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Abstract

This work focused on investigating the potential for selected functionalised

endohedral metallofullerene isomers to be viable candidates for a molec-

ular polarisation switch, with a particular focus on the Ca@C60 system.

This work combines classical electrostatic analysis and Density Functional

Theory (DFT) to investigate the correlation between the encapsulated cal-

cium metal ion position and distribution of surface charge that results in

polarisation on the fullerene cage. In addition, the modification of internal

potential energy barriers through functionalisation of the fullerene cage was

investigated as a route to developing a bistable polarisation switch.

A classical electrostatic analysis of a point charge within a dielectric sphere

was undertaken to produce an analytical solution describing how the surface

charge polarisation responds to the precise position of an encapsulated

point charge. The analytical solution shows that for a positive point charge,

the surface charge is attracted to the positive calcium ion as it is displaced

across the fullerene cage, “following” the point charge across the cage.

This was verified through DFT calculations on the Ca@C60 system. This

analytical solution was then extended to present an analytical solution for

the case of a dipole inside an endohedral fullerene, verified through DFT

calculations on HF@C60.
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Hydrogenated and fluorinated functionalised C60 candidates were selected

for testing on the basis that these molecules could be experimentally pro-

duced with a reasonable degree of isomer specificity and selection. DFT

computational parameters were rigorously tested against experimental ev-

idence to ensure the calculations were “fit-for-purpose” using these param-

eters. DFT calculations provided insight into how functionalisation affects

the internal potential energy barriers experienced by the encapsulated cal-

cium. In particular, how an energy gap is created between minima in the

Mexican-hat potential and how increasing degrees of functionalisation im-

pact the position of the energy barriers within the fullerene cage. Partial

charge analysis clearly demonstrated that the motion of the encapsulated

calcium, confined within the selected functionalised fullerene cages, was

strongly correlated to the distribution of charge density on the cage sur-

face, with measurements of changes in surface charge polarisation.

Comparing and contrasting the candidate hydrogenated and fluorinated en-

dohedral fullerenes against specific switching criteria enabled the selection

of 1,2-Ca@C60H2 as the most promising candidate to develop a polarisation

switch – a high yield functionalised endohedral fullerene with a sufficient

and minimally shifted energy barrier and energy gap between minima that

leads to a clearly defined change in surface charge polarisation. A poten-

tial route to scalability is discussed, through the creation of stable binary

endohedral fullerene lattices that could lead to novel large-scale molecu-

lar switching arrays and nanomaterials with novel optical and electronic

properties.
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Chapter 1. Introduction

Chapter 1

Introduction

This chapter provides an overview on the origins of nanotechnology, molec-

ular switches, and endohedral fullerenes as potential candidates for a molec-

ular switch. Research hypotheses are discussed in the final section.

1.1 Nanotechnology and molecular switches

Over the last six decades, computing technology has progressed quickly

from room-sized computing machines to personal computers and handheld

devices. The demand for computing power has increased exponentially,

and with it, the need for ever-smaller computing components. The field of

molecular electronics has successfully developed microscopic counterparts

to macroscopic electronic components such as wires, switches, and tran-

sistors as a means to move beyond the current limits of semiconducting

materials and technology that power current portable devices [1]. But can

we go any smaller? Microscopic components at the nanometre scale open

new possibilities to improve and innovate on the electronic systems that

power our world.
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Chapter 1. Introduction

The concept of nanotechnology was introduced in 1959 by Richard Feyn-

man in his lecture, “There’s Plenty of Room at the Bottom” [2], asking,

“why can’t we write the entire 24 volumes of the Encyclopedia Britannica

on the head of a pin?” This lecture describes a vision of designing ever-

smaller machines down to the molecular level. In 1974, Norio Taniguchi,

was the first person to use the term “nanotechnology” describing the field

as “mainly consisting of the processing of separation, consolidation, and

deformation of materials by one atom or molecule” [3]. Nanotechnology

has become a leading scientific field in academia and industry – the Na-

tional Nanotechnology Initiative (NNI) in the United States of America

defines Nanotechnology as “science, engineering, and technology conducted

at the nanoscale (1 to 100 nm), where unique phenomena enable novel ap-

plications in a wide range of fields, from chemistry, physics and biology,

to medicine, engineering, and electronics” [4]. At the nanometre scale,

the properties of matter differ significantly from macroscopic states due

to quantum effects. At this level, electrostatic, quantum and Brownian

motion dominate interactions and so the design of molecular systems with

precisely defined translational and rotational motion is the main challenge

for those working to create molecular electronics to improve the efficiency

and effectiveness of novel micro-electronic systems [5].

One of these micro-electronic components are molecular switches. A molec-

ular switch influences the state of a molecular system, switching between

two or more, often equilibrium, states [6]. Molecular switches show promise

in the field of data storage as an innovation to supersede and miniaturise

silicon technologies that currently require millions of atoms to store one

binary bit of information. Several atoms and molecular structures that

facilitate the toggling between two states, for example, between magnetic,

electronic or polarisation states, have demonstrated the potential to store

2



Chapter 1. Introduction

single bits of information across individual atoms or molecules [1, 7–13].

These innovations could lead to significant increases in data storage density

and capacity. State switching is also vital for the implementation of logic

gates within classical and quantum computing systems [14] operating on

bits and qubits to perform logical functions. Quantum computing compo-

nents by their nature must be small enough to operate within the quantum

scale, and so molecular switches are important components to manipulate

information at the quantum level.

Operating at the quantum scale requires intricate experimental setups that

minimise external “noise” that naturally interfere with fragile quantum

systems. Endohedral fullerenes, and in particular, endohedral metallo-

fullerenes, have shown particular promise over other molecules due to their

stable carbon shells that shield the encapsulated species and allow the

trapped species to be manipulated without compromising molecular in-

tegrity [15–18], whilst retaining some degree of quantum character. Wave-

particle duality has been observed in C60 molecules by diffraction at a

material absorption grating [19] making it an exciting choice of molecule

to study at the boundary of quantum and classical mechanics.

The C60 “Buckminsterfullerene” molecule, was discovered in 1985 as a by-

product of experiments aimed at understanding the mechanisms that form

long-chain carbon molecules in interstellar space and circumstellar shells

[20]. Laboratory experiments, attempting to replicate these interstellar

processes, produced a 60-carbon atom structure “arranged in a truncated

icosahedral structure of 60 vertices and 32 faces, 12 of which are pentag-

onal and 20 hexagonal”. One week after the discovery of C60, a group at

Texas University obtained evidence that a single lanthanum atom could

be trapped inside the carbon shell [21]. This endohedral metallofullerene

was produced in small quantities by laser evaporation of a graphite target
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Chapter 1. Introduction

impregnated with LaCl3. In 1990 an arc reactor, using arc-discharge be-

tween two graphite rods, produced a meaningful quantity of solid C60 [22].

Since this discovery an enormous amount of research has been undertaken

to understand the properties of C60 and its derivatives with a large body of

research, both experimental and theoretical, focusing on doping fullerene

cages with metals [21, 23–32].

An example of an endohedral metallofullerene molecular switch is Gd@C82,

recently observed as a gate-controlled single-molecule electret switch be-

tween two electronic states [33]. An electret is a dielectric material that

has a quasi-permanent dipole polarisation. A single-molecule electret is a

highly desirable molecule that can be applied to miniaturised non-volatile

memory storage devices, switching between two electric dipole states through

the action of an electric field. However, single-molecule electrets are diffi-

cult to produce, as single molecules often possess poor electric stabilisation

properties and configurations. In the case of Gd@C82, experimental and

computational research has demonstrated the significant advantage of the

fullerene cage as it shields and stabilises an electric dipole from external

interference, enabling two electric dipole states to exist at different sites

within the cage, separated by a transition energy barrier of 11 meV.

1.2 Polarisation charge switching in Ca@C60

Ca@C60 was first produced for study in 1993 following the production of

macroscopic quantities of the metallofullerene La@C60 by laser vaporisation

of a La2O3/graphite composite rod in a high temperature tube furnace [34].

Ca@C60 was similarly produced using the laser vaporisation / high temper-

ature furnace technique using a CaO/graphite composite rod. The authors
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Chapter 1. Introduction

note the CaO concentration (0.3% by atom) in the composite rod was cru-

cial to achieving an abundant yield of Ca@C60. Since 1993 there has been

continued research on metallofullerenes, however, only recently has research

into Ca@C60 moved away from academia to understand its chemical prop-

erties, and towards potential applications in the field of molecular switches

[17, 35]. Computational studies have greatly assisted in predicting the

electronic properties of Ca@C60. Spin-polarised and self-consistent calcu-

lations by Broclawik et al. [36] predicted a neutral electronic configuration

of a0.51g t
1.5
1u and a charge of +1.27 on the calcium ion. The non-integer partial

charge in the above calculations is interpreted as a degree of delocalisation

and overlap of the fullerene electron density and central atom, which re-

sults in a small “back-donation” effect. This “back-donation” effect was

also noted by Srivastava et al. in a comparative DFT study of Li@C60 and

F@C60 [37]. Restricted Hartree-Fock calculations performed in 1991 by

Chang et al.[24], using relativistic effective core potentials with the icosa-

hedral symmetry (Ih), predicted an electronic ground state of Ca@C60 to

be the triplet 3T1u (a1gt
1
1u, where the ag orbital is from the Ca 4s orbital and

t1u is the C60 LUMO) [34]. However, this prediction was inconsistent with

Photoelectron Spectroscopy (PES) spectra, produced by Wang et al. [30],

which showed that unless the ag and t1u orbitals are degenerate, a a1gt
1
1u

configuration would result in two separate peaks in the PES spectra which

was not observed. To counter this, Wang et al. performed Hartree Fock

calculations that predicted the ground state of Ca@C60 to be a triplet 3A2

(e21) state. These calculations also showed that the valence 4s electrons of

the encapsulated calcium ion are energetically close to the LUMO of C60

which allows the transfer of none, one or both 4s electrons to the C60 cage.

In this case, they found that for the triplet 3A2 state, both calcium 4s

electrons were transferred to the carbon shell to form Ca2+@C2−
60 , and the

calcium ion located 0.7 Å from the centre of the fullerene cage, a reduced
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symmetry of C5v. A further study by Lu et al. [26] using Ih symmetry with

the calcium located at the cage centre, predicted a net charge distribution

of Ca1.67+@C1.67−
60 . The authors noted the possibility that the ground state

may be of a lower symmetry because of Jahn-Teller (JT) distortion. The

Jahn-Teller theorem states that a degenerate state for a non-linear molecule

is unstable against non-symmetric molecular vibrations. C60 was found to

become JT-active upon addition or removal of one electron, which suggests

that the encapsulation of a species that adds or removes one electron from

C60 result in a Jahn-Teller distortion. Consequently, the calcium naturally

adopts an off-centre position to remove this Jahn-Teller instability. Raggi

et al. performed Density Functional Theory (DFT) calculations on Ca@C60

in 2014 at the B3LYP / 6-31G* [38–41] level of theory and found the elec-

tronic ground state to be the triplet state, reinforcing previous findings,

with calcium located at a radial distance of 1.22 Å from the centre of C60

and facing the midpoint of an edge between two adjacent hexagons [35].

Property Ground-state

Electronic configuration 3A2 (e21)

Symmetry C5v

Calcium partial charge 1.27e – 2.00e

Calcium position 0.70 Å - 1.22 Å

Table 1.1: Literature summary of Ca@C60 ground state electronic and
geometric properties

It is clear from the literature that results are sensitive to the level of theory

adopted by researchers, however, in general there exists a good amount

of evidence to conclude that the encapsulation of a metal atom leads to

electron transfer to the cage, resulting in a metal cation located at an off-

centre position with respect to the fullerene cage. The potential energy

surface within Ca@C60 takes the form of a “Mexican-hat” with the cation
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confined within a potential well at the ground-state minimum position.

This has implications for Ca@C60, firstly that the free radial motion may

give rise to a low-frequency rattling mode, as the calcium moves around

the potential well, which could be observed using infrared and Raman

spectroscopy [23].

The facilitation of charge switching through the motion of atomic or molec-

ular species has been demonstrated for an Sc3N cluster encapsulated within

a fullerene cage [8] which Raggi et al. suggested extending by controlling

the state of an encapsulated species within a fullerene cage by means of elec-

tronic or optical stimulation. Ca@C60 is a particularly interesting system

because the calcium ion has an optical transition at 397 nm [42] making it

readily accessible using laser radiation. Recent research focusing on Li@C60

[1, 43] demonstrated that resonant tunnelling via the super-atom molecu-

lar orbitals (SAMO) resulted in the display of 14 molecular states which

could be statistically accessed. In addition, another design for a molecular

switch using endohedral fullerenes has been proposed by Foroutan-Nejad et

al. [16] - applying an external electric field to a range of dipolar molecules

(NaF, NaCl, LiCl and LiF) encapsulated within C70 at room-temperature

to switch between two bi-stable molecular dipole states, being two distinct

potential energy minima locations within the fullerene cage.

Polarisation charge switching, the focus of this research, was predicted to

occur in Ca@C60 through the motion of the calcium ion trapped in the

fullerene cage [17]. As discussed above, endohedral metallofullerene for-

mation leads to charge transfer from the metal atom to the fullerene cage,

resulting in a positively charged encapsulated metal ion that influences the

distribution of charge density on the fullerene cage through electrostatic

interactions. A preliminary analytical form of the polarised charge distri-

bution was proposed through classical electrostatic modelling of the surface
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charge on a dielectric sphere due to the presence of an external point charge

[44]. In this configuration, the solution describes how the sphere’s surface

charge is polarised into regions of positive and negative charge due to the

presence of an external point charge. The degree of polarisation was found

to vary as a function of the separation between the dielectric sphere and the

charge, particularly significant at very short separations. This led to the

hypothesis that an encapsulated charge would also produce similar polar-

isation effects. The external charge solution was in qualitative agreement

with DFT calculations reported in the same paper, accurately predicting

the form of surface charge polarisation on C60 and C240 fullerene cages due

to the presence of an external point charge. This led to the conclusion that

from an electrostatic point of view, C60 and C240 are dielectric in character.

This is juxtaposed by an earlier paper concluding that the most accurate

analytical solution to describe the electronic response of C60 is found us-

ing a metallic sphere model [45]. A further study exploring polarisation

charge switching through the motion of metal atoms trapped in fullerene

cages, supported by DFT calculations, showed that for a charge encap-

sulated within C60 “the sign and magnitude of the polarisation response

depend very strongly on the precise position of the ion trapped inside the

encapsulating cage.” [17]. These insights led to the idea that exploitation of

calcium ion motion, being strongly correlated to the distribution of surface

charge density on the fullerene cage, could lead to a promising design for

a polarisation molecular switch.

To create a switching environment, an experiment would need to pre-

cisely control the motion of the encapsulated metal ion. It was previ-

ously proposed through DFT analysis [35] that tethered and functionalised

metallofullerenes qualify as suitable candidates for a bi-stable molecular

switch through hydrogen or fluorine atom addition on one hemisphere of
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the fullerene cage surface. Functionalisation was found to significantly re-

duce the internal energy barriers with respect to the translational motion

of the calcium ion, enabling the encapsulated ion to be restricted to a

single hemisphere and then stimulated into the other hemisphere, leading

to a measurable change in surface charge polarisation. Raggi showed that

“changes in electronegativity accompanying a transition in hybridization for

carbon from sp2 to sp3 influence the interaction between the calcium atom

and the fullerene cage”. In particular, the addition of hydrogen or fluorine

increases the number of sp3 hybrid carbons on the cage surface, leading to

extensive modifications to the internal potential energy profile - changing

the relative stability between bi-stable states or even removing the bar-

rier completely - depending on the isomer or configuration chosen. The

polarisation effects appeared to be driven by the significant reduction in

electronegativity of the sp3 hybrid carbons, reducing the degree of electron

donation from the calcium atom which leads to a diminished attractive

electrostatic interaction between the calcium ion and the fullerene cage,

responsible for the creation of the internal potential energy barriers.

Observing these effects across multiple isomers of Ca@C60H4, the difference

in the degree of polarisation response to the motion of a calcium atom

appeared to be as a consequence of the presence or absence of sp3 carbon

atoms, their positions on the cage and the influence they have on electron-

acceptance as the calcium moved across the cage. These insights led to

a second hypothesis that appropriately selected functionalised endohedral

fullerene isomers could form the basis of a polarisation switch due to the

symmetry breaking of internal energy barriers (with respect to motion) as

a response to functionalisation.

Whilst there is significant interest in designing a single molecule switch,

the idea that these switches could be scaled up to multi-molecular switches

9



Chapter 1. Introduction

as part of a larger more complex switching system or array is a fascinating

thought experiment, with potential applications to memory devices and

molecular transistors to achieve novel logic gates [1, 17]. Recent work by

Miller et al. [46] (including DFT calculation contributions from this au-

thor) proposed designs for stable nanoparticle lattices composed of binary

collections of endohedral fullerenes. The calculations involved a combina-

tion of van der Waals and many-body electrostatic interactions to predict

that certain binary combinations, for example a metal (A) and a halogen

(B), could result in the formation of stable nanoparticle lattices with famil-

iar AB and AB2 stoichiometries. Much of the stability was found to be due

to Coulomb interactions, however, charge-induced and van der Waals in-

teractions, which always enhance stability, were found to extend the range

of charge on a cage over which lattices were stable with some lattice types

shown to be three or four times more stable than an equivalent neutral

C60 structure. Consequently, the optical and electronic properties of endo-

hedral fullerenes, including polarisation switching, could be incorporated

into new materials fabricated into the regular lattice structures known to

be adopted by nanoparticles [47–49].

Giminez-Lopez et al. [50] also demonstrated the insertion of multiple func-

tionalised endohedral fullerenes into single-walled carbon nanotubes. A fas-

cinating and useful insight of this work was the observation that “the endo-

hedral Sc3N cluster exhibits near free rotation in an unmodified Sc3N@C80,

but when a functional group is attached to the C80 cage, the rotation of

Sc3N is more restricted”. This provides further evidence of the findings by

Raggi et al. that functionalisation modifies the internal potential energy

barriers, thus restricting the internal motion of the encapsulated species.

10
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1.3 Research hypotheses

This thesis investigates and tests the validity of two hypotheses:

• That the motion of an encapsulated metal confined within a fullerene

cage is strongly correlated to the distribution of charge density on

the cage surface.

• That appropriately selected functionalised endohedral fullerene iso-

mers could form the basis of a polarisation switch.

This work represents eight years of part-time research across three research

projects, (1) the classical electrostatic analysis of surface charge for metallo-

fullerenes, (2) computational validation of Ca@C60 polarisation properties

and (3) polarisation properties of hydrogenated and fluorinated metallo-

fullerenes.

This thesis is organised into six chapters; this chapter, Chapter 1, provides

an introduction into nanotechnology and endohedral fullerenes, particularly

Ca@C60, in the context of designing a viable molecular switch. Chapter

2 discusses the theoretical methods used in this research, being computa-

tional quantum chemical methods, particularly Density Functional Theory,

and analytical classical electrostatics. The combination of classical electro-

static analysis and quantum chemical analysis, aligned to experimental ev-

idence, is used to give confidence that the results and conclusions presented

in this thesis are robust and valid. Chapter 3 presents an electrostatic an-

alytical solution of a point charge within a dielectric particle as a basis for

modelling the surface charge polarisation for metallofullerenes. This chap-

ter is presented first to give the reader a good mental picture of Ca@C60 in

the context of a potential polarisation switch, before diving into the depths
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of the quantum chemical analysis and results. Chapter 4 delves into the

literature to select specific hydrogenated and fluorinated fullerene isomers

as candidates for a functionalised Ca@C60 polarisation switch and then

presents the process to derive robust and validated computational parame-

ters for the Ca@C60 system, with the final section providing DFT calculated

properties relevant to polarisation. Chapter 5 uses the defined computa-

tional parameters to predict a range of polarisation properties across the

selected hydrogenated and fluorinated Ca@C60 isomers. The hydrogenated

and fluorinated molecules are then compared with recommendations as to

which specific functionalised Ca@C60 molecule would be the most viable

choice for a polarisation switch. The final section in Chapter 5 then dis-

cusses recent work undertaken to predict stable nanoparticle lattices with

a view to scaling up an endohedral molecular switch into a multi-molecular

switching system. Chapter 6 explores how the analytical solution presented

in Chapter 3 can be extended for the case of a dipole inside an endofullerene

with a particular focus on HF@C60, acknowledging recent active research

activity in the study of dipolar endohedral fullerenes.
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Chapter 2

Theoretical methods

This chapter introduces the theoretical methods used in this research –

Density Functional Theory (computational) and classical electrostatics (an-

alytical).

2.1 Introducing quantum chemical methods

Understanding the electronic properties of encapsulated materials is crucial

for many industrial applications. These properties are often derived from

the quantum mechanical analysis of a molecule’s electronic structure using

computational methods. But what exactly do these methods do?

The main goal of most quantum chemical approaches is to find an approx-

imate solution of the time-independent and non-relativistic Schrödinger

equation [51] described in Eq. (2.1) in compacted form:

ĤΨ({ri}, {RI}) = EΨ({ri}, {RI}) (2.1)

13
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where the wave function, Ψ contains all information about the quantum

system which depends on 3N spatial coordinates of the electrons ri and

3M spatial coordinates of the nuclei, RI. Ĥ is the Hamiltonian differential

operator for a molecular system of M nuclei and N electrons, in the absence

of magnetic or electric fields:

Ĥ = −1

2

N∑
i=1

∇2
i −

1

2

M∑
A=1

1

mA

∇2
A−

N∑
i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB

RAB

(2.2)

The first two terms of the Hamiltonian operator describe the kinetic energy

of the electrons and nuclei, respectively. mA is the mass of a nucleus A in

multiples of the mass of an electron (in atomic units – explained below).

A and B run over the M nuclei while i and j denote the N electrons in the

system. The Laplacian operator ∇2 is the sum of differential operators in

Cartesian coordinates:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2.3)

The additional three terms in Eq. (2.2) define the potential part of the

Hamiltonian. From left to right, (1) the attractive electrostatic interac-

tion between the nuclei and electrons, (2) the repulsive potential due to

the electron-electron interaction and (3) the repulsive potential due to the

nucleus-nucleus interaction, where Z is the nuclear charge on each respec-

tive nucleus in the system. In these expressions, r and R represent the

distance between electrons, i and j and nuclei, A and B respectively, where

rij = |ri − rj| as an example. Figure 2.1 visualises a molecular system for

the case of M=2 nuclei and N=2 electrons as an example:
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Figure 2.1: Geometric representation of an M=2 nuclei and N=2 electron
molecular system, showing the distances relevant to the time-independent
and non-relativistic Schrödinger equation.

The compacted form of the time-independent and non-relativistic Schrödinger

equation and its parameters are described in atomic units. In this system

the mass of an electron me, the modulus of electron charge |e|, Planck’s

constant h divided by 2π and the permittivity of a vacuum 4πϵ0 are all

set to unity. Physical quantities such as mass and charge are expressed as

multiples of these constants and are therefore dropped from the equations

[51].

The approximate solutions to Eq. (2.1) enable the calculation of Ei, the nu-

merical value of the energy of the system state described by Ψi. It should be

noted that solving the time-independent and non-relativistic Schrödinger

equation calculates the lowest energy and therefore most stable configura-

tion of the system, known as the “ground-state” which enable the calcula-

tion of ground-state chemical properties.

The Schrödinger equation can be simplified by taking advantage of the

significant differences between the masses of nuclei and electrons. Given

the nuclei weigh so much more than electrons, they consequently move

much slower and so, in the extreme case, a good approximation is that the

nuclei are static, and the electrons move in a field of fixed nuclei. This is

known as the Born-Oppenheimer approximation. In this approximation, if

the nuclei are fixed, then their kinetic energy is zero and the repulsion due
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to nuclei-nuclei repulsion is a constant. This enables the Hamiltonian to

be reduced to what is known as the electronic Hamiltonian [51].

Ĥelec = −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1

rij
= T̂ + V̂Ne + V̂ee (2.4)

Note that VNe is also known as the external potential, Vext in Density

Functional Theory (DFT), discussed later. The solution to the electronic

Schrödinger equation is Ψe, the electronic wave function dependent on just

the electron coordinates and Ee, the electronic energy:

ĤeΨe({ri}) = EeΨe({ri}) (2.5)

Under the Born-Oppenheimer approximation, the total energy of the sys-

tem is the sum of Ee and the now constant nuclear repulsion term, En =∑M
A=1

∑M
B>A

ZAZB

RAB
:

Etot = Ee + En (2.6)

Please note that given that the remainder of this section will focus on the

calculation of the electronic Hamiltonian and associated electronic energies,

the subscript “e” will be dropped from now on.

Given the wave function is not itself observable, a physical interpretation

can only be achieved by the modulus squared, |Ψ|2 which represents the

probability that electrons 1, 2, ..., N are found simultaneously in a volume

element dτ that contain three spatial coordinates and one spin coordinate.

As electrons are indistinguishable, this probability must be the same if the
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coordinates of any two electrons (i and j) switch. It can be shown that the

only possibilities occurring in nature are symmetric wave functions (applies

to particles known as bosons with integer or zero spin) or wave functions

where the switch results in a sign change, known as an antisymmetric wave

function (applies to particles known as fermions with spin =1/2). Given

electrons are fermions, their wave functions must be antisymmetric with

respect to the interchange of spatial and spin coordinates [51]. This is

known as the antisymmetry principle, which generalises Pauli’s exclusion

principle that no two electrons can occupy the same space at the same time.

The consequence of this probabilistic interpretation is that the probability

of finding the N electrons in space must be exactly unity:

∫
|Ψ|2 dτ = 1 (2.7)

A wave function that satisfies Eq. (2.7) is said to be normalised. From

now on, all wave function descriptions shall be exclusively normalised wave

functions.

In order to calculate the molecular energy, the electronic Schrödinger equa-

tion is simply rearranged with the respective components and integrated

with respect to the volume element dτ that contains the three spatial co-

ordinates and one spin coordinate, calculated by:

E =

∫
Ψ∗ĤΨdτ∫
Ψ∗Ψdτ

(2.8)

Given that normalised wave functions are now being exclusively used, the

denominator becomes unity and so:
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E =

∫
Ψ∗ĤΨdτ (2.9)

Or more conveniently expressed through Dirac notation:

E =
〈

Ψ
∣∣∣Ĥ∣∣∣Ψ〉 (2.10)

Aside from a few simple exceptions, there is currently no known strategy to

solve the electronic Schrödinger equation exactly for large molecular sys-

tems due to the enormously challenging task of finding exact wave functions

(eigenfunctions) and the associated energies (eigenvalues) of the electronic

Hamiltonian that enable the calculation of the properties of the molecular

system. In practice, this would require searching through all acceptable

wave-functions that result in the true ground state of the molecular sys-

tem, which is currently practically impossible. However, a strategy known

as the “variational principle” simplifies this challenge by enabling a sys-

tematic approach to find the wave function that approaches the ground

state Ψ0 that results in the lowest energy for the system E0. The varia-

tional principle states that the energy computed as the expectation value

of Ĥ from any guessed wave function Ψtrial will always be an upper bound

to the true ground state energy [51]:

⟨Ψtrial

∣∣∣Ĥ∣∣∣Ψtrial⟩ = Etrial ≥ E0 = ⟨Ψ0

∣∣∣Ĥ∣∣∣Ψ∗
0⟩ (2.11)

Therefore, using the variational principle, the strategy required to solve

the electronic Schrödinger equation becomes the requirement to minimize

the functional E[Ψ] by searching through all acceptable N -electron wave

functions. Note that ”acceptable” in this context means that the trial wave

18



Chapter 2. Theoretical methods

functions need to satisfy certain criteria to ensure they make physical sense.

The functional that gives the lowest energy will be Ψ0 and the energy will

be the true ground state energy E0 [51] described succinctly in Eq. (2.12).

E0 = minΨ→NE[Ψ] = minΨ→N

〈
Ψ
∣∣∣T̂ + V̂Ne + V̂ee

∣∣∣Ψ〉 (2.12)

In practice, “searching across all acceptable wave functions” is almost im-

possible, however, the variational principle can be applied to subsets of

possible functions to find the best approximation to the exact wave func-

tion. Note that the exact wave function is unlikely to be found, unless it is

part of the subset, which is unlikely. One of these approximations is known

as the Hartree-Fock approximation that is the foundation of Hartree-Fock

(HF) theory, where the subset of functions consists of all antisymmetric

products composed of N spin orbitals [51].

In summary, once the number of electrons N and Vext are known (deter-

mined by ZA and RA) the electronic Hamiltonian Ĥ can be constructed.

Through the variational method described in Eq. (2.12) the ground state

approximate wave function can be obtained which enables the determina-

tion of the ground state energy and all other system properties, shown as

the summarised logical flow:

{N,ZA, RA} ⇒ Ĥ ⇒ Ψ0 ⇒ E0 (2.13)

Since the 1930s computational methods have been developed to approxi-

mately solve the electronic Schrödinger equation, beginning with HF theory

[52] and progressing to post-HF methods such as Møller–Plesset Pertur-

bation Theory [53], configuration interaction methods [54] and DFT, the
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quantum chemical tool used in this research. HF theory will be discussed

to introduce the key ideas that laid the foundation for DFT [51].

2.1.1 Hartree-Fock theory

Hartree-Fock (HF) theory was developed to solve the electronic Schrödinger

equation under the Born-Oppenheimer approximation. HF is the corner-

stone of almost all wave function based quantum chemical methods [51]

and is known as an ”ab initio” (from the beginning) method as all wave

function solutions are calculated from first principles without using exper-

imental data. In the HF scheme, the simplest and physically robust ap-

proximation to the exact N -electron wave function is known as the Slater

determinant [51]. The Slater determinant is an “antisymmetrised” prod-

uct of one-electron wave functions taking into account the antisymmetry

principle, more commonly known as the Pauli principle:

Ψ0 ≈ ΦSD =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(1) ψ2(1) ... ψN(1)

ψ1(2) ... ... ...

... ... ... ...

ψ1(N) ψ2(N) ... ψN(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.14)

where N is the number of electrons and ψ1, ..., ψN are the one-electron

molecular orbitals known as spin orbitals containing a spatial orbital and

one of two spin functions α or β [51].

ψi(k) = ψi(rk)σ(ωk) σ = α, β (2.15)

where r are the spatial coordinates, ω is the spin coordinate and ψi(k)
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relates to the i’th molecular orbital that depends on the coordinates of

the k’th electron. The spin orbitals have a special property that they are

orthonormal, i.e. < α | α >=< β | β >= 1 and < α | β >=< β | α >= 0

which is generalised to equate to < Ψi(k) | Ψj(k) >= δij which equals 1

for i=j and 0 otherwise [51].

Now the form of the wave function has been selected, the next step is to

find the best Slater determinant that provides the lowest energy. The HF

approach varies the spin orbitals under the constraint that they remain

orthonormal so that the energy obtained is minimised.

EHF = minΦSD→NE[ΦSD] (2.16)

The determination of the HF energy, the expectation value of the Hamil-

tonian operator, can be derived by substituting in the Slater determinant

Eq. (2.14) and the electronic Hamiltonian (2.4) into Eq. (2.10), the final

result shown in Eq. (2.17).

EHF =
〈

ΦSD

∣∣∣Ĥ∣∣∣ΦSD

〉
=

N∑
i

(i
∣∣∣ĥ∣∣∣ i) +

1

2

N∑
i

N∑
j

(ii | jj) − (ij | ji) + Vnn

(2.17)

comprising (i
∣∣∣ĥ∣∣∣ i), the kinetic energy and nuclear-electron attraction in-

tegral, (ii | jj) known as the Coulomb integral and (ij | ji), known as

the exchange integral, and the nuclear repulsion term Vnn to calculate

the kinetic, Coulomb, exchange and nuclear energies respectively. The

Coulomb and exchange components relate to the interaction between two

electrons. As mentioned previously, under the Born-Oppenheimer approx-

imation the nuclear repulsion term is calculated separately and then added
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(Eq. (2.6)) after the electronic energy has been calculated. The kinetic,

nuclear-electron attraction, Coulomb, and exchange integrals are defined

further in equations (2.18), (2.19), and (2.20).

(i
∣∣∣ĥ∣∣∣ i) = ⟨ψi |h|ψi⟩ =

∫
ψ∗
i (r)

(
−1

2
∇2

i −
∑
A

ZA

rAi

)
ψi(r)dr (2.18)

(ii | jj) =

∫ ∫
ψ∗
i (r1)ψi(r1)ψ

∗
j (r2)ψj(r2)

r12
dr1dr2 (2.19)

(ij | ij) =

∫ ∫
ψ∗
i (r1)ψj(r1)ψ

∗
j (r2)ψi(r2)

r12
dr1dr2 (2.20)

Rewriting Eq. (2.17) in terms of the Coulomb and exchange operators

leads to:

EHF =
N∑
i=1

⟨ψi |h|ψi⟩ +
1

2

N∑
i

〈
ψi

∣∣∣Ĵ − K̂
∣∣∣ψi

〉
(2.21)

where the Coulomb operator J represents the potential that an electron at

the position r experiences as a result of the average charge distribution of

another electron in spin orbital ψj and is defined as:

Ĵψi(1) =
∑
j

∫
ψ∗
j (2)ψj(2)

r12
dr2ψi(1) (2.22)

and the exchange operator K, which has no classical interpretation, rather

interpreted through its effect when operating on a spin orbital [51] is defined

as:

K̂ψi(1) =
∑
j

∫
ψ∗
j (2)ψi(2)

r12
dr2ψj(1) (2.23)
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Applying the variational principle to equations (2.21), (2.22) and (2.23)

results in the HF equations which determine the spin orbitals for which

EHF yields the lowest value.

F̂ψi(r) = ϵiψi(r) i = 1, 2, ..., N. (2.24)

where

F̂ (1) = h(1) + Ĵ − K̂ (2.25)

F̂ is a one-electron operator known as the Fock operator and ϵi are La-

grangian multipliers, the eigenvalues of the Fock operator representing or-

bital energies. Ĵ − K̂ is known as the HF potential VHF , the average

repulsive potential experienced by the i’th electron due to the remaining

N-1 electrons [51].

The HF equations (Eq. (2.24) and (2.25)) are known as pseudoeigenvalue

equations as the Fock operator is not dependent on ψi on which it acts,

rather depends through the HF potential on the spin orbitals i.e. it depends

on the solutions of the eigenvalue problem that needs to be solved. This

circular consequence means that the equations cannot be solved in closed

form, rather through an iterative approach that is known as the “self-

consistent field” (SCF) procedure. The SCF technique starts with a first

“guessed” set of orbitals, that are derived from their own effective potential,

and are used to solve the HF equations to produce a new set of orbitals that

are then used as the inputs for the next HF energy calculation iteration.

This is repeated until the input and output orbitals differ by less than a

predetermined threshold, known as the convergence threshold [51].
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However, the initial guessed set of molecular orbitals are a complicated

mathematical and physical problem unto themselves. In 1951 Roothaan

[55] and Hall [56] proposed that this problem could be solved by introducing

a finite basis set to expand the molecular orbitals. These finite basis sets

are linear combinations of known functions called basis functions:

ψi =

Nb∑
α

cαiχα (2.26)

where ψi is the i’th molecular orbital, cαi is the coefficient of the α’th basis

function of the i’th molecular orbital and χα is the α’th basis function

and Nb is the number of basis functions. Basis functions usually reside

on atoms, and the coordinates of the atomic nucleus defines the molecular

coordinates. As each basis function can be regarded as a type of atomic

orbital, the linear combination of basis functions is often known as the

linear combination of atomic orbitals (LCAO) representation of molecular

orbitals.

Using this Roothaan-Hall approach, Eq. (2.26) can be substituted into the

HF equation Eq. (2.24):

Nb∑
α

cαiFχα = ϵi

Nb∑
α

cαiχα (2.27)

Given F only operates on χ and not c, multiplying by χβ and integrating

provides the Roothaan-Hall version of the HF equations:

Nb∑
α

cαi(Fβα − ϵiSβα) = 0, β = 1, 2, ..., Nb (2.28)

which can be written in matrix notation:
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FC = SCϵ (2.29)

where Sβα = ⟨χβ | χα⟩ is the basis functions overlap matrix, C is the matrix

containing coefficients cαi, ϵ is a diagonal matrix of the orbital energies and

Fβα =
〈
χβ

∣∣∣F̂ ∣∣∣χα

〉
with F̂ being the Fock operator.

The Roothaan-Hall equations can be solved using the SCF approach men-

tioned previously and use a basis set to calculate the coefficients c to deter-

mine (via the LCAO approach), the molecular orbitals ψ and energy levels

ϵ. The SCF iterative procedure, applied to the Roothaan Hall equations,

is shown in the flow diagram, Figure 2.2.

Figure 2.2: Self-consistent field (SCF) iterative flow diagram, using the
Roothaan-Hall HF equations to determine the ground state wave function
[51]

The test for convergence tests the output against a predetermined conver-

gence limit, a measure of how close solutions need to be before the solution

is determined to have converged. If the convergence criteria are not met,

then the new MO’s are substituted back into the Coulomb and exchange

integral calculation step and the cycle continues until such a time as the
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convergence criteria is met, or a defined cycle limit has been reached yield-

ing no output. Provided the convergence criteria are met, the converged

solution found ψ consists of a Slater determinant with ψi and cαi coeffi-

cients that are used to calculate the orbital energies ϵi which are then used

to calculate the final ground-state HF energy, EHF .

The physical interpretation of the orbital energies ϵ is provided by Koop-

mans’ theorem [57], stating that the orbital energy ϵi obtained from HF the-

ory is an approximation of minus the ionisation energy associated with the

removal of an electron from that particular orbital, ϵi ≈ EN−Ei
N−1 = IE(i)

[51].

The HF approach can be used on a restricted and unrestricted basis, de-

pending on the electronic state of the system. For doubly occupied orbitals

holding even pairs of electrons (closed-shell systems of a singlet state), the

two spin orbitals share the same spatial orbital. This restriction leads to

the “restricted Hartree-Fock approximation” (RHF). For systems with an

odd number of electrons, i.e. a triplet state with unpaired electrons, there

are two approaches to solve the HF equations. Firstly, stating explicitly

that only certain orbitals are singly occupied, known as the “restricted

open-shell HF scheme” (ROHF) and secondly, to remove any restriction

and allow each spin orbital to have its own spatial orbital, known as the

“unrestricted Hartree-Fock variant” (UHF) [51]. In UHF, the α and β

orbitals experience different potentials and therefore have different spatial

characteristics. A discussion regarding unrestricted and restricted methods

is discussed later in the specific context of the C60 system.

As mentioned previously, in the HF method, the electron-electron repul-

sion is constructed by each electron experiencing an electrostatic potential

averaged across all the other electrons in the system. However, in reality,
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each electron moves due to instantaneous repulsion rather than the influ-

ence of an average repulsive electron cloud. The consequence of this is that

HF theory predicts the electrons to be too close to each other with the cal-

culated electron-electron repulsion being smaller than the true repulsion,

which leads to an overestimation of the energy of the system. However, this

is expected by the nature of the HF approach using an approximate wave

function (the Slater determinant) to capture the majority of the physics of

the many-electron system. The gap between the calculated HF energy and

the true ground state energy E0 is called the correlation energy, and it is a

measure of the error introduced as a result of using the HF method [51].

EHF
C = E0 − EHF (2.30)

A major shortcoming of the HF method is that it does not properly account

for electron correlation effects [51, 58], leading to inaccuracies when calcu-

lating molecular properties. Attempts to address the inaccuracies in corre-

lation energy are tackled in different ways by post-HF methods, but are of-

ten too computationally expensive when studying larger systems. However,

since the publication of the Hohenberg-Kohn (HK) theorems [59] in 1964,

DFT has flourished as a computationally cost-effective electronic structure

method to determine ground state properties for many-body chemical sys-

tems.

Basis sets

As discussed above, the use of basis sets provides a useful way to calculate

the HF energy via the Roothaan-Hall HF equations. Basis sets are also

used extensively in DFT, and so will be discussed first before introducing
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the DFT methodology.

Basis sets are a set of mathematical functions known as basis functions

that are used to represent atomic orbitals. The linear combination of these

atomic orbitals (LCAO) produce molecular orbitals, describing the over-

all electron distribution of a molecule. There are several types of func-

tions that are used to represent the electron distribution around an atom

based on solutions to the Schrödinger equation for a hydrogen atom [60],

plane waves, Slater functions and Gaussian functions. Slater and Gaussian

functions are the simplest and widely used across quantum chemistry [61].

Slater functions, of the form e−αr provide an accurate representation of the

electron distribution’s radial dependence, however, due to the two-electron

integral components they are computationally expensive to use with ab

initio methods. Therefore, linear combination of Gaussian functions, of

the form e−αr2 , are used to approximate Slater functions. However, single

Gaussian functions do not provide the accurate radial dependence at short

and long distances and so several Gaussian functions, known as contracted

basis functions or Slater-Type Orbitals (STO), are used in combination to

better model the radial dependence [61], taking the form:

χ(r) = c1e
−a1r2 + c2e

−a2r2 + c3e
−a3r2 (2.31)

For example, STO-1G and STO-3G, using one Gaussian and 3 Gaussian

functions respectively, each with contracting coefficients used to control the

width of the orbital [60], are shown in Eq. (2.32) with the Slater function

presented for comparison:
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ϕSlater = 0.7790e−1.24r

ϕSTO−1G = 0.3696e−0.4166r2

ϕSTO−2G = 0.6789e−0.1516r2 + 0.4301e−0.9518r2

ϕSTO−3G = 0.0835e−0.1689r2 + 0.2678e−0.6239r2 + 0.2679e−3.4253r2

(2.32)

Figure 2.3, from Szabo and Ostlund’s excellent book “Modern Quantum

Chemistry” [62] compares Slater, STO-1G, STO-2G and STO-3G basis sets

and demonstrates the improving radial dependence of Slater-Type Orbitals

as more contracted basis functions are added as better approximations to

the Slater function.

Figure 2.3: Comparison of the quality of the least-squares fit of a 1s Slater
function ζ = 1.0 obtained at the STO-1G, STO-2G and STO-3G levels
[62].

As this approach has developed, numerous other basis sets have been de-

veloped to more accurately model the electron distribution of molecular

systems. For example, Pople Basis Sets, developed by John Pople, are split

valence sets, recognising that much chemistry can be understood through

the interaction of valence orbitals [63]. For example, the 6-31G basis uses a

linear combination of 6 contracted Gaussian functions for each inner shell,
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with each valence shell STO split into an inner and outer part (double

zeta) using 3 and 1 contracted Gaussian’s respectively. These split-valence

basis sets can be expanded to included polarisation functions to take into

account the polarisability of electron distributions (denoted by an aster-

isk, e.g. 6-31G*) and diffuse functions to account for expanded electron

clouds i.e. lone pair electrons that are loosely bound to the atomic nucleus

(denoted by a “+” sign, e.g. 6-31+G*. Usually polarisation and diffuse

functions do not include hydrogen or helium, however, if they are included

this is indicated by a “**” or a “++” e.g. 6-31++G**.

In addition, Dunning basis sets [64] are another commonly used group of

basis sets, designed for correlation consistency, e.g. cc-pVDZ and cc-pVTZ,

where “cc-p” stands for correlation-consistent polarisation, “V” stands for

valence only, “D” represents double zeta and “T” represents triple zeta.

The main idea behind correlation consistency is that functions which con-

tribute approximately the same amount of correlation energy are grouped

together when considering the mixture of orbital basis functions to use.

This enables these basis sets to converge smoothly towards the complete

and infinite basis set limit.

2.1.2 Density Functional Theory

DFT, at its most simple, is a theoretical method of obtaining an approx-

imate solution to the Schrödinger equation of a many-body system [51]

and provides a computationally low-cost ground state electronic structure

method in which the energy is determined by the electron density. A key

feature of DFT, compared to HF and alternative post-HF methods, is the

utilisation of electron density to compute molecular properties which can

be measurable e.g. by X-ray diffraction.
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The electron density is given by:

ρ(r) =
N∑
i=1

|Ψi(r)|2 (2.33)

where ρ(r) determines the probability of finding any of the system’s elec-

trons within a set of molecular orbitals (Ψi(r)) and the volume dr [65]. The

integral of the electron density gives the number of electrons (N):

∫
ρ(r)dr = N (2.34)

The integral defines the electron density as a function of position only

(three variables; x, y, z), as opposed to three position variables and one

spin coordinate (4N variables for the wave function of an N -electron sys-

tem) used in other wave-function computational methods. This provides

a significant scaling advantage when looking at ever-larger systems, where

the electron density will always be a function of just three spatial variables

[66].

The electron density is determined by the HK theorems [59]. Theorem 1

states that “the ground state of any interacting many-particle system with

a given fixed inter-particle interaction is a unique functional of the electron

density”. A functional is a function whose argument is itself a function. A

functional is described by the use of square brackets for the argument, F [f ],

compared to a function of an arbitrary variable x being f(x). Therefore, if

we know the ground state electron density functional, we can theoretically

determine all the ground state properties of a molecule and calculate the

energy, given by:

E[ρ0] = E0 (2.35)
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However, the problem with this theorem is that despite proving rigorously

that a functional of the electron density exists, the theorem is silent about

the form of the functional, and so we must infer that an approximate or

trial functional only gives an approximate solution [67].

Theorem 2 states that “the ground state energy can be obtained variation-

ally: the density that minimises the total energy is the exact ground state

density” [67]. Therefore, any approximate or trial electron density func-

tional will give a solution to the energy greater than or equal to the true

ground state energy.

Ev[ρt] ≥ E0[ρ0] (2.36)

where Ev is the electronic energy from a trial electron density ρt moving

under the external potential v(r) of the system’s atomic nuclei. E0[ρ0]

corresponds to the true ground state energy and the true electron density.

Under the Born-Oppenheimer approximation, used to reduce the number

of degrees of freedom of a many-body system, the total energy of the system

(formulated as a functional of the electron density) is separated into three

parts, the electron kinetic energy, the attractive nuclei-electron potential

energies and the repulsive electron-electron potential energies.

E0 = T [ρ0] + VNe[ρ0] + Vee[ρ0] (2.37)

The nuclear-electron attraction potential can be written as:

VNe =

∫
ρ0(r)v(r)dr (2.38)
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and so:

E0 =

∫
ρ0(r)v(r)dr + T [ρ0] + Vee[ρ0] (2.39)

Difficulties arise when attempting to derive the exact functionals of these

terms, which lead to insufficient accuracy for applications [68]. To over-

come this, Kohn and Sham [69] presented a reformulation to deal with

two problems, firstly that T [ρo] and Vee[ρ0] are unknown and secondly that

treatment of the kinetic energy functional was difficult without using or-

bitals [70]. To deal with the first problem, Kohn and Sham introduced

the idea of collecting the unknown terms, T [ρo] and Vee[ρ0], into one term

and then computing the remaining terms. This was achieved by defining

∆T [ρ0] as the deviation of the real kinetic energy T [ρ0] from a reference

kinetic energy Tr[ρ0], being a reference system of non-interacting electrons.

∆T [ρ0] = T [ρ0] − Tr[ρ0] (2.40)

and defining ∆Vee[ρ0] as the deviation of the true electron-electron repulsion

energy from the Coulomb repulsion energy, J [ρ0]:

∆Vee[ρ0] = V [ρ0] − J [ρ0] (2.41)

where

J [ρ0] =
1

2

∫ ∫
ρ0(r1)ρ0(r2)

r12
dr1dr2 (2.42)

The sum of Eq. (2.40), the deviation of kinetic energy and Eq. (2.41), the

deviation from the Coulomb repulsion, is called the exchange correlation
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energy functional, constituting the grouped unknown terms [71].

EXC [ρ0(r)] = ∆T [ρ0] + ∆Vee[ρ0] (2.43)

Substituting Eq. (2.40), Eq. (2.41), Eq. (2.42) and Eq. (2.43) into Eq.

(2.39) yields the energy of the system.

E0 =

∫
ρ0(r)v(r)dr + Tr[ρ0] +

1

2

∫ ∫
ρ0(r1)ρ0(r2)

r12
dr1dr2 + EXC [ρ0]

(2.44)

These equations are used to derive the energy of the system, Kohn-Sham

(KS) orbitals and energy levels using the Hohenberg-Kohn theorems. The

electron density of the reference system is the same as the electron density

of the real system, given by:

ρ0 = ρr =
2n∑
i=1

|ΨKS
i (1)|2 (2.45)

where ΨKS
i are the KS orbitals, n is the number of occupied KS spatial

orbitals and 2n is the number of electrons in the system. The introduction

of KS orbitals was a major insight [70], enabling the KS energy to be

calculated computationally. Substituting into Eq. (2.44) and varying E0

with respect to the KS spatial orbitals leads to the KS equations:

[
−1

2
▽2

i −
∑
A

ZA

r1A
+

∫
ρ(r2)

r12
dr2 + νXC(1)

]
ΨKS

i (1) = ϵKS
i ψKS

i (1) (2.46)

The KS equations are one-electron equations, where ϵKS
i are the Kohn

Sham energy levels and νXC(1) is the exchange correlation potential (for

electron number 1), defined by:

νXC(r) =
δEXC [ρ(r)]

δρ(r)
(2.47)
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In a more concise format, Eq (2.46) can be written as:

ĥKS(1)ΨKS
i (1) = ϵKS

i ψKS
i (1) (2.48)

where ĥKS(1) is the KS operator (defined in Eq. (2.46)). These KS eigen-

value equations are expanded in terms of basis functions known as basis

sets.

ΨKS
i =

Nb∑
s=1

csiχs i = 1, 2, 3, ..., Nb (2.49)

χs are the basis functions and csi are the coefficients of the basis functions.

When this basis set expansion is substituted into the KS equations (Eq.

(2.46) and Eq. (2.48)) a matrix, with size dependent on the number of basis

sets, Nb, is generated. In order to solve the KS equations computationally

in DFT, an approximation of the density function ρ(r) is calculated by

summing a “guess” of the electron densities of the individual atoms. The

KS operator ĥKS is then calculated from this approximation, from which

the KS Fock matrix elements are calculated. The matrix is diagonalised

and orthogonalised to give the initial guesses of the coefficients c in Eq.

(2.49) and values of ϵ. These coefficients are then used in Eq. (2.46) to

calculate a better density function, where the new density function is used

to calculate improved matrix elements. This process continues iteratively

until the electron density converges, from which the final KS orbitals are

used to calculate the energy from Eq. (2.44).

Over the last six decades, much research and resource has focused on design-

ing more accurate approximations to the exchange-correlation functionals

that describe electron density and the basis sets used to describe the elec-

tronic wave functions [71, 72]. The success and accuracy of functionals

often depend on the molecular system and chemical properties under in-
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vestigation; a functional that works well to predict kinetics may not be suc-

cessful when predicting energetics or thermochemistry. Therefore, a careful

selection of computational parameters (functionals, basis sets, dispersion

correction etc.) is an important consideration in providing reasonable as-

surance that the DFT calculations are sufficiently accurate to predict the

chemical properties of molecular systems. In an ideal world, once the DFT

level of theory has been validated, testing the predicted properties against

experimental evidence provides greater assurance that the functional and

basis set combination chosen is sufficiently accurate to predict the struc-

tural, ground-state energetics and electronic properties of the molecular

system in question.

Exchange correlation functionals

As stated previously, the electron density function EXC [ρ(r)] is the sum

of the unknown deviations in kinetic energy and Coulomb repulsion (Eq.

(2.43)) [71], and so a better approximation of this term leads to a better ap-

proximation of the KS electron density and energy. In order to achieve this,

the exchange-correlation potential νXC(r) requires calculation, being the

functional derivative of the exchange-correlation functional acting on the

electron density function EXC [ρ(r)]. Several approximations of EXC [ρ(r)]

exist, grouped by a Jacob’s ladder of approximations [73, 74]. Each rung

of the ladder represents a different level of approximation that improves on

the last rung by adding capabilities.

The first rung of Jacob’s ladder of approximations is the simplest model

being the local density approximation (LDA) proposed by Kohn and Sham

[75] and assumes that the density can be treated as a uniform electron gas

only depending on the density at position r:

36



Chapter 2. Theoretical methods

ELDA
XC [ρ] =

∫
ρ(r)ϵXC [ρ(r)]dr (2.50)

where ϵXC [ρ(r) is the exchange-correlation energy per particle of a uni-

form electron gas of density ρ(r) [71] which can be further defined as the

summation of the exchange and correlation contributions:

ρ(r)ϵXC [ρ(r)] = ϵX [ρ(r)] + ϵC [ρ(r)] (2.51)

where ϵX [ρ(r)] is the exchange contribution and ϵC [ρ(r)] is the correlation

contribution.

Note that the LDA can be improved upon by assigning different KS orbitals,

ψKS
α and ψKS

β , for electrons of different spin, α and β, known as the local

spin density approximation (LSDA) [39, 71].

Given that the electron density within atoms or molecules usually varies

greatly across the molecular system, the LDA and LSDA are generally poor

approximations to the form of the actual electron density. The majority

of exchange correlation functionals used in DFT tend to use the electron

density at a specific position and also the gradient at r, ∇ρ, known as

generalised-gradient approximation functionals (GGA) [71], the next rung

of Jacob’s ladder, summarised as:

EGGA
XC [ρ] =

∫
ρ(r)ϵXC [ρ(r),∇ρ]dr (2.52)

Popular GGA functionals include BLYP [39, 76] and PBE [77].

On the next rung, Meta-GGA (mGGA) functionals improve upon GGA by
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introducing a dependency on the second derivative of the density, ∇2ρ, the

KS kinetic energy density:

EmGGA
XC [ρ] =

∫
ρ(r)ϵXC [ρ(r),∇ρ,∇2ρ(r)]dr (2.53)

A common example of a meta-GGA is TPSS [78].

Next comes hybrid-GGA functions that mix an exact HF exchange con-

tribution (calculated from HF theory) with a GGA contribution. One of

the most common hybrid-GGA functionals is B3LYP [38], a hybrid func-

tional that separates the exchange correlation functional into the “Becke”

exchange functional and “Lee Yang Parr” correlation functional, with addi-

tional corrective components to improve the accuracy of the approximation:

EXC [ρ] = a0E
X
HF + (1 − a0 − ax)EX

LDA + axE
X
B + (1 − ac)E

C
VWN + acE

C
LY P

(2.54)

where EX
HF is the HF component of the exact exchange, EX

LDA is the LDA

exchange component and EX
B is the Becke GGA exchange. EC

VWN is the

Vosko, Wilk, Nusair correlation function [79] and EC
LY P is the LYP func-

tional mentioned previously. The coefficients a weight each component and

in B3LYP a0 = 0.20, ax = 0.72 and ac = 0.81 [38]. Other common hybrid-

GGA’s are the PBE0 functional [80] and ωB97X-V, a 10 parameter and

range-separated hybrid GGA [81] that incorporates a long-range correc-

tion, and B3P86 which is B3LYP with LYP being replaced by a non-local

correlation contribution provided by Perdew in 1986 [82].
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Dispersion correction

A major issue with conventional functionals is that they could not describe

long range van-der Waals dispersion interactions, which are important for

larger molecular systems. This was solved by an empirical correction known

as “dispersion correction” to the overall energy of the system:

EDFT−D = EDFT + Edisp (2.55)

One of the first empirical dispersion corrections introduced into DFT was

in 2002 [83], tested against four functionals, B3LYP, BLYP, BPW91 and

PW91, being:

Edisp = −
∑
J>I

fdamp(RIJ)
CIJ

6

R6
IJ

(2.56)

where fdamp is the damping function where fdamp = 0 for small values of

RIJ and fdamp = 1 for large values of RIJ . CIJ
6 are coefficients obtained by

fitting to accurate reference molecular C6 dispersion coefficients.

In 2010, Grimme et al. [84, 85] expanded on this approach and previous

work undertaken and added a similar empirical correction to many well-

used functionals, known as DFT-D3 (preceded by DFT-D1 and DFT-D2

approaches), including a scaling parameter that accounted for the differ-

ences in how each functional included van der Waals interactions:

Edisp = −1

2

Nat∑
i=1

Nat∑
j=1

∑
L

(
fd,6(rij,L)

C6ij

r6ij,L
+ fd,8(rij,L)

C8ij

r8ij,L

)
(2.57)

where R0ij =
√

C8ij

C6ij
, L is the Gaussian-distance weighted average, and
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fd,n(rij) is the damping function:

fd,n(rij) =
sn

1 + 6(rij/(sR,nR0ij))−αn
(2.58)

The parameters α6, α8, sR,8 and s6 are fixed values of 14, 16, 1, and 1

respectively whilst s8 and sR,6 are adjustable depending on the choice of

functional. Within DFT, the damping can be varied by implementing the

Becke-Johnson damping function [86]:

fd,n(rij) =
snr

n
ij

rnij + (a1R0ij + a2)−n
(2.59)

where s6 = 1 and a1, a2 and s8 are adjustable parameters specific to the

functional employed. The DFT-D3(BJ) approach is used in this research,

with parameters adjusted to the specific functional selection.

Alternative computational methods

KS-DFT is not the only electronic structure method used to predict chem-

ical properties. DFT, in its present form, cannot be applied to systems

with strong multi-reference character [87]. Before DFT became a popu-

lar choice, organometallic systems and inorganic systems containing metal

atoms were usually investigated using Møller-Plesset second-order pertur-

bation theory (MP2) [88]. However, for strongly correlated systems, the

use of orbitals where the unrestricted Hartree-Fock (UHF) reference ex-

hibits spin-contamination (artificial-symmetry breaking) lead to disastrous

performance of MP2 [89]. Consequently, alternatives were developed such

as orbital-optimised MP2 (OOMP2) [90] and orbital-optimised MP3 (κ-

OOMP2) [91] to reduce the level of spin-contamination and thus improving
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the reliability of the calculations. Therefore, an assessment of the electron

correlation of a chemical system is important to understand before choos-

ing the most appropriate single reference or multi-reference computational

method.

With regard to fullerene systems, particularly C60, a computational study

[92] reported that electron density is highly correlated and therefore warned

against using single reference methods such as DFT to model properties.

However, this is juxtaposed by recent research [91] showing that the elec-

tron density in C60 is minimally correlated and therefore deemed single-

reference methods as appropriate. The aforementioned paper suggested

that a singlet-triplet gap of less than 10 kcal mol−1 is a useful predictor

of bi-radicaloid nature (electrons singly occupying molecular orbitals) and

therefore a minimal degree of electron correlation. This research follows the

latter line of reasoning suggesting that whilst there might be evidence of

correlation in smaller fullerenes, C60 is a weakly correlated system, aligning

with experimental evidence of paramagnetic silence [93].

Computational calculations in this thesis use the single reference compu-

tational approach, DFT, implemented in the Q-Chem quantum chemistry

software package [94], to calculate geometry optimised structures, single

point energies and partial charge values, at the B3P86-D3 / cc-pVDZ level

of theory, using DDEC6 to calculate partial charge values. No symmetry

was imposed in the calculations, and all minima were confirmed through

frequency analysis.
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2.2 Classical electrostatics

Between 1861 and 1865, James Clerk Maxwell successfully unified the pre-

viously independent theories of electricity and magnetism into four elegant

partial differential equations that relate the electric and magnetic fields in

free-space to each other and also to electric charges and currents [95].

∇.E = 4πρ (2.60)

∇×B− 1

c

∂E

∂t
=

4π

c
J (2.61)

∇.B = 0 (2.62)

∇× E +
∂B

∂t
= 0 (2.63)

where E is the electric field, B is the magnetic field, ρ is the electric charge

density and J is the electric current density. Note that the above formu-

lation of Maxwell’s equations are in Gaussian units, which are often more

convenient for practical purposes as this system needs only one fundamen-

tal constant (the speed of light), rather than two (the permittivity and the

permeability of free space) when using SI units. A particularly remarkable

feature of Maxwell’s achievement was realised following Einstein’s publi-

cation of the theory of Special Relativity, that the equations were found

to be entirely compatible with special relativity [96]. When electrostatics

are considered, i.e. where there is a time-independent electric field and no

magnetic field, the Maxwell equations reduce to:

∇.E = 4πρ ∇× E = 0 (2.64)

This research focuses on modelling Ca@C60 as a dielectric sphere, an azimuthally-
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symmetrical system. Before this specific system is considered, the ap-

propriate theoretical foundations, relevant to such a system, need to be

understood. These foundations are summarised below using Christopher

Pope’s incredibly useful teaching resource from Texas AM University [96]

and David Griffith’s excellent book on Electrodynamics [97].

Every electromagnetic problem can be viewed as a problem formulated

in free space with many electric point charges. However, the number of

individual microscopic point charges that make up the problem are often so

great that practical calculations are impossible and so it becomes preferable

to use a “macroscopic approximation” which takes a macroscopic view of

the problem in hand. In order to give a macroscopic formulation of the

electrostatic equations in the presence of media (e.g. a dielectric), E is

interpreted as an average value of the electric field with the introduction

of a new quantity, D, the electric displacement where D = E in free space

but in a medium represents a “back-reacted” version of E that takes into

account the fact that, on macroscopic level, the positive, and negative

charges in the medium are displaced as a result of the externally-applied

E field which causes distortion in the system, resulting in a polarisation or

effective electric dipole.

D = E + 4πP (2.65)

Consequently, the relevant electrostatic Maxwell equations are modified in

a medium to become:
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∇.D = 4πρ ∇× E = 0 (2.66)

Many problems in electrostatics involve boundary conditions, e.g. the inter-

face between free-space and a particular medium, which can be determined

by performing appropriate integrals of the two equations in Eq. (2.66).

Firstly, and with regard to the left-hand equation involving D, the elec-

tric displacement, ∇.D = 4πρ is integrated over a “Gaussian-pillbox” that

straddles the interface. The caps of the cylindrical pillbox are considered to

be parallel to the interface, with the interface bisecting the cylinder with

one cap on each side. The divergence theorem can be used to solve the

problem, stating that “the surface integral of a vector field over a closed

surface is equal to the volume integral of the divergence over the region

inside the surface” [97]:

∫
V

∇.υdV =

∫
S

υ.dS (2.67)

where υ is any vector field and S is a closed surface enclosing volume

V. Integrating ∇.D = 4πρ over the pillbox and applying the divergence

theorem, the boundary condition can be found:

n.(D1 −D2) = 4πσ (2.68)

where n is the unit normal vector pointing from medium 1 to medium 2
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and σ is the surface charge density (charge per unit area). This boundary

condition says that there is a discontinuity in the normal component of D,

given by 4π multiplied the surface charge density.

For the electric field E (the right-hand equation in Eq. (2.66)), one con-

siders a rectangular loop formed by two infinitesimally-separated parallel

line elements that straddles the interface. This can be solved using Stoke’s

theorem that states that “the surface integral of the curl of a function over

a surface bounded by a closed surface is equal to the line integral of the

particular vector function around that surface” [97]

∫
Σ

(∇× υ).dS =

∮
C

υ.dl (2.69)

where υ is again any vector field and Σ denotes an open surface whose

boundary is the closed loop C. Integrating ∇×E = 0 over the area Σ and

applying to Stoke’s theorem, the second boundary condition can be found:

n× (E1 − E2) = 0 (2.70)

where n is again the unit normal vector pointing from medium 1 to medium

2. This boundary condition says that the tangential components of the

electric field E must be continuous across the interface. Now the boundary

conditions have been defined, one can construct the complete electrostatic

problem. In electrostatics, the electric field can be written in terms of a

scalar potential ϕ:
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E = −∇ϕ (2.71)

Substituting this into the free space Maxwell equations for electrostatics

(the first equation in Eq. (2.66)) leads to the Poisson equation:

∇2ϕ = −4πρ (2.72)

where ∇2 is the Laplacian, a scalar differential operator.

Solving any problem in electrostatics can be reduced to solving the Pois-

son equation for a given charge density ρ in a volume V bounded by a

surface S and subject to given boundary conditions. This is known as the

boundary-value problem [96]. A useful feature of the Laplacian ∇2 is that

it becomes separable when the problem is defined in Cartesian, spherical

polar or cylindrical coordinates, enabling Laplace’s equation to be factored

into a second-order ordinary differential equation, which is of great benefit

when trying to construct solutions [97]. In order to solve this particular

case, one must perform a separation of variables in spherical polar coordi-

nates. The separation of variables approach is well known and will not be

repeated here, other than to state the separated radial equation for the case

of an azimuthally-symmetric system that can be used to model Ca@C60.

A problem that is azimuthally symmetric in spherical polar coordinates

means that it is independent of the azimuthal coordinate, φ. The potential

ϕ can therefore be separated:
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ϕ(r, β) =
1

r
R(r)Θ(β) (2.73)

where R and Θ satisfies Laplace’s equation whose variables have been sep-

arated in spherical polar coordinates, being the radial equation:

d2R

dr2
=

λ

r2
R,

1

Θ
sinβ

d

dθ
(sinβ

dΘ

dβ
) + λΘ = 0 (2.74)

The radial equation is a Legendre equation, with solutions being Legendre

polynomials when λ = l(l+1). The first four Legendre polynomials, defined

in Eq. (2.75) in traditional terms of x:

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1),

P3(x) =
1

2
(5x3 − 3x), P4(x) =

1

8
(35x4 − 30x2 + 3)

(2.75)

Since the goal is to find solutions of Laplace’s equation in spherical polar

coordinates and that azimuthally-symmetric solutions are defined in terms

of Legendre polynomials, a general azimuthally-symmetric solution requires

the expansion of Legendre polynomials in terms of x = cosβ (where β is

the zenith angle) which takes the general form:

f(x) =
∑
l≥0

alPl(x) (2.76)
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where al is derived as:

al =
1

2
(2l + 1)

∫ 1

−1

dxf(x)Pl(x) (2.77)

A key property of this expansion is the orthogonality condition:

∫ 1

−1

dxPl(x)Pl′(x) =
2

2l + 1
δl,l′ , l ̸= l′ (2.78)

where δl,l′ is known as Kronecker delta which equals 1 if l and l′ are equal,

and zero otherwise.

The two linearly independent solutions of the radial equation are R = rl+1

and R = r−l, therefore, by summing over all possible factorised solutions

of the form of Eq. (2.74) the general azimuthally symmetric solution is

defined [96]:

ϕ(r, β) =
∑
l≥0

(Alr
l +Blr

−l−1)Pl(cosβ) (2.79)

where Al and Bl are arbitrary constants determined by the boundary con-

ditions of the system.
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2.2.1 Modelling Ca@C60

For the case of modelling the electrostatics of Ca@C60, this research extends

the work performed by Raggi et al. [44] and Deng and Cai [98], modelling

Ca@C60 as a point charge within a dielectric sphere, immersed in an infinite

dielectric medium:

Figure 2.4: Geometric representation of a point charge within a dielectric
sphere where σ(r) is the surface charge density, ϕ(r) is the electric potential,
q is the encapsulated point charge, R is the radius of the dielectric sphere,
a is the length from the centre, r is the observation position and ϵ1 and ϵ2
are the internal and external dielectric constants respectively.

The boundary conditions defined in Eq. (2.70) and Eq. (2.68), in relation

to this dielectric system, state that the normal components of the dielectric

displacement field D and the tangential components of the electric field E

satisfy the following equations [44] either side of the dielectric boundary:

n× (Dr=R+ −Dr=R−) = 0

n× (Er=R+ − Er=R−) = 0

(2.80)
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where R+ and R− are the radial positions just outside and inside the di-

electric sphere respectively and n is the previously mentioned unit vector

normal to the surface that is directed outwards from the sphere surface.

The total surface charge is defined as the sum of a uniformly distributed

free charge Q and a bound polarisation charge σ. At the boundary, the

normal component of the electric field is discontinuous due to the presence

of a permanent surface charge [99] and therefore this defines one of the key

boundary conditions:

σ(R, β) = ε1

[
∂ϕ1

∂r

]
r=R

− ε2

[
∂ϕ2

∂r

]
r=R

(2.81)

There are four other boundary conditions that exist for this system [44,

99], defining the limits of the analytical expressions for 0 ≤ r ≤ R and

R ≤ r ≤ ∞:

1. The electric potential vanishes at infinity ϕ2(r, β) → 0 as R → ∞.

2. The internal potentials are finite inside the sphere.

3. The potentials and the fluxes normal to the spherical boundary are

continuous at the boundary;

ϕ1(R, β) = ϕ2(R, β), ε1

[
∂ϕ1

∂r

]
r=R

= ε2

[
∂ϕ2

∂r

]
r=R

(2.82)

4. The continuity of the potential on the surface of the sphere is due to

the continuity of the tangential component of the electric field, which

50



Chapter 2. Theoretical methods

is automatically satisfied by the choice of electric potential ϕ(r, β).

[
−1

r

∂ϕ1

∂β

]
r=R−

=

[
−1

r

∂ϕ2

∂β

]
r=R+

(2.83)

The point charge’s potential also needs to be accounted for within the

electrostatic problem. Usefully, the potential due to a point charge can be

expanded as a summation of Legendre polynomials, where the potential

felt at r by the unit charge at a is:

q

4πε1 |r − a|
=

q

4πε1a

∞∑
l=0

(r
a

)l
Pl(cosβ), 0 ≤ r ≤ a

q

4πε1 |r − a|
=

q

4πε1a

∞∑
l=0

(a
r

)l
Pl(cosβ), a ≤ r ≤ R

(2.84)

Given both the potentials of the point charge and the dielectric sphere

are both azimuthally-symmetric and can therefore be defined in terms of

Legendre polynomials, the application of the boundary conditions to this

problem enables an analytical expression to be derived for the potentials

and surface charge density of the system, all in terms of Legendre polyno-

mials. This solution shall be developed and discussed further in the next

chapter.

Computational electrostatic calculations were implemented in the Mathe-

matica software package [100], to calculate the numerical values of the an-

alytical solutions. The summations used 200 terms to ensure convergence,

with the resulting solutions being visualised using the inbuilt graphical

analysis tools in Mathematica.
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Chapter 3

Electrostatic analysis of the

surface charge polarisation for

metallofullerenes

3.1 Modelling surface charge polarisation of

dielectric particles

The electrostatic properties of materials are important to understand when

considering applications to industrial processes and procedures, especially

in areas where electrostatic effects dominate particle behaviour, for exam-

ple the removal of fine particles and coal dust in power stations, parti-

cle charging and deposition during powder coating, and the behaviour of

particles in dry powder inhalers [44]. Work over the last decade by Bi-

choutskaia, Stace and Raggi et al. [44, 99] has contributed significantly to

the understanding of the behaviour of dielectric particles, particularly how

like-charged particles of dielectric materials can be attracted to one an-
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other [101], through the mutual polarisation of charge leading to regions of

attractive negative and positive surface charge density when dielectric par-

ticles are in close separation, and the polarisation response of a dielectric

sphere due to an external point charge. These analytical solutions were

developed using Legendre polynomial series expansions of the respective

system’s position-dependent electrostatic potential and relevant boundary

conditions. These publications also demonstrate the importance of testing

the validity of any theoretical approach through comparison with relevant

quantum mechanical calculations and experimental evidence, if available.

The first hypothesis of this research is that the motion of an encapsulated

metal confined within a fullerene cage is strongly correlated to the distri-

bution of charge density on the cage surface. This was previously demon-

strated by Raggi et al. [44] who presented an analytical solution for the

distribution of surface charge on a dielectric sphere due to the presence of

an external point charge, q. The solution described how the charge on the

sphere’s surface is polarised in the electric field into regions of positive and

negative charge that varies with the separation, (h−a), between the sphere

and the point charge (and where k is the dimensionless dielectric constant,

the permittivity relative to the vacuum k = ε
ε0

), represented geometrically

in Figure 3.1.

Figure 3.1: Geometric representation of the sphere–point charge interaction
[44].

Raggi et al. derived the distribution of charge on the spherical bound-
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ary induced by the presence of an external point charge by solving the

Poisson equation to derive the system’s electrostatic potentials (inside and

outside the sphere) in the form of Legendre polynomial series expansions,

as discussed in Chapter 2. The constants within the Legendre polynomial

expansions were found by applying the system’s relevant boundary condi-

tions, leading to an expression for the polarisation surface charge density:

σpol
surf (cosβ) =

q

4πh2

∞∑
l=1

(2l + 1)l
(1 − k)

(1 + k)l + 1)

(a
h

)l−1

Pl(cosβ) (3.1)

This solution demonstrated that polarisation is particularly relevant at

short separations with a large influence on the surface charge distribu-

tion of the dielectric sphere, confirmed through qualitative agreement with

density functional theory calculations for C60 and C240 in the presence of

an external point charge. This work gave weight to the ongoing debate

that these fullerene molecules can be treated as dielectrics as opposed to

metals. Whilst this is a useful starting point, in order to understand met-

allofullerenes e.g. Ca@C60, an analytical solution is required for the case

where the point charge is encapsulated within the dielectric sphere which is

presented in this chapter. The aforementioned research by Raggi et al. [44],

Deng and Cai [98] and relevant electrostatic potential solutions located in

Batygin and Toptygin’s 1978 book “Problems in Electrostatics” [102] have

been very useful in informing the derivation of this solution.
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3.2 A point charge within a dielectric sphere

The geometric representation of this model was described in Chapter 2 and

repeated here for ease of reference.

Figure 3.2: Geometric representation of a point charge within a dielectric
sphere where σ(r) is the surface charge density, ϕ(r) is the electric potential,
q is the encapsulated point charge, R is the radius of the dielectric sphere,
a is the length from the centre, r is the observation position and ϵ1 and ϵ2
are the internal and external dielectric constants respectively.

Following the logic of Deng and Cai [98] and Raggi et al. [44], the general

solutions to the total potential field can be described as a summation of

the contributions of the point charge and dielectric sphere potentials:

ϕin(r, β) = ϕq(r, β) + ϕsphere(r, β)

ϕin(r, β) =
q

4πε1 |r − a|
+

∞∑
l=0

Alr
lPl(cosβ), 0 ≤ r ≤ R

ϕout(r, β) =
q

4πε1 |r − a|
+

∞∑
l=0

Bl

rl+1
Pl(cosβ), R ≤ r ≤ ∞

(3.2)

Expanding the Coulomb potential, ϕq(r, β), within the sphere in terms of
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Legendre polynomials leads to the following expressions:

q

4πε1 |r − a|
=

q

4πε1a

∞∑
l=0

(r
a

)l
Pl(cosβ), 0 ≤ r ≤ a

q

4πε1 |r − a|
=

q

4πε1a

∞∑
l=0

(a
r

)l
Pl(cosβ), a ≤ r ≤ R

(3.3)

Therefore, the complete electrostatic potentials in terms of Legendre poly-

nomials can be described as:

ϕ(r, β) =


q

4πε1a

∑∞
l=0

(
r
a

)l
Pl(cosβ) +

∑∞
l=0Alr

lPl(cosβ) 0 ≤ r ≤ a

q
4πε1r

∑∞
l=0

(
a
r

)l
Pl(cosβ) +

∑∞
l=0Alr

lPl(cosβ) a ≤ r ≤ R

q
4πε1r

∑∞
l=0

(
a
r

)l
Pl(cosβ) +

∑∞
l=0

Bl

rl+1Pl(cosβ) R ≤ r ≤ ∞
(3.4)

Using the boundary condition that the potentials and the fluxes normal

to the spherical boundary are continuous at the boundary (see Chapter 2

for the full set of boundary conditions) and the orthogonality property of

Legendre Polynomials, an expression for Al and an equation satisfying the

boundary condition can be derived:

ϕ1(R, β) = ϕ2(R, β)

∞∑
l=0

(
q

4πε1R

( a
R

)l
+ AlR

l

)(
2

2l + 1
δl,l′

)
=

∞∑
l=0

(
q

4πε1R

( a
R

)l
+

Bl

Rl+1

)(
2

2l + 1
δl,l′

)
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Al =
Bl

R2l+1
(3.5)

ε1

[
∂ϕ1

∂r

]
r=R

= ε2

[
∂ϕ2

∂r

]
r=R

ε1

∞∑
l=0

(
− q

4πε1
(l + 1)

al

Rl+2
+ lAlR

l−1

)(
2

2l + 1
δ

)
=

ε2

∞∑
l=0

(
− q

4πε1
(l + 1)

al

Rl+2
− (l + 1)Bl

1

Rl+2

)(
2

2l + 1
δ

)
(3.6)

Rearranging and cancelling like terms and substituting Al = Bl

R2l+1 leads to

final expressions for Al and Bl

Al =
q

4π

(
ε1 − ε2
ε1

)(
l + 1

ε2(l + 1) + ε1l

)
al

R2l+1

Bl =
q

4π

(
ε1 − ε2
ε1

)(
l + 1

ε2(l + 1) + ε1l

)
al

(3.7)

Substituting Al and Bl into Eq. (3.4) leads to complete analytical expres-

sions for the electrostatic potential:

ϕ(r, β) =
q

4πε1a

∑∞
l=0

(
r
a

)l
Pl(cosβ) + q

4π

∑∞
l=0

(
ε1−ε2
ε1

)(
l+1

ε2(l+1)+ε1l

)
alrl

R2l+1Pl(cosβ) 0 ≤ r ≤ a

q
4πε1r

∑∞
l=0

(
a
r

)l
Pl(cosβ) + q

4π

∑∞
l=0

(
ε1−ε2
ε1

)(
l+1

ε2(l+1)+ε1l

)
alrl

R2l+1Pl(cosβ) a ≤ r ≤ R

q
4π

∑∞
l=0

(
2l+1

ε2(l+1)+ε1l

)
al

rl+1Pl(cosβ) R ≤ r ≤ ∞
(3.8)

Simplifying by reducing the Coulomb potential, ϕq(r, β) to its original form

shows that this approach agrees completely with the solutions presented

by Batygin and Toptygin [102]:
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ϕ(r, β) =


q

4πε1|r−a| + q
4π

∑∞
l=0

(
ε1−ε2
ε1

)(
l+1

ε2(l+1)+ε1l

)
alrl

R2l+1Pl(cosβ) r ≤ R

q
4π

∑∞
l=0

(
2l+1

ε2(l+1)+ε1l

)
al

rl+1Pl(cosβ) R ≤ r ≤ ∞
(3.9)

Using the boundary condition that the normal component to the electric

field is discontinuous due to the presence of a permanent and free charge

on the surface of the sphere, an analytical expression for the surface charge

density can be derived:

σ(R, θ) = ε1

[
∂ϕ1

∂r

]
r=R

− ε2

[
∂ϕ2

∂r

]
r=R

σ(R, β) = − q

4π |R− a|2
+

q

4π

∞∑
l=0

(
ε1 + l(3ε1 − ε2)

ε1(ε2 + l(ε1 + ε2)

)
al(l + 1)

Rl+2
Pl(cosβ)

(3.10)

This analytical expression for the surface charge density as a function of

the encapsulated point charge position, can be visualised graphically and

then directly compared to DFT calculations to provide assurance of its

reliability to model the Ca@C60 system.
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3.2.1 DFT validation using q@C60 and Ca@C60

To visualise the analytical expression, the surface charge density was plot-

ted for a geometric system of properties comparable to that of Ca@C60 at

a range of charge separations, a, as shown in the Figure 3.3:

Figure 3.3: Surface charge distributions on a dielectric sphere, of radius (R)
4Å and dielectric constant (ϵ1) 3.45, immersed in a vacuum (ϵ2=1), through
the placement of a single point charge inside the particle (q = 1.43e). The
left-hand illustration defines the system, including the angle from the axis
of the point charge (β) and the distance of the point charge from the
centre. The right-hand illustration shows the corresponding surface charge
distributions as a function of β for various positions of point charge: a =
0Å (red), a = 0.5Å (green), a = 1.0Å (blue), a = 1.5Å (yellow), a = 2.0Å
(orange) and a = 2.5Å (purple).

When the point charge is at the centre of the sphere (a = 0Å), the sur-

face charge is uniform, as shown by the red straight line. As the positive

point charge moves off centre, towards the surface of the sphere, the surface

charge moves across the sphere’s surface in the direction of point charge

motion due to the electrostatic attraction between the negative surface

charge and encapsulated positive point charge. This results in the sphere

becoming polarised, with one hemisphere containing more surface charge

density than the other. For small values of a (e.g. 0.5Å, green line), the

impact on the surface charge is minimal due to the relatively large radius

of the sphere, however, as the value of a increases, the impact quickly
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becomes more pronounced and concentrated shown by the reducing curve-

widths, indicating that the redistributed surface charge is compacted into

increasingly smaller surface areas - for this particular system, the surface

charge density approximately doubles for every 0.5Å increment, providing

good evidence to validate the hypothesis that the motion of an encapsu-

lated charge confined within a dielectric sphere is strongly correlated to

the distribution of charge density on the cage surface. To provide addi-

tional validation, the model can be compared against DFT calculations for

a point charge encapsulated within C60.

Single point energy DFT calculations were performed using the validated

computational parameters identified in chapter 4. The first set of calcu-

lations modelled a point charge, q of strength +1.43, encapsulated within

C60, with locations matching Figure 3.3, to provide a comparable anal-

ysis to the analytical model. The resulting output was visualised using

the Ovito package [103] with gradient colouring from blue (negative) to

red (positive) to clearly visualise the movement of charge across the cage

surface.

Figure 3.4: DFT calculated partial charges for q@C60, at the B3P86-D3 /
cc-pVDZ level of theory. The point charge inside the particle (q = 1.43e)
was placed at various locations (a = 0Å - 2.5Å at 0.5Å intervals), moving
from right to left hemispheres in the direction of the carbon 6-6 bond.
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When the positive point charge is at the centre of C60, the charge distribu-

tion is symmetric, as expected due to the electrostatic interaction between

the point charge and cage being evenly distributed across the cage. When

the point charge moves off centre into the left hemisphere, towards the lo-

cation of the carbon 6-6 bond, the surface charge redistributes in the same

direction. At 0.5 Å, the charge redistribution appears to be spread across

the 6 carbons of the hexagon, at 1.0 - 2.0 Å, this reduces to 4 of the 6 car-

bons within the hexagon, and finally at 2.5 Å, the surface charge is focused

on the 6-6 bond. This behaviour closely matches the analytical solution,

with the main difference being that the analytical approach does not spread

the charge across discrete carbon sites, as the DFT results show, due to the

model being of a smooth dielectric sphere. However, for the purposes of

establishing whether the analytical approach correctly models behaviour,

the close alignment with DFT provides further good evidence of the va-

lidity of this approach to support the hypothesis that the motion of the

point charge is correlated to the distribution of charge density on the cage

surface.

Taking this one step further, to establish the model’s alignment with the

metallofullerene case, analytical and DFT calculations were undertaken

to model Ca@C60. The main difference with these calculations was the

variability of the strength of the calcium charge at different locations of

the cage (observed in Chapter 4 and 5) - the quantity of charge transferred

from the calcium ion to the cage surface changes depending on the position

of the calcium ion within the fullerene cage, which will have an impact on

the electrostatics of the system.
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Figure 3.5: Surface charge distributions on a dielectric sphere, of radius (R)
4Å and dielectric constant (ϵ1) 3.45, immersed in a vacuum (ϵ2=1), through
the placement of a single point charge inside the particle. Corresponding
surface charge distributions as a function of β for various positions and
point charge strengths: a = 0Å / q = +1.81e (red), a = 0.5Å / q = +1.75e
(green), a = 1.0Å / q = +1.56e (blue), a = 1.5Å / q = +1.32e (yellow), a
= 2.0Å / q = +1.03e (orange) and a = 2.5Å / q = +0.64e (purple).

Figure 3.6: DFT derived surface charge distributions of Ca@C60, through
the placement of a calcium ion inside the particle (using optimised partial
charge values), at various locations (a = 0Å - 2.5Å at 0.5Å intervals),
moving into the left hemisphere in the direction of the optimised carbon
6-6 bond.
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The analytical solution, in figure 3.5 shows that the reducing charge strength

at each interval causes the surface charge density to decrease as a result of

a reduced electrostatic attraction between the cage and the point charge.

In addition, the profiles of each curve at the extremities (π and -π) are

clustered together with similar surface charge densities, indicating that the

surface charge is spread over a larger surface area, rather than being com-

pacted as observed in figure 3.3.

The DFT solution, in figure 3.6 shows that when the calcium is at the cen-

tre of C60, the charge distribution is symmetric, as expected, and identical

to the result of the point charge case. At this position, the strength of the

charge is +1.81e. As the calcium moves into the left-hand hemisphere in

the direction of the optimised carbon 6-6 bond, charge is transferred to the

calcium from the cage non-linearly to a value of +0.64e at 2.5Å. The sur-

face charge again redistributes in the same direction of motion, however,

the redistribution appears more gradual, compared to figure 3.4, with a

larger spread across the hemisphere. This aligns with the analytical pic-

ture, indicating that the degree of polarisation is partially stabilised by the

charge transfer process. This reinforces Raggi et al. finding that the stabil-

ity of the Ca@C60 is defined by the interplay between the amount of charge

transferred from the metal onto the cage and the degree of polarisation of

the surface charge on the cage [17].

This DFT partial charge analysis provides good evidence that the analytical

solution presented is a useful and valid approach to model the surface charge

polarisation behaviour of the Ca@C60 metallofullerene.
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3.3 Limitations of analytical solutions

The currently validated analytical solutions available offer a useful holistic

electrostatic analysis of surface charge polarisation caused by a free moving

charge inside and outside a dielectric sphere. The forms of this work’s

analytical solution and Raggi’s solution, using Legendre polynomials, are

similar and so can be used together to compute the distribution of surface

charge at either sides of the dielectric particle boundary for a point charge

moving across that boundary from inside to outside the cage. There are two

limitations to consider when reconciling the results from these analytical

solutions to DFT or experimental evidence. The first being the transfer

of charge from an encapsulated ion to the cage surface as the ion moves

across the cage, as observed in DFT calculations. As shown in the previous

section, this can be modelled simply (but manually) by first calculating

the charge strength at a specific location using DFT and then inputting

those values into the analytical expression to calculate the surface charge

distributions. However, this does not take into account the additional

quantity of charge that is transferred either from the ion to the cage or vice-

versa. But given the delocalised nature of the C60 cage, it is assumed that

any increasing or decreasing volume of charge is spread across the existing

surface charge distribution, having a minimal impact on the overall profile

of the surface charge distribution.

The second consideration is that the current analytical solutions do not

take into account the electrostatic effects of increasing surface charge sur-

face area concentrations as a result of the point charge moving towards

the boundary. In reality, it is unlikely that the surface charge density will

tend to a delta-function distribution due to the repulsive effects of the in-

creasingly concentrated localised charge density on the surface. Analysing
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this effect is outside the scope of this research, however, Filippov et al.

[104], when studying the interaction between particles with inhomogeneous

surface charge distributions, derived an analytical expression in terms of

Legendre polynomials and a “δ-localised” point charge on the surface of a

single uncharged particle, which could be useful to more accurately model

surface charge distribution behaviour:

σδ =
q

a2
ε1 − ε0
ε1 + ε0

∞∑
n=0

2n+ 1

nε1 + (n+ 1)ε0
Pn(cosθ) − 2q

ε0a2
ε1 − ε0
ε1 + ε0

δ(cosθ0 − cosθ)

(3.11)

The additional contribution to the total charge (right-hand term) indicates

that the “environment reacts to the presence of the surface point charge

such that the “height” of the δ-function decreases” [104]. Incorporating

this “δ-localised” region of charge into this research’s analytical solution

could be a useful next step to more accurately model the surface charge

distribution of a metallofullerene system.

As an aside, the literature is unclear on the reason behind the precise opti-

mised metal ion position within the fullerene, mostly relying on symmetry

arguments (Jahn-Teller distortion) [105] to explain why an off-centre posi-

tion is more energetically stable rather than a central position. However,

this doesn’t explain the specific radius of the potential well. This chapter

suggests a possible explanation - that the radius of the potential well is the

equilibrium position that optimises (1) the electrostatic energy between

the encapsulated ion and fullerene cage, (2) the polarisation energy as a

result of accumulated charge on the cage surface and (3) the Jahn-Teller

distortion energy. This could be an interesting future research direction.

65



Chapter 4. Computational validation of Ca@C60 polarisation properties

Chapter 4

Computational validation of

Ca@C60 polarisation properties

Since the discovery of C60 in 1985, structural and electronic characterisa-

tion work has enabled experimental researchers to consider potential mech-

anisms to create new molecules, by extending and modifying known reac-

tion pathways that were fine-tuned and optimised for high yield and purity.

For this research, focussed on Ca@C60, a chronological literature review ini-

tially identifies and selects high-yield and experimentally available sterically

undemanding functionalised fullerene cages as potential candidates for the

development of a bi-stable endohedral metallofullerene molecular switch.

The review focuses on hydrogen and fluorine functionalised fullerenes as

recommended by Raggi et al. [17]; hydrogen was chosen following a pre-

vious study’s findings that described how hydrogen addition modified the

inner potential energy environment of the fullerene cage and therefore the

propensity for an encapsulated species to favour one hemisphere over an-

other [35] resulting in a bi-stable polarisation response from the surface

charge density on the cage. Fluorine is an interesting comparative choice
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for two reasons, firstly to evaluate the impact of a strongly electronegative

species on the fullerene cage’s surface charge and secondly, as found in the

literature review, the prevalence of high-yield and experimentally available

pathways. Encapsulated calcium was chosen as the switching agent, follow-

ing the previous work by Raggi et al. [17] that demonstrated that calcium

ion motion was strongly correlated to the distribution of surface charge

density on the fullerene cage, as demonstrated in Chapter 3.

To design a robust testing environment for the selected functionalised

fullerene cages, preliminary computational experiments were undertaken

to identify and validate appropriate DFT parameters, particularly rele-

vant functionals, basis sets and wave-function analysis methods for ground-

state geometry optimisation calculations, single-point energy calculations

and partial charge analysis of Ca@C60. The experimentally determined

electron affinity of the Ca@C60 [106] radical was used as an experimental

benchmark. To assess the resilience of the functional and basis set choice,

further experiments were undertaken to calculate the ionisation energy of

another endohedral metallofullerene molecular switch, Li@C60, comparing

the calculated values to theoretical literature and experimentally deter-

mined values. Finally, ground state polarisation and electronic proper-

ties were calculated using the selected DFT computational parameters to

provide benchmark properties to compare against selected functionalised

endohedral metallofullerenes.
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4.1 Literature review

4.1.1 Hydrogen functionalised C60

The first hydrogenating reactions on C60 used Birch reduction (Li, liquid

NH3, t-BuOH) to create C60H36 in 1990 [107]. Note that C60H18 was also

produced in this reaction, however, it was not clear whether this was a

genuine co-product of the Birch reduction or a pyrolysis product of C60H36

that followed in the experiment. This was accompanied by the reverse

dehydrogenation reaction back to C60 by treatment of a toluene solution

of the Birch-reduced product with DDQ (reflux), a dehydrogenation agent.

The realisation that experimental methods could produce derivatives of C60

with a wide range of elements trapped inside the central fullerene cavity

generated huge interest in exploring potential new areas of chemistry and

materials science.

Following computational research into which low-order hydrogenated fullerene

isomers would be preferentially populated at room temperature, Henderson

et al. produced C60H2 (1993) and C60H4 (1994) with yields of 20-30% and

10% respectively, through the reaction of C60 with BH3:tetrahydrofuran in

toluene followed by hydrolysis and separated by high-performance liquid

chromatography (HPLC) [108, 109]. The quality of the separation pro-

cess was directly correlated with both the yield and purity. The authors

note that the total yield of C60H4 was less than 2% from C60, but 10%

when C60H2 was used as the starting material. This synthesis, the subse-

quent isolation in pure form and structural analysis by Nuclear Magnetic

Resonance (NMR) spectroscopy provided fundamental information on the

structure of C60 derivatives, particularly the preference of the initial 1,2

addition and secondary 3,4 addition across a 6-ring to produce C60H2 and
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C60H4 respectively, consistent with the thermodynamic isomers predicted

from semi-empirical calculations.

The difficulties of efficiently preparing and isolating specific reduced fullerenes

was noted in 1996 by Meier et al. due to the large number of adjacent

oxidation states[110]. Despite this, Meier successfully synthesised and sep-

arated the major isomer of C60H6 by the reaction of C60 with Zn-Cu couple

at 50◦C in toluene containing a small amount of water, of which roughly

50% was isolated by HPLC using a preparative Buckyclutcher column and

an automated injector/fraction collector. This was an impressive result,

as the reaction produced C60H6 with negligible contamination by adjacent

oxidation states. At the time the only example of the highly symmetrical

1,2,33,41,42,50 addition pattern was compared to structures of two other

species, C60Br6 [111] and C60Cl6 [112] characterised as 1,2,5,10,21,24 pat-

terns.

By 1997 experimental researchers possessed several established routes to

hydrogenated fullerenes. Bergosh et al. noted the following pathways;

“Birch reduction, hydroboration, hydrozirconation, solution phase and solid

phase hydrogenation, hydrogenation by addition of hydrogen atoms, trans-

fer hydrogenation, electrochemical reduction as well as chemical reduction

with diimide, chromous acetate, photoinduced electron transfer, and with

hydride reducing agents” [113]. These pathways were interesting due to

the hydrogenation-dehydrogenation process, particularly used for hydrogen

storage systems. The same paper reported an improved isolated yield of

C60H2 (66%) and C60H4 (45%) following a similar approach to Henderson,

using 250 mg of C60 and Zn(Cu) prepared from 5g of Zn dust.

Gakh et al. synthesised and characterised the C1 (60-70% yield), C3 (25-

30% yield) and T (2-5% yield) isomers of C60H36 in 2003 [114]. This was
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an important achievement that had defied numerous attempts to charac-

terise the structure of C60H36 for over a decade. The three isomers were

produced by high-temperature transfer hydrogenation of C60 in a 9,10-

dihydroanthracene melt, with structures characterised by 2D 1H-detected

NMR experiments recorded at 800MHz. This paper provided compelling

evidence for straightforward hydrogen migration across the fullerene sur-

face at high temperatures, which supported the case that hydrogenated

fullerenes could be useful in the field of hydrogen storage.

In 2005, C60H18, previously a minor product of C60 hydrogenation reac-

tions, was produced by hydrogenation of C60 at 100 bar H2 pressure and

673K for 10 hours [115]. NMR analysis and Infrared Spectroscopy showed

that the crude output (without purification) of this reaction consisted of

95% of the C3v isomer. This overcame the difficulties of producing large

amounts of pure single isomeric materials and this technique to synthesise

bulk amounts of C60H18 hoped to facilitate further research on understand-

ing functionalised C60, now recognised as an important class of materials

for solar cell applications [116].

Since its initial production, C60H2 had generated a lot of interest as an ef-

fective hole transport material with potential applications in organic field-

effect transistors and organic light-emitting devices [117]. In 2009, Tzi-

rakis et al. presented a novel one-step synthesis of C60H2 via hydrolysis

of acylated fullerenes [118], improving on previous synthetic approaches by

rapidly producing C60H2 with good yield (> 99%) without the need for

a separating process. This enabled a pathway for the bulk production of

C60H2 for commercial testing and applications.

Continued interest in hydrogen storage capabilities led Luzan et al. to

study the kinetics and pathways of the C60 reaction with hydrogen gas in
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2011 [119], enabling access to higher order hydrogenated fullerenes (known

as fulleranes). C60H36, C60H44 and C60H52 were produced via the C60H18

intermediary. For this experiment, hydrogenation of C60 was performed

between 350 – 440◦C at 50 bar hydrogen pressure and monitored using the

gravimetric method with fullerene products studied by X-ray diffraction,

matrix-assisted laser desorption ionisation time-of-flight (MALDI TOF)

and atmospheric pressure photoionisation high resolution Fourier trans-

form ion cyclotron resonance (APPI FT-ICR) mass spectrometry, liquid

chromatography, and elemental analysis. These experiment revealed prod-

ucts of significantly higher abundance which permitted the suggestion of

the reaction pathway, C60 → C60H18 → C60H36 → C60H44 → C60H52, as an

access route to higher order fulleranes.

4.1.2 Hydrogen functionalised C70

Concurrently to the work on C60, research was being undertaken on the

functionalised of C70 fullerenes. In 1998, Spielmann et al., prepared and

characterised C70H2, C70H4 and C70H8 using the aforementioned Zn(Cu)

reduction technique [120]. The products were purified by HPLC with five

bands isolated; C70, C70H2 major isomer (18% yield), C70H4 major isomer

(25% yield), three minor isomers of C70H4 (2.9% yield) and C70H8 (27%

yield). This study also provided insight into the polyaddition process, par-

ticularly that the site of the initial reduction step determines the preferred

site of the second reduction step.
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4.1.3 Fluorine functionalised C60

Following the discovery of functionalised fullerenes, the fundamental rea-

sons behind observed polyaddition patterns in fullerenes were poorly un-

derstood, which motivated researchers to produce a range of functionalised

fullerenes to better understand polyaddition processes. The polyaddition

patterns fell into three groups; the 1,2 addition of non-bulky groups and 1,2

cycloadditions and 1,4 additions of bulky addends [121]. The 1,2 additions

of sterically undemanding groups were of particular importance as they

could reveal underlying electronic mechanisms. These groups were limited

to hydrogenation and fluorination, whose formation had been shown to take

place via a series of 1,2-additions [122–126]. The challenge with experimen-

tally studying hydrogenation, as mentioned in the previous section, is iso-

lating and separating individual products from the reaction mixtures. Hy-

drogenated fullerenes are also readily oxidised to produce fullerenols, which

adds complication when attempting to analyse multiple connected peaks

of 1H NMR spectra. Therefore, fluorinated fullerenes developed into a very

active area of research to better understand the underlying mechanisms to

the polyaddition patterns observed through experiments. Olga Boltalina,

now of Colorado State University, has been central to these efforts and in

1996, together with collaborators, prepared and characterised C60F18 by

the reaction between C60 and potassium hexafluoroplatinate (K2PtF6) in

a Knudsen cell contained within a mass spectrometer and characterised

by 19F NMR spectroscopy showing that C60F18 had a crown shaped C3v

symmetry and was isostructural with C60H18. In 2002, Boltalina and Dar-

wish et al. isolated and characterised C60F2, C60F4, C60F6 and C60F8 [121]

through fullerene fluorination with K2PtF6 at 470◦C under vacuum (ca. 0.1

bar). Products were dissolved in toluene, filtered to remove moisture, and

then separated by High Pressure Liquid Chromatography. To obtain pure
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single products, each fraction was recycled several times to remove tails

from earlier fractions. 19F NMR spectra revealed that C60F2 and C60F4

were isometric to their hydrogenated counterparts, with C60F6 exhibiting

an S-motif structure, which was interesting as this structure was previously

considered as being an intermediate along the pathway to the isostructural

C60H18 [123]. C60F8 was characterised as having a T-motif structure, and

it was found that each fluorine addition increased localisation of the elec-

trons in the addended hexagon, which increased the likelihood of further

addition on the hexagon ring. This contrasts with C70 hydrogen functional-

isation, as the site of the first reduction on the hexagon does not necessarily

lead to further addition on the hexagon ring, rather preferring symmetrical

arrangements such as additions at opposite poles of the C70 cage.

The literature review provides a chronological overview of the production

of hydrogen and fluorine functionalised fullerenes that have been experi-

mentally produced, characterised, and purified - summarised in Table 4.1.
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Functionalised

Fullerene
Lead Author(s) Year Yield / Purity Isomer Characterisation

C60Hn

C60H2

Henderson [108] 1994 20-30%

1,2-C60H2

Bergosh [113] 1997 66%

Wang [127] 2005 50%

Tzirakis [118] 2009 >99%

C60H4

Henderson [109] 1994 10% 1,2,3,4-C60H4

Bergosh [113] 1997 45% 1,2,18,36-C60H4; 1,2,33,50-C60H4

C60H6

Meier [110] 1996 35% 1,2,33,41,42,50-C60H6

Bergosh [113] 1997 18% 1,2,33,41,42,50-C60H6

C60H18

Wagberg [115] 2005 95% Not specified

Luzan [119] 2011 95% C3v

C60H36 Gakh [114] 2003 70%, 25%, 5% C1, C3, T

C60Fn

C60F2 Boltalina [121] 2002 100% 1,2-C60F2

C60F4 Boltalina [121] 2002 100% 1,2,3,4-C60F2

C60F6 Boltalina [121] 2002 100% S, T

C60F8 Boltalina [121] 2002 100% T

C60F18 Boltalina [126] 1996 100% C3v

C70Hn

C70H2 Spielman [120] 1998 18% 1,2-C70H2

C70H4 Spielman [120] 1998 25% 1,2,56,57-C70H2

C70H8 Spielman [120] 1998 27% 7,19,23,27,33,37,44,53-C70H8

C70H10 Spielman [128] 2000 35% 7,8,19,26,33,37,45,49,53,63-C70H10

Table 4.1: Literature review of candidate hydrogenated and fluorinated
functionalised fullerene cages that have been experimentally produced,
characterised, and purified.

To refine the literature review into a group of testing molecules, this re-

search will primarily focus on pairs of additive hydrogen and fluorine func-

tionalised fullerenes that are experimentally available in reasonable yield.

In an ideal situation the pairs will be isostructural with respect to func-

tionalisation, but in cases they are not, the isomer choice of each pair will

be led by the molecule that is available in the highest yield so that func-

tionalised group comparisons can be made and underlying polarisation and

switching mechanisms can be investigated, limiting the number of changing

variables.

The 1,2-C60H2 and 1,2-C60F2 pair is both isostructural and available in

excellent yield (>99%). 1,2,3,4-C60H4 and 1,2,3,4-C60F4 are isostructural

and available in reasonable yield (45% and 100% respectively). S-C60F6
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and its hydrogenated counterpart, 1,2,33,41,42,50-C60H6 (major isomer)

are experimentally available in reasonable yields (100% and 35% respec-

tively). Cahill’s ab initio calculations in 1996 [129] identified the S-motif

1,2,3,4,9,10-C60H6 as one of the lowest energy isomers and therefore this

isostructural isomer will be tested and compared against the analogous

fluorinated endohedral fullerene. T-C60F8 is experimentally available at

high-yield, but interestingly, C60H8 is not experimentally available and has

never been isolated, despite acknowledgement of its existence as an interme-

diate to more highly hydrogenated species [130]. However, in line with the

selection criteria, the T-C60H8 structure will be tested to compare against

the analogous fluorinated endohedral fullerene. The following table sum-

marises and justifies the selected functionalised cages investigated in this

study:

Selected Functionalised Fullerene Justification

1,2-C60H2 and 1,2-C60F2 Experimentally available high-yield molecules that are

isostructural with respect to functionalisation

1,2,3,4-C60H4 and 1,2,3,4-C60F4

S-C60H6 and S-C60F6

S-C60F6 experimentally available at high-yield.

Ab-initio calculations indicate that S-motif 1,2,3,4,9,10-

C60H6 is one of the lowest energy isomers of C60H6.

T-C60H8 and T-C60F8

T-C60F8 experimentally available at high-yield.

C60H8 is not currently experimentally available, but is

a known intermediary to higher-order fullerenes. The

T-C60H8 isomer will be tested as a comparison

Table 4.2: Selected hydrogenated and fluorinated C60 cages for study

This section has successfully identified and selected experimentally avail-

able and sterically undemanding functionalised fullerenes for calcium to be

encapsulated within as potential candidates for a polarisation molecular

switch.
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4.2 DFT computational parameter selection

and validation

To test the polarisation response of the selected candidate functionalised

fullerenes, DFT was used as a quantum chemical tool to predict polari-

sation properties, particularly ground state geometries and surface charge

polarisation. But first and importantly, to construct a robust DFT experi-

ment, relevant computational parameters must be explored and validated to

give assurance that the level of theory selected produces chemical property

predictions that can be legitimately compared to experimental evidence.

As a first step, singlet, and triplet geometry optimisation calculations were

performed on the selected cages to identify the singlet-triplet gap as an

indicator of biradicaloid character and therefore general appropriateness

of DFT as a tool for predicting polarisation properties of functionalised

metallofullerenes. Singlet and triplet geometry optimisation calculations

were calculated for the selected functionalised fullerenes and calculated

ground state energies were compared to evaluate the singlet-triplet gap.

Molecule

Singlet - Triplet

Gap (eV)

X=H X=F

Ca@C60 0.05 0.05

1,2-Ca@C60X2 0.06 0.06

1,2,3,4-Ca@C60X4 0.13 0.13

S-Ca@C60X6 -0.08 -0.06

T-Ca@C60X8 -0.41 -0.49

Table 4.3: Singlet – triplet gap calculations for selected hydrogenated and
fluorinated C60 cages at the B3P86-D3 / cc-pVDZ level of theory.
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The singlet-triplet gap predicted for the selected molecules range between

± 0.05 eV and 0.49 eV. This is within Lee and Head-Gordon’s [131] identi-

fied singlet-triplet energy gap, potentially indicating biradicaloid nature.

As mentioned in chapter 2, this research follows the line of reasoning

suggested that whilst there might be evidence of correlation in smaller

fullerenes, C60 is a weakly correlated system, aligning with experimental

evidence of paramagnetic silence [93]. To verify this, optimisation calcula-

tions were performed on Ca@C60 and [Ca@C60]
+ using Q-Chem’s inbuilt

Unrestricted Hartree-Fock method (UHF). Both methods computed iden-

tical ground state energies and an ionisation energy of 6.2 eV. In addition,

spin-projection values calculated were consistent with singlet, rather than

triplet states, and therefore, in the context of geometry optimisation and

ionisation energies, the degree of electron correlation appears not to affect

computed electronic properties. This aligns with the view that C60 is a

weakly correlated system, and so DFT is deemed an appropriate tool to

continue this research.

To select the appropriate level of DFT theory, a range of functionals and

basis sets were tested on Ca@C60 using geometry optimisation calculations

to determine the electron affinity and ionisation energy with comparisons to

experimental evidence. These calculations produce a minimum electronic

ground state energy (and associated electronic structure) and molecular

configuration (geometric structure).

4.2.1 Exchange correlation functionals

A literature review was undertaken to establish common exchange correla-

tion functionals used to study fullerenes and endohedral fullerenes. Those

functionals were assessed against studies that review and compare func-
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tionals in different chemical contexts. B3LYP [39, 40, 132] was found to be

a popular and well established starting point functional, however, a recent

paper [85] reviewing the advanced GMTKN55 database for general main

group thermochemistry, kinetics and non-covalent interactions, found it to

be the worst of 23 hybrid functionals for the calculation of reaction energies.

Another paper argues that the standard B3LYP / 6-31G* model chemistry

should not be used in DFT calculations of molecular thermochemistry [133].

The hybrid GGA functionals, PBE0 and B3P86, are referenced in the lit-

erature [38, 82, 134, 135] as useful functionals to probe encapsulated C60

species. PBE0 is referenced as a slower hybrid functional that overcomes

several technical issues when calculating endofullerene electronic structure

calculations. In addition, a recent study [136] also found the range sep-

arated GGA ωB97X useful in theoretical studies of HF@C60. Dispersion

corrections were reported as essential for the study of chemical reactivity

of fullerenes [137]. This parameter can be implemented using the Grimme

“DFT-D3” and “DFT-D3(BJ)” dispersion correction within the Q-Chem

software package, as discussed in Chapter 3. Based on the literature re-

view, the functionals selected for validation testing were all hybrid GGA

functionals — B3LYP, B3LYP-D3, PBE0-D3, B3P86-D3 and ωB97X-D3.

4.2.2 Basis sets

The Pople basis set 6-31G* [40, 41] was found to be a popular starting

point for many researchers. However, in the context of a functionalised

metallofullerene polarisation switch, ensuring that the basis set contains

diffuse functions is important, especially with regard to hydrogen bonding

for the hydrogen functionalised fullerene cages. In addition, because of

charge transfer from the metal encapsulated species to the fullerene cage,
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the fullerene cage is negatively charged. Several papers [138–140] discuss

the merits of using diffuse basis sets to properly describe the non-covalent

interactions involving anions, and conclude that “the omission of diffuse

functions appears to have a negligible effect while calculating geometry pa-

rameters or total energy; thus, acceptable results may be obtained without

them” [140]. To assess this impact, the basis sets selected for validation

testing were 6-31G*, 6-311G*, 6-31++G** and cc-pVDZ.

Reflecting on the knowledge gained in Chapter 3 regarding basis set theory,

the basis set selection tests the impact of the exclusion or inclusion of differ-

ent mathematical components in an attempt to best describe the Ca@C60

system with respect to a linear combination of atomic orbitals, representing

the system’s molecular orbitals. The Pople basis sets (6-31G*, 6-311G*,

6-31++G**) all use 6 Gaussians to expand the 1s core of elements in the

second period of the Periodic Table. 6-31G* is a double-zeta basis set (two

basis functions for each valence atomic orbital) and includes d polarisation

functions on non-hydrogen atoms. 6-311G* is a triple-zeta basis set (three

basis functions for each valence AO), adding another Gaussian to 6-31G*

and also includes d polarisation functions. 6-31++G** tests the impor-

tance of the inclusion of diffuse functions to the s and p shells (for elements

Li-Cl), denoted by “+” and a single diffuse s orbital to hydrogen, which

might be useful when investigating hydrogenated Ca@C60. The Dunning

basis set, cc-pVDZ, is a double-zeta basis that includes polarisation func-

tions and also correlation consistent basis sets that are optimised using

“Configuration Interaction Singles and Doubles” (CISD) wave functions, a

post-HF approach [54]. Given the ongoing debate to the degree of correla-

tion within C60, including a correlation consistent basis set seems a sensible

approach to acknowledge this debate within the testing environment.
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4.2.3 Functional and basis set validation

In order to validate the most appropriate functional and basis set combi-

nation, geometry optimisation calculations were performed on singlet and

triplet states of Ca@C60 and [Ca@C60]
− and compared to the experimen-

tally calculated electron affinity of 3.00 ± 0.10 eV [23] determined by ultra-

violet photoelectron spectroscopy. Three rounds of computational exper-

iments were performed across the range of selected functionals and basis

sets with the goal to converge on an appropriate and valid functional and

basis set combination, to accurately predict the electron affinity of Ca@C60;

Round 1 tested the selected functionals using the 6-31G* basis set. Round

2 tested the selected functionals using the 6-311G* and 6-31++G** basis

sets. Round 3 tested the most accurate functionals using the 6-311G*,

cc-pVDZ and 6-31++G** basis sets, supplemented by frequency analysis

to confirm the global potential energy minimum. The results are shown in

Table 4.4.

Functional
Basis set

6-31G* 6-311G* 6-31++G** cc-pVDZ

B3LYP 2.37 eV 2.80 eV 2.75 eV 2.64 eV

B3LYP-D3 3.82 ev 2.80 eV 2.81 eV 2.64 eV

PBEO-D3 2.54 eV 2.88 eV 2.85 eV 2.77 eV

B3P86-D3 2.73 eV 3.12 eV 3.06 eV 2.98 eV

ωB97X-D3 2.26 eV 2.63 eV 2.59 eV 2.52 eV

Experimental 3.00 ± 0.10 eV 3.00 ± 0.10 eV 3.00 ± 0.10 eV 3.00 ± 0.10 eV

Table 4.4: Ca@C60 geometry optimisation calculations at progressive levels
of theory with respect to the accuracy of the experimentally determined
electron affinity of the Ca@C60 radical.

Despite the popular use of the B3LYP functional across computational

chemistry, B3LYP did not produce an accurate prediction for the elec-
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tron affinity of Ca@C60. This reinforces findings in the literature review

that B3LYP should not be used in DFT calculations of molecular thermo-

chemistry [133]. These experiments indicate that either the B3P86-D3 /

6-31++G** or B3P86-D3 / cc-pVDZ levels of theory provide an accurate

prediction for the experimentally calculated electron affinity for the Ca@C60

radical, comfortably within experimental error. Note that cc-pVDZ pro-

duced slightly lower electron energies compared to 6-31++G** and across

all calculations produced the most accurate electron affinity of 2.98 eV

compared to experiment. Frequency analysis also confirmed that at these

levels of theory real frequencies are predicted, giving confidence that the

geometries optimised are at a potential energy minimum. To test which

basis set, 6-31++G** or cc-pVDZ, is the most appropriate for polarisation

calculations, additional energetic and partial charge analysis was under-

taken.

Firstly, ionisation energy calculations were undertaken at the B3P86-D3

/ 6-31++G** and B3P86-D3 / cc-pVDZ levels of theory and compared

against computational and experimental determinations of the first ioni-

sation energy of Ca@C60, Li@C60 and C60. Li@C60 was tested as another

experimentally available metallofullerene that is recognised in the litera-

ture as a multi-state molecular switch. The ionisation energy of Ca@C60

was calculated using a method of differences between the singlet ground

state energy of Ca@C60 and [Ca@C60]
+ and repeated for Li@C60 and C60.

Results are shown in Table 4.5.
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Molecule
Ionisation Energy (eV)

6-31++G** cc-pVDZ 6-311G* Comp. [36] Exp.

Ca@C60 6.2 6.2 6.3 6.1 N / A

Li@C60 6.1 6.1 6.2 6.1 6.5 ± 0.1 [141, 142]

C60 7.8 7.7 7.8 7.7 7.6 ± 0.1

Table 4.5: Ionisation energy calculations using the B3P86-D3 functional
and 6-31G++**, cc-pVDZ and 6-311G* basis sets compared to computa-
tional and experimental literature for Ca@C60, Li@C60 and C60.

The ionisation energies calculated for both 6-31++G** and cc-pVDZ were

identical and in good agreement with computational literature values for

all for Ca@C60 and Li@C60. When compared to experimental values, the

ionisation energy for Li@C60 was underestimated by 6%. Yagi et al. com-

mented that “the ionisation potential of Li@C60 is estimated to be 1.1 eV

smaller than that of C60, which is the result of electron transfers to the C60

cage” [141] in agreement with gas phase experiments. Comparing to com-

putational results, the ionisation potential of Li@C60 is estimated to be 1.7

– 1.8 eV smaller than that of C60 suggesting that computational methods

used in the literature are not accurately evaluating the valence electron

binding energy. In the case of C60 (6-31++G** only), the calculated ioni-

sation energy was in reasonable agreement (2% difference) compared to the

computational and experimental literature values.

4.2.4 Partial charge method

Partial charge calculations were undertaken using a range of methods to

identify an appropriate method to calculate Ca@C60 partial charges and

surface charge polarisation. The Q-Chem package provides a range of par-

tial charge population analysis methods. This study initially tested three
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approaches; Mulliken [143], charges from the Electrostatic Potential on a

Grid (CHELPG) [144] and Hirshfeld Charge Model 5 (CM5) [145]. Mul-

liken population analysis is the default methodology offered in Q-Chem

but is recognised to be heavily dependent on the basis set and can pro-

duce non-physical negative numbers of electrons along with high basis set

dependence [146]. CHELPG is often seen as a more stable alternative to

Mulliken analysis, using atom-centred charges that best fit the molecu-

lar electrostatic potential. However, CHELPG often suffers from an “in-

ner atom” problem when applied to larger molecules as the inner atomic

charges don’t affect the molecular electrostatic potential and so can cause

an over-fitting issue, leading to inaccurate partial charges [144]. Hirshfeld

CM5 uses a parameterised mapping of the Hirshfeld population analysis

[145] to correct the underestimation of charges produced by the Hirshfeld

approach while remaining weakly basis set dependent. CM5 charges have

also been found to perform well for solvation energy calculations [147, 148].

The partial charge calculations were performed on optimised geometries of

Ca@C60 using the B3P86-D3 functional and 6-31G*, 6-31++G** and cc-

pVDZ basis sets to assess the impact of basis set on the predicted partial

charge. The results are shown in Table 4.6:

Method
Basis Set

cc-pVDZ 6-31++G** 6-31G* 6-311G*

Mulliken 1.48 2.47 1.37 1.40

CHELPG 1.29 1.33 1.15 1.39

Hirshfeld CM5 0.93 0.97 0.88 0.96

Table 4.6: Ca@C60 partial charge analysis using Mulliken, CHELPG and
Hirshfeld CM5 methods and 6-31G*, 6-311G*, 6-31++G** and cc-pVDZ
basis sets at the B3P86-D3 level of theory. Charge units are e.

6-31G* produced smaller partial charges, compared to cc-pVDZ and 6-
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31++G** indicating that the inclusion of diffuse functions is most likely

required for this endohedral metallofullerene system. The Mulliken analysis

produced higher partial charges across the three basis sets when comparing

against a literature Mulliken population calculations of 1.27e [132]. The

CHELPG method produced partial charges aligned to the literature Mul-

liken value with a stable response across basis sets. However, the unknown

contribution due to the “inner-atom issue” reduces confidence in this ap-

proach. The partial charges predicted by the Hirshfeld CM5 approach are

smaller than those produced by the Mulliken and CHELPG approaches and

are also reasonably consistent across basis-sets and without the concern of

an “inner-atom” issue. However, comparing to literature partial charge

values, the Hirshfeld CM5 calculation suggests that only one 4s electron is

transferred to the fullerene cage which goes against experimental evidence

that two electrons are transferred to the cage with a “back-donation” effect

to result in a partial charge between +1e and +2e. However, an alternative

explanation could be that the overlap of the cage electron density and the

central atom is larger than previously calculated.

To extend this testing, a translational analysis was undertaken to test how

the basis sets respond to the partial charge methods when the calcium is

moved in a straight-line across the cage. In this case, single point energy

and partial charge calculations were performed on optimised geometries

of Ca@C60 at the B3P86-D3 / 6-31++G** functional and B3P86-D3 /

cc-pVDZ level of theory. Results are shown in Figure 4.1.

In general, the CHELPG and Hirshfeld CM5 methods produced similar

results using 6-31++G∗∗ and cc-pVDZ. CHELPG produced partial charges

in line with literature ranges between 0.35 Å and the optimised calcium

position, 1.18 Å. However, for radial distances of 0.00 Å – 0.35 Å the partial

charges blow up to 20e suggesting that all calcium electrons are transferred
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Figure 4.1: Calcium partial charges calculated across the C60 cage using
Mulliken (blue), CHELPG (red) and Hirshfeld CM5 (green) methods at
the B3P86-D3 / 6-31++G** and B3P86-D3 / cc-pVDZ level of theory.

to the cage, which seems highly unlikely and potentially a consequence

of the inner-atom issue. Hirshfeld CM5 produced a restrained response

for both 6-31++G∗∗ and cc-pVDZ with partial charges between 0.93e and

1.02e for all radial distances tested, lower than literature values as discussed

previously. Interestingly, the Mulliken analysis produced partial charges of

2.48e (6-31++G∗∗) and 1.29e (cc-pVDZ) and opposing profiles. The 6-

31++G** profile suggests that more than two electrons are donated to the

cage with charge being transferred to the cage as the calcium moves from

the centre to the cage wall. The cc-pVDZ profile suggests partial charges

within literature ranges of 1.27e – 1.81e, with charge being transferred to

the calcium as it moves from the centre to the cage wall.

When the Mulliken results are mapped to the potential energy profile, 6-

31++G** exhibits an inverse relationship, i.e. for higher energy calcium

positions at the centre, charge is transferred to the calcium. cc-pVDZ ex-

hibits a proportional relationship, i.e. for central calcium positions, charge

is transferred to the cage. This is demonstrated in Figure 4.2.

Central calcium positions are known to be of higher symmetry, with the
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Figure 4.2: Single point energy (blue) and partial charge (red) calculations
across the fullerene cage at the B3P86-D3 / 6-31++G** and cc-pVDZ level
of theory (axes relate to both graphs).

actual centre being of Ih symmetry. Previous calculations by Lu et al. in

1999 [26] on the Ih configuration predict a larger calcium partial charge of

1.67e, indicating that cc-pVDZ is more accurate than 6-31++G**. This

suggests that for higher energy positions near the centre of the fullerene

cage, energy is required to transfer charge from the cage to the calcium,

resulting in a greater back-donation effect and therefore greater mixing of

the fullerene and calcium charge density. This higher energy requirement

again reinforces the stabilisation effect that charge transfer from the cal-

cium to the cage has on the overall system. Please also note that calculated

cc-pVDZ energies were on average 4.4 eV lower than 6-31++G**.
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The translational analysis indicates that the cc-pVDZ basis set is preferable

to the 6-31++G** basis set when using the Mulliken approach to calculate

partial charges. It should be noted that choosing the most appropriate

partial charge methodology for electronic and electrostatic analysis is diffi-

cult as the often-cited methodologies each come with their own limitations

as described (e.g. basis set dependence, inner-atom issues etc.). To over-

come these challenges, a recently published partial charge method can be

used to cross-reference the results; the Density Derived Electrostatic and

Chemical (DDEC) approach, with the most recent iteration being DDEC6

[149]. The DDEC6 method is a charge partitioning algorithm functional

of the electron and spin distributions, with no basis set dependence. It

was designed with nine specific performance goals in mind for assigning

net atomic charges (NACs), specifically to overcome the issues found in

existing approaches:

1. Exactly one assigned electron distribution per atom.

2. Core electrons remain assigned to the host atom.

3. NACs are functionals of the total electron density distribution.

4. Assigned atomic electron distributions give an efficiently converging

polyatomic multipole expansion.

5. NACs usually follow Pauling scale electronegativity trends.

6. NACs for a particular element have good transferability among dif-

ferent conformations that are equivalently bonded.

7. The assigned NACs are chemically consistent with the assigned atomic

spin moments.

8. Predictably rapid and robust convergence to a unique solution.
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9. Computational cost of charge partitioning scales linearly with increas-

ing system size.

Helpfully, the article describing the DDEC6 approach performs tests on

Li@C60 and predicts a partial charge value of 0.90e, indicating that one

electron is transferred to the cage, in line with experimental evidence

[150]. This was compared in the article to Hirshfeld CM5 that predicts

0.57e, demonstrating the limitations of this method. Recent testing of

the DDEC6 approach, by the University of Nottingham Computational

Nanoscience Group at the B3P86 / 6-311G* level of theory, calculated the

partial charge on lithium for Li@C60 as 0.91e and on calcium in Ca@C60

at 1.43e. Given this method overcomes basis set dependence, these unpub-

lished results have been compared to Table 4.6, demonstrating alignment

to Mulliken and CHELPG partial charge calculations. Given CHELPG

produces non-physical charges when the calcium is moved across the cage,

this indicates that Mulliken is the most appropriate method for assigning

net atomic charges from the traditional set of methods for this system. Re-

peating the Ca@C60 translational analysis using DDEC6 (see Figure 4.3),

the DDEC6 profile matches the Mulliken profile, reinforcing the view that

for the partial charge analysis of Ca@C60, Mulliken is a useful and cost-

effective computational choice if DDEC6 is unavailable.

Extending this analysis to functionalised cages, additional DDEC6 and

Mulliken partial charge calculations were performed on all selected func-

tionalised cages holding encapsulated calcium at the B3P86-D3 / cc-pVDZ

level of theory. The results can be seen Table 4.7.
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Figure 4.3: Partial charge calculations across the fullerene cage at the
B3P86-D3 / cc-pVDZ level of theory and Mulliken (blue) and DDEC6
(red) net atomic charges.

Ca@C60=A 1,2-AX2 1,2,3,4-AX4 S-AX6 T-AX8
Method

X = H

DDEC6 1.43 1.47 1.54 1.47 1.58

Mulliken 1.48 1.51 1.57 1.50 1.60

X = F

DDEC6 1.43 1.50 1.65 1.53 1.68

Mulliken 1.48 1.54 1.66 1.55 1.65

Table 4.7: Calcium partial charges calculated using DDEC6 and Mulliken
methods at the B3P86-D3 / cc-pVDZ level of theory across selected func-
tionalised endohedral metallofullerenes.
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Figure 4.4: Calcium partial charges calculated using DDEC6 (blue) and
Mulliken (red) methods at the B3P86-D3 / cc-pVDZ level of theory.

Across the calcium partial charge series, both DDEC6 and Mulliken have

the same profile. DDEC6 predicts slightly lower partial charges for both

hydrogenated and fluorinated molecules, with T-Ca@C60F8 being the only

exception. On the whole, both methods produce similar results, reinforcing

the view that both methods can be useful for these systems. However, given

DDEC6 was designed to overcome the limitations of current traditional
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methods, and Mulliken is well-known to have basis set dependence issues,

the DDEC6 method shall be used going forward in this research, however,

it should be noted that Mulliken provided similar results at this level of

theory and can be used as a cost-effective partial charge analysis tool for

future work.

In summary, the B3P86-D3 / cc-pVDZ level of theory demonstrates an ex-

cellent degree of accuracy when calculating Ca@C60 electron affinity, a rea-

sonable degree of accuracy when calculating ionisation energies for Ca@C60

and Li@C60 and a more physically realistic partial charge behaviour (com-

pared to B3P86-D3 / 6-31++G**). DDEC6, used in conjunction with the

B3P86-D3 / cc-pVDZ level of theory, is a useful approach, overcoming tra-

ditional partial charge method issues to predict the system partial charges

in line with computational and experimental values from the literature for

Ca@C60 and Li@C60. Therefore, these three computational parameters are

selected as robust and resilient choices to calculate geometric and polari-

sation properties of Ca@C60 and functionalised Ca@C60 and shall be used

in this research going forward.

Reflecting on this chosen level of theory, it is worth being reminded of the

components that make up this exchange functional and basis set combi-

nation. The exchange functional B3P86 is a hybrid GGA functional with

exchange and correlation components provided by Becke [38] and Perdew

[82]. cc-pVDZ is a double-zeta basis set that incorporates polarised func-

tions in a correlation consistent manner, demonstrating the importance of

the polarisation of the orbital electron distributions and larger diffuse or-

bitals that take into account the C60 anion in the Ca+@C60 system. This

basis set also demonstrates a more realistic modelling of the charge transfer

process between the calcium ion and the C60 cage.
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4.3 Ca@C60 polarisation properties

Using the defined computational parameters, DFT geometry optimisation

calculations on both singlet and triplet states of Ca@C60 predict the ground

state to be an optimised singlet state with the calcium located 1.18 Å from

the centre, aligned with the midpoint of one of the 6–6 bonds, as shown

in the right-hand illustration of figure 4.5. Literature values for the radial

position range between 0.7 Å - 1.22 Å and so the prediction of 1.18 Å is

considered reasonable and consistent.

Calcium

Position

Calcium Radial

Position (Å)

Calcium

Partial Charge

Fullerene Cage

Partial Charge

6-6 midpoint 1.18 1.43 -1.43

Table 4.8: Calculated ground state primary polarisation properties for
Ca@C60 with respect to the calcium location inside the fullerene cage.

Figure 4.5: Visual representation of ground state Ca@C60 to show the
calcium off-centre radial position (LHS) and calcium alignment with the
6-6 bond.

The degree of aromaticity across the structure is important to consider

when seeking to understand both the calcium ion position and the preferred

addition sites during the formation of hydrogen and fluorine functionalised

fullerenes. Chemical bond studies on fullerene systems using a valence bond

treatment of the Heisenberg Hamiltonian indicate a preference of π-electron

density to lie on 6–6 bonds [92] indicating an electrostatically favourable
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position for both the encapsulated positively charged calcium ion and as

an addition site for the first H2 and F2 additions of C60, as mentioned

previously. The calculated calcium partial charge of +1.43e supports the

existing view that in the process of formation, two electrons are transferred

to the cage with a back-donation effect due to a degree of delocalisation of

the fullerene electron density and overlap with the central calcium atom.

The translational analysis of DFT single point energies and partial charges

is shown in Figure 4.6, demonstrating the impact of functionalisation on

the internal potential energy profile and energy barriers between the two

minima in each hemisphere.
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Figure 4.6: Ca@C60 radial relative potential energy (blue) and partial
charge profile (red) at the B3P86-D3 / cc-pVDZ level of theory.

The potential energy profile takes the familiar symmetrical Mexican-hat

form, with the minimum located 1.18 Å from the centre of the fullerene

cage, where the ground calcium ion is located. As discussed previously, the

DDEC6 net atomic charges indicate that at higher energy positions near the

centre of the fullerene cage, energy is required to transfer electrons from the

cage to the calcium, resulting in a greater back-donation effect and therefore

greater mixing of the fullerene and calcium charge density. The maximum

energy barrier, 1.58 eV, remains in the centre of the molecule. The partial
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charge profile (an inverse parabola for Ca@C60) becomes asymmetrical,

with the maximum (+1.79e) shifting into the functionalised hemisphere.

The asymmetrical distribution of surface charge can clearly be seen in the

visualisation, Figure 4.7, using the open-source Ovito visualisation software

[103]:

Figure 4.7: Distribution of partial atomic charge for three different po-
sitions of the calcium atom (yellow particle inside cage) in Ca@C60. The
lower energy minima (LHS), calcium at the centre (middle), and the higher
energy minima (RHS). The carbon atoms are depicted according to the
charge they carry: red (positive) and blue (negative).

When the calcium is located at the lowest energy minima position in the

left-hand hemisphere, an accumulation of charge is clearly observed in this

hemisphere. As the calcium moves to the centre of the cage, the surface

charge distributes more evenly throughout the cage. When the calcium

moves into the right-hand hemisphere, to the opposite minima position,

the surface charge follows the calcium ion, also shifting into the right-hand

hemisphere. To understand this motion further, the surface polarisation

charge on each hemisphere was plotted as a function of the position of the

calcium ion, Figure 4.8.

The polarisation charge in each hemisphere is negative for all radial po-

sitions of calcium. Focusing on the left-hemisphere (dotted line), at the

lowest energy minimum, where the calcium is displaced -1.18Å from the

cage centre, the polarisation charge is -1.11e with net charge transfer being

Ca1.49+@C1.49−
60 . As the calcium moves to the energy maximum at the cage
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Figure 4.8: Polarisation charge located on the left-hand (dotted line) and
right-hand (smooth line) hemispheres of the fullerene cage in Ca@C60 as a
function of the position of the calcium ion.

centre, the polarisation charge reduces to -0.86e, with net charge trans-

fer being Ca1.79+@C1.79−
60 . As the calcium moves into the functionalised

(RHS) hemisphere to the energy minimum at 1.18Å from the cage centre,

the polarisation charge reduces further to -0.31e with net charge trans-

fer being Ca1.50+@C1.50−
60 . Therefore, as the calcium moves between the

two energy minima, the charge switches by approximately 0.80e. This be-

haviour clearly demonstrates the established correlation between surface

charge polarisation and calcium ion motion for the Ca@C60 system.

Ground state electronic properties were also calculated to give a holistic

view of Ca@C60:

Molecule Multiplicity Energy (eV) Singlet – Triplet gap (eV)

Ca@C60 Singlet -80,671 -0.05

Table 4.9: Calculated ground state electronic properties for Ca@C60.

An unexpected result was the calculated singlet ground state. The singlet

ground state was also predicted at all levels of theory tested, with an av-

erage singlet-triplet gap of 0.05 eV. As discussed previously, the literature
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provides good evidence for the triplet 3A2 (e21) ground state, however, Wang

et al. noted three potential electronic states for the C5v symmetry arising

from the off-centre calcium ion; 3A2 (e21),
1A1 (a2

1) and 3A1 (a1a1). The

energy separation between the 3A2 (e21) and 1A1 (a2
1) states (essentially the

singlet-triplet gap) was calculated to be 0.12 eV. The 0.05 eV singlet-triplet

gap calculated is relatively small and therefore suggests that whilst the sin-

glet electronic state is the predicted ground-state, a triplet ground state is

energetically close and therefore one can see how previous calculations could

have derived this result, as shown in the literature. The impact of this re-

lates to magnetic and conductance behaviour. A singlet state molecule (all

electrons paired) is diamagnetic (repelled by a magnetic field) with limited

conductivity – which are the properties of C60. Conversely, a triplet state

molecule (unpaired electrons) is paramagnetic and potentially a conductor

of electricity. These results reinforce the view that Ca@C60 is diamagnetic

in character with limited conductivity, however, the very small singlet-

triplet gap suggests that it would require a small amount of energy to pre-

pare a triplet state Ca@C60 system that would be paramagnetic and poten-

tially conducting. In 2013, Filidou et al. [135] presented electron paramag-

netic resonance spectroscopy and electron nuclear double resonance stud-

ies on a functionalised exohedral fullerene system, dimethyl[9-hydro (C60-

Ih)[5,6]fulleren-1(9H)-yl]phosphonate (DMHFP), where the triplet electron

spin was used to hyperpolarise, couple and measure two nuclear spins [135].

This paper first discussed the triplet state system for C60, created through

photoexcitation of the singlet ground state to a singlet excited state fol-

lowed by the process of inter-system crossing (ISC), originating from the

spin-orbit coupling. The ISC process populates the lowest triplet state

unevenly, which then decays to the singlet ground state directly. These

studies and the small singlet-triplet gap observed in this research’s calcula-

tions suggest that an ISC process might be possible for Ca@C60. However,
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this is outside the scope of this research and so will be left to future studies.
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Chapter 5

Polarisation properties of

hydrogenated and fluorinated

metallofullerenes

Following the selection of candidate functionalised fullerenes and relevant

DFT parameters, DFT calculations were undertaken to predict their ground

state geometries and partial charge distributions. To understand the im-

pact of functionalisation on internal potential energy barriers, single point

energies and partial charges were calculated for calcium positions across

the cage, towards the centres of the functionalised sites. The surface po-

larisation charge on each hemisphere was then calculated to observe the

polarisation switching process as a function of calcium motion. Molecular

stabilities were assessed through formation energy calculations, followed

by a comparison of the hydrogenated and fluorinated molecules, informing

final candidate choices for a bi-stable polarisation switch. The discussion

is then extended to consider how such a switch could be scaled up through

stabilised nanoparticle lattices comprising endohedral fullerenes [46].
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5.1 Hydrogenated Ca@C60

Please note that a tabulated summary of all DFT calculated polarisation

properties presented in this section can be found at appendix A.

5.1.1 1,2-Ca@C60H2

DFT geometry optimisation calculations on both singlet and triplet states

of 1,2-Ca@C60H2 predict the ground state to be an optimised singlet state

with the calcium located 1.14 Å from the centre of the non-functionalised

hemisphere, aligned with the midpoint of the 6-6 hexagon’s adjacent to

the functionalised site, as shown in the left-hand illustration of Figure 5.1.

The right-hand illustration shows the off-centre position of the calcium and

direction of the dipole, pointing directly away from the functionalised site,

indicating an accumulation of surface charge in the opposite hemisphere.

The functionalised site shows a slight cage deformation as a result of the

newly created sp3 bonds at the addition site.

Figure 5.1: The left-hand illustration shows the ground state geometry of
1,2-Ca@C60H2 with calcium aligned to the midpoint of the 6-6 bond. The
RHS illustration shows the same molecule, rotated to visualise the calcium
off-centre position, the functionalised site and the resulting dipole (blue
arrow).

A translational analysis of DFT single point energies and partial charges

is shown in figure 5.2.
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Figure 5.2: 1,2-Ca@C60H2 relative potential energy (blue) as the calcium
is displaced towards (RHS) and away from (LHS) the H2 functionalised
site, and corresponding DDEC6 partial charge profile (red) of the calcium
ion. Ebl and Ebr are the energy barriers for the left and right hemispheres
respectively, and ∆E is the energy gap between minima.

The addition of H2 results in the Mexican-hat potential becoming asym-

metrical with an energy gap of 0.30 eV between minima, with the global

minimum located in the non-functionalised hemisphere. The predicted cal-

cium partial charge at this location is +1.50e, indicating a charge transfer

of +0.50e from the cage to the calcium when comparing to the isolated

Ca2+ ion. The maximum energy barrier, 1.09 eV, remains in the centre of

the molecule (as with Ca@C60). The partial charge profile becomes asym-

metrical, with the maximum (+1.77e) shifting into the non-functionalised

hemisphere. The asymmetrical distribution of surface charge can clearly

be seen in figure 5.3.

When the calcium is at the lowest energy minima position in the non-

functionalised hemisphere, an accumulation of charge is clearly observed

in this hemisphere. As the calcium moves to the centre of the cage, the

surface charge distributes more evenly throughout the cage. When the

calcium moves into the functionalised hemisphere, to the higher energy

minima position, the surface charge follows the calcium ion, also shifting

into the functionalised hemisphere towards the functionalised sites. To
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Figure 5.3: Distribution of partial atomic charge for three different posi-
tions of the calcium atom (yellow particle inside cage) in 1,2-Ca@C60H2.
The lower energy minima (LHS), calcium at the centre (middle), and the
higher energy minima (RHS). The carbon atoms are depicted according to
the charge they carry: red (positive) and blue (negative). The hydrogens
are the purple circles outside the cage.

understand this motion further, the surface polarisation charge on each

hemisphere was plotted as a function of the position of the calcium ion:
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Figure 5.4: Polarisation charge located on the left hemisphere (dotted line)
and right hemisphere (smooth line) of the fullerene cage in 1,2-Ca@C60H2

as a function of the position of the calcium ion. The results of the right
hemisphere include contributions from the two hydrogens.

Similar to Ca@C60, the polarisation charge in each hemisphere is negative

for all radial positions of calcium. Focusing on the left-hemisphere (dotted

line), at the lowest energy minimum, where the calcium is displaced -1.14Å

from the cage centre, the polarisation charge is -1.09e with net charge

transfer being 1,2-Ca1.50+@C1.50−
60 H2. As the calcium moves to the energy

maximum at the cage centre the polarisation charge reduces to -0.90e with

net charge transfer being 1,2-Ca1.76+@C1.76−
60 H2, slightly less than Ca@C60.
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As the calcium moves into the functionalised (RHS) hemisphere to the

energy minimum at 1.14Å from the cage centre, the polarisation charge re-

duces further to -0.48e with net charge transfer being 1,2-Ca1.50+@C1.50−
60 H2.

Therefore, as the calcium moves between the two energy minima, the charge

switches by approximately 0.61e.

Interestingly, there is a mismatch between the position of lowest energy

minimum and lowest surface charge polarisation in the left hemisphere, also

observed in Raggi et al.’s analysis of the isomers of Ca@C60H4 [35]. This

asymmetrical distribution of surface charge as the calcium moves across the

molecule clearly demonstrates both the modification of internal energy bar-

riers and the correlation between surface charge polarisation and calcium

ion motion for the 1,2-Ca@C60H2 system.
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5.1.2 1,2,3,4-Ca@C60H4

DFT geometry optimisation calculations on both singlet and triplet states

of 1,2,3,4-Ca@C60H4 predict the ground state to be an optimised sin-

glet state with the calcium located 1.13 Å from the centre of the non-

functionalised hemisphere, aligned with the pentagon centre, as shown in

the left-hand illustration of figure 5.5. The right-hand illustration shows

the off-centre position of the calcium and direction of the dipole, pointing

directly away from the functionalised site, indicating an accumulation of

surface charge in the opposite hemisphere. The functionalised site shows a

more pronounced cage deformation compared to 1,2-Ca@C60H2 as a result

of the newly created sp3 bonds at the addition site.

Figure 5.5: The left-hand illustration shows the ground state geometry of
1,2,3,4-Ca@C60H4 with calcium aligned to the midpoint of the pentagon
centre. The RHS illustration shows the same molecule, rotated to visualise
the calcium off-centre position, the functionalised site and the resulting
dipole (blue arrow).

A translational analysis of DFT single point energies and partial charges

can be seen in figure 5.6 showing the impact of functionalisation on the in-

ternal potential energy profile and energy barriers between the two minima

in each hemisphere.

The addition of H4 results in the Mexican-hat potential becoming asym-

metrical with an energy gap of 0.35 eV between minima, with the global

minimum located in the non-functionalised hemisphere. The predicted cal-

cium partial charge at this location is +1.54e, indicating a charge transfer
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Figure 5.6: 1,2,3,4-Ca@C60H4 relative potential energy (blue) as the cal-
cium is displaced towards (RHS) and away from (LHS) the H4 function-
alised site, and corresponding DDEC6 partial charge profile (red) of the
calcium ion at the B3P86-D3 / cc-pVDZ level of theory

of +0.46e from the cage to the calcium when comparing to the isolated

Ca2+ ion. The maximum energy barrier, 0.89 eV, is marginally shifted

off-centre by 0.09 Å into the non-functionalised hemisphere, with minima

also shifted in the same direction. The partial charge profile is again asym-

metrical, with the maximum (+1.73e) shifting into the non-functionalised

hemisphere. The asymmetrical distribution of surface charge can clearly

be seen in Figure 5.7.

Figure 5.7: Distribution of partial atomic charge for three different posi-
tions of the calcium atom (yellow particle inside cage) in 1,2,3,4-Ca@C60H4.
The lower energy minima (LHS), calcium at the centre (middle), and the
higher energy minima (RHS). The carbon atoms are depicted according to
the charge they carry: red (positive) and blue (negative). The hydrogens
are the purple circles outside the cage.

When the calcium is at the lowest energy minima position in the non-

functionalised hemisphere, an accumulation of charge is clearly observed in
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this hemisphere. As the calcium moves to the centre of the cage, the sur-

face charge distributes more evenly throughout the cage, albeit in this case,

with a slight increase in surface charge into the functionalised hemisphere,

emphasising the effect observed in 1,2-Ca@C60H2. When the calcium moves

into the functionalised hemisphere, to the higher energy minimum position,

the surface charge follows the calcium ion, also shifting into the function-

alised hemisphere towards the functionalised sites. To understand this

motion further, the surface polarisation charge on each hemisphere was

plotted as a function of the position of the calcium ion:
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Figure 5.8: Polarisation charge located on the left hemisphere (dotted
line) and right hemisphere (smooth line) of the fullerene cage in 1,2,3,4-
Ca@C60H4 as a function of the position of the calcium ion. The results of
the right hemisphere include contributions from the four hydrogens.

Similar to 1,2-Ca@C60H2, the polarisation charge in each hemisphere is

negative for all radial positions of calcium. Focusing on the left-hemisphere

(dotted line), at the lowest energy minimum, where the calcium is displaced

-1.13Å from the cage centre, the polarisation charge is -1.09e with net

charge transfer being 1,2,3,4-Ca1.54+@C1.54−
60 H4. As the calcium moves to

the energy maximum at the cage centre the polarisation charge increases

to -0.85e with net charge transfer being 1,2,3,4-Ca1.71+@C1.71−
60 H4. As the

calcium moves into the functionalised (RHS) hemisphere to the energy

minimum at 1.07Å from the cage centre, the polarisation charge reduces to
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-0.48e with net charge transfer being 1,2,3,4-Ca1.54+@C1.54−
60 H4. Therefore,

as the calcium moves between the two energy minima, the charge switches

by approximately 0.61e.

Again, the position of maximum surface charge polarisation does not coin-

cide with the lowest energy minima position, but at a distance -0.8Å from

the centre. However, this is not the case for the functionalised hemisphere,

where the maximum degree of surface charge polarisation more closely cor-

responds with the energy minima position. This effect was also observed

by Raggi et al. [35] when investigating 1,2,3,4-Ca@C60H4 and points again

to the “pushing effect” the hydrogens have on the internal energy profile

of the system. Given the barriers are constructed as a result of the sys-

tem’s electrostatics, this could be due to the positively charged hydrogen

atoms interacting with the accumulated charge on the cage surface. This

asymmetrical distribution of surface charge as the calcium moves across the

molecule again reinforces the findings of Raggi et al. and clearly demon-

strates both the modification of internal energy barriers and the correlation

between surface charge polarisation and calcium ion motion for the 1,2,3,4-

Ca@C60H4 system.

These results provide a useful comparison to Raggi et al.’s work on Ca@C60H4

isomers [35], particularly “isomer f” described in the paper which is very

similar to the 1,2,3,4-Ca@C60H4 isomer used in this study, with the main

difference being that this study’s second hydrogen addition occurs at the

adjacent 6-6 bond next to the 1,2 site as described by Henderson et al.

[109]. Note also that Raggi et al.’s “isomer f” was calculated at the B3LYP

/ 6-31G* level of theory, finding the ground state to be of a triplet multi-

plicity, compared to the singlet multiplicity identified in this work at the

B3P86-D3 / cc-pVDZ level of theory. Interestingly, the other isomers tested

in the aforementioned paper all possessed a singlet multiplicity.
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The ground state positions of the energy minima (the calcium’s optimised

position) were relatively similar across both results. Raggi et al.’s calcu-

lated energy gap, ∆E, was 0.2eV, compared to this study’s energy gap of

0.35eV. The change in polarisation charge is identical, being a 0.6e change

from the left hemisphere to the right hemisphere as the calcium moves

across the cage. The marginal differences may be due to the slight differ-

ence of isomer configuration used in this study. What is clear from this

analysis and Raggi et al.’s work is the impact of different locations of hy-

drogen addition on both the internal energy profile and polarisation charge

as the calcium moved across the cage. This highlights that isomer purity is

a crucial part of the validation process to determine candidates for a polar-

isation switch. A mix of isomers could lead to ineffective and unpredictable

switching behaviour.
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5.1.3 S-Ca@C60H6

DFT geometry optimisation calculations on both singlet and triplet states

of S-Ca@C60H6 predict the ground state to be an optimised singlet state

with the calcium located 1.15 Å from the centre of the non-functionalised

hemisphere, aligned off-centre to one of the 6–6 hexagons, as shown in

the left-hand illustration of figure 5.9. The right-hand illustration shows

the off-centre position of the calcium and direction of the dipole, pointing

directly away from the functionalised site indicating an accumulation of

surface charge in the opposite hemisphere. The functionalised site shows

a more pronounced cage deformation compared to 1,2,3,4-Ca@C60H4 as a

result of the newly created sp3 bonds at the addition site.

Figure 5.9: The left-hand illustration shows the ground state geometry of
S-Ca@C60H6 with calcium aligned to the midpoint of the pentagon centre.
The RHS illustration shows the same molecule, rotated to visualise the
calcium off-centre position, the functionalised site and the resulting dipole
(blue arrow).

A translational analysis of DFT single point energies and partial charges

can be seen in figure 5.10 showing the impact of functionalisation on the in-

ternal potential energy profile and energy barriers between the two minima

in each hemisphere.

The addition of H6 results in the Mexican-hat potential becoming asym-

metrical with an energy gap of 0.51 eV between minima, with the global

minimum located in the non-functionalised hemisphere. The predicted cal-

cium partial charge at this location is +1.50e, indicating a charge transfer
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Figure 5.10: S-Ca@C60H6 relative potential energy (blue) as the calcium is
displaced towards (RHS) and away from (LHS) the H6 functionalised site,
and corresponding DDEC6 partial charge profile (red) of the calcium ion
at the B3P86-D3 / cc-pVDZ level of theory

of +0.50e from the cage to the calcium when comparing to the isolated

Ca2+ ion. The maximum energy barrier, 0.98 eV, is marginally shifted

off-centre by 0.09 Å into the non-functionalised hemisphere, with minima

also shifted in the same direction. The partial charge profile is again asym-

metrical, with the maximum (+1.73e) shifting into the non-functionalised

hemisphere.

The asymmetrical distribution of surface charge can clearly be seen in Fig-

ure 5.11.

Figure 5.11: Distribution of partial atomic charge for three different po-
sitions of the calcium atom (yellow particle inside cage) in S-Ca@C60H6.
The lower energy minima (LHS), calcium at the centre (middle), and the
higher energy minima (RHS). The carbon atoms are depicted according to
the charge they carry: red (positive) and blue (negative). The hydrogens
are the purple circles outside the cage.

When the calcium is at the lowest energy minima position in the non-
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functionalised hemisphere, an accumulation of charge is clearly observed

in this hemisphere. As the calcium moves to the centre of the cage, the

surface charge distributes more evenly throughout the cage, with a slight

increase in surface charge into the functionalised hemisphere, emphasising

the effect observed in 1,2-Ca@C60H2 and 1,2,3,4-Ca@C60H4. When the

calcium moves into the functionalised hemisphere, to the higher energy

minima position, the surface charge follows the calcium ion, also shifting

into the functionalised hemisphere towards the functionalised sites. To

understand this motion further, the surface polarisation charge on each

hemisphere was plotted as a function of the position of the calcium ion:
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Figure 5.12: Polarisation charge located on the left hemisphere (dotted line)
and right hemisphere (smooth line) of the fullerene cage in S-Ca@C60H6

as a function of the position of the calcium ion. The results of the right
hemisphere include contributions from the six hydrogens.

Similar to 1,2-Ca@C60H2 and 1,2,3,4-Ca@C60H4, the polarisation charge

in each hemisphere is negative for all radial positions of calcium. Focus-

ing on the left-hemisphere (dotted line), at the lowest energy minimum

(left-hemisphere), where the calcium is displaced -1.15Å from the cage

centre, the polarisation charge is -1.18e with net charge transfer being

S-Ca1.50+@C1.50−
60 H6. As the calcium moves to the energy maximum at

the cage centre, the polarisation charge increases to -1.07e, with net charge

transfer being S-Ca1.73+@C1.73−
60 H6. As the calcium moves into the function-
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alised (RHS) hemisphere to the energy minimum at 0.99Å from the cage

centre, the polarisation charge reduces to -0.59e with net charge transfer

being S-Ca1.56+@C1.56−
60 H6. Therefore, as the calcium moves between the

two energy minima, the charge switches by 0.59e. The position of maxi-

mum surface charge polarisation does not coincide with the lowest energy

minima position, but at a distance -0.1Å from the centre, demonstrating

again the “pushing effect” the hydrogens have on the internal energy pro-

file of the system. The asymmetrical distribution of surface charge again

demonstrates the modification of internal energy barriers and the correla-

tion between surface charge polarisation and calcium motion.

These results also provide a useful comparison to Raggi et al.’s work on

Ca@C60H6 [17], particularly figure 3 in the paper showing the energy bar-

riers of an isomer of Ca@C60H6 where each hydrogen is added to one full

hexagon, 1,2,3,4,5,6-Ca@C60H6. In this configuration, ∆E was calculated

to be 0.23 eV with a maximum energy barrier of 0.93 eV. This is compared

to this study’s S-Ca@C60H6 isomer where the energy gap was predicted to

be 0.51 eV with a maximum energy barrier of 0.98 eV. Interestingly, the

maximum energy barriers closely correspond to each other, however, the

almost two-fold difference of the calculated energy gap again demonstrates

the importance of isomer selection. Raggi et al.’s isomer concentrates ad-

dition on one hexagon and the smaller energy gap is comparable to that of

1,2-Ca@C60H2 and 1,2,3,4-Ca@C60H4 predicted in this study. The impact

of the S-motif addition for S-Ca@C60H6 spreads out sp3 hybrid carbons

and increases the energy gap between minima.
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5.1.4 T-Ca@C60H8

DFT geometry optimisation calculations on both singlet and triplet states

of T-Ca@C60H8 predict the ground state to be an optimised singlet state

with the calcium located 1.30 Å from the centre of the non-functionalised

hemisphere, aligned off-centre to one of the 6–6 hexagons adjacent to the

functionalised site, as shown in the left-hand illustration of figure 5.13.

The right-hand illustration shows the off-centre position of the calcium and

direction of the dipole, pointing directly away from the functionalised site,

indicating an accumulation of surface charge in the opposite hemisphere.

The functionalised site shows a slight cage deformation as a result of the

newly created sp3 bonds at the addition site.

Figure 5.13: The left-hand illustration shows the ground state geometry of
T-Ca@C60H8 with calcium aligned to the midpoint of the 6-6 bond. The
RHS illustration shows the same molecule, rotated to visualise the calcium
off-centre position, the functionalised site and the resulting dipole (blue
arrow).

The translational analysis of DFT single point energies and partial charges

can be seen in figure 5.14 showing the impact of functionalisation on the in-

ternal potential energy profile and energy barriers between the two minima

in each hemisphere.

The addition of H8 results in the Mexican-hat potential becoming asym-

metrical with an energy gap of 0.44 eV between minima, with the global

minimum located in the non-functionalised hemisphere. The predicted cal-

cium partial charge at this location is +1.47e, indicating a charge transfer
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Figure 5.14: T-Ca@C60H8 relative potential energy (blue) as the calcium is
displaced towards (LHS) and away from (RHS) the H8 functionalised site,
and corresponding DDEC6 partial charge profile (red) of the calcium ion
at the B3P86-D3 / cc-pVDZ level of theory

of +0.53e from the cage to the calcium when comparing to the isolated

Ca2+ ion. The maximum energy barrier, 0.92 eV, is shifted off-centre by

0.29 Å into the non-functionalised hemisphere, with minima also shifted in

the same direction. The partial charge profile is again asymmetrical, with

the maximum (+1.70e) shifting into the non-functionalised hemisphere.

The asymmetrical distribution of surface charge can clearly be seen in the

Figure 5.15.

Figure 5.15: Distribution of partial atomic charge for three different po-
sitions of the calcium atom (yellow particle inside cage) in T-Ca@C60H8.
The lower energy minima (LHS), calcium at the centre (middle), and the
higher energy minima (RHS). The carbon atoms are depicted according to
the charge they carry: red (positive) and blue (negative). The hydrogens
are the purple circles outside the cage.

When the calcium is at the lowest energy minima position in the non-
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functionalised hemisphere, an accumulation of charge is clearly observed

in the left hemisphere. As the calcium moves to the centre of the cage,

the surface charge distributes more evenly throughout the cage. When

the calcium moves into the functionalised hemisphere, to the higher energy

minimum position, the surface charge follows the calcium ion, also shifting

into the functionalised hemisphere towards the functionalised sites. To

understand this motion further the surface polarisation charge on each

hemisphere was plotted as a function of the position of the calcium ion:
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Figure 5.16: Polarisation charge located on the left hemisphere (dotted line)
and right hemisphere (smooth line) of the fullerene cage in T-Ca@C60H8

as a function of the position of the calcium ion. The results of the right
hemisphere include contributions from the eight hydrogens.

Similar to all preceding hydrogenated Ca@C60 molecules, the polarisation

charge in each hemisphere is negative for all radial positions of calcium.

Focusing on the left-hemisphere (dotted line), at the lowest energy min-

imum (left-hemisphere), where the calcium is displaced -1.30Å from the

cage centre, the polarisation charge is -1.21e with net charge transfer be-

ing T-Ca1.47+@C1.47−
60 H8. As the calcium moves to the energy maximum

at the cage centre, the polarisation charge increases to -1.08e, with net

charge transfer being T-Ca1.70+@C1.70−
60 H8. As the calcium moves into the

functionalised (RHS) hemisphere to the energy minimum at 0.72Å from

the cage centre, the polarisation charge reduces to -0.59e with net charge
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transfer being T-Ca1.52+@C1.52−
60 H8. Therefore, as the calcium moves be-

tween the two energy minima, the charge switches by approximately 0.62e.

The position of maximum surface charge polarisation does not coincide

with the lowest energy minima position, but at a distance -1.0Å from the

centre, demonstrating again the “pushing effect” the hydrogens have on

the internal energy profile of the system. The asymmetrical distribution of

surface charge again demonstrates the modification of internal energy bar-

riers and the correlation between surface charge polarisation and calcium

motion.
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5.1.5 Formation energy: Hydrogen functionalisation

The DFT calculations provide information on the energy required to break

the sp2 hybridised C=C bond and form two sp3 hybridised C-H bonds. The

first four hydrogen additions to Ca@C60 (H2, H4, H6 and H8) reduce the

ground state energy linearly by an average 33.19 eV. The energy to break

the sp2 hybridised C=C bond and form two sp3 hybridised C-H bonds can

be described by the following equations:

Ca@C60Hn + H2 → Ca@C60Hn+2

∆EH−H = H2 − 2H

∆E2C−H = Ca@C60Hn+2 − Ca@C60Hn − H2

(5.1)

A DFT calculation was performed to determine the ground state energy of

H2 at the B3P86 / cc-pVDZ level of theory, yielding an energy of -32.26

eV. Therefore, the energy to break the sp2 hybridised C=C bond and form

two sp3 hybridised C-H bonds is:

∆E2C−H = −33.19 eV − (−32.26 eV) = −0.93 eV (5.2)

The net energy lost by the system when forming each sp3 hybridised C-H

bond from the sp2 hybridised C=C is -0.47 eV indicates an energetically

favourable process.
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5.2 Fluorinated Ca@C60

Please note that a tabulated summary of all DFT calculated polarisation

properties presented in this section can be found at appendix A.

5.2.1 1,2-Ca@C60F2

DFT geometry optimisation calculations on both singlet and triplet states

of 1,2-Ca@C60F2 predict the ground state to be an optimised singlet state

with the calcium located -1.32 Å from the centre of the non-functionalised

hemisphere, aligned to the midpoint of the 6-6 hexagon adjacent to the

functionalised site, as shown in the left-hand illustration of Figure 5.17. The

right-hand illustration shows the off-centre position of the calcium and di-

rection of the dipole, pointing directly towards from the functionalised site.

Compared to this molecule’s hydrogen counterpart, the dipole points in the

opposite direction towards the strongly negative fluorine atoms rather than

towards the weaker accumulated negative charge in the left hemisphere as

a result of the calcium position. The functionalised site shows a slight cage

deformation as a result of the newly created sp3 bonds at the addition site.

Figure 5.17: The left-hand illustration shows the ground state geometry of
1,2-Ca@C60F2 with calcium aligned to the midpoint of the 6-6 bond. The
RHS illustration shows the same molecule, rotated to visualise the calcium
off-centre position, the functionalised site and the resulting dipole (blue
arrow).

A translational analysis of DFT single point energies and partial charges
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can be seen in figure 5.18 showing the impact of functionalisation on the in-

ternal potential energy profile and energy barriers between the two minima

in each hemisphere.
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Figure 5.18: 1,2-Ca@C60F2 relative potential energy (blue) as the calcium
is displaced towards (LHS) and away from (RHS) the F2 functionalised
site, and corresponding DDEC6 partial charge profile (red) of the calcium
ion at the B3P86-D3 / cc-pVDZ level of theory

The addition of F2 results in the Mexican-hat potential becoming asym-

metrical with an energy gap of 0.26 eV between minima, with the global

minimum located in the non-functionalised hemisphere. The predicted cal-

cium partial charge at this location is +1.50e, indicating a charge transfer of

+0.50e from the cage to the calcium when comparing to the isolated Ca2+

ion. The maximum energy barrier, 1.08 eV, is shifted -0.18 Å into the left

hemisphere. The partial charge profile becomes asymmetrical, with the

maximum (+1.73e) also shifting into the non-functionalised hemisphere.

The asymmetrical distribution of surface charge can clearly be seen in fig-

ure 5.19.

One of the main initial differences when comparing against 1,2-Ca@C60H2

is that the strongly electronegative fluorine atoms result in the sp3 carbons

being positively charged (0.22e each). Interestingly, the total charge on

the C-F and C-H units are the same, 0.05 e. This demonstrates that the
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Figure 5.19: Distribution of partial atomic charge for three different posi-
tions of the calcium atom (yellow particle inside cage) in 1,2-Ca@C60F2.
The lower energy minima (LHS), calcium at the centre (middle), and the
higher energy minima (RHS). The carbon atoms are depicted according to
the charge they carry: red (positive) and blue (negative). The fluorines are
the green circles outside the cage.

available total charge to distribute on each new sp3 site does not change as

a result of functionalisation, more that the charge is distributed towards

the most electronegative species in the unit. For C-F this is fluorine and for

C-H this is carbon (although the difference in electronegativity is typically

small between carbon and hydrogen, resulting in a non-polar bond).

When the calcium is at the lowest energy minimum position in the non-

functionalised hemisphere, an accumulation of charge is clearly observed

in this hemisphere. As the calcium moves to the centre of the cage, the

surface charge distributes more evenly throughout the cage. When the

calcium moves into the functionalised hemisphere, to the higher energy

minima position, the surface charge follows the calcium ion, also shifting

into the functionalised hemisphere towards the functionalised sites. To

understand this motion further, the surface polarisation charge on each

hemisphere was plotted as a function of the position of the calcium ion in

figure 5.20.

The polarisation charge in each hemisphere is negative for all radial po-

sitions of calcium. Focusing on the left-hemisphere (dotted line), at the

lowest energy minimum, where the calcium is displaced -1.32Å from the

cage centre, the polarisation charge is -0.88e with net charge transfer be-
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Figure 5.20: Polarisation charge located on the left hemisphere (dotted line)
and right hemisphere (smooth line) of the fullerene cage in 1,2-Ca@C60F2

as a function of the position of the calcium ion. The results of the right
hemisphere include contributions from the two fluorines.

ing 1,2-Ca1.50+@C1.50−
60 F2. As the calcium moves to the energy maximum

the polarisation charge reduces to -0.71e with net charge transfer being

1,2-Ca1.73+@C1.73−
60 F2. As the calcium moves into the functionalised (RHS)

hemisphere to the energy minimum at 0.89Å from the cage centre, the po-

larisation charge reduces further to -0.37e with net charge transfer being

1,2-Ca1.49+@C1.49−
60 F2. Therefore, as the calcium moves between the two

energy minima, the charge switches by approximately 0.51e, which is 0.1e

less than the molecules’ hydrogen counterpart, 1,2-Ca@C60H2. Similar to

the hydrogenated series, there is again a mismatch between the position

of lowest energy minimum and lowest surface charge polarisation. This

asymmetrical distribution of surface charge as the calcium moves across

the molecule clearly demonstrates both the modification of internal energy

barriers and the correlation between surface charge polarisation and cal-

cium ion motion for the 1,2-Ca@C60F2 system, albeit at a reduced intensity

when compared to hydrogen.
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5.2.2 1,2,3,4-Ca@C60F4

DFT geometry optimisation calculations on both singlet and triplet states

of 1,2,3,4-Ca@C60F4 predict the ground state to be an optimised singlet

state with the calcium located -1.61 Å from the centre of the non-functionalised

hemisphere, aligned to the midpoint of the pentagon-hexagon join adjacent

to the functionalised site, as shown in the left-hand illustration of figure

5.21. The right-hand illustration shows the off-centre position of the cal-

cium and direction of the dipole, pointing directly towards the function-

alised site, similar to that of 1,2-Ca@C60F2. The functionalised site shows

a slight cage deformation as a result of the newly created sp3 bonds at the

addition site.

Figure 5.21: The left-hand illustration shows the ground state geometry of
1,2,3,4-Ca@C60F4 with calcium aligned to the midpoint of the pentagon-
hexagon join. The RHS illustration shows the same molecule, rotated to
visualise the calcium off-centre position, the functionalised site and the
resulting dipole (blue arrow).

A translational analysis of DFT single point energies and partial charges

can be seen in figure 5.22 showing the impact of functionalisation on the in-

ternal potential energy profile and energy barriers between the two minima

in each hemisphere.

The addition of F4 results in the Mexican-hat potential becoming asym-

metrical with an energy gap of 0.27 eV between minima, with the global

minimum located in the non-functionalised hemisphere. The predicted cal-

cium partial charge at this location is +1.54e, indicating a charge transfer of
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Figure 5.22: 1,2,3,4-Ca@C60F4 relative potential energy (blue) as the cal-
cium is displaced towards (RHS) and away from (LHS) the F4 function-
alised site, and corresponding DDEC6 partial charge profile (red) of the
calcium ion at the B3P86-D3 / cc-pVDZ level of theory

+0.46e from the cage to the calcium when comparing to the isolated Ca2+

ion. The maximum energy barrier, 0.77 eV, is shifted -0.56 Å into the left

hemisphere. The partial charge profile becomes asymmetrical, with the

maximum (+1.69e) also shifting into the non-functionalised hemisphere.

The asymmetrical distribution of surface charge can clearly be seen in fig-

ure 5.23.

Figure 5.23: Distribution of partial atomic charge for three different posi-
tions of the calcium atom (yellow particle inside cage) in 1,2,3,4-Ca@C60F4.
The lower energy minima (LHS), calcium at the centre (middle), and the
higher energy minima (RHS). The carbon atoms are depicted according to
the charge they carry: red (positive) and blue (negative). The fluorines are
the green circles outside the cage.

Similarly to 1,2-Ca@C60F2 the strongly electronegative fluorine atoms re-

sult in the sp3 carbons being positively charged. When the calcium is at

the lowest energy minima position in the non-functionalised hemisphere,
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an accumulation of charge is observed in this hemisphere. Interestingly, at

this position, a ring of marginally positively charged carbons is observed on

the cage next to the sp3 carbons, indicating that the sp3 carbons attract

nearby surface charge. As the calcium moves to the centre of the cage,

the surface charge distributes into the right-hand hemisphere, rather than

evenly distributed compared to 1,2,3,4-Ca@C60H4. This is likely as a re-

sult of the positively charged sp3 carbons attracting surface charge as the

calcium moves towards the functionalised site. In fact, when the calcium

moves into the functionalised hemisphere, to the higher energy minima po-

sition, the difference in surface charge distribution compared to the central

position is negligible, as the higher energy minima is relatively close to the

central position. To understand this motion further, the surface polarisa-

tion charge on each hemisphere was plotted as a function of the position

of the calcium ion:
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Figure 5.24: Polarisation charge located on the left hemisphere (dotted
line) and right hemisphere (smooth line) of the fullerene cage in 1,2,3,4-
Ca@C60F4 as a function of the position of the calcium ion. The results of
the right hemisphere include contributions from the four fluorines.

The polarisation charge in each hemisphere is negative for all radial po-

sitions of calcium. Focusing on the left-hemisphere (dotted line), at the

lowest energy minimum, where the calcium is displaced -1.61Å from the

cage centre, the polarisation charge is -0.93e with net charge transfer being
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1,2,3,4-Ca1.47+@C1.47−
60 F4. As the calcium moves to the energy maximum

the polarisation charge reduces slightly to -0.88e with net charge transfer

being 1,2,3,4-Ca1.69+@C1.69−
60 F4. As the calcium moves into the function-

alised (RHS) hemisphere to the energy minimum at 0.48Å from the cage

centre the polarisation charge reduces further to -0.54e with net charge

transfer being 1,2,3,4-Ca1.52+@C1.52−
60 F2. Therefore, as the calcium moves

between the two energy minima, the charge switches by approximately

0.39e. This asymmetrical distribution of surface charge as the calcium

moves across the molecule clearly demonstrates both the modification of

internal energy barriers and the correlation between surface charge polari-

sation and calcium ion motion for the 1,2,3,4-Ca@C60F4 system, albeit at

a reduced intensity when compared to the hydrogen functionalised coun-

terpart.
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5.2.3 S-Ca@C60F6

DFT geometry optimisation calculations on both singlet and triplet states

of S-Ca@C60F6 predict the ground state to be an optimised singlet state

with the calcium located -1.40 Å from the centre of the non-functionalised

hemisphere, aligned to an off-centre hexagon adjacent to the functionalised

site, as shown in the left-hand illustration of figure 5.25. The right-hand

illustration shows the off-centre position of the calcium and direction of

the dipole, pointing directly towards from the functionalised site. The

functionalised site shows a more pronounced cage deformation as a result

of the newly created sp3 bonds at the addition site.

Figure 5.25: The left-hand illustration shows the ground state geometry
of S-Ca@C60F6 with calcium aligned to an off-centre hexagon. The RHS
illustration shows the same molecule, rotated to visualise the calcium off-
centre position, the functionalised site and the resulting dipole (blue arrow).

A translational analysis of DFT single point energies and partial charges

can be seen in figure 5.26 showing the impact of functionalisation on the in-

ternal potential energy profile and energy barriers between the two minima

in each hemisphere.

The addition of F6 results in the Mexican-hat potential becoming asym-

metrical with an energy gap of 0.52 eV between minima, with the global

minimum located in the non-functionalised hemisphere. The predicted cal-

cium partial charge at this location is +1.59e, indicating a charge transfer of

+0.41e from the cage to the calcium when comparing to the isolated Ca2+
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Figure 5.26: S-Ca@C60F6 relative potential energy (blue) as the calcium is
displaced towards (RHS) and away from (LHS) the F6 functionalised site,
and corresponding DDEC6 partial charge profile (red) of the calcium ion
at the B3P86-D3 / cc-pVDZ level of theory

ion. The maximum energy barrier, 0.91 eV, is shifted -0.56 Å into the left

hemisphere. The partial charge profile becomes asymmetrical, with the

maximum (+1.67e) also shifting into the non-functionalised hemisphere.

The asymmetrical distribution of surface charge can clearly be seen in Fig-

ure 5.27.

Figure 5.27: Distribution of partial atomic charge for three different po-
sitions of the calcium atom (yellow particle inside cage) in S-Ca@C60F6.
The lower energy minima (LHS), calcium at the centre (middle), and the
higher energy minima (RHS). The carbon atoms are depicted according to
the charge they carry: red (positive) and blue (negative). The fluorines are
the purple circles outside the cage.

Again, the strongly electronegative fluorine atoms result in the sp3 carbons

being positively charged. When the calcium is at the lowest energy min-

imum position in the non-functionalised hemisphere, an accumulation of

charge is observed in this hemisphere. Similar to 1,2,3,4-Ca@C60F4, at this
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position, a ring of marginally positively charged carbon can be seen on the

cage next to the sp3 carbons, again indicating that the sp3 carbons attract

nearby surface charge. As the calcium moves to the centre of the cage,

the surface charge distributes into the right-hand hemisphere, rather than

evenly distributed, likely as a result of the positively charged sp3 carbons

attracting surface charge as the calcium moves towards the functionalised

site. In fact, when the calcium moves into the functionalised hemisphere, to

the higher energy minima position, the difference in surface charge distri-

bution compared to the central position is negligible, as the higher energy

minima is relatively close to the central position. To understand this mo-

tion further, the surface polarisation charge on each hemisphere was plotted

as a function of the position of the calcium ion:
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Figure 5.28: Polarisation charge located on the left hemisphere (dotted line)
and right hemisphere (smooth line) of the fullerene cage in S-Ca@C60F6 as
a function of the position of the calcium ion. The results of the right
hemisphere include contributions from the six fluorines.

The polarisation charge in each hemisphere is negative for all radial po-

sitions of calcium. Focusing on the left-hemisphere (dotted line), at the

lowest energy minimum, where the calcium is displaced -1.40Å from the

cage centre, the polarisation charge is -1.03e with net charge transfer be-

ing S-Ca1.59+@C1.59−
60 F6. As the calcium moves to the energy maximum,

the polarisation charge reduces slightly to -0.87e with net charge transfer
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being S-Ca1.67+@C1.67−
60 F6. As the calcium moves into the functionalised

(RHS) hemisphere to the energy minimum at 0.42Å from the cage centre,

the polarisation charge reduces further to -0.57e with net charge trans-

fer being S-Ca1.49+@C1.49−
60 F6. Therefore, as the calcium moves between

the two energy minima, the charge switches by approximately 0.46e. This

asymmetrical distribution of surface charge as the calcium moves across the

molecule clearly demonstrates both the modification of internal energy bar-

riers and the correlation between surface charge polarisation and calcium

ion motion for the S-Ca@C60F6 system, albeit again at a reduced intensity

when compared to hydrogen.
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5.2.4 T-Ca@C60F8

DFT geometry optimisation calculations on both singlet and triplet states

of T-Ca@C60F8 predict the ground state to be an optimised singlet state

with the calcium located -1.59 Å from the centre of the non-functionalised

hemisphere, aligned to an off-centre hexagon adjacent to the functionalised

site, as shown in the left-hand illustration of figure 5.29. The right-hand

illustration shows the off-centre position of the calcium and direction of the

dipole, pointing directly towards the functionalised site. The functionalised

site shows a more pronounced cage deformation as a result of the newly

created sp3 bonds at the addition site.

Figure 5.29: The left-hand illustration shows the ground state geometry
of T-Ca@C60F8 with calcium aligned to an off-centre hexagon. The RHS
illustration shows the same molecule, rotated to visualise the calcium off-
centre position, the functionalised site and the resulting dipole (blue arrow).

A translational analysis of DFT single point energies and partial charges

can be seen in figure 5.30 showing the impact of functionalisation on the in-

ternal potential energy profile and energy barriers between the two minima

in each hemisphere.

The addition of F8 results in the Mexican-hat potential becoming asym-

metrical with an energy gap of 0.12 eV between minima, with the global

minimum located in the non-functionalised hemisphere. The predicted cal-

cium partial charge at this location is +1.54e, indicating a charge transfer of

+0.46e from the cage to the calcium when comparing to the isolated Ca2+
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Figure 5.30: T-Ca@C60F8 relative potential energy (blue) as the calcium is
displaced towards (RHS) and away from (LHS) the F8 functionalised site,
and corresponding DDEC6 partial charge profile (red) of the calcium ion
at the B3P86-D3 / cc-pVDZ level of theory

ion. The maximum energy barrier, 0.65 eV, is shifted -0.87 Å into the left

hemisphere. The partial charge profile becomes asymmetrical, with the

maximum (+1.68e) also shifting into the non-functionalised hemisphere.

The asymmetrical distribution of surface charge can clearly be seen in fig-

ure 5.31.

Figure 5.31: Distribution of partial atomic charge for three different po-
sitions of the calcium atom (yellow particle inside cage) in T-Ca@C60F8.
The lower energy minima (LHS), calcium at the centre (middle), and the
higher energy minima (RHS). The carbon atoms are depicted according to
the charge they carry: red (positive) and blue (negative). The fluorines are
the green circles outside the cage.

Again, the strongly electronegative fluorine atoms result in the sp3 carbons

being positively charged. When the calcium is at the lowest energy min-

imum position in the non-functionalised hemisphere, an accumulation of
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charge is observed in this hemisphere. Similar to the preceding fluorinated

molecules, at this position, a ring of marginally positively charged carbon

can be seen on the cage next to the sp3 carbons, again indicating that these

positively charged carbons attract nearby surface charge. As the calcium

moves to the centre of the cage, the surface charge distributes into the

right-hand hemisphere, rather than evenly distributed, likely as a result of

the positively charged sp3 carbons attracting surface charge as the calcium

moves towards the functionalised site. When the calcium moves into the

functionalised hemisphere, to the higher energy minimum position, the dif-

ference in surface charge distribution compared to the central position is

negligible, as the higher energy minimum is again relatively close to the

central position. To understand this motion further, the surface polarisa-

tion charge on each hemisphere was plotted as a function of the position

of the calcium ion:
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Figure 5.32: Polarisation charge located on the left hemisphere (dotted line)
and right hemisphere (smooth line) of the fullerene cage in T-Ca@C60F8

as a function of the position of the calcium ion. The results of the right
hemisphere include contributions from the eight fluorines.

The polarisation charge in each hemisphere is negative for all radial po-

sitions of calcium. Focusing on the left-hemisphere (dotted line), at the

lowest energy minimum, where the calcium is displaced -1.59Å from the

cage centre, the polarisation charge is -1.38e with net charge transfer be-
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ing T-Ca1.54+@C1.54−
60 F8. As the calcium moves to the energy maximum,

the polarisation charge remains at -1.38e with net charge transfer being

T-Ca1.68+@C1.68−
60 F8. As the calcium moves into the functionalised (RHS)

hemisphere to the energy minimum at 0.14Å from the cage centre, the po-

larisation charge reduces further to -1.15e with net charge transfer being

T-Ca1.45+@C1.45−
60 F8. Therefore, as the calcium moves between the two en-

ergy minima, the charge switches by approximately 0.23e. This asymmetri-

cal distribution of surface charge as the calcium moves across the molecule

clearly demonstrates both the modification of internal energy barriers and

the correlation between surface charge polarisation and calcium ion mo-

tion for the T-Ca@C60F8 system, albeit again at a reduced intensity when

compared to hydrogen functionalisation.
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5.2.5 Formation energy: Fluorine functionalisation

The DFT calculations provide information on the energy required to break

the sp2 hybridised C=C bond and form two sp3 hybridised C-H bonds.

The first four fluorine additions to Ca@C60 (F2, F4, F6 and F8) reduce

the ground state energy linearly by 5,434.10 eV. The energy to break the

sp2 hybridised C=C bond and form two sp3 hybridised C-F bonds can be

described by the following equation:

Ca@C60Fn + F2 → Ca@C60Fn+2

∆EF−F = F2 − 2F

∆E2C−F = Ca@C60Fn+2 − Ca@C60Fn − F2

(5.3)

A DFT calculation was performed to determine the ground state energy of

F2 at the B3P86 / cc-pVDZ level of theory yields an energy of -5,429.32

eV. Therefore, the energy to break the sp2 hybridised C=C bond and form

two sp3 hybridised C-F bonds is:

∆E2C−F = −5, 434.10 eV − (−5, 429.32 eV) = −4.78 eV (5.4)

The net energy lost by the system when forming each sp3 hybridised C-F

bond from the sp2 hybridised C=C is -2.39 eV, indicating an energetically

favourable process.
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5.3 Comparing functionalised Ca@C60 polar-

isation properties

The calculations in the preceding sections demonstrate how the internal

energy barriers are modified by selected hydrogenation and fluorination,

and also how the calcium partial charge and surface polarisation charge

change as the calcium moves from the left (non-functionalised) to the right

(functionalised) hemispheres of these molecules. The energy and surface

charge polarisation of all molecules are visualised together in figures 5.33

and 5.34 respectively, to better understand the impact of increased func-

tionalisation and electronegativity across both molecular series and help

inform potential polarisation switch candidates.

Both hydrogenation and fluorination cause the internal energy barriers to

shift into the left hemisphere, increasing to a maximum of -0.3 Å for T-

Ca@C60H8 and -0.87 Å for T-Ca@C60F8, and shifting the global minimum

positions by similar amounts. The energy gaps created by hydrogen and

fluorine functionalisation are 0.30 eV - 0.51 eV and 0.12 eV - 0.52 eV re-

spectively, with increasing functionalisation showing a similar trend across

molecules. In general, there is a greater variation of energy barrier positions

and magnitudes between fluorinated molecules compared to hydrogenated

molecules. As observed in the preceding section, fluorination results in

positively charged sp3 addition sites compared to negative sites for hydro-

genation - this additional component appears to impact the surface charge

distribution and overall electrostatics of the system that create the inter-

nal energy barriers in a more complex way compared to the hydrogenated

molecules.
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R
el
a
ti
ve

en
er
gy

eV

12-Ca@C60F2

1234-Ca@C60F4

S-Ca@C60F6

T-Ca@C60F8

Figure 5.33: Relative energies of the selected hydrogenated and fluorinated
Ca@C60 molecules as the calcium is displaced towards (LHS) and away
from (RHS) the hydrogenated sites. Note that the y-axis is relative to
each molecule, and not to the group of molecules as a whole, due to the
significant energy difference between each molecule.
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This complexity is also observed in the surface charge polarisation of the flu-

orinated molecules with relatively large variations between the total amount

of charge transferred from the left to right hemisphere (0.23e - 0.51e) as

well as the position at which the polarisation charge is equally distributed

across the cage (line intersection). This in contrast to the hydrogenated

series, possessing a similar degree of charge switching (0.6e), with only

slight variations around the point at which the surface charge polarisation

is equally distributed across hemispheres.
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Figure 5.34: Surface charge polarisation on separate hemispheres of the
fullerene cage for selected hydrogenated and fluorinated Ca@C60 molecules
as a function of the position of calcium. The dotted line shows the left
hemisphere and the smooth line the right hemisphere. Results for the right
hemisphere include contributions from the hydrogen and fluorine atoms
respectively.
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The calcium partial charge on the selected hydrogenated and fluorinated

Ca@C60 molecules as the calcium moves across the cage can be seen in

Figure 5.35.
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Figure 5.35: Calcium partial charge on the selected hydrogenated and flu-
orinated Ca@C60 molecules as the calcium is displaced towards (LHS) and
away from (RHS) the hydrogenated sites.

Across both series, the maximum partial charge on the calcium ion de-

crease as functionalisation increases with the position of the maximum

shifting further into the left hemisphere as more hydrogen and fluorine

atoms are added to the cage, reflecting a similar pattern observed for the
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internal energy barriers. Interestingly, the partial charges are very similar

in the left-hand hemisphere across hydrogenated molecules, compared to a

greater spread of partial charges in fluorinated molecules. When the cal-

cium moves into the right hemisphere, increasing functionalisation results

in less charge transferred to the cage, indicating that the charge transfer

process is linked to the proximity and availability of charge accepting sites.

This makes sense given that the increasing number of sp3 hybrid carbon

sites in the functionalised hemisphere are less electronegative and therefore

less electron accepting compared to sp2 hybrids.

The extensive analysis of internal energy barriers and surface charge po-

larisation undertaken in this chapter so far provides a robust foundation

to make candidate selections for a potential polarisation molecular switch.

In order to do so, initial switch design parameters need to be considered -

these parameters provide the criteria to measure potential switch viability

for a single unit molecular switch. Following this, should the desire be to

scale-up such a switch into a larger switching system, nanoparticle lattice

formation is discussed for Ca@C60 and alternative endohedral fullerenes.
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5.4 Recommendations for a polarisation switch

The primary goal for the design of a feasible endohedral fullerene polari-

sation switch is the accurate measurement of a clearly defined change in

surface charge polarisation as a result of toggling between two bi-stable

states. The selected hydrogenated and fluorinated Ca@C60 molecules have

all demonstrated that the precise motion of the encapsulated ion corre-

sponds to a shift in surface charge density, in the direction of calcium

motion. At the ground state minima positions, this corresponds to two

distinct polarisation states of the endohedral fullerene that could be mea-

sured if the fullerene was tethered or fixed in place, to ensure any molecular

rotation was removed, thus enabling a polarisation measurement to take

place.

There are three initial parameters to consider. Firstly, that the prepara-

tion of the relevant isomer of the functionalised endohedral fullerenes can be

achieved with high yield and purity, so that there is certainty that the cor-

rect isomer is isolated. Secondly, that the internal energy barriers, modified

through functionalisation, must create bi-stable states that are sufficiently

high to hold the calcium in place so that a polarisation measurement on

the fullerene cage surface can take place. In the authors’ opinion, there

is also a benefit to ensuring that such a measurement can take place at

room-temperature, to minimise any cooling apparatus required (and there-

fore minimising costs) should the polarisation switch be fabricated. Finally,

that the functionalised species does not distort or weaken the polarisation

measurement.

Considering the fluorinated molecules first. All isomers have been shown to

be produced with very high yield and purity. Functionalisation modifies the

energy barriers such that the energy gap is between 0.12 eV (T-Ca@C60F8)

139



Chapter 5. Polarisation properties of hydrogenated and fluorinated
metallofullerenes

and 0.52 eV (S-Ca@C60F6) with 1,2-Ca@C60F2 and 1,2,3,4-Ca@C60F4 sit-

ting within this range. However, greater functionalisation leads to a greater

shift in the energy barriers into the left-hand hemisphere. This was clearly

observed for 1,2,3,4-Ca@C60F4, S-Ca@C60F6 and T-Ca@C60F8 where the

secondary minima were relatively close to the centre of the fullerene cage.

The overall change in surface charge polarisation for the fluorinated series

ranged from 0.51e (1,2-Ca@C60F2) to 0.23e (T-Ca@C60F8), however, the

creation of positively charged sp3 addition sites appear to add an attrac-

tive component to the overall electrostatics, attracting the surface charge

in the wrong direction for switching purposes, and potentially weakening

the effect of the calcium ion’s interaction with the surface charge.

Taking all of these factors into account, 1,2-Ca@C60F2 is the only candidate

that satisfies the defined switching criteria - a high yield / pure function-

alised endohedral fullerene with a sufficient and minimally shifted energy

barrier and energy gap between minima that leads to a clearly defined

change in surface charge polarisation as calcium moves from the left to

right hemispheres. A limitation of this fluorine functionalised endohedral

fullerene is the potential distortion of a polarisation measurement due to

the position of the negatively charged fluorine atoms on the fullerene cage

- the chosen measurement device would need to be calibrated to take into

account the negative charge residing on the fluorine atoms, which in the

author’s view adds complication to such a measurement process.

Now, considering the hydrogenated molecules. Currently, only 1,2-C60H2

can be currently produced in high yield and purity (>99%) [118]. Func-

tionalisation modifies the energy barriers such that the energy gap is be-

tween 0.30 eV (1,2-Ca@C60H2) and 0.51 eV (S-Ca@C60H6) with 1,2,3,4-

Ca@C60H4 and T-Ca@C60H8 sitting within this range. Greater functionali-

sation leads to only slight shifts in energy barriers into the non-functionalised
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hemisphere and so both minima are located at a reasonable distance away

from the centre of the fullerene cage, ensuring that the redistribution of

surface charge due to calcium motion is clearly distinguishable between

hemispheres. The overall change in surface charge polarisation for the hy-

drogenated series was consistently 0.60e ± 0.02e, demonstrating that a

greater degree of hydrogenation had little effect on the change in polarisa-

tion charge as the calcium moved between hemispheres. This appears to

be due to the sp3 hybridised addition sites being negatively charged and

so not distorting the motion of redistributing surface charge as the calcium

moves.

Based on these factors, hydrogenated Ca@C60 appears better suited for a

polarisation switch compared to fluorinated Ca@C60. However, the yield

/ purity requirement to produce such a polarisation switch indicates that

only 1,2-Ca@C60H2 fully satisfies the defined switching criteria. Again,

there is a potential limitation that the positively charged hydrogens could

dampen a polarisation measurement, however, given the charge on hydro-

gen is +0.09e for 1,2-Ca@C60H2 compared to -0.18e for 1,2-Ca@C60F2, the

author feels that this limitation can be overcome with an adequately re-

solved polarisation measurement device.

In conclusion, 1,2-Ca@C60H2 is considered the most viable choice and rec-

ommendation for a realistic polarisation switch given the switching criteria

presented. Should a fluorinated molecule be of interest, this research indi-

cates that 1,2-Ca@C60F2 could be a viable choice, however, further work

will be required to understand the impact of the more complex surface

charge redistribution as a result of the positive sp3 addition sites on the

fullerene cage.
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5.5 Discussion: towards a multi-molecular

polarisation switch

As discussed in the introduction, whilst interest in designing a single molecule

switch is very active, the idea that these switches could be scaled up to

multi-molecular switches as part of a larger and more complex switching

system is fascinating with potential applications to memory devices and

molecular transistors to achieve novel logic gates [1, 17]. Miller et al. (in-

cluding DFT calculation contributions from this author), used a recent

development in the theory of many-body interactions [151] to explore some

known characteristics of endohedral fullerenes with a view to determining

if they could form new nanolattice structures. Given this study’s research

and insight into the polarisation charge switching of functionalised Ca@C60

through the controlled motion of the encapsulated calcium, there appears

no reason why this couldn’t be applied to other metals in groups I and II

(e.g. M = Li, K, Na, Mg) given similar metallic properties.

Miller’s electrostatic model simulated lattices that were represented by col-

lections of non-overlapping charged dielectric spheres that were arranged

into one of several selected 3D lattice structures, with two frequently ob-

served binary (AB and AB2) nanoparticle stoichiometries [47–49], of up to

5,000 particles. The formation of the binary lattice, AB or AB2, requires

there to be two types of endohedral fullerene particle, firstly A, a fullerene

with an encapsulated metal atom, such as calcium or lithium, which gener-

ally has the effect of ionising the atom and at the same time adding electron

density to the cage, well discussed in this thesis. Secondly, and in contrast,

the introduction of a fluorine or chlorine atom which removes electron den-

sity from the cage and adds negative charge to the endohedral F or Cl atom

[37]. An example of a potential lattice would be an AB structure consisting
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of unit cells containing Ca@C60 paired with Cl@C60 with each final nanolat-

tice remaining charge neutral. In principle, each AB pair should experience

three separate electrostatic interactions, which are: (i) the charged core of

A interacting with the charged core of B; (ii) an interaction between the

charged cores and the charged cages; and (iii) an interaction between the

charged cage of A and the charged cage of B. However, a range of experi-

mental and theoretical studies have shown that fullerene molecules act as

Faraday cages [152–157], which means that entities (other cores and cages)

external to a given cage are shielded from any charge contained within the

cage, i.e. the metal or halogen core. Therefore, electrostatic interactions

in AB and AB2 systems will be dominated by (iii), interactions between

the charges on each A and B cage. Thus, each lattice with, for example,

an AB pair in the form of A@C60
q+·B@C60

q−, is treated as a collection of

charged, dielectric spheres, for which the electrostatic theory is very well

established [99, 151].

The energetics of the range of lattices, consisting of the AB and AB2 sto-

ichiometries, was explored as a function of the ratio of charge residing on

cages associated with separate A and B endohedral X@C60 fullerenes. The

total interaction energy of each lattice type was determined from calcula-

tions on a combination of van der Waals, Coulomb, and charge induced

multipolar interactions. The lattice types tested were NaCl, CsCl, ZnS,

AlB2, MgZn2 and SeAg2 shown in Figure 5.36 and coloured to show the

difference in negative and positive charge on each particle pair with colour

intensity showing regions of enhanced and accumulated charge due to po-

larisation.

It should be noted that the electrostatic calculations performed in this

paper [46] fixed the encapsulated metal and halogen atoms to the centre

of the fullerene cages, however, in reality (as demonstrated in this thesis),
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Figure 5.36: Section of each lattice type: (a) NaCl; (b) CsCl; (c) ZnS;
(d) AlB2; (e) MgZn2; (f) SeAg2. Shading on each particle depicts the
calculated surface charge as being either negative (blue) or positive (red).
Regions of more intense colouration correspond to enhanced charge due to
the polarisation of bound charge and are shown in the enlarged images.

the metal would most likely reside in an off-centre position impacting the

distribution of partial charge on the fullerene surface. The results presented

by Miller et al. demonstrate that the stability of lattice structures are

derived, in part, from electrostatic interactions between fullerenes, where

the presence of certain endohedral atoms can induce either a negative or

positive charge to reside on the cage. For AB and AB2 structures, varying

combinations of Coulomb, charge-induced and van der Waals interactions

were shown to contribute to overall stability, and because the latter two

interactions always enhance stability, their presence was shown to extend

the range of charges over which lattices are stable.
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Now considering this as part of a larger-scale switching system, using the

knowledge obtained through this thesis’s research, it seems conceivable that

the proximity of the cation and anion in such a lattice structure would re-

sult in the modification of internal potential energies experienced by the

encapsulated metal and halogen respectively, similar to how functionali-

sation directly modifies the internal energy barriers. Figure 5.36 clearly

shows that the presence of a negatively charged anion in the lattice pair

results in the polarisation of bound charge, asymmetrical distributions of

surface charge on each sphere that would likely impact the internal poten-

tials experienced by the encapsulated metal ions. Given the fixed positions

of the pairs in the lattice structures, and therefore relatively fixed surface

charge polarisation, the application of an electric field similar to the work

performed by Foroutan-Nejad et al. [16] could result in measurable shifts

in surface charge polarisation across a lattice or array of these molecular

pairs. A key factor to consider is whether a change in polarisation, due to

any applied stimulus e.g. electric field, would adversely impact the overall

stability of the lattice structure. One would assume that a shift in surface

charge polarisation will impact the overall electrostatics (van der Waals,

Coulomb, and charge induced multipolar interactions), which could result

in shifts between lattice arrangements. However, as a first consideration,

this is an interesting avenue to explore to see how an endohedral met-

allofullerene such as Ca@C60 could be part of a larger scale polarisation

switching system. However, this is outside the scope of this research and

therefore should be considered as part of future studies.
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Chapter 6

Electrostatic analysis of the

surface charge polarisation for

a dipole inside an endohedral

fullerene

6.1 A dipole within a dielectric sphere

A natural extension to the analytical solution presented in Chapter 3 is

the derivation of an analytical solution for a dipole inside an endohedral

fullerene. The geometric representation of a dipole within a dielectric

sphere can be seen in figure 6.1.

Following the same methodology as section 3.2, the general solutions to the

total potential field can be described as a summation of the contributions

of the point charge and charged dielectric sphere potentials.
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Figure 6.1: Geometric representation of a dipole within a dielectric sphere
where σ(r) is the surface charge density, ϕ(r) is the electric potential, q1
and q2 are the encapsulated point charges making up the dipole, R is the
radius of the dielectric sphere, a1 and a2 are the lengths from the centre
separated by a distance d, and r is the observation position.

ϕin(r, β) = ϕq+(r, β) + ϕq−(r, β) + ϕsphere(r, β)

ϕin(r, β) =
q1

4πε1 |r − a1|
+

q2
4πε1 |r − a2|

+
∞∑
l=0

Alr
lPl(cosβ), 0 ≤ r ≤ R

ϕout(r, β) =
q1

4πε1 |r − a1|
+

q2
4πε1 |r − a2|

+
∞∑
l=0

Bl

rl+1
Pl(cosβ), R ≤ r ≤ ∞

(6.1)

Expanding the Coulomb potential ϕq(r, β), in terms of Legendre polyno-

mials and simplifying:

ϕ(r,β)=
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(
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)l
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(6.2)
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Using the boundary condition that the potentials and the fluxes normal

to the spherical boundary are continuous at the boundary (see Chapter 2,

Theoretical Methods, for a list of the systems’ boundary conditions) and

the orthogonality property of Legendre Polynomials, derives expressions

for Al and Bl.

Al=
q1
4π

(
ε1−ε2

ε1

)(
l+1

ε2(l+1)+ε1l

)
al1

R2l+1+
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4π

(
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)
al2
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)
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(
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ε1

)(
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ε2(l+1)+ε1l

)
al2

(6.3)

Substituting Al and Bl into Eq. (6.2) leads to complete analytical expres-

sions for the electrostatic potential:
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Simplifying by reducing the Coulomb potential, ϕq(r, β):
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Using the boundary condition that the normal component of the electric

field is discontinuous due to the presence of a permanent and free charge

on the surface of the sphere, an analytical expression for the surface charge

density can be derived.

σ(R, θ) = − q1

4π |R− a1|2
+
q1
4π

∞∑
l=0

(
ε1 + l(3ε1 − ε2)

ε1(ε2 + l(ε1 + ε2)

)
al1(l + 1)

Rl+2
Pl(cosβ)

− q2

4π |R− a2|2
+
q2
4π
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l=0

(
ε1 + l(3ε1 − ε2)

ε1(ε2 + l(ε1 + ε2)

)
al2(l + 1)

Rl+2
Pl(cosβ)

(6.6)

This result could also be derived by inspection as a linear combination of

both point charges, given that the encapsulated point charges are separated

by a fixed distance (to represent a dipole or linear diatomic molecule rather

than two separate free charges), and do not interact. It should be noted

that this simplified solution does not consider any rotation of the molecule,

which should be taken into account in future research.

6.1.1 DFT validation using q−q+@C60 and HF@C60

To visualise this analytical expression, the surface charge density was plot-

ted for a geometric system of two point charges, q+ and q− separated by a

bond length and partial charges calculated by geometry optimisation calcu-

lations on HF@C60 at the B3P86-D3 / cc-pVDZ level of theory. Note that

this level of theory enables a direct comparison to the case of Ca@C60 in

Chapter 3. However, for future studies it is strongly advised that a full com-

putational parameter validation process is undertaken (similar to section

4.2), with reconciliation to experimentally calculated chemical properties

of HF@C60 [158–161].
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Figure 6.2: The top left illustration shows the optimised geometry of
HF@C60, the top right illustration defines the analogous simulated system
of q−0.25q+0.25@C60, including the angle from the axis of the point charge
(β) and the distance of the point charges from the centre (note that only the
initial position is shown). The bottom illustration shows the corresponding
surface charge distributions for a dipole in a dielectric sphere of radius (R)
4Å and dielectric constant (ϵ1) 3.45, immersed in a vacuum (ϵ2=1), through
the placement of two point charges, q+0.25 and q−0.25, separated by a bond
length of 0.94Å. The surface charge distribution is plotted as a function of
β for various positions of the mid-point of the q−0.25-q+0.25 dipole: a = 0Å
(red), a = 0.5Å (green), a = 1.0Å (blue), and a = 1.5Å (yellow).

Compared to the case of the single point charge within a dielectric sphere,

the surface charge density now has two counteracting components. This is

best shown at a = 0Å (red line) where the dipole straddles the centre of

the cage. The negative point charge repels the surface charge resulting in a

positively charged hemisphere, and the positive charge attracts the surface

charge into the right-hand hemisphere resulting in a negatively charged

hemisphere. This demonstrates that at the centre of the cage, the dielectric

sphere is polarised, compared to q@C60 where the surface charge density
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is distributed evenly when the point charge is located at the centre of the

fullerene cage. Geometry optimisation calculations for HF@C60 predict HF

to straddle the centre of the cage in the ground state, with the fluorine being

ever so slightly closer to the cage centre than the hydrogen, reinforcing the

view that HF@C60 is a naturally polarised molecule.

Interestingly, as the dipole moves fully into the right hemisphere, at a =

0.5Å (green line) and a = 1.0Å (blue line), the degree of polarisation reduces

as a result of the counterbalancing electrostatic interaction now occurring

in the same hemisphere. It is only when the positive charge gets nearer to

the boundary at a = 1.5Å (yellow line) does the surface charge polarisa-

tion increase again, as the positive charge is 0.94Å closer to the boundary

than the negative charge, demonstrating again the sensitivity of surface

charge at close separations to the point charge. However, the presence of

the negative charge dampens the surface charge polarisation interaction,

compared to the case of the single point charge within a dielectric sphere,

resulting in much reduced surface charge density and degree of polarisation

(approximately 10% compared to that of the single point charge).

Single point energy DFT calculations were performed using the validated

computational parameters identified in chapter 4. The first set of calcu-

lations modelled two point charges, q−0.25 and q+0.25, encapsulated within

C60, with the initial central position being q−0.25 in the left-hand hemi-

sphere and q+0.25 in the right-hand hemisphere (matching the positions in

Figure 6.2), to provide a comparable analysis to the analytical model. The

resulting output was visualised using the Ovito package [103] with gradi-

ent colouring from blue (negative) to red (positive) to clearly visualise the

movement of charge across the cage surface.

At a = 0Å with the dipole straddling the cage centre, the molecule is po-
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Figure 6.3: DFT calculated partial charges for a dipole inside C60,
q−0.25q+0.25@C60, at the B3P86-D3 / cc-pVDZ level of theory. The point
charges were separated by a fixed distance 0.94Å inside the particle and
the midpoint of the dipole placed at various locations (a = 0Å – 1.5Å at
0.5Å intervals), moving from left to right hemispheres in the direction of
the carbon 6-6 bond. Note that at a = 0Å the dipole straddles the centre,
q−0.25 in the left-hand hemisphere and q+0.25 in the right-hand hemisphere,
with each point charge equidistant from the centre of the fullerene cage.

larised with clear regions of positive charge on the left hemisphere and

negative charge on the right hemisphere with a band of relatively neutrally

charge carbons around the centre of the fullerene cage. As the dipole is

displaced into the right hemisphere, both point charges are now inside the

right hemisphere, and consequently the accumulation of negative charge in-

creases due to the positive point charge being 0.94Å closer to the boundary

compared to the negative point charge. This charge accumulation occurs

across the hexagon (dark blue circles). Interestingly, as the dipole is further

displaced at a = 1.0Å and a = 1.5Å the accumulation of negative charge on

the hexagon remains similar, however, there is an appearance of a band of

strongly positive charge surrounding the hexagon, caused by the negative

point charge getting closer to the boundary as shown in figure 6.4:

This behaviour closely matches the analytical solution, the main difference

being that the analytical approach does not spread the charge across dis-

crete carbon sites, as the DFT results show, due to the model being of a

smooth dielectric sphere. However, for the purposes of establishing whether

the analytical approach correctly models behaviour, the close alignment
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Figure 6.4: DFT calculated partial charges for a dipole inside C60,
q−0.25q+0.25@C60, at a = 1.5Å, demonstrating the extreme negative and
positive charge in the same hemisphere.

with DFT again provides good evidence of the validity of this work’s first

hypothesis, that the motion of a point charge encapsulated within C60 is

also correlated to the distribution of charge density on the cage surface.

Taking this one step further, to establish the model’s alignment with the

endofullerene case, analytical and DFT calculations were undertaken to

model HF@C60. The main difference with these calculations was the vari-

ability of the strength of the H-F charges at different locations of the cage,

as a result of the quantity of charge transferred from the H-F to the cage

changes depending on the position of the dipole within the fullerene cage.

The analytical solution, in figure 6.5 shows that the unequal opposite charge

strength causes subtle differences in curve width compared to figure 6.2

and a slightly reduced degree of polarisation, likely due to the slightly

smaller negative charge on the fluorine. The profiles of each curve at the

extremities (-π and π) are clustered together with similar surface charge

densities, indicating that the surface charge is spread over a larger surface

area, rather than being compacted.

153



Chapter 6. Electrostatic analysis of the surface charge polarisation for a
dipole inside an endohedral fullerene

Figure 6.5: Surface charge distributions for a dipole in a dielectric sphere
of radius (R) 4Å and dielectric constant (ϵ1) 3.45, immersed in a vacuum
(ϵ2=1), through the placement of two point charges, separated by a fixed
distance of 0.94Å. Corresponding surface charge distributions as a func-
tion of β for various positions of the mid-point of the dipole: a = 0Å /
q+0.25q−0.21 (red), a = 0.5Å / q+0.26q−0.22 (green), a = 1.0Å / q+0.28q−0.23

(blue), a = 1.5Å / q+0.30q−0.25 (yellow).

Figure 6.6: DFT derived surface charge distributions of HF@C60, through
the placement of H-F inside the particle (using optimised partial charge
values), at various locations (a = 0Å - 1.5Å at 0.5Å intervals), moving into
the left hemisphere in the direction of the optimised carbon 6-6 bond.

The DFT solution, in figure 6.6 shares similar characteristics to figure 6.3

with a small difference being a less pronounced positively charged ring of

carbons surrounding the negatively charged hexagons. This is again likely

due to the slightly unequal charges on the HF compared to the equal charges

on q+q−, however, it is a negligible difference. What is very encouraging

is that the DFT partial charge analysis provides good evidence that the

analytical solution for a dipole trapped in a dielectric sphere presented

is a useful and valid approach to model the surface charge polarisation
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behaviour for a broader class of endohedral fullerene.

6.1.2 Discussion: HF@C60 as a polarisation switch

The main focus of this thesis was to investigate functionalised Ca@C60 as

a route to developing a bistable polarisation switch. However, the exten-

sion of the electrostatic analytical solution has presented an alternative

option, that of a dipole trapped inside C60. HF@C70 is already known to

possess switching capabilities, through dipole switching due to an applied

electric field [16]. In this case, the bistable states were between two rota-

tional minima, whereby each state represents different molecular properties

that could be distinguishable via STM or spectroscopic methods e.g. IR

or Raman spectroscopy. Given the work presented in this chapter, this

switching between the two rotational states should also lead to a switching

of polarisation charge density on the fullerene cage, which in turn could be

measurable.

In addition and given there is good evidence that this should work for a

dipole, there appears to be no reason why this approach could be further

extended for the case of a three-body system such as Sc3N@C60 [8] which

has also been used as a molecular switch, based on different current-driven

rotation orientations of the Sc3N cluster within the fullerene cage. Based

on the work in this thesis, these rotations should also lead to different ori-

entations of “spinning” surface charge density on the fullerene cage surface.

This would be a very interesting avenue to explore in future studies.
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Chapter 7

Conclusion and Outlook

7.1 Conclusion

Through a combination of classical electrostatic analysis and DFT calcu-

lations, this research has validated two hypotheses:

1. That the motion of an encapsulated metal confined within a fullerene

cage is strongly correlated to the distribution of charge density on

the cage surface.

2. Appropriately selected functionalised endohedral fullerene isomers

could form the basis of a polarisation switch.

Firstly, through a rigorous electrostatic analysis of a point charge encap-

sulated in a dielectric sphere, an analytical solution was presented and

described how the surface charge polarisation responds to the precise po-

sition of an encapsulated point charge. The analytical solution shows that

for a positive point charge, the surface charge “follows” the calcium across

the fullerene cage, which enabled a clear demonstration of a switch in sur-

156



Chapter 7. Conclusion and Outlook

face charge polarisation between hemispheres. The solution was verified

using DFT calculations on Ca@C60 using computational parameters that

were validated against experimental evidence. Partial charge visualisa-

tions, using the DDEC6 method, clearly showed a change in surface charge

distribution as the calcium moved from the centre of the fullerene cage,

where the surface charge density was evenly distributed throughout the

cage, to an asymmetrical distribution of charge in one hemisphere as the

calcium moved towards the boundary of that hemisphere. These results

clearly showed that the motion of an encapsulated metal confined within

a fullerene cage is strongly correlated to the distribution of charge density

on the cage surface.

Secondly, through a rigorous selection of experimentally produced hydro-

genated and fluorinated fullerenes, DFT calculations provided insight into

how functionalisation affects the internal potential energy barriers expe-

rienced by the encapsulated calcium. In particular, how an energy gap

is created between minima in the Mexican-hat potential, asymmetric as

a result of functionalisation, and how increasing degrees of functionalisa-

tion impacts the position of the energy barriers within the fullerene cage.

In addition, a partial charge analysis clearly demonstrated that the mo-

tion of encapsulated calcium confined within these functionalised fullerene

cages was strongly correlated to the distribution of charge density on the

cage surface, with measurements of changes in surface charge polarisation

reinforcing these findings.

Thirdly, a consideration of initial switching criteria, enabled the selection

of 1,2-Ca@C60H2 as the most promising candidate to develop a polarisa-

tion switch – a high yield / pure functionalised endohedral fullerene with

a sufficient and minimally shifted energy barrier and energy gap between

minima that leads to a clearly defined change in surface charge polarisa-
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tion as calcium moves from the left to right hemispheres. It was noted that

1,2-Ca@C60F2 could be considered a viable choice should a fluorinated can-

didate be preferred, however, with noted limitations regarding a more com-

plex surface charge environment that could impede the movement of surface

charge across the fullerene cage, resulting in a more challenging polarisa-

tion measurement. A potential route to scalability was discussed, through

the creation of stable binary endohedral fullerene lattices that could lead to

novel large-scale molecular switching arrays and nanomaterials with novel

optical and electronic properties

Finally, given active interest in dipolar endohedral fullerenes, the presented

analytical electrostatic solution was extended to the case of a dipole encap-

sulated within a dielectric sphere to model HF@C60. This demonstrated

that a dipolar molecule that straddles the centre of the fullerene cage, such

as HF@C60 in the ground state, is naturally polarised as a result of the

electrostatic interaction between the respective dipole charges and the sur-

face charge density. The solution was also verified using DFT calculations

on HF@C60.

7.2 Outlook

Further research should be undertaken to explore the classical electrostat-

ics of a dielectric particle with fixed “patches” of charge on the particle

surface, simulating the effect of fixed-site functionalisation. In addition,

the extension to dipolar and multi-atomic encapsulated species should be

investigated further to understand if these endohedral fullerenes could also

be utilised as polarisation switches to compliment the rotation-based switch

designs using HF@C70 and Sc3N@C60. The author believes that all the re-
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quired electrostatic solutions are currently in the literature (including the

analytical solution from this thesis) and that combining these approaches

could lead to a greater understanding of the impact of functionalisation

on the overall electrostatics of the system. The work undertaken by Miller

et al. should also be extended to take into account the reality that en-

capsulated species within endohedral fullerenes are located off-centre with

a corresponding asymmetrical distribution of surface charge density, and

how the construction of binary lattice pairs impacts the internal position

of the encapsulated cations and anions and the overall stability of different

configurations of endohedral nanoparticle lattices.

And finally, 1,2-Ca@C60H2 should be fabricated to test whether the theo-

retical and computational analysis and predictions in this thesis result in a

feasible and commercially viable polarisation switch. This author believes

that further study into these particular areas could lead to novel nanomate-

rials with applications to develop new classes of memory devices, molecular

transistors and logic gates.
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Appendix A

Summary tables

The particular polarisation properties measured using DFT were the posi-

tion of the minima and maxima (X), the energy barrier from the left-hand

(Ebl) and right-hand (Ebr) minima, from which the energy gap (∆E) is cal-

culated, the partial charge on the calcium at the minima (δCa) and the sur-

face charge polarisation (Q). In addition, the molecules ground state mul-

tiplicity (M) was predicted between singlet and triple states. A summary

of the DFT energy and charge calculations undertaken on these molecules

can be seen below, firstly for selected hydrogenated molecules and then for

selected fluorinated molecules.
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A.1 Ca@C60Hn (n=2,4,6,8)

Left Max. Right

Molecule M X Ebl X X Ebr ∆E (Ebl-Ebr)

1,2-Ca@C60H2 1 -1.14 1.09 0.00 1.14 0.79 0.30

1,2,3,4-Ca@C60H4 1 -1.13 0.89 0.09 1.07 0.55 0.35

S-Ca@C60H6 1 -1.15 0.98 -0.08 0.99 0.47 0.51

T-Ca@C60H8 1 -1.30 0.92 -0.29 0.72 0.48 0.44

Ca@C60 1 -1.18 1.56 0.00 1.18 1.56 0.00

Table A.1: Energy barriers and positions of energy minima and maxima for
the movement of calcium through the left and right hemispheres of selected
hydrogenated Ca@C60 molecules. The equivalent data for Ca@C60 is also
shown. Length units are Å and energy units are eV.

Left Max. Right

Molecule X δCa Ql X δCa X δCa Qr

∆Q

(Ql-Qr)

1,2-Ca@C60H2 -1.14 1.50 -1.09 0.00 1.77 1.14 1.52 -0.48 -0.61

1,2,3,4-Ca@C60H4 -1.13 1.54 -1.09 0.09 1.71 1.07 1.56 -0.48 -0.61

S-Ca@C60H6 -1.15 1.50 -1.18 -0.08 1.73 0.99 1.56 -0.59 -0.59

T-Ca@C60H8 -1.30 1.47 -1.21 -0.29 1.70 0.72 1.52 -0.59 -0.62

Ca@C60 -1.18 1.54 -1.11 0.00 1.79 1.18 1.43 -0.31 -0.80

Table A.2: Partial charges, surface charge polarisation, and positions of
energy minima and maxima for the movement of calcium through the left
and right hemispheres of selected hydrogenated Ca@C60 molecules. The
equivalent data for Ca@C60 is also shown. Length units are Å and charge
units are e.
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A.2 Ca@C60Fn (n=2,4,6,8)

Left Max. Right

Molecule M X Ebl X X Ebr ∆E (Ebl-Ebr)

1,2-Ca@C60F2 1 -1.32 1.08 -0.18 0.90 0.82 0.26

1,2,3,4-Ca@C60F4 1 -1.61 0.77 -0.56 0.48 0.49 0.28

S-Ca@C60F6 1 -1.40 0.91 -0.56 0.42 0.40 0.52

T-Ca@C60F8 1 -1.59 0.65 -0.87 0.14 0.53 0.12

Ca@C60 1 -1.18 1.56 0.00 1.18 1.56 0.00

Table A.3: Energy barriers and positions of energy minima and maxima
for the movement of calcium through the left and right hemispheres of
selected fluorinated Ca@C60 molecules. The equivalent data for Ca@C60 is
also shown. Length units are Å and energy units are eV.

Left Max. Right

Molecule X δCa Ql X δCa X δCa Qr

∆Q

(Ql-Qr)

1,2-Ca@C60F2 -1.32 1.50 -0.88 0.18 1.73 0.90 1.49 -0.37 -0.51

1,2,3,4-Ca@C60F4 -1.61 1.54 -0.93 -0.56 1.69 0.48 1.52 -0.54 -0.39

S-Ca@C60F6 -1.40 1.59 -1.03 -0.56 1.67 0.42 1.49 -0.57 -0.46

T-Ca@C60F8 -1.59 1.54 -1.38 -0.87 1.68 0.14 1.45 -1.15 -0.23

Ca@C60 -1.18 1.54 -1.11 0.00 1.79 1.18 1.43 -0.31 -0.80

Table A.4: Partial charges, surface charge polarisation, and positions of
energy minima and maxima for the movement of calcium through the left
and right hemispheres of selected hydrogenated Ca@C60 molecules. The
equivalent data for Ca@C60 is also shown. Length units are Å and charge
units are e.
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(87) J. Gräfenstein and D. Cremer, Phys. Chem. Chem. Phys., 2000, 2,

2091–2103.

(88) P. Matczak and S. Wojtulewski, J. Mol. Model., 2015, 21, 1–20.

(89) L. W. Bertels, J. Lee and M. Head-Gordon, J. Phys. Chem. Lett.,

2019, 10, 4170–4176.

(90) D. Stück and M. Head-Gordon, J. Chem. Phys., 2013, 139, 244109.

(91) J. Lee and M. Head-Gordon, J. Chem. Theory Comput., 2018, 14,

5203–5219.
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