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Abstract

In many engineering situations, the unavoidable occurrence of cracks compromises

the integrity of the structural components and poses a threat to safety. Reliable

identification of cracks is the prerequisite of structural integrity assessment and

enables the accurate prediction of the service lifetime of components. Among

the various technologies developed for non-destructive testing, potential difference

(PD) methods have gained wide acceptance due to the easy implementation and

the ability to provide accurate and continuous detection of cracks. PD meth-

ods rely on the principle that the resistance of a conductor containing a feature

increases as the crack propagates. Depending on the type of operating current,

PD methods are recognised as direct current potential difference (DCPD) and

alternating current potential difference (ACPD). Compared with direct current

distributed on the whole cross-section of the conductor in DCPD, alternating cur-

rent (AC) in ACPD is confined to a narrower layer beneath the conductor surface,

i.e. skin effect. Therefore, ACPD requires a lower excitation current yet is able to

achieve higher sensitivity in detecting cracks especially near conductor surfaces.

Given constant material properties and measurement distances, DC resistance

of a cracked conductor is solely determined by the cross-sectional area of the crack,

i.e. DCPD is only able to identify the cross-sectional area, without offering other

information such as the geometry and depth of crack. In contrast, ACPD results

are determined by multiple factors including the frequency and crack geometry

due to the fact that AC delineates the crack edge (or part of the edge) by taking

advantage of the skin effect. The potential of ACPD methods in identifying cracks

by utilising the skin effect, especially different cracks with the same cross-sectional

area (beyond the capability of DCPD), has been investigated. In this work, swept

frequency AC was supplied in experiments to obtain abundant ACPD results in a

wide frequency range. The overall behaviour of ACPD results with swept frequen-

cies were used to identify cracks. The primary aim was to validate and comprehend

the capability of the swept ACPD method in detecting and distinguishing, firstly

the shapes of the conductors with the same cross-sectional area (no crack-like fea-

ture), and secondly cracks/features with different opening geometries (i.e. widths)

on the external surfaces and depths inside the conductors.

The first part of the investigation were focused on four samples made of non-

magnetic material with the same gauge dimension and of different cross-sectional

shapes. In the second part, five different features were manufactured at uniform
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locations of five samples made of ferromagnetic material and with the same dimen-

sion to simulate cracks. AC and PD signals were input and measured from uniform

positions on all the samples. Measured signals in the time interval were then con-

verted to results in the frequency domain by the use of a MATLAB script. The

detection capability of the ACPD method was investigated upon the performance

of two types of processed results in the frequency range: PD measured from the

uniform positions and internal impedance further calculated from processed re-

sults of AC and PD. Experimental methodology, particularly the reliability of the

data processing, were validated by conducting several preliminary experiments.

Furthermore, the electromagnetic models of the ACPD samples have been ap-

proximated by a theoretical methodology involving several established theories

and the numerical methodology of finite element analysis (FEA) via ANSYS. Sev-

eral theoretical frameworks based on distinct principles were used to calculate

internal impedance of the non-magnetic samples of various cross-sectional shapes.

Finite element (FE) models were created to simulate the current distributions on

the four cross-sectional shapes and around the five features. Internal impedance

of the four non-magnetic samples approximated by FE models were compared

with theoretical solutions to assess the reliability of the theories and evaluate the

precision of FEA. Subsequently, FEA was used to approximate PDs from the uni-

form measurement path to compare with experimental results, and hence analyse

the detection capability of the ACPD method. Moreover, FEA was applied to

measure PDs from paths in the vicinity of the measurement path to provide error

bars covering possibly measurement uncertainties in experiments. Eventually, the

approximated current distributions (and electric fields) were employed to compre-

hend and elucidate the conclusions obtained from the experiments and FEA.

The swept ACPD method has been demonstrated by FEA to have the capabil-

ity to distinguish between different cross-sectional shapes of non-magnetic conduc-

tors with the same cross-sectional area. The capability is attributed to the current

crowding which refers to the current localisation around edges of conductors with

polygonal cross-sections. The current crowding is apparent on the surfaces of

non-magnetic conductors and shows an increasing intensity as the cross-sectional

shape varying from circular to triangular. For the non-magnetic (SS316) samples

with the same gauge size of 55 mm × 100 mm2, PDs measured from the uniform

positions on FE models of circular and triangular cross-sectional shapes reach 0.22

mV and 0.39 mV at 300 kHz (i.e. difference of 77%), respectively. However, this

finding is only supported by FEA but has not been observed in experiments due

to measurement uncertainties. This motivates the use of ferromagnetic conductors

in feature detection experiments to reduce the effect of current crowding on sur-

face measurements, i.e. the impact of measurement uncertainties on experimental

results. Experimental results measured from the featured ferromagnetic samples

show distinct differences between different features, which agrees well with FEA

results. For example, PDs measured from the uniform positions on ferromagnetic
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(EN1A) samples across three features, which have the same cross-sectional area of

9 mm2 and various opening widths of 0.11, 0.21, and 0.42 to the sample size, reach

0.47, 0.72, and 1.08 mV at 50 kHz, respectively. This is due to the varying distur-

bances of different opening widths of features on the current distribution (or skin

effect) around the features. Narrow openings lead to shallow current distributions,

while wide openings result in deep penetration of current.

The present work has demonstrated the potential of the ACPD method in iden-

tifying surface features within ferromagnetic materials, which relies on the impact

of the feature opening widths on the resulting current distributions. Future work

may look to quantify the capability/limitation of the detection capability, for ex-

ample, by constructing a current attenuation equation relating the current density

along the feature depths to parameters of feature openings including dimensions,

shapes, and positions. This may be used to determine the maximum detection

depth of the ACPD method in identifying cracks/features with certain openings.

Any situations within the detection region, e.g. unexpected propagating profiles

and shorter depths (shorter than the maximum detection depths), may be detected

by contrasting measured PDs with results predicted by the current attenuation

equitation.
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Chapter 1

Introduction

1.1 Background

Technology in several industries, notably power generation, aerospace, and energy

storage, is rapidly evolving in response to various societal pressures. Underpinning

these developments is a fundamental requirement to understand various aspects

of engineering science. Improving the prediction of material failure is critical if

component effectiveness is to be maximised and the development of novel testing

techniques and component assessment/design procedures is therefore vital if tech-

nologies are to remain viable and competitive in the marketplace. In short, there

continues to be a necessity for a greater understanding of how components behave

and fail in service, in order to achieve the optimal design, and higher mechanical

demand on the materials from which they are made (e.g. strength maintenance

at increased temperatures), for greater efficiency. There is much technical work to

do in order to ensure that these services continue to be available in a sustainable

and environmentally and financially viable manner into the future.

Concepts and methodologies, such as fracture mechanics [1], are well estab-

lished in the lifing of components containing cracks propagating due to loading

conditions such as creep, mechanical fatigue, thermal fatigue, corrosion fatigue,

erosion damage, etc. Values of stress intensity factors can be used to determine

when a crack of known geometry will become critical and cause failure of the com-

ponent in which it resides. However, as stated, this requires the geometry, which

may be developing and coarsely approximated in calculations, to be known. The

determination of crack geometry is a complicated task and due to limitations in

current capabilities, measurements/predictions are usually associated with con-

siderable levels of uncertainty. As a result, if a component is predicted to be ser-

viceable for a life, it is not inconceivable that a 50% safety factor will be applied

to this, in order to compensate for the uncertainty. The capability of accurate,

in-situ, non-destructive determination of crack geometry is therefore an impor-

tant challenge faced by engineers today and is the subject of significant ongoing

research activity [2–21].
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Non-destructive testing (NDT) is widely performed to detect and size cracks

(e.g. without visual access) and assess the remaining service lifetime of structural

components without causing additional damage to the components. One of the

most favoured techniques developed for NDT are the potential difference (PD)

methods, which are divided into alternating current potential difference (ACPD)

and direct current potential difference (DCPD) based on the current injected. For

decades, ACPD has been widely accepted to detect crack initiation and moni-

tor crack growth due to the advantages of giving continuous measurements and

providing the high sensitivity resulting from the skin effect.

1.2 Objectives

The primary aim of the present work was to investigate the capability of the

swept frequency ACPD method in detecting the shapes of plain conductors and

identifying the features of various geometries and depths. It was achieved by

several objectives:

� The application of swept ACPD experiments on various conductors, includ-

ing the plain and featured samples, by utilising the experimental system

developed by Buss et al [2] to inject alternating current (AC) with rapidly

varying frequency and measure signals in a wide range of swept frequencies.

� The data processing of experimental signals, converting signals in a time in-

terval into individual periods of signals in the frequency domain. Processed

results such as PD and impedance will be presented against the swept fre-

quencies to visually demonstrate the differences in ACPD results between

the samples.

� The verification of the ACPD experiments by comparing processed results

with theoretical solutions obtained from established theories and numerical

approximations based on finite element analysis (FEA).

� The investigation of this capability which will include the sensitivity, limi-

tations, and the principles related to current distributions through experi-

mental, numerical and theoretical methodology.

1.3 Thesis Layout

A literature review is presented in Chapter 2 to provide readers with a compre-

hensive background of available NDT techniques, especially PD methods, electro-

magnetic fields within conductors carrying AC, and investigations into the skin

effect problem for individual conductors obtained over decades. The first part of

the chapter about PD methods has been published as a review [22].
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Established theories of the skin effect problem are mainly focused on solving

internal impedance (Zint) and AC resistance (Rac) of individual and straight con-

ductors of various shapes. Some of the theories reviewed in Chapter 2 are further

demonstrated and applied to calculate Zint for the plain experimental samples

in Chapter 3, which offers rudimentary understating of ACPD results for these

samples.

Experimental research in the project are divided into two parts, the preliminary

and formal stages. Preliminary experiments were applied to simple circuits and

conductors whose Zint are known or have available theoretical solutions. Formal

experimental samples consisted of four plain samples made from non-magnetic 316

stainless steel (SS316) and five featured samples made from ferromagnetic EN1A

mild steel (EN1A), sharing the same gauge dimensions of 55 mm × 100 mm2.

The SS316 samples are of different cross-sectional shapes of circular, hexagonal,

square, and triangular. The EN1A samples were manufactured with different

features including a cylindrical drill and rectangular notches with opening widths

varying from 1.5 mm to 6 mm. ACPD signals of all preliminary and formal

samples were measured by the use of the same equipment and then processed by a

MATLAB script to obtain results of PD and Zint in the frequency domain. Chapter

4 introduces experimental methodologies, including the experimental apparatus,

the sample information, and the data processing script.

It will be discussed later that ACPD signals measured in experiments can

not be used to calculate ‘real’ Zint of the samples since the current are unevenly

distributed on the sample surfaces and localised around edges and features. There-

fore, analysis of ACPD results are focused on the processed results of PD rather

than Zint. Finite element (FE) models were developed via ANSYS to simulate the

current distributions around the formal samples at some frequencies and provide

approximations of PD to compare with processed results. In additional, Zint of

the formal samples were measured from FE models to compare with theoretical

solutions obtained in Chapter 3, and thus to estimate the reliability of several

theories and FEA. Chapter 5 discusses approaches of creating models, techniques

of reducing model sizes, mesh refinement studies, and methods of post processing.

Moreover, FEA was carried out to investigate effects of uncertainties in the weld-

ing positions of the current injection wires on ACPD measurements, which is also

presented in Chapter 5.

In Chapter 6, processed results of PD and Zint for the preliminary and for-

mal samples are compared with manually measured results and theoretical values

(the latter is only available for preliminary samples) to assess the performance

of the ACPD experiments and the data processing. Finally, Chapter 7 analyses

processed results of PD for all formal (i.e. plain and featured) samples. The sensi-

tivity of the ACPD experiments and the capabilities of the technique in detecting

sample cross-sectional shapes and feature geometries are evaluated by comparing

processed results with FEA. Furthermore, Chapter 7 discusses the principles of

3



such capabilities of the ACPD method by relating the differences in ACPD results

between the samples to the current distributions approximated by FEA.
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Chapter 2

Literature Review

2.1 Introduction

There are several NDT methods available, including optical [23], compliance [24,

25], ultrasonic [26,27], acoustic emission [28–30], eddy current [29–31], alternating

current field [32–35], DCPD [35,36], and ACPD [37] methods. All have associated

advantages and disadvantages. PD methods possess many benefits as well as much

potential for future development and it is for this reason that the current work

focusses on the current status and use of such technologies.

Review papers have been produced by leaders in the field which extol the

merits and the state-of-the-art of NDT techniques, including PD systems devel-

opment and usage. An early comparison of DCPD and ACPD was given by Wei

and Brazil [38] who described the how electrical signals could be used for moni-

toring subcritical crack growth and the calibration of the signals generated with

crack length. Some benefits and drawbacks of the use of direct current (DC)

or AC were also discussed. This was followed by more comprehensive reviews

of the use of DCPD and ACPD for monitoring the growth of defects in compo-

nents [39, 40] and reviews specifically relating to the modelling aspects of NDT,

including PD [29,30]. Later, a further review for the use of specifically ultrasonic

and PD techniques for monitoring secondary and tertiary stages of creep damage

was given [41]. The latest of these topic specific reviews was published almost

a decade ago, highlighting the need for this review. Given in the first part of

the chapter is a comprehensive review, including updates since previous reviews,

of the use of PD across all loading types (creep, fatigue, for example), including

both experimental and modelling aspects. This part have been published as a

review paper in [22]. Furthermore, the chapter will discuss the electromagnetic

fields generated in conductors carrying time-varying current, as the background

for the ACPD experiments. The final section will present a review of the research

progress in the field of Zint of conductors in recent decades.

Several laboratory specimen types are referred to throughout this chapter.

These specimen types are summarised in Fig. 2.1 and will be referred to in the
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subsequent sections of the review.

(a) CS(T) (b) C(T) (c) DC(T) (d) DEN(T)

(e) M(T) (f) SEN(B/T) (g) WOL (h) DCB

Figure 2.1: Schematics of standard fracture specimens: (a) C-shaped tension.

(b) Compact tension. (c) Disc-shaped compact tension. (d) Double-edge notched

tension. (e) Middle tension. (f) Single-edge notched bending/tension. (g) Wedge

opening loaded. (h) Double-cantilever bending.

2.2 Non-Destructive Testing Techniques for Crack

Measurement

Within many industrial sectors (examples include energy generation, aerospace,

automotive, etc.), the accurate prediction of lifetime of damaged components has

been recognised as an important issue. Modelling efforts require experimental data

for calibration/validation and, in this field, this typically requires the detection

of crack initiation (in both spatial and temporal dimensions) and measurements

of crack growth. Several NDT methods are currently available for crack growth

monitoring, including optical observation, compliance methods, sonic methods

(involving ultrasonic and acoustic emission), eddy current methods, alternating

current field measurement (ACFM) methods, and PD methods. In the interest of

completeness, a brief review of several NDT methods are presented as alternatives

of PD methods.

2.2.1 Optical

Optical observation methods, in which the fracture surface is marked or the crack

tip extension is tracked by a travelling telescope [23], provide accurate predictions
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of crack lengths but are restricted by visual access [23, 42–48]. Continuous mon-

itoring is infeasible [42–45, 48] and the accuracy is highly dependent on operator

skill [16, 23,44] and image quality [16].

2.2.2 Compliance

Compliance methods, based on the relationship between crack length and the re-

sulting strain, have been widely used for monitoring long cracks but lose sensitivity

for small cracks [23–25]. When using compliance methods, periodic unloading at

regular crack growth intervals is applied to the specimen and measurements are

recorded discretely. For this reason, these methods are not applicable for testing

under dynamic or rapid loading [5, 49,50]. Moreover, the methods are limited for

applications of aggressive environments such as creep, corrosion and high temper-

ature (higher than 175 ◦C according to [49]) [5,49,51,52]. The infeasibility at high

temperature is presumably due to the lack of available displacement gauges and

the potential influence of stress relaxation at crack tip during unloading [5]. Si-

multaneous applications of compliance methods and PD methods to crack growth

measurement under fatigue have been reported in several studies, with poorer

reproducibility and resolution found for compliance methods [12,25,53].

2.2.3 Ultrasonic

In ultrasonic testing, an ultrasound wave is transmitted by a transducer placed on

the test-piece with part of this wave being reflected due to discontinuities within

the material. This part of the wave is collected by a receiver and analysed in order

to interpret the flaw [26,27]. Difficulties in applications of ultrasonic methods arise

in high temperature environments [23,41] (or high temperature transducers must

be used [54]), crack curvatures, and certain specimen geometries such as SEN(B)

and DCB specimens [23] (schematics of specimens are shown in Fig. 2.1f & 2.1h).

2.2.4 Acoustic Emission

In applications of acoustic emission methods, release of elastic strain energy in

the form of sound waves due to crack extension is measured and related to crack

growth behaviour [28–30]. The methods are suitable for continuous monitoring

such as in manufacturing and in service [29, 30] but disadvantages lie within the

difficulties of calibration and interpretation [48], noise rejection and obtaining

detectable signals from low strength materials [28].

2.2.5 Eddy Currents

Eddy current methods entail a current-carrying coil being placed on the surface

of a conductive specimen, consequently inducing eddy currents in the specimen
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beneath the surface that will affect the impedance of the exciting coil. Defects in

the specimen are interpreted by measuring variations in this impedance [29–31].

Eddy current methods have received wide acceptance and are well suitable for

surface defect detection [31, 48, 55] but are limited to conductive materials and

inapplicable to large crack lengths (due to the limited penetrating depth of eddy

current, i.e. skin effect, that will be explained in Section 2.3.1) [29,30]. Moreover,

eddy current methods suffer incapability to ferrous metals due to their dependence

on magnetic permeability [56].

2.2.6 Alternating Current Field Measurement

In order to overcome some of disadvantages of the ACPD method (e.g. such as

stray PD signals due to impedance of the electrical circuit), the ACFM method

has been developed. Within ACFM, an AC-field distribution (above the surface

of the specimen) containing perturbations due to defects is measured with effec-

tively eliminated spurious voltages by the use of a Crack Microgauge and the crack

size is derived by comparing the results to numerical models of the electromagnetic

field [32–35]. The together use of physical measurement and filed modelling allows

the exclusion of calibration procedure, which minimises possible errors occurring

during calibration activities applied by other NDT methods [32–34, 39]. Inverse

problems associated with crack profile determination have been solved with nu-

merical iterative procedures [57]. With respect to small crack sizing ability, it has

been reported that ACPD was preferred in monitoring long shallow surface cracks

but lost accuracy in cases of deep surface cracks that could be accurately predicted

by ACFM [32].

2.2.7 Potential Difference

According to [31, 58, 59], Gille [60] has pointed out that the DCPD method was

first applied to detect surface cracks by Trost in 1944 [35] but the concept was

first mentioned several years earlier by B. M. Thornton and W. M. Thornton in

1938 [61]. Barnett and Troiano [62] first used this technique for laboratory research

to measure crack growth kinetics in a study of hydrogen embrittlement in notched

tensile specimens. Electrical PD methods, which were also named as electrical

resistance methods, have been used with success of detection crack closure in

fatigue crack studies [63–72], crack initiation in crack-opening displacement and

fatigue tests [25, 49, 50, 73–79], measurement of crack growth under various of

loading conditions (including fatigue [10, 23, 58, 80–83], creep [20, 23, 41, 46, 83–

87], stress corrosion [23, 88–90], sustained loading [91–93], fretting fatigue [13],

hydrogen embrittlement [23,62]), determination of J curves [49,50,74–76,89], and

evaluation of material properties [94–101]. Applications of crack identification by

PD methods has been extended to asymmetric cracks [102–104], angled cracks

[105,106], and multiple cracks [107–116]. In additional to the wide application of
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PD method on open cracks propagated under tension (Mode I), the method has

been used to out-of-plane shear (Mode III) [117], in-plane shear (Mode II) [118],

and mixed Mode conditions (tension and in-plane shear) [16].

Several advantages of PD methods enable the wide application of the tech-

nique. The relatively cheap instrumentation and simple operation contribute to

the preference [44,46,48,55,119–123]. Moreover, PD methods are believed to pro-

vide reliable and accurate predictions [12, 46, 124, 125] yet continuous detection

of cracks thereby allows stable automation [46, 48, 55, 119, 120, 122, 124–126]. As

reported in an early work by Johnson and Willner in 1965 [88], an increment in

crack length of 0.004 in / 0.10 mm is detectable by PD methods. Then according

to a work by Soboyejo et al in 1990 [125], the resolution has been improved that

a crack increase of 10 µm in a 10 mm thick body was measurable. Because visual

accessibility is not required, PD methods are capable to monitor through cracks

and other applications in enclosed environmental, which are excluded by optical

methods [12, 46, 79, 124, 127]. PD methods are applicable for testing various ex-

treme environments such as corrosive, high pressure, high radiation, elevated and

variable temperature conditions [12,15,44,48,55,119,121,122,125,126]. In partic-

ular, superior behaviour has been noticed in creep damage monitoring [128] and

crack closure detection [77]. On the other hand, some limitations in PD methods

have been noted in the literature. Calibration for each test piece geometry and

load is required as the accuracy of calibrations seriously affects the capability mea-

surement [46,129]. PD methods are limited to conductive materials [130] because

a conducting path around cracks inside the test piece is necessary. Moreover, there

is vulnerability of PD methods to spurious potential signals during measurement

(this is discussed in greater detail later in this chapter).

PD methods fundamentally rely on the principle that an electrical potential

field will be disturbed by any discontinuity inside a current-carrying body. The

location, shape, and size of the discontinuity are detectable by analysing this

potential field and comparing it to a ‘clean’ signal (i.e. a potential field in a dis-

continuity free body). For this purpose, a constant current is supplied to a cracked

or featured conductive body and the PD is measured across the growing feature.

An increase in the measured PD is associated with the decreased cross-sectional

area caused by crack propagation. The measured PDs are then correlated with

crack lengths by using appropriate calibrations curves. Calibration curves and

PD measurements are sensitive to several factors which include the crack/notch

geometry [3, 4, 47, 58, 131–133], the specimen geometry [4, 47, 51], the arrange-

ment of current injection [3,4,51,58,132], and the location for potential measure-

ments [4,47,51] (the latter two factors will be covered in Section 2.3.5.1). Moreover,

in several studies involving multi-frequency ACPD method [24,126,134,135], cal-

ibration curves were found to be affected by operating frequency. However, an

opposite argument has been reported that a linear slope of calibration established

in WOL (see in Fig. 2.1g) specimens was independent of operating frequency [37].
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Error signals in calibration measurement may be introduced by plastic deforma-

tion [12,37,51,59,62,74,81,82], crack closure [38,52,102,136,137], and temperature

fluctuation (which is related to temperature dependent resistivity) [3, 78]. With

respect to the last point, constant current supply and controlled temperature con-

ditions, such as an immersion in an ice bath [23], is desirable [43].

Depending on the type of operating current, PD methods can be recognized

as DCPD and ACPD. PD methods possess some advantages over the other NDT

techniques and will be discussed in detail in this chapter.

2.3 Electrical Potential Difference Methods

2.3.1 Comparison between Direct Current Potential Dif-

ference & Alternating Current Potential Difference

The DCPD method has been widely accepted due to its easy application and

hence relative cheap cost [37,45,133,138]. Because of the nature of DC, DCPD is

independent of magnetic permeability of conductive specimens hence the capaci-

tance problem (the capacitance of conductive specimen which is usually ignored

actually exerts an effect on measurement of PD) concerned in ACPD is elimi-

nated [14, 56, 123, 133, 138]. The wide use of DCPD offers another advantage,

in that previous results and guidance are available for certain specimen geome-

tries [45]. However, in DCPD tests the whole specimen is tested in terms of the

current path, and so the specimen geometry itself (rather than just some flaw

geometry) influences the calibration [14]. Moreover, a relatively high current level

is required in order to achieve measurable potential outputs [45,78,138,139]. Ac-

cording to [37], a DC of 30-50 A is necessary for a steel specimen in normal size.

Therefore, it is less suitable for detecting small cracks (due to a small crack ex-

tension or electrical resistance) and less applicable in large structures (since a

high current input is required to maintain a certain current density in a large

range). Furthermore, high current input may lead to undesired localised heat-

ing [78, 140], which influences the material conductivity and aggravates the effect

of thermal electromotive forces (emf) on potential measurements. Another major

concern in applying DCPD occurs in the sensitivity to emf that is attributed to

temperature differences at connections between the specimen and measurement

leads [31, 38, 45, 138, 140, 141]. It should be noted that ACPD is immune to the

DC emf noise [31,38,44,52,127,129,139–141]. Effective actions against emf effects

are discussed later. To overcome some of the limitations of DCPD systems, the

ACPD method has been developed as an alternate. ACPD takes advantage of

skin effect, as illustrated in Fig. 2.2 , which refers to a confined current region

beneath the specimen surface caused by interaction of original AC and induced

eddy current.
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(a) ACPD (b) DCPD

Figure 2.2: Current distributions in ACPD and DCPD. (a) Skin effect in ACPD:

AC is forced to flow in a thin layer beneath the specimen surface. (b) In DCPD:

the whole cross-section of the specimen is involved.

Compared with the whole body affected in DCPD, in ACPD the current field

concentrates in a narrower layer near the material surface, thus a lower excitation

current is sufficient to supply easily measurable potentials [11,14,31,44,45,76,78,

86,98,126,127,129,133,138,140], thereby minimising the risk of localised heating

[14, 98, 140]. Hence, ACPD is able to achieve higher sensitivity than DCPD,

especially for small crack lengths near the surface of materials [14, 38, 44, 45, 134,

142] and the effect of specimen geometries is reduced [14]. Verpoest et al [134] have

applied high frequency ACPD to detect and monitor surface cracks in un-notched

steel rods and gave the conclusions that a 40 kHz current frequency would allow

detection of cracks in an area of 0.05% of the specimen cross-section, which was

unachievable by the other NDT techniques. Proper choice of coating materials,

such as nanocomposite coatings which provides adjustable electric conductivity

and magnetic permeability [143], could protect components from serve conditions

yet enhance the detecting ability of ACPD. Another important advantage of ACPD

is that the technique has higher noise rejection capabilities when lock-in amplifiers

(which extracts and amplifies signals at certain frequency) are used [11, 31, 38,

126, 141]. ACPD also performs better than DCPD in corrosive environments,

since by changing polarity any unwanted electrochemical processes are eliminated

[38, 45, 140, 141]. The depth of current penetration, known as the skin depth (δ),

is given by [144,145]

δ =

√
2

ωµσ
(2.1)

where µ and σ are of magnetic permeability and electrical conductivity, respec-

tively, and ω is the oscillating frequency. Hence by applying multi-frequency AC in

ACPD tests, specific inspection can be conducted in different depths of the spec-

imen [11, 86, 142, 146]. Conversely, in cases of deep cracks and crack tunneling,

particular attention should be paid to ensure the AC covers the whole inspec-

tion region [21, 44]. Disadvantages of ACPD include higher investment due to

the amplification and filtering equipment [52,78,138], and disturbance on calibra-

tion caused by capacitance effect such as change in permeability and conductiv-

ity [21, 33, 34, 133, 138]. In order to minimise spurious effects caused by magnetic

properties, low frequency ACPD measurements were proposed in which some of

the advantages of ACPD were conserved, yet the noise rejection was improved by
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suppressing the skin effect [86,87,147–149].

2.3.2 Experimental System Designs

The earliest PD techniques were associated with DC. A typical configuration of a

DCPD system is shown in Fig. 2.3a. The system consists of a stabilized power

supply, a voltmeter to provide high-gain DC amplification and off-set zero control

for initial PD, and recording instruments for automatic control and data acquisi-

tion. Usually the stable DC was supplied by a voltage source and the stability and

desired level of the operating current is achieved by a reference resistor in series

with the specimen [23,38,44,52,141,150].

A schematic of an ACPD system is illustrated in Fig. 2.3b and a basic descrip-

tion is given here. A noticeable improvement offered by the ACPD method is the

introduction of phase sensitive detection associated with lock-in amplifiers that

offer excellent noise rejection and improved accuracy and sensitivity for ACPD

measurements [24, 38, 78, 90, 126, 138, 141]. In the excitation circuits a reference

signal provided by a voltage controlled oscillator is fed into a power amplifier for

constant current output [37, 38, 49, 52, 135, 141, 151]. Similar to DCPD system, a

reference resistor connected in series with the test-piece maintains the stability

of current regardless of the specimen resistance [37, 38, 141]. The output signals

from specimen are isolated and pre-amplified at a transformer [38,44,141,150,151]

and measured with a lock-in amplifier. Only the potential signals at the reference

frequency identical to the current source will be amplified and accepted by the

lock-in amplifier [38, 138, 141] (a signal-to-noise ratio as low as 0.1 is allowed by

lock-in amplifiers [38, 141]).

(a) DCPD

(b) ACPD

Figure 2.3: Block diagram of PD technique systems.

The current supply leads are usually spot-welded or bolt-screwed on the spec-

imen to minimise contact resistance and in turn to reduce heating effects [38, 43,

140, 150]. By connecting current leads through conductive plates heating effects
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due to large dissipation area are avoided, however this strategy causes problems

of reproducibility in contact area [43]. In order to minimise thermocouple effects,

it has been suggested that potential measuring probes are made of the same, or

closely similar materials, as the test-piece [125, 139, 150, 152]. These probes are

spot-welded to the specimen [23, 38, 43, 140, 150]. The electric leads should be

twisted together to minimise inductive coupling [12, 140, 141, 153] and errors due

to movement [12]. It is necessary to exclude any current leakage and ensure that

the test-piece establishes the only electrical path for current. Hence electrical in-

sulation should be applied to contact areas between specimen, lead wires and the

testing machine, which can be achieved by using, for example, TUFNOL strip [38].

2.3.3 Identification of Crack Lengths - Calibration

2.3.3.1 Introduction

Practically speaking, the length of a growing crack is usually transformed from

the PDs measured across it by a calibration curve. Johnson [131] suggested

that calibration can be made independent of material composition, material heat

treatment, and thickness of test-piece but sensitive to the starter notch geome-

try. This principle enables a single calibration curve determined for a standard

specimen to be applied to practical test-pieces that are similar in geometry but

made from different materials. The determination of calibration curves is found

to significantly influence the accuracy of the method [59]. Several work have de-

termined calibration curves and obtained linear [23, 24, 37, 38, 78, 141, 154, 155]

or non-linear [49, 50, 59, 77, 82, 131, 135, 156–159] relation between PD and crack

lengths. The linearity of calibration curves was regarded as an advantage of the

PD method over the other NDT methods [45,78]. Three methods are used to de-

termine the calibration: namely analytical, numerical, and empirical (direct and

analogue) methods.

Attempts at analytical solutions consist of finding the solution to Laplace’s

equation within the boundary conditions of a given specimen geometry, where

the steady electrical potential field (V ) around a crack in a specimen is given

by [58,59,119,129]:

∇2 (V ) = 0 (2.2)

Several analytical solutions to the Laplace’s equation are available for simple

specimen geometries by using conformal mapping methods [82, 131, 160], which

offers a useful guide in experimental work. Analytical methods are difficult to

develop for geometries such as C(T) specimens due to the complicated solution

domain [6, 46, 58, 59, 79, 154], however it is precisely these type of specimens that

are commonly used for crack growth monitoring. When analytical calibration is

not possible attention should instead be focused on numerical or experimental

methods.
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Numerical methods enable precise control of different parameters, such as ge-

ometries of crack and specimen, probe position for current injection and potential

measurements. Hence these methods are suitable for optimising probe configura-

tions in isolation [4,19], estimating effects on calibration caused by specimen and

crack geometry and plastic deformation [3, 4, 6, 59], and simply determining mul-

tiple calibration curves for specimens with different aspect ratios [6]. Numerical

techniques are reported to be accurate and fast tools to derive calibration curves

at relatively small cost compared with labour-intensive and time-consuming ex-

perimental methods [19, 59]. It should be noted, however, that a great deal of

work is necessary in order to obtain high confidence in numerical models before

calibration curves can be generated [38].

Through the use of experimental data, straightforward calibration curves are

accessible for complex specimen geometries under any combined conditions such

as thermo-mechanical fatigue (TMF) [6, 38, 46]. Empirical solutions almost al-

ways suffer poor accuracy for small crack lengths [58, 59, 161] and measurements

are vulnerable to errors likely caused by variations in locations of current leads

and potential probes [161]. Moreover, additional tests are required to determine

calibration curves for other specimen geometries and probe configurations, which

is costly and cumbersome [6, 161]. Alternatively, analogue techniques, in which

the cracked specimen is modelled by conductive materials and potential and crack

length are measured on the analogue models, has been widely applied to deter-

mine empirical calibrations for various specimen types. Available analogue models

include graphitised paper, aluminium foil, wax, and rheoelectric tank. In the fol-

lowing sections, progress in calibration curves determined by the three methods

are presented separately in more detail.

2.3.3.2 Analytical Solutions

Johnson’s Formula

One of the most widely used analytical calibration methods for centre cracked

specimens is Johnson’s formula [131] in which the potential (V ) is measured along

the centreline and across the crack, and a uniform current distribution is assumed,

as illustrated in the subfigure of Fig. 2.4. By applying the method of conjugate

functions with appropriate boundary conditions of a M(T) specimen, Johnson put

forward a calibration equation for slit-type centre-cracks for finite-width plate,

which was given by the ratio of PD corresponding to the slit length (a) and that

to the initial notch length (a0), i.e.
V
V0
, as given by

V

V0

=
cosh−1

(
cosh πy

W

cos πa
W

)
cosh−1

(
cosh πy

W

cos
πa0
W

) (2.3)

where W is the specimen width. (2.3) was then modified for an infinite-width

plate by simply changing boundary conditions. As shown in Fig. 2.4, the ana-
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logue calibration curve for a razor-shape (or slit-like) centre-crack [129] reasonably

located between the curves for finite- and infinite-width plates.

0 0.2 0.4 0.6 0.8 1

a/W

1

2

3

4

5

6

7

8

V
/V

0

Experimental [128]

Johnson - finite [130]

Johnson - infinite [130]

Figure 2.4: Comparisons of calibration curves for M(T) specimens including

experimental data for slit-like cracks [129] and theoretical solutions given by

Johnson’s formula for finite and infinite plates. [131]

(2.3) was further developed for elliptical centre-cracks by modifying the bound-

ary conditions and employing elliptical co-ordinates defined by

x = c cosh (u) cos (v)

y = c sinh (u) sin (v)
(2.4)

where c refers to the coordinate proportionality factor, u > 0, 0 ≤ v ≤ 2π. The

PD ratio of elliptical centre-cracks is

V

V0

=
c

c0
× sinhu1 (a) + exp [u0 (a)− u1 (a)] coshu0 (a)

sinhu1 (a0) + exp [u0 (a0)− u1 (a0)] coshu0 (a0)
(2.5)

where u1(a) and u0(a) are the elliptic coordinate at the measurement position

and slot boundary respectively. The comparison for calibration curves derived by

Johnson’s formula for slit and elliptical-centre cracks and experimental work for

real elliptical cracks is given in Fig. 2.5. (2.5) showed reasonable agreement with

experimental results up to a/a0 = 1.6, suggesting that elliptical centre-cracks are

more representative of cracks observed in real experimental test-pieces.
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Figure 2.5: Comparisons of calibration curves for elliptical cracks including

experimental results and theoretical solutions given by Johnson’s formula for slit

and elliptical-shaped centre notches. [131]

Johnson’s formula has been experimentally validated for slit centre-notched

specimens, which by independent studies [162], concluded that by taking a0 at a

position remote from the starter slit rather than half-length of it, the solutions

given by Johnson’s formula further agreed with experimental results up to a/a0 =

3.0. Additionally, the analytical calibrations presented by Johnson [131] have

been successfully applied to SEN(B) and C(T) specimens which benefited from

the geometrical similarity between M(T) specimens and SEN(B). C(T) specimens

in which a SEN(B) specimen was assumed to be half of a M(T) specimen and a

C(T) specimen was regarded as a short SEN(B) specimen [163]. Good agreement

with experimental results were achieved for the three types of fracture specimens

in a range of a/W = 1, as shown in Fig. 2.6.
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Figure 2.6: Agreement between theoretical calibrations given by Johnson’s

formula and experimental data for various fracture specimens. [163]

Johnson’s formula has also been considered as applicable to SEN and DEN

specimens due to the symmetry features proposed by Bakker [75]. In a recent

paper [3], the idea of geometric equivalence between specimen types was extended

to CS(T), DC(T), and DEN(T) specimens (as shown in Fig. 2.1a, 2.1c, and 2.1d

respectively). By the use of two-dimensional (2D) FE models for all the specimen

types, Johnson’ formula has predicted the crack lengths based on numerically

measured PD and gave maximum errors < 6%, suggesting that Johnson’s formula

could be used as a unified calibration function for all the seven fracture specimen

types (M(T), SEN(B), SEN(T), C(T), CS(T), DEN(T) and DC(T)). Moreover,

the accuracy of Johnson’s formula has been validated by wide applications [21,25,

46,51,104,137,164,165]. In Fig. 2.7, poor correlation between calibrations derived

by Johnson’s formula and experimental data for C(T) specimens was observed by

Vassilaros and Hackett [50], which was likely explained by the change in specimen

geometry and electric wire configuration, and variations in what is ideally uniform

current field.
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Figure 2.7: Poor comparison of empirical [50] and theoretical (Johnson’s

formula) [131] calibrations for C(T) specimens. [50]

It has been suggested that Johnson’ formula is incapable of predicting open-

hole single-crack specimens [6], and instead a series of FEA based calibration

polynomials for different centre hole diameters to specimen width ratios should

be used. Based on an acceptable error < ±10%, Schwalbe et al [25] claimed

that Johnson’s formula was capable of predicting average lengths of curved front

cracks. Nevertheless, Kolitsch [9] noticed that for cases of cracks growing from a

semi-elliptical front, Johnson’s formula would underestimate the crack depth since

a straight through-thickness profile was assumed. In addition, Johnson’s solution

has been modified by within other works to evaluate the potential field around

asymmetric M(T) specimen [103], 2D cracks which is perpendicular to specimen

surface and off centre [108], and multiple semi-elliptical surface cracks [112]. A

comparison of six calibration methods including several derivational functions of

Johnson’s formula has been reported by McKeighan and Smith [166] to determine

the optimum calibration techniques for M(T) and SEN(B) specimens under fa-

tigue with limited experimental data. The two-point modified Johnson’s equation

and post-test corrected Johnson’s equation have been reported as the optimum

calibration equations. The two-point modified Johnson’s equation accounted for

possible error attributed to probe mislocation by introducing unknown factors α

and β into Johnson’s formula (2.3) and gave

V

V0

=
cosh−1

(
cosh παy

W

cos πa
W

)
cosh−1

(
cosh πβy

W

cos
πa0
W

) (2.6)

where α and β are solved by a nonlinear equation solver (FORRAN code). In

the post-test corrected Johnson’s equation, the difference between crack lengths

predicted by (2.3) and optical results was assumed to vary linearly from initiation

to end, thus a correction was determined from initial and final measurements
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(differences in crack lengths and PDs) and added the predicted crack lengths

calculated by (2.3).

Conformal Mapping

Conformal mapping techniques, in which the orthogonality in the local geom-

etry of specimens (realised in physical space) are transformed into an alternative

simple geometry (that is readily analysed) by considering a complex potential

plane, enabling accurate determination of calibration curves for a range simple

specimen geometries. More details can be found in studies conducted by Clark

and Knott [82, 161]. They have applied the analytical method to several speci-

mens including edge cracks and SEN specimens with semi-elliptical notches and

V-notches. The theoretical curve for 45◦ V-notched specimens showed good agree-

ment with available experimental data [55] and results given by graphitised pa-

per analogue method, in Fig. 2.8. The theoretical analogue solutions for a 45◦

V-notched SEN specimens were compared with 2D FEA results [59], which is

presented in Fig. 2.10 in Section 2.3.3.3. Close agreement was shown especially

for short crack lengths with a/W < 0.5. The conformal mapping calibrations

presented by Clark and Knott [82] has been used to provide comparison to an em-

pirical calibration curve for 60◦ V-notched cracks under torsion loading [167] (Fig.

2.9) and to an analogue calibration for straight front through thickness crack by

use of the electrolytic tank method [168] (Fig. 2.18 in Section 2.3.3.5). Moreover,

the conformal mapping technique has been coupled with numerical methods in

order to determine calibration curves for C(T) specimens [169, 170], asymmetri-

cal M(T) specimens [102], and inclined edge cracks at any angle to the test-piece

face [155].
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Electrical analogue [81]

Direct [54]

Best fit to Direct

Figure 2.8: Comparison of calibration curves for a 45◦ V-notched SEN specimen

including theoretical solutions given by conformal mapping [82], analogue [82]

and direct [55] empirical results. [82]
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Figure 2.9: Calibrations obtained by theoretical (conformal mapping) [82] and

empirical [167] solutions for 60◦ V-notched cylindrical specimen under torsion

loading. [167]

2.3.3.3 Numerical Simulations

Numerical methods have been widely applied in order to establish calibration

curves relating crack lengths to measure PDs for complex specimen geometries

[3, 4, 6, 44, 46, 58, 59, 104, 107, 110, 111, 113, 124, 140, 169–173] and determine the

optimum configuration for measurement leads and probes [19,44,46,58,59,117,173].

In the work conducted by Ritchie and Bathe in 1979 [59], calibration curves for

complex geometries, C(T) and SEN with V-notches specimens, were determined by

2D FEA method and then compared with available theoretical methods [82], direct

experimental [55,81] and analogue data [82], as shown in Fig. 2.10. The numerical

results for SEN specimens showed close agreement at first but deviated slightly at

large crack lengths with a/W > 0.5, which was explained by the relatively coarse

FE mesh away from the notch. Compared to experimental data, the numerical

curve for C(T) specimens consistently overestimated the crack lengths. This was

possibly because the crack width that was assumed to be infinitesimal in the

numerical model but had a finite width in practice.
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Figure 2.10: Comparison of calibrations given by 2D FEA simulation [59],

conformal mapping [82], analogue results [82] and direct experimental

data [81,174] for C(T) and SEN specimens. [59]

The 2D FE model developed by Ritchie and Bathe [59] has been used by

Aronson and Ritchie [58] to determine the numerical calibration curves and qual-

itatively evaluate the sensitivity and reproducibility of probe configurations in

C(T) specimens. A comparison between 2D FEA and boundary integral equa-

tion method, which enabled a reduction of 2D problems into one-dimensional, has

been conducted for C(T) and DCB specimens by Klintworth and Webster [44].

It was concluded that both methods are suitable for optimising the measurement

leads locations. Good agreement has been achieved between empirical calibrations

and numerical calibrations for the C(T) and DCB specimens by the two methods,

besides a slightly better accuracy was obtained by boundary integral equation

method for C(T) specimens. In order to optimise the location of potential probes

of circumferentially-notched cylindrical specimens subjected to torsion, FEA has
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been used to obtain numerical calibration curves which suggested the optimum po-

sition to be at the notch edge and a second-order polynomial function was given

to express the obtained calibration curves for probe location at 12.7 mm chosen

in this study [117],

a =

[
0.25

(
V

V0

− 0.715

)0.5

− 0.133

]
r (2.7)

where r is the specimen radius. A series of numerical calibrations obtained with

different potential probe positions are shown in Fig. 2.11.
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Figure 2.11: Calibrations for circular notched cylindrical specimens under

torsion with different potential probe positions. [117]

By using a mathematical analogies between current flow and heat/stress anal-

ysis problems [124], 2D C(T) test-pieces were modelled by three available FE

programs (MARC-HEAT, S175 and GSS programme) and three-dimensional (3D)

corner and surface notches were simulated by one of them (MARC-HEAT). The

numerical calibration curves coincided well with aluminium foil analogue results,

experimental readings from beach marking and an analytical solution for semi-

circular crack. The effect of notch width and height in C(T) specimens and the

current application, concentrated or distributed, have been analysed by 2D FEA

by Wilson [132]. Moreover, the paper observed insignificant differences in calibra-

tion curves by using a fine mesh size (containing 3598 nodes) compared with that

obtained by employing a coarse mesh (961 nodes), as shown in Fig. 2.12.
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Figure 2.12: Effect of element mesh refinement on numerical calibrations for

C(T) specimens. [132]

The use of singular crack tip (collapsed) elements rather than conventional ele-

ment could improve limited accuracy in calibration curves. A comparison between

the behaviour of 2D and 3D FEA in determining the length of a circumferential

crack, based on measured DCPD under TMF conditions has been reported by

Gandossi et al [46]. By comparing with crack lengths measured before the experi-

ments, it was concluded that 3D FEA gave accurate calibration curves whereas the

curve obtained by 2D FEA tended to overestimate the crack lengths. The calibra-

tion curves for semi-elliptical and ‘ear-shaped’ cracks (Fig. 2.13), were numerically

determined by 3D FEA analysis by Doremus et al [4]. The author proposed that

by inserting experimental beach markings into the numerical calculation, the ac-

curacy of coupled numerical and experimental calibrations would be efficiently

improved. In a recent paper [3], the effect of crack geometries and tempera-

ture difference on calibration curves were evaluated by employing 3D FE models

on circumferential and semi-elliptical surface cracks. Additionally, a comparison

between applying 2D axisymmetric models and 3D full model on circumferential

cracks was conducted. The use of a DC numerical model with modified geometries

to approximate full 3D AC problems has been proposed for the sake of reducing

computational expense [17].
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(a) Semi-elliptical (b) Ear-shaped

Figure 2.13: Semi-elliptical and ear-shaped cracks. [4]

In a study conducted by Hiroshi et al [171], the boundary element method was

used to determine the depth of a semi-elliptical surface crack in ACPD tests and

an empirical calibration function was developed based on the numerical results.

Due to the insufficient consideration of effects on potential field caused by the

AC, and the high-frequency thin-skin mode assumed by the numerical model,

the function was suggested to offer a reliable calibration method, although actual

coefficient values were not determined with a great deal of confidence. A 3D

boundary element method was applied to a pair of coplanar coalescing surface

cracks by Harrington et al [172], using two calibration equations which revealed the

crack depth and profile. Predicted and estimated crack shapes showed reasonable

agreement with beach marking results.

2.3.3.4 Direct Experimental Methods

Empirical calibration determination usually is associated with the use of one of two

methods for increasing crack lengths. The first involves increasing crack length by

sequentially cutting the sample and measuring the corresponding potential values

across the machined cracks. This method has been applied to centre-notched [48],

C(T) [23, 37, 50, 55, 59, 117], and SEN [55, 59] specimens. However, empirical cal-

ibrations determined from cutting cracks in this way were found to give under-

estimation in crack length [48, 73, 119]. The second method involves extending

the crack by fatigue loading and the increasing crack length measured by optical

microscopy and/or the beach marking method.

Optical measurements can be conducted directly. In M(T) specimens, for ex-

ample, the centre-crack propagates on the specimen surface. Alternatively, speci-

mens may be broken after the test. This depends on the visual accessibility offered

by a particular specimen type. Empirical calibration curves based on optical ob-

servation are available for DCB [44], C(T) [16], M(T) [102,131,162], corner crack

(CC) [140], SEN [135], centre-circular hole [83], and circumferential cracked [4,167]

specimens.

When applying the beach marking technique, crack profiles were marked peri-

odically on the fracture surface by changing the loading frequency [51], mean load
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[24,51,58,124,125,141,152,154,156,157,164,172], or by heat tinting [4,62,134,158].

The specimens were then broken open after the tests and the crack lengths/depths

measured optically. Beach marking enables curvature or irregular growth in crack

shapes to be determined, thus necessary corrections can be applied to calibra-

tion procures. Empirical calibration curves have been established this way for

C(T) [51, 58, 124, 141], DC(T) [157], M(T) [51, 152], SEN [24] and semi-circular

crack [4, 125, 151, 156, 164, 172], circular external crack [164], CC [124, 158], and

fin notched [124] specimens. Some of the empirical calibration curves have been

shown Section 2.3.3.2 and 2.3.3.3 for comparison.

2.3.3.5 Analogue Experimental Methods

Conducting Paper

The conducting paper analogue method is applicable for any 2D problem in-

volving field or flow that obeys the Laplace equation [119]. With respect to the

calibration of PD methods, the profile of a specimen is modelled by conducting

paper, such as graphitised electrical paper and a sheet of aluminium foil, which

benefits from a relatively high resistivity and ease of generating an artificial crack.

The conducting paper is cut to conform precisely with the geometry of the test-

piece and the accuracy can be improved by scaling up the analogue model (of the

specimen) [104, 124]. The crack is manufactured using a razor-blade [44, 119,129]

or scalpel [104, 124]. Current injection is modelled by painting the paper with

silver conducting ink [119, 161] and potential distribution is measured by electric

wire and a potentiometer.

The graphite electrical paper analogue method has been widely applied to

determine calibration curves for various types of cracks and specimens such as V-

notched SEN(B) [82,119,155], C(T) [44,119], DCB [44], and centre-notched spec-

imens [48, 119]. Analogue calibrations for V-notched SEN(B), C(T) and centre-

notched specimens developed by Smith [119] is shown in Fig. 2.14 as examples.

The accuracy of the resulting calibration has been validated by the conformal

mapping [82, 119, 155], direct experimental [44] and numerical [44, 59] methods.

Beside the determination of calibration, the graphite paper analogue method has

been used to reveal the PD distribution on specimens and thus determine the op-

timum configuration of current and potential probes (the effect of probe positions

on PD measurement was indicated by variations of equi-potential lines and the

consequent sensitivity was related to potential gradient) [81]. Moreover, the ana-

logue method has been utilised to study the influence of the relative crack closure

area, with respect to the crack tip, on the measured PD in C(T) specimens [63].
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Figure 2.14: Calibrations of various fracture specimens. DI represents the

distance between the current input and output. [119]
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For aluminium foil the analogue method has been applied to M(T) speci-

men with symmetrical [129] and asymmetrical M(T) [104] specimens, C(T) speci-

mens [124] and specimens with a central hole [79]. Anctil et al [129] claimed that

the calibration for M(T) specimen retained its validity for SEN specimens due

to the geometrical similarity and for other M(T) specimens with different widths

(providing that the positions of lead-wires relative to centre crack were varied in

direct portion to the change in width). Anctil et al’s paper went on to compare

analogue calibration with that produced by experimental specimens. As the actual

notch had a finite width, which was different to the razor-generated slit in the ana-

logue specimen, the actual calibration curve was at a position below the analogue

curve, as shown in Fig. 2.15. The analogue calibration for C(T) specimen in [124]

showed good agreement with the results obtained from FEA and beach marking

method. In the study given by Merah et al [79], the empirical calibration equation

obtained for centre hole specimen at room temperature was then developed for

high temperature application by introducing a correction factor.
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Figure 2.15: Aluminium foil analogue and empirical calibrations for

centre-notched specimens. [129]

Three-dimensional Wax Model

A mixing of wax and graphite powder has been used to model the specimen

by Smith and Cameron [120]. As illustrated in Fig. 2.16a, the 3D analogue

calibration, which developed for through cracks cut by a blade, was shown to

coincide to the theoretical calibration [160] for small crack depth up to a/W =
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0.05 then deviate the theoretical one but approach to an experimental solution [48].

This was considered as a reasonable validation of the wax model by the authors.

They also proposed that by applying the wax analogue technique, the size and

location of a quarter crack (Fig. 2.16c) could be identified.
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Figure 2.16: (a) Comparison of calibrations obtained by the wax analogue

model [120], theoretical [160] and empirical [48] calibrations. (b) The quarter

crack. [120]

Three-dimensional Rheoelectric Tank

3D rheoelectric tank technique involves the use of a conductive electrolyte, such

as potassium chloride [125,161,168], mercury [69] and water [164], to simulate the

conductive test-piece (an example is given in Fig. 2.17). Because the insulating

insert that represents the crack can be modified to any arbitrary geometry, this

method allows the evaluation of any chosen crack profile [164, 168]. The method

has been used to generate calibration curves for different crack geometries includ-

ing straight-fronted cracks [164,168], semi-circular/thumbnail cracks [125,164,168]

and circular cracks [164]. The confidence of the rheoelectric tank tests has been

confirmed by the reasonable comparison with theoretical results [125, 164, 168],

beach marking readings [125, 164], graphitised electrical paper analogue method

[168], and FEA results [168]. A comparison given by You and Knott [168] is shown

as an example in Fig. 2.18.
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Figure 2.17: Schematic of 3D rheoelectric tanks. [168]
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Figure 2.18: Comparison of the analogue calibration curve simulated by

electrolytic tank [168] with other calibrations for through-thickness and

part-through semi-elliptical cracks.. [168]
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Additionally, Ward-Close [69] applied a scaled perspex model to establish a

series of calibration curves which indexes the extent of crack closure based on the

relation between two PDs measured near and remote the crack in a C(T) specimen.

2.3.3.6 Calibration Curves under Fatigue

Non-linear Calibrations

Several works have determined calibration curves for several specimen geome-

tries by DCPD/ACPD methods and obtained a curved/non-linear relation be-

tween PD and crack lengths [49, 50, 59, 77, 82, 131, 135, 156–159]. An empirical

calibration curve for C(T) specimens was developed by using DCPD [50] as a pre-

condition for R curve determination, which was approximated by a power fitting

function in a range of 0.6 < a/W < 0.8. The calibration function was given by

VN =
(
1.5× a

W

)2.9
+ 0.605 (2.8)

where VN is the normalised PD excluding variations in experimental equipment

and in placements of electric leads. Similar forms of calibration have also been

reported for circular notched specimens [77]. Empirical calibrations in the form of

polynomial functions have been obtained for curved surface cracks [156], disk-

shaped C(T) [157] , C(T) [49, 156, 159, 175], SEN [135], corner notched [158]

specimens. Gilbert et al [157] reported a fourth order polynomial function for

disk-shaped C(T) specimens over the range of 0.3 ≤ a/W ≤ 0.8 as

a

W
= −0.089 + 0.381VN + 0.053VN

2 − 0.047VN
3 + 0.007VN

4 (2.9)

In a work by Na et al [159] the calibration function for C(T) specimens was as a

third order polynomial:

a

W
= −0.5051 + 0.8857

(
V

V0

)
− 0.1398

(
V

V0

)2

+ 0.0002398

(
V

V0

)3

(2.10)

where V0 is the reference PD corresponding to a/W = 0.241.

With application of multi-frequency ACPD methods [126, 135], empirical cal-

ibrations for SEN specimens were expressed by second order polynomials under

various frequencies. The polynomial functions given by [126, 135] are shown re-

spectively,

V

V0

= 0.4610 + 0.5545
( a
L

)
+ 0.1509

( a
L

)2
(203 kHz)

V

V0

= 0.3443 + 0.6718
( a
L

)
+ 0.1873

( a
L

)2
(127 kHZ)

V

V0

= 0.2335 + 0.7936
( a
L

)
+ 0.2077

( a
L

)2
(17 kHz)

(2.11)

V − V0 = −5.092 + 25.906a+ 7.0a2 (0.2 ≤ a ≤ 6 mm, 30 kHz)

V − V0 = −0.016− 0.614a+ 43.39a2 (0.2 ≤ a ≤ 0.43 mm, 90kHz)

V − V0 = −5.092 + 25.906a+ 7.0a2 (0.2 ≤ a ≤ 6 mm, 120 kHz)

(2.12)
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where L is the specimen length. Another second order polynomial function for

CC specimens (in composites) was given by [158]

a

W
= −0.074447 + 0.158935

(
V

V0

)
− 0.007054

(
V

V0

)2

(2.13)

Linear Calibrations

Linear relationships between PD across the crack and the crack length or be-

tween the normalised potential and crack length were also obtained in several

experimental works [23, 24, 37, 38, 78, 141, 154, 155]. The linearity of calibration

curves was regarded as an advantage of the PD methods over the other NDT

methods [45, 78]. By applying DCPD methods, McIntyre and Priest [23] ob-

tained empirical calibrations for SEN, C(T) and WOL specimens (schematics are

shown in Fig. 2.1g) which displayed linearity up to about a/W = 0.7 (note that

the current was supplied from notched faces for all the geometries). Austen and

Walker [154] established a series of empirical calibration functions for C(T) spec-

imens containing different initial notch depths and in various sizes and materials.

A unique linear calibration curve has been derived from all geometrically similar

C(T) specimens providing that the current lead distance was remained in con-

stant proportion. Wei and Brazill [38, 141] employed both ACPD and DCPD to

monitor crack growth in C(T) specimens where the experimental data could be

approximated well be a third order polynomial as:

a = 15.9 + 52.0

(
V − V0

V0

)
+ 26.0

(
V − V0

V0

)2

− 41.4

(
V − V0

V0

)3

(2.14)

It was noticed that in an initial range extended to a = 4.5 cm (corresponding to

a/W = 0.6), experimental data presented in [38, 141] exhibited a linear relation

between normalised PD and crack lengths. The linearity of calibrations in ACPD

methods for SEN specimens has been reported by [24,37,78,155].

2.3.4 Identification of Crack Shapes and Locations

For an arbitrary crack without prescribed information (i.e. without unknown lo-

cation and shape), the location of the defect can be detected by coarse observation

of the electrical potential distribution, followed by fine inspection in the suspected

region. Below, a short review is presented which summarises several papers in-

volving various methods for identifying the shapes and locations of cracks.

Identification of defects within structures, such as tube-shaped specimens, has

been evaluated by several studies. A boundary element based method was pro-

posed to identify the shape of a surface defect on a tube [176]. Fig. 2.19a shows

how Φ and Ψ, the electrical potential and current (stream) functions respectively,

may be used to transform coordinates such that Laplace’s equation (which Φ and

Ψ must satisfy) can be conveniently solved. This technique benefits from constant
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potential and stream on a boundary with the transformed domain being rectan-

gular in shape. This enabled the transformed equations to be solved by applying

the boundary element method and hence identify the defect shape. The numerical

predictions compared well with known shapes of a single crack, multi-cracks, and

a V-shaped crack. For the identification of crack length and crack depth of an in-

depth elliptical crack, Hashimoto et al [177] presented a procedure that indicated

crack length at specimen surface by the distance between a pair of inflection points

of PD distribution by using a series of calibration curves for different crack aspect

ratios. In a paper given by Chen et al [121], a single crack, an inclined crack and

double inclined crack emended on pipe surface were detected and characterised

with respect to crack length and inclined angle by observing a contour map of

normalised potential on the pipe surface. In the contours, normalised potential

values at selected points (distributed throughout the surface at certain horizontal

and vertical positions) were computed by FEA and the difference of potential val-

ues between neighbour points calculated and compared with a proposed criterion

that was determined as 0.01 for the 304 Stainless Steel (SS304) used in this study.

Neighbour points satisfying the criterion were marked so that finally the location,

size and angle of the crack was visible. A sensor based on the induced current PD

method, which was a developed ACPD method and used an induction coil near

the specimen surface to supply AC, was developed and applied to measure PDs

around circumferential cracks and axial cracks embedded into the pipe wall [178].

A peak of normalised PD measured near a crack (called Representative-VN) was

assumed as the detection of the crack. A linear relation between the peak poten-

tial and crack depth that was approximated numerically and used for computing

the crack length based on measured Representative-VN , as illustrated in Fig. 2.20.

(a) (b)

Figure 2.19: (a) Boundary conditions of potential distribution around a 2D

surface defect. (b) The transformed domain containing a regular shape. [176]
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Figure 2.20: (a) Schematics of PD distribution around an surface defect and the

Representative-VN . (b) The linear relation between R-NPD and crack

depth. [178]

Abé et al. have proposed techniques to identify plural parameters of 3D surface

cracks in homogeneous body [179] and 2D surface cracks in inhomogeneous strips

[180]. Saguy and Rittel [146] put forward a method for identifying the location

and size of a straight crack (Fig. 2.21a) inside a rectangular specimen using a

multi-frequency ACPD approach based on a numerical model. When evaluating a

‘bottom crack’, as shown in Fig. 2.21a, the author noticed that the VN remained

constant until the skin effect was increased to half of the un-cracked specimen

thickness (the drop occurs at δ/(T − a) = 0.5, T is the specimen thickness in Fig.

2.21b), i.e. the potential field was disturbed by the bottom crack at a depth half of

the un-crack thickness and deeper. Without an explanation of how a value of 0.5

was determined, this criterion was used to reveal the upper un-cracked depth above

the internal crack, then the lower un-cracked depth after flipping the specimen.

The multi-frequency ACPD method has also been applied to predict the depth

of a bottom crack by Li et al [11], with a particular focus on magnetic materials

(steel) in a certain frequency range (5-15 Hz). In the presented method, measured

VN for certain crack depths were found to vary linearly with operating current

frequency and a function relating crack depth to the fit gradients were developed

by FEA. Experimentally, the bottom crack depths predicted by the slope-depth

function showed good agreement with known crack depth (within an error of <

10%). A 3D identification method of semi-elliptical surface cracks was presented

and numerically validated by Tada et al [181, 182]. The analysis was based on

the electrical PD distribution measured by introducing a multiple-probe DCPD

sensor that covered a relatively large specimen surface around the crack. Very

recently, limited results have been presented by Buss et al for the determination

of crack profiles using frequency sweep impedance signals [2]. The modulus and

phase angle of impedance signals were expected to enable identify the geometries

of specimen (such as cylindrical or square specimens) and crack features (such as
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CC or edge crack).
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Figure 2.21: (a) The surface and bottom cracks investigated by Saguy and

Rittel [146]. (b) The normalised PD ratio when the skin depth equals half of the

un-cracked specimen thickness. [146]

2.3.5 Optimisation

2.3.5.1 Probe Configuration

A compromise between sensitivity and reproducibility of measurement should be

taken into consideration when choosing the positions for current injection leads

and potential measurement probes [81, 117, 140]. In an early study by Ritchie,

Garrett and Knott [81], the graphitised electrical analogue paper method was

used to determine the optimised positions of electrical probes. As illustrated by

equi-potential lines in Fig. 2.22, the uniform current injection introduced from

the end surfaces of the specimen was recommended for SEN(B) specimens, while

for C(T) specimens the contact area of current injection on the top face was

suggested. For C(T) specimens made of aluminium a point contact by screwing

was preferred because reproducible area contact, brazing employed in steel, for

example, was inapplicable and other area contact methods such as bolts and glues

resulted in poor reproducibility. The most suitable positions for potential probes

was suggested to be on the top face and close to the notch ends. In the same year,

McIntyre and Priest [23] proposed the same arrangement of potential probes as the

optimum, but reported that the position of potential probes on opposite sides of

the specimen could average the length of curved cracks (also in [49]). The authors

recommended current leads to be attached on the notched face and close to the

notch for WOL, C(T), SEN(B) specimens with only consideration of sensitivity

but without reproducibility.
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(a)

(b) (c)

Figure 2.22: The optimum configuration of (a) current leads in SEN(B)

specimens, (b) current leads in C(T) specimens, (c) potential probes in SEN(B)

and C(T) specimens. [81]

Clark and Knott [82] identified the optimum position of potential probes for

SEN specimens by moving the probes along the specimen edge until reaching the

notch feature, upon which the probe travels perpendicular to the specimen edge

(i.e. along the feature length). A relatively constant sensitivity was observed

near the notch end, compared with high sensitivity at the notch tip, indicating

a low density of equipotential lines and thus a high reproducibility. The good

reproducibility for potential measurement near the notch end was also observed

in C(T) specimens by Aronson and Ritchie [58]. They continuously investigated

the results given by Ritchie, Garrett and Knott [81] for C(T) specimens based on

a FEA program and experimental work. With current applied from the top face,

they agreed with the standard configuration presented in [81], that the potential

probes attached close to the notch on the top face was optimum. They also

presented an alternative configuration for C(T) specimens made of high resistivity

materials (note that the magnitude of measurable PD dropped to 40% of that

generated by the standard configuration) that could offer a steeper calibration

curve and better reproducibility. In this case, current leads were placed on the

midpoints of side surfaces and the potential probes were positioned as before,

as shown in Fig. 2.23. The same configuration was suggested by Klintworth

and Webster [44] from the same considerations of proportional increase in PD

with crack length and less vulnerability to probes location. Via FEA simulations,

steep calibration curves have also been obtained by moving current injection from

the top to the side [132]. But differ to preceding studies in which current was

applied by point contact [44, 58], in this paper, a uniform distribution offered by

area contact was employed on the side surfaces. The alternative configuration

for C(T) specimens with current supplied at the side faces was employed by a
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Figure 2.23: The alternative configuration for C(T) specimens with current

injected from the midpoints of side surfaces. [58]

number of studies, such as [75, 163, 165, 170]. As for centre-notched specimens,

generally, the current is supplied at two ends, away from the centre crack and

the potential probes are placed across the crack [48,51,102,129,131,152,162,163].

The configuration of M(T) used in [131] is given in Fig. 2.3a. When a M(T)

specimen contains an asymmetrical crack, as reported by Pulle [102], increasing

the proximity of potential probes offers better sensitivity but also results in a

vulnerability to asymmetrical crack growth and thereby leads to underestimation

in crack length prediction. In a study of monitoring Mode III fatigue cracks under

torsion (involving application of FEA) [117], the author determined the optimum

potential probes of circumferential notch cylinder specimens to be at the notch

edge with both considerations of sensitivity and reproducibility.

In addition to a single pair of potential probes used in conventional configura-

tions, a dual pair of potential probes, which would provide a reference potential

signals measured in a crack-free region, is widely used as it allows for the nor-

malisation of the measured potential signals and compensates for variations in

current and temperature, in addition to improving reproducibility [21, 104]. Mul-

tiple potential probes have been applied to identify multiple crack parameters

including curved profile [122, 137, 156, 181, 182], inclined crack angle and loca-

tion [122, 181, 182], and to detect crack initiation and monitor crack growth in

ceramic composites [15]. For the purpose of revealing surface crack profiles, Har-

rington and Bell [183] developed a mobile probe arrangement in which a moveable

single pair of potential probes instead of multiple fixed probes was employed.

The sensitivity of crack depth/length identification for small cracks (< 5 mm) has

been further improved by a simultaneous application of a standard and a staggered

probe configuration. A directional square-electrode sensor has been developed for

creep monitoring in which creep behaviour was related to the variation of the ratio

of two resistances measured in orthogonal directions [86, 147,148].
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2.3.5.2 Normalisation

Normalising the PD (against a reference potential) and the crack length (against

a specimen dimension) helps to compensate the variation of injecting current,

test temperature, material properties (including time- or temperature-dependent

resistivity changes) and specimen thickness. If this point is taken to its conclusion,

calibration becomes a function only dependent on specimen geometry and the

probe arrangement, meaning that geometrically similar test-pieces share identical

calibrations. There are several methods to determine a reference potential value;

measuring across a specified crack length such as the initial notch [7,44,46,58,119,

141, 154, 156, 170], measuring on the initially un-cracked test-piece [119, 121, 164],

measuring on a separate reference specimen placed in the same condition as the

test-piece [12, 37, 49, 129] and measuring in a region remote from the crack so

that the current field is independent of the crack and remains homogenous (as

mentioned for the dual pair potential probes) [4,52,55,78,79,83,84,104,184,185].

Normalisations using a singular reference value allows the elimination of the effects

of inherent material properties but excludes sustaining errors due to the variations

of temperature and current during testing [152]. These errors can be accounted for

by on-line normalisations that involves the measurement of a reference specimen

or in an unaffected part of the test-piece. Additional error is likely introduced

by using a second specimen (due to slight variations in geometry and properties

specimen to specimen). Difficulties in determining the location of a second pair

of potential probes arise from limited uniform current regions in some specimens

such as C(T) [43], M(T) [152] and through crack [156] specimens.

A normalisation method that accounts for thermal emf and initial crack lengths

has been applied to generate empirical calibration curves by Saxena [51]. In this

study, the potential increase caused by emf was added into the potential normalisa-

tion and the size of the initial crack was covered by the crack length normalisation.

The resulting empirical calibration curves were shown to be independent of ma-

terial and temperature (similar calibration curves were obtained for A470 steel at

538 ◦C and SS304 at 594 ◦C) and provided accurate predictions of crack extension

with error of less than 10% under creep.

2.3.5.3 Thermoelectric Effect

The emf is generated due to a temperature difference at connections between the

test-piece and the electric probes and produces an error in the PDs superposed on

measured signals. The effect of emf can be reduced by using electrodes made of

the same, or closely similar, material as the test-piece [125, 139, 150, 152] because

of similar thermal material parameters. Potential signals can be measured by

periodically switching on and off the operating current [4, 51, 52, 79, 83, 102, 104,

128,152,184] or altering the current direction [128,152,177], then the PD between

two readings are calculated as the real output signal caused by crack extension
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with a minimised emf effect.

2.3.6 Effects and Errors on Potential Difference Measure-

ments

2.3.6.1 Effects: Specimen, Notch and Crack Geometries

Calibration curves and PD measurements are sensitive to the crack/notch geome-

try [3,4,47,58,131–133], the specimen geometry [4,47,51], the arrangement of cur-

rent injection [3,4,51,58,132] and the location for potential measurements [4,47,51]

(the latter two factors have been covered in Section 2.3.5.1). In this section, stud-

ies relating to the effect of specimen geometries, crack and notch geometries will

be reviewed.

Specimen thickness has a significant effect on generated calibration curves,

as observed in M(T) specimens by beach marking [152]. It was concluded that

the effect of thickness could be minimised by: 1) normalising measured PDs by

potential across a reference crack rather than in an unaffected region away from

the crack, and 2) decreasing the distance between the voltage probes across the

centre notch. The significant effect of specimen thickness on calibration has also

been discussed in an independent study [133], in which the influence of three

geometrical parameters of a rectangular specimen on the PD measured across a

through-width axial crack were studied using a 3D FEA model. The rectangular

specimen containing a through-thickness surface crack is shown in Fig. 2.24a.

The effect of specimen width and length (W and L in Fig. 2.24a) on calibration

was almost negligible for shallow cracks while the effect of thickness (T in Fig.

22a) was noticeable for large crack depths. The variation in calibration curves for

through-thickness surface cracks, caused by different specimen thickness, is shown

in Fig. 2.24b. For larger specimen thickness, PDs increased as crack extended up

to deeper crack depths and at lower increasing rate.
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Figure 2.24: (a) Geometries of the rectangular specimen and the through-width

axial crack. (b) Effect of specimen thickness T on calibrations. [133]
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The electrical conducting paper analogue method has been applied to centre-

notched plates to determine empirical calibration curves by Smith [119]. In Fig.

2.14c in Section 2.3.3.5, calibration curves for cracks initiated from centre notches

with different elliptical ratios, including notch shapes of slit, circle and ellipse,

varied slightly for small crack lengths (a/W < 0.4) but were coincident for larger

crack lengths. Hence, the effect of the shape of centre notches was suggested to

be neglected in practical uses. As for SEN specimens with semi-elliptical notches,

Clark and Knott [82] have analytically calculated the calibration curves for of

cracks with different elliptical ratios. It was observed that as the calibration

related potential ratios to total lengths were summed over lengths of the crack and

the varying notch, the effect on potential increased caused by crack growth was

ambiguous. A comparison of analytical calibration curves of cracks initiated from

V-shaped notches at different angles was also given in [82], as shown in Fig. 2.8 in

Section 2.3.3.2. The notch length remained constant as angle was varied, thus the

calibration curves effectively showed that the crack length predicted by a certain

increase in potential ratio increased substantially as the angle was increased.

By simulating C(T) specimens with FEA [132], it was suggested that the width

of the starter notch in C(T) specimens affected calibration curves significantly, in

which a potential increase of 25% would result in a difference in crack length pre-

diction of about 30% between the cases of zero-width and infinite-width notches.

With respect to the crack profile, the depth of a curved crack will be under-

estimated by calibrations developed for straight front cracks [9, 75, 93, 165]. Side

groove specimens are less susceptible to tunneling and thus allow better capabil-

ity of producing calibration curves [25,75,123]. Moreover, the introduction of side

grooves has been shown to have negligible influence on calibration by experimental

studies [50] and numerical schemes [165].

The effect of deflections in the path of an edge crack attributed to surface

roughness on calibrations has been evaluated by comparing calibrations for fine

and coarse serrated edge cracks [156]. The effect of small crack path deflection

was shown to be negligible, thereby the calibration curves for simple straight edge

cracks remained feasible, which was the case for commonly used specimen types

in most practical studies. Broadly speaking, current paths will flow along all free

surfaces belonging to both the specimen and the crack feature. It has been found

however that, as a surface crack grows and becomes comparatively deep, current

paths will not penetrate to the tip of the crack but flow through the surface along

the crack length, meaning that crack depths cannot be correctly resolved [14].

A decrease in crack aspect ratio (the ratio of crack length on surface to crack

depth inside material) was considered to introduce a reduction in accuracy of the

ACPD method. By way of example, when there is an aspect ratio of less than 5,

a difference between predicted and optically measured crack depths of more than

10% can be observed.
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2.3.6.2 Effects: Operating Frequency of ACPD

Crack growth in WOL specimens has been monitored by the use of a multi-

frequency ACPD method [37], in which a single linear calibration curve, given by

different frequencies (150, 1k and 10k Hz), has been found up to a crack lengths

as high as a/W = 0.9, as shown in Fig. 2.25. This led to the conclusion that the

linear slope of calibration was independent of operating frequency.
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Figure 2.25: A signle ACPD calibration curve obtained by applying

various frequencies [37]

Nevertheless, in another study that used a multi-frequency ACPD method

with a smaller range of operating frequency (93-940 Hz), it was shown that linear

slopes of calibration for SEN specimens [24] decreased noticeably with reducing

frequency and the PD across the crack was found to be proportional to the square

root of frequency (Fig. 2.26). The same correlation has also been reported by a

work monitoring surface crack on un-notched steel rods with high frequency ACPD

[134]. Other studies found that non-linear, second order polynomial calibration

curves were the result of using multi-frequency ACPD for SEN specimens with

frequencies of 17, 127, and 203 kHz [126] ((2.11)) and at 30, 90, and 120 kHz [135]

((2.12)).
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Figure 2.26: ACPD decreases with reducing frequency [24].

2.3.6.3 Error: Plastic Deformation

Plastic deformation that usually occurs under fatigue, creep, sustained/increasing

load level conditions affects the material resistivity and specimen geometry around

the crack, and in turn produces additional potential variations [37, 62, 74, 82].

Ritchie, Garrett and Knott [81] negated the configuration in which potential

probes were attached near the crack tip on C(T) specimen because of the sen-

sitivity to crack tip plasticity (also variations of probe positions). Saxena [51]

explained the discrepancies between crack lengths measured optically and those

predicted by a previously defined experimental calibration curve by the plastic de-

formation in the specimen around the crack tip. Ritchie and Bathe [59] presented

an hypothesis that by combining experimental measurements on an un-cracked

specimen and numerical analysis on fractured specimens, the PD signal caused

by crack tip plasticity could be separated from that due to crack extension. The

effect of consequent geometry deformation and resistivity change caused by plas-

tic deformation on the calibration curve has been investigated quantitatively by

Ljustell [12], which led to the conclusion that the generation of spurious poten-

tial signals was dominantly (90%) caused by geometry changes. To improve the

accuracy, similar to the suggestion given by Ritchie and Bathe [59], the use of a

reference potential measured from a reference test-piece that undergoes the same

load level and is in the same deformed state was recommended [12].

2.3.6.4 Error: Crack Closure

Crack closure (the contact between formerly opened fracture surfaces under cyclic

load), usually introduces an electrical short across the crack, thereby leading to

underestimation of PD. This has been widely observed experimentally [38,52,102,

136, 137]. There is no closed solution to eliminate the bridging effect, but the

effect can be reduced by measuring the PD at the maximum load (and therefore
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maximum crack opening) within each cycle [38,52].

2.3.6.5 Error: Temperature Variation

Error signals due to thermally induced voltage was discussed in Section 2.3.5.3.

Here the inaccuracy introduced by temperature dependent resistivity is discussed.

Temperature fluctuations during PD measurement influences the electrical re-

sistance and magnetic permeability of conductive specimens and in turn affects

the PDs. Accordingly, a temperature increase of 3 ◦C gives rise to a 1% increase in

resistivity of aluminium alloys [43]. The temperature variation can be introduced

by a few of factors such as material resistivity, current density and input method,

environmental temperature and heating/cooling methods used [152]. Noticeably,

a dependence of calibration curves on testing temperature was found by Dai et

al [78] and Campagnolo et al [3]. Therefore, constant current supply and controlled

temperature conditions, such as an immersion in an ice bath [23], is desirable [43].

Generally, normalisation of measured potentials by reference signals has been em-

ployed within several studies in order to compensate for this error (as mentioned

in Section 2.3.5.2). An experimentally determined temperature coefficient of the

test-piece was used to give an additional PD increase due to temperature increase,

which would be subtracted from the measured potential [152]. It was noted that

long warm-up times of the equipment before use helped to stabilise the tempera-

ture (5 hrs was suggested by Sidey [48] and Hosdez et al [7], 24 hrs was suggested

by Halliday and Beevers [43]).

2.3.7 Applications

2.3.7.1 Asymmetric Cracks

The effect of asymmetrical crack growth on PD measurements is shown to intro-

duce an underestimation of total crack length [102, 104]. The error increases as

the asymmetrical crack grows [103,104] and as the potential probes approach the

crack [102]. Hence a compromise with respect to the determination of the position

of potential probes between reading sensitivity and the asymmetric effect is nec-

essary [102]. The advance of an asymmetrical crack which grew from a symmetric

crack has been predicted by Read and Rfuff [103]. In this study the direction of

the asymmetrical crack (the left or the right half of the crack grew faster) was

indicated by the sign of a term denoted as the ‘asymmetric’ potential. This was

measured at two points at equal distances from the centreline, see Fig. 2.27. The

asymmetric potential vanished around symmetrical crack and became a positive

or negative value around an asymmetrical crack depending on the crack direction.

The magnitude of the crack length difference (between the left and right sides

of the centre line) was then determined by a solution to the Laplace equation

that related the potential field around an asymmetrical crack to the crack length

difference. This asymmetric electrical field expression, derived from Johnson’s
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Figure 2.27: Asymmetrical potential measured at (X,Y ) and (−X,Y ) above an

asymmetrical centre crack. [103]

formula [131], replaced the boundary conditions of a symmetrical crack by the

asymmetrical equivalent. Polynomial calibration equations for a limited number

of crack lengths and asymmetrical extensions were given. An open solution for the

expression derived by Read and Rfuff [103] has been provided using a numerical

FORTRAN program by Link et al [104]. The numerical solution is capable of the

determination of the potential response at any point in the specimen containing

either a symmetrical or an asymmetrical crack. A measurement technique was

then suggested to take the most robust utilisation of this numerical calibration.

2.3.7.2 Angled Cracks

The electrical-potential computed (EPTC) method (which relies on performing

inverse analysis on measured PD fields) [105] was developed for measuring mul-

tiple crack characteristics including the location, size and shape of 2D and 3D

surface and internal cracks in a number of studies (in Japanese). In a subse-

quent study [106], a multiple current application method combined with the EPCT

method was suspected to be able to provide enough information to quantitatively

identify a 2D crack inclined at an unknown angle, as shown in Fig. 2.28. The

multiple parameters (crack length, angle and location) of an inclined crack were

determined by a least residual method in which potential values were computed by

boundary-element analysis based on previously assumed crack parameters, then

by comparing the computed potential values and experimentally measured values

(by DCPD). The most accurate assumption was then suggested by a minimum

residual between the two. The current was injected by 5 pairs of electrical leads

alternatively and the resulting potential fields processed simultaneously by the

described method. Analytical and empirical calibrations for short surface cracks

at angles of 90◦ and 45◦ to the specimen edge have been established by using the

semi-infinite conformal mapping and graphitised paper analogue technique [155].

The analytical and analogue calibration curves agreed well for small cracks of

about a/W ≤ 0.2 for the two cases of the crack being perpendicular and at an

angle of 45◦ to the specimen edge.
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Figure 2.28: Schematics of the multiple current application method and the 2D

crack inclined at an unknown angle. [106]

2.3.7.3 Multiple Cracks

Under combined stress loading and aggressive environments, it is likely that mul-

tiple cracks will initiate [109,112]. Tada et al have conducted a series of studies on

the distribution of electrical PD fields around multiple cracks. First a numerical

method namely superposition method (SM) was applied to calculate PDs around a

semi-elliptical surface crack that accounts for the effect of back face of the cracked

specimen in case the crack size is comparable to the specimen thickness [107]. This

technique was then extended to investigate the potential field around multiple

through cracks with different lengths and in random positions [110]. A good level

of agreement was achieved between potential values calculated by SM and those

obtained by the random walk method. The superposition method has also been

investigated under the name of the ‘crack-current modification method’ (CCMM).

In particular, it has been used to investigate the potential around multiple internal

cracks under creep-fatigue conditions [111]. CCMM has been further developed

for evaluating the potential distribution around multiple inner spherical defects at

random angles [113,116]. A calibration equation for multiple inner circular cracks

with random angles was also presented, which related the PD to several parame-

ters of the defects distribution including volumetric density and mean cubed defect

radius.

A DCPD-based iterative procedure has been developed for evaluating the crack

depth of 2D multiple cracks perpendicular to the specimen top surface and parallel

to each other [108]. In this procedure, the PD at two points across the target

crack was measured by DCPD first, then the crack depth was assumed and the

PD numerically calculated based on this assumed value. Trial crack lengths were

iteratively varied until predicted and measured PD values converged. This method

required the generation of a numerical mesh covering the whole specimen, which

limited the usage for practical structures containing a wide distribution of cracks

[109]. Thus, this method was simplified by introducing a sub-region that only
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contained the target crack and its nearest four neighbour cracks at first. The

depths of two end cracks of the sub-region were assumed to be fixed, and the depths

of the other cracks were assumed. Similarly, the PDs at the two points inside the

sub-region were measured and numerically calculated, and this iterative process

was repeated until an acceptably small difference was achieved. The assumed

depth of end cracks was then changed and the same procedure repeated. If similar

results of target crack depth were given by different end crack depths then the

process ended otherwise the width of the sub-region was increased to contain more

cracks and the iterative process restarted. The effect of crack interaction has been

evaluated by using the concept of subregion [114, 115]. As the sub-region size

increases to contain more cracks, the PD across the middle crack was successively

measured by DCPD. The ratio of two successively measured PDs was proposed to

quantitatively express the effect of crack interaction arising from the end cracks

on the middle crack, with applicability regardless of crack distances.

Based on an empirical calibration equation given by FEA, a solution has been

proposed to predict the PD between two points on both sides of a target crack

among a number of 3D semi-elliptical surface cracks perpendicular to the specimen

surface, but at random angles to the current flow direction [112]. Starting from a

PD without any cracks present, the PD change introduced by the introduction of

a crack, the influence of a finite plate, and the interaction between multiple cracks

were successively added into the equation. After assuming a value of the depth of

the target crack, the PD between two points was measured directly and calculated

by the equation, and an iterative process repeated until an acceptably small value

was obtained between the two.

2.3.7.4 Mixed Model Fracture

The measurement of open cracks propagated under tension, i.e. Mode I, by the

PD method has been widely developed in many studies. It has been shown by

Ritter and Ritchie [117] that in Mode III (out-of-plane shear) fatigue under pure

cyclic loading, torsional cracks would result in electrical shorting across the crack

thereby impeding potential measurement. To minimise this effect, an additional

small axial load superposing the cyclic torsion was suggested. In this study PD

increase across a finite-width slot was measured in order to avoid electrical short-

ing. The application of DCPD has been extended to measurements of straight

cracks propagated in Mode II (in-plane shear) through the employment of spe-

cially designed specimens in which a pure shear stress field can be generated [118].

In a study considering mixed Mode problems (tension and in-plane shear) [16],

the length and orientation of inclined cracks developed in mixed Mode conditions

has been obtained by introducing a third potential probe in the middle of the

shear specimen. An algorithm based on the assumption of a linear relationship

between a ligament size measured from the crack tip to the specimen border and

the PD signal has been developed in order to automate the experimental determi-
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nation of crack growth rate and crack tip position under the same mixed loading

conditions [186].

2.3.7.5 Torsion

An empirical calibration formula has been established for circular notched speci-

mens subjected to torsion by Hay and Brown [167]. For small crack depths, the

obtained calibration equation showed good agreement with analytical solutions

provided by Clark and Knott [82] for 45◦ V-notched SEN specimens (Fig. 2.9

in Section 2.3.3.2). It was claimed that the calibration was valid up to a depth

of 2 mm. A similar study was also conducted by Ritter and Ritchie [117] which

computed the potential field at the surface of torsionally loaded circular notched

specimen by using FEA. Ritter and Ritchie stated that their numerical calibra-

tions, which were experimentally verified, were consistent with the work of Hay

and Brown [167].

2.3.7.6 Stress Corrosion

PD methods have been applied to monitor stress corrosion cracks (SSC) that prop-

agate under a combination of corrosion and fatigue loads [23,88–90,119,175,178].

In an investigation of the effects of aggressive environmental factors (water and

water vapour) on crack growth in high strength steel by Johnson and Willner [88],

crack extension was monitored by PD measurements combined with a predefined

empirical calibration curve for M(T) specimens. McIntyre and Priest [23] noticed

that rough fracture surfaces deformed by corrosion would produce electrical short-

ing and in turn reduce measurements of PD. To minimize this effect, a correction

factor that compared expected potential increase without electrical shorting to ac-

tual changes was introduced. A joint use of PD and acoustic emission methods was

applied to measure SSC extension by Santos-Leal and López [90], in which corre-

lations of measurements obtained by the two techniques were studied and used to

illustrate the acoustic emission magnitudes. For information and comparison with

both DCPD and ACPD methods [178], a modified eddy current technique which

entails two induction coils located near the surface of a test-piece was proposed to

possess higher sensitivity of continuous monitoring of SCC.

2.3.7.7 High Temperature: Fatigue and Creep Loading

The capability of PD methods to detect crack initiation and measure crack propa-

gation at elevated temperatures has been investigated in several studies [8,51,77–

79,187]. The greatest challenge for the application of PD methods at high temper-

ature lies in ambiguous potential signals, which mask the potential increase caused

by crack extension, attributed to creep deformation, microstructural changes, and

bridging between crack surfaces [42]. Errors in crack extensions during creep
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(under static loading at 500 ◦C) obtained between measured values and those pre-

dicted by calibrations predefined under fatigue loading were supposed to be due to

changes in geometries of the specimen and crack tip caused by high temperature

behaviour deformation [51]. Moreover, crack propagation is faster under elevated

temperature, which was observed on powder metallurgical nickel-based superalloy

by Na et al [159].

PD methods offer reliable tools to detect crack initiation and monitor crack

propagation under fatigue loading at elevated temperature. Usually as the cycles

of fatigue load accumulate, PD remains constant at first, then begins to increase

gradually after the onset of crack initiation or propagation from notch root [77,79].

Note that whether the noticeable increase of PD should be regarded as indication

of crack initiation or propagation remains as an open question, which depends on

the resolution of the technique applied. Clear transition from seemingly constant

to increasing DC potential signal has been observed on circular SS304 notched

specimens in both strain and stress controlled fatigue tests at 500 ◦C [77]. A similar

transition in AC signals due to crack initiation and growth has been obtained on

SEN specimens of Ti64 in isothermal fatigue test at 400 ◦C (while in TMF of

Ti6246, potential signals increased continuously at increasing growth rates without

the initial constant region) [78]. Pure fatigue tests under sustained loading were

conducted on SS304 centre-circular notched specimens (Fig. 2.29) at 600 ◦C by

Merah et al [79]. As displayed by Fig. 2.29b, a sudden jump in DC potential

signal, due to notch opening and notch induced plastic deformation was followed

by a constant period until the end of the crack initiation stage, then a gradual

increase and some subsequent step changes indicated crack propagation. In this

case, the crack initiation stage was suggested to be determined as a 1% increase

in normalised PD. The step changes occurring at elevated temperature in Fig.

2.29 were explained by the contact of multiple cracks and secondary cracks. The

behaviour of the same specimen under creep-fatigue tests were investigated in

a sequent work given by Merah [83]. Different to pure-fatigue testing reported

in [79], during sustained loading the potential starts increase immediately after

the initial jump without a stable region (Fig. 2.29c), hence the initiation was

suggested to be determined by a deviation from linearity in DCPD-COD curves

(crack tip opening displacement, see details in the Section 2.3.7.10).
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Figure 2.29: PD variations with the number of applied cycles (a) at room

temperature, (b) at high temperature (600 ◦C) and (c) at high temperature (600
◦C) with hold hour th of 5 min, (d) the SS304 centre-circular specimen. [79,83]

Empirical calibrations, established under fatigue loading at over 500 ◦C, for

C(T) and CC(T) specimens made of SS304 and A470 steels, have been used to

predict crack extensions during creep under static loading with and reasonable

accuracy (maximum error of less than 10% compared with results measured by

beach marking) by Saxena [51]. Linear empirical calibrations under isothermal

and TMF testing conditions have been established by ACPD by Dai et al [78], in

which the linear slopes were shown to decrease with increasing temperature and

be independent to TMF cycle type, i.e. similar slopes were given by out-of-phase

and in-phase conditions. However, it was noticed by Merah et al [79] that higher

sensitivity in calibrations was exhibited at 600 ◦C than at room temperature. This

was rationalised by the increase of crack tip plastic zone radius at high tempera-

ture. The disagreement in regard to the dependency of calibration sensitivity on

temperature is shown in Fig. 2.30. To enable the determination of crack length

under high temperature and creep conditions, two corrections were suggested to

extend the calibration curve obtained at room temperature (‘Prediction 1’ in Fig.

2.30b) into a pure-fatigue equivalent at high temperature (‘Prediction 2’ in Fig.
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2.30b) [79] and also then into a creep-fatigue equivalent [83].
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Figure 2.30: The effect of sensitivity of calibrations (a) ACPD calibration curves

at 330 ◦C and 480 ◦C for Ti6246 [78], (b) DCPD calibration curves at room

temperature and 600 ◦C for SS304, Prediction 1 – given by a calibration function

established at room temperature, Prediction 2 – the calibration function was

corrected for high temperature [79].

2.3.7.8 Creep Damage

PD methods have been used to evaluate creep damage, especially at early stages,

which benefit from a detectable reduction of electrical resistivity at initial stages,

whereas such a small level of creep damage is undetectable by most other methods

such as microscopy [41, 128]. A directional quasi-DC (i.e. low frequency AC)

ACPD sensor was developed for in-situ monitoring creep damage [86,147,148], as

shown in Fig. 2.31. Additionally, PD methods have been used for creep damage

evaluation with association to distribution of internal cracks [85] and creep strain
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[20, 87, 149, 188]. Results of creep damage evaluation derived from PD methods

obtained before 2010 can be found in a review by Sposito et al in 2010 [41].

Figure 2.31: Schematics of a directional ACPD sensor for in-situ creep

monitoring. [147]

PD methods have been employed to estimate the toughness degradation in

1Cr-1Mo-0.25V steel by Yu et al [128]. As shown in Fig. 2.32, opposite but cor-

responding variations in electrical resistivity and fracture appearance transition

temperature (FATT), which is measured for the remaining life of subjects thus

represents the material toughness, with respect to aging times (at 630 ◦C) have

been found in that resistivity decreased substantially while FATT increased sub-

stantially as aging time increasing up to 5000 hrs. Such synchronous correlation

between material resistivity and toughness enabled PD methods to predict the

degradation of toughness.
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Figure 2.32: Correlation of electrical resistivity and FATT with aging time. [128]

2.3.7.9 Sustained Load

PD methods have been used under dwell time and sustained conditions [18,84,91,

92], for example, to monitor subcritical crack growth in AM350 SS with effects of
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environmental factors [91], and to study creep crack initiation and propagation in

IN-X750 [84]. In a study of fatigue crack growth with an introduction of dwell-

time at maximum load [92], DCPD was unable to detect crack growth during a 45

min dwell, due to low crack growth rates (less than 10−4 m/cycle). In following

sustained load tests for periods of 170 hrs, no crack increase was recorded until the

maximum stress intensity factor was increased up to 36.8 MNm−1.5, as illustrated

in Fig. 2.33. The infeasibility of DCPD has been agreed by Gardiner [93], in

which DCPD failed to indicate crack growth that was been clearly revealed by

a heat tint. Nevertheless, crack growth rates for sustained load conditions have

been successfully obtained by PD methods [18, 84], particularly for high growth

rate cases.
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Figure 2.33: Crack growth under sustained load for Ti-6Al-4V bar. No rapid

crack growth occurred until at Kmax = 36.8 MNm−1.5. [92]

2.3.7.10 In Crack Opening Displacement Tests, R-curves and Crack

Initiation Determination

As a further application of monitoring crack growth, PD methods have been widely

applied to crack opening testing for the determination of crack initiation and crack

growth resistance curves in terms of J-integral or COD, δ [53].

An increase in PD signal has been observed as a response to crack initiation

and in turn the feasibility of DCPD in detecting crack extension has been vali-

dated [139]. The determination of R-curves by PD methods is achieved in three

steps. Firstly, PD signals are measured by DCPD/ACPD while load-line dis-

placements/crack mouth opening displacement can be recorded (e.g. by means of

a clip gauge). Next, the measured PDs are transferred into crack length based

on an appropriate calibration. Lastly, the J or δ at all data points were cal-

culated using available standard definitions, and hence J or δ resistance curves

against crack growth are established. The validity of R-curves resulted from the

PD methods has been validated by the agreement between curves obtained from
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the regular multi-specimen technique [25, 74–76, 189], the unloading compliance

method [25,49,50,73], and other methods, such as the key [49] and normalisation

methods [5, 189].

There are several advantages of PD methods in terms of determining R-curves.

The determination of R-curves using these techniques can be completed with a

single specimen, which liberates the use of multiple specimens as for other methods

and thus reduces experimental cost and the influence of material scatter [74, 76].

PD methods can be applied in quasi-static and rapid load rate testing [49, 50,

189], noting that elastic compliance techniques are not readily adaptable to rapid

loading because periodic unloading after specific crack growth interval is necessary

for measuring the compliance of the specimen. Moreover, unlike the compliance

method in which only discrete points could be provided, continuous curves are

achievable by PD methods [50].

Based on different arrangements of current leads on C(T) specimens, there

are two types of indications of crack initiation that will be exhibited on potential

signal to clip gauge displacement curves (PD-U) [25] one with current injected on

the top surface containing the crack mouth indicates the initiation by a minimum

potential. The other, with current leads positioned on side faces, points out ini-

tiation by a deviation from an initially linear relation. With respect to second

indication, the linear portion method, the determination of crack initiation by the

intersection of the blunting line with J R-curves was preferred since the deviation

criterion gives lower J0 in materials with relatively high ductility [25].

The minimum potential signal indication has been validated in other studies

[37, 74, 76]. The initiation point recognised by ACPD by Okumura et al [74] only

coincided with actual initiation points obtained from the multi-specimen method

at low frequency (150 Hz) but gave earlier predictions at high frequency (4.7 kHz)

for high initiation COD (greater than 0.1 mm). The influence of current operating

frequency on PD signals was reported by Gibson [76], that Jmin decreases with

increasing frequency, which led to the conclusion that the minimum ACPD signal

was not always suitable for detecting crack initiation. It was argued that PD

signals should be corrected for the contribution from the effect of stress on the

resistance of the specimen and the initiation could be determined by a deviation

from linearity of the PD-J relationship. The behavior of the change in a linear

slope in PD-U curve has first been observed by Lowes and Fearnehough [73] in

using DCPD to determine the initiation of ductile tearing. The linear criterion of

ductile crack initiation was later verified by a number of studies [50, 75, 83]. In

some rapid loading testing conducted on ferromagnetic materials by Vassilaros and

Hackett [50], a pulse of PD occurred in the early part of the loading cycle, which

hindered the determination of crack initiation using the linear criterion, which

was presumably due to capacitance effect [50] or ferromagnetic properties [189].

The PD pulse that arise in dynamic loading tests of ferromagnetic materials have

been investigated by Oh et al [189], which has led to the conclusion that the peak
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height and recovering rate of the pulse tent to increase and decrease with increasing

loading rates respectively. Due to the abnormal potential pulse that interfered the

detection of crack initiation, a backtracking technique in which the crack initiation

was tracked back from the measured final crack lengths was recommended.

2.3.7.11 Crack Closure Identification

As mentioned in Section 2.3.6.4, the closed area between two previously opened

fractured surfaces would lower the measured PD across the crack. The increase

in output potential in the curve of potential and cyclic load is an indication of

contact of two crack surfaces.

PD methods have been applied in order to detect crack closure behaviour on

fractured specimen surfaces in fatigue tests [63–71]. Crack closure in titanium

and titanium alloy specimens has been observed by Irving, Robinson and Beev-

ers [63, 65] in vacuum of 1.33 mPa (10−5 torr). Closure identification by DCPD

failed at pressure higher than 10−3 torr, which was considered to be due to the

results of geometry deformation at crack tip attributed to the air environment.

Dissenting from the findings given by Irving et al [63,65], Bachmann and Munz [67]

and Pippan et al [70] suggested that the failure in detection of crack closure in

air is due to the deformation of an insulated oxide layer that increases contact

resistance and covers the PD caused by closure. This forming of oxides on cracked

surfaces is the main objection to the use of PD for crack closure measurements [72].

However, the success of application of PD methods for crack closure measurements

in other studies [64,66,71,72] has led to the conclusion that the technique provides

reliable results in both vacuum and air environments. By applying the rheoelectric

analogue technique, it was claimed that the change in PD caused by crack closure

was related to the relative position of closure with respect to the crack tip [68].

A series of calibration curves revealing the extent of assumed planar and square

crack closure has been proposed with the use of the perspex analogue method [69].

2.4 Electromagnetic Fields in Conductors

In ACPD experiments, the time-varying fields generated around cracks or features

are different to the time-invariant fields which deal with stationary current and

charge distribution. Under time-varying conditions, the electric fields and mag-

netic fields are interdependent, i.e. the electric field intensity (E) (and electric flux

density (D)) is coupled with magnetic flux density (B) (and magnetic field inten-

sity (H)). In this section, a brief description of the electromagnetic model will

be presented first; then the approximating equation of skin depth δ in cylindrical

samples will be derived.
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2.4.1 Time-Dependent Fields and Maxwell’s Equations

For linear and isotropic medium, the relations between electromagnetic field vec-

tors are specified by the constitutive relations of

D = ϵE J = σE B = µH (2.15)

where ϵ is the permittivity, σ is the conductivity, and µ is the permeability. In a

homogeneous medium, ϵ, µ, and σ are assumed to be constant everywhere within

the material. The above constitutive relations will be assumed to hold in this

work.

The electrostatic fields can be defined by the two postulates as

∇× E = 0 (2.16)

∇ ·D = ρ (2.17)

where ρ is the volume density of free charge. (2.16)-(2.17) imply that the electro-

static field is generated by a scalar source, e.g. a charge or a charge density, thus

the field is irrotational (i.e. conservative) and nonsolenoidal.

Another two basic postulates held for the magnetostatic models are

∇ ·B = 0 (2.18)

∇×H = J (2.19)

(2.18) represents the fact that a magnetic monopole does not exist. The two

equations state that the magnetic field is rotational (i.e. non-conservative) and

solenoidal.

These four postulates were experimentally evaluated and have been accepted

as fundamental relations for electrostatic and magnetostatic models [144,190–193].

The coupling between the electric and magnetic field has firstly been described by

Faraday’s law of induction, which can be formulated as∮
C

E · dl = −dΦ

dt
= − d

dt

∫
S

B · ds (2.20)

where Φ is the magnetic flux through the surface S, C is the bounding contour of S.

Faraday’s law states that the induced emf within a conductor (or circuit) is equal

to the negative of the time rate of change of flux linking the circuit [144,190–193].

By applying the Stokes’ theorem to the left-hand side of (2.20), (2.20) becomes∮
C

E · dl =
∫
S

(∇× E) · ds = − d

dt

∫
S

B · ds (2.21)

where the surface integral of the last two terms may be taken off. Thus the

derivative form of Faraday’s law can be obtained as

∇× E = −∂B

∂t
(2.22)
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(2.22) suggests that in a time-varying field, the two pairs of postulates of time-

invariant fields must be modified to show the coupling relation between E and

B.

Magnetic vector potential (A) is defined by

B = ∇×A (2.23)

Obviously the differential equation in (2.23) does not completely define A unless

the divergence of A is specified as well. Arbitrarily, the second definition of

∇ ·A = 0 (2.24)

is adopted in this work. By substituting B in (2.22) by the definition of A, (2.22)

becomes

∇× E =
∂

∂t
(∇×A) → ∇×

(
E+

∂A

∂t

)
= 0 (2.25)

Since the term in the parentheses is curl-free, it can be written as the gradient of

a scalar as

E = −∂A

∂t
−∇V (2.26)

where V is the scalar electric potential. In static fields, the time-dependent term

in (2.26) vanishes, which is consistent with the definition of V . While for elec-

tromagnetic models considered in this work, E field is non-conservative and must

be determined both from the charge distribution through the ∇V term and from

time-varying current through the ∂A
∂t

term [190–193].

2.4.2 Skin Effect in ‘Good’ Conductors

As stated by Faraday’s law, if a good conductor is connected to an AC source,

eddy current will be inducted to oppose the original current flow and confine the

current to flow within a thin layer beneath the conductor surface (see Section

2.3.1). In this section, a detail derivation of δ in cylindrical samples (i.e. constant

angular coordinate) will be presented.

The differential forms of Maxwell’s equations are listed below for easy reference,

∇× E = −∂B

∂t
(2.27)

∇×H = J+
∂D

∂t
(2.28)

∇ ·D = ρ (2.29)

∇ ·B = 0 (2.30)

By taking curls of both sides of the Maxwell’s equation of Faraday’s law (2.27)

and applying the constituent relation of B in (2.15), it can be obtained that

∇×∇× E = − ∂

∂t
(∇×B) = −µ

∂

∂t
(∇×H) (2.31)
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The expression relating to H of (2.31) can be eliminated by substituting the

Maxwell’s equation of Ampère’s law (2.28), as

∇×∇× E = −µ
∂

∂t

(
J+

∂D

∂t

)
(2.32)

In a good conductor (as assumed for the experimental samples in this research),

the conduction current J is generally much larger than the displacement current
∂D
∂t
. Hence (2.32) may be simplified to give

∇×∇× E = −µ
∂J

∂t
(2.33)

The E term on the left-hand side may be eliminated by applying the constituent

relation of J in (2.15), there is obtained

∇×∇× J = −µσ
∂J

∂t
(2.34)

Recalling the vector identity of ∇ × (∇× J) = ∇ (∇ · J) − ∇2J. With the first

term on the right-hand side to be zero, (2.34) becomes

∇2J = µσ
∂J

∂t
(2.35)

This equation is known as the diffusion equation for J. Other field quantities

like H, E, B, and D also obey similar equations [193]. For a field oscillating in

a sinusoidal wave in z-direction (assuming a polar coordinate), i.e. J = Jze
jωt,

(2.35) can be written as

∇2Jz = jωµσJz (2.36)

The general solution for the partial differential equation above is given by

J = Aerz +Be−rz (2.37)

where r2 = −jωµσ, A and B are coefficients. By substituting
√
j = (1 + j) /

√
2,

the solution becomes

J = Ae
(1+j)z

δ +Be−
(1+j)z

δ (2.38)

where δ is the skin depth or the depth of penetration, which is defined by

δ =

√
2

ωσµ
(2.39)

The boundary conditions at the center and on the surface of the conductor may

be applied to calculate for A and B. Boundary conditions are given as

1. At the center (z ≫ σ): J = 0.

2. On the surface (z = 0): J = J0 where J0 is the current density at the surface

of the good conductor.
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The two coefficients can thus be determined to be

A = 0 B = J0 (2.40)

AC density in a good conductor decays exponentially from the surface value, as

described by

J = J0 exp
[
− (1 + j)

z

δ

]
(2.41)

2.5 Internal Impedance of Conductors

The calibration methods for PD methods reviewed above in Section 2.3.3 are ‘for-

ward methods’ in which the situations of inside cracks are inferred by measured

PDs. In the present work, a ‘reverse method’ is sought to figure out the sizes and

shapes of cracks. The reverse approximation is based on measured parameters of

frequency-dependent impedance, i.e. Rac and Zint of conductors. The determi-

nation of frequency-dependent impedance parameters in skin effect problems has

been widely investigated. A short review of the skin effect problem in conductors

will be presented in this section.

Kennelly, Laws, and Pierce [194] have published early experimental data of

resistance ratio Rac

Rdc
(Rdc is direct current resistance) for an isolated conductor

in circular cross-section. The measurements have been further extended to a fre-

quency band up to 100 kHz by Kennelly and Affel [195]. Dwight [196] has proposed

a series formula for calculating resistance ratio of an isolated tube and a thin strip

but the method for the later case is only applicable for low frequencies. Moreover,

these formulas are in the form of infinite series and involve formidable iteration,

which restricts the wide application of the formulas. In order to compare results

measured under different conductions, i.e. material, dimensions, and frequencies,

the author [196, 197] has proposed the ‘principle of similitude’ in which Rac

Rdc
were

plotted against a parameter of psim =
√

f
R0

(R0 is the Rdc in Ω/1000 feet) rather

than the frequency f . The principle of similitude has been widely adopted to

represent experimental measurements of Rac

Rdc
for rectangular conductors in various

respect ratio, e.g. by Forbes and Gorman [198] and Haefner [199]. Cockcroft [200]

has applied an analogy between rectangular conductors and ellipse of large ec-

centricity, combined with the method of the Schwarz-Christoffel transformation

to calculate field distributions. By applying the ‘incremental inductance rule’,

Wheeler [201] has derived a series formulas for computing impedance parameters

for several actual cases including isolated and parallel wires, transmission lines,

and coils. The concept of ‘partial inductance’ has been widely used to evaluate

frequency-dependent parameters for rectangular conductors [202–204]. A series

of papers given by Silvester have derived a modal network theory for predicting

skin effect and calculating Zint for isolated non-magnetic rectangular conductors

with different aspect ratios [205–207] and then extended to multiple-conductor

structures [207, 208]. In the modal method, the total conductor impedance is

57



represented by a modal network including a large number of individual modal

branches; the conductance of each network branch is measured by eigenfunctions

of a distance matrix which relates only to the sectional shape of the conductor

(see more detail in Section 3.5). Waldow and Wolff [209,210] have presented a nu-

merical method, in which Rac and Zint of rectangular conductors are solved from

integral equations of A, and verified Haefner’s measurements [199]. A 2D FEA

method has been applied to solve the skin effect and proximity effect problems for

strip transmission line by Costache [211]. Tsuk and Kong [212] have calculated

the frequency-dependent parameters at low and high frequency by two different

methods thereby developed a hybrid technique to solve the skin effect problem for

transmission lines with arbitrary cross-section.

Now the solution of frequency-dependent parameters for an isolated conduc-

tor of circular cross-section is available and well know [213–215]. More detailed

introduction of the closed problem will be presented in Section 3.2. The solu-

tion suggests that, for well-developed skin effect, the real and imaginary part

of Zint for cylindrical conductors are equal, which agrees with Wheeler’s incre-

mental inductance rule [201,216,217]. However, Antonini, Orlandi, and Paul [218]

have argued that the equality between high-frequency internal reactants and high-

frequency resistance was invalid for rectangular conductors. They have stated

the importance of a separated determination of Zint and developed a numerical

method which derived from a 2D integral equation of current distribution over

the cross-section [193, 219] for computing both the two parameters. The above

numerical method has been developed for better performance by other investiga-

tors [220,221].

More recently, Rong and Cangellaris [222] have derived an expression for cal-

culating Zint of a conductor with arbitrary cross-section by applying the Thévenin

theorem. Then the method has been extended to inhomogeneous conductors by

Demeester and Zutter [223]. Zhilichev [224] has proposed an analytical solution

which based on the Grinberg’s method for computing current distribution and

Zint of cylindrical conductors. Additionally, Zhilichev [224] has also presented a

detailed investigation of the effect on field distribution arose from the finite length

of the conductor and the sizes and locations of current electrodes. Payne [225,226]

has presented a semi-empirical equation which approximates the current crowding

by the proximity loss in parallel wires for computing frequency-dependent Rac of

rectangular conductors.

In the next Chapter, several of the aforementioned theories will be expounded

upon in greater detail and applied to calculate Zint for some of the experimental

samples (i.e. the plain samples of different cross-sectional shapes).
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2.6 Conclusions

� An overview of many common NDT methods, currently proposed for the

detection and measurement of cracks, is given. The techniques discussed are

optical, compliance, ultrasonic, acoustic emission, eddy current, ACFM, and

PD methods.

� PD methods have been widely applied to the detection of crack initiation

and the subsequent monitoring of crack growth as discussed in this review.

Also presented is the use of PD in identifying crack closure/opening.

� These methods have received wide acceptance in various applications as reli-

able NDT tools, due to a number of advantages offered by the methods. Such

advantages include the fact that these technologies are capable of providing

accurate and continuous measurements with low cost and simple installa-

tion. Moreover, PD methods exclude the requirement of visual access and

are feasible in extreme service conditions such as high temperatures and

other harsh conditions.

� Basic experimental systems of DCPD and ACPD have been presented and

explained. In excitation circuits of the systems, DC/AC is produced by a

stable power supply and injected to the specimen. The output signals, i.e.

the PDs, are then measured, amplified and recorded in measuring circuits.

� Compared with DCPD, ACPD takes advantage of the skin effect, in which

AC are governed to flow within a thin layer beneath the specimen surface.

Hence, ACPD requires lower current input yet offers higher sensitivity (due

to the reduced dilution of the flowing current due to a lower area in which this

current flows). ACPD also offers better noise rejection via the use of lock-in

amplifiers and is immune to DC-induced emf. However, measurements are

sensitive to the capacitance effect and the installation is more expensive than

for DCPD.

� Calibration curves (for crack length v.s. PD measurement) can be deter-

mined analytically, numerically or by direct or analogue experimental mea-

surements. Such calibration curves/functions have been established for var-

ious types of specimens in many studies reported in the literature. However,

calibration is not the unique technique to evaluate cracks using PD methods.

Crack shape, size and location have also been achieved by non-calibration

methods.

� With consideration of sensitivity and reproducibility of test results, close

proximity of the measurement probes with the notch has been recommended

as optimum for both C(T) and SEN(B) specimen types. The optimum

attachment of current injection leads is suggested to be on the top-faces with
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area contact for C(T) specimens and on side-faces with uniform application

for SEN(B) specimens (see Fig. 2.30b). Additionally, the placement of

current leads at mid-points of side-faces of the C(T) specimen geometry (see

Fig. 2.33) has been shown to be capable of obtaining steeper calibration

curves but at the cost of the magnitude of the generated PD.

� Normalisation of PD measurements and crack lengths enables the elimina-

tion of errors caused by variables such as unstable temperature and material

properties. Several methods of determining the reference PD have been in-

troduced and compared. A reduction in errors caused by thermally induced

emf, for example, can be achieved by choosing similar materials of specimen

and measuring probes, and by periodically changing the direction of current.

� The shape of a calibration curve is influenced by geometry of the specimen

and the crack being measured (and the frequency of the AC, in ACPD).

Errors in measurement arise from many factors including plastic deforma-

tion, crack closure and temperature variations. There is no closed answer to

eliminate such errors, however, precautions have been suggested in order to

weaken these errors.

� PD methods have been applied with success to the monitoring of many

crack geometries, including asymmetric centre cracks, angled cracks, multi-

ple cracks and cracks extended under mixed mode fracture. Performance of

the methods under aggressive conditions such as corrosion, high tempera-

ture, creep and cycled loading have been discussed in detail.

� In addition to the error sources possibly faced during the application of po-

tential drop methods, which have been discussed, disadvantages of this tech-

nique include the effect of the determination of calibration on the sensitivity

and the limitations to conductive materials. The confidence in generated

calibration will ultimately affect the measured results unless PD methods

which dispense with the need for calibration are applied. In order to extend

the application of such technologies to electrical-insulated materials, appli-

cation of conductive layers covering the material surface are considered as a

feasible method.

� Although PD methods have been accepted as a reliable tool to identify crack

lengths, other crack parameters such as shape and location are currently

beyond this technology (for curved/tunnelled cracks, such as thumb-like

cracks), a single crack length is insufficient for representing the whole crack

and for supporting subsequent crack growth modelling activities. Therefore,

the determination of crack shape is recommended as a significant area for

future research.
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� The coupled electro-magnetic fields generated within and around the conduc-

tors in ACPD experiments were discussed in detail, following the derivations

of the equation for skin depth in good conductors.

� The solutions of Zint for isolated straight conductors have been widely in-

vestigated in the few decades with use of various theoretical and numerical

approaches.
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Chapter 3

Theoretical Methodology:

Computing Internal Impedance of

Non-magnetic Conductors of

Various Cross-sectional Shapes

3.1 Introduction

Effort has been put on seeking available theoretical methods to solve the skin

effect problem for the ACPD samples and provide comparisons with the experi-

mental results. To the author’s knowledge, there is no general method to predict

PDs from arbitrary positions on conductors of any cross-sectional shapes with or

without features. Fortunately, several theoretical methods are available to calcu-

late Zint or Rac (i.e. Re (Zint)) per unit length of infinitely-long conductors, as

reviewed in Section 2.5. It will be discussed later that these two parameters can

not be obtained from the ACPD experiments, since AC is consistently unevenly

distributed on the conductor surfaces due to the exist of edges and features. On

plain samples of polygonal cross-sections, current are concentrated around edges

and corners at high frequencies, which is referred as current crowding. While on

cracked/featured samples, current are more interfered by the feature, leading to a

more uneven distribution. Thereby, PDs that are measured from certain positions

on the samples can not represent the whole electric/current field or be used to

calculate Zint of the conductive body between measurement points. However, this

may be easily achieved through FEA via ANSYS. FEA can be used to measure

Zint of arbitrary parts from models even including features.

This chapter will focus on employing several established theoretical framework

(reviewed in Section 2.5) to calculate Zint of the samples and comparing theoretical

solutions of Zint to FEA, rather than validating experimental results of PD through

theoretical methodology. The samples that will be analysed in the chapter are the

plain SS316 samples of four cross-sectional shapes, circular, hexagonal, square,
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and triangular. The end effect caused by current injections (applied on the end

surfaces) to the experimental measurements will be investigated and then excluded

through FEA in Section 5.4. The present chapter will use the conclusion so that

the plain samples will be considered as infinitely-long, which conforms to the

general assumption of impedance analysis in literature.

In this chapter, the Bessel Function Method [144, 215, 227–230] that is well-

accepted as the solution of Zint for cylindrical conductors will be presented first.

Then, a straightforward method called Effective Area Method (EAM) will be de-

veloped for the four cross-sectional shapes. EAM will be further improved for the

square shape by combining an approximation of current crowding developed exclu-

sively for rectangular cross-sections by Payne [225]. Payne’s full theory [225, 226]

of calculating Zint will also be introduced, however, which is limited to rectangu-

lar conductors. Next, another two theories that solve the impedance problem

for rectangular conductors based on discretisation of the cross-section will be

demonstrated and then extended to arbitrary cross-sectional shapes. The first

discretisation-based theory relies on solving an integral equation of current over

the cross-section through matrix operations [193,218]. The second theory, which is

named as Modal Network Theory (MNT), simulates the total current by a current

modal network. In MNT, individual impedance of each modes are obtained by

solving an eigenvalue problem of a distance matrix which contains spatial distri-

butions of modes [205–208].

3.2 Bessel Function Method

Bessel functions of a differential equation describing the electromagnetic fields

of a circular cross-section has been widely accepted as the solution of Zint for

cylindrical conductors [144, 215, 227–230]. The present section will demonstrate

the derivation of the final solution of Zint based on Bessel functions. Zint refers

to the sum of the resistance and the reactance contributed by the magnetic field

induced within the conducting medium [229]. For an infinitely-long cylindrical

conductor with radius of r0 carrying a total current of I, E may be assumed as a

longitudinal scalar of Ez. Thus Zint is given by [144,229,230]

Zint =
Ez (r0)

I
(3.1)

To solve the above equation for Zint, a Bessel equation of the J will be derived

first; both the two quantities on the right will then be replaced by J to construct

a new equation of Zint which is only dependent on J; eventually Bessel functions

of the new equation will be employed to obtain individual solutions of impedance

at low and high frequencies.

Recalling the Maxwell’s equations given in (2.27)-(2.28), the electromagnetic
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fields generated inside the conductor may be described as [144,229,230]

∇× E = −∂B

∂t
(2.27)

∇×H = J+
∂D

∂t
(2.28)

In addition, relations between characteristics of fields and quantities of the material

are defined by constitutive relations given in (2.15) as

D = ϵE J = σE B = µH (2.15)

Again for a good conductor, displacement current ∂D
∂t

is negligible by comparing

to the current. Hence (2.28) becomes

∇×H = J (3.2)

By assuming a sinusoidal form of H (i.e. H = H0e
jωt), (2.27) can be written as

∇× E = −jωµH (3.3)

Taking curl to both sides of (3.3) to get

∇×∇× E = −jωµ∇×H (3.4)

Then to replace E and H by J through substituting the constitutive relation of J

in (2.15) and (3.2) into (3.4), the equation only relates to J is obtained as

∇×∇× J = −jωµσJ (3.5)

Recalling that ∇ × ∇ × J = ∇ (∇ · J) − ∇2J. The first term on the right side

relating to the charge density can be easily proven to vanish by the following

process. Taking divergence to both sides of (3.2), which gives

∇ · (∇×H) = σJ = σ (∇ · E) = 0 (3.6)

Since the divergence of the curl of any vector on the left side of (3.6) is zero, it

has been proved that

∇ · E = 0 (3.7)

Similar conclusions can be obtained for J and D based on other Maxwell’s equa-

tions OF

∇ · J = 0 ∇ ·D = 0 (3.8)

Hence (3.5) may be written into a Laplace equation of current density as

∇2J = jωµσJ (3.9)
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By assuming only a radial variation in z−direction of the current density, the

expression of (3.9) in cylindrical co-ordinates becomes

d2Jz
dr2

+
1

r

dJz
dr

+Q2Jz = 0 (3.10)

where Q2 = −jωµσ. Then by dividing Q2 throughout (3.10), it becomes

d2Jz
d(Qr)2

+
1

Qr

dJz
d(Qr)

+ Jz = 0 (3.11)

This is a Bessel equation of the independent variable Qr, order zero. The solution

of (3.11) is the linear combination of zero-order Bessel and Neumann functions

[231,232]

Jz = AJ0 (Qr) +BN0 (Qr) (3.12)

Because N0 contains logarithmic terms, it is discontinuous at r = 0. Hence, B

must be zero in order to remain infinity of Jz. The solution to current density is

then obtained as

Jz = AJ0 (Qr) (3.13)

Reviewing the formula of Zint in (3.1), Ez may be easily replaced by Jz through

applying the constitute relation (2.15). More efforts are required in the substitu-

tion of I, which may be conducted by two methods:

(1) I can be calculated by integrating the current density over the circular area

as [229,230]

I =

∫ r0

0

Jz (r0) 2πrdr =
2πA

Q2

∫ r0

0

J0 (Qr) · (Qr) d (Qr) (3.14)

Recalling the derivatives of Bessel function Zv (z):
d
dz
[zvZv (z)] = zvZv−1 (z)

[231,232], the solution of the integral term in (3.14) can be obtained as

(Qr)1J1 (Qr) =

∫
(Qr)1J0 (Qr) d (Qr) (3.15)

Then by substituting (3.15), the equation of I in (3.14) becomes

I =
2πr0A

Q
J1 (Qr0) (3.16)

(2) I can be computed as the line integral of magnetic field around the outside

[144,229]

I = 2πr0Hϕ (r0) (3.17)

Again assuming no variation with ϕ or z, expressions of (2.28)-(2.27) in

cylindrical co-ordinate are

d (rHϕ)

rdr
= (σ + jωϵ)Ez

dEz

dr
= jωµHϕ (3.18)
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d (rHz)

rdr
= (σ + jωϵ)Eϕ

dEϕ

dr
= jωµHz (3.19)

The case of (3.18) that contains components of Hϕ and Ez would be gener-

ated by an infinitely long wire, i.e. the case of interested. While the case of

(3.19) would be produced by an infinitely long line of closely spaced coaxial

loops carrying currents. (3.18) is considered here. The expression of Ez can

be obtained from the second equation of (3.18) as

Hϕ =
1

jωµ

dEz

dr
(3.20)

By substituting the constitutive relations in (2.15) for Hϕ and Ez and (3.13)

for Jz, (3.17) becomes

I =
2πr0A

jωµσ
[−J1 (Qr)] =

2πr0A

Q
J1 (Qr) (3.21)

(Recalling dJ0(Qr)
d(Qr)

= −J1 (Qr) [231,232].)

Both two methods give the same solution of I, i.e. (3.21) is identical to (3.16).

Therefore, (3.1) can be rewritten to given the theoretical solution of Zint in cylin-

drical conductors as

Zint,Bes =
Jz (r0) /σ

I
=

Q

2πr0σ

J0 (Qr0)

J1 (Qr0)
(3.22)

This solution is difficult to be used for all frequencies due to the exist of Bessel

functions. Thus, approximations of Bessel functions at low and high frequency are

usually applied to simply the result and calculate Zint,Bes for these two situations

separately. Expressions of separated Zint,Bes can be derived by following steps.

(1) For thin wires at low frequencies.

The series expansion of the ratio of Bessel function of fist kind order 0 to

order 1 is [227]

J0 (x)

J1 (x)
=

1

x

(
2− x2

4
− x4

96
−

6

1536
− x8

23040
− x10

4423680
− · · ·

)
(3.23)

Substituting only the first three terms of (3.23) into (3.22), the expression

of Zint,Bes for low frequencies can be obtained as

Zint,Bes−dc =
1

πr02σ

[
1 +

1

j

(r0
δ

)2
+

1

48

(r0
δ

)4]
(3.24)

The term before bracket is the steady state resistance per unit length of

the conductor. Low frequency resistance and inductance can be determined

from real and imaginary parts of (3.24) as

Rdc,Bes = Re(Zint,Bes−dc) =
1

πr02σ

[
1 +

1

48

(r0
δ

)4]
(3.25)

Ldc,Bes =
Im(Zint,Bes−dc)

ω
=

1

πr02σω

[
1

j

(r0
δ

)2]
=

µ

8π
(3.26)
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(2) For thin wires at high frequencies.

By using the asymptotic term of Bessel function for large argument, i.e.
J0(x)
J1(x)

= −j, (3.22) becomes,

Zint,Bes−ac =
1

2πr0σδ
(1 + j) (3.27)

Similarly this leads to

Rac,Bes = Re (Zint,Bes−ac) =
1

2πr0σδ
(3.28)

Lac,Bes =
Im (Zint,Bes−ac)

ω
=

1

2πr0σδω
(3.29)

Equations in (3.24)-(3.29) were applied to the SS316 sample of circular cross-

sectional shape. Calculated impedance were compared to FE results, as displayed

in Fig. 3.1. For frequencies lower than 20 kHz, Rdc,Bes and FE results show good

agreement, giving differences smaller than 1%. While for higher frequencies upto

300 kHz, Rac,Bes are consistently lower than FE results for about 0.002 Ω. However,

it can be seen that Rdc,Bes and Rac,Bes are incoherent around the transitional

region at 20 kHz, which demonstrates the imperfection of this theory at least in

the application in the SS316 sample. It is necessary to consider other theoretical

methods and re-calculate for the circular sample.
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Theory - Bessel function DC, circular

Theory - Bessel function AC, circular

Figure 3.1: Resistance per unit length of the plain SS316 sample of circular

cross-sectional shape obtained by FEA and theoretical method based on Bessel

function given by (3.24)-(3.27).

3.3 Effective Area Method and Current Crowd-

ing

As the above theory based on Bessel functions is limited to circular samples, analy-

sis for hexagonal, square, and triangular cross-sections will rely on other theoretical
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methods. This section will start with the development of Effective Area Method

(EAM), then introduce two other theoretical frameworks based on distinct prin-

ciples, finally improve EAM by combining the effect of current crowding provided

by the former introduced method.

In EAM, Rac of the conductor is calculated by using the effective area with

current flowing through (Sac,EAM), i.e. confined by the skin depth on the cross-

section of the conductor. Fig. 3.2 shows an example of Sac,EAM on a hexagonal

cross-section. Sac,EAM is easily calculated by adding up all the rectangular areas

on sides, and then subtracting the overlapping triangular areas at corners, as

illustrated in Fig. 3.2b. The general equation of Sac,EAM of polygons in arbitrary

shapes is given by

Sac,EAM = nδ

(
a0 − δ tan

θ

2

)
(3.30)

where n is the number of corners, a0 is the side length, and the interior angle

θ = 2π
n
. a0 of the cross-section with a constant area of S0 is

a0 = 2

√
S0

n
tan

θ

2
(3.31)

By using the resistance formula of Rdc and substituting Sac,EAM for the area,

Rac,EAM per unit length can be calculated by

Rac,EAM = Re (Zint,EAM) =
1

σSac,EAM

(3.32)

(a) (b)

Figure 3.2: Schematic of Sac,EAM of a polygonal cross-section with a number of

corners n = 6.

EAM assumes a uniform current distribution within the area of Sac,EAM and

ignores any current beyond the skin depth, as shown in Fig. 3.3a. However, the

definition of skin depth indicates that AC exponentially decays from the surface

into the center rather than uniformly distributes over Sac,EAM , see in Fig. 3.3b.

Additionally, AC reduces to 1
e
of the surface current density at the skin depth

but does not vanish to 0. These two basic assumptions of EAM violate the facts.

Moreover, EAM only considers the skin effect but excludes the other significant
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influence due to AC with high frequencies — the current crowding near edges of the

sample. The current crowding refers to the current concentration at corners occurs

at high frequencies in conductors [226]. This phenomenon was widely observed in

FEA and will be shown in later sections (e.g. Fig. 5.3c in Section 5.3). Therefore,

this method is only capable of providing rough approximations of Rac with limited

precisions.

(a) EAM (b) Skin effect

Figure 3.3: Schematics of the uniform current distributions assumed in EAM

and the exponential decay of current in skin effect.

Theoretical impedance calculated from (3.32) are compared to FE results for

the four SS316 samples, as shown in Fig. 3.4. At 300 kHz, FE results of the

circular, hexagonal, square, and triangular cross-sections reach 0.0284, 0.0290,

0.0301, and 0.0315 Ω/m, respectively. By contrasting between Rac,EAM for the

four samples, the triangular sample has the lowest results, which is opposite to

the order approximated by FEA. For the circular sample without current crowding

(due to the absence of edges on the sample surface), theoretical and FE results are

similar for the whole frequency range with an average difference of 1.7%. Whereas

for the other three shapes, the differences between two types of results rise as the

frequency increasing, reaching a maximum of 7% for the hexagonal, 16% for the

square, and 29% for the triangular respectively at 300 kHz.
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Figure 3.4: Resistance per unit length of plain SS316 samples of various

cross-sectional shapes obtained by FEA and the theoretical method of EAM.

Rong and Cangellaris [222] have put forward a definition of Zint of rectan-

gular conductors based on the Thévenin theorem in which the circuit inside the

conductor is analogised to a circuit composed of a voltage source and a series

of impedance. Two boundary conditions of electromagnetic problem inside the

conductor are provided by the analogue, giving

(Zint,Thev)
−1 =

64σ

w1w2

∞∑
m=1

∞∑
n=1

G1 +G2

G1G2 (G1 +G2 + jωµσ)
(3.33)

in which constants G1 and G2 are given as

G1 =

((
m− 1

2

)
π

1
2
w1

)2

G2 =

((
n− 1

2

)
π

1
2
w2

)2

(3.34)

where m and n refer to discretisation of the rectangular cross-section, w1 and w2

represent the side lengths of the conductor along the direction ofm and n. Rac,Thev

calculated based on (3.33)-(3.34) show good agreement to Rac,EAM for the square

sample, as displayed in Fig. 3.5. Two theoretical results are similar for the whole

frequency range with an average difference smaller than 1.4%.
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Figure 3.5: Resistance per unit length of the plain SS316 sample of square

cross-sectional shape obtained by FEA and theoretical method of EAM and the

Thévenin theorem-based method [222].

The poor performance of EAM for polygonal cross-sections containing edges in

Fig. 3.4 suggests the necessity of including the current crowding in calculations.

Payne [225,226] has proposed a semi-empirical equation to compute Rac of rectan-

gular conductors in which the two factors, skin effect and current crowding, were

expressed explicitly. Payne’s full theory will be introduced in detail first, then

the analysis of current crowding will be separated out and employed to EAM. As

Payne’s full equation is only applicable to rectangular bars, calculations here will

be focused on the square sample.

Payne [226] described the problem of Zint for rectangular conductors in terms

of the two factors explicitly:

Rac,Pay =
1

σSac,Pay

Kcc (3.35)

Sac,Pay is the effective area confined by δ with current flowing over, covering the

impact of skin effect. Kcc represents the increase in resistance due to current

crowding. The method of calculating Sac,Pay is different to Sac,EAM in EAM. For a

rectangular conductor with the length of w1 and the thickness of w2, Payne intro-

duced a frequency-dependent dimension w2
′ (called ‘apparent conductor dimension

due to diffusion’) to define Sac,Pay, giving

Sac,Pay = w1w2
′ (3.36)

w2
′ is then solved by considering two boundary conditions at low and high fre-

quencies:

(1) At low frequencies, the effective area equals the cross-sectional area of w1w2,

thereby

w2
′ → w2 as δ → ∞ (3.37)

71



(2) At high frequencies, Sac,Pay is simplified to be the area of the long strip with

the length of the perimeter of the conductor and the width of δ:

Sac,Pay = 2δ (w1 + w2) (3.38)

w2
′ is thus given by

w2
′ = 2δ

(
1 +

w2

w1

)
as δ → 0 (3.39)

After assuming an exponential decay of w2
′ with the increasing frequency, the

expression of w2
′ is determined to be

w2
′ = w2

(
1− e−xse

)
(3.40)

with

xse =
2δ

w2

(
1 +

w2

w1

)
(3.41)

which satisfies the boundary conditions in (3.39)-(3.40). However, Payne noticed

that resistances calculated from above solutions showed poor fitness with exper-

imental measurements for conductors with small and large aspect ratios, i.e. for

square bars and thin strips. (3.41) was thus modified by including two extra terms

obtained from empirical methods to rectify calculations for the two situations,

which gives

xse =

[
2δ

w2

(
1 +

w2

w1

)
+ 8

(
δ

w2

)3

/

(
w1

w2

)]
/

[(
w1

w2

)0.33

e
−3.5w2

δ + 1

]
(3.42)

Then to quantify the effect of current crowding, Payne [225] extended a theory,

which describes the proximity effect between two parallel wires, to multiple wires,

finally to rectangular conductors. The rectangular cross-section is decomposed

into a finite set of subsections, hence the effect of current crowding within the

conductor is approximated by the total proximity loss in series of the subsections.

The approximation of current crowding was based on the theoretical method for

computing the resistance increase due to proximity effect between two wires, which

was proposed by Butterworth [233, 234]. To avoid complex calculations in But-

terworth’s theory, Payne constructed an empirical equation by fitting curves of

theoretical results given by Butterworth [234]. This empirical equation is give as

Kcc = 1 + 1.2
(
e

−2.1w2
w1 + e

−2.1w1
w2

)
(3.43)

which represents the portion of increase in resistance due to the current crowding.

However, (3.43) only contains geometrical information of the conductor and is

independent of frequency, which disagrees with the fact that current crowding

only occurs at high frequencies. The frequency-related term was determined by
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solving (3.43) under boundary conductions with DC and high-frequency AC. (3.43)

is modified to be

Kcc = 1 + 1.2F (f)
(
e

−2.1w2
w1 + e

−2.1w1
w2

)
(3.44)

where

F (f) = 1− e−0.026psim (3.45)

Frequency is included in the parameter psim which was proposed based on the

principle of similitude by Dwight [196], as mentioned in Section 2.5. psim is defined

as

psim =

√
S0

1.2533δ
(3.46)

The final equation of Rac,Pay is then obtained by combing the skin effect in (3.36)

& (3.42) and the current crowding in (3.44)-(3.46):

Rac,Pay = Rdc
Kcc

1− e−xse
(3.47)

Furthermore, Kcc in (3.44) is combined with Rac,EAM to produce Improved

EAM:

Rac,IEAM =
Kcc

σSac,EAM

(3.48)

Impedance of the square sample calculated based on EAM, Improved EAM,

and Payne’s full equation are compared with FE results, as shown in Fig. 3.6.

The participation of Kcc in Improved EAM slightly increases the results of Rac.

At 300 kHz, the maximum difference between Rac,EAM and FE results is reduced

from 16% to 10% by introducing Kcc into Improved EAM. Rac,Pay increase much

earlier at about 4 kHz than other three results. The maximum difference between

Rac,Pay and FE results occurs around 20 kHz and is about 8%. Overall, theoretical

results given by Improved EAM fit well with FE results from quasi-DC to about 20

kHz but start to diverge at higher frequencies; while the results based on Payne’s

full theory only show good agreement to the FE results at quasi-DC and high

frequencies (i.e. < 1 kHz & > 30 kHz). For both the two methods, the mean

discrepancies averaged from differences to FE results at all frequencies are similar

to be 7%.
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Figure 3.6: Resistance per unit length of the plain SS316 sample of square

cross-sectional shape obtained by FEA and theoretical methods of EAM,

Improved EAM containing Kcc in (3.44) [226], and Payne’s full equation in

(3.47) [225,226].

3.4 Integral Equation for Current Distribution

Silvester [193] and Antonini [218] have proposed a theory which based on an inte-

gral equation of current density over the cross-section of a current-carrying body to

calculate Zint and Rac of the long straight conductor surrounded by a time-varying

field. In this method, a conductor with a constant cross-section along the vertical

z-direction is divided into many parallel subsections (or filaments) which are in ar-

eas small enough (may be unequal) so that the current distribution and resistance

of subsections are assumed to be uniform. Since each filament contains a small

portion of the total varying current, mutual and self induction occurring around

all individual subsections contribute to the uneven distribution of total current

density over the conductor cross-section. Such induction is related to the current

density through the introduce of A which was defined in (2.23). The derivation

procedure to obtain the integral equation of current density and the subsequent

computing process to solve the integral equation via MATLAB will be presented

in detail in this section. It will be demonstrated by FEA later in Section 5.4 that

AC injection points on end faces of the experimental sample are far enough to the

the measurement region at the center. Hence, the measuring parts of the samples

was unaffected by end effects and can be considered as infinitely-long, i.e. Rac per

unit length (or at least for the measurement distance) of experimental samples

without features could be calculated by the present theory. Field quantities such

as A and J can be expressed as scalar, i.e. by z-directed components.

For an individual circular wire containing a total current of I with radius of r0,
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A outside the wire at a distance of d to the circular center is calculated by [193]

A =
µI

2π

(
1

2
+ log

d

r0

)
(3.49)

Since divided subsections are imagined to be in tiny area of dS, subsections can be

assumed as cylindrical wires. Hence, the fractional current carried by a subsection

can be given by

i = dI = J · dS (3.50)

(3.49) is applied to the subsection, which gives

dA =
µdI

2π

(
1

2
+ log

d

r0

)
=

µJ

2π
log (d) dS +

µJ · dS
2π

(
1

2
− log r0

)
(3.51)

The last term irrelevant to d can be temperately eliminated by choosing an appro-

priate reference of A. Then A outside the subsection is obtained by integrating

(3.51), as

A (x, y) =
µ

2π

∫ ∫
J log (d)dξdη + A0 (3.52)

where A0 is the arbitrary addictive term which is included to complete the in-

tegration. d becomes the distance between the measurement point at (x, y) (the

observation subsection) to the induction generation points at (ξ, η) (other subsec-

tions for mutual induction and the observation one for self induction). d is given

by

d =

√
(x− ξ)2 + (y − η)2 (3.53)

Then recalling the electric distribution over a cross-section of a sample governed

by a time-dependent field, as given in (2.26):

E = −∂A

∂t
−∇V (2.26)

By substituting the constitutive relation of J in (2.15), (2.26) is written as

J = −σ
∂A

∂t
− σ∇V (3.54)

The last term that contributed by the applied V can be replaced by the impressed

current density Jimp as

Jimp = −σ∇V (3.55)

(3.52) and (3.55) are substituted into (3.54) to build up an equation only related

to J as

J = −µσ

2π

∫ ∫
∂J

∂t
log

√
(x− ξ)2 + (y − η)2dξdη + Jimp (3.56)

Because sinusoidal waves were applied in the ACPD experiments, the above equa-

tion can be simplified by inserting a phasor form of J to be

J (x, y) = −jωµσ

2π

∫ ∫
J (ξ, η) log

√
(x− ξ)2 + (y − η)2dξdη + Jimp (3.57)
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The above integration equation of current density over the cross-section of the

sample is then approximated by the method of moments in which the surface of

integration is divided into subsections. As stated before, a constant distribution is

assumed over each subsections. Thus, (3.57) can be written to roughly calculate

the current density over a single subsection (e.g. the subsection p) as

Jp (xp, yp) = −jωµσ

2π

N∑
q

Jq (ξq, ηq)

∫ ∫
log

√
(xp − ξ)2 + (yp − η)2dξdη + Jimp

(3.58)

where subscripts p and q refer to different subsections, p = 1, · · · , N and q =

1, · · · , N . If all subsections are produced to be square in an area of as
2, the above

equation can be further simplified to be

Jp = −jωµσ

2π
as

2

N∑
q

Jq logDpq + Jimp (3.59)

Thus geometric mean distances between subsections were be simplified to be dis-

tances between centres of subsections, Dpq can be written as

Dpq =

√
(xp − ξq)

2 + (yp − ηq)
2 (3.60)

Complex equations in (3.59) is written to a matrix equation in a dimension of N

as

(U+ jG)J = K (3.61)

where U is a unit matrix, J is a column matrix of current densities, K represents

a constant matrix with all elements equalling Jimp, and G is given by

G =
ωµσ

2π
as

2 logDpq (3.62)

Eventually the matrix equation in (3.62) is solved by MATLAB, which based

on the conservation of dissipated power in subsections and in the sample, i.e.

N∑
i2r = I2Rac,IntJ (3.63)

where Rac,IntJ is the Rac per unit length of the sample, r is the resistance per unit

length of each subsection. Again subsections are so small that σ of the sample

material can be used to compute r. Thereby, for example in the subsection p, ip
and rp are calculated by

ip =

∫
∆Sp

JpdS = Jpas
2 (3.64)

rp =
1

∆Spσ
=

1

σas2
(3.65)

A MATLAB script was developed to construct the integral equation in (3.59)

and the matrix equation in (3.62) and finally to solve for Rac,IntJ of plain sam-

ples in various shapes by using (3.64)-(3.65), see in Appendix A.1. This theory
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was devised exclusively for rectangular conductors. By the use of the script, the

application of the theory is extended to the four cross-sections involved in Case 1

by creating a general geometric matrix G that is adapted for arbitrary polygonal

cross-sections. The illustration in Fig. 3.2 is used as an example again here. The

effective radius of a polygonal cross-section (r0), i.e. the distance between the

center to the corners, is given by

r0 =
a0

2 sin θ
2

(3.66)

By taking the center as the origin of the Cartesian coordinates, the coordinates of

the n corners ((xci, yci)) can be calculated by

xci = r0 sin

[
θ

2
+ θ (i− 1)

]
yci = r0 cos

[
θ

2
+ θ (i− 1)

] (3.67)

where i = 1, ..., n. The general matrix G can be obtained by following the two

steps. A square with the side length of 2r0 is first defined and divided into finite

square subsections with a side length of as, as illustrated in Fig. 3.7. Then the sub-

sections confined within the periphery, which connects the n corners (with known

coordinates), are found out to approximate the polygonal cross-section. The co-

ordinates of these subsection located within the periphery are used to construct

the matrix G.
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Figure 3.7: Process of discreting the polygonal cross-section with finite

subsections.
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A refinement study was conducted to determine appropriate values of as and

N which produce converged theoretical results of Rac,IntJ . As a result, the uniform

dicretisation containing about 10000 subsections with as = 0.1 mm was used in

the subsequent calculations. The distributions of subsections with as = 0.1 mm

are shown in Fig. 3.8. The four cross-sectional shapes are precisely approximated

by the uniform discretisation.
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Figure 3.8: Discretisation of the four cross-sectional shapes with subsections

with the size of as = 0.1 mm and in a total number of N = 10000 approximately.

Theoretical solutions of Rac,IntJ computed by the script are compared with FE

approximations, which is given in Fig. 3.9. Both the theoretical and FE results

show distinct order of Rac which is attributed to different cross-sections shapes

of samples. The triangular sample possesses the highest Rac at all frequencies

whereas the circular sample has the lowest results. Difference between two types

of results for all sample shapes in the whole frequency range is smaller than 1%.

This validates the reliability of the FE models for the plain samples and the

precisions of FEA in measuring Zint.
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Figure 3.9: Resistance per unit length of plain SS316 samples of various

cross-sectional shapes obtained by FEA and theoretical methods of integral

equation of current distribution [193,218].

3.5 Modal Network Theory

Another method called Modal Network Theory (MNT) has been developed by

Silvester [205–208] to predict Zint and Rac of non-magnetic linear conductors

through disassembling the total current into a modal network which represented

spatial current distributions. In this section, the theory will be briefly introduced

then applied to calculate impedance of plain SS316 samples in four cross-sectional

shapes. Finally, theoretical solutions of impedance will be compared with the

same FE results given above in Fig. 3.9.

In the first step of discretisation, the current flowing in the long straight con-

ductor is disintegrated into an infinite number of modal distributions which are

individual and independent of other distributions. Distributions of current modes

are only related to the cross-sectional shape but independent of material proper-

ties or oscillating frequencies. The modal problem with infinite distributions is

approximated by dividing the sample into a large number N of square subsections

with the same side length of as, which is similar to the process in obtaining the

integral equation of current in Section 3.4. By choosing as to be very small, uni-

form current distributions can be assumed over the cross-section of subsections.

Therefore, each subsection possesses the same resistance and inductance as

rp = RdcN lp =
µ

2π
log

as
dp

(3.68)

where dp refers to self and mutual geometric mean distances between subsections

but is simplified here to be the distance from center to center due to the equal-area

and square shape of subsections, as given in (3.60). rp and lp of all subsections
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are assembled to give matrices of

R = RdcNU L =
µ

2π
G (3.69)

where U is the unit matrix, G represents the geometric matrix that only depends

on the cross-sectional shape of the sample.

Then in the second step of ‘relaxation’, the current modal network is solved by

conducting a thought-experiment. Imaging a sample carrying a DC is encased by

a thin cylindrical sheath that contains the return path of the DC. If the conductor

is suddenly connected to the sheath at two points far apart, i.e. short-circuited,

the system relaxes and the current declines. This relaxation behaviour can be

represented by the network to be(
R+ L

d

dt

)
i = 0 (3.70)

which has N solutions in the form of [205–208]

ip = Ipe
mpt (3.71)

where the time constant mp is defined as

mp =
rp
lp

(3.72)

By substituting matrices of R and L and the solution of i into (3.71), it can be

obtained that (
N

σS0

U+
µ

2π
Gmp

)
Ip = 0 (3.73)

The above equation can be further rearranged to separate geometrical and elec-

tromagnetic term, as (
G+

2πN

µσS0mp

U

)
Ip = 0 (3.74)

It is an ordinary eigenvalue problem of the geometric matrix G, which can be

conveniently solved to obtain several eigenvectors Ip and eigenvalues of

γ = − 2πN

µσS0mp

(3.75)

The conductance and inductance of each network mode were presented by two

quantities defined from corresponding eigenvector and eigenvalue, the average

component value αp and the normalised characteristic frequency Ωp, which are

defined by

αp =

√∑N
p I2p
N

(3.76)

Ωp =
−2N

γ
=

µσS0mp

π
(3.77)

80



Eventually, Zint of the sample is calculated by applying the parallel rule to

modal impedance as

Zint,MNT =
1∑N

p=1 1/ (rp + jωlp)
(3.78)

By substituting expressions of parameters of αp and Ωp obtained above, this

equation can be written to

Zint,MNT =
Rdc∑N

p=1αp
2/
(
1 + j Ω

Ωp

) (3.79)

where the frequency-dependent term Ω is introduced to exclude effects of sample

sizes, material properties, and oscillating frequencies on skin effect. It is related

to the frequency parameter psim [196] as

Ω =
√
psim =

µω

πRdc

(3.80)

This theoretical method was employed to calculate impedance for plain SS316

samples via MATLAB (see in Appendix A.2). During the application of the theory,

above process may be simplified to three steps:

1. Establishing the specific geometric matrix G for the sample;

2. Computing eigenvalues and eigenvectors of G with enough number to con-

verge, then calculating αp and Ωp;

3. Substituting αp and Ωp into (3.79) to calculate Zint and hence Rac.

It is suggested in the literature that 7 to 15 eigenvectors are sufficient to ac-

complish the approximation with high accuracy [206], however, such requirement

was found to be inadequate for the SS316 samples at related frequencies. The in-

fluence of the number of eigenvectors on the convergence of the impedance results

are shown in Fig. 3.10. Situations of convergence are slightly different between

the circular and triangular samples, but obviously 15 eigenvectors are not enough

to reach convergences. For clearer observation, theoretical results of the circular

sample at some frequencies in Fig. 3.10a are demonstrated against the number of

eigenvectors in Fig. 3.11. It is shown that situations of convergence vary at differ-

ent frequencies. Calculations for high frequencies require much more eigenvectors

to reach a desired precision. At least 50 eigenvectors are required for the SS316

samples with a highest frequency of 300 kHz.

81



10
2

10
3

10
4

10
5

Frequency (Hz)

0.01

0.02

0.03

R
ac

, 
M

N
T
 (

/m
) 10

15

20

30

40

50

70

100

Number of eigenvalues

(a) Circular

10
2

10
3

10
4

10
5

Frequency (Hz)

0.01

0.02

0.03

R
ac

, 
M

N
T
 (

/m
)

(b) Triangular

Figure 3.10: The effect of the number of eigenvectors on theoretical MNT results

of impedance for the circular and triangular samples.
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Figure 3.11: The effect of the number of eigenvectors on theoretical MNT results

of impedance for the circular sample at different frequencies.

In Fig. 3.12, Rac,MNT based on 100 eigenvectors are compared with FE results

for four samples. Rac,MNT of the circular sample at quasi-DC frequencies are

higher than the FE results for 4%. While for the other samples, mean differences

(averaged from all frequencies) between Rac,MNT and FE results are within 1% and

decrease as the cross-sectional shape varying from circular to triangular. The mean

difference of the triangular sample is only 0.05%. Divergence between theoretical

and FE results increase as the frequency rises up (except for the circular one). At

the highest frequency of 300 kHz, the maximum difference between MNT and FE

results of Rac is 3% for the hexagonal sample (as well as the circular) and within

1% for the square and triangular samples. Such agreement between FE results and

solutions calculated by MNT is slightly lower than the comparison based on the

former theoretical method as presented in Fig. 3.9. But it is sufficient to provide

confidence of FEA at least in measuring Zint for the SS316 samples.
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Figure 3.12: Resistance per unit length of plain SS316 samples of various

cross-sectional shapes obtained by FEA and theoretical methods of

MNT [205–208].

3.6 Conclusions

Several available theories of calculating Zint of straight and individual conductors

have been demonstrated and employed to the plain SS316 samples in various cross-

sectional shapes of circular, hexagonal, square, and triangular. Based on FEA,

Zint of the samples in the same cross-sectional area of 100 mm2 increases as the

cross-sectional shape varies from circular to triangular, reaching 0.0284, 0.0290,

0.0301, and 0.0315 Ω/m, respectively, at 300 kHz.

The Bessel Function Method, which is well-known as the solution to Zint of

cylindrical conductors, was derived from Maxwell’s equations. In this method,

a Bessel equation of current density describing a time-varying field is firstly es-

tablished; then the equation is solved under low and high frequencies separately

by inserting approximated solutions of Bessel functions to figure out solutions of

Zint,Bes. However, Rdc,Bes and Rac,Bes for the circular cross-section do not encoun-

tered at intermediate frequencies around 20 kHz. Rdc,Bes show good agreement

with FE results in which the maximum difference is within 1%; whereas Rac,Bes

are constantly lower then FE results for about 0.002 Ω.

The second theory, EAM, calculates Rac,EAM based on effective areas confined

by skin depth on the rim of cross-sections. The main advantage of EAM is the

general applicability for any cross-sectional shapes. Rac,EAM for the four SS316

samples are lower than FE results and show an opposite order in magnitudes to

FE results, which is caused by the absence of current crowding in this method.

Rac,EAM is compared to another theoretical solution, Rac,Thev, which is devised for

rectangular conductors and based on Thévenin assumption [222]. Two types of

theoretical solutions agree well for the square SS316 sample, giving mean differ-

ences for the whole frequency range smaller than 1.4%.
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There is a half-empirical definition of Rac,Pay for rectangular conductors which

expresses resistance increases due to skin effect and current crowding separately

[225, 226]. In this method, the analysis of skin effect is different to EAM that

the effective area is simplified to be the area of a strip beneath the conductor

surface with a width of the skin depth. On the other side, the current crowding is

estimated by the proximity effect between imaginary cylindrical subsections within

the conductor. The approximation of current crowding in Rac,Pay is employed to

Rac,EAM to improve the performance of EAM for rectangular cross-sections. The

half-empirical solution and Improved EAM provide similar Rac for the square

sample and show limited agreement to FE results with average differences for all

frequencies within 7% (both the two types of theoretical solutions). However,

Improved EAM is suggested as preference at least in predicting the increase in

resistance due to skin effect since EAM computes the effective area more precisely

without simplification.

The last two theories involve discretisation which refers to dividing the conduc-

tor into a finite number of subsections. In the first method [193,218], subsections

are assumed as individual subsections whose self and mutual inductance are re-

lated to the distribution of A, and hence J . The double integral equations of

J over the cross-section is thus produced. Current distribution is then roughly

solved by converting the integral equation into the matrix form and calculating

the inversion. The second method of MNT [205–208] assumes each subsection

as a resistor-inductor (R-L) modal branch, i.e. a spatial part of the total cur-

rent. The modal resistance and inductance are related to corresponding eigen-

vector and eigenvalue of a distance matrix which represents spatial distribution

of current modes. These two methods were devised for rectangular conductors in

literature but are extended to other geometries in this section. The procedures

of the extension, i.e. constructing the general geometric matrix adapting for ar-

bitrary cross-sectional shapes, were presented in detail. Expect for Rdc,MNT of

the circular sample which are higher to FE results for 4% at quasi-DC frequencies

(< 10 kHz), Rac predicted by the two methods for all cross-sectional shapes fit

well to FE results with average differences smaller than 1%. Thereby, these two

discretisation-involved methods are assumed as the optimum theoretical solutions

of Zint for straight individual non-magnetic conductors of arbitrary cross-sectional

shapes. Furthermore, numerical methodology of simulating the SS316 models in-

cluding the modelling procedures and post-processing are validated.
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Chapter 4

Experimental Methodology:

Preliminary and Formal

Experiments and Data Processing

4.1 Introduction

This chapter introduces the experimental methods that were utilised in this work.

To study the capability of the ACPD method in identifying various features on

(and in) conductive components, several samples were manufactured to be in the

same dimension of 55 mm × 100 mm2 and contain different features such as a

cylindrical drill and a wide notch (or remain flawless for plain samples) for mea-

suring. Experimental researches were consisted of two phases — a preliminary

stage for verifying experimental methodology and a formal stage of conducting

ACPD experiments on the manufactured samples (i.e. the plain and featured

samples of the same size). In the preliminary stage, ACPD signals were measured

from some conductors and circuits with available theoretic solutions of impedance

to validate the measuring procedures and the data processing. In formal experi-

ments, the plain and featured samples are divided into three cases. Cases 1-3 are

designed to investigate the detection ability of the ACPD method in distinguish-

ing sample geometries, features with dissimilar opening shapes, and features with

similar opening and in the same cross-sectional area step by step.

In this chapter, experimental apparatus and procedures from inputting AC

signals to recording ACPD data will be demonstrated first. Then all experimental

samples and relevant configurations of shielding from electromagnetic interference

and connecting to the rest circuits will be introduced, which includes four pre-

liminary samples and nine formal samples with/without features in materials of

SS316/EN1A.

The final section focuses on the data processing. As will be presented in the

first section of this chapter, AC and PD signals were recorded simultaneously in

the ACPD experiments. Measured signals in the time domain are indistinct to
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detect sample shapes or feature geometries. It is necessary to process and convert

measured data into the frequency domain so that frequency-related quantities such

as amplitudes and phase angles of impedance can be used to identify the sample

shapes and the features. Since the swept oscillating frequency continually increases

even within a single period, a MATLAB script has been developed to identify and

interpret ACPD measurements for a frequency range from 10 Hz to 300 kHz. The

ideas and considerations behind each processes of the script will be introduced

first. Then, challenges due to the varying frequency and error signals that were

encountered during the development will be described. This will demonstrate

the advantages of the script over other available methods that it adapts to swept

signals for a wide range of frequency (from 10 Hz to 300 kHz).

4.2 Experimental Set-up and Procedures

The ACPD experiments were applied to several preliminary and formal samples

in the research. Preliminary samples include simple conductors and circuits with

known or calculable impedance, such as an isolated resistor and R-L combined

circuits. Experimental results processed after the data processing were then con-

trasted with the known and calculated results to verify the experimental method-

ology. Formal experiments involve the plain samples in non-magnetic SS316 of

various cross-sectional shapes and the featured samples in ferromagnetic EN1A of

square.

All the preliminary and formal experiments followed the same procedure that

AC was injected into the conductor (or circuit) then induced PD and real AC

outputted from the conductor were measured. A swept sinusoidal wave of AC

that sampled frequencies from 10 Hz to 300 kHz in 2 secs intervals with a constant

amplitude of 3 A was supplied in all experiments. This input AC was connected

to the conductor through screw blocks, which can be seen on the left hand side

of Fig. 4.1a. Fig. 4.1a shows an example of a plain square sample, two silver

steel wires were bended and welded onto the sample at one ends and screwed to

the current lead at the other ends. To eliminate electromagnetic disturbance on

measurements, the measuring part was shielded by a die-cast aluminium box, see

on the right hand side of Fig. 4.1a. Moreover, contact areas between the box and

the sample was insulated by using a polymer tape, as shown in Fig. 4.1b.
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(a) The die-cast box for shielding. (b) Insulations around and inside the box.

Figure 4.1: Strategies for shielding and insulation for measurements from

electromagnetic interference in the ACPD experiments.

Fig. 4.2 shows the schematic of equipment and procedures of the ACPD ex-

periments developed by Buss [2]. Expect for the sample and connections around

the sample inside the dash circle that were disconnected and replaced in different

experiments, the rest of set-up was shared by all experiments. The swept sinu-

soidal signal of 3 A was generated through a LabVIEW program. The generated

signal was outputted by an NI-PXIe-6124 input/output module, then amplified

by a bespoke amplifier (which was supplied by Fylde Electronics), finally injected

into the sample. Induced PDs were measured from areas with interested in on the

sample surface. Taking the square sample in Fig. 4.1 as an example, PDs were

measured with a distance of 2 mm across the center and close to the edge. Since

PDs obtained in formal experiments were at magnitudes smaller than 0.05 mV

at quasi-DC, signals of PD were amplified 1000 times by a Fylde FE-H793-TA

before feeding back into the same PXI unit. Smaller factors were used to amplify

measurements for samples that outputted greater PDs, e.g. the combined circuits

and long rod in preliminary experiments. Output signals of AC and PD were

captured at a constant sampling frequency (fs) of 4 MHz.

Figure 4.2: A Schematic of equipment and process of ACPD experiments.

Measured signals of AC and PD in the time domain were then processed by

a MATLAB script to calculate results of impedance and PD in the frequency

domain. As an example, Fig. 4.3 presents raw and processed results obtained

for the circular SS316 sample. In Fig. 4.3b, processed results of impedance with
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respect to modulus and phase angles are compared to manual measurements with

good agreement. A detailed review of the MATLAB problem will be given in

Section 4.5.
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Figure 4.3: Raw and processed results of ACPD measurements of the circular

SS316 sample.

4.3 Circuits and Conductors in Preliminary Ex-

periments

To test and evaluate experimental methodology of the ACPD method, the same

measurement procedures and the data processing as in formal ACPD experiments

were applied to a series of preliminary experiments. Preliminary experiments

were designed to form a progressive investigation, starting from measuring Rdc
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of an individual resistor then to determine inductive quantities such as Rac and

Zint of simple circuits. Preliminary samples include an individual resistor, R-L

combined circuits in series and parallel connections, and a long copper rod. For

all the preliminary samples, a current excitation of quasi-DC was firstly applied to

simply measure Rdc. After obtained desired Rdc, another current excitation of AC

with stepped frequencies was injected to determine Rac and Zint at some constant

frequencies. Finally the swept sinusoidal wave of AC varying from 10 Hz to 300

kHz was used for inputting, which was the same as formal experiments. Three

cases of the preliminary samples and relevant connections to the measuring part

will be introduced in this section. Results of experiments sampled with swept-

frequency AC, which was considered as the most representative, will be presented

in Chapter 6.

The first sample was an individual resistor with a known resistance (Rres) of

0.22 Ω. It was placed on a breadboard and connected to the rest of equipment by

two pairs of wires. The same resistor was then combined with an inductor with a

known inductance (Lind) of 1.8 µH to form a series and a parallel circuit for the

second part of preliminary experiments, see in Fig. 4.4. As mentioned before, the

die-cast box was used to shield measuring parts, which can be seen on the right

hand side of Fig. 4.4b. Moreover, an insulated clapboard was inserted between the

resistor and the inductor in the parallel circuit to avoid contact between two units

thus eliminate interference. Equivalent impedance of combined circuits processed

from measured signals were then compared with theoretical solutions based on the

series and parallel rule to evaluate the precision of the ACPD method.

(a) The series circuit. (b) The parallel circuit and insulations.

Figure 4.4: Configurations of the R-L combined series and parallel circuit

involved in preliminary experiments.

In formal experiments, ACPD signals were directly measured from isolated

conductors, which was different to measurements from a breadboard in these pre-

liminary experiments. Thereby, it is necessary to contain a single conductor in

the validation stage. Considering that the Bessel Function Method introduced in

Section 3.2 is widely used to calculate Zint for an infinitely long conductor, a long
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copper rod with an aspect ratio of 250 (assumed to be infinitely long) was chosen

for the last preliminary sample. The copper rod is 1 m in length and 4 mm in

diameter. Since the rod is in a finite length, the proximity effect of two ends is

negligible but remains effective. The rod was hence formed into a U-shape with

a separation between two halves of the wire (i.e. the forward and return paths of

current) to be 3 cm, which reduced the proximity effect smaller than 2% [215,228].

As the rod was too long to be covered by the shielding box, measuring parts at

two ends of the rod were sealed by foil paper to reduce error signals. Raven has

measured impedance of a copper rod in the same dimension of 1 m × 4 mm [215].

Impedance obtained in this preliminary experiment will be compared with solu-

tions given by the Bessel Function Method and experimental results provided by

Raven in a later section.

Figure 4.5: The U-shaped copper rod involved in preliminary experiments.

4.4 Plain and Featured Samples in Formal Ex-

periments

Formal experiments involved several plain and featured samples which are in the

same dimension of 100 mm2 in cross-sectional areas and 55 mm in lengths. Samples

were divided into three cases according to three research purposes in order to

sequentially investigate the ACPD method in detecting sample geometries and

feature shapes.

To study the ability of ACPD methdos in identifying the shape of a conductor,

Case 1 was designed to include four plain samples made of the non-magnetic

material of SS316 and in the same cross-sectional area but different shapes of

circular, hexagonal, square, and triangular, as shown in Fig. 4.6. Since four

samples are in the same material and dimensions, samples possess the same Rdc,

which suggests the incapability of DCPD methods in distinguishing between these

samples. It was expected to observe different Rac at high frequencies through the

ACPD method as a result of various cross-sectional shapes.
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Figure 4.6: Plain SS316 samples in Case 1: four samples are in the same

cross-sectional area of 100 mm2 but with different shapes of circular, hexagonal,

square, and triangular.

In the next stage of the formal experiments, several featured samples includ-

ing various features were measured in Cases 2 & 3. To highlight the ability of

ACPD in approximating internal features, a strong skin effect is preferred thus

the ferromagnetic material of EN1A was chosen for samples in feature detection

experiments (see more details in Section 7.2.1). All the featured samples are in

the square shape. Features were manufactured at the middle of the edges and

towards the center of the conductors. Three featured samples in Case 3 are shown

in Fig. 4.7 as an illustration, however, internal geometries of features are invisible

in these pictures. Drawing of features on samples in Cases 2 & 3 are given in Fig.

4.8-4.9 for better presentation.

Figure 4.7: Featured EN1A samples in Case 3: three features (N6, N3, and N1.5)

have the same cross-sectional area of 9 mm2.
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(a) H (b) N (c) NH

Figure 4.8: Drawings of features in Case 2 (H, N, and NH). d refers to the depth

into the conductor (all dimensions are in mm).

(a) N6 (N) (b) N3 (c) N1.5

Figure 4.9: Drawings of features in Case 3 (N6 (N), N3, and N1.5). d refers to

the depth into the conductor (all dimensions in mm).

As shown in Fig. 4.8, Case 2 includes a cylindrical hole, a wide notch, and

a hybrid feature combining the drill and the notch, which were named as the H,

N, and NH feature respectively. The research of Case 2 focuses on investigating

the ability of the ACPD method in identifying features with dissimilar opening

shapes. In the next stage of Case 3, two notches similar to the N feature were

introduced in to further study the detection capability. Three notches in Case 3,

as displayed in Fig. 4.9, were manufactured with the same cross-sectional area of

9 mm2 by controlling the lengths and depths of the notches. The N feature was

also named as N6 in Case 3, referring to the opening length of 6 mm. Similarly,

the other two notches were named based on opening lengths as N3 and N1.5.

Same connections of AC injection and PD measurement were applied to all

formal samples, see in Fig. 4.10. For each sample, a pair of silver steel wires in

a diameter of 1.13 mm were bended to connect the sample with the current lead.

Silver steel wires for AC inputting were welded at positions close to the edge with

the feature located on. Another pair of thin electric wires for PD measurement

were welded close to the same edge and at the middle of the sample length with a

distance of 2 mm in between. More specific, the measurement probes were located

on the plain surfaces of the plain samples in Case 1 and across features in Cases

2 & 3.
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Figure 4.10: The configuration of AC injection and PD measurement

consistently applied to all formal samples in Cases 2 & 3.

However, uncertainties in manual work of welding were inevitable and had to be

considered in analysis. Welding errors of current injection wires and PD measuring

probes will be taken into consideration through FEA, which will be presented in

Section 5.4 & 5.6 respectively. Processed results obtained in Cases 1-3 will be

compared with manual measurements in Chapter 6 for the purpose of validation

as preliminary experiments. Such experimental results will be further analysed

with FE results to reach comprehensive conclusions of the detection ability of the

ACPD method in Chapter 7.

4.5 Experimental Data Processing

4.5.1 Challenges in Data Processing

In ACPD experiments conducted in the project, the frequency of input AC was

designed to increase from 10 Hz to 300 kHz in 2 secs. The output AC, which

was the real current supplied by the amplifier and injected to the sample, and PD

signals were recoded together at a constant fs of 4 MHz. Raw data of AC and

PD signals measured from the SS316 circular sample are shown in Fig. 4.11 as an

example. As the time grows, the swept frequency of signals increases and the time

period of signals becomes narrower. AC and PD signals measured in the time

domain are incapable to indicate obvious differences between different samples,

while frequency-related quantities, such as the frequency, amplitude, and phase

shift between AC and PD signals, are more convenient and distinct to compare

between various experiments. It is thereby necessary to translate raw data in the

time domain to the frequency domain, i.e. continuous signals were separated into

individual periods. Then quantities obtained from the frequency domain may be

used to analyse PDs across different features or further interpreted to calculate

impedance with respect to modulus and phase angles of the conductor.
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(a) (b) Rescaled

Figure 4.11: Raw signals of AC and PD measured from the SS316 circular

sample with 2 mm in distance.

The data processing of interpreting signals into frequency domain encountered

two main challenges. The first problem was due to the swept frequency sampled

for signals in experiments. Available interpreting methods including Fast Fourier

Transform (FFT) are inapplicable here, since ACPD signals belonging to periods

at various frequencies are continuously distributed in the time interval of 2 secs.

Components such as the amplitude, frequency, and phase angle of each signal

period are desired in the data processing. It is necessary to develop a script to

interpret signals with continuously increasing frequencies. The second problem

was caused by inevitable error signals recorded in experiments. Moreover, since

fs remained constant, ACPD signals had very different performance at extremely

low and high frequencies. For f ≪ fs, many error signals were recorded, which

caused difficulties in identifying and separating data; while for f ≫ fs, few signals

were recorded for each period so that the accuracy of data interpretation was

limited. The development of the script focused on overcoming the two challenges

and achieving high precisions of the interpretation.

4.5.2 Development of Data Processing Script and Con-

stant Slope Ratio Method

The data processing script developed in MATLAB (see in Appendix B) consists

of three steps. Fig. 4.12 shows a piece synchronous AC and PD of signals at a

frequency of fi to help illustrate. At first, positions of two zero-crossings of AC

signals in time domain are figured out as t1 and t2 by the script. Then in the

second step, the identification of PD signals is started from positions of t1 and t2
and moved forward to find out the two zero-crossings of PD signals at t3 and t4.

The four zero-crossing are then used to calculate fi and the time shift between
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AC and PD periods ∆t as,

fi =
1

t2 − t1
=

1

t4 − t3
∆ti = t1 − t3 = t2 − t4 (4.1)

The equal signs in (4.1) only hold for ideal conditions that all zero-crossings of sig-

nals were exactly recorded. For real signals measured in the ACPD experiments,

several ‘zero-crossings’ including error signals were recorded and fluctuated around

zero, the real zero-crossing (e.g. t1) was almost impossible to be precisely cap-

tured. So the script takes averages of the later two terms in (4.1) for fi and ∆ti.

Amplitudes of AC and PD (|Ii| & |Vi|) are then determined conveniently from

signals confined by t1 to t2 and t3 to t4, as

fi =
1

2

(
1

t2 − t1
+

1

t4 − t3

)
∆ti =

1

2
[(t1 − t3) + (t2 − t4)] (4.2)

If impedance results are required for analysing, the third step will be conducted

to calculate the modulus (|Zi|) and phase angle (θZi) at the certain frequency of

fi by equations of

|Zi| =
|Vi|
|Ii|

θZi = 2πfi∆ti (4.3)
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Figure 4.12: Schematic of a corresponding pair of AC and PD signals at a

certain frequency of fi.

The first two steps in the script will be introduced in detail below. The main

task in the first step of current identification is to identify zero-crossings from

all measured signals then separate signals into individual periods. To reduce the

computing time, only the part of signals near to the zero are involved in identifi-

cation while signals far from the zero are excluded. This is achieved by applying
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a positive and negative tolerance (Itol), see in Fig. 4.13a. ±Itol is determined to

cover all possible ‘zero-crossings’ of measured data, i.e. AC signals beyond ±Itol
could be definitely eliminated from the data processing. AC signals within ±Itol
are divided into many ‘bands’, for example in Fig. 4.13a, the band AB in the 1st

period contains the zero-crossing at tAB and the band CD in the 3rd period con-

tains the zero-crossing at tCD. Now the problem are converted from separating all

signals into individual frequencies to simply separate the bands. A Constant Slope

Ratio Method (CSRM) has been devised to solve the problem, relative schematics

are displayed in Fig. 4.13b.
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Figure 4.13: Schematic of the AC identification procedure in the MATLAB

script.

AC signals belonging to the period at fi and with a phase angle of θi is ex-

pressed by

Ii(t) = |I| sin (2πfi + θi) (4.4)
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where |I| is the amplitude of the current injection. The positions of zero-crossing

of the 1st band (t1i), the ending point of the 1st band (tAi
), and the starting point

of the 2nd band (tBi
) can be calculated based on (4.4) as

t1i =
−θi
2πfi

(4.5)

tAi =
sin−1

(
Itol
|I|

)
− θi

2πfi
(4.6)

tBi =
π − θi − sin−1

(
Itol
|I|

)
2πfi

(4.7)

Slopes of the segment OiAi and OiBi are given by

kOiAi
=

Itol
tAi − t1i

(4.8)

kOiBi
=

Itol
tAi + tBi − 2t1i

(4.9)

By substituting (4.5)-(4.7) into (4.8)-(4.9), the ratio between kOiAi
and kOiBi

can

be obtained as

Rki =
kOiAi

kOiBi

=
π

2 sin−1
(

Itol
|I|

) (4.10)

It can be seen that Rki is only dependent on Itol and |I| but independent of fi and
θi of any specific period. It suggests that a constant slope ratio (Rk) is applicable

to the whole frequency range, i.e. can be used as the criterion to continuously

identify bands for all frequencies. This is the principle of CSMR.

CSRM is applied to the MATLAB script through following processes. For

example to find out the experimentally measured (or interpreted) zero-crossing

of the band OiAi in Fig. 4.13b, firstly the signal at Oi is recognised as the first

signal of the band (based on identification results for the preceding band); then

all signals behind Oi are detected by calculating slopes of signals with Oi. Slopes

between Oi and all signals belonging to the band OiAi are almost equal to kOiAi
.

Until the signal at Bi which is the first signal of the next band is encountered,

slopes between Bi and Oi is much smaller than kOiAi
. Ratios between two slopes

calculated from two adjacent signals are used as the indication. As examples, for

the signal at C and its next signal at D, the slope ratio of RkCD =
kOiD

kOiC
is about to

be 1; whereas for signals at Ai and Bi, the slope ratio of RkAB is much larger than

1. The noticeable rise in Rk is a clear sign that all data before Bi belong to the

band OiAi and the signal Bi is the first data of the next band. After identifying

all current bands, theoretical zero-crossings are calculated by intersecting bands

and the axis. Signals that are closest to theoretical zero-crossings are determined

as processed zero-crossings of AC signals at each frequency.

One of the advantage of CSRM is the reduction of negative effects due to error

signals. Since the uncertainties in AC signals caused by error signals is negligible
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by comparing with the scale of band lengths, the method enables the script to

complete the current identification with high precisions. Additionally, the value

of Itol is adjusted to adapt different situations of signal numbers at low and high

frequencies, see quantified evaluation in Chapter 6. For low frequencies, excess

signals were captured hence a small Itol was used to reduce the computing time;

while at high frequencies too less signals were recorded, a greater Itol was applied

to cover enough data and assure the precisions. The value of Itol is adjusted

automatically based on numbers of signals contained in bands. As long as a band

is detected to cover too few signals (at least 4 data is required in the script), a

greater value of Itol will be used for subsequent identifications. Values of Itol and

corresponding Rk used in the script are given in Tab. 4.1.

Itol Rk

1
3
|I| 4.62

2
3
|I| 2.15

|I| 1.00

Table 4.1: Values of Itol and corresponding Rk used in the MATLAB script.

After determining all zero-crossings of AC signals, the next step is to identify

zero-crossings of PD signals. The method of convolution is incapable of process-

ing data with high precisions at low frequencies since results of convolution are

strongly affected by error signals. Thereby, the PD identification are completed

by a simpler method based on the symmetry of the sinusoidal curve of signals, as

demonstrated in Fig. 4.14. At first, the PD signal nearest to the identified AC

zero-crossing that located at t1i is marked as V (t1i). Then signals before V (t1i) are

detected one by one until the signal V (txi), which has an opposite sign to V (t1i)

and in a magnitude closet to |V (t1i)|, is identified. The zero-crossing of the fitting

line of V (t1i)V (txi) is computed as the theoretical zero-crossing of PD, the PD

signal nearest to the theoretical result is picked out as the processed zero-crossing

of PD that located at t3i.
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Figure 4.14: Schematic of the PD identification process in the MATLAB script.

By following the two steps, the script identifies zero-crossings of AC and PD

signals for all frequencies, thus oscillating fi, |Vi| & |Ii|, and ∆ti can be easily

obtained. Impedance parameters of |Zi| and θZi can then be calculated against

frequencies based on (4.3).

The Matlab script overcomes deficiencies of FFT and the method of convolu-

tion in identifying AC and PD periods and reduces interference caused by error sig-

nals. To validate the precision of the data processing, processed results processed

by the script will be compared with manual measurements for all preliminary and

formal samples in Chapter 6.

4.6 Conclusions

In the first section of the chapter, equipment and process of ACPD experiments

have been demonstrated, including the injection, amplification, and measurements.

Attention was paid to protect measurements from electromagnetic interference,

such as shielding all measuring parts by a die-cast box and sealing exposed area

of samples and wires by insulated materials.

Then in the next section, the experimental samples for all preliminary and for-

mal experiments were introduced with detailed information. Preliminary samples

include the isolated resistor, R-L circuits constructed by a breadboard, and the

long cylindrical wire. Impedance of these samples are known or may be calculated

based on available theories, which provides contrasts with experimental results to

verify experimental methodologies before conducting formal experiments. Formal

experiments are consisted of three cases that respectively contain four plain sam-

ples in different shapes, three featured samples with dissimilar feature openings

(H, N, and NH), and another three featured samples with notches in the same
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cross-sectional area (N6, N3, and N1.5). These cases enable progressive investi-

gations of the ACPD method from detecting sample shapes to identifying feature

geometries. Processed results obtained from all experiments will be presented in

Chapter 6.

Finally, the MATLAB script has been created to interpret measured ACPD

signals into PDs and impedance in the frequency domain with a wide frequency

range from 10 Hz to 300 kHz. In the first step of the data processing, CSRM is

applied to identify and separate AC signals into individual periods, which adapts

to a wide range of swept frequencies. Moreover, through using different values

of Itol and Rk at different frequencies, the script properly eliminates interference

of abundant error signals at low frequencies and utilises sufficient signals at high

frequencies for identification to remain high precisions. Then in the second step

of PD interpretation, straightforward judgement statements are used to precisely

find out corresponding PD periods for identified AC periods. The script has been

successively applied to process PD signals with high precisions especially for low

frequencies from 10 Hz, which was unattainable by other available methods such as

the method of convolution. The precision of the data processing will be evaluated

in Chapter 6 in which processed results of PD and impedance will be compared

with manual measurements that directly read in NI DIAdem (for all samples) and

available theoretical solutions (for the preliminary samples).
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Chapter 5

Numerical Methodology: Finite

Element Analysis of Alternating

Current Potential Difference

Samples

5.1 Introduction

This chapter focuses on simulating the formal samples by FEA. Several theoretical

solutions of solving Zint and current fields for finite long conductors were presented

in Chapter 3. However, applications of these theories are variously restricted to

different situations, e.g. some solutions are limited to weak magnetic materials or

plain conductors without features. Analytical solutions are incapable of providing

comprehensive comparisons to experimental results, especially to contrast with

PDs which are the primary data directed measured from ACPD experiments. For

this reason, FEA have been employed to approximate the electric/current fields

generated within and around the samples in ACPD experiments.

In the first section, the approaches of creating FE models for the formal sam-

ples will be presented in detail. Then the techniques of partial and symmetrical

modelling designed for reducing model sizes will be introduced and verified. Next,

FEA will be applied to investigate the impact of welding uncertainties of cur-

rent injection wires on the experimental measurements, i.e. the end effect due to

current injections. Then mesh refinement study will be conducted and presented

separately for the plain SS316 models and featured EN1A models to evaluate the

mesh statistics. The optimum parameters of convergence and meshes will be de-

termined for the models based on the compromise between model precisions and

simulation cost. Finally, post processing procedures of outputting field solutions,

PDs, and error bars of PD (which represent possible ranges of results due to

welding errors) will be reported.
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5.2 General Approaches for Finite Element mod-

els

In this research, FE models were developed using the Eddy Current solver in

Maxwell 3D from ANSYS Electronics Desktop. At first, a complete model com-

prising of a conducting bar and a pair of current injection wires was built to

simulate the full field induced within and around the experimental sample. Then

based on results of further study (see in the next section), the complete model

was replaced by a partial model that only consists of a small part at the center

of the sample. These two types of models are shown in Fig. 5.1. According to

the ANSYS manual [235], all FE models were created by following a sequence of

modelling steps: drawing the geometry, assigning material properties, specifying

excitations and boundary conditions, applying mesh operations, defining global

parameters, and specifying solution options. The application of these procedures

in creating models of the formal samples will be introduced in this section. Post

processing including generating reports of desired quantities will be presented in

Section 5.6.

(a) A complete model. (b) A partial model.

Figure 5.1: Two types of FE models.

Since the objective of FEA is to solve the skin effect problems for various

samples with current injections at different frequencies, the Eddy Current solver

is determined as the solution type of the analysis. Then the geometry of the model

is defined to be a bar of a certain shape and in the dimension of 55 mm × 100 mm2.

To circumvent difficulties in generating meshes on curved surfaces, a polygon with

24 faces rather than a cylinder is used for modelling the circular SS316 sample. In

the complete model, the pair of current wires are modelled by two small polygons

with 24 faces located at ends of the bar. These two small polygons are assembled

with the bar by a boolean operation of subtraction in which the overlapped volume

(i.e. welded material) of about 0.4 mm in depth is removed from the bar. It will

be demonstrated later in Section 5.4 that the modelling of current wires hardly
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affect measurements at the center of the model. Thereby, details of modelling such

as the size of subtracted volume, the meshing of two wires, and even the material

of current wires are of negligible importance.

Properties of two sample materials, i.e. SS316 and EN1A, were measured in

experiments by Buss [2]. However, these measurements were conducted at the

initial stage of the project when the importance of shielding the measuring region

had not been realised. As a result, the measured permeability of SS316 is ques-

tionable and a literature value [236] is used for FEA and theoretical calculations.

Due to the ferromagnetic property of EN1A, measurements of EN1A are assumed

to be valid. Properties of the wire material, i.e. silver steels, were not measured

and a literature data of high carbon steel is used in modelling. Tab. 5.1 presents

measured and literature data used for defining these materials in FEA.

Material Relative µ σ (MS/m)

SS316 1.02 [236] 1.38

EN1A 4002.75 54.90

High carbon steel 100 [237] 4.60 [236]

Table 5.1: Material properties of samples and current wires used in FEA.

The next step is to apply current excitations and create an air box surrounding

the model as the analysis region. In ANSYS Maxwell 3D, the current excitation

of a conducting body can only be applied on two opposing and external faces

of the environmental region. It suggests that two outer boundaries of the air

region must coincide with current injection surfaces of the model so that current

excitations can be assigned on. According to the guidance, the input and output

current with a peak value of 3 A are assigned on the top and bottom surfaces

of wires on the complete model, see in Fig. 5.1a. While for a partial model in

Fig. 5.1b, current excitations are imposed on two cross-sections of the remaining

part of the sample. The equivalence between two methods of applying excitations

will be discussed in detail later. A too small region may cause interference in

simulation, e.g. producing an asymmetric electric field for a model in a symmetric

geometry and carrying a uniform excitation. To consider this point and also avoid

excessive meshing of the region, the padding of air regions for the SS316 models

were determined to be 500% of the model dimension by trial and error, while that

for the EN1A models were decided to be 100% of the model size. Fig. 5.2 shows air

regions of the complete and the partial SS316 model. In Fig. 5.2a, the padding

of the region for the complete model is defined on ±X & ±Y -directions. The

default boundary condition on vertical surfaces of the air region is the Neumann

boundary in which H field is tangential to the surface and no flux cross it. While

on the partial model, the region extends along +X & +Y -directions and coincide

with the symmetry planes on which the model is split, which can be seen in

Fig. 5.2b. Even symmetry boundary conduction, which defines H to be normal
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to the surface, is applied to the symmetry planes to assure magnetic symmetry.

As mentioned before, horizontal surfaces of air regions are defined to overlap with

current injection surfaces of the model for applying current excitations as boundary

conditions.

(a) Region of the complete model. (b) Region of the partial model.

Figure 5.2: Regions and boundaries defined for two types of FE models.

Then all vertical surfaces of the sample are selected to apply a skin-depth

based mesh. Two mesh parameters, i.e. ‘maximum element size’ and ‘number

of layers with skin depth’, are determined based on the mesh refinement study.

In the complete model, objects of two wires are selected to define a length-based

mesh with the maximum element size of 2 mm. Inductance matrix is assigned as

a global parameter to calculate impedance of the whole model, which is significant

to analysis for the plain samples in Case 1.

The last step before submitting the job is to specify solution options including

the adaptive frequency and suggestions of convergence. Default values of the

‘minimum and maximum number of passes’ are 2 and 50 respectively, and of the

‘refinement of the number of elements per pass’ is 20%. These value are used for

the SS316 and EN1A models. The significant parameter of percent error, which

refers to the final requirement of convergence (see detailed definitions in Section

5.5), is decided with mesh statistics in the mesh refinement study.

By way of example, Fig. 5.3 shows FE results of current fields predicted by

the complete model that simulates the skin effect within a square SS316 sample

at 10 kHz and 100 kHz. In Fig. 5.3a & 5.3c, current fields are concentrated

near injection points thus skin effect are interrupted near two end surfaces. The

disturbance due to current injection recedes with distances from the end surface

towards the center plane, which can be observed more clearly through current

fields and skin depths on internal sections at different distances from the end, as

shown in Fig. 5.3b & 5.3d.
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(a) The complete model, 10 kHz. (b) Internal sections, 10 kHz.

(c) The complete model, 100

kHz. (d) Internal sections, 100 kHz.

Figure 5.3: Current fields generated by the complete model of the square SS316

sample at 10 kHz and 100 kHz.

5.3 Partial Symmetrical Modelling

The complete model requires numerous elements in modelling current wires, which

greatly increases the simulation time or reduces the precision of field solutions. Fig.

5.4 shows a mesh plot of the complete SS316 model simulated at 30 kHz. The

mesh applied to the sample part is skin-depth based with the maximum element

size of 0.5 mm and 4 layers of elements within the skin depth (δ = 2.45 mm).

While the length based mesh assigned to the wire part is much coarser with the

maximum element size of 2 mm. However, due to the stronger magnetism of

high carbon steel than that of SS316, ANSYS automatically refines the mesh that

the mesh around the current wire is much finer than that within the skin depth

region. It is beneficial to build partial models that simulates the significant part
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near the center of the sample and excludes current wires. Due to the mechanism of

excitation application in ANSYS Maxwell 3D, the total current remains constant

through all sections normal to the current flowing direction inside the conducting

body, i.e. current injection through two current wires in the complete model

is equivalent to the assignments through two internal sections of the samples in

partial models. Moreover, by taking the advantage of the geometrical symmetry of

the samples and the uniformity of surface current excitations, the sizes of partial

models can be further reduced by applying even symmetry boundary conditions

on two symmetry planes.

Figure 5.4: The mesh plot around current wires in the complete SS316 model at

30 kHz with skin depth of 2.45 mm.

The processes of developing a partial symmetrical (PS) model are demon-

strated in Fig. 5.5. Firstly in Fig. 5.5a-5.5b, a volume in 10 mm long (with or

without a feature) around the center of the sample is cut out as a partial model.

Then in Fig. 5.5c, even symmetry boundary conductions are assigned to two sym-

metry planes A and B in which the plane A is horizontal and across the center

plane and the plane B is vertical and across the diagonal. For the plain samples

without features, the models were not split by the diagonal plane B but by ver-

tical planes on the X & Y-axis, as shown in Fig. 5.2b. Finally in Fig. 5.5d, a

conductive path highlighted in pink which is parallel to the symmetry diagonal

plane B and follows the feature edge is defined to simulate the real conductive path

measured in the ACPD experiments. PDs integrated along such conductive paths

are then use to analyse and evaluate the precision of the model. The definition

of conductive paths and methods in calculating field outputs will be presented in

Section 5.6.
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(a) A complete model of 55

mm.

(b) A partial model of 10

mm.

(c) Two symmetry planes. (d) A PS model.

Figure 5.5: The processes of developing a partial symmetrical (PS) model.

To evaluate the feasibility of PS modelling, the current field approximated by

a PS model simulating the square SS316 sample at 10 kHz were compared with

the results computed from the complete model, comparisons are given in Fig. 5.6.

Current fields along two conductive paths called ‘Path-0.8’ and ‘Path-4.2’ were

measured to quantify the difference in field solutions given by two models. Two

paths are highlighted in black in Fig. 5.6, Path-0.8 is at a position of 0.8 mm to

the edge with current wire welded on and Path-4.2 refers to a position at 4.2 mm

to the edge. Path-0.8 simulates the paths on samples that were most likely to be

measured in experiments, which will be introduced in more detail in Section 5.6.

Since Path-0.8 is close to the edges and current injections, another paths far from

the edges are desired for contrast, e.g. Path-4.2 was chosen here.
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(a) The complete model, 10 kHz. (b) The PS model, 10 kHz.

(c) The complete model, 100 kHz. (d) The PS model, 100 kHz.

Figure 5.6: Current fields approximated by the complete model and PS model of

the square SS316 sample at 10 kHz and 100 kHz. (In the complete model: the

maximum element length on surface = 1 mm, the number of layers of elements

within skin depth = 2, convergence = 0.05%. In the PS models the maximum

element length on surface = 0.5 mm, the number of layers of elements within

skin depth = 4, convergence = 0.001%.)

Current fields on these paths given by two models at 10, 30, and 100 kHz are

presented against the distance in Fig. 5.7. It can be seen that in the complete

model, end effect due to current injections causes greater impact on current fields

along Path-0.8 than those along Path-4.2, which is because Path-0.8 is closer to

the current injection area. The end effect on current fields attenuates along the

distance and vanishes beyond 15 mm on both two paths. Results of current fields

near the center at 0 given by two models show good agreement, the detailed com-

parison of results near the center is given in Fig. 5.7b. The maximum discrepancy

of average values of current field excluding end effects approximated by two mod-

els is about 4% at 100 kHz. The agreement between the complete and PS model is

reasonable since a coarse mesh and a lower requirement of convergence are defined

for the complete model. For example at 30 kHz, the PS model comprises of about
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170k elements and takes 11 mins to reach a convergent requirement of 0.001%,

whereas the complete model contains 1.4M elements and requires a much longer

simulation time of 2 hrs to achieve a lower precision of 0.05%.
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Figure 5.7: Current fields along Path-0.8 and Path-4.2 on the two models in Fig.

5.6 at various frequencies. Dotted line: the complete model; solid line: the PS

model; blue line with circles: Path-0.8; orange line with crosses: Path-4.2.

Consequently, in terms of FEA, laborious simulation of current injection wires

can be avoided by developing partial models that only focus on segmented vol-

umes of the samples near the center. It has been shown that the two approaches

in reducing the model size, i.e. partial modelling and symmetrical modelling,

are capable of providing similar field solutions as the complete model with less

simulation time, thus further increasing the precision of FEA.

5.4 End Effects due to Current Injections in Ex-

periments

In the last section, the end effect due to current injections on the electric fields

has been shown to be inconsequential from the viewpoint of FEA. Nevertheless in

experiments, current injection configurations were different from sample to sample

due to inevitable uncertainties in welding of current wires. Such different situations

of current injections resulted in different impact on practical electric fields. It was

unknown whether all various effects vanished around the center of the samples

and conformed to former FE conclusions or not. Thus several FE models were

built to approximate influences of different welding situations of current wires on

field results.
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The SS316 sample of circular cross-sectional shape is shown in Fig. 5.8 to

demonstrate the welding configuration of current wires. Two wires in silver steel

were welded near to end faces of the sample with a welding length of 2 mm. For the

samples of other cross-sectional shapes containing edges like the square samples,

current wires were welded as close to the edge as possible, only leaving a distance

of about 0.3 mm. The expectant configuration of welding was simulated by the

complete model presented in the previous section. Three additional half models

were developed to cover possible uncertainties in welding work, including ±75%

of error in welding length and an error in welding position much greater than the

wire diameter of 1.13 mm. Details of welding configurations simulated by models

are given in Tab. 5.2.

Figure 5.8: Uniform configurations of current injection wires welded on ends of

the formal samples.

Model type Welding length (mm) Welding position (mm)

Complete (expectant) 2 0.3

Half 1 0.5 0.3

Half 2 3.5 0.3

Half 3 2 2

Table 5.2: Four welding situations of current injection wires simulated by the

complete model and three half models.

Fig. 5.9 shows current fields predicted by four models at 10 kHz. The welding

situations listed in Tab. 5.2 are also marked out. Magnitudes of current fields

along Path-0.8 and Path-4.2 were measured from the field plots in Fig. 5.9 and

compared for clearer contrast, see in Fig. 5.10. Similar to results in Fig. 5.7a, the

current localisation due to current injections has greater impact on fields along

Path-0.8 than Path-4.2 as the former path is closer to current wires. Various

end effects due to different welding situations cause different influence on fields

near to ends, but all impact decrease along the distance and become negligible

beyond 10 mm. The measurement region at the center is almost unaffected by the
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disturbances. The difference of current magnitudes within the region from 0 to 5

mm given by four models is within 1% at 100 kHz.

(a) Complete (b) Half 1

(c) Half 2 (d) Half 3

Figure 5.9: End effect in current fields caused by different welding configuration

of current injection wires at 100 kHz. All models simulate the square SS316

sample. (In half models: the maximum element length on surface = 1 mm, the

number of layers of elements within skin depth = 2, convergence = 0.05%.)
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Figure 5.10: End effect along Path-0.8 and Path-4.2 on the four models in Fig.

5.9.

End effect caused by possible uncertainties in welding work of current injection

wires have been investigated by developing additional models. It was suggested by

FEA that for the SS316 models, inaccuracies in welding work would cause various

impact on current fields, however, which is restricted to a short distance near ends

and produce negligible influence on the measurement region at the center of the

samples.

To investigate impact of PS modelling and absence of current wires on FE

results of the other type of model — EN1A, similar analysis of comparing between

complete and PS models were also desired. However, due to strong skin effect

occurring inside the EN1A samples, EN1A models are too large to be simulated

in the full size of 55 mm by the computer equipment accessible to the author. With

the limitation of computing devices, analysis of PS modelling for EN1A models

were constrained to the half size of the samples (i.e. 27.5 mm) at 10 Hz. At 10

Hz, the skin depth of EN1A is only 0.33 mm. The half EN1A model generates

about 2.5M elements and requires 9 hrs to reach a convergence of 1%. While in

the above analysis of the SS316 models, the skin depth at the highest frequency of

100 kHz is 1.34 mm. The complete SS316 model produces about 0.66M elements

and only takes 1.5 hrs to obtain a much lower convergence of 0.005%.

Fig. 5.11 demonstrates three types of EN1A models to investigate the PS

modelling and end effects: a half model, a partial model containing the part of

5 mm long at the bottom of the half model, and a PS model symmetrically split

along the diagonal plane of the partial model. Path-0.8 across the N feature and

Path-5 on the plain surface are marked out on the models in Fig. 5.11. Results
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of current fields on these two paths were extracted from the plotting in Fig. 5.11

and presented in Fig. 5.12 for distinct contrasts.

(a) Half

(b) Partial (c) PS

Figure 5.11: Current fields approximated by the half model, the partial model,

and the PS model of the N-featured EN1A sample at 10 Hz. (In all models: the

maximum element length on surface = 0.25 mm, the number of layers of

elements within skin depth = 4, convergence = 1%.)
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Figure 5.12: Current fields along Path-0.8 (across the feature) and Path-5 (on

the plain surfaces) on the three models in Fig. 5.11.

The effect of symmetrical modelling can be evaluated by comparing field so-

lutions given by the partial model and the PS model. It can be see in Fig. 5.11

that current distributions approximated by the two models are similar. Average
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differences between results of the partial and PS model in Fig. 5.12 is 2.8% for

Path-0.8 and 0.5% for Path-5. Such minor differences indicate the feasibility of

applying symmetrical modelling for EN1A models. Nevertheless, by comparing

with the half model, current results given by the PS model are lower for 7.73%

along Path-0.8 and 3.11% along Path-5. It suggests that the end effect of current

injections through wires (or impact of partial modelling) on the EN1A models

is more significant than those on SS316 models. For the EN1A models, uniform

surface injection of current on the internal sections is unable to completely replace

current excitations through wires. Nonetheless, considering the limitation in sim-

ulating half models at higher frequencies, such defect of PS models are accepted

and PS models are still used for further FEA in this work.

5.5 Mesh Refinement Study

In order to simulate the experimental samples by achieving acceptable accura-

cies with minimum computing resources, the study of mesh refinement has been

conducted to determine optimum mesh definitions of FE models involved in this

research. In ANSYS Electronics Desktop, the precisions of field solutions approx-

imated by FE models are evaluated by analysing the convergence of two energy

quantities, which are called ‘energy error’ and ‘delta energy’. The energy error

describes the precision of the model with the present mesh by comparing the en-

ergy value based on residual error and the total energy calculated with original

sources. The delta energy reveals the stability of the model by calculating the

change in total energy of the model in the present and previous pass. Because

of different magnetic behaviour of SS316 and EN1A, simulations for two types of

the samples are very different — SS316 models usually require much less elements

and converge faster with significantly higher precisions.

5.5.1 Partial Symmetrical Models of Plain Samples in 316

Stainless Steel

The mesh refinement study of the SS316 models will be presented first. The

SS316 models produce relatively small error quantities for both the energy error

and delta energy, which quickly converge within 0.2% at the beginning of simu-

lations. Curves of a convergence of PS SS316 model at different frequencies are

displayed against the number of passes in Fig. 5.13. Meshes of the models in-

volved in Fig. 5.13 were defined according to general guidance in the ANSYS

manual [235], specific refinement of mesh will be conducted after determining the

optimum convergent value. In Fig. 5.13a, the energy error decreases continu-

ously as the pass increasing. Whereas, the delta energy fluctuates before declining

steady for all frequencies, as shown in Fig. 5.13b. It can be seen that rebound

of delta energy appear in earlier passes for low frequencies and in later passes for
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high frequencies. However, the delta energy with all frequencies terminate the

fluctuation before the Pass 10 and start to converge from 0.005%.
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Figure 5.13: Convergence of the PS models simulating the square SS316 sample

at various frequencies with a consistent mesh definition: the maximum element

length on surface = 0.5 mm, the number of layers of elements within skin depth

= 4.

To determine an appropriate requirement of convergence without fluctuations,

field solutions approximated by models with different convergent requirements

of 0.005%, 0.001%, and 0.0005% were compared with respect of the inductance

matrix (including Re(Z) & Im(Z)) of the whole models and PDs on conductive

paths defined on the model surfaces, the comparison are shown in Fig. 5.14.

Similar to former analysis, Path-0.8 and Path-5 were chosen here because the

former one simulates the most likely measured paths in experiments and close to

the edges, while the latter one is far from the edges and on surfaces. Re(Z) and

Im(Z) obtained with three convergent requirements are almost coincided with

a maximum difference of 0.01% at 300 kHz. PDs given by the model with the

highest precision, i.e. 0.0005% of convergence, show a maximum discrepancy of

1.0% and 1.3% to results from models with lower precisions of 0.001% and 0.005%

in convergences receptively.
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Figure 5.14: The effect of convergent requirements on field results of the PS

models simulating the square SS316 sample.

Computing costs to achieve different precisions of models are presented in Fig.

5.15. Considering the significant increase in number of elements and computing

time of the ‘0.0005%-model’, a compromise is made between the precision and

simulation resources that the convergent requirement of 0.0005% is not adopted.

For the least precise ‘0.005%-model’, it is noticed that models at different frequen-

cies require similar amount of elements and simulation time. This is because the

convergent requirement of 0.005% is too high to cover rebound during simulation

at high frequencies, which can also be seen in Fig. 5.13b. Therefore, the conver-

gent requirement of 0.001% has been determined as the optimum for the PS SS316

models.
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Figure 5.15: The effect of convergent requirements on mesh statistics and

simulation time of the PS models simulating the square SS316 sample.

Due to the skin effect generated within the samples in the ACPD experiments,

a skin-depth based mesh was applied to the surfaces of all models. This type

of mesh is created by defining two quantities, which are called ‘the maximum

element length on surface’ and ‘the number of layers of elements within the skin
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depth’. With respect to the first quantity, three different sizes of 1, 0.5, and 0.25

mm (i.e. 1
5
, 1

10
, and 1

20
of the model dimension) were investigated in the mesh

refinement study. As illustrated in Fig. 5.16, solutions of Z and PDs based on

different surface element lengths show small differences within 0.06% and 1.5%

respectively for the whole frequency range, indicating ignorable impact of this

parameter on the precision of the SS316 models.

10
2

10
3

10
4

10
5

Frequency (Hz)

0

0.2

0.4

0.6

0.8

R
e(

Z
) 

(m
)

0

5

10

15

Im
(Z

) 
(m

)

Re(Z), Length < 0.25 mm

Re(Z), Length < 0.5 mm

Re(Z), Length < 1 mm

Im(Z), Length < 0.25 mm

Im(Z), Length < 0.5 mm

Im(Z), Length < 1 mm

(a) Z

10
2

10
3

10
4

10
5

Frequency (Hz)

0

0.04

0.08

0.12

0.16

P
D

 (
m

V
)

Path-0.8, Length < 0.25 mm

Path-0.8, Length < 0.5 mm

Path-0.8, Length < 1 mm

Path-5, Length < 0.25 mm

Path-5, Length < 0.5 mm

Path-5, Length < 1 mm

(b) PDs of paths in 1 mm

Figure 5.16: The effect of the surface element length on field results of the PS

models simulating the square SS316 sample.

According to simulation resources displayed in Fig. 5.17, the effect of element

size on resources is non-linear. This is because that the model with element

sizes within 0.25 mm generates overfull elements at beginning so takes excessive

computing time, whereas, the model with maximum element length of 1 mm

involves a coarse initial mesh and has to spend more passes to reach the same

convergence. As a result, models with the maximum element length of 0.5 mm

that involves moderate amount of elements and consumes shorter simulation time

has been applied to all SS316 models.
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Figure 5.17: The effect of the surface element length on mesh statistics and

simulation time of the PS models simulating the square SS316 sample.
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The second parameter of the element layers inside skin depth is more important

in simulating field solutions especially on PDs along paths at high frequencies, see

in Fig. 5.18. To better demonstrate the discrepancy of curves in Fig. 5.18b,

PDs are plotted against the number of layers in Fig. 5.19. It is clear that at

high frequencies, PDs calculated based on 2 layers of elements inside skin depth

are lower than 6-layers results for about 5%, whereas, PDs from a 4-layers mesh

decrease the difference to 3%.
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Figure 5.18: The effect of the number of layers of elements within the skin depth

on field results of the PS models simulating the square SS316 sample.
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Figure 5.19: The effect of the number of layers of elements within the skin depth

on PDs of Path-0.8 approximated by the PS models simulating the square SS316

sample.

The mesh statistics and simulation time of the models with different number

of layers inside skin depth are given in Fig. 5.20. Similar to the former parameter,

simulation resources have non-linear dependency on the number of element layers.

Meshes containing 2 layers of elements within skin depth produce too less elements
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at initial, and thus spend more passes and time to reach the convergence. On the

other side of 6-layers meshes, the model sampled by different frequencies from 30

kHz to 300 kHz contain similar mesh statistics of element number and passes,

suggesting the redundancy of 6-layers mesh for the SS316 models. The mesh with

4 layers of elements inside skin depth region, which is capable to achieve a similarly

high precision with the 6-layer based mesh at a cost of shorter simulation time,

has been decided as the optimum for SS316.
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Figure 5.20: The effect of the number of layers of elements within the skin depth

on mesh statistics and simulation time of the PS models simulating the square

SS316 sample.

Based on the mesh refinement study, all the PS SS316 models were developed

based on a consistent convergence requirement and mesh definitions as: 0.001%

of convergence, 0.5 mm of the maximum element length on surface, and 4 layers

of elements inside skin depth.

5.5.2 Partial Symmetrical Models of Featured Samples in

EN1A Mild Steel

The above decisions for SS316 models are inapplicable to EN1A due to the strong

magnetic behaviour of the material. For example, the skin depth in EN1A at

10 Hz is 0.34 mm that is only half of the minimum depth achieved by SS316 at

the highest frequency of 300 kHz. The EN1A models require numerous elements

to simulate thin regions of skin depth hence are difficult to reach convergence of

high precisions. As shown in Fig. 5.21, energy error and delta energy produced

during simulations of the EN1A models give slower convergence speed and lower

precisions by contrasting with convergences of SS316 models in Fig. 5.13.
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Figure 5.21: Convergence of the PS models simulating the square N-featured

EN1A sample at various frequencies with a consistent mesh definition (the

maximum element length on surface = 0.25 mm, the number of layers of

elements within skin depth = 4).

Three convergent requirements of 2%, 1%, and 0.5% were investigated to de-

termine the optimum value for EN1A, comparisons of inductance matrix and PDs

along conductive paths are displayed in Fig. 5.22. The EN1A models with dif-

ferent convergence export similar Im(Z). For Re(Z) at 1 kHz, results computed

based on 1% and 2% convergence are lower to that based on the highest precision

of 0.5% convergence for 1.6% and 4.4% respectively. Results of PD presented in

Fig. 5.22b were measured from two conductive paths, Path-0.8 across the feature

and Path-5 on the plain surface. Different convergent requirements result in slight

effect on PDs of Path-5 in which results of 1% and 2% convergence are higher

to that of 0.5% convergence of 1.4% and 2.5% at 1 kHz respectively. Whereas,

PDs of Path-0.8 increase as the simulation converging, PD computed from the

0.5%-converged model at 1 kHz are higher than the 1% and 2% result for 9.4%

and 15.3%.
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Figure 5.22: The effect of convergent requirements on field results of the PS

models simulating the square N-featured EN1A sample.

Meshes of models are automatically adjusted by ANSYS during the process

of simulation to contain more elements and approach to higher precisions. This

automatic refinement is prior to manual definitions such as the maximum number

of additional elements per pass. As a result, elements along the radial direction

(e.g. elements on Path-0.8 on the featured surface) are particularly affected and

shrink in dimensions. As shown in Fig. 5.23, meshes on the featured surface

containing Path-0.8 from bottom views significantly construct in size as the model

converging from 2% to 0.5% (by comparing between Fig. 5.23a & 5.23c). While

elements on the plain surface containing Path-5 from side views remain roughly

constant dimensions (in Fig. 5.23b & 5.23d).
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(a) Convergence of 2%, bottom view (b) Convergence of 2%, side view

(c) Convergence of 0.5%, bottom view (d) Convergence of 0.5%, side view

Figure 5.23: The effect of convergent requirements on mesh sizes developed on

featured and plain surfaces of the PS models simulating the square N-featured

EN1A sample at 1 kHz.

Considering simulating consumptions of models with different requirements,

as shown in Fig. 5.24, a compromise has been made that 1% of convergence was

determined as the optimum precision for the PS EN1A models.
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Figure 5.24: The effect of the convergent requirements on mesh statistics and

simulation time of the PS models simulating the square N-featured EN1A

sample.

Then to decide the maximum element length on surface, the EN1A models

developed with elements with the maximum sizes of 1, 0.5, and 0.25 mm were

simulated and compared, results against frequencies and surface element lengths

are given in Fig. 5.25-5.26. The maximum element length on surface results

in minor differences in Z and PDs of Path-5. However, this parameter causes

significant effect on PDs of Path-0.8 across the feature. In Fig. 5.26, dash curves

of Path-5 remain almost constant regardless of the maximum element length,

however, solid curves of Path-0.8 fluctuate at high frequencies. Comparing to

the finest mesh with the maximum element length of 0.1 mm, PDs calculated

from models with the maximum length of 0.5 mm demonstrate clear deviation

for all frequencies while results based on 0.25 mm meshes show good agreement

with differences smaller than 3.8% at 1 kHz. The dependency between simulation

recourse and the maximum element length shows evident non-linearity, see in Fig.

5.27. For the sake of reducing model sizes and simulation time, the maximum

element length on surface of EN1A models has been decided as 0.25 mm.
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Figure 5.25: The effect of the surface element length on field results of the PS

models simulating the square N-featured EN1A sample.
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Figure 5.26: The effect of the surface element length on PDs of Path-0.8 (in solid

lines) and Path-5 (in dash lines) approximated by the PS models simulating the

square N-featured EN1A sample.

124



0.1 0.25 0.5
0

5

10

15

20

N
u

m
b

er
 o

f 
p

as
s

10 Hz

100 Hz

1 kHz

0.1 0.25 0.5

Max element length (mm)

0.5

1

1.5

2

2.5

N
u

m
b

er
 o

f 
el

em
en

ts

10
6

0.1 0.25 0.5
0

2

4

6

8

S
im

u
la

ti
o

n
 t

im
e 

(h
rs

)

Figure 5.27: The effect of the surface element length on mesh statistics and

simulation time of the PS models simulating the square N-featured EN1A

sample.

For the third parameter of the number of element layers within the skin depth,

comparison of Z and PDs on the same two paths are displayed in Fig. 5.28-5.29.

Visible differences can be observed in PDs of Path-5, indicating that the final

parameter is more significant than the other two. PDs of Path-5 that obtained

from models with 2 layers of elements within the skin depth remain consistently

well below results given by the 6-layers model, thereby the definition of 2-layers

elements in skin depth is excluded. Nevertheless, comparison of PDs of Path-0.8

is very different that results based on 2-layers and 4-layers meshes diverge to 6-

layers results to varying degrees, leading to differences of 7.2% and 5.6% at 1 kHz

respectively. However, available computing equipment is incapable of simulating

the EN1A models with 6-layers of elements in skin depth for all frequencies, meshes

of the EN1A models have to be defined with less layers of elements.
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Figure 5.28: The effect of the number of layers of elements within the skin depth

on field results of the PS models simulating the square N-featured EN1A sample.

Similar non-linear dependency is observed between the number of element lay-

ers within the skin depth and simulation resources, as given in Fig. 5.30. Models
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with 4-layers meshes present quicker convergence (i.e. require less passes and time)

but involve more elements than 2-layers models. Hence for models at frequencies

lower than 1 kHz, 4-layers meshes were applied to shorten simulation time; for

models at higher frequencies up to 10 kHz, 2-layers meshes were defined to reduce

the number of elements otherwise simulations would aborted due to excessive sizes

of models.
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Figure 5.29: The effect of the number of layers of elements within the skin depth

on PDs of Path-0.8 (in solid lines) and Path-5 (in dash lines) approximated by

the PS models simulating the square N-featured EN1A sample.
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Figure 5.30: The effect of the number of layers of elements within the skin depth

on mesh statistics and simulation time of the PS models simulating the square

N-featured EN1A sample.

In summary, all the PS EN1A models were produced with a consistent con-

vergent requirement of 1% and the same maximum element length on surface of

0.25 mm. The number of element layers inside skin depth was depended on the

oscillating frequency that 4 layers of elements was defined for frequencies lower

than 1 kHz and only 2 layers was used for higher frequencies.
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5.6 Post Processing of Exporting Field Solutions

After establishing reliable FE models for the formal samples, the next step was

to output field solutions from models and compared with experimental results. In

the ACPD experiments, PDs across the features on featured samples (or across the

plain surfaces with same distance on the flawless samples) were directly measured

as outputs. It is necessary to export the same quantity of PDs from FE models

for comparison.

For a converged model, the Eddy Current solver in ANSYS Electronics first

computes H by [235]

∇×
(

1

σ + jωϵ
∇×H

)
= −jωµH (5.1)

Then the solver calculates B and D from solutions of H, the full solution of

Maxwell’s equations including E and J can thus be solved for the whole region.

Related quantities of interest such as inductance matrix and ohmic loss may be

solved from these fundamental field solutions and exported directly. Results of

PD along a conductive path defined by two points is calculated as the integral

of tangential components of E along the path. Thereby, the critical process in

exporting PDs is the definition of the conductive path. On the plain SS316 models,

the conductive paths are simply defined as the 2 mm-long path across the welding

positions on the plain surfaces of the samples, as highlighted in pink in Fig. 5.31a

(the pink path is in 1 mm long due to symmetrical modelling). Whereas, on the

featured EN1A models, the definitions are more complex. As shown in Fig. 5.31b,

a plane T that is parallel to the diagonal symmetry plane is moved to the welding

position and cut the sample, the tangent contour following the feature shape and

in a total distance of 2 mm in vertical z-axis are defined as the conductive path

for this type of feature (again the total length of path in vertical direction is 1 mm

in the symmetrical model).
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(a) Plain (b) NH-featured

Figure 5.31: Schematic of the definitions of conductive paths in PS models for

calculating PDs. The position of path at 0.8 mm to the edge is the expectant

welding position of PD probes in experiments.

The above definitions of conductive path suggests the ability of FEA in out-

putting PDs from arbitrary locations. Since it was hardly possible to apply an

ideal ‘point welding’ on the experimental samples, the precise position of the con-

ductive path measured in experiments remained unknown. Fig. 5.32 shows the

configuration of experimental measurements on the N sample as an example. The

pair of electrical probes were welded on the sample at positions of ±1 mm to the

center. Moreover, the probes were expected to be welded as close to the edges as

possible, leaving small distances of about 0.3 mm. About 1 mm of the wire were

welded to ensure robust connection during measuring, suggesting that PDs could

be possibly measured from any conductive path within the regions from 0.3 mm

to 1.3 mm to the edges. Therefore, the paths at the middle of the regions (0.8 mm

to the edges) were assumed as the paths that were most likely to be measured in

experiments.

Figure 5.32: Configurations of PD measurement wires welded near the center of

the EN1A N-sample.
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In order to contain all possible measuring paths, multiple conductive paths

covering the whole welding region were defined on the models to produce ‘error

bars’ of PD. Fig. 5.33 shows several conductives paths defined on models. The

numbers in the names refer to the distances to the edge. Path-0.8 is created to

export the results that were most likely to be obtained in experiments, thereby

Path-0.8 is assumed as the ‘optimum simulation path’. The other two auxiliary

paths are defined to simulate the maximum offsets of welding positions possibly

occurred in lab work. In later sections, PDs measured from Path-0.8 will be

compared to experimental results and PDs of two auxiliary paths will be displayed

as error bars.

Figure 5.33: Multiple conductive paths created to provide the optimum

approximation of PD and error bars.

Although the maximum uncertainties in welding distances were recognised as

the region of 0.3-1.3 mm, a narrower region of 0.5-1.1 mm was used in modelling.

Since it will be presented later that PDs measured across the H feature are signif-

icantly sensitive to measurement positions, the offset of ±0.5 mm introduces wide

error bars, which is insignificant to compare with experimental results. PDs from

the narrower region of 0.5-1.1 mm are adequate to demonstrate the sensitivity of

PDs across the H feature and hardly affect comparisons of other samples. Hence,

error bars of measurement locations for all models presented in this work were

calculated from Path-0.5 and Path-1.1.

In additional to welding positions, possible uncertainties of the measurement

distances in welding work were considered in FEA by measuring PDs from several

paths with different lengths. PDs read from a path in 2 mm long will be com-

pared with the experimental results as the optimum approximations, results with

a shorter (1.5 mm) and a longer (3 mm) distance will be shown as error bars.

In summary, Fig. 5.34 illustrates four auxiliary paths related to Path-0.8

that are uniformly defined on all the plain and featured models to generate error

bars. In Fig. 5.34a, PDs integrated from Path-0.5 and Path-1.1 are used to

produce ‘error bars I’ which consider effects in PDs caused by ±0.3 mm offset in
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measurement locations. In Fig. 5.34b, Path-Dis-1.5 and Path-Dis-3 are used to

measure PDs from different measurement distances and thus create error bars II.

(a) For error bars I (b) For error bars II

Figure 5.34: Multiple conductive paths uniformly defined on all PS models to

produce error bars I & II.

5.7 Conclusions

FEA have been conducted via ANSYS Maxwell 3D to simulate the formal sam-

ples and approximate results of PD and impedance at various frequencies. The

sequence of modelling steps to create models for the samples were presented in

this chapter. Definitions of materials, current excitations, and boundary condi-

tions specifically assigned for the models were displayed in detail.

By taking the advantage of the mechanism of excitation injection in ANSYS,

the partial modelling referring to simulate the part of 10 mm at the sample center

can be applied to reduce model sizes and shorten simulation time. Moreover, since

the sample geometries are symmetrical and the current excitations (i.e. surface

current) on the partial models are uniform, the partial models can be further sim-

plified by applying symmetry boundary conductions on the symmetry planes, i.e.

by employing the symmetrical modelling. Good agreement was observed between

field solutions approximated by PS models and the complete model containing the

sample in full size and two current injection wires. It suggests the feasibility of

replacing the complete model with smaller PS models.

Additional PS models were created to study effects of possible welding errors

of current wires on electric fields and ACPD measurements. It was demonstrated

that different welding situations of current wires variously disturb current fields

near the end faces but are unable to influence measurements around the center

of samples. Hence, end effects of welding uncertainties of current wires can be

excluded through FEA.
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Furthermore, mesh refinement study has been conducted for SS316 and EN1A

models based on the principle of compromising between model precisions with

simulation cost. The optimum parameters of developing the SS316 PS models

were determined to be 0.001% of convergent requirement, 0.5 mm of the maximum

element size on surface, and 4 layers of elements within skin depth. Whereas due

to the ferro magnetism of EN1A, the EN1A PS models require a large number

of elements to simulate extremely thin skin depths hence is unable to achieve

precisions as high as SS316 models. The first two parameters were decided to be

consistent of 1% and 0.25 mm for all EN1A models. However, the last parameter

was determined to vary with the frequency, 4 layers of elements inside skin depth

was defined in models with frequencies lower than 1 kHz while 2-layers meshes

were created in models with higher frequencies.

Eventually, post processing procedures especially the method of exporting PDs

on specifically defined paths were presented. Path-0.8 were defined on the models

as the optimum simulation path for the path actually measured in experiments.

Furthermore, several auxiliary paths around Path-0.8 were created to cover the

measurement uncertainties (i.e. welding uncertainties of PD measurement probes)

and produce error bars. Error bars I & II represent the effect on PDs caused by un-

certainties in horizontal measurement locations and those in vertical measurement

distances respectively. In Chapter 7, FE approximations of PD on the optimum

simulation path and the two types of error bars will be compared by experimental

results to investigate the detection capability of the ACPD method. Additionally,

approximated electric fields/current distributions will be relied on to comprehend

differences between the samples caused by different sample shapes and features.
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Chapter 6

Experimental Data Verification

and Data Processing Validation

6.1 Introduction

ACPD results obtained in preliminary and formal experiments were processed

by the MATLAB script introduced in Section 4.5 to compute results of PD and

impedance against frequencies. In the present chapter, processed results will be

displayed with another type of experimental results — manually measured results.

About ten periods at distinct frequencies were manually measured via NI DIA-

dem for each experiment. To obtain the manual measurements, precise positions

in time of zero-crossings and positive and negative amplitudes of AC and PD

signals were recorded for each period. Such results were then used to calculate

impedance for each period based on the same method applied to the MATLAB

script. Fitness between these two types of experimental results were used to eval-

uate the performance of the data processing, i.e. whether the script operated as

expected. In addition to validating the data processing, experimental results in

Case 1 were contrasted with the known values or theoretical solutions to verify

the procedure of the ACPD experiments. Raw data were averaged from three sets

of measurements for all experiments.

6.2 Results of Preliminary Experiments

6.2.1 Resistance of an Individual Resistor

The resistance of the individual resistor is known as 0.22 Ω. The resistor was

pushed hard into the breadboard for measuring in experiment. Experimental

results of |Z| (or Rres) obtained by two methods, i.e. processed and manually

measured, are compared in Fig. 6.1. Processed results show good agreement

to manual measurements for the whole range of frequency in which the average

difference between the two is 0.4%. It indicates the high precision of the data
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processing in computing |Z| in this preliminary experiment.
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Figure 6.1: Comparison of the impedance (i.e. resistance) of the individual

resistor.

However, Fig. 6.1 shows that experimental results of |Z| increases at frequen-
cies higher than 10 kHz. The average of experimental results before 10 kHz is

0.233 Ω, which is 5.9% higher than the known value of 0.22 Ω. Considering the

built-in resistances of the breadboard and connections in the circuit, it is reason-

able that measured values are higher than the pure resistance of the resistor. As

the frequency rises, experimental resistances increases and finally reaches 0.253 Ω

at 220 kHz. This is because that ACPD signals vary at high frequencies rather

than remaining constant as expected for the pure resistor, which can be seen in

Fig. 6.2. Processed amplitudes of AC and PD signals before 10 kHz were almost

constant with average values of 1.002 A and 0.2335 V. In Fig. 6.2, the ampli-

tudes of AC and PD are divided by these two averages to demonstrate variations

in magnitudes of signals against frequencies. It can be seen that PD signals rise

for 3% and AC signals drop for 7% at the highest 220 kHz. The increase in PD

signals is possibly because that AC generated heat in experiments, which raised

the resistance. Whereas AC signals do not follow the specified constant amplitude

but decrease, which is considered as a defect of the original current input file.

The drop in AC input signals was then reduced from 7% in this case to 2% in

later experiments by improving the current input file. Such decreases in signal

amplitudes (both for AC and PD) could not be eliminated since real amplitudes

at high frequencies were possibly missed during measuring due to the constant fs.
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Figure 6.2: Variation in processed signals at high frequencies. Differences were

calculated by dividing processed amplitudes of AC and PD by average values

calculated from signals lower than 10 kHz.

6.2.2 Combined Series and Parallel Circuit

Total impedance of combined circuits can be theoretically calculated by the well-

known rules for combining impedances in series and parallel as

Zser = Rres + Zind (6.1)

Zpar =
1

1
Rres

+ 1
Zind

(6.2)

where Zser and Zpar represent the total impedance of a series and a parallel circuit.

Noting that the inductor measured in experiments is not an ideal component but

possesses an intrinsic resistance Rind which was measured to be 0.007 Ω. Thus

Zind is given by

Zind = Rind + jωLind (6.3)

Theoretical impedance were calculated by substituting known quantities (i.e. Rres =

0.22 Ω and Lind = 1.8 µH) into (6.1)-(6.2).

Fig. 6.3-6.4 demonstrate comparisons of experimental and theoretical results

of Zser and Zpar. In Fig. 6.3b & 6.4b, processed results of θZ become scattered

at frequencies higher than 10 kHz. It is because that the measuring method

with a constant fs is incapable of capturing all zero-crossings of signal periods at

high frequencies, which is the same reason of drops in signal amplitudes at high

frequencies as mentioned in the above section. For example, Fig. 6.5 shows a piece

of raw data at about 150 kHz, ‘real zero-crossings’ are absent thus ‘measured zero-

crossings’ marked with square boxes are found out and used to calculate impedance

during the data processing. These ‘measured zero-crossings’ are slightly lead to

or lag behind ‘real zero-crossings’, leading to errors in processed θZ .
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Processed results show good agreement to manually measured results in |Z|
and θZ , which can be seen in Fig. 6.3-6.4. For both the two circuits, the absolute

average difference between two types of experimental |Z| is smaller than 2.5%.

Such differences are mainly attributed to low-frequency comparisons due to small

magnitudes in |Z| at the beginning. For the same reason, the absolute mean

difference between two results of θZ in the series case was calculated by excluding

low-frequency comparisons, otherwise θZ that approaches to zero at the beginning

would significantly increase the difference. The absolute average difference in θZ is

5.5% for the series circuit and 3.6% for the parallel. Therefore, the data processing

has been shown to convert ACPD signals into |Z| and θZ with high precisions for

all frequencies in these two preliminary cases.
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Figure 6.3: Comparison of the total impedance of the series circuit (Zser).
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Figure 6.4: Comparison of the total impedance of the parallel circuit (Zpar).
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Figure 6.5: Measured zero-crossings of AC and PD signals at high frequencies.

Then to compare between processed results with theoretical solutions calcu-

lated from (6.1)-(6.2), average differences between two types of results are insuf-

ficient to present comparisons. Since theoretical solutions were computed for all

processed frequencies, features in signal results such as small magnitudes at low

frequencies and the scattered distribution of θZ at high frequencies greatly affected

average differences. Thereby, comparisons are demonstrated through normal dis-

tributions of differences, which are shown in Fig. 6.6-6.7.
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Figure 6.6: Normal distribution of differences between processed and theoretical

results of Zser. µ is the mean and σ is the standard deviation. Total number of

data is 52107.
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Figure 6.7: Normal distribution of differences between processed and theoretical

results of Zpar. µ is the mean and σ is the standard deviation. Total number of

data is 22001.

For the series circuit, the absolute average differences between processed and

theoretical results of |Z| and θZ are 4.6% and 9.8% respectively. It can be seen

in Fig. 6.3a that at low frequencies, processed |Z| are consistently higher than

theoretical results, which is considered due to built-in resistances of the breadboard

and connections. This corresponds to the part of positive differences from 0 to

0.3 in Fig. 6.6a. In Fig. 6.3b, processed θZ fluctuate widely at high frequencies

especially higher than 100 kHz. As a result, differences of θZ in Fig. 6.6b basically

follow in the normal way but give uneven distributions in densities hence the

absolute average difference is relatively large as 9.8%.

In the parallel case, the built-in resistance of the circuit causes less effect in

the total impedance, thus processed |Z| agree well to theoretical results from low

frequencies, see in Fig. 6.4a. Difference calculated between two types of |Z| follow
the normal distribution in Fig. 6.7a, which gives an absolute average difference of

1.3%. However, the distribution in Fig. 6.7b indicates that for about one third

(i.e. 6658 of 22001) of signal periods, theoretical results of θZ are twice (i.e. about

100%) as large as processed values. It is attributed to results at frequencies higher

than 20 kHz, see in Fig. 6.4b. θZ at such high frequencies are approaching to zero,

which magnifies slight discrepancies between two types of results. The absolute

average difference is calculated to be 6.1% by excluding this part of comparisons.

In summary, it is necessary to take account of features of signal results at

different frequencies in analysing processed results and comparing to theoretical

solutions. After considering such features, the comparison between experimental

and theoretical results of impedance was acceptable hence the capability of the

data processing has been validated.
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6.2.3 Infinitely Long Conductor

Raven has measured impedance of several long copper wires in different dimensions

including the diameter of 4 mm [215] that is the same as the present sample. In

this section, experimental results of impedance of the copper rod will be presented

with theoretical solutions given by the Bessel Function Method in (3.24)-(3.29)

and experimental measurements published by Raven [215]. Since Raven presented

results with respect to resistance and inductance rather than impedance, same

quantities separated from experimental results of impedance will be displayed

first, as shown in Fig. 6.8.
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Figure 6.8: Comparison of the resistance (Rac) and total inductance (Ltot) of the

long copper rod.

The experimental measurements obtained by Raven and also in this project

are all of total impedance rather than Zint. Thereby, total inductance (Ltot) were

calculated from experimental results, including internal inductance (Lint) within

the sample and external inductance (Lext) around the measuring circuit. Whereas,

Bessel Function Method calculates theoretical solutions of Lint. By comparing

calculated Lint,Bes with experimental Ltot, it has been noticed that Lint,Bes was

constantly lower than all experimental Ltot for about 0.49 µH/m for the whole

frequency range. Lext around the copper rod was thus assumed as 0.49 µH/m.

The theoretical curve in Fig. 6.8b is shifted up to include Lext and compare with

experimental results of Ltot. Moreover, theoretical results in Fig. 6.8 combine

two approximations for low and high frequencies (as given by (3.24) and (3.27)

respectively), which are sectioned at about 5 kHz.

In Fig. 6.8a, processed and manually measured results of Rac obtained in

this project show good fitness with the literature data (i.e. measured by Raven).

However, all experimental Rac are higher than theoretical results at high frequen-

cies. Fig. 6.8b shows that experimental results of Ltot measured in this project

give better contrast with theoretical results at high frequencies than the litera-

ture measurements. Nevertheless, experimental Ltot disagree with low-frequency
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theoretical results, which indicates that Lext was excluded from measuring in the

ACPD experiments until about 100 Hz. processed results of Rac are noisy espe-

cially at high frequencies. It is because calculations of resistance involve cosine of

θZ , as

Rac = |Z| cos (θZ) (6.4)

It will be demonstrated later that θZ approach to π
2
as frequency rising, hence Rac

fluctuate widely from negative to positive.

Impedance results with respect to |Z| and θZ are shown in Fig. 6.9. Sim-

ilarly, theoretical solutions were processed to include Lext. processed results of

impedance are clearer than former results and agree well to manual measurements

and theoretical solutions. The average difference between two experimental re-

sults of |Z| is 3.0% and that of θZ is 0.7%. Differences between processed and

theoretical results of impedance obey normal distributions, see in Fig. 6.10. The

absolute average differences are of 1.8% in |Z| and 2.1% in θZ .
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Figure 6.9: Comparison of the total impedance (Ltot) of the long copper rod.
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Figure 6.10: Normal distribution of differences between processed and theoretical

results of Ztot. µ is the mean and σ is the standard deviation. Total number of

data is 66006.

In the preliminary experiment of the long copper rod, processed results of

Rac and Ltot show limited agreement with theoretical solutions. Experimental

measurements from literature [215] are close to processed results but also di-

verge to theoretical solutions. Nevertheless, experimental results of Ztot coincide

closely with theoretical solutions, which is assumed as verification of experimental

methodology in this preliminary case.

6.3 Results of Formal Experiments

As discussed in Chapter 3, there is no available theories that could provide the-

oretical comparisons to ACPD results measured from certain locations on the

formal samples. Thereby, this section focuses on evaluating precisions of the data

processing by comparing processed results to manually measured values without

verification by contrasting with expected solutions. Experimental (or processed)

results of PD measured in three formal cases will be compared with FE approxi-

mations to reach a comprehensive conclusion in Chapter 7.

6.3.1 Case 1: Polygonal Cross-sectional Shapes of Plain

Non-magnetic Samples

Four plain samples in Case 1 were measured twice by different investigators. Ex-

perimental results of PD and impedance of eight sets of ACPD measurements are

displayed in Fig. 6.11-6.14.
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Figure 6.11: Comparisons of PDs obtained from the first measurements of the

four SS316 samples in Case 1.
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Figure 6.12: Comparisons of impedance obtained from the first measurements of

the four SS316 samples in Case 1.
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Figure 6.13: Comparisons of PDs obtained from the second measurements of of

the four SS316 samples in Case 1.
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Figure 6.14: Comparisons of impedance obtained from the second measurements

of the four SS316 samples in Case 1.

Two types of experimental results agree well to each other for the eight sets of

measurements. However, manually measured PDs and |Z| are slightly lower than

processed results at frequencies lower than 40 kHz in all cases. This is because raw

data are not smoothed before the data processing, since experimental measure-

ments of Case 1 are relatively clean and data smoothing is not required. processed

amplitudes of signals are calculated by averaging the maximum and the minimum

data within each period. Whereas during manual measuring, noisy signals are

smoothed artificially by choosing median values around peaks as amplitudes. Fig.

6.15 illustrates these different chooses in determining amplitudes during the data

processing and manual measurements for a piece of noisy signals at about 50 Hz.

Such differences may be reduced by smoothing the raw data before interpretation.
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Figure 6.15: Processed and manual measured amplitude of PD signals from the

first measurements of the cylindrical sample at 50 Hz.

Differences between two types of experimental results are calculated for PDs

and impedance, as displayed in Fig. 6.16-6.17. For the aforementioned reason,

differences of PDs and |Z| are quite large for about 15% at low frequencies and

decrease to under 5% after about 40 kHz. For eight sets of measurements, abso-

lute average differences between two types of results of PD and |Z| for the whole

frequency range are within 8%. To contrast between processed and manual mea-

sured θZ , differences within the range of 100 Hz to 40 kHz are very large since

θZ approach to zero at such frequencies thus small magnitudes in discrepancies

still give huge differences in percent. These differences are futile to demonstrate

comparisons between two types of results hence are not shown in Fig. 6.16-6.17

and excluded from calculating average differences. Absolute average differences of

θZ at frequencies higher than 40 kHz, for eight sets of measures, are all smaller

than 4%.
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Figure 6.16: Differences between processed and manual measured results

obtained from the first measurements of the four SS316 samples in Case 1.
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Figure 6.17: Differences between processed and manual measured results

obtained from the second measurements of the four SS316 samples in Case 1.
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6.3.2 Case 2: Various Features with Dissimilar Opening

Shapes Contained in Featured Magnetic Samples

In Cases 2 & 3, ‘impedance’ calculated based on ACPD data measured across the

features is not real impedance of the measuring part, as discussed in Chapter 3.

Since the electric field produced around a featured sample is uneven and tends to

concentrate near the feature edges, PDs measured from certain locations are not

representative of the whole field. Results of ‘impedance’ of featured samples will

only be presented in this sections for validating the data processing but excluded

from further analysis.

Fig. 6.18 & 6.19 show comparisons of processed and manual measured PDs

and impedance of the featured samples in Case 2. Differences between these two

types of results are given in Fig. 6.20.
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Figure 6.18: Comparisons of PDs obtained from the three featured EN1A

samples in Case 2.
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Figure 6.19: Comparisons of impedance obtained from the three featured EN1A

samples in Case 2.
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Figure 6.20: Differences between processed and manual measured results

obtained from the three featured EN1A samples in Case 2.

150



Since EN1A is ferromagnetic, lower frequencies in the ACPD experiments were

sufficient to generate strong skin effect inside these featured samples. AC oscillated

with a lower frequency range of 10 Hz to 50 kHz were applied in Cases 2 & 3.

Comparing to measurements in Case 1 with higher frequencies from 10 Hz to

300 kHz, signals captured in Cases 2 & 3 are much more noisy at the beginning,

however on the other side, possess more plentiful data at the end. Therefore,

processed results of Cases 2 & 3 are less desired at low frequencies but more

precise at high frequencies (upto 50 kHz). For example in Fig. 6.19a, processed

θZ of the H sample are not smooth at frequencies lower than 100 Hz. For three

sets of measurements in Case 2, absolute average difference between two types of

|Z| are within 8%, while these average differences of θZ that exclude results lower

than 100 Hz are smaller than 2%.

6.3.3 Case 3: Various Features of the Same Cross-Sectional

Area Contained in Featured Magnetic Samples

Comparisons of results measured from the N3 and N1.5 samples in Case 3 are

displayed in Fig. 6.21-6.23. In these two cases, absolute average differences of |Z|
and Zθ are within 7% and 2% respectively.
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Figure 6.21: Comparisons of PD obtained from the two featured EN1A samples

in Case 3.
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Figure 6.22: Comparisons of impedance obtained from the two featured EN1A

samples in Case 3.
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Figure 6.23: Differences between processed and manual measured results

obtained from the two featured EN1A samples in Case 3.

6.4 Conclusions

Experimental results of the preliminary and formal experiments processed by the

MATLAB script were presented with manually measured results and some theoret-

ical solutions. In the first preliminary experiment about the individual resistor, the

average difference between processed and manual measured results of resistance is

within 0.4%. Experimental results are consistently higher than the known value of

0.22 Ω for 5.9% from the beginning of 10 Hz to 10 kHz due to intrinsic resistance of

other part of the circuit. These results start to increase at frequencies higher than

10 kHz, which indicates the fault of the current input file in remaining constant
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amplitudes of AC input. The problem was solved in later experiments.

In the second preliminary experiment involving two R-L circuits, processed

results of impedance were compared with manual measurements and theoretical

solutions based on rules for combining impedances. Processed results show good

fitness with manual measurements with average differences smaller than 2.5% in

|Z| and those smaller than 5.5% in θZ , for both two circuits. Comparisons between

processed and theoretical results were displayed through normal distributions, in

which average differences are within 5% in |Z| and 10% in θZ in two experiments.

Discrepancies between processed and theoretical |Z| are largely attributed to low-

frequency results because of intrinsic resistance from the rest of circuits. Relatively

high differences in Zθ are mainly caused by scattered processed results at high

frequencies. This is because that the measuring method with a constant fs in

experiments is unable to accurately capture zero-crossings (and amplitudes) for

all the periods especially at high frequencies. Measured signals closest to real

zero-crossings were used in the data processing, which decreases the performance

of the interpretation given by the MATLAB script at high frequencies.

Then with regard to the final preliminary sample of the long copper wire, com-

parisons were made between results from interpretation, manual measurements,

Bessel Function solutions, and experimental measurements published in litera-

ture. In comparisons of Rac and Ltot, experiments results obtained in this research

agree well with the literature data but only shown limited fitness with theoreti-

cal solutions. However, processed impedance are more distinct and fit well with

manual measurements and theoretical results with average differences within 3%

in comparisons of both |Z| and θZ .

ACPD measurements of the formal experiments were processed by the script

and presented with manual measured results, which including eight measurements

of the four plain samples in Case 1 and five measurements of the five featured sam-

ples in Cases 2 & 3. For these thirteen sets of results, average differences between

two types of |Z| are within 8%. These differences are primarily caused by low-

frequency comparisons, in which processed amplitudes of signals are determined

from absolute maximums and minimums of raw data while manual measured am-

plitudes are always chosen as medians of noisy signals due to artificial smoothing.

With respect to contrasts of θZ , average differences between two types of results of

eight measurements in Case 1 are smaller than 4% and those of five measurements

in Cases 2 & 3 are within 2%.

Based on above analysis, comparisons between processed results to other types

of results in all experiments were accepted. Thereby, the procedure of the ACPD

experiments was verified and the performance of the data processing was validated.
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Chapter 7

Results and Discussions of

Alternating Current Potential

Difference Results for Formal

Samples

7.1 Introduction

Experimental methodology of obtaining ACPD results from the formal samples

and numerical methodology to provide comparison with experimental results were

fully introduced in previous chapters. In Section 6.3, processed results of the

formal samples were compared with manually measured results to validate the

data processing. This chapter will continue the analysis to compare the ACPD

results between different sample shapes and features, and then to comprehend

the principles of such differences (or the detection capability) through electric

fields/current distributions approximated in FEA.

In the following analysis, the emphasis will be placed on comparing experimen-

tal (i.e. processed) results of PD between various samples in each case to study,

firstly the sensitivity in detecting the cross-sectional shape of the sample (Case 1);

then the capability in distinguishing between the features with dissimilar shapes

of openings on the surfaces, like a deep drill and a shallow notch (Case 2); fi-

nally the ability and limitation in discriminating the features with similar opening

shapes of rectangular and of the same cross-sectional area (Case 3). Additionally,

the analysis will focus on contrasting between experimental and FE results. On

one hand, FE results of PD measured from the optimum simulative path, which

approximates the expectant welding positions of PD measurement probes on the

samples, will be compared with experimental PDs to testify the sensitivity of

the ACPD method. On the other hand, FE results of PD obtained from several

auxiliary paths around the optimum path will be used to produce error bars to

present the differences in PDs caused by welding uncertainties of measurement
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probes possibly occurred in experiments. To concisely cite two different types of

error bars, the bars indicating effects of different measurement locations are re-

ferred to as ‘error bars I’, whereas those consisting of PDs obtained with different

measurement distances are named as ‘error bars II’.

This chapter is consisted of two parts, the results and discussions. The sections

of results will include the contrasts of experimental PDs between various samples in

each case and the agreement between experimental and FE results for each sample.

Error bars I & II will be compared in magnitudes between samples to demonstrate

differences in the measuring sensitivities due to different sample shapes and feature

geometries. The ACPD method involved in this project measured signals from a

single position (or path) on the sample surfaces, which actually reflects a small

part of the electric fields in the vicinity of this position. In the discussions, the

complete electric fields (and the current distributions) approximated by FEA will

be introduced to conveniently illustrate these results, e.g. variations in electric

fields on auxiliary paths can be directly related to the differences in magnitudes

of error bars. In addition to help comprehend ACPD results, the electric fields

will be utilised to provide practical guidance in applying the ACPD experiments

on plain and featured conductors similar to the formal samples.

7.2 Alternating Current Potential Difference Re-

sults of Experimental Measurements and Fi-

nite Element Analysis Approximations

7.2.1 Case 1: Polygonal Cross-sectional Shapes of Plain

Non-magnetic Samples

Experimental Results

In Case 1, the ACPD method was applied to four plain samples of cross-sectional

shapes twice by two investigators at different times, i.e. Experiments 1 & 2.

Experimental results of PD processed from two sets of experimental measurements

are presented in Fig. 7.1. Eight sets of PDs are similar in remaining constant at

about 0.05 mV for the quasi-DC frequencies lower than 10 kHz then increasing

with the frequencies rising, eventually reaching about 0.5 mV at 200 kHz.
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(a) Experiments 1

(b) Experiments 2

Figure 7.1: Experimental results of PD measured from the uniform positions in 2

mm on the plain geometry SS316 samples in Case 1.

To clear demonstrate the repeatability between Experiments 1 & 2, eight sets

of results presented in Fig. 7.1 are grouped by the samples or the cross-sectional

shapes, as shown in Fig. 7.2. The repeatability are numerically analysed by

calculating the differences of PD magnitudes (from about 44k periods) for each

sample between Experiments 1 & 2. It can be seen in Fig. 7.2b & 7.2d that two

sets of measurements for the hexagonal and triangular samples are close for the

whole frequency range. For both the two samples, the average differences of PD

amplitudes (averaged from the 44k periods) obtained in Experiments 1 & 2 are

smaller than 5%. However, the repeatability of the circular and square samples are

less desirable in which results of Experiments 2 are consistently higher than those

of Experiments 1. Moreover, gaps between two sets of results rise as the frequency

increases. The maximum difference of PD amplitudes obtained in Experiments 1

& 2 for the circular sample at 200 kHz is about 0.1 mV (i.e. 22.8%), that for the
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square sample is about 0.06 mV (i.e. 16.3%).
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Figure 7.2: Illustration of the repeatability between Experiments 1 & 2 applied

to the four plain SS316 samples in Case 1.

Numerical Results

FE models of the four plain SS316 samples were built by following the approaches

introduced in Chapter 5 to approximate PDs on certain conductive paths and

simulate electric fields within and around the samples. FE results of PD measured

from the optimum simulation path, Path-0.8, are shown with related error bars in

Fig. 7.3. The definitions of error bars were introduced in Section 5.6 that error

bars I & II indicate the impact of different measurement locations and distances

on PDs receptively. The sizes of error bars given in Fig. 7.3c-7.3d were calculated

in percent of the optimum approximations of PD of Path-0.8.
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Figure 7.3: FE results of PD of Path-0.8 (the optimum simulation path) and

related error bars I & II approximated by the PS SS316 models.

In Fig. 7.3a-7.3b, PDs measured from the uniform paths on the four models,

i.e. Path-0.8, show a distinct order in magnitudes among different cross-sectional

shapes. PDs consistently increase as the cross-sectional shape varies from circular

to triangular for the whole frequency range. At the highest frequency of 300 kHz,

the triangular model produces the highest result of 0.39 mV while the circular

model gives the lowest value of 0.22 mV. In other words, by sampling the frequency

of current injections to 300 kHz, the ACPD method should be able to identify the

cross-sectional shapes of SS316 conductors, with the maximum difference of results

between the triangular and circular shape of 77% (based on the smaller value). In

Fig. 7.3a & 7.3c, error bars I given by the four models have significantly different

sizes. Fig. 7.3c shows that at 300 kHz, the size of error bars I averaged from

positive and negative parts in the triangular model is upto 17%, whereas that in

the circular model is only 0.6% (almost invisible in Fig. 7.3a). With respect to

error bars II, sizes of error bars are consistently to be +50% in positive sides and

-25% in negative on all models for the whole frequency range, see in Fig. 7.3d.

In addition to investigate around the optimum simulation path close to the

edges, Path-4.2 were created to approximate the ACPD results at the positions
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far from the edges and close to the surface center. FE results of PD of Path-4.2

and related error bars are shown in Fig. 7.4. PDs of Path-4.2 given by the four

models display an inverse order in magnitudes to the results of Path-0.8 shown in

Fig. 7.3. At 300 kHz, the circular model gives the highest PD of 0.22 mV (almost

identical to the results of Path-0.8), whereas the triangular model outputs the

lowest result of 0.14 mV, resulting in the maximum difference of 57%. The sizes

of error bars I around Path-4.2 in Fig. 7.3a are much smaller than those around

Path-0.8, with sizes smaller than 6% on the triangular model and within 3% on

the other models. Similar to error bars II for Path-0.8, the sizes of error bars II

for Path-4.2 are constantly to be +50% and -25% in positive and negative parts

regardless of the frequency, as shown in Fig. 7.4b.
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Figure 7.4: FE results of PD of Path-4.2 (far from the edges) and related error

bars I & II approximated by the PS SS316 models.

Comparisons of Experimental, Numerical, and Theoretical Results

In addition to the experimental and FE results presented above, theoretical solu-

tions of PD were obtained based on the method of integral equation for current

distribution discussed in Section 3.4. Theoretical results of PD were simply cal-

culated by multiplying Rac,InJ per unit length (as shown in Fig. 3.9) by the mea-

surement distance of 2 mm and the total current of 3 A. The calculation assumes

the current to be uniformly distributed inside and outside the samples, thereby

only provides rough estimations of PD. The ACPD results for the SS316 samples

of the four cross-sectional shapes were analysed by comparing the results of PD

obtained by the three methodology, combined with error bars related to Path-0.8

approximated by FEA.

Results of comparisons for the sample/model of triangular cross-sectional shape

are given in Fig. 7.5. FE PDs measured from two positions close to and far from

the edge, i.e. Path-0.8 and Path-4.2, display significant differences at frequencies

higher than 10 kHz (e.g. reaching 0.39 mV and 0.14 mV at 300 kHz), with the
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theoretical solutions to be located in between. The optimum FE approximations

of PD of Path-0.8 show good fitness with experimental results at low frequencies

and give slight differences after 10 kHz. The differences between experimental and

the optimum FE results are consistently covered by the error bars for the whole

frequency range.
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Figure 7.5: Results of PD on the uniform measurement path obtained through

various methods for the plain SS316 sample of triangular cross-sectional shape.

Results for the square cross-sectional shape are shown in Fig. 7.6. FE PDs

measured from Path-0.8 and Path-4.2 exhibit smaller gaps than those given by

the triangular model, leading to the maximum values of 0.30 mV and 0.16 mV at

300 kHz respectively. The theoretical solutions are still located between two sets

of FE PDs and very close to the surface measurements of Path-4.2 Experimental

results diverge to the optimum FE approximations at frequencies higher than 100

kHz but are still situated within the error bars.
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Figure 7.6: Results of PD on the uniform measurement path obtained through

various methods for the plain SS316 sample of square cross-sectional shape.

Fig. 7.7-7.8 present results of the hexagonal and the circular cross-sectional

shapes. By comparing with FE results in Fig. 7.5-7.6, it can be clearly observed

that differences between PDs measured close to and far from the edges decrease

as the cross-sectional shape varies from triangular to circular. The theoretical

solutions for these two cross-sectional shapes are lower than FE results including

the surface measurements of Path-4.2. At 300 kHz, PDs measured from Path-

4.2 and Path-0.8 on the hexagonal model are 0.19 mV and 0.25 mV respectively.

For the circular model, PDs exported from two paths are similar to be 0.24 mV.

Nevertheless, contrasts between experimental and FE results for these two cross-

sectional shapes are poor in which experimental results even fall beyond the error

bars.
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Figure 7.7: Results of PD on the uniform measurement path obtained through

various methods for the plain SS316 sample of hexagonal cross-sectional shape.
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Figure 7.8: Results of PD on the uniform measurement path obtained through

various methods for the plain SS316 sample of circular cross-sectional shape.

Indication to Experimental Methodology

Experimental results presented in Fig. 7.1 do not exhibit significant differences be-

tween the cross-sectional shapes of SS316 conductors. Such differences have been

clearly observed in FEA and are referred as to be current crowding, which will be

discussed in detail in Section 7.3. The findings in Case 1 indicate that the measur-

ing methods currently used in the ACPD experiments are incapable of identifying

current crowding that occurred in the polygonal SS316 samples with a dimension

of 100 mm2. If the same material of SS316 had been used for specimen man-

ufactured in subsequent experiments involving features, the measurement points

(around Path-0.8) would have fallen within the region of non-uniform current dis-

tributions caused by the current crowding, meaning measurement uncertainties

would have resulted in significant impact on experimental results (similar to the

results in Case 1). In other words, it would be difficult to discern whether differ-

ences in experimental results between ‘featured SS316 samples’ were due to various

features or measurement uncertainties. Therefore, it was necessary to find a re-

placement for SS316 to exclude the impact of current crowding, and moreover, the

influence of specimen geometry, i.e. to produce stronger skin effect. As a result,

the ferromagnetic material of EN1A was selected for the subsequent samples.

The current crowding factor (Kcc), which represents the percent increase in

Rac of rectangular conductors due to current crowding, was introduced in Section

3.3 as

Kcc = 1 + 1.2F (f)
(
e

−2.1w2
w1 + e

−2.1w1
w2

)
(3.44)

where

F (f) = 1− e−0.026psim (3.45)

psim =

√
S0

1.2533δ
(3.46)
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Kcc of the square SS316 and EN1A samples were calculated based on above equa-

tions, results are shown in Fig. 7.9. Similar to the skin effect in SS316, the current

crowding in SS316 is negligible at quasi-DC frequencies but becomes apparent from

1 kHz, causing a maximum increase in Rac of 7% at 300 kHz. Current crowding

in EN1A is more significant, which gives 13% of increase in Rac at low frequency

of 10 Hz and becomes more prominent as the frequency rises until reaching the

limit value of 29% at 1 kHz.
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Figure 7.9: Current crowding factor Kcc of SS316 and EN1A.

Nevertheless, the pronounced current crowding in EN1A does not affect the

current distributions on the conductor surfaces due to the extremely significant

skin effect on the surfaces. The factor of skin effect (Kse) is introduced to enable

comparisons between the magnitudes of the current crowding and skin effect. Kse

which describes the contribution of resistance increase caused by skin effect can

be simplified defined as

Kse =
S0

Sac,EAM

(7.1)

The discrepancies between the two factors of the two samples are presented in

Fig. 7.10. Kse in EN1A does not show a quasi-DC region and rises from 7.6 to

1276 as the frequency increasing, which is considerably greater than Kcc in EN1A.

Thereby, the current distributions on the EN1A surfaces are dominated by the

skin effect and hardly affected by the current crowding.
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Figure 7.10: Skin effect factor Kse of SS316 and EN1A.

Similar conclusions have been noted in FEA. Simulated current fields on the

PS SS316 model at 300 kHz and the PS EN1A model at 10 Hz are shown in Fig.

7.11-7.12. The reason for choosing the highest and lowest frequencies (300 kHz

& 10 Hz) for the comparison is that these are the only situations that gives close

intensity of electromagnetic fields between the two models for frequencies that can

be achieved using the Nottingham experimental system, e.g. the minimum δ in

SS316 at 300 kHz is 0.77 mm while the maximum δ in EN1A at 10 Hz is 0.34 mm.

To comprehensively demonstrate current crowding and skin effect, the maximum

magnitudes of current fields (at the edges) on two models are retained in the

plotting. In Fig. 7.11-7.12, the skin effect can be clearly observed on both the

models through the current decay from the model surfaces on the internal sections.

The current crowding on the SS316 model in Fig. 7.11 causes the current to localise

on the edge which attenuates not only inwardly but also on the external surfaces.

However in Fig. 7.12, the current crowding in EN1A is confined to the inside of

the model, resulting in the uniform current distributions on the external surfaces.

Figure 7.11: FE approximations of the current fields approximated by the PS

SS316 models at 300 kHz.
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Figure 7.12: FE approximations of the current fields approximated by the PS

EN1A models at 10 Hz.

Three paths were created on the internal sections and the external surfaces to

illustrate the effects of the two factors on the fields, as marked out in Fig. 7.11-

7.12. Fig. 7.13 shows the current fields on the paths starting from the end points

on the surfaces/edges (i.e. the crosses in Fig. 7.11-7.12). The Path-crowding 2

are located on the internal sections and very close to the external surfaces with a

distance of 0.05 mm. The current fields on the two crowding paths on the SS316

model are almost identical, showing that the current decay with the distances

from the surface and edge. In EN1A, the current distributions on the paths on

the internal section decrease from the surface/edge due to the skin effect (Path-

skin) or the current crowding (Path-crowding 1), while the result of Path-crowding

2 remain constant at 0.247 MA/m2, which is the maximum magnitude of the

whole current field caused by the skin effect, for the whole distance. This suggests

that experimental measurements on the square EN1A samples at any frequency

should not be affected by current crowding, as it holds for the lowest frequency

with the minimum discrepancies between the current crowding and skin effect.

Experimental errors due to measurement uncertainties could not be eliminated

but was at least reduced by using the EN1A samples and excluding the effect of

current crowding.

165



2 3 4 5

Distance from surfaces/edges (mm)

0

0.05

0.1

0.15

0.2

0.25

|J
| (

M
A

/m
2
)

0.34 0.77

SS316 crowding 1

SS316 crowding 2

SS316 skin effect

EN1A crowding 1

EN1A crowding 2

EN1A skin effect

Figure 7.13: Skin effect and current crowding on the SS316 and EN1A models.

Paths are marked out in Fig. 7.11.

In addition to the square cross-section at 10 Hz, FEA were applied to simulate

the current distributions and ACPD results of EN1A samples of other shapes and

at different frequencies. Simulation results of the EN1A models are presented

in the same way as given in Fig. 7.3-7.4 for the SS316 models, PDs measured

from Path-0.8 & -4.2 are compared between the four cross-sectional shapes with

error bars I & II. PDs measured from both the two paths on the EN1A models

show similar order of magnitudes to those obtained from Path-4.2 on the SS316

models (in Fig. 7.4). In the absence of current crowding on the sample surfaces,

the circular model provides the highest PD measurements, whereas the triangular

model gives the lowest values. Furthermore, surface measurements are almost

independent of the measurement locations (as indicated by small error bars I in

Fig. 7.14a & 7.14c) and proportionally influenced by the measurement distances

(as presented by error bars II in Fig. 7.14b & 7.14d).
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(c) Path-4.2, effect of measurement locations.
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Figure 7.14: FE results of PD of Path-0.8 and Path-4.2 and related error bars I

& II of each approximated by the PS EN1A models.

Subsequent experiments for identifying features only involved square EN1A

models. Based on FEA findings discussed above, it can be concluded that ACPD

measurements obtained from the featured EN1A sample only contain information

about the features and the frequency and are independent of the square cross-

sectional shape. In contrast to SS316, the cross-sectional shapes of the EN1A

samples do not produce non-uniform current distributions on the sample surfaces,

which reduces the influence of measurement uncertainties in experimental results.

7.2.2 Case 2: Various Features with Dissimilar Opening

Shapes Contained in Featured Magnetic Samples

The H, N, and NH features in Case 2 have different shapes and dimensions of

openings on the sample surfaces. As shown in Fig. 7.15, the opening of the H

feature is curved and in a narrow width of 1.06 mm on the surfaces, while that of

the N feature is rectangular and more wide to be 4.24 mm in width.
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(a) H (b) N (c) NH

Figure 7.15: Dissimilar openings on the sample surfaces for the H, N, and NH

features in Case 2.

Experimental results of PD measured from the three samples at the uniform

positions are presented in Fig.7.16. Distinct differences are observed between the

samples, and moreover, such differences become more apparent as the frequency

increases. PDs measured from the N and NH samples are close and significantly

higher than those for the H sample. From 15 Hz, PDs obtained from the N and NH

samples are about 0.5 mV, while the low-frequency PDs of the H sample are lower

to be 0.32 mV. By sampling the frequency upto 50 kHz, PDs of the H sample reach

0.41 mV, which is smaller than half of results for the other two. By comparing

between results of the N and NH samples, two sets of PDs diverge slightly from 1

kHz, which is attributed to the exist of the H drill contained in the NH sample.

PDs measured from the NH sample are marginally lower than results of the N

sample. At 50 kHz, PDs measured from the N and NH features are about 1.08

mV and 1.02 mV respectively.
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Figure 7.16: Experimental results of PD measured from the uniform positions in

2 mm on the square EN1A samples containing the H, N , and NH features in

Case 2.

Based on instructions of FEA presented in Chapter 5, five PS EN1A models
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containing various features were built via ANSYS to simulate electric fields pro-

duced within and around the samples in Cases 2 & 3. Similar to Case 1, PDs

measured from Path-0.8 are assumed as the optimum approximations of exper-

imental results and those obtained from auxiliary paths related to Path-0.8 are

used to create error bars I & II. Error bars I contain results from different locations

(Path-0.5 and Path-1.1) and bars II are consisted of PDs measured with different

distances (Path-Dis-1.5 and Path-Dis-3). Comparisons of experimental and FE

results of PD for the samples in Case 2 are demonstrated in Fig. 7.17-7.19. For

all the three samples, experimental PDs show good fitness with the optimum FE

results based on Path-0.8 and are located inside error bars.
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Figure 7.17: Results of PD on the uniform measurement path obtained through

various methods for the square EN1A sample containing the H feature.
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Figure 7.18: Results of PD on the uniform measurement path obtained through

various methods for the square EN1A sample containing the N feature.
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Figure 7.19: Results of PD on the uniform measurement path obtained through

various methods for the square EN1A sample containing the NH feature.

Furthermore, error bars I & II in regards to the three features demonstrate

significant differences in sizes. To intuitively demonstrate such differences, sizes

of error bars were calculated in percent of the optimum approximations of Path-

0.8, which are shown in Fig. 7.20-7.21. Error bars I given by the H model rise

significantly as the frequency increases, especially in the positive parts based on

PDs from Path-1.1. At the highest achievable frequency of 10 kHz, the offsets of

±0.3 mm in measurement locations on the H model introduce differences of -25%

to 50% to the optimum approximations of PD. Whereas on the N mode, error bars

I have much smaller sizes which cause limited impact on measurements of Path-0.8

for all frequencies from 10 Hz to 10 kHz, giving the sizes of error bars I smaller

than ±10%. Error bars I given by the NH model exhibit some similarities to those

on the H model that the bars grow with the increasing frequency. Moreover, the

positive parts are significant especially at high frequencies, resulting in differences

of 40% higher than the optimum approximations at 300 kHz.
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(a) Positive parts, Path-1.1.
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(b) Negative parts, Path-0.5.

Figure 7.20: Sizes of error bars I related to Path-0.8 (given in Fig. 7.17-7.19)

approximated by the PS EN1A models.
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Figure 7.21: Sizes of error bars II related to Path-0.8 (given in Fig. 7.17-7.19)

approximated by the PS EN1A models.

Then for error bars II in Fig. 7.21, different measurement distances have great

effect on measurements from Path-0.8 on the H model, and furthermore, the effect

ascend considerably as frequency increases. Sizes of error bars II given by the H

model raise to -35% to 60% at 10 kHz, which are almost twice of those at the

beginning of 10 Hz. While on the N and the NH models, sizes of error bars II are

limited within smaller extents of -15% to 30% for the whole frequency range.

7.2.3 Case 3: Various Features of the Same Cross-Sectional

Area Contained in Featured Magnetic Samples

In Case 3, the openings of the N6, N3, and N1.5 are of the similar shape of

rectangular but in various dimensions. As shown in Fig. 7.22, the openings vary

from wide to narrow with the widths on surfaces to be 4.24, 2.12, and 1.06 mm

respectively. The cross-sectional areas of the three features (as shadowed) are
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same to be 9 mm2.

(a) N6 (N) (b) N3 (c) N1.5

Figure 7.22: Rectangular openings on the sample surfaces for the N6, N3, and

N1.5 features in Case 3.

Experimental PDs measured the three featured samples are shown in Fig. 7.23.

Despite of the same cross-sectional area, ACPD measurements show significant

differences in PDs at high frequencies. The wide and shallow N6 feature has

greatest PDs across while the narrow and deep N1.5 feature has the lowest values.

At 50 kHz, PDs across the N1.5 and the N3 feature reach 0.47 mV and 0.72 mV

respectively.
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Figure 7.23: Experimental results of PD measured from the uniform positions in

2 mm on the square EN1A samples containing the N6, N3, and N1.5 features in

Case 3.

Comparisons of experimental and FE PDs for the N3 and N1.5 samples are

presented in Fig. 7.24-7.25. Experimental results agree well with the optimum

approximations from FEA for both two samples. Discrepancies between the two

types of results are covered by error bars.
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Figure 7.24: Results of PD on the uniform measurement path obtained through

various methods for the square EN1A sample containing the N3 feature.
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Figure 7.25: Results of PD on the uniform measurement path obtained through

various methods for the square EN1A sample containing the N1.5 feature.

Similarly, to clear illustrate effects of measurement uncertainties on ACPD

results, sizes of error bars given by the two models are presented in percent of

the optimum approximations in Fig. 7.26-7.27. By comparing error bars I on

three models, only the positive parts of error bars I predicted by the N1.5 model

significantly rise with the increasing frequency, which leads to differences of 40%

higher than the optimum results at 10 kHz. On the other two models, the offset of

±0.3 mm in the measurement locations only have slight impact on measurements,

resulting in differences in PDs smaller than ±15% for the whole frequency range.

For error bars II in Fig. 7.27, it can be observed that sizes increase as the feature

openings become narrower, i.e. the N6 model gives the minimum error bars while

the N1.5 model exports the maximum. At 10 kHz, sizes of error bars II on the N6

model is about -15% to 20% of the optimum results, whereas those in the N1.5
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model is upto -30% to 60%.
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Figure 7.26: Sizes of error bars I related to Path-0.8 (given in Fig. 7.18,

7.24-7.25) approximated by the PS EN1A models.
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10
1

10
2

10
3

10
4

Frequency (Hz)

0

10

20

30

40

E
rr

o
r 

b
ar

 s
iz

e 
(%

)

(b) Negative parts, Path-Dis-1.5.

Figure 7.27: Sizes of error bars II related to Path-0.8 (given in Fig. 7.18,

7.24-7.25) approximated by the PS EN1A models.

7.3 Discussions based on Simulated Electric Fields

and Current Distributions

In previous sections, experimental results processed from experimentally mea-

sured ACPD signals were compared FE approximations for all plain and featured

samples. In addition to measure PDs from certain positions on the samples (i.e.

conductive paths on models), PS models of ACPD samples were used to produce

error bars to demonstrate effects of different measurement locations and distances

on PDs from the optimum simulative path. The introduction of error bars pro-

vides a justification of deviations between experimental and FE results, i.e. it is
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believed to be due to slight uncertainties in welding positions of the PD measure-

ment probes. Error bars are significantly different between the samples, which

indicates various influence of the sample cross-sectional shapes and the feature

types on the current distributions. This also provide guidance in applying the

ACPD experiments, e.g. extra caution is required for measuring across the H fea-

ture as ACPD results in this case are highly sensitive to welding errors. Results

reported above such as magnitudes of PD from certain positions on the samples

and sizes of error bars will be discussed based on the current distributions (and

the electric fields) approximated by FEA in the present section. This section will

focus on demonstrating the concord between experimental measurements of PD

with FE approximations of field solution.

7.3.1 Case 1: Polygonal Cross-sectional Shapes of Plain

Samples

ACPD results of the plain SS316 samples in Case 1 will be discussed first. Fig.

7.2a & 7.2c show poor repeatability between Experiments 1 & 2 for the circular

and square samples. For the two samples, experimental results obtained from

Experiments 2 are constantly higher than those of Experiments 1 from 10 Hz at

which ACPD results reflect Rdc. The differences in experimental results at low

frequencies are independent of the frequency but related to the conductivity, the

cross-sectional areas, and the measurement distances. Experiments 1 & 2 were

conducted on the same samples by using the same equipments, the only difference

was the positions of injection wires and measurement probes which were disman-

tled and reconnected to the samples in the two experiments. Since the effect

of current injection situations on ACPD results are eliminated through FEA in

Section 5.4, the repeatability problem is believed to be due to the differences in

welding situations of the measurement probes between Experiments 1 & 2. It is

assumed that the measurement probes were welded in slightly longer distances

on the two samples in Experiment 2 than those in Experiment 1. The limited

agreements between experimental and FE results for the circular and hexagonal

samples are assumed to be caused by the same reason. It is believed that un-

certainties in welding the probes on the two samples were larger than the values

indicated by error bars I & II, i.e. more than ±0.3 mm in horizontal positions and

-0.25 to +0.5 mm in vertical.

In Fig. 7.3-7.4, FE results of PD measured close to (on Path-0.8) and far from

(on Path-4.2) the edges present explicit orders in magnitudes. For results of Path-

0.8, the triangular model gives the maximum PDs while the circular model gives

the minimum; for results of Path-4.2 an inverse order is exhibited. It suggests that

in spite of the same cross-sectional area shared by the samples, the cross-sectional

shapes have significant effect on ACPD measurements and current distributions

for the non-magnetic material SS316. This impact are clearly demonstrated by the
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current fields approximated in FEA, fields at 100 kHz are shown as examples in Fig.

7.28. Path-0.8 and Path-4.2 involved in Fig. 7.3-7.4 are marked out with black

lines. Due to the geometrical symmetry of the circular sample and the uniform

excitation of surface current, the approximated current field is even everywhere

on the surface. Thereby, PDs measured from two paths are almost identical at all

frequencies, e.g. the two curves of PD in the Fig. 7.8 are overlapped. For other

cross-sectional shapes with edges, the current are consistently concentrated around

the edges and less distributed on the surfaces. For example on the triangular

model at 300 kHz, PDs of Path-0.8 reaches 0.39 mV and that of the Path-4.2 only

gives 0.14 mV. This is the current crowding of AC at high frequencies that was

mentioned in Section 3.3.

(a) 1
9 PS circular model (b) 1

8 PS hexagonal model

(c) 1
8 PS square model (d) 1

4 PS triangular model

Figure 7.28: FE approximations of the current fields approximated by the PS

SS316 models at 100 kHz.

The current fields in Fig. 7.28 also illustrate different error bars for the four

cross-sectional shapes. First along the horizontal directions on the model surfaces

(i.e. x and y-axis), the current field on the triangular model varies significantly

near to the edge and becomes uniform on the surface far from the edge. Whereas

in the opposite case of the circular model, the current field is uniform everywhere

on the surface as mentioned before. Thereby in Fig. 7.3a & 7.3c, error bars I in

the triangular model have the maximum sizes among all models, leading to 17%
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of differences to the optimum approximations. While error bars I on the circular

model give the minimum sizes and nearly overlap with the optimum results with

differences smaller than 0.6%. Error bars I related to Path-4.2 in Fig. 7.4a show

limited sizes on all models. This agrees with the field plotting that the current

distributions on all models become uniform as moving away to the edges and

approaching to the surface center.

Additionally, it is shown that the current fields on four models are consistent

along the vertical direction of z-axis. This is because that both the current exci-

tations applied on the top faces and the symmetry boundary conditions assigned

on the bottom faces are longitudinal, which enables the fields to remain constant

on the vertical direction. As shown in Fig. 7.3b, 7.3d, and 7.4b, error bars II on

all models are approximately in the same sizes of -25% to 50% to the optimum

results regardless of measurement locations and frequencies. Such differences in

PDs are attributed to the measurement distances of 1.5 mm and 3 mm, which are

-25% shorter and 50% longer than the optimum distance of 2 mm. In other words,

the effects in results caused by uncertainties of the measurement distances is pro-

portional to the magnitudes of the uncertainties. Recalling that the maximum

difference of ACPD results occurs in the comparison of PDs close to the edges

with strong current crowding (i.e. on Path-0.8) given by the triangular (0.39 mV)

and circular (0.22 mV) models at 300 kHz. The maximum difference between two

values is 77% (or 44% based on the higher value ). However, a minor uncertainty

of 0.5 mm in the position of each probe (i.e. 3 mm in the total measurement dis-

tance) can result in a significant error in PDs of 50%, which is close to (or larger

than) the maximum discernible difference of the ACPD method.

Above discussions of error bars provide indications of conducting ACPD ex-

periments on plain samples of various cross-sectional shapes. In measurements for

polygonal samples, it is important to consider the significant impact of measure-

ment locations on experimental results. For example, for the triangular sample

in Case 1 that is almost non-magnetic, the measurements on the edge are nearly

3 times larger than those obtained from the surface center at 300 kHz. Fur-

thermore, it was discussed in Section 5.4 that the measurements at the center of

SS316 samples are unaffected by the current injections at the ends. Therefore,

the measurements of the longitudinal electric fields are directly influenced by the

measurement distances, as presented by the consistent error bars II in all SS316

models. To reduce such effect, it is suggested that if the spot welding can be better

applied on samples, ACPD signals may be normalised against precisely measured

distances between measurement probes to calculate results per unit length. For

plain conductors made of other materials and dimensions or sampled at different

frequencies, the end effects of current input is suggested to be investigated by

numerical methods such as FEA before considering the proportional impact due

to uncertainties of measurement locations.

The introduction of theoretical approximations of PD based on the method of
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current integral equation not only provides rough comparisons to experimental and

FE results, but also indicates the contrast between intensities of current crowding

and skin effect. The theoretical approximations were obtained by using the total

current of 3 A, which supposes the current to be uniformly distributed within the

conductors and on the conductor surfaces. Thereby, both the skin effect and cur-

rent crowding were ignored in the approximations. On the circular and hexagonal

models with no/weak current crowding, the theoretical solutions are consistently

smaller than experimental and FE results. This is because that experimental and

FE PDs were measured on the sample surfaces at where the current density is the

maximum. While on the triangular and square models, the theoretical results are

higher than the surface measurements of Path-4.2. It suggests that the current

crowding occurring on these two cross-sectional shapes at the frequency of 100

kHz are prominent and even disturb the skin effect on surfaces. This conclusion

can be associated with the findings in Section 7.2.1. In ferromagnetic conduc-

tors of EN1A, the skin effect consistently dominates the current distributions on

surfaces for all frequencies. However, in non-magnetic conductors of polygonal

cross-sectional shapes such as the triangular SS316 sample, the current crowding

have stronger influence on the current fields on surface than the skin effect at low

frequencies.

Nevertheless, ACPD results for various cross-sectional shapes obtained in Ex-

periments 1 & 2 do not shown obvious differences between the samples. This is

believed to be due to uncertainties in the welding situations of PD measurements

probes especially the measurement distances. Based on FEA, the ACPD method

is verified with the capability of distinguishing between various cross-sectional

shapes by taking the advantage of the current crowding. The current are con-

sistently concentrated near the sample edges at high frequencies, moreover, the

concentrations become more significant as a polygonal cross-sectional shape varies

from quasi-circular to triangular. By analysing the current fields and error bars

produced in FEA, it is observed that the ACPD measurements with 2 mm in

distance on the SS316 samples in dimensions of 55 mm × 100 mm2 are greatly

affected by measurement uncertainties. If this capability is desired to be veri-

fied with experiments, a high-precision approach of signal measurements will be

required.

7.3.2 Case 2: Features of H, N, NH

In comparisons shown in Fig. 7.17-7.19, experimental PDs measured from the H,

N, and NH samples are all located within error bars approximated by respective

models. It suggests that discrepancies between experimental and FE results of PD

are due to inevitable uncertainties in welding such as offsets in locations of the

measuring probes and varying distances between the pairs of probes. Furthermore,

different behaviour of error bars in Fig. 7.17-7.19 indicate that electric fields gen-
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erated in the featured models are significantly affected by the feature geometries.

For clear explanation, the current distributions around three features at 1 kHz

approximated by FEA are displayed in Fig. 7.29-7.31. The optimum simulation

path (Path-0.8) and two auxiliary paths constituting error bars I (Path-0.5 & -1.1)

are marked out with black lines near the sample edges. The other two auxiliary

paths defined for error bars II (Path-Dis-1.5 & -Dis-3) are partly coincided with

Path-0.8. To avoid unclear demonstration, these two paths are not marked out

here but are clearly shown in Fig. 5.34b. Some similar characteristics of the cur-

rent distributions around three features are observed: (1) the current fields always

sink around the sample corners; (2) but concentrate near the feature roots; (3)

dense current distributions around the feature roots descend rapidly towards the

features but gently towards the plain surfaces.

Figure 7.29: FE approximations of the current fields approximated by the PS

EN1A model containing the H feature at 1 kHz.

Figure 7.30: FE approximations of the current fields approximated by the PS

EN1A model containing the N feature at 1 kHz.
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Figure 7.31: FE approximations of the current fields approximated by the PS

EN1A model containing the NH feature at 1 kHz.

Since the conductive paths across features on the featured models are more

complex than paths on plain surface on the flawless models, the electric fields along

the featured paths are extracted from field plotting in Fig. 7.29-7.31, as shown

in Fig. 7.32-7.34. The featured paths are divided into three segments, which are

marked out in Fig. 7.30: the vertical distance located on the sample surfaces

(‘part 1’), the horizontal distance penetrating into the depth of the samples with

the features (‘part 2’), and the vertical distance on the innermost face of the

features (‘part 3’). Path-0.5, -0.8, and -1.1 have different total lengths, e.g. on the

H model, Path-1.1 is in 1 mm long and much shorter than the other two paths

following the feature of about 5.5 mm. To uniformly display results of three paths

with a unit distance, magnitudes of electric fields along paths are normalised

against respective total lengths. Thereby, integrated areas under the curves of

electric fields in Fig. 7.32-7.34 are not the real PDs integrated on the paths. For

instance, PDs measured from three paths at 1 kHz around the H feature are 0.035,

0.042, and 0.059 mV, but not as shown in Fig. 7.32 that the area under the curve

of Path-1.1 is several times greater than those of the other two.
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Figure 7.32: FE approximations of the electric fields on conductive paths in the

H model. Solid lines: part 1; dash lines: part 2; dash-dotted lines: part 3.
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Figure 7.33: FE approximations of the electric fields on the conductive paths in

the N model. Solid lines: part 1; dash lines: part 2; dash-dotted lines: part 3.
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Figure 7.34: FE approximations of the electric fields on the conductive paths in

the NH model. Solid lines: part 1; dash lines: part 2; dash-dotted lines: part 3.

In results of the H sample presented in Fig. 7.17, the positive parts of error bars

I (based on Path-1.1) are significant and higher than the optimum approximations

for 50% at 10 kHz. Although Path-1.1 on the H model has the shortest integrating

distance by comparing to Path-0.5 & -0.8, Path-1.1 has the maximum current

distributed throughout and provides the highest PDs much greater than the other

two paths. This is because Path-1.1 is beyond the feature root at 1.06 mm to the

sample edge, thus the full path is situated on the sample surface and passes through

the current concentration area near to the root. On the other side, the current

distributions on Path-0.5 & -0.8 that extend into the depth of the feature are

greatly different. Since the skin effect is significant inside the EN1A samples, and

moreover, the H feature causes minor disturbances in the current distributions.

The current around the H feature is strongly governed by the skin effect, i.e.

mainly concentrated near to the surface and hardly permeates into the depth of

the samples, which can be clearly seen on the right of Fig. 7.29. Thereby, the

total PDs of Path-0.5 & -0.8 are mainly contributed by part 1 on the surface and

the small distances near to the surface of part 2. The remaining parts of the paths

have few current distributions, e.g. PDs on part 3 account for less then 0.3% of

the total PDs on these two paths. Therefore, PDs from Path-1.1 in the shortest

total length are much greater than results from the two featured paths.

For the N feature, the observation region confined by the three paths (i.e. from

0.5 to 1.1 mm to the sample edge) are far from the feature root at 4.24 mm to

the edge. Consequently, the electric field inside this region is relatively uniform

in the horizontal direction and the magnitudes of the fields on three paths are

similar for the whole normalised distance, as presented in Fig. 7.30 & 7.33. This

is also indicated by the minimum error bars I of the N feature in Fig. 7.20, causing

differences in PDs smaller than ±10% for the whole frequency range.

The current field around the NH feature is distributed in a hybrid way com-
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bining the disturbances of the H and N features. It is similar to the H model

that the fields on Path-0.5 & -0.8 on the NH model recede and vanish to 0 as the

normalised distance increases, i.e. as approaching to the innermost faces of the

features inside the samples. However, results on the NH model are greater than

those on the H model since the N feature brings in more current distributions on

the curved surfaces of the H feature. This difference can be clearly observed by

contrasting between field plotting in Fig. 7.29 & 7.31. In Fig. 7.34, the curve

of results of Path-1.1 is close to the other two curves in the first half distance,

but rises in the second half in which the other two curves gradually reduce to 0.

This is because Path-1.1 is beyond the root of the H feature, and thus measures

the field on the featured surfaces of the N feature rather than penetrating deeply

into the sample with the H feature like Path-0.5 & -0.8. Additionally, Path-1.1 is

affected by the slight current concentration near to the root of the H feature.

Above discussions of the measurement locations are related to variations of

the electric fields in the horizontal direction, while the impact caused by the mea-

surement distances is attributed to changes of the fields in the vertical direction.

The two auxiliary paths (Path-Dis-1.5 & -Dis-3) are different to the optimum

path (Path-0.8) in part 1, remaining parts on the featured surfaces are coincident.

Thereby, only the electric fields on part 1 of the longest path given by three mod-

els are presented against real distances and is displayed in Fig. 7.35. Fields on

part 2 & 3 of two auxiliary paths are identical to fields on Path-0.8 shown in Fig.

7.32-7.34, hence these results are not presented to avoid repetitive presentation.

In Fig. 7.35, the H model is taken as an example to illustrate the measurement

regions of the three paths. The part 1 of the longest Path-Dis-3 measures from the

feature edge (at 0.49 mm to the center of the sample) to a position at 1.5 mm to

the center. While the part 1 of the shortest Path-Dis-1.5 defines a distance from

the feature edge to a closer position at 0.75 mm to the center.

183



0 0.49 0.75 1 1.5

Distance (mm)

0

0.02

0.04

0.06

|E
| (

V
/m

)

Path-Dis-3
Optimum

Path-0.8

Path-Dis-1.5

0.35

 H feature edge

 N & NH feature edges

H N NH

Figure 7.35: FE approximations of the electric fields on part 1 of Path-Dis-3

(starting from 1.5 mm above to the center of the sample) in the EN1A models in

Case 2.

Comparing to horizontal variations of the electric fields in Fig. 7.32-7.34,

vertical variations in Fig. 7.35 are relatively uniform on the sample surfaces above

the features, i.e. on part 1. Because these paths are far from the roots of the

N feature but close to the root of the H, magnitudes of the electric field above

the H feature are roughly constant at about 0.04 V/m and greater than those for

the N and NH. Moreover, the total PDs of paths across the H feature are mainly

contributed by the part 1, thus variations in the length of part 1 cause significant

differences in the total results. These are the reasons for the largest error bars II

in the H model shown in Fig. 7.21. On the N and NH model, the electric fields

remain steady from 1.5 mm to the center and drop near the feature edges. It is

due to the diffusion of current subsidence near the sample corners, which can be

clearly seen in Fig. 7.30.

In a summary, ACPD signals measured across the H, N, and NH features from

the uniform positions show concordance with the current/electric fields simulated

by FEA. It is shown that PDs are affected by the measurement locations and

distances to varying degrees for different features. For example for the H sample,

experimental results are particularly sensitive to the measuring situations due to

the current concentration near the feature root. The ACPD method is verified

with the capability of differentiating between the electric fields generated around

features with distinct opening geometries like the H and N features. The similarity

between results of the N and NH features is believed to be due to weak disturbance

given by the H feature around the observation region.
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7.3.3 Case 3: Features of N6, N3, N1.5

In Fig. 7.24-7.25, good comparisons are shown between experimental and FE

results for both the N3 and N1.5 samples in which all experimental results of PD

are located within error bars. Field solutions approximated by the three featured

models are presented in Fig. 7.36-7.39.

Figure 7.36: FE approximations of the current fields approximated by the PS

EN1A model containing the N3 feature at 1 kHz.

Figure 7.37: FE approximations of the current fields approximated by the PS

EN1A model containing the N1.5 feature at 1 kHz.
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Figure 7.38: FE approximations of the electric fields on the conductive paths in

the N3 model. Solid lines: part 1; dash lines: part 2; dash-dotted lines: part 3.
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Figure 7.39: FE approximations of the electric fields on the conductive paths in

the N1.5 model. Solid lines: part 1; dash lines: part 2; dash-dotted lines: part 3.

With respect to error bars I, it was pointed out in the earlier section that the

measurements on the N1.5 model are highly sensitive to positive uncertainties in

the measurement locations, which results in a difference of 40% in PDs at 10 kHz.

The negative parts of error bars I on the N1.5 model and both the positive and

negative parts of error bars I on the other two models show limited divergence

(smaller than ±10%) to the optimum results. These conclusions agree with the

results of the field solutions shown in Fig. 7.33, 7.38-7.39. In Fig. 7.39, the field

on Path-1.1 across the N1.5 feature is apparently different to those on the other

two paths. While for the other two models of N6 and N3, field results on three

paths are similar to each other and almost overlap for the full distances. This is

because Path-1.1 on the N1.5 model is located beyond the feature root at 1.06 mm

to the sample edge, which is similar to the situation on the H model. Thereby, the
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full path of Path-1.1 passes through the current concentration region on the model

surface and contributes to significant positive parts for error bars I. Whereas on

the other models, the observation region is far from the features roots (at 4.24

mm and 2.12 mm the N6 and N3 features), therefore, the electric fields within the

region are less affected by the current localisations and more uniform.

Additionally, in Fig. 7.39, the electric field on Path-1.1 on the N1.5 model

reach the vertex at 0.65 of the normalised distance where is the upper corner of

the N1.5 root. To figure out whether there is a similar localisation around the

N3 feature, a new conductive path close to the N3 root was defined in the model

as marked out in Fig. 7.36. The new path is at 0.04 mm to the root of N3,

which is in the same distance between Path-1.1 and the root of N1.5. The electric

field along the new path demonstrates similar increase around 0.65 in Fig.7.38. It

suggests that the current concentrations near the feature roots are uneven along

the vertical edges but localised at the upper corners. This can be assumed as

the current crowding around the concave corners of the features, which is similar

to the current crowding around the convex corners of polygonal cross-sectional

shapes in Case 1.

Then to compare error bars II between the three models, the measurements

across the N1.5 feature are the most sensitive to uncertainties in the measurement

distances, resulting in differences of -30% to 60% to the optimum results at 10

kHz. This is due to the same reason as for the H feature, the observation region

at 0.5-1.1 mm to the edge is close to the feature root on where the current focuses,

the electric field is highly asymmetric and hence the measurements within the

region are significantly influenced by horizontal and vertical uncertainties in the

measurement locations. Vertical variations of the electric fields at 0.8 mm to the

sample edges on the three models are shown in Fig. 7.40. Similar to results in

Case 2, the electric fields around the three features are distributed in a relative

uniform way in the vertical direction. Due to the low densities of the current

around the sample corners, the electric fields drop as approaching to the notch

edges, which conforms to field plotting given in Fig. 7.30, 7.36-7.37.
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Figure 7.40: FE approximations of the electric fields on part 1 of Path-Dis-3

(starting from 1.5 mm above to the center of the sample) in the EN1A models in

Case 3.

In Fig. 7.33, the electric fields on three paths on the N6 model vary around 0.02

mV for the whole lengths of the paths. While in results of the N3 and N1.5 models

shown in Fig. 7.38-7.39, the electric fields decrease to 0 as the normalised distances

increase, i.e. as going deep into the samples. The electric fields vanish more

rapidly in the N1.5 model. It indicates the effect of different feature geometries

on the electric fields in the vicinity, i.e. the attenuation of current distributions.

To clearly demonstrate this point, PDs of parts 1-3 of Path-0.8 on three models

are separately measured and contrasted, as given in Fig. 7.41. Results on part

1 on three models were already compared and discussed above. PDs of parts 2

& 3 on the N model are considerable because the skin effect is interrupted by

the wide feature opening and the current around the feature is distributed on all

featured surfaces. PDs of these two parts reduce as the opening become narrower,

e.g. results of part 3 on the N3 and N1.5 models only contribute to a portion

less than 1% to the total PDs. The conclusion summarised for the H feature is

further suggested here. The narrow features with small opening widths on surfaces,

regardless of the shapes (e.g. a circular drill or a rectangular notch), have less

impact on the current surrounding the features, leading to limited penetrating

depths of the current. The detection of the ACPD method for inner situations in

the depth of narrow features is thus restricted by inadequate information offered

by few current distributions.
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Figure 7.41: FE approximations of PD on 3 parts of Path-0.8 in the EN1A

models in Case 3.

The clear differences between experimental PDs measured across the N, N3,

and N1.5 features suggest that the ACPD method is able to distinguish between

these features even the same cross-sectional area is shared. The detection capabil-

ity is due to that the distinct opening geometries on the surfaces have various dis-

turbances to skin effect around the features. The current distributions are thereby

penetrated into the samples with varying degrees, leading to different results of

PD measured across the features. The current penetration depth, i.e. the limi-

tation of detection, is significantly dependent on the opening width. The ACPD

method is supposed to be unable to identify inner situations of features beyond

the penetrate depth such as the depths due to the lack of current distributions.

7.4 Conclusions

In Case 1, eight sets of experimental results measured from the four SS316 samples

were compared based on the cross-sectional shapes. Experimental PDs between

various cross-sectional shapes are similar and do not show clear differences, which

is believed to be due to the uncertainties in welding of PD measurement probes.

By comparing experimental and FE results, good agreement is achieved for the

triangular and square samples. While for the hexagonal and circular samples,

limited fitness is obtained in which experimental results are located beyond the

error bars containing uncertainties of ±0.3 mm in horizontal positions and -0.25

to +0.5 mm in the vertical positions for each probe. These are assumed to be due

to the same reason that actual measurement uncertainties happened on the two

samples are considered to be larger the values covered by the error bars.

According to FEA, the capability of the ACPD method of identifying the cross-

sectional shapes of the non-magnetic SS316 samples has been validated. By mea-

suring PDs from the uniform positions close to the edges, ACPD results demon-
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strate obvious differences between the shapes. At 300 kHz, the highest PD read

from the triangular model is 77% higher than that given by the circular model

(0.39 mV and 0.22 mV in 2 mm). FE results read from another uniform position

far from the edges also show distinct discrepancies between different cross-sectional

shapes. The highest result on the circular model is 57% higher than the lowest

value from the triangular model (0.22 mV and 0.14 mV in 2 mm). Different

results of PD measured from the two positions indicate different sensitivities to

uncertainties in the measurement locations, and moreover, uneven current distri-

butions due to polygonal cross-sectional shapes. Measurements of PD close to the

edges are more affected by the measurement locations, especially on the triangular

model, the ±0.3 mm of offsets in the location lead to a difference in PDs of 17%

at 300 kHz. Thereby for applying the ACPD experiments on plain samples, it

is suggested to measure near the sample edges due to the maximum magnitudes

of results. Meanwhile, the significant sensitivity to the measurement locations in

PDs necessitates high-precision for measuring ACPD signals.

The identification capability of the ACPD method is attributed to the current

concentrations near the sample edges (i.e. the current crowding) accompanying

with the skin effect, which is clearly observed in the fields approximated by FEA.

Due to the symmetrical geometries of all cross-sectional shapes and the uniform

current injections around the measurement region at the center of samples, the

electric fields simulated by FEA are constant in the longitudinal direction, and

thus the measured PDs are proportional to the measurement distances. It suggests

that minor uncertainties in the distances between the pairs of probes can result

in significant errors in ACPD measurements, e.g. 0.5 mm of errors in the vertical

position for each probe give rise to a differences in experimental results of 50%.

It may be solved by normalising the ACPD results by the measurement distances

to calculate results per unit length for the cases in which the spot welding can be

applied and hence the distances between probes can be precisely measured.

Therefore, FEA for various cross-sectional shapes validate that the ACPD

method benefit from the current crowding and hence is capable of distinguishing

between non-magnetic samples in the same cross-sectional area but of various

shapes. For experimentally verifying this capability, high-precision measurement

approaches are necessary to assure the ACPD signals are measured from absolutely

uniform positions on all samples.

For EN1A samples containing features of H, N, and NH, distinct differences are

shown in experimental PDs measured from the uniform positions. Results of the N

and NH samples are similar for the whole frequency range, reaching 1.08 mV and

1.02 mV at 50 kHz. PDs measured from the H sample are significantly lower than

the other two results and give 0.32 mV at 50 kHz. For all samples, experimental

results are in good agreement with the optimum FE approximations and located

within error bars. Welding uncertainties actually produced in experiments are
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believed to be smaller than the predicted values of ±0.3 mm in horizontal positions

and -0.25 to 0.5 mm in vertical.

Error bars given by various models show significant differences, which indicates

different electric fields induced around these features. At 10 kHz, error bars I &

II produced by the H model diverge to the optimum result for -25% to 50% and

-35% to 60% respectively. While on the other two models, results are less sensitive

to the uncertainties with differences in PDs smaller than ±10% from 10 Hz to 10

kHz. Some similar characteristics of the electric fields around different features

are observed: the current fields decrease at the feature corners (on the sample

edges) and concentrate at the feature roots. Moreover, for the roots consisting of

straight edges like the notches in Case 3 (the root of the H feature is curved), it

is shown by FEA that the current focus on, more accurately, the concave corners

of the roots. Thus ACPD results near to the feature roots are highly affected

by measurement uncertainties due to the highly asymmetric current distributions.

The uniform observation region at 0.5-1.1 mm to the edges is close to the root of

the H feature at 1.06 mm but far from the roots of N notches at 4.24 mm. This

is the reason of various error bars in the different models. This also suggests that

extra attention is required in measuring ACPD signals close to the feature roots.

Although the measuring paths on the H model are close to the current con-

centration region at the root, PDs measured across the H feature are significantly

lower than those read from uniform paths across the N and NH features. This

is because that the H feature is too narrow to effectively disturb the skin effect

inside the sample. The current around the H feature only concentrates beneath

the sample surface but hardly penetrate into the depth with the feature. For the

N feature, the wide opening on the sample surface strongly interferes with the skin

depth and forces the current to flow through all featured surfaces even including

the innermost face in the depth of the sample. By comparing the H and NH fea-

tures, the opening of the N feature greatly increase the current distributions in

the depth of the H feature and hence results of the NH feature is similar to those

for the N. The involvement of the H feature hardly contributes to the ACPD re-

sults of the NH feature, but leads to higher sensitivities of results to measurement

uncertainties.

Based on the analysis of experimental and FE results for Case 2, the ACPD

method is shown to be able to differentiate between features with distinct opening

widths like the narrow H and the wide N.

It was demonstrated by experiments and FEA in Case 3 that the ACPD

method is able to identify the features containing the same cross-sectional area.

PDs measured from the uniform positions close to the sample edges reduce as the

feature openings become narrower from the N6 feature to the N1.5. PDs measured

across the N6, N3, and N1.5 features on EN1A samples in a 2 mm distance reach

1.08, 0.72, and 0.47 mV at 50 kHz respectively. The three features have distinct
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opening widths of 0.11, 0.21, and 0.42 to the sample size. PDs rise for 53% and

130% as the relative opening width increase from 0.11 to 0.22 and to 0.42. Ex-

perimental results are in good comparison to FE approximations with error bars

for all three samples. It is similar to the H model in Case 2 that the observation

region is close to the root of the N1.5 feature at 1.06 mm, and hence measurements

on the N1.5 model are significantly influenced by the measurement uncertainties.

By contrasting between PDs contributed by parts 1-3 of the uniform paths in the

three models, it is observed that majority parts of the paths across narrow features

gain few current distributions and hence offer minor PDs to the total results. The

similar conclusion is reached that the ACPD method can be used to differentiate

various features with the same cross-sectional area and distinct opening widths

by identifying various disturbance in the current distribution and the skin effect

caused by openings. However, limitations of the techniques are noticed in the

detection of deep and narrow features involving a strong skin effect.
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Chapter 8

Conclusions and Future Work

Cracks occur in a significant part of service lifetime of structural components

in many engineering applications. The cracks propagate with load cycle, which

imperils the structural integrity and may leads to catastrophic failure of the com-

ponents if the crack reaches the critical size. Reliable predictions of the service

lifetime are aimed not only to assure the safe operation of the components but also

to maximise the utilisation and thus reduce costs. This significantly depends on

quantitative measurements of cracks regarding the depths and shapes inside the

structural components by the use of NDT methods. The primary aim of this study

was to investigate the capability of the swept ACPD method in distinguishing be-

tween, firstly the conductors with the same cross-sectional of various shapes, and

secondly the features that have different opening shapes on the conductor surfaces

and depths into the conductors.

Several main conclusions relating to the detection capabilities of the swept

ACPD method have been obtained from the work. FEA is applied to demonstrate

that, by taking the advantage of current crowding, the ACPD method is capa-

ble of identifying the cross-sectional shapes of non-magnetic conductors such as

SS316 by comparing ACPD results measured from the uniform positions (e.g. at

the same distances to the edges) on the conductor surfaces. The current crowding

in weak- and non-magnetic materials vary with the cross-sectional shape and are

apparent on the surfaces. At 300 kHz, PDs in 2 mm distances close to the edges

approximated by the SS316 circular and triangular models reach 0.22 mV and 0.39

mV, respectively, giving a difference of 77%. Nevertheless, the measurement ap-

proaches currently used in the project are unable to determine the cross-sectional

shapes of the SS316 samples in the scale of 100 mm2.

Both the experiments and FEA validate the capability of the swept ACPD

method to differentiate between the various features. The N1.5, N3, and N6

features were manufactured on the EN1A samples to have the same cross-sectional

area and opening height, but different opening widths of 0.11, 0.21, and 0.42 to the

sample size. By sampling the frequency to 50 kHz, PDs measured at the uniform

positions close to the edges and across the three features are different to be 0.47,
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0.72, and 1.08 mV of 2 mm in distance respectively, resulting in increases of 53%

and 130%. PDs measured across the H feature, which has a curved opening and

the same opening width as N1.5, reach 0.41 mV at 300 kHz. For the NH feature

combing the H and N6 features, PDs are slightly lower than those of the N6,

giving 1.02 mV at 300 kHz. The ability to detect features of the ACPD method

is attributed to the opening widths of features. Narrow features (e.g. H & N1.5)

have less impact on the skin effect in the vicinity than wide features, with the

current still concentrating near the conductor surfaces and not penetrating into

the interior of conductors with the feature depths. Whereas, wide features (e.g.

N6 & N3) significantly disturb the current distributions near them, which results

in deeper penetration of the current into the conductors and hence producing

greater PDs. In the meanwhile, the limitation of the feature detection ability

is determined by on the opening situations. Especially for narrow features, the

inner situations such as the shapes and depths that exceed the depth of current

penetration cannot be detected due to the inadequate information (i.e. the absence

of current distribution).

In addition to the aforementioned key conclusions, a summary of findings from

other aspects is presented below:

� It has been demonstrated through several distinct theoretical methods and

FEA (ANSYS) that Zint of straight non-magnetic SS316 conductors of vari-

ous cross-sectional shapes slightly increases as the shape varies from circular

to hexagonal, square, and triangular. At 300 kHz, Zint of the SS316 samples

with the same cross-sectional area of 100 mm2 reach 0.0284, 0.0290, 0.0301,

0.0315 Ω/m for the four cross-sectional shapes, respectively.

� The two theories relating to discretisation of the conductor cross-sections,

integral equations for current distributions and MNT, were adapted for use

with cross-sectional shapes other than rectangular and produce the closet

comparisons with FE results for the wide frequency range from quasi-DC

to 300 kHz (with differences smaller than 4%) . These two methods are

recommended as the optimum theoretical solutions for computing Zint of

non-magnetic conductors of arbitrary shapes.

� CSMR can be utilised in the data processing (i.e. the MATLAB script) to

accurately convert ACPD data measured in the time interval to results of

PD and Z in the frequency domain with the frequency range from 10 Hz

to 300 kHz. Average differences between processed and manually measured

results of PD in all formal experiments are within 8%.

� The reliability of the experimental procedure and the precision of the data

processing have been confirmed by conducting the swept ACPD experiments

on various types of samples including the R-L circuits and the large-scaled

copper wire. For the copper wire, processed |Z| and θZ are in good agreement
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with theoretical solutions based on Bessel Function Method and manually

measured results, giving average differences within 3% from 10 Hz to 300

kHz.

� FEA via ANSYS can be used to simulate the swept ACPD experiments on

plain and featured samples based on the numerical methodology that in-

cludes comprehensive procedures from creating models to the post process-

ing. Parameters of meshing and convergence of SS316 and EN1A models

were determined through mesh refinement study, which enables a compro-

mise between the modelling precision and computing costs. PS modelling

was applied to improve simulation efficiency after verifying the feasibility.

� The developed FE models can be used to simulate the current distributions

generated within and around various plain and featured samples. Current

are consistently concentrated at discontinuities on the conductor surfaces,

such as the edges of polygonal samples and the feature profiles. Experimental

measurements in proximity to these discontinuities may be greatly affected

by measurement uncertainties.

� In contrast to ferromagnetic conductors in which current crowding is confined

to the conductor interior by skin effect, the ACPD measurements on weak-

and non-magnetic materials are more sensitive to measurement uncertainties

due to the prominent current crowding on the conductor surfaces.

The present work may be further developed in several aspects in the future.

First, future work look to improve the measurement resolution by introducing a

new measurement approach to replace manual welding, or alternatively, by using

samples in larger scales that adapt to the present measurement method.

Additionally, future research is suggested to focus on quantifying the detection

capabilities of the ACPDmethod, i.e. determining the relation between the feature

openings (shapes, dimensions, and positions) and the current attenuation around

the features. The attenuation equations of current density with depth around

the features could be derived from the 3D current fields simulated by FEA. The

research may be focused on basic shapes of the openings, such as elliptical and

rectangular like the H and N features. Then each basic shape could be further

varied by changing the dimensions, to be more specific, by fixing one dimension

(e.g. the horizontal width or the vertical height) and adjusting the other one.

Since at this stage the only variable will be the varying dimension, the impact of

this dimension on the current distributions could be quantified by comparing the

current attenuation equations obtained with different values of the dimension. The

impact of the other dimension on the current distributions could be determined

by following the same steps. Next, the analyse may be moved on to another

basic shapes of openings, and furthermore, different positions of features, e.g. on
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conductor surfaces (rather than on corners) or inside conductors without openings

on surfaces.

The current attenuation equations around features may be normalised to the

current decay equation of skin effect to obtain general equations which will be

independent of conductor materials and frequency and dependent on the positions,

shapes, and dimensions of feature openings. Such equations could be used to

calculate the limitation of detection depth for features with certain openings. Real

depth and geometries of deep features beyond the maximum detection depth could

not be identified. Whereas, situations of features within the detection region may

be detected based on measured PDs (which should be greater than predicted

values for the maximum detection depth). Real depths may be approximated by

FEA. Alternatively, another approach could be to extend the current attenuation

equation to all detections including the bottom surface of the feature, then to

calculate the real depths by using the full equitation. For features with shapes

varying along the depth (i.e. not constant and straight like features involved

in the present research), the shape identification may be conducted by applying

AC in multiple directions and constructing several current attenuation equations

on these directions. Therefore, the swept ACPD method with comprehensive

knowledge of current attenuation equations may be utilised as a powerful NDT

technique in practice to identify the depth and shape of a surface feature, or at

least to determine whether the depth is larger than the maximum detection depth

of the feature opening.
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Appendix A

Applications of Theoretical

Methods of Internal Impedance

A.1 Integral Equation for Current Distribution

Method 1 of Computing Distance Matrix

% Caculating p.u.l R_AC Based on Silvester 'logD ' [192]

clc

clear

tic

% Define the number of corners of the conductor

NC = 25; % Approximated cylindircal conductor

% NC = 6; % Hexagonal conductor

% NC = 4; % Square conductor

% NC = 3; % Triangualr conductor

Area = 100e-6; % Original area = 100 mm^2

alp = pi *(360./ NC)/180; % Angle per part at the center

a0 = 2 * sqrt(Area * tan(alp /2) ./ NC); % Side length

r0 = 0.5 * a0 ./ sin(alp/2); % Effective radius

% N = 100; % Total number of subbars = N*N

hi = 1e-4; % Side length of subsections

% Define positions of corners of the conductor

corner = zeros(NC , 2);

for ii = 1:NC

corner(ii ,1) = r0 * sin(alp/2 + alp*(ii -1)); %

Positions of corners in x

corner(ii ,2) = r0 * cos(alp/2 + alp*(ii -1)); %
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Positions of corners in y

end

% Determine positions of subsections/subbars within the

cross -section

Nr = 2* floor(r0/hi)+2;

posit = zeros(Nr*Nr ,2);

for jj = 1:Nr*Nr

posit(jj ,1) = -hi*Nr/2 + hi*(jj -1+0.5) - Nr*hi*floor

((jj -1)/Nr);

posit(jj ,2) = -hi*Nr/2 + hi*( floor((jj -1)/Nr)+0.5);

end

in = inpolygon(posit (:,1), posit (:,2), corner (:,1),

corner (:,2));

subbars (:,1) = posit(in ,1); % Positions of subbars in x

subbars (:,2) = posit(in ,2); % Positions of subbars in y

temp = subbars (:,1) > 0;

subbars = subbars(temp ,:);

% Calculate the matrix of 'logD ' based on the positions

of subsections

N = size(subbars ,1);

logDs = zeros(N); % 'logD ' based on Silvester 's method

for ii = 1:N

% Dmms = 2 * subbars(ii ,1); % Distance between

subbar #m and subbar #m_symetry

logDs(ii,ii) = log (0.44705* hi * 2 * subbars(ii ,1));

% For self -induction

for jj = 1:N

if ii ~= jj % For mutual -induction

Dmn = sqrt(( subbars(ii ,1) - subbars(jj ,1))^2

+ (subbars(ii ,2) - subbars(jj ,2))^2); %

Distance bewteen #m and #n

Dmns = sqrt(( subbars(ii ,1) + subbars(jj ,1))

^2 + (subbars(ii ,2) - subbars(jj ,2))^2);

% Distance bewteen #m and #n_sym (

horizontally symmetrical with #n)

logDs(ii,jj) = log(Dmn * Dmns); % To reduce

the matrix size by using 'symmetrical

subsections '

end
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end

end

toc

clear ii in jj temp

L = 1; % Unit length of 1 m

perm = 1.02*4* pi*1e-7; % Permeability of SS316

cond = 1.38e6; % Conductivity of SS316

% Rdc = L/(cond*Area); % R_DC of SS316

I0 = 3; % Impressed/Original AC of 3 A

ff=[0.1 0.2 0.5 1 2 5 10 20 30 50 70 100 150 200 250

300] '*1e3; % Frequency

sd = sqrt (1./(pi .* ff * perm * cond)); % Skin depths

% Calculate p.u.l. R_AC based on 'logDs '

tic

Rs = zeros(size(ff ,1) ,1); % 'R_AC ' based on Silvester 's

method

for kk = 1:size(ff ,1) % (about 10s per frequency)

freq = ff(kk);

const = freq * perm * cond * hi^2; % The constant

term within X

Xs = const * logDs;

U = eye(N);

G = zeros(N, 1) + I0 / Area;

Zs = U + Xs * sqrt(-1);

Js = Zs^(-1) * G; % Matrix J is calculated by

inversing Z

Js_mod = abs(Js); % Modulus of J

% Js_ang = angle(Js)*180/ pi; % Phase angles of J

% Calculate p.u.l. R_AC of the conductor

Rs(kk) = L * sum(Js_mod .^2*hi^2) / (cond*(abs(sum(Js

))*hi^2)^2);

disp(kk);

end

Rs = Rs/2;

toc

Js_circ = Js; Js_mod_circ = Js_mod; Rs_circ (:,1) = ff;

Rs_circ (:,2) = Rs;
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clearvars -except Js_circ Js_mod_circ Rs_circ

save('Res_Theory_IntJ_Silvester_CIRC.mat')

% Js_hex = Js; Js_mod_hex = Js_mod; Rs_hex (:,1) = ff;

Rs_hex (:,2) = Rs;

% clearvars -except Js_hex Js_mod_hex Rs_hex

% save('Res_Theory_IntJ_Silvester_HEX.mat ')

% Js_sq = Js; Js_mod_sq = Js_mod; Rs_sq (:,1) = ff; Rs_sq

(:,2) = Rs;

% clearvars -except Js_sq Js_mod_sq Rs_sq

% save('Res_Theory_IntJ_Silvester_SQ.mat ')

% Js_tri = Js; Js_mod_tri = Js_mod; Rs_tri (:,1) = ff;

Rs_tri (:,2) = Rs;

% clearvars -except Js_tri Js_mod_tri Rs_tri

% save('Res_Theory_IntJ_Silvester_TRI.mat ')

Method 2 of Computing Distance Matrix

% Caculating p.u.l. R_AC Based on Antonini 'logD ' [217]

clc

clear

tic

% Define the number of corners of the conductor

NC = 25; % Approximated cylindircal conductor

% NC = 6; % Hexagonal conductor

% NC = 4; % Square conductor

% NC = 3; % Triangualr conductor

Area = 100e-6; % Original area = 100 mm^2

alp = pi *(360./ NC)/180; % Angle per part at the center

a0 = 2 * sqrt(Area * tan(alp /2) ./ NC); % Side length

r0 = 0.5 * a0 ./ sin(alp/2); % Effective radius

% N = 100; % Total number of subbars = N*N

hi = 1e-4; % Side length of subsections

% Define positions of corners of the conductor

corner = zeros(NC , 2);

for ii = 1:NC

corner(ii ,1) = r0 * sin(alp/2 + alp*(ii -1)); %

Positions of corners in x
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corner(ii ,2) = r0 * cos(alp/2 + alp*(ii -1)); %

Positions of corners in y

end

% Determine positions of subsections/subbars within the

cross -section

Nr = 2* floor(r0/hi)+2;

posit = zeros(Nr*Nr ,2);

for jj = 1:Nr*Nr

posit(jj ,1) = -hi*Nr/2 + hi*(jj -1+0.5) - Nr*hi*floor

((jj -1)/Nr);

posit(jj ,2) = -hi*Nr/2 + hi*( floor((jj -1)/Nr)+0.5);

end

in = inpolygon(posit (:,1), posit (:,2), corner (:,1),

corner (:,2));

subbars (:,1) = posit(in ,1); % Positions of subbars in x

subbars (:,2) = posit(in ,2); % Positions of subbars in y

temp = subbars (:,1) > 0;

subbars = subbars(temp ,:);

% Calculate the matrix of 'logD ' based on positions of

subsections

N = size(subbars ,1);

logDa = zeros(N); % 'logD ' based on Antonini 's method

f = zeros (4,1); % The distance function in Antonini '

s method

f_sum = 0;

for ii = 1:N % (about 200s)

logDa(ii,ii) = log (0.44705* hi * 2 * subbars(ii ,1));

for jj = 1:N

if ii ~= jj

P = abs(subbars(ii ,2) - subbars(jj ,2));

E = abs(subbars(ii ,1) - subbars(jj ,1));

% Ps = abs(subbars(ii ,2) - subbars(jj ,2));

% Es = abs(subbars(ii ,1) - subbars(jj ,1));

q(1) = E-hi;

q(2) = E;

q(3) = E+hi;

q(4) = E;

r(1) = P-hi;
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r(2) = P;

r(3) = P+hi;

r(4) = P;

% qs(1) = Es -hi;

% qs(2) = Es;

% qs(3) = Es+hi;

% qs(4) = Es;

% rs(1) = Ps -hi;

% rs(2) = Ps;

% rs(3) = Ps+hi;

% rs(4) = Ps;

for iii = 1:4

qq = q(iii);

% qqs = qs(iii);

for jjj = 1:4

rr = r(jjj);

% rrs = rs(jjj);

if (rr ~= 0) && (qq ~= 0)

f(jjj ,1) = (-1)^(iii+jjj)*(((qq*

qq*rr*rr)/4 - (qq^4+rr^4) /24)

* log(qq^2+rr^2) + ((qq^3*rr

)/3)*atan(rr/qq)+ ((qq*rr^3)

/3)*atan(qq/rr));

% fs(jjj ,1) = (-1)^(iii+jjj)*(((

qqs*qqs*rrs*rrs)/4 - (qqs ^4+ rrs^4) /24) * log(qqs ^2+

rrs ^2) + ((qqs^3* rrs)/3)*atan(rrs/qqs)+ ((qqs*rrs^3)

/3)*atan(qqs/rrs));

elseif (rr == 0) && (qq == 0)

f(jjj ,1) = 0;

% fs(jjj ,1) = 0;

elseif (rr == 0) || (qq == 0)

f(jjj ,1) = (-1)^(iii+jjj)*(((qq*

qq*rr*rr)/4 - (qq^4+rr^4) /24)

* log(qq^2+rr^2));

% fs(jjj ,1) = (-1)^(iii+jjj)*(((

qqs*qqs*rrs*rrs)/4 - (qqs ^4+ rrs^4) /24) * log(qqs ^2+

rrs ^2));

end

end

f_sum = f_sum + sum(f);
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% fs_sum = fs_sum + sum(fs);

end

logDa (ii,jj) = -25/12 + f_sum /(2*hi^4);

% logDa (ii,jj) = -25/12 + fs_sum /(2*hi^4);

f_sum = 0;

% fs_sum = 0;

end

end

disp(ii);

end

toc

clear ii in jj temp

L = 1; % Unit length of 1 m

perm = 1.02*4* pi*1e-7; % Permeability of SS316

cond = 1.38e6; % Conductivity of SS316

% Rdc = L/(cond*Area); % R_DC of SS316

I0 = 3; % Impressed/original AC of 3 A

ff=[0.1 0.2 0.5 1 2 5 10 20 30 50 70 100 150 200 250

300] '*1e3; % Frequency

sd = sqrt (1./(pi .* ff * perm * cond)); % Skin depths

% Calculate p.u.l. R_AC based on 'logDa '

tic

Ra = zeros(size(ff ,1) ,1); % 'R_AC ' based on Antonini 's

method

for kk = 1:size(ff ,1) % (about 10s per frequency)

freq = ff(kk);

const = freq * perm * cond * hi^2; % The constant

term within X

Xa = const * logDa;

U = eye(N);

G = zeros(N, 1) + I0 / Area;

Za = U + Xa * sqrt(-1);

Ja = Za^(-1) * G; % Matrix J is calculated by

inversing Z

Ja_mod = abs(Ja); % Modulus of J

% Js_ang = angle(Js)*180/ pi; % Phase angles of J

% Calculate p.u.l. R_AC of the conductor

Ra(kk) = L * sum(Ja_mod .^2*hi^2) / (cond*(abs(sum(Ja
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))*hi^2)^2);

disp(kk);

end

Ra = Ra/2;

toc

subbars_circ = subbars; Ja_circ = Ja; Ja_mod_circ =

Ja_mod; Ra_circ (:,1) = ff; Ra_circ (:,2) = Ra;

clearvars -except subbars_circ Ja_circ Ja_mod_circ

Ra_circ

save('Res_Theory_IntJ_Antonini_CIRC.mat')

% subbars_hex = subbars; Ja_hex = Ja; Ja_mod_hex =

Ja_mod; Ra_hex (:,1) = ff; Ra_hex (:,2) = Ra;

% clearvars -except subbars_hex Ja_hex Ja_mod_hex Rs_hex

% save('Res_Theory_IntJ_Antonini_HEX.mat ')

% subbars_sq = subbars; Ja_sq = Ja; Ja_mod_sq = Ja_mod;

Ra_sq (:,1) = ff; Ra_sq (:,2) = Ra;

% clearvars -except subbars_sq Ja_sq Ja_mod_sq Ra_sq

% save('Res_Theory_IntJ_Antonini_SQ.mat ')

% subbars_tric = subbars; Ja_tri = Ja; Ja_mod_tri =

Ja_mod; Ra_tri (:,1) = ff; Ra_tri (:,2) = Ra;

% clearvars -except subbars_tric Ja_tri Ja_mod_tri

Ra_tri

% save('Res_Theory_IntJ_Antonini_TRI.mat ')

A.2 Modal Network Theory

% Calculating p.u.l R_ac Based on MNT

clc

clear

tic

A0 = 100e-6; % Original area = 100 mm 2

L = 1; % Unit length of 1 m

perm = 1.02*4* pi*1e-7; % Permeability of SS316

cond = 1.38e6; % Conductivity of SS316

Rdc = L/(cond*A0); % R_DC of SS316

I0 = 3; % Impressed/Original AC of 3A

f=[0.1 0.2 0.5 1 2 5 10 20 30 50 70 100 150 200 250
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300] '*1e3; % Frequency

sd = sqrt (1./(pi .* f * perm * cond)); % Skin depths

NC = 25; % Approximated Circular

d0_circ = sqrt(A0/pi);

d_circ = d0_circ -sd;

tempc = find(d_circ <0);

a_circ(tempc ,1) = A0;

a_circ(tempc(end)+1: size(d_circ ,1), 1) = A0-pi*d_circ(

tempc(end)+1: size(d_circ ,1)).^2;

Aeff = a_circ;

sd(tempc) = 0;

clear d0_circ d_circ tempc a_circ

% NC = 6; % Hexagonal conductor

% d0_hex = sqrt(A0 /(1.5* sqrt (3)));

% d_hex = d0_hex -2*sd/sqrt (3);

% temph = find(d_hex <0);

% a_hex(temph ,1) = A0;

% a_hex(temph(end)+1: size(d_hex ,1), 1) = A0 -6*0.25* sqrt

(3)*d_hex(temph(end)+1: size(d_hex ,1)).^2;

% Aeff = a_hex;

% sd(temph) = 0;

% clear d0_hex d_hex temph a_hex

% NC = 4; % Square conductor

% d0_sq = sqrt(A0);

% d_sq = d0_sq -2*sd;

% temps = find(d_sq <0);

% a_sq(temps ,1) = A0;

% a_sq(temps(end)+1: size(d_sq ,1), 1) = A0 -d_sq(temps(end

)+1: size(d_sq ,1)).^2;

% Aeff = a_sq;

% sd(temps) = 0;

% clear d0_sq d_sq temps a_sq

% NC = 3; % Triangualr conductor

% d0_tri = sqrt(A0*4/ sqrt (3));

% d_tri = d0_tri -2* sqrt (3)*sd;

% tempt = find(d_tri <0);

% a_tri(tempt ,1) = A0;

% a_tri(tempt(end)+1: size(d_tri ,1), 1) = A0 -0.25* sqrt (3)
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*d_tri(tempt(end)+1: size(d_tri ,1)).^2;

% Aeff = a_tri;

% sd(tempt) = 0;

% clear d0_tri d_tri tempt a_tri

Reff = L./( cond.*Aeff);

alp = pi *(360./ NC)/180; % Angle per part

at the center

a0 = 2 * sqrt(A0 * tan(alp /2) ./ NC); % Side length of

the sample

r0 = 0.5 * a0 ./ sin(alp/2); % Effective radius

hi = 1e-4; % Side length of

subsections

% Define positions of corners of the conductor

cornerx = zeros(NC ,1);

cornery = zeros(NC ,1);

for ii = 1:NC

cornerx(ii ,1) = r0 * sin(alp/2 + alp*(ii -1)); %

Positions of corners in x

cornery(ii ,1) = r0 * cos(alp/2 + alp*(ii -1)); %

Positions of corners in y

end

% Determine positions of subsections/subbars within the

cross -section

Nr = 2* floor(r0/hi)+2;

posit = zeros(Nr*Nr ,2);

for jj = 1:Nr*Nr

posit(jj ,1) = -hi*Nr/2 + hi*(jj -1+0.5) - Nr*hi*floor

((jj -1)/Nr);

posit(jj ,2) = -hi*Nr/2 + hi*( floor((jj -1)/Nr)+0.5);

end

in1 = inpolygon(posit (:,1), posit (:,2), cornerx , cornery

);

subbars (:,1) = posit(in1 ,1); % Positions of subbars in x

subbars (:,2) = posit(in1 ,2); % Positions of subbars in y

temp = subbars (:,1) > 0;

subbars = subbars(temp ,:);

clear temp

tic
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N = size(subbars ,1);

logDs = zeros; % 'logD ' based on Silvester 's method

for ii = 1:N % (about 43s)

logDs(ii,ii) = log (0.44705* hi * 2 * subbars(ii ,1));

% For self -induction

for jj = 1:N

if ii ~= jj % For mutual -induction

Dmn = sqrt(( subbars(ii ,1) - subbars(jj ,1))^2

+ (subbars(ii ,2) - subbars(jj ,2))^2); %

Distance bewteen #m and #n

Dmns = sqrt(( subbars(ii ,1) + subbars(jj ,1))

^2 + (subbars(ii ,2) - subbars(jj ,2))^2);

% Distance bewteen #m and #n_sym (

horizontally symmetrical with #n)

logDs(ii,jj) = log(r0^2/( Dmn * Dmns)); % To

reduce the matrix size by using '

symmetrical subsections '

end

end

% disp(ii);

end

clear ii in jj temp

toc

tic

deno1 = cell(1,size(f,1));

deno2 = cell(1,size(f,1));

A = cell(1,size(f,1));

B = cell(1,size(f,1));

Rac_deno = cell(1,size(f,1));

Z = zeros(size(f,1) ,1);

deno_sum = zeros(size(f,1) ,1);

deno_sub = zeros(size(f,1) ,1);

Z2 = zeros(size(f,1) ,1);

AA = zeros(size(f,1) ,1);

BB = zeros(size(f,1) ,1);

Rac_para = zeros(size(f,1) ,1);

E = logDs;

num_eig = [10;15;20;30;40;50;60;70;80;100];

Z_eig =zeros(size(f,1), size(num_eig ,1));

Z2_eig =zeros(size(f,1), size(num_eig ,1));
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for ee = 1:size(num_eig ,1)

[eigVec ,eigVal] = eigs(E, num_eig(ee));

N = 2*size(E,1);

Omegak = -2*N./ eigVal;

Omegak_inf = isinf(Omegak);

Omegak(Omegak_inf) = [];

alphak = abs(mean(eigVec , 1))*sqrt (0.5*N);

alphak = alphak ';

temp = abs(mean(eigVec , 1));

mk = Omegak * Rdc * pi / perm;

Omega = perm *2.*f / Rdc;

% p(ff ,1) = sqrt(Omega(ff));

for ff = 1:size(f,1)

for kk = 1:size(Omegak ,2)

deno1{1,ff}(kk ,1) = alphak(kk)^2/(1+ sqrt(-1)

*(Omega(ff)/Omegak(kk)));

deno2{1,ff}(kk ,1) = alphak(kk)^2 ./ (Rdc .*

(1+ sqrt(-1)*2*pi*f(ff) ./ mk(kk)));

end

Z(ff ,1) = Rdc/sum(deno1{1,ff});

Z2(ff ,1) = 1/sum(deno2{1,ff});

end

Z_eig(:,ee) = Z;

Z2_eig(:,ee) = Z2;

disp(ee);

end

toc

clearvars -except NC logDs Rdc Reff subbars cond perm A0

f sd r0 a0 hi Z_eig Z2_eig num_eig

save('Results_ModalTheory_Z_CIRC.mat');

% save('Results_ModalTheory_Z_HEX.mat ');

% save('Results_ModalTheory_Z_SQ.mat ');

% save('Results_ModalTheory_Z_TRI.mat ');
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Appendix B

The Data Processing and

Constant Slope Ratio Method

% The Data Processing of ACPD Results Measured in

Experiments.

%% Prepare the processing data

clear

clc

I_amp = 3; % Current mplitude

fs = 4e6; % Sampling frequency

t = (0:1/ fs:2) '; % Time , total time interval is 2

seconds

t = t(1:end -1);

load('Feature Data Mean.MAT', 'I_Mean ', 'V_Mean ') % Load

experimental data

I = I_Mean;

V = V_Mean;

cut = 0.18* fs; %Find out the time position of the first

curent peak 'cut ' of the processing data and delete

current signals before the first peak

I = I(cut:end);

V = V(cut:end);

t = t(cut:end);

clearvars -except I V t I_amp

%% Find out band part -1 by using tolerance ratio = 1/3

tic

tr = 1/3;

I_tol = tr*I_amp; % Tolerance of band part

upper_I_lim = find(I<= I_tol);

lower_I_lim = find(I>=-I_tol);
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bands = intersect(upper_I_lim ,lower_I_lim); % Signal

bands

heads = zeros;

heads (1,1) = 1;

kk = 1;

for ii = 1: length(bands)

if ii == 1

O = [t(bands(ii)), I(bands(ii))]; % The 1st

signal of band (ii)

elseif sign(I(bands(ii))) ~= sign(O(2))

if exist('A','var')==0 % Calculate slope of

band_OA

A = [t(bands(ii)), I(bands(ii))];

jj = 1;

kAsum = zeros;

kAsum(jj ,1) = (A(2)-O(2))/(A(1)-O(1));

kA = mean(kAsum);

jj = jj+1;

else

B = [t(bands(ii)), I(bands(ii))]; %

Calculate slope of band_OB

kB = (B(2)-O(2))/(B(1)-O(1));

kr = kA/kB;

if kr > 4 % The constant slope ratio of tr =

1/3 is 4.62

heads(kk+1,1) = ii;

O = [t(bands(ii)), I(bands(ii))]; % THIS

IS THE FINAL SIGNAL OF THE BAND

clear A kA

kk = kk+1;

else

A = B;

kAsum(jj ,1) = kB;

kA = mean(kAsum);

jj = jj+1; % Continue to identify the

next signal

end

end

end

disp(length(bands)-ii);

end
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toc

band_part1 = cell(length(heads)+1,1);

for ii = 1: length(heads)-1

band_part1{ii ,1} = [t(bands(heads(ii)):( bands(heads(

ii+1) -1))), I(bands(heads(ii)):( bands(heads(ii+1)

-1)))];

end

% band_part_size1 = zeros(length(band_part1) ,1); % Check

if needed

% for ii = 1: length(band_part1)

% band_part_size1(ii ,1) = size(band_part1{ii ,1} ,1);

% end

% band_part_check1 = zeros(length(band_part_size1) -1,1);

% for ii = 1: length(band_part_size1)-1

% band_part_check1(ii ,1) = band_part_size1(ii)/

band_part_size1(ii+1);

% end

% ccheck1 = find(band_part_check1 >1.5);

clearvars -except I V t band_part1 band_part_size1

%% Continue to find out band parts -2 by using tr=2/3

tic

% ns = find(band_part_size1 ==3);

% if isempty(ns) == 1

% clear ns

% %Then there is no need to find out band parts -2!

% end

ns1_bp = min(find(band_part_size1 ==4));

ns1 = find(t== band_part1{ns1_bp ,1}(1 ,1));

I = I(ns1:end); I_amp =3;

V = V(ns1:end);

t = t(ns1:end);

tr = 2/3;

I_tol = tr*I_amp;

upper_I_lim = find(I<= I_tol);

lower_I_lim = find(I>=-I_tol);

bands = intersect(upper_I_lim ,lower_I_lim);

heads = zeros;
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heads (1,1) = 1;

kk = 1;

for ii = 1: length(bands)

if ii == 1

O = [t(bands(ii)), I(bands(ii))];

elseif sign(I(bands(ii))) ~= sign(O(2))

if exist('A','var') == 0

A = [t(bands(ii)), I(bands(ii))];

jj = 1;

kAsum = zeros;

kAsum(jj ,1) = (A(2)-O(2))/(A(1)-O(1));

kA = mean(kAsum);

jj = jj+1;

else

B = [t(bands(ii)), I(bands(ii))];

kB = (B(2)-O(2))/(B(1)-O(1));

kr = kA/kB;

if kr > 1.5 % The constant slope ratio of tr

= 1/3 is 2.15

heads(kk+1,1) = ii;

O = [t(bands(ii)), I(bands(ii))]; % THIS

IS THE FINAL SIGNAL OF THE BAND

clear A kA

kk = kk+1;

else

A = B;

kAsum(jj ,1) = kB;

kA = mean(kAsum);

jj = jj+1;

end

end

end

disp(length(bands)-ii);

end

toc

band_part2 = cell(length(heads)+1,1);

for ii = 1: length(heads)-1

band_part2{ii ,1} = [t(bands(heads(ii)):( bands(heads(

ii+1) -1))), I(bands(heads(ii)):( bands(heads(ii+1)

-1)))];

end
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% band_part_size2 = zeros(length(band_part2) ,1); % Check

if needed

% for ii = 1: length(band_part2)

% band_part_size2(ii ,1) = size(band_part2{ii ,1} ,1);

% end

%

% band_part_check2 = zeros(length(band_part_size2) -1,1);

% for ii = 1: length(band_part_size2)-1

% band_part_check2(ii ,1) = band_part_size2(ii)/

band_part_size2(ii+1);

% end

% ccheck2 = find(band_part_check2 >1.5);

clearvars -except I V t band_part1 band_part_size1

band_part2 band_part_size2 ns1_bp

%% Continue to find out band parts -3 by using tr=1 (1'')

tic

% ns = find(band_part_size2 ==3);

% if isempty(ns) == 1

% clear ns

% %Then there is no need to find out band part -3!

% end

ns_t = zeros;

kk = 1;

for ii = 1: length(ns)

tt1 = band_part2{ns(ii) ,1}(1,2);

tt2 = band_part2{ns(ii) ,1}(end ,2);

if round(tt1) ~= (-round(tt2))

ns_t(kk ,1) = ns(ii);

kk = kk+1;

end

end

ns2_bp = ns_t (1);

ns2 = find(t== band_part2{ns_t (1) ,1}(1,1));

I = I(ns2:end);

V = V(ns2:end);

t = t(ns2:end);

heads = zeros;

heads (1,1) = 1;
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kk = 1;

for ii = 3: length(I) -1 %NOTE: part3 {1,1} is not a repeat

of part2{ns2_bp ,1}

if (I(ii)>I(ii -1)) ~= (I(ii -1)>I(ii -2))

heads(kk ,1) = ii;

kk = kk+1;

end

end

% band_part3 = cell(length(heads)+1,1); % Check if

needed

% for ii = 1: length(heads)-1

% band_part3{ii ,1} = [t(heads(ii):(heads(ii+1) -1)), I

(heads(ii):(heads(ii+1) -1))];

% end

%

% band_part_size3 = zeros(length(band_part3) ,1);

% for ii = 1: length(band_part3)

% band_part_size3(ii ,1) = size(band_part3{ii ,1} ,1);

% end

% band_part_check3 = zeros(length(band_part_size3) -1,1);

% for ii = 1: length(band_part_size3)-1

% band_part_check3(ii ,1) = band_part_size3(ii)/

band_part_size3(ii+1);

% end

% ccheck3 = find(band_part_check3 >1.5);

% toc

clearvars -except I V t band_part1 band_part_size1

band_part2 band_part_size2 band_part3

band_part_size3 ns1_bp ns2_bp

%% Combine band part -1,2,3 into a total band part

%If band part -3 has been run:

band_part = cell(ns1_bp+ns2_bp+length(band_part3) -1,1);

band_part (1:ns1_bp -1,1) = band_part1 (1:ns1_bp -1,1);

band_part(ns1_bp:ns1_bp+ns2_bp -1,1) = band_part2 (1:

ns2_bp ,1);

band_part(ns1_bp+ns2_bp:end ,1) = band_part3;

band_part(end -1:end) = []; %It has two '[]' at the end

of band_part
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% %If band part -3 has not been run:

% band_part = cell(ns1_bp+length(band_part2) -1,1);

% band_part (1:ns1_bp -1,1) = band_part1 (1: ns1_bp -1,1);

% band_part(ns1_bp:end ,1) = band_part2;

% band_part(end -1: end) = []; %It has two '[]' at the end

of band_part

%If band part -2 (and band part -3) has not been run:

% band_part = band_part1;

% band_part(end -1: end) = []; %It has two '[]' at the end

of band_part

% band_part_size = zeros(length(band_part) ,1);

% for ii = 1: length(band_part)

% band_part_size(ii ,1) = size(band_part{ii ,1} ,1);

% end

% band_part_check = zeros(length(band_part_size) -1,1);

% for ii = 1: length(band_part_size) -1

% band_part_check(ii ,1) = band_part_size(ii)/

band_part_size(ii+1);

% end

if any(band_part_check >1.5)

ccheck = find(band_part_check >1.5);

%So find out the wrong bands , check kB/kA there ,

then change the 'if '

%condition () above.

end

clearvars -except band_part I V t I_amp

%% Find out I-zeros in each band (both rising and

dropping)

tzerosI = zeros(size(band_part ,1) ,2);

tzerosI_pos = zeros(size(band_part ,1) ,2);

tzerosI0 = zeros(size(band_part ,1) ,1);

tic

for ii = 1:( size(band_part ,1))

temp = band_part{ii ,1};

p = polyfit(temp (:,1),temp (:,2) ,1);

cal0 = -p(2)/p(1);

temp (:,3) = abs(temp (:,1)-cal0);

ins = min(temp (:,3));
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insp = find(temp (:,3)==ins);

if p(1) <0

tzerosI(ii ,1) = temp(insp ,1); % Measured zeros

tzerosI(ii ,2) = cal0; % Calculated zeros

elseif p(1) >0

tzerosI_pos(ii ,1) = temp(insp ,1);

tzerosI_pos(ii ,2) = cal0;

else

tzerosI0(ii ,1) = -p(2)/p(1);

end

disp((size(band_part ,1))-ii);

end

if any(tzerosI0 ~=0) ==0

clear tzerosI0

end

toc

% tzerosI(find(tzerosI (:,1) ==0) ,:)=[];

% tzerosI_pos(find(tzerosI_pos (:,1) ==0) ,:)=[];

clearvars -except I V t tzerosI tzerosI_pos tzerosI0

%% Find out V-zeros based on I-zeros

tic

fs = 4e6;

ts = 1/fs;

tzerosV = zeros(length(tzerosI) -1,1);

Iamp = zeros(length(tzerosI) -1,1);

Vamp = zeros(length(tzerosI) -1,1);

Res=zeros(size(tzerosI ,1), 3);

for ii = 2: length(tzerosI)-1 % ii doesn 't run from 1 as

there are phase shifts at the beginning

t1 = tzerosI(ii ,1);

t2 = tzerosI(ii+1,1);

p1 = find(t==t1);

p2 = find(t==t2);

ti = t2-t1;

if V(p1)>0

t3 = t1;

else

jjmax = ti/(2*ts); % Assume V doesn 't lead I

more than half period
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for jj = 1:jjmax

if sign(V(p1-jj))~=sign(V(p1)) && abs(V(p1 -

jj))>=abs(V(p1))

break;

end

end

psv = p1 -jj+1;

temp = [t(psv:p1), V(psv:p1)];

poly = polyfit(temp (:,1),temp (:,2) ,1);

if poly (1) == 0

cal0 = temp (:,1);

else

cal0 = -poly (2)/poly (1);

end

temp (:,3) = abs(temp (:,1)-cal0);

ins = min(temp (:,3));

insp = find(temp (:,3)==ins);

t3 = temp(insp ,1);

tzerosV(ii ,1) = t3;

tzerosV(ii ,2) = cal0;

end

Res(ii ,1) = 1/ti; % Processed results of f

p3 = find(t==t3);

p4 = p3+(p2-p1);

Ipeak = [max(I(p1:p2)), abs(min(I(p1:p2)))];

Vpeak = [max(V(p3:p4)), abs(min(V(p3:p4)))];

Iamp(ii ,1) = mean(Ipeak);

Vamp(ii ,1) = mean(Vpeak);

Res(ii ,2) = Vamp(ii ,1)/Iamp(ii ,1); % Processed

results of |Z|

if ii <1993

Res(ii ,3) = (t1-t3)*2*pi*Res(ii ,1); % Processed

results of Z_theta

else %f>1e4 Hz

Res(ii ,3) = (tzerosI(ii ,2)-tzerosV(ii ,2))*2*pi*

Res(ii ,1);

end

disp(length(tzerosI)-ii);

end

toc
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clearvars -except I V t tzerosI tzerosI_pos tzerosI0 fs

ts tzerosV Res Iamp Vamp

save('Processed Results.mat');
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