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Abstract

In the aerospace industry, Multidisciplinary Design Optimisation (MDO) is increasingly

being used in the early phase design of aircraft structures.

However, the computational complexity associated to this tool limits its application to

coarse FE-models, which are not su�ciently accurate to capture the internal deformation

of components, such as manholes, cut-outs, bulkheads, and stringer run-outs.

Because of this, aircraft designers are currently unable to evaluate the influence of these

components on the sizing of primary structures. This causes the structural designs

obtained through MDO to be suboptimal at best and possibly unfeasible, which limits

the benefits and thwarts a broader application of this methodology.

In this thesis a novel methodology for the preliminary sizing of aircraft structures is

introduced. The proposed global-local MDO procedure relies on the use of a coarse FE-

model combined with multiple finer models for the accurate evaluation of components

with a complex geometry. Thanks to the introduction of an ad-hoc sensitivity analysis,

to consider the coupling between di�erent models, the novel methodology ensures the

optimality and feasibility of the computed design.

The impact on computational cost of adopting the proposed global-local strategy is

limited, provided that the total number of constraints and design variables is not greatly

increased.

Where the reference procedure would fail to find a locally feasible design, the proposed

global-local approach successfully finds a multidisciplinary optimal design, which does

not violate local constraints. Thus, the methodology enables designers to account for

the e�ect of components with a complex geometry earlier in the design process and

reduces the risk of major delays in the product development cycle.
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Chapter 1

Introduction

This chapter introduces the context of aircraft design, in which Multidisciplinary Design

Optimisation (MDO) is employed as a tool to address the design paradox. The reliance

of this procedure on coarse Finite Element (FE) models and the lack of an accurate

description of some detailed parts, known as “non-regular areas”, is presented as an

hindrance to the successful application of MDO. The challenge posed by “non-regular

areas” and the limitations of the current strategies employed to contain the problem is

described in detail.

1.1 The Design Process Paradox

1.1.1 Causes of the Paradox

The design of any complex product, not only in the aircraft industry, starts with a list of

requirements or desired characteristics. At the beginning, the designers are free to make

any design decision, but as soon as the process starts, each new decision is influenced

by the previous ones. For example in aircraft design the wing position must be defined

before its profile and aspect ratio can be designed.

Although similar products developed in the past may serve as a reference, at the be-

ginning, the designers have a limited knowledge of how the new concept will match the

target requirements, simply because a design, which has not yet been defined in detail,

cannot be fully evaluated.

If during the design process the solution fails to satisfy the design requirements due

to constraints imposed in previous steps, the designers must seek alternative solutions.

This means retracing their steps and repeating part of the work, as represented in Figure
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1.1a. In the earlier mentioned example, the designers would fail to find a satisfactory

wing profile and aspect ratio and be forced to change the wing position.

Since looking for alternative solutions requires going back to a previous state and ad-

vancing once again from there, setbacks result in additional work and time delays and

consequently an increased design cost. While some degree of iteration is inevitable,

major setbacks discovered in the late development stages must be avoided at all costs

[1, 2, 3]

As design advances, the increasing cost of going back progressively limits the design

freedom. If problems are discovered late, it may be preferable to stick with a sub-

optimal solution, because of the committed money cost.

1.1.2 The Paradox

This leads to a problem known as the design process paradox [4]: at the beginning,

when the design freedom is maximal, little information is available to guide the decision-

making, while instead towards the end, as more information is acquired, the design is

set and the initial freedom is lost. The paradox is depicted in Figure 1.1b.

(a) Product development is characterised by

steps forward and setbacks due to the viola-

tion of design requirements.

(b) The design paradox: as designers gain

knowledge on how to design the product, they

lose the freedom to modify the design.

Figure 1.1: Setbacks are normal in product development, but their opportunity cost
increases as the design progresses, which leads to the design paradox.

1.1.3 Aircraft Industry Strategies to Address the Paradox

Two obvious consequences of the paradox are that knowledge acquired earlier is more

valuable and that decisions, taken at the beginning of the design process, are of critical

importance. Because of these, the aircraft industry relies on two main strategies to

address the problem:

• Working in parallel on multiple models during early design,

• Using a multidisciplinary approach to design.
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In the earliest phase of aircraft design [5], when the committed costs are small, multiple

models are studied in parallel. This leads to an increased knowledge, which is vital to

avoid major setbacks. Multiple possibilities are explored, and the least promising designs

are quickly discarded without an impact on cost. This is the first strategy commonly

adopted by the industry.

As each decision influences all decisions downstream, the first design choices are crit-

ical. Multidisciplinary Design Optimisation (MDO) is a powerful and well-established

approach for designing an aircraft while concurrently considering several requirements.

By means of MDO, it is possible to maximise the performance of an aircraft configura-

tion. Bringing forward the use of MDO to the initial design phases and taking advantage

of this tool to make better design decisions, while advancing the design of each concept

in parallel, is the second strategy adopted to prevent major setbacks.

1.2 Use of MDO for Aircraft Design

1.2.1 Phases of the design process

The design of a new aircraft usually starts with a list of requirements, either directly

requested by the customer or identified as a customer need by the aircraft manufacturer.

The process that follows is divided into three di�erent phases [6]. The first one is

conceptual design. Many configurations, called conceptual designs, are generated, each

with its strengths and weaknesses. During this phase, the di�erent variants are further

developed, with the aim of identifying the most promising one. The trade-o� between

di�erent performance measures, such as weight, range, fuel e�ciency or payload, is

evaluated, and the least promising designs are identified and discarded. As the set has

been reduced to one or, at most, two similar variants, the preliminary design begins.

During this phase, the design is further optimised and analysed, and more details are

defined. At the end of the preliminary design phase, the FE-model still lacks many

details, but most of the aspects defining the design are fixed. For example, the position

of cut-outs or the number and spacing of ribs and stringers has been determined. The

mass estimation is more precise, and the general loadpaths of the structure have been

determined. The chosen configuration then enters the detailed design phase. Each

component is defined in detail. For those components that are subject to complex stress

states, Detailed Finite Element Models (DFEMs) are created and sized to sustain the

predetermined loads. At last, the design can be certified, and the manufacturing process
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starts.

1.2.2 Application of MDO in the Design Process

MDO is not applied during the early stages of conceptual design. This is because, at the

beginning, not even a CAD model is available, and time is needed for the preparation of

the FE-models and the definition of design variables and constraints required by MDO.

Because of this extra time, other approaches are preferred to MDO during the early

stages of conceptual design, as they can be used to discard several configurations more

quickly.

There are two scenarios in which global structural MDO can be used. The first one

is in the transition from conceptual to preliminary design. As soon as the number of

configurations is su�ciently reduced, MDO can be applied to improve the performance

of each variant. At this stage, proper FE-models are not available, so a CAD model is

automatically generated from a set of parameters and meshed. The aim during this phase

is not only to optimise each design, but also to assess its performance. In particular,

two aspects are considered, with the ultimate goal of comparing di�erent designs and

selecting the most promising one: whether the configuration can meet the requirements

and how sensitive the performance is to a change in design. It is therefore possible to

maximise the performance and to identify so-called “show-stoppers” as early as possible.

MDO can also be used in the context of preliminary design. At this stage proper FE-

models become available from other departments and the concept is defined, but there

is still enough freedom to modify the main structural elements. An example would be

the material or shape of the stringers. Furthermore, the location of cut-outs has been

approximately defined, but the engineers still have the freedom, for example, to move a

manhole to the next rib-bay. Figure 1.2 illustrates the stages where MDO is used.

Figure 1.2: The design phases and the use of MDO.

1.2.3 MDO Relies on Coarse Models

MDO, as described above, is a tool used to globally optimise the design of an entire

aircraft or major components of its structure as a whole wing. In this context, the FE-

models used are necessarily simple and neglect many details of the structure. Using fine
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models would increase the computational cost of a procedure which is already demanding

[7], as it must consider multiple disciplines, loadcases and constraints, therefore coarse

FE-model are used instead [8]. This goes well together with the fact that most details

have not been defined yet and that the primary goal at this stage is to determine the

loadpaths and the internal stresses of the structure.

1.3 Non-Regular Areas in Aircraft Design

1.3.1 Presence of Non-Regular Areas

Some components, which because of their geometry would undergo a complex defor-

mation, are excluded from the optimisation. The level of detail required to capture

the irregularities of their displacement field would result in additional modelling e�ort

and a prohibitive computational cost of the MDO procedure. These components will

be called “non-regular areas” within this work. Examples of these are cut-outs, bulk-

heads, stringer run-outs and points of local load introduction, such as engine pylons

(Figure 1.3).

(a) Cut-out (b) Bulkhead (c) Stringer run-out

Figure 1.3: Examples of non-regular areas.

1.3.2 Location of Non-Regular Areas

It is already known that some areas will host some particular features, such as a manhole

or a stringer run-out. Nevertheless, the exact position of non-regular areas in the model

depends on the design phase in which MDO is being applied. When using MDO in

the late stages of conceptual design, the FE-model will be created starting from a CAD

model.

As the position of main structural components is still being defined, the location of non-

regular areas is determined using heuristic techniques, relying on engineering experience.

If instead MDO is being used in the context of preliminary design, an FE-model is

5



1.3. NON-REGULAR AREAS IN AIRCRAFT DESIGN

already available.

In this case, the position of non-regular areas is practically prescribed in the sense that

only minor adjustments are allowed.

1.3.3 FE-Modelling of Non-Regular Areas

Since local features of the structure have not been designed when MDO is used, in order

to account for their mechanical properties, non-regular areas are modelled by modifying

the sti�ness of one or more bidimensional elements. In particular, using approximation

formulae that modify the Young’s modulus of the element, the in-plane and the bending

sti�nesses are estimated. It is sometimes possible to capture the sti�ness of the feature

with su�cient precision. In other cases, this procedure results in an under- or over-

estimation of the sti�ness. In a similar way, the weight estimation is also compromised

by the lack of a detailed model.

1.3.4 Handling of Non-Regular Areas in the Optimisation

Non-regular areas are not updated during the optimisation. If they were, one would

need to update the computed equivalent sti�ness properties. Instead, they are kept

fixed while the MDO procedures operate on the elements around them, for which design

variables are defined.

Furthermore, these areas are not constrained since the displacement field computed by

the analyses, despite being capable of capturing the overall deformation of the structure,

is not su�ciently accurate to describe the internal deformation of the non-regular areas.

It is also not possible to capture the e�ect of the interaction between “non-regular areas”

and the global model on the load carrying behaviour of the entire structure. A classical

example in which this interaction is particularly strong is the case of a sequence of lower

wing skin panels, placed spanwise one next to the other, each with a manhole or an

inspection hole. In this case each hole creates an opportunity for the load paths to

split, which leads to non-linear changes in the structural behaviour, which cannot be

captured, if non-regular areas are ignored during the global optimisation. Ultimately, it

is not possible to prevent a constraint violation within a non-regular area. One can only

constrain the surrounding elements, which inject and extract the load from the part and

design their thicknesses to divert part of the load away.
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1.4 Consequences of neglecting non-regular areas

The approach, presented in the previous section, is limited by the lack of detailed models

of non-regular areas, such as cut-outs, bulkheads, stringer run-outs and engine pylons.

This causes the following issues: (i) an inaccurate weight estimation; (ii) an inaccurate

sti�ness estimation; (iii) the inability to apply optimisation constraints to the non-

regular areas; and iv) the inability to optimise these complex parts. These consequences

may result in turn in four major problems: (a) wrong assessment of the configuration

performance, (b) inaccurate representation of the global optimisation problem, (c) un-

detected local constraint violations, (d) sub-optimal overall design.

1.4.1 Wrong Assessment of the Configuration Performance

The inaccurate weight estimation of the local part is itself a problem. It influences the

weight of the final design and in turn many measures of performance. Therefore, it a�ects

the comparison with other configurations during conceptual design, as summarised in

Figure 1.4. Since the non-regular areas often represent heavily reinforced parts, the

e�ect of these errors is not negligible.

inaccurate mass
≥ m

inaccurate
objective

assessment
≥ f

wrong comparison
of competing

concepts

Figure 1.4: Wrong assessment of the configuration performance.

1.4.2 Inaccurate Representation of the Global Optimisation Prob-

lem

The second problem is that the result of the MDO procedure is, possibly, a sub-optimal

or invalid design because the optimisation problem is not accurately defined. In other

words, the design is feasible and optimal given the available information (Figure 1.5a),

but as soon as the information on the non-regular areas is more accurately gauged, the

design is either infeasible (Figure 1.5b) or too conservative (Figure 1.5c).
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Òf

(a) Optimisation problem

solved by the MDO proce-

dure

Òf

(b) Suboptimal solution:

when accurately repre-

sented, the objective is

di�erent

Òf

(c) Invalid solution: when

accurately represented, the

constraints are di�erent

Figure 1.5: Consequences of an inaccurate representation of the optimisation problem.

Inaccurate sti�ness estimation of the non-regular areas alter the analyses solutions and

cause constraint violation to be over- or under-estimated. If, in particular, the sti�ness

was overestimated, a greater portion of the load will be funnelled through the non-

regular area. As a consequence, the structures acting in series along the main loading

direction, injecting and extracting load from the part, will be subject to more stress.

Instead, structures acting in parallel will be subject to less stress. Therefore, the MDO

procedure will design structures in series to be thicker than they need to be and struc-

tures in parallel to be thinner. An analogous e�ect with opposite results would be the

consequence of an underestimation of the sti�ness. In this case, the phenomenon is

relevant, even if the non-regular areas are not particularly heavy.

The same might happen due to wrong weight estimations since these also alter the

analyses solutions. Inaccurate weight estimations result in wrong inertia loads. Wrong

inertia loads a�ect the analyses solutions. As a result, if the constraint violations are

over-estimated, some parts of the structure are sized thicker than they need to be; thus,

the final design will be heavier (sub-optimal design). If instead the constraint violation

is under-estimated, the structure will be thinner than it needs to be and possibly unable

to sustain the real loads (invalid design). This e�ect is non-negligible if the non-regular

areas are relatively heavy compared to the whole structure.

The e�ect of both, the inaccurate estimation of sti�ness and the inaccurate estimation

of mass, have been summarised in Figure 1.6.
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inaccurate

sti�ness and mass

≥ K, ≥ m

inaccurate representation

of the global

optimisation problem

≥ Òf , ≥ Òg
G

sub-optimal or

invalid design

x
G ”= optimal,

g
G

> 0

Figure 1.6: Inaccurate representation of the global optimisation problem.

1.4.3 Undetected Local Constraint Violations

The third problem is that the design could violate constraints within the non-regular

areas, as summarised in Figure 1.7. The MDO will be able to converge to a feasible

solution, which satisfies all the constraints considered. Nevertheless, additional require-

ments for the displacement field over non-regular areas exist, although they could not be

applied due to the lack of a su�ciently detailed model. If the unconstrained local areas

become infeasible, the design cannot be accepted. The risk of this happening can be

reduced by controlling the geometry and the constraints of the structures surrounding

the non-regular area, but it is impossible to prevent it. This problem is demonstrated

with an example presented in Section 8.1.

absence of local

constraints information

no g
L

violation of local constraints

g
L

> 0

Figure 1.7: Undetected local constraint violations.

1.4.4 Sub-Optimal Overall Design

Lastly, optimising the structure without changing the design of the non-regular areas

and subsequently optimising these in a subsequent step may prevent the optimiser from

reaching a better optimum, as part of the design variables are alternatively fixed. This

has been summarised in Figure 1.8.

absence of local DVs

no x
L

sub-optimal design

(xG
, x

L) ”= optimal

Figure 1.8: Sub-optimal overall design.
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1.5 Summary

From the early phases of aircraft design, practitioners are confronted with the design

paradox. In the beginning it is hard to take advantage of the available design freedom,

because the ultimate e�ect of design choices cannot be fully understood. As the devel-

opment goes on and it becomes easier to make informed decisions, part of the design

choices have been made and the design freedom has been reduced. MDO has proved to

be an e�ective tool in addressing the paradox, but the associated computational com-

plexity has prevented its use with accurate FE-models. The use of inaccurate models for

the treatment of parts with a complex geometry, commonly referred to as “non-regular

areas”, can cause delays in the product development cycle, despite some of the strategies

put forth by the industry. The need to address this problem is the motivation of this

research project.
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Chapter 2

Aims and research objectives

This chapter clarifies the motivation of this work and identifies the research objectives.

Additionally, section 2.3 presents the structure of the thesis.

2.1 Motivation

The optimization of aircraft structures is a challenging task: many disciplines have to be

taken into account, several constraints must be respected and multiple loadcases must

be considered. The problem is complicated even further by the great design freedom

provided by the use of composites.

As explained in Chapter 1, MDO is a tool successfully employed by aircraft designers to

tackle this problem, but there is a tension between the already high computational cost

and the need for additional accuracy to ensure the feasibility of “non-regular areas” and

precisely evaluate the performance of a design.

To satisfactorily resolve this conflict, local information must be made available during the

optimisation, while containing the computational cost. Despite the fact that the design

of “non-regular areas” is strongly coupled with the remaining part of the structure, some

room for compromise exists, as some features are inherently local.

For example, design variables can be divided in local or global, based on whether they

a�ect the design of “non-regular areas” or the remaining structure. Similarly strength

and buckling constraints can also be divided in local and global. Although several types

of disciplines must be considered during the optimisation, static analysis is deemed

su�cient for the evaluation of local constraints. Lastly, not all loadcases and disciplines

considered at global level require the evaluation of local constraints.
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2.2 Research objective

The aim of this research project is to develop a multidisciplinary optimisation proce-

dure for the design of composite aircraft structures, capable of evaluating strength and

buckling constraints over “non-regular areas” at an acceptable computational cost.

The take advantage of the locality of part of the problem, the existing multidisciplinary

optimisation procedure is combined with a global-local analysis strategy. By analysing

“non-regular areas” separately, the e�cient solution of the global problem is coupled

with the ability to capture the mechanical behaviour of local parts only when needed.

To accomplish this goal, the following research objectives have been identified:

• Review the literature on the available MDO architectures, their applications to

the optimisation of aircraft structures, in conjunction with models with di�erent

levels of accuracy, and identify the limitations of current procedures.

• Review the literature on coupling techniques and global-local analysis strategies

and select a suitable strategy to be applied within a MDO procedure.

• Develop a novel global-local MDO methodology to extend the existing MDO pro-

cedure.

• Implement the procedure within Lagrange, an Multidisciplinary Design Optimisa-

tion software used and developed by Airbus Defense and Space [9], to extend and

compare against the currently employed optimisation methodology.

• Investigate and identify the main drivers of the computational cost of the proce-

dure.

• Verify the correct implementation of the procedure through a series of tests and

evaluate the modelling accuracy.

• Demonstrate the limitations of the design strategy, currently employed in dealing

with non-regular areas.

• Demonstrate the capacity of the global-local MDO procedure to overcome this

limitations.

• Show the applicability of the procedure to industrial case studies.

2.3 Structure of the thesis

The work conducted within this research project is described in 9 chapters. A brief

description of each chapter is presented next.

Chapter 1 describes the general context of Multidisciplinary Design Optimisation of
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aircraft, the inaccurate representation of local “non-regular areas”and the consequent

problems. Despite the mitigation strategies employed by practitioners, “non-regular

areas” can result in an inaccurate comparison of multiple conceptual designs or lead to

an infeasible or suboptimal design. Hence in this chapter the need for an alternative

way to treat “non-regular areas” is motivated.

Chapter 2 outlines the motivation and the research objectives for this work.

Chapter 3 presents the literature review on MDO architectures and their application

as well as the literature review on global-local analysis techniques. Despite the variety

of global-local analysis methods, these are generally ignored when MDO is applied and

a decomposition of the optimisation problem and a distributed architecture are used

instead. For the specific problem of “non-regular areas” a monolithic architecture used

with a global-local analysis technique is proposed to alleviate this problem.

Chapter 4 presents the novel methodology that has been developed for global-local

MDO. The structure is partitioned in a global and one or more local models. The

analyses are solved by condensing the local models, solving the global one by using the

condensed local information and solving the local models by using the global solution

as a boundary condition. An ad-hoc sensitivity analysis formulation is derived, based

on the global-local coupling defined in the analysis step. Lastly, the problem is solved,

adopting a monolithic architecture and executing the global-local procedure within each

optimisation iteration.

Chapter 5 describes in detail the implementation of the proposed global-local MDO

within Lagrange, a software for Multidisciplinary Design Optimisation, used and devel-

oped by Airbus Defense and Space. The procedure has been successfully implemented

working mostly through the Lagrange-Python interface. Similar results could be ob-

tained combining another software for optimisation or MDO and a FE-solver.

Chapter 6 analyses the computational cost of the procedure. The procedure is more

computationally e�cient than a mesh refinement of the reference model and the overall

impact on computational cost is limited, provided that the total number of constraints

and design variables is not greatly increased.

Chapter 7 verifies its correct implementation. The correct computation of analyses so-

lutions and sensitivities is verified by comparing the solution of global-local problems

and the solution computed by Lagrange of their single-model equivalents. The method-

ology delivers results in good agreement with those obtained by Lagrange, with minor

deviations mostly attributable to round-o� errors.
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Chapter 8 presents a series of case studies, which illustrate the shortcomings of the

current strategies in dealing with “non-regular areas”, proves the successful application

of the new methodology introduced and proves its applicability to industry size problems.

At last, Chapter 9 contains the conclusions of this research work, including the limita-

tions of the proposed methodology and future research directions.

2.4 Publications

The following articles and papers where produced, while working on this thesis:

• Multidisciplinary Optimisation of Aircraft Structures with Critical Non-Regular

Areas: Current Practice and Challenges, Aerospace, 2021, Massimo Sferza, Jelena

Ninic, Dimitrios Chronopoulos, Florian Glock, Fernass Daoud;

• Global-local multidisciplinary optimisation of Aircraft UKACM Conference, 2021,

Massimo Sferza, Jelena Ninic, Dimitrios Chronopoulos, Florian Glock, Fernass

Daoud, awarded Best Post-graduate Research Student Award UKACM 2021

• Recent progress, challenges and outlook for multidisciplinary structural optimiza-

tion of aircraft and aerial vehicles Progress in Aerospace Science, 2022, Giuseppe

Corrado, Georgios Ntourmas, Massimo Sferza, Neoklis Traiforos, Albertino Arteiro,

Louise Brown, Dimitrios Chronopoulos, Fernass Daoud, Florian Glock, Jelena

Ninic, Ender Ozcan, Jose Reinoso, Gerd Schuhmacher, Thomas Turner;

• Global-local multidisciplinary optimisation with ad-hoc sensitivity analysis for the

preliminary design of aircraft, Engineering with Computers, 2022, Massimo Sferza,

Jelena Ninic, Florian Glock, Christoph Hofer, Fernass Daoud, Dimitrios Chronopou-

los, Kristo�er Van Der Zee.

2.5 Summary

The development of a novel global-local methodology is identified as the strategy to

address the problem of “non-regular areas” in the context of MDO. The ultimate goal is

to improve the reliability of MDO as a design tool, by bringing knowledge of “non-regular

areas” to the early phases of design, where changes are cheap and design decisions are

crucial.

The following part of the thesis comprises a thorough literature review, the theoretical

formulation of the methodology, its implementation, considerations on the associated

computational cost, verification and proof of its applicability to industrial size problems.
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Chapter 3

Literature Review

In chapter 1 Multidisciplinary Design Optimisation (MDO) was identified as suitable

strategy to address the design paradox. Since the design of an aircraft requires taking

into account several disciplines and the interaction of several subsystems, the idea to

use MDO to address the paradox can already be found found in [10] by Sobieszczanski-

Sobieski et al. This chapter contains a general introduction to MDO and a review the

literature on the available MDO architectures. Their applications to the optimisation of

aircraft structures and the possibility to use them for the analysis and design of “non-

regular areas” is reviewed. Furthermore, coupling techniques and global-local analysis

strategies commonly employed outside the context of MDO have been reviewed.

3.1 General Aspects of Multidisciplinary Design Op-

timisation

3.1.1 MDO Optimisation Problem

A MDO problem is a classical optimisation problem of the form:

minimise
x

f(x, y)

subject to g(x, y) Æ 0 (3.1)

h(x, y) = 0

where f is the objective function, g and h are the inequality and equality constraints,

respectively, x are the design variables and y is the solution of the Multidisciplinary
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Analysis (MDA):

explicit form residual form

y = F(x) R((x), y) = 0
(3.2)

The solution of the optimisation problem is bound to the solution of the MDA, since f ,

g, h and their derivatives depend on y, as represented in Figure 3.1.

Figure 3.1: Structure of an MDO problem.

3.1.2 Internal Structure of the Multidisciplinary Analysis

The MDA naturally breaks down in multiple Contributing Analyses (CAs), each pro-

viding part of the solution y = [y1, . . . , yi, . . . , yN ].

Let the solution variables of the i
th contributing analysis, yi, be called state variables.

These depend on the solution variables of other CAs, yj , as well as on the design

variables x. The i
th contributing analysis can be formulated as:

explicit form

yi = Fi(x, yj)

’j œ Ci

residual form

Ri((x, yj), yi) = 0

’j œ Ci

(3.3)

where Ci indicates the set of CAs coupled with the i
th CA, thus j œ Ci =∆ j ”= i.

The i
th CA can therefore be modelled as a system, as in Figure 3.2, receiving x, yj as

an input and generating yi as an output.

yiyj

state variablesstate variables

x

design variables

Ri = 0

Figure 3.2: A contributing analysis (i) modelled as a system, receiving input from
another CA (j).

The MDA is a complex but structured problem, which can be seen as the combination
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of smaller sub-problems, coupled as in Figure 3.3.

x

R2((x, y1, y3), y2) = 0

x

R3((x, y1, y2), y3) = 0

x

R1((x, y2, y3), y1) = 0

yj

y1 y2 y3

yj

Figure 3.3: An MDA with 3 interacting CAs.

3.1.3 Di�erence between State and Coupling Variables

As a matter of fact, each CA does not depend on the state variables of other CAs directly.

It depends on them through a smaller subset of variables, called coupling variables and

denoted with yj . The i
th CA can be modelled more precisely as in Figure 3.4, and its

formulation can be written as:

explicit form

yi = Fi(x, yj)

’j œ Ci

residual form

Ri((x, yj), yi) = 0

’j œ Ci

(3.4)

x

design variables

Ri = 0

coupling
variables

yiyiyj

state
variables

input
variables

coupling
variables

Figure 3.4: A contributing analysis (i) modelled in detail, receiving input from another
CA (j).

3.1.4 Contributing Analyses Result from Disciplines or Sub-

structures

Since the coupling variables are fewer than the state variables, the CAs are coupled

together but also partially independent. It is because of this that representing the MDA

as a structured problem makes sense. In other words, the decomposition of the MDA
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in multiple CAs is not arbitrary but such that, for each CA, the number of coupling

variables is much smaller than the number of state variables.

This often happens along interdisciplinary lines and physical boundaries, so it is com-

mon to consider di�erent disciplines and substructures as part of separate contributing

analyses.

3.1.5 MDO Architecture

The key to e�ciently solve an MDO problem is to exploit the internal structure of the

problem and decompose it appropriately. Depending on the internal couplings and their

strength, di�erent ways of nesting optimisation and analysis solutions might prove more

e�ective in reducing computational cost. In the following, the structure of the algorithm

applied to solve the MDO problem is called MDO architecture, as in [11].

3.2 Classification of MDO Architectures

Following the example of Cramer et al. in [12, 13], MDO architectures can be classified

as Multidisciplinary Feasible (MDF), Individual Discipline Feasible (IDF) and All-At-

Once (AAO). All of these are based on the same optimisation procedure, depicted in

Figure 3.1, but the di�erence lies in a di�erent treatment of the analysis block, stemming

from radically di�erent definitions of the underlying optimisation problems.

Another aspect in the classification of MDO architectures is the distinction between

monolithic and distributed, which is introduced at the end of this subsection and further

described in Section 3.3.

3.2.1 Multidisciplinary Feasible

MDF architectures represent the traditional approach and are the most intuitive to

understand. As represented in Figure 3.5, an MDF architecture is essentially an opti-

misation procedure, which solves an MDA at each iteration.
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x

R2 = 0

x

R3 = 0

x

R1 = 0

x

y1

y2

y2

y3

y1 y2 y3

y

Figure 3.5: Flowchart of multidisciplinary feasible architecture: detail of the analysis
block from Figure 3.1.

It solves the MDO problem exactly as formulated in Eq. 3.1.

3.2.2 Individual Discipline Feasible

Another possibility is to break the coupling between disciplines, as represented in Fig-

ure 3.6. Instead of directly providing each analysis i with the required coupling variable

yj , computed as the response of the analysis j, a value ŷj is provided by the optimiser

instead. In this way, each analysis can be solved independently, and the optimiser be-

comes responsible for enforcing the feasibility among disciplines through the consistency

constraint c = yj ≠ ŷj = 0.

x

Ri = 0

coupling
variables

yiyi

state
variables

input
variables

x

Rj = 0

response
variables

target
variables

consistency
constraints

yi ŷi

Figure 3.6: A coupling variable is substituted by a response–target and consistency
constraint.
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This strategy is known as IDF. As in MDF, each CA satisfies the condition for individual

discipline feasibility:

Ri((x0, xi, ŷj), yi) = 0 (3.5)

but, in contrast to MDF, it does not satisfy the condition for interdisciplinary feasibility:

yj ≠ ŷj = 0 (3.6)

In other words, in each optimisation iteration, each discipline is solved with the given

input, but it is not guaranteed that the input of each discipline matches the output of

the coupled CAs, as represented in Figure 3.7. The optimisation problem can be written

as:

minimise
x,ŷ

f(x, y(x, ŷ))

subject to g(x, y(x, ŷ)) Æ 0

h(x, y(x, ŷ)) = 0

c = y(x, ŷ) ≠ ŷ = 0

x

R2 = 0

x

R3 = 0

x

R1 = 0

x ŷ1ŷ2, ŷ3 ŷ2

y1 y2 y3

y

Figure 3.7: Flowchart of the individual discipline feasibility architecture: detail of the
analysis block from Figure 3.1.

3.2.3 All-at-Once

The third option is AAO. In this case, the optimiser directly operates on the state

variables y and the copies of the coupling variables ŷi. It is not only responsible for

coupling the CAs but also for satisfying each residual equation, as represented in Fig-

ure 3.8. Therefore, during the optimisation, the design may be infeasible with respect

to the single discipline, as well as with respect to the interdisciplinary coupling. Only at

convergence is the design guaranteed to respect both: individual and interdisciplinary
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feasibility.

minimise
x,y,ŷ

f(x, y)

subject to g(x, y) Æ 0

h(x, y) = 0

R((x), y) = 0

c = y(x, ŷ) ≠ ŷ = 0

The first example of AAO was Simultaneous Analysis and Design (SAND), proposed

by Haftka in [14]. Instead of iteratively solving the analysis within each optimisation

iteration, SAND treats the response variables as design variables and adds an equality

constraint to ensure individual discipline feasibility.

x

R2

x

R3

x

R1

x

ŷ1ŷ2, ŷ3 ŷ2

y1 y2 y3

Figure 3.8: Flowchart of the all-at-once architecture: details of the analysis block from
Figure 3.1.

As an example, let the underlying analysis be a linear static analysis Ku = p, where K

is the sti�ness matrix, p is the load vector and u is the displacement field. Instead of

solving the problem:
minimise

x
f(x)

subject to g(x, u) Æ 0
(3.7)

by repeatedly solving Ku = p for each x, SAND would reformulate the optimisation

problem as:
minimise

x,u
f(x)

subject to g(x, u) Æ 0

R(x, u) = Ku ≠ p = 0

(3.8)

The same idea can be applied if the underlying analysis is an MDA.
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3.2.4 Monolithic and Distributed Architectures

Thus far, the entire procedure was assumed to be based on one unique optimisation

loop. When this is the case, the architecture is called monolithic. The alternative is a

procedure that includes multiple optimisation procedures. When this is the case, the

architecture is called distributed. Figure 3.9 illustrates the di�erence between the two.

In order to use a distributed architecture, the MDO problem must be decomposed

in multiple optimisation problems. Since there are several ways of decomposing the

problem, the topic of distributed architectures is rather complex. The next subsection

is therefore entirely dedicated to distributed architectures.

Figure 3.9: Comparison between a monolithic (left) and a distributed architecture
(right).

3.3 Distributed Architectures

When the optimisation problem is decomposed into multiple sub-problems, a new chal-

lenge emerges: the coordination of the sub-problems. Many architectures are based on

a two-level decomposition of the MDO problem: an upper system-level and a lower one

with multiple subsystems. The coordination can then be achieved by nesting the lower

level optimisations within the upper level optimisation.

3.3.1 Multilevel Optimisation by Linear Decomposition and CSSO

In [15], Sobieski et al. described one of the earliest examples of this approach. A multi-

level optimisation procedure based on a hierarchical linear decomposition was presented

in [10, 16]. In 1988, Sobieszczanski-Sobieski introduced Concurrent Subspace Opti-

22



3.3. DISTRIBUTED ARCHITECTURES

misation (CSSO) [17, 18], a distributed architecture decomposing the problem along

interdisciplinary lines, allowing to account for non-hierarchical relations between CAs.

In CSSO, the design variables are partitioned and assigned to the CAs that are most

influenced by them; for each CA, all constraints are combined into a single cumulative

constraint. Each CA is individually optimised using a first order approximation of the

coupled disciplines. This allows the work in each discipline to be done in parallel. Coor-

dination between di�erent CAs is controlled by parameters assigned by a coordination

optimisation problem.

3.3.2 Global Sensitivity Equations

All these approaches rely on the formulation of the Global Sensitivity Equations (GSEs),

for the computation of dy

dx
. Alternative formulations and approaches for the solution of

GSEs were presented in [19, 20]. The solution methods are not easily implemented but

present computational advantages when compared with finite di�erencing, as discussed,

for example, in [21].

3.3.3 BLISS

A more recent architecture is Bilevel Integrated System Synthesis (BLISS) [22]. Similar

to CSSO, BLISS is a distributed architecture, which decomposes the problem in two

levels and solves each discipline in parallel at the subsystem level. The coordination is

ensured by dividing the design variables in shared variables and local variables: shared

variables are modified in the system coordination problem, while instead local variables

are exclusively modified by the subsystem optimisation problems.

3.3.4 Collaborative Optimisation and Its Extension

In 1995, Braun and Kroo introduced a decomposition known as Collaborative Optimi-

sation (CO) [23, 24]. This is another example of a distributed approach, with a system

level optimisation problem and subsystem level optimisation problems defined by break-

ing the interdisciplinary couplings. In this sense, the approach is similar to CSSO, but

in the case of CO, the sub-spaces receive copies of the shared design variables, which

are fixed by the system level optimiser. More recently, the approach was improved by

providing each subsystem with information on the constraints of other subsystems. The

new approach, named Extended Collaborative Optimisation (ECO) and presented in

[25, 26], follows the idea of keeping the system level problem small, which is common to
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the original approach (CO).

3.3.5 Quasi-Separable Decomposition

Most distributed approaches are based on decompositions, which lack a mathematical

justification, and may therefore not converge to the optimum. Haftka and Watson [27]

identified a class of optimisation problems, Quasi-Separable Problems (QSP), for which

it is possible to define a decomposition, supported by a rigorous mathematical theory and

with proven convergence properties. The quasi-separable subsystem problem is defined

as:

minimise
x0,xi

f0(x0) +
Nÿ

i=1

fi(x0, xi)

subject to g
(0)(x0) Æ 0

g
(i)(x0, xi) Æ 0 i = 1, . . . , N

(3.9)

The associated decomposition is:

minimise
x0,bi

f0(x0) +
Nÿ

i=1

bi

subject to g
(0)(x0) Æ 0

µi(x0, bi) Æ 0 i = 1, . . . , N

(3.10)

minimise
xi

µi

subject to g
(i)(x0, xi) ≠ µi Æ 0

fi(x0, xi) ≠ bi ≠ µi Æ 0 i = 1, . . . , N

(3.11)

The idea is to provide a budget bi for fi, which is a maximum allowable value for fi. In

this way, the upper level problem does not directly require the computation of f i and is

therefore independent from xi. The upper level is solved for the optimal x0 and bi, where

the constraints g
(i) are substituted by a constraint on the margin ≠µi. The lower level

problem operates on the local design variables xi to maximise the margin ≠µi, ensuring

that the value of fi(x0, xi) is contained within the allowed bi. The decomposition does

not introduce spurious solutions, local solutions of the decomposed problem correspond

to local solutions of original problem under convexity assumptions, and finding the global

optimum of the decomposed problem is equivalent to finding the global optimum of the

original quasi-separable problem.

An extension of the architecture to include mixed-integer problems at the lower level
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and the corresponding conditions can be found in [28].

3.3.6 Analytical Target Cascading

A more general architecture known as Analytical Target Cascading (ATC) was developed

by Kim et al. and presented in [29, 30]. ATC is a distributed multilevel hierarchical

decomposition for MDO. The decomposition hierarchy follows a tree structure, in which

the master node at the top level is unique, and each node can have children. Each node

is coupled with its unique parent and its children but not with siblings. The coupling

variables are split into targets and responses. Each node represents an optimisation

problem, which matches the target assigned by the parent problem with its own response,

i.e., the result of the analysis associated with the node. In this sense, the targets are

cascaded from parent to child, hence the name of the method. The responses of the

children are treated as design variables by the parent node. To ensure the coupling of

the targets with the children true responses, consistency constraints are formulated in the

optimisation problem, for which a budget is included in the objective. In [31], Michelena

et al. showed that under convexity conditions, ATC converges to the optimum of the

original problem. The architecture has been successfully applied to industrial problems

[32, 33].

3.3.7 Augmented Lagrangian Decomposition

In [34], Tosserams et al. used augmented Lagrangian relaxation to improve the e�ciency

of ATC. In [35], they showed how the method can be applied to the solution of quasi-

separable problems. Then in [36], they presented a decomposition for a more general

class of problems, with its corresponding solution strategy being a generalisation of both

ATC and the architecture proposed by Haftka and Watson [27].

3.3.8 Use of Response Surface Methods with Distributed Archi-

tectures

Many of the methods presented rely on isolated lower-level procedures, which are called

repeatedly within each iteration of an upper-level procedure. To take a further advantage

from the decomposition and completely decouple the upper- and lower-level procedures,

it is possible to interpose a response surface, as illustrated in Figure 3.10. The lower

level procedure is used to build and update the response surface, which is interrogated

by the upper level procedure. This idea has been implemented in combination with
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CSSO [37], BLISS [38], CO [39] and Quasi-Separable Decomposition (QSD) [40].

(a) Two-level ar-

chitecture, with

a nested optimi-

sation loop.

(b) A response surface (RSM) can be substituted

for the nested procedure. The RSM can be cre-

ated and updated in parallel, e�ectively decou-

pling the two optimisation procedures.

Figure 3.10: A response surface can be used to decouple a two-level architecture.

3.3.9 Choice of Architecture

In [41], Vanaret et al. have shown that the choice of the architecture is always influenced

by the problem under consideration. The choice of the architecture critically a�ects the

performance of the optimisation, but it is impossible to tell a priori which architecture

will perform better.

Since it is impractical to identify a promising architecture by trial and error, various

software frameworks have been developed to combine optimisers and discipline spe-

cific software for the solution of MDO problems. Some of these can be used to easily

benchmark and compare di�erent architectures. An early example is pyMDO [42, 43],

developed in Python by Tedford and Martins and used to compare many well-known ar-

chitectures [44]. They found that monolithic architectures were better than distributed.

Other examples are openMDAO [45, 46], developed by NASA, and GEMS [47, 48],

developed at IRT Saint Exupery.

In [41], Vanaret et al. presented a methodology to compare architectures by replacing

each CA with a scalable analytic replacement function. Furthermore, they have shown

that the performance of an MDO architecture depends on the number of coupling and

design variables.
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3.4 Applications of MDO architectures to the prob-

lem of airframe sizing

Distributed architectures are commonly adopted for the design of aircraft and aircraft

wings in particular. The usual approach is to decompose the problem into two levels:

the global wing optimisation and the local sizing of selected panels.

3.4.1 Alternate Execution of Global and Local Optimisation

In [49], Ciampa et al. described an approach for the preliminary design of aircraft wings.

They applied a global–local decomposition to minimise the mass of the structure. At a

global level, they modelled the entire wing with spars and ribs and adopted a smeared

sti�ness approach for the stringers. At the local level, they modelled isolated panels in

detail for the evaluation of stress and buckling constraints. To couple the two levels,

they applied global stress and displacement fields to the local panel, while the optimised

local design was used to update the global properties. In order to integrate the two

optimisation strategies, they alternately performed global and local optimisation.

3.4.2 Nested Execution of Global and Local Optimisation

Instead of alternating between global and local optimisation, most authors propose to

treat the local optimisation as a nested procedure.

In [50], Noevere and Wilhite describe a global–local approach for the weight minimisation

of a wingbox. The approach is limited to linear statics and considers strength, buckling

and maximum displacement constraints. At the global level, the weight of the upper and

lower skin is minimised by modifying the parameters of a sti�ness distribution function.

In each iteration of the global optimisation, a nested local optimisation procedure is

selected for each panel, which receives the boundary loads and the assigned sti�ness as

an input and provides weight and feasibility as output. At the local level, the weight of

isolated panels was minimised under strength and buckling constraints. For each panel

modelled with stringers, an equivalent panel with smeared sti�ness was computed by

applying Classical Laminate Theory (CLT). Following this approach, they were able

to take as design variables the entries of the ABD matrix. Local constraints were

evaluated through response surfaces, which provide the constraint compliance/violation

as a function of the sti�ness entries. Thanks to the use of sti�ness variables and a

response surface, the local optimisation resulted in a linear programming problem, solved
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using the simplex algorithm.

Other examples of a global–local approach, in which the local optimisation is imple-

mented as a nested procedure, can be found in the work of Kapania and his group

[51, 52, 53, 54, 55]. Their work is related to the design and optimisation of metallic

wings with curvilinear spars and ribs. At the global level, the wing internal layout of

spars and ribs is optimised. At the local level, single panels are sized, as described in

[56]. The global procedure consists of two steps. In the first one, Particle Swarm Op-

timisation (PSO) is used to optimise the number of spars and ribs. In the second one,

gradient based optimisation is used to optimise the shape variables. The local panel op-

timisation, used to size the element thicknesses and optimise the shape of the sti�eners,

is called a nested procedure, which can be used for each design to be evaluated. The

approach considers multiple loadcases and multiple disciplines at the wing level, while

instead, only statics are used at the panel level to evaluate stress and buckling con-

straints when enforcing the global displacements as boundary conditions. The approach

was extended from weight minimisation to multi-objective optimisation [57], studying

the compromise between weight and flutter speed.

In [58], Zhao and Kapania proposed a bi-level nested approach not based on a wing-

panel decomposition. The top level operates on the configuration of SpaRibs to satisfy

flutter constraints, using PSO, as described in [54]. The lower level minimises the wing

root bending moment by operating on the control surfaces rotations.

Stanford et al. in [59] and Stanford in [60] propose a bi-level nested strategy for the

optimisation of a wingbox. The upper level defines the topology and layout of the

wingbox, using a surrogate based optimisation strategy. The article compares a case

with straight sti�eners and ribs against one with curvilinear reinforcements. In the first

case, the upper optimisation modifies number, rotation and spacing of the sti�eners and

number and spacing of the ribs. In the second case, the optimiser additionally operates

on some shape parameters. The lower level sizes spars, ribs, skins and sti�eners using a

gradient based optimisation.

3.4.3 Parallel Execution through Response Surfaces

Instead of nesting the local optimisation within the global one, some authors propose

the use of a response surface model with the results of the local panel optimisation,

e�ectively decoupling the two optimisations, which can then be run in parallel.

An example of this strategy is presented in [61] by Liu et al. The authors considered
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the entire wing in the upper level and isolated panels in the lower one. At wing level,

they minimised the weight under strength and buckling constraints by modifying the

thicknesses of the various plies. At panel-level, after rounding the number of plies to

an integer value, they maximised the buckling resistance for the given in-plane loads by

optimising the stacking-sequence with GA.

In [62], Elham et al. propose a bilevel optimisation strategy, in which the optimisation

problem is decomposed into top-level and multiple sub-level optimisations. The top-

level minimises a combination of weight and drag by modifying the planform geometry

of the aircraft. The two levels are coupled via consistency constraints in the top-level.

Therefore, the top-level defines targets for the sub-level optimisations by operating on

the values of drag coe�cients, area of equivalent panel, lift curve slopes and airfoil

pitching moments. The sub-level optimisations modify the airfoil shapes to minimise

the distance to the top-level target values. This decomposition strategy is applied in

combination with response surfaces.

In [63, 64], Ragon et al. described another weight minimisation procedure based on a

wing-panel decomposition. At the global level, the wing was sized on a coarse model. At

the local level, a detailed model of the panel was used for a precise sizing. The panel was

subject to global in-plane loads and was designed to match the sti�ness requirements

resulting from the global optimisation. As in [61], the authors suggested the use of a

response surface to avoid nesting the local optimisation in the global one.

3.4.4 Comparison of the Three Approaches

It may not be possible to apply the method of alternating between a global and a local

optimisation, as this requires decomposing the original problem into two independent

optimisation problems. This strategy e�ectively reduces the size of the optimisation

problem and avoids the computational cost associated with a nested optimisation pro-

cedure, but may not converge to the optimal solution or may show a reduced speed of

convergence, as it alternatively fixes part of the design variables. Furthermore, there

is not a clear criterion to decide when to switch over to the other optimisation. Con-

versely, the strategy based on a nested local optimisation is applicable to a larger class

of problems and may lead to a better solution but requires performing the local opti-

misation until convergence in each iteration of the global optimisation. As it has been

shown previously (Figure 3.10), a response surface can be used in place of a nested local

optimisation. This allows for parallel execution as it e�ectively decouples global and
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local optimisation, but the accuracy of the procedure is limited to that of the response

surface. The comparison of two level approaches is summarised in Table 3.1.

Table 3.1: Comparison of two-level approaches.

Two-Level Approaches Comparison

Alternate global–local

References: Ciampa et al. [49]

Advantages:

reduced computational cost

Disadvantage:

not always applicable, possible opti-

mality or convergence issues

Nested Local

References: Noevere and Wilhite [50], Kapania et al. [51, 52, 53, 54, 55, 56, 57]

Advantages:

accurate and always applicable

Disadvantages:

computationally expensive
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Table 3.1: Cont.

Two-Level Approaches Comparison

Nested response surface

References: Liu et al. [61], Ragon et al. [63, 64]

Advantages:

reduced computational cost

Disadvantages:

limited to the accuracy of the response

surface

3.5 Global-local analysis techniques

3.5.1 Specified boundary displacements

A simple way of coupling a global analysis and a local analysis, based on a refined model,

is to enforce the solution at interface. In the context of displacement based FE-analyses,

this coupling is known as Specified Boundary Displacements (SBD). It can be enforced

via a master-slave elimination procedure [65] or using a Lagrange multipliers formulation

[66]. It is also possible to develop an iterative procedure to apply a global solution at the

boundary of a local model and use the local solution to correct the global results, as in

[67, 68, 69]. When combined with an interpolation of the solution fields, this approach

can be used with non-conforming meshes [70] and to couple the solution field obtained

with di�erent numerical methods [71].

3.5.2 Specified boundary sti�ness/force

A second coupling strategy, known as Specified Boundary Sti�ness/Force (SBSF) and

introduced in [72], specifies the solution further from the interface. As SBD, it applies

a term to the load vector, but additionally it defines a sti�ness contribution to account

for the part of the structure between the Degrees Of Freedom (DOFs), for which the
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displacement field is specified, and the interface.

Let a structure to analyse be partitioned in two subdomains, where z are the DOFs

related to one subdomain, o are the DOFs related to the other subdomain and i are the

DOFs at the interface between the subdomains.

The linear system of equations for the analysis of the whole model is:
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where K
1

ii is the sti�ness contribution of one subdomain and K
2

ii is the sti�ness contri-

bution of the other subdomain. The same holds for the force entry pi + p
1

i .

Let ō be an approximation of the displacement field over one subdomain. If it is applied

as Dirichlet BC, one obtains:
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The method is called SBSF, because it modifies the linear system of one subregion by

adding a sti�ness, K
2

ii, and a force, p
1

i ≠ Kaoō.

The accuracy of the method depends on the approximation of the displacement field, if

ō is exact the method is exact. One way to obtain ō could be to solve a model for the

entire structure, with a coarse representation for z. The solution o obtained could then

be used to compute z on a finer model.

3.5.3 Static condensation

Another approach for the coupling of FE-analyses is static condensation [73], also known

as substructuring. In this case, the sti�ness of one model is condensed, by computing the

Schur complement of its sti�ness matrix, and used for the solution of the other model.

Given a model with the discrete equation:
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where a are the DOFs at the interface with the other model, the condensed system is:

#
Kaa ≠ KaoK

≠1

oo Koa

$
a = pa ≠ KaoK

≠1

oo po (3.15)

Sti�ness and load vector from the condensed system can then be added to the discrete

equation of the other model to realise the coupling. In the case of a static analysis, this

results in an exact procedure (Appendix A).

3.5.4 Zooming

Another method derived from condensation to e�ciently update a coarse solution with

a more detailed analysis and known as zooming was described in [74, 75]. The method

is based on a single model with di�erent levels of local refinement, in which the region

of interest is known a priori. Instead of having a local analysis coupled with the global

analysis, zooming allows to e�ciently compute the solution on fine mesh based on an

available solution for a coarser mesh of the same part.

3.6 Summary

A large number of MDO exists, as well as several techniques for the coupled analysis

of multiple models. Nevertheless, when combining multiple FE-models with di�erent

levels of accuracy in the context of MDO, the general approach is to adopt a distributed

architecture, which splits the optimisation problem in multiple ones. This is a valid

approach to exploit additional local design freedom, without having to consider a larger

set of design variables in a single optimisation problem, as a monolithic architecture

would require. On the other hand, a distributed approach is less capable of capturing

the interaction between global and local design variables and relies on the assumption

that local changes do not have a macroscopic e�ect on the load carrying behaviour of

the overall structure. Given the strong influence of “non-regular areas” on the load

carrying behaviour of the structure and practitioners focus on ensuring local feasibility

rather than enabling detailed local design, a monolithic architecture combined with

global-local analysis techniques is in this case more appropriate.
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Chapter 4

Methodology

This chapter defines the problem to be considered, clarifies the modelling assumptions

and presents the theoretical formulation of the approach. In particular, a global-local

analysis strategy based on static condensation is presented and the associated sensitivity

analysis is derived. The procedure is considered for two possible types of disciplines,

static analysis and static aeroelasticity, and multiple local models.

4.1 Problem statement

To address the challenge of insu�cient level of detail in the Global Finite Element

Model (GFEM) for the early stage MDO, in this research, a global-local design approach

is adopted. In the following a global-local multidisciplinary optimisation procedure is

presented.

4.1.1 Optimisation problem

The underlying optimisation problem has the standard form:

Y
_]

_[

find argminx f(x)

such that g(x, u(x)) Ø 0
(4.1)

where f is a functional to be minimised, g are the constraints, x are the design variables

and u is the solution of a multidisciplinary global-local analysis. Given that for a typical

industrial problem the number of design variables and constraints considered is large,

a gradient-based optimisation approach will be adopted. Because of this, as it will be

further discussed in Chap. 6, the computation of sensitivities will be the main driver of
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4.1. PROBLEM STATEMENT

computational cost.

4.1.2 Disciplines considered

The term multidisciplinary refers to the fact that two di�erent disciplines will be con-

sidered:

1. linear static analysis, and

2. static aeroelasticity.

These are not coupled, they provide the solution to di�erent subcases, which a�ect

di�erent constraints g(x, u(x)).

Therefore, u denotes

u =

S

WWWWWWWU

u1

u2

...

un

T

XXXXXXXV

(4.2)

where each ui is the solution of a di�erent subcase, corresponding to either one of the

specified disciplines above.

4.1.3 Global-local modelling

The term global-local refers to the fact that the structure is modelled using multiple FE

models, as it will be described in subsection 4.2. Because of the subdivision in multiple

models the solution of the analyses and the computation of the sensitivities require a

special formulation detailed in in subsections 4.3 and 4.4.

4.1.4 Global-local MDO architecture

The approach is based on a monolithic multidisciplinary feasible architecture, therefore

it is implemented as one optimisation procedure, in which in each iteration:

• the multidisciplinary global-local analysis is solved for u,

• the responses f and g are evaluated and

• the sensitivities df

dx
, dg

dx
are computed.

If the convergence criteria are not met, the optimiser uses the gradients df

dx
, dg

dx
to

compute the design update and the procedure is repeated, as depicted in Fig. 3.1.
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4.2 Modelling assumptions

The approach relies on the assumption that the structure to be analysed requires two

di�erent levels of detail. For most of the structure a coarse modelling is deemed su�cient,

while instead some parts of the model require a detailed representation of the geometry

and a finer mesh. The structure is therefore represented with multiple models: one

global model, which represents most of the structure using a coarse mesh, and multiple

local models, used to represent detailed parts with a finer mesh.

It is also assumed that the structure is modelled following three main assumptions:

• non-overlapping domains,

• no local-local interfaces,

• conforming interfaces.

The global and local models do not overlap, so that no part of the structure is modelled

twice. The structure is partitioned into multiple models.

It is further assumed, that each local model is interfaced only with the global one, so

that no local to local interfaces exist, as represented in Fig 4.1.

�G

�L

�L

Figure 4.1: The proposed global-local MDO procedure relies on non-overlapping global-
local models without local-local interfaces.

At last, without loss of generality, the case with only one local model is considered.

With all these assumptions the global solution field u
G can be partitioned into:

• global internal solution z, and

• solution at the global interface i

and the local solution field u
L can be to partitioned into:

• local internal solution o, and

• solution at the local interface a.

Lastly, the interface between global and local models is conforming.

In practice, this means that for each FE-node at the interface of the global model, there

is a matching FE-node at the interface of the local model, as represented in Fig 4.2.
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4.2. MODELLING ASSUMPTIONS

Whenever this is not the case, as long as global and local model share an interface

with the same geometry, the proposed approach can still be applied, by connecting non-

matching meshes using multi-point constraint elemnts. In NASTRAN notation these

would be RBE2 and RBE3 elements, which define a rigid body connection and linear

homogeneous coupling respectively.

Figure 4.2: The proposed global-local MDO procedure relies on conforming interfaces.
Non-matching meshes can be adapted using connecting elements like RBE2 and RBE3.

Since global and local DOFs match, a solution field u on the interface, defined by the

global DOFs i, is represented on the local mesh by the same vector of local DOFs. The

coupling at the boundary is formulated by simply matching the DOFs:

i = a (4.3)

therefore the mapping between i and a is the identity matrix.

Figure 4.3: Modelling of a structure as a single FE-model (above) and using a global
and a local model (below), respectively highlighted in blue and yellow.

When considering a static aeroelasticity subcase, it is assumed that it is su�cient to only

interface the global degrees of freedom with the aeroelastic forces, while the local models
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4.3. GLOBAL-LOCAL ANALYSIS

deform as in a static analysis subcase. This is coherent with the reference procedure, in

which the local model does not exist and the aeroelastic loads are injected at the global

nodes.

It is further assumed that each design variable can be uniquely assigned to either the

global or the local model. Therefore a design variable cannot be part of the global and

the local model at the same time.

4.3 Global-local analysis

4.3.1 Discrete form of the equations for static analysis

In the case of a static analysis subcase, the discrete equation is:

5
K

6 5
u

6
=

5
p

6
(4.4)

where K is the sti�ness matrix, p is the load vector and u is the vector of nodal dis-

placements.

This holds for both the global:

S

WU
Kzz Kzi

Kiz Kii

T

XV

S

WU
z

i

T

XV =

S

WU
pz

pi

T

XV (4.5)

and the local model: S

WU
Kaa Kao

Koa Koo

T

XV

S

WU
a

o

T

XV =

S

WU
pa

po

T

XV (4.6)

4.3.2 Discrete form of the equations for static aeroelasticity

In the case of static aeroelasticity subcase (Appendix B), the discrete equation is:

5
K

6 5
u

6
=

5
p

6
+ f

A
rigid + C

5
u

6
(4.7)

where f
A
rigid is the rigid part of the aeroelastic load vector and C is the aeroelastic

sti�ness matrix.

Since it was assumed that only the global model shares an interface with the aeroelastic
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forces, the discrete equation of the global model is:

S

WU
Kzz Kzi

Kiz Kii

T

XV

S

WU
z

i

T

XV =

S

WU
pz

pi

T

XV + f
A
rigid + C

S

WU
z

i

T

XV (4.8)

while instead for the local model the discrete equation is again the same as given in

eq. 4.6.

4.3.3 On the solution approach

The global-local analysis is based on three steps:

• condensation of the local model, depicted in Fig. 4.4a,

• global solution, depicted in Fig. 4.4b,

• local solution, depicted in Fig. 4.4c.

The static condensation of the local model reduces the system in eq. 4.6 to:

5
Kaa ≠ KaoK

≠1
oo Koa

6
i =

5
pa ≠ KaoK

≠1
oo po

6
(4.9)

K
†
aai = p

†
a (4.10)

as proven in appendix A. As it will be detailed in section 5.2.1, the implementation does

not actually require to compute the inverse matrix K
≠1
oo .

In the second step, the local condensed information is added to the global model:

S

WU
Kzz Kzi

Kiz Kii

T

XV æ

S

WU
Kzz Kzi

Kiz Kii + K
†
aa

T

XV (4.11)

S

WU
pz

pi

T

XV æ

S

WU
pz

pi + p
†
a

T

XV (4.12)

In the case of a static analysis subcase, the global system (eq. 4.5) with the local con-

tributions becomes: S

WU
Kzz Kzi

Kiz Kii + K
†
aa

T

XV

S

WU
z

i

T

XV =

S

WU
pz

pi + p
†
a

T

XV (4.13)

While instead, in the case of a static aeroelasticity subcase (eq. 4.8), the system is given

by: S

WU
Kzz Kzi

Kiz Kii + K
†
aa

T

XV

S

WU
z

i

T

XV =

S

WU
pz

pi + p
†
a

T

XV + f
A
rigid + C

S

WU
z

i

T

XV (4.14)
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4.4. GLOBAL-LOCAL SENSITIVITY ANALYSIS

The proof that solving the global system after having added the local condensed con-

tributions is equivalent to solving the global and the local system, while enforcing the

coupling (eq. 4.3) is given in appendix C.

With the condensed local contributions, the global solution can then be computed by

solving either eq. 4.13 or eq. 4.14 for u
G =

S

WU
z

i

T

XV.

Lastly, the global solution (i) is applied as a Dirichlet boundary condition at the interface

of the local model:

Kooo = po ≠ Koaī (4.15)

With this, the local system becomes solvable and o can be computed.

(a) Static condensation of the local model

(b) Solution of the global model with local contributions

(c) Solution of the local model with global solution as boundary condition

Figure 4.4: Global-local analysis steps.

4.4 Global-local sensitivity analysis

4.4.1 Objective and constraints evaluation

The MDO procedure is based on a single objective function. In the following, the ob-

jective will always be mass, but the methodology could be extended to other objectives,

e.g. range. Since it was assumed that local and global model do not overlap, the mass

of the whole structure is the sum of the mass of the global model and the mass of the
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4.5. COUPLED SENSITIVITIES OF THE SOLUTION FIELD

local model:

f = f
G + f

L (4.16)

The constraint vector can be assembled by joining global and local constraint vectors:

g =

S

WU
g

G

g
L

T

XV (4.17)

4.4.2 Sensitivities of objective and constraints

When computing the sensitivities, the design variables can be divided in global x
G and

local x
L. In the case of the objective function:

df

dx
=

5
df

dxG

df

dxL

6
(4.18)

and since the mass of a model does not depend on the design variables of other models:

df

dx
=

5
df

G

dxG

df
L

dxL

6
(4.19)

Thus, the sensitivity of the objective function is obtained by assembling independent

contributions from the global and the local model. The global-local formulation does

not require any special treatment.

As for the constraints vector, computing the derivative with respect to global and local

design variables one obtains:

dg

dx
=

S

WU
dgG

dxG
dgG

dxL

dgL

dxG
dgL

dxL

T

XV (4.20)

=

S

WU
ˆgG

ˆxG + ˆgG

ˆuG
duG

dxG
ˆgG

ˆuG
duG

dxL

ˆgL

ˆuL
duL

dxG
ˆgL

ˆxL + ˆgL

ˆuL
duL

dxL

T

XV (4.21)

Within the o�-diagonal sub-blocks, the terms du
L

dxG
and du

G

dxL
represent the coupling

between global and local sensitivities. The next section explains how these can be

computed.
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Reference figures:

d
dxG ( )

d
dxL ( )

duL

dxG
duG

dxL

d
dxG ( )

d
dxL ( )

duL

dxG
duG

dxL

Figure 4.5: Computation of solution field sensitivities. The global model requires the

derivative of the condensed contributions with respect to x
L to compute du

G

dxL
. The local

model requires the derivative of the global solution field with respect to x
G to compute

du
L

dxG
.

4.5 Coupled sensitivities of the solution field

4.5.1 Coupled sensitivity of the global solution field

The term du
G

dxL
represents the sensitivity of the global solution field with respect to local

design variables. The global solution field can be the solution of a static analysis or of

a static aeroelastic analysis.

In the case of static analysis, u
G is the solution of:

5
K

G

6 5
u

G

6
=

5
p

G

6
(4.22)

S

WU
Kzz Kzi

Kiz Kii + K
†
aa

T

XV

S

WU
z

i

T

XV =

S

WU
pz

pi + p
†
a

T

XV (4.13 revisited)

The term du
G

dxL
can be obtained by computing the derivative of all terms in eq. 4.22

with respect to x
L. Using the fact that the components of the global sti�ness matrix

(Kzz,Kzi, Kiz and Kii), as well as the components of the global load vector (pz and pi)
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do not depend on the local design variables, it follows that:

K
G du

G

dxL
= dp

G

dxL
≠ dK

G

dxL
u

G (4.23)

K
G du

G
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=
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dpi
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S
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T

XV
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i
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XV (4.24)

K
G du

G

dxL
=

S

WU
·

dp†
a

dxL ≠ dK†
aa

dxL i

T

XV (4.25)

If instead u
G is the solution of a static aeroelasticity analysis, then the discrete equation

is:

K
G

u
G = p

G + f
A
rigid + C u

G (4.26)
S

WU
Kzz Kzi

Kiz Kii + K
†
aa

T
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S

WU
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i

T

XV =

S

WU
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pi + p
†
a

T

XV + f
A
rigid + C

S

WU
z

i

T

XV (4.14)

Since neither the matrix of aerodynamic coe�cients C nor the rigid part of the aeroelas-

tic load vector f
A
rigid depend on the local design variables, deriving eq. 4.26 with respect

to x
L yields:

K
G

u
G = p

G + f
A
rigid + Cu

G (4.27)

dK
G

dxL
u

G + K
G du

G

dxL
= dp

G

dxL
+

df
A
rigid

dxL
+ dC

dxL
u

G + C
du

G

dxL
(4.28)

K
G du

G

dxL
= dp

G

dxL
≠ dK

G

dxL
u

G + C
du

G

dxL
(4.29)

where the static part of the pseudo-load vector can be simplified as in the static analysis

case:

dP
G

dxL
= dp

G

dxL
≠ dK

G

dxL
u

G (4.30)

=

S

WU
·

dp†
a

dxL ≠ dK†
aa

dxL i

T

XV (4.31)

yielding:

K
G du

G

dxL
=

S

WU
·

dp†
a

dxL ≠ dK†
aa

dxL i

T

XV + C
du

G

dxL
(4.32)
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Finally, dp
†
a

dxL
and dK

†
aa

dxL
must be computed. By deriving K

†
aa and p

†
a as defined in eq. 4.9:

p
†
a = pa ≠ KaoK

≠1

oo po (4.33)

K
†
aa = Kaa ≠ KaoK

≠1

oo Koa (4.34)

one obtains 1:

dp
†
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dx
K
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dx
K
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(4.35)

and

dK
†
aa

dx
= dKaa

dx
≠ dKao

dx
K

≠1

oo Koa + KaoK
≠1

oo
dKoo

dx
K

≠1

oo Koa ≠ KaoK
≠1

oo
dKoa

dx
(4.36)

4.5.2 Coupled sensitivity of the local solution field

The remaining coupled sensitivity of the solution field to be computed is:

du
L

dxG
=

S

WU
da

dxG

do
dxG

T

XV (4.37)

To get da

dxG
, one must exploit the coupling relationship defined in eq. 4.3.

It follows that:
da

dxG
= da

di

di

dxG
= di

dxG
(4.38)

where da

di
cancels out because it is the identity matrix.

do

dxG
is computed by deriving the discrete equation of the local model, for which only

static analysis is considered, i.e. eq 4.15. Since neither the components of the local

sti�ness matrix nor those of the local load vector are directly influenced by the global

design variables, it follows that:

dKoo

dxG
o + Koo

do

dxG
= dpo

dxG
≠ dKoa

dxG
i ≠ Koa

di

dxG
(4.39)

do

dxG
= ≠K

≠1

oo Koa
di

dxG
(4.40)

1The derivative of an inverse matrix can be computed as dA≠1

dx
= ≠A≠1 dA

dx
A≠1
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4.6 Sensitivity of the local model

The sensitivity of the local model must also account for the coupling with the global

model. The derivative of the local constraints with respect to local design variables is

given by:
dg

L

dxL
= ˆg

L

ˆxL
+ ˆg

L

ˆuL

du
L

dxL
(4.41)

ˆg
L

ˆuL
and ˆg

L

ˆxL
do not require any special treatment, but the sensitivity of the solution

field du
L

dxL
hides a dependency on the coupled sensitivity of the global solution field:

du
L

dxL
=

S

WU
da

dxL

do
dxL

T

XV (4.42)

The term da

dxL
depends on the sensitivity of the global solution at the interface and, as

in 4.38, it is obtained by deriving Eq. 4.3:

da

dxL
= da

di

di

dxL
= di

dxL
(4.43)

where di

dxL
has been computed as part of Eq. 4.25 or Eq. 4.32, depending on the subcase.

An equation for the other term, do

dxL
, can be obtained by deriving both terms of Eq. 4.15:

dKoo

dxL
o + Koo

do

dxL
= dpo

dxL
≠ Koa

di
G

dxL
≠ dKoa

dxL
i
G (4.44)

Koo
do

dxL
= dpo

dxL
≠ dKoo

dxL
o ≠ Koa

di
G

dxL
≠ dKoa

dxL
i
G (4.45)

With equation 4.45 and 4.43 one can compute both components of du
L

dxL
.

4.7 Summary

The global-local MDO methodology presented is based on a monolithic architecture.

As such it is su�cient to derive a methodology to extend the solution of the analy-

sis and the computation of sensitivities in each optimisation iteration. The modified

global-local analysis is based on three steps: Guyan condensation of each local model,

solution of the global model using the computed local information, solution of the local

model using the global solution as a boundary condition applied at the interface. The

computation of sensitivities is the core of the developed methodology. In particular, for
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the computation of the derivatives of the constraints it is possible to reuse the available

functionalities for the computation of the derivative of global constraints with respect to

global design variables. Instead, the mixed derivatives of the constraints require special

care, particularly for the computation of the derivative of the solution fields, which must

account for the coupling between global and local models as defined in the global-local

analysis procedure.
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Chapter 5

Implementation

This chapter presents the implementation of the global-local MDO introduced in Chap. 4,

as an extension of the Lagrange software, currently used by Airbus Defense and Space.

The detailed description of each algorithm will then be used in the following chapter,

when assessing the computational cost of the procedure.

5.1 Overall software architecture

The implementation is based on Lagrange, a software developed at Airbus Defense and

Space for constrained gradient-based multidisciplinary design optimisation. Lagrange

implements its own linear FE-solver and computes semi-analytic sensitivities. This

means that when computing sensitivities the formulae are developed analytically until

the derivative of the sti�ness matrix appears. Then dK

dx
is computed with a finite

di�erence approximation, so for each design variable xi:

dK

dxi
= K(xi + �xi) ≠ K(xi)

�xi
(5.1)

Lagrange is designed to work with one FE-model defined in one input file, but this

limitation can be overcome, by using the Lagrange/Python API, which controls the

analysis or optimisation procedure and provides access to the internal data.

The global-local approach is implemented by extending Lagrange through its Python

interface. Multiple Lagrange instances are created:

1. an instance for the global model (LAGRANGE.global),

2. an instance for each local model (LAGRANGE.local) and

3. an instance for the optimiser (LAGRANGE.optimiser).
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A Python script acts as an intermediary between Lagrange instances.

The LAGRANGE.global and the multiple LAGRANGE.local instances are based on

standard Lagrange input files containing the FE-models and the optimisation informa-

tion on design variables x and constraints gi, which are separately defined for each

instance. The LAGRANGE.optimiser instance is spawned with a dummy Lagrange

input file. Additional information regarding the optimisation, such as the choice of

optimisation algorithm, convergence criteria and optimisation parameters such as the

maximum number of optimisation iterations are separately defined in a .json file, which

is read by the Python script.

Since the procedure is based on a monolithic architecture, the general flowchart is based

on a single optimisation loop as depicted in 3.1. The functionality for the convergence

check and the design update is provided by the LAGRANGE.optimiser instance.

The multidisciplinary analysis and sensitivity analysis blocks are instead performed at

python level and encapsulated in a GlobalLocalOptimizationProblem instance. This class

internally computes the solution to the multidisciplinary analysis and provides the LA-

GRANGE.optimiser instance with the values of f , g, df
dx and dg

dx . To this end the class

coordinates the interaction between the LAGRANGE.global and the LAGRANGE.local

instances, through requests to the Lagrange/Python API. The main information ex-

changes are summarised in Fig. 5.1 for the solution of the multidisciplinary analysis and

in Fig. 5.2 for the computation of f , g and their sensitivities.

get local info

LAGRANGE.global Python LAGRANGE.local

condense local

solve global

solve local

K
†
aa, p

†
a

z, i

o

i

Figure 5.1: Sequence diagram of the global-local analysis.
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compute f
G

compute df
L

dxL

compute f
L

compute g
L

compute g
G

compute df
G

dxG

compute dg
G

dxG

LAGRANGE.optimiserLAGRANGE.global LAGRANGE.local Python

compute f

compute g

compute df

dx

compute dg

dx

compute dg
G

dxL

compute dg
L

dxG

compute dg
L

dxL

Figure 5.2: Sequence diagram of the global-local sensitivity analysis.

5.2 Multidisciplinary analysis implementation

5.2.1 Condensation

To obtain the local condensed contributions in eq. 4.10 the first step is to divide K
L

and p
L in their subblocks.

Then instead of computing K
≠1
oo , Koo is factorised with a sparse LU decomposition.

Since Koo is symmetric, a Cholesky decomposition could also have been used.

To compute KaoK
≠1
oo , let:

y = KaoK
≠1

oo (5.2)

Thus:

K
T
ooy

T= Kao
T (5.3)

which is solved for y
Tusing the factorised Koo.

The local condensed contributions can then be computed as:

K
†
aa = Kaa ≠ yKoa (5.4)

K
†
aa = Kaa ≠ KaoK

≠1

oo Koa (5.5)
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and

p
†
a = pa ≠ ypo (5.6)

p
†
a = pa ≠ KaoK

≠1

oo po (5.7)

Finally the values of K
†
aa, p

†
a, K

≠1
oo , Kao, Koa, po, y = KaoK

≠1
oo are cached. The cache

is emptied whenever the local design is modified.

The procedure is summarised in Alg. 1.

Algorithm 1: static condensation of local information
1 Function condense
2 for subcase = 1 to n do

3 if K not cached then

4 K
L, p

L Ω local-interface;
5 Kaa, Kao, Koa, Koo = compute_subblocks(K

L);
6 Koo_inv = LU_factorisation(Koo);
7 y_trs = solve_transpose(Koo_inv, Kao);
8 y = transpose(y_trs);
9 x = y ◊ Koa;

10 Kaa
† = Kaa ≠ x;

11 cache;
12 end

13 if p not cached then

14 pa, po = compute_subblocks(p
L);

15 y Ω cache;
16 po

† = po ≠ y ◊ pa;
17 cache;
18 end

19 end

20 end

5.2.2 Global solution

The local contributions are added to the global model after the global assembly of the

sti�ness matrix and load vector. Then for each subcase, static or aeroelastic, the global

analysis is solved internally by Lagrange as a standard FE-analysis.

In the case of a static aeroelastic subcase, rather than bringing C

S

WU
z

i

T

XV to the left hand

side and decomposing (K ≠ C), eq. 4.14 is solved iteratively, because C is dense and

non-symmetric.

50



5.3. SENSITIVITY ANALYSIS IMPLEMENTATION

Algorithm 2: solution of global analyses
1 Function solve_global
2 for subcase = 1 to n do

3 K
†
aa, p

†
a Ω local-interface;

4 K
†
aa, p

†
a æ global-interface;

5 assemble_global() ; /* done within LAGRANGE */
6 solve() ; /* done within LAGRANGE */
7 z, i Ω global-interface;
8 end

9 end

5.2.3 Local solution

Lastly, the internal part of the local solution is computed as:

Kooo = po ≠ Koaī (5.8)

where po and Koa have been cached and Koo has already been factorised.

Algorithm 3: solution of local analyses
1 Function solve_local
2 for subcase = 1 to n do

3 i Ω global-interface;
4 Koa, po Ω cache;
5 Koo_inv Ω cache;
6 _p = po ≠ Koa ◊i;
7 o = solve(Koo_inv, _p);
8 o æ local-interface;
9 end

10 end

5.3 Sensitivity analysis implementation

5.3.1 Objective, constraints and gradient of the objective

The values of f , g and df
dx are obtained by assembling their global and local contributions,

which are internally computed from the corresponding global and local instances. The

procedure is described in Algorithms 4, 5 and 6.

Instead, the computation of the gradient of the constraints dg
dx can be decomposed in

the computation of its sub-blocks:

dg

dx
=

S

WU
dgG

dxG
dgG

dxL

dgL

dxG
dgL

dxL

T

XV (5.9)
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Algorithm 4: computation of the objective
1 Function compute_f
2 f_G Ω global-interface ; /* computed within LAGRANGE */
3 f = f_G;
4 for local = 1 to n

L
do

5 f_L Ω local-interface ; /* computed within LAGRANGE */
6 f = f + f_L;
7 end

8 end

Algorithm 5: computation of the constraints vector
1 Function compute_g
2 g_G Ω global-interface ; /* computed within LAGRANGE */
3 g = [ g_G ] ;
4 for local = 1 to n

L
do

5 g_L Ω local-interface ; /* computed within LAGRANGE */
6 g = [ g, g_L ] ;
7 end

8 end

Algorithm 6: computation of the gradient of the objective
1 Function compute_dfdx
2 df_G Ω global-interface ; /* computed within LAGRANGE */
3 df = [ df_G ] ;
4 for local = 1 to n

L
do

5 df_L Ω local-interface ; /* computed within LAGRANGE */
6 df = [ df, df_L ] ;
7 end

8 end
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as summarised in Alg. 7 and detailed in the following subsections.

Algorithm 7: compute gradients of constraints
1 Function compute_dg
2 dg_GG = compute_dg_GG();
3 dg_GL, du_GL = compute_dg_GL();
4 dg_LG = compute_dg_LG();
5 dg_LL = compute_dg_LL(du_GL);
6 dg = [ [ dg_GG, dg_GL ], [ dg_LG, dg_LL ] ];
7 end

5.3.2 Gradient of the constraints

The computation of dg
G

dxG
is done internally by Lagrange, as described in Alg.8.

Instead, the computation of dg
G

dxL
, dg

L

dxG
and dg

L

dxL
is coordinated at Python level. These

subblocks depend on du
G

dxL
, du

L

dxG
and du

L

dxL
respectively, whose computation is based on

the coupling between global and local models and thus must be performed at Python

level. As detailed in Alg. 9, 10 and 11, once du
G

dxL
, du

L

dxG
and du

L

dxL
have been computed,

the computation of the implicit and explicit parts of dg
G

dxL
, dg

L

dxG
and dg

L

dxL
is delegated

to Lagrange.

Algorithm 8: computation of the global-global subblock of dg
1 Function compute_dg_GG(args)
2 dg_GG Ω global-interface;
3 end

Algorithm 9: computation of the global-local subblock of dg
1 Function compute_dg_GL(args)
2 for subcase = 1 to n do

3 du_GL_sc = compute_dudx_GL(subcase) ;
4 du_GL_sc æ global-interface;
5 end

6 du_GL Ω global-interface;
7 dg_GL = compute_implicit_dgdx_GL(du_GL) ; /* computed within

LAGRANGE */
8 end
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Algorithm 10: computation of the local-global subblock of dg
1 Function compute_dg_LG(args)
2 dg_LG = [ ] ;
3 for local = 1 to n

L
do

4 for subcase = 1 to n do

5 du_LG_sc = compute_dudx_LG(subcase) ;
6 du_LG_sc æ local-interface;
7 end

8 du_LG Ω local-interface;
9 dg_LG_local = compute_implicit_dgdx_LG(du_LG) ; /* computed

within LAGRANGE */
10 dg_LG = [ dg_LG, dg_LG_local ] ;
11 end

12 end

Algorithm 11: computation of the local-local subblock of dg
1 Function compute_dg_LL(du_GL)
2 dg_LL = [ ] ;
3 for local = 1 to n

L
do

4 for subcase = 1 to n do

5 du_GL_sc Ω du_GL;
6 du_LL_sc = compute_dudx_LL(subcase, du_GL_sc) ;
7 du_LL_sc æ local-interface;
8 end

9 du_LL Ω local-interface;
10 dg_LL_impl = compute_implicit_dgdx_LL(du_LL) ; /* computed within

LAGRANGE */
11 dg_LL_expl Ω local-interface ; /* computed within LAGRANGE */
12 dg_LL_local = dg_LL_expl + dg_LL_impl;
13 dg_LL = [ dg_LL, dg_LL_local ] ;
14 end

15 end
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5.4 Sensitivity of the solution fields implementation

5.4.1 Coupled sensitivity of the global displacement field

The computation of du
G

dxL
is based on eq. 4.25, in the case of a static analysis subcase,

and on eq. 4.32, in the case of a static aeroelastic subcase.

Both can be solved internally by Lagrange once the global instance has been provided

with the static part of the pseudo-load vector dP
G

dxL
, as described in Alg. 12.

As for the aeroelastic analysis, eq. 4.32 is solved for du

dx
with an iterative scheme, instead

of inverting (K ≠ C), because C is dense and non-symmetric.

The static part of the pseudo-load vector dP
G

dxL
is obtained according to eq. 4.31 by

computing dp
†
a

dx
and dK

†
aa

dx
, which must be computed at Python level. The former is

computed as defined in eq. 4.35; regarding the latter, it is instead less computationally

demanding to directly compute the product dK
†
aa

dx
i, as in:

dK
†
aa

dx
i = dKaa

dx
i ≠ dKao

dx
K

≠1

oo Koai + KaoK
≠1

oo
dKoo

dx
K

≠1

oo Koai ≠ KaoK
≠1

oo
dKoa

dx
i (5.10)

By directly computing dK
†
aa

dx
i instead of dK

†
aa

dx
the total number of operations is reduced,

taking advantage of the fact that i has a single column, allowing all products to be

computed between a matrix and a vector.

The terms pa, po, Kao, Koa and a factorisation for K
≠1
oo have already been obtained

during the condensation step. The remaining terms dpa

dxL
, dpo

dxL
, dKaa

dxL
, dKao

dxL
, dKoa

dxL

and dKoo

dxL
can be obtained as partitions of dp

L

dxL
and dK

L

dxL
, which are computed as

semi-analytic sensitivities by the local instance within Lagrange, as in eq. 5.1.

Algorithm 12: Computation of du
G

dxL

1 Function compute_dudx_GL(subcase)
2 for local = 1 to n

L
do

3 dP_GL_sc = compute_dPdx_GL(local);
4 dP_GL_sc æ global-interface;
5 du_GL_sc Ω global-interface ; /* dependent on subcase type */
6 end

7 end
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5.4.2 Coupled sensitivity of the local displacement field

The sensitivity of the local solution field with respect to global design variables du
L

dxG
is

given by two subblocks, da

dxG
and do

dxG
, as defined in eq. 4.37.

To compute da

dxG
, according to eq. 4.38, one must use di

dxG
, which has been computed

internally by Lagrange, as part of du
G

dxG
, when solving for:

dg
G

dxG
= ˆg

G

ˆxG
+ ˆg

G

ˆuG

du
G

dxG
(5.11)

Thus it can be obtained from the global instance.

The second component can then be computed by solving eq. 4.40, where Koa has been

cached and Koo has already been factorised.

The procedure is summarised in Alg. 13.

Algorithm 13: Computation of du
L

dxG

1 Function compute_dudx_LG(subcase)
2 di_GG_sc Ω global-interface;
3 da_LG_sc = di_GG_sc;
4 Koa, Koo_inv Ω local-interface;
5 do_LG_sc = - solve(Koo_inv, Koa ◊ di_GG_sc);
6 du_LG_sc = [ da_LG_sc, do_LG_sc ];
7 end

5.4.3 Sensitivity of the local displacement field

The sensitivity of the local solution field with respect to local design variables, du
L

dxL
, is

also given by two subblocks, da

dxL
and do

dxL
, as defined in eq. 4.42.

To compute da

dxL
, according to eq. 4.43, one must use di

dxL
, which has already been

computed as part of du
G

dxL
, when solving either eq. 4.25 or eq. 4.32. Thus it can be

computed as part of Alg. 9 and passed down from Alg. 7 to Alg. 11 and finally to

Alg. 14.

The second component can then be computed by solving eq. 4.45, where Koa and a fac-

torisation for Koo have been cached, i and o have been obtained when solving the mul-

tidisciplinary analysis, dpo

dxL
, dKoa

dxL
and dKoo

dxL
can be obtained as partitions of dp

L

dxL
and

dK
L

dxL
, internally computed by the local instance as semi-analytic sensitivities (eq. 5.1).
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Algorithm 14: Computation of du
L

dxL

1 Function compute_dudx_LL(subcase, du_GL_sc)
2 di_GL_sc Ω du_GL_sc;
3 da_LL_sc = di_GL_sc;
4 Koa, Koo_inv Ω local-interface;
5 dpo_LL, dKoo_LL, dKoa_LL Ω local-interface;
6 i, o Ω local-interface;
7 _dp = dpo_LL- dKoo_LL ◊ o- Koa ◊ di_GL_sc- dKoa_LL ◊ i;
8 do_LL_sc = solve(Koo_inv, _dp);
9 du_LL_sc = [ da_LL_sc, do_LL_sc ];

10 end

5.5 Summary

The procedure introduced, for the global-local optimisation of aircraft structures, can be

successfully implemented as an extension of the existing software Lagrange, by leveraging

the available Lagrange-Python interface, exchanging information between instances for

FE-analysis and an optimiser. The implementation of operations, which were not already

available within Lagrange, like static condensation and the computation of global-local

coupled sensitivities of the solution fields, was done directly at Python level. Despite

the fact that in this particular case the procedure was implemented to extend Lagrange,

the ideas behind the implementation are general and can be replicated by connecting

other available software for FE-analysis and optimisation.
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Chapter 6

Computational cost

This chapter identifies the main drivers of computational cost and explains why a global-

local strategy has a limited impact on the overall cost of the MDO procedure.

6.1 Components of computational cost

The cost analysis presented in this chapter is just intended as a means to investigate

the influence of various variables on the computational cost and to estimate the e�ect

of introducing a global-local formulation in terms of added complexity. Therefore the

focus will be on the procedure, while instead other components of costs, such as those

related to the interface between Lagrange and Python, are neglected.

A direct measurement of the computational runtime was not performed, as it would not

have been indicative of the actual computational cost. The newly implemented part

of the procedure, meant as a proof of concept, has not been optimised, contrary to

the core of Lagrange. Therefore an analysis of runtime would have overestimated the

additional computational cost. Furthermore the current implementation is based on a

serial formulation of the algorithms, an estimation of the complexity allows to evaluate

the benefits that would come from parallelisation.

The computational cost of a monolithic MDO procedure, before the global-local modi-

fications are introduced, would be approximately given by:

Cprocedure ≥ Citeration ◊ n
iterations (6.1)

This is an approximation, because it does not account for initialisation and finalisation

procedures, but mainly because the cost of each iteration, Citeration, is not constant.
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Depending on the optimisation algorithm, some information computed in previous iter-

ations may be reused instead of updated and, most importantly, the number of active

constraints and design variables considered may vary, dramatically influencing the size

of the matrices computed in the sensitivity analysis and the computational cost of the

associated iteration.

Nevertheless, the cost of each iteration can be divided into three components:

Citeration = Canalysis + Csensitivity + Cdesign update (6.2)

where the cost of analysis, Canalysis, is the cost of solving all subcases for their solution

fields, the cost of sensitivity, Csensitivity, is the cost of computing f , g and their derivatives

and the cost of design update, Cdesign update, is the cost of updating the design based on

the sensitivities.

The global-local procedure introduced in chapter 4 directly a�ects Canalysis and Csensitivity.

It also has an indirect influence on Cdesign update, since this component of cost is influ-

enced by the number of design variables and constraints. The focus of the following

sections will be on the first two components, for which it is possible to analyse in detail

the e�ect of the global-local formulation. Instead, the e�ect on Cdesign update will only be

discussed in general, which does not compromise the validity of this cost analysis, since

the other components are more relevant and in particular Csensitivity ∫ Cdesign update.

6.2 Computational cost of analysis

The computational cost of the analysis can be studied by separately considering the cost

of condensation, global solution and local solution.

6.2.1 Computational cost of condensation

The cost of condensation is given by

• the cost of dividing the matrix K
L in its four subblocks

• the cost of factorising Koo

• the cost of solving eq. 5.5-5.7

If only the number of multiplications is considered, the cost of condensation is given

by the cost of factorising Koo, the cost of computing y = KaoK
≠1
oo and the cost of

multiplying yKoa and ypo. Let no be the number of local internal DOFs and let na be

the number of DOFs at the interface, it follows that:
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• no ◊ no is the size of Koo,

• na ◊ no is the size of Kao,

• no ◊ na is the size of Koa.

Using schoolbook algorithms for the multiplications, the cost is then given by:

Ccondensation = CLU(no)+ (factorisation of Koo) (6.3)

+ nanono+
!
multiplication of KaoK

≠1

oo

"
(6.4)

+ nanona+ (multiplication of yKoa) (6.5)

+ nano (multiplication of ypo) (6.6)

where it can be assumed that no ∫ na and CLU(no) ≥ 2
3no

3 = O(no
3).

6.2.2 Computational cost of global solution

The cost of solving the global analysis is given by the cost of computing the Cholesky

decomposition of the global sti�ness matrix K
G, which is of size nz ◊ nz, plus the cost

of solving the analysis. In the case of a static analysis subcase, the cost of solving the

analysis is given by a backward and a forward substitution, which can be assumed to be

O(nz
2). Instead, in the case of an aeroelatic analysis subcase, eq. 4.14 must be solved

iteratively, which means that a linear system of equations of size nz must be solved using

the available decomposition of K
G a given number of times n

aero

IT
, one per each iteration.

The cost iteration will therefore be the cost of a backward and a forward substitution

plus the cost of computing the right-hand-side of the linear system. In total the cost

per iteration can be assumed to be O(nz
2).

The cost of a static subcase is therefore:

Cglobal = CCholesky(nz) + O(nz
2) (6.7)

The cost of an aeroelastic subcase is instead:

Cglobal = CCholesky(nz) + n
aero

IT
· O(nz

2) (6.8)

where CCholesky(nz) ≥ 1
3nz

3 = O(nz
3).

The total cost of all subcases is actually less than the sum of the cost of each sub-

case. That is because the sti�ness matrix K
G to be decomposed is often shared by

more than one subcase. The matrices K
G are obtained by reducing the global sti�ness
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matrix, which depends only on the FE-mesh and therefore is unique and not subcase-

dependent. The reduction depends on the boundary conditions, which are common to

many subcases. Let n
indep.
sc be the number of independent subcases, then the total cost

of the global analysis is:

Cglobal = n
indep.

sc · CCholesky(nz)+ ( cost of Cholesky) (6.9)

+ n
static

sc · O(nz
2)+ (cost of static analyses) (6.10)

+ n
aeroelastic

sc · n̄
aero

IT
· O(nz

2) (cost of aeroelastic analyses) (6.11)

where n̄
aero

IT
is the average number of iterations required to solve an aeroelastic analysis

subcase.

6.2.3 Computational cost of local solution

The cost of solving the local analysis is the cost of solving the linear system in eq. 4.15

times the total number of subcases:

Clocal =
!
n

static

sc + n
aeroelastic

sc

"
· O(no

2) (6.12)

The cost is greatly reduced by the fact that the matrix Koo has already been decomposed,

thus, only a backward and a forward substitution are needed.

6.2.4 Total computational cost of the analysis

The total computational cost is then given by the sum of cost of condensation, global

solution and local solution:

Canalysis = Ccondensation + Cglobal + Clocal (6.13)

= n
LOCALS

!
CLU(no) + nano

2
"

+ (6.14)

+ n
stat

sc

!
CCholesky(nz) + O(nz

2)
"

+ (6.15)

+ n
aero

sc

!
CCholesky(nz) + n

aero

IT
· O(nz

2)
"

+ (6.16)

+ n
LOCALS · n

total

sc

!
O(no

2)
"

(6.17)

where the cost of computation and local solutions have been multiplied by the number

of local models (nLOCALS).
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6.3 Computational cost of sensitivity

The cost of sensitivity Csensitivity is generally the largest contributor to the total com-

putational cost and is itself dominated by the cost of computing dg

dx
.

Since generally in structural optimisation the number of constraints is larger than the

number of design variables, the following cost analysis is based on the assumption that

a direct method is used (see Appendix E).

Since
dg

dx
= ˆg

ˆx
+ ˆg

ˆu

du

dx
(6.18)

Csensitivity can be divided in the cost of computing the explicit part ˆg

ˆx
, the cost of

computing ˆg

ˆu
, the cost of computing du

dx
and the cost of the product ˆg

ˆu
· du

dx
to

compute the implicit part.

Of these components the global-local procedure directly a�ects only the computation of
du

dx
. Since du

dx
is computed di�erently depending on whether the the displacement field

is global or local and on whether the design variables are global or local, the following

sections will describe the cost of computing du
G

dxL
, du

L

dxG
and du

L

dxL
separately.

6.3.1 Computational cost of duG

dxL

In the case of du
G

dxL
, the cost will be given by the cost of computing the right-hand side

and solving either eq. 4.25 or eq. 4.32 depending on whether the global subcase is a

static analysis or an aeroelastic analysis.

The cost of computing dP

dx
can be estimated in the order of O(no

3), as proven in the

Appendix D. If the subcase is an aeroelastic analysis, eq. 4.32 is solved iteratively and

in every iteration the right hand side must be updated with the product C
du

G

dxL
.

The linear system to solve is of nz size and K
G has already been decomposed.

With this assumption the cost of computing du
G

dxL
is given by:

Cdudx = n
total

sc O(no
3) · nL + n

aero

sc n̄
aero

IT
O(nz

3) · nL (cost of computing RHS) (6.19)

+ n
stat

sc O(nz
2) · nL+ (solving eq. 4.25) (6.20)

+ n
aero

sc n̄
aero

IT
O(nz

2) · nL (solving eq. 4.32) (6.21)
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6.3.2 Computational cost of duL

dxG

The cost of computing duL

dxG is instead given by:

Cdudx = n
total

sc · nonananG (computing Koa
di

dx
) (6.22)

+ n
total

sc · O(no
2)nG (cost of computing du

dx
for each subcase) (6.23)

The cost of solving for du
L

dxG
is given only by a backward and a forward substitution

because K
≠1
oo is already factorised.

6.3.3 Computational cost of duL

dxL

Regarding the cost of computing du
L

dxL
, da

dxL
has already been computed, while the cost

of computing do

dxL
is given by the cost of assembling the right-hand-side of eq. 4.45 and

solving the linear system. To compute the right-hand-side all components are already

available so the cost is essentially the cost of computing dKoo

dxL
o, Koa

di
G

dxL
and dKoa

dxL
i
G.

The cost of solving the linear system is that of a backward and forward substitution,

since Koo has already been factorised.

Cdudx = n
total

sc · O(no
2)nL (cost of solving the linear system) (6.24)

+ n
total

sc · O(no
3)nL (cost of computing dKoo

dxL
o) (6.25)

+ n
total

sc · O(nona
2)nL (cost of computing Koa

di
G

dxL
) (6.26)

+ n
total

sc · O(nona
2)nL (cost of computing dKoa

dxL
i
G) (6.27)

6.4 E�ect of global-local methodology on computa-

tional cost

In a typical problem of industrial size the number of constraints is in the range of millions

(106) the number of degrees of freedom can reach the hundreds of thousands (105) and

the number of design variables ranges from several hundreds (102) up to thousands (103).

To reduce the impact on computational time and memory requirements that the size

of the problem would otherwise have, an active set strategy is used, which e�ectively

reduces the number of constraints considered, by ignoring a part of them based on
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the severity of the constraint violation. Furthermore, since for a given constraint the

sensitivity to a change of some design variables are important, but for most design

variables the sensitivity is negligible, it is also possible to apply a filtering technique to

reduce the set of design variables taken into account in an optimisation iteration.

The size of the typical problem and the use of design variables filtering and active set

strategy are important aspects to consider, when evaluating the e�ect of a global-local

methodology on the total computational cost and consider the impact of di�erent terms.

From the analysis of cost components, the cost of computing du

dx
alone is larger than

the cost of solving the analyses Canalysis, because it scales with the number of design

variables. It follows, that the cost of sensitivities Csensitivity has a major impact on the

cost of the whole procedure.

The cost of sensitivity is not only given by the cost of computing du

dx
. Since the number

of constraints is much larger than the number of design variables the cost of computing
ˆg

ˆu
is large when compared to the cost of computing du

dx
. Lastly, simply due to the size

of the components, the computation of the product ˆg

ˆu
· du

dx
has a significant impact on

the overall computational cost.

Ultimately, the number of constraints and design variables has an impact on the cost of

computing the design update Cdesign update. This depends on the chosen optimisation

algorithm and is secondary to Csensitivity, but one can assume that it scales with the

number of constraints and design variables with cubic complexity.

Therefore one can conclude that controlling the number of constraints and design vari-

ables is the most important aspect of containing the total computational cost. The

general impact of adopting a global-local strategy is limited, thanks to the use of active

set strategy and design variables filtering.

6.4.1 E�ect of local design variables

Whenever local design variables are updated local condensed information must be re-

computed, which a�ects the cost of the analysis as well as the cost of computing dg
G

dxL

and dg
L

dxL
. Controlling the update of local design variables would therefore lead to com-

putational savings.

In the extreme case of nL = 0, local condensation would be performed only once and

the size of dg
G

dxL
and dg

L

dxL
would be zero. Whenever local condensed information can

be saved and reused either because nL = 0 or because the local model has not been

updated, this leads to computational savings. The nL = 0 example would still be an
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advantageous procedure compared to the reference one, because, although the design

of local model would be fixed, it would be possible to evaluate local constraints and to

modify global design variables to ensure local feasibility.

In any case, it is advisable to contain the number of local design variables to limit com-

putational cost, which should not be a problem, since the motivation for this work is

to ensure local feasibility, rather than improve the design of local components. Another

reason to reduce the number of local design variables, besides the general cost of addi-

tional design variables, is that it a�ects the size of du
G

dxL
and du

L

dxL
and from the analysis

of cost components, it is clear that the cost of computing du
G

dxL
and du

L

dxL
, is larger than

the cost of computing du
L

dxG
.

6.4.2 E�ect of local constraints

As for design variables, additional constraints have in general an impact on the overall

computational cost, so the definition of local constraints must be limited and their

impact on the cost of the procedure must be measured, considering the e�ect on the

total number of constraints.

Nevertheless, if the global-local methodology is coupled with an active set strategy, the

computational cost is only a�ected by the number of active local constraints. Whenever

inactive, the additional constraints introduced at local level have a negligible impact.

Whenever a constraint is inactive, du
L

dx
must still be computed if the corresponding

displacement field is relevant for another active constraint. If instead all constraints

related to a given du
L

dx
are inactive, it would be possible to save computational e�ort on

the solution of the analysis and on the computation of dgL

dxG and dgL

dxL . In any case, when

a constraint is inactive the cost of sensitivity and design update are reduced.

One can assume that most local constraints will be inactive most of the time and that

the advantages derived from an active set strategy will apply to local constraints in the

same way as they apply to all other constraints.

6.4.3 E�ect of number of local models

Having multiple local models adds to the total computational cost of the procedure, if

a serial implementation is assumed. Nevertheless, thanks to the assumption that there

are not any local to local interfaces, the costs related to condensation, local solution and

sensitivity of displacements fields can all be contained by performing the computation

in parallel.
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6.4.4 Comparison with local refinement

An natural alternative to adopting a global-local strategy is to refine the model, but

the global-local strategy o�ers some computational advantages. For example, due to

the fact that only static analysis is considered at local level, for an aeroelastic subcase

the iterative procedure to solve the analysis is performed on a smaller set of degrees

of freedom at global level, while the local degrees of freedom are solved only once at

convergence. Further, savings come from the fact that thanks to the global-local de-

composition, whenever the local design variables are not modified, all local quantities

cached during condensation and used in the solution of the analysis and computation of

sensitivities do not have to be recomputed. Since this e�ect depends on the frequency

of local updates, combining a global-local strategy with design variables filtering will

amplify these savings. Thus the global-local analysis is cheaper and, analogously, the

same is true for the sensitivity analysis. The comparison is summarised in table 6.1.

6.5 Summary

It has been shown that the cost of the procedure is approximately given by the number

of optimisation iterations multiplied by the average cost of an iteration, which can

be decomposed in cost of analysis Canalysis, cost of sensitivity Csensitivity and cost of

updating the design Cdesign update.

The cost of sensitivity is considerably larger than the cost of analysis, since it scales

linearly with the number of design variables and constraints. The cost of updating the

design depends on the optimisation algorithm and has not been studied in detail, but one

can assume that, although it scales with the number of constraints and design variables

with cubic complexity, it is secondary to the cost of sensitivity.

The main drivers of computational cost are therefore the number of constraints and the

number of design variables considered. The use of techniques such as active set strategy

and design variables filtering which e�ectively reduce the number of design variables and

active constraints have a critical impact on the overall computational cost. Therefore

the true cost of adopting a global-local approach must be studied in conjunction with

the adoption of theses strategies.

The introduction of additional local constraints tends to increase the computational cost,

but the e�ect is limited, if the procedure uses an active set strategy: local constraints will

be mostly inactive in the same way global constraints are. Similarly the introduction of
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additional local design variables is countered by filtering. Nevertheless, since the number

of design variables is generally much smaller than the number of constraints, the impact

of additional design variables is larger. Furthermore, when analysing the computational

cost of computing the components of du

dx
, it has been shown that the complexity of the

components, which scale with the number of local design variables, is larger.

To limit the computational cost one should limit both additional constraints and addi-

tional design variables, but particularly design variables, which should not be a problem,

since the motivation for this work was to prevent local infeasibility and not allow for

detailed local design. In conclusion, if the global-local approach is combined with tech-

niques commonly used in MDO, like design variables filtering, active set strategy and the

possibility to analyse multiple local models in parallel, the total cost of the procedure is

su�ciently contained.

Comparing the cost of the described global-local methodology against simple local re-

finement, it has been shown that the cost of the global-local methodology is generally

smaller. One reason for this is that the global-local approach only considers static

analysis at local level, whenever the global subcase is aeroelastic, the iterative proce-

dure, required for the solution of analysis and sensitivity, is solved only for the global

DOFs, while the local solution is computed only once at convergence. Instead, with

a local refinement all degrees of freedom would have to be considered during the it-

erative solution of analysis and sensitivity. Further computational savings may come

from the fact that the decomposition of the sti�ness matrix has cubic complexity and

that in the case of local refinement all degrees of freedom are treated at once, while

instead in the global-local approach a global and a local sti�ness matrix are sepa-

rately decomposed. Therefore the global-local methodology could be more e�cient, since

O(nz
3) + O(no

3) < O((nz + no)3). The reality is that sti�ness matrices are symmetric

positive definite and most importantly sparse, therefore the complexity of decomposing

them is less than cubic. When this is taken into account, the cost of other operations

with quadratic complexity becomes relevant and it is harder to identify the most e�cient

approach. Lastly, the presented global-local methodology is easily parallelised. Since

local models do not have any mutual dependency, all operations related to a local model

such as static condensation, local solution and computation of coupled sensitivities, can

be parallelised across local models.
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Chapter 7

Verification

In this chapter the correct implementation of the procedure is verified, by comparing

the results of a global-local problem with its single-model equivalent alternative. First,

the concept of an equivalent problem is defined, then a series of examples verifies the

correct computation of analysis solutions and sensitivities. In these examples the global-

local MDO methodology was evaluated for static and aeroelastic load cases, for simple

models with coarse mesh to more complex models of the aircraft components. It will be

demonstrated that, for coarse local models models, the resulting error for the solution

fields are in the range of machine precision. For finer local models, the error is larger,

but the results remain su�ciently accurate. The computation of sensitivity proves to be

accurate for simple models, while instead for larger models the numerical error can be

relatively large for the smallest entries of the Jacobian. Nevertheless, when the quality

of the information is evaluated by comparing the implied search directions the method

proves to be accurate.

7.1 Theory of verification

In this chapter, the global-local procedure is verified against Lagrange: multiple tests

ensure that the procedure has been correctly implemented. In each test the same prob-

lem is defined as a single FE-model and with an equivalent global-local decomposition.

Then the results of Lagrange are compared with the results of the global-local MDO

procedure.

This can be done because, applying the global-local methodology to enforce, for a static

analysis subcase, Eq. 4.5 and Eq. 4.6, while enforcing the coupling at the interface
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defined in eq. 4.3, is equivalent to solving:

S

WWWWU

Kzz Kzi ·

Kiz Kii + Kaa Kao

· Koa Koo
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XXXXV
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z

i

o
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XXXXV
=

S

WWWWU

pz

pi + pa

po

T

XXXXV
(7.1)

which would be the system of a reference model, in which all degrees of freedom are

considered at once and i = a is denoted as i.

Analogously, in the case of an aeroelastic analysis using the global-local methodology

to enforce Eq. 4.8, Eq. 4.6) and the coupling Eq. 4.3), is equivalent to solve system of

equations for a reference model representing the entire structure:
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·

T
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+

S
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C

S

WU
z

i

T

XV

·

T

XXXXV
(7.2)

Thus, a global-local decomposition of a structure is equivalent to its representation as

a single FE-model, if global and local models considered together yield the exact same

mesh. Additionally, in the local model the nodes at the interface are marked with ASET

cards. Boundary conditions, loads, material properties, etc. must also be the same.

Design variables and constraints must be the same and must be assigned to either the

global or the local model: design varibales or constraints defined over multiple models

are not allowed. Lastly, all optimisation parameters must be set in the same way.

If the problem is an analysis, the global-local procedure applied to an equivalent decom-

position is expected to yield the same solution field. If the problem is an optimisation,

the global-local procedure should also yield the same results of Lagrange. In practice

this is not necessarily the case, minor numerical errors in the computation of the solution

fields and their sensitivities cause, as the optimisation progresses, minor di�erences in

the designs being considered. This can lead to even larger di�erences in the sensitivities

and may cause the optimiser to follow a di�erent optimisation path. It is therefore

necessary to verify two di�erent things. The first one is that with the same sensitivities

the optimiser follows the same optimisation history, as it will be proven with some sim-

ple tests. The second thing that must be verified is that the sensitivities are correctly

computed and di�erences are only caused by numerical errors.
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7.2 Verification of analysis

7.2.1 Two squares model

The first example, depicted in figure 7.1, is made of two square planes. A force is ap-

plied at the center node of the left square and the four corners are fully constrained.

The left square, in green, represents the global model, the right one, in blue, represents

the local model. Figure 7.2 shows the two separate models. As it can be seen in fig-

ure 7.2b, the local model contains additionally some ASET cards defined at the interface.

Figure 7.1: Example 1: Two-squares example, represented as a single model.

(a) Global model.

(b) Local model.

Figure 7.2: Two squares example, modelled with separate global (a) and local (b) models.
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The model can be solved with a linear static analysis of the whole model represented in

figure 7.1 or, equivalently, using the global-local procedure for the models in 7.2.

In order to compare the displacement fields, one can measure for each DOF, i.e. for

each entry i of the displacement vector, the absolute error:

eabs(i) = |ui ≠ ui| (7.3)

and the relative error:

erel(i) = |ui ≠ ui|
|ui|

(7.4)

or the percentage error:

e%(i) = |ui ≠ ui|
|ui|

· 100 (7.5)

where the reference value ui is the solution of the whole model. The percentage error

is meaningless and tends to extreme values, if the displacements being compared are

close to zero. For this reason, the computation of e% has been neglected, whenever

|ui| < 1.000 · 10≠9.

For each error vector one can then compute the L2 and infinity norm:

ÎeÎ2 =
nÿ

i=1

e
2

i (7.6) ÎeÎŒ = max(e1, . . . , en) (7.7)

or consider the average entry value:

e = e1 + . . . + en

n
(7.8)

Table 7.1 reports the values of the 2-norm and of the infinity norm of the absolute and

percentage error vectors. Figure 7.3 compares the displacement field over the deformed

shape scaled by a factor of 30. The comparison of stress and strain fields are not

reported, because these quantities are derived from the displacement field.

eabs e%

Î · Î2 9.545 · 10≠16 2.486 · 10≠12 %
Î · ÎŒ 4.441 · 10≠16 2.458 · 10≠12 %

Table 7.1: Error metrics.
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(a) whole (b) global-local

Figure 7.3: Displacement field over the deformed shape

7.2.2 Stringer model

The second example represents a stringer (figure 7.4). A part in the middle (blue) is

extracted from the global model and included in the local model. Two di�erent load

sub-cases will be analysed: i) the first model is subjected to horizontal forces (figure

7.4a), and ii) the second model is loaded by a moment (figure 7.4b), which causes a

three-dimensional deformation. The translatory DOFs of the corners at the left hand

end have been constrained. The corners at the right hand end are prevented from moving

vertically.

(a) Example 2.1: Sti�ener with force.

(b) Example 2.2: Sti�ener with moment.

Figure 7.4: Sti�ener model (whole).

Contrary to the first example, the local part of the stringer is a ‘floating’ model, that
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is, taken alone, the model is underconstrained and cannot be solved. Another relevant

di�erence, which makes this model more complex, is the fact that the local and global

mesh are non-conforming and must be linked via multipoint constraints. Depending

on whether the multipoint constraints are included in the global or in the local model,

the boundary between global and local model changes and ASET cards must be defined

accordingly. Both possibilities have been tested, yielding comparatively the same results.

As for the first example, the results of the global-local approach can be compared with

those of a static analysis of the whole model. Figures 7.5 and 7.6 show a comparison

of the deformed shape, scaled by a factor of 300, for the second and the third example.

Quantitative evaluations of the error are reported in tables 7.2 and 7.3.

(a) whole (b) global-local

Figure 7.5: Example 2.1: Sti�ener with force. Displacement field over the deformed
shape

eabs e%

Î · Î2 1.802 · 10≠12 8.395 · 10≠6 %
Î · ÎŒ 6.949 · 10≠13 4.683 · 10≠6 %

Table 7.2: Example 2.1: Error metrics.

(a) whole (b) global-local

Figure 7.6: Example 2.2: Sti�ener with moment. Displacement field over the deformed
shape

eabs e%

Î · Î2 6.449 · 10≠13 3.231 · 10≠5 %
Î · ÎŒ 2.528 · 10≠13 2.122 · 10≠5 %

Table 7.3: Example 2.2: Error metrics.
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7.2.3 Simple wing model

This an extremely simplified model of a wing that is used as a minimal example for the

verification of the aeroelastic analysis.

The structural model represents a beam, with four beam elements with 6 DOFs per

node (CBAR in NASTRAN notation), represented in blue in Fig. 7.7.

Figure 7.7: Reference model of the simple wing.

Four multi-point constraint elements (RBE2 in NASTRAN notation), represented in

green, rigidly connect the beam with structural points whose displacement is linked

with the aerodynamic model, represented in Fig. 7.8. The aerodynamic model consists

of six panels.

Figure 7.8: Aerodynamic model used in the simple wing.

In the global-local representation of the same structure, one of the middle CBAR ele-

ments, shown in yellow, is assigned to the local model, as represented in Fig. 7.9. The

remaining part of the structure, represented in blue, is assigned to the global model.

A single SPC fully constrains the freedom of the grid point at the wing root. Two

subcases are defined, i) subcase 1: a static analysis, with a downward force applied at
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Figure 7.9: Global-local model of the simple wing. The beam element in the middle,
highlighted in yellow, is assigned to the local model, all other elements constitute the
global model.

Figure 7.10: Results of the static analysis.

the wing tip, and ii) subcase 2: a static aeroelastic analysis. The model does not have

an optimisation deck defined.

For both subcases the results obtained with the reference and the global-local approach

are identical, meaning that each component of the solution field has exactly the same

floating point representation. Thanks to the small number of Degrees Of Freedom it is

possible to report the value of each entry as done in Tables 7.4 and 7.5 , which report the

reference and global-local solution of subcase 1, and Tables 7.7 and 7.8 , which report

the reference and global-local solution of subcase 2. Since the results compared match

exactly, all error metrics report a 0.000, as it can be seen from Tables 7.6 and 7.9 for

subcase 1 and subcase 2 respectively. This happens, because for this particular example

the local model consists of a single element. Due to the absence of internal degrees of

freedom o, condensation does not occur and when the global sti�ness matrix is assembled

with the local information the operation matches exactly the global assembly of element

sti�ness matrix in the ‘whole’ case. Thus the linear system of equations solved is identical

and no roundo� errors arise. A visual comparison of the solution field is shown in Figure

7.10 for subcase 1 and in Figure 7.11 for subcase 2.
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node ID component ID
1 2 3 4 5 6

1 0.000 0.000 0.406 ≠0.034 ≠0.002 0.000
2 0.000 0.000 ≠5.545 ≠0.100 ≠0.004 0.000
3 0.000 0.000 ≠18.978 ≠0.161 ≠0.007 0.000
4 0.000 0.000 ≠36.416 ≠0.181 ≠0.007 0.000
5 0.000 0.000 ≠36.193 ≠0.181 ≠0.007 0.000
6 0.000 0.000 ≠18.729 ≠0.161 ≠0.007 0.000
7 0.000 0.000 ≠5.352 ≠0.100 ≠0.004 0.000
8 0.000 0.000 ≠0.524 ≠0.034 ≠0.002 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 0.605 ≠0.034 ≠0.002 0.000
11 0.000 0.000 ≠5.132 ≠0.100 ≠0.004 0.000
12 0.000 0.000 ≠18.400 ≠0.161 ≠0.007 0.000
13 0.000 0.000 ≠35.823 ≠0.181 ≠0.007 0.000

Table 7.4: Reference displacement field of subcase 1 (statics), by Grid ID (row) and
component ID (column).

node ID component ID
1 2 3 4 5 6

1 0.000 0.000 0.406 ≠0.034 ≠0.002 0.000
2 0.000 0.000 ≠5.545 ≠0.100 ≠0.004 0.000
3 0.000 0.000 ≠18.978 ≠0.161 ≠0.007 0.000
4 0.000 0.000 ≠36.416 ≠0.181 ≠0.007 0.000
5 0.000 0.000 ≠36.193 ≠0.181 ≠0.007 0.000
6 0.000 0.000 ≠18.729 ≠0.161 ≠0.007 0.000
7 0.000 0.000 ≠5.352 ≠0.100 ≠0.004 0.000
8 0.000 0.000 ≠0.524 ≠0.034 ≠0.002 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 0.605 ≠0.034 ≠0.002 0.000
11 0.000 0.000 ≠5.132 ≠0.100 ≠0.004 0.000
12 0.000 0.000 ≠18.400 ≠0.161 ≠0.007 0.000
13 0.000 0.000 ≠35.823 ≠0.181 ≠0.007 0.000

Table 7.5: Global-local displacement field of subcase 1 (statics), by Grid ID (row) and
component ID (column).

eabs erel

Î · Î2 0.000 0.000
Î · ÎŒ 0.000 0.000

Table 7.6: error metrics for the static analysis (subcase 1). In this example the local
model consists of a single element, condensation does not occur and the results are exact.

Figure 7.11: Results of the aeroelastic analysis.

77



7.2. VERIFICATION OF ANALYSIS

node ID component ID
1 2 3 4 5 6

1 0.000 0.000 0.004 0.005 0.002 0.000
2 0.000 0.000 0.927 0.013 0.004 0.000
3 0.000 0.000 2.535 0.017 0.006 0.000
4 0.000 0.000 4.307 0.018 0.006 0.000
5 0.000 0.000 4.124 0.018 0.006 0.000
6 0.000 0.000 2.323 0.017 0.006 0.000
7 0.000 0.000 0.745 0.013 0.004 0.000
8 0.000 0.000 0.079 0.005 0.002 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 ≠0.150 0.005 0.002 0.000
11 0.000 0.000 0.542 0.013 0.004 0.000
12 0.000 0.000 2.040 0.017 0.006 0.000
13 0.000 0.000 3.819 0.018 0.006 0.000

Table 7.7: Reference displacement field of subcase 21 (aeroelasticity), by Grid ID (row)
and component ID (column).

node ID component ID
1 2 3 4 5 6

1 0.000 0.000 0.004 0.005 0.002 0.000
2 0.000 0.000 0.927 0.013 0.004 0.000
3 0.000 0.000 2.535 0.017 0.006 0.000
4 0.000 0.000 4.307 0.018 0.006 0.000
5 0.000 0.000 4.124 0.018 0.006 0.000
6 0.000 0.000 2.323 0.017 0.006 0.000
7 0.000 0.000 0.745 0.013 0.004 0.000
8 0.000 0.000 0.079 0.005 0.002 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 ≠0.150 0.005 0.002 0.000
11 0.000 0.000 0.542 0.013 0.004 0.000
12 0.000 0.000 2.040 0.017 0.006 0.000
13 0.000 0.000 3.819 0.018 0.006 0.000

Table 7.8: Global-local displacement field of subcase 21 (aeroelasticity), by Grid ID
(row) and component ID (column).

eabs erel

Î · Î2 0.000 0.000
Î · ÎŒ 0.000 0.000

Table 7.9: error metrics for the aeroelastic analysis (subcase 21). In this example the
local model consists of a single element, condensation does not occur and the results are
exact.
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7.2.4 Coarse plate model

Geometry and boundary conditions

The structural model consists of three quadrilateral and one triangular shell element with

6 DOFs (CQUAD4 and CTRIA3 in NASTRAN notation), represented in Fig. 7.12a. In

(a) Reference “coarse plate model”. (b) Global-local “coarse plate model”.

Figure 7.12: Alternative representations of the “coarse plate model”.

the global-local representation of the same structure, the middle plate, shown in yellow,

is assigned to the local model, as represented in Fig. 7.12b. The remaining part of the

structure, represented in blue, is assigned to the global model.

In both representations, one SPC fully constrains the freedom of the right end of the

plate. The same three subcases are defined for both models, a static analysis and two

static aeroelastic analyses.

The aerodynamic model, shared by the reference and the global-local models, consists of

three panels, which overlap the structural quadrilateral elements exactly, as represented

in Fig. 7.13.

Figure 7.13: Aerodynamic model used in “coarse plate model”.

The optimisation problem associated to this model defines the thickness of each element

as a design variable and prescribes a strength constraint per element. The objective is

mass minimisation.

Model analysis and optimisation results

The results of the global-local procedure match exactly those of the standard FE-solution

of the whole model. This is because for this particular model the global-local represen-

tation is such that the local model does not have any internal degree of freedom. In this
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(a) Static subcase 1 (b) Aeroelastic subcase 21 (c) Aeroelastic subcase 22

Figure 7.14: Results of the analyses. Each subfigure compares a di�erent subcase with
the displacement field of the reference approach represented above and the global-local
solution below.

(a) Objective optimisation history.
(b) Maximum constraint violation optimisa-

tion history.

Figure 7.15: Histories of the “coarse plate model” optimisation.

simple case, the element sti�ness matrix is identical to the condensed one and does not

introduce any numerical error. Thus, as expected, the global solution (eq. 4.13-4.14) is

identical to the solution of the whole model (eq. 7.1-7.2).

The optimised design obtained with the two approaches is the same. As it can be seen

in Fig. 7.15 objective and maximum constraints violation follow the same optimisation

history.

7.2.5 Refined plate model

Geometry and boundary conditions

In the fine version of the model everything remains the same, except for the quadrilateral

element in the middle, which is split into two, as represented in Fig. 7.16a.

In the global-local representation, the local model consists of two quadrilateral shell

elements, as represented in Fig. 7.16b. The optimisation problem is equivalent to the one

of the coarse case, the objective remains mass minimisation, but since two quadrilateral
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(a) Reference “fine plate model”. (b) Global-local “fine plate model”.

Figure 7.16: Alternative representations of the “fine plate model”.

elements have replaced a single element, two strength constraints must be specified

instead of one. The global model remains unchanged.

Model analysis and optimisation results

(a) Static subcase 1 (b) Aeroelastic subcase 21 (c) Aeroelastic subcase 22

Figure 7.17: Results of the analyses. Each subfigure compares a di�erent subcase with
the displacement field of the reference approach represented above and the global-local
solution below.

As the internal degrees of freedom of the local model are condensed, a negligible numer-

ical error is introduced.

Taking the solution of Lagrange u as a reference, one can measure the absolute and

relative error of the solution u
GL of the global-local approach, as in eq. 7.3-7.4, and

consider the L2 and infinity norm, defined in eq. 7.6-7.7.

As it can be seen from Table 7.10, the results are not exact, but the error is quite close

to machine precision.

Fig. 7.17 shows visual comparison of the displacement fields computed with the reference

and the global-local approach.

static subcase 1 aeroelastic subcase 21 aeroelastic subcase 22
ÎeabsÎ2 5.645 · 10≠11 6.078 · 10≠13 7.341 · 10≠13

ÎeabsÎŒ 3.437 · 10≠11 3.685 · 10≠13 4.452 · 10≠13

ÎerelÎ2 1.407 · 10≠10 1.743 · 10≠10 1.651 · 10≠10

ÎerelÎŒ 1.050 · 10≠10 1.642 · 10≠10 1.541 · 10≠10

Table 7.10: Error metrics for the analysis results.

The numerical error due to the condensation of the local model had a negligible e�ect
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on the optimisation results. As for the coarse model, the two approaches yield the same

optimal design and the same optimisation history as shown in Fig. 7.18.

(a) Objective optimisation history.
(b) Maximum constraint violation optimisa-

tion history.

Figure 7.18: Histories of the “fine plate model” optimisation.

7.2.6 Wingbox coarse analysis

Geometry and boundary conditions

The structural model of the wingbox is depicted in Fig. 7.19. Fig. 7.19a shows the

reference structure defined as a single model, while instead Fig. 7.19b shows the global-

local representation with the local model highlighted in yellow.

(a) Reference “wingbox coarse model”. (b) Global-local “wingbox coarse model”.

Figure 7.19: Alternative representation of the “wingbox coarse model”.

The structure is constrained by SPCs at the wing root, which is shown on the right side.

Four di�erent subcases are defined for this model. Three static analysis representing

a “gust-up”, a “landing” and a “manoeuvre” and an aeroelastic subcase, for which the

aerodynamic model in Fig. 7.20 is used.

Qualitative evaluation

Figures 7.21, 7.22, 7.23, 7.24 qualitatively capture the accuracy of the computed dis-

placement fields for the di�erent subcases. In each figure, part (a) represents the ref-

erence solution, with a countour of the displacement field and a real size deformation.
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Figure 7.20: Aerodynamic model used in “wingbox coarse model”, displayed over the
transparent structure.

Part (b) shows a contour plot of the solution field error, that is the di�erence in dis-

placement between the reference solution and the global local solution: u
W ≠ u

GL. The

deformation depicted represents the di�erence in displacements scaled by a factor of

1000.

As it can be seen in part (a) of the figures, all subcases lead to visible deformations,

with a maximum tip displacement in the order of 1.0 · 103 mm. Part (b) of all figures

appears undeformed despite the fact that the deformation is scaled up by a factor of

1000. The maximum displacement is in the order of 1.0 · 10≠2 mm.

Quantitative evaluation

Tables 7.11, 7.12, 7.13, 7.14 show the average entry value and the infinity norm (eq. 7.8

and eq. 7.7) for the absolute and relative error (eq. 7.3-7.4) in the computation of the

displacement fields. The relative error has not been computed for reference displace-

ments smaller than 0.001 mm. Such a threshold value is small when compared with the

actual displacements which are generally in the range 1.000 mm - 2500.000 mm.

The metrics reflect what was qualitatively presented in the previous section. The max-

imum absolute error, ÎeabsÎŒ, is small for all subcases. The relative error can be large

in some points as highlighted by ÎerelÎŒ, but is on average negligible as indicated by

erel.

eabs erel

· 0.000 0.001
Î · ÎŒ 0.040 0.124

Table 7.11: Error metrics for subcase 1. The relative error has been computed only for
reference displacements larger than 0.001 mm.
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(a) Deformation computed with reference Lagrange. Undeformed configuration in orange. The

deformed shape distortions are in real size.

(b) Di�erence in deformation (absolute error) obtained with gl-lagrange. The deformed shape

distortions are scaled by a factor of 1000.

Figure 7.21: Results of the static analysis (subcase 1).

eabs erel

· 0.000 0.000
Î · ÎŒ 0.018 0.032

Table 7.12: Error metrics for subcase 2. The relative error has been computed only for
reference displacements larger than 0.001 mm.

eabs erel

· 0.000 0.000
Î · ÎŒ 0.034 0.036

Table 7.13: Error metrics for subcase 3. The relative error has been computed only for
reference displacements larger than 0.001 mm.

eabs erel

· 0.002 0.001
Î · ÎŒ 0.058 0.371

Table 7.14: Error metrics for subcase 23. The relative error has been computed only for
reference displacements larger than 0.001 mm.
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(a) Deformation computed with reference Lagrange. Undeformed configuration in orange. The

deformed shape distortions are in real size.

(b) Di�erence in deformation (absolute error) obtained with gl-lagrange. The deformed shape

distortions are scaled by a factor of 1000.

Figure 7.22: Results of the static analysis (subcase 2).
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(a) Deformation computed with reference Lagrange. Undeformed configuration in orange. The

deformed shape distortions are in real size.

(b) Di�erence in deformation (absolute error) obtained with gl-lagrange. The deformed shape

distortions are scaled by a factor of 1000.

Figure 7.23: Results of the static analysis (subcase 3).
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(a) Deformation computed with reference Lagrange. Undeformed configuration in orange. The

deformed shape distortions are in real size.

(b) Di�erence in deformation (absolute error) obtained with gl-lagrange. The deformed shape

distortions are scaled by a factor of 1000.

Figure 7.24: Results of the aeroelastic analysis (subcase 23).
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7.3 Verification of sensitivity and optimisation

In this section all results are obtained with the “wingbox coarse” model.

7.3.1 Comparison of optimisation histories

A quick way to verify the global-local procedure is to compare a reference and a global-

local optimisation, by looking, for example, at the histories of objective and maximum

constraint violation as in Fig. 7.25.

Figure 7.25: Optimisation histories.

In this case both procedures converge after 97 iterations, following almost identical

optimisation histories. The final design are similar as shown in Fig. 7.26, because, as can

be seen from the plot, the design variables, represented in blue points for reference and

red points for the proposed global-local MDO solution, generally overlap with negligible

deviation.

To quantify the di�erence, Table 7.15 reports in detail the relevant metrics for the

absolute and relative error: each design variable is o� by at most 1.304 % and on average

by 7.523 · 10≠2 %.

eabs erel

Î · ÎŒ 0.011 0.013
· 0.001 0.001

Table 7.15: Error metrics for the optimal design. Global-local solution vs. reference
Lagrange solution.

The optimisation of a reference model and its equivalent decomposition should yield the

same results, if the same optimisation settings are used. In practice, this is not always

the case: it may happen that the optimisation histories start to diverge and lead to

di�erent results. Justifiable phenomena that may lead the optimiser astray are:

1. di�erent ordering of the constraints and their gradients,
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Figure 7.26: Comparison of optimal design variables.

2. minor di�erences in the gradients, due to the di�erent numerical errors, arising

from the di�erent numerical procedures.

These may cause the optimiser to choose a slightly di�erent optimisation path. Once

this happens, the sensitivities are computed on slightly di�erent designs and are not

comparable one to one anymore. If the problem is not locally convex this will result in

two di�erent optimisation histories, converging to separate local minima.

For these reasons, while comparing the optimisation history and results is a quick way to

test the implementation, it is not a proper verification procedure. A better alternative

is to directly verify the sensitivities.

7.3.2 Verification of the entries of the sensitivity analysis

At any point in the design space an equivalent global-local decomposition should yield

the same values of f , df

dx
, g and dg

dx
as computed by standard Lagrange. Therefore, the

correct computation of the sensitivities can be verified by sampling the design space at

multiple random locations x and comparing the values of f , g and their derivatives.

The values of f , g and df

dx
are, in both procedures, computed by Lagrange internally,

the global-local procedure only assembles the values obtained through the Python-API.

Thus, the results are identical (same float representation). In the following, the focus

will be on the analysis of the errors in the computation of dg

dx
.

For the purpose of verification one might compare the entries of dg

dx
one by one. The

corresponding error metrics are reported in Table 7.16. The reported high values of

relative error are caused by entries with a negligible absolute error but an associated
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Figure 7.27: Distribution of absolute values of dg

dx
entries.

large relative error.

eabs erel

Î · ÎŒ 4.599 · 10≠4 52 676.224
· 1.550 · 10≠7 0.172

Table 7.16: Error metrics for the sensitivities of the constraints (sample 0).

Figure 7.27 shows the distribution of the magnitude of all entries of dg

dx
: most entries

are smaller than 1.0 · 10≠4.

The relative error linked to these smaller values is generally high as shown in Fig. 7.28,

whereas the computation of larger entries is generally more accurate. The vast number

of small entries with an associated high relative error is what skews the metric. A

threshold on the entries magnitude below which the relative error is not computed

would generally be used to counter this e�ect, but in this case, large relative errors

a�ects relevant portions of the dataset, so such a threshold does not exist. Nevertheless,

Fig. 7.28 clearly shows how the values with an associated high relative error taper o�

as the magnitude of the entries grows.

If single a row of dg

dx
is considered, which represents the derivative of a single constraint

with respect to all design variables, a pattern similar to that of the whole dg

dx
emerges,

as shown in Fig. 7.29. For each constraint the entries cover multiple orders of magnitude

and only a few are larger than 1.0 ·10≠4. This is to be expected and means that for each

constraint most design variables have a negligible influence. This is important because

it means that, in spite of the large relative error associated to most entries, the quality

of the information obtained from the computed dataset might still be good.
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Figure 7.28: Distribution of absolute values of dg

dx
entries. Values are highlighted based

on their corresponding relative error

Figure 7.29: Distribution of absolute values of dg

dx
entries, for 3 randomly chosen rows.

7.3.3 Verification of the search directions implied by the sensi-

tivity analysis

To evaluate the quality of the information provided to the optimiser, it is possible to

examine the dg

dx
in terms of search directions.

Each row dg

dx
contains the components of a vector in the design space, which points

towards a larger violation of the associated constraint. It is natural therefore to compare

the reference vectors and the computed global-local vectors. Let di be the vector:

di =
3

dgi

dx

4W

≠
3

dgi

dx

4GL

(7.9)

as represented in Fig. 7.30.
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1
dgi

dx

2W

1
dgi

dx

2GL

di

Figure 7.30: Graphical representation of dgi

dx
interpreted as a search direction.

By computing the norm of di and comparing it to the norm of refi =
3

dgi

dx

4W

for each

constraint, the influence of the smallest entries, which are also the most inaccurate, is

significantly reduced. Table 7.17 reports the average and maximum norm of the reference

search directions, of the associated di and the ratio between the two. The average

ÎrefiÎ2 ÎdiÎ2

ÎdiÎ2

ÎrefiÎ2

· 0.064 5.150 · 10≠6 5.718 · 10≠4

Î · ÎŒ 2.522 8.923 · 10≠4 0.046

Table 7.17: Error metrics for the sensitivities of the constraints (sample 0). The ratio
ÎdiÎ2

ÎrefiÎ2

was computed only when ÎrefiÎ2 > 1.000 · 10≠6.

norm of di is significantly smaller than the norm of
3

dgi

dx

4W

and the ratio ÎdiÎ2

ÎrefiÎ2

is

mostly negligible. Thus, the information in terms of search directions computed by the

global-local procedure is generally accurate, which explains how the optimisation results

described in section 7.3.1 could be obtained.

7.3.4 Verification of the computed subblocks of the sensitivity

analysis

The matrix dg

dx
has a size of 2980.000 ◊ 159.000. The number of rows results from

considering 745 constraints for 4 di�erent subcases. Of these constraints, 739 are global

and 6 are local. The design variables are divided in 158 global design variables and 1

local design variable. This means that most entries in dg

dx
belong to the dg

G

dxG
subblock,

which is computed internally by Lagrange. The portions of dg

dx
actually computed by

the global-local procedure are only thin slices of the whole matrix.

Thus, while the fact that local constraints and design variables are significantly fewer is

representative of a real industrial problem, to verify the implementation it is necessary to

ensure that the accuracy reported by the error metrics is not a consequence of a negligible

influence of the parts computed by the global-local procedure. In other words, one must

show that the large number of dg
G

dxG
entries is not concealing errors in the remaining
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global-local sensitivities.

To this end, it is possible to consider the dg
G

dxL
, dg

L

dxG
, dg

L

dxL
subblocks separately.

ÎrefiÎ2 ÎdiÎ2

ÎdiÎ2

ÎrefiÎ2

· 1.634 · 10≠4 5.581 · 10≠7 0.014
Î · ÎŒ 0.012 3.086 · 10≠4 2.181

Table 7.18: Error metrics for dg
G

dxL
(sample 0). The ratio ÎdiÎ2

ÎrefiÎ2

was computed only

when ÎrefiÎ2 > 1.000 · 10≠6.

ÎrefiÎ2 ÎdiÎ2

ÎdiÎ2

ÎrefiÎ2

· 0.008 1.685 · 10≠5 0.002
Î · ÎŒ 0.018 3.423 · 10≠5 0.004

Table 7.19: Error metrics for dg
L

dxG
(sample 0). The ratio ÎdiÎ2

ÎrefiÎ2

was computed only

when ÎrefiÎ2 > 1.000 · 10≠6.

ÎrefiÎ2 ÎdiÎ2

ÎdiÎ2

ÎrefiÎ2

· 0.005 6.076 · 10≠6 0.001
Î · ÎŒ 0.009 1.546 · 10≠5 0.003

Table 7.20: Error metrics for dg
L

dxL
(sample 0). The ratio ÎdiÎ2

ÎrefiÎ2

was computed only

when ÎrefiÎ2 > 1.000 · 10≠6.

Tables 7.18, 7.19, 7.20 report the corresponding error metrics. All metrics show negli-

gible errors except for the ÎdiÎ2

ÎrefiÎ2

metrics of Table 7.18. For this particular case, since

there is only one local variable, measuring the ratio of the norms is equivalent to mea-

suring the relative error, which can be big for small values. The error metrics for ÎdiÎ2

show that the overall accuracy is consistent with the one measured elsewhere.

7.4 Summary

It has been demonstrated that for each global-local problem it is possible to define an

equivalent single-model problem, by essentially merging the FE-meshes. Furthermore,

regarding the verification of the analysis it has been proven that condensation is the-

oretically exact and that errors arise only from round-o� errors. Due to this source of

numerical error, as the number of degrees of freedom condensed increases the accuracy

of the solutions diminishes, but the overall accuracy remains acceptable. Regarding the

accuracy of the sensitivities, the correct implementation has been verified. For large
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problems, common metrics of errors appear to prove the poor quality of the results, but

further analysis has proven the accuracy of the computed sensitivity and identified what

causes the error metrics to be misleading.
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Chapter 8

Case studies

This chapter presents two case studies. The optimisation of an academic demonstrator

aircraft, named OptiMALE, investigates the limitation of the current MDO procedure.

A second example, in which a wingbox is optimised, compares the performance of the

novel approach with the reference one.

8.1 Failure of the standard procedure to produce a

locally feasible optimum: OptiMALE

8.1.1 MDO of an Aircraft with a Non-Regular Area

As an example of the problems that might arise without appropriately treating local

areas, MDO is applied to the model represented in Figure 8.1. As shown in Figure 8.2,

the right wing of the model presents a non-regular area, highlighted in yellow (Figure

8.2c). The part represents a cut-out in the lower-skin of the wing. Cut-outs like this are

typically found on the lower skin and are known in the industry as manholes or access

panels.
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Figure 8.1: Finite element model of OptiMALE.

(a) OptiMALE with the wing upper-skin

removed

(b) Zoom on the right wing (upper-skin re-

moved)

(c) Zoom on the non-regular area (in yel-

low)

(d) Zoom on the non-regular area with sur-

rounding spars and ribs removed

Figure 8.2: Non-regular area (in yellow) as represented in the aircraft model.

8.1.2 Modelling of the Non-Regular Area

In the global model, the non-regular area shown in Figure 8.2d is represented following

a smeared sti�ness approach, which greatly reduces the number of elements, but does

not permit exactly representing the sti�ness of the part, nor accurately capturing the

internal displacement field. When separately modelled in detail, the part appears as in

Figure 8.3.
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Figure 8.3: Detailed representation of the non-regular area.

8.1.3 Optimisation and Subsequent Detailed Analysis

Using the simplified modelling of the part, the aeroplane is optimised, keeping the de-

sign of the non-regular area fixed without applying any constraint to it. After the MDO

procedure is concluded and the design has been optimised, the non-regular area is sepa-

rately designed in detail and analysed by enforcing at the boundaries the displacements

from the aircraft model.

8.1.4 Constraint Violation

As the detailed model of the non-regular area is created and the part is analysed, a

violation of the local axial strain constraints is revealed.

Figure 8.4 shows the maximum composite strain at the beginning of the optimisation,

i.e. after 7 iterations (Figure 8.4a), and at the end of the optimisation, i.e. after 331

iterations (Figure 8.4b).

If the strain is measured close to the hole but avoids the elements directly linked to the

edge where the strain concentration occurs, after 7 iterations, all measures are below

the allowable value of 5.5 ◊ 10≠3. This can be seen in Figure 8.4a and also from the

data in Table 8.1. This means that the local area was initially sized correctly to sustain

the loads at the beginning of the optimisation.

Nevertheless, as the optimisation reaches the optimum, the local values of strain exceed

the allowable value. Table 8.1 reports the Reserve factors (RFs) after 7 iterations and

at convergence for the elements highlighted in Figure 8.4 and highlights the violated

constraints:

RF = allowable strain
actual strain
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(a) After 7 iterations (b) At convergence

Figure 8.4: Violation of strain constraints in the local model.

Table 8.1: Composite axial strain.

Element ID

At 7 Iterations At Convergence

Drop in RF

Allowable Actual RF Actual RF

42403021 5.5 ◊10≠3 4.830 ◊10≠3 1.14 5.564 ◊10≠3 0.99 ≠0.15

42403023 5.5 ◊10≠3 5.002 ◊10≠3 1.10 5.757 ◊10≠3 0.96 ≠0.14

42403025 5.5 ◊10≠3 5.126 ◊10≠3 1.07 5.898 ◊10≠3 0.93 ≠0.14

42403027 5.5 ◊10≠3 5.221 ◊10≠3 1.05 6.003 ◊10≠3 0.92 ≠0.14

42403189 5.5 ◊10≠3 5.247 ◊10≠3 1.05 6.030 ◊10≠3 0.91 ≠0.14

42403191 5.5 ◊10≠3 5.218 ◊10≠3 1.05 5.993 ◊10≠3 0.92 ≠0.14

42403193 5.5 ◊10≠3 5.154 ◊10≠3 1.07 5.916 ◊10≠3 0.93 ≠0.14

42403195 5.5 ◊10≠3 5.031 ◊10≠3 1.09 5.772 ◊10≠3 0.95 ≠0.14

42403197 5.5 ◊10≠3 4.835 ◊10≠3 1.14 5.545 ◊10≠3 0.99 ≠0.15

8.1.5 On the Importance of Considering Local Sizing during

Global MDO

This example shows that excluding non-regular areas from the optimisation and leaving

them unconstrained can lead to a significant and unpredictable drop of the reserve

factors, even if the local area was initially correctly sized.

This problem may be solved by sizing the local part, but modifying the local sti�ness

and mass can dramatically alter the loadpaths of the entire structure and potentially

invalidate the design obtained by MDO. This is typical of non-regular areas like the one

presented, especially in the case of a sequence of similar cut-outs along the wing span.

Thus, local constraint violations like these, only discovered at a later stage, may force

the designers to repeat a multidisciplinary optimisation and therefore result in a costly

setback.
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8.2 A successful application of the global-local MDO

procedure: wingbox

8.2.1 Model and optimisation problem

In the following, a metallic wingbox is considered, with an inspection hole in the upper

skin, as an example of a ‘non-regular area”.

Four di�erent subcases are considered: three static analyses named ‘gust-up”, ‘landing”

and ‘manoeuvre” and static aeroelastic analysis representing a steady flight at Mach 0.3

with a dynamic pressure of 2.800 kPa and an angle of attack of 5.000¶.

The structure must be sized for minimal weight and is subject to strength constraints

defined as ‡actual < ‡allowable. With the following definition of RF:

RF = ‡allowable

‡actual
(8.1)

and the following definition of constraints:

g = 1 ≠ 1
RF

= 1 ≠ ‡actual

‡allowable
(8.2)

a constraint violation is implied by RF < 1 or equivalently g < 0.

Two modelling strategies can be used to analyse the structure. One, represented in

figure 8.5a, is based on a coarse model, which does not capture the geometry of the

hole, but uses equivalent material properties to match the sti�ness properties of the

local area. The other one, represented in figure 8.5b uses a su�ciently fine model to

accurately capture the deformation of the ‘non-regular area”, combined with a coarse

model for the remainder of the structure.

(a) Coarse model of the wingbox. (b) Global local model of the wingbox.

Figure 8.5: Coarse and global-local representations of the wingbox model. In the coarse
model, the non-regular area is modelled with degraded material properties so that its
overall sti�ness is equivalent to that of the global-local representation. In the global-
local representation, separate global (blue) and local (yellow) models are used. The
local model presents a finer mesh and a more accurate representation of the geometry
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In the following, two optimisation runs are compared. One, based on the coarse model,

is performed by standard Lagrange and represents the current way of working. Therein

the critical area (local model) is fixed and unconstrained, but sized to be initally locally

feasible including a design factor of 1.3 (minimum RF = 1.3) to account for later load

path changes. The other one, based on the global-local representation, follows the

application of the global-local approach, which allows to define local design variables

and constraints.

Figure 8.6 shows the thickness distribution of the initial design. The displacement

fields computed for this design can be applied at the boundary of a refined local model

to check for local constraints violations. As demonstrated by figure 8.7, which shows

the value of minimum RF, the design is locally feasible: any constraints violation would

be highlighted in red, dark blue represents a RF larger than 1.1 and green represents a

RF larger than 1.3. The fact that the local model is entirely above this threshold proves

not only that the design is feasible, but also that a conservative design factor provides

a margin for changes of the surrounding structure.

Figure 8.6: Initial thickness distribution. The scale used in the legend is logarithmic.

Figure 8.7: Initial minimum RF distribution. The initial design is feasible and the local
design is conservative, as it can be seen from the green color which represents a RF
larger than 1.3.
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8.2.2 Feasibility of results

The optimal design found by the Lagrange optimisation procedure, while keeping the

local fixed and unconstrained, as currently done during optimisation, leads to an unfea-

sible design as depicted in Fig. 8.8. This despite the fact that the local structure was

conservatively sized with an initial reserve factor of 1.3.

Figure 8.8: Minimum RF of Lagrange optimum. The global design on the left is feasible,
but when the local model is analysed in detail after the optimisation the unfeasiblity,
highlighted in red, is revealed.

The optimal design found with the proposed monolithic global-local optimisation pro-

cedure, using local design variables and constraints, is feasible, as shown in figure 8.9,

which depicts the distribution of minimum RF.

Figure 8.9: Minimum RF of global-local optimum. The design is feasible.

8.2.3 Comparison of designs

Figure 8.10 shows the initial design and the two optimal designs.

8.2.4 Comparison of histories

The optimal design found by the global-local strategy weighs 475.640 kg compared to

the weight of 473.444 kg of the unfeasible design obtained by the reference approach, as

shown in Fig. 8.11.
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(a) Initial thickness distribution.

(b) Lagrange optimal thickness distribution.

(c) Global-local optimal thickness distribution.

Figure 8.10: Comparison of initial and final designs.

8.2.5 Correcting the local design

In the standard design procedure, if the optimised design was locally unfeasible, design-

ers could attempt to resolve any constraint violation by manually modifying the design

using their engineering judgement. This section demonstrates that such an approach is

non-trivial, because optimal designs are generally close to the border of the infeasible

region and very sensitive to design changes.

By increasing the thickness of the local area from 3.0 mm to 4.5 mm the weight of the

structure becomes 475.271 kg, while the local design is still unfeasible and the unfeasi-

bility has propagated beyond the local model, as shown in Fig. 8.12. In particular the

weight of the local model increases from 3.653 kg to 5.480 kg.

A second way to mitigate the infeasible design would be to further adjust the design

factor for the fixed local model. However this would require either an iterative approach

by alternately optimizing and increasing the design factor, which would result in a
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Figure 8.11: History comparison of the objective. The two optimisations follow a similar
path. Coincidentally, the global-local approach satisfies the convergence criteria before
the reference approach.

Figure 8.12: Increasing the thickness of the local model is not a viable way of correcting
the design in Fig. 8.8. Before the local is su�ciently thick to become feasible, the
additional loads attracted in that area cause elements in the surroundings to become
unfeasible. This is often the case, since optimal designs are close to the boundaries of
the feasible region in the design space.

prohibitive computational cost, or by initially choosing an even higher design factor,

which would increase the mass even more and lead to a sub-optimal result. For a model

with multiple local areas, an estimation for the design factor proves to be even more

challeging and disadvantageous.

Hence, the example demonstrates that the standard design approach fails to find optimal

solutions that satisfy all the constrains, while the proposed global-local approach finds

a locally feasible optimal design, overcoming the limitations of the standard procedure.

8.3 Summary

Three case studies have been presented. The first one illustrated the shortcomings of the

standard optimisation procedure, when a single local model of a manhole with stringer

run-outs is applied to the model of an aircraft. The second case studies compared the

standard procedure and the proposed global-local methodology. Despite the best e�orts
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designers could make in avoiding local infeasibility the standard procedure was unable

to succeed, whereas the proposed procedure produced a feasible design. Furthermore, it

has been shown that correcting the infeasible design was not easy and would have lead

either to considerable delay or to a suboptimal design.
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Chapter 9

Conclusions

9.1 Summary and conclusions

A procedure for global-local MDO has been introduced to overcome the challenge posed

by “non-regular areas”, which as described in chapter 1 and demonstrated in chapter 8

can cause the optimal design to be infeasible, or suboptimal or not accurately evaluated

and compared with other designs.

The global-local MDO procedure described is based on a global-local analysis and an

ad-hoc semi-analytical coupled sensitivity analysis. Furthermore, in the procedure pre-

sented, the evaluation of constraints requires only a static analysis at local level, while

considering multiple disciplines at global level. This minimises the additional computa-

tional cost, while enhancing the reliability of the process and reducing the risk of major

setbacks in the product development.

9.1.1 Research contributions

The literature on MDO architectures has been reviewed and presented in chapter 3, with

a focus on their application to the optimisation of aircraft structures. The current use

of multiple models with di�erent levels of accuracy within an MDO procedure was eval-

uated. Furthermore, the available global-local analysis strategies have been reviewed,

in search of techniques suitable for the evaluation of detailed models of “non-regular

areas”. Static condensation and Specified Boundary Displacements (SBD) were chosen,

as they are simple well established coupling techniques. It was also found, that despite

the variety of global-local analysis strategies available, the global-local optimisation ap-

proaches are often based on a standard FE-analysis. Instead of integrating a global-local
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approach in the optimisation, the usual approach is to split the optimisation problem in

two or more levels. While the use of distributed architectures is more common, a mono-

lithic approach was deemed more appropriate for the case of “non-regular areas”. The

main goal of the procedure introduced is not the detailed design of local features, but

rather the enforcement of local feasibility. This is more easily achieved by considering

not only the design of local part itself, but also the design of the surrounding structure

and its influence on the loads injected into the local domain.

A novel global-local methodology suitable for the extension of an existing MDO proce-

dure was developed and presented in chapter 4. The global-local analysis methodology,

based on Guyan condensation and SBD, was complemented with a novel derivation of

the implied sensitivity analysis formulation, based on a semi-analytic computation of

the sensitivities.

The methodology was successfully implemented to extend the functionalities of La-

grange, by leveraging the available Lagrange/Python API, as described in chapter 5.

The implementation of the procedure is based on the exchange of information between

an instance for each FE-model and an optimiser. Furthermore some operations not al-

ready available, such as static condensation and the computation of coupled sensitivities

was implemented directly in Python, leveraging as much as possible the functionalities

available through the Lagrange interface. Despite the fact that the procedure was imple-

mented to extend Lagrange, it can be implemented connecting other available software

for FE-analysis and optimisation.

A study of the impact on computational cost was presented in chapter 6. The number

of active constraints and design variables were identified as the main drivers of cost.

Because of this, it was found that commonly adopted techniques, such as active set

strategy and design variables filtering, play an important role in limiting the impact

of constraints and design variables. It is recommended that particular care is taken in

limiting the introduction of additional local design variables. In combination with the

aforementioned techniques, the additional cost coming from the use of the presented

global-local methodology is deemed limited. Compared to the cost of simply refining

the model used for MDO, the presented global-local approach o�ers some computational

advantages, mainly coming from the fact that only static analysis is considered at local

level and that local models can be studied in parallel.

In chapter 7 the correct implementation was verified through a series of tests, meant

to separately verify the implementation of the analysis or the computation of the sensi-
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tivities or the verification of the optimisation procedure, based on the assumption that

analysis and sensitivities are correctly computed.

Lastly, in chapter 8 it was demonstrated that the reference strategy of leaving “non-

regular areas” fixed and unconstrained can lead to designs with local infeasibility. It

was also proved, that this is the case even if the initial local design is very conservatively

pre-sized. Furthermore, it was shown that successive modifications of a locally infeasible

optimal design are not a good solution, not only because they would lead to a sub-optimal

design, but also because it may be hard to obtain a feasible design. On the contrary, the

global-local MDO was capable of finding an optimal design, with a weight comparable

to the one obtained with the reference approach, but feasible. Thus, it was proven that

the developed global-local MDO procedure successfully overcomes the challenge posed

by “non-regular areas” in the preliminary design of aircraft structures.

9.1.2 Limitations of the developed procedure

The developed global-local MDO procedure has not been extended to other disciplines

already available through Lagrange, such as eigenvalue, frequency response, flutter and

gust analysis. The implementation is limited to static analysis and static aeroelasticity

at global level and static analysis only at local level.

The implementation relies on the Lagrange/Python interface and all newly developed

core functionalities are coded in Python, rather than integrated within Lagrange.

The procedure is based on SBD for the solution of the local model. An advantage of this

is that, direct enforcement of a displacement field at the boundary of a refined model is

the current way to evaluate the internal stress distribution in later design stages. On the

other hand, specifying boundary conditions in terms of loads instead of displacements

would be preferred for the evaluation of buckling.

Thanks to the use of condensation, the procedure is suitable for treating any type of

“non-regular area”, regardless of its complex geometry, but it does not take advantage

of the fact that many local areas are similar.

9.2 Future work

Future work to extend and improve the proposed procedure would include the following:

• The procedure should be implemented within Lagrange, making use of optimized

algorithms and leveraging the potential for parallelisation between di�erent lo-
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cal models and at algorithm level. A thorough evaluation of the computational

cost should be considered. Moreover, one could explore the potential for further

computational savings o�ered by matrix inverse update methods.

• The procedure should be extended to other disciplines like gust analysis at global

level. Furthermore, the industry would be interested in the possbility to extend

local analysis to FE-buckling. To this end, one could explore alternatives to SBD

as a coupling formulation, such as SBSF.

As an alternative to the proposed procedure, future work could:

• investigate the potential of response surfaces and surrogate modelling techniques

for cost e�cient evaluation of local constraint violation. To this end one could

identify a particular class of local areas and combine the parametrisation of the

local area needed for analysis with the parametric generation of a detailed model

for successive validation of the optimisation results.
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Appendix A

Static condensation

A.1 Condensation is exact

Given a system of equation:

Ku = p (A.1)

and its block decomposition:

S

WU
Kaa Kao

Koa Koo

T

XV

S

WU
a

o

T

XV =

S

WU
pa

po

T

XV (A.2)

From the second block equation, it follows:

Koaa + Kooo = po (A.3)

Kooo = po ≠ Koaa (A.4)

o = K
≠1

oo po ≠ K
≠1

oo Koaa (A.5)

And the first block equation, can be re-written as:

Kaaa + Kaoo = pa (A.6)

Kaaa + KaoK
≠1

oo po ≠ KaoK
≠1

oo Koaa = pa (A.7)
#
Kaa ≠ KaoK

≠1

oo Koa

$
a = pa ≠ KaoK

≠1

oo po (A.8)

So given a system of equations Ku = p, if Koo is invertible, it follows that the system
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is equivalent to: Y
__]

__[

#
Kaa ≠ KaoK

≠1
oo Koa

$
a = pa ≠ KaoK

≠1
oo po

Kooo = po ≠ Koaa

(A.9)

A.2 Conditions for condensation

The static condensation of a system

S

WU
Kaa Kao

Koa Koo

T

XV

S

WU
a

o

T

XV =

S

WU
pa

po

T

XV

is possible if Koo is invertible.

Let the system represent a local model, where a are the DOFs at the interface and o are

the internal DOFs.

If the local model is correctly defined, without internal mechanisms, then it has at most

6 dependent equations ( 0 Æ dim(Ker(K) Æ 6 ), corresponding to the 6 rigid body

motions.

If fixing a constrains all 6 independent RBM, then the system Kooo = po ≠ Koaā is

solvable or equivalently Koo is invertible.

Thus, if a local model becomes solvable when the interface nodes are constrained, it can

be condensed.
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Appendix B

Static aeroelastic formulation

B.1 Aerodynamic solution

The aerodynamic analysis considered in this work always assume an inviscid, incom-

pressible, irrotational fluid, which can be solved with the potential theory. In particular

the doublet lattice method is used [76], which solves the discretised equation:

[AIC] � = bc (B.1)

where [AIC] is the matrix of aerodynamic influence coe�cients, bc is the vector of

aerodynamic boundary conditions and � is the vector of vortex strength.

B.2 Fluid structure coupling

The aeroelastic problem is the result of the coupling of aerodynamic fluid solution and

structural elastic deformation:

Y
__]

__[

Ku = f(�)

[AIC] � = bc(u)

two linear system of equations, one for the static analysis and one for the aerodynamic

analysis, whose solution a�ects the RHS of the other system.
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B.3 Reformulation of the coupled problem

Instead of iterating between solving the structural and the aerodynamic equation, the

problem can be rewritten in the form:

Ku = f([AIC]≠1
bc(u)) (B.2)

Ku = p + f
A
rigid + Cu (B.3)

(B.4)

The first step is to divide f(�) in two components:

f(�) = p + f
A(�) (B.5)

where fAe represents the aerodynamic loads and p all the other (static) loads.

The aerodynamic forces depend on the di�erence in pressure coe�cients:

fAe(�) = TSA · q · A · �CP (�) (B.6)

The dependency on � is changed into a dependency on u using [AIC] � = bc(u):

�CP i = 2
ci

· �i (B.7)

= 2
ci

·
#
AIC

≠1
$

ij
· bcj (B.8)

= [AICCP ]ij · bcj (B.9)

�CP (�) = [AICCP ] · bc(u) (B.10)

So the aerodynamic loads become:

fAe(u) = TSA · q · A · [AICCP ] · bc(u) (B.11)

With this, (eq. B.5) now becomes:

f(u) = p + f
A(u) (B.12)
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And the coupled problem can be rewritten in a single equation as:

Ku = p + f
A(u) (B.13)

This formulation can be further manipulated by decomposing bc(u) as:

bc(u) = bcstate + bcshape + bcelastic(u) (B.14)

= bcstate + bcshape + TAS · u (B.15)

(B.16)

which leads to reformulating equation (B.11) as:

fAe(u) = TSA · q · A · AICCP ·
!
bcstate + bcshape + bc(u)

"
(B.17)

= TSA · q · A · AICCP ·
!
bcstate + bcshape

"
+ TSA · q · A · AICCP TAS · u (B.18)

= f
A
rigid + C · u (B.19)

where the aeroelastic sti�ness matrix is defined as:

C = q · TSA · A · AICCP · TAS (B.20)

With this, B.5 becomes:

f(u) = p + f
A
rigid + C · u (B.21)

and the coupled problem yields the discretised equation used in this thesis:

Ku = p + f
A
rigid + C · u (B.22)
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Appendix C

Methodology derivation

Given the global system of equations for static analysis:

S

WU
Kzz Kzi

Kiz Kii

T

XV

S

WU
z

i

T

XV =

S

WU
pz

pi

T

XV (C.1)

the local condensed system of equation:

K
†
aai = p

†
a (C.2)

and the coupling

i = a (C.3)

which can be written as: S

WWWWU

z

i

a

T

XXXXV
=

S

WWWWU

I ·

· I

· I

T

XXXXV

S

WU
z

i

T

XV (C.4)
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It follows that:

S

WWWWU

Kzz Kzi ·

Kiz Kii ·

· · K
†
aa

T

XXXXV

S

WWWWU

z

i

a

T

XXXXV
=

S

WWWWU

pz

pi

p
†
a

T

XXXXV
(C.5)

S

WU
I · ·

· I I

T

XV

S

WWWWU

Kzz Kzi ·

Kiz Kii ·

· · K
†
aa

T

XXXXV

S

WWWWU

I ·

· I

· I

T

XXXXV

S

WU
z

i

T

XV =

S

WU
I · ·

· I I

T

XV

S

WWWWU

pz

pi

p
†
a

T

XXXXV
(C.6)

S

WU
Kzz Kzi

Kiz Kii + K
†
aa

T

XV

S

WU
z

i

T

XV =

S

WU
pz

pi + p
†
a

T

XV (C.7)

The same applies to the case of a global aeroelastic analysis.
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Appendix D

Computational cost of

computing dP
dx

The static part of the pseudo-load vector dP
G

dxL
is computed according to eq. 4.31.

The computational cost of computing dK
†
aa

dxL
i according to eq. 5.10 is:

CdK* = O(nona
2)nL

3
compute dKoa

dxL
i

4
(D.1)

+ O(no
2)nL

3
left multiply dKoa

dxL
i by y (cached)

4
(D.2)

+ O(nona
2) (compute Koai (could be cached)) (D.3)

+ O(no
2)

!
left multiply Koai by K

≠1

oo

"
(D.4)

+ O(nano
2)nL

3
left multiply K

≠1

oo Koai by dKao

dxL

4
(D.5)

+ O(no
3)nL

3
left multiply K

≠1

oo Koai by dKoo

dxL

4
(D.6)

+ O(no
2)nL

3
left multiply dKoo

dxL
K

≠1

oo Koai by y

4
(D.7)
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The computational cost of computing dp
†
a

dxL
is:

Cdp* = O(no
2)

!
compute K

≠1

oo po

"
(D.8)

+ O(nano
2)nL

3
left multiply K

≠1

oo po by dKao

dxL

4
(D.9)

+ O(no
3)nL

3
left multiply K

≠1

oo po by dKoo

dxL

4
(D.10)

+ O(no
2)nL

3
left multiply dKoo

dxL
K

≠1

oo po by y

4
(D.11)

+ O(no
2)nL

3
left multiply dpo

dxL
by y

4
(D.12)

Since no ∫ na, the total computational cost of computing dP

dx
is therefore O(no

3), for

each local model.
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Appendix E

Rationale for choosing

between direct and adjoint

In sensitivity analysis, objective and constraints are derived with respect to the design

variables. These usually depend on the design variables directly and indirectly through

the solution field.
dg

dx
= ˆg

ˆx
+ ˆg

ˆu

du

dx
(E.1)

In the case of static analysis, when computing the implicit part of the gradient:

(implicit) = ˆg

ˆu

du

dx
(E.2)

= ˆg

ˆu
K

≠1
P

ı (E.3)

one has to essentially solve a product of three matrices. (The formula above, valid for

static analysis is proven here). In this specific case the dimensions are:

(C ◊ DOF )(DOF ◊ DOF )(DOF ◊ DV ) (E.4)

where:

C: number of constraints (E.5)

DOF : number of degrees of freedom (E.6)

DV : number of design variables (E.7)

The direct and adjoint method are di�erent, in that they solve these products in a
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di�erent order. In practice, one of the two products is obtained as a solution of a linear

system of equations, for K
≠1 is not explicitly computed.

E.1 Direct method

In the direct method,
du

dx
= K

≠1
P

ı (E.8)

is actually obtained by solving:

K
du

dx
= P

ı

the linear system has a size of DOF and must be solved DV times.

Then the implicit part is computed as:

(implicit) = ˆg

ˆu

du

dx
(E.9)

E.2 Adjoint method

Similarly, let a be:

a = ˆg

ˆu
K

≠1 (E.10)

by right multiplying both sides by K, the relation becomes:

aK = ˆg

ˆu
(E.11)

so a can be obtained by solving the adjoint system:

K
T

a
T = ˆg

ˆu

T

(E.12)

which gives the method its name. The system has a size of DOF and must be solved C

times. The implicit part is computed as:

(implicit) = aP
ı (E.13)

E.3 Comparison of computational cost

Let L(DOF ) be the computational cost of solving a linear system of equations.
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The product of two matrices of size (a◊b)(b◊c) requires to compute b products for each

entry of the resulting matrix. Thus an estimate of the computaional cost is: nP = abc.

In the direct method,

(C ◊ DOF )
5
(DOF ◊ DOF )(DOF ◊ DV )

6
(E.14)

the computational cost is:

L(DOF ) · DV + C · DOF · DV (E.15)

In the adjoint case,

5
(C ◊ DOF )(DOF ◊ DOF )

6
(DOF ◊ DV ) (E.16)

the computational cost is:

C · L(DOF ) + C · DOF · DV (E.17)

Therefore, if C > DV , the direct method requires fewer operations, while if instead

DV > C, the adjoint method is more convenient:

Y
__]

__[

C > DV =∆ choose direct

DV > C =∆ choose adjoint

(E.18)

The same argument can be made for disciplines other than static analysis.
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