT both as a metatheoretic construction and as a target theory construc-
tion, before moving on to its generalization.

Example 11.3.1 (metatheory). Recall how in Section 8.1 we were able to recover
Con,Ty by encoding them as dependent pairs of erased types and well-formedness
predicates:

Con :≡ Σ(Γ0 : Con0)(Con1 Γ0)

Ty Γ :≡ Σ(A0 : Ty0)(Ty1 (π1 Γ) A0)

Similarly, we were able to encode the constructors as pairs of the corresponding
constructor in the erased types and predicates. For example:

π̂ (Γ0,Γ1)F :≡ (π̂0 Γ0 (λn.π1(F n)), π̂1 Γ1 (λn.π2(F n))) �

Example 11.3.2 (target theory). We can replicate the Σ-construction of Con/Ty
in the target theory. Suppose we have erased carriers (C0, T0) : Ca0 and predicates
(C1, T1) : Ca1 (C0, T0). We can then form the following family:

C : SType T : pCq→ SType

C :≡ Σ C0 C1 T :≡ λ Γ . Σ (A0 : T0) (T1 (fst Γ) A0)

Then, given an erased algebra structure (•0, .0, ι0, π̂0, π̄0) and a predicate alge-
bra structure (•1, .1, ι1, π̂1, π̄1) over it, we can construct an IIT algebra structure
(•, ., ι, π̂, π̄) : ΘA

(C,T) via the obvious pairing. For example:

. : pΠ(c : C)(T c⇒ C)q

. :≡ λ 〈c0, c1〉〈t0, t1〉 . 〈.0 · c0 · t0, .1 · · c1 · t1〉

π̂ : pΠ (Γ : C)((Nat⇒ T Γ)⇒ T Γ)q

π̂ :≡ λ 〈c0, c1〉 f . 〈π̂0 · c0 · (λ n . fst (f · n)), π̂1 · · · c1 · (λ n . snd (f · n))〉

�

156 CHAPTER 11. CONSTRUCTING IIT ALGEBRAS

We now generalize the Σ-construction to arbitrary specifications and algebras,
so that for any Γ : Spec and erased and predicate algebras alg0 : Alg0 Γ, alg1 :
Alg1 Γ alg0, we know how to construct an IIT algebra alg : Alg Γ, which we will call
Σ-algebra. We first deal with the carriers, and define a family CaΣ of IIT carriers
indexed by a pair of erased and predicate carriers:

CaΣ : (F0 : Ca0)→ Ca1 F0 → Ca

CaΣ (A0, B0) (A1, B1) :≡ Σ A0 A1 , λa.Σ (b0 : B0)(B1 (fst a0) b0)

The idea is that if (F0, γ0) and (F1, γ1) are erased and predicate algebras, then
CaΣ F0 F1 are the carriers of the induced Σ-algebra.

Next, we define a Σ-construction operator that assembles an IIT algebra struc-
ture from suitable erased and predicate algebra structures. Its pairing function is
easily deduced from its type:

ΓΣ : (γ0 : ΓE
F0

)(γ1 : ΓW
F1
γ0)→ ΓA

(CaΣ F0 F1)

We define this mutually with auxiliary operators that implement the same
pairing for algebra structures specific to each subcomponent of an IIT specification:

C : Ctor Γ ` CΣ : (c0 : pCEq)(c1 : pCW γ0 c0q)→ pCA (ΓΣ γ0 γ1)q

∆ : Params Γ ` ∆Σ : (δ0 : p∆Eq)(δ1 : p∆W γ0 δ0q)→ p∆A (ΓΣ γ0 γ1)q

T : Ty Γ ∆ ` TΣ : (x0 : pTEq)(x1 : pTW γ0 δ0 x0q)→ pTA (ΓΣ γ0 γ1)(∆Σ δ0 δ1)q

We also define projection operators Σ
1 and Σ

2 out of Σ-algebra structures, which
reflect the idea that these operators really just implement a pairing of algebras.

∆ : Params Γ ` ∆Σ
1 : p∆A (ΓΣ γ0 γ1)q→ p∆E

F0
q

∆Σ
2 : (δ : p∆A (ΓΣ γ0 γ1)q)→ p∆W γ0 (∆Σ

1 δ)q

T : Ty Γ ∆ ` TΣ
1 : pTA (ΓΣ γ0 γ1) δq→ pT E

F0
q

TΣ
2 : (x : pTA (ΓΣ γ0 γ1) δq)→ pTW

F1
γ0 (∆Σ

1 δ) (TΣ
1 x)q

These operators are all defined by a fairly straightforward induction on speci-
fications. We give their full definition in Figure 11.7.

We prove some β and η laws for the projection operators.

Lemma 11.3.1. The following β-equations hold:

11.3. IIT Σ-ALGEBRA 157

•Σ :≡ ∗
(∆ .. T)Σ 〈δ0, x0〉 〈δ1, x1〉 :≡
〈∆Σ δ0 δ1, T

Σ x0 x1〉
(∆[w])Σ δ0 δ1 :≡ ∆Σ δ0 δ1

•Σ1 :≡ ∗
(∆ .. T)Σ

1 〈p, x〉 :≡ 〈∆Σ
1 p, TΣ

1 x〉
(∆[w])Σ

1 p :≡ ∆Σ
1 p

•Σ2 p :≡ truth

(∆ .. T)Σ
2 〈p, x〉 :≡ 〈∆Σ

2 p, TΣ
2 x〉

(∆[w])Σ
2 p :≡ ∆Σ

2 p

(ext X)Σ x0 x1 :≡ a0

(π A B)Σ f0 f1 :≡ λ x .BΣ (f0 · x) (f1 · x)

(T [σ])Σ x0 x1 :≡ TΣ x0 x1

(T [w])Σ x0 x1 :≡ TΣ x0 x1

(T1)Σ x0 x1 :≡ 〈x0, x1〉
(T2 t)Σ x0 x1 :≡ 〈x0, x1〉

�Σ γ0 γ1 :≡ ?
(Γ B C)Σ (γ0, c0) (γ1, c1) :≡

ΓΣ γ0 γ1, C
Σ c0 c1

(ext X)Σ
1 x :≡ x

(π A B)Σ
1 f :≡ λ x .BΣ

1 (f · x)

(A[σ])Σ
1 x :≡ AΣ

1 x

(A[w])Σ
1 x :≡ AΣ

1 x

(T1)Σ
1 x :≡ fst x

(T2 t)Σ
1 x :≡ fst x

(ext X)Σ
2 x :≡ truth

(π A B)Σ
2 f :≡ λ x .BΣ

2 (f · x)

(A[σ])Σ
2 x :≡ AΣ

2 x

(A[w])Σ
2 x :≡ AΣ

2 x

(T1)Σ
2 x :≡ snd x

(T2 t)Σ
2 x :≡ snd x

Figure 11.7: Σ-construction operators on algebras

1. ∆Σ
1 (∆Σ δ0 δ1) = δ0, for ∆ : Params Γ

2. TΣ
1 (TΣ x0 x1) = x0, for T : Ty Γ ∆ �

Proof. Mutual induction on specifications.

Note that the β-equations regarding the second projection hold by the fact
that they involve proofs of propositional types.

Lemma 11.3.2. The following η-equations hold:

1. ∆Σ (∆Σ
1 δ)(∆Σ

2 δ) = δ, for ∆ : Params Γ

2. TΣ (TΣ
1 x)(TΣ

2 x) = x, for T : Ty Γ ∆ �

Proof. Mutual induction on specifications.

158 CHAPTER 11. CONSTRUCTING IIT ALGEBRAS

We have the following lemmata showing that algebra operators and Σ-construction
operators for weakenings and substitutions commute with each other.

Lemma 11.3.3. The following holds:

1. wA (ΩΣ γ0 γ1) = ΓΣ (wE γ0)(wW γ1), for w : Wk Ω Γ

2. σA (∇Σ δ0 δ1) = ∆Σ (σE γ0 δ0) (σW γ1 δ1), for σ : Sub ∇ ∆ �

Proof. By induction on Γ, σ, and Lemma 11.3.4.2.

We also have a similar result for (constructor) terms.

Lemma 11.3.4. The following holds:

1. cA (ΓΣ γ0 γ1) = CΣ (cE γ0)(cW γ1), for C : Ctor Γ, c : CTm Γ C

2. tA (ΓΣ γ0 γ1)(∆Σ δ0 δ1) = TΣ (tE γ0 δ0)(tW γ1 δ1), for t : Tm Γ ∆ T �

Proof. By mutual induction on c, t, and Lemma 11.3.3.2.

The result established by Lemma 11.3.4 is precisely what we would expect:
(constructor) term algebras of an IIT Σ-algebra are pairs of erased and predicate
(constructor) term algebras.

All the lemmata above are defined mutually with the Σ-construction operators,
and are necessary for typechecking most of the operators themselves, although we
do not explicitly show their application due to extensionality in the metatheory.

The Σ-construction we have just defined establishes a functional relation: any
pair of erased and predicate algebras induce a corresponding IIT algebra. That is,
for any Γ : Spec, we have a function

sigma : Σ (alg0 : Alg0 Γ)(Alg1 Γ alg0)→ Alg Γ

sigma ((F0, γ0), (F1, γ1)) :≡ (CaΣ F0 F1,Γ
Σ γ0 γ1)

We refer to an IIT-algebra obtained via this function as a Σ-algebra.

Remark 11.3.1. Due to the nature of Σ-algebras as pairings of erased and predi-
cate components, we will often use abbreviation symbols reminiscent of pair types
and projections when manipulating elements of Σ-algebra structures, whenever
the implicitly omitted terms are clear from context.

For ∆ : Params Γ, T : Ty Γ ∆, we abbreviate

〈δ0, δ1〉 :≡ ∆Σ {γ1} δ0 δ1

〈x0, x1〉 :≡ TΣ {γ1 δ1} x0 x1

Moreover, we abbreviate projections Σ
1 ,

Σ
2 as 0, 1, when applied to algebras

of parameters and inner types. �

11.3. IIT Σ-ALGEBRA 159

11.3.2 Existence of IIT algebras

We finally prove the first of the two main results of this work, i.e. the first point
of Theorem 10.2.1.

Theorem 11.3.1. For any Γ : Spec, there exists an IIT algebra alg : Alg Γ. �

Proof. Assume Γ. By Theorem 11.1.1, there exists an erased algebra alg0 : Alg0 Γ.
By Theorem 11.2.1, there exists a predicate algebra alg1 : Alg1 Γ alg0. Via the
Σ-construction, there obtain alg :≡ sigma alg0 alg1 : Alg Γ.

It is now left to show that the IIT algebra defined as per Theorem 11.3.1 is an
IIT, i.e. that it is section inductive. This will be the topic of Chapter 12.

160 CHAPTER 11. CONSTRUCTING IIT ALGEBRAS

Chapter 12

Defining the IIT eliminators

A consequence of the Σ-construction and our developments in the previous chapter
is that any IIT specification always admits a corresponding IIT-algebra. It hasn’t
been established yet, however, that such constitutes the inductive-inductive type
we are looking for. In other words, whether this algebra is equipped with the
necessary induction principles that we would expect from an IIT.

Section 8.1 gave an answer to these questions for the concrete case of the
Con/Ty IIT. In that setting, we showed that the types obtained by Σ-construction
on the erased types and predicates do support the expected induction principle,
provided the erased types are themselves inductive, and the well-formedness pred-
icates support certain inversion principles. The type thus constructed was shown
to be inductive-inductive by defining its eliminators and proving the associated
equations. To do so, we relied on eliminator relations representing the graph of
the eliminator functions, and a proof of left-totality of these relations.

The plan for this chapter is to replicate the same steps for arbitrary IIT specifi-
cations, in the setting of the target theory. We first generalize eliminator relations
(Section 12.1), by defining a notion of relation algebra indexed over regular and
displayed IIT algebras. We then identify the subset of all relation algebras that
are useful for the purpose of constructing IIT eliminators: these will turn out
to be those algebras equipped with certain inversion principles. Finally, we ar-
gue that relation algebras with the necessary inversions always exist under certain
conditions (Section 12.1.3), and are left-total (Section 12.2.) We use these relation
algebras and their left-totality property to define eliminators for any suitable IIT
Σ-algebra (Section 12.3).

161

162 CHAPTER 12. DEFINING THE IIT ELIMINATORS

12.1 Eliminator relations

This section generalizes the eliminator relations seen in previous examples, by re-
framing them as algebras with suitable inversion properties. We begin by defining
relation algebras by induction on the QIIT of specifications.

12.1.1 Relation algebras

To understand the structure of relation algebras, we take the usual look at a couple
of examples, both from the point of view of the metatheory as well as the target
theory.

Example 12.1.1 (metatheory). Recall the definition of eliminator relations from
Section 8.1. Given Con/Ty and displayed algebra (ConD,TyD, •D, BD , ιD, π̂D, π̄D)
over it, we specified the eliminator relations with the following list of types and
constructors:

ConR : (Γ : Con)→ ConD Γ→ Type

TyR : (ΓD : ConD Γ)(A : Ty Γ)→ TyD Γ A ΓD → Type

•R : ConR • •D

.R : ConR Γ ΓD → TyR ΓD A AD → ConR (Γ . A) (ΓD .D AD)

ιR : ConR Γ ΓD → TyR ΓD (ι Γ) (ιD ΓD)

π̄R : ConR Γ ΓD → TyR ΓD A AD → TyR (ΓD .D AD) B BD

→ TyR ΓD (π Γ A B) (πD ΓD AD BD)

π̂R : ConR Γ ΓD → ((n : N)→ TyR ΓD (F n) (FD n))

→ TyR ΓD (π̂ Γ F) (π̂D ΓD FD)

If we take (Con,Ty, •, . , ι, π̂, π̄) to be an arbitrary algebra, then the list of
terms above is a specification of (metalevel) algebras of the eliminator relations
induced by Con/Ty. �

Example 12.1.2 (target theory). Given a Con/Ty IIT algebra ((C, T), θ) : Alg Θ
and displayed algebra ((CD, TD), θD) : AlgD Θ ((C, T), θ), where θ ≡ (•, ., ι, π̂, π̄)
and θD ≡ (•D, .D, ιD, π̂D, π̄D), a relation algebra induced by Θ, between ((C, T), θ)
and ((CD, TD), θD), is given by families

CR : (Γ : pCq)→ pCD Γq→ SType

TR : (Γ : pCq)(ΓD : pCD Γq)(A : pT Γq)→ pTD Γ A ΓDq→ SType

12.1. ELIMINATOR RELATIONS 163

and an algebra structure given by the following terms:

•R : pCR • •Dq
.R : pΠ (c : C)(t : T c)(cD : CD c)(tD : TD cD t)

(CR c cD ⇒ TR c cD t tD ⇒ CR (.D · c · t · cD · tD))q

ιR : pΠ(c : C)(cD : CDc)(CR c cD ⇒ TR c cD (ι · c) (ιD · c · cD))q

π̂R : pΠ (c : C) (f : Nat⇒ T c)(cD : CD c)(fD : Π(n : Nat)(TD cD (f · n)))

(CR c cD ⇒ Π(n : Nat)(TR c cD (f · n) (fD · n))⇒
TR c cD (π̂ · c · f) (π̂D · c · f · cD · fD))q

π̄R : pΠ (c : C)(a : T c)(b : T (. · c · a))

(cD : CD c)(aD : TD cD a)(bD : TD (.D · c · a · cD · aD) b)

(CR c cD ⇒ TR c cD a aD ⇒ TR b bD ⇒
TR c cD (π̄ · c · a · b) (π̄D · c · a · b · cD · aD · bD))q

We can see that the structure above is a direct target-level translation of the
metalevel structure shown in Example 12.1.1. �

We now generalize the target-level construction shown in Example 12.1.2 to
arbitrary IIT specifications. We define operators that take a specification, an IIT
algebra, and a displayed algebra, and calculate the constituting components of an
algebra of the corresponding eliminator relation.

The carrier types are easily calculated from the respective carriers of the regular
and displayed algebra:

CaR : (F : Ca)→ CaD F → Type

CaR (C, T)(CD, TD) :≡
((c : pCq)→ pCD cq→ SType)×
((c : pCq)(cD : pCD cq)(t : pT cq)→ pTD c cD tq→ SType)

As displayed in Figure 12.1.2, the structure of operations on these carriers can
be expressed as an iterated product type. We define an operator R that computes
this structure by induction on specifications.

For F : Ca, D : CaD Γ, R : CaR F D, we define

Γ : Spec ` ΓR
R : (γ : ΓA

F)→ ΓD
D γ → Type

164 CHAPTER 12. DEFINING THE IIT ELIMINATORS

C : Ctor Γ ` CR
R : (c : pCA

F γq)→ pCD
D γD cq→ SType

∆ : Params Γ ` ∆R : (δ : p∆A
F γq)→ p∆D

D γD δq→ SType

T : Ty Γ ∆ ` TR : (x : pTA
F γ δq)→ pTD

D γD δD xq→ SType

We also lift the action of weakenings/substitutions and (constructor) terms to
algebras, thus defining the following operators:

w : Wk Γ Ω ` wR
R : ΓR

R γ γ
D → ΩR

R (wA
F γ)(wD

D γD)

σ : Sub {Γ} ∆ ∇ ` σR
R : ΓR

R γ γ
D → p∆R

R δ δ
Dq→ p∇R

R (σA
F δ)(σ

D
D δD)q

t : Tm Γ ∆ T ` tRR : ΓR
R γ γ

D → p∆R
R δ δ

Dq→ pTR
R (tAF γ δ)(t

D
D γD δD)q

c : CTm Γ C ` cRR : ΓR
R γ γ

D → pCR
R (cAF γ) (cDD γD)q

The full definition of these algebra operators can be found in Figure 12.1.
Similarly to Lemma 11.2.1, we can show that there is a more direct way to

construct relation algebras by quantifying over constructor terms, rather than by
induction on the specification.

Lemma 12.1.1. For any Γ, R, γ, γD, we have the following map:

[∀ {C} (c : CTm Γ C)→ pCR
R (cA γ) (cD γD)q] → ΓR

R γ γ
D

�

Proof. By induction on Γ.

The action of constructor term algebra operators on structures obtained via
this mapping is the same as the function used to construct the structure:

Lemma 12.1.2. Let Γ, R, γ, γD, and

f : ∀ {C : Ctor Γ} (c : CTm Γ C)→ pCR
R (cA γ) (cD γD)q

If γR : ΓR
R γ γ

D is obtained from f as per Lemma 12.1.1, then cR γR = f c. �

Proof. By induction on c.

Example 12.1.3. To check our work, we can verify that the expression ΘR θ θD (CR, TR)
computes to the structure shown in Example 12.1.2. �

Definition 12.1.1. Given a specification Γ : Spec, and algebras (F, γ) : Alg Γ and
(D, γD) : AlgD Γ (F, γ), a relation algebra AlgR Γ (F, γ) (D, γD) is a pair of types
R : CaR F D and a term γR : ΓR

R γ γ
D. �

12.1. ELIMINATOR RELATIONS 165

�RR :≡ 1

(Γ B C)RR (γ, c) (γD, cD) :≡ ΓR
R γ γ

D × pCR
R c c

Dq

(ctor ∆ T)RR {γ γD} c cD :≡
Π (δ : ∆A

F γ) Π (δD : ∆D
D γD δ)

(∆R δ δD ⇒ TR (c · δ) (c · δ · δD))

•R δ δD :≡ 1

(∆ .. T)R 〈δD, xD〉 :≡ ∆R δD × TR xD

(∆[w])R {γD} :≡ ∆R {wD γD}

(ext A)R a aD :≡ 1

(π A B)R f fD :≡ Π(x : A)(BR (f · x) (fD · x))

(T [σ])R {δD} :≡ TR {σD δD}
(T [w])R {γD} :≡ TR {wD γD}
(T1)RR x x

D :≡ π1 R x xD

(T2 t)RR {γ γD δ δD} x xD :≡
π2 R (tA γ δ)(tD γD δD) x xD

idR γR :≡ γR

dropR γR :≡ π1 γ
R

(w1 ◦ w2)R γR :≡ w2
R (w1

R γR)

idR γR δR :≡ δR

dropR γR δR :≡ fst δR

(ext σ t)R γR δR :≡
〈σR γR δR, tR γR δR〉

(σ ◦ τ)R γR δR :≡ τR γR (σR γR δR)

(σ[w])R γR δR :≡ σR (wR γR) δR

vzR γR δR :≡ snd δR

(vs t)R γR δR :≡ tR γR (fst δR)

(ext A x)R γR δR :≡ ∗
(capp c σ)R γR δR :≡

cR γR · · · σR γR δR

(ap t)R {p} γR δR :≡
tR γR (fst δR) · snd δ

(lm t)R γR δR :≡ λx.tR γR 〈δR, ∗〉
(t[σ])R γR δR :≡ tR γR (σR γR δR)

(t[w])R γR δR :≡ tR (wR γR) δR

cvzR γR :≡ π2 γ
R

(cvs c)R γR :≡ cR (π1 γ
R)

(c[w])R γR :≡ cR (wR γR)

Figure 12.1: Relation algebra operators

12.1.2 Inversion principles

Relation algebras will be instrumental in defining eliminators for the IITs obtained
via Σ-construction. However, not all relation algebras are suitable for this purpose.
This was already hinted at in Section 8.1, where we required the eliminator rela-
tions for the Con/Ty IIT to support certain inversion principles. Predicate types
and predicate algebras are subject to similar conditions, as already discussed in
Section 11.2.2.

The required inversions on relation algebras are a direct generalization of those

166 CHAPTER 12. DEFINING THE IIT ELIMINATORS

seen in the example of Section 8.1. These are of two kinds: one showing that
relatedness of a compound implies relatedness of the components, and the another
establishing an equational constraint on the displayed algebra indices.

Definition 12.1.2. Given a specification Γ : Spec, and algebras (F, γ) : Alg Γ
and (D, γD) : AlgD Γ (F, γ), a relation algebra (R, γR) : AlgR Γ (F, γ) (D, γD)
supports IIT-inversions if there exist functions of the following types, where we
name (A,B) :≡ F, (AD, BD) :≡ D, (AR, BR) :≡ R:

rel-inv : (c : CTm Γ (ctor ∆ T1))(δ : p∆A
F γq){aD : pAD (cAF γ · δ)q}

→ pAR (cAF γ · δ) aDq → pΣ (δD : ∆D
D γD δ)(∆R

R δ δ
D)q

rel-ix-inv : (c : CTm Γ (ctor ∆ T1))(δ : p∆A
F γq){aD : pAD (cAF γ · δ)q}

(r : pAR (cAF γ · δ) aDq) → paD ≈ cDD γD · δ · fst (rel-inv c δ r)q

such that rel-inv is well-behaved on constructor terms, that is, for any c, δ, δD, δR,

rel-inv c δ (cRR γ
R · δ · δD · δR) = 〈δD, δR〉 �

In other words, a consequence of rel-inv is that for any proof of the relation
AR (cAF γ · δ) aD involving a element of A originating from a constructor c applied
to some arguments δ, we obtain that the arguments δ are also related to some
displayed counterparts δD, i.e. we have ∆R

R δ δ
D. Moreover, by rel-ix-inv we know

the related element aD must also arise from the same constructor, applied to the
displayed arguments δD calculated by rel-inv.

Note that these inversion principles only pertain to constructors targeting the
first of the two possible sorts of the specified IIT. Although it is possible to state
similar inversions for constructors targeting the second sort, those are not needed
for our developments.

12.1.3 Existence of the relations

In this section we show that the type AlgR Γ γ γD is inhabited for any Γ, γ, γD,
whenever γ is a Σ-algebra obtained from a section inductive erased algebra. More-
over, we show that the witnessing algebra has inversions as per Definition 12.1.2.

The proof uses section induction on the erased algebra to define the relations by
recursion/large elimination. This construction generalizes what previously demon-
strated in Section 8.1.1 to arbitrary specifications.

Let us fix a specification Ω : Spec, an assume an inductive erased algebra
(F0, ω0) : Alg0 Ω and a predicate algebra (F1, ω1) : Alg1 Ω (F0, ω0) with inversions.
We thus have a Σ-algebra (F, ω) : Alg Ω.

12.1. ELIMINATOR RELATIONS 167

Suppose we are given a displayed algebra (FD, ωD) : AlgD Ω ω. We want to
define a relation algebra (R,ωR) : AlgR Ω ω ωD, and subsequently show that it
enjoys the necessary inversion principles. The first step is to define two auxiliary
functions by induction on the erased algebra. Recall Section 8.1.1, where such
functions had the following signature:

ConRrec : (Γ0 : Con0)(Γ1 : Con1)→ ConD (Γ0,Γ1)→ Type

TyRrec : (A0 : Ty0)(A1 : Ty1 (π1 Γ) A0)(ΓD : ConD Γ)→ TyD ΓD (A0, A1)→ Type

We want to define equivalent target-level functions relative to (F0, ω0) and (F1, ω1).
These should have the following signature, where (A1, B1) :≡ F1, (AD, BD) :≡ FD,
and (A,B) :≡ F :

ARrec : (a0 : pA0q)(a1 : pA1q)→ pAD 〈a0, a1〉q→ SType

BR
rec : (a : pAq)(b0 : pB0q)(b1 : pB1 (fst a) b0q)(a

D : pAD aq)

→ pBD aD 〈b0, b1〉q→ SType

We can express the types of these functions as displayed erased carriers Rrec

over F0:

Rrec : CaD0 F0

Rrec :≡
(λa0.Π(a1 : A1 a0)(AD 〈a0, a1〉⇒ U)

, λb0.Π(a : A)Π(b1 : B1 (fst a) b0)Π(aD : AD a)(BD a aD 〈b0, b1〉⇒ U))

so that defining ARrec and BR
rec is equivalent to defining a structure f0 : Map0 F0 Rrec.

We construct such f0 by induction on the erased types A0, B0. That is, we define a
term ωD0 so that the pair (Rrec, ω

D
0) : AlgD0 Ω (F0, ω0) is a displayed erased algebra

providing the motives and methods of the induction. We then take f0 to be the
induced section map.

Expanding the type ΩED
Rrec

ω0 of our goal ωD0 , we get

ωD0 : ∀{C}(c : CTm Ω C)→ pCED
Rrec

(cEF0
ω0)q

The constructor C is of the form C ≡ ctor ∆ B for some ∆, B. We proceed by
case analysis on B. Both cases are a straightforward generalization of the concrete
example shown in Section 8.1.1. Recall the definition of ConRrec on .0:

168 CHAPTER 12. DEFINING THE IIT ELIMINATORS

ConRrec (Γ0 .0 A0) p xD :≡
(ΓD : ConD (Γ0,Γ1))× (AD : TyD ΓD (A0, A1))×
ConRrec Γ0 Γ1 ΓD × TyRrec A0 A1 ΓD AD×
xD = ΓD .D AD

where Γ1 :≡ inv-.-Con p and A1 :≡ inv-.-Ty p are obtained by inversion. For
each argument Γ0, A0 of the constructor we required a corresponding displayed
term ΓD0 , A

D
0 and a proof of relatedness, as well as an equation stating that the

displayed index is obtained from these components via the displayed equivalent of
the . constructor. The first case of ωD0 is analogous:

ωD0 (ctor ∆ T1) c :≡ λ δ0 .λ δ
D
0 .λ a1 .λ a

D . ?

We are given a constructor term c : CTm Ω (ctor ∆ T1) and arguments δ0,
as well as an algebra δD0 encapsulating terms of the inductive hypothesis for all
arguments in δ0. The goal is to construct a small type, that should correspond to
ARrec (cE ω0 · δ0) a1 a

D. By inversion on a1 we obtain δ1 : ∆W ω0 δ0, so the goal can
essentially be rephrased as defining the relation between cAF ω · δ and aD, where
δ :≡ 〈δ0, δ1〉. Following ConRrec, the result expression should be a dependent product
of three components: (1) a tuple δD of displayed algebras for each parameter of
c, (2) an iterated product eliminator relations obtained by inductive hypothesis
and applied pair-wise to δ and δD, and (3) an equation stating that aD arises as a
constructor term algebra of c from δ and δD.

We represent the tuple of displayed algebras as a single parameter algebra
δD : ∆D

D ωD δ, and state the constraint on aD as an equation with the displayed
constructor term algebra:

ωD0 (ctor ∆ T1) c :≡ λ δ0 .λ δ
D
0 .λ a1 .λ a

D .

Σ (δD : ∆D
D ωD δ)(? × aD ≈ cDD ωD · δ · δD)

We are left to state the proofs of relatedness, one for each type in ∆. The in-
ductive hypotheses are already provided via the algebra δD0 , which can be thought
of as a list of relations constructed by inductive-hypothesis, and already partially
applied to a component of the list δ. We rely on an auxiliary inductive hypotheses
operator ih, which function is similar to the homonymous operator defined in Sec-
tion 11.2.3. This operator takes a list δD0 of partially-applied inductive hypotheses,
i.e. type families, and applies each of them to the corresponding arguments in δD.
The result of this operation is a small type: the iterated product of all these type
families applied to their corresponding argument in δD.

12.1. ELIMINATOR RELATIONS 169

(T1)ihw x
D xD0 :≡ xD0 · · xD

(T2 t)ihw {∆ δ δD x} xD xD0 :≡ xD0 · (tA (wA ω) δ) · sndx · (tD (wD γD) δD) · xD

(ext A)ihw a
D aD0 :≡ 1

(π A B)ihw f
D fD0 :≡ Π (a : A) (Bih

w (fD · a) (fD0 · a))

(A[σ])ihw :≡ Aih
w

(A[w2])ihw1
:≡ Aih

(w1 ◦ w2)

•ihw δD δD0 :≡ 1

(∆ .. A)ihw 〈δD, aD〉 〈δD0 , aD0 〉 :≡ ∆ih
w δ

D δD0 × Aih
w a

D aD0

(∆[w2])ihw1
:≡ ∆ih

(w1 ◦ w2)

Figure 12.2: Inductive hypotheses operators for eliminator relations

∆ : Params Γ ` ∆ih
w : p∆D(wD ωD) δq→ p∆ED δ0q→ SType

A : Ty Γ ∆ ` Aih
w : pAD (wD ωD) δD aq→ pAED a0q→ SType

We define ih on parameter and type specifications by mutual induction (Fig-
ure 12.2.) Note that we parameterize each of them by a weakening w : Wk Ω Γ,
for variable Γ, which we omit mentioning when the identity. Moreover, we rely on
Lemma 11.3.4.2 to typecheck sndx as an argument of xD0 in the (T2 t)ihw clause.

We finally conclude the first clause of ωD0 :

ωD0 (ctor ∆ T1) c :≡ λ δ0 .λ δ
D
0 .λ a1 .λ a

D .

Σ (δD : ∆D
D ωD δ)(∆ih δD δD0 × aD ≈ cDD ωD · · δD)

To understand the second case of ωD0 , recall how we defined TyRrec on the con-
structor ι0:

TyRrec (ι0 Γ0) p :≡ transp (T (ι0 Γ0)) (sym (inv-ι1 p)) h p

where

h : T (ι0 Γ0) Γ0

170 CHAPTER 12. DEFINING THE IIT ELIMINATORS

ωD0 (ctor ∆ T1) c :≡
λ δ0 .λ δ

D
0 .λ a1 .λ a

D .

let δ :≡ 〈δ0, pred-inv c δ0 a1〉
in Σ (δD : ∆D

D ωD δ)

(∆ih δD δD0

× Id aD (cDD ωD · δ · δD))

T : pB0q→ pA0q→ Type

T b0 a0 :≡
Π(a1 : A1 a0) Π(b1 : B1 a0 b0)

Π(aD : AD 〈a0, a1〉)
(BD aD 〈b0, b1〉⇒ U)

ωD0 (ctor ∆ (T2 t)) c :≡ λ δ0 .λ δ
D
0 .λa .λb1 .

let

e :≡ pred-ix-inv c δ0 (fst a) b1

h : T (cE ω0 · δ0) (tE ω δ0)

h :≡ λ a1 .λ b1 .λ a
D .λ bD .

let δ1 :≡ pred-inv c δ0 b1

in Σ (δD : ∆D ωD 〈δ0, δ1〉)
(∆ih δD δD0 ×

Σ (q : Id aD (tD ωD δD))

(Id (Transp (λz.ElU (BD z))

q bD)

(cD ωD · · δD)))

in Transp (T) (Sym e) h · snd a · b1

Figure 12.3: Erased displayed algebra for recursively-defined eliminator relations

h Γ1 p x
D yD :≡ (ΓD : ConD (Γ0,Γ1))× ConRrec Γ0 Γ1 ΓD×

(q : ΓD = xD)× ιD ΓD
q

= yD

where T A0 Γ0 :≡ ∀Γ1A1 (ΓD : ConD (Γ0,Γ1)) → TyD ΓD (A0, A1) → Type. The
main difference with ConRrec was that we needed to transport along the equational
constraint obtained from the well-formedness predicate in order to be able to type-
check what is otherwise just like one of the ConRrec cases.

The corresponding case for ωD0 (ctor ∆ (T2 t)) follows the same structure.

ωD0 (ctor ∆ (T2 t)) c :≡ λ δ0 .λ δ
D
0 .λa .λb1 .λ a

D .λ bD . ?

The goal is again a small type in U , this time corresponding to

BR
rec a (cE ω0 δ0) b1 a

D bD

Before defining this, we want to expose the fact that a arises from term algebras
of t. By inversion on b1 and proof-irrelevance, we obtain fst a ≈ tE ω0 δ0 and
transport over it.

ωD0 (ctor ∆ (T2 t)) c :≡ λ δ0 .λ δ
D
0 .λa .λb1 .

let h : T (cE ω0 · δ0) (tE ω δ0)

12.1. ELIMINATOR RELATIONS 171

h :≡ λ a1 .λ b1 .λ a
D .λ bD . ?

in Transp (T) (Sym (pred-ix-inv c δ0 (fst a) b1)) h · snd a · b1

The rest of the type expression is like the the first clause of ωD0 , with an
additional equational constraint on bD. We give the full, precise definition of ωD0
in Figure 12.3.

Because (F0, ω0) is an inductive algebra, we obtain functions f0 : Map0 F0 Rrec

and section structure s0 : ΩES
f0
ω0 ω

D
0 . We easily define the auxiliary relations, as

well as a pair R : CaR (A,B) FD.

ARrec :≡ λa0 a1 a
D.π1 f0 · a0 · a1 · aD

BR
rec :≡ λa aD b0 b1 b

D.π2 f0 · b0 · a · b1 · aD · bD

π1 R :≡ λa aD . ARrec (fst a) (snd a) aD

π2 R :≡ λa aD b bD . BR
rec a a

D (fst b) (snd b) bD

We now show that the relations R just defined constitute a relation algebra.
We begin with some equational lemmas relating the auxiliary inductive hypotheses
operators to the section we just defined.

Lemma 12.1.3. For all Γ : Spec, w : Wk Ω Γ,∆ : Params Γ, and algebras δ :
p∆A (wA ω)q, δD : p∆D (wD ωD) δq, the following hold

1. ∆ih
w δ

D (∆ES
f0
δ0) = ∆R

R δ δ
D

2. T ih
w xD (T ES

f0
x0) = TR

R x xD, for T : Ty Γ ∆, x : pTA δq , xD : pTD δD xq

�

Proof. Both points proved by mutual induction on ∆, T respectively.

Showing that R is a relation algebra amounts to constructing a term ωR of type
ΩR

R ω ω
D. We apply Lemma 12.1.1 and reduce this to

ωR : ∀{C}(c : CTm Ω C)→ pCR
R (cA ω) (cD ωD)q

Assuming C ≡ ctor ∆ B, we proceed by case analysis on B.

1. Case B ≡ T1. The goal is a function from δ : p∆A ωq, δD : p∆D ωD δq, δR :
p∆R

R δ δ
Dq, to

pARrec (cE ω0 · δ0)(cW ω1 · δ0 · δ1)(cD ωD · δ · δD)q

172 CHAPTER 12. DEFINING THE IIT ELIMINATORS

By Lemma 11.1.2, we turn this into

pωD0 c · δ0 ·∆ES
f0
δ0 · (cW ω1 · δ0 · δ1) · (cD ωD · δ · δD)q

By Lemma 12.1.3.1, this type reduces to a target-level product type of a
displayed parameter algebra, a relation parameter algebra, and a reflexive
equation, that we solve by 〈δD, 〈δR,Refl 〉〉.

2. Case B ≡ T2 t for some t : Tm Ω ∆ T1. This case is just like the previous,
except we end up with two reflexive equations in the goal type, which we
solve with two uses of Refl.

This concludes the construction of a relation algebra AlgR Ω (F, ω) (D,ωD).
We now finally show that this algebra enjoys IIT-inversion as stated in Defini-
tion 12.1.2.

Lemma 12.1.4. The relation algebra (R, ωR) has IIT-inversions. �

Proof. By applying Lemma 11.1.2 and Lemma 12.1.3 to the involved goal types,
defining the inversions becomes a matter of projecting out the relevant components
from the proof of relatedness itself. In particular:

rel-ix :≡ λc p r . 〈π1 r, π1 (π2 r)〉
rel-ix-inv :≡ λc p r . π2 (π2 r)

We wrap everything up by noting that the IIT specification and algebras used
throughout this section were fixed but completely arbitrary, thus the whole con-
struction can be read as a demonstration of how to define a relation algebra with
inversions given any specification and corresponding pair of an IIT Σ-algebra and
displayed algebra.

Theorem 12.1.1. Given a specification Γ, inductive erased algebra alg0, predicate
algebra alg1 : Alg1 Γ alg0 with IIT-inversions, and a displayed algebra algD :
AlgD Γ alg of the Σ-algebra alg :≡ sigma alg0 alg1, there exists a relation algebra
algR : AlgR Γ alg algD which enjoys IIT-inversions. �

Proof. This whole section provides an extended proof.

Auxiliary algebra operators

Displayed algebras and relation algebras will show up together in most of our devel-
opments from now on. We therefore introduce some abbreviations and notational
conventions aimed at improving the ergonomics when handling these objects.

12.1. ELIMINATOR RELATIONS 173

We introduce families of types L merely standing for pairs of a displayed alge-
bra structure and a relation algebra structure over it. Given F : Ca, D : CaD F,R :
CaR F D,

Γ : Spec ` ΓL
D,R : ΓA

F → Type

∆ : Params Γ ` ∆L
D,R : ΓD

D γ → p∆A
F γq→ SType

T : Ty Γ ∆ ` T L
D,R : (γD : ΓD

D γ)→ p∆D
D γD δq→ pTA

F δq→ SType

C : Ctor Γ ` CL
D,R : ΓD

D γ → pCA
F γq→ SType

All these families are defined as simple pairings.

ΓL
D,R γ :≡ Σ (ΓD

D γ) ΓR
R

∆L
D,R γ

D δ :≡ Σ (∆D
D γD δ)(ΓR

R δ)

AL
D,R γ

D δD a :≡ Σ(AD
D γD δD a)(AR

R a)

CL
D,R γ

D c :≡ Σ(CD
D γD)(CR

R c)

Given δL : p∆L γD δq, we write δD, δR for the first and second projection of δL

respectively. We do the same for algebras of inner types and specification contexts.
We can easily lift the algebra operators induced by weakenings, substitutions,

and (constructor) terms:

c : CTm Γ C ` cL
D,R : (γL : ΓL

D,R γ)→ pCL
D,Rq

σ : Sub ∆ ∇ ` σL
D,R : (γL : ΓL

D,R γ)→ p∆L
D,R (γR) δq

→ p∇L
D,R (γR) (σA δ)q

t : Tm Γ ∆ A ` tLD,R : (γL : ΓL
D,R γ)(δL : p∆L

D,R (γR) δq)

→ pAL
D,R (γR) (δR) (tA δ)q

w : Wk Γ Ω ` wL
D,R : ΓL

D,R γ → ΩL
D,R (wA γ)

cL (γD, γR) :≡ 〈cD γD, cR γR〉
σL γL 〈δD, δR〉 :≡ 〈σD δD, σR γR δR〉
tL γL 〈δD, δR〉 :≡ 〈tD δD, tR γR δR〉
wL γL :≡ wD γD, wR γR

174 CHAPTER 12. DEFINING THE IIT ELIMINATORS

There is an isomorphism

p(∆ .. A)L γD 〈δ, a〉q ∼= pΣ (δL : ∆L γD δ) (AL γD δD a)q

and a map

p(ctor ∆ B)L γD cq→ pΠ (δL : ∆L γD δ)(BL γD (c · δ))q

defined in the obvious way. We will implicitly apply both of them as coercions
throughout the rest of the chapter.

12.2 Left-totality of the relations

Left-totality of the eliminator relations is a crucial component of our reduction
method. As we plan to use the eliminator relations constructed in Section 12.1.3
to encode the IIT eliminators, it follows that we need to first establish their left-
totality. We will do so in the sections that follow.

12.2.1 Specifying left-totality

Let us first figure out how to specify left-totality for target-level eliminator alge-
bras. As a reference, we go back once again to Section 8.1, where we gave proofs of
left-totality of the eliminator relations as terms of the following types, constructed
by mutual induction on the erased types Con0,Ty0.

Con∃ : ∀ Γ0 Γ1 → Σ (ΓD : ConD (Γ0,Γ1))(ConR (Γ0,Γ1) ΓD)

Ty∃ : ∀{Γ ΓD}(A0 : Ty0)(A1 : Ty1 (π1 Γ) A0)→ ConR Γ ΓD

→ Σ(AD : TyD Γ (A0, A1) ΓD)(TyR (A0, A1) ΓD AD)

We can try to replicate these statements as the target-level signatures. Let
us fix some arbitrary collection of erased types, predicates, displayed families and
eliminator relations:

F0 : Ca0, F1 : Ca1 F0, D : CaD F, R : CaR F D

where we name (A0, B0) :≡ F0, (A1, B1) :≡ F1, (A,B) ≡ F :≡ (CaΣ F0 F1),
(AD, BD) :≡ D, (AR, BR) :≡ R. We abbreviate AL a :≡ Σ(aD : AD)(AR a), and
BL a aD b :≡ Σ(bD : BD a aD)(BR a aD b).

To say that AR, BR have the left-totality property is to have two terms of the
following types:

A∃ : pΠ(a : A) (AL a)q

12.2. LEFT-TOTALITY OF THE RELATIONS 175

B∃ : pΠ(a : A) Π(aL : AL a) Π(b : B a)(BL a aD b)q

We can express the types of these functions as displayed erased carriers ExD0
over the erased types F0:

Definition 12.2.1.

ExD0 : CaD0 F0

ExD0 :≡ (λa0.Π(a1 : A1 a0)(AL 〈a0, a1〉)
, λb0.Π(a : A)Π(aL : AL a)Π(b1 : B1 b0)(BL a aD 〈b0, b1〉))

�

Constructing functions A∃, B∃ is then equivalent to constructing some maps
exists0 : Map0 F0 ExD0 :

A∃ :≡ λ〈a0, a1〉 . π1 exists0 · a0 · a1

B∃ :≡ λa .λaL .λ〈b0, b1〉 . π2 exists0 · b0 · a · aL · snd b1

In essence, maps of type Map0 F0 ExD0 take pairs of erased and predicate terms
as inputs, and return pairs of displayed terms and relational proofs as output. A∃

and B∃ express this mapping for each of the two base types respectively. We can
generalize this to all inner types, as well as parameter telescopes, via a simple
recursive traversal of these structures, and an application of A∃, B∃ whenever we
reach a base type. We thus obtain functions mapping pairs of erased and predicate
algebras to pairs of displayed and relation algebras.

We define the following generalized left-totality operators, for any ∆ : Params Γ, T :
Ty Γ ∆:

T ∃ : (δL : p∆L γD δq) (x : pTA γ δq)(xD0 : pT ED x0q)→ pT L γD δD xq

∆∃ : (δ : ∆A γ)(δD0 : p∆ED δ0q)→ p∆L γD δq

where we implicitly quantify over algebra structures of the following types

γ0 : ΓE
F0
, γ1 : ΓW

F1
γ0, γD : ΓD

D γ

where γ :≡ ΓΣ γ0 γ1.
We will mainly use ∆∃ for parameter telescopes ∆. Its action can alternatively

be understood as follows: given a list δ of parameters which types are described
by ∆, and δD0 is a list of “inductive hypotheses”, i.e. a list of left-totality functions
that we are in the process of defining, one for each type in ∆. The action of ∃

is thus to just apply these inductive hypotheses to the parameters δ0 recursively.

176 CHAPTER 12. DEFINING THE IIT ELIMINATORS

(T1)∃ δL x xD0 :≡ xD0 · x1

(T2 t)∃ {γ δ} δL x xD0 :≡
xD0 · tA γ δ · tD γD δD · tR γD δR · x1

(ext)∃ x xD0 :≡ ∗
(π A B)∃ f fD0 :≡
〈λx . fst (hn),λx . snd (hn)〉
where h :≡
λx .B∃ (f0 · x) (f1 · x) (fD0 · x)

T [σ]∃ δL :≡ T ∃ (σL γL δL)

T [w]∃ :≡ T ∃{γL = wL γL}

•∃ :≡ ∗
(∆ .. T)∃ 〈δ, x〉 〈pD0 , xD0 〉 :≡ 〈δL, xL〉

where δL :≡ ∆∃ δ pD0

xL :≡ T ∃ δL x xD0

(∆[w])∃ :≡ ∆∃ {γL = wL γL}

id
⇀
∃ δL :≡ δL

(drop {T} σ)
⇀
∃ 〈δ, x〉 〈δD0 , xD0 〉 pL :≡ 〈δL, xL〉

where δL :≡ σ
⇀
∃ δ δD0 pL

xL :≡ T ∃ x xD0 δL

Figure 12.4: Generalized left-totality operators

This is not unlike the auxiliary operators ih that we defined in Section 11.2.3 and
Section 12.1.3 to apply lists of inductive hypotheses to lists of arguments.

We also define an alternative version of ∆∃ that only acts on a suffix of the
input telescope. This is necessary because sometimes we need to focus on a specific
portion of a constructor’s list of arguments, for reasons that we pointed out at the
very end Section 9.1. We can express that∇ is a sub-telescope of ∆ as the existence
of a weakening substitution w : WkSub ∆ ∇. We thus define the following function
⇀
∃ , again for any Γ and γ0, γ1, γ

D, by induction on w : WkSub ∆ ∇:

w
⇀
∃ : (δ : ∆A γ) (δD0 : p∆ED δ0q)(p

L : p∇L γD (σA γ δ)q)→ p∆L γD δq

Just like ∃,
⇀
∃ is given an erased displayed algebra for the full telescope ∆,

in addition to displayed and relation parameter algebras pL for the prefix sub-
telescope ∇. It thus constructs algebras for the full telescope ∆ by taking the
algebras for the prefix ∇ and extending them with the components of ∆ that
are not in ∇. These extra components are obtained just like in ∆∃, i.e. via an
application of A∃ for each “extra” local type A.

Expanding displayed parameter algebras via ∆
⇀
∃ and then restricting the result

again via σD along the same weakening substitution σ yields the identity:

Lemma 12.2.1. For all w : WkSub ∆ ∇ and parameter algebras δ, δD0 , p
L, we have

that

12.2. LEFT-TOTALITY OF THE RELATIONS 177

σD (w
⇀
∃ δ δD0 pL)D = pD �

Proof. By straightforward induction on w.

We also have two additional lemmas about the interaction between ∃,
⇀
∃ , and

weakening substitutions.

Lemma 12.2.2. Let Γ, γ0, γ1, γ ≡ ΓΣ γ0 γ1, as well as γD0 : ΓED γ0, and w :
WkSub {Γ}∆∇, and parameter algebras δ, δD0 . Then,

∇∃ (σA γ δ) (σED γD0 δD0) = σL γL (∆∃ δ δD0) �

Proof. Straightforward induction on w.

Lemma 12.2.3. Let Γ,∆,∇, σ, w, γ0, γ1, γ
D, γD0 , δ, δ

D
0 like in Lemma 12.2.2. Let

γ :≡ ΓΣ γ0 γ1. Then,

w
⇀
∃ δ δD0 (∇∃ (σA γ δ) (σED γD0 δD0)) = ∆∃ δ0 δ1 δ

D
0 �

Proof. Straightforward induction on w.

12.2.2 Proving left-totality

The take-away from Section 12.2.1 can be summarized as follows: given carriers
F0 : Ca0, F1 : Ca1 F0, D : CaD F,R : CaR F D, where F :≡ CaΣ F0 F1, we can suc-
cinctly state left-totality of the relations R as having a structure f0 : Map0 F0 ExD0 ,
for families ExD0 as given in Definition 12.2.1. If the types F0 are equipped with
a section inductive erased algebra structure, then we can define f0 inductively,
provided we construct a suitable erased displayed algebra giving the methods of
the induction. This section shows how to do so.

Let us fix a linear specification Ω, and assume some arbitrary algebra structures
on the carriers F0, F1, D,R

ω0 : ΩE
F0
, ω1 : ΩW

F1
ω0, ωD : ΩD

D ω, ωR : ΩR
R ω ω

D

where ω ≡: ΩΣ ω0 ω1. We additionally require that ω0 is section inductive and
that ω1, ω

R have IIT-inversions. We define ωL : ΩL ω as ωL :≡ (ωD, ωR).
We want to construct left-totality proofs, that is, a term f0 : Map0 F0 ExD0 ,

by induction on the erased types A0, B0 (where (A0, B0) :≡ F0). This reduces to

178 CHAPTER 12. DEFINING THE IIT ELIMINATORS

defining an erased displayed algebra structure ωD0 : ΩED
ExD0

ω0. Unfolding the types,

we have

ωD0 : ∀{C}(c : CTm Ω C)→ pCED
ExD0

(cEF0
ω0)q

Assuming C ≡ ctor ∆ B, we proceed by cases on B.

• Case B ≡ T1. Then, (ωD0 c) is a target-level function from inputs

δ0 : p∆E
F0
q, δD0 : p∆ED δ0q, a1 : pA1 (cE ω0 · δ0)q

to a result of type AL 〈cE ω0 · δ0, a1〉.
Assuming δ0, δ

D
0 , a1, we define δ1 : p∆W δ0q by inversion on a1, so that

δ :≡ 〈δ0, δ1〉. By proof irrelevance of a1, we can rewrite the goal into AL a,
where a :≡ cA ω δ. Since ∆∃ δ δD0 : p∆L γD δq, we inhabit the goal with
cL ωL · (∆∃ δ δD0).

• Case B ≡ T2 t. By linearity of Ω, we further distinguish two cases:

– Case t ≡ capp c′ σ with σ : Sub ∆ ∇ and w : PWk σ.

The type of (ωD0 c) becomes a function from inputs

δ0 : p∆E
F0
q, δD0 : p∆ED δ0q,

a : pAq, aL : pAL aq,

b1 : pB1 (fst a) (cE ω0 · δ0)q

to a conclusion of type BL a aD 〈cE ω0 · δ0, b1〉
Unlike in the previous case, we now cannot just conclude with an ap-
plication of cL: even assuming we had some suitable δL : ∆L ωD δ, such
term would have the following type

cL ωL · δL : pBL (c′A ω · σA δ) (c′D ωD · · σD δD) (cA ω · δ)q

However, the first two indices a, aD of BL in the current goal type are
just fixed variables, and we have to so some work to prove that they
are in fact equal to c′A ω · σA δ and c′D ωD · · σD δD respectively. We
encountered a similar issue in the example of Section 8.1 when proving
the left-totality property for TyR; and again just like in our previous
example, we fix this issue by transporting the goal type along suitable
equations obtained by inversion on the proof of well-formedness and
relatedness.

12.2. LEFT-TOTALITY OF THE RELATIONS 179

Let us assume δ0, δ
D
0 , a, a

L, b1. By inversion on b1, we get a target-level
proof of the equation fst a ≈ c′E ω0 (σE ω0 δ0).

Transporting along this equation, we get the following updated types
for our assumptions:

b1 : pB1 (c′E ω0 (σE ω0 δ0)) (cE ω0 δ0)q

aL : pAL (c′A ω · (σA δ))q

where δ1 : p∆W δ0q is obtained by inversion on b1, and δ ≡ 〈δ0, δ1〉.
Thus, by proof-irrelevance we get a = c′A ω (σA δ) and 〈cE ω0 · δ0, b1〉 =
cA ω · δ.
By inversion on r, we get parameter algebras qL : p∇L ωD (σA δ)q.

as well as a proof of the equation aD ≈ c′D ωD · · qD.

Transporting once again the goal type along this equation, we get the
following

BL (c′A ω · σA δ) (c′D ωD · · qD) (cA ω · δ)

From w
⇀
∃ δ δD0 qL, we obtain algebras δL : p∆L ωD δq. Moreover, by

Lemma 12.2.1 we have qD = σD ωD δD, hence rewrite to the goal type

BL (c′A ω · σA δ) (c′D ωD · · σD ωD δD) (cA ω · δ)

which we inhabit by cL ωL · δL.

– Case t ≡ vz. This case is handled in the same way as the previous, with
the exception that we don’t need to transport along, or even prove, any
equation involving the displayed index aD.

By the section induction property of (F0, ω0) and the structure ωD0 , it follows
that there exists a pair of terms f0 : Map0 F0 ExD0 with a section structure s0 :
ΩES
f0
ω0 ω

D
0 .

From f0, we obtain proofs A∃, B∃ of left-totality of AR and BR by projecting
out the first and second component respectively.

A∃ :≡ λ〈a0, a1〉 . π1 f0 · a0 · a1

B∃ :≡ λa .λaL .λ〈b0, b1〉 . π2 f0 · b0 · a · aL · snd b1

However, this is not sufficient to convince ourselves that these left-totality
proofs have the intended behaviour, i.e. that they respect the constructors specified
by Ω. More specifically, we want to prove the following two lemmata:

180 CHAPTER 12. DEFINING THE IIT ELIMINATORS

Lemma 12.2.4. For all ∆ : Params Ω, c : CTm Ω (ctor ∆ T1), and parameter
algebra δ,

A∃ · (cA ω · δ) = cL ωL · (∆∃ δ (∆ES
f0
δ0)) �

Proof. From the section structure on f0 and Lemma 11.1.2, we know that

A∃ · (cA ω · δ) ≡ π1 f0 (cE ω0 · δ0) · = ωD0 c · δ0 · (∆ES
f0
δ0) ·

The rest follows immediately by definition of ωD0 .

Lemma 12.2.5. For all ∆ : Params Ω, t : Tm Ω ∆ T1, c : CTm Ω (ctor ∆ (T2 t)),
and parameter algebra δ. Then,

B∃ · (tA ω δ) · (tL ωL δL) · (cA ω · δ) = cL ωL · δL

where δL :≡ ∆∃ δ (∆ES
f0
δ0). �

Proof. By Lemma 11.1.2, the goal equation reduces to

ωD0 c · (∆ES
f0
δ0) · (tA ω δ) · (tL ωL δL) · (cW ω1 · δ0 · δ1) = cL ωL · δL

By linearity of Ω, we distinguish two cases:

• Case t ≡ capp c′ σ where c′ ≡ CTm Ω (ctor ∇ T1), and σ : Sub ∆ ∇ such
that w : PWk σ.

Let

δD0 :≡ ∆ES
f0
δ0, qL :≡ ∆∃ δ δD0 , pL :≡ w

⇀
∃ pD0 (σL ωL qL)

By definition of ωD0 , the goal equation rewrites to

cL ωL · pL = cL ωL · qL

This follows by congruence and pL = qL, which in turn follows from Lemma 12.2.2,
Lemma 12.2.3, and transitivity.

• Case t ≡ vz. By reflexivity.

12.2. LEFT-TOTALITY OF THE RELATIONS 181

The lemmata above establish that A∃ andB∃ respect constructor term algebras,
and their action can be reduced to the action of displayed and relation algebra
operators. We can generalize this result to the generalized existence operators ∃

for parameter telescopes, inner types, and base types. More specifically, we have
the following lemma:

Lemma 12.2.6. Given ∆ : Params Ω and δ : p∆A ωq, let

δD0 :≡ ∆ES
f0
δ0, δL :≡ ∆∃ δ δD0

Then,

1. ∇∃ (σA δ) (σED ωD0 δD0) = σL ωL δL, for σ : Sub ∆ ∇

2. T ∃ δL (tA ω δ) (tED ωD0 δD0) = tL ωL δL, for t : Tm Ω ∆ T

3. T ∃ δL (cA ω · δ) (cED ωD0 · δD0) = cL ωL · δL, for c : CTm Ω (ctor ∆ T) �

Proof. By mutual induction

1. on σ

2. on t

3. on T , as well as appropriate use of Lemma 12.2.4 and Lemma 12.2.5 depend-
ing on the shape of T .

A consequence of Lemma 12.2.6.2 is that we can actually generalize Lemma 12.2.4
to show that A∃ respects any term algebra in addition to just constructor term
algebras.

Lemma 12.2.7. For all Γ : Spec, w : Wk Ω Γ, ∆ : Params Γ, t : Tm Γ ∆ T1, and
parameter algebra δ,

A∃ · (tA γ δ) = tL γL (∆∃ δ (∆ES
f0
δ0))

where γ :≡ wA ω, γL :≡ wL ωL. �

Proof. By Lemma 11.1.2 and Lemma 12.2.6.2.

182 CHAPTER 12. DEFINING THE IIT ELIMINATORS

12.3 Constructing the sections

We finally reach the last step in proving section induction for IIT algebras. We
continue our discussion from the previous Section 12.2, where we demonstrated
how to construct target-level proofs of left-totality for eliminator relations arising
from suitable Σ-algebras. The next step is to use those proof terms to define
eliminator functions, and prove that they indeed constitute a section.

Defining the functions themselves is straightforward, and not unlike the sev-
eral examples we have already seen. Recall the metatheoretic definition of the
eliminators from the Con/Ty IIT from Section 8.1:

elimCon Γ :≡ π1 (Con∃ Γ)

elimTy {Γ} A :≡ π1 (Ty∃ A (π2 (Con∃ Γ)))

Similarly, keeping the target-level carrier types A,B,AD, BD and left-totality
proofs A∃, B∃ from the previous section, we define:

elimA : Π(a : A)(AD a) elimB : Π(a : A)Π(b : B a) (BD (elimA · a) b)

elimA :≡ λa . fst (A∃ · a) elimB :≡ λa .λb . fst(B∃ · a · (A∃ · a) · b)

These terms form a section map f : Map (CaΣ F0 F1) FD as f :≡ (elimA, elimB).
We are now left to show that these functions admit a section structure. We shall
first establish a few lemmas relating erased sections on the left-totality proofs
f0 : Map0 F0 ExD0 as defined in the previous section, as well as IIT sections on the
eliminators f .

Lemma 12.3.1. Let w : Wk Ω Γ for arbitrary Γ, and let
(γ0, γ1, γ, γ

D, γR) :≡ (wE ω0, ..., w
R ωR).

Moreover, assume s : ΓS
f γ γ

D, ∆ : Params Γ, δ : p∆A
F γq, and let δD0 :≡ ∆ES

f0
δ0.

Then

1. (∆∃ δ δD0)D = ∆S
f s δ

2. (T ∃ δL x (T ES
f0
x0))D = T S

f s x, for T : Ty Γ ∆, δL :≡ ∆∃ δ δD0 �

Proof. By mutual induction

1. on ∆

2. on T . When T :≡ T ′[σ] for some T ′, σ, we make use of Lemma 12.2.6
(1) and Lemma 11.1.1. The case T :≡ T1 is immediate by point 1 of this
lemma, which holds by inductive hypothesis. The case T :≡ T2 t for some

12.3. CONSTRUCTING THE SECTIONS 183

t : Tm Γ ∆ T1 is a bit more involved. If we unfold the definitions on both
sides of the equation, we obtain

B∃ · (tA γ δ) · (tL γL δL) · b = B∃ · (tA γ δ) · (A∃ · (tA γ δ)) · b

This reduces to proving A∃ · (tA γ δ) = tL γL δL, which follows immediately
from Lemma 12.2.7.

The remaining cases are straightforward.

Lemma 12.3.2. Let Γ : Spec, w : Wk Ω Γ, and (γ1, γ, γ
D) :≡ (wW ω1, w

A ω,wD ωD).
For all C : Ctor Γ, c : CTm Ω (C[w]) and s : ΓS

f γ γ
D, we have a term of type

CS
f s (CΣ (cE ω0) (cW ω1)) (cD ωD) �

Proof. Assume c, and suppose C ≡ ctor ∆ X for some ∆ : Params Γ, X : Base Γ ∆.
Then, the goal type reduces to asserting that the following holds

XS
f s (cA ω · δ) = cD ωD · δ · (∆S

f s δ)

for all δ : p∆A γq. To show that this is the case, let δD0 :≡ ∆ES
f0

δ0 and

δD :≡ (∆∃ δ δD0)D.
We proceed by case analysis on X.

• Case X ≡ T1. The goal equation and its solution is as follows:

(T1)Sf s (cA ω · δ)
≡
π1 f · (cA ω · δ)

= { s0 c δ0 }
cD ωD · δ · δD

= { Lemma 12.3.1.1 }
cD ωD · δ · (∆S

f s δ)

• Case X :≡ T2 t for some t : Tm Γ ∆ T1. Let

a :≡ tA γ δ, b :≡ cA ω · δ, aL :≡ A∃ · a, δL :≡ ∆∃ δ δD0

Then

(T2 t)Sf s b

184 CHAPTER 12. DEFINING THE IIT ELIMINATORS

= { Lemma 11.1.2 }
(B∃ · a · aL · b)D

= { Lemma 12.2.7 }
(B∃ · a · (tL γL δL) · b)D

= { Lemma 12.2.5 }
cD ωD · δ · δD

= { Lemma 12.3.1.1 }
cD ωD · δ · (∆S

f s δ)

Lemma 12.3.3. For all Γ : Spec and w : Wk Ω Γ, the following holds

ΓS
f (wA ω) (wD ωD) �

Proof. Let us abbreviate (γ0, γ1, γ, γ
D) :≡ (wE ω0, ..., w

D ωD)
We proceed by induction on Γ. The case where Γ ≡ � is trivial.
When Γ ≡ Φ B C for some Φ : Spec, C : Ctor Φ, then the goal unfolds to the

following record:

s : ΦS
f (ΦΣ (π1 γ0) (π1 γ1)) (π1 γ

D)

h : CS
f s (CΣ (π2 γ0) (π2 γ1)) (π2 γ

D)

We obtain s by inductive hypothesis, given the weakening w ◦ drop : Wk Ω Φ,
whereas h follows from Lemma 12.3.2, given again the weakening w ◦ drop, and
constructor term cvz[w] : CTm Ω (C[w ◦ drop]).

Theorem 12.3.1. The pair of eliminators f :≡ (elimA, elimB) is a section, that is,
ΩS
f ω ω

D holds. �

Proof. Direct consequence of Lemma 12.3.3 on the identity weakening.

We finally reached the culmination of this chapter, through which we have de-
fined a pair of eliminator functions (elimA, elimB) for the fixed Σ-algebra ω and
displayed algebra ωD, and showed that these functions constitute a section. The
linear specification and the algebras fixed at the beginning were completely ar-
bitrary, therefore our entire construction can be carried out for any choice of
specification and algebra that fits the necessary requirements.

Theorem 12.3.2. Let Γ : Spec, and inductive erased algebra alg0 : Alg0 Γ and
predicate algebra with inversions alg1 : Alg0 Γ alg0. Then, the Σ-algebra alg :≡
sigma alg0 alg1 is section inductive. �

12.3. CONSTRUCTING THE SECTIONS 185

Proof. Suppose we have a displayed algebra algD : AlgD Γ alg . This whole chapter
provides instructions for constructing a section (f, s) : Sect Γ alg algD.

We conclude the chapter with a proof of the second and last half of the main
theorem of this part of the thesis.

Theorem 12.3.3. For any Γ : Spec, the IIT-algebra defined as per Theorem 11.3.1
is section inductive. �

Proof. The IIT-algebra defined in Theorem 11.3.1 is a Σ-algebra obtained from an
inductive erased algebra (Theorem 11.1.1) and a predicate algebra with inversions
(Theorem 11.2.1). Therefore, Theorem 12.3.2 applies.

186 CHAPTER 12. DEFINING THE IIT ELIMINATORS

Chapter 13

Conclusion of Part III

This part of the thesis has presented a reduction from a subclass of all infinitary
IITs to inductive families. A notable aspect of the encoding is that it does not
rely on function extensionality in the encoding type theory. We have drawn from a
known method to reduce finitary IITs to inductive families [AKKvR19,AKKvR18,
vR19], and adapted it to make it applicable to infinitary IITs in an intensional
setting. The main obstacles to intensionally encoding infinitary types arise from
the proofs of propositionality of the well-formedness predicates, as well as right-
uniqueness of the eliminator relations, both of which appear tricky to establish in
the absence of funext. Our first modest contribution was to point out that fortu-
nately, for a wide class of infinitary IITs, one can in fact make do without proving
those properties at all, as long as the metatheory is extended with a few extra
tools. One such tool is a universe of definitionally proof-irrelevant propositions,
which allows to define well-formedness predicates that are propositional by defini-
tion. As a nice byproduct we get that the IIT eliminators encoded in this fashion
exhibit definitional β-rules.

Of course the work presented here is just the beginning, as we focused on a
proper subclass of all infinitary IITs. In the following sections we want to lay out
possible ways in which to improve and expand upon our work.

This chapter and all the previous ones contain many hints for future work,
which we summarize in Section 13.3. Finally, having made our own contributions
clear, we conclude by presenting some related work, with a focus on discussing the
similarities and differences of our work with the existing literature.

13.1 Beyond linear and infinitary IITs

In this thesis we have considered the problem of encoding linear infinitary IITs
in terms of inductive families. We now briefly touch upon some closely related

187

188 CHAPTER 13. CONCLUSION OF PART III

problems, and in particular consider what our study of linear infinitary IITs can
tell us regarding IITs that are not linear or infinitary.

None of the ideas discussed below have been proved with any degree of rigor,
and are only substantiated by examples and informal reasoning. A proper proof
(or disproof) of these ideas is outside the scope of the thesis.

13.1.1 Finitary IITs

Being tailored specifically to infinitary IITs, one might wonder if our work can tell
us anything new about the problem of reducing finitary types. We believe the an-
swer is positive, since our novel use of definitionally proof-irrelevant propositions
to define well-formedness predicates is universally applicable to both the finitary
and infinitary case. It is immediate to adapt the known reduction method for
finitary IITs (Section 3.2) to employ these tools. If the encoding theory is suffi-
ciently equipped, this then gives a way to encode all finitary IITs with definitional
β-rules for the encoded IIT eliminators. Previous works on the topic do not con-
sider universes of strict propositions, and only consider β-rules up to propositional
equality [AKKvR19,AKKvR18,vR19].

13.1.2 Linearization of non-linear IITs

Any non-linear IIT induces a linear IIT via a process of “linearization” that we
now illustrate. The idea is that any instance of non-linearity can be reframed in
terms of equality types.

Take the IIT A : Type, B : A→ Type, with constructors

• : A

ext : (a : A)→ B a→ A

pair : (a a′ : A)→ A

nonlin : (a : A)→ B (pair a a)

The non-linear constructor nonlin can be equivalently rewritten as

nonlin : (x y : A)→ x = y → B (pair x y)

where we make explicit the use of the identity type to express non-linearity. While
not as syntactically evident, the updated nonlin constructor is still essentially non-
linear, and as such it would fail to be encodable with our method for the reasons
already discussed in Section 9.1. The issue here isn’t with the statement of equal-
ity, but with the fact that the identity type itself, which we take here to be the
standard Martin-Löf identity type inductively generated by reflexivity, is defined
non-linearly.

13.1. BEYOND LINEAR AND INFINITARY IITS 189

We can make A,B linear by extending its definition with two additional types
A∼, B∼ representing an inductive version of equality on A and B respectively.

A : Type

B : Type

A∼ : A→ A→ Type

B∼ : ∀{a a′} → B a→ B a′ → Type

We then keep all the constructors above, except nonlin which we now write as
follows to make use of the newly-introduced equality types replacing the identity
type

lin : (x y : A)→ A∼ x y → B (pair x y)

We also add constructors for A∼ and B∼ that state all the possible ways to
inductively prove equality for A and B:

•∼ : A∼ • •
ext∼ : A∼ a a′ → B∼ b b′ → A∼ (ext a b) (ext a′ b′)

pair∼ : A∼ x x′ → A∼ y y′ → A∼ (pair x y) (pair x′ y′)

lin∼ : A∼ x x′ → B∼ (lin x y p) (lin x′ y′ p′)

The relations A∼, B∼ play the same role of the identity type, but their definition
is linear. As a result, the IIT composed of A,B,A∼, B∼ is now properly linear.
We can prove that A∼, B∼ are equivalence relations, hence we have a term reflA∼ .
We then encode the constructors of the previous IIT, including nonlin:

nonlin : (a : A)→ B (pair a a)

nonlin a :≡ lin a a (reflA∼ a)

We believe that this process of linearization can be applied systematically to
any IIT. The question that naturally arises is then: what kind of relation can we
establish between the original non-linear IIT and its linearized version? In the
finitary case, the inductively-defined equivalence relations are provably equivalent
to the identity type, thus making the two IITs equivalent. This seems to suggest
that the classes of linear and non-linear IIT are, in the finitary case, equivalent.
In the infinitary case, proving the equivalence between the identity type and the
inductively-generated equivalence relations seems to require function extensional-
ity. We therefore conjecture that the two types are equivalent when embedded in
a theory supporting extensional reasoning, like SeTT.

190 CHAPTER 13. CONCLUSION OF PART III

13.2 Formalization

We accompany the mathematical content of this part with a formalization in the
Agda proof assistant. Due to time and technical constraints the formalization is
largely but not fully complete, and partially deviates from the proofs on paper.
We provide it as non-definitive proof of correctness of our work, with the following
caveats:

• In the formalization, we do not explicitly distinguish between the metalevel
and the target level. This was initially done to facilitate exploration and
prototyping, with the idea of later introducing a proper separation. Alas,
formalizing with two levels proved to be more challenging than expected: to
make the formalization process bearable we wanted to embed the target level
so that the model equalities would hold definitionally. To achieve this we
tried two approaches: a shallow embedding similar to [KKK19], and a deep
embedding relying on postulates and rewriting rules. The former approach
achieved good typechecking performance, but turned out to be difficult to
use due to Agda’s somewhat limited facilities for fine-grained control over
goal simplification and unfolding, which led to goal types that were very
difficult to read. The latter approach fared better on goal readability, but
lost on the performance side due to the computational demands of Agda’s
still experimental rewriting facility.

In light of these considerations, we decided to keep working on the first,
“one-level” formalization as the “official” and more extensive version, while
simultaneously developing a more faithful but incomplete “two-level”1 ver-
sion for additional sanity-check. The two-level version uses postulates and
rewriting rules to implement the target level, as this approach seemed to give
better ergonomics overall compared to a proper shallow embedding, despite
the performance issues. Note that the single-level formalization is not free
from performance issues, as it also makes heavy use of rewriting to simulate,
to some extent, equality reflection and alleviate transport hell. The Agda
typechecker was especially put to the test in the construction of the IIT
eliminators, where we had to comment out entire parts of some proofs, de-
spite their apparent correctness, because the rewriting rules would not kick
in as expected.

1We use “two-level” to describe the embedding of the target theory/models within the
metatheory via HOAS, as discussed in Section 9.3. In particular, it is not a reference to the
system of two-level type theory (2LTT) proposed in [ACKS23]. While there may be points of
affinity and potential applications of 2LTT to our case, we have not looked into the matter nearly
enough to comment on it.

13.3. FUTURE WORK 191

We provide both formalizations, with the two-level version essentially cover-
ing most of the material as the other one, with some differences explained
below.

• Due to Agda’s lack of support for QIITs, the formalization of the specifica-
tions datatype Spec relies on postulates to introduce equality constructors.
As a consequence, all constructions involving Spec are an approximation of
the intended ones. In particular, definitions by induction on Spec disregard
the clauses regarding equality constructors, which from Agda’s point of view
do not exist, and must therefore be checked by hand. We expect most of
these clauses to hold by reflexivity, although we have only formally checked
a handful of them.

• The formalized version of Spec contain some auxiliary constructors that are
meant to improve its computational behaviour, and that are not present
in the on-paper definition. For example, we use a dedicated constructor
capp1 : CTm Γ (ctor ∆ T1)→ Sub ∇ ∆→ Tm Γ ∇ T1 for constructor terms
targeting the first base type T1, with an equation capp c σ = capp1 c t. This
is to avoid having to construct terms capp c σ : Tm Γ∇ (T1[σ]) where the
substitution T1[σ] in the type is known to be reducible away.

• We make extensive use of Agda’s rewriting facility to simulate equality re-
flection in the metatheory.

The files can be found in [Ses23], under the directories iit-reduction and
iit-reduction-twolevel. The directory iit-reduction contains the single-level
formalization, and covers all the mathematical material of Part III, with the excep-
tion of the concrete encodings of erased types, predicates, and eliminator relations
from Section 11.1.4, Section 11.2.3, and Section 12.1.3 respectively.

These encodings are instead fully covered by the two-level formalization, which
can be found under iit-reduction-twolevel. The two-level formalization does
not include the construction of the eliminators, however it does include the Σ-
construction.

Both formalizations include a README.agda file pointing to the relevant mod-
ules, with a brief description of their contents.

13.3 Future work

The work described in this part of the thesis offers many opportunities for im-
provement and further investigation. We summarize some of them below:

192 CHAPTER 13. CONCLUSION OF PART III

• We would like to extend our reduction to all linear IITs beyond the notion
of linearity covered by Definition 9.2.1. We could not find a satisfactory way
to formalize linear constructors in full generality, so we contented ourselves
with a limited form. Still, we believe that the encoding method applies to
any linear IIT, and our tests on concrete examples have supported this claim.

• We would like to extend our reduction to IITs with more complex sorts, like
those indexed by external types. We do not expect to have trouble adapting
the reduction method to closed IITs with multiple sorts, given how these
can always be reduced to equivalent two-sorted IITs (Section 3.1). Things
might be more complex, however, when we switch to open IITs and introduce
external indices in their sorts. As we have seen in Section 6.6, not all open
IITs are amenable to be encoded with our method, as some choices of external
types in the sorts can prevent the definition of inversion principles that are
crucial for the encoding. The precise conditions that need to be imposed on
the external indices of reducible IITs is an open question;

• We have conjectured linearity of the constructors to be a sufficient condition
for the applicability of our reduction method, however we do not know if it is
a necessary condition. In other words, we would like to investigate whether
there are classes of infinitary IITs beyond the linear ones that can similarly
be reduced to inductive families, perhaps via a different encoding method;

• Most of the theorems involving the general reduction are given by induction
on the QIIT of specifications Spec. Because of the quotient aspect of it, the
elimination principle of Spec requires to check that related constructors are
mapped to related methods of the elimination. We have not actually verified
that this is the case except for a handful of equations, which hold trivially
by reflexivity. We leave the verification of the rest of them for future work.

• Section induction and initiality for QIIT algebras can be shown to be equiv-
alent in an extensional setting [ACD+18]. While relying on the notion of
section induction in our work, we do not consider initiality nor we relate it
to section induction. We would like to work on this aspect in the future.

• Another point for future work is to fix the issues with the formalization,
which we discussed in Section 13.2. This could mean improve the existing
formalization, or rewrite it with tools that would be better suited for the
project, like a proof-assistant with native support for extensional (setoid)
reasoning and QIITs.

13.4. RELATED WORK 193

13.4 Related work

Although we claim novelty in our contributions, we can find several entries in the
existing literature that tackle similar problems. In this Section we want to point
out related work that is particularly affine to our own, and discuss the similarities
and differences.

Kaposi and Kovács [KK18] propose a type-theoretic syntax to specify higher
inductive-inductive types (HIITs). The specification syntax is expressive, and
allows infinitary (higher) constructors while preventing non-strictly positive ones.
Compared to their syntax of codes, our specification data type Spec bears many
similarities, as well as some important differences, as already extensively discussed
in Section 9.4. Overall, their syntax is much more general and expressive, and is
meant to cover a class of types that is as wide as possible, whereas we have tailored
ours for a specific sub-class. Ultimately, the goals of our works different quite a
bit, as they do not consider any form of reduction from HIITs to simpler forms of
induction.

The reduction method employed in this thesis, based on the definition of erased
types, well-formed predicates, and eliminator relations, is directly inspired by Al-
tenkirch, Kaposi, Kovács, and Von Raumer’s treatment of finitary IITs [AKKvR18,
AKKvR19], as summarized in Von Raumer’s PhD thesis [vR19]. He describes a
general method for reducing (finitary) IITs to inductive families; he gives a syntax
IIT specifications, and defines a notion of algebra of IITs by induction on it; he
also defines a syntax of specifications for general inductive families (IF), as well
as algebras. The Σ-construction is then implemented by defining maps from IIT
specifications to pairs of IF specifications giving the codes of the erased types and
well-formedness predicates respectively. Similarly, he also defines mappings from
IIT specifications to IF specifications for the eliminator relations.

His proofs of the existence of erased and predicate types, as well as eliminator
relations, is more thorough and systematic, as he provides a general specification
syntax for IFs as well as an associated notion of algebra, and then proves that
any specifiable IF exists via a term model. On the other hand we define erased,
predicate, and relation algebras directly by induction on IIT specifications, thus
skipping IF specifications entirely. We then prove the existence of erased types
in an ad-hoc way, by assuming the existence of a few concrete inductive families.
Well-formedness predicates and eliminator relations are then constructed by large
elimination over erased types.

Von Raumer’s proof of a general reduction method stops at the Σ-construction.
He does define a general mapping from IIT codes to IF codes of their corresponding

194 CHAPTER 13. CONCLUSION OF PART III

eliminator relations, however he does not prove functionality of the relations thus
obtained, and therefore does not define the eliminators. On the other hand we
provide a complete proof of left-totality for the eliminator relations we construct,
from which we define the eliminators and prove their β-equalities.

Although the distinction between ambient theory/metatheory and target the-
ory is hinted at in [vR19], our work is more explicit in the distinction between
these two levels. This is a consequence of our requirements, which demand a clear
separation between the meta level of the metatheory, where the theorems and
proofs live and where extensional reasoning is not only allowed but often neces-
sary, and the encoding level of the target theory, where extensionality is strictly
controlled. This clear separation between the two levels is to prevent extensionality
accidentally “leaking” into target-level constructions.

In [KKA19], Kaposi et al. describe a syntax for finitary QIITs. They show
that the existence of the specification datatype, which is itself a QIIT, implies
the existence of all finitary QIITs. The specification syntax is in the by now
familiar type-theoretic style. The class of IITs considered is significantly different
from ours: in addition to only targeting finitary constructors, they also consider
quotients. Note that [KK18] also deals with equality constructors, however it does
not consider reductions/encodings of any kind.

[KKA19] proves a reduction from all finitary QIITs to a single, “universal”
QIIT, however one still needs some form of induction-induction to justify the exis-
tence of such QIIT. On the other hand the kind of reduction showcased in [vR19]
and this thesis seeks to eliminate induction-induction completely, by reducing it
to plain inductive types. This difference is perhaps not surprising, as the presence
of quotients is a non-trivial addition to the already complex induction-induction;
it therefore may not even be possible to completely reduce QIITs to inductive
types/W-types without some primitive form of quotient in the encoding/target
theory.

Bibliography

[ABK+21] Thorsten Altenkirch, Simon Boulier, Ambrus Kaposi, Christian Sat-
tler, and Filippo Sestini. Constructing a universe for the setoid model.
In Stefan Kiefer and Christine Tasson, editors, Foundations of Soft-
ware Science and Computation Structures, pages 1–21, Cham, 2021.
Springer International Publishing.

[ABKT19] Thorsten Altenkirch, Simon Boulier, Ambrus Kaposi, and Nicolas
Tabareau. Setoid type theory—a syntactic translation. In Graham
Hutton, editor, Mathematics of Program Construction, pages 155–
196, Cham, 2019. Springer International Publishing.

[AC19] Andreas Abel and Thierry Coquand. Failure of normalization in im-
predicative type theory with proof-irrelevant propositional equality.
Log. Methods Comput. Sci., 16, 2019.

[ACCL89] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy. Explicit substi-
tutions. In Proceedings of the 17th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’90, page
31–46, New York, NY, USA, 1989. Association for Computing Ma-
chinery.

[ACD+18] Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, Nicolai Kraus,
and Fredrik Nordvall Forsberg. Quotient inductive-inductive types.
In Christel Baier and Ugo Dal Lago, editors, Foundations of Software
Science and Computation Structures, pages 293–310, Cham, 2018.
Springer International Publishing.

[ACKS23] Danil Annenkov, Paolo Capriotti, Nicolai Kraus, and Christian Sat-
tler. Two-level type theory and applications. Mathematical Structures
in Computer Science, page 1–56, 2023.

[AK16] Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory
using quotient inductive types. SIGPLAN Not., 51(1):18–29, January
2016.

195

196 BIBLIOGRAPHY

[AKKvR18] Thorsten Altenkirch, Ambrus Kaposi, András Kovács, and Jakob von
Raumer. Reducing inductive-inductive types to indexed inductive
types. In José Esṕırito Santo and Lúıs Pinto, editors, 24th Interna-
tional Conference on Types for Proofs and Programs, TYPES 2018.
University of Minho, 2018.

[AKKvR19] Thorsten Altenkirch, Ambrus Kaposi, András Kovács, and Jakob von
Raumer. Constructing inductive-inductive types via type erasure.
In Marc Bezem, editor, 25th International Conference on Types for
Proofs and Programs, TYPES 2019. Centre for Advanced Study at
the Norwegian Academy of Science and Letters, 2019.

[All87] Stuart Allen. A Non-Type-Theoretic Semantics For Type-Theoretic
Language. PhD thesis, Cornell University, 1987.

[Alt99] Thorsten Altenkirch. Extensional equality in intensional type the-
ory. In Proceedings of the 14th Annual IEEE Symposium on Logic in
Computer Science, LICS ’99, page 412, USA, 1999. IEEE Computer
Society.

[AMS07] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Obser-
vational equality, now! In PLPV ’07: Proceedings of the 2007 work-
shop on Programming languages meets program verification, pages
57–68, New York, NY, USA, 2007. ACM.

[AR14a] Abhishek Anand and Vincent Rahli. Towards a formally verified proof
assistant. In Gerwin Klein and Ruben Gamboa, editors, Interactive
Theorem Proving, pages 27–44, Cham, 2014. Springer International
Publishing.

[AR14b] Abhishek Anand and Vincent Rahli. Towards a formally verified
proof assistant. Technical report. http://www.nuprl.org/html/

Nuprl2Coq/, 2014.

[BKS21] Rafaël Bocquet, Ambrus Kaposi, and Christian Sattler. Relative in-
duction principles for type theories. https://doi.org/10.48550/

arXiv.2102.11649, 2021.

[Bou18] Simon Boulier. Extending Type Theory with Syntactical Models. PhD
thesis, IMT Atlantique, 2018.

[Cap04] Venanzio Capretta. A polymorphic representation of induction-
recursion. http://www.cs.nott.ac.uk/~pszvc/publications/

induction_recursion.pdf, 2004.

http://www.nuprl.org/html/Nuprl2Coq/
http://www.nuprl.org/html/Nuprl2Coq/
https://doi.org/10.48550/arXiv.2102.11649
https://doi.org/10.48550/arXiv.2102.11649
http://www.cs.nott.ac.uk/~pszvc/publications/induction_recursion.pdf
http://www.cs.nott.ac.uk/~pszvc/publications/induction_recursion.pdf

BIBLIOGRAPHY 197

[Car86] John Cartmell. Generalised algebraic theories and contextual cate-
gories. Annals of Pure and Applied Logic, 32:209–243, 1986.

[Cha09] James Chapman. Type theory should eat itself. Electron. Notes
Theor. Comput. Sci., 228:21–36, jan 2009.

[de 72] N.G de Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the
church-rosser theorem. Indagationes Mathematicae (Proceedings),
75(5):381–392, 1972.

[dMKA+15] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn,
and Jakob von Raumer. The lean theorem prover (system descrip-
tion). In 2015 Conference on Automated Deduction, pages 378–388.
Springer, Cham, July 2015.

[DS99] Peter Dybjer and Anton Setzer. A finite axiomatization of inductive-
recursive definitions. In Jean-Yves Girard, editor, Typed Lambda
Calculi and Applications, pages 129–146, Berlin, Heidelberg, 1999.
Springer Berlin Heidelberg.

[Dyb95] Peter Dybjer. Internal type theory. In International Workshop on
Types for Proofs and Programs, pages 120–134. Springer, 1995.

[Dyb97] Peter Dybjer. Representing inductively defined sets by wellorder-
ings in Martin-Löf’s type theory. Theoretical Computer Science,
176(1):329–335, 1997.

[Dyb03] Peter Dybjer. A general formulation of simultaneous inductive-
recursive definitions in type theory. Journal of Symbolic Logic, 65, 06
2003.

[GCST19] Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas
Tabareau. Definitional proof-irrelevance without K. Proceedings of
the ACM on Programming Languages, pages 1–28, January 2019.

[Hof95] Martin Hofmann. Extensional concepts in intensional type theory.
PhD thesis, University of Edinburgh, 1995.

[Hof96] Martin Hofmann. Conservativity of equality reflection over inten-
sional type theory. In Stefano Berardi and Mario Coppo, editors,
Types for Proofs and Programs, pages 153–164, Berlin, Heidelberg,
1996. Springer Berlin Heidelberg.

198 BIBLIOGRAPHY

[Hof97] Martin Hofmann. Syntax and Semantics of Dependent Types, page
79–130. Publications of the Newton Institute. Cambridge University
Press, 1997.

[HS97] Martin Hofmann and Thomas Streicher. Lifting Grothendieck
universes. https://www2.mathematik.tu-darmstadt.de/

~streicher/NOTES/lift.pdf, 1997.

[HS98] Martin Hofmann and Thomas Streicher. The groupoid interpreta-
tion of type theory. In Twenty-five years of constructive type theory
(Venice, 1995), volume 36 of Oxford Logic Guides, pages 83–111.
Oxford Univ. Press, New York, 1998.

[Hug21] Jasper Hugunin. Why Not W? In Ugo de’Liguoro, Stefano Berardi,
and Thorsten Altenkirch, editors, 26th International Conference on
Types for Proofs and Programs (TYPES 2020), volume 188 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 8:1–8:9,
Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

[Kap19] Ambrus Kaposi. Message to the Agda mailing list. https://lists.
chalmers.se/pipermail/agda/2019/011176.html, 2019.

[KK18] Ambrus Kaposi and András Kovács. A Syntax for Higher Inductive-
Inductive Types. In Hélène Kirchner, editor, 3rd International Con-
ference on Formal Structures for Computation and Deduction (FSCD
2018), volume 108 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 20:1–20:18, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[KKA19] Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Con-
structing quotient inductive-inductive types. Proc. ACM Program.
Lang., 3(POPL), jan 2019.

[KKK19] Ambrus Kaposi, András Kovács, and Nicolai Kraus. Shallow embed-
ding of type theory is morally correct. In Graham Hutton, editor,
Mathematics of Program Construction, pages 329–365, Cham, 2019.
Springer International Publishing.

[KKL20] Ambrus Kaposi, András Kovács, and Ambroise Lafont. For finitary
induction-induction, induction is enough. In Marc Bezem and As-
sia Mahboubi, editors, 25th International Conference on Types for

https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
https://lists.chalmers.se/pipermail/agda/2019/011176.html
https://lists.chalmers.se/pipermail/agda/2019/011176.html

BIBLIOGRAPHY 199

Proofs and Programs (TYPES 2019), volume 175 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 6:1–6:30, Dagstuhl,
Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[KX21] Ambrus Kaposi and Zongpu Xie. Quotient inductive-inductive types
in the setoid model. In 27th International Conference on Types for
Proofs and Programs, TYPES 2021, 2021.

[Lao17] Alexis Laouar. A presheaf model of dependent type theory. Inter-
nal report. https://perso.crans.org/alaouar/rapportm1.pdf,
2016/2017.

[MAG+13] Lorenzo Malatesta, Thorsten Altenkirch, Neil Ghani, Peter Hancock,
and Conor McBride. Small induction recursion, indexed containers
and dependent polynomials are equivalent, 2013. 11th International
Conference on Typed Lambda Calculi and Applications, TLCA 2013.

[Mai09] Maria Emilia Maietti. A minimalist two-level foundation for construc-
tive mathematics. Annals of Pure and Applied Logic, 160(3):319–354,
2009. Computation and Logic in the Real World: CiE 2007.

[Mar75] Per Martin-Löf. An intuitionistic theory of types: Predicative part.
In H.E. Rose and J.C. Shepherdson, editors, Logic Colloquium ’73,
volume 80 of Studies in Logic and the Foundations of Mathematics,
pages 73 – 118. Elsevier, 1975.

[Mar84] Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in
proof theory. Bibliopolis, 1984.

[MS05] Maria Emilia Maietti and Giovanni Sambin. Toward a minimalist
foundation for constructive mathematics. In From Sets and Types
to Topology and Analysis: Towards practicable foundations for con-
structive mathematics. Oxford University Press, 10 2005.

[NF13] Fredrik Nordvall Forsberg. Inductive-inductive definitions. PhD the-
sis, Swansea University, 2013.

[NPS90] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming
in Martin-Lof̈’s Type Theory: An Introduction. Clarendon Press,
USA, 1990.

[Pal98] Erik Palmgren. On universes in type theory. In Twenty Five Years
of Constructive Type Theory. Oxford University Press, 10 1998.

https://perso.crans.org/alaouar/rapportm1.pdf

200 BIBLIOGRAPHY

[PE88] F. Pfenning and C. Elliott. Higher-order abstract syntax. SIGPLAN
Not., 23(7):199–208, jun 1988.

[PM93] Christine Paulin-Mohring. Inductive definitions in the system coq -
rules and properties. In Proceedings of the International Conference
on Typed Lambda Calculi and Applications, TLCA ’93, page 328–345,
Berlin, Heidelberg, 1993. Springer-Verlag.

[SAG19] Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. Cubical syntax
for reflection-free extensional equality. In Herman Geuvers, editor,
Proceedings of the 4th International Conference on Formal Structures
for Computation and Deduction (FSCD 2019), volume 131 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 31:1–31:25.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.

[Ses23] Filippo Sestini. Accompanying agda formalization - permanent repos-
itory. https://doi.org/10.17639/nott.7291, 2023.

[The13] The Univalent Foundations Program. Homotopy Type Theory: Uni-
valent Foundations of Mathematics. https://homotopytypetheory.
org/book, Institute for Advanced Study, 2013.

[vR19] Jakob von Raumer. Higher Inductive Types, Inductive Families, and
Inductive-Inductive Types. PhD thesis, University of Nottingham,
2019.

[vR22] Jakob von Raumer. Lean 4 IITs. https://github.com/javra/iit,
2022.

https://doi.org/10.17639/nott.7291
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://github.com/javra/iit

	I Introduction
	Overview
	Background
	Type Theory
	Identity types
	Strict propositions and h-propositions
	Uniqueness of identity proofs

	Models of Type Theory
	Categories with Families
	Presheaf model of Type Theory
	Models of type theory within presheaves

	Induction-induction
	Reducing multi-sorted IITs
	Reducing finitary induction-induction

	This thesis
	Contributions
	Structure

	II Setoids and extensionality
	The setoid model of type theory
	MLTTProp
	Strict setoid model
	Setoid Type Theory

	The setoid universe
	Design choices
	Inductive-recursive universes
	Inductive-recursive setoid universe
	Inductive-inductive setoid universe
	Inductive setoid universe
	Inductive setoid universe with general eliminators
	Universe induction

	Conclusion of Part II
	Formalization
	Future work
	Related work

	III Inductive-inductive types
	Infinitary induction-induction
	Example: contexts and types
	Recursive predicates and relations

	Example: the setoid universe IIT

	Generalizing the encoding
	Scope of the encoding
	Target inductive-inductive types
	Metatheory and target theory
	Metatheory
	Target theory

	Specifying Inductive-Inductive Types
	Type Theory as a datatype of specifications
	Linear infinitary IITs
	Specifying linearity

	Algebras of IITs
	Algebras
	Morphisms, sections, and induction
	Displayed algebras
	Sections

	Constructing IIT algebras
	Erased types
	Algebras of erased types
	Displayed algebras of erased types
	Sections of erased algebras
	Existence of erased types

	Well-formedness predicates
	Algebras of well-formedness predicates
	Inversion principles
	Existence of predicate types

	IIT -algebra
	-construction
	Existence of IIT algebras

	Defining the IIT eliminators
	Eliminator relations
	Relation algebras
	Inversion principles
	Existence of the relations

	Left-totality of the relations
	Specifying left-totality
	Proving left-totality

	Constructing the sections

	Conclusion of Part III
	Beyond linear and infinitary IITs
	Finitary IITs
	Linearization of non-linear IITs

	Formalization
	Future work
	Related work

