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Abstract

The Unruh effect strikes with its simple yet surprising statement that a uniformly linearly ac-
celerated observer experiences the Minkowski vacuum as a thermal state with a temperature
that is proportional to the observer’s acceleration. This raises fundamental questions about the
concepts of particles and vacua and to date, due to the smallness of the effect, there has been
no experimental evidence thereof. Analogue gravity systems approach this issue by providing
an effective relativistic vacuum state. They refer to a broad range of experimentally accessible
systems in which the dynamical equations for small excitations are mathematically equivalent
to the dynamics of relativistic quantum fields.

In this thesis, we introduce the mathematical framework for localised detectors in acceler-
ated motion to probe the effective relativistic vacuum of an analogue gravity system. First, we
show that Unruh detectors can be implemented by broad-band or continuous field detectors and
derive the Unruh temperature for a circular trajectory in 3 + 1 and 2 + 1 dimensions. Then, we
argue that localised laser beams can be used as continuous field Unruh detectors and support our
argument with the modelling of two low-temperature analogue systems, namely Bose-Einstein
condensates and superfluid Helium-4 thin films, interacting with a localised laser beam on a
circular trajectory.

An analysis of experimentally feasible parameters for these analogue systems indicates that
the Unruh effect is within the realm of current experimental possibilities. Finally, we complement
these findings with signal extraction methods developed in the context of quantum optics and a
first experimental realisation of localised measurement probes relevant for the proposed analogue
Unruh detectors.
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I

Introduction

The same equations have the same solutions.
—The Feynman Lectures on Physics

Probably no other theories in the history of physics have been tested as thoroughly as general
relativity and quantum mechanics. Experiments in both theories continue to provide fascinating
results, in their very own regime of relevant energy and length scales, one of which was recently
honoured with the Nobel Prize in Physics “for experiments with entangled photons, establishing
the violation of Bell inequalities and pioneering quantum information science”. Naturally, the
question arises whether it is possible to combine the two theories – a quantum theory of grav-
ity [1, 2]. There have been theoretical advances trying to overcome this apparent conceptual
incompleteness of our present understanding, but it turns out that the combination of gravity, a
macroscopic theory, and quantum mechanics, a microscopic theory, is rather difficult. It seems
that we need to understand the interplay of both theories much better – both theoretically, and
with support from experiments! Instead of the desired, but not yet achievable, goal of a quan-
tised theory of gravity, one can work with quantum field theory in curved spacetime (QFTCS),
in which we consider quantum fields propagating in a classical, curved spacetime [3, 4]. QFTCS
is expected to account for gravitational contributions in quantum phenomena unless curvatures
reach Planckian scales.

Experimental confirmation is essential for a physical theory, even if sometimes it is a long
time in the making. The discovery of the Higgs boson is one such example that was detected
experimentally only 60 years after its theoretical prediction [5, 6]. Other milestones include
the detection of gravitational waves in 2016 [7] and the first ever picture taken of the black
hole in the centre of galaxy M87 in 2019 [8]. This image was celebrated as a huge success in
black hole research after the prediction of black holes in Einstein’s theory of general relativity
in 1915 [9, 10]. Black holes are interesting objects on many levels – one of the reasons is the
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interplay between gravity and quantum mechanics in and around black holes leading to peculiar
effects. Hawking radiation is such a phenomenon on the boundary between gravity and quantum
mechanics which states that an observer far away from a black hole would see thermal radiation
coming from the black hole, even though the quantum field was in a state that evolved from a
no-particle state before the black hole formation [11].

Hawking’s theoretical discovery of radiating black holes was driven by the endeavour at that
time to define the concept of particles, pioneered by Parker’s work on cosmological particle
creation [12, 13, 14, 15]. Parker’s considerations led Fulling to define particles in flat spacetime
in terms of accelerated Rindler coordinates instead of the usual Minkowski coordinates [16]. At
the same time, Unruh thought about particles as excitations of an accelerated particle detector
– typically modelled as a two-level system that is locally coupled to a field. Their calculations
showed another rather peculiar effect – an accelerated observer perceives the Minkowski vacuum
as a thermally occupied state [17, 18, 19, 20]. The temperature T of this state is found to be
proportional to the acceleration a of the observer

kBT = ℏa
2πc .

Despite its elegant derivation and simplicity compared to the Hawking effect, which needs a
black hole to occur, the Unruh effect exhibits a serious complication. An Unruh temperature
of 1 Kelvin requires an acceleration of about 1020 m/s2. One of the reasons why there is still a
lack of experimental evidence.

The original descriptions of this acceleration radiation use a linearly accelerated trajectory,
however, Bell and Leinaas showed that similar effects can be achieved using a circular trajec-
tory [21, 22]. Their results demonstrate that the spectrum of a circularly accelerated detector
is approximately thermal with a temperature that is dependent on the energy gap between the
ground and excited state of the detector, which is a striking difference to the case of a linear
acceleration. The circular acceleration spectrum, however, is sufficiently similar to the linear ac-
celeration. So if one could experiment with such a circularly accelerated detector, it would give
a strong hint to whether there exists such a thermal state with this characteristic temperature.

QFTCS leads to interesting physical phenomena, however, at the same time these phenom-
ena, such as the Unruh effect, are incredibly difficult to probe experimentally. But what if we
could find a system that exhibits the same characteristics, theoretically and experimentally – an
analogue so to speak? Such an analogue could help test these challenging phenomena in well-
controlled, earthbound, laboratories. Analogies in general have always played a significant role
in physics and mathematics. They allow us to take a question from a target system and transfer
it to a source system. As the name of a chapter in Feynman’s lectures on physics “The same
equations have the same solutions” suggests, the answer to this question in the source system is
like a map that could be a representation of multiple territories [23]. This has the tremendous
advantage of not being constrained by restrictions from the target system, but allows to use the
full knowledge of the source system. These transfers have been made frequently in the past,
even if it was only to visualise certain aspects in Gedankenexperiments, as they were frequently
used by Einstein to think about concepts of relativity.

In the 1980s, William Unruh drew a connection between gravitation and fluids during a
lecture in fluid mechanics – an idea very much motivated by the characteristics of black holes.
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A black hole is a region in spacetime where the gravitation pull is so strong that neither matter
nor light can escape. This phenomenon also appears in fluids, such as a river ending in a
waterfall. In Unruh’s analogy, fish in the river communicate via sound waves and as long as
they stay far from the waterfall, they can move and communicate freely. However, once a fish
starts to get dragged over the edge by the downstream flow, there exists a point at which the
speed of the falling water exceeds the speed of sound waves travelling in water. Just as the
event horizon of a gravitational black hole, this waterfall has a sonic horizon past which neither
fish nor sound can escape – an idea that led to the birth of analogue gravity [24, 25]. This
analogy seems like a simple visualisation of black hole processes, but Unruh showed that this is
indeed a mathematically consistent analogue. Sound waves propagating in ideal fluids obey the
same equations as massless scalar fields that live on an effective curved spacetime, laying the
cornerstone for many acoustic analogues and everything that followed [26, 27, 28, 29].

In the beginning, analogue gravity was purely a theoretical field of research, however, in the
last decade experimental groups all over the world have started researching analogue systems [30,
31]. Analogues are by far not restricted solely to fluids [32] but have been found as well for
electromagnetic waves in dielectric media [33, 34] and interfaces waves [35]. With technological
advances, cold atom analogues, such as Bose-Einstein condensates (BECs) [36, 37, 38, 39] and
superfluid Helium [40, 41], have become increasingly popular, however, an important milestone
was the measurement of stimulated Hawking emission in a classical fluid analogue [42]. The
experimental triumph of analogues in classical fluids continued, with measurements of the first
superradiant scattering in a bathtub vortex [43], black hole ringdown [44] and back action with
background fluid flows [45].

But can we use analogue systems to learn more about what Feynman listed as “Accel. Temp.”
in the “to learn” section on his blackboard? If so, it could help improve our understanding of
quantum fields and particles not only on a theoretical level. Compared to other effects, there
are only a limited amount of proposals to detect the Unruh effect in analogue systems [46, 47].
Motivated by pioneering work on BEC analogues [48, 49, 50, 51, 52, 53] and the circular acceler-
ation description of the Unruh effect, this thesis positions itself in the sparsely populated space
of experimental analogue Unruh effect proposals by presenting a novel approach for a detection
scheme in cold-atom systems to shed light on the vacuum in quantum field theories.

The second chapter II is an introduction to the Unruh effect in its original description
arising from a linearly accelerated observer, followed by its extension to circular accelerations.
We calculate the response function of a detector in a (3 + 1) and (2 + 1)-dimensional, relativistic
quantum field theory and translate those findings to analogue systems. The results have been
published in [54]. Furthermore, we introduce a continuous field detector model and show its
equivalence to the standard Unruh-DeWitt detector. The analogue models that are introduced
in the following chapters are a mapping to this detector model.

In chapter III, we create two explicit systems and show that they provide a suitable setup to
detect the analogue Unruh effect. We show that a laser beam can act as a continuous detector,
as opposed to the traditional two-level Unruh-DeWitt detector, and derive a regime in which its
interaction with matter results in the coupling, as required for a mapping to the detector model.
We introduce two analogue systems, a Bose-Einstein condensate and superfluid Helium-4. The
mathematical description of those system is found to be an analogue of the relativistic detector
model. We provide a conceptual schematic setup, as well as experimental feasibility estimates.
Using a laser beam as a continuous detector to probe quantum systems in order to look for the
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Unruh effect is a novel approach and has been published in [55], while the superfluid Helium-4
results are yet to be published [56].

Chapter IV is about the operator description of the two analogue systems. We use Glauber’s
theory of photodetection and the photon counting formula to find the signal at the photodiodes
and how it connects to the information present in the system. While the preceding chapter
was more about conceptual feasibility statements, this chapter is about the details of how to
extract the signal related to the Unruh effect. It establishes the bridge from classical detection
to quantum processes. This chapter contains unpublished work.

Chapter V paves the way towards an experimental implementation of the Unruh effect de-
tection concept in superfluid Helium-4. We present an experiment as proposed in [57, 58] that
utilises confocal microscopy to measure thermal surfaces waves on classical fluids. We give a
brief introduction to the underlying theory and provide an outlook on how this method can be
used for superfluids and measurements of the Unruh effect.

We conclude with an outlook on future research in chapter VI, how the findings of this thesis
can be used in ongoing projects and what the limitations of those approaches are. Analogue
gravity experiments can not entirely replace experiments on real gravitational systems, however,
analogue gravity models help understand detector schemes, which can be used as a stepping stone
towards the measurement of the real Unruh effect. Whilst doing so, analogue detectors push the
boundaries of current technologies and help progress towards a clearer picture of the quantum
vacuum state.

Notations and Conventions. Throughout this thesis, we will use the following notations
and conventions unless explicitly mentioned otherwise.

Coordinates. d-dimensional spacetime coordinates are usually written as x = (t,x) while the
d− 1 space coordinates are written in boldface x. Functions that depend on spacetime coordi-
nates are either written as ϕ(x) or as ϕ(t,x), whenever a clarifying distinction between t and x
seems appropriate.

Einstein Sum Convention. We will use the convention that whenever two indices appear at the
same time as sub- and superscript, an implicit summation over these indices is assumed

aia
i =

∑
i

aia
i . (1.1)

Derivatives. Most of the time we will use the following short notation for derivatives

∂i = ∂

∂xi
. (1.2)
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Minkowski Metric. We define the Minkowski metric with the following sign convention

gµν =


−1

1
. . .

1

 , (1.3)

We use the short notation for the derivative

∂µ = ∂

∂xµ
=

(1
c

∂

∂t
,∇
)
, (1.4)

and in contravariant form
∂µ = gµν∂ν =

(
−1
c

∂

∂t
,∇
)
. (1.5)

Fourier Transform. We adopt the following notation throughout this thesis

fω =
∫

dt eiωtf(t) , (1.6)

such that all Fourier components are labelled with a subscript.

Densities. Throughout the text, mass densities will generally be denoted by ρ whereas number
densities will be denoted either by n or by ρN whenever we need to avoid confusion with refractive
indices.





II

Unruh Effect and Detectors

A particle is what a particle detector detects.
—William Unruh

Fulling in 1973 [16], Davies in 1975 [20] and Unruh in 1976 [17] described the phenomenon
arising in relativistic quantum field theory that an uniformly accelerated observer sees the
Minkowski vacuum as a thermal state with a characteristic temperature proportional to its
acceleration a. Most famously, the temperature of this state, which is now known as the Unruh
temperature, is given by

kBT = ℏa
2πc . (2.1)

This counter-intuitive phenomenon has led Unruh to think further about this acceleration radi-
ation and particle detectors. The most prominent example of such a detector to detect quantum
particles is known as the Unruh-DeWitt detector, a simple two-level system [18]. This chapter
follows this historical development by first introducing the Unruh effect of a linearly accelerated
observer, before discussing Unruh-DeWitt detectors. We will then show that this effect is not
limited to linear acceleration only and calculate how a particle detector reacts to a circular
acceleration in 3 + 1 and 2 + 1 dimensions and extend the traditional understanding of two-level
Unruh-DeWitt detectors to continuous detectors [18].

We conclude this chapter with an outlook to the actual implementation in analogue systems.
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2.1 Linear Unruh Effect

As the starting point of this discussion, we want to introduce the general setting in which
the Unruh effect occurs. The key idea of it is the concept of acceleration. To simplify the
notation, we assume that the acceleration takes place in just one direction of our coordinate
system, say in x-direction. Now, imagine two frames in (1 + 1)-dimensional Minkowski space,
one inertial frame with coordinates (t, x) and one accelerated frame with coordinates (τ, ξ),
which is uniformly accelerated with acceleration a. The time of a inertial frame t is related to
the to the time of the accelerated frame τ via the gamma factor

γ = 1√
1 − v2

c2

. (2.2)

such that dt = γ(v)dτ . The coordinates of the inertial frame and the coordinates of the accel-
erated frame are related via the coordinate transformation [59]

t = a−1eaξ sinh aτ (2.3a)
x = a−1eaξ cosh aτ , (2.3b)

yielding the relation x2 − t2 = a−2e2aξ. For constant ξ, this expression describes a hyperbolic
trajectory, as shown in figure 2.1.

x

ct

x
=
ct

x
= −
ct

ξ
=

co
ns

t

τ = const

III

III

IV

Figure 2.1 (Accelerated
Motion) Hyperbolic motion of
uniform acceleration in space-
time diagram. The world line
with ct = x forms a hori-
zon for the accelerated mo-
tion. The hyperbolae represent
curves with ξ = const and the
straight lines τ = const. With-
out loss of generality we focus
on the right Rindler wedge I
with x > |ct|.

This figure shows, furthermore, that lightlike world lines passing through the origin are
asymptotic to the accelerated motion. Those asymptotics divide the spacetime diagram into four
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distinct regions, which are labelled from I to IV. The line element is given by ds2 = −dt2+
∑
i dx2

i

in Minkowski coordinates, and in Rindler coordinates it becomes ds2 = −e2aξ (dτ2 − dξ2) +∑
i′ dx2

i′ . We want to consider a massive, free scalar field in a d dimensional spacetime with
arbitrary geometry with metric gµν and derive how this field behaves under uniform acceleration.
The Lagrangian density of this minimally coupled field ϕ with mass m is

L = 1
2(−g)−1/2

{
gµν∂µϕ

∗∂νϕ+m2ϕ∗ϕ
}
, (2.4)

with spacetime indices µ = 0, . . . , d. The zero component of these indices will be associated with
a time component t and the remaining d− 1 indices with space components xi, in the following
labelled with Latin indices. Applying the variation principle to the associated action

S =
∫

ddx L , (2.5)

leads to the equation of motion for ϕ(
−(−g)−1/2∂µg

µν(−g)1/2∂ν −m2
)
ϕ = 0 . (2.6)

In the special case of a Minkowskian spacetime with metric

gµν =


−1

1
. . .

1

 , (2.7)

we find
√

−g = 1 and the Lagrangian simplifies to

L = 1
2
(
∂µϕ

∗∂µϕ+m2ϕ∗ϕ
)
. (2.8)

The equation describing the dynamics of this field is the Klein-Gordon equation, given by(
∂2 +m2

)
ϕ(t,x) = 0 , (2.9)

where we used the short notation ∂2 = ∂µ∂
µ = −∂2

0 +
∑
i ∂

2
i . Upon quantisation, the scalar field

becomes an operator and as such, its dynamics are described by the equation above. It has the
mode expansion

ϕ̂(t,x) =
∫

ddk
(
âkUk(t,x) + â†

kU
∗
k (t,x)

)
, (2.10)

with positive-frequency modes Uk and negative-frequency modes U∗
k , which are given by

Uk(t,x) =
[
2ωk(2π)d−1

]−1/2
exp

{
−i
(
k0t− k · x

)}
, (2.11)

with (k0)2 = ω2
k = k2 +m2.
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The operators âk and â†
k are annihilation and creation operators for modes Uk and obey the

commutation relations [
âk, â

†
k′

]
= δ(k − k′) , (2.12a)[

â†
k, â

†
k′

]
=

[
âk, âk′

]
= 0 . (2.12b)

These operators act on the states of this field, one of which is the vacuum state. The Minkowski
vacuum |0M⟩ is defined as the state that is annihilated by âk, such that âk |0M⟩ = 01 and the Fock
space of states is created by repeatedly applying â†

k to this vacuum state [60]. The annihilation
and creation operators can be extracted from the mode expansion using the Klein-Gordon inner
product

âk =
(
Uk, ϕ̂

)
KG

:= i
∫

dx
(
Uk(t,x)∗∂tϕ̂(t,x) − ∂tUk(t,x)∗ϕ̂(t,x)

)
. (2.13)

Furthermore, we can use this inner product to normalise the modes

(Uk, Uk′)KG = δ(k − k′) , (2.14a)
(Uk, U∗

k′)KG = 0 , (2.14b)
(U∗

k , U
∗
k′)KG = − δ(k − k′) . (2.14c)

Similarly, we can describe the equation of motion for ϕ̂ in terms of Rindler coordinates τ
and ξ of Rindler wedge I (2.3) with x > |ct|(

∂2
τ − ∂2

ξ

)
ϕ̂I(τ, ξ) = 0 , (2.15)

where ξ is a shorter notation for the transformed coordinate ξ and the remaining coordinates
xi′ . This has the same form as in Minkowski coordinates and, therefore, has the solutions

ϕ̂I(τ, ξ) =
∑
k

(
b̂kŨk(τ, ξ) + b̂†

kŨ
∗
k (τ, ξ)

)
, (2.16)

with the modes Ũk(τ, ξ) being identical in form to the Minkowski modes Uk(τ, ξ). The important
difference here is that the operators b̂k are not the same as the operators âk. For this set of new
operators b̂k we can define the Rindler vacuum as the state that satisfies b̂k |0R⟩ = 0. As both
Minkowski and Rindler modes form a complete set of orthonormal modes they are related via a
Bogoliubov transformation

Ũk =
∑
l

(ulkUl + vlkU
∗
l ) . (2.17)

Equating both the Minkowski and Rindler expansion for ϕ and using (2.17) shows that the
creation and annihilation operators in both expansions are related via the transformation

b̂k =
∑
l

(
u∗
kl âl − v∗

kl â
†
l

)
. (2.18)

The coefficients can be extracted using the inner product (2.13) between the Rindler mode (2.17)

1If not specified otherwise, the vacuum state |0⟩ refers to the Minkowski vacuum.
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and the Minkowski mode, and solving the integrals [61]. The particle number operators â†
kâk and

b̂†
k b̂k determine the number of particles of a given state, with ⟨0M | â†

kâk |0M ⟩ = ⟨0R| b̂†
k b̂k |0R⟩ = 0.

At this point, we have constructed the operator description of scalar fields, both in Minkowski
and Rindler coordinates, and have presented a transformation that relates the annihilation and
creation operators in each coordinate system. In addition, we have provided a definition of the
vacuum state. The previous considerations suggest that the vacuum state is not unique [16,
62]. It depends on the observer, one can use the Bogoliubov transformation to calculate the
expectation value (for details see [61])

⟨0M |b̂†
k b̂k|0M ⟩ = 1

e
ℏa

2πc − 1
. (2.19)

This is a well known distribution, most commonly referred to as the Bose-Einstein statistics
and is the particle distribution of a thermal state with a finite temperature. Interestingly, this
shows that an accelerated observer sees the Minkowski vacuum as a thermally occupied state
with temperature kBTU = ℏa

2πc , which linearly depends on the acceleration. This is the Unruh
temperature.
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2.2 Unruh-DeWitt Detectors

After having derived the linear acceleration Unruh effect, we want to extract information about
the Rindler vacuum, or the thermal state that an accelerated observer sees. For this purpose, we
use the conceptually simplest detector model proposed by DeWitt [63] consisting of a point-like
object with two distinct energy levels. This detector couples with its monopole moment operator
m̂ to a scalar field ϕ̂. Extensions to higher moments, such as dipoles, are described in [61]. We
provide more detail in this chapter and follow the standard derivation of Birrell and Davies [4],
as this will become important later when we talk about continuous detectors. The interaction
is described by the Lagrangian with coupling c(τ)

Lint = c(τ)m̂(τ)ϕ̂ (xµ(τ)) , (2.20)

with τ being the proper time of the detector moving along the world line xµ(τ). Note, that the
coupling may be time dependent and may be interpreted as a (time) constant times a switching
function cχ(τ). The switching function turns the interaction between the detector and the field
on and off. At this point, however, we will not go into the technical details of this switching
function (for details, cf. [64]) and will assume a constant interaction for all times c(τ) ≡ c
for which the trajectory is defined. Throughout this section, we will work in natural units
ℏ = c0 = 1. The two level system has a ground state with energy E0 and an excited state with
energy E > E0, both separated by the energy gap ∆E = E −E0 > 0. This level system can be
understood as an atom that has a ground and excited state.

Assume that the scalar field is initially in the Minkowski vacuum state |0M ⟩ and the detector
is in a state with energy E0. Prior to the interaction the whole system is in the state |0ME0⟩.
The question is whether this interaction will cause a transition into another state |ψE⟩. The
first step towards answering this question is to calculate the transition amplitude (simplifying
xµ to x) in first order perturbation theory

M = ic ⟨Eψ|
∫ ∞

−∞
dτ m̂(τ)ϕ̂ (x(τ)) |0ME0⟩ . (2.21)

Working in the interaction picture in which the time dependence of operators is defined by the
free Hamiltonian Ĥd of the detector, the monopole moment operator can be written as

m̂(τ) = eiĤdτm̂(0)e−iĤdτ , (2.22)

with Ĥ0 |E⟩ = E |E⟩. Using this expression, the transition amplitude can be written as

M = ic ⟨E|m̂(0)|E0⟩
∫ ∞

−∞
dτ ei(E−E0)τ ⟨ψ|ϕ̂ (x(τ)) |0M ⟩ . (2.23)

Using the mode expansion in equation (2.10) for 3 + 1 dimensions, we see that the only states in
our basis contributing to the transition amplitude are the one-particle states |1k⟩ with momenta
k

⟨1k|ϕ̂(x(τ))|0M ⟩ = (2π)− 3
2

e−ik·x(τ)
√

2ωk
, (2.24)

where we have used that ⟨1k| a†(k′) |0M ⟩ = δ3(k − k′) and ω2
k = |k|2 +m2 > 0.

If the detector is moving along an inertial trajectory parametrised by x(τ) = x0 + γvτ with



2.2. Unruh-DeWitt Detectors 13

γ =
(
1 − v2)−1/2, v < 1, then the integral in the transition amplitude reads

M = ic ⟨E|m̂(0)|E0⟩ (2π)−3/2 1√
2ω

eik·x0

∫ ∞

−∞
dτ ei(E−E0+γ(ω−k·v))τ . (2.25)

The integral is a representation of the delta distribution 2πδ(E − E0 + γ(ω − k · v)), which
means that a transition can only occur when the argument of this delta distribution equals zero.
However, on the one hand we know that E > E0 and on the other hand we have ω ≥ |k| >
|k||v| ≥ k · v and γ > 0 such that the sum in the delta distribution is strictly greater than zero
causing the transition amplitude to vanish for inertial trajectories. In summary, there would be
no transition from the ground state to excited states if the detector were moved on an inertial
trajectory.

However, keeping the expression more general for some arbitrary trajectory x(τ) we can
calculate the transition probability for excitations from the ground state to any allowed state

|M|2 = c2 ∑
E,ψ

| ⟨E|m̂(0)|E0⟩ |2
∫

dτ ′dτ e−i(E−E0)(τ−τ ′) ⟨ψ|ϕ̂ (x(τ)) |0M ⟩ ⟨0M |ϕ̂
(
x(τ ′)

)
|ψ⟩ .

(2.26)
Using the completeness relation for final states, we can express the transition probability as

|M|2 = c2∑
E

| ⟨E|m̂(0)|E0⟩ |2F(E − E0) , (2.27)

where the response function F(E), which encodes the trajectory dependence of the transition
probability, is defined as

F(E) =
∫

dτ ′dτ e−iE(τ−τ ′)W(τ − τ ′) , (2.28)

in terms of the Wightman function

W(τ − τ ′) = ⟨0M |ϕ̂(x(τ))ϕ̂(x(τ ′))|0M ⟩ . (2.29)

For stationary processes, the Wightman function only depends on the time difference ∆τ = τ−τ ′.
More generally, for stationary processes we can express the transition amplitude as

|M|2 = c2∑
E

| ⟨E|m̂(0)|E0⟩ |2
∫

d(∆τ) e−i(E−E0)∆τW(∆τ) . (2.30)

Note that the integral of the response function includes a formally infinite integral over τ which
can be avoided by looking at the transition probability per unit time. Equation (2.30) shows
that the response function is an integral part in determining the transition rate. For this reason,
a major part of this chapter discusses the response function of scalar fields.

Most generally, the Wightman function of a scalar field in 3 + 1 dimensions is given by

W(∆τ) = − 1
4π2

1
(∆τ − iϵ)2 − |x(τ) − x(τ ′)|2 . (2.31)

This expression has been regularised with ∆τ → ∆τ − iϵ and is to be understood in the limit
ϵ → 0+. A linearly accelerated trajectory is given by x =

(
t2 + α2)1/2 with α constant and
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t = α sinh(τ/α), τ being the detector’s proper time. This corresponds to the coordinate trans-
formation in equation (2.3) with constant ξ. For this trajectory, the Wightman function in
equation (2.31) is

W(s) = − 1
16π2

1
α2 sinh2

(
s

2α − iϵ
2α

) , (2.32)

with s = ∆τ and making use of a few trigonometric identities, one finds (t−t′)2−(x(t)−x(t′))2 =
4α2 sinh2

(
τ−τ ′

2α

)
which can be substituted in equation (2.31). Note that equation (2.31) and

(2.32) are indeed equal in the limit ϵ → 0+. In order to calculate the response function for this
trajectory we may rewrite the sinh as a series to find 2

W(s) = − 1
4π2

∞∑
k=−∞

(s− iϵ− 2πiαk)−2 . (2.33)

Consequently, the response function as in equation (2.28) yields

F(E) = − 1
4π2

∞∑
k=−∞

∫ ∞

−∞
ds e−iEs (s− 2iϵ− 2πiαk)−2 . (2.34)

As in most of the cases that will be discussed in this chapter, the response function can be
calculated using the residue theorem (see appendix A.3). In the simplest case, this involves
using the analytical continuation of the integrand and choosing an integration contour from −R
to R along the real axis and along a semi circle with radius R either in the upper or lower
complex plane. The semi circle is chosen in such a way that its contribution vanishes in the
limit R → ∞, resulting in an integral along the real axis only. Using this approach shows that
the response function for an inertial trajectory vanishes and, subsequently, no transition will
take place, as expected.

Applying the above procedure to the response function of an accelerated trajectory, we can
choose the integration contour along the real axis and a semi circle in the lower half plane
for E > 0, enclosing the poles at s = 2iϵ + 2πiαk, with k < 0. The contribution of the
auxiliary semi circle vanishes taking the limit of its radius to infinity. Poles with k > 0 do not
contribute to this integral. The residues at those poles in the limit ϵ → 0 can be calculated to
be −iE exp {2παEk}. For E < 0, we choose the upper semi circle enclosing only the poles for
non-negative k. In summary, the response function is given by

F(E) = |E|
2π Θ(−E) + |E|

2π

∞∑
k=1

e−2πα|E|k . (2.35)

By adding and subtracting a 1 to the summation for E > 0, the sum is a geometric series such
that both results for E > 0 and E < 0 can be summarised to

F(E) = E

2π
1

e2παE − 1 . (2.36)

2Using 1
sinh2 πx

= cosec2πx = π−2∑∞
k=−∞(x− ik)−2.
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Now, we can substitute this into the expression for the excitation rate

|M|2 = c2

2π
∑
E

(E − E0)| ⟨E|m̂(0)|E0⟩ |2

e2πα(E−E0) − 1
, (2.37)

to see that the Bose factor indicates a distribution at temperature

T = 1
2πa , (2.38)

with acceleration a = α−1. The temperature of this accelerated trajectory can be expressed en-
tirely in terms of the response function of the detector using Einstein’s detailed balance condition
[65]

1
T

= 1
E

ln
(F(−E)

F(E)

)
. (2.39)

The detailed balance condition in equation (2.39) is of central importance for the discussion
in the following chapters. This condition utilises the excitation and de-excitation rates to define
a temperature via their ratio. Even when the right-hand side of equation (2.39) depends on the
energy gap E, we can still use this condition to define an effective temperature. Furthermore,
we see that multiplying the response function by a factor that is either energy independent or
even in energy leads to the same temperature. Any response function that is entirely even in E
does not give rise to an Unruh temperature.

In a similar way to the approach in this chapter, we will extend the discussion of the Unruh
temperature to circularly accelerated trajectories in both 3+1 and 2+1 dimensions. In particular,
we will calculate response functions and Unruh temperatures utilising the residue approach as
outlined in this section.
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2.3 Circular Unruh Effect

In the previous section we saw how a linear acceleration gives rise to a thermal state with a
characteristic temperature proportional to the acceleration. In this chapter we show that this
effect occurs as well on circular trajectories. Although the speed v of this trajectory is constant,
it is the circular acceleration that causes this effect. Instead of parametrising the trajectory
as linear motion, we can specify the trajectory to be circular motion with radius R using the
parametrisation with respect to proper time τ

X(τ) = (γτ,R cos(γΩτ), R sin(γΩτ), · · · ) , (2.40)

with angular velocity Ω = v/R. Note that v is constant on a circular orbit, therefore the gamma
factor γ = 1/

√
1 − v2 is constant as well. Proper and Minkowski time are therefore related

by this constant gamma factor t = γτ , which will become helpful later when we talk about
analogues. The dots in the d-dimensional parametrisation of X(t) stand for d − 3 zeroes. The
magnitude of the proper acceleration is given by a =

√
Ẍ(τ)2 = γ2v2/R. If the expression for

the linear Unruh temperature (2.1) effect held for the circular motion as well, we would find

kBTlin = ℏ
2πc

v2γ2

R
, (2.41)

by simply substituting the expression for the circular acceleration into the equation for the linear
Unruh temperature. We will calculate the exact Unruh temperature for a circular acceleration
in this chapter, however, we will frequently refer to this linear motion prediction to determine to
what extent the exact result differs from this simplified view. That this accelerated motion gives
rise to the Unruh effect was shown in [21, 22]. In the following, we want to calculate the response
of a detector on a circular trajectory in various dimensions as the distinction between two and
three spatial dimensions will become important once we talk about the analogue Unruh effect.
For that reason, we calculate the Wightman function for a massless scalar field in d dimensions
[66] 3

W(s) =
Γ
(
d
2 − 1

)
4π

d
2 (∆x(s)2)

d−2
2

, (2.42)

where we have defined 4

(∆x(s))2 := (X(s) −X(0))2 = − γ2s2 + 4R2 sin2
(
γv

2Rs
)
, (2.43)

noting that ∆x(s) = ∆x(−s). With z = γv
2Rs, this expression can be more conveniently rewritten

as
(∆x(z))2 = − 4R2

(
z2

v2 − sin2 z

)
= − 4R2

(
z

v
− sin z

)(
z

v
+ sin z

)
. (2.44)

3The gamma function is defined as Γ(z) =
∫∞

0 dt tz−1e−t with Γ(1) = 1.
4Using 2 sin2 x

2 = 1 − cosx.
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The response function in d dimensions is then given by

F(E) =
∫ ∞

−∞
ds e−iEs

Γ
(
d
2 − 1

)
4π

d
2 (∆x(s)2)

d−2
2

. (2.45)

In the following, we present how to calculate the response functions explicitly in various limiting
regimes for a circular trajectory. From equation (2.45) we see that the behaviour of the response
function is entirely specified by the pole structure of the Wightman function, which in turn is
determined by the zeroes of (2.44) [67]. Note that, strictly speaking, this response function is
the response function per unit time as it will be used for transition probabilities. The poles of
the Wightman function are given by the solutions to

z

v
= ± sin z . (2.46)

The only real solution to that equation is at z = 0 which means that (∆x(z))2 has a zero of order
two at z = 0. In fact, this pole is quite crucial because it requires proper regularisation of the
Wightman function. As it turns out, regularisation with z → z+ iϵ does not work in the case of
an accelerated trajectory as it will give rise to time dependent transition rates [68]. Instead, we
regularise the integral with ∆x(z) → ∆x(z) − iϵ∆ẋ(z) understood in the limit ϵ → 0+ [69, 70].
This regularisation is a result of a smeared, finite size detector. The response function can then
be written as

F(E) = 4R
γv

Re
∫ ∞

0
dz e−i 2RE

γv
z

Γ
(
d
2 − 1

)
4π

d
2
(
(∆x(z) − iϵ∆ẋ(z))2

) d−2
2

. (2.47)

This integral can be split into several parts which makes calculations and interpretations slightly
easier. A common split is to isolate a distributional component at s = 0 [69, 70]. Alternatively,
it can be split into a contribution of the inertial motion response function F in(E) and corrections
due to the circular motion Fcorr(E). We will see that the integral of the correction due to the
circular motion can be calculated using the residue theorem. As such, this contribution will be
equivalent to the sum of contributions at poles zn, which we call Fn(E), with n summing over
the residues. The response function is the sum of all separate contributions

F(E) = F in(E) + Fcorr(E) = F in(E) +
∑
n

Fn(E) . (2.48)

The explicit form of those parts will be calculated later as we talk about the response functions
in various dimensions. However, a common theme will be the pole structure of the Wightman
function which will be inherently present in all dimensions. For this reason, we will briefly
discuss the general structure of those poles. In all what follows we assume E ̸= 0.

The function ∆x(z)2 is symmetric in z which means it is sufficient to look for zeroes in the
upper complex plane. If we write z as the sum of imaginary and real part z = i(αn + iβn),
equation (2.46) can be written as two equations

αn = ± v sinhαn cosβn , (2.49a)
βn = ± v coshαn sin βn , (2.49b)
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by separation into real and imaginary parts.5 There is only one pole with real part β0 = 0 and
imaginary part α0 > 0 which allows a parametrisation of v in terms of α0

v = α0
sinhα0

. (2.50)

Note, that we can use this result to write

γ = sinhα0√
sinh2 α0 − α2

0

. (2.51)

Solving equation (2.49a) for βn gives

βn = arccos
(

±sinhα0
α0

αn
sinhαn

)
+ 2πn , (2.52)

where the additional term 2πn, n ∈ Z appears due to the periodicity of the cosine. Using
arccos(−x) = − arccos(x) + π and 0 ≤ arccos(x) ≤ π we can rewrite the equation above more
conveniently as

βn = (−1)n arccos
(sinhα0

α0

αn
sinhαn

)
+ πn , (2.53)

where even n correspond to the zeroes associated with the plus sign in equation (2.49a) and
odd n correspond to the zeroes associated with the minus sign. With the help of the expression
above for βn, we can rewrite equation (2.49b) to find that αn are the solutions to the following
equation√

1 −
(sinhα0

α0

αn
sinhαn

)2 α0
sinhα0

coshαn = arccos
(sinhα0

α0

αn
sinhαn

)
+ (−1)nnπ . (2.54)

To get a feeling for those solutions, figure 2.2 shows the pole structure of the Wightman function
for a circular trajectory in the complex plane as numerical results to equations (2.53) and (2.54).

The residue theorem allows us to choose an integration contour in the upper half of the
complex plane of the integral appearing in the response function with which we can rewrite the
integral as the sum over the enclosed residues of the Wightman function

Fn(E) = 2πi Res
zn

{
e−iEzW(z)

}
. (2.55)

The particular path C1 is shown in figure 2.2 whereas the contributions of auxiliary semi circles
to close the integration contour vanish in the limit R → ∞. We now want to compare how the
circular Unruh effect manifests itself in different spacetime dimensions by considering different
limits and compare the calculated circular Unruh temperature to equation (2.41). The general
approach of the following sections is to determine the dominant behaviour of the response
function of a detector on a circular trajectory in a specific regime and use the detailed balance
condition to calculate the circular Unruh temperature. We will then compare this result to the
naïve approach of using a circular acceleration for the linear Unruh temperature expression.

5Using sin ix = i sinh x and cos ix = cosh x.
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(z
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Figure 2.2 (Poles of Wight-
man Function)Poles for z =
v sinh z with z = i(αn + iβn).
Note, that the real pole at (0, 0)
has been regularised indepen-
dently. The poles are symmet-
ric with respect to the real axis.
The graph only shows the poles
with αn > 0 for v = 0.4. In
addition, αn < α±(n+1) and
|βn| < |β±(n+1)|. The curves Ci

are used as integration contours
to calculate the response func-
tions.

2.3.1 3 + 1 Dimensions

In 3 + 1 dimensions, we have Γ(1) = 1 and equation (2.42) becomes

W(s) = 1
4π2

1
(∆x(s))2 , (2.56)

which possesses poles at (∆x(s))2 = 0. To calculate the response function explicitly, a few
preparatory steps are necessary, which we will only briefly mention here (for details see [69]).
First, using the regularisation approach of Schlicht [68], we note that the response function can
be written as

F(E) = 1
2π2 Re

∫ ∞

0
ds e−iEs

(∆x(s) − iϵq)2 , (2.57)

with ϵ being the regularisation parameter in the limit ϵ → 0, q = ẋ(τ) + ẋ(τ − s) and ∆x =
x(τ) − x(τ − s). Then, separating the integral in parts that are even and odd in E, as well as
taking the real part shows

Feven(E) = 1
2π2

∫ ∞

0
ds

(
(∆x)2 − ϵ2q2) cos(Es)

(ϵ2q2 − (∆x)2)2 + 4ϵ2(q · ∆x)2
, (2.58a)

Fodd(E) = 1
π2

∫ ∞

0
ds ϵ(q · ∆x) sin(Es)

(ϵ2q2 − (∆x)2)2 + 4ϵ2(q · ∆x)2
. (2.58b)

Those integrals can be split into a part with s ∈ [0,
√
ϵ] and s ∈ [

√
ϵ,∞]. For small s, q and ∆x

as well as their product can be expanded in powers of s. Carefully keeping track of powers of ϵ,
it can be shown that the integrals above are perfectly well defined in the limit ϵ → 0 for which
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we eventually obtain [69]

F(E) = − E

4π + 1
2π2

∫ ∞

0
ds

(cos(Es)
(∆x)2 + 1

s2

)
. (2.59)

Finally, adding and subtracting cos(Es)/s2 in the integral shows that 6

F(E) = − E

2πΘ(−E) + 1
2π2

∫ ∞

0
ds cos(Es)

( 1
(∆x)2 + 1

s2

)
, (2.60)

where we recognise the response function of an inertial trajectory as the first part (see appendix)
and corrections due to the circular motion as the second part.

The correction term of the response function can best be evaluated using the residue theorem.
Analytical continuation in the complex plane and choosing the integration contour C1 as outlined
in figure 2.2 yields

F(E) = − E

2πΘ(−E) − 1
8π2γvR

∮
C
dz

exp
{

i2ER
γv z

}
z2

v2 − sin2z
. (2.61)

Note that this expression uses the substitution z = γv
2Rs and that the contour excludes the pole

at s = 0. As we have set the scene, we can turn our attention to various limits of E and v.

Large Gap Limit. Consider the limit |E| → ∞ with fixed v and R. As αn < α±(n+1), we see
that the integrand appearing in the response function scales with ∼ exp{−Ez}, which suppresses
the effect of higher order residues in this limit. We can therefore evaluate the integral at residue
z0 = −iα0 only

F0(E) = v

8πγR
e−E 2R

γv
α0

(α0 − v2 sinhα0 coshα0) . (2.62)

This explicit expression allows us to calculate the Unruh temperature of a circular orbit in the
large gap limit as

1
Tcirc

= 1
E

ln
(4γR|E|

v

(
α0 − v2 sinhα0 coshα0

)
e|E| 2R

γv
α0 − 1

)
→ 2Rα0

γv
, (2.63)

where the dominant contribution comes from the exponential in the logarithm, whose exponent
therefore determines the Unruh temperature. By explicitly using the form of γ in equation
(2.51), we write this more conveniently as

Tcirc = 1

2
√

sinh2α0 − α2
0 R

. (2.64)

The circular Unruh temperature in 3 + 1 dimensions only depends on the radius R of the
trajectory and on the orbital speed v, implicitly through α0. Replacing v in the equation for

6Using the integral in appendix 2.1.2
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the prediction of the linear motion Unruh temperature yields

Tlin = v2γ2

2πR = α2
0

2πR
(
sinh2α0 − α2

0

) . (2.65)

Hence, the ratio of the linear and circular temperature is given by

Tcirc
Tlin

=
π
√

sinh2α0 − α2
0

α2
0

. (2.66)

Note that for a given velocity, or equivalently for a given acceleration and trajectory radius, we
can solve equation (2.50) numerically for α0 and calculate the ratio above explicitly.

Small Gap Limit. In the small gap limit we consider E → 0 while keeping v and R fixed.
As the integral in (2.60) is continuous in E we can apply a dominated convergence argument
(see appendix A.4) with which we can take the limit E → 0 under the integral. Only keeping
the lowest order in E shows that

F(E) = − E

2πΘ(−E) + 1
2π2

∫ ∞

0
ds

( 1
(∆x)2 + 1

s2

)
. (2.67)

Again, using the detailed balance condition, we find

Tcirc = E ln

1 − 2πER
γv
∫∞

0 dz
(

1
z2 − 1−v2

z2−v2 sin2 z

)
−1

, (2.68)

which can be simplified using the Taylor expansion of the logarithm only keeping the lowest
order in E 7

Tcirc = γv

2πR

∫ ∞

0
dz

(
1
z2 − 1 − v2

z2 − v2 sin2 z

)
. (2.69)

The ratio of the circular to linear motion temperature can be calculated to

Tcirc
Tlin

=
√

1 − v2

v

∫ ∞

0
dz

(
1
z2 − 1 − v2

z2 − v2 sin2z

)
. (2.70)

In the paragraphs above, we calculated the ratio of circular and linear prediction Unruh
temperature as a function of v, or α0 equivalently. Now, we want to look at the behaviour for
specific asymptotics of v.

Ultra-Relativistic Limit. If the orbital speed of the detector approaches the speed of light,
we see from the parametrisation of v = α0/ sinhα0 that α0 → 0 for v → 1 [71, 61]. All other
αn and βn with n ̸= 0 are non-zero. In this ultra-relativistic limit we can re-express relevant
expressions in terms of α0 by expanding the hyperbolic sine, only keeping lowest order terms in

7The Taylor expansion for the logarithm at x = 0 is ln(1 + x) =
∑

n

(−1)n−1

n
xn.
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α0, and use the parametrisation for v to find 8

v = 1 + 1
6α

2
0 + O

(
α4

0

)
, (2.71a)

a = 3
α2

0R

(
1 + O

(
α4

0

))
, (2.71b)

1
γv

= α0√
3

(
1 + O

(
α2

0

))
. (2.71c)

Using the above expansions we find 9

F0(E) =

√
3 exp

(
−2α0|E|R

γv

)
8πRα2

0

(
1 +O(α2

0)
)
, (2.72)

while all other terms are [71] (see appendix (2.23))

Fn>0(E) = O
(
α0 exp

(
−2α1|E|R

γv

))
. (2.73)

Keeping only the leading v → 1 behaviour yields

F(E) = − E

2πΘ(−E) +

√
3 exp

(
−2α0|E|R

γv

)
8πRα2

0
. (2.74)

As before, the Unruh temperature can be calculated using the detailed balance condition

Tcirc = |E|

ln
(

1 + 4
√

3 |E|
a exp

(
2
√

3 |E|
a

)) , (2.75)

where equation (2.71b) has been used for a. This expression shows that Tcirc/a is a function of
|E|/a, where the dependence on v and R is implicitly present through a. Note that in natural
units the ratio E/a is dimensionless

Conclusion. Figure 2.3 (a) shows the numerical result for the ratio of circular and linear
Unruh temperature as given in equation (2.60) for v ∈ (0, 1) and E/a ∈ (0, 3), excluding the
endpoints of either interval. We see that this ratio vanishes for small v and E/a and grows to
a maximum for small v and large E/a. In the remaining range it mostly lies between 1 and
2. In addition we see that for large energy gaps in the ultra relativistic limit v → 1 (figure
2.3 (b)), we have α0 → 0, and we find that Tcirc/Tlin = π/

√
3 ≈ 1.8. On the other hand

in the ultra-relativistic limit, the ratio of circular and linear Unruh temperature approaches
Tcirc/Tlin ≈ π/(2

√
3) ≈ 0.9 for |E|/a ≪ 1 and is strictly below Tcirc/Tlin ≈ π/

√
3 ≈ 1.8.

8The Taylor expansion for hyperbolic sine at x = 0 is sinh x =
∑

n
x2n+1

(2n+1)! .
9Using the lowest order contributions of the Taylor expansions at x = 0 for sinh x =

∑
n

x2n+1

(2n+1)! and cosh x =∑
n

x2n

(2n)!



2.3. Circular Unruh Effect 23

0.25 0.50 0.75

v

1

2

3

E
/a

a)

0.5 1.0

v

0

2

4

6

8

T
c
ir

c
/T

li
n

|E| → ∞

|E| → 0

b)

0 2 4

E/a

0.8

1.0

1.2

1.4

1.6

T
c
ir

c
/T

li
n

v → 1c)

1

2

3

Figure 2.3 (Circular Unruh temperature in 3 + 1 dimensions) a) Full plot of Tcirc/Tlin in 3 + 1
dimensions using detailed balance and equation (2.60), b) Large gap and small gap limit of Tcirc/Tlin, c)
Tcirc/Tlin over E/a in ultra-relativistic limit v → 1.

2.3.2 2 + 1 Dimensions

In this section, we present the derivation of the circular Unruh temperature in 2 + 1 dimensions
and various asymptotic limits, which has not been presented to that extent in the literature so
far. In 2 + 1 dimensions, the Wightman function of equation (2.42) for d = 3 gives

W(s) = 1
4π

1√
(∆x(s))2

= 1
4π

1√
−4R2

(
γ2s2

4R2 − sin2(γΩs)
) . (2.76)

The discussion of the response function in terms of higher residues turns out to be more cumber-
some than in the four dimensional case and we will avoid it wherever possible. For the purpose
of this discussion, we write this integral as [72]

F(E) = 1
4 − 1

2π

∫ ∞

0
ds sin(Es)√

−
(
∆x(s)

)2 , (2.77)

where the square root in the denominator is now positive. In principle, the approach to derive
this equation is equivalent to the case of the (3 + 1)-dimensional response function. First,
separate the response function in even and odd contributions in E. Then, split the integration
into two parts, with one ranging from 0 to

√
ϵ, and the second one from

√
ϵ to ∞. Carefully

keeping track of all relevant orders of ϵ and finally taking the limit ϵ → 0 shows the result above.
Using the substitution z = γv

ERs we may write

F(E) = 1
4 − 1

2πγv

∫ ∞

0
dz

sin
(

2ER
γv z

)
√

z2

v2 − sin2z
. (2.78)
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Alternatively, adding and subtracting sin(Es)/s in the integral results in the split

F(E) = 1
2Θ(−E) + 1

2πγv

∫ ∞

0
dz sin

(2ER
γv

z

)γv
z

− 1√
z2

v2 − sin2z

 , (2.79)

where the first contribution is the inertial motion response function in 2 + 1 dimensions (see
appendix 2.1.1) and the second part corrections come from the circular motion response. Again,
note the beauty of this approach, as the integrals are free of singularities and regularisation
parameters.

The contribution due to the circular motion is equivalent to the integral

Fcorr(E) = i sgn(E)
4πγv

∫
C1

dz
exp

(
i2|E|R
γv z

)
√
z2/v2 − sin2z

, (2.80)

where the contour C1 is chosen as shown in figure 2.2. As the notation at the beginning of this
chapter indicates, this integral can be represented as the sum of contributions from residues
by deforming the integration contour to the upper half-plane and along the real axis. As the
explicit form for residues with n ̸= 0 will not be needed, we see that the exponential function
suppresses residues with large imaginary part. Therefore, we focus on the contribution from the
residue at z0 = iα0

F0(E) = sgn(E)
2πγv

∫ ∞

α0
dα

exp
(
−2|E|R

γv α
)

√
sinh2α− α2/v2

, (2.81)

where square roots are taken to be with positive real parts. The expression above can be
calculated evaluating the integral in equation (2.80) along the contour C2 in figure 2.2. The
residue theorem tells us that this integral has to be equal to the sum of all residues with n ̸= 0.
We can therefore calculate the residue for n = 0 by subtracting this result from the result
obtained with integration contour C1 such that in the limit for ϵ radii to zero and R radii to
infinity

Resz0(F corr) = − 2i
∫ ∞

α0
dα

exp
(
−2|E|R

γv α
)

√
sinh2α− α2/v2

. (2.82)

This shows the result above for F0(E). As in the previous section, we will now turn our
attention to various limits of the response function by varying one parameter while keeping the
other parameters fixed.

Large Gap Limit. Equivalent to the calculations in 3 + 1 dimensions, the correction in the
response function for |E| → ∞ in 2 + 1 dimensions is dominated by the contribution of the
lowest order residue at z0 = iα0 of equation (2.81). Changing the integration variable from α to
y with α0(1 + y2) results in an exponent that is quadratic in y such that we approximate this
integral using Laplace’s method (see appendix A.1). The expansion at y = 0 shows that

F0(E) = (8πγvRα0|E|)−1/2 sgn(E)√
2α0 sinhα0 coshα0 − 2α2

0/v
2

exp
{

−2|E|R
γv

α0

}
. (2.83)



2.3. Circular Unruh Effect 25

To arrive at this result we used trigonometric identities10 and Taylor expansions to calculate
the limit for y → 0. Calculating the Unruh temperature by using the detailed balance condition
yields

Tcirc = γv

4Rα0
. (2.84)

This expression is the same as in 3 + 1 dimensions.

Small Gap Limit. Now we take the small gap limit with E → 0 and fixed v and R. The
circular motion correction to the response function is given by the second part in equation (2.79)
and can be rewritten by adding a sin

(
2ER
γv z

)
/z and subtracting it again under the integral.

Doing this, we find 11

Fcorr(E) = γ − 1
4γ sgn (E) + ER

πγ2v

∫ ∞

0
dz

sin
(

2ER
γv z

)
2ER
γv z

(
1 − z√

z2 − v2 sin2z

)
. (2.85)

As we are interested in the small gap limit, we have already rewritten the integrand in a way
that allows us to take the limit E → 0 under the integral, showing that the whole integral is
O(E) and therefore

Fcorr(E) = γ − 1
4γ sgn(E) +O(E) . (2.86)

Using detailed balance and the complete expression for F(E), we then have

Tcirc = |E|
ln
(
γ+1
γ−1

)(1 +O(E)
)
. (2.87)

An important consequence of this expression is that the Unruh temperature is dependent on
the absolute value of the energy gap with Tcirc → 0 as E → 0. As a result, the circular motion
temperature in this limit is significantly lower than the corresponding result in 3+1 dimensions.

Ultra-Relativistic Limit with Fixed E/a. In this section we look at the limit v → 1
for fixed E/a. Starting from equation (2.81), this limit is equivalent to α0 → 0 with fixed
2ERα0/(γv) which is again dominated by the lowest residue of the correction to the response
function. After the substitution α = α0y, we find

F0(E) = sgn(E)
2πα0γv

∫ ∞

1
dy

exp
{

−2|E|Rα0
γv y

}
√
α−4

0

(
sinh2(α0y) − y2 sinh2 α0

) . (2.88)

The square root in the denominator converges to 1
3y

2(y2 − 1) for α0 → 0. Note that in the
exponent of the exponential we can use R = γ2v2/a and the limit 1/(γv) → α0/

√
3 as shown in

10Namely, sinh(x+ y) = sinh x cosh y + cosh x sinh y.
11Using

∫∞
0 dz sin bz

z
= π

2 sgn b as shown in appendix 2.1.1.
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equations (2.71) to arrive at

F0(E) = sgn(E)
2π

∫ ∞

1
dy

exp
{

−2
√

3 |E|
a y
}

y
√
y2 − 1

. (2.89)

We show in appendix 2.2.2 that this integral can be written as

F0(E) = 1
4 sgn(E) − 1

2π

∫ ∞

0
ds

sin
(
2
√

3sEa
)

s
√
s2 + 1

. (2.90)

In the case of a response function dominated by the z0 residue behaviour, the detailed balance
condition yields

Tcirc = |E| ln

1 + 2
π

∫∞
0 ds sin(2

√
3sE

a )
s
√
s2+1

1 − 2
π

∫∞
0 ds sin(2

√
3sE

a )
s
√
s2+1


−1

. (2.91)

Conclusion. Figure (2.4) (a) shows the ratio of the circular to linear Unruh temperature for
v ∈ (0, 1) and E/a ∈ (0, 3). The large gap limit in 2 + 1 dimensions is the same as in 3 + 1
dimensions (see figure 2.4 (b)) with Tcirc/Tlin ≈ 1.8 for |E| → ∞ and v → 1. However, we
see that the circular Unruh temperature in the small gap limit is proportional to the energy
gap, thus, vanishing in the limit |E| → 0. In the ultra-relativistic limit, the ratio approaches
Tcirc/Tlin ≈ 1.8 for E/a → ∞ and falls of with 1/(E/a) for E/a → 0 where it finally reaches
zero for E/a = 0.
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Figure 2.4 (Circular Unruh temperature in (2 + 1)d) a) Full plot of Tcirc/Tlin using detailed
balance and equation (2.79) , b) Large gap and small gap limit of Tcirc/Tlin over v, c) Tcirc/Tlin over E/a
in ultra-relativistic limit v → 1.
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2.4 Continuous Detectors

We saw in the previous chapter that a two-level system can act as a particle detector, whose
excitation and de-excitation rates are sensitive to the trajectory on which it moves. In view
of potential implementations in physical systems, we present an extended description of this
traditional picture of Unruh detectors to continuous fields and show that the same signature
can be obtained. In essence, the two-level system of an Unruh-DeWitt detector is replaced by a
continuous scalar field. These scalar fields arise naturally in our analogue models, which is why
we want to introduce them mathematically in this section. Consider a system of two real scalar
fields ψ and ϕ with the Lagrangian

L = 1
2

∫
dz
( 1
c2 (∂tψ(t, z))2 − (∂zψ(t, z))2

)
+ 1

2

∫
dx

( 1
c2
s

(ϕ(t,x))2 − (∇ϕ(t,x))2
)

− ε

∫
dxdz ∂tψ(t, z)ϕ(t,x)δ(x − X(t))δ(z) . (2.92)

This system consists of the free Lagrangians for two scalar fields one of which propagates with
speed c in z direction, the second one with speed cs in the (x, y) plane. The coupling between
both fields is described by a coupling constant ϵ and a time derivative coupling between both
fields. Variation of the action S =

∫
dt L gives rise to the equation of motion for ψ(t, z)

1
c2∂

2
t ψ(t, z) − ∂2

zψ(t, z) = ϵδ(z)∂tϕ(t,X(t)) . (2.93)

This equation shows that a non-zero interaction between both fields alters the free field equation
of motion by an additive term that is proportional to the coupling constant ϵ. In the limit ϵ → 0
the free field equation of motion is recovered. Furthermore, we see that the equation of motion
for ψ has a contribution from the ϕ field and so will the equation of motion for ϕ contain a
contribution from ψ. ψ changes the dynamics of ϕ which in return changes the dynamics of ψ –
a phenomenon known as back-action. The equation above considers only the free field dynamics
of ϕ contributing to the dynamics of ψ and as such is therefore just an approximation, neglecting
back-action. This equation can be solved by the means of the Greens function for the operator
∂2
t − c2∂2

z , given by
G(t− t′, z − z′) = 1

2cΘ(t− t′ − |z − z′|) , (2.94)

with Θ being the Heaviside function, such that the solution to the equation of motion is given
by

ψ(t, z) = ϵ

∫
dt′dz′ G(t− t′, z − z′)δ(z′)∂t′ϕ(t′,X(t′)) . (2.95)

The z integration is facilitated by the delta distribution and after a partial integration on the t
coordinate, noting that the derivative of the Heaviside function is a delta distribution, we find

ψ(t, z) = ψ0(t, z) + ϵc

2 ϕ (t− |z|,X(t− |z|)) , (2.96)

where ψ0(t, z) is the solution of equation (2.93) with ϵ = 0. As suggested already by the equation
of motion, the explicit solution for ψ shows that it carries a contribution from ϕ pulled back to
the point of interaction in the z = 0 plane.
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In a similar fashion to the two-level detector model, we can calculate the excitation rate of
the detector field ψ from a ground state |0⟩ to an excited state |E⟩ using the mode expansions
for scalar fields

ψ̂(t, z) =
∫ dk√

2ωk

(
âke

−i(ωkt−kz) + â†
ke

i(ωkt−kz)
)
, (2.97a)

ϕ̂(t,x) = 1√
2π

∫ d2k√
2ωk

(
b̂ke−i(ωkt−k·x) + b̂†

kei(ωkt−k·x)
)
. (2.97b)

Using first order perturbation theory we find for the transition amplitude

M = − ϵ
√
ω̃√
2

∫
dt eiω̃t ⟨Ω|ϕ(t,x(t))|0⟩ , (2.98)

where |0⟩ is short for the vacuum state of both fields and |Ω⟩ is short for the excited |E⟩ of the
ψ field and any state of the ϕ field. The ψ-mode frequency is denoted by ω̃ = K > 0 and the ϕ
mode frequency is denoted by ω = c|k|. Following the process as outlined before, we take the
squared modulus of (2.98) and sum over all possible final states for ϕ . Using the stationarity
of the circular trajectory to factor out the total observation time, one obtains the transition
probability per unit time

|M|2 = ϵ2ω̃

2

∫
ds e−iω̃sW(s) , (2.99)

where W(s) is the ϕ field Wightman function evaluated on the interaction trajectory

W(s) = ⟨0|ϕ(s,X(s))ϕ(0,X(0))|0⟩. (2.100)

We see that this transition amplitude has exactly the same form as the one derived in equation
(2.30) for a discrete energy gap detector: it vanishes for inertial trajectories.

Interestingly, these calculations show that a continuous scalar field propagating in 1 + 1
dimensions that couples to a (2 + 1)-dimensional scalar field with an interaction given by

Lint = − ε∂tψ(t, z)ϕ(t,x)δ(x − X(t))δ(z) , (2.101)

exhibit the same behaviour as a traditional Unruh-DeWitt detector. These continuous detectors
allow for a completely new range of physical systems to probe for the Unruh effect, in particular
in view of its implementation in analogue systems.

That continuous fields can act as a particle detector is a new perspective on this matter and
hasn’t been pointed out to that extent in the literature so far. The presence of this interaction
term in the Lagrangian leads to additional excitations in the probing field which can be calculated
using perturbation theory. The transition probability per unit time of this process has the same
dependence on the interaction trajectory as that of a pointlike two-state system coupled to ϕ
along the trajectory [4]: the ψ field acts as a detector for fluctuations of the ϕ field along the
interaction trajectory. Furthermore, this transition amplitude vanishes for any inertial trajectory
X(τ), as we would expect from an Unruh detector.
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2.5 Towards Analogue Systems

In the previous chapters we have seen how the traditional understanding of an Unruh-DeWitt
detector can be extended to continuous detectors. Those detectors open up a wide range of
potential physical systems in which they can be implemented to detect the Unruh effect. As
we will see in chapter III, due to the quantum nature of physical systems at low temperatures,
condensed matter systems prove to be particularly suitable to probe characteristics of the quan-
tum vacuum. In particular, we will have a look at Bose-Einstein condensates [36, 37, 38, 39]
and superfluid Helium [40, 41, 73]. As we will see, the analogy to the continuous detector model
arises naturally in a certain regime of the parameter space as an effective field theory in (2 + 1)
dimensions [55]. The beauty of analogue systems, in particular regarding the Unruh effect, is
that the speed of light is replaced with the speed of sound in those systems. The drastic dif-
ference between the order of magnitude justifies the hope to be able to detect the Unruh effect
in those laboratory systems. We now want to take the results derived in the previous chapters
and apply them to analogue systems. We are interested in how the expressions for the circular
Unruh temperature change in analogue systems. The energy of the moving detector is now
defined with respect to the laboratory time.

A notable difference of the continuous detector presented in this chapter is the time derivative
coupling compared to the coupling of a standard Unruh-DeWitt detector. However, this time
derivative contributes with a factor E2 to the response function and as we are interested in the
temperature using the detailed balance condition (2.39) this factor cancels out in the ratio of
excitation and de-excitation rates. We now want to consider an Unruh-DeWitt detector that is
coupled linearly to a field with excitations given by a phonon-like dispersion relation.

In addition, we will use this framework to describe experimental setups in a laboratory.
Thus, we need a non-relativistic description of these processes. In order to do so, we write

Ẽ = E

γ
, T̃ = T

γ
, ã = a

γ2 , (2.102)

to go from relativistic quantities to quantities with respect to the laboratory frame which is
indicated with a tilde. We will refer to the quantities that are measured with respect to the
laboratory time as analogue quantities. The prediction for the linear acceleration, analogue
Unruh temperature is

T̃lin = Tlin
γ

= ℏγã
2πc , (2.103)

where in the last step we assume a circular acceleration ã = v2/R, with velocity v and radius
R. The detailed balance condition then becomes

1
T̃

= 1
Ẽ

ln
(

F(−γẼ)
F(γẼ)

)
. (2.104)

The response function F is the same as in the relativistic setup which has been calculated in this
chapter. Again, we now compare the exact solution for the analogue, circular Unruh temperature
to the analogue linear prediction in various dimensions. We will focus on the numerical solution
and only look at the asymptotic behaviour relevant for future analogue setups.
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3 + 1 Dimensions. In 3 + 1 spacetime dimensions we use the result of equation (2.60) with
E/a = Ẽ/(γã)

F(γẼ) = − γẼ

2π Θ(−Ẽ) + ã

4π2γv3

∫ ∞

0
dz cos

(
2Ẽ
ã
vz

)(
γ2v2

z2 − 1
z2

v2 − sin2z

)
. (2.105)

The results for the analogue, circular Unruh temperature in relation to the linear acceleration
Unruh temperature can be found in figure 2.5. As in the relativistic case, the ratio of circular
to linear Unruh temperature converges to the value π/(2

√
3) for v → 1 with T̃circ ∼ γã as can

be seen from the limit of equation (2.105). Note that taking this limit does not cause any issues
as equation (2.105) is uniform in E/a.

2 + 1 Dimensions. In 2 + 1 dimensions we evaluate equation (2.79) at γẼ

F(γẼ) = 1
2Θ(−Ẽ) + 1

2πγv

∫ ∞

0
dz sin

(
2Ẽ
ã
vz

)γv
z

− 1√
z2

v2 − sin2z

 . (2.106)

In particular, we are interested in the (2 + 1), ultra-relativistic case with v → 1. For this reason,
it is useful to look at the split in even and odd parts of the response function (2.78). For large
v one can construct a dominated convergence argument to show that [54]

F(γẼ) → 1
4 −

√
3
π

ln γ
γ

Ẽ

ã
, (2.107)

where only the leading contribution of γ is kept and using R = v2/a → 1/a for γ → ∞.
Using detailed balance, the circular temperature in this limit is

T̃
(2+1)
circ ≈ π

8
√

3
γ

lnγ ã , (2.108)

where we have used ln γ/γ → 0 for γ → ∞ to use the lowest order Taylor expansion for the
logarithm.

We see from figure 2.5 that the behaviour of the ratio of circular to linear Unruh temperature
is similar to the one in the relativistic case. In 3+1 dimensions we see that the ratio converges to
a constant value for v → 1 which means that the circular Unruh temperature grows proportional
to γ as does the linear Unruh temperature. In 2 + 1 dimensions, however, we see that in ratio
drops to zero in the ultra-relativistic limit. Equation (2.108) shows that the circular Unruh
temperature grows in that limit as well, but is suppressed by the factor 1/ ln γ. It therefore
grows slower than the linear Unruh temperature.
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Ẽ
/
ã
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Figure 2.5 (Analogue Unruh Temperature) Ratio of analogue temperature to linear temperature
in a) 3 + 1 dimensions as given by the response function in equation (2.105) and b) in 2 + 1 dimensions
as given by the response function in equation (2.106). White, dashed line indicates local minimum at
Ẽ/ã = 1/v.

Figure 2.5 shows as well that there is a local minimum in 2+1 dimensions where Ẽ/ã = 1/v,
indicated by the white dashed line. This is a peculiar phenomenon as it suggests that for a given
v there exists an energy range in which the Unruh temperature decreases, reaches a minimum
and then increases again. This effect seems to be genuine and not an artefact of the numerical
methods in this chapter, however, the exact reason for its appearance is not yet fully understood
and requires further research.
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2.6 Summary

In the first part of this chapter, we introduced the Unruh effect of a linearly accelerated observer
as originally described by Fulling, Davies and Unruh while defining some fundamental concepts
of quantum field theory that will be used later on. The main part of this chapter described
how the Unruh effect can be obtained from a circular accelerated trajectory. We have shown a
detailed calculation of the response functions for a massless scalar quantum field in its Minkowski
vacuum state on a circular trajectory in 3+1 and 2+1 dimensions and compared the results to
the expression obtained from the linear acceleration formula. The full range of this ratio has
been outlined numerically, however certain limits can be obtained analytically. As expected, the
Unruh temperature was highest in the ultra-relativistic limit for v → 1, both in 2 + 1 and 3 + 1
dimensions.

In a novel approach to the discussion of particle and Unruh-DeWitt detectors we have ex-
tended the meaning of a detector from a two-level system to a continuous field detector. Con-
ceptually, the continuous detector has the same trajectory dependence as an Unruh-DeWitt
detector.

Finally, we used the results for the circular accelerated trajectory to calculate the corre-
sponding response functions in analogue systems. The most important difference between those
systems is that we had to scale relevant quantities such as the energy, temperature and acceler-
ation by the time dilation gamma-factor. However, we found a logarithmic suppression factor in
the limit v → cs of the circular Unruh temperature in 2 + 1 dimensions, which could help stay
longer in the regime of linear perturbation theory.

As motivated by previous proposals to observe the circular motion Unruh effect in condensed
matter analogue spacetime systems [46, 55], we will use these results in later chapters. All the
results have been obtained for a sufficiently small coupling constant, which allows for a first-order
perturbation theory treatment, and we used the simplifying assumptions in the derivation of the
Unruh effect for a spatially infinite system whose initial state as well as the initial detector state
are prepared in the vacuum state. These are rather idealised conditions and calculations will get
more complicated once we restrict the system to a finite size [74, 75, 76]. Physically, we assumed
that the dimensions of the analogue system are large compared to the detector orbit, effectively
neglecting those finite size effects. In addition to finite size effects, we find that accelerating a
detector which has a finite initial temperature will pick up a signal due to a Doppler shift and
due to the Unruh temperature. In this case, more study is needed to isolate the Unruh effect
part of the signal [77, 78]. In addition, all the calculations presented in this chapter neglect
back-action of the detector on the field [79, 80, 81] and finite interaction time effects due to
switching the coupling on and off [82].

A Note on Symmetry. The detailed balance condition in equation (2.39) connects the Unruh
temperature to the ratio of excitation and de-excitation rates, or the ratio of the response
function of negative and positive energies. Any response function that is entirely symmetric in
E does not give rise to a temperature as the logarithm of this ratio equals zero. For a general
split in even and odd parts we have

F(−E)
F(E) = Feven(E) − Fodd(E)

Feven(E) + Fodd(E) . (2.109)
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Note that any response function, which is entirely even in E will not give rise to a temperature
via the detailed balance condition. Interestingly, this chapter showed that the information
contained in the even and odd part depends on the dimensions considered. Equation (2.59) tells
us that in three dimensions the even part is the one that contains all the information about
the trajectory. On the other hand, it is the odd part in two dimensions that depends on the
parameters of the trajectory.





III

Analogue Unruh Effect

And it blows my mind
Yeah, it blows my mind

—Corey Taylor

Analogues have always played a big role in physics by developing and studying a mathemat-
ical model in a particular physical system (source) and applying the newly gained knowledge
thereof to a different system (target), which is described by the same model. In Unruh’s words:
the mathematical model acts just like a map which can be applied to two different territories [23].
These analogues help use intuition and existing solutions in this source system to develop pos-
sible solutions and ideas in the target system. A particularly useful, and perhaps surprising at
first, analogy is the analogy between gravitational effects and fluid mechanics [25, 83, 84, 85].
In general, analogues have the tremendous advantage to study phenomena in relativistic quan-
tum field theory in well controlled setups [30, 73]. This led to experimental observations of
fundamental effects of quantum field theories in curved spacetime, such as superradiant scat-
tering of rotating black holes [43] and the Hawking effect in classical [86, 87, 88] and quantum
systems [89, 90].

In all cases of those analogues, perturbations in the system ϕ can be described by a minimally
coupled Klein-Gordon field in effective geometries, whose dynamics is described by

1√
−g

∂µ
(√

−ggµν∂νϕ(t,x)
)

= 0 . (3.1)

This Klein-Gordon equation with metric g usually emerges when the system in its generality is
simplified. For example, in the context of wave propagations in fluids, this metric is often found
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to be
gµν ∼

(
−(c2

s − v2) −vT
−v In×n

)
, (3.2)

where cs is the propagation speed of waves in the medium and v the n-dimensional background
fluid flow velocity. The simplest case with v = 0 and constant cs shows that this metric has the
form of a Minkowski metric, however, the speed of light is replaced by the speed of sound in
this particular system.

The Unruh effect strikes with its simplicity in derivation, but remains one of the most
counter-intuitive phenomena in QFT. Even more difficult is its observation: a temperature of 1
Kelvin requires an acceleration of ∼ 2.5 × 1020 m/s2. A huge acceleration with a tiny effect only
is having us waiting for an experimental verification of its existence. However, using the idea
of analogues in which the speed of light is replaced by the speed of sound in this medium, thus
reducing the required acceleration, the measurement of this effect seems to be in reach. Studying
this effect will lead to new insights in the ever so confusing world of quantum mechanics and
will foster a better understanding of the Unruh effect. But first, we need to find appropriate
systems which exhibit this mapping to the relativistic detector model (2.92).

As we have seen in the previous chapter, a continuous field can be used as an Unruh detector,
which arise naturally in many physical systems. In this chapter we provide the modelling of the
field theory described by equation (2.92) in a physical context. It turns out, that low temperature
systems interacting with a laser beam are particularly well suited as a model.

First, we derive the fundamental form of light-matter interactions and then show the equiv-
alence of a Bose-Einstein Condensate (BEC) and superfluid Helium-4 interacting with a laser
to the relativistic theory. In addition, we noticed that the continuous detector model consists of
a (1 + 1) and a (2 + 1)-dimensional massless scalar field. In all generality, physical systems are
(3 + 1)-dimensional theories, however, we can choose the set of parameters in such a way that
we can effectively describe the probing field as a (1 + 1)-dimensional scalar field and the field
being probed as (2 + 1)-dimensional.
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3.1 Electromagnetic Fields

A central element of the systems described in this chapter is the interaction of matter with an
external electromagnetic field. We will see how (quantum) phase fluctuations of the electromag-
netic field on a classical background can be used as a continuous detector field. In the following,
we will outline the approximations that are necessary to linearise the electromagnetic field in
terms of those phase fluctuations.

3.1.1 Dynamic Equations

We start off with the Lagrangian for the electromagnetic field [91] 1

Lem = − 1
4µ0

FµνF
µν , (3.3)

with Fµν = ∂µAν − ∂νAµ, Aµ being the electromagnetic 4-potential. This Lagrangian has some
degrees of freedom that can be fixed by working in Coulomb gauge, with A0 = 0 and ∇ · A = 0.
This gauge reduces the Lagrangian of the electromagnetic field to the sum of the Lagrangian for
two scalar fields, each representing one polarisation of the electromagnetic field. Working with
only one of those polarisations propagating in z direction reduces this Lagrangian to

Lem = − 1
2µ0

( 1
c2

0
(∂tA(t, z))2 − (∂zA(t, z))2

)
. (3.4)

In a slight abuse of notation, A does not refer to the whole electromagnetic potential any more
but only to this chosen polarisation. The equation of motion for A(t, z) is derived by variation
of the corresponding action, leading to

1
c2

0
∂2
tA(t, z) − ∂2

zA(t, z) = 0 , (3.5)

which is essentially the equation of motion for a real scalar field, propagating with the speed
of light in vacuum c0.2 Upon quantisation we promote the electromagnetic potential to an
operator and introduce commutation relations. We can write the quantised, (1 + 1)-dimensional
electromagnetic potential as a mode expansion given as in (2.10), with the electromagnetic
field given by Ê(t, z) = ∂tÂ(t, z). Calculating the derivative of the mode expansion for Â(t, z)
explicitly, we see that the mode representation of Ê(t, z) is

Ê(t, z) =
∫

dω Eωi
(
âωe−i(ωt−kz) − â†

ωei(ωt−kz)
)
, (3.6)

with

Eω =
√

ℏω
4πϵ0c0A⊥

. (3.7)

A⊥ is the area through which the photon flux, as given by the operator â†
ωâω, propagates.

1µ0 is the vacuum permeability with µ0 = 1.25663706212(19) × 10−6 kg m s−2 A−2.
2The speed of light is given by c0 = 299792458 m/s
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For a macroscopically occupied single-frequency field with mode frequency ωL the corre-
sponding operator becomes a c-number âωL = α ∈ C The electromagnetic potential can then be
conveniently written as

A(t, z) = A0 cos (ωLt− kz) . (3.8)

Later, we will use this ansatz for a laser beam, thus, already introducing the subscript L for the
carrier frequency of the laser.

The electromagnetic field, however, never contains just a single frequency, but always has
a certain bandwidth. Even with a macroscopically occupied mode at a certain frequency there
exist fluctuations around that frequency. The electromagnetic potential with phase fluctuations
about this background can be written as

A(t, z) = A0 cos (ωLt− kz + ψ(t, z)) , (3.9)

with ψ(t, z) being phase fluctuations that could either be classical or quantum. As we will see
later, we are interested in a measurement that is sensitive to the phase of the electromagnetic
field only. We will therefore focus on phase fluctuations only and omit amplitude fluctuations.
In addition, these phase fluctuations are assumed to be small such that the lowest order in ψ
are the predominant contributions. We use this ansatz in equation (3.4) to obtain an effective
Lagrangian for ψ(t, z). Omitting the constant background term, the result is

Lem = 1
2µ0

( 1
c2

0
(∂tψ(t, z))2 − (∂zψ(t, z))2

)
, (3.10)

where we rescaled the original field ψ by the constant factor A0/
√

2 to obtain the standard form
of the massless scalar field Lagrangian. In anticipation of implementing this formalism in specific
systems, we assume at this point that the laser frequency is much higher than any frequency at
which those systems will be probed. Effectively, we can time average over a period 2π/ωL such
that any sine and cosine vanishes and squared sine and cosine results in a factor of 1/2.3

This shows that phase fluctuations about a constant background of an electromagnetic field
can be effectively treated as a (1 + 1)-dimensional, massless Klein-Gordon field. This is the first
stepping stone towards the analogue models discussed in this chapter. The phase fluctuations
in this field will take the role of a continuous detector. For an analogy to the model described
in section 2.4, this detector has to couple to a scalar field in a particular way. More specifically,
it has to couple with a time derivative to another massless Klein-Gordon field. Looking into
continuous detectors was motivated by the goal to model these physical detectors. But all the
mathematical curiosity aside, it is not sufficient to simply construct such a model by hand,
but it has to be derived based on physical processes. Originally, the motivation behind the
development of a continuous detector model was the desire to model exactly the systems in this
chapter. In the following section, we will see how an interaction between light and polarisable
matter gives rise to the desired coupling.

3.1.2 Interaction with Matter

When we talk about a dielectric medium interacting with light we refer to the property of
this medium to react to the electromagnetic field by developing dipoles. The amplitude of the

3Using (∂tA)2 = 1
2A

2
0 (ω + ∂tψ)2 and (∂zA)2 = 1

2A
2
0 (−k + ∂zψ)2.
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induced dipole moment d for an external electromagnetic field E is given by [92]

⟨d⟩ = α(ω) ⟨E⟩ . (3.11)

In this section, ⟨. . .⟩ is a time-average. This kind of interaction is called electrostriction and is
quantified by the medium specific polarisability α. The polarisability of an isotropic medium is
a complex number and depends on the frequency of the external field. The interaction potential
of the induced dipole and the external field is given by [92]

V = − 1
2d · E . (3.12)

Note that the time averaged intensity per area is given by

I = 1
2ϵ0c|E0|2 . (3.13)

However, if we wanted to compute the absorbed power Pab = ⟨ḋ · E⟩, we would see that the
imaginary part of the polarisability is responsible for the absorption of the medium which we
can easily calculate to be Pab = 2ωIm (α(ω)) |E0|2. Thinking of scattering as the process of
absorption and subsequent re-emission of photons, we can define the scattering rate Γsc as

Γsc = Pab
ℏω

= 2
ℏ

Im (α(ω)) |E0|2 = 4
ℏϵ0c0

Im (α(ω)) I . (3.14)

We have now specified how the medium reacts to an external electromagnetic field, however, we
still need to compute the polarisability. Here, we want to use a classical approach by approxi-
mating the atom as an oscillator which is driven by an external field. The result for α can be
found in standard literature [91], such that

α = 6πϵ0c3 Γ/ω2
r

ω2
r − ω2 − iω3

ω2
r
Γ
, (3.15)

where Γ is the classical on-resonance damping rate of the oscillator given by

Γ = e2ω2
r

6πϵ0mec3 . (3.16)

Here, ωr is the resonant frequency of the oscillator, ω the frequency of the external field, e the
electron charge and me the electron mass. Alternatively, α can be calculated using a quantum
mechanical model of an atom with two distinct energy levels and a classical external field,
however, at far detuned frequencies and low scattering rates Γsc ≪ Γ, the corresponding solution
is well approximated by the one of the entirely classical ansatz in equation (3.15) [92, 93]. In
this case, equation (3.15) simplifies to

α = 3πϵ0c3

ω3
r

( Γ
ωr − ω

+ Γ
ωr + ω

)
+ i32

πϵ0c
3

ω3
r

(
Γ2

(ωr − ω)2 − Γ2

(ωr + ω)2

)
. (3.17)

This expression has the usual resonant term at ω = ωr as well as a counter-rotating term which
is resonant at ω = −ωr. If we assume that |ω − ωr| ≪ ωr, then the counter-rotating term can
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be neglected, which is called the rotating wave approximation [94]. In this case, we find

α = 6πϵ0c3

ω3
r

( 1
δ0

+ i 1
δ2

0

)
, (3.18)

defining the detuning per half-line width δ0 = (ω − ωr)/(Γ/2). For δ0 < 0 we talk about red
detuning and for δ0 > 0 about blue detuning.

For large detunings, the real part of α in equation (3.18) is dominating. In this case, it
is convenient to express the laser frequency as a detuning from the resonant frequency by a
modulation frequency ±ωm such that ω = ωr ± ωm. Then, the polarisability for detunings in
both directions from the resonant frequency is given by

α(ωr ± ωm) = ∓ 3πϵ0c3

ω3
r

Γ
ωm

, (3.19)

from which we see that α(ωr + ωm) = −α(ωr − ωm).
Now, we have an explicit form for the atomic polarisability derived from the induced dipole

interactions, but what happens in the context of field theories interacting with an external field?
Every atom in this approximation develops a dipole and consequently the external field applies
a force f on the medium. This force can be calculated to [91, 95]

fi = 1
2∂i

(
E2ρ

∂ϵ

∂ρ

)
, (3.20)

assuming that the permittivity depends on space coordinates only implicitly through its density
ϵ(x, ρ) = ϵ(ρ). How exactly the permittivity depends on the number density ρ is given by the
Clausius-Mossotti relation [96]4

ϵ(x) − ϵ0 = ρ(x)α
1 − ρ(x)α

3ϵ0

. (3.21)

Most of the time we find that ρα ≪ 3ϵ0, justifying the approximation

ϵ(x) ≈ ϵ0 + ρ(x)α . (3.22)

The force in equation (3.20) can be expressed as the gradient of a potential f = −∇ϕ using
equation (3.22) and E = ∂tA

ϕ = − ρα

2 (∂tA)2 . (3.23)

It is exactly the potential in equation (3.23) that describes the interaction between an elec-
tromagnetic field and matter, represented by the density ρ. Working on the level of Lagrangians
we have

Lint = − ρα

2 (∂tA)2 . (3.24)

The electromagnetic field couples to the matter specific density which, we will see later, will
be the second dynamic scalar field in our analogue model. The polarisability takes the role of
a coupling constant. For now, we want to see how this interaction affects the dynamics of the
electromagnetic field. The whole electromagnetic Lagrangian, including the interaction with

4The vacuum permittivity is given by ϵ0 = 8.8541878128(13) × 10−12 Fm−1.
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matter, can be rearranged to

L = − 1
2µ0

( 1
c2

0

(
1 + ραµ0c

2
0

)
(∂tA(t, z))2 − (∂zA(t, z))2

)
. (3.25)

Note that strictly speaking the interaction is confined to the medium, so unless the medium
does not extend infinitely, there has to be some sort of switching function which we will omit
for brevity and only reintroduce it where necessary. The expression above shows that within
the medium the effective speed of light is given by

1
c2 = 1

c2
0

(
1 + ραµ0c

2
0

)
, (3.26)

which allows us to define the index of refraction for this medium 5

n2 = c2
0
c2 = 1 + ρα

ϵ0
. (3.27)

This result is what we would naively expect - the denser the medium, and the stronger the
coupling, the higher the effect on the electromagnetic field.

In the same fashion as before, we can use the electromagnetic field ansatz for quantum
fluctuations on a classical background in equation (3.9), as well as the simplifying calculations,
such as the averaging over fast oscillating frequencies, to arrive at the interaction Lagrangian

Lint = − αρ

2

(
A0ω√

2
+ ∂tψ(t, z)

)2
, (3.28)

applying the same rescaling as before. The construction of a physical interaction between matter
and light has led us to this interaction which couples the density ρ and the linearised phase
fluctuations ψ of the electromagnetic field. In this sense, we have found the first two parts
of the analogue, the (1 + 1)-dimensional probing field ψ and its interaction with some yet to
determined matter field. In the next section, we will see what this field is and how it completes
the analogue.

5Using the identity ϵ0 =
(
µ0c

2
0
)−1
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3.2 Analogue Unruh Effect in Bose-Einstein Condensates

In 2001 the Nobel Prize in physics was awarded to Eric A. Cornell, Wolfgang Ketterle and Carl
E. Wieman “for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms,
and for early fundamental studies of the properties of the condensates”. It was a recognition of
an almost centuries-long endeavour after Satyendra Nath Bose and Albert Einstein postulated
a new possible state of particles already in 1924 [97]. However, it was not before the 1990s
that the first Bose-Einstein Condensate (BEC) was created in a laboratory. Breakthroughs in
technology and cooling techniques made it possible to reach nano Kelvin temperatures, which
was the starting point of the ever since growing field of experimental BEC research [98]. In
theory, creating BECs is fairly simple: take a low density gas of bosonic atoms and cool it down
below a critical temperature. Once the spatial extent of each atom’s wave function becomes
larger than the interatomic separation of atoms, those wave functions start to overlap and the
gas starts to enter a state of indistinguishable particles. As the temperature approaches zero,
the result is a macroscopical entity of a single, quantum mechanical state of bosons occupying
the lowest energy state. As E. Cornell so aptly described it “Quantum mechanics rules over the
physics in two regimes: the very cold, and the very small. Insights derived from one regime can
apply in the other”. This new ultra-cold state thus allows us to probe quantum phenomena at
a macroscopic scale.

Of course the lack of trapping and cooling techniques didn’t keep theorists from investigating
this intriguing phenomenon. Most important for this thesis was the work of Eugene P. Gross and
Lev Petrovich Pitaevskii who derived an equation that describes the evolution of the macroscopic
wave function. Their starting point was a gas of bosonic atoms for which the inter-particle
distance is much larger than the scattering length. In a similar way that a field with a high
occupation number of photons in the same state can be described by classical Maxwell equations,
the field for this macroscopic wave function Φ(t,x) of the BEC in an external potential U(x)
can be shown to have the action

S =
∫

dtdx Φ∗(t,x)
[
iℏ ∂
∂t

+ ℏ2

2m∇2 − U(x) − 1
2g|Φ(t,x)|2

]
Φ(t,x) , (3.29)

with m being the BEC atom mass, and g the coupling constant. Variation of this action leads
to what is now known as the Gross-Pitaevskii equation (GPE)

iℏ ∂
∂t

Φ(t,x) =
[
− ℏ2

2m∇2 + U(x) + g|Φ(t,x)|2
]

Φ(t,x) , (3.30)

with
g = 4πℏ2as

m
, (3.31)

being the interaction coupling constant related to the s-wave scattering length as.

Having a macroscopical system with quantum mechanical properties provides a fascinating
framework for analogue experiments. In this chapter, we will see how BECs can be used in a
setup to probe the Unruh effect. We will first establish the regime in which the analogy to the
relativistic quantum field theory holds and show how the interaction with lasers completes the
model.
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3.2.1 Bogoliubov Theory

In an attempt to describe the excitation spectrum of BECs, N. Bogoliubov published a paper
in 1946 on what later will be know as the Bogoliubov theory for BECs [99]. Bogoliubov sim-
plified this many-body problem with a two-body potential V that enters the Hamiltonian as
ψ̂†(r)ψ̂†(r′)V (r − r′)ψ̂(r′)ψ̂(r). As v has a divergent short range behaviour, the first step in
this simplification was to apropriately smoothen this potential and replace it with an effective
potential that accurately desribes the macroscopic behaviour of the BEC and to which pertur-
bation theory can be safely applied. Quantisation of ψ̂ with annihilation operators âp creates
a Hamiltonian to various orders in âp [100]. Namely, the potential term is proportional to
â†

p1 â
†
p2 âp3 âp4 . Then, Bogoliubov theory only replaces the annihilation operator corresponding

to the momentum p = 0 with a c-number, â0 → a0 ∈ C. In order for this theory to give rise to
an excitation spectrum, only lowest order combinations in the remaining operators with p ̸= 0
are considered. The resulting Hamiltonian can be diagonalised with a linear transformation on
operators, which is known as Bogoliubov transformation that expresses a set of new operators
b̂p as a linear combination of âp and â†

p. After this transformation, the Hamiltonian is diagonal
in terms of the new operators b̂p, such that

Ĥ =
∑

p

ϵ(p)b̂†
pb̂p , (3.32)

omitting the constant ground state energy. The Bogoliubov theory dispersion relation for ele-
mentary excitations

ϵ(p) =

gn
m
p2 +

(
p2

2m

)2
1/2

, (3.33)

is shown in figure (3.1), where n is the number density of the BEC. This spectrum describes the
energy of excitations associated with the operators b̂p which are quasi-particle excitations. For
small momenta with p ≪ mc the dispersion relation takes a phonon-like form, which is linear in
momenta p

ϵ(p) = cp , (3.34)

where c =
√
gn/m is the speed of sound in the BEC. The transition from the phononic to

the free particle regime occurs at momenta with p2/2m ∼ gn corresponding to a characteristic
length ξ = ℏ/p called the healing length

ξ =
√

ℏ
2mgn . (3.35)

The average occupation number of particles with momentum p can be calculated with the
help of the Bogoliubov transformation

Np = ⟨b̂†
pb̂p⟩ = 1

eβϵ(p) − 1
. (3.36)

This is the famous Bose-Einstein distribution that describes the distribution of particles with
a given energy of a state at temperature kBT = 1/β. Having established the basic framework
for BECs, we now want to apply a few assumptions for our system in order to prepare for the
desired analogy.
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Figure 3.1 (Bogoliubov
spectrum) Energy spectrum
for full dispersion relation
(blue) and phononic regime for
p ≪

√
2mgn (grey). Transition

from phononic to free particle
regime takes place at p ∼ ℏ

ξ .

3.2.2 Density Fluctuations of Two-Dimensional BECs

Earlier we introduced the GPE for a three-dimensional BEC, however, a harmonic trapping
potential in one direction, say z-direction, can be applied to create an effective (2+1)-dimensional
BEC. The trapping potential U(x) = W (x, y) + 1

2mω
2
zz

2 can be used to effectively freeze the
dynamics in that direction by tuning ωz appropriately. The result is an oblate shaped BEC. We
can separate the wave function as follows [101]

Φ(t,x) = ϕ(t, x, y)f(t, z; η(t, x, y)) , (3.37)

with

f(t, z; η(t, x, y)) = e−z2/2η(t,x,y)2

π1/4η(t, x, y)1/2 . (3.38)

η(t, x, y) describes the width of the condensate in the z-direction. In addition, we assume that f
is slowly varying in (x, y), such that ∇2

⊥f ≈ 0. Substituting this in the three-dimensional action
leads to the following equations of motion for ϕ and η

iℏ∂tϕ(t, x, y) =
[
− ℏ2

2m∇2
⊥ +W + g

η−1

(2π)1/2 |ϕ(t, x, y)|2 +
(

ℏ2

2mη−2 + mω2
z

2 η2
)]

ϕ(t, x, y)

(3.39a)

0 = ℏ2

2mη−3 − 1
2mω

2
zη + g

η−2

2(2π)1/2 |ϕ|2 . (3.39b)
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In the weakly interacting case as|f |2 ≪ 1 we have η = az =
√

ℏ
mωz

, such that the equation of
motion is

iℏ∂tϕ(t, x, y) =
[
− ℏ2

2m∇2
⊥ +W (x, y) + g

(2π)1/2az
|ϕ(t, x, y)|2

]
ϕ(t, x, y) . (3.40)

Comparing this equation to the three-dimensional GPE in equation (3.30), this equation has the
very same form with an effective two-dimensional coupling g2d = g

(2π)1/2az
. Having seen that the

effectively two-dimensional BEC obeys the GPE as well, we continue by linearising this equation
in terms of small density and phase fluctuations.

Linearisation. The Gross-Pitaevskii field can be parametrised in terms of a density and phase
function which is called Madelung representation ϕ(t,x) =

√
ρ(t,x)eiS(t,x). The number density

of the BEC is then associated with the square modulus of this field ρ(t,x) = |ϕ(t,x)|2. Now,
consider fluctuations of the density about some constant background ρ0 such that ρ(t,x) =
ρ0 + δρ(t,x) and fluctuations of the phase S(t,x) = S0 + δS(t,x). The constant solution
Φ0 = √

ρ0eiS0 obeys the GPE as well which means that

W (x, y) + g2dρ0 = 0 . (3.41)

For brevity, we will omit any reference to 2d in the notation that follows. The set of linearised
equations emerging from separating the GPE into real and imaginary part is

∂tδρ(t,x) = − ℏ
m
ρ0∇2δS(t,x) , (3.42a)

ℏ∂tδS(t,x) = ℏ2

4mρ0
∇2δρ(t,x) − gδρ(t,x) , (3.42b)

where we have used that δρ ≪ ρ0 and where we have only kept terms up to linear order in any
perturbation. These two equations can be combined into an equation of motion for δρ(t,x) by
taking the time derivative of equation (3.42a) and substitute in the expression for ∂tS(t,x) of
equation (3.42b)

∂2
t δρ(t,x) = − ℏ2

4m2 ∇4δρ(t,x) + ρ0g

m
∇2δρ(t,x) . (3.43)

From this equation, the dispersion relation for δρ(t,x) is given by

ϵ2(k) = (ℏωk)2 = ℏ2k2

2m

(
ℏ2k2

2m + 2µ
)
, (3.44)

with µ = ρ0g being the chemical potential. This is the same expression as the Bogoliubov
excitation spectrum introduced earlier. If ℏ2k2

2m ≪ 2µ, then the energy is given by

ϵ(k) =

√
µℏ2

m
k , (3.45)
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indicating the linear part of the dispersion relation. In this regime the density fluctuations obey
the wave equation

∂2
t δρ(t,x) = ρ0g

2m∇2δρ(t,x) , (3.46)

which propagates with the speed of sound in BECs

c2
s = ρ0g

2m . (3.47)

As the density fluctuations describe a massless Klein-Gordon field, we can write it as a mode
expansion

δρ(t,x) =
∫ d2k

2π Ak
(
d̂ke

−i(ωkt−k·x) + d̂†
ke

i(ωkt−k·x)
)
, (3.48)

with
Ak =

(ℏρ0k

csm

)1/2
. (3.49)

At this point, let us recap the results of this section as they form the second part of the analogue.
The density fluctuations of the BEC behave in the phononic regime as a massless Klein-Gordon
field that effectively lives in (2 + 1) dimensions. Those fluctuations propagate with the speed of
sound in the BEC given by equation (3.47). The density fluctuations therefore take the role of
the field ϕ from the relativistic field theory in equation (2.92). We have already seen that the
laser phase fluctuation is the continuous probing field in this analogy. In the next chapter we
discuss the interaction in more detail.

3.2.3 BEC - Laser Interactions

At this point we want to collect all the information we have gathered about BECs and in-
teractions of electromagnetic fields with matter. We construct a system of an effectively two-
dimensional BEC interacting with a laser beam, which is described by the electromagnetic field
as introduced in this chapter. The BEC is assumed to be confined to the z = 0 plane and
therefore assumed to be effectively two-dimensional, whereas the laser beam (or more generally
electromagnetic field) propagates purely in the z-direction.

Using equation (3.9) for the electromagnetic field and the same averaging argument, we can
write for the electromagnetic interaction

Lint = − αρ

2

(
A0ωL√

2
+ ∂tψ

)2
. (3.50)

As in the previous section, we now want to write the density field as some constant background
plus fluctuations ρ = ρ0 + δρ. The interaction Lagrangian then becomes

Lint = − 1
4αA

2
0ω

2
Lδρ− 1√

2
αA0ωLδρ∂tψ − 1

2αρ0 (∂tψ)2 , (3.51)

only keeping the parts that contribute to the dynamics of the fields. Earlier, we have dropped
the first term arguing that it contributes with a constant energy to the density field. Working
towards the actual feasibility of this system, this term becomes quite important so let us have
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a quick look at this term
L(0)

int = − 1
4αA

2
0ω

2
Lδρ , (3.52)

where the superscript of Lint indicates the power of ψ. If we calculate the intensity of an
electromagnetic field I = 1

2cϵ0n|E|2 and use the ansatz for E in equation (3.8), the intensity of
an electromagnetic field can be written as

I = 1
4c0ϵ0nA

2
0ω

2
L . (3.53)

We see that the zeroth-order term is proportional to the intensity of the laser beam with

L(0)
int = − I

αρ0
ϵ0c0n

δρ

ρ0
. (3.54)

using equation (3.27). The zero order effect contributes to the equation of motion for δρ and,
thus, to the energy of the density fluctuations. This is called radiation pressure, which causes
the BEC atoms to be attracted or repulsed from the point of interaction. This effect is crucial
as it will induce additional noise, which scales with the intensity of the laser. In order to
cancel out this effect one can use a second laser, which is oppositely detuned from the resonant
frequency. The reason this works is because of the characteristics of the polarisability. Each of
those detuned lasers have their own interaction with the BEC characterised by the frequency
dependent polarisability. The frequency dependent part of this interaction scales with ∼ α(ω)ω2.
If we have a red and blue detuning by some frequency ωm from the resonant frequency we find
for ωm ≪ ωr, using (3.19)

α(ωr + ωm) · (ωr + ωm)2 ≈ − α(ωr − ωm) · (ωr − ωm)2 , (3.55)

which offsets the zero-order contribution. As we will be talking about BECs with alkali atoms
which have multiple resonant frequencies within a reasonable range, the polarisability is simply
the weighted average of single resonant frequency polarisabilities. For a multi-level system, such
as Caesium 133 with D1 and D2 resonance lines, this average can be calculated to [92]

α = 2
3αD2 + 1

3αD1 . (3.56)

The quadratic term of equation (3.50) is

L(2)
int = − 1

2αρ0 (∂tψ)2 , (3.57)

which contributes to the propagation speed of ψ. This can be seen by combining this term with
the time-derivative of the free Lagrangian

Lem = − 1
2µ0

1
c2

0

(
1 + αρ0c

2
0µ0

)
(∂tψ(t, z))2 , (3.58)
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with the effective speed of light in the medium given by6

1
c2

eff
= 1

c2
0

(
1 + αρ0

ϵ0

)
. (3.59)

The linear order term in ψ is the most important part of this interaction, as it shows how
the density field couples to the laser phase perturbations

L(1)
int = − 1√

2
αA0ωLδρ∂tψ . (3.60)
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Figure 3.2 (Polarisability of 133Cs) Real and imaginary part of polarisability (3.56). D1 line at
2.11 × 1015Hz, D2 line at 2.21 × 1015Hz.

A Note on Dimensionality. The density field in this section is (2 + 1)-dimensional, but
how does this interaction arise from the Lagrangian of a (3 + 1)-dimensional density field?
Using the separation ansatz in equation (3.37), the three-dimensional density can be written
as ρ3d = ρ2d · |f(t, z; η)|2. The action of this system contains an integral over z and since f is
assumed to be Gaussian, we find

∫
dz |f |2 = 1. The interaction term therefore has exactly the

same form in two and three dimensions and we can replace the three-dimensional density with
ρ2dδ(z).

The Analogue. In the previous sections, we have seen that the system consisting of a localised
laser beam interacting with an effectively two-dimensional BEC can be written as the sum of

6Using the identity µ0ϵ0c
2
0 = 1.
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the following Lagrangians

LBEC = 1
2

( 1
c2
s

(∂tδρ(t,x))2 − (∇δρ(t,x))2
)
δ(z) , (3.61a)

Lem = 1
2µ0

( 1
c2

0
(∂tψ(t, z))2 − (∂zψ(t, z))2

)
δ(x − X(t)) , (3.61b)

Lint = − α
A0ωL√

2
δρ(t,x)∂tψ(t, z)δ(z)δ(x − X(t)) , (3.61c)

where we have introduced the trajectory X(t) which describes the point of interaction between
the laser and the BEC. We see that this system is equivalent to the relativistic field theory in
(2.92), in the sense that it is described by the same Lagrangian, thus, providing us with the
opportunity to probe the Unruh effect in an analogue system. The phase fluctuations ψ and
density fluctuations δρ take the role of the fields ψ and ϕ.

The interaction between the laser and the BEC takes place at a single point in the (x, y) plane
whose trajectory is described by X(t) indicated by the delta distributions in the Lagrangian.
Now, that we have established the analogue by mapping the Lagrangian of the physical system
to one of the continuous detector model (2.92), we can use the results from our discussion
of continuous detectors, in particular the solution to the equation of motion for the phase
fluctuations (2.96). This solution tells us that the laser phase carries contributions from the
density fluctuations in the BEC

ψ(t, z) = ψ0(t, z) + 1
2
α

ϵ0

ωL
c0
δρ

(
t−

∣∣∣∣zc
∣∣∣∣ ,X (

t−
∣∣∣∣zc
∣∣∣∣)) , (3.62)

where ψ0(t, z) is the phase of the laser without interaction. The coupling constant corresponding
to the coupling ϵ in the relativistic model is given by

ϵ = αρ0
ϵ0

ωL
c0

, (3.63)

which can be seen from equation (3.62), by rewriting the density fluctuations as the dimen-
sionless field δρ/ρ0. Note, that ρ0 is a two-dimensional number density, such that ϵ is indeed
dimensionless. The field ψ in equation (3.62) are the dimensionless phase fluctuations from the
original ansatz for the electromagnetic field. The factor A0/

√
2 cancels out in order to reverse

the previously applied rescaling. If we were to calculate excitation rates of this continuous de-
tector, we would notice the same acceleration dependence as in the idealized theory. Thus, this
analogue system provides us with means to probe the Unruh effect. Moving the laser beam on
a circular trajectory as given by equation (2.40), the circular Unruh temperature (2.103) is

kBTU = γs
2πℏΩR

(
v

cs

)2
, (3.64)

using ΩR = cs/R and the expression for the circular acceleration ã = v2/R. In this analogue
system, the phase fluctuations of the laser beam is the detector that effectively probes this
temperature.

The gamma-factor is now defined in terms of the speed of sound in the BEC, which is
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indicated by the subscript ‘s’
γs = 1√

1 − v2

c2
s

. (3.65)

The Unruh temperature is therefore a function of the speed of the angular motion in relation
to the speed of sound in the system v

cs
, the speed of sound cs and the radius of the orbit R.

On further inspection, we recognise that the Unruh temperature increases for increasing ratios
v/cs, for decreasing radii R and increasing speed of sound cs.

The formula for the analogue Unruh temperature uses the simplified prediction for the linear
acceleration motion. We have seen in the previous chapter that the (2 + 1)-dimensional Unruh
temperature actually contains an energy dependent factor (see section 2.5). As the next chapter
is all about a conceptual feasibility estimate we will further use this justified simplification.

Conceptual Detection Scheme. The previous discussion showed that we can construct a
physical system which shows the characteristic acceleration dependence for the Unruh effect.
But how would such an experiment look like? This section discusses a conceptual experimental
setup as shown in figure 3.3, and we will later give a detailed operator description that justifies
this approach. For now, consider the following system: A laser beam of frequency ωL passes
a modulator that creates two frequency side bands with frequencies ωL ± ωm, where ωm is the
modulation frequency. Subsequently, the beam passes through a filter which filters out the
central frequency ωL. As we have seen while creating the analogue it is necessary to have two
oppositely detuned frequency bands in order to minimise the zero order effect of the laser on
the BEC. The two modulated sidebands achieve exactly that.

The beam is then rotated with a deflector on a circular trajectory such that the laser beam,
with the help of appropriate lenses, perpendicularly passes the effectively two-dimensional BEC.
The laser beam is subsequently detected at a photo diode. There are various considerations that
complicate the calculations, however, for the sake of this discussion we use the following simplified
view. We assume the BEC initially is prepared in a state of zero temperature. The analogue
model showed that a laser beam interaction with this BEC on a circular trajectory will probe
this vacuum state and density fluctuations in the BEC will transduce into the phase fluctuations
of the laser. As such, the thermal state that we would expect to see on this accelerated trajectory
is therefore entirely attributed to the Unruh effect. The temperature of this state is given by
the Unruh temperature in equation (2.103). Bearing this in mind, we can calculate and measure
correlations in the laser phase, as we will see in the next section.

The Signal. We will show the exact measurement process later in chapter IV. For now, we
will use the simplified view that the detected signal is the power spectral density (PSD) of the
phase fluctuations

Sψ(ω) =
∫

dt e−iωt ⟨ψ(t)ψ(0)⟩ , (3.66)

which is the Fourier transform of the unequal-time two-point correlator of the phase fluctuation
field, assuming stationarity. The solution to the equation of motion for ψ in equation (3.62)
can be used to express the PSD of the laser phase fluctuations in terms of the PSD of density
fluctuations

Sψ(ω) =
(1

2
αρ0
ϵ0

ωL
c0

)2
Sδρ(ω) , (3.67)
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Laser, ωL

Modulator, ω
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L1 BEC

L2

Deflector
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Figure 3.3 (Conceptual Detection Scheme) Detection scheme for the Unruh effect in BECs. A laser
with frequency ωL passes through a modulator with modulation frequency ωm and a filter which filters
out the central frequency ωL. Subsequently, a deflector rotates the laser beam on a circular trajectory,
and both sidebands with frequencies ωL ±ωm enter the BEC on a circular trajectory before being detected
with a photo diode (PD). The two lenses (L1) and (L2) are required for the laser beam to pass the BEC
perpendicularly.

where Sδρ(ω) is the PSD of relative density fluctuations δρ/ρ0. We can calculate the PSD of
density fluctuations explicitly using the mode expansion in (3.48). In the following, we work
with the normalised density fluctuations δρ/ρ0 which have the same mode expansion as δρ, in
this case however, we find Ak =

√
ℏk/(ρ0csm). Until now the laser was just a one-dimensional

field propagating in the z-direction. However, more realistically, the laser has a finite size which
we will assume to be Gaussian with a variance corresponding to the beam diameter r0 of the
laser. Due to this finite size, all we see in the signal is an average of density fluctuations over
that cross-section. We obtain the averaged density fluctuations

δρ =
∫

dx2δρ(t,x) 1
2πr2

0
e

− x2+y2

2r2
0 , (3.68)
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and can use the explicit mode representation of δρ to perform the integration. Completing the
square results in a Gaussian integral and we find

δρ(t) =
∫ d2k

2π Ake− 1
2 r

2
0k

2 (
d̂ke

−iωkt + d̂†
ke

iωkt
)
. (3.69)

Note that averaging the signal over the laser cross-section results in a factor exp{−1
2r

2
0k

2}
suppressing modes with sufficiently high k. This should not pose any problem as we probe the
low momentum regime of the phononic regime of the dispersion relation. The expectation value
of the PSD can be calculated using〈(

dke
−iϵkt/ℏ + d†

ke
iϵkt/ℏ

) (
dk′ + d†

k′

)〉
β

= δ(k − k′)
eβϵk − 1

(
eβϵke−iϵkt/ℏ + eiϵkt/ℏ

)
. (3.70)

The expectation value in the equation above is assuming a thermal state at kBT = β−1, where
the thermal expectation value of the number operator is given by the Bose-statistics. Here, we
assume that all thermality comes from the Unruh effect. Note, that a more thorough calculation
is needed to assess the thermality of this state, but the assumption here will suffice for the
purpose of this chapter (for a more detailed discussion, see [77]). The expression for the PSD
then becomes

Sδρ(ω) = 1
2

∫
dt
∫ ∞

0
dk e−iωtk

ℏk
ρ0csm

e−r2
0k

2

(
eβϵke−iϵkt/ℏ + eiϵkt/ℏ

)
eβϵk − 1 . (3.71)

Note the subtle switch of integration variables from Cartesian to spherical coordinates, while
already performing the integration over the angle resulting in a factor of 2π. Given the phonon-
like dispersion relation we can rewrite the integration over k as an integration over ϵk

k = ϵk
ℏcs

=⇒ dk = dϵk
ℏcs

, (3.72)

to arrive at the PSD

Sδρ(ω) = 1
2

1
ℏ2c4

smρ0

∫
dt
∫

dϵk e−iωtϵ2ke
−

r2
0

c2
sℏ2 ϵ

2
k

(
eβϵke−iϵkt/ℏ + eiϵkt/ℏ

)
eβϵk − 1 . (3.73)

The only time dependence is in the last part of the expression above and performing the t-
integration turns out to be a delta distribution

Sδρ(ω) = π

ℏc4
smρ0

∫
dϵk ϵ2ke

−
r2

0
c2
sℏ2 ϵ

2
k

(
eβϵkδ(ℏω + ϵk) + δ(ℏω − ϵk)

)
eβϵk − 1 , (3.74)

having factored out 1/ℏ. Note that this expression is, as expected, symmetric in ω. If we focus
on positive frequencies ω only with ϵk = ℏω, we find

Sδρ(ω) = π

ℏc4
smρ0

(ℏω)2e
−

r2
0

c2
sℏ2 (ℏω)2 1

eβℏω − 1 . (3.75)

Now, we can use this result to calculate the PSD of phase fluctuations in the laser phase
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(3.67)

Sψ(ω) =
(1

2
αρ0
ϵ0

ωL
c0

)2 π(ℏω)2

ℏc4
smρ0

e
−

r2
0

c2
sℏ2 (ℏω)2 1

eβℏω − 1 . (3.76)

This equation can be expressed in terms of mode energy per chemical potential Ẽ = ℏω/µ
and the healing length ξ = ℏ/

√
2µm

Sψ(ω) =
(1

2
αρ0
ϵ0

ωL
c0

)2 πm

ℏρ0
Ẽ2e− 1

2

(
r0
ξ

)2
Ẽ2 1

eµβẼ − 1
. (3.77)

As mentioned before, the expectation value in the PSD is evaluated at a finite temperature
T . Assuming that initially the BEC was at zero temperature, we have shown that a circular
orbit gives rise to the Unruh temperature in the laser phase fluctuations. Consequently, the
temperature of this thermal state is entirely given by the Unruh temperature (3.64)

β−1 = kBTU . (3.78)

The key idea is to measure this spectrum and infer the temperature dependence due to the
Unruh effect. If we wanted to extract the temperature via the detailed balance condition, note
that (3.77) is valid for positive ω only. One would have to use (3.74) to calculate the PSD
for negative ω in addition to (3.77). For now, we want to keep this idealised idea of a zero
temperature initial state, however, this is a strong assumption to impose on any experiment.
Realistically, the initial state has some non-zero initial temperature and we will later comment on
that why only a sufficiently low initial temperature is necessary and why this zero temperature
is a good approximation in the first place. In addition, we will comment on further experimental
considerations later in this chapter.

Signal Optimisation and Signal-To-Noise Ratio. Realistically, the electromagnetic field
picks up noise coming from various sources in and around the experiment, such as electronic
noise. In the following, we only want to consider the shot noise induced phase noise in the laser
phase, which is the result of the uncertainty in photon counting, or, more generally, associated
with discrete counting processes. The shot-noise limited signal is

ψ̃(t) = ψ(t) + ψsn(t) , (3.79)

where ψsn(t) is the shot noise induced phase noise. The PSD with this additional term becomes

S(ω) = S(ω) + Ssn(ω) , (3.80)

assuming the shot noise is uncorrelated with the signal over relevant time scales. Assuming a
sufficiently high photon count, we can approximate the Poissonian shot noise by a Gaussian
distribution with zero mean and variance

⟨ψsn(t)ψsn(t′)⟩ = σ2
snδ(t− t′) = ℏω

P
δ(t− t′) , (3.81)
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where ω and P are the frequency and the power of the laser, respectively. The signal-to-noise
ratio (SNR) is defined as

SNR(S) = S(ω)√
Var(S)

, (3.82)

which is the ratio of the signal, the PSD, and the noise defined by the standard deviation of
the signal. The signal obtained from this setup can be further enhanced and optimised using
a statistical approach. We perform the measurement N times, each measurement S(n)(ω), n ∈
{1, . . . , N} occurring over a time period T , and average the signal over the analysis resolution
bandwidth B

S(ω) = 1
N

∑
n

S(n)(ω) = 1
N

∑
n

S(n)(ω) + σ2
sn = S(ω) + σ2

sn , (3.83)

where each measurement of the PSD S(n)(ω) = S(n)(ω) + σ2
sn is labelled with n. For any

signal/noise with constant variance, averaging leads to the following variance 7

Var
(
S̄(ω)

)
= 1

N2

∑
n

Var
(
S(n)(ω)

)
= Var (S(ω))

N
, (3.84)

where the variance for each S(n) and S(n) is the same, thus dropping the n superscript in the
last expression of the equation above.

Note that the actual measurement is a discretised process of single measurements happening
at time steps ∆t. The total measurement time is then given by T = Nt∆t. In turn, this
means that the measurement bandwidth is given by 1/∆t leading to a frequency resolution
of ∆f = 1/(Nt∆t). For a fixed bandwidth, which is usually given by the measurement device,
improving the frequency resolution is therefore only possible by increasing the total measurement
time by a factor of B. This increase leads to a decrease of the variance with 1/B, or an increase
of the SNR with a factor of

√
B. The SNR of this averaged signal therefore improves by a factor

of
√
NB compared to the original SNR

SNR(S) = S(ω)√
Var(S)

=
√
NB

S(ω) + σ2
sn√

Var(S)
. (3.85)

Calculating the variance of the PSD requires to calculate the 4-point correlator ⟨(ψ̃†(t)ψ̃(t))2⟩−
⟨ψ̃†(t)ψ̃(t)⟩2, which can be calculated explicitly using equations (3.79) and (3.81), assuming no
correlation between the signal and shot noise. This correlator can be used to calculate the
variance of S

Var(S(ω)) = Var(S(ω)) + 2σ2
snS(ω) + σ4

sn . (3.86)

If ψ(t) is a stochastic signal with Gaussian fluctuating amplitudes, its variance is given by
Var(S(ω)) = 2S(ω)2, such that

Var(S(ω)) = 2S(ω)2 + 2σ2
snS(ω) + σ4

sn . (3.87)

Note that the shot noise itself is assumed to be Gaussian, so every higher order cumulant beyond
second order vanishes.

7Using Var(const. · x+ const.) = Var(const. · x) = const2 · Var(x).
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If we assume a sufficiently small signal with (S(ω) + σ2
sn)/σ2

sn close to 1, we find

SNR ≈
√
NB

S(ω) + σsn2

σ2
sn

. (3.88)

As mentioned in the previous section, we are interested in the signal arising due to the Unruh
effect and being able to resolve it with respect to vacuum fluctuations. We therefore look at the
SNR for the signal difference between the accelerated motion and a static laser beam, which we
call ∆SNR. Essentially, ∆SNR is defined for the signal above the shot noise level

∆SNR =

√
NB

2
S(ω)
σ2

sn
. (3.89)

Putting all the pieces together, namely equation (3.77), (3.81) and (3.89), we find

∆SNR =

√
NB

2
P

ℏωL

(1
2
αρ0
ϵ0

ωL
c0

)2 πm

ℏρ0
Ẽ2e− 1

2

(
r0
ξ

)2
Ẽ2 1

eµβẼ − 1
. (3.90)

In order to make a feasibility statement we need to consider experimentally accessible parame-
ters. In the next section, we discuss experimental constraints and justify the values we choose
in order to estimate the signal in equation (3.90).

3.2.4 Estimates for Experimental Parameters

Before we discuss any concrete estimates to optimise the SNR, we want to look at the relevant
scaling of important physical parameters that directly enter the PSD. Note that in practice
not all of those parameters are entirely independent. The SNR increases for increasing atom
mass m and number density ρ0, and for decreasing chemical potential µ and laser beam width
r0. One can now optimise the SNR with respect to those parameters, however, there are more
considerations to be taken into account. First, the trajectory is chosen to have a radius of
R = 10µm and a velocity of 95% of the speed of sound in the BEC, which is in reach of current
experimental development. As mentioned in the chapter about the Unruh effect in analogue
systems, there is nothing peculiar in exceeding the speed of sound, however, in the relativistic
model this threshold imposes a hard limit which we must respect in the analogue as well. The
parameters for a 133Cs BEC are given in table 3.1 with which we can calculate the speed of
sound in BECs to be cs = 1.7 × 102µm/s. This results in an Unruh temperature of

TU ∼ 60 pK , (3.91)

using the linear prediction as a simplification. Note that this chapter assumes an initial state
at absolute zero such that Unruh temperatures of pico Kelvin are significant, however, any
real experiment has a finite temperature. We will discuss this aspect later in the summary.
As discussed, the circular motion temperature will include another factor of order unity. To
calculate the SNR we first have to calculate the shot-noise variance

σ2
SN = ℏωL

P
. (3.92)
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Here, P is the power of the detected laser beam, which can be written in terms of the unmodu-
lated laser power P0, the modulation parameter M , as a result of the sideband modulation, and
the off-resonance optical density D̃

D̃ = 2πρ0
λL

Imα , (3.93)

to obtain [93]
σ2

SN = 2ℏωL
M2P0e−D̃

. (3.94)

Parameter Symbol Value Units

Experiment
Experimental Realisations N 106

BEC
Atom Mass 133Cs m 2.2085 × 10−25 kg
Scattering Rate Γsc 0.1 Hz
Chemical Potential µ 2πℏ 9.5Hz kg m2 s−2

Healing Length ξ 2 µm
Density ρ0 103 µm−2

Scattering Length as 25 pm
Transverse Confinement a⊥ 1 µm
Peak Density max[ρ3d] 5.6 × 1014 cm−3

Speed of Sound cs 170 µm s−1

Trajectory
Trajectory Radius R 10 µm
Velocity v 0.95cs m s−1

Laser
Beam Width r0 3 µm

Table 3.1 (BEC Parameters) Parameter estimates for potential implementation in experimental
setups. These parameters were used to produce corresponding plots in this chapter.

By their nature, BECs are complex constructs which are difficult to create and maintain. In
order to find the parameters given in table 3.1 one has to consider a few experimental constraints.
The key principle behind this kind of measurement is a non-destructive measurement of the BEC
which requires the photon scattering rate to be small

Γsc = 1
ℏcπr2

0
ImαM2P0 ≪ 1 . (3.95)

The condition therefore imposes a restriction on the beam width of the laser, its power and
detuning. Furthermore, in order to resolve the phononic band with frequencies up to µ/ℏ we
require

B = µ

2πℏBm
> 1 , (3.96)
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where the measurement resolution bandwidth Bm is determined by the lifetime of the BEC.
There are several factors influencing the lifetime of a BEC, for example due to technical heating
or back-action of the laser. In addition, one has to account for disturbances that the laser create
in the BEC which are reflected from the edges due to the finite size of the BEC [102]. To resolve
the phononic band with B > 1, we require a measurement bandwidth of Bm < µ/ℏ.

Lastly, in order to actually obtain a measurable Unruh temperature we have to demand that
kBTU ∼ µ which leads to the condition ℏΩR ∼ µ, where all other constants, fixing v/cs, result
in a constant of order unity. This means that the radius of the trajectory has to be of the order
of the healing length.

Considering all those limitations, figure (3.5) shows the SNR for the Unruh effect in a
Caesium-133 BEC. The SNR indicates that the expected signal due to the Unruh effect is
above the shot noise level.
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Figure 3.4 (SNR of density fluctuations) Signal-to-Noise ratio for 133Cs with parameters given in
table 3.1 and B = 1. Integrating over the phononic band to ℏω/µ = 1 yields ∆SN ≈ 5.8.
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3.2.5 Summary

We saw in this section that a continuous laser beam interacting with a BEC on a circular
trajectory can act as an Unruh detector. We used the continuous detector description of chapter
2.4 and applied it to a system of linearised phase fluctuations of a continuous laser beam. Light-
matter interactions in the dipole approximation turned out to be the appropriate interaction
between a laser beam and the BEC and together with the linearised density fluctuations in
the BEC, we found an analogue system of the continuous detector model. Then, we used
statistical properties of multiple measurements to define the signal-to-noise ratio of a shot-noise
limited signal. In the final step, we used estimates for physical parameters to make a feasibility
statement about the signal detection in the BEC using the SNR. Figure 3.5 shows that the
SNR considering all mentioned simplifications and limitations suggests that a detection of the
Unruh effect in BECs is in the realm of possibilities. Certainly, more careful considerations are
necessary, especially regarding the simplifications of finite size systems and zero temperature
initial states.
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3.3 Analogue Unruh Effect in Superfluid Helium-4

In the 1930s, P. Kapitza experimentally discovered some peculiar effects of Helium-4 below a
certain temperature, now commonly called the λ-point, which could only be explained by an
abnormally low viscosity [103]. Those results were independently confirmed by J. Allen and
A. Misener the very same year. In the years that followed, theorists tried to advance on the
understanding of this phenomenon. One of the theorists was Landau who published a paper in
1941 describing this effect theoretically [104]. These early attempts have led to the model which is
now known as the two-fluid model. The idea is that below the λ-point, Helium can be described
as a mixture of a normal, viscous fluid and a superfluid with zero viscosity. Early attempts
tried to derive a theory for superfluids starting from a microscopic theory without success. The
difference in Landau’s approach was to express macroscopic hydrodynamical variables in terms of
quantum-mechanical operators while showing that the equations of motion reproduce equations
like the continuity equation and Euler’s equation.

Below this critical temperature the superfluid component of Helium rises and the normal
component declines until only pure superfluid Helium remains as the temperature reaches 0K.
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Figure 3.5 (He4 Density
Distribution) Below the λ-
point with a temperature of
2.17K, the superfluid compo-
nent of helium increases while
the normal component de-
creases. Above 2.17K, Helium-
4 only consists of a normal com-
ponent, at ∼ 0K it is a pure
superfluid. Data from Don-
nelly [105].

There are several known isotopes of Helium. The first papers on this matter discuss Helium-4
which is a bosonic system, so it should not come by surprise that cooling down bosonic Helium-4
below a critical point shows resemblance to Bose-Einstein Condensation. On the other hand,
Helium-3 is a fermionic system [106]. In the following, we describe the fundamental dynamics of
Helium-4 and show how this superfluid can be used as an analogue system to detect the Unruh
effect.

3.3.1 Two-Fluid Model

The basic idea of the two-fluid model is to describe Helium-4 below the λ-point as a mix of two
fluids – a normal, viscous fluid and a superfluid without viscosity. The total density is then
given as ρ = ρn + ρs consisting of the normal component ρn and superfluid component ρs. The
normal component moves with a velocity profile vn, while the superfluid component moves with
vs. This leads to the total mass current density j = ρnvn + ρsvs.
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The starting point of this model are the equations governing the dynamics of macroscopical,
classical fluids and extend this description towards the quantum regime. One of those equations
is the requirement of conservation of mass, leading to the continuity equation

∂tρ+ ∇ · j = 0 , (3.97)

where ρ is the total density and j the mass current. An assumption that has to be put into the
model is that the superfluid component is inviscid and irrotational with ∇ × vs = 0. Since both
fluids have their own dynamics, we need a supplementary equation to describe the dynamics of
the superfluid component [107]

∂tvs + ∇
(

v2
s

2 + µ

)
= 0 , (3.98)

with µ being the chemical potential of superfluid Helium.
Furthermore, we want to restrict ourselves to non-dissipative processes such that entropy is

conserved, in the sense that
∂ts+ ∇ · F = 0 , (3.99)

with s = ρn

ρ sn+ ρs

ρ ss being the total entropy per mass, as weighted average of superfluid entropy
ss and normal entropy sn, and F the entropy flux operator. Another assumption of this model is
that the entropy is entirely carried by the normal component of the superfluid, i.e. ss = 0, such
that ρs = ρnsn and consequently the entropy flux is F = svn. Entropy conservation therefore
demands

∂ts+ ∇ · (svn) = 0 . (3.100)

In addition, we have momentum conservation (for details see Khalatnikov [107]), which will
simplify immensely if we assume that normal and superfluid velocities are small and, such that
the the final expression can be linearised with respect to those velocities, leading to

∂tj + ∇p = 0 . (3.101)

In addition, using this linearisation assumption, equation (3.98) reads

∂tvs + ∇µ = 0 . (3.102)

Apart from the boundary conditions, equations (3.97),(3.100), (3.101), and (3.102) form the
set of equations fully describing the dynamics of superfluid Helium-4 in the two-fluid model.
This set of equations allows for distinct types of wave propagation in Helium. In the following,
we will briefly discuss two types and go into more detail of a third type which proves to be
relevant for the analogy.

3.3.2 Surface Fluctuations of Thin Films

The two-fluid model allows for various types of waves for the normal and superfluid component,
each propagating with their own speed. Ordinary longitudinal pressure waves involving fluctu-
ations in the total density at constant temperature are called first sound. It is characterised by
a constant surface tension σ, vanishing temperature gradients ∇T = 0 and non-constant total
density ρ ̸= const. In this case, normal and superfluid component move in phase with vn = vs.
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For adiabatic processes with p =
(
∂p
∂ρ

)
s
ρ, the density dynamics is described by a wave equation

and propagates through the bulk of the superfluid, called first sound, whose velocity is given by

u2
1 =

(
∂p

∂ρ

)
s

. (3.103)

Temperature waves are called second sound which are specified by a non-constant surface tension
σ, a constant density ρ and vanishing pressure gradients ∇p = 0, such that the mass current
ρsvs + ρnvn = 0 vanishes. Both fluid components move with a phase shift of π. We know from
thermodynamics that dµ = −sdT + dp

ρ which, combined with the set of equations above, results
in a wave equation for the temperature. It describes heat propagation in the superfluid and is
called second sound with

u2
2 = ρs

ρn

(
s2 T

cP

)
, (3.104)

with cP being the specific heat of Helium-4.

Third Sound. As third sound will play a fundamental role in our analogy, we will spend
some time further specifying the underlying assumptions. If a viscous fluid with viscosity ηn and
density ρn performs an oscillatory motion of frequency ω, the velocity of those oscillations cannot
change significantly over a distance that is smaller than what is called the viscous penetration
depth dvisc =

√
2ηn/(ρnω). If the depth of the fluid is smaller than this viscous penetration depth

and since the normal velocity has to be zero at the walls, it is reasonable to assume that it is
zero at the surface as well. The normal component can therefore be assumed to be at rest and it
is possible for the superfluid component to form surface waves which propagate independently of
the normal component. Figure 3.6 shows the process schematically. As the normal component
carries all the entropy, waves of the superfluid component create troughs and peaks leading to
an excess of the superfluid component in some parts and a deficit in other parts. This creates
temperature gradients leading to evaporation and condensation effects in superfluid Helium, the
temperature then being T = T0 + δT . Of course, nonetheless the whole system is subject to
boundary conditions, namely that there is no penetration of the solid bottom of the basin, i.e.
j⊥ = 0, and that the normal component does not move parallel to the bottom vn∥ = 0. At the
surface, we demand the standard condition for a free surface ∂th+ v · ∇h = 0 [108].

These evaporation and condensation processes adjust the mass conservation equation by
adding a mass flux to it. The mass loss due to evaporation Jvapm = dm

dt is proportional
to the difference of the local temperature and its surrounding temperature. Let’s call this
proportionality constant K such that Jvapm = KδT . The vapour is assumed to be uniformly at
temperature T0 and pressure p0. The temperature changes in the fluid would be in equilibrium
with the vapour at pressure p = p0 + βδT . Modifying the two-fluid model equations with those
considerations, we can linearise those equations in terms of small height fluctuations δh around
an equilibrium height h0. The evolution of these surface waves, or third sound waves, is then
described by [108, 109, 110]

ρsh0∇ · vs + ρ∂tδh+KδT = 0 , (3.105a)
ρh0cP∂tδT − ρsh0sT∇ · vs +KLδT = 0 , (3.105b)

∂tvs + g∇δh−
(
s− β

ρ

)
∇δT = 0 , (3.105c)
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Figure 3.6 (Superfluid
Helium-4 Setup) Waves
propagating on the surface of
Helium-4 perturbing the height
h(x) of the fluid by some offset
δh(x) around an equilibrium
height h0. Fluctuations in the
superfluid component create
entropy differences in Helium,
leading to evaporation and
condensation at the surface.

where L is the latent heat of vaporisation per gram of the fluid and g a parameter describing the
restoring force. By assuming a planar wave ansatz for the height perturbations of the superfluid
helium (and all other quantities in a similar way), viz.

δh(t,x) = δh0 exp {i(ωt− k · x)} , (3.106)

the equations above simplify to ρsh0k ωρ −iK
ρsh0ksT0 0 ρh0cPω − iKL

ω −gk
(
s− β

ρ

)
k


 v0
δh0
δT0

 = 0 . (3.107)

Non trivial solutions to these equations require the relation [111]

ω2

k2 = ρs
ρ
h0g + ρs

ρ
sT

(
s− β

ρ

)
− iKgωρ

cP − i KLρωh0

. (3.108)

This dispersion relation is rather complex but in essence describes how surface waves on super-
fluid Helium-4 propagate. This expression can be simplified with further assumptions, two of
which are commonly mentioned in the literature – the no vapour limit and the isothermal limit.
Below 0.5 Kelvin, the no vapour limit assumes that the vapour pressure and its interaction with
the superfluid can be neglected. In this case, the pressure p can be set to zero in the equations
and there is no entropy or mass flux at the surface. The isothermal limit on the other hand is
more interesting for the purpose of establishing the analogy.



3.3. Analogue Unruh Effect in Superfluid Helium-4 63

A note on thin films. The dispersion relation for thick films leads to the propagation speed
of surface waves [109]

ω2 =
(
ρg + σk2

) k tanh(kh0)
ρ

, (3.109)

which we use in the approximation kh0 ≪ 1. All these equations show similarities to gravity
waves in classical fluid dynamics and as such we could think of the constant g as the gravitational
acceleration. However, it is shown in [112] that the restoring force in thin film superfluids results
in an effective coupling g, which comprises a gravitational effect and a van-der-Waals effect due
to the interaction with the surrounding basin. In this case, we find

g = g0 + 3αvdw
h4 ≈ 3αvdw

h4 , (3.110)

with h being the height of the film and αvdw a material-specific van-der-Waals coupling constant.
The second part clearly dominates for thin films and is several orders of magnitude larger than
g0. We might as well drop the gravity contribution in this thin film limit.

Isothermal Limit. Surface waves of the superfluid component create troughs and peaks and
since the superfluid component does not carry entropy, the entropy of the normal component
creates temperature gradients ∇T at those points, which are accompanied by pressure gradients
∇p in the vapour. The evaporation rate on the surface Jvapm is proportional to the temperature
difference T − Tm, Tm being the mean temperature of the superfluid. There is an effective
mechanism of evaporation and condensation of the superfluid that cools down the troughs and
heats up the crests, such that it is reasonable to assume that temperature gradients ∇T , as well
as any evaporation at the surface Jvapm and pressure differences ∇p vanish

∇T = 0 , ∇p = 0 , Jvapm = 0 . (3.111)

Until now, we have kept the subscripts to distinguish between the superfluid component and
total density. In a certain temperature regime, at around 1K, we can see from figure (3.5) that
almost the whole fluid can be treated as superfluid. We will therefore omit the distinction in
the following and drop the subscripts, i.e. ρ = ρs. In this case, the governing equations arising
from equations (3.105) are

h0
ℏ
m

∇2ϕ+ ∂tδh = 0 , (3.112a)

ℏ
m
∂tϕ+ gδh = 0 , (3.112b)

where we have used that vs = ℏ
m∇ϕ can be represented as the gradient of a velocity potential.

If we want to think of equations (3.112) as the equations of motion for a field ϕ and its conjugate
momentum δh, the corresponding Hamiltonian is

H = 1
2ρ
[ ℏ
m
h0 (∇ϕ)2 + g

m

ℏ
(δh)2

]
, (3.113)
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where the constant ρ is introduced for dimensional convenience. The equations of motion (3.112)
can be calculated from this Hamiltonian using

ρ∂tδh = δH
δϕ

, (3.114a)

∂tϕ = − 1
ρ

δH
δ(δh) . (3.114b)

These equations already show a striking, fundamental similarity with the BEC formalism. The
dynamic fields here are the velocity potential ϕ and the field ρδh which is an effective, dynamic
two-dimensional density, just as in the BEC case. In this limit, equations (3.112a) and (3.112b)
can be combined into an equation for δh

∂2
t δh− h0g∇2δh = 0 . (3.115)

These height fluctuations on thin-film superfluid Helium in the isothermal limit therefore
behave like a massless Klein-Gordon field propagating with the velocity

c2
3 =

(
ω

k

)2
= gh0 . (3.116)

In this limit, height fluctuations on superfluid helium can effectively be described as a scalar
field in (2 + 1)d propagating with c3. Note that this limit effectively applies the approximations
kh ≪ 1 and ρg ≫ σk2 to the thick film dispersion relation (3.109). We will refer to this branch
of the dispersion relation as the phononic branch.

The equation of motion for δh is reproduced by the Lagrangian

L = 1
c2

3
(∂tδh(t,x))2 − (∇δh(t,x))2 . (3.117)

This is the Lagrangian of a massless field in (2 + 1) dimensions and by comparison with the
relativistic model in equation (2.92), we see that the height field takes the role of the field whose
vacuum is probed by the continuous detector. As we are interested in the quantum behaviour
of these height fluctuations in the ultra-cold environment of the setup, we can write the height
fluctuation field as a mode expansion

δĥ(t,x) =
∫ d2k

2π Ak
(
d̂ke−i(ωkt−k·x) + h.c.

)
(3.118)

with annihilation operators d̂k, dispersion relation ϵk = ℏc3k and

Ak =
(ℏc3k

ρg

)1/2
. (3.119)

To complete the analogue model, we derive in the next section the interaction between
external electromagnetic fields and height fluctuations on superfluid Helium.

A Note on Surface Waves. In this description, the equations certainly show similarities to
classical fluids. However, surface waves on thin films of classical fluids are highly suppressed by
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the viscosity, as we have seen for the normal component of the superfluid. As the superfluid
component does not possess this restriction it is an excellent candidate for this analogue. In
addition, in a thin film limit, third sound effects dominate first and second sound effects [113].

3.3.3 Superfluid Helium-4 - Laser Interactions

Superfluid Helium-4 interacts with an external electromagnetic field in the same way as a BEC
– it develops dipoles according to the polarisability of Helium-4. In this case, however, there are
a few subtle differences compared to the BEC. First, we assume a constant density but instead
look at height fluctuations as suggested by the equations of motion for ρδh. Hence, this height
displacement field interacting with the laser has to arise from an effective description of this
theory. Instead of a Gaussian profile in the z-direction, as it was the case in the BEC setup,
the Helium-4 is confined in the z-direction, specifically it is located between z = 0 which forms
the bottom of the basin and the free surface at z = h(t,x). Note, that the free surface field
h(t,x) = h0 + δh(t,x) propagates in the (x, y)-plane and can be described as fluctuations δh
around some equilibrium height h0. Second, the resonance structure of Helium atoms leads to
a conceptual difference. Compared to Alkali atoms, their resonant frequency is in a regime in
which it is experimentally unfeasible to use a red and blue detuned laser beam. Realistically,
it is not feasible to use a two sideband structure as before. We will later comment on the
consequences of that.

The interaction Lagrangian is still given by equation (3.28), however, on the level of the
action we find

S = −
∫

dt
∫

dx

∫ h(t,x)

0
dz αρN√

2
A0ωL∂tψ(t, z) , (3.120)

whose integration limits in the z-direction reflect the spatial confinement of the Helium. In the
following, we derive an effective Lagrangian for this interaction. First, we can calculate how
this interaction contributes to the equation of motion for ψ by varying the action using Luke’s
variation principle [114]

δS = − αρN√
2
A0ωL

∫∫
dtdx

∫ h(t,x)

0
dz ∂tδψ(t, z) − αρN√

2
A0ωL

∫∫
dtdx ∂tψ(t, h(t,x))δh .

(3.121)
The Leibniz rule shows that

d
dt

∫ h(t,x)

0
dz δψ(t, z) = ∂th(t,x) δψ(t, h(t,x)) +

∫ h(t,x)

0
dz ∂tδψ(t, z) , (3.122)

which can be used to rewrite the first part in equation (3.121)

δS = αρN√
2
A0ωL

∫∫
dtdx ∂th(t,x) δψ(t, h(t,x)) − αρN√

2
A0ωL

∫∫
dtdx ∂tψ(t, h(t,x))δh ,

(3.123)
where we drop the total time derivative as it does not contribute to the equations of motion.
After absorbing a factor of A0/

√
2 into ψ, the equation of motion for ψ contains the standard

free part and a contribution from the interaction above

1
c2

0
∂2
t ψ(t, z) − ∂2

zψ(t, z) = αρNωLµ
2
0∂tδh(t,x)δ(z)δ (x − X(t)) . (3.124)
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Note, that we linearised with respect to δh(t,x) such that a Taylor expansion of δψ(t, h(t,x))
in the variation of the action leads to a simplified δ(z) in the equation of motion. Again, this
equation of motion is of the exact form as in the relativistic model and shows once more that
height fluctuations transduce into phase fluctuations of the laser. A circular motion will exhibit
the same characteristic dependence on the acceleration as required for the Unruh effect. We can
solve the equation above to obtain 8

ψ(t, z) = ψ0(t, z) + 1
2
αρN
ϵ0

ωL
c0
δh

(
t−

∣∣∣∣zc
∣∣∣∣ ,X (

t−
∣∣∣∣zc
∣∣∣∣)) , (3.125)

where ψ0(t, z) is the solution of equation (3.124) for α = 0.

Conceptual Detection Scheme. The previous section showed that the signal of interest is
in the phase of the laser, it is therefore essential to build an experiment that is sensitive to
those laser phase fluctuations. One possible, rather simple setup is a homodyning detection
scheme as in figure 3.7. A beam splitter is used to create a signal and reference arm from an
incoming laser. The lower arm is the signal arm that probes height fluctuations on Helium-4 on
a circular trajectory. After being reflected back from the bottom of the basin, the signal arm
is being reunited again with the reference arm at a second beam splitter. Subsequently, the
signal is being detected with two photo diodes. This should only be viewed as a guide to more
sophisticated setups including intensity optimisation of the signal arm.

The Signal, Optimisation, and Signal-to-Noise Ratio. As in the case of density fluctu-
ations in BECs, we want to look at the PSD of relative height fluctuations on superfluid helium
δh/h0, where the derivation of the PSD is analogous to the one in the previous chapter. Again,
before calculating the PSD, averaging over the laser width is necessary

δh(t) = 1√
2V

∑
k ̸=0

Ake− 1
2 r

2
0k

2 (
d̂ke−iωkt + h.c.

)
, (3.126)

and we obtain

Sδh(ω) = π(ℏω)2

ℏh2
0c

2
sρg

e
−

r2
0

c2
sℏ2 (ℏω)2 1

eβℏω − 1 . (3.127)

Here, the speed of sound is replaced by the third sound cs = c3. The PSD of phase fluctuations
is given by the conversion factor (gain) in equation (3.125)

Sψ(ω) =
(
αρNh0
ϵ0

ωL
c0

)2 π(ℏω)2

ℏh2
0c

2
sρg

e
−

r2
0

c2
sℏ2 (ℏω)2 1

eβℏω − 1 . (3.128)

Compared to the PSD in the BEC case, there is a factor of 2 in the brackets as the laser passes
the fluid twice. The key quantity of interest is again the SNR for the averaged signal. The
derivation of the difference signal SNR is analogous to the one in equation (3.90) of the previous
chapter

∆SNR =

√
NB

2
P

ℏωL

(
αρN
ϵ0

ωL
c0

)2 π(ℏω)2

ℏc2
sρg

e
−

r2
0

c2
sℏ2 (ℏω)2 1

eβℏω − 1 . (3.129)

8Using the relation between the vacuum permittivity ϵ0, the speed of light in vacuum c0 and the vacuum
permeability µ0, µ0ϵ0 = c2

0.
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Figure 3.7 (Conceptual Setup) Possible homodyning setup with local oscillator. The incoming laser
beam is split into a signal and a reference arm with a beam splitter (BS). The lower arm passes through a
beam splitter (BS) and a subsequent deflector and lens. Then, moving on a circular trajectory, it passes
through the sample of superfluid helium, is reflected back from the bottom of the container, and passes
through the BS again. Both arms are combined again in another beam splitter and detected at two photo
diodes (PD1) and (PD2).

3.3.4 Estimates for Experimental Parameters

Before reviewing the exact numbers, let us recap the assumptions that go into the model, further
restricting possible parameters. An advantage of this system compared to BECs is that in the
regime of interest the only tunable parameter of the superfluid is its height, so all approximations
in this section impose a limit on the film height of the superfluid. First, we assumed a thin film
limit, which means the effective coupling g is dominated by van-der-Waals interactions and we
can neglect any gravitational effect. Most of the materials that are being used in superfluid
Helium experiments have a van-der-Waals coupling of the same order as the one for a quartz
substrate as given in table 3.2 [105]. This assumption is therefore valid up to a film height of
around 1µm. Second, we only consider waves with kh0 ≪ 1. Third, the equations are only valid
in the phononic regime of the dispersion relation. From equation (3.109) we can see that this is
the case for

σk2 ≪ ρg , (3.130)

imposing a threshold of k2 = ρg/σ. This threshold leads to a characteristic mode energy

µ = ℏg

√
ρh0
σ

, (3.131)

up to which the phononic approximation is valid. The speed of sound for the parameters as
given below is approximately c3 = 3.2 × 10−2 m s−1. The gain factor can be more conveniently



68 III. Analogue Unruh Effect

10−3 10−2 10−1 100 101

h̄ω/µ

0.0

2.5

5.0

7.5

∆
S

N
R

Figure 3.8 (SNR of Height Fluctuations) Signal-to-noise ratio for 4He with parameters as given in
table 3.2.

written in terms of the index of refraction n (using equation (3.27))

(
αρN
ϵ0

ωL
c0

)2
=

(
(n2 − 1)ωL

c0

)2

. (3.132)

The SNR of height fluctuations is shown in figure 3.8.

Parameter Symbol Value Units

Experiment
Experimental Realisations N 106

Helium-4
Film Height h0 200 nm
Mass Density ρ 145 kg/m3

Surface Tension σ 37.9×10−5 Jm−2

Van-der-Waals Coupling αvdW 2.6×10−24 m5s−2

Atom. Pol. α 2.3 ×10−41 A2s4/kg
Index of Refraction n 1.025
Laser
Frequency ωL (2π)2×1014 rad/s
Beam Width r0 10 µm
Beam Power P 50 mW
Trajectory
Radius R 60 µm
Ang. Speed v 0.95c3 m/s

Table 3.2 (Helium-4 Parameters) Parameter estimates for potential implementation in experimental
setups. These parameters were used to produce corresponding plots in this chapter.
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3.3.5 Summary

In this chapter we have developed the theory for an analogue model to detect the Unruh effect
in thin film superfluid Helium-4. The light-matter interactions in section 3.1 could be equally
applied to this system. We saw that phase fluctuations in the laser beam couple to height
fluctuations on the superfluid Helium surface. The SNR suggests that, assuming a zero temper-
ature initial state, a detection of the Unruh effect in this system is conceptually possible. The
assumption of a zero temperature initial states seems a rather strong assumption in the context
of superfluids, which we will comment on in the next section.
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3.4 Finite Size and Finite Temperature

In this chapter, there have been resurfacing questions about what the effects of finite size systems
and finite initial temperatures are on the expected Unruh effect signal. A finite size results in
mode discretisation in the system depending on its exact geometry. This affects the calculation
of response functions and power spectra. We could make a generalised estimate of those effects
by looking at the wave with the lowest wavelength that fits into the geometry. Considering
a basin of length L, the wave has a wavelength λ = 2L, or equivalent a wave vector k = π

L .
This creates a low frequency cutoff in the power spectrum as waves with higher wavelengths
are suppressed by the geometry, however, a more detailed analysis is necessary to make more
qualified statements.
Throughout this chapter, the PSD is assumed to be evaluated at a state with a temperature given
by the Unruh temperature. As such, all expectation values are evaluated for a zero temperature
initial state (with static detector), i.e. all thermality comes from the Unruh effect. Realistically,
every system possesses a finite, non-zero temperature and, thus, every calculation in this chapter
imposes the rather strict assumption of a zero initial temperature. Finite temperature effects
on the detection of the analogue Unruh effect have been investigated in [77]. However, we
showed in [56] that if the expected, linear prediction Unruh temperature, that has been used as
a proxy in this chapter, is above the ambient temperature of the system, the zero temperature
assumption seems to be justified (see figure 3.9). In this case, the calculations presented in this
chapter remain valid, which is in particular the case for Bose-Einstein condensates.
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Figure 3.9 (Thermal Un-
ruh Effect) Contour plot for
ratio of temperature obtained
from detailed balance condition
to ambient temperature as a
function of the ambient tem-
perature and the detector fre-
quency. Yellow contours rep-
resent a ratio of greater than
1, blue contours a ratio of less
than 1, and grey line represents
a ratio of 1. Dashed vertical line
is at linear acceleration Unruh
temperature prediction, dashed
horizontal line is at the pro-
posed frequency of the orbital
rotation. Parameters given in
table 3.2.

Figure 3.9 shows the ratio of the temperature obtained via the detailed balance condition
T and the ambient temperature TA of the system as a function of the ambient temperature
and the detector frequency. The parameters for this plot are given in table 3.2. The contours
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represent lines of constant temperature. The dashed horizontal line represents the frequency
of the detector’s trajectory, whereas the vertical dashed line represents the prediction of the
linear Unruh temperature. The yellow contours are temperatures for which the detailed balance
temperature is greater than the ambient temperature, as opposed to the blue region where it is
less than the ambient temperature, while the grey border represents the ratio T/TA = 1. For
frequencies below the circular trajectory rotation frequency, we find that the linear prediction
Unruh temperature forms the border between the regions with T/TA > 1 and T/TA < 1. For
frequencies above the rotation frequency, the region with T/TA > 1 is tilted towards the blue
region.

Many interesting consequences arise from this plot, however, as mentioned above, the exact
interpretation of the results that have been accumulated in this plot is still subject of further re-
search [77, 56]. In particular, more careful considerations are necessary for a potential parameter
search for any experimental implementation.

As ultra-cold atom systems, BECs are per construction extremely cold with temperatures
in the pico Kelvin regime [98]. With expected Unruh temperatures in the same range, this plot
suggests that the assumption of zero initial temperature seems reasonable. However on the other
hand, state-of-the-art dilution fridges can cool down Helium only to a temperature of around
10 mK. The expected Unruh temperature in this case, based on the linear motion prediction,
is in the nano Kelvin regime. This leads to the predicament that we used a zero temperature
expectation value for a system with non-negligible finite temperature effects.

This suggests, that superfluid Helium requires for a more careful treatment. In particular,
the Unruh effect needs to be calculated for a thermal initial state at the temperature of ex-
perimentally achievable ambient temperatures in the laboratory. This is a subject of ongoing
research and we hope to implement the results of this study in this analogue model to better
support our findings in realistic experimental environments.
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3.5 Summary

In this chapter we established two analogues of the relativistic model (2.92), which consists of
a (1 + 1)-dimensional scalar probing field and a second (2 + 1)-dimensional scalar field. We de-
rived the theory behind the interaction of electromagnetic fields with polarisable matter and the
effective interaction of phase fluctuations in the electromagnetic field with polarisable matter.
In each of the analogues presented in this chapter, the phase fluctuations in the laser took the
role of the probing field. We then introduced the Gross-Pitaevskii equation, which describes
the evolution of the BEC field. This equation can be restated in terms of the BEC density and
the phase of the BEC field. Linearising the resulting equations in terms of density fluctuations
showed that the density fluctuation field effectively obeys a massless Klein-Gordon equation.
Combined with the interaction with a laser beam, this system is mathematically analogous to
the relativistic continuous detector model. We provided a schematic for a potential setup in an
experiment and used the signal-to-noise ratio as key indicator for the feasibility of such an ex-
periment. We found that the SNR of phase fluctuations in the laser beam has a peak of around
4 in the linear regime of the dispersion relation, indicating that the proposed implementation is
in reach of current cold-atom experiments.

The second analogue was superfluid Helium-4 interacting with a laser beam. In superfluid
Helium-4 at temperatures below 1K, the predominant fluctuations come from height fluctuations
on the surface instead of density fluctuations in the bulk. We established the regime of thin-
film, linearised height fluctuations starting from the macroscopic two-fluid model of superfluids
and saw that, conceptually, the interaction of light with superfluid Helium is the same as the
interaction of light with BECs, although there are some technical differences in calculating the
effective interaction. As in the BEC case, we proceeded by calculating the signal-to-noise ratio
which we found to be well above 1, indicating that, given all our assumptions, the Unruh effect
is detectable.

We briefly mentioned the limitations of the approaches in the discussion of the results and
more explicitly in the section on finite size and temperature effects. First, we used the linear
acceleration expression for the Unruh temperature. Technically, there are energy dependent cor-
rections of the circular Unruh temperature. However, we saw in chapter II that these corrections
are bounded from above by a factor of approximately one, justifying the simplifications for a
conceptual detection scheme in this chapter. More importantly, we assumed that the thermal
state, as seen by an accelerated observer, has a temperature given by this linear acceleration Un-
ruh temperature prediction. This assumes that the experiment is conducted in an environment
of zero ambient temperature. For a finite ambient temperature, the calculations are more com-
plicated as they include calculating thermal Green’s functions for a circular motion. In addition,
we always used continuous mode expansions, i.e. an infinitely sized systems. This assumption is
a good approximation for a first estimate, however, finite size effects become important for tiny
systems, such as superfluid Helium.

In summary, we found that given the simplifying assumptions the two analogue models
presented in this chapter are well suited for a potential detection of the Unruh effect. However,
one has to refine the analysis with more rigorous calculations of finite size and temperature
effects, which is the focus of ongoing research.



IV

Signals and Detection

The idea that we can stand back and behold nature at a distance, as something
discrete from our actions, is an illusion.

—Bruno Latour

In this section, we dive into the theoretical modelling of the signal detection process of the
analogues outlined in the previous chapter. All detection schemes presented before rely on a
photodetection process. We will therefore introduce the quantum mechanical photon counting
process first and how it relates to the classical signal that will be detected with a physical
photodiode. We then describe the transformations on the operators of the electromagnetic field,
as it interacts with the components in the experiment. We will show what the detected signal
will be, where in the measured signal the Unruh effect signal is to be expected and how to
extract it. Finally, we will compare the power of the desired Unruh effect signal to the power of
noise contributions in the signal.



74 IV. Signals and Detection

4.1 Photodetector Model

Before we dive into the exact modelling of the detection schemes mentioned in earlier chapters,
we need a mathematical model for the photodetection process. This detector model determines
which signal can be detected with a photodiode and it will give us the framework to extract the
desired Unruh signal. In generality, photons entering a photodiode are converted into electrons
which are then subsequently multiplied to obtain a measurable signal. Photons are excitations
of the electromagnetic field, so let us have a closer look at the quantum mechanical description
of this field. An electric field propagating in z direction can be written as

Ê(t,x) =
∫ ∞

−∞
dω Eωâωe−i(ωt−kz) = Ê

+(t, z) + Ê
−(t, z) , (4.1)

where in the last step we split it into a positive and negative frequency part [115]

Ê
(+)(t,x) =

∫ ∞

0
dω Eωâωe−i(ωt−kz) , (4.2)

with Ê
(+)(t,x) =

(
Ê

(−)(t,x)
)†

and annihilation operator âω. This split allows one to define
the electromagnetic vacuum as the state for which

Ê
(+)(t,x) |0⟩ = 0 . (4.3)

In the following, we will work with one component of the electric field Ê(t,x) only.

t′ t′ + τd
t

Ge
τdi(

t)

a)

t′ t′ + τd
t

nGeτd

b)

Figure 4.1 (Photodetection) a) Single photodetection with photo current i(t ∈ [t′, t′ + τd]) = Ge
τd

during pulse width τd. b) Multi-photon detection during interval [t′, t′ + τd] each triggering an additional
current of Ge

τd
.

Classically, the photocurrent at the photo diode i(t) recorded during the interval [t − τd, t]
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is simply (see figure 4.1)

i(t) =
∫ t

t−τd

dn(t′)F (t′) = n
Ge

τd
, (4.4)

where F (t) is a function that determines the current generated by each photodetection event and
n the total number of events occurring in that time interval. In the case of a time-independent
response, it is given by F (t) = eG/τd, where e is the electron charge and G is the gain of the
detector.

In the following, we want to connect this classical photocurrent to the quantum mechanical
flux using Carmichael’s framework of photodetection [116]. The detection takes place at position
z = zd, which will be treated as constant. As such, we will omit any reference to the spatial
coordinate, implicitly assuming all relevant quantities are evaluated at the detector position.
Carmichael uses a probability approach in which the average of the classical photocurrent can
be expressed as the sum of detected events weighted with their respective probabilities

i(t) = Ge

τd

∞∑
n=0

np(n, t− τd, t) , (4.5)

where p(n, t− τd, t) is the probability for n photodetection events during the interval [t− τd, t].
Using the photon counting formula we find [117]

p(n, t− τd, t) =
〈

: (Ω̂(t− τd, t))n

n! exp
{

−Ω̂(t− τd, t)
}

:
〉
, (4.6)

where Ω̂ is given as the integrated intensity operator (4.8)

Ω̂(t− τd, t) = 4πϵ0cA⊥
ℏωc

∫ t

t−τd

dt′ Î(t′) , (4.7)

with carrier frequency of the electric field ωc and photon flux cross section A⊥. The colons
indicate time and normal ordering with time ordering meaning that time arguments increase
from right to left in any product of annihilation operators. Since Glauber, we know that the
intensity of a radiation field is not the square of the electromagnetic field but rather the normal
ordered product [118]

Î(t, z) = Ê(−)(t, z)Ê(+)(t, z) . (4.8)

Using the photon counting formula, the average of the classical photocurrent can be written as

i(t) = Ge

τd
⟨: Ω(t− τd, t) :⟩ . (4.9)

This photo counting approach accounts for the fact that there might be several events during
the measurement period τd (see figure 4.1 b)). Thus, with this formalism one can calculate more
interesting quantities, such as correlators for the classical photocurrent

Gi(τ) = i(t+ τ)i∗(t) = lim
T→∞

1
T

∫ T/2

−T/2
dt i(t+ τ)i∗(t) . (4.10)

Here, one has to be more careful as there might be overlapping detection intervals contributing
to each photo current. In a first step, we can safely assume that τ > τd, so that none of the
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photon counts from i(0) contribute to i(τ). Similar to the calculation above, we find [117]

i(τ)i(0) =
(
Ge

τd

)2 〈
: Ω̂(τ − τd, τ)Ω̂(−τd, 0) :

〉
for τ > τd . (4.11)

Now, consider overlapping intervals as shown in figure 4.1 leading to a photon self-correlation.
The correlator can then be split in three segments, one only contributing to i(0), one contributing
to i(τ) and one contributing two both. A statistical analysis shows that [116]

i(τ)i(0) =
(
Ge

τd

)2 〈
: Ω̂(τ − τd, τ)Ω̂(−τd, 0) :

〉
+
〈
: Ω̂(τ − τd, 0) :

〉
for τ < τd . (4.12)

Combining the results for τ < τd and τ > τd, we find

i(τ)i(0) =
(
Ge

τd

)2 (〈
: Ω̂(τ − τd, τ)Ω̂(−τd, 0) :

〉
+ Θ(τd − τ)

〈
: Ω̂(τ − τd, 0) :

〉)
. (4.13)

The result above is a central element of the following analysis as it provides a formalism to con-
nect the correlator of the classically measured current at the photo diode i(t) with the quantum
mechanical correlator of the photon flux Î. For τd much shorter than the field correlation times,
i.e. we assume the integrand in Ω to not change significantly over the time τd, we may write

i(τ)i(0) =
(
Ge

2ϵ0cA⊥
ℏωc

)2 〈
: Î(τ)Î(0) :

〉
+ (Ge)2 2ϵ0cA⊥

ℏωc
Θ(τd − τ)τ − τd

τ2
d

〈
: Î(0) :

〉
. (4.14)

Explicitly, the time and normal ordering for τ > 0, as indicated by the colons, is defined as

⟨: Î(t+ τ)Î(t) :⟩ ∼ ⟨â†(t)â†(t+ τ)â(t+ τ)â(t)⟩ . (4.15)

In the linearised version with â(t) = α0 + δâ(t) that will be presented in this chapter, the first
term in equation (4.14) dominates and we find [119]

i(τ)i(0) ≈
(
Ge

2ϵ0cA⊥
ℏωc

)2 〈
: Î(τ)Î(0) :

〉
. (4.16)

As this linearisation procedure will be predominant in this section, we will work with the sim-
plified approximation above.

A Note on Quantum Efficiency. In an idealised world, each photon produces exactly one
electron in the photo detector which means the photo current is given by the numbers of photons
times a constant conversion factor. Most of the real world detectors, however, most likely do
not have this efficiency. In those detectors each photon produces one electron with probability
η ≤ 1, which is called quantum efficiency. If we wanted to model such a detector we would need
to combine a beam splitter with an idealised photo detector, such as in figure 4.2. The detected
photocurrent is then

Î(t) ∼ â†
η(t)âη(t) , (4.17)
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with âη(t) given by 1

âη(t) = √
ηâ(t) −

√
1 − ηδâ0(t) . (4.18)

Here, δâ0(t) are vacuum fluctuations entering through the second input port of the beam splitter.
Throughout this thesis, however, we use a quantum efficiency of η = 1 unless specified otherwise.

â(t)

δâ0(t)

âη(t)

Figure 4.2 (Realistic De-
tector) A realistic detector
consists of a beam splitter with
transmission coefficient η <
1 and an ideal photodetector.
The reflected part is the loss
in the photodetection process,
which is not being detected.

4.1.1 Power Spectral Densities

Now, we can apply the previous findings to power spectral densities of classical photo currents.
The PSD is given by the ensemble average of windowed Fourier transforms of the photocur-
rent [119]

Si(ω) = lim
T→∞

1
T
i∗T (ω)iT (ω) , (4.19)

where the windowed Fourier transform is given by

iT (ω) = 1√
T

∫ T/2

−T/2
dt i(t)e−iωt . (4.20)

The Wiener-Khinchin theorem allows us to connect the power spectral density (PSD) of the
photocurrent to its autocorrelation function

Si(ω) =
∫ ∞

−∞
dτ e−iωτ i∗(t+ τ)i(t)t=0 , (4.21)

which states that the PSD is essentially the Fourier transform of the autocorrelation function.
This is the same definition as we used before for operators in equation (3.66). An important
consequence arises for real signals, such as i(t), where we have i∗(ω) = i(−ω), such that Si(ω)
is real and

Si(ω) = Si(−ω) , (4.22)

which can be seen directly from the definition of Si(ω) using the fact that i(ω)i∗(ω) = i∗(ω)i(ω).
The PSD of any classical signal is therefore symmetric with respect to ω, however, this is in

1For details on beam splitters see section 4.3.
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general not true for the PSD of operators SÎ(ω) with
[
Î(t), Î(t′)

]
̸= 0.

Now we can use equation (4.14) for the correlator of the classical photocurrent and slightly
rewrite the expectation value of the normal/time ordered product as a symmetric and an anti-
symmetric part 〈

: Î(τ)Î(0) :
〉

= 1
2
〈
:
{
Î(τ), Î(0)

}
+
[
Î(τ), Î(0)

]
:
〉
. (4.23)

Using this expression the PSD becomes

Si(ω) = S Î(ω) + 1
2

∫ ∞

−∞
dτ eiωτ sgn(τ) ⟨:

[
Î(τ), Î(0)

]
:⟩ , (4.24)

where we defined the symmetrised PSD of Î as

S Î(ω) = 1
2

∫ ∞

−∞
dτ eiωτ ⟨:

{
Î(τ), Î(0)

}
:⟩ . (4.25)

The sign function above appears due to the time-ordering within the expectation value. Within
the linearisation approximation, the first term of equation (4.24) dominates and we see the
important result that photodetection will always produce a symmetrised power spectral den-
sity [119]

Si(ω) = S Î(ω) . (4.26)

4.1.2 Perturbations and Noise

Most generally, we can define fluctuations of any quantity as deviations from its mean value. In
particular, for the number operator, we can write

δn̂ = n̂− ⟨n̂⟩ . (4.27)

Here, we only consider noise that is inherently present in the laser, neglecting at first instance
other noise sources such as induced noise during the photodetection process. The fluctuations
in the measured photo current are therefore caused by fluctuations of the number operators.
In the following, we want to calculate those fluctuations in the number operator, assuming a
coherent state. We know that the Hamiltonian of the free electromagnetic field is

H ∼
∫

dωℏωâ†
ωâω . (4.28)

A coherent state |α⟩ with amplitude α and frequency ωL can be achieved by acting with the
displacement operator D(α) on the vacuum state |0⟩ [60]

|α⟩ = D̂(α) |0⟩ , (4.29)

with
D̂(α) = eαâ

†
ωL

−α∗âωL . (4.30)

This state has the interesting property that ⟨n̂⟩ = Var(n̂) = |α|2. As the displacement operator
does not explicitly depend on time, we find that annihilation operators of the electromagnetic
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field transform as (using Hadamard’s lemma with s = 1, see appendix A.5)

âω → D̂(α)âωD̂†(α) = αδ(ω − ωL) + âω . (4.31)

Accordingly, the coherent electromagnetic field can be written as

Ê(t, z) = E0(ωL)e−i(ωLt−kz) (α+ δa(t, z)) + h.c. , (4.32)

with
δa(t, z) =

∫ Λ

−Λ
dω δaωe−i(ωt−kz) , (4.33)

being fluctuations in a bandwidth 2Λ about this coherent background. The approximation above
assumes a slowly varying amplitude over the frequencies of the fluctuations, E(ωL±Λ) ≈ E(ωL).
This expression is essentially the semi classical ansatz that we chose in our conceptual detection
scheme of the previous chapter. The last equation tells us, that the electromagnetic field has a
macroscopically occupied mode with frequency ωL and fluctuations in a frequency band ωL± Λ.
Consequently, the number operator as detected at the photo diode with â(t) = α+δâ(t) is given
by

n̂(t) ∼ â†(t)â(t) ≈ |α|2 + |α|
(
e−iφδâ(t) + eiφδâ†(t)

)
, (4.34)

where α = |α|eiφ. Note that the expression above is a linearised approximation, neglecting terms
with higher order in δâ. For future reference, we define the rotated operator with phase φ

δâφ(t) := e−iφδâ(t) + eiφδâ†(t) , (4.35)

such that we could write δn̂(t) = |α|δâφ(t). For any fluctuation in this number operator n̂(t) =
⟨n̂⟩ + δn̂(t) the PSD is given by

Sn̂(ω) =
∫ ∞

−∞
dτ eiωτ

〈
n̂†(τ)n̂(0)

〉
= Sδn̂(ω) , (4.36)

with ⟨δn̂(t)⟩ = 0. In the previous section, we saw that the PSD of the classical current con-
structed by measurements can be linked to the symmetrised PSD of the intensity operator as
given in equation (4.26). The symmetrised PSD of the noisy intensity operator is

Sδn̂(ω) = 1
2 (Sδn̂(ω) + Sδn̂(−ω)) . (4.37)

In an experiment, we measure the photocurrent at the photodiode and then calculate its power
spectrum. The important results of this section showed that this power spectrum can be re-
lated to the symmetrised power spectrum of the photon flux. Knowing what the photon flux
operator is, lets us calculate its symmetrised power spectrum, which will give us insights on the
information that we can experimentally extract from the signal. In the following, we will briefly
introduce some fundamental detection schemes and then go into the detailed modelling of the
BEC and superfluid Helium setup.
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4.1.3 Detection Schemes

Before going into the details of the explicit proposals on how to detect the Unruh effect in various
systems, we quickly want to give an overview of reoccurring ideas throughout this chapter. That
is, we want to discuss the different detection methods such as direct detection, homodyning and
heterodyning 4.3. For a conceptual discussion, we use a single-mode analysis in this section.

â(t) î(t)

â(t)

âLO(t)

î(t)

â(t)

âLO(t)e−i∆LOt

î(t)

a) b) c)

Figure 4.3 a) Direct detection of incoming annihilation operator â(t), b) homodyning method with
local oscillator âLO(t) entering a beam splitter and being recombined in some kind of detection scheme
(shaded area) to the outgoing number operator î(t). c) Heterodyning detection scheme.

The direct detection consists of a device directly measuring incoming photo counts (see figure
4.3a). The photo counts as expressed by creation and annihilation operators has been discussed
previously and is simply given by the number operator n̂(t) = â†(t)â(t).

The other two methods make use of a beam splitter which transforms most generally ingoing
annihilation operators â1 and â2 with a transformation matrix (B)ij . The outgoing annihilation
operators are b̂1 and b̂2 such that(

b̂1
b̂2

)
=
(
B11 B12
B21 B22

)(
â1
â2

)
. (4.38)

The outgoing operators b̂i, i ∈ {1, 2} have to fulfil the same bosonic commutation relations
as the ingoing operators [

b̂i, b̂j
]

=
[
b̂†
i , b̂

†
j

]
= 0, (4.39a)[

b̂i , b̂
†
j

]
= δij . (4.39b)

These commutation relations impose conditions on the matrix elements of B and show that
B ∈ U(2). Solving these equations for the matrix elements of B, we see that any B can
be written in terms of three independent parameters, the transmission coefficient τ , reflection
coefficient ρ = 1 − τ and respective phases Φτ and Φρ [120]. In the following, we assume a
lossless, symmetric beam splitter with τ = ρ = 1/2. In the following, we will use beam splitters
as given by B(1) and omit the superscript
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B(1) = 1√
2

(
1 −1
1 1

)
for Φτ = 2πZ,Φρ = (2Z + 1)π . (4.40)

In the homodyne detection method, the optical field â(t) to be detected is being interfered
with a local oscillator âLO(t) (figure 4.3), using a beam splitter. The output operators of the
beam splitter are

â±(t) = 1√
2

(âLO(t) ± â(t)) . (4.41)

These outputs are independently detected by two photodiodes. The corresponding number
operators of the photon flux are given by

n̂± = â†
±â± . (4.42)

The difference photocurrent is given by

î(t) = n̂+(t) − n̂−(t) = â†
LOâ+ âLOâ

† . (4.43)

If the local oscillator is much brighter then the detectable signal, i.e. |αLO| = | ⟨âLO(t)⟩ | ≫
| ⟨â(t)⟩ |, then we can treat the local oscillator classically. In that case the homodyne difference
photocurrent becomes

î(t) = α∗
LOâ+ αLOâ

† =: |αLO|âθ(t) , (4.44)

with αLO = |αLO|eiθ. Lastly, the heterodyne detection method is in essence the same as the
homodyne detection method, however, the frequency of the local oscillator is offset from the
field to be detected by some detuning ∆LO = ΩLO − ΩL. The detected difference photocurrent
is

î(t) = α∗
LOâei∆LOt + αLOâ

†e−i∆LOt = |αLO|âθ−∆LOt(t) . (4.45)

The quadrature of the detected field thus oscillates with a phase given by the detuning of the
local oscillator. In this section, we introduced three common concepts of detection schemes and
in the next section, we will use the direction detection in the BEC setup and the homodyne
detection method in superfluid Helium.
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4.2 Detectability of the Unruh Effect in BECs

Now that we developed the framework of classical and quantum mechanical photodetection, we
can turn our attention to the detection schemes of the Unruh effect in BECs and later in super-
fluid Helium. This chapter outlines the transformation on the operators of the electromagnetic
field as it interacts with the components of the experiment as proposed in figure 3.3. Eventually,
this allows us to write down a photon flux operator as it is detected at the photodiode. Using the
photodetection framework, we can calculate what the detected signal in an experiment would
be and how to extract the Unruh signal from it. The BEC setup in figure 3.3 can be represented
in a more abstract way as spacetime diagram, given in figure 4.4.
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Figure 4.4 (Spacetime Diagram) Diagram for detection scheme in figure 3.3. Modulator located
at (zM , ctM ), filter at (zF , ctF ), BEC at (zB , ctB) and detector at (zD, ctD). For future reference, each
region with a specific mode content is labelled with Roman numbers I-IV.

The following paragraphs describe how the electromagnetic field operators transform in each
step. We go through the field content in every region of the spacetime diagram 4.4. In particular,
we see how the modulated sidebands helps us extract the signal of the Unruh effect.

I - Incoming Field. The incoming electric field is given by

Ê(t, z) =
∫ ∞

0

dω
2π E0(ω)âωe−iω(t−z) + h.c. , (4.46)

with E0(ω) =
(

ℏω
A⊥ϵ0c

)1/2
. This is the form of an electromagnetic field propagating in just one

direction with only one polarisation as it has been shown in (3.6). In the same manner as the
ansatz in section 3.1, the incoming field is now modelled as a macroscopically occupied mode
with frequency ωL and amplitude α ∈ C [121]

âω = α δ(ω − ωL) + δâω−ωL , (4.47)
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with [δâω , δâ†
ω′ ] = δ(ω − ω′). This expresses the annihilation operator as a central carrier

frequency and perturbations about this frequency or, in other words, a macroscopical, classical
background with (quantum) fluctuations. Thus, we can write (using u = t− z)

Ê(u) = E0(ωL)αe−iωLu +
∫ ωL+Λ

ωL−Λ

dω
2π E0(ω)δâω−ωLe−iωu + h.c. (4.48a)

≡ E0(ωL)e−iωLu (α+ δâ(u)) + h.c. (4.48b)

where in the last line, we used E(ωL + δω) ≈ E(ωL), and we identified the integral as the
Fourier representation of δâ(u). Note that the operators δâ obey the usual bosonic commutation
relations [

δâ(t), δâ(t′)
]

=
[
δâ†(t), δâ†(t′)

]
= 0 , (4.49a)[

δâ(t), δâ†(t′)
]

= 2πδ(t− t′) . (4.49b)

II - Modulation. The next step in figure 4.4 is to modulate the field with frequency ωm.
Mathematically, this modulation is simply a transformation Ê(u) → Ê(u) exp{iM cosωm(u −
um)}, um = tm − zm being the position of the modulator. For a small modulation index M , the
exponential can be expanded up to linear order in M ,

Ê(u) → Ê(u)
(

1 + iM
2
(
eiωm(u−um) + e−iωm(u−um)

))
, (4.50)

where we have written the cosine as exponentials. Using the expression for Ê(u) from above, this
transformation can be rewritten as a transformation on the coherent amplitude and fluctuation
operators. We see that the coherent amplitude α transforms as

α → α(u) = α+ α+e−iωmu + α−eiωmu , (4.51)

where we defined α± = iMα
2 e±iωmum = Mα

2 ei(π±ωmum) with |α+| = |α−|. We find similar
transformations for the operators δâ

δâ(u) → δâ(u) + δâ+(u)e−iωmu + δâ−(u)eiωmu , (4.52)

with δâ±(u) = iMδâ(±)(u)
2 e±iωmum . This modulation creates the two desired sidebands with

frequencies ωL ± ωm.

A note on sideband operators δâ(±). Note, how we defined the operators before the
modulation in equation (4.48)

δâ(u) =
∫ Λ

−Λ

dν
2π δâνe−iνu (4.53)

with ν = ω − ωL. The mode operators δâν describe fluctuations around the central laser fre-
quency. Equivalently, the operators δâν,± in the Fourier representation of δâ(±)|(u) describe
fluctuations around the side band frequencies. These are operators of the same electromag-
netic field, however, at different frequencies ωL ± ωm + ν. The sideband operators obey the
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commutation relations[
δâ±(u), δâ±(u′)

]
=

[
δâ†

±(u), δâ†
±(u′)

]
= 0 , (4.54a)[

δâ±(u), δâ†
±(u′)

]
= πM2

2 δ(u− u′) . (4.54b)

ωL

Λ

a) I

δ− ωL δ+

b) II

δ− δ+

c) III

δ− δ+

2∆

d) IV

Frequency

A
m

p
li

tu
d

e

Figure 4.5 (Frequency Content) Modulation and filtering process with blue lines corresponding
to macroscopically occupied frequencies and grey area indicating frequency range of noise. a) initial
electromagnetic field with macroscopic single mode occupation with frequency ωL corresponding to region
I, b) Modulator, sideband modulation with modulation frequency ωM and detuning δ± = ωL ± ωM

corresponding to region II, c) Filter, filtering of carrier frequency corresponding to region III.

III - Central Frequency Filtering. All the transformations so far happen to a coherent
input state with frequency ωL. The modulation creates two sidebands with frequencies ωL±ωM
as can be seen from the transformations above. In consequence, the only term propagating with
the original input frequency is the first term of equations (4.51) and (4.52). In the next step,
this central frequency ωL is being filtered out resulting in

α(u) → α(u) = e−iωmuα+ + eiωmuα− , (4.55a)
δâ(u) → δâ(u) = e−iωmuδâ+(u) + eiωmuδâ−(u) . (4.55b)

After this filtering process we may want to write the operators of the electromagnetic field as

â± = e±iωmu (α± + δâ±) , (4.56)

which show that the electromagnetic field consists of two macroscopically occupied modes at
frequencies ωL ± ωM and fluctuations of a certain frequency range around it.

We can now introduce the common and difference modes using the phase shifted operators
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e∓iωmumδâ± and the sideband operators after the latest transformation (4.55b)

ẑ(u) = 1√
2

(
e−iωmumδâ+(u) + eiωmumδâ−(u)

)
, (4.57a)

Ẑ(u) = 1√
2

(
e−iωmumδâ+(u) − eiωmumδâ−(u)

)
. (4.57b)

Note again, that δâ±(u) contain operators at different frequencies.
This transformation can be inverted to find

δâ±(u) = 1√
2

e±iωmum (z(u)) ± Z(u)) , (4.58)

which can be used to represent the operator after the transformation in equation (4.55b)

δâ(u) =
√

2 cos (ωm(u+ um)) ẑ(u) + i
√

2 sin (ωm(u+ um)) Ẑ(u) . (4.59)

This definition is useful as these operators have a particularly convenient transformation under
the interaction with the BEC.

IV - Interaction with BEC. In equation (3.62) of the previous chapter we saw how the
BEC interacts with the laser. The density fluctuations are dumped into the laser phase fluctua-
tions. Thus, we can write this interaction as a transformation on the operators before the BEC
interaction

â±(u) → â±(u) = e∓i ϵ
2 δρ(u) (α± + δâ±(u)) , (4.60)

where δρ(u) ≡ δρ (t− |z|,X(t− |z|)) are the density perturbations coming from the position
X(t) in the BEC plane. This is a transformation corresponding to the solution of the equation
of motion for the laser phase fluctuations as shown in (3.62). This solution tells us that the
BEC density fluctuations transduce into the phase of the electric field. Equivalently, this can
be written as an additional phase of the annihilation operator as shown above. A quick remark
on the sign of δρ̂. From the discussion of the polarisability we have seen that the sign for each
side band is the opposite. The solution to the equation of motion tells us that the phase shift is
positive for positive frequency modulation and negative for negative frequency modulation.

The transformation above can be expanded for small ϵ up to linear order where we omit the
negligible product of ϵδρδâ. After some rearrangement we obtain

â±(u) → α± + δâ±(u) ∓ i ϵ2α±δρ(u) , (4.61)

from which we can see that the interaction with the BEC is essentially a transformation on
δâ±(u) with

δâ±(u) → δâ±(u) ∓ i ϵ2α±δρ(u) . (4.62)

This is a result as expected from the conceptual discussion of this setup. The solution to the semi
classical ansatz of perturbations about a background showed that the BEC density fluctuations
contribute to the fluctuation content, which is exactly what we use in the transformation on
operator level above. The beauty of those phase shifted common and difference operators in
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equation (4.57) is their transformation behaviour according to equation (4.62)

ẑ(u) → ẑ(u) , (4.63a)

Ẑ(u) → Ẑ(u) + ϵ√
2
Mα

2 δρ(u) . (4.63b)

This shows that

δâ(u) →
√

2 cos (ωm(u+ um)) ẑ(u) + i
√

2 sin (ωm(u+ um)) Ẑ(u)

+ i ϵ2Mα sin (ωm(u+ um)) δρ̂(u) . (4.64)

Remember, that the interaction with the BEC is just a transformation on δâ, such that the
coherent amplitudes are still given by equation (4.47). As seen in (3.48), we can write the BEC
field as a mode expansion

δρ(u) =
∫ ∆

0

dν
2π

(
e−iνuD̂ν + eiνuD̂†

ν

)
(4.65a)

=
∫ ∆

−∆

dν
2π e−iνu

(
D̂νΘ(ν) + D̂†

−νΘ(−ν)
)
. (4.65b)

as well as the sideband operators

δâ±(u) =
∫ Λ

−Λ
dν e−iνuδâν,± . (4.66)

Here, bear in mind that only the time dependence is shown as the BEC density field is evaluated
at the point of interaction and then detected at the photodiode. Any normalisation factor
appearing in (3.48) has been absorbed into the definition of D̂ν . Similarly to the definitions
above, we define the operators Ẑν in momentum space, however, note that this operator contains
annihilation operators from each sideband. Using the spectral decomposition for each respective
operator we see that for ν > 0

Ẑν → Ẑν + iµeiφD̂ν , (4.67a)

Ẑ−ν → Ẑ−ν + iµeiφD̂†
−ν , (4.67b)

where for brevity we have defined µ = − ϵ√
2
M |α|

2 ∈ R with φ being the phase of iα.

Bogoliubov Transformation. The operators after the interaction have to obey well defined
bosonic commutation relations. This may not be satisfied if one considers the transformation
only up to order µ, as we did above. In the following, we want to derive a transformation oper-
ation for the interaction with the BEC that fully retrieves the bosonic commutation relations.
More general, we can express the transformation above as Bogoliubov transformation such that
for any operator X̂i ∈

{
Ẑν , Ẑ−ν , D̂ν

}
we find

X̃i = αijX̂j + βijX̂
†
j , (4.68)
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where the tilde indicates operators after the interaction with the BEC and summation over
repeated indices is implied. After all, the transformed operators still have to obey the usual
commutation relations, i.e.

[
X̃i, X̃j

]
= 0 and

[
X̃i , X̃

†
j

]
= δij . These commutation relations

impose the conditions

αikβjk − βikαjk = 0 , (4.69a)
αikα

∗
jk − βikβ

∗
jk = δij . (4.69b)

Equations (4.67) suggest that to lowest order we can write αij = δij + δαij and βij = δβij for
which the conditions in equations (4.69) yield

δβji = δβij , (4.70a)
δαij = − δα∗

ji . (4.70b)

For the sake of this discussion, let us absorb the phase φ appearing in (4.67) into the operators Ẑ.
Comparing (4.67) with the expression above we find δα13 = −δα∗

31 = iµ and δβ23 = δβ32 = iµ.
Consequently, the BEC operators transform like [122]

D̂ν → D̂ν + iµ
(
Ẑν + Ẑ†

−ν

)
. (4.71)

Furthermore, we can write this Bogoliubov transformation in matrix form(
X̃i

X̃†
k

)
=

(
αij βil
β∗
ki α∗

kl

)(
X̂i

X̂†
l

)
, (4.72)

which to lowest order in µ can be written as(
X̃i

X̃†
k

)
=

[(
δij 0
0 δkl

)
+
(
δαij δβil
δβ∗

ki δα∗
kl

)](
X̂i

X̂†
l

)
, (4.73)

using the delta expressions as before. As can be seen from the explicit transformation, the
matrix containing all the deltas is proportional to µ such that

d
dµ

(
X̃i

X̃†
k

)
= M

(
X̃i

X̃†
k

)∣∣∣∣∣
µ=0

, (4.74)

with M being the derivative with respect to µ of the delta matrix above. The equation can be
extended to a differential equation d

dµ Ũ = MŨ and easily solved with an exponential function.
More explicitly, we find (

X̃i

X̃†
k

)
=

[
I + µM + 1

2µ
2M2

](
X̂i

X̂†
l

)
, (4.75)

where the the key of this approach is that M3 = 0, which means the Taylor expansion of the
exponential has a finite amount of elements. More specifically, any order in µ higher than 2 van-
ishes. We show the explicit form of M in appendix B.3. We obtain the following transformation
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valid to all orders in µ

Ẑν →
(

1 − µ2

2

)
Ẑν + iµeiφD̂ν − µ2

2 e2iφẐ†
−ν , (4.76a)

Ẑ−ν →
(

1 + µ2

2

)
Ẑ−ν + iµeiφD̂†

ν + µ2

2 e2iφẐ†
ν , (4.76b)

D̂ν → D̂ν + iµ
(
e−iφẐν + eiφẐ†

−ν

)
. (4.76c)

These transformations show an important result of the two sideband setup and why this setup
acts as an interferometer in frequency space – the interaction de-amplifies the modes Ẑν and
amplifies the modes Ẑ−ν ! In contrast, the BEC modes are neither amplified nor de-amplified.
In addition, we see that there is additional noise injected into each of those operators.

In a last step, let us define a set of new operators

Ẑφν = 1√
2

(
e−iφẐν + eiφẐ†

−ν

)
. (4.77)

Rewriting the Bogoliubov transformations in terms of this new operator, we find

Ẑν → Ẑν + iµeiφD̂ν − µ2
√

2
eiφẐφν , (4.78a)

Ẑ−ν → Ẑ−ν + iµeiφD̂†
ν + µ2

√
2

eiφẐφ−ν , (4.78b)

D̂ν → D̂ν +
√

2iµẐφν . (4.78c)

This transformation can be expressed in real space as

Ẑ(u) → Ẑ(u) + iµeiφδρ̂(u) − µ2
√

2
eiφ
∫ ∆

−∆

dν
2π e−iνuẐφν (u) sgn(u) , (4.79)

and shows how the difference mode transforms under the interaction with the BEC. In equation
(4.59), we expressed the annihilation operator in terms of ẑ and Ẑ. Since we now know how these
operators transform, we know how the original annihilation operators transform. According
to the transformation above, the fluctuations in the electromagnetic field have a shot noise
contribution (sn), a BEC contribution (bec) and a back-action contribution (ba), such that
(using (4.59) and (4.78))

δâ(u) → δâsn(u) + δâbec(u) + δâba(u) , (4.80)

with

δâsn(u) =
√

2 cos (ωm(u+ um)) ẑ(u) + i
√

2 sin (ωm(u+ um)) Ẑ(u) , (4.81a)
δâbec(u) = −

√
2µ sin (ωm(u+ um)) eiφδρ̂(u) , (4.81b)

δâba(u) = − iµ2 sin (ωm(u+ um)) eiφ
∫ ∆

−∆

dν
2π e−iνuẐφν (u) sgn(u) . (4.81c)
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Summary - Input/Output. In this section, we saw how the initial electromagnetic field
transformed in our proposed BEC detection scheme. We have outlined how the field opera-
tors transform in each step and found that we can express the electromagnetic field after its
interaction with the BEC as a coherent amplitude given by (see equation (4.55a))

α(u) = iMα cos (ωm(u+ uM )) , (4.82)

and fluctuations about the carrier frequencies of the two sidebands (4.81).

This final expression for the operators of the electromagnetic field allows us to calculate
the photon flux at the photodiode. As mentioned in the beginning of this chapter, the power
spectral density of the photon flux can then be related to the power spectrum of the measured
photocurrent of the photodiode. In the next section, we combine the results of the explicit
photodetector model and this detection scheme to derive an expression for the PSD and how
the BEC correlations can be extracted to measure the Unruh effect.

Detection. The laser is directly detected with a single photodiode (see direct detection in
section 4.1.3). In this section, we will first look at the explicit form of the number operator
based on the transformations in the previous section and then construct the PSD of the photon
flux. Finally, we show how to extract the Unruh effect signal from the photocurrent PSD. The
frequency structure of the modes in the electromagnetic field after the interaction with the BEC
is represented in figure 4.5 (d), i.e. two carrier frequencies at ωL±ωm, shot noise at ωL±ωm±Λ
and BEC density fluctuations at ωL ± ωm ± ∆. In addition, those frequencies obey the scale
ωL ≫ ωm ≫ ∆.

As shown in equation (4.34), the number operator for a coherent electromagnetic field can
be expressed as a contribution from the coherent carrier frequencies (using equation (4.82))

⟨n̂⟩ = |α(u)|2 = M2|α|2 cos2 (ωm(u+ uM )) , (4.83)

and fluctuations about this coherent background

δn̂(u) = M |α| cos (ωm(u+ uM )) δâφ(u) , (4.84)

where δâφ(u) as defined in equation (4.35) is the rotated operator of all fluctuations (4.81). We
saw that the fluctuations operator contains several contributions from different operators, whose
rotated operators are given by

δâφsn(u) =
√

2 cos (ωm(u+ um)) ẑφ(u)

+ i
√

2 sin (ωm(u+ um))
(
e−iφẐ(u) − eiφẐ†(u)

)
, (4.85a)

δâφbec(u) = − 2
√

2µ sin (ωm(u+ um)) δρ̂(u) , (4.85b)

δâφba(u) = − 2iµ2 sin (ωm(u+ um))
∫ ∆

−∆

dν
2π e−iνu

(
e−iφẐν(u) − eiφẐ†

ν

)
sgn(ν) . (4.85c)

The first expression are the non-interacting shot noise fluctuations, leading to fluctuations in
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the photon flux2

δn̂sn(u) = M |α|
√

2 cos2 (ωm(u+ um)) ẑφ(u)+
M |α|√

2
i sin (2ωm(u+ um))

(
e−iφẐ(u) − eiφẐ†(u)

)
. (4.86)

Accordingly, we find for the BEC contribution in the photon flux

δn̂bec(u) = −
√

2M |α|µ sin (2ωm(u+ um)) δρ̂(u) , (4.87)

and for the back-action contribution

δn̂ba(u) = − iµ2M |α| sin (2ωm(u+ um))
∫ ∆

−∆

dν
2π e−iνu

(
e−iφẐν(u) − eiφẐ†

ν

)
sgn(ν) . (4.88)

The classical photocurrent detected at the photodiode therefore also contains contributions of
each of those fluctuations. By measuring correlations in the classical photocurrent the question
naturally arises what we can extract about correlations in the BEC density field, which is the
interesting part for the Unruh effect. In the beginning of this chapter, we already saw that the
power spectral density of a noisy operator is simply the PSD of collective fluctuations. As the
fluctuations are composed of different constituents, the PSD of photon flux fluctuations will be
the sum of PSDs of all possible combinations of those constituents.

First, let us focus on the most interesting part, the BEC density correlations in the power
spectrum. From equation (4.87) we can tell that the BEC signal appears at frequencies ω ∈
[2ωm − ∆, 2ωm + ∆] at order µ2 in the PSD. The PSD of density fluctuations in the photon flux
is given by

Sbec(ω) =
∫ ∞

−∞
dt eiωu ⟨δn̂†

δρ(u)δn̂δρ(0)⟩ . (4.89)

Using equation (4.87), we find for the PSD at frequencies 2ωm + ν

Sbec(2ωm + ν) = − 2iM2|α|2µ2 sin(2ωmum)ei2ωmumSδρ(ν) , (4.90)

where Sδρ(ν) is the PSD of the operator δρ̂. Subsequently, the symmetrised PSD is

Sbec(2ωm + ν) = − iM2|α|2µ2 sin(2ωmum)
(
ei2ωmumSδρ(ν) − e−i2ωmumSδρ(−ν)

)
, (4.91)

which is the part that we can experimentally access in the power spectrum of the photocurrent
(see (4.26)). Using this expression, we see that the following linear combination yields the PSD
of the BEC density fluctuations at frequencies ν

Sδρ(ν) = ei2ωmumSbec(2ωm + ν) + e−i2ωmumSbec(2ωm − ν)
2M2|α|2µ2 sin(2ωmum) sin(4ωmum) . (4.92)

Now that we know where in the spectrum the Unruh signal is to be expected, we have to estimate
the noise content at these frequencies in order to be able to detect it. The power spectrum in
general contains parts to several orders in µ. As µ is considered a small coupling, higher orders
of µ are negligible small and we only consider contributions up to order µ2. The back-action

2Using 2 sin(x) cos(x) = sin(2x).
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correlator is such a contribution at order µ4. Most crucially, we see that those contributions all
appear at different orders in µ.

The shot noise contribution to the PSD is unaffected by the interaction with the BEC and
can be calculated using (4.86). As we are interested in the signal around 2ωm, we can calculate
the shot noise power at those frequencies. The shot noise number operator at frequencies 2ωm+ν
can be calculated to

δn̂sn,2ωm+ν = M |α|
2 e−iωmum

(
e−iφδâ+,ν + eiφδâ†

−,−ν

)
, (4.93)

using the spectral decomposition of (4.86). The shot noise spectrum at frequencies 2ωm is then
given by

Ssn(2ωm) =
∫ ∆

−∆
dν ⟨δn̂†

2ωm
δn̂2ωm+ν⟩ =

(
M |α|

2

)2
. (4.94)

Besides the BEC contributions, there are cross-correlations of the back-action with the shot
noise at order µ2 in the PSD. The corresponding calculations can be done using the material
that has been presented in this section, however, for the moment we want to focus on the BEC
signal and the shot noise.

The shot noise power in equation (4.94) scales with |α|2, which is the coherent amplitude
and therefore proportional to the intensity of the electromagnetic field (equation 3.13). In con-
trast, the BEC power in equation (4.91) scales with |α|2µ2. Since µ ∼ |α|, the BEC power is
proportional to the squared intensity of the electromagnetic field. An increase in the intensity of
the electromagnetic field will therefore increase the BEC power more than the shot noise power.
Consequently, we could increase the intensity to optimise the signal-to-noise ratio, defined as
the BEC power over shot noise power, however, note that the maximum power, that can be
used in the actual experiment, is constraint by the scattering rate (3.14).

This conclusion supports the results in the section about the conceptual outline of this
experiment (see equation (3.90)). Furthermore, we have provided a supplementary derivation of
the power spectrum based on the operator description of the electromagnetic field and photon
counting processes at the photodiode. In the next section, we briefly outline how these findings
can be used in the superfluid Helium analogue.
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4.3 Detectability of the Unruh Effect in Superfluid Helium-4

In the previous section, we derived in detail what the measured power spectrum in the BEC
analogue experiment would be. As mentioned earlier, there are some differences in the superfluid
Helium analogue. Foremost, the resonance frequencies in Helium do not allow for a sideband
structure. This entails that the photon pressure could have a non-negligible effect on superfluid
Helium (see section 3.3) and consequently, the Bogoliubov transformation looks slightly different.
In order to extract the phase information of the laser, we will have to use interferometric setups,
such as a homodyning detection scheme. The setup as proposed in the previous chapter (see
figure 3.7) consists of two beam splitters and the superfluid Helium sample inducing a phase
shift in one of the interferometer arms. Figure 4.6 shows the last step of this setup, namely the
combination of signal and reference arm at the last beam splitter and subsequent detection.

BS
Signal

Reference

PD1

PD2

Figure 4.6 (Interferomet-
ric Setup) Homodyning setup
for superfluid Helium-4 (for full
schematics see 3.7). The sig-
nal and reference arm are com-
bined at a beam splitter (BS)
and subsequently detected in
two photodiodes (PD1,PD2).

Detailed calculations on how to obtain the power spectrum of the measured signal is subject
of ongoing research, however, we briefly outline conceptually how the results of the previous
section can be used in this setup. Formally, the interaction is given by equation (3.125), which
shows that the height fluctuation transduce into the laser phase. This interaction is the very same
as in the BEC proposal, however, this setup is slightly easier to treat than the BEC setup as it
only has one carrier frequency, instead of two sidebands. As such, the Bogoliubov transformation
look similar evaluated for one sideband only, although there is some care necessary as the BEC
Bogoliubov transformation assumed that the zero order contribution of the laser on the BEC
is cancelled out by the two sideband structure. This needs to be accounted for in superfluid
Helium and could modify the result of the Bogoliubov transformation.

Furthermore, we can use the homodyning description of section 4.1.3 to find the detected
signal at the photodiodes. Using the homodyning photocurrent, the signal extraction procedure
looks similar to the one presented in the previous section. In particular, one has to look at which
frequencies the correlations of height fluctuations in Helium appear and what the noise content
is. This allows us to calculate the corresponding power spectra and define a signal-to-noise ratio,
similarly to the one in the conceptual discussion.
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4.4 Summary

In this chapter, we have derived the transformations on the operators of the electromagnetic
field, as it interacts with the components of the experiment. For this purpose, we presented first
the modelling of the photodetection process and showed that by calculating the power spectrum
of the measured photocurrent at a photodiode, we retrieve the symmetrised power spectrum of
the photon flux.

In order to apply this result to the analogues presented in the previous chapter, we calculated
the photon flux explicitly for the BEC analogue. We showed that each element of the experi-
ment imposes a transformation on the operators of the electromagnetic field. The key element
of these transformations was the interaction with the BEC, which can be conveniently written
as a Bogoliubov transformation on the operators of the electromagnetic field and the BEC. This
made clear that the BEC interaction amplifies certain modes in the electromagnetic field and
de-amplifies others. On the other hand, the electromagnetic field induces noise in the BEC,
causing back-action contributions. We showed that the symmetrised power spectrum of the
photon flux consequently contains contributions from the shot noise, the BEC and back-action.
We derived a formalism how to extract the BEC correlations in a certain frequency regime of
the symmetrised PSD and calculated the shot noise power at those frequencies. We identified
the relevant scaling of the corresponding SNR, defined as the BEC power over the shot noise
power, with the intensity of the electromagnetic field and compared it to the discussion of the
conceptual setup in the previous chapter.

We then gave a brief outlook on how this modelling can be applied to superfluid Helium.
The crucial difference in this analogue is that, compared to the BEC, a sideband structure with
opposite detuning from resonance frequencies of Helium is not feasible experimentally. This has
multiple consequences. First, in order to resolve the phase of the laser in which the Unruh sig-
nal is expected, we need, for example, a homodyning setup instead of a direct photo detection.
Second, this changes the Bogoliubov transformation for the interaction with Helium, which re-
quires a more careful treatment. The details of this transformation and the signal extraction
are subject of further research.

The calculations in this chapter complement the experimental considerations in the previous
chapter and provides an exact formalism how the signal of the Unruh effect can be extracted in
an experiment.





V

Experiment

The goal in this chapter is to establish a series of experiments that can be used to measure the
Unruh effect in superfluid Helium-4 with a continuous, localised laser beam. The experimental
proposal is based on the setup in [57, 58]. The first step is to build an experiment to measure
thermal surface fluctuations on classical fluids. The main focus of this chapter is to establish a
low noise detection scheme. One way to achieve this is a confocal microscope setup. Once we
have introduced a setup for classical fluids we give an outlook on how this experiment can be
extended to superfluids in order to measure the analogue Unruh effect.
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5.1 Thermal Fluctuations on Classical Fluids

In this section, we present a detection scheme for thermal interface fluctuations on classical
fluids as suggested in [57]. The detection method is a variation of confocal microscopy with the
key elements being a pinhole aperture in combination with a focusing lens. Before we go into
the explicit experimental setup, we will provide a brief theory introduction to power spectra of
height fluctuations on classical fluids.

5.1.1 Power Spectrum of Height Fluctuations

The dynamics of an incompressible fluid with surface tension σ, viscosity η, density ρ, velocity
u, and pressure p is described by the Navier-Stokes equation and the incompressibility condi-
tion [123]. Linearising the pressure p → p0 + p and velocity u → u0 + u around a background
yields the linearised Navier-Stokes equation

∂tu = − ∇p
ρ

+ η

ρ
∇2u , (5.1a)

∇ · u = 0 . (5.1b)

Eventually, we are interested in the power spectrum of the height fluctuations on the surface,
namely

Sδh(ω,k) =
∫ ∞

−∞
dt eiωt ⟨δh(t,k)δh∗(0,k)⟩ . (5.2)

Note that most generally in the literature, the fluid is assumed to be semi-infinite with a surface
at z = 0 and a no-slip boundary condition u → 0 for z → −∞. This gives us an expression for
the Laplace and Fourier transform of the velocity perturbation at the surface of the liquid. Then
we identify the time derivative of the height field on the surface with the velocity perturbations,
i.e. ∂tδh = uz to obtain an expression for the Laplace and Fourier transform of the height
fluctuations. This expression can in turn be used to calculate the power spectrum in equation
(5.2). The final result for the power spectrum of height fluctuations on a classical fluid at
temperature T is

Sδh(ω,k) = k

ρ

(
ρ

2ηk2

)2 Im
{

i ωρ
ηk2 −

√
1 − i ωρ

2ηk2

}
∣∣∣∣ σρ4η2k +

(
1 − i ωρ

2ηk2

)2
−
√

1 − i ωρ
2ηk2

∣∣∣∣2
kBT

ωπ
. (5.3)

The expression above can be generalised for a system of two fluids that do not mix, such as
air/water interfaces or oil/water interfaces. In such a case, we simply replace η = η1 + η2 and
ρ = ρ1 + ρ2.

The crucial assumption behind the derivation of the spectrum (5.3) is the one of a semi-
infinite fluid. Aoki and Mitsui [57, 58] claim that their experimental data of their proposed
setup fits this theoretical prediction quite well. In the detection scheme that we will introduce
in this chapter, the boundary conditions are different as the fluid sample is contained in a finite
size basin. The difference in the boundary condition will therefore have an effect on the explicit
form of the power spectrum. For a conceptual discussion, let us look at the expression for the
height field in our setup. The basin is a cylindrical shaped container of height h0, so it is natural
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to decompose the height field into a radial, angular and time-dependent part

δh(t, r, θ) = R(r)Θ(θ)T (t) . (5.4)

This ansatz can be used in the dynamic equations (5.1) and proceeding with this separation
ansatz, we see that the t- and θ-dependent parts obey wave equations. Solving the equations
for R, Θ and T shows that the height fluctuations can be written as

δh(t, r, θ) =
∑
m

cos(mθ)Jm(kr)T (t) , (5.5)

where Jm are Bessel functions of the first kind. What are the exact boundary conditions for
this system? In principle, there are two main options. First, we could demand that the height
at the boundary is equal to its equilibrium height h0 and therefore δh(t, R, θ) = 0, yielding

Jm(kR) = 0 ,m ∈ N . (5.6)

Alternatively, we could demand that the velocity in radial direction is zero at the boundary, i.e.
∂rδh(t, R, θ) = 0, resulting in

J ′
m(kR) = 0 ,m ∈ N . (5.7)

One part of the preparation for this experiment is therefore to understand how the system
behaves and what the appropriate boundary conditions are. In both cases, these boundary
conditions restrict the modes that are present in the system by imposing a condition on possible
k values, as kR has to be a zero of either the Bessel functions, or their derivatives. Since Bessel
functions are periodic, there are infinitely many zeroes for a given m value. We label the k value
of the nth zero of the mth Bessel function with another subscript n, i.e. kmn. The corresponding
frequencies are given by the standard dispersion relation

ω2
mn =

(
ρg + σk2

mn

) kmn tanh (kmnh0)
ρ

, (5.8)

where g is the gravitational acceleration.
We discussed the spectrum of height fluctuations, however as we will see later, the setup we

are proposing is only sensitive to the inclination spectrum of the reflected probing laser on the
surface. The spectrum will therefore indicate which modes are present in this particular system.

5.1.2 Confocal Microscopy

As we have mentioned in the introduction of this chapter, we want to use a confocal microscopy
setup to measure the inclination spectrum of thermal height fluctuations on classical fluids. We
will explain the setup step-by-step and give a justification why this leads to the desired outcome.
A schematic of the setup with a 633 nm wavelength Helium-Neon laser is shown in figure 5.1. In
principle, this setup is designed to detect the offset in the laser beam position due to a reflection
on the surface of the fluid. Before going into the details of this setup, let us have a look what
happens at the surface of the fluid sample.

Optical Lever Approximation. In a first approximation, the surface of the fluid can be
treated as an optical lever. Effectively, this means that a laser beam is reflected from the surface
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Laser PBS

λ/4

Lens

Water
Sample

Lens
Pinhole

Lens
DEPD

Figure 5.1 (Confocal Mi-
croscopy Setup) Experimen-
tal setup to measure inclination
spectrum on water. The laser
beam is reflected by a polar-
ising beam splitter (PBS) and
focused with a lens on the wa-
ter sample in a basin with a 2
inch diameter and depth of 12
mm. The spatial filter combi-
nation of lens, aperture and lens
filters out unwanted noise be-
fore the laser is being detected
at a dual-element photodiode
(DEPD). The blue path repre-
sents the beam path without re-
flection at the surface, whereas
the yellow path is an example of
a reflected beam at the sample
surface.

as if there was a mirror tangential to the fluid surface at this point [124]. As the fluid surface
is approximately located in the focal point of the lens, all reflected beams after the lens are
parallel to incoming beams. The surface of the fluid is constantly moving, so the direction of the
reflected beam changes according to the gradient of the height field at the point of reflection.

λ/4-Waveplate and Focussing Lens. After the reflection at the polarising beam splitter,
the beam passes through a λ/4-waveplate. This waveplate changes the polarisation of the beam
in such a way that, after the beam went through it twice, it will be transmitted at the polarising
beam splitter, instead of being reflected. The focussing lens with focal length f = 25 mm
focusses the laser beam on the surface of the sample.

Pinhole. After the beam splitter, the transmitted laser beam is focused on a pinhole with a
focusing lens with focal length f = 13.86 mm. The pinhole aperture has a diameter of 15 µm.
After the pinhole, a second focusing lens with focal length f = 50 mm aligns the direction of
the outgoing beam. The pinhole acts as a spatial filter and filters out any ambient noise source.

Photodiodes. The signal is detected with a Hamamatsu Si Photodiodes S3096-02. This is
a dual-element photo diode (DEPD), which is a combination of two adjacent photo sensitive
elements. Aligning the detected laser in such a way that it hits the DEPD centrally, i.e. at
the intersection of both elements, one can measure the position of the laser by independently
measuring the intensities ii(t) at both photo elements, where i ∈ {1, 2} labels the two elements
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of the DEPD, and calculate their difference

i(t) := i1(t) − i2(t) . (5.9)

As long as the laser is entirely captured by the DEPD the sum of intensities will be approximately
constant. Since the laser position due to the reflection at the surface fluctuates, the detected
photo current difference i(t) will fluctuate with time. It can be shown that this difference is
connected to the reflection angle θ on the surface of the liquid [57, 58]

i1(t) − i2(t)
i1(t) + i2(t) = 2θ

NA , (5.10)

where NA is the numerical aperture of the microscope objective.

Data Acquisition. The Tektronix DPO4032 oscilloscope provides a convenient way to mea-
sure the photo currents of the DEPD. Each element of the DEPD is connected via a tran-
simpedance amplifier (Thorlabs AMP 140, impedance 10 kV/A) to an input channel of the
oscilloscope. The data from the oscilloscope is directly taken with a computer, which calculates
the difference of both input channels. For the purpose of data acquisition, we have developed a
data acquisition tool with which it is possible to take data from the oscilloscope in a structured
and automated way. The tool is entirely built in Python and SQLite3.
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Figure 5.2 (Difference Current Spectrum) Spectrum of difference current for a sampling rate of
500 S/s. Note that the vertical axis is given in arbitrary units. The dataset is an average over ten
realisations. Vertical line shows an example of a Bessel mode at f ′

10 =3.7 Hz that corresponds to the first
zero of the derivative of the Bessel function J1.
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Signal and Results. Equation (5.10) shows that measuring the difference current of the
DEPD can be converted into the reflection angle of the beam on the surface, thus, the spectra
of both are related

Si(ω,k) = 2I
NASθ(ω,k) . (5.11)

This expression represents the original claim that this setup is only sensitive to the inclination
spectrum of height fluctuations. As explained in the beginning of this chapter, we expect to see
modes in this spectrum that are characteristic to the geometry of the basin and the fluid. The
basin has a cylindrical with a radius of 2 inch and a depth of 12 mm. Therefore, we would expect
to see characteristic frequencies of Bessel modes in the spectrum. The first data indicates that
we might indeed see the eigenmodes of the system (see figure 5.2). As the data acquisition is
still in its infancy, we use this data set as a motivation for continuing the experiment with larger
data sets, experimental improvements and tests in different fluids to make a justified statement
about the quality of this method. As such this plot does not contain any experimental errors
and is meant as a guidance only. Furthermore, we need to compare the results to different meth-
ods, such as off-axis holography readily available in our research group. Once we have a solid
understanding of this detection method, we can further develop it to detect thermal excitations
on the surface instead of just eigenmodes of the basin.

The data in figure 5.2 shows the spectrum of the difference current. This data set is an
average over ten runs and shows the frequency content up to 25 Hz. The sampling rate was 500
S/s with a total measurement time of 20 s. The spectrum shows prominent peaks at 4Hz and
8Hz. As mentioned in section 5.1.1, we expect to see the eigenmodes of the system as given by
the zeroes of the Bessel function, or their derivatives respectively. The dashed, vertical line in
this plot represents the frequency of the first zero of the derivative of the Bessel function J1(x).
We see that the theoretical prediction for this peak slightly deviates from the measured one.
Due to the curved surface, or meniscus, of water in a basin, the depth of water slightly varies
over the whole area of the sample, effectively changing the dispersion relation locally. As the
laser beam was slightly offset from the centre of the water sample this shift could be due to this
meniscus effect.

Limitations and Noise. This setup is only sensitive to the inclination spectrum of the height
fluctuations and there is a priori no way to extract the absolute height of the fluid. However,
we think that this method can be combined in detection schemes to build experiments that are
sensitive to the absolute value of height fluctuations. In addition, this setup suffers from a few
experimental issues, in particular the evaporation of the fluid and induced noise, in particular
from electronics. The most obvious solution to evaporation is to constantly realign the focus
on the surface, but we think there are more intelligent solutions such as automated translation
stage adjustments. Sources of electronics noise need to be identified and isolated with various
shielding boxes or electronic filters. Due to the small size of the water sample, there are meniscus
effects on the boundaries that slightly change the dispersion relation and effectively shift the
peaks in the spectrum. More measurements are necessary to quantify the effect of the meniscus
such that final datasets can be adjusted accordingly. Lastly, there is still the open question
which boundary condition is correct. For a definitive answer, more tests are necessary.

In order to reduce the noise, two DEPDS can be used to detect the signal after another beam
splitter following the spatial filter. Then calculating the correlator using the difference current
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from both photo diode will reduce uncorrelated noise induced in the measurement process. This
detection method is used in the original proposal [57] and might be implemented in a further
stage of this experiment.

Despite some open questions and necessary refinement of this system, the measured data
shows motivating first results that justify a promising outlook for further experiments.
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5.2 Outlook for Superfluid Helium

In the previous section, we showed how a confocal microscopy setup can be used to detect
thermal interface fluctuations on classical fluids, such as water. The setup was inspired by a
proposal from Mitsui and Aoki [57, 58], who used this method to measure fluctuations on various
media, such as water, oil and ethanol. The first data sets look promising in the sense that we
seem to detect the eigenmodes of the system, however, this is the very first stepping stone to
a larger series of experiments confirming these findings. The difference to the original proposal
is the specific geometry of our setup. While Mitsui and Aoki assume an infinitely sized fluid,
our system is confined to a cylindrical basin. We will therefore expect to see geometry specific
eigenmodes of the system in the spectrum.

In principle this method is not limited to classic fluids only but can be extended to super-
fluids, as well. In essence, the conceptual setup will be the same as before, with a superfluid
Helium-4 sample instead of a water sample. However, this leads to experimental challenges as the
whole setup needs to be cooled down and placed in a dilution fridge, or equivalent cooling device.

In summary, our findings mark a first promising step of many experimental successes needed
to detect the Unruh effect in superfluid Helium-4. The first chapters of this thesis showed that
the acceleration of the laser on a circular trajectory leads to an imprint of height fluctuations
in the laser phase. Consequently, it is necessary to build an experiment that can resolve phase
differences. The confocal microscopy setup showed that the pinhole is an excellent device to
isolate the relevant signal and filter out ambient noise. It seems promising that this setup
can be refined in an interferometric setup as a detection scheme for the Unruh effect [58]. In
this chapter, the first step was to set up a static detector for thermal interface fluctuations,
however, for the Unruh effect one has to think about an explicit implementation of the circular
acceleration.



VI

Conclusion

In this thesis, we investigated the Unruh effect and presented the development from an abstract
two-level detector in relativistic quantum field theory, to measurement schemes with continuous
detectors in analogue systems and associated intricate technical challenges every physical detec-
tion scheme faces.

After a brief introduction of the linear acceleration Unruh effect in QFT in chapter II [17], we
extended the original description to a circular accelerated trajectory. A circular trajectory was
the first step towards an actual implementation in a laboratory, as the space that is required
for such a setup is confined. The detailed balance condition defines the Unruh temperature
in terms of the response function of a detector. The main part of this chapter was therefore
dedicated to the calculation of response functions. In particular, we calculated the response
function in (3 + 1) and (2 + 1) dimensions, since, as we saw in later chapters, the presented
analogue systems are effectively described by a (2 + 1) dimensional field theory. We found that
in the ultra-relativistic limit in (2 + 1) dimensions the linear prediction Unruh temperature for
a circular motion is similar to the actual circular Unruh temperature, justifying the simplified
use of the linear prediction in later chapters. Then, we introduced the concept of a continuous
detector, for which the aforementioned results can be equally applied. This continuous detector
model, consisting of two interacting scalar fields, is the blueprint for the analogue models in
this thesis. We concluded the chapter with a derivation of the response functions in analogue
systems. The results were published in [54].

Chapter III was about establishing two explicit analogue systems. Based on the concept of a
continuous detector, we showed that a laser beam interacting with polarisable matter provides
an interaction that can be mapped to the interaction in the detector model of chater II. In
particular, the phase fluctuations in the laser beam take the role of the probing field of the
continuous detector model. We presented two systems that can be used as an analogue model:
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a two dimensional, oblate Bose-Einstein condensates and thin film superfluid Helium-4. In a
BEC, linearised density perturbations couple to the phase fluctuations in the laser beam and
both fields, density and laser fluctuations, behave effectively as massless Klein-Gordon fields.
In superfluid Helium-4, on the other hand, the height fluctuations behave as a massless scalar
field and couple to the laser phase fluctuations. In both cases, we provided a schematic setup
for a potential experimental implementation and calculated the signal-to-noise ratio to make a
feasibility statement about the signal detection. Using a zero-temperature initial state, we found
that for multiple repetitions of the experiment the signal is well above the shot noise induced
phase noise. In the superfluid analogue, however, some assumptions are too restrictive, which
requires further research. In particular, we briefly discussed the non-zero ambient temperature
for Helium experiments. The analysis of the BEC analogue was published in [55], whereas the
superfluid Helium analysis is currently still work in progress [56].

In chapter IV, we introduced the concept of the quantum mechanical photonflux and how
this quantity relates to the classically measured photocurrent. We then proceeded by calculating
the photo current at the photo diode in the BEC proposal and showed how to extract the signal
of the Unruh effect. The focus was on the operator transformation for the interaction with the
BEC. We derived that this interaction can be conveniently expressed in terms of a Bogoliubov
transformation. Then, we showed how this Bogoliubov transformation can be applied to the
superfluid Helium proposal. We derived the exact composition of the photocurrent and at which
frequencies the signal due to the Unruh effect is expected. This chapter contains unpublished
work.

In the last chapter V, we outlined an detection method that can facilitate an Unruh detector
in superfluid Helium with a confocal microscopy setup. We presented first experimental results
to locally extract the inclination spectrum of height fluctuations on water as seen by a static
observer, using a microscope lens and a spatial filter. Preliminary results show that this detec-
tion scheme is a promising candidate for more complex experiments, such as implementations in
superfluid Helium and finally, in combination with interferometers and detectors in accelerated
motion, to detect the Unruh effect.

Outlook

We saw that the Unruh effect in its relativistic QFT description is extremely difficult to
measure and there has been no experimental evidence of it to date. The novel approach to
formulate the Unruh effect in the context of continuous detectors is a complete game changer as
it opens up a whole new range of experiments to probe this fascinating effect and the quantum
vacuum more generally. We have shown that the detection of the Unruh effect is not only
theoretically possible in analogue systems, such as Bose-Einstein condensates and superfluids,
but that it is already in the realm of current experimental possibilities.

Having established the analogy in cold-atom systems, the next stage is to work towards
actual experiments. In this thesis, we have outlined a series of experiments that will be realised
in the near future. Along with the preparation of those experiments, more detailed analysis
will be conducted to further fine-tune the experimental parameter sets and to get a deeper
understanding of finite size effects, non-zero temperature effects and back-action.
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Theorems, Identities, and Integrals

A.1 Laplace’s Method

Laplace’s method attempts to approximate the large x limit of the integral [128]

I(x) =
∫ b

a
dt g(t)exf(t) , (1.1)

with a, b, f(t) ∈ R. Now suppose f(t) has a global maximum at t0, such that f ′(t0) = 0
and f ′′(t0) < 0. Expanding f in a Taylor series around that maximum results in f(t) ≈
f(t0) − 1

2 |f ′′(t0)|(t− t0)2, where we used that at this point the first derivative of f vanishes. For
t close to t0 we can therefore write

I(x) ≈ exf(t0)
∫ b

a
dt g(t)e−x 1

2 |f ′′(t0)|(t−t0)2
. (1.2)

For a → ∞ and b → −∞ the integral on the right is a Gaussian integral, which can be calculated
resulting in

I(x) ≈
√

2π
x|f ′′(t0)|g(t0)exf(t0) . (1.3)

A.2 Clausius-Mossotti Relation

The Clausius-Mossotti relation tells us that

ϵ− ϵ0 = 4πρα
1 − 4π

3
ρα
ϵ0

, (1.4)
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which connects the electric permittivity ϵ to the polarisability α of the fluid. For 4π
3
ρα
ϵ0

≪ 1 we
find that

ϵ ≈ ϵ0 + 4πρα , (1.5)

A.3 Residue Theorem

Let f(z) be holomorphic function defined on Ω ∈ C except for some points zn ∈ C. The integral
of f(z) along any closed path γ in Ω/{zn} can be evaluated using the enclosed residues at zn∮

γ
dz f(z) = 2πi

∑
n

Res(f, zn) . (1.6)

A.4 Dominated Convergence

Let (fn) be a sequence of complex-valued functions defined on Ω that converges pointwise to a
function f . In addition, let this sequence dominated by another function g such that

|fn(x)| ≤ g(x) , (1.7)

for all n and x ∈ Ω. Then f is integrable and

lim
n→∞

∫
Ω

dx |fn(x) − f(x)| = 0 . (1.8)

Equivalently, dominated convergence says that

lim
n→∞

∫
Ω

dx fn(x) =
∫

Ω
dx f(x) (1.9)

A.5 Hadamard’s Lemma

Consider the operator
esX̂ Ŷ e−sX̂ (1.10)

for s ∈ C. A Taylor expansion around s = 0 shows that

esXY e−sX = Y + [X,Y ]s+ 1
2[X, [X,Y ]]s2 + . . . . (1.11)

If the commutator is central, then

esXY e−sX = Y + [X,Y ]s . (1.12)
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Detailed Calculations

B.1 Useful Integrals

2.1.1 sin Es/s

∫ ∞

0
dssin(Es)

s
= 1

2

∫ ∞

−∞
dssin(Es)

s
= 1

2Im
∫ ∞

−∞
dz eiEz

z
. (2.1)

This integral has a pole at z = 0. For this integration, we proceed by choosing the integration
contour C1 as in figure 2.2 for E > 0. For E < 0 we close the integration contour in the lower
half of the complex plane, passing the origin from below. The integration along the outer semi
circle does not contribute in the limit R → ∞. The integration along the inner semi circle with
radius ϵ is parametrised with z = ϵeiθ, θ ∈ [0, π] for the upper semi circle and z = ϵei(2π−θ),
θ ∈ [0, π] for the lower one.

lim
ϵ→0

∫
γ+

ϵ

dz eiEz

z
= lim

ϵ→0
i
∫ π

0
dθ exp{iEϵeiθ} = iπ . (2.2)

For the integration with E < 0 in the lower semi circle we find

lim
ϵ→0

∫
γ−

ϵ

dz eiEz

z
= lim

ϵ→0
−i
∫ π

0
dθ exp{iEϵei(2π−θ)} = − iπ . (2.3)

As we know by Cauchy’s integral theorem, the sum of all those integrals has to be zero and we
find that the integral along the real axis is given by∫ ∞

0
dssin(Es)

s
= − π

2 sgnE (2.4)
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2.1.2 (1 − cos Es)/s2

∫ ∞

0
ds1 − cos(Es)

s2 = 1
2

∫ ∞

−∞
ds(1 − cos(Es))

s2 = 1
2Re

∫ ∞

−∞
dz (1 − eiEz)

z2 . (2.5)

This integral has a single pole at z = 0. First, notice that the integrand can be rewritten using
the Taylor expansion of the exponential

(1 − eiEz)
z2 = − iE

z
+ E(z) , (2.6)

for some function E(z) → 1
2E for z → 0. Choosing the integration contour as in section 2.1.1 of

the appendix, the contribution of the outer auxiliary semi circle vanishes such that∫
|z|>ϵ

dzE
(

− i
z

+ E(z)
)

=
∫
γϵ

dzE
(

− i
z

+ E(z)
)
. (2.7)

Parametrising the contour γϵ with z = ϵeiθ for the upper semi circle and z = ϵei(2π−θ) with
θ ∈ [0, π] for the lower semi circle, we see that in the limit ϵ → 0 we find∫ ∞

−∞
ds1 − cos(Es)

s2 = |E|
∫ 0

π
dθ (1 +O(ϵ)) = |E|π , (2.8)

and finally ∫ ∞

0
ds1 − cos(Es)

s2 = |E|π2 . (2.9)

B.2 Response Functions

2.2.1 Response Function of Unruh-DeWitt Detector on Inertial Trajectory

The response function of an Unruh-DeWitt detector on an inertial trajectory x(τ) = (γτ, γvτ)
is given by

F(E) = 1
4π

d
2

∫ ∞

−∞
dτe−iEτ

Γ
(
d
2 − 1

)
(−(τ − iϵ)2)

d−2
2

, (2.10)

which is regularised with τ → τ − iϵ is understood in the limit ϵ → 0+.

In (3+1)d For d = 4 the response function is given by

F(E) = − 1
4π2

∫ ∞

−∞
dτ e−iEτ

(τ − iϵ)2 . (2.11)

The integrand has a pole of order 2 at τ = iϵ. The whole integral can be analytically continued
to the whole complex plane and be expressed in terms of the residue at this pole after closing
the integration contour in the upper complex plane (assuming E < 0)

F(E) = − i
2πResτ=iϵ

e−iEτ

(τ − iϵ)2 . (2.12)
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The residue can be calculated to be

Resτ=iϵ
e−iEτ

(τ − iϵ)2 = d
dτ (τ − iϵ)2 e−iEτ

(τ − iϵ)2 = − iEeEϵ . (2.13)

In the limit ϵ → 0+ we finally find

F(E) = − E

2π . (2.14)

Note the derivation above assumes E < 0, however, closing the integration contour in the lower
complex plane works equivalently for E > 0.

2.2.2 Ultrarelativistic (2 + 1) Reponse Function – Circular Motion Correc-
tions

Consider the integral

sgn(E)
∫ ∞

0
dx sin(Ex)
x

√
1 + x2

= 1
2

∫ ∞

−∞
dx sin(|E|x)
x

√
1 + x2

, (2.15)

where on the right hand side we have absorbed the sgn(E) in the sine using that it is an odd
function. Adding and subtracting a 1/x in the integrand and using the integral in section 2.1.1
we find

1
2

∫ ∞

−∞
dx sin(|E|x)
x

√
1 + x2

= π

2 + 1
2

∫ ∞

−∞
dx sin(|E|x)

( 1
x

√
1 + x2

− 1
x

)
. (2.16)

The part of the integrand in brackets is odd in x which means that we get result by using the
integral

π

2 − i
2

∫ ∞

−∞
dxei|E|x

( 1
x

√
1 + x2

− 1
x

)
(2.17)

where the contribution of the cosine vanishes due to its symmetry properties. Continuation in
the whole complex plane allows us to choose the integration contour C2 as in figure 2.2 to arrive
at

π

2 − i
2

∫
C2

dz ei|E|z

z
√

1 + z2
, (2.18)

where the pole at z = 0 is excluded. The denominator possesses poles at z = 0 and z = ±i.
Since the integration contour is deformed in the upper plane the only interesting pole is at
z = i, however, the integration contour explicitely excludes this pole. We therefore know that
by Cauchy this integral has to vanish. In the limit of infinitely small or large auxiliary circles this
contour integral converges to the integral along the real axis plus a contribution from integrating
around the pole at z = i∫

C2
dz ei|E|z

z
√

1 + z2
→

∫ ∞

−∞
dx ei|E|x

x
√

1 + x2
+
∮
z=i

dz ei|E|z

z
√

1 + z2
, (2.19)

where the integral on both sides of the branch cut can be calculated to be∮
z=i

dz ei|E|z

z
√

1 + z2
= 2

∫ R

1
dy e−|E|y

y
√

1 − y2 . (2.20)
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We finally obtain

sgn(E)
∫ ∞

0
dx sin(Ex)
x

√
1 + x2

= π

2 −
∫ ∞

1
dy e−|E|y

y
√
y2 − 1

. (2.21)

2.2.3 Residues of Response Function of Circular Motion in 3+1 Dimensions

The response function in 3+1 dimensions is given by (see equation (2.61))

F(E) = − E

2πΘ(−E) − 1
8π2γvR

∮
C
dz

exp
{

i2ER
γv z

}
z2

v2 − sin2z
. (2.22)

Calculating the residues at z = zn shows that

Fn(E) = − v

8πγR
∑
n

exp
{

−2|E|R
γv (αn + iβn)

}
(αn + iβn) (1 + iαn tan βn + βn cotβn) , (2.23)

where the denominator needs some rearranging, trigonometric identities and the equations
(2.49a) and (2.49b). The residue at z0 = iα0 with β0 = 0 is of further relevance, and can
be calculated using the most general solution above

F0(E) = v

8πγR
e−E 2R

γv
α0

(α0 − v2 sinhα0 coshα0) . (2.24)

B.3 Bogoliubov Transformation

The Bogoliubov transformation in (4.75) is given by the differential equation

d
dµ

(
X̃i

X̃†
k

)
= M

(
X̂i

X̂†
l

)
, (2.25)

with
M =

(
δα′ δβ′

(δβ′)∗ (δα′)∗

)
. (2.26)

The prime indicates a differentiation with respect to µ. We find

δα =

 0 0 i
0 0 0
i 0 0

 (2.27)

and

δβ =

 0 0 0
0 0 i
0 i 0

 . (2.28)
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With those results we find

M = i



0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 1 0
0 0 0 0 0 −1
0 0 −1 0 0 0
0 −1 0 −1 0 0


, M2 =



−1 0 0 0 −1 0
0 1 0 1 0 0
0 0 0 0 0 0
0 −1 0 −1 0 0
1 0 0 1 0 0
0 0 0 0 0 0


(2.29)

and every higher order vanishing.
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