
Automated Design of
Population-Based Algorithms:

A Case Study in Vehicle
Routing

Wenjie Yi

20187866

First Supervisor: Rong Qu
Second Supervisor: Dario Landa Silva

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy

January 27, 2023

Abstract

Metaheuristics have been extensively studied to solve constraint combinato-
rial optimisation problems such as vehicle routing problems. Most existing
algorithms require considerable human effort and different kinds of expertise
in algorithm design. These manually designed algorithms are discarded after
solving the specific instances. It is highly desirable to automate the design of
search algorithms, thus to solve problem instances effectively with less human
intervention.

This thesis develops a novel general search framework to formulate in a unified
way a range of population-based algorithms. Within this framework, generic
algorithmic components such as selection heuristics on the population and
evolution operators are defined, and can be composed using machine learning
to generate effective search algorithms automatically. This unified framework
aims to serve as the basis to analyse algorithmic components, generating ef-
fective search algorithms for complex combinatorial optimisation problems.
Three key research issues within the general search framework are identified:
automated design of evolution operators, of selection heuristics, and of both.

To accurately describe the search space of algorithm design as a new task
for machine learning, this thesis identifies new key features, namely search-
dependent and instance-dependent features. These features are identified to
assist effective algorithm design. With these features, a set of state-of-the-art
reinforcement learning techniques, such as deep Q-network based and proxi-
mal policy optimisation based models and maximum entropy mechanisms have
been developed to intelligently select and combine appropriate evolution opera-
tors and selection heuristics during different stages of the optimisation process.
The effectiveness and generality of these algorithms automatically designed
within the proposed general search framework are validated comprehensively
across different capacitated vehicle routing problem with time windows bench-
mark instances. This thesis contributes to making a key step towards au-
tomated algorithm design with a general framework supporting fundamental
analysis by effective machine learning.

i

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor Dr.

Rong Qu for her invaluable advice, continuous support, and patience during my

Ph.D study. Her immense knowledge and plentiful experience have encouraged

me throughout my academic research and daily life. I would also like to thank

my second supervisor Dr. Dario Landa-Silva for his suggestions on my Ph.D

training.

My sincere thanks to many researchers and visiting scholars of the Computa-

tional Optimisation and Learning (COL) research group. It is their kind help

and support that have made my study and life in the UK a wonderful time.

This Ph.D research would not have been possible without the financial sup-

port of the Vice-Chancellor’s Scholarship provided by the School of Computer

Science, University of Nottingham.

Finally, I would like to thank my family: my parents Mr. Keping Yi and

Ms. Xiuzhu Chen, my sister Jieyun Yi, and my brother Xiaomin Yi. Without

my family’s tremendous understanding and encouragement in the past few

years, I would not have been able to continue my studies during difficult time,

especially during the COVID-19 pandemic.

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Vehicle Routing Problems . 1

1.2 Existing Approaches for Combinatorial Optimisation Problems . 2

1.3 Motivations and Objectives . 5

1.4 Contributions . 9

1.5 Organisation of the Thesis . 11

2 Related Work 14

2.1 Optimisation Models of the Vehicle Routing Problem 14

2.2 Search Algorithms for the Vehicle Routing Problem 17

2.2.1 Single-solution Based Algorithms 18

2.2.2 Population-based Algorithms 20

2.3 Automated Design of Search Algorithms 24

2.3.1 Automated Algorithm Configuration 24

2.3.2 Automated Algorithm Selection 25

2.3.3 Automated Algorithm Composition 27

2.4 Machine Learning for Automated Algorithm Design 30

2.4.1 Existing Features for Automated Algorithm Design . . . 30

2.4.2 Existing Machine Learning Techniques for Automated

Algorithm Design . 31

2.5 Summary . 36

3 A Novel General Search Framework to Support Effective Al-
gorithm Design 37

iii

CONTENTS iv

3.1 Introduction . 37

3.2 Proposed General Search Framework 39

3.2.1 Selection for Evolution Module 43

3.2.2 Selection for Replacement Module 44

3.2.3 Evolution Module . 44

3.3 Key Research Issues within GSF 45

3.4 Summary . 46

4 Feature Identification for Automated Algorithm Design 48

4.1 Introduction . 48

4.2 Identified Features . 50

4.2.1 Search-dependent Features 51

4.2.2 Instance-dependent Features 53

4.3 Proposed Reinforcement Learning Method 54

4.3.1 State Representation . 57

4.3.2 Action Representation 58

4.3.3 Reward Scheme . 58

4.3.4 Episode Setting . 59

4.4 Experiments and Discussions . 59

4.4.1 Effectiveness of the Identified Features 61

4.4.2 Search Pattern Analysis of the Best Automatically De-

signed Algorithms . 63

4.5 Summary . 70

5 Automated Composition of Evolution Operators 72

5.1 Introduction . 72

5.2 Proposed Reinforcement Learning Method 74

5.2.1 State Representation . 78

5.2.2 Action Representation 80

5.2.3 Reward Scheme . 80

5.3 Experiments and Discussions . 81

5.3.1 Effectiveness of the Learning Models 81

5.3.2 Generality of the Learning Models 89

5.4 Summary . 90

6 Automated Composition of Evolution Operators and Selection
Heuristics 92

6.1 Introduction . 92

6.2 Proposed Maximum Entropy Reinforcement Learning Method . 96

6.2.1 State Representation . 99

6.2.2 Action Representation 99

6.2.3 Reward Scheme . 100

6.3 Experiments and Discussions . 100

6.3.1 Automated Composition of Selection Heuristics 101

6.3.2 Automated Composition of Selection Heuristics and Evo-

lution Operators . 106

6.3.3 Automated Composition of Evolution Operators 115

6.4 Summary . 115

7 Conclusions and Future Research 118

7.1 Main Contributions . 118

7.1.1 Novel General Search Framework to Support Automated

Algorithm Design . 119

7.1.2 Feature Identification for Automated Algorithm Design . 119

7.1.3 Automated Composition of Evolution Operators 120

7.1.4 Automated Composition of Selection Heuristics and Evo-

lution Operators . 121

7.2 Limitations and Future Works 121

Bibliography 125

Appendices 140

A The Neural Networks in DQN-GSF and PPO-GSF 140

v

List of Tables

3.1 Modules within GSF . 40

3.2 Single-solution based and population-based search algorithms

defined with GSF . 41

3.3 Four population archives within GSF 42

3.4 The heuristic/operator set for the modules within GSF in Figure

3.1 . 43

3.5 HSE: heuristics in selection for evolution module 43

3.6 HSR: heuristics in selection for replacement module 44

3.7 OE: evolution operators for CVRPTW 45

4.1 Symbols used for defining search-dependent features in Table 4.2 51

4.2 Search-dependent features . 52

4.3 Symbols for instance-dependent features in Table 4.4 53

4.4 Instance-dependent features . 53

4.5 Notations used in PPO methods in Figure 4.1 56

4.6 The selected VRPTW benchmark dataset 60

4.7 Setting of the comparison algorithms 61

4.8 Performance of the algorithms with different features during

testing . 64

5.1 Notations used in DQN-GSF and PPO-GSF 76

5.2 Definition of the state space . 79

vi

5.3 Comparisons on selected type-C instances (influence of Q-value

function approximator).] and ∗ indicate DQN-GSF is signifi-

cantly different from Random-GSF and QL-GSF, respectively,

i.e. p < 0.05 . 84

5.4 Comparisons on selected type-R instances (influence of Q-value

function approximator).] and ∗ indicate DQN-GSF is signifi-

cantly different from Random-GSF and QL-GSF, respectively,

i.e. p < 0.05 . 84

5.5 Comparisons on selected type-RC instances (influence of Q-

value function approximator).] and ∗ indicate DQN-GSF is

significantly different from Random-GSF and QL-GSF, respec-

tively, i.e. p < 0.05 . 84

5.6 Comparisons on selected type-C instances (influence of policy

update mechanisms). ∗ indicates PPO-GSF is significantly dif-

ferent from DQN-GSF, i.e. p < 0.05 86

5.7 Comparisons on selected type-R instances (influence of policy

update mechanisms). ∗ indicates PPO-GSF is significantly dif-

ferent from DQN-GSF, i.e. p < 0.05 87

5.8 Comparisons on selected type-RC instances (influence of pol-

icy update mechanisms). ∗ indicates PPO-GSF is significantly

different from DQN-GSF, i.e. p < 0.05 88

5.9 Generality across the same-type of instances. ∗ indicates PPO-

GSF is significantly different from DQN-GSF, i.e. p < 0.05 . . . 88

5.10 Generality across different-type of instances (type-C). ∗ indi-

cates PPO-GSF is significantly different from DQN-GSF, i.e.

p < 0.05 . 88

5.11 Generality across different-type of instances (type-RC). ∗ indi-

cates PPO-GSF is significantly different from DQN-GSF, i.e.

p < 0.05 . 89

vii

6.1 Performance comparison during the testing process (learning on

selection for evolution heuristics, i.e. se), type-R1 103

6.2 Performance comparison during the testing process (learning on

selection for evolution heuristics, i.e. se), type-R2 103

6.3 Performance comparison during the testing process (learning on

selection for evolution heuristics, i.e. se), type-RC1 103

6.4 Performance comparison during the testing process (learning on

selection for evolution heuristics, i.e. se), type-RC2 104

6.5 Performance comparison during the testing process (learning on

selection for replacement heuristics, i.e. sr), type-R1 105

6.6 Performance comparison during the testing process (learning on

selection for replacement heuristics, i.e. sr), type-R2 105

6.7 Performance comparison during the testing process (learning on

selection for replacement heuristics, i.e. sr), type-RC1 105

6.8 Performance comparison during the testing process (learning on

selection for replacement heuristics, i.e. sr), type-RC2 107

6.9 Performance comparison during the testing process (learning on

evolution operators vs. learning on both selection heuristics and

evolution operators), type-R1 109

6.10 Performance comparison during the testing process (learning on

evolution operators vs. learning on both selection heuristics and

evolution operators), type-R2 110

6.11 Performance comparison during the testing process (learning on

evolution operators vs. learning on both selection heuristics and

evolution operators), type-RC1 111

6.12 Performance comparison during the testing process (learning on

evolution operators vs. learning on both selection heuristics and

evolution operators), type-RC2 112

6.13 Generality of the trained policy R101 (20 runs) 113

viii

CONTENTS ix

6.14 Performance comparison during the testing process (learning on

evolution operators), type-R . 116

6.15 Performance comparison during the testing process (learning on

evolution operators), type-RC 116

List of Figures

2.1 Example of a CVRPTW instance and a solution (with one depot

and nine customers) . 16

2.2 A basic algorithm configuration procedure 25

2.3 A basic algorithm selection framework 27

2.4 Selection hyper-heuristics framework 29

3.1 General search framework . 41

3.2 Solution encoding of a CVRPTW with nine customers and three

vehicles . 45

3.3 Illustration of evolution operators in Table 3.7 46

4.1 Research framework of the proposed reinforcement learning method

in the context of automated algorithm design 55

4.2 Influence of different feature sets on the learning model during

training (type-C) . 62

4.3 Influence of different feature sets on the learning model during

training (type-R) . 62

4.4 Influence of different feature sets on the learning model during

training (type-RC) . 63

4.5 Utilisation of operators during training (type-C, with search-

dependent and instance-dependent features) 65

4.6 Utilisation of operators during training (type-R, with search-

dependent and instance-dependent features) 65

x

LIST OF FIGURES xi

4.7 Utilisation of operators during training (type-RC, with search-

dependent and instance-dependent features) 65

4.8 Utilisation of operators during training (type-C, with only search-

dependent features) . 66

4.9 Utilisation of operators during training (type-R, with only search-

dependent features) . 66

4.10 Utilisation of operators during training (type-RC, with only

search-dependent features) . 66

4.11 Transition of operators in the best designed algorithm (type-C,

with search-dependent and instance-dependent features) 67

4.12 Transition of operators in the best designed algorithm (type-R,

with search-dependent and instance-dependent features) 67

4.13 Transition of operators in the best designed algorithm (type-RC,

with search-dependent and instance-dependent features) 68

4.14 Transition of operators in the best designed algorithm (type-C,

with only search-dependent features) 68

4.15 Transition of operators in the best designed algorithm (type-R,

with only search-dependent features) 69

4.16 Transition of operators in the best designed algorithm (type-RC,

with only search-dependent features) 69

5.1 Reinforcement learning in the context of automated algorithm

composition in GSF . 75

5.2 Influence of policy update mechanisms on the learning models

(type-C problem instances) . 85

5.3 Influence of policy update mechanisms on the learning models

(type-R problem instances) . 86

5.4 Influence of policy update mechanisms on the learning models

(type-RC problem instances) . 87

6.1 Proposed reinforcement learning for automated composition within

GSF . 96

6.2 Performance comparison during the training process (learning

on selection for evolution heuristics, i.e. se) 102

6.3 Performance comparison during the training process (learning

on selection for replacement heuristics, i.e. sr) 106

6.4 Performance comparison during the training process (learning

on evolution operators vs. learning on both selection heuristics

and evolution operators) . 108

6.5 The most adapted algorithmic components of the best designed

search algorithms obtained by ACE LAS both 114

A.1 Details of the neural network of DQN-GSF 140

A.2 Details of the neural network of PPO-GSF 141

xii

Chapter 1

Introduction

This chapter begins by introducing the vehicle routing problem with time

windows, which is the case study in this thesis. Then, existing approaches for

solving vehicle routing problems, including exact approaches, metaheuristics

and automated design approaches, are discussed. Details of the objectives and

major contributions are provided, followed by the organisation of this thesis.

1.1 Vehicle Routing Problems

The vehicle routing problem (VRP) is a type of combinatorial optimisation

problems (COPs) which involve finding the best possible solution from a finite

set of feasible solutions. It has gained significant attention from both academia

researchers and industry professionals due to its practical applications in trans-

portation [1] and logistic distribution [2], [3].

In the VRP, the main objective is to find the optimal set of routes to be per-

formed by multiple vehicles to serve a given set of customers while satisfying

various constraints [4]. These constraints typically include limitations on ve-

hicle capacity, the time windows of customers, vehicle availability and depot

visitation. The VRP is a computational challenging problem. It has been

proved to be NP-hard [5], and for large-scale instances with more than 100

nodes (i.e customers), finding a general solution is practically infeasible [6].

1

Chapter 1. Existing Approaches for Combinatorial Optimisation Problems2

Therefore, the VRP serves as a well-established and challenging benchmark

problem for evaluating the performance of different algorithms. Consequently,

this thesis selects the VRP as the case study, driven by the significance of its

role as a benchmark problem.

The capacitated vehicle routing problem with time windows (CVRPTW) is

considered one of the most extensively studied VRP variants within opera-

tions research and optimisation communities. The CVRPTW incorporates

time-window constraints, making it particularly relevant to real-world logis-

tics scenarios. By adopting the CVRPTW as a benchmark, researchers can

effectively compare their proposed algorithms with existing approaches, facil-

itating a fair evaluation and benchmarking of the algorithm performance.

The focus of this thesis is on the automated algorithm design itself, and for this

purpose, we have selected challenging CVRPTW instances with 100 customers

as case studies. These instances serve as suitable problems to investigate the

effectiveness of the designed algorithm.

1.2 Existing Approaches for Combinatorial Op-

timisation Problems

In the existing literature, there are numerous algorithms for solving complex

combinatorial optimisation problems such as the vehicle routing problem. The

two most commonly used categories are exact approaches and metaheuristics.

The former focuses on finding the optimal solution, while the latter aims to

obtain satisfactory solutions within a limited computational time. In addition,

in recent years, with the advancement of machine learning algorithms, the

research field has seen the emergence of using machine learning methods to

automatically design new search algorithms to provide solutions in different

scenarios. Note that VRP is selected as the case study for this thesis, this

section will focus on reviewing existing approaches specifically designed for

Chapter 1. Existing Approaches for Combinatorial Optimisation Problems3

solving the VRP.

Exact Approaches:

Exact approaches, such as cutting plane algorithm, column generation and

branch-and-price, aim to find the optimal solution by exhaustively exploring

all possible solutions. Exact approaches are able to guarantee the optimal

of the produced solution, but their computational complexity increases expo-

nentially with problem size, making them suitable for small or medium-sized

instances. For large-scale vehicle routing problems which includes more than

100 customers, exact approaches require high computational time due to the

exponential search space. Therefore, albeit many exact approaches exist to

solve VRP efficiently, the fact remains that large-scale or more complicated

types of VRP are not easily tackled by exact approaches. This can be ob-

served in the literature that there are no known optimal solutions for most

CVRPTW instances with 100 customers.

Metaheuristics:

Metaheuristics, which can be roughly categorised into single-solution based

algorithms and population-based algorithms, are higher-level strategies that

guide the search process in finding good-quality solutions in a reasonable

amount of time but may not guarantee optimality.

Single-solution based algorithms such as simulated annealing [7], tabu search

[8] and variable neighbourhood search [9], have been proposed to solve VRP

variants effectively. Population-based algorithms such as the genetic algorithm

[10], particle swarm optimisation [11] and ant colony optimisation [12], have

also shown to be effective on different VRP variants. Although there exists

many metaheuristics for solving VRP, they generally adopt a specific type

of pre-defined metaheuristic to address the specific VRP variant, requiring

considerable human effort and different kinds of expertise to make various

algorithm design decisions such as choosing the suitable metaheuristic tem-

plate and tuning the corresponding hyper-parameters. Furthermore, these

customised metaheuristics are often discarded after solving a specific VRP in-

Chapter 1. Existing Approaches for Combinatorial Optimisation Problems4

stance, resulting in a significant waste of human resources. Therefore, it is

desirable to automate the process of algorithm design to reduce the burden on

human experts.

Automated Design Approaches:

Towards automated algorithm design, the problem of designing metaheuristics

itself is defined as a combinatorial optimisation problem in [13], upon a search

space of different decision variables, e.g. algorithm parameters, portfolio of al-

gorithms or algorithmic components. The research in this field therefore can be

categorised into automated algorithm configuration, algorithm selection, and

algorithm composition, based on the different types of decision variables con-

sidered in the search space of algorithms [13]. The first category aims to auto-

matically configure the parameters of a specific type or a family of algorithms.

The second category focuses on selecting a candidate algorithm or combin-

ing several existing algorithms against problem/instance characteristics. In

contrast to these two categories, by combining the basic algorithmic com-

ponents, automated algorithm composition aims to generate general-purpose

algorithms, i.e. the algorithms generated do not belong to any specific search

algorithms, e.g., genetic algorithm or particle swarm optimisation, etc.

Algorithm configuration can determine a well-performing parameter setting;

however, it requires sufficient prior knowledge about which specific algorithm

should be used. Algorithm selection addresses the limitation of the first cat-

egory; however, it introduces the difficult and complex problem of identifying

the key characteristics of the problems/instances. Automated algorithm com-

position aims to flexibly compose and generate new algorithms; however, some

human expertise is still required to pre-select candidate heuristics in existing

frameworks. This thesis falls into the third category, i.e. automated algorithm

composition, to investigate the elementary and basic components to automat-

ically design search algorithms.

Summary:

Exact approaches are usually not applicable to large-scale or complicated com-

Chapter 1. Motivations and Objectives 5

binatorial optimisation problems. Metaheuristics show great potential for ob-

taining high-quality solutions within a reasonable computational time. How-

ever, when designing a highly specialised metaheuristic, human experts are

required to make a large number of design decisions. To address this issue,

automated algorithm design has recently attracted considerable attention from

the research community. Automated algorithm design is still an under explored

research area albeit some successful preliminary attempts .

1.3 Motivations and Objectives

Most evolutionary algorithms and metaheuristics in the existing literature have

been manually designed by researchers of different expertise, many with ad hoc

chosen algorithms for the specific problems in hand. With the recent rapid de-

velopment of artificial intelligence, particularly in machine learning, for solving

complex real-world problems have motivated the advances towards automated

design of search algorithms. Within the domain of automated algorithm de-

sign, automated algorithm composition is gaining increasing attention due to

its greater potential to generate more general search algorithms to effectively

solve complex COPs, such as vehicle routing problems. It is not subjected to

existing specific search algorithm templates such as the genetic algorithm [10]

or the particle swarm optimisation algorithm [11]. The focus of this thesis is on

the automated algorithm composition problem, leveraging advanced machine

learning techniques for effective search algorithm design. This section aims to

present existing frameworks, features, and learning techniques employed in the

automated algorithm design process.

In automated algorithm composition, a set of heuristics is automatically com-

bined to generate new search algorithms to solve instances across different

problem domains. The most investigated technique is hyper-heuristics [14],

which involves intelligently selecting or generating appropriate heuristics for

a given situation. Frameworks developed include HyFlex [15], EvoHyp [16],

Chapter 1. Motivations and Objectives 6

and SHH [17], etc. HyFlex explores a decision space of low-level heuristics (i.e

a set of problem-specific rules or algorithms) or heuristic operators (e.g., tak-

ing search operators from ten well-known techniques as building blocks [18])

while EvoHyp adapts evolutionary algorithms as high-level strategies. SHH is

specifically built for automatically combining different components of swarm

intelligence algorithms [17]. In addition, some composition frameworks have

been built within specific metaheuristic templates, such as CMA-ES [19] and

PSO-DE [20].

In supporting effective automated algorithm composition using machine learn-

ing techniques, different types of features have been proposed in the existing

literature. The most investigated feature types include search-dependent fea-

tures and instance-dependent features. Search-dependent features encompass

observations of the search process itself, such as the mean and standard devia-

tion of the population fitness, and the average distance from the best individual

[21]. On the other hand, instance-dependent features capture the fundamental

characteristics of the problem instances. Other types of features, such as land-

marking features [22] and image features [23], are not included in this thesis

as they are specifically tailored to solution encoding scheme and therefore are

not transferable for developing a general methodology; this would not serve

the purpose of automated algorithm design.

Different machine learning techniques have been employed to support the au-

tomated algorithm composition as a new learning task in the literature. The

most investigated one is Reinforcement Learning (RL) [24], which models the

problem of algorithm design as a Markov Decision Process (MDP). RL is a

learning technique, where an agent determines an optimal action at each state

based on its interactions with the environment. At each new state of the envi-

ronment, the agent selects an action from a set of actions. Based on the rewards

or punishments after performing each selected action, the agent learns to intel-

ligently select the action in the current state by forming the state-action pairs

through trial and error [25]. In the context of automated algorithm composi-

Chapter 1. Motivations and Objectives 7

tion, the state is defined by various features while the action is represented by

the basic algorithmic components. Some RL methods, including tabular RLs

such as SARSA [24] and Q-learning [26], deep RLs such as Deep Q-Network

(DQN) [27] and Proximal Policy Optimisation (PPO) [28], have been used to

support the automated algorithm design task in recent literature.

The research gaps in the field of automated design of search algorithms can

be identified from three perspectives, i.e. framework establishment, feature

identification and learning models development, as shown below.

• From the perspective of framework establishment, although existing au-

tomated algorithm composition frameworks (e.g. HyFlex, EvoHyp and

SHH) have been successfully used for solving a variety of COPs, several

limitations remain. HyFlex requires a set of pre-defined or problem-

specific heuristics rather than basic algorithmic components to generate

more general and powerful search algorithms for wider range of problems.

EvoHyp predefines the selection operator and evolution operator, while

SHH mixes these two types of operators. These frameworks thus build

on the reduced search space of algorithm design, however, result in the

loss of some advantageous combinations of basic components which may

never be obtained or explored.

• From the perspective of feature identification, utilising machine learning

techniques to assist automated algorithm design is still at a preliminary

stage albeit some successful attempts across different disciplines. One

of the important issues is on how to identify the key features to ac-

curately characterise the search space for building successful machine

learning. Although various features, such as search-dependent features

and instance-dependent features, have been extracted for effective algo-

rithm design in the literature, there is a lack of a systematic investigation

analysing the extracted features within a consistent and general frame-

work.

Chapter 1. Motivations and Objectives 8

• From the perspective of learning models development, one research is-

sue in applying tabular RL is concerned with the discretisation of the

continuous state space, leading to unreliable results [29], [30]. Addi-

tionally, the number of identified features is limited and insufficient for

effective learning. Furthermore, the use of simple positive/negative re-

ward schemes may fail to accurately reflect the effects of the selected

action. Moreover, it is often not clear how the RL techniques within the

hyperheuristic framework have been devised, i.e. lack of clear definition

on the three fundamental elements of RL, namely the state, action and

reward scheme. There exists a significant scope and gap in this area of

research, as it is often challenging to reimplement the exact same method

and subsequently replicate the experiments.

The above raised research gaps motivate us to systematically investigate au-

tomated design of population-based algorithms to effectively solve COPs in

different scenarios. Based on this, three research questions (RQ) are presented

as follows:

• RQ1: what kind of framework can be established to serve as the basis of

analysing algorithms for automated algorithm design?

• RQ2: what kind of features can be identified to capture useful and suf-

ficient information for assisting effective algorithm design?

• RQ3: what kind of machine learning techniques can automatically design

effective search algorithms with little human intervention?

Based on the motivations and research questions, the main aim of this the-

sis can be summarised as: To systematically investigate automated design of

population-based algorithms for constraint combinatorial optimisation prob-

lems, taking the vehicle routing problem as a case study. To achieve this goal,

three main research objectives are derived as follows:

Chapter 1. Contributions 9

• Objective 1: to develop a general search framework to serve as the basis

of analysing algorithms for automated design and identify key research

issues.

• Objective 2: to identify the key features to provide useful and sufficient

information about the search space of algorithm design for building suc-

cessful machine learning.

• Objective 3: to develop machine learning models with the identified fea-

tures to address key research issues within the proposed general search

framework.

1.4 Contributions

This overall objective of this thesis is to develop a general search framework

(GSF), to support automated design of population-based algorithms. The

capacitated vehicle routing problem with time windows (CVRPTW) is used

as a case study in this thesis. A set of reinforcement learning based models

are devised to address different key research issues within GSF, producing

promising results. The contributions of this thesis include:

• Establishment of a New General Search Framework: a novel

general search framework (GSF) is established to formulate different

single-solution based and population-based algorithms. The unified GSF

serves as the basis to analyse algorithmic components, generating effec-

tive search algorithms for CVRPTW automatically.

• Feature Identification: two groups of features, namely search-dependent

and instance-dependent features, are identified to capture useful informa-

tion for RL thus assisting effective algorithm design. A state-of-the-art

reinforcement learning technique, proximal policy optimisation (PPO)

[28], is employed to analyse the influence of different state representa-

tion (i.e. with different identified features).

Chapter 1. Contributions 10

• Algorithmic Component Analysis: Search patterns of the algorithms

which are automatically designed by machine learning, consisting of the

utilisation and transition of algorithmic components, are analysed to

further provide insights into reusing knowledge extracted in algorithm

design using machine learning.

• Automated Composition of Evolution Operators: the automated

algorithm composition process is formulated as a MDP. Two advanced

deep RL methods, deep Q-network (DQN) [27] and proximal policy opti-

misation (PPO) [28], have been investigated within the proposed GSF to

address the key issue of automated selection and combination of the most

efficient evolution operators during different stages of evolution. Results

on CVRPTW benchmarks demonstrate the effectiveness of the trained

policy compared to a search procedure without learning. The general-

ity of the trained policy is further validated by applying it directly to

new CVRPTW instances. In addition to the knowledge extracted and

retained in the DQN and PPO models, the training time of RL-based

techniques is also justified by the time and expertise needed to develop

new models and algorithms from scratch to tackle new problem instances.

• Automated Composition of Selection Heuristics and Evolution

Operators: the automated algorithm composition problem is systemat-

ically investigated by exploring the design space within different modules

of the general search framework separately using controlled experiments,

exploring the whole design space without fixing components manually.

A state-of-the-art reinforcement learning method with a maximum en-

tropy mechanism is developed to tackle the automated algorithm de-

sign problem with a continuous state space and a high-dimensional dis-

crete action space. The analysis on comprehensive experiments on the

CVRPTW benchmark instances demonstrate the effectiveness and gen-

erality of the proposed method transferring knowledge discovered into

Chapter 1. Organisation of the Thesis 11

solving new problem instances.

The aforementioned contributions are part of or included in the following list

of works completed during the PhD studies:

• Wenjie Yi, Rong Qu, Licheng Jiao, Ben Niu. Automated Design of

Metaheuristics Using Reinforcement Learning within a Novel General

Search Framework. IEEE Transactions on Evolutionary Computation,

2022. Doi:10.1109/TEVC.2022.3197298.

The content of this paper is covered in Chapter 3 and Chapter 5.

• Wenjie Yi, Rong Qu, Licheng Jiao. Automated Algorithm Design Using

Proximal Policy Optimisation with Identified Features. Expert Systems

with Applications, Volume 216, 15 April 2023,119461.

The content of this paper is covered in Chapter 4.

• Wenjie Yi, Rong Qu. Automated Design of Search Algorithms based on

Reinforcement Learning, paper under review.

The content of this paper is covered in Chapter 6.

1.5 Organisation of the Thesis

This thesis is structured as follows:

• Chapter 2 presents the related work, including the optimisation models

of the VRP, existing approaches for solving combinatorial optimisation

problems such as the VRP, automated algorithm design and correspond-

ing machine learning approaches. Details of the basic CVRPTW model

are described. This chapter reviews and analyses the advantages and

drawbacks of the current automated algorithm design research within

three categories. This chapter also presents the existing studies on utilis-

ing machine learning techniques on the new task of automated algorithm

design, especially those based on reinforcement learning.

Chapter 1. Organisation of the Thesis 12

• A novel general search framework to support effective algorithm design

is presented in Chapter 3. Based on the existing literature, some generic

and specific algorithmic components, including selection heuristics on the

population and evolution operators, are defined within the general search

framework. This chapter also presents three key research issues within

the proposed framework: automated composition of evolution operators,

of selection heuristics, and of both.

• Two types of key features for building successful machine learning, i.e.

search-dependent and instance-dependent features, are identified in Chap-

ter 4 to accurately describe the search space of algorithm design as a

new task for machine learning. Then, an advanced reinforcement learn-

ing method is devised to automatically design search algorithms with

the newly identified key features. The effectiveness of the identified fea-

tures is validated and the component analysis of the best automatically

designed algorithms is presented.

• Chapter 5 focuses on the first research issue within the proposed gen-

eral search framework: automated composition of evolution operators.

Two reinforcement learning based methods, deep Q-network based and

proximal policy optimisation based methods, have been devised to au-

tomatically select suitable evolution operators during the optimisation

process. The effectiveness and generality of the proposed methods are

validated comprehensively across different CVRPTW instances.

• Chapter 6 focuses on the second and third key research issues within the

proposed general search framework: automated composition of selection

heuristics and of both selection heuristics and evolution operators. This

chapter systematically investigates the impact of individual algorithmic

components and the synergy between multiple algorithmic components.

An advanced reinforcement learning method with adapted maximum en-

tropy mechanisms is devised to tackle the automated algorithm problem

Chapter 1. Organisation of the Thesis 13

with a continuous state space and a high-dimensional action space. The

effectiveness and generality of the proposed methods are validated across

different CVRPTW instances.

• Chapter 7 summarises the contributions of this thesis. Limitations and

suggestions for further improvements are also presented.

Chapter 2

Related Work

This chapter starts by firstly introducing the optimisation models of the vehi-

cle routing problem. Second, the related work on search algorithms for solving

the VRP is presented. Third, the existing scientific literature on automated al-

gorithm design is presented. Fourth, this chapter reviews the existing machine

learning techniques for automatically designing search algorithms. Finally,

the related studies utilising reinforcement learning techniques for automated

algorithm design are presented.

2.1 Optimisation Models of the Vehicle Rout-

ing Problem

The vehicle routing problem is arguably one of the most important transport

scheduling problems. In the classic model CVRPTW, a fleet of vehicles are

routed to serve the customers with the minimal distance, satisfying capacity

and time windows constraints. Due to its generality, CVRPTW is used as a

benchmark problem in evaluating the performance and general applicability

of the methodologies proposed in the research of other VRP variants [31],

[32], [33], [34], [35], [36]. This thesis will investigate the CVRPTW to better

understand the proposed reinforcement learning based automated algorithm

design approaches.

14

Chapter 2. Optimisation Models of the Vehicle Routing Problem 15

The CVRPTW can be mathematically formulated as follows [37]:

A fleet of K vehicles are used to serve n customers. To customer vi, the service

start time bi must fall within the time window [ei, fi], where ei and fi represent

the earliest and latest time to serve qi (i.e. the demand of vi), respectively. If

a vehicle arrives at vi at time ai < ei, a waiting time wi = max {0, ei − ai} oc-

curs. Consequently, the service start time bi = max {ei, ai}. Each vehicle with

a capacity Q travels on a route connecting a subset of customers starting from

v0 and ending within the schedule horizon [e0, f0]. dij represents the distance

from customer vi to customer vj.

Decision variables:

Xk
ij = 1, if the edge from vi to vj is assigned in the route of vehicle k; otherwise

Xk
ij = 0.

Objective functions:

Minimise K (2.1)

Minimise
∑
k∈K

∑
vi∈V

∑
vj∈V

Xk
ijdij (2.2)

Constraints: ∑
k∈K

∑
vi∈V

Xk
ij = 1,∀vi ∈ V \ {vo} (2.3)

∑
k∈K

∑
vj∈V

Xk
ij = 1,∀vj ∈ V \ {vo} (2.4)

∑
k∈K

∑
vi∈V

∑
vj∈V \{vo}

Xk
ij = n (2.5)

∑
vj∈V

Xk
oj = 1, ∀k ∈ K (2.6)

∑
vi∈V

Xk
ij −

∑
vj∈V

Xk
ji = 0,∀k ∈ K, vj ∈ V \ {vo} (2.7)

∑
vi

Xk
io = 1,∀k ∈ K (2.8)

Chapter 2. Optimisation Models of the Vehicle Routing Problem 16

ei 6 bi 6 fi,∀vi ∈ V (2.9)

∑
vi∈V

∑
vj∈V

Xk
ijqi 6 Q, ∀k ∈ K (2.10)

Xk
ij ∈ {0, 1} ,∀vi, vj ∈ V, k ∈ K (2.11)

The first objective is to minimise the number of vehicles (Equation (2.1))

while the second objective is to minimise the total travelled distance (Equation

(2.2)). Constraints (2.3–2.5) limit every customer to be visited exactly once

while ensuring that all customers are served. Constraints (2.6–2.8) define the

route by vehicle k. Constraints (2.9) and (2.10) define the customer time

windows constraint and vehicle capacity constraint, respectively. Constraint

(2.11) defines the domain of the decision variables Xk
ij.

As shown in Equation (2.12), we adapt the mostly used evaluation function in

the literature, where the two objectives are transformed into a single objective

with a penalty weight factor c=1000 to assign a higher priority to the first

objective [38]. Figure 2.1 provides an illustrative example of CVRPTW with

three routes/vehicles and a single depot.

f =
∑
k∈K

K∑
vi∈V

∑
vj∈V

Xk
ijdij + c×K (2.12)

Figure 2.1: Example of a CVRPTW instance and a solution (with one depot and
nine customers)

The Solomon benchmark dataset [39] consists of six sets of instances of dif-

ferent characteristics (C1, C2, R1, R2, RC1 and RC2). The instances differ

with respect to the customers’ geographical locations, vehicle capacity, den-

Chapter 2. Search Algorithms for the Vehicle Routing Problem 17

sity and tightness of the time windows. Customers in instance sets C1 and

C2 are clustered geographically; while customers in instance sets R1 and R2

are randomly located. Instance sets RC1 and RC2 contain a mixture of ran-

dom and clustered customers. The customer locations are identical for the

same type of problem instances. The instances within one type differ with re-

spect to the density and tightness of the time windows, i.e. the percentage of

time-constrained customers and the width of the time windows. The Solomon

benchmark dataset has been extended and applied to other VRP variants re-

search due to its ability to effectively represent the characteristics of real-world

VRP instances and demonstrate strong scalability. The CVRPTW remains a

challenge to current state-of-the-art research since the CVRPTW instances

with more than 100 nodes (i.e. customers) are unsolvable in general [6].

2.2 Search Algorithms for the Vehicle Routing

Problem

Due to their non-convex problem structure and complex constraints, VRP and

its variants are NP-hard [5]. Different algorithms have been extensively inves-

tigated and successfully applied to VRP. These algorithms can be roughly clas-

sified into exact approaches and metaheuristic algorithms. Exact approaches,

such as branch-and-bound, branch-and-cut and Lagrangian relaxation, are de-

signed in such a way that the solutions they find can be guaranteed to be

optimal. However, exact approaches are usually not applicable to complicated

or large-scale problems as they require exponential computational time. There-

fore, albeit many approaches exist to solve VRP efficiently, the fact remains

that large-scale or more complicated types of VRP are not easily tackled by

exact approaches.

With the increasing difficulties arising from VRP, such as multiple objectives

and complex constraints, this optimisation problem is likely to be intractable

Chapter 2. Search Algorithms for the Vehicle Routing Problem 18

for exact approaches, regardless of exponentially increasing computing power.

Metaheuristic algorithms, which are able to find a good approximate solution

within a reasonable computational time, have attracted considerable atten-

tion from the operational research and evolutionary computation communi-

ties. Metaheuristic algorithms can be categorised into single-solution based

and population-based algorithms [40]. This section presents the related work

on utilising different metaheuristic algorithms to investigate VRP.

2.2.1 Single-solution Based Algorithms

Single-solution based algorithms concern only one candidate solution during

the whole search process. Simulated annealing (SA), tabu search (TS), and

variable neighbourhood search (VNS) are currently among the most popular

single-solution based algorithms for VRP in the literature.

(1) Simulated Annealing

Simulated annealing was first proposed by Metropolis et al.[7] and introduced

into combinatorial optimisation by S.Kirkpatrick [38]. It is a stochastic opti-

misation algorithm based on Monte-Carlo iterative strategy and the similarity

between the annealing process of solid substances in physics and combinato-

rial optimisation problems. Simulated annealing starts from a certain high

initial temperature, with the continuous decrease of temperature parameters.

This algorithm is able to escape from local optima by accepting worse solu-

tions based on the temperature probabilistically and finally reaches the global

optimal solution.

Intensive research has been conducted utilising SA as a VRP solver [41],[42],

[43], [44], [45]. One research direction is on combining the standard SA with

well-known heuristics to improve neighbourhood searching. For example, Alfa

et al. [46] developed a hybrid SA combined with the 3-opt operator to solve

the basic VRP and Ilhan et al. [47] proposed an improved SA with crossover

Chapter 2. Search Algorithms for the Vehicle Routing Problem 19

operator as a CVRP solver.

(2) Tabu Search

Tabu search, proposed by Glover et.al [8], starts from an initial feasible solu-

tion, and chooses the move which improves the fitness function most. A worse

solution can be accepted if there is no improvement in the solution. To prevent

being trapped into local optima, a tabu list is built to forbid the selection of

already visited solutions.

The research on applying TS to VRP can be classified into how to generate the

initial solution and how to design the neighbourhood structure. In terms of the

first category, for example, Wang et al. [48] proposed a modified TS considering

time randomness to obtain better initial VRP solutions. Regarding the second

research direction, Berbotto et al. [49] designed a tabu search algorithm based

on granular neighbourhood structure, which performs well on many benchmark

instances.

(3) Variable Neighbourhood Search

The variable neighbourhood search utilises several different neighbourhoods to

search systematically [9]. VNS has been extensively investigated for different

types of VRP. In a study conducted by Braysy [50], a modified VNS based on

a four-phase approach showed to be effective on the VRPTW. A new route

construction heuristic was proposed to generate an initial solution, and a route

elimination procedure was used to improve the solutions in terms of the number

of vehicles in the second phase. Then, four novel local search procedures were

designed to improve the solutions with respect to the total travelled distance

and finally the objective function was modified to escape from local optima.

Multiple-depot VRPTW was first tackled using VNS by Polacek et al. [51].

The corresponding competitive experiment with a TS algorithm confirmed

the superiority of VNS. Later, several studies have investigated the utilisation

of VNS for the VRPTW. For instance, Chen et al. [52] composed several

Chapter 2. Search Algorithms for the Vehicle Routing Problem 20

independent neighbourhood operators into compound neighbour operators to

tackle the VRPTW which considers minimising the number of vehicles and

the total travelled distance simultaneously. In addition to VRPTW, VNS has

also been used to tackle the large-scale VRPs [53], multi-objective VRP [54],

the open VRP [55] and other variants.

2.2.2 Population-based Algorithms

Unlike single-solution based algorithms, population-based algorithms are as-

sociated with a set of solutions rather than a single solution. The most inves-

tigated population-based algorithms are Evolutionary Algorithms (EAs) and

Swarm Intelligence (SI).

(1) Evolutionary Algorithms

Evolutionary algorithms are motivated by Darwin’s evolutionary theory, which

simulates the evolution processes of selection, crossover and mutation to find

near- or global-optimal solutions. Evolutionary algorithms consist of mainly

genetic algorithm (GA) [10], evolution strategies (ES) [56], evolutionary pro-

gramming (EP) [57], and genetic programming (GP) [58].

There are typically five algorithmic modules within EAs, including initialisa-

tion, selection for evolution, evolution, selection for replacement and termi-

nation. At the beginning of EAs, initialisation is used to produce the initial

population. Then, individuals from the population are selected as parents

through ‘selection for evolution’ heuristics. Evolution operators, including mu-

tation and crossover, are applied to offspring and parents. Finally, ‘selection

for replacement’ heuristics are used to update the current population with the

offspring. The termination criteria is usually set as a predefined maximum

number of iterations or the maximum computational time.

The most classical instance of evolutionary algorithms is the genetic algorithm

[10] and it has been extensively investigated to certain types of VRP, e.g.,

Chapter 2. Search Algorithms for the Vehicle Routing Problem 21

CVRP [59], [60], [61], [62], VRPTW [63], [64], [65], [66] and VRPTWSD [67].

In the process of solving VRP by using GA, a common problem lies in the large

number of infeasible solutions generated after applying crossover operators. To

address this issue, many studies have attempted to design the chromosomes

with trip delimiters and use a repair procedure to generate feasible solutions.

However, such procedures weaken the genetic transmission of information from

parents to offspring. To bridge the gap, Prins [68] firstly hybridised a special

splitting procedure with GA to convert a chromosome into a feasible VRP so-

lution without any repair procedures. This design can guarantee the feasibility

of the solution after crossover without using repair mechanisms. GAs have also

been successfully applied to different variants of multi-objective vehicle rout-

ing problems (MOVRP), such as MOVRP with time windows [69], multi-trip

VRP [70], and multi-depot green VRP [71]. In these applications, most GAs

are the variants of Non-dominated Genetic Algorithm II (NSGAII) [72] which

utilises the fundamental concept in multi-objective optimisation, i.e. Pareto

dominance.

(2) Swarm Intelligent Algorithms

Since the 1990’s, swarm intelligent algorithms, as a new kind of computa-

tional intelligence, have attracted considerable attention from the optimisa-

tion research community [73]. These novel intelligent algorithms are general-

purpose stochastic search approaches originated with the observation of social

behaviour in biological systems.

A considerable amount of literature investigate novel swarm intelligent algo-

rithms in the last few decades. Most of them are inspired by the behaviour

of swarms. Ant colony optimisation (ACO) [12] is motivated from the forag-

ing behaviour of ants; particle swarm optimisation (PSO) [11] is motivated

from swarm behaviour of bird flocking or fish schooling; artificial bee colony

algorithm (ABC) [74] is stimulated by social specialisation behaviour of bees;

artificial fish swarm algorithm (AFS) [75] is originated from the swarming

Chapter 2. Search Algorithms for the Vehicle Routing Problem 22

behaviour of fish. Swarm intelligent algorithms have demonstrated high per-

formance and great development potential in real-world applications such as

VRP. Two commonly used swarm intelligent algorithms for VRP are PSO and

ACO.

PSO algorithm, which is inspired by the food-seeking behaviours of birds, has

become the most extensively investigated swarm intelligence algorithm due

to its simple implementation and strong global optimisation capability [76].

Every particle, i.e a candidate solution of the optimisation problem, is varied

according to its own search experience and relationship with other particles

within the population. Gradually the population moves into promising regions

of the search space due to its learning mechanism.

Most applications of PSO have concentrated on continuous optimisation while

some work has been done to discrete optimisation. When applying PSO to the

VRP, algorithm designers are required to propose suitable encoding and de-

coding mechanisms. For example, a random-key based encoding and decoding

mechanism for tackle VRP has been proposed [77]. Specifically, a VRP solu-

tion with n customers and m vehicles is represented as a (n+2m)-dimensional

particle and the decoding method is based on the customer priority list and

vehicle priority matrix. Encoding and decoding methods have been success-

fully applied to solve CVRP [77] and the vehicle routing problem with simul-

taneous pickup and delivery (VRPSPD) [78]. Another research direction to

address the route coding issue is to hybridise PSO with local search meth-

ods. For example, a multiple phase neighbourhood search-greedy randomised

adaptive search procedure (MPNS-GRASP), expanding neighbourhood search

(ENS), and a path relinking (PR) strategy have been hybridised in PSO to

solve large-scale VRP [79]. A new version of PSO based on tabu search has

been proposed to tackle the encoding and decoding issues and it has showed

to be efficient on the VRP [80]. To date, PSO has shown to be effective on

several VRP variants, including VRP with capacity constraint [77], VRP with

simultaneous pickup and delivery [78], VRP with time windows [52], and VRP

Chapter 2. Search Algorithms for the Vehicle Routing Problem 23

with stochastic demands [81].

Ant colony optimisation models the optimisation process upon path-finding

behaviours of a colony of ants searching for food [12]. The basic idea can be

summarised as: the path of ants is used to represent the feasible solution of

the problem, and all the paths of the whole ant colony constitute the solution

space of the problem to be optimised. Ants with shorter paths released more

pheromones. As time went on, the concentration of pheromones accumulated

on shorter paths increased gradually, and the number of ants choosing this

path increased. Finally, the whole ant colony will converge to the optimal

path.

However, certain drawbacks need to be addressed applying original ACO to

real-world applications such as the VRP. The major drawbacks are its inabil-

ity to escape from local optima and poor time performance. Several studies

have attempted to adjust the pheromone approach and introduce new mu-

tation/crossover operators to the original ACO. An improved ACO with an

ant-weight strategy to update the increased pheromone and a mutation oper-

ation showed to be effective on the VRP [82]. An ACO has been hybridised

with the saving algorithm and λ-interchange mechanism to solve VRPTW

[83]. Besides, to escape from local optima, pheromone approach has been ad-

justed and a disaster operator has been introduced within the hybrid ACO

method. Bin et al. proposed a modified ACO to tackle period vehicle rout-

ing problem with time windows (PVRPTW). A multi-dimension pheromone

matrix is used to accumulate heuristic information on different days and two-

crossover operations are introduced to improve the performance of ACO [84].

Another research direction involves the usage of a multiple ACO to solve the

corresponding multiple objective vehicle routing problem. For example, a hi-

erarchy of artificial ant colonies is designed where the first colony minimises

the number of vehicles while the second colony minimises the total travelled

distances. Colonies cooperate by exchanging information through pheromone

updating [85]. There also exist works on ACO to solve a VRP with more than

Chapter 2. Automated Design of Search Algorithms 24

two objectives. For example, a modified multiple ACO is designed to produce

Pareto optimal solutions for the VRPTW with three objectives: the number

of vehicles, the total travelled distance, and the total delivery time [86].

2.3 Automated Design of Search Algorithms

Metaheuristic algorithms, although shown to be effective on solving complex

COPs such as VRP, usually work for particular problem instances and heavily

rely on different and extensive human expertise. To address the limitations,

automated algorithm design has received considerable research attention in

recent years [87], [88].

The research in this field can be categorised into algorithm configuration, al-

gorithm selection, and algorithm composition, based on the different types

of decision variables considered in the search space of algorithms [13]. This

section provides a detailed review and analysis of these different automated

algorithm design techniques.

2.3.1 Automated Algorithm Configuration

Most metaheuristics in the literature are manually tuned by testing all possible

or the most promising parameter values and then find the best setting for a

specific problem instance, which is computationally expensive and problem-

dependent. The same parameter configuration is not likely performing well

on unseen problem instances. In addition, there may exist better parameter

configurations which may never be explored. This motivates researchers to

automate the configuration process, i.e. automated algorithm configuration.

Automated algorithm configuration aims to determine a well-performing pa-

rameter setting of a given algorithm across a given set of problem instances

automatically. A basic algorithm configuration procedure [89] is shown in

Figure 2.2. Note that algorithm configuration is considered as a black-box op-

timisation problem within this procedure. A target algorithm with a specific

Chapter 2. Automated Design of Search Algorithms 25

parameter setting is executed on problem instances (configuration scenario).

Then, the performance of the target algorithm on the configuration scenario

is used to guide the selection of subsequent target algorithm.

Figure 2.2: A basic algorithm configuration procedure

A number of frameworks have been established to automatically configure

search algorithms. These frameworks include ParamILS [90], which utilises

iterated local search, F-race [91] and irace [92], both using racing mechanism,

and the surrogate-based methods such as SPOT [93], SMAC [94], MIP-EGO

[95] and Hyperopt [96]. There are also other algorithm configuration frame-

works based on a component-based view, such as multi-objective ant colony

optimisation algorithms (MOACOs) [97], and the extended multi-objective

evolutionary algorithms (MOEAs) framework [98].

2.3.2 Automated Algorithm Selection

Most existing studies usually select a specific type/family of metaheuristic

algorithm manually to tackle a specific optimisation problem, requiring con-

siderable human efforts choosing a candidate algorithm or combine several

existing algorithms against problem/instance characteristics. To address this

issue, researchers have attempted to investigate automated algorithm selection.

A basic algorithm selection framework composed of four components [99] is

illustrated in Figure 2.3.

• The first component, i.e. the problem space, needs to be properly defined

using mathematical notation, but the fact remains that some problems

Chapter 2. Automated Design of Search Algorithms 26

cannot be easily described mathematically.

• The second component, i.e the algorithm space, contains the smallest set

of algorithms which perform well on a large subset of problems in the

problem space. The included algorithms need to satisfy the requirements

of complementation and robustness simultaneously. In other words, they

should be able to solve different types of problems with a scientifically

demonstrable accuracy.

• The third component is the performance space with indicators to measure

the accuracy, speed, or other requirements of the algorithm. Due to the

complexity of the problem space and algorithm space , it is not easy to

obtain solutions to algorithm selection problem.

• The fourth component, i.e. the characteristics space, is introduced to

simplify the problem [99]. Characteristics, which rely on problem do-

mains, should be able to reflect the complexity of the problem space and

assess the advantages and disadvantages of every algorithm within the

algorithm space. In this regard, the fourth component is the most impor-

tant one when utilising this framework to automate algorithm selection

process.

Algorithm selection can be roughly categorised into one-algorithm selection,

including per-instance and per-set algorithm selection, and multiple-algorithm

selection, including algorithm schedule and algorithm portfolio.

In one-algorithm selection, one single algorithm is selected to solve a given

problem instance (per-instance) or a group of problem instances (per-set).

The basic algorithm selection framework shown in Figure 2.3 belongs to the

per-instance one-algorithm selection. The major limitation of this framework

is that it cannot be reused for other instances of the same problem, i.e. low

generality. To address this limitation, researchers have further developed per-

set algorithm selection methods aiming at solving a group of problem instances.

Chapter 2. Automated Design of Search Algorithms 27

Figure 2.3: A basic algorithm selection framework

Multiple-algorithm selection aims to select and combine different search algo-

rithms to effectively solve the given problem. Research can be mainly cate-

gorised into algorithm schedule and algorithm portfolio. Algorithm schedule

arranges different algorithms at different stages of the problem-solving pro-

cess [100] while algorithm portfolio runs the algorithms within the portfolio in

parallel [101].

A number of frameworks have been established to automatically select search

algorithms. These frameworks developed include PAP [102], which integrates

different evolutionary algorithms to solve numerical optimisation problems,

and Hydra [103], with a configuration technique for portfolio-based algorithm

selection, and machine learning based algorithm selectors [104].

2.3.3 Automated Algorithm Composition

Unlike automated algorithm configuration and automated algorithm selection,

automated algorithm composition aims to generate general-purpose search al-

gorithms which can obtain high-quality solutions across different problem in-

stances/domains rather than just one problem instance or a group of problem

instances.

Chapter 2. Automated Design of Search Algorithms 28

From the algorithmic perspective, a number of novel metaheuristic algorithms

have been proposed in recent years, especially those based on new metaphors.

However, the novelty of such metaheuristic algorithms has been questioned

[105]. In some metaheuristics literature, researchers make a large amount

of efforts in designing the search process based on the behaviour of differ-

ent swarms but without fundamental and scientific contributions to the field.

These proposed algorithms do not introduce any new ideas but simply rename

existing methods with the same underlying concepts. Metaheuristics should

be analysed from a component-based perspective to obtain truly innovative

and fundamental ideas. These ideas consist of analysing the contribution of

the common components within the existing metaheuristics to the solution

quality and developing truly powerful methods based on the analytical results.

The most investigated technique in this field is hyper-heuristics [14]. Corre-

sponding frameworks, including HyFlex [15], EvoHyp [16] and SHH [17], have

been established.

Hyper-heuristics [14], which are broadly concerned with intelligently selecting

or generating appropriate heuristics in a given situation, present to be one of

those automated algorithm composition techniques. The basic selection hyper-

heuristic framework is illustrated in Figure 2.4 [106]. The core motivation

behind hyper-heuristics is to increase the generality level of different heuristics

by drawing on the advantages and recognising the disadvantages of low-level

heuristics. Due to the generality of hyper-heuristics, they have been extensively

investigated and successfully applied to a wide range of applications such as

timetabling [107], [108], graph colouring [109], and VRPTW [110].

HyFlex [15] and EvoHyp [16] are the two most popular hyper-heuristics plat-

forms in the existing literature. Provided with problem-specific low-level heuris-

tics to specific optimisation problems, HyFlex enables algorithm designers to

develop cross-domain search algorithms. With HyFlex, algorithm designers

can concentrate on the design of high-level strategies rather than putting a

large amount of efforts on understanding problem domain knowledge. Com-

Chapter 2. Machine Learning for Automated Algorithm Design 29

Figure 2.4: Selection hyper-heuristics framework

pared to HyFlex, EvoHyp tends to be more concerned with the utilisation of

evolutionary computation techniques as high-level strategies to combine low-

level heuristics.

Regarding the integration of population-based algorithms with hyper-heuristics

frameworks, there are mainly two ways. First, a specific population-based al-

gorithm can be used as a high-level strategy in hyper-heuristics. An individual

within the population is encoded as a low-level heuristic or a sequence of low-

level heuristics. The objective is to maximise the performance of the heuristic

combination that generates the solution. Previously studied techniques in this

category include particle swarm optimisation (PSO) [111], bacterial foraging

optimisation (BFO) [112], [113], ant colony optimisation (ACO) [114], and

cuckoo search (CS) [115]. The second way is to utilise a hyper-heuristic for

local/neighbourhood search within a specific population-based algorithm. Ev-

ery individual is encoded as a candidate solution of the problem. Previously

studied techniques in this category include PSO [116] and ABC [117], [118].

Another hyper-heuristics framework, named swarm hyper-heuristic (SHH), is

specifically built to automatically combine different components of swarm in-

telligent algorithms [17].

Chapter 2. Machine Learning for Automated Algorithm Design 30

2.4 Machine Learning for Automated Algorithm

Design

This section reviews the existing literature on integrating machine learning into

automated algorithm design for combinatorial optimisation problems, which

are a challenging subset of optimisation problems due to their discrete nature

and the potential combinatorial explosion of the search space. Section 2.4.1

shows the existing features employed in the context of automated algorithm

design, since feature selection showed to be one of the current key research

issues in developing successful machine learning. Section 2.4.2 reviews different

categories of machine learning for dealing with the learning task of automated

algorithm design.

2.4.1 Existing Features for Automated Algorithm De-

sign

To support automated design of metaheuristics, the first important step is to

identify key features which can comprehensively capture the characteristics of

the search space of algorithms and the problem instances. Existing features

used for automated algorithm design can be roughly categorised into search-

dependent features and instance-dependent features. Other types of features,

such as landmarking features [22] and image features [23], are not included in

this study as they are specifically associated with the solution encoding scheme

and therefore are not transferable for developing a general methodology; this

would not serve the purpose of automated algorithm design.

Search-dependent features aim to describe the search process itself accurately.

These features can be extracted during the search process of metaheuristics,

and roughly divided into two categories. The first category is stage-based, such

as the current iteration or stage of the search process [119]. The second cat-

egory is solution-based which are usually derived from the solutions obtained

Chapter 2. Machine Learning for Automated Algorithm Design 31

by metaheuristics, such as the best fitness, the fitness growth [22], the number

of feasible solutions, the number of feasible solutions that are better than the

initial solution [23], and the mean/standard deviation of explored solutions

[22], [21].

Instance-dependent features consist of specific characteristics extracted from

the problem instance definition, which can be divided into two categories. For

VRP, the first category includes customer-based features, e.g., the mean/maximum

/median and the skewness of the customer demand and the service time of cus-

tomer, etc [23]. The second category of constraint-related features include the

vehicle capacity, the average time-window size and the average time-window

overlap [22].

Albeit various features have been proposed in the literature, it remains chal-

lenging to represent the search space of algorithms and to characterise problem

instances, resulting in the low generality of existing search algorithms. Al-

though showed to perform well on some selected benchmark datasets, existing

features cannot always be extended to solve other benchmark datasets or real-

world problem instances. It is necessary to conduct a systematic investigation

on the impact of different feature sets on the performance of the metaheuristics,

thus to support automated algorithm design with effective learning.

2.4.2 Existing Machine Learning Techniques for Auto-

mated Algorithm Design

Machine learning is an area of artificial intelligence that can learn and im-

prove from experience automatically. Machine learning tasks can be generally

classified by learning mode into three categories [120]: supervised learning,

unsupervised learning, and reinforcement learning. A number of techniques

within these different categories have been adopted in the literature to sup-

port the learning task of automated algorithm design including automated

algorithm configuration, selection and composition.

Chapter 2. Machine Learning for Automated Algorithm Design 32

Supervised and Unsupervised Learning:

In supervised learning, the values of both input variables and output vari-

ables are known. Given the correct label of a set of training data, supervised

learning techniques can learn the mapping relationship to predict the labels of

unseen data. In the context of automated algorithm configuration, supervised

learning techniques, including linear regression, logistic regression and random

forest, have been employed to automatically determine parameter settings of

search algorithms. Results on tuning search algorithms for travelling salesman

problem and vehicle routing problem have demonstrated the superiority of this

automated method [121], [122]. Regarding the applications on automated al-

gorithm selection, supervised learning techniques such as k-nearest neighbours

and ridge regression have shown to be effective in selecting suitable algorithms

for travelling salesman problem [123] and SAT [124], [125]. Compared to auto-

mated algorithm configuration and selection, there has been relatively less work

on utilising supervised learning methods to assist automated algorithm compo-

sition although there has been some successful attempts within the framework

of hyper-heuristics. These attempts include neural networks to classify the al-

gorithmic compositions generated by a graph-based hyper-heuristics proposed

for exam timetabling problem [126] and extract hidden patterns for open VRP

[127], and associative classification algorithms and decision trees to predict

the behaviour of low-level heuristics used by a hybrid hyper-heuristic for the

training scheduling problem [128]. Although these supervised learning meth-

ods show to be effective on the automated algorithm design task, especially on

automated algorithm configuration, they heavily rely on the labelled training

data. When solving complex real-world problems through automated algo-

rithm design, obtaining labels for the data is not always feasible which limit

the application of supervised learning methods.

Compared to supervised learning and reinforcement learning, the utilisation

of unsupervised learning techniques in automated algorithm design has been

Chapter 2. Machine Learning for Automated Algorithm Design 33

relatively limited. In unsupervised learning, the values of input variables are

known while the values of output variables are unknown. Unsupervised learn-

ing techniques are used to describe structures and rules hidden in unlabelled

data. In the context of automated algorithm design, unsupervised learning are

mainly employed in automated algorithm configuration and selection. Regard-

ing the applications on automated algorithm configuration, they are used to

cluster features, aiming to enhance efficiency and avoid inappropriate classifi-

cation. For instance, k-means has been employed to cluster instance-dependent

features to improve the configuration performance [129] and automatically de-

sign neighbourhoods during the search process [130]. As for the application on

automated algorithm composition, a clustering technique has been combined

with a genetic algorithm to select low-level heuristics for solving large-scale ve-

hicle routing problems [131], and k-means has been combined with Q-learning

to produce a hyper-heuristic for job-shop scheduling problems [132]. Although

unsupervised learning methods offer potential benefits for automated algo-

rithm design, particularly in automated algorithm configuration and compo-

sition, they are highly sensitive to the properties of the input data used for

training. Additionally, these algorithms can be computationally expensive,

especially when dealing with large-scale or high-dimensional data.

Reinforcement Learning:

Reinforcement learning (RL) is a machine learning technique, where intelli-

gent agents take actions based on a learned policy trained through trial and

error interactions with the environment by maximising total reward. RL is

often modelled as a Markov Decision Process (MDP), M = (S,A, p, r), which

consists of a set of possible states S and a set of selectable actions A. An

episode refers to a complete sequence of interactions between the agent and

its environment, from the initial state to the termination state. A timestep,

represents a discrete unit of time within an episode. In each timestep t, the

agent interacts with the environment to obtain information of the current state

Chapter 2. Machine Learning for Automated Algorithm Design 34

st ∈ S, where S is the state space, and then chooses an action at ∈ A, ac-

cording to the policy π (at |st), where A is the set of available actions. After

that, the agent receives a reward rt (st, at) and the environment moves to the

next state based on the policy π, i.e st+1 ∼ π (st+1 |st , at). The goal of the RL

agent is to learn a policy that maximises the expected accumulated reward.

In recent literature on automated algorithm design, some RLs, such as SARSA

[24], QL [26] and DQN [27], have been used to support the intelligent selection

of the most appropriate evolution operators. They utilise feedback information

on the performance of evolution operators during different stages of the search

process. The research in this field can be classified into two categories based

on how the action space is defined.

The first category of RL techniques in automated algorithm design defines

the evolution operators in a specific type of search algorithms as the optional

actions of the RL agent. In the literature, RL techniques are mostly applied

to evolutionary algorithms such as the genetic algorithm, to select efficient

mutation and crossover operators [29]. Results on the travelling salesman

problem and the 0-1 knapsack problem have demonstrated the superiority of

this automated method [133], [29], [134], [135].

However, due to the complexity of RL techniques, most studies in this field

[133], [29], [134] have only focused on using the simplest tabular RL methods

such as SARSA and QL. Few studies have investigated advanced techniques

to handle the continuous state spaces when applying RL to select evolution

operators [135]. There is a lack of research on advanced RL in effective and

efficient automated algorithm design in evolutionary computation.

The second research category treats problem-specific heuristics as the optional

actions of the RL agent. RL techniques are used as the high-level strategy to

automatically combine different low-level heuristics in hyper-heuristics. Re-

sults of these RL-based approaches on unmanned aerial vehicles [136] and

different COPs within the HyFlex software framework [25] demonstrated the

effectiveness of these methods.

Chapter 2. Machine Learning for Automated Algorithm Design 35

In these studies, several search-dependent features, i.e. the observations of the

search process itself such as the current iteration and the total improvement

over the initial solution [119], have been used to represent the state. The

number of features identified, however, is limited and insufficient for learning.

More advanced RL techniques are required to handle the continuous state

space represented by key features involving sufficient information. Also, simple

positive/negative reward schemes are used, which cannot accurately reflect the

effects of the selected action. Furthermore, it is often not clear how the RL

techniques within the hyper-heuristic framework have been devised, i.e. lack

of clear definition on the three fundamental elements of RL, namely the state,

action and reward scheme. There is still a large scope and gap in this research

area, as it remains challenging to reimplement the exact same method and

subsequently replicate the experiments.

To the best of our knowledge, no work has investigated RL for the task of

automated composition of selection heuristics on the population, and both

evolution operators and selection heuristics. In particular, the expanded high-

dimensional action space is discrete, on which RL techniques are difficult to

converge.

In this thesis, advanced RL techniques with a neural network function ap-

proximator have been applied to automatically compose algorithms to tackle

the issue to represent appropriately the continuous state space. A maximum

entropy mechanism is further designed to handle the high-dimensional action

space issue in this thesis. The state space with sufficient features for effective

learning is carefully defined. The action space is defined as the basic algo-

rithmic components (i.e. evolution operators, selection heuristics, or both) to

learn reusable knowledge in automated design of general search algorithms.

Also, an effective reward scheme is defined to encourage the RL system to find

efficient search policies. Note that this thesis adopts an offline RL framework,

in which the policy is trained offline but used in an online fashion for new in-

stances. This is different from most of RL-based automated algorithm design

Chapter 2. Summary 36

methods in the literature.

2.5 Summary

This chapter reviews the literature related to vehicle routing problems and

corresponding search algorithms. The capacitated vehicle routing problem

with time windows model is introduced first. The CVRPTW has been shown

to be an NP-hard problem, which cannot be easily tackled by exact approaches.

Therefore, more recent research attention has focused on the utilisation of

metaheuristics, which can return near-optimal solutions within a shorter time

frame. These metaheuristic approaches, i.e. single-solution based algorithms

and population-based algorithms, perform well on solving a specific type of

VRP. A number of studies have begun to explore the automated algorithm

design from a component-based view with the hope to generate more powerful

search algorithms.

Automated algorithm design can be categorised into algorithm configuration,

algorithm selection, and algorithm composition based on the difference in the

search space of algorithms. Automated algorithm configuration can effectively

determine the parameter settings of search algorithms, but these methods

are usually limited due to the demand of sufficient prior knowledge about

which specific algorithm should be used. Automated algorithm selection ad-

dresses this limitation of automated algorithm configuration by automatically

selecting a specific existing algorithm or combining several existing algorithms

based on the analysis of problem characteristics; however, it is very difficult

to determine the key problem characteristics. Unlike the other two categories,

automated algorithm composition can generate more general or even new al-

gorithms by combining the most basic algorithmic components. The methods

developed/proposed in this thesis falls into the third category, as it involves the

usage of the most generic algorithmic components to design search algorithms

automatically.

Chapter 3

A Novel General Search

Framework to Support Effective

Algorithm Design

The literature has identified a number of limitations of existing search frame-

works, to support automated design of effective metaheuristic algorithms. In

this chapter, a novel general search framework is developed to serve as the

basis of future research to analyse algorithms for automated design, and thus

generate effective search algorithms for vehicle routing, especially CVRPTW.

Generic algorithmic components are defined within the proposed framework,

and three key research issues are presented.

3.1 Introduction

Addressing highly complex combinatorial optimisation problems with various

real-world constraints, such as CVRPTW, has shown to be one of the current

research challenges in evolutionary computation although there have been some

successful attempts at utilising metaheuristics as solvers.

The present research has been conducted with the following two motivations.

From an algorithmic perspective, there is a growing body of literature that in-

37

Chapter 3. Introduction 38

troduces novel metaheuristics. However, researchers have questioned whether

some of the newly proposed metaheuristics indeed present new ideas or have

just renamed the concepts of already existing methods [105]. Several attempts

have been made to develop metaheuristic libraries, such as HeuristicLab [137],

Opt4J [138] and jMetal [139], with the aim of facilitating the reuse of existing

metaheuristics. The components implemented in one specific library are not

easily transferable for reuse in other frameworks. Recognising this issue, early

attempts such as EvoSpec [140] and PISA [141] have focused on achieving

the interoperability across frameworks. However, the main limitation of these

existing libraries or frameworks is that they include a set of complete algo-

rithms as framework components, rather than focusing on the basic generic

algorithmic components that have the potential to generate more effective al-

gorithms. There is a lack of standard or framework to include the basic generic

algorithmic components, making it challenging to distinguish the differences

between various metaheuristics and identify truly innovative and fundamental

ideas. Secondly, from an application perspective, existing metaheuristics have

been carefully designed for specific problems or instances, thus are difficult to

be adapted to solve other problems or instances. The reason is that they are

limited to a specific template of metaheuristic algorithms and they rely highly

on the problem-domain knowledge. There is a lack of research into clear defini-

tion of general basic algorithmic components with little or no problem-domain

knowledge. These general basic algorithmic components could be used to sup-

port effective algorithm design, and thus produces metaheuristic algorithms

which could be easily adapted to solve different problems or instances. More

specifically, we aim to answer the following research questions (RQ):

• RQ1 What kind of framework we can establish to formulate in a uni-

fied way a range of metaheuristics to show the fundamental difference

between metaheuristics?

• RQ2 What key research issues we can define based on the established

Chapter 3. Proposed General Search Framework 39

search framework?

The goal of this chapter is to develop a novel general search framework, within

which machine learning can be applied to the design space of algorithms and

thus support automated algorithm design. Specifically, this chapter aims to

address the following research objectives:

1. To develop a novel general search framework with clearly defined generic

algorithmic components, including selection heuristics on the population

and evolution operators. (RQ1)

2. To identify the key research issues within the proposed general search

framework: automated composition of selection heuristics on the popu-

lation, of evolution operators and of both. (RQ2)

The rest of this chapter is organised as follows. Detailed descriptions of the

proposed framework are given in Section 3.2. The key research issues are

presented in Section 3.3. Finally, Section 3.4 concludes this chapter.

3.2 Proposed General Search Framework

Evolutionary algorithms and metaheuristics in the literature follow a simi-

lar underlying philosophy of artificial evolution driven by selection and re-

production. The evolution and search process of a specific metaheuristic is

distinguished and mainly depends on the selection heuristics and evolution

operators.

Based on the analysis of the basic schemes of metaheuristic algorithms, a gen-

eral search framework (GSF) has been developed, as illustrated in Figure 3.1.

The framework is composed of five modules as shown in Table 3.1 for updat-

ing the individuals and four archives as shown in Table 3.3 for storing the

individuals. The heuristic/operator sets for the main modules are presented

in Tables 3.4. From these heuristic/operator sets, different settings, heuris-

tics or parameters can be chosen, as shown in Tables 3.5-3.7, to automatically

Chapter 3. Proposed General Search Framework 40

compose and design different general search algorithms within the GSF. Al-

gorithms represented by the combination of selection heuristics and evolution

operators are set as the output. Note that GSF is a high-level template for

existing evolutionary algorithms. The modules and workflow within GSF are

the same as those in traditional evolutionary algorithms. However, the set of

algorithmic components in the modules, including heuristics and operators, is

different. In other words, any type of evolutionary algorithms, such as GA, is

a specific configuration of GSF with predefined algorithmic components.

With respect to Initialisation, although some problem-specific heuristics (hp)

have been developed, the majority of existing studies generally adopt a ‘purely

at random’ (hr) strategy. The two most common criteria for Termination are

computation time (ht) and population convergence (hc). Of the five modules

presented in Figure 3.1, Selection for Evolution, Evolution, and Selection for

Replacement contribute more to the search performance. Therefore, they are

discussed in detail in the following sections.

Table 3.1: Modules within GSF

Module Different heuristics, operators or param-
eters

Initialisation random (hr), problem-specific (hp)
Selection for Evolution probability-based operators (h1, h2, h3),

deterministic operators (h4, h5, h6)
Evolution mutation (Omutation),

crossover (Ocrossover)
Selection for Replacement comma-selection (h7), plus-selection (h8)
Termination computation time (ht), convergence (hc)

The proposed GSF is able to formulate in a unified way a range of single-

solution based algorithms and population-based algorithms by setting different

parameters for the modules and archives, as shown in Table 3.2, e.g. different

population size, the four archives and heuristic sets in the Selection for Evo-

lution module. Note that a single-solution based algorithm can be seen as a

special case of a population-based algorithm when population size is set to 1.

This thesis focuses on automated design of population-based algorithms, as

Chapter 3. Proposed General Search Framework 41

Figure 3.1: General search framework

Table 3.2: Single-solution based and population-based search algorithms defined
with GSF

Parameters/components Single-solution
based algorithm

Population-based
algorithm

Population size 1 > 1

Archive
AC = AP =
AO = AiI

AC 6= AP 6=
AO 6= AiI

Initialisation hr, hp hr, hp
Selection for Evolution h4 h1, h2, h3, h4, h5, h6

Evolution Omutation Omutation, Ocrossover

Selection for Replacement h7, h8 h7, h8

Termination ht, hc ht, hc

they offer notable advantages in terms of exploration, robustness, parallelisa-

tion and adaptability. Firstly, population-based algorithms demonstrate pro-

ficiency in conducting global search and exploring extensive search spaces by

maintaining a diverse set of solutions. Secondly, they are capable of handling

noisy or uncertain objective functions, which is facilitated by the presence of

diversity within the population. Thirdly, population-based algorithms can be

Chapter 3. Proposed General Search Framework 42

parallelised to efficiently utilise computational resources, enabling the simul-

taneous evaluation or evolution of multiple individuals within the population.

Lastly, population-based algorithms possess the capability to adapt the popula-

tion over time, making them well-suited for dynamic or evolving environments.

Table 3.3: Four population archives within GSF

Archive Description
AC : Current population,
nPop = |AC |.

The individuals chosen in the current
population before evolution.

AP : Parent population,
µ = |AP |.

The individuals chosen using heuristic
in HSE.

AO: Offspring population,
λ = |AO|.

The offspring population after evolu-
tion OE.

AiI : Personal archive,
i ∈ {1, 2. · · · , nPop}. Personal archive AiI for the individual

ith to reserve individual trajectories.

Table 3.3 shows the archives defined within GSF. In the Selection for Evo-

lution module, some individuals within the Current Population archive (AC)

are selected and stored in the Parent Population archive (AP) using selection

heuristics (HSE). The population is updated or evolved by using the evolution

operators (OE) in the Evolution module and stored in the Offspring Population

archive (AO). The Current Population archive is then generated by adopting

the selection heuristics (HSR) in the Selection for Replacement module. In

addition, every individual has a Personal Archive (AiI) to reserve individual

trajectories.

In GSF, the Selection for Evolution and Selection for Replacement modules

select individuals using various heuristics based on the fitness of individuals

in the population archives. Without loss of generality, all selection heuristics

are set for solving optimisation problems where the aim is to minimise the

objective value.

Chapter 3. Proposed General Search Framework 43

Table 3.4: The heuristic/operator set for the modules within GSF in Figure 3.1

Heuristic/operator set Description
HSE for module Selection for
Evolution

Various heuristics as defined in
Table 3.5 to select the parent
population AP from the current
population AC .

HSR for module Selection for Re-
placement

Various heuristics as defined in
Table 3.6 to update the current
population AC based on AP .

OE for module Evolution Various operators as defined in
Table 3.7 to generate the off-
spring population AO based on
AP selected by HSE.

3.2.1 Selection for Evolution Module

There are two types of heuristics in the Selection for Evolution module. As

Table 3.5 shows, h1, h2 and h3 are probability-based, where individuals are

selected as parents according to a probability related to their fitness. h4, h5

and h6 select an individual to be a parent in a deterministic way instead of by

probability.

Table 3.5: HSE : heuristics in selection for evolution module

Heuristic Description
h1 h1

t
b/h1

t
w : tournament selection of the best/worst of

v ∈ {1, · · · , nPop} individuals as parent candidates from
AP . The probability of selecting each individual i as par-
ent candidate p′i = 1/nPop. When v = 1: random selec-
tion. When v = nPop: greedy selection of the best/worst
individual.

h2 Proportionate roulette wheel selection of an individual i
as parent from AP with a probability proportional to its
fitness.

h3 Ranking selection of an individual i as parent according
to the probability proportional to the its rank (ascending
order based on the fitness function).

h4 Select the current individual itself as parent.
h5 Rank selection of the best previous position as parent

based on individual’s personal archive AiI .
h6 Selection of all the individual(s) with a lower fitness than

the current individual as parent(s) from AP .

Chapter 3. Key Research Issues within GSF 44

3.2.2 Selection for Replacement Module

After evolution, the population is updated by using the selection heuristic

(h7, h8) in the Selection for Replacement module, as shown in Table 3.6.

Table 3.6: HSR: heuristics in selection for replacement module

Heuristic Description
h7 Comma-selection (nPop, λ). Select nPop individu-

als only from the offspring population AO, λ >
nPop, nPop = |AC | , λ = |AO|.

h8 Plus-selection (nPop, µ+ λ). Select individuals from
both the parent population AP and the offspring pop-
ulation AO, nPop = |AC |, µ = |AP | , λ = |AO|.

3.2.3 Evolution Module

Evolution operators (OE) in the Evolution module include Omutation, which

operates upon one individual, and Ocrossover, which operates on multiple indi-

viduals. Regarding the capacitated vehicle routing problem with time windows

(CVRPTW), crossover operators are prone to infeasible solutions. Therefore,

in this thesis, we focus on investigating various mutation operators, which are

defined in Table 3.7, for solving CVRPTW. Figure 3.2 presents the solution

encoding of a CVRPTW with nine customers and three vehicles, and Figure

3.3 further provides the illustration of the evolution operators listed in Table

3.7. Note that these general basic operators (exchange, insert and remove,

etc.) can be adapted and adjusted accordingly to automatically design algo-

rithms for different COPs. In this study, CVRPTW is used as a case study

to demonstrate the effectiveness of the proposed approach. The generality of

RL within the framework for other COPs will be investigated in the future

research.

Chapter 3. Key Research Issues within GSF 45

Figure 3.2: Solution encoding of a CVRPTW with nine customers and three vehi-
cles

Table 3.7: OE : evolution operators for CVRPTW

Operator Description
ochg in Exchange m and n nodes in the same route in a solution
ochg bw Exchange m and n nodes from different routes in a so-

lution
oins in Insert m nodes to the same route in a solution
oins bw Insert m nodes to other positions of different routes in

a solution
oruin recreat The m nodes within a pre-determined distance d to the

base customer are removed from the solution. The value
of d is set based on the distance between the base node
and the furthest node from the base node. If there ex-
ist feasible routes which can accommodate the removed
nodes, the insertion position with the minimum waiting
time is selected. Otherwise, a new route is created.

otwo opt Exchange two nodes in the same route in a solution
otwo opt∗ Take the end sections of two routes in a solution and

swap them to create two new routes

3.3 Key Research Issues within GSF

Based on the design space on algorithmic components, the automated algo-

rithm design problem can be defined into the following three key research

issues:

• Automated Composition of Evolution Operators:

This research issue is to automatically select and apply suitable evolution

operators in the Evolution module during the optimisation process while

fixing components in other modules within GSF. The decision variables

in the search space of algorithms are evolutionary operators.

• Automated Composition of Selection Heuristics:

This research issue is to automatically select and apply suitable selection

heuristics on the population (decision variables in the search space) in

Chapter 3. Summary 46

the Selection for Evolution/Replacement modules within GSF during the

optimisation process while fixing components in the Evolution module.

• Automated Composition of Evolution Operators and Selection

Heuristics Simultaneously:

The decision variables are defined as pair of evolution operators and

selection heuristics, automatically selected and applied during the opti-

misation process.

(a) ochg in(m = n = 1), otwo opt (b) ochg bw(m = n = 1)

(c) oins in(m = 2) (d) oins bw(m = 2)

(e) oruin recreat(m = 2) (f) otwo opt∗(m = 2)

Figure 3.3: Illustration of evolution operators in Table 3.7

3.4 Summary

In this chapter, a general search framework (GSF) is proposed to formulate in a

unified way a range of different metaheuristics, including single-solution based

algorithms and population-based algorithms. This framework defines generic

Chapter 3. Summary 47

algorithmic components, including selection heuristics on the population and

evolution operators. The unified general search framework aims to serve as the

basis of analysing algorithmic components for automated algorithm design.

Three key research issues within GSF have been defined: automated compo-

sition of evolution operators, of selection heuristics on the population, and of

both. In the remaining chapters of this thesis, Chapter 4 identifies the key fea-

tures for building successful machine learning to tackle the above-mentioned

research issues. With the newly identified features, a set of reinforcement

learning techniques have been proposed to investigate the first research issue

in Chapter 5 and the other two research issues in Chapter 6.

Chapter 4

Feature Identification for

Automated Algorithm Design

In Chapter 3, a general search framework to serve as the basic of automat-

ically design search algorithms using machine learning was developed. This

chapter focuses on identifying the key features to provide useful and sufficient

information about the search space of algorithm design for building successful

machine learning approaches.

4.1 Introduction

Identifying effective features to characterise the search space of algorithm de-

sign and the problem instance plays an important role in the automated algo-

rithm design process. A suitable feature set can help to distinguish different

states in reinforcement learning, which is the key to performance improve-

ment. For this purpose, different features have been proposed in the literature

to support the new task of automated algorithm design.

In supporting effective automated algorithm design, we identified and cat-

egorised existing features for designing general search algorithms into two

groups. The first group, namely search-dependent features, is composed of

features observing the search, such as the mean and standard deviation of

48

Chapter 4. Introduction 49

the population fitness, and the average distance from the best individual [21].

The second group, namely instance-dependent features, consists of the basic

characteristics of the problem instances. Another group of common features,

namely the solution-dependent features, are associated with the solution en-

coding scheme, take TSP as an example, the encoding of a complete tour can

be directly defined as the state. In many cases, the solution-dependent fea-

tures cannot be used to develop a general methodology since they are problem-

specific. Therefore, it is not included in this thesis.

The present research has been conducted with the following two motivations

based on the literature review. From the application perspective, the CVRPTW

instances share the same problem structure but differ in instance-dependent

features such as the vehicle capacity and customer time windows. However,

existing search algorithms treat each problem instance independently, highly

depending on extensive and different human expertise in algorithm design.

From the methodology perspective, utilising machine learning techniques to

assist effective algorithm design is still at a preliminary stage, albeit with some

successful attempts. One of the important issues is how to identify the key

features that accurately characterise the search space for building successful

machine learning approaches. Although various features have been extracted

for effective algorithm design in the literature, there is a lack of a systematic

investigation analysing the extracted features within a consistent and general

framework. The aim of this chapter is therefore to identify and analyse fea-

ture sets which provide helpful and sufficient information on the state of the

evolutionary search, and to verify the effectiveness of the identified features in

assisting algorithm design with the support of machine learning. More specif-

ically, we aim to answer the following research questions (RQ):

• RQ1 What kind of features can be identified to capture useful informa-

tion for assisting effective algorithm design?

• RQ2 Is machine learning effective to utilise such information and to au-

Chapter 4. Identified Features 50

tomatically design effective search algorithms with less human involve-

ment?

• RQ3 Are there search patterns that we can observe from the automati-

cally designed algorithms to derive new knowledge in evolutionary com-

putation?

The goal of this chapter is to identify key features to assist algorithm design

within the general search framework. Specifically, this chapter addresses the

following research objectives:

1. Identify two groups of features, i.e. search-dependent and instance-

dependent features, to capture useful information for assisting effective

algorithm design. (RQ1)

2. Devise a reinforcement learning based model to extract useful knowledge

hidden in the data collected during the optimisation process and inves-

tigate the impact of identified features on the proposed learning model.

(RQ2)

3. Analyse the search patterns of the automatically designed algorithms,

i.e. the utilisation and transition of algorithmic components, to further

provide insights into reusing knowledge extracted in algorithm design

using machine learning in solving new problem instances. (RQ3)

The rest of this chapter is organised as follows. Detailed descriptions of the

identified features are presented in Section 4.2. The proposed reinforcement

learning method is shown in Section 4.3. The experiments and discussions are

shown in Section 4.4. Finally, Section 4.5 concludes this chapter.

4.2 Identified Features

Identifying appropriate features is a crucial step to conduct effective rein-

forcement learning for automated algorithm design. Different features provide

Chapter 4. Identified Features 51

different aspects of essential information, having a significant impact on the

performance of the automated algorithm design methods. In this section, two

groups of features (i.e. search-dependent and instance-dependent features) are

identified for developing a general methodology to solve different CVRPTW

instances.

4.2.1 Search-dependent Features

To assist algorithm design, ten search-dependant key features have been ex-

tracted from the data collected during the optimisation process. Related sym-

bols are shown in Table 4.1 for the definitions of search-dependent features

listed in Table 4.2.

Table 4.1: Symbols used for defining search-dependent features in Table 4.2

Symbol Description
fi The fitness value of the ith individual
f̄ The average fitness value of the population
N The size of the population
P Population
I The initial population
C The current population

Features in Table 4.2 capture the characteristics of the search process from

different aspects. With this information on the intensification and diversifi-

cation of the search, the learning agent can be guided toward making better

decisions on selection of algorithmic components during the search, consider-

ing the balance between searching beyond the area currently being explored

(i.e. exploration) and focusing on the already explored area (i.e. exploitation).

Such balance has a significant impact on the performance of the designed search

algorithms. Note that the focus of this section is not to propose new features

to state representation, but rather to identify effective features from existing

literature and then systematically verify the impact of these features on the

automated algorithm design task. The majority of the features in Table 4.2

are derived from existing studies. For example, f1 is derived from [119], f2 is

Chapter 4. Identified Features 52

Table 4.2: Search-dependent features

Features Description
f1: search stage S indicates which stage the learning

agent is in
f2: fitness improvement

FI =
∑
i∈I fi−

∑
j∈C fj∑

i∈I fi

evaluates the quality of fitness
value between the current popula-
tion and the initial population

f3: std of fitness

std (f) =
√

1
N−1

∑N
i=1

(
fi − f̄

)2 evaluates the bumpiness of the
fitness space by measuring each
value’s deviation

f4: mean of fitness

f̄ = 1
N

∑N
i=1 fi

evaluates the general fitness value
of the fitness space

f5: skewness of fitness

γ1 (f) = E

{[
(fi−f̄)
std(f)

]3
}
,

i = 1, · · · , N

measures the lack of symmetry of
the fitness space

f6: kurtosis of fitness

γ2 (f) =
E
[
(fi−f̄)

4
]

(
E
[
(fi−f̄)

2
]2) ,

i = 1, · · · , N

measures the fitness space relative
to the normal distribution

f7: amplitude of fitness

Amp (P) =
N ·
(

max fi
i∈I

−max fi
i∈P

)
∑
i∈P fi

,

4Amp = |Amp(C)−AMP (I)|
Amp(I)

evaluates the degree of the search
space altitude on the basis of dif-
ference between the upper and
lower bound of fitness values

f8: Q1 of fitness (25%) represents the lower quartile of fit-
ness value

f9: Q2 of fitness (50%) represents the median quartile of
fitness value

f10: Q3 of fitness (75%) represents the upper quartile of
fitness value

Chapter 4. Identified Features 53

derived from [21] [119], f3 and f4 are derived from [21] [23].

4.2.2 Instance-dependent Features

Instance-dependent features assist algorithm design with the basic information

on problem instances. Values of these features are determined and will not

change in algorithm design once an instance is given. Related symbols are

shown in Table 4.3 for the definitions of instance-dependent features.

Table 4.3: Symbols for instance-dependent features in Table 4.4

Symbol Description
i Customer i
n The number of customers
qi The demand for customer i
si The service time for customer i
ri The ready time for customer i
di The due date for customer i

Table 4.4: Instance-dependent features

Features Description
f11: vehicle number V the number of available vehicles
f12: capacity Q vehicle capacity
f13: demand∑n

i=1
qi
n

average customer demand

f14: service∑n
i=1

si
n

average service time

f15: time-window

TW =
(
∑n
i=1 di−

∑n
i=1 ri)

n

average time-window size

f16: time-window overlaps∑n
i=1

∑n
j=1

Oij
n
,

Oij = inter(i,j)
union(i,j)

average time-window overlaps be-
tween customers

f17: time-window density D the percentage of time-constrained
customers (25%, 50%, 75%, 100%)

In Table 4.4, average time-window overlaps are calculated based on Equation

(4.1) and Equation (4.2) as proposed in [22] to measure the relationships be-

tween the time-windows of all customer in a given instance.

Chapter 4. Proposed Reinforcement Learning Method 54

inter (i, j) =

 I = min {di, dj} −max {ri, rj} , I > 0

0, otherwise
(4.1)

union (i, j) =

 max {di, dj} −min {ri, rj} , inter (i, j) > 0

(di − ri) + (dj − rj) , otherwise
(4.2)

4.3 Proposed Reinforcement Learning Method

Figure 4.1 depicts the overall research framework of the proposed reinforcement

learning method in the context of automated algorithm design. This chapter

involves the use of a reinforcement learning method to automatically generate

search algorithms for solving different CVRPTW instances. Specifically, the

overall research framework has been defined in five steps. The first three steps

are related to the definition of three key components of the RL method (i.e.

state, action and reward scheme), shown in Sections 4.3.1-4.3.3. Note that one

of the focuses of this study is on identifying the key features to capture and

characterise the search space of algorithm design, details of these identified

features are discussed in Section 4.2. This presents new contributions to the

existing literature. The fourth step defines the main optimisation process, i.e.

automatically generating search algorithms based on RL. The final step is re-

lated to solving the CVRPTW instances using the generated search algorithms

in Step 4.

This chapter aims to address the key issue of automated algorithm design

rather than considering the whole design space. Based on the general search

framework [142], the key focus of algorithm design is on selecting and com-

posing evolution operators at different stages during the search process. An

actor-critic proximal policy optimisation method is used to determine the suit-

able evolution operators of the search algorithm.

For the task of automated algorithm design, due to the random character-

istics, the stochastic policy generated by policy-based RL is better than the

Chapter 4. Proposed Reinforcement Learning Method 55

Figure 4.1: Research framework of the proposed reinforcement learning method in
the context of automated algorithm design

Chapter 4. Proposed Reinforcement Learning Method 56

deterministic policy generated by value-based RL. The Proximal Policy Op-

timisation (PPO), which is a policy-based RL method, is used to obtain the

optimal stochastic policy. However, the policy of the original PPO is trained

per episode, resulting in a slow convergence. Therefore, the PPO method in

this section is modified with an Actor-Critic architecture to generate a stochas-

tic policy trained per timestep rather than per episode with a clipped objective

to determine evolution operators for automated algorithm design.

Table 4.5: Notations used in PPO methods in Figure 4.1

Notation Description
t current timestep
st state at timestep t
at selected action at timestep t
rt reward value at timestep t
λ parameter of λ-step return
V state value function
θ parameter of the actor neural network
ϕ parameter of the critic neural network

The overview of the actor-critic PPO method is shown in Figure 4.1 (Step 4).

Related notations are given in Table 4.5.

The reward and state (defined by the identified features) (¬) obtained from

the environment is taken as the input of the critic neural network, the output

of which is the state-action value V̂θ (). At the same time, state (®) is also

taken as the input of the actor neural network. The corresponding output

is the probability of each action (i.e. operator) (¯). The chosen action is

executed (¯) in the environment (i.e. the optimisation process), and the next

loop is started.

The temporal difference error (TD-error) is calculated (°) by the state-action

value V̂θ (). The actor neural network is updated by JPPO(θ) (²), as shown

in Equation (4.3), and the critic neural network is updated based on the cal-

culation of Lclip(ϕ) (±), as shown in Equation (4.6).

The output of the learned policy is a probability distribution of actions (i.e.

operators). The sequential sample results of one episode are the composition

Chapter 4. Proposed Reinforcement Learning Method 57

operators in the automated algorithm design. The action (i.e. operator) ob-

tained (¯) by the actor neural network is executed in the environment (i.e.

the optimisation process).

The objective function of the actor neural network JPPO(θ) is shown in Equa-

tion (4.3).

JPPO(θ) =
T∑
t=1

πθ (at |st)
πold (at |st)

At (4.3)

where At is the advantage function representing the gap of the currently se-

lected action relative to the average of all actions, such that:

At = δt + (γλ) δt + · · ·+ (γλ)T−t+1 δT−1 (4.4)

δt = rt + γV (st+1)− V (st) (4.5)

At is obtained by performing a complete episode when there is only an actor

neural network. In the critic neural network, the value function can be esti-

mated at every timestep, so the update process (²) of the actor neural network

is accelerated compared to that in the original PPO.

The critic neural network Lclip(ϕ) aims at minimising the loss function, as

shown in Equation (4.6).

Lclip (ϕ) = Et {min [rt (ϕ) · At, clip [rt (ϕ) , 1− ε, 1 + ε] · At]} (4.6)

Here, ε is the clipping probability ratio. With the lower bound, the ‘min’

operator, the trained policy increases monotonically with a low computing

requirement.

4.3.1 State Representation

The search-dependent features in Table 4.2 and instance-dependent features

in Table 4.4, are used to define the state space.

Chapter 4. Proposed Reinforcement Learning Method 58

4.3.2 Action Representation

The action space is defined by the set of evolution operators in Table 3.7,

which are the algorithmic components of the Evolution module in the proposed

general search framework (GSF). Refer to Chapter 3 for more information of

the GSF and its basic modules. The main task of the proposed PPO method

is to address the key issue of automated selection and combination of the most

efficient evolution operators during different optimisation stages.

4.3.3 Reward Scheme

A reward scheme is used for the learning agent to determine whether the

selected action is appropriate, thus, is very important for an RL method. As

shown in Equation (4.7) and Equation (4.8), the reward in the proposed PPO

model is calculated based on the fitness improvement of the current population

over the initial population. A higher reward is assigned to the same fitness

improvement when population fitness is optimised above a certain threshold

a.

r =
fcurrent
finitial

(4.7)

reward =

−r, if r > a

−r − log10 (r) , if r 6 a

(4.8)

Two methods are used in setting the reward: normalise r to increase the

training efficiency; assign a larger reward by using a log function to the same

fitness improvement in the later stage of the optimisation process.

Many of the simple positive/negative reward schemes in the literature track

the fitness improvement by counting the number of steps achieved successfully.

The proposed reward scheme is designed to instead maximise the total fitness

improvement itself, which is what really needs to be optimised in the newly

defined machine learning task. Compared to the simple positive/negative re-

Chapter 4. Experiments and Discussions 59

ward schemes, the proposed reward scheme not only reflects but also measures

the positive/negative impact of the selected action. Moreover, the proposed

reward scheme assigns a larger reward to the actions that lead to fitness im-

provements at the later stage of the optimisation process, to address the issue

that such improvements are usually very small at the final stage of evolution.

4.3.4 Episode Setting

An episode is defined as the whole optimisation process. Since the time-based

stopping criteria is used in this thesis, the period of each episode equals to the

given optimisation time tmax. An episode is divided into NoT timesteps, so

the period of each timestep equals to tmax/NoT .

For training purposes, the proposed RL-based method is executed for NoE

episodes. For testing purposes, the designed RL-based method is executed for

one episode.

4.4 Experiments and Discussions

The experimental analysis aims to address two research issues: (1) verifying

the impact of the identified features on the reinforcement learning model; (2)

analysing the search patterns of the best designed algorithm compositions.

In assessing the impact of the identified features, two learning models with

different features are trained and tested. In the analysis of search patterns,

the utilisation and transition of algorithmic components are included. The

results of the proposed method are compared with the best-known results in

the literature. The details of the selected VRPTW benchmark dataset are

shown in Table 4.6.

Noted that it is usually not possible to compare design time of automated

methods and manually design methods since this information is usually not

reported in the published papers. Some of them only published their results

and did not provide the application time. As shown in Table 4.7, a direct

Chapter 4. Experiments and Discussions 60

Table 4.6: The selected VRPTW benchmark dataset

Instance Vehicle capacity Density of the time windows
Best-known solution
identified by heuristics [143]

C101 200 100% 10828.94 [144]
C102 200 75% 10828.94 [144]
C103 200 50% 10828.94 [144]
C104 200 25% 10824.78 [144]
C201 700 100% 3591.56 [144]
C202 700 75% 3591.56 [144]
C203 700 50% 3591.17 [144]
C204 700 25% 3590.6 [144]
R101 200 100% 20645.79 [145]
R102 200 75% 18486.12 [144]
R103 200 50% 14292.68 [146]
R104 200 25% 10007.24 [147]
R201 1000 100% 5252.37 [148]
R202 1000 75% 4191.7 [149]
R203 1000 50% 3939.54 [150]
R204 1000 25% 2825.52 [151]
RC101 200 100% 15696.94 [152]
RC102 200 75% 13554.75 [152]
RC103 200 50% 12261.67 [153]
RC104 200 25% 12135.487 [154]
RC201 1000 100% 5406.91 [147]
RC202 1000 75% 4367.09 [155]
RC203 1000 50% 4049.62 [155]
RC204 1000 25% 3798.41 [147]

comparison on the computational expenses between the proposed automated

methods and the manually design methods which produce the best-known so-

lutions is unfair due to the different computing platforms and implementation

languages. Furthermore, the termination condition and the number of inde-

pendent runs differs from methods to methods in most of the published algo-

rithms. The proposed methods require extra computation time on the training

and testing process compared to other methods. However, the aim is not to

develop a fast method but rather to automatically develop search algorithms

that can produce state-of-the-art results with a higher degree of generality.

The extra time can potentially be compensated by solving different problem

instances without redesigning or fine-tuning algorithms in the long-term.

All experiments have been conducted using a computer with Intel(R) Xeon(R)

W-2123 CPU@ 3.60 GHz processors, and with 32.0 GB of memory. The

proposed methods are implemented in Java environment with IntelliJ IDEA

Chapter 4. Experiments and Discussions 61

2020.3.3 as the development tool. Java is chosen since it is also used in

other widely adopted frameworks in relevant literature, e.g. HyFlex for hyper-

heuristics, thus supports flexible further extensions in future work. In the pro-

posed RL-based method, the population size, the number of timesteps NoT

and pre-defined maximum running time of one episode tmax are set to 100, 50,

and 600s, respectively. For training the policy, the number of episodes NoE

is set to 500.

Table 4.7: Setting of the comparison algorithms

References Computer Platform Language Termination condition Time/Iterations

RT [144] Silicon Graphics Indigo 100 - maximum iterations
3200 sec (type-C1)
7200 sec (type-C2)
2700 sec (type-R1)

H [145] Pentium 400 C maximum iterations -

HG [148] Pentium 200 C maximum time
10 runs
13 min

RGP [149] Sun Ultra10 - - 11000 sec
TBGGP [152] Sun Sparc 10 - maximum iterations 11264 sec (type-RC1)
BBB [156] Pentium 400 C++ maximum time 1800 sec
MBD [147] Pentium 800 Visual Basic - 1 run, 43.8 min

GCC [155]
Origin 2000 and
Sun Enterprise 6500

C maximum iterations 1000 iterations

Proposed methods
Intel Xeon W-2123
CPU@ 3.60 GHz

Java maximum time 6000 sec

4.4.1 Effectiveness of the Identified Features

To verify the effectiveness of instance-dependent features, we train the PPO

model with only search-dependent features. It is meaningless to train the

PPO model with only instance-dependent features, due to the fact that the

values of instance-dependent features are determined once an instance is given

and do not change during the training process. The performance of the PPO

model with both search-dependent features and instance-dependent features is

recorded for comparison.

Influence of different feature sets on the PPO model during the training pro-

cess on different types of CVRPTW instances is shown in Figures 4.2-4.4,

respectively. The green line represents the training results using only search-

dependent features as inputs, while the blue line represents the training results

using both search-dependent and instance-dependent features.

Chapter 4. Experiments and Discussions 62

In most instances, the performance of the learning model during the training

process, i.e. the expected accumulated reward of the policy, deteriorates with-

out the instance-dependent feature set, except on instances C103, R103 and

RC203. This indicates that the instance-dependent features can provide useful

information to the learning process, by assisting the population to accurately

determine the resulting state with better action choice.

(a) C101 (b) C102 (c) C103 (d) C104

(e) C201 (f) C202 (g) C203 (h) C204

Figure 4.2: Influence of different feature sets on the learning model during training
(type-C)

(a) R101 (b) R102 (c) R103 (d) R104

(e) R201 (f) R202 (g) R203 (h) R204

Figure 4.3: Influence of different feature sets on the learning model during training
(type-R)

In the testing process, the same conclusion is reached that the instance-dependent

feature set is effective for learning algorithm design, as shown in Table 4.8.

Chapter 4. Experiments and Discussions 63

(a) RC101 (b) RC102 (c) RC103 (d) RC104

(e) RC201 (f) RC202 (g) RC203 (h) RC204

Figure 4.4: Influence of different feature sets on the learning model during training
(type-RC)

When instance-dependent features are included, the four performance indica-

tors, i.e. the average fitness value (AVG), the standard deviation of fitness

value (SD), the best fitness value within 10 runs (BEST), and the gap between

BEST and the best-known solution in the literature (GAP), achieve better

values in most instances. Both learning models (i.e. one with both feature

sets, and one with only search-dependent features) achieve quite similar BEST

to the current best-known results in the literature (i.e. the GAP values are

less than 5% in most instances), which verifies the effectiveness of the pro-

posed PPO models. Noted that the aim of automated algorithm design is not

trying to beat all the other manually designed metaheuristics but to develop

an effective search algorithm without too much human involvement.

4.4.2 Search Pattern Analysis of the Best Automati-

cally Designed Algorithms

Utilisation of Algorithmic Components:

Figures 4.5-4.7 show the proportion of each operator called in the PPO model

with search-dependent and instance-dependent features during the training

process, while Figures 4.8-4.10 show the utilisation of operators in the PPO

Chapter 4. Experiments and Discussions 64

Table 4.8: Performance of the algorithms with different features during testing

Instance Search-dependent + Instance-dependent features Search-dependent features
AVG SD BEST GAP AVG SD BEST GAP

C101 10828.94 0 10828.94 0 10828.94 1.8E-12 10828.94 0
C102 10829.40 0.93 10828.94 0 10829.93 2.011 10828.94 0
C103 10856.97 12.07 10837.15 0.08% 10858.79 17.80 10839.29 0.1%
C104 10916.01 20.64 10887.99 0.58% 10921.54 16.28 10896.9 0.67%
C201 3591.56 4.55E-13 3591.56 0 3591.56 4.55E-13 3591.56 0
C202 3591.56 4.55E-13 3591.56 0 3591.56 2.4E-10 3591.56 0
C203 3592.67 4.48 3591.17 0 3592.90 3.66 3591.17 0
C204 3613.71 9.35 3599.58 0.25% 3613.05 8.95 3598.93 0.23%
R101 20658.64 3.60 20653.64 0.04% 20659.79 3.85 20654.3 0.04%
R102 18519.28 18.02 18499.30 0.07% 18621.61 293.55 18511.18 0.14%
R103 15048.02 416.20 14365.01 0.51% 15256.21 11.75 15228.24 6.5%
R104 11090.22 23.09 11051.22 10.43% 11097.74 15.93 11063.67 10.56%
R201 5320.51 13.56 5290.00 0.72% 5320.84 23.52 5288.58 0.69%
R202 5003.77 341.68 4307.68 2.77% 5163.65 11.86 5141.74 22.66%
R203 4036.05 10.23 4016.02 1.94% 4035.76 16.50 4010.36 1.8%
R204 3732.08 270.78 2920.27 3.35% 3828.59 5.09 3822.51 35.29%
RC101 16839.69 300.13 16703.71 6.41% 16896.18 396.64 16677.99 6.25%
RC102 15431.22 294.17 14550.96 7.35% 15545.00 13.85 15528.14 14.56%
RC103 13152.01 294.17 12356.41 0.77% 13359.17 15.04 13329.82 8.71%
RC104 12233.65 388.17 11248.41 1.01% 12131.09 281.68 11287.67 1.37%
RC201 5492.96 18.48 5455.76 0.90% 5505.30 12.14 5482.79 1.40%
RC202 5287.89 29.74 5226.54 19.68% 5261.77 12.14 5242.94 20.06%
RC203 4191.46 22.89 4165.96 2.87% 4180.07 18.61 4137.23 2.16%
RC204 3877.75 17.78 3851.04 1.39% 3879.58 9.79 3863.21 1.71%

models with only search-dependent features. Both PPO models identify ins bw

and 2opt∗ as the most frequently selected operators in the best designed al-

gorithms. ins bw is selected most often by both PPO models, although this

phenomenon is more obvious in the type-R and type-RC instances. Although

the operators with a high frequency of combination are quite similar in both

PPO models, the specific utilisation rates of each operator during each episode

are different, indicating that the algorithm compositions obtained by these two

PPO models (i.e one with only search-dependent features and one with both

search-dependent and instance-dependent features) are different.

Transition of Algorithmic Components:

An analysis of the best designed algorithms that are automatically designed

by the PPO models with different feature sets is analysed in this section.

Figures 4.11-4.13 show the transition pattern of operators in the best designed

algorithm compositions obtained by the PPO model with both feature sets,

including the number of operators, the proportion of each operator and the

number of transitions between operators during 50 timesteps. For example,

Chapter 4. Experiments and Discussions 65

(a) C101 (b) C102 (c) C103 (d) C104

(e) C201 (f) C202 (g) C203 (h) C204

Figure 4.5: Utilisation of operators during training (type-C, with search-dependent
and instance-dependent features)

(a) R101 (b) R102 (c) R103 (d) R104

(e) R201 (f) R202 (g) R203 (h) R204

Figure 4.6: Utilisation of operators during training (type-R, with search-dependent
and instance-dependent features)

(a) RC101 (b) RC102 (c) RC103 (d) RC104

(e) RC201 (f) RC202 (g) RC203 (h) RC204

Figure 4.7: Utilisation of operators during training (type-RC, with search-
dependent and instance-dependent features)

for C101 instance in Figure 4.11, only two out of seven operators are called,

namely 54.0% for the 2opt∗ operator and 46% for the ins bw operator with the

corresponding number of transitions between operators (28). Figures 4.14-4.16

Chapter 4. Experiments and Discussions 66

(a) C101 (b) C102 (c) C103 (d) C104

(e) C201 (f) C202 (g) C203 (h) C204

Figure 4.8: Utilisation of operators during training (type-C, with only search-
dependent features)

(a) R101 (b) R102 (c) R103 (d) R104

(e) R201 (f) R202 (g) R203 (h) R204

Figure 4.9: Utilisation of operators during training (type-R, with only search-
dependent features)

(a) RC101 (b) RC102 (c) RC103 (d) RC104

(e) RC201 (f) RC202 (g) RC203 (h) RC204

Figure 4.10: Utilisation of operators during training (type-RC, with only search-
dependent features)

present the transition patterns of the best designed algorithms obtained by the

PPO model with only search-dependent features.

As can be seen from all the figures, the diversity of the operators in the best

Chapter 4. Experiments and Discussions 67

(a) C101(2,28) (b) C102(3,29) (c) C103(7,38) (d) C104(5,39)

(e) C201(3,29) (f) C202(5,34) (g) C203(7,38) (h) C204(6,37)

Figure 4.11: Transition of operators in the best designed algorithm (type-C, with
search-dependent and instance-dependent features)

(a) R101(4,28) (b) R102(3,25) (c) R103(3,21) (d) R104(5,31)

(e) R201(7,35) (f) R202(6,22) (g) R203(5,18) (h) R204(7,36)

Figure 4.12: Transition of operators in the best designed algorithm (type-R, with
search-dependent and instance-dependent features)

designed algorithm compositions (i.e. the number of operators) increases when

the capacity of the vehicle increases. Taking type-C instances as examples,

Figure 4.11 shows that the number of called operators in the best designed

algorithm compositions (obtained by the PPO model with two feature sets)

for solving the type-C2 instances with a larger vehicle capacity (i.e. 700),

is higher than that of the type-C1 instances with a smaller vehicle capacity

(i.e. 200). The same phenomenon can be observed in type-R and type-RC

instances, details of which are shown in Figure 4.12 and Figure 4.13. Similar

Chapter 4. Experiments and Discussions 68

(a) RC101(3,21) (b) RC102(4,26) (c) RC103(5,24) (d) RC104(6,37)

(e) RC201(5,33) (f) RC202(5,29) (g) RC203(6,32) (h) RC204(6,35)

Figure 4.13: Transition of operators in the best designed algorithm (type-RC, with
search-dependent and instance-dependent features)

conclusions can be reached regarding the diversity of operators in the best

designed algorithm compositions obtained by the PPO model with only search-

dependent features, as shown in Figures 4.14-4.16.

(a) C101(5,23) (b) C102(7,39) (c) C103(5,23) (d) C104(7,40)

(e) C201(5,27) (f) C202(7,27) (g) C203(7,39) (h) C204(6,35)

Figure 4.14: Transition of operators in the best designed algorithm (type-C, with
only search-dependent features)

There is a negative correlation between the diversity of operators and the den-

sity of the time-window (i.e. the percentage of time-constrained customers),

as shown in Figures 4.11-4.16. Taking type-RC instances as examples, Figure

4.13 shows that with the decrease of time window density, dropping from 100%

Chapter 4. Experiments and Discussions 69

(a) R101(4,24) (b) R102(3,20) (c) R103(6,33) (d) R104(5,32)

(e) R201(5,29) (f) R202(6,32) (g) R203(7,38) (h) R204(6,35)

Figure 4.15: Transition of operators in the best designed algorithm (type-R, with
only search-dependent features)

(a) RC101(4,31) (b) RC102(5,20) (c) RC103(7,25) (d) RC104(5,25)

(e) RC201(4,28) (f) RC202(6,36) (g) RC203(6,36) (h) RC204(6,44)

Figure 4.16: Transition of operators in the best designed algorithm (type-RC, with
only search-dependent features)

in RC101 to 25% in RC104, the diversity of operators increases, rising from 3

to 6. The same phenomenon can be observed in the other types of instances

as well.

Considering the above two findings, in the best designed algorithm compo-

sitions, more types of operators are called when the problem constraints are

relaxed (i.e. a larger vehicle capacity and a smaller time-window density).

A possible reason may be that the feasible solution space expands with the

relaxation of problem constraints.

Chapter 4. Summary 70

The number of operator transition is more than 25 over 50 timesteps in most

instances although the number of operators is relatively small. This indi-

cates that operators in the best designed algorithm compositions are frequently

called interchangeably during the optimisation process, although some types of

operators (i.e. ins bw and 2opt∗) are called much more frequently than others.

When a continuous selection of an operator fails to trigger a shift in state and

an increase in reward, switching to another operator brings unexpected results.

This means that the operators which are called less frequently are also useful.

One possible explanation is that the search space of COPs is a non-stationary

environment containing a variety of search regions with different characteris-

tics. Different operators with different search behaviours, only perform well

in some regions. Therefore, solving COPs using a search algorithm with only

a single operator is less effective. Hence, it is reasonable to expect that the

search algorithms which are automatically designed based on combinations of

algorithm components (e.g. operators) will produce better performance.

4.5 Summary

In this chapter, two groups of features, namely search-dependent features and

instance-dependent features, are identified to provide the key information to

assist learning on automated algorithm design. Search-dependent features de-

scribe the search space of algorithm design, while instance-dependent features

characterise the problem instances. Using the identified features to represent

the state, a state-of-the-art reinforcement learning technique, namely proximal

policy optimisation, is devised to automatically combine different evolution op-

erators during different stages of the evolutionary process. Search patterns of

the best designed algorithms which are obtained by the reinforcement learning

models resulting from different state representation schemes are analysed.

With controlled experiments on the state representation, the impact of the

identified features on the reinforcement learning model is verified on the bench-

Chapter 4. Summary 71

mark instances of the capacitated vehicle routing problem with time windows.

The results show that both search-dependent and instance-dependent features

can provide useful information to the learning process by assisting the popu-

lation to accurately detect the resulting state with better action choice.

Regarding the search patterns of the best designed algorithms, utilisation and

transition of evolution operators are analysed. The analysis shows that two

reinforcement learning models with different features identify ins bw and 2opt∗

as the most frequently employed algorithmic components. Different operators

are frequently called interchangeably during the optimisation process. This

indicates the importance of adaptive operator selection for designing effective

search algorithms.

This chapter explores feature identification for automated algorithm design,

which is one of the key issues in developing successful machine learning for

effective algorithm design. With the identified features in this chapter, a set of

reinforcement learning techniques, have been devised to automatically select

and combine evolution operators in Chapter 5, selection heuristics and pairs

of evolution operators and selection heuristics in Chapter 6.

Chapter 5

Automated Composition of

Evolution Operators

In Chapter 3, a novel general search framework was developed and three key

research issues within the proposed framework were identified. In Chapter

4, the key features for building successful machine learning to undertake new

task of automated algorithm design were identified. This chapter will focus on

investigating the first key issue: automated composition of evolution operators,

which have the greatest impact on an algorithm’s performance. Reinforcement

learning models with the identified features are devised in automated algorithm

design to reward or penalise combinations of key evolution operators based on

their performance.

5.1 Introduction

The research in this chapter has been conducted with the following motiva-

tions. Firstly, there has been growing research interest in utilising machine

learning to support the newly defined learning task of automated algorithm

design in recent years. This kind of research is generally conducted in the

literature with a template of a specific metaheuristic algorithm such as genetic

algorithm or particle swarm optimisation. However, this limited the scope of

72

Chapter 5. Introduction 73

algorithms under consideration. Secondly, existing studies focus more on im-

provement of the solution quality after applying machine learning to the new

task of algorithm design. However, they pay little attention to the reusabil-

ity and generality of the automatically designed algorithms, which are equally

important to the solution quality.

With the novel general search framework and newly identified features, in this

chapter, instead of studying all the algorithmic components, we only focus

on investigating the first key issue: automated composition of key evolution

operators, which have the greatest impact on algorithm’s performance. More

specifically, we aim to answer the following research questions (RQ):

• RQ1 What kind of machine learning techniques would be useful to auto-

matically select and combine the evolution operators to develop effective

search algorithms?

• RQ2 Is the performance of the learning based methods better than that

of non-learning procedure?

• RQ3 Do the automatically designed algorithms perform well on new

problem instances, regarding reusability and generality?

The goal of this chapter is to develop effective reinforcement learning methods

with the identified features that will automatically select and combine the

suitable evolution operators to be applied during the evolutionary process.

Specifically, this chapter addresses the following research objectives:

1. To develop two reinforcement learning based methods to address the

key issue of automated selection and combination of the most efficient

evolution operators during different stages of the evolutionary process.

(RQ1)

2. To investigate the effectiveness of the trained policies compared to a

search procedure without learning. (RQ2)

Chapter 5. Proposed Reinforcement Learning Method 74

3. To assess the reusability and generality of the trained policies by directly

applying them to new problem instances. (RQ3)

The rest of this chapter is organised as follows. Detailed descriptions of the

proposed method are given in Section 5.2. The experiments and discussions

are shown in Section 5.3. Finally, Section 5.4 concludes this chapter.

5.2 Proposed Reinforcement Learning Method

Reinforcement learning is a machine learning technique, where intelligent agents

take actions based on the learned policy trained through trial and error inter-

actions with the environment by maximising total reward. The environment

of RL is considered as an MDP, which is composed of a set of possible states

and a set of selectable actions. Each state-action pair is assigned a total re-

ward value (Q-value). With the established general search framework (GSF) in

Chapter 3, RL is used for automated algorithm design as shown in Figure 5.1.

The actions are the selectable combinations of algorithmic components (i.e.

evolution operators). The states are defined by different features of the search

process and the instance, as shown in Table 5.2. The automated algorithm

design process starts with the observation of the agent’s current situation (a

state) and the selection of a combination of algorithmic components (an ac-

tion). The execution of the resulting algorithmic component (selected action)

leads to a new state of the optimisation process (environment) by the chosen

selection heuristic and evolution operator to the current state. A reward (or

penalty) is assigned to the selected action with respect to the current state.

Tabular RL techniques, such as SARSA [24] and QL [26], have been used

to select evolution operators in the literature. However, a Q-table cannot

handle continuous state space, leading to unreliable results. To address this

issue, in this chapter, RL techniques with a neural network as value-function

approximator have been adopted.

RL techniques can be roughly divided into value-based methods and policy-

Chapter 5. Proposed Reinforcement Learning Method 75

Figure 5.1: Reinforcement learning in the context of automated algorithm compo-
sition in GSF

based methods based on their policy update mechanism [24]. To comprehen-

sively verify the effectiveness of RL on automated algorithm design, a typical

value-based method and a typical policy-based method are investigated within

GSF in this chapter.

In value-based RL, DQN [27], the first deep reinforcement learning method,

is selected. The DQN-based method to automatically design an algorithm

within the GSF is named DQN-GSF. In policy-based RL, PPO [28], which

outperforms other policy gradient methods, is selected, named PPO-GSF.

Table 5.1 shows the notations used in this chapter. The pseudocodes of DQN-

GSF and PPO-GSF are shown in Algorithm 1 and Algorithm 2, respectively.

Note that h1 and h8 are fixed in the Selection for Evolution and Replacement

modules to address our key research issues, i.e. how to automatically design al-

gorithms with evolution operators which have the most impact on evolutionary

algorithms. With the newly established GSF, in this chapter, the focus is on

the key modules of evolution, rather than on determining all the components

in all modules simultaneously to find the best results within a reasonable com-

putational time. With controlled experiments on the key module while fixing

the other modules, we can focus on examining the results only due to different

settings in the Evolution module. The most commonly used components in

the existing metaheuristic algorithms, i.e. h1 in Selection for Evolution and h8

in Replacement, are chosen for focused investigations.

Chapter 5. Proposed Reinforcement Learning Method 76

Table 5.1: Notations used in DQN-GSF and PPO-GSF

Notation Description
s0 The initial state
st The state at timestep t
at The selected action at timestep t
rt The reward value at timestep t
NoE The number of episodes
NoT The number of timesteps in one episode

Algorithm 1 Pseudocode of DQN-GSF

1: Initialise memory buffer D
2: Initialise evaluation action-value function Q network and target action-

value function Q̂ network
3: Generate initial population, record the initial state s0

4: for episode k = 1 to NoE do
5: initialise the state s0

6: for timestep t = 1 to NoT do
7: observe the current state st by calculating values of different state

features in Table 5.2
8: with probability ε select a random action at, with probability 1 − ε

select an action that has a maximum Q-value: at = argmaxQ (st, at)
9: select parents using a selection heuristic hi (i = 1, 2, ..., 6) from HSE

(fixed as h1 in this study)
10: generate offspring population by performing the selected action at to

state st
11: update the population using a selection heuristic hi (i = 7, 8) from

HSR (fixed as h8 in this study)
12: observe reward rt based on Equation (4.7) and Equation (4.8), and

next state st+1, store experience (st, at, rt, st+1) in D
13: sample random mini-batch of experiences [sj, aj, rj, sj+1]J (J denotes

the size of the sampled mini-batch) from memory buffer D and calcu-

late the loss:

[
rj + γmax

aj+1

Q̂ (sj+1, aj+1)−Q (sj, aj)

]2

, γ denotes the

discount factor.
14: perform gradient descent with respect to Q network in order to min-

imise the loss
15: every N timesteps reset Q̂ = Q
16: end for
17: end for

Chapter 5. Proposed Reinforcement Learning Method 77

Algorithm 2 Pseudocode of PPO-GSF

1: Initialise memory buffer D
2: Initialise policy parameters θ0, value function parameters Φ0

3: Generate initial population, record the initial state s0

4: for episode k = 1 to NoE do
5: for timestep t = 1 to NoT do
6: observe the current state st by calculating values of different state

features in Table 5.2
7: select parents using a selection heuristic hi (i = 1, 2, ..., 6) from HSE

(fixed as h1 in this study)
8: generate offspring population by performing the selected action at

based on policy πk = πθk .
9: update the population using a selection heuristic hi (i = 7, 8) from

HSR (fixed as h8 in this study)
10: observe reward rt based on Equation (4.7) and Equation (4.8)
11: collect experience (st, at, rt) and save it in D
12: end for
13: update the policy by maximising the PPO objective θk+1 based on Equa-

tion (5.1)
14: fit value function Φk+1 based on Equation (5.2)
15: empty memory buffer D
16: end for

In DQN-GSF and PPO-GSF, the two RL techniques, DQN and PPO, are

firstly applied in multiple episodes to train the policy within the GSF. After

that, the trained policy is used to design the search algorithm online. The

training process is the key research issue, and described in details as follows.

As shown in Algorithm 1, the DQN-GSF is trained on every timestep. Specif-

ically, an action (an evolution operator) is deterministically selected with the

largest Q-value for exploitation or randomly selected for exploration (Line 8,

Algorithm 1). The designed search algorithm with predefined selection heuris-

tics is executed for one timestep (Line 9-11, Algorithm 1). The next state

and reward are identified, and this experience (st, at, rt, st+1) is stored in the

memory buffer (Line 12, Algorithm 1). After that, a mini-batch of experi-

ences is randomly sampled from the memory buffer to train the evaluation

network (Line 13-14, Algorithm 1). The process is iterated at each timestep

until the end of the episode. In the process, the target network parameters

are periodically synchronised with the evaluation network parameters (Line

Chapter 5. Proposed Reinforcement Learning Method 78

15, Algorithm 1).

Unlike value-based DQN-GSF, policy-based PPO-GSF is trained on every

episode rather than each timestep. As shown in Algorithm 2, firstly, a series of

actions are selected based on the probability of the policy πθk , k = 1, 2, ..., NoE,

and then the designed search algorithm with predefined selection heuristics is

correspondingly executed for one episode (Line 5-12, Algorithm 2). Then, the

policy is updated by maximising the PPO objective based on Equation (5.1)

(Line 13, Algorithm 2) and the value function is fitted by time differential error

based on Equation (5.2) (Line 14, Algorithm 2). Finally, the memory buffer is

set to be empty (Line 15, Algorithm 2). A series of actions is selected based

on the updated policy to perform the next episode of optimisation (Line 8,

Algorithm 2).

θk+1 =arg max
θ

1

|Dc|NoT
∑
τ∈Dc

NoT∑
t=0

min (rt (θ)

Aπθk (st, at) , clip (rt (θ) , 1− ε, 1 + ε))

(5.1)

Φk+1 = argmin
Φ

1

|Dc|NoT
∑
τ∈Dc

NoT∑
t=0

(
VΦ (st)− R̂t

)2

(5.2)

rt (θ) denotes the probability ratio rt (θ) = πθ(at|st)
πθk (at|st)

. Aπθk (st, at) is an es-

timator of the advantage function at timestep t. ε is a hyperparameter.

clip (rt (θ) , 1− ε, 1 + ε) denotes the modified surrogate objective by clipping

the probability ratio. The rewards-to-go R̂t is calculated according to trajec-

tory τ : [(s1, a1, r1) , (s2, a2, r2) , · · · , (st, at, rt)]. Please refer to [28] for more

detail about these two equations.

5.2.1 State Representation

Different state features, including search-dependent and instance-dependent

features, are distinguished in this section.

Chapter 5. Proposed Reinforcement Learning Method 79

Search-dependent features observe the search process, such as the total im-

provement over the initial solution. Instance-dependent features refer to the

instance-specific characteristics, such as the vehicle number or the vehicle ca-

pacity of VRP.

When search-dependent or instance-dependent features are used to define the

state space, the learned information can be transferred to other instances of

the same problem, or even to other problems. In this section, as shown in

Table 5.2, four search-dependent features (f1-f4) and four instance-dependent

features (f5-f8) are used to define the state space of algorithm design as a new

task for machine learning. Note that the focus of this section is on automated

algorithm composition rather than feature selection. No systematic feature

selection methods are employed in this section. These 8 features are selected

from 17 features in the previous chapter to conduct preliminary experiments

on the automated algorithm composition of evolution operators since they are

commonly used in the literature.

Table 5.2: Definition of the state space

Feature Description
f1 The total fitness improvement over the initial population

fitness
f2 The diversity of the population, measured by the standard

deviation of the population fitness
f3 The current algorithmic stage, calculated as i/NoT where

i is the index of the current timestep
f4 The altitude of the search space which is based on the dif-

ference between the upper and lower bounds of the fitness
values, i.e. of the current best and worst solutions found
within the episode

f5 The number of vehicles
f6 The capacity of the vehicle
f7 The density of the time windows, i.e. the percentage of

time-constrained customers
f8 The tightness of the time windows, i.e. the width of the

time windows

Chapter 5. Proposed Reinforcement Learning Method 80

5.2.2 Action Representation

In DQN-GSF and PPO-GSF, the set of possible actions in each state is defined

by the set of evolution operators (OE) . Once an action is selected, it is applied

to the whole population.

5.2.3 Reward Scheme

Reward scheme, which encourages the RL system to find efficient search poli-

cies, is very important for an RL method. In DQN-GSF and PPO-GSF, the

reward is calculated based on the improvement of the fitness of the current

population over the initial population. When population fitness is optimised

above a certain threshold, a larger reward is assigned to the same fitness im-

provement. Same reward scheme is adopted as that in Section 4.3.3, which is

shown in Equations (4.7)-(4.8).

Chapter 5. Experiments and Discussions 81

5.3 Experiments and Discussions

The experimental investigations aim to address two research issues: (1) the

effectiveness of the new RL techniques to automatically generate a search algo-

rithm to tackle the benchmark Solomon CVRPTW dataset; (2) the generality

of the trained policies to new problem instances. To analyse the influence of the

Q-value function approximator on learning models, two value-based RL-GSF

methods with fitness improvement as the state definition, namely QL-GSF

with a Q-table and DQN-GSF with a neural network function approximator,

are compared. To analyse the influence of the policy update mechanism on

learning models, DQN-GSF and PPO-GSF, are assessed. The generality of the

trained policies across the same-type and different-type of problem instances

are assessed by directly applying the trained policies to new instances. The

experimental settings in this chapter, such as the machine information and the

computational time, are identical as those in Chapter 4.

5.3.1 Effectiveness of the Learning Models

This section investigates the effectiveness of the proposed RL-GSF models from

two aspects: influence of the Q-value function approximator; and influence of

the policy update mechanism.

Influence of Q-value Function Approximator:

QL, representing the tabular RL methods, and DQN, representing the function

approximation RL methods, are applied in the established GSF in this section.

The random algorithm is chosen as the baseline algorithm to demonstrate the

performance of the RL methods. The Random-GSF method randomly selects

algorithmic components within the established GSF during different stages of

the optimisation process without any learning, i.e. each algorithmic component

has the same probability of being selected.

The state space is defined by the total fitness improvement over the initial

Chapter 5. Experiments and Discussions 82

population fitness, i.e. f1 in Table 5.2. CVRPTW is an NP-hard problem with

a continuous fitness search space, however, Q-learning methods are typically

designed to handle discrete state spaces. Therefore, to enable the application

of Q-learning to continuous state spaces, an approximation technique based

on the concept of the state aggregation [157], [158], [159] is employed within

the QL-GSF. This technique aggregates the state space into several disjoint

categories.

From the preliminary experimental observations, in type-R1 and type-RC1 in-

stances, the values obtained fall into the range [0.4,0.6]. The range is slightly

different in type-C, type-R2 and type-RC2 instances, observed as [0.3,0.5] from

experiments. Therefore, the state space of type-R1 and type-RC1 instances

is divided as: f1 ∈ [0, 0.4) , [0.41, 0.42) , ..., [0.59, 0.6) , [0.6, 0.7) , ..., [0.9, 1]; for

type-C, type-R2 and type-RC2 instances, the state space is divided as: f1 ∈

[0, 0.3) , [0.31, 0.32) , ..., [0.49, 0.5) , [0.5, 0.7) , [0.7, 0.8) , ..., [0.9, 1]. In DQN-GSF

with a neural network function approximator, there is no need to aggregate

state; instead, f1 can be simply used as the sole input of the neural network.

Apart from the Q-value function approximator, the experimental environment

and parameters settings are identical for these three algorithms. For testing

purposes, as shown in Tables 5.3-5.5, by running each learning algorithm 10

times, we collected the average best fitness (AVG), standard deviation (SD),

the best fitness (BEST) and the GAP between BEST and the best-known

solution in the literature [143]. The published results (BEST) of two state-of-

the-art manually designed algorithms, i.e. RT [144] and HG [148], are listed

in all tables to the comparisons. These two manually designed algorithms are

selected as the comparison since they have most of the results and information

in the published paper.

On the type-C instances, the results of BEST and GAP in Table 5.4 demon-

strate that these three methods can produce the current best-known solutions

[143]. This type of instances can be solved by evolutionary search without any

learning techniques. The different AVG and SD indicate that the proposed

Chapter 5. Experiments and Discussions 83

RL-GSF methods, especially DQN-GSF, are more stable to automatically de-

sign a search algorithm for solving type-C instances with statistical significance

(measured by Wilcoxon rank sum test with p < 0.05), and indicated by ∗ in

all the tables of results.

On the type-R and type-RC instances, as shown in Table 5.4 and Table 5.5,

DQN-GSF achieves the best results among these three algorithms in most

instances. QL-GSF is the second best, with a higher AVG and a smaller GAP

than Random-GSF in most instances. It indicates that learning based models

are more effective than the non-learning search procedure.

In conclusion, a neural network function approximator outperforms the simple

Q-table. With more features to define the state space, the effectiveness of

the learning methods is likely to be further improved. However, the memory

required by a simple Q-table to handle multiple features will increase and the

amount of time required to explore each state to create the required Q-table

becomes unrealistic. In comparison to a Q-table, a neural network is able to

handle multiple features.

It can also be observed that Random-GSF shows comparable performance with

the other two methods on type-C instances but poorer performance on type-

R and type-RC instances. This indicates that learning mechanisms can help

to find better combination of the algorithmic components, obtaining better

solutions. In the next section, two neural network based RL-GSF methods,

DQN-GSF and PPO-GSF, will be investigated further.

Influence of Policy Update Mechanisms in the Learning Models:

In the value-based method DQN-GSF, and policy-based method PPO-GSF,

apart from the policy update mechanism, the other parameters, such as the

population size and the maximum running time are all identical to conduct

fair comparison.

The policies of PPO-GSF and DQN-GSF are gradually improved during the

training process. However, a certain degree of randomness must be maintained

Chapter 5. Experiments and Discussions 84

Table 5.3: Comparisons on selected type-C instances (influence of Q-value function
approximator).] and ∗ indicate DQN-GSF is significantly different from Random-
GSF and QL-GSF, respectively, i.e. p < 0.05

Instance C101 C102 C105 C201 C202 C205
Best-known solutions 10828.94 [144] 10828.94 [144] 10828.94 [144] 3591.56[144] 3591.56[144] 3588.88[144]
RT [144] 10828.94 10828.94 10828.94 3591.56 3591.56 3588.88
HG [148] 10828.94 10828.94 10828.94 3591.56 3591.56 3588.88

Random-GSF

AVG 11061.1 10928.73 10832.97 3604.44 3616.24 3599.05
SD 483.51 110.36 12.75 16.64 24.9 15.82
BEST 10828.94 10828.94 10828.94 3591.56 3591.56 3588.88
GAP 0 0 0 0 0 0

QL-GSF

AVG 10828.94 10860.36 10828.94 3591.56 3618.87 3591.75
SD 0 45.11 0 0 17.32 8.62
BEST 10828.94 10828.94 10828.94 3591.56 3591.56 3588.88
GAP 0 0 0 0 0 0

DQN-GSF

AVG 10831.47] 10840.84] ∗ 10833.93 3591.56 3616.15 3588.88]
SD 7.61 24.65 14.99 0 17.44 0
BEST 10828.94 10828.94 10828.94 3591.56 3591.56 3588.88
GAP 0 0 0 0 0 0

Table 5.4: Comparisons on selected type-R instances (influence of Q-value function
approximator).] and ∗ indicate DQN-GSF is significantly different from Random-
GSF and QL-GSF, respectively, i.e. p < 0.05

Instance R101 R102 R105 R201 R202 R205
Best-known solutions 20645.79 [145] 18486.12 [144] 15377.11 [144] 5252.37[148] 4191.7[149] 3994.42[149]
RT[144] 20650.80 18486.12 15377.11 5281.58 5088.07 4063.24
HG[148] 20656.79 18490.39 15377.11 5252.37 4198.45 4162.06

Random-GSF

AVG 21213.58 19541.53 16777.28 5445.83 5285.64 4193.57
SD 525.00 25.30 503.17 75.07 50.04 37.23
BEST 21637.7 19510.7 16421.4 5318.79 5183.26 4139.7
GAP 4.8% 5.5% 6.8% 1.3% 23.66% 3.6%

QL-GSF

AVG 21893.56 19505.09 16938.17 5384.10 5213.21 4179.57
SD 397.57 19.62 500.57 40.39 22.08 27.64
BEST 21665.47 19486.77 16438.95 5336.10 5183.86 4131.79
GAP 4.94% 5.41% 6.91% 1.59% 23.67% 3.44%

DQN-GSF

AVG 21171.67] ∗ 19516.86] 16736.59 ∗ 5366.27] ∗ 5191.93] 4168.28] ∗
SD 500.27 20.15 459.63 27.17 31.23 36.63
BEST 20655.81 19481.96 16414.47 5325.66 5137.16 4086.29
GAP 0.05% 5.39% 6.75% 1.40% 22.56% 2.30%

Table 5.5: Comparisons on selected type-RC instances (influence of Q-value function
approximator).] and ∗ indicate DQN-GSF is significantly different from Random-
GSF and QL-GSF, respectively, i.e. p < 0.05

Instance RC101 RC102 RC105 RC201 RC202 RC205
Best-known solutions 15696.94 [152] 13554.72 [152] 14628.44[156] 5406.91[147] 4367.09[155] 5297.19[147]
RT[144] 16623.58 14477.54 14733.56 5438.89 5165.57 5333.71
HG[148] 15697.43 13558.07 14637.15 5418.86 4665.56 5302.42

Random-GSF

AVG 17340.05 16196.35 16971.02 5631.78 5439.67 5533.55
SD 537.58 543.03 508.91 73.60 53.03 62.02
BEST 16687.5 14527.04 16627.61 5561.31 5315.21 5435.81
GAP 6.3% 7.2% 13.7% 2.9% 21.7% 2.6%

QL-GSF

AVG 17840.39 15967.39 16932.14 5595.50 5464.09 5430.87
SD 716.74 499.91 463.88 30.34 31.41 33.28
BEST 16686.71 15502.68 16613.85 5553.28 5446.44 5396.74
GAP 6.31% 14.37% 13.56% 2.71% 24.72% 1.87%

DQN-GSF

AVG 17523.59] ∗ 15653.58] ∗ 16936.21] 5659.06 ∗ 5338.71] ∗ 5547.81 ∗
SD 621.65 294.00 468.76 296.92 33.30 305.41
BEST 16662.50 15490.86 16589.13 5473.00 5251.44 5396.45
GAP 6.15% 14.28% 13.4% 1.22% 20.25% 1.88%

Chapter 5. Experiments and Discussions 85

to avoid being trapped in a local optima. As shown in Figures 5.2-5.4, the orig-

inal reward curve (depicted in the background of these figures) exhibits a rising

trend with some fluctuations as a result of this. To present the training effects

more clearly, the reward curve is smoothed by using a sliding window filter

method (moving average), as shown in Equation (5.3).

lsmoothed =
convolve (xbuff , ybuff)

convolve (zbuff , ybuff)
(5.3)

where xbuff is the raw reward per episode, ybuff = [1, · · · , 1]q is a vector with

the length of the smooth factor q, zbuff = [1, · · · , 1]NoE is a vector with the

length of the whole training data. q is set to 5 in the experiment.

On the type-C instances, as illustrated in Figure 5.2, PPO-GSF performs bet-

ter than DQN-GSF in most instances. As shown in Table 5.6, the average

best fitness and standard deviation also demonstrate the superiority of PPO-

GSF over DQN-GSF. Again both learning methods can produce the current

best-known solutions [143].

(a) C101 (b) C102 (c) C105

(d) C201 (e) C202 (f) C205

Figure 5.2: Influence of policy update mechanisms on the learning models (type-C
problem instances)

On the type-R instances, as illustrated in Figure 5.3, PPO-GSF outperforms

Chapter 5. Experiments and Discussions 86

Table 5.6: Comparisons on selected type-C instances (influence of policy update
mechanisms). ∗ indicates PPO-GSF is significantly different from DQN-GSF, i.e.
p < 0.05

Instance C101 C102 C105 C201 C202 C205
Best-known solutions 10828.94 [144] 10828.94 [144] 10828.94[144] 3591.56[144] 3591.56[144] 3588.88[144]
RT[144] 10828.94 10828.94 10828.94 3591.56 3591.56 3588.88
HG[148] 10828.94 10828.94 10828.94 3591.56 3591.56 3588.88

DQN-GSF

AVG 11148.36 10900.96 10832.46 3591.56 3612.52 3588.88
SD 487.93 112.83 10.57 0 13.95 0
BEST 10828.94 10828.94 10828.94 3591.56 3591.56 3588.88
GAP 0 0 0 0 0 0

PPO-GSF

AVG 10834.01 ∗ 10855.22 ∗ 10831.72 3591.56 3595.29 ∗ 3588.88
SD 10.15 50.24 8.36 0 11.19 0
BEST 10828.94 10828.94 10828.94 3591.56 3591.56 3588.88
GAP 0 0 0 0 0 0

DQN-GSF in terms of algorithm convergence and solution quality. Further-

more, Table 5.7 reveals that PPO-GSF achieves better results in terms of all

four indicators AVG, SD, BEST and GAP in most instances. The GAPs of

PPO-GSF are less than 3% in most instances except on the R202 instance.

(a) R101 (b) R102 (c) R105

(d) R201 (e) R202 (f) R205

Figure 5.3: Influence of policy update mechanisms on the learning models (type-R
problem instances)

On the type-RC instances as illustrated in Figure 5.4, PPO-GSF clearly out-

performs DQN-GSF in all instances. In Table 5.8, in most type-RC instances,

the solutions obtained by PPO-GSF and DQN-GSF are non-dominated so-

lutions to the best-known solution identified by all the other metaheuristics

methods in the literature [143]. Taking RC101 as an example, DQN-GSF

Chapter 5. Experiments and Discussions 87

Table 5.7: Comparisons on selected type-R instances (influence of policy update
mechanisms). ∗ indicates PPO-GSF is significantly different from DQN-GSF, i.e.
p < 0.05

Instance R101 R102 R105 R201 R202 R205
Best-known solutions 20645.79 [145] 18486.12 [144] 15377.11 [144] 5252.37 [148] 4191.7[149] 3994.42[149]
RT[144] 20650.80 18486.12 15377.11 5281.58 5088.07 4063.24
HG[148] 20656.79 18490.39 15377.11 5252.37 4198.45 4162.06

DQN-GSF

AVG 20981.19 19910.38 16434.78 5378.77 5201.13 4280.21
SD 454.50 452.07 489.72 44.67 34.34 308.16
BEST 20656.49 19495.43 15410.25 5304.48 5159.01 4131.92
GAP 0.05% 5.5% 0.02% 0.99% 23.1% 3.4%

PPO-GSF

AVG 20665.46 ∗ 18708.26 ∗ 16329.39 ∗ 5382.98 5200.721 4145.18 ∗
SD 10.16 413.91 321.27 39.15 29.83 29.52
BEST 20655.81 18493.03 15418.00 5318.35 5144.32 4094.81
GAP 0.05% 0.04% 0.03% 1.3% 22.7% 2.5%

can obtain a solution with 15 vehicles travelling a total distance of 1570.05.

PPO-GSF can obtain a solution with 15 vehicles travelling a total distance of

1679.80. The best-known solution for RC101 is a total travelled distance of

1696.94 by 14 vehicles.

(a) RC101 (b) RC102 (c) RC105

(d) RC201 (e) RC202 (f) RC205

Figure 5.4: Influence of policy update mechanisms on the learning models (type-RC
problem instances)

In conclusion, the experimental results show that both the PPO-GSF and

DQN-GSF methods can support effective learning in GSF to automatically

generate evolutionary algorithms for solving different types of CVRPTW in-

stances. In particular, with a neural network approximator, PPO-GSF, the

policy-based model, is more effective than DQN-GSF, the value-based model.

Chapter 5. Experiments and Discussions 88

Table 5.8: Comparisons on selected type-RC instances (influence of policy update
mechanisms). ∗ indicates PPO-GSF is significantly different from DQN-GSF, i.e.
p < 0.05

Instance RC101 RC102 RC105 RC201 RC202 RC205
Best-known solutions 15696.94 [152] 13554.72 [152] 14628.44[156] 5406.91[147] 4367.09[155] 5297.19[147]
RT[144] 16623.58 14477.54 14733.56 5438.89 5165.57 5333.71
HG[148] 15697.43 13558.07 14637.15 5418.86 4665.56 5302.42

DQN-GSF

AVG 17586.44 16146.86 17041.4 5661.65 5351.60 5535.85
SD 728.65 486.43 499.10 269.55 45.33 284.21
BEST 16570.05 15526.71 16603.84 5507.77 5293.64 5361.69
GAP 5.56% 14.55% 13.5% 1.87% 21.2% 1.2%

PPO-GSF

AVG 17521.35 ∗ 16005.04 ∗ 16543.15 ∗ 5567.00 ∗ 5359.51 5450.50 ∗
SD 410.16 525.97 309.87 78.01 57.68 36.60
BEST 16679.80 15511.07 15617.44 5467.35 5246.94 5359.96
GAP 6.3% 14.4% 6.8% 1.12% 20.1% 1.2%

There are mainly two reasons. Firstly, policy-based methods can learn stochas-

tic policies while value-based methods can only learn deterministic policies.

Policy-based methods are more capable of better environmental exploration.

Secondly, PPO-GSF can ensure that the learned policy is monotonically in-

creasing due to its effective value function optimisation method, leading to

better exploitation.

Table 5.9: Generality across the same-type of instances. ∗ indicates PPO-GSF is
significantly different from DQN-GSF, i.e. p < 0.05

Instance R102 R105 R201 R202 R205
Best-known solutions 18486.12 [144] 15377.11 [144] 5252.37[148] 4191.7[149] 3994.42[149]
RT[144] 18486.12 15377.11 5281.58 5088.07 4063.24
HG[148] 18490.39 15377.11 5252.37 4198.45 1462.06

DQN-GSF

(trained policy)

AVG 19198.08 16446.11 5369.89 5180.19 4165.78
SD 455.54 438.62 39.99 31.71 58.63
BEST 18499.58 15475.15 5325.66 5131.13 4069.41
GAP 0.07% 0.64% 1.40% 22.41% 1.88%

PPO-GSF

(trained policy)

AVG 18918.03 ∗ 16343.12 ∗ 5344.44 5103.13 ∗ 4135.23
SD 486.78 297.87 24.74 273.80 26.08
BEST 18507.80 15451.57 5311.65 4286.01 4096.00
GAP 0.12% 0.48% 1.13% 2.25% 2.54%

Table 5.10: Generality across different-type of instances (type-C). ∗ indicates PPO-
GSF is significantly different from DQN-GSF, i.e. p < 0.05

Instance C101 C102 C105 C201 C202 C205
Best-known solutions 10828.94 [144] 10828.94 [144] 10828.94[144] 3591.56[144] 3591.56[144] 3588.88[144]
RT[144] 10828.94 10828.94 10828.94 3591.56 3591.56 3588.88
HG[148] 10828.94 10828.94 10828.94 3591.56 3591.56 3588.88

DQN-GSF

(trained policy)

AVG 10828.94 10856.95 10828.94 3591.56 3608.60 3588.88
SD 0 52.99 0 0 25.82 0
BEST 10828.94 10828.94 10828.94 3591.56 3591.56 3588.88
GAP 0 0 0 0 0 0

PPO-GSF

(trained policy)

AVG 10828.94 10867.18 10836.85 3591.56 3615.97 ∗ 3588.88
SD 0 57.35 15.84 0 12.53 0
BEST 10828.94 10828.94 10828.94 3591.56 3591.56 3588.88
GAP 0 0 0 0 0 0

Chapter 5. Experiments and Discussions 89

Table 5.11: Generality across different-type of instances (type-RC). ∗ indicates PPO-
GSF is significantly different from DQN-GSF, i.e. p < 0.05

Instance RC101 RC102 RC105 RC201 RC202 RC205
Best-known solutions 15696.94[152] 13554.72 [152] 14628.44[156] 5406.91[147] 4367.09[155] 5297.19[147]
RT[144] 16623.58 14477.54 14733.56 5438.89 5165.57 5333.71
HG[148] 15697.43 13558.07 14637.15 5418.86 4665.56 5302.42

DQN-GSF

(trained policy)

AVG 17402.55 15552.85 16933.63 5561.91 5332.53 5441.44
SD 662.31 22.76 473.08 38.81 45.89 41.46
BEST 16650.43 15524.71 16596.77 5505.18 5243.20 5381.83
GAP 6.07% 14.53% 13.45% 1.82% 20.06% 1.60%

PPO-GSF

(trained policy)

AVG 17221.51 ∗ 15562.96 16633.88 ∗ 5552.57 5323.74 5440.90
SD 501.87 425.14 28.28 42.40 44.29 42.06
BEST 16671.46 14678.64 16592.69 5478.44 5251.08 5396.30
GAP 6.20% 8.29% 13.42% 1.30% 20.2% 1.68%

5.3.2 Generality of the Learning Models

The training process of RL-GSF models is very time-consuming. This section

investigates the generality of the policies trained by the proposed RL-GSF

models, potentially reducing the time and reusing policies learned on auto-

mated algorithm design in solving new problem instances. Analysis has been

conducted from two aspects: generality across the same-type instances and

generality across different-type instances.

Generality across the Same-type Instances:

The policies trained on instance R101 by DQN-GSF and PPO-GSF are used

to validate their generality to other type-R instances. Results in Table 5.9 of

applying these policies to other five instances demonstrate a good degree of

generalisation. Policies trained by DQN-GSF lead to a GAP less than 2% apart

from instance R202. With PPO-GSF, the GAP is less than 3% in all instances,

obtaining comparable results to the best-known results in the literature [143].

Generality across Different-type Instances:

Generality of the policies trained on instance R101 by DQN-GSF and PPO-

GSF are validated by directly applying them to type-C and type-RC in-

stances with different features. Results in Tables 5.10-5.11 for twelve other

instances again demonstrate the generality of the trained policies. For type-C

instances, all the GAP values are equal to 0, which means the trained policies

Chapter 5. Summary 90

of DQN-GSF and PPO-GSF can produce the current best-known solutions.

On the type-RC instances, in most cases, the trained policies can obtain non-

dominated solutions to the best-known solutions. For example, on RC101, the

trained policy of PPO-GSF can obtain a solution of 15 vehicles travelling a

total distance of 1671.46, while the best-known solution is of a total travelled

distance of 1696.94 by 14 vehicles.

In conclusion, the experimental results show that the algorithms designed auto-

matically by DQN-GSF/PPO-GSF are able to produce high-quality solutions

for different problem instances, of the same and also different types. This in-

dicates that the proposed framework is reliable for different scenarios, which

is the aim of the automated algorithm design.

5.4 Summary

In this chapter, reinforcement learning methods, Deep Q-Network (DQN) and

Proximal Policy Optimisation (PPO), are devised within the established uni-

fied GSF to automatically design population-based algorithms by intelligently

selecting appropriate combinations of the algorithmic components (i.e. evolu-

tion operators) during different stages of the optimisation process. The pro-

posed models showed to be able to effectively design algorithms within GSF,

by learning from interactions with the environment (optimisation process).

The performance of the proposed two reinforcement learning models has been

evaluated on different benchmark instances of the capacitated vehicle rout-

ing problem with time windows to investigate their effectiveness and general-

ity. Regarding the effectiveness of the learning models, investigations on the

Q-value function approximator and policy update mechanism show that the

policy-based models with a neural network function approximator (i.e. PPO)

are more suitable to automatically design search algorithms. Regarding the

generality, the policies learned on one instance are applied across the same-

type and different-type instances. The results validate the generality of the

Chapter 5. Summary 91

trained policies of DQN-GSF and PPO-GSF models. This provides promising

evidence in learning reusable new knowledge in designing algorithms based on

the basic algorithmic components within the unified general search framework.

Chapter 6

Automated Composition of

Evolution Operators and

Selection Heuristics

Chapter 3 identified three key research issues within the proposed general

search framework and Chapter 5 aimed to address the first key research is-

sue, i.e. automated composition of evolution operators, with the key features

identified in Chapter 4. This chapter focuses on the other two research issues:

automated composition of selection heuristics and of both evolution operators

and selection heuristics together.

6.1 Introduction

A general combinatorial optimisation problem (GCOP) model has recently

been built to define the design of search algorithms itself as a COP, to which

the solutions are new general-purpose algorithms composed of basic algorith-

mic components [13]. With the basic algorithmic components in the GCOP

model, the AutoGCOP framework has been built for automated design of lo-

cal search algorithms [160]. In this thesis, another framework, GSF, has been

further developed to support the automated design of both local search algo-

92

Chapter 6. Introduction 93

rithms and population-based algorithms in Chapter 3. This thesis focuses on

automatically designing population-based algorithms within GSF. Three key

research issues are defined in Chapter 3.

The first issue, i.e. automated composition of evolution operators, has been

extensively investigated in the literature, as evolution operators are consid-

ered as the most important algorithmic components in designing evolutionary

algorithms. Examples include genetic algorithm for the travelling salesman

problem (TSP) [133], hyper-heuristics for unmanned aerial vehicles [136], the

set covering problem [161], the set packing problem [162] and several COPs

within the HyFlex framework [25].

Automated composition of selection heuristics, including selection for evolu-

tion heuristics (e.g., tournament selection and roulette wheel selection) and

selection for replacement heuristics (e.g., comma-selection and plus-selection),

has attracted less attention compared to that of evolution operators. How-

ever, they are also important algorithmic components for designing successful

search algorithms, i.e. determining how individuals should be selected as par-

ents to produce new candidate solutions. Example algorithms include the

genetic programming based hyper-heuristics for the NK-landscape benchmark

problem [163] and the grammatical evolution based hyper-heuristics for the

0-1 Knapsack problem [164].

Furthermore, there has been limited literature regarding automated compo-

sition of evolution operators and selection heuristics simultaneously within a

general framework of algorithms. This expands the design space into a high-

dimensional one, thus posing new challenges to machine learning.

Overall, the present research has been conducted with the following two moti-

vations. Firstly, while some research has been carried out on automated com-

position of evolution operators, there has been limited amount of systematic

investigation into the automated design of search algorithms through composi-

tion of different basic algorithmic components, namely selection heuristics and

evolution operators. Note that the focus of this thesis is on automated algo-

Chapter 6. Introduction 94

rithm composition. Although extensive literature and surveys exist regarding

the other two types of automated algorithm design, namely automated algo-

rithm configuration [165] [166] and automated algorithm selection [167], they

are beyond the scope of this thesis. Therefore, based on the unified GSF with

defined basic algorithmic components, this chapter seeks to systematically in-

vestigate different design spaces, aiming to acquire transferable or reusable

knowledge in automated algorithm design. Secondly, few studies have inte-

grated machine learning to systematically investigate the new learning task of

automated algorithm design. One of the key issues is on how to cope effectively

with the high-dimensional algorithm design space. More specifically, we aim

to answer the following three research questions (RQ):

• RQ1 How can the design space of algorithms (considering different design

decisions) be systematically explored to acquire transferable or reusable

knowledge?

• RQ2 How can successful machine learning be built to effectively deal with

the high-dimensional search space of the automated algorithm design

problem? What kind of learning mechanism would be useful to handle

such search space?

• RQ3 Can the discovered knowledge be transferred into solving new prob-

lem instances?

The goal of this chapter is to devise an effective learning method to systemati-

cally investigate the impact of individual algorithmic components and the syn-

ergy of multiple algorithmic components. Specifically, this chapter addresses

the following research objectives:

1. To systematically explore the design spaces of algorithms within different

modules of the GSF with controlled experiments against that of ad hoc

design space without a framework, which is usually considered in the

literature. (RQ1)

Chapter 6. Introduction 95

2. To propose an advanced reinforcement learning technique with a maxi-

mum entropy mechanism to tackle the above-mentioned problem of au-

tomated algorithm design which is defined as a new learning task with

a continuous state space and a high-dimensional discrete action space.

(RQ2)

3. To evaluate the performance of the devised learning models in terms of

their effectiveness and generality when transferring knowledge discovered

into solving new problem instances.(RQ3)

The rest of this chapter is organised as follows. Detailed descriptions of the

devised learning models are given in Section 6.2. The experiments and discus-

sions are shown in Section 6.3. Finally, Section 6.4 concludes this chapter.

Chapter 6. Proposed Maximum Entropy Reinforcement Learning Method96

6.2 Proposed Maximum Entropy Reinforcement

Learning Method

Before introducing the proposed Actor-Critic with Entropy (ACE) method,

a modified soft actor critic (SAC) method [168] for discrete action space,

the problem of algorithm design is defined as a new reinforcement learning

task within GSF, as shown in Figure 6.1. The states are defined by search-

dependent and instance-dependent features which are identified in Chapter 4.

The actions are defined by evolution operators and/or selection heuristics. Dif-

ferent from other RLs, the reward scheme is designed to maximise the expected

accumulated reward r and the expected entropy of the policy H as shown in

Equation (6.1).

rπ (st, at) = r (st, at) + α · H [π (at | st)] (6.1)

Figure 6.1: Proposed reinforcement learning for automated composition within GSF

The entropyH [π (at | st)] essentially introduces a noise to reinforcement learn-

ing weighted by a coefficient α. Higher values of α tend to give more chances

to actions which are rarely or never selected; while lower values of α empha-

sise on utilising the actions with good historical performance. As α decreases,

more emphasis is given on the accumulated reward r compared to the entropy

of the policy H. In other words, as α decreases, the learning process focuses

Chapter 6. Proposed Maximum Entropy Reinforcement Learning Method97

more on exploitation than exploration.

Three entropy coefficient adjustment schemes are proposed as follows, and eval-

uated in Section 6.3 to strike a balance between exploration and exploitation

in the learning.

• fixed scheme (FS): the entropy coefficient α is set to a fixed value, i.e.

α = 0.5

• linear adaptive scheme (LAS): decrease α linearly, i.e. αt+1 = αt · 0.9998

• non-linear adaptive scheme (NLAS): decrease α nonlinearly, i.e. with a

neural network

Apart from the maximum entropy mechanism to balance exploration and ex-

ploitation, ACE is enhanced with two mechanisms as shown in Figure 6.1.

Firstly, an actor-critic architecture, π is devised with one policy network (Ac-

tor), and two separate critic networks Qω1 and Qω2 (with the same structure)

are used simultaneously to eliminate overestimation. The minimum of Qω1 and

Qω2 is chosen exporting the Q value. Secondly, the experience replay buffer is

utilised to break the correlations between the stored experience (st, at, rt, st+1)

and reuse collected experience multiple times.

The pseudocode of ACE-GSF is shown in Algorithm 3. Specifically, an action

is selected based on the current policy network (i.e. Actor network) (Line

9, Algorithm 3) from the set of three key components of search algorithms,

namely: selection for evolution heuristic, evolution operator, and selection for

replacement heuristic (Line 10-12, Algorithm 3). The reward and next state

are observed and the corresponding experience (st, at, rt, st+1) is stored in the

replay buffer (Line 13, Algorithm 3). A random mini-batch of experiences is

sampled to train the critic evaluation networks using a temporal difference

algorithm (Line 14-15, Algorithm 3). After that, the actor network is updated

by minimising the loss function (Line 16, Algorithm 3). The entropy coefficient

α is then updated based on the pre-defined adjustment scheme. The process

Chapter 6. Proposed Maximum Entropy Reinforcement Learning Method98

is iterated at each timestep until the end of the episode. In the process, the

target networks are updated using a soft update strategy (Line 18, Algorithm

3).

Algorithm 3 Pseudocode of ACE-GSF

1: Randomly initialise critic networks Qω1 , Qω2 with parameters ω1 and ω2,
actor network πθ with parameter θ

2: Initialise target critic network Qω1
− , Qω2

− with parameters ω1
− ←

ω1, ω2
− ← ω2

3: Initialise replay buffer D, the number of episode NoE, the number of
timesteps in one episode NoT

4: Generate initial population, record the initial state s0

5: for episode k = 1 to NoE do
6: Initialise the state s0

7: for timestep t = 1 to NoT do
8: Observe the current state st by calculating values of different state

features
9: Select an action based on the current policy at = πθ(st)

10: Select parents using a selection heuristic hi (i = 1, 2, ..., 6) from HSE

by performing the selected action at
11: Generate offspring population using an evolution operator from OE

by performing the selected action at
12: Update the population using a selection heuristic hi (i = 7, 8) from

HSR by performing the selected action at
13: Observe reward rt based on Equation (6.5) and Equation (6.6), and

next state st+1, store experience (st, at, rt, st+1) in replay buffer D
14: Sample random mini-batch of experiences [sj, aj, rj, sj+1]J (J denotes

the size of the sampled mini-batch) from replay buffer D
15: Update two critic networks Qωi , i = 1, 2 by minimising the loss func-

tion shown in Equation (6.2).
16: Update the actor network πθ by minimising the loss function shown

in Equation (6.4).
17: Update entropy coefficient α based on the selected adjustment scheme

(i.e FS/LAS/NLAS)
18: Every N timesteps, update the target critic networks with a soft strat-

egy:
(τ is a parameter that is typically chosen to be close to 1)
ω−1 ← τω1 + (1− τ)ω−1
ω−2 ← τω2 + (1− τ)ω−2

19: end for
20: end for

The critic networks Qω1 , Qω2 are updated using temporal difference algorithm.

The loss function is shown in Equation (6.2) and the temporal difference target

yj is shown in Equation (6.3). The actor network πθ is updated by minimising

Chapter 6. Proposed Maximum Entropy Reinforcement Learning Method99

the loss function shown in Equation (6.4).

L =
1

J

J∑
j=1

(yj −Qωi (sj, aj))
2 (6.2)

yj = rj + γ(min
i=1,2

Qω−i
(sj+1,aj+1)− α log πθ (aj+1 |sj+1)),

aj+1 ∼ πθ (· |sj+1)

(6.3)

Lπ (θ) =
1

J

J∑
j=1

(α log πθ (aj |sj)− min
i=1,2

Qωi (sj, aj)) (6.4)

6.2.1 State Representation

The state should provide sufficient information on the environmental status

to support accurate selection of the action. In this chapter, two groups of

features, namely search-dependent features, which identify the key attributes

of the search process itself, and instance-dependent features, which accurately

describe the properties of the problem instance, are employed to represent the

state. Refer to Chapter 4 for more details.

The search-dependent features include the search stage, fitness improvement,

the standard deviation/mean/skewness/kurtosis/amplitude of fitness, and the

lower(Q1) median(Q2)/upper(Q3) quartile of fitness.

The instance-dependent features include the number of available vehicles, ve-

hicle capacity, average customer demand, average service time, average time-

window size, average time-window overlaps between customers, and the per-

centage of time-constrained customers.

6.2.2 Action Representation

With regards to automated design of selection heuristics and evolution op-

erators, the set of possible actions in each state is defined in Tables 3.5-3.7,

respectively. Regarding automated design of both, a pair of evolution oper-

ators in Table 3.7 and selection heuristics in Tables 3.5-3.6 is defined as the

Chapter 6. Experiments and Discussions 100

action. Refer to Chapter 3 for more details.

6.2.3 Reward Scheme

ACE is designed to learn a policy of a high reward while acting as randomly as

possible. Note that the reward scheme in ACE is different from that in previous

chapters since it aims to maximise both the expected accumulated reward

and policy entropy simultaneously, whereas the reward schemes in previous

chapters only focus on maximising the expected accumulated reward.

The first objective, as shown in Equations (6.5) and (6.6), is calculated based

on the fitness improvement of the current population (i.e fcurrent) over the

initial population (i.e finitial). When population fitness is above a certain

threshold (i.e a), which means that the search process enters the later stages

of evolution, a larger reward is assigned for the same fitness improvement

with a log function. The second objective of maximising the entropy of the

policy is calculated based on the term H [π (at | st)]. These two objectives are

aggregated into a single objective function, i.e. minimising the sum of them.

r =
fcurrent
finitial

(6.5)

rπ (st, at) =

−r + α · H [π (at | st)], if r > a

−r − log10 (r) + α · H [π (at | st)] ,if r 6 a

(6.6)

6.3 Experiments and Discussions

The experimental investigations aim to address two research issues: (1) the

effectiveness of the learning models when tackling the design space of selection

heuristics; (2) the effectiveness and generality of the learning models on the

whole algorithm design space. To address the first issue, three ACE variants

with different entropy coefficient adjustment schemes are validated in Section

6.3.1. On both selection heuristics and evolution operators, three ACE vari-

Chapter 6. Experiments and Discussions 101

ants are assessed in Section 6.3.2. The experiments considering only evolution

operators are conducted to the comparison to serve as the baseline. To analyse

the generality of the learning models, the trained policies are directly applied

to the same and different types of problem instances in Section 6.3.2. The

experimental settings in this chapter, such as the machine information and the

computational time, are identical as those in Chapter 4.

6.3.1 Automated Composition of Selection Heuristics

The proposed reinforcement learning method, namely ACE, is applied to auto-

mate the process of algorithm design by learning to adapt appropriate selection

heuristics (including selection for evolution heuristics and selection for replace-

ment heuristics).

Automated Composition of Selection for Evolution Heuristics:

With learning on the design space of only selection for evolution heuristics,

three ACE variants with different entropy coefficient settings, namely ACE FS,

ACE NLAS and ACE LAS with a fixed/non-linear/linear entropy coefficient

adjustment scheme respectively, are investigated. We fixed the algorithmic

components in the other two modules as: oins bw for the Evolution module and

h8 for Selection for Replacement module. These two components are the most

frequently called evolution operator [169] and the most adopted selection for

replacement heuristic in the literature.

As shown in Figure 6.2, results on different instances show that learning on

selection for evolution heuristics alone has no significant impact on the per-

formance of search algorithms throughout the training process. One possible

reason is that although selection for evolution heuristics determine which in-

dividual should be combined to produce new solutions, it would not have so

much impact if the algorithmic component in the Evolution module is fixed.

In other words, there is limited scope for evolution. This supports human

Chapter 6. Experiments and Discussions 102

(a) R101 (b) R102 (c) R103 (d) R104

(e) R201 (f) R202 (g) R203 (h) R204

(i) RC101 (j) RC102 (k) RC103 (l) RC104

(m) RC201 (n) RC202 (o) RC203 (p) RC204

Figure 6.2: Performance comparison during the training process (learning on se-
lection for evolution heuristics, i.e. se)

experience in designing search algorithms and results reported in the litera-

ture, i.e. the selection heuristics have less impact on the performance of search

algorithms and therefore there is no need to focus on the design of them.

As shown in Tables 6.1-6.4, the performance of three ACE variants is slightly

but not significantly better than that of the non-learning method during the

testing process. Note that “Non-learning” denotes the search algorithm with

all fixed components in all modules (h1, oins bw, h8). This indicates that learn-

ing on selection for evolution heuristic has little impact on the algorithm per-

formance, which is consistent with the findings shown in Figure 6.2.

Chapter 6. Experiments and Discussions 103

Table 6.1: Performance comparison during the testing process (learning on selection
for evolution heuristics, i.e. se), type-R1

R101 R102 R103 R104
Best-known Solutions 20645.79 [145] 18486.12 [144] 14292.68 [146] 10007.24 [147]

ACE FS se

AVG 21019.62 18783.83 15336.91 11419.82
SD 226.28 215.70 208.64 461.40
BEST 20918.92 18706 14437.66 11083.57
GAP 1.32% 1.19% 1.01% 10.76%

ACE NLAS se

AVG 21006.91 18761.66 15344.38 11333.54
SD 230.78 213.22 205.63 405.13
BEST 20887.4 18660.31 14459.78 11082.82
GAP 1.17% 0.94% 1.17% 10.75%

ACE LAS se

AVG 20937.17 18717.35 15269.27 11141.26
SD 11.01 23.98 283.22 31.66
BEST 20914.45 18669.80 14415.92 11089.68
GAP 1.30% 0.99% 0.86% 10.82%

Non-learning

AVG 20957.89 18769.97 15342.55 11373.85
SD 30.37 215.69 207.39 443.38
BEST 20901.02 18675.05 14448.89 11085.36
GAP 1.24% 1.02% 1.09% 10.77%

Table 6.2: Performance comparison during the testing process (learning on selection
for evolution heuristics, i.e. se), type-R2

R201 R202 R203 R204
Best-known Solutions 5252.37 [148] 4191.7 [149] 3939.54 [150] 2825.52 [151]

ACE FS se

AVG 5479.97 5214.98 4168.84 3936.29
SD 41.04 290.99 30.00 25.70
BEST 5398.13 4317.59 4111.00 3891.49
GAP 2.78% 3% 4.35% 37.73%

ACE NLAS se

AVG 5469.77 5171.22 4166.85 3932.16
SD 25.33 335.45 32.48 22.07
BEST 5392.77 4316.40 4087.81 3878.91
GAP 2.67% 2.97% 3.76% 37.28%

ACE LAS se

AVG 5444.77 5096.12 4159.70 3923.55
SD 11.32 376.51 23.47 18.34
BEST 5413.81 4307.61 4111.65 3891.72
GAP 3.07% 2.77% 4.37% 37.73%

Non-learning

AVG 5533.63 5384.61 4252.69 4020.82
SD 24.47 49.37 23.49 19.65
BEST 5481.47 5287.09 4184.90 3989.41
GAP 4.36% 26.13% 6.23% 41.19%

Table 6.3: Performance comparison during the testing process (learning on selection
for evolution heuristics, i.e. se), type-RC1

RC101 RC102 RC103 RC104
Best-known Solutions 15696.94 [152] 13554.75 [152] 12261.67 [153] 12135.487 [154]

ACE FS se

AVG 17074.88 15223.6 13126.46 11926.51
SD 432.50 481.39 469.69 486.41
BEST 16734.77 14627.56 12342.64 11223.87
GAP 6.61% 7.91% 0.66% 0.79%

ACE NLAS se

AVG 17030.73 15258.4 12930.19 11968.47
SD 420.36 471.00 511.73 477.55
BEST 16758.36 14619.93 12364.56 11190.65
GAP 6.76% 7.86% 0.84% 0.50%

ACE LAS se

AVG 16802.26 14617.32 12742.95 11433.27
SD 15.93 27.55 458.11 400.82
BEST 16766.4 14557.79 12347.93 11197.41
GAP 6.81% 7.4% 0.70% 0.56%

Non-learning

AVG 17105.48 15194.24 13210.88 12059.4
SD 478.03 481.82 401.69 419.97
BEST 16745.33 14597.72 12341.12 11171.26
GAP 6.68% 7.69% 0.65% 0.32%

Chapter 6. Experiments and Discussions 104

Table 6.4: Performance comparison during the testing process (learning on selection
for evolution heuristics, i.e. se), type-RC2

RC201 RC202 RC203 RC204
Best-known Solutions 5406.91 [147] 4367.09 [155] 4049.62 [155] 3798.41 [147]

ACE FS se

AVG 5682.11 5462.07 4345.10 3977.98
SD 46.89 34.51 284.60 25.68
BEST 5538.27 5400.92 4172.10 3934.86
GAP 2.43% 23.71% 3.02% 3.59%

ACE NLAS se

AVG 5689.10 5458.57 4247.98 3979.04
SD 70.65 32.83 38.42 25.79
BEST 5550.42 5382.51 4173.24 3928.85
GAP 2.65% 23.29% 3.05% 3.43%

ACE LAS se

AVG 5617.92 5394.25 4211.85 3946.07
SD 17.79 22.38 25.11 11.12
BEST 5580.24 5332.49 4159.75 3924.74
GAP 3.21% 22.15% 2.72% 3.32%

Non-learning

AVG 5683.60 5431.68 4238.98 3973.20
SD 55.43 42.20 38.76 28.32
BEST 5594.09 5347.23 4163.38 3905.85
GAP 3.46% 22.48% 2.81% 2.83%

Automated Composition of Selection for Replacement Heuristics:

Similarly, the effectiveness of the ACE method on the design space of only

selection for replacement heuristics is validated with the ACE FS, ACE NLAS,

ACE LAS and non-learning method. The components in other two modules

are fixed as: oins bw for Evolution module and h1 for Selection for Evolution

module, which are the most frequently called evolution operator [169] and the

most adopted selection for evolution heuristic in the literature.

As shown in Figure 6.3, the proposed ACE methods are able to learn on se-

lection for replacement heuristics throughout the training process. However,

as Tables 6.5- 6.8 show, the RL-based methods (i.e. three ACE variants) have

slightly but not significantly better performance than the non-learning method

on all instances during the testing process. This indicates that selection for

replacement heuristic has little impact on the algorithm performance although

ACE methods have a relatively good learning performance. One possible ex-

planation is that the action space is relatively small thus presents limited scope

for learning.

Chapter 6. Experiments and Discussions 105

Table 6.5: Performance comparison during the testing process (learning on selection
for replacement heuristics, i.e. sr), type-R1

R101 R102 R103 R104
Best-known Solutions 20645.79 [145] 18486.12 [144] 14292.68 [146] 10007.24 [147]

ACE FS sr

AVG 20953.99 18705.20 15253.01 11337.15
SD 30.14 29.10 343.92 406.37
BEST 20905.51 18659.77 14521.65 11097.61
GAP 1.26% 0.94% 1.60% 10.90%

ACE NLAS sr

AVG 21039.63 18757.65 15296.03 11202.98
SD 311.39 222.57 279.64 302.91
BEST 20885.40 18669.78 14458.03 11070.86
GAP 1.16% 0.99% 1.16% 10.63%

ACE LAS sr

AVG 20941.11 18686.76 15287.74 11158.34
SD 29.51 17.75 234.07 219.93
BEST 20893.87 18628.8 14440.08 11057.46
GAP 1.20% 0.77% 1.03% 10.49%

Non-learning

AVG 20957.89 18769.97 15342.55 11373.85
SD 30.37 215.69 207.39 443.38
BEST 20901.02 18675.05 14448.89 11085.36
GAP 1.24% 1.02% 1.09% 10.77%

Table 6.6: Performance comparison during the testing process (learning on selection
for replacement heuristics, i.e. sr), type-R2

R201 R202 R203 R204
Best-known Solutions 5252.37 [148] 4191.7 [149] 3939.54 [150] 2825.52 [151]

ACE FS sr

AVG 5485.78 5307.81 4184.56 3972.95
SD 17.39 40.18 29.26 27.01
BEST 5442.47 5220.64 4130.73 3928.06
GAP 3.62% 24.55% 4.85% 39.02%

ACE NLAS sr

AVG 5532.74 5193.71 4155.69 3927.74
SD 28.14 292.15 26.95 23.88
BEST 5484.73 4290.74 4112.68 3884.60
GAP 4.42% 2.36% 4.4% 37.48%

ACE LAS sr

AVG 5462.73 4860.06 4141.74 3912.04
SD 41.66 432.75 29.79 16.42
BEST 5391.18 4313.70 4079.64 3886.11
GAP 2.64% 2.91% 3.56% 37.54%

Non-learning

AVG 5533.63 5384.61 4252.69 4020.82
SD 24.47 49.37 23.49 19.65
BEST 5481.47 5287.09 4184.90 3989.41
GAP 4.36% 26.13% 6.23% 41.19%

Table 6.7: Performance comparison during the testing process (learning on selection
for replacement heuristics, i.e. sr), type-RC1

RC101 RC102 RC103 RC104
Best-known Solutions 15696.94 [152] 13554.75 [152] 12261.67 [153] 12135.487 [154]

ACE FS sr

AVG 17138.92 15075.5 13010.12 11932.74
SD 495.57 489.15 480.12 487.54
BEST 16729.1 14581.41 12380 11191.67
GAP 6.58% 7.57% 0.97% 0.50%

ACE NLAS sr

AVG 17131.87 15335.74 13220.6 12009.46
SD 504.41 434.11 382.15 453.92
BEST 16695.41 14574.36 12381.99 11176.33
GAP 6.36% 7.52% 0.98% 0.37%

ACE LAS sr

AVG 16789.31 14632.69 12408.88 11264.29
SD 36.77 28.55 33.79 226.67
BEST 16720.35 14577.61 12360.48 11188.16
GAP 6.52% 7.55% 0.81% 0.47%

Non-learning

AVG 17105.48 15194.24 13210.88 12059.4
SD 478.03 481.82 401.69 419.97
BEST 16745.33 14597.72 12341.12 11171.26
GAP 6.68% 7.69% 0.65% 0.32%

Chapter 6. Experiments and Discussions 106

(a) R101 (b) R102 (c) R103 (d) R104

(e) R201 (f) R202 (g) R203 (h) R204

(i) RC101 (j) RC102 (k) RC103 (l) RC104

(m) RC201 (n) RC202 (o) RC203 (p) RC204

Figure 6.3: Performance comparison during the training process (learning on se-
lection for replacement heuristics, i.e. sr)

6.3.2 Automated Composition of Selection Heuristics

and Evolution Operators

Effectiveness of the Devised Learning Models:

Experimental results on the training process are shown in Figure 6.4 to inves-

tigate the effectiveness of extending the search space from evolution operators

alone to both selection heuristics and evolution operators.

From Figure 6.4, we can clearly see that, despite having a worse starting point,

all the ACE methods on the search space of both selection heuristics and evo-

lution operators (both) outperform those on the search space of evolution

Chapter 6. Experiments and Discussions 107

Table 6.8: Performance comparison during the testing process (learning on selection
for replacement heuristics, i.e. sr), type-RC2

RC201 RC202 RC203 RC204
Best-known Solutions 5406.91 [147] 4367.09 [155] 4049.62 [155] 3798.41 [147]

ACE FS sr

AVG 5664.16 5476.56 4252.20 4010.41
SD 33.7 31.81 36.96 28.62
BEST 5609.33 5422.93 4167.97 3962.13
GAP 3.74% 24.22% 2.92% 4.31%

ACE NLAS sr

AVG 5663.75 5432.35 4308.48 3970.37
SD 54.65 50.32 216.30 20.95
BEST 5584.09 5341.78 4138.31 3929.21
GAP 3.28% 22.36% 2.19% 3.44%

ACE LAS sr

AVG 5624.67 5438.88 4217.56 3967.57
SD 33.25 42.35 31.91 18.10
BEST 5536.72 5331.38 4141.87 3925.76
GAP 2.40% 22.12% 2.28% 3.35%

Non-learning

AVG 5683.60 5431.68 4238.98 3973.20
SD 55.43 42.20 38.76 28.32
BEST 5594.09 5347.23 4163.38 3905.85
GAP 3.46% 22.48% 2.81% 2.83%

operators alone (operator). This demonstrates the positive synergy between

selection heuristics and evolution operators. In other words, proper collab-

oration between selection heuristics and evolution operators significantly im-

proves the performance of search algorithms. More importantly, this indicates

that human experience can help with algorithm design within a limited design

space, i.e. using human expertise to fix the other components besides evolution

operators leads to a better starting point, but machine learning outperforms

within a larger algorithm design space and therefore has more potential to

design better algorithms and attain better solutions.

Concerning learning on the search space of both selection heuristics and evolu-

tion operators, ACE LAS both performs better than the others, and ACE FS both

and ACE NLAS both demonstrate competitive performance during the train-

ing process. This shows that the adaptive coefficient adjustment scheme can

guide the agent to explore new actions at the early stage of the search pro-

cess while also exploit the best actions at the later stage. The advantage of

ACE LAS both over ACE NLAS both is that the simple linear coefficient ad-

justment is much less time-consuming, and therefore more computational time

can be used to evolve the population and enhance the search performance.

Regarding the performance of ACE variants during the testing process, Tables

Chapter 6. Experiments and Discussions 108

(a) R101 (b) R102 (c) R103 (d) R104

(e) R201 (f) R202 (g) R203 (h) R204

(i) RC101 (j) RC102 (k) RC103 (l) RC104

(m) RC201 (n) RC202 (o) RC203 (p) RC204

Figure 6.4: Performance comparison during the training process (learning on evo-
lution operators vs. learning on both selection heuristics and evolution operators)

6.9-6.12 tabulate the statistical performances of ACE FS operator, ACE NLAS operator,

ACE LAS operator concerning the search space of evolution operators, and

ACE FS both, ACE NLAS both, ACE LAS both concerning the search space

of both selection heuristics and evolution operators. Particularly, column

“GAP” is the gap between the attained best fitness and the best-known re-

sults in the literature to demonstrate the overall performance of different ACE

variants on the CVRPTW benchmarks.

In Tables 6.9-6.12, ACE LAS both attains better performance on solution

quality than the other two ACE variants on most instances. Note that the

only difference between ACE variants lies in the entropy coefficient adjust-

Chapter 6. Experiments and Discussions 109

Table 6.9: Performance comparison during the testing process (learning on evolution
operators vs. learning on both selection heuristics and evolution operators), type-R1

R101 R102 R103 R104
Best-known Solutions 20645.79 [145] 18486.12 [144] 14292.68 [146] 10007.24 [147]

ACE FS both

AVG 20864.64 19267.41 15252.24 11630.38
SD 395.65 516.22 150.05 483.08
BEST 20653.99 18522.27 14613.02 11049.23
GAP 0.04% 0.20% 2.24% 10.41%

ACE NLAS both

AVG 21119.96 19148.23 15222.18 11471.89
SD 506.19 466.2739 200.952 482.93
BEST 20653.76 18500.85 14350.38 11044.7
GAP 0.04% 0.08% 0.40% 10.37%

ACE LAS both

AVG 20663.25 19193.66 15161.89 11069.15
SD 7.22 446.35 269.76 19.38
BEST 20652.27 18491.29 14348.23 11022.37
GAP 0.03% 0.03% 0.39% 10.14%

ACE FS operator

AVG 20664.24 18653.01 15255.71 11092.17
SD 13.08 339.90 7.28 20.39
BEST 20653.76 18498.31 15243.27 11059.56
GAP 0.04% 0.07% 6.65% 10.52%

ACE NLAS operator

AVG 20663.64 18512.82 15131.34 11126.13
SD 9.26 12.75 293.55 205.91
BEST 20653.99 18491.88 14400.16 11033.77
GAP 0.04% 0.03% 0.75% 10.26%

ACE LAS operator

AVG 20788.71 18522.37 15129.87 11090.62
SD 288.5524 14.02 305.60 35.27
BEST 20653.76 18504.07 14353.07 11061.15
GAP 0.04% 0.097% 0.42% 10.53%

Non-learning

AVG 20957.89 18769.97 15342.55 11373.85
SD 30.37 215.69 207.39 443.38
BEST 20901.02 18675.05 14448.89 11085.36
GAP 1.24% 1.02% 1.09% 10.77%

ment scheme. From this, it is possible to infer that the linear entropy coefficient

adjustment scheme is useful in striking the balance between exploration and

exploitation during the learning process, particularly on the large search space

of algorithm design. This observation is consistent with the results obtained

during the training process.

Note that the only difference in the selected type-R1 instances lies in the

customer time windows density, i.e. the percentage of customers with time

windows of R101 and R102 is 100% and 75% respectively, and 50% and 25%

for R103 and R104. The selected type-R2/type-RC1/type-RC2 instances have

the same pattern. As shown in Figure 6.4, with the decrease of time windows

density (i.e. with looser constraints), the starting points of all ACE variants

increase. This observation indicates that the ACE methods learn better on

instances with looser constraints. One possible reason is that the solution space

of the instances with looser constraints has more feasible solution candidates,

Chapter 6. Experiments and Discussions 110

Table 6.10: Performance comparison during the testing process (learning on evo-
lution operators vs. learning on both selection heuristics and evolution operators),
type-R2

R201 R202 R203 R204
Best-known Solutions 5252.37 [148] 4191.7 [149] 3939.54 [150] 2825.52 [151]

ACE FS both

AVG 5351.79 5177.05 4065.49 3844.57
SD 35.72 22.12 28.78 21.66
BEST 5278.02 5146.30 4010.91 3796.73
GAP 0.49% 22.77% 1.81% 34.37%

ACE NLAS both

AVG 5353.24 5169.60 4051.64 3836.50
SD 36.00 22.24 30.32 25.38
BEST 5284.13 5129.79 4006.80 3807.09
GAP 0.60% 22.38% 1.71% 34.74%

ACE LAS both

AVG 5320.87 5050.10 4026.06 3825.20
SD 15.84 266.36 14.00 8.44
BEST 5277.71 4255.46 3999.29 3806.12
GAP 0.48% 1.52% 1.52% 34.71%

ACE FS operator

AVG 5318.49 5115.03 4033.03 3825.06
SD 10.21 168.85 11.77 8.62
BEST 5298.13 4361.74 3997.63 3782.99
GAP 0.87% 4.06% 1.48% 33.89%

ACE NLAS operator

AVG 5316.34 5065.46 4029.42 3816.46
SD 10.57 258.14 16.08 8.64
BEST 5298.88 4331.64 3998.09 3796.79
GAP 0.89% 3.34% 1.49% 34.38%

ACE LAS operator

AVG 5314.33 5113.26 4077.97 3818.40
SD 14.89 192.43 58.36 11.47
BEST 5287.98 4265.06 4017.52 3795.08
GAP 0.68% 1.75% 1.98% 34.31%

Non-learning

AVG 5533.63 5384.61 4252.69 4020.82
SD 24.47 49.37 23.49 19.65
BEST 5481.47 5287.09 4184.90 3989.41
GAP 4.36% 26.13% 6.23% 41.19%

Chapter 6. Experiments and Discussions 111

Table 6.11: Performance comparison during the testing process (learning on evo-
lution operators vs. learning on both selection heuristics and evolution operators),
type-RC1

RC101 RC102 RC103 RC104
Best-known Solutions 15696.94 [152] 13554.75 [152] 12261.67 [153] 12135.487 [154]

ACE FS both

AVG 17550.06 15508.28 13474.65 12232.91
SD 467.96 464.78 430.80 23.29
BEST 16677.82 14521.81 12443.92 12176.53
GAP 6.25% 7.13% 1.49% 9.35%

ACE NLAS both

AVG 17708.71 15444.12 13315.13 12235.36
SD 312.92 511.43 223.25 24.31
BEST 16705.59 14552.96 12321.2 12171.33
GAP 6.43% 7.36% 0.49% 9.30%

ACE LAS both

AVG 17555.36 15332.23 13273.83 12032.23
SD 473.81 383.64 287.95 407.30
BEST 16648.09 14516.89 12365.86 11168.88
GAP 6.06% 7.10% 0.85% 0.3%

ACE FS operator

AVG 17271.06 15480.25 13348.91 12072.58
SD 478.25 205.12 17.19 333.02
BEST 16681.82 14566.36 13302.72 11247.47
GAP 6.27% 7.46% 8.49% 1.01%

ACE NLAS operator

AVG 17027.84 15479.54 13296.05 12065.08
SD 462.77 201.48 211.14 344.85
BEST 16674.02 14579.25 12354.11 11209.12
GAP 6.22% 7.56% 0.75% 0.66%

ACE LAS operator

AVG 16951.76 15310.34 13302.72 12214.11
SD 417.82 396.81 213.35 222.48
BEST 16667.91 14561.73 12351.55 11225.98
GAP 6.19% 7.43% 0.73% 0.81%

Non-learning

AVG 17105.48 15194.24 13210.88 12059.4
SD 478.03 481.82 401.69 419.97
BEST 16745.33 14597.72 12341.12 11171.26
GAP 6.68% 7.69% 0.65% 0.32%

Chapter 6. Experiments and Discussions 112

Table 6.12: Performance comparison during the testing process (learning on evo-
lution operators vs. learning on both selection heuristics and evolution operators),
type-RC2

RC201 RC202 RC203 RC204
Best-known Solutions 5406.91 [147] 4367.09 [155] 4049.62 [155] 3798.41 [147]

ACE FS both

AVG 5534.21 5310.02 4306.63 3903.02
SD 38.91 49.67 309.84 24.17
BEST 5478.78 5204.87 4118.84 3842.72
GAP 1.33% 19.22% 1.71% 1.17%

ACE NLAS both

AVG 5550.32 5288.01 4273.22 3910.53
SD 48.62 46.29 264.60 30.43
BEST 5449.35 5218.59 4128.85 3864.09
GAP 0.78% 19.54% 1.96% 1.73%

ACE LAS both

AVG 5510.25 5292.42 4161.03 3879.72
SD 25.18 33.04 21.08 15.62
BEST 5460.29 5209.88 4094.21 3843.16
GAP 0.99% 19.34% 1.10% 1.18%

ACE FS operator

AVG 5499.55 5272.72 4176.15 3877.98
SD 12.66 18.38 20.04 13.64
BEST 5474.01 5245.04 4131.80 3847.81
GAP 1.24% 20.14% 2.03% 1.30%

ACE NLAS operator

AVG 5498.08 5276.13 4176.11 3885.27
SD 20.45 19.19 27.09 13.30
BEST 5459.43 5233.93 4133.47 3846.10
GAP 0.97% 19.89% 2.07% 1.25%

ACE LAS operator

AVG 5558.41 5266.24 4202.15 3877.72
SD 55.07 30.76 50.11 10.88
BEST 5497.77 5214.28 4120.17 3855.23
GAP 1.68% 19.44% 1.74% 1.49%

Non-learning

AVG 5683.60 5431.68 4238.98 3973.20
SD 55.43 42.20 38.76 28.32
BEST 5594.09 5347.23 4163.38 3905.85
GAP 3.46% 22.48% 2.81% 2.83%

Chapter 6. Experiments and Discussions 113

which is helpful for learning techniques to discover some knowledge or patterns.

Algorithmic Component Analysis of the Best Designed Search Al-

gorithms:

Taking R1 instances as examples, Figure 6.5 shows the most adapted algo-

rithmic components of the best designed search algorithms learned by the

ACE LAS both method on the Selection for Evolution heuristics (shown in

Figure 6.5 (a)-(d)), Evolution Operators (shown in Figure 6.5 (e)-(h)) and

Selection for Replacement heuristics (shown in Figure 6.5 (i)-(l)).

In the best designed search algorithms, all the Selection for Evolution heuris-

tics are called during the optimisation process although the appearances of

each heuristic are different. The same phenomenons can be observed in terms

of Evolution Operators and Selection for Replacement heuristics. This in-

dicates that using distinct algorithmic components (e.g., selection heuristics

and evolution operators) can help to improve the performance of the search

algorithms. Moreover, it should be noted that h8 is identified as the most

frequently called selection for replacement heuristic, which is consistent with

the findings of manually designed algorithms in the literature.

Table 6.13: Generality of the trained policy R101 (20 runs)

C101 C201 R105 R201 RC101 RC201
Best-known Solutions 10828.94 [144] 3591.56 [144] 15377.11 [144] 5252.37 [148] 15696.94 [152] 5406.91 [147]

ACE FS both

AVG 10828.94 3591.56 16367.11 5369.67 17451.46 5665.17
SD 3.64E-12 4.44E-13 213.87 34.71 516.73 396.70
BEST 10828.94 3591.56 15415.34 5295.14 16672.46 5524.74
GAP 0 0 0.25% 0.81% 6.21% 2.18%

ACE NLAS both

AVG 10882.25 3593.05 16216.42 5361.80 17597.40 5551.16
SD 226.77 6.37 385.46 30.95 301.94 30.14
BEST 10828.94 3591.56 15383.19 5299.25 16687.34 5495.74
GAP 0 0 0.04% 0.89% 6.31% 1.64%

ACE LAS both

AVG 10828.94 3591.56 16252.23 5320.08 17031.94 5495.34
SD 3.64E-12 4.55E-13 337.93 9.75 478.87 16.26
BEST 10828.94 3591.56 15422.13 5288.70 16638.66 5450.61
GAP 0 0 0.29% 0.69% 6.0% 0.81%

ACE FS op

AVG 10828.94 3591.56 16354.52 5320.17 17243.77 5503.02
SD 3.64E-12 4.55E-13 203.59 10.67 480.18 17.45
BEST 10828.94 3591.56 15468.55 5301.74 16662.95 5465.95
GAP 0 0 0.59% 0.94% 6.15% 1.09%

ACE NLAS op

AVG 10828.94 3591.56 16249.68 5323.86 17234.76 5511.80
SD 3.64E-12 4.55E-13 350.09 19.90 492.75 30.22
BEST 10828.94 3591.56 15393.51 5307.14 16653.41 5469.14
GAP 0 0 0.11% 1.04% 6.09% 1.15%

ACE LAS op

AVG 11051.9 3591.56 16338.5 5383.6 17070.83 5564.74
SD 441.29 4.55E-13 278.59 35.30 457.47 28.72
BEST 10828.94 3591.56 15486.98 5332.277 16658.77 5506.94
GAP 0 0 0.71% 1.52% 6.13% 1.85%

Chapter 6. Experiments and Discussions 114

(a) R101 se (b) R102 se (c) R103 se (d) R104 se

(e) R101 op (f) R102 op (g) R103 op (h) R104 op

(i) R101 sr (j) R102 sr (k) R103 sr (l) R104 sr

Figure 6.5: The most adapted algorithmic components of the best designed search
algorithms obtained by ACE LAS both

Generality of the Devised Learning Models:

To investigate the generality of the policies trained by the ACE methods con-

cerning different search spaces of algorithmic components for solving the same-

type and different-type problem instances, the policies trained on instance

R101 are employed to design search algorithms for solving different types of

new problem instances.

Results in Table 6.13 demonstrate a good degree of generality of the reinforce-

ment learning based models. The “GAP” is less than 3% on most selected

instances apart from instance RC101. Note that ACE LAS both attained best

“AVG”, “BEST” and “GAP” on most instances, which is consistent with the

experimental results regarding the effectiveness of the learning models in Sec-

tion 6.3.2.

Chapter 6. Experiments and Discussions 115

Table 6.14: Performance comparison during the testing process (learning on evolu-
tion operators), type-R

R101 R102 R201 R202
Best-known Solutions 20645.79 [145] 18486.12 [144] 5252.37 [148] 4191.7 [149]

DQN-GSF

AVG 20981.19 19910.38 5378.77 5201.13
SD 454.50 452.07 44.67 34.34
BEST 20656.49 19495.43 5304.48 5159.01
GAP 0.05% 5.5% 0.99% 23.1%

PPO-GSF

AVG 20665.46 18708.26 5382.98 5200.721
SD 10.16 413.91 39.15 29.83
BEST 20655.81 18493.03 5318.35 5144.32
GAP 0.05% 0.04% 1.3% 22.7%

ACE FS operator

AVG 20664.24 18653.01 5318.49 5115.03
SD 13.08 339.90 10.21 168.85
BEST 20653.76 18498.31 5298.13 4361.74
GAP 0.04% 0.07% 0.87% 4.06%

ACE NLAS operator

AVG 20663.64 18512.82 5316.34 5065.46
SD 9.26 12.75 10.57 258.14
BEST 20653.99 18491.88 5298.88 4331.64
GAP 0.04% 0.03% 0.89% 3.34%

ACE LAS operator

AVG 20788.71 18522.37 5314.33 5113.26
SD 288.5524 14.02 14.89 192.43
BEST 20653.76 18504.07 5287.98 4265.06
GAP 0.04% 0.097% 0.68% 1.75%

Non-learning

AVG 20957.89 18769.97 5533.63 5384.61
SD 30.37 215.69 24.47 49.37
BEST 20901.02 18675.05 5481.47 5287.09
GAP 1.24% 1.02% 4.36% 26.13%

Table 6.15: Performance comparison during the testing process (learning on evolu-
tion operators), type-RC

RC101 RC102 RC201 RC202
Best-known Solutions 15696.94 [152] 13554.75 [152] 5406.91 [147] 4367.09 [155]

DQN-GSF

AVG 17586.44 16146.86 5661.65 5351.60
SD 728.65 486.43 269.55 45.33
BEST 16570.05 15526.71 5507.77 5293.64
GAP 5.56% 14.55% 1.87% 21.2%

PPO-GSF

AVG 17521.35 16005.04 5567.00 5359.51
SD 410.16 525.97 78.01 57.68
BEST 16679.80 15511.07 5467.35 5246.94
GAP 6.3% 14.4% 1.12% 20.1%

ACE FS operator

AVG 17271.06 15480.25 5499.55 5272.72
SD 478.25 205.12 12.66 18.38
BEST 16681.82 14566.36 5474.01 5245.04
GAP 6.27% 7.46% 1.24% 20.14%

ACE NLAS operator

AVG 17027.84 15479.54 5498.08 5276.13
SD 462.77 201.48 20.45 19.19
BEST 16674.02 14579.25 5459.43 5233.93
GAP 6.22% 7.56% 0.97% 19.89%

ACE LAS operator

AVG 16951.76 15310.34 5558.41 5266.24
SD 417.82 396.81 55.07 30.76
BEST 16667.91 14561.73 5497.77 5214.28
GAP 6.19% 7.43% 1.68% 19.44%

Non-learning

AVG 17105.48 15194.24 5683.60 5431.68
SD 478.03 481.82 55.43 42.20
BEST 16745.33 14597.72 5594.09 5347.23
GAP 6.68% 7.69% 3.46% 22.48%

Chapter 6. Summary 116

6.3.3 Automated Composition of Evolution Operators

This section aims to investigate the effectiveness of different proposed rein-

forcement learning techniques: DQN-GSF and PPO-GSF from Chapter 5, and

three ACE variants from Chapter 6. The investigation involves a direct com-

parison of the experimental results in the context of automated composition

of evolution operators. Tables 6.14-6.15 present the performance comparison

during the testing process of these five RL-based methods, while also including

best-known solutions in the literature and random solutions (i.e. non-learning)

without incorporating any learning techniques. Note that the training perfor-

mance comparison is not included here, as the reward scheme differs between

Chapter 5 and Chapter 6, rendering such comparisons meaningless.

Tables 6.14-6.15 indicate that ACE variants exhibit relatively better perfor-

mance compared to DQN-GSF and PPO-GSF. This can be attributed to the

fact that ACE variants place a stronger emphasis on exploration, whereas

DQN-GSF and PPO-GSF primarily focus on exploiting the current policy,

which may limit exploration in certain scenarios. Specifically, ACE variants

encourage exploration by incorporating an entropy term in the reward scheme,

i.e the policy objective. This helps the agent to explore a wider range of ac-

tions, ultimately facilitating the discovery of potentially better solutions.

6.4 Summary

In this chapter, we systematically investigate two key research issues in au-

tomated algorithm design with machine learning, namely the impact of indi-

vidual algorithmic components and the synergy of multiple algorithmic com-

ponents, within the unified general search framework. Extending the search

space of algorithm design from individual components to multiple components

results in a high-dimensional decision space of algorithm design. Therefore,

an advanced reinforcement learning method with adapted maximum entropy

mechanisms has been devised to address the automated algorithm design prob-

Chapter 6. Summary 117

lem, with a continuous state space and a high-dimensional discrete action

space.

The performance of the learning models, namely their effectiveness and gener-

ality, has been assessed on the capacitated vehicle routing problem with time

windows. Results regarding the impact of individual components show that

selection heuristics on the population have less impact on the performance

of search algorithms, which supports human experience in designing search

algorithms and findings reported in the literature. Learning on the synergy

of multiple algorithmic components demonstrates that proper collaboration

among selection heuristics and evolution operators can significantly improve

the algorithm performance. The comparison experiments with the learning on

evolution operators indicate that human design experience can help algorithm

design to some extent, but machine learning techniques overtake human expe-

rience when dealing with a larger algorithm design space which human experts

are not able to explore.

Chapter 7

Conclusions and Future

Research

This thesis focuses on automated design of population-based algorithms within

a novel general search framework for solving complex combinatorial optimisa-

tion problems efficiently. The vehicle routing problem is selected as a case

study. This goal has been successfully achieved by investigating three key re-

search issues within the proposed general search framework, i.e. automated

design of evolution operators, of selection heuristics and of both together, with

the support of reinforcement learning techniques. The effectiveness and gen-

erality of the machine learning based models are validated comprehensively

across different benchmark instances of the capacitated vehicle routing prob-

lem with time windows.

7.1 Main Contributions

This section describes the main conclusions for this thesis drawn from the four

major contribution chapters, i.e. Chapters 3 to 6.

118

Chapter 7. Main Contributions 119

7.1.1 Novel General Search Framework to Support Au-

tomated Algorithm Design

Metaheuristic algorithms have been investigated intensively to address highly

complex combinatorial optimisation problems such as vehicle routing prob-

lems. However, most metaheuristic algorithms have been designed manually

by researchers of different expertise without a consistent framework to sup-

port effective algorithm design. Therefore, they may produce good results for

particular problem instances but perform poorly on other problem instances.

Furthermore, knowledge learned is difficult to be transferred and reused, thus

often discarded.

In Chapter 3, a novel general search framework was proposed to formulate dif-

ferent metaheuristic algorithms, including single-solution based and population-

based algorithms. Generic algorithmic components such as selection heuristics

and evolution operators were clearly defined within the proposed framework.

This framework aims to serve as the basis of automated design of effective

search algorithms for solving complex combinatorial optimisation problems

with the support of machine learning. In addition, three key research issues

within automated algorithm design, i.e automated composition of evolution

operators, of selection heuristics and of both, were clearly defined.

7.1.2 Feature Identification for Automated Algorithm

Design

Utilising machine learning techniques to assist effective algorithm design is still

at a preliminary stage albeit some successful attempts. One of the key research

issues is on how to identify key features to accurately describe the search space

of algorithm design. Although various features have been identified in the

literature, there is a lack of a systematic investigation analysing the identified

features within a consistent and general framework.

In Chapter 4, two groups of key features, namely search-dependent and instance-

Chapter 7. Main Contributions 120

dependent features, were identified to capture useful information for assisting

effective algorithm design. These identified features aim to serve as the basis

of developing successful machine learning for automated design of general-

purpose search algorithms. With these key features, a state-of-the-art rein-

forcement learning technique, namely proximal policy optimisation, was adapted

to extract useful knowledge hidden in the data collected during the optimisa-

tion process. Search patterns of the best designed search algorithms, in partic-

ular the utilisation and transition of algorithmic components, were investigated

to provide insights into reusing knowledge extracted in algorithm design using

machine learning in solving new problem instances.

7.1.3 Automated Composition of Evolution Operators

Automated algorithm design, especially automated composition of evolution

operators, has been investigated extensively in the literature. However, most

existing work has been conducted within a template of a specific search algo-

rithm such as a genetic algorithm, which limit the scope of algorithm design.

Furthermore, existing studies pay more attention to the solution quality while

neglecting other performance measures such as reusability and generality of

the produced search algorithms.

In Chapter 5, with GSF and identified features, this thesis devised two rein-

forcement learning based methods, namely deep Q-network based and proximal

policy optimisation based methods, to enable appropriate evolution operators

to be intelligently selected and combined during different stages of the optimi-

sation process. Experimental results validate the effectiveness and generality of

the proposed methods. This provides promising evidence in learning reusable

new knowledge in designing algorithms based on the basic algorithmic compo-

nents within the unified general search framework.

Chapter 7. Limitations and Future Works 121

7.1.4 Automated Composition of Selection Heuristics

and Evolution Operators

Most existing studies on automated algorithm design have focused on the evo-

lution operators, neglecting the automated composition of selection heuristics

on the population, not to mention the automated composition of both decisions

together.

Chapter 6 aimed to systematically investigate the automated design of search

algorithms by exploring the impact of individual algorithmic components and

the synergy among multiple algorithmic components. To tackle the high-

dimensional search space of algorithms, an advanced deep reinforcement learn-

ing method with adapted maximum entropy mechanisms was devised. Com-

prehensive computational experiments were conducted on a range of bench-

mark instances to evaluate the effectiveness and generality of the proposed

method. Regarding the impact of individual algorithmic components, selec-

tion heuristics have less impact than evolution operators on an algorithm’s

performance, which supports human experience in designing search algorithms

and findings reported in the literature. Regarding the synergy among multi-

ple algorithmic components, the results show that proper collaboration among

selection heuristics and evolution operators can significantly improve the al-

gorithm performance. The experiments comparing the individual impact and

the synergy of algorithmic components indicated that human design experience

can help algorithm design to some extent, but machine learning techniques can

be more helpful when dealing with a larger algorithm design space.

7.2 Limitations and Future Works

The previous section provides a summary of the key finding in this thesis.

Based on the summarised contributions, we have identified several limitations

related to the research works conducted in this thesis. This section will high-

Chapter 7. Limitations and Future Works 122

light a few of these limitations and then suggest some future research directions.

• In the first contribution, a general search framework has been built to

formulate different metaheuristics. This thesis focuses specifically on the

automated design of single-objective population-based algorithms. How-

ever, many combinatorial optimisation problems involve multiple objec-

tives that needed to be addressed. For instance, the vehicle routing

problems considered in this thesis include multiple objectives such as

minimising the number of vehicles and the total distance travelled, but

this thesis handles the multiple objectives by transforming them into a

single objective and then applies single-objective approaches.

For further work, it would be interesting to treat the vehicle routing prob-

lem as a multi-objective problem and then automatically design effective

multi-objective evolutionary algorithms to address them. This would

require further extension of the proposed general search framework to

include additional algorithmic components related to handling multiple

objectives, such as the performance metric, diversity maintenance and

archive management. Another potential future direction could be adopt

and adjust the basic algorithmic components within the Evolution mod-

ule of the general search framework to other combinatorial optimisation

problems.

Besides, it would be interesting to further extend the current framework

to enable the combination of local search algorithms and population-

based algorithms, i.e., a high-level algorithmic template that take ad-

vantage of both types of algorithms. This kind of combination has been

proved to be an effective strategy. One example is the memetic algo-

rithm [170] which has demonstrated effectiveness in handling complex

optimisation problems such as travelling salesman problems [171] [172],

vehicle routing problems [173] [174], and job shop scheduling problems

[175] [176] . The advantage of this kind of combination lies in its abil-

Chapter 7. Limitations and Future Works 123

ity to combine global and local search mechanisms, allowing for efficient

exploration and exploitation of the search space, leading to improved

optimisation performance.

• In the second contribution, we identified two groups of features, i.e.

search-dependent and instance-dependent features, to assist automated

design of population-based algorithms. We also accessed the effectiveness

of different types of feature sets. However, one limitation of this thesis

is the lack of systematic feature selection or reduction among these iden-

tified features using approaches such as recursive elimination and prin-

cipal component analysis. It would be valuable to conduct a systematic

study to evaluate the impact of each specific feature, and then identify

and select a subset of the most informative and discriminative features.

By reducing the dimensionality of the feature space, the performance of

the proposed automated algorithm design approaches can be enhanced.

Another potential future direction could be identifying suitable features

that accurately describe the search space of multi-objective algorithms

to support the new learning task.

• In the third and fourth contributions, we developed different reinforce-

ment learning approaches to address different research issues within the

context of automated algorithm design. Both the effectiveness and gen-

erality of the proposed methods have been comprehensively validated on

a challenging benchmark problem, namely the vehicle routing problem

with time windows. One limitation of this thesis is that it has cho-

sen CVRPTW as a case study for comprehensive research. It would be

interesting to challenge the proposed automated design approaches by

applying them to more complex VRP variants and real-world problems,

such as the multi-depot vehicle routing problem [177], the vehicle routing

problem with pickup and delivery [178], or the vehicle routing problem

with time windows and split deliveries [179]. Further studies may also

Chapter 7. Limitations and Future Works 124

investigate how to transfer the reusable knowledge in designing search

algorithms for small-scale vehicle routing problems to large-scale vehicle

routing problems, or even to other complex combinatorial optimisation

problems such as permutation flow shop scheduling problem [180] and

personnel scheduling problem [181].

Bibliography

[1] S. P. Gayialis, G. D. Konstantakopoulos, and I. P. Tatsiopoulos, “Vehicle
routing problem for urban freight transportation: A review of the recent
literature,” in Operational Research in the Digital Era–ICT Challenges:
6th International Symposium and 28th National Conference on Opera-
tional Research, Thessaloniki, Greece, June 2017. Springer, 2019, pp.
89–104.

[2] Y.-P. Wang, “Adaptive ant colony algorithm for the vrp solution of lo-
gistics distribution,” Research Journal of Applied Sciences, Engineering
and Technology, vol. 6, no. 5, pp. 807–811, 2013.

[3] G. D. Konstantakopoulos, S. P. Gayialis, and E. P. Kechagias, “Vehicle
routing problem and related algorithms for logistics distribution: a lit-
erature review and classification,” Operational research, pp. 1–30, 2020.

[4] M. Zirour, “Vehicle routing problem: models and solutions,” Journal of
Quality Measurement and Analysis JQMA, vol. 4, no. 1, pp. 205–218,
2008.

[5] J. K. Lenstra and A. R. Kan, “Complexity of vehicle routing and schedul-
ing problems,” Networks, vol. 11, no. 2, pp. 221–227, 1981.

[6] M. Gendreau and C. D. Tarantilis, Solving large-scale vehicle routing
problems with time windows: The state-of-the-art. Cirrelt Montreal,
2010.

[7] M. Steinbrunn, G. Moerkotte, and A. Kemper, “Heuristic and random-
ized optimization for the join ordering problem,” The VLDB Journal,
vol. 6, no. 3, pp. 191–208, 1997.

[8] F. Glover, “Future paths for integer programming and links to artificial
intelligence,” Computers & operations research, vol. 13, no. 5, pp. 533–
549, 1986.

[9] P. Hansen and N. Mladenović, “An introduction to variable neighbor-
hood search,” in Meta-heuristics. Springer, 1999, pp. 433–458.

[10] H. Jh, “Adaptation in natural and artificial systems,” Ann Arbor, 1975.

[11] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in MHS’95. Proceedings of the sixth international symposium
on micro machine and human science. Ieee, 1995, pp. 39–43.

125

BIBLIOGRAPHY 126

[12] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by
a colony of cooperating agents,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 26, no. 1, pp. 29–41, 1996.

[13] R. Qu, G. Kendall, and N. Pillay, “The general combinatorial optimiza-
tion problem: Towards automated algorithm design,” IEEE Computa-
tional Intelligence Magazine, vol. 15, no. 2, pp. 14–23, 2020.

[14] P. Cowling, G. Kendall, and E. Soubeiga, “A hyperheuristic approach to
scheduling a sales summit,” in International conference on the practice
and theory of automated timetabling. Springer, 2000, pp. 176–190.

[15] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, B. McCollum,
G. Ochoa, A. J. Parkes, and S. Petrovic, “The cross-domain heuristic
search challenge–an international research competition,” in International
Conference on Learning and Intelligent Optimization. Springer, 2011,
pp. 631–634.

[16] N. Pillay and D. Beckedahl, “EvoHyp-A Java toolkit for evolutionary
algorithm hyper-heuristics,” in 2017 IEEE Congress on Evolutionary
Computation (CEC). IEEE, 2017, pp. 2706–2713.

[17] S. L. Tilahun and M. A. Tawhid, “Swarm hyperheuristic framework,”
Journal of Heuristics, vol. 25, no. 4, pp. 809–836, 2019.

[18] J. M. Cruz-Duarte, I. Amaya, J. C. Ortiz-Bayliss, S. E. Conant-Pablos,
H. Terashima-Maŕın, and Y. Shi, “Hyper-heuristics to customise meta-
heuristics for continuous optimisation,” Swarm and Evolutionary Com-
putation, vol. 66, p. 100935, 2021.

[19] S. Van Rijn, C. Doerr, and T. Bäck, “Towards an adaptive cma-es con-
figurator,” in Parallel Problem Solving from Nature–PPSN XV: 15th In-
ternational Conference, Coimbra, Portugal, September 8–12, 2018, Pro-
ceedings, Part I. Springer, 2018, pp. 54–65.

[20] R. Boks, H. Wang, and T. Bäck, “A modular hybridization of parti-
cle swarm optimization and differential evolution,” in Proceedings of
the 2020 Genetic and Evolutionary Computation Conference Compan-
ion, 2020, pp. 1418–1425.

[21] A. Eiben, M. Horvath, W. Kowalczyk, and M. C. Schut, “Reinforcement
learning for online control of evolutionary algorithms,” in International
Workshop on Engineering Self-Organising Applications. Springer, 2006,
pp. 151–160.

[22] A. E. Gutierrez-Rodŕıguez, S. E. Conant-Pablos, J. C. Ortiz-Bayliss,
and H. Terashima-Maŕın, “Selecting meta-heuristics for solving vehicle
routing problems with time windows via meta-learning,” Expert Systems
with Applications, vol. 118, pp. 470–481, 2019.

[23] H. Jiang, Y. Wang, Y. Tian, X. Zhang, and J. Xiao, “Feature construc-
tion for meta-heuristic algorithm recommendation of capacitated vehicle

BIBLIOGRAPHY 127

routing problems,” ACM Transactions on Evolutionary Learning and
Optimization, vol. 1, no. 1, pp. 1–28, 2021.

[24] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[25] S. S. Choong, L.-P. Wong, and C. P. Lim, “Automatic design of hyper-
heuristic based on reinforcement learning,” Information Sciences, vol.
436, pp. 89–107, 2018.

[26] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,
“Human-level control through deep reinforcement learning,” nature, vol.
518, no. 7540, pp. 529–533, 2015.

[28] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[29] J. E. Pettinger and R. M. Everson, “Controlling genetic algorithms with
reinforcement learning,” in Proceedings of the 4th Annual Conference on
Genetic and Evolutionary Computation, 2002, pp. 692–692.

[30] F. Chen, Y. Gao, Z.-q. Chen, and S.-f. Chen, “SCGA: Controlling genetic
algorithms with Sarsa (0),” in International Conference on Computa-
tional Intelligence for Modelling, Control and Automation and Interna-
tional Conference on Intelligent Agents, Web Technologies and Internet
Commerce (CIMCA-IAWTIC’06), vol. 1. IEEE, 2005, pp. 1177–1183.

[31] W. Zhang, H. Li, W. Yang, G. Zhang, and M. Gen, “Hybrid multiob-
jective evolutionary algorithm considering combination timing for multi-
type vehicle routing problem with time windows,” Computers & Indus-
trial Engineering, vol. 171, p. 108435, 2022.

[32] A. Narayanan, P. Misra, A. Ojha, V. Bandhu, S. Ghosh, and A. Vasan,
“A reinforcement learning approach for electric vehicle routing problem
with vehicle-to-grid supply,” arXiv preprint arXiv:2204.05545, 2022.

[33] Y. Wang, L. Ran, X. Guan, J. Fan, Y. Sun, and H. Wang, “Collabora-
tive multicenter vehicle routing problem with time windows and mixed
deliveries and pickups,” Expert Systems with Applications, vol. 197, p.
116690, 2022.

[34] P. Saksuriya and C. Likasiri, “Hybrid heuristic for vehicle routing prob-
lem with time windows and compatibility constraints in home healthcare
system,” Applied Sciences, vol. 12, no. 13, p. 6486, 2022.

[35] E. Dı́az de León-Hicks, S. E. Conant-Pablos, J. C. Ortiz-Bayliss,
and H. Terashima-Maŕın, “Addressing the algorithm selection problem
through an attention-based meta-learner approach,” Applied Sciences,
vol. 13, no. 7, p. 4601, 2023.

BIBLIOGRAPHY 128

[36] D. Wu, J. Li, J. Cui, and D. Hu, “Research on the time-dependent
vehicle routing problem for fresh agricultural products based on customer
value,” Agriculture, vol. 13, no. 3, p. 681, 2023.

[37] B. Chen, R. Qu, R. Bai, and H. Ishibuchi, “An investigation on com-
pound neighborhoods for VRPTW,” in International Conference on Op-
erations Research and Enterprise Systems. Springer, 2016, pp. 3–19.

[38] S. Kirkpatrick, “Optimization by simulated annealing: Quantitative
studies,” Journal of statistical physics, vol. 34, no. 5, pp. 975–986, 1984.

[39] M. M. Solomon, “Algorithms for the vehicle routing and scheduling prob-
lems with time window constraints,” Operations research, vol. 35, no. 2,
pp. 254–265, 1987.

[40] C. Blum and A. Roli, “Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison,” ACM computing surveys
(CSUR), vol. 35, no. 3, pp. 268–308, 2003.

[41] R. Tavakkoli-Moghaddam, N. Safaei, and Y. Gholipour, “A hybrid sim-
ulated annealing for capacitated vehicle routing problems with the inde-
pendent route length,” Applied Mathematics and Computation, vol. 176,
no. 2, pp. 445–454, 2006.

[42] F. Y. Vincent, A. P. Redi, Y. A. Hidayat, and O. J. Wibowo, “A simu-
lated annealing heuristic for the hybrid vehicle routing problem,” Applied
Soft Computing, vol. 53, pp. 119–132, 2017.

[43] L. Wei, Z. Zhang, D. Zhang, and S. C. Leung, “A simulated anneal-
ing algorithm for the capacitated vehicle routing problem with two-
dimensional loading constraints,” European journal of operational re-
search, vol. 265, no. 3, pp. 843–859, 2018.

[44] N. M. E. Normasari, V. F. Yu, C. Bachtiyar et al., “A simulated anneal-
ing heuristic for the capacitated green vehicle routing problem,” Mathe-
matical Problems in Engineering, vol. 2019, 2019.

[45] F. Y. Vincent, H. Susanto, P. Jodiawan, T.-W. Ho, S.-W. Lin, and Y.-T.
Huang, “A simulated annealing algorithm for the vehicle routing problem
with parcel lockers,” IEEE Access, vol. 10, pp. 20 764–20 782, 2022.

[46] A. S. Alfa, S. S. Heragu, and M. Chen, “A 3-opt based simulated an-
nealing algorithm for vehicle routing problems,” Computers & Industrial
Engineering, vol. 21, no. 1-4, pp. 635–639, 1991.

[47] İ. İlhan, “An improved simulated annealing algorithm with crossover op-
erator for capacitated vehicle routing problem,” Swarm and Evolutionary
Computation, vol. 64, p. 100911, 2021.

[48] Y. Wang, Q. Wu, and F. Glover, “Effective metaheuristic algorithms
for the minimum differential dispersion problem,” European Journal of
Operational Research, vol. 258, no. 3, pp. 829–843, 2017.

BIBLIOGRAPHY 129

[49] L. Berbotto, S. Garćıa, and F. J. Nogales, “A randomized granular tabu
search heuristic for the split delivery vehicle routing problem,” Annals
of Operations Research, vol. 222, no. 1, pp. 153–173, 2014.

[50] O. Bräysy, “A reactive variable neighborhood search for the vehicle-
routing problem with time windows,” INFORMS Journal on Computing,
vol. 15, no. 4, pp. 347–368, 2003.

[51] İ. Küçükoğlu and N. Öztürk, “An advanced hybrid meta-heuristic algo-
rithm for the vehicle routing problem with backhauls and time windows,”
Computers & Industrial Engineering, vol. 86, pp. 60–68, 2015.

[52] B. Chen, R. Qu, R. Bai, and H. Ishibuchi, “A variable neighbourhood
search algorithm with compound neighbourhoods for VRPTW,” 2016.

[53] J. Kytöjoki, T. Nuortio, O. Bräysy, and M. Gendreau, “An efficient
variable neighborhood search heuristic for very large scale vehicle routing
problems,” Computers & operations research, vol. 34, no. 9, pp. 2743–
2757, 2007.

[54] M. J. Geiger and W. Wenger, “On the interactive resolution of multi-
objective vehicle routing problems,” in International Conference on Evo-
lutionary Multi-Criterion Optimization. Springer, 2007, pp. 687–699.

[55] K. Fleszar, I. H. Osman, and K. S. Hindi, “A variable neighbourhood
search algorithm for the open vehicle routing problem,” European Jour-
nal of Operational Research, vol. 195, no. 3, pp. 803–809, 2009.

[56] I. Rechenberg, “Evolution strategy: Nature’s way of optimization,”
in Optimization: Methods and Applications, Possibilities and Limita-
tions: Proceedings of an International Seminar Organized by Deutsche
Forschungsanstalt für Luft-und Raumfahrt (DLR), Bonn, June 1989.
Springer, 1989, pp. 106–126.

[57] V. W. Porto, T. Back, D. Fogel, and T. Michalewicz, “Evolutionary
programming,” Handbook of evolutionary computation, pp. 89–102, 2000.

[58] J. R. Koza, “Genetic programming as a means for programming comput-
ers by natural selection,” Statistics and computing, vol. 4, pp. 87–112,
1994.

[59] H. Awad, R. Elshaer, A. AbdElmo’ez, and G. Nawara, “An effective ge-
netic algorithm for capacitated vehicle routing problem,” in Proceedings
of the International Conference on Industrial Engineering and Opera-
tions Management, 2018, pp. 374–384.

[60] N. Lin, Y. Shi, T. Zhang, and X. Wang, “An effective order-aware hybrid
genetic algorithm for capacitated vehicle routing problems in internet of
things,” IEEE Access, vol. 7, pp. 86 102–86 114, 2019.

[61] T. Azad and M. A. A. Hasin, “Capacitated vehicle routing problem using
genetic algorithm: a case of cement distribution,” International Journal
of Logistics Systems and Management, vol. 32, no. 1, pp. 132–146, 2019.

BIBLIOGRAPHY 130

[62] J. Zhu, “Solving capacitated vehicle routing problem by an improved ge-
netic algorithm with fuzzy c-means clustering,” Scientific Programming,
vol. 2022, 2022.

[63] H. Nazif and L. S. Lee, “Optimized crossover genetic algorithm for ve-
hicle routing problem with time windows,” American journal of applied
sciences, vol. 7, no. 1, p. 95, 2010.

[64] S. N. Kumar, R. Panneerselvam et al., “A time-dependent vehicle routing
problem with time windows for e-commerce supplier site pickups using
genetic algorithm,” Intelligent Information Management, vol. 7, no. 04,
p. 181, 2015.

[65] H. Abidi, K. Hassine, and F. Mguis, “Genetic algorithm for solving
a dynamic vehicle routing problem with time windows,” in 2018 In-
ternational Conference on High Performance Computing & Simulation
(HPCS). IEEE, 2018, pp. 782–788.

[66] Q. Liu, P. Xu, Y. Wu, and T. Shen, “A hybrid genetic algorithm for the
electric vehicle routing problem with time windows,” Control Theory and
Technology, vol. 20, no. 2, pp. 279–286, 2022.

[67] O. S. Olaniyi, A. K. James, A. A. Ibrahim, and A. F. Makanjuola, “On
the application of a modified genetic algorithm for solving vehicle routing
problems with time windows and split delivery,” IAENG International
Journal of Applied Mathematics, vol. 52, no. 1, pp. 1–9, 2022.

[68] C. Prins, “A simple and effective evolutionary algorithm for the vehicle
routing problem,” Computers & operations research, vol. 31, no. 12, pp.
1985–2002, 2004.

[69] T. S. Khoo and B. B. Mohammad, “The parallelization of a two-phase
distributed hybrid ruin-and-recreate genetic algorithm for solving multi-
objective vehicle routing problem with time windows,” Expert Systems
with Applications, vol. 168, p. 114408, 2021.

[70] A. K. Ariyani, W. F. Mahmudy, and Y. P. Anggodo, “Hybrid genetic
algorithms and simulated annealing for multi-trip vehicle routing prob-
lem with time windows.” International Journal of Electrical & Computer
Engineering (2088-8708), vol. 8, no. 6, 2018.

[71] M. Hemici, D. Zouache, B. Boualem, and K. Hemici, “An external
archive guided nsga-ii algorithm for multi-depot green vehicle routing
problem,” in Artificial Intelligence and Its Applications: Proceeding of
the 2nd International Conference on Artificial Intelligence and Its Ap-
plications (2021). Springer, 2022, pp. 504–513.

[72] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolu-
tionary computation, vol. 6, no. 2, pp. 182–197, 2002.

BIBLIOGRAPHY 131

[73] E. Bonabeau, M. Dorigo, G. Theraulaz, and G. Theraulaz, Swarm in-
telligence: from natural to artificial systems. Oxford university press,
1999, no. 1.

[74] D. Karaboga and B. Akay, “A comparative study of artificial bee colony
algorithm,” Applied mathematics and computation, vol. 214, no. 1, pp.
108–132, 2009.

[75] X.-l. Li, “An optimizing method based on autonomous animats: fish-
swarm algorithm,” Systems Engineering-Theory & Practice, vol. 22,
no. 11, pp. 32–38, 2002.

[76] D. Wang, D. Tan, and L. Liu, “Particle swarm optimization algorithm:
an overview,” Soft computing, vol. 22, no. 2, pp. 387–408, 2018.

[77] V. Kachitvichyanukul et al., “A particle swarm optimization for the ca-
pacitated vehicle routing problem,” International journal of logistics and
SCM systems, vol. 2, no. 1, pp. 50–55, 2007.

[78] T. J. Ai and V. Kachitvichyanukul, “A particle swarm optimization for
the vehicle routing problem with simultaneous pickup and delivery,”
Computers & Operations Research, vol. 36, no. 5, pp. 1693–1702, 2009.

[79] Y. Marinakis, M. Marinaki, and G. Dounias, “A hybrid particle swarm
optimization algorithm for the vehicle routing problem,” Engineering
Applications of Artificial Intelligence, vol. 23, no. 4, pp. 463–472, 2010.

[80] H. Y. Zeng, “Improved particle swarm optimization based on Tabu search
for VRP,” Journal of Applied Science and Engineering Innovation, vol. 6,
no. 2, pp. 99–103, 2019.

[81] Y. W. Zhao, B. Wu, W. Wang, Y. L. Ma, W. Wang, and H. Sun, “Particle
swarm optimization for vehicle routing problem with time windows,” in
Materials Science Forum, vol. 471. Trans Tech Publ, 2004, pp. 801–805.

[82] B. Yu, Z.-Z. Yang, and B. Yao, “An improved ant colony optimization
for vehicle routing problem,” European journal of operational research,
vol. 196, no. 1, pp. 171–176, 2009.

[83] Q. Ding, X. Hu, L. Sun, and Y. Wang, “An improved ant colony opti-
mization and its application to vehicle routing problem with time win-
dows,” Neurocomputing, vol. 98, pp. 101–107, 2012.

[84] B. Yu and Z. Z. Yang, “An ant colony optimization model: The period
vehicle routing problem with time windows,” Transportation Research
Part E: Logistics and Transportation Review, vol. 47, no. 2, pp. 166–181,
2011.

[85] L. M. Gambardella, É. Taillard, and G. Agazzi, “Macs-vrptw: A multiple
colony system for vehicle routing problems with time windows,” in New
ideas in optimization. Citeseer, 1999.

BIBLIOGRAPHY 132

[86] B. Barán and M. Schaerer, “A multiobjective ant colony system for ve-
hicle routing problem with time windows.” in Applied informatics, 2003,
pp. 97–102.

[87] N. Pillay and R. Qu, Automated Design of Machine Learning and Search
Algorithms. Springer, 2021.

[88] Q. Zhao, Q. Duan, B. Yan, S. Cheng, and Y. Shi, “A survey
on automated design of metaheuristic algorithms,” arXiv preprint
arXiv:2303.06532, 2023.

[89] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Automated configuration
of mixed integer programming solvers,” in International Conference on
Integration of Artificial Intelligence (AI) and Operations Research (OR)
Techniques in Constraint Programming. Springer, 2010, pp. 186–202.

[90] F. Hutter, H. H. Hoos, and T. Stützle, “Automatic algorithm configura-
tion based on local search,” in Aaai, vol. 7, 2007, pp. 1152–1157.

[91] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle, “F-Race and
iterated F-Race: An overview,” Experimental methods for the analysis
of optimization algorithms, pp. 311–336, 2010.

[92] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and
T. Stützle, “The irace package: Iterated racing for automatic algorithm
configuration,” Operations Research Perspectives, vol. 3, pp. 43–58, 2016.

[93] T. Bartz-Beielstein, C. W. Lasarczyk, and M. Preuß, “Sequential param-
eter optimization,” in 2005 IEEE congress on evolutionary computation,
vol. 1. IEEE, 2005, pp. 773–780.

[94] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based
optimization for general algorithm configuration,” in International con-
ference on learning and intelligent optimization. Springer, 2011, pp.
507–523.

[95] B. van Stein, H. Wang, and T. Bäck, “Automatic configuration of deep
neural networks with EGO,” arXiv preprint arXiv:1810.05526, 2018.

[96] J. Bergstra, D. Yamins, D. D. Cox et al., “Hyperopt: A python library
for optimizing the hyperparameters of machine learning algorithms,” in
Proceedings of the 12th Python in science conference, vol. 13. Citeseer,
2013, p. 20.

[97] M. López-Ibánez and T. Stutzle, “The automatic design of multiobjective
ant colony optimization algorithms,” IEEE Transactions on Evolution-
ary Computation, vol. 16, no. 6, pp. 861–875, 2012.

[98] I. Araya and M.-C. Riff, “A filtering method for algorithm configuration
based on consistency techniques,” Knowledge-Based Systems, vol. 60, pp.
73–81, 2014.

[99] J. R. Rice, “The algorithm selection problem,” in Advances in computers.
Elsevier, 1976, vol. 15, pp. 65–118.

BIBLIOGRAPHY 133

[100] M. Lindauer, “Algorithm selection, scheduling and configuration of
boolean constraint solvers,” Ph.D. dissertation, Universität Potsdam,
Institut für Informatik, 2015.

[101] B. A. Huberman, R. M. Lukose, and T. Hogg, “An economics approach
to hard computational problems,” Science, vol. 275, no. 5296, pp. 51–54,
1997.

[102] K. Tang, F. Peng, G. Chen, and X. Yao, “Population-based algorithm
portfolios with automated constituent algorithms selection,” Information
Sciences, vol. 279, pp. 94–104, 2014.

[103] L. Xu, H. Hoos, and K. Leyton-Brown, “Hydra: Automatically config-
uring algorithms for portfolio-based selection,” in Twenty-Fourth AAAI
Conference on Artificial Intelligence, 2010.

[104] J. C. Ortiz-Bayliss, I. Amaya, J. M. Cruz-Duarte, A. E. Gutierrez-
Rodriguez, S. E. Conant-Pablos, and H. Terashima-Maŕın, “A general
framework based on machine learning for algorithm selection in con-
straint satisfaction problems,” Applied Sciences, vol. 11, no. 6, p. 2749,
2021.

[105] K. Sörensen, “Metaheuristics—the metaphor exposed,” International
Transactions in Operational Research, vol. 22, no. 1, pp. 3–18, 2015.

[106] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg,
“Hyper-heuristics: An emerging direction in modern search technology,”
in Handbook of metaheuristics. Springer, 2003, pp. 457–474.

[107] E. K. Burke, G. Kendall, and E. Soubeiga, “A tabu-search hyperheuristic
for timetabling and rostering,” Journal of heuristics, vol. 9, no. 6, pp.
451–470, 2003.

[108] E. Özcan, M. Misir, G. Ochoa, and E. K. Burke, “A reinforcement learn-
ing: great-deluge hyper-heuristic for examination timetabling,” in Mod-
eling, analysis, and applications in metaheuristic computing: advance-
ments and trends. IGI Global, 2012, pp. 34–55.

[109] A. Elhag and E. Özcan, “A grouping hyper-heuristic framework: Appli-
cation on graph colouring,” Expert Systems with Applications, vol. 42,
no. 13, pp. 5491–5507, 2015.

[110] J. D. Walker, G. Ochoa, M. Gendreau, and E. K. Burke, “Vehicle rout-
ing and adaptive iterated local search within the hyflex hyper-heuristic
framework,” in International conference on learning and intelligent op-
timization. Springer, 2012, pp. 265–276.

[111] G. Koulinas, L. Kotsikas, and K. Anagnostopoulos, “A particle swarm
optimization based hyper-heuristic algorithm for the classic resource con-
strained project scheduling problem,” Information Sciences, vol. 277, pp.
680–693, 2014.

BIBLIOGRAPHY 134

[112] R. Aron and I. Chana, “QoS based resource provisioning and scheduling
in grids,” The Journal of Supercomputing, vol. 66, no. 1, pp. 262–283,
2013.

[113] I. Chana et al., “Bacterial foraging based hyper-heuristic for resource
scheduling in grid computing,” Future Generation Computer Systems,
vol. 29, no. 3, pp. 751–762, 2013.

[114] B. Duhart, F. Camarena, J. C. Ortiz-Bayliss, I. Amaya, and
H. Terashima-Maŕın, “An experimental study on ant colony optimization
hyper-heuristics for solving the knapsack problem,” in Mexican Confer-
ence on Pattern Recognition. Springer, 2018, pp. 62–71.

[115] C. B. Pop, V. R. Chifu, N. Dragoi, I. Salomie, and E. S. Chifu, “Rec-
ommending healthy personalized daily menus—a cuckoo search-based
hyper-heuristic approach,” in Applied Nature-Inspired Computing: Al-
gorithms and Case Studies. Springer, 2020, pp. 41–70.

[116] M. A. Ahandani, M. T. V. Baghmisheh, M. A. B. Zadeh, and S. Ghaemi,
“Hybrid particle swarm optimization transplanted into a hyper-heuristic
structure for solving examination timetabling problem,” Swarm and Evo-
lutionary Computation, vol. 7, pp. 21–34, 2012.

[117] V. Pandiri and A. Singh, “A hyper-heuristic based artificial bee colony al-
gorithm for k-interconnected multi-depot multi-traveling salesman prob-
lem,” Information Sciences, vol. 463, pp. 261–281, 2018.

[118] S. N. Chaurasia and J. H. Kim, “An artificial bee colony based hyper-
heuristic for the single machine order acceptance and scheduling prob-
lem,” in Decision science in action. Springer, 2019, pp. 51–63.

[119] T. Wauters, K. Verbeeck, P. D. Causmaecker, and G. V. Berghe, “Boost-
ing metaheuristic search using reinforcement learning,” in Hybrid meta-
heuristics. Springer, 2013, pp. 433–452.

[120] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine
learning. Springer, 2006, vol. 4, no. 4.

[121] I. C. Ramos, M. C. Goldbarg, E. G. Goldbarg, and A. D. D. Neto,
“Logistic regression for parameter tuning on an evolutionary algorithm,”
in 2005 IEEE congress on evolutionary computation, vol. 2. IEEE, 2005,
pp. 1061–1068.

[122] S. P. Coy, B. L. Golden, G. C. Runger, and E. A. Wasil, “Using experi-
mental design to find effective parameter settings for heuristics,” Journal
of Heuristics, vol. 7, pp. 77–97, 2001.

[123] J. Pihera and N. Musliu, “Application of machine learning to algorithm
selection for tsp,” in 2014 IEEE 26th International Conference on Tools
with Artificial Intelligence. IEEE, 2014, pp. 47–54.

BIBLIOGRAPHY 135

[124] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Satzilla-07: The
design and analysis of an algorithm portfolio for sat,” in Principles and
Practice of Constraint Programming–CP 2007: 13th International Con-
ference, CP 2007, Providence, RI, USA, September 23-27, 2007. Pro-
ceedings 13. Springer, 2007, pp. 712–727.

[125] ——, “Satzilla: portfolio-based algorithm selection for sat,” Journal of
artificial intelligence research, vol. 32, pp. 565–606, 2008.

[126] J. Li, E. K. Burke, and R. Qu, “Integrating neural networks and lo-
gistic regression to underpin hyper-heuristic search,” Knowledge-Based
Systems, vol. 24, no. 2, pp. 322–330, 2011.

[127] R. Tyasnurita, E. Özcan, and R. John, “Learning heuristic selection
using a time delay neural network for open vehicle routing,” in 2017
IEEE Congress on Evolutionary Computation (CEC). Ieee, 2017, pp.
1474–1481.

[128] F. Thabtah and P. Cowling, “Mining the data from a hyperheuristic ap-
proach using associative classification,” Expert systems with applications,
vol. 34, no. 2, pp. 1093–1101, 2008.

[129] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney, “Isac–instance-
specific algorithm configuration,” in ECAI 2010. IOS Press, 2010, pp.
751–756.

[130] G. Ghiani, G. Laporte, and E. Manni, “Model-based automatic neigh-
borhood design by unsupervised learning,” Computers & Operations Re-
search, vol. 54, pp. 108–116, 2015.

[131] J. G. C. Costa, Y. Mei, and M. Zhang, “Cluster-based hyper-heuristic
for large-scale vehicle routing problem,” in 2020 IEEE Congress on Evo-
lutionary Computation (CEC). IEEE, 2020, pp. 1–8.

[132] E. Lara-Cárdenas, A. Silva-Gálvez, J. C. Ortiz-Bayliss, I. Amaya, J. M.
Cruz-Duarte, and H. Terashima-Maŕın, “Exploring reward-based hyper-
heuristics for the job-shop scheduling problem,” in 2020 IEEE Sympo-
sium Series on Computational Intelligence (SSCI). IEEE, 2020, pp.
3133–3140.

[133] Y. Sakurai, K. Takada, T. Kawabe, and S. Tsuruta, “A method to control
parameters of evolutionary algorithms by using reinforcement learning,”
in 2010 Sixth International Conference on Signal-Image Technology and
Internet Based Systems. IEEE, 2010, pp. 74–79.

[134] A. Buzdalova, V. Kononov, and M. Buzdalov, “Selecting evolutionary
operators using reinforcement learning: Initial explorations,” in Pro-
ceedings of the Companion Publication of the 2014 Annual Conference
on Genetic and Evolutionary Computation, 2014, pp. 1033–1036.

[135] J. Schuchardt, V. Golkov, and D. Cremers, “Learning to evolve,” arXiv
preprint arXiv:1905.03389, 2019.

BIBLIOGRAPHY 136

[136] G. Duflo, G. Danoy, E.-G. Talbi, and P. Bouvry, “Automated design of
efficient swarming behaviours: a Q-learning hyper-heuristic approach,”
in Proceedings of the 2020 Genetic and Evolutionary Computation Con-
ference Companion, 2020, pp. 227–228.

[137] S. Wagner and M. Affenzeller, “Heuristiclab: A generic and extensible
optimization environment,” in Adaptive and Natural Computing Algo-
rithms: Proceedings of the International Conference in Coimbra, Portu-
gal, 2005. Springer, 2005, pp. 538–541.

[138] M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich, “Opt4j: a modular
framework for meta-heuristic optimization,” in Proceedings of the 13th
annual conference on Genetic and evolutionary computation, 2011, pp.
1723–1730.

[139] J. J. Durillo and A. J. Nebro, “jmetal: A java framework for multi-
objective optimization,” Advances in Engineering Software, vol. 42,
no. 10, pp. 760–771, 2011.

[140] J. J. Merelo and J.-M. Garćıa-Valdez, “Mapping evolutionary algorithms
to a reactive, stateless architecture: using a modern concurrent lan-
guage,” in Proceedings of the Genetic and Evolutionary Computation
Conference Companion, 2018, pp. 1870–1877.

[141] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, “Pisa—a plat-
form and programming language independent interface for search algo-
rithms,” in Evolutionary Multi-Criterion Optimization: Second Interna-
tional Conference, EMO 2003, Faro, Portugal, April 8–11, 2003. Pro-
ceedings 2. Springer, 2003, pp. 494–508.

[142] W. Yi, R. Qu, L. Jiao, and B. Niu, “Automated design of metaheuris-
tics using reinforcement learning within a novel general search frame-
work,” IEEE Transactions on Evolutionary Computation, 2022, doi:
10.1109/TEVC.2022.3197298.

[143] SINTEF, “VRPTW benchmark problems, on the sintef transport opti-
mization portal,” https://www.sintef.no/projectweb/top/vrptw/solomon-
benchmark/100-customers/, 2008.

[144] Y. Rochat and É. D. Taillard, “Probabilistic diversification and intensi-
fication in local search for vehicle routing,” Journal of heuristics, vol. 1,
no. 1, pp. 147–167, 1995.

[145] J. Homberger, “Eine verteilt-parallele metaheuristik,” in Verteilt-
parallele Metaheuristiken zur Tourenplanung. Springer, 2000, pp. 139–
165.

[146] H. Li and A. Lim, “Local search with annealing-like restarts to solve the
VRPTW,” European journal of operational research, vol. 150, no. 1, pp.
115–127, 2003.

BIBLIOGRAPHY 137

[147] D. Mester, O. Bräysy, and W. Dullaert, “A multi-parametric evolution
strategies algorithm for vehicle routing problems,” Expert Systems with
Applications, vol. 32, no. 2, pp. 508–517, 2007.

[148] J. Homberger and H. Gehring, “Two evolutionary metaheuristics for
the vehicle routing problem with time windows,” INFOR: Information
Systems and Operational Research, vol. 37, no. 3, pp. 297–318, 1999.

[149] L.-M. Rousseau, M. Gendreau, and G. Pesant, “Using constraint-based
operators to solve the vehicle routing problem with time windows,” Jour-
nal of heuristics, vol. 8, no. 1, pp. 43–58, 2002.

[150] M. Woch and P. Lebkowski, “Sequential simulated annealing for the
vehicle routing problem with time windows,” Decision Making in Man-
ufacturing and Services, vol. 3, pp. 87–100, 2009.

[151] R. Bent and P. Van Hentenryck, “A two-stage hybrid local search for
the vehicle routing problem with time windows,” Transportation Science,
vol. 38, no. 4, pp. 515–530, 2004.

[152] É. Taillard, P. Badeau, M. Gendreau, F. Guertin, and J.-Y. Potvin,
“A tabu search heuristic for the vehicle routing problem with soft time
windows,” Transportation science, vol. 31, no. 2, pp. 170–186, 1997.

[153] P. Shaw, “Using constraint programming and local search methods to
solve vehicle routing problems,” in International conference on principles
and practice of constraint programming. Springer, 1998, pp. 417–431.

[154] J.-F. Cordeau, G. Laporte, and A. Mercier, “A unified tabu search
heuristic for vehicle routing problems with time windows,” Journal of
the Operational research society, vol. 52, no. 8, pp. 928–936, 2001.

[155] Z. J. Czech and P. Czarnas, “Parallel simulated annealing for the vehicle
routing problem with time windows,” in Proceedings 10th Euromicro
workshop on parallel, distributed and network-based processing. IEEE,
2002, pp. 376–383.

[156] J. Berger and M. Barkaoui, “A parallel hybrid genetic algorithm for the
vehicle routing problem with time windows,” Computers & operations
research, vol. 31, no. 12, pp. 2037–2053, 2004.

[157] J. Baras and V. Borkar, “A learning algorithm for markov decision
processes with adaptive state aggregation,” in Proceedings of the 39th
IEEE Conference on Decision and Control (Cat. No. 00CH37187), vol. 4.
IEEE, 2000, pp. 3351–3356.

[158] T. Mori and S. Ishii, “Incremental state aggregation for value function
estimation in reinforcement learning,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), vol. 41, no. 5, pp. 1407–
1416, 2011.

[159] S. P. Singh, T. Jaakkola, and M. I. Jordan, “Reinforcement learning
with soft state aggregation,” Advances in neural information processing
systems, pp. 361–368, 1995.

BIBLIOGRAPHY 138

[160] W. Meng and R. Qu, “Automated design of search algorithms: Learning
on algorithmic components,” Expert Systems with Applications, vol. 185,
p. 115493, 2021.

[161] B. Crawford, R. Soto, J. Lemus-Romani, M. Becerra-Rozas, J. M.
Lanza-Gutiérrez, N. Caballé, M. Castillo, D. Tapia, F. Cisternas-Caneo,
J. Garćıa et al., “Q-learnheuristics: towards data-driven balanced meta-
heuristics,” Mathematics, vol. 9, no. 16, p. 1839, 2021.

[162] S. N. Chaurasia and J. H. Kim, “An evolutionary algorithm based hyper-
heuristic framework for the set packing problem,” Information Sciences,
vol. 505, pp. 1–31, 2019.

[163] S. N. Richter and D. R. Tauritz, “The automated design of probabilistic
selection methods for evolutionary algorithms,” in Proceedings of the
genetic and evolutionary computation conference companion, 2018, pp.
1545–1552.

[164] N. Lourenço, F. Pereira, and E. Costa, “Learning selection strategies
for evolutionary algorithms,” in International Conference on Artificial
Evolution (Evolution Artificielle). Springer, 2013, pp. 197–208.

[165] C. Huang, Y. Li, and X. Yao, “A survey of automatic parameter tuning
methods for metaheuristics,” IEEE transactions on evolutionary compu-
tation, vol. 24, no. 2, pp. 201–216, 2019.

[166] E. Schede, J. Brandt, A. Tornede, M. Wever, V. Bengs, E. Hüllermeier,
and K. Tierney, “A survey of methods for automated algorithm configu-
ration,” Journal of Artificial Intelligence Research, vol. 75, pp. 425–487,
2022.

[167] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann, “Automated
algorithm selection: Survey and perspectives,” Evolutionary computa-
tion, vol. 27, no. 1, pp. 3–45, 2019.

[168] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Ku-
mar, H. Zhu, A. Gupta, P. Abbeel et al., “Soft actor-critic algorithms
and applications,” arXiv preprint arXiv:1812.05905, 2018.

[169] W. Yi, R. Qu, and L. Jiao, “Automated algorithm design using prox-
imal policy optimisation with identified features,” Expert Systems with
Applications, vol. 216, p. 119461, 2023.

[170] F. Neri, C. Cotta, and P. Moscato, Handbook of memetic algorithms.
Springer, 2011, vol. 379.

[171] S.-J. Jian and S.-Y. Hsieh, “A niching regression adaptive memetic al-
gorithm for multimodal optimization of the euclidean traveling salesman
problem,” IEEE Transactions on Evolutionary Computation, 2022.

[172] M. Germanos, D. Aza, A. B. Karami, and J. Possik, “A distributed
memetic algorithm with a semi-greedy operator for the traveling sales-
man problem,” in 2022 IEEE/ACM 26th International Symposium on

BIBLIOGRAPHY 139

Distributed Simulation and Real Time Applications (DS-RT). IEEE,
2022, pp. 143–150.

[173] A. Berahhou, Y. Benadada, and K. Bouanane, “Memetic algorithm for
the dynamic vehicle routing problem with simultaneous delivery and
pickup,” International Journal of Industrial Engineering Computations,
vol. 13, no. 4, pp. 587–600, 2022.

[174] J. Xiao, J. Du, Z. Cao, X. Zhang, and Y. Niu, “A diversity-enhanced
memetic algorithm for solving electric vehicle routing problems with
time windows and mixed backhauls,” Applied Soft Computing, p. 110025,
2023.

[175] S. Afsar, J. J. Palacios, J. Puente, C. R. Vela, and I. González-
Rodŕıguez, “Multi-objective enhanced memetic algorithm for green job
shop scheduling with uncertain times,” Swarm and Evolutionary Com-
putation, vol. 68, p. 101016, 2022.

[176] R. Li, W. Gong, C. Lu, and L. Wang, “A learning-based memetic
algorithm for energy-efficient flexible job shop scheduling with type-2
fuzzy processing time,” IEEE Transactions on Evolutionary Computa-
tion, 2022.

[177] B. Crevier, J.-F. Cordeau, and G. Laporte, “The multi-depot vehicle
routing problem with inter-depot routes,” European journal of opera-
tional research, vol. 176, no. 2, pp. 756–773, 2007.

[178] C. Lin, “A vehicle routing problem with pickup and delivery time win-
dows, and coordination of transportable resources,” Computers & Oper-
ations Research, vol. 38, no. 11, pp. 1596–1609, 2011.

[179] M. Gendreau, P. Dejax, D. Feillet, and C. Gueguen, “Vehicle routing
problem with time windows and split deliveries,” Technical report, 2006-
851, Laboratoire d’Informatique d’Avignon, Tech. Rep., 2006.

[180] J. M. Framinan, J. N. Gupta, and R. Leisten, “A review and classifica-
tion of heuristics for permutation flow-shop scheduling with makespan
objective,” Journal of the Operational Research Society, vol. 55, no. 12,
pp. 1243–1255, 2004.

[181] J. Van den Bergh, J. Beliën, P. De Bruecker, E. Demeulemeester, and
L. De Boeck, “Personnel scheduling: A literature review,” European jour-
nal of operational research, vol. 226, no. 3, pp. 367–385, 2013.

Appendix A

The Neural Networks in
DQN-GSF and PPO-GSF

The neural networks in DQN-GSF and PPO-GSF are shown in Figure A.1 and
Figure A.2, respectively.

Figure A.1: Details of the neural network of DQN-GSF

In Figure A.1, the state and action are taken as the input (1○, 3○) for the Q
networks, evaluation network and target network, respectively. The parame-
ters of the target network are replaced (11○) by the evaluation network every n
episodes. The output of the Q networks is a set of Q values of all actions (2○,
4○). The action is decided by the maximal Q values (5○). The selected action
a is executed (6○) in the environment, called one step. The (st, rt, at, st+1)
generated at each step is stored in the replay buffer (7○). The loss of the
parameters of the evaluation network is calculated(8○). After the update of
the Q networks (10○, 11○), the data flows back to 1○.
In Figure A.2, the state is taken as the input (1○) of the actor neural network,
the output of which is a probability distribution of all actions (2○). The action

140

141

Figure A.2: Details of the neural network of PPO-GSF

is decided by the obtained probability distribution (5○). The selected action
a is executed (6○) in the environment, called one step. The (st, rt, at, st+1)
generated at each step is stored in the replay buffer (7○). The parameters
of the critic neural network are updated (8○) by minimising the advantage
function value. On the other hand, the state and reward are taken as the
input (3○) of the critic neural network, and the output, advantage function
value of current state (4○), guides the update direction of the actor neural
network (9○). Then, the data flows back to 1○.
In reinforcement learning, the learning rate, discount rate, and size of the neu-
ral network are the key hyper parameters in the algorithms. Specifically, the
learning rate is adjusted adaptively, set as 0.002 at the beginning and halved
when the output is stable. The discount rate is set to 0.99 thus the learned
policy focuses more on sequential decisions. The topology of the network is set
based on the complexity of the problem, and the number of layers and neurons
has been shown in Figure A.1 and Figure A.2.

	Abstract
	Acknowledgements
	Introduction
	Vehicle Routing Problems
	Existing Approaches for Combinatorial Optimisation Problems
	Motivations and Objectives
	Contributions
	Organisation of the Thesis

	Related Work
	Optimisation Models of the Vehicle Routing Problem
	Search Algorithms for the Vehicle Routing Problem
	Single-solution Based Algorithms
	Population-based Algorithms

	Automated Design of Search Algorithms
	Automated Algorithm Configuration
	Automated Algorithm Selection
	Automated Algorithm Composition

	Machine Learning for Automated Algorithm Design
	Existing Features for Automated Algorithm Design
	Existing Machine Learning Techniques for Automated Algorithm Design

	Summary

	A Novel General Search Framework to Support Effective Algorithm Design
	Introduction
	Proposed General Search Framework
	Selection for Evolution Module
	Selection for Replacement Module
	Evolution Module

	Key Research Issues within GSF
	Summary

	Feature Identification for Automated Algorithm Design
	Introduction
	Identified Features
	Search-dependent Features
	Instance-dependent Features

	Proposed Reinforcement Learning Method
	State Representation
	Action Representation
	Reward Scheme
	Episode Setting

	Experiments and Discussions
	Effectiveness of the Identified Features
	Search Pattern Analysis of the Best Automatically Designed Algorithms

	Summary

	Automated Composition of Evolution Operators
	Introduction
	Proposed Reinforcement Learning Method
	State Representation
	Action Representation
	Reward Scheme

	Experiments and Discussions
	Effectiveness of the Learning Models
	Generality of the Learning Models

	Summary

	Automated Composition of Evolution Operators and Selection Heuristics
	Introduction
	Proposed Maximum Entropy Reinforcement Learning Method
	State Representation
	Action Representation
	Reward Scheme

	Experiments and Discussions
	Automated Composition of Selection Heuristics
	Automated Composition of Selection Heuristics and Evolution Operators
	Automated Composition of Evolution Operators

	Summary

	Conclusions and Future Research
	Main Contributions
	Novel General Search Framework to Support Automated Algorithm Design
	Feature Identification for Automated Algorithm Design
	Automated Composition of Evolution Operators
	Automated Composition of Selection Heuristics and Evolution Operators

	Limitations and Future Works

	Bibliography
	Appendices
	The Neural Networks in DQN-GSF and PPO-GSF

