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Abstract 

Additive manufacturing is a popular area of research because it greatly increases 

design opportunities, allowing for significantly more geometric freedom than in more 

established manufacturing methods, such as machining, casting and forming. A 

relatively small set of additive manufacturing processes are consistently used for the 

manufacturing of lattice structures, and these processes produce characteristic defects 

and geometric deviations within lattice structures. 

In this thesis, a modelling approach is presented for the generation of surface models 

of strut-based lattice structures into which defects and geometric deviations can be 

added. Conversion of the surface models into tetrahedral meshes for finite element 

(FE) analysis is also demonstrated. Signed distance functions (SDFs) form the 

foundation of the model and can be used to create surfaces of ideal lattice structures. 

The thesis demonstrates how modification of the signed distance function allows for 

the inputting of geometric deviations—namely, waviness, radius variation and 

elliptical cross sections. Surface defects are modelled by defining an additional 

function that applies displacements to the surface produced by the signed distance 

function. To understand the limitations of the proposed modelling approach, a 

sensitivity study is performed wherein the underlying parameters of the approach are 

modified to observe their impact on three quantities: SDF error, meshing error and 

mesh quality. 

X-ray computed tomography (XCT) was used for obtaining original data on geometric 

deviations and surface defects in lattice structures, more specifically, a BCCZ lattice 

structure. Cross sectional measurements of the struts was performed, as well 

analysing the strut surfaces to observe locations of increased surface defects. 

Comparisons were made between the design’s vertical struts and inclined struts. The 

XCT results showed the inclined struts to be significantly more prone to geometric 

deviations; radius variation, waviness and texture bias all showed greater deviations 

in the inclined struts. The cross sectional data, grouped by strut orientation, was fitted 

to probability density functions (PDFs) which were used in subsequent stages for 
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generating lattice structures with geometric deviations statistically equivalent to the 

XCT measurement. 

The BCCZ lattice structures were also subjected to compression testing for 

determining the Young’s modulus of the design, which was determined to be 

984.1 MPa. The proposed modelling approach was then configured, using the PDFs 

derived from the XCT data to generate a model of a lattice structure with geometric 

deviations applied. Upon the application of the geometric deviations, the simulated 

Young’s modulus reduced from 4148 MPa to 4023 MPa, suggesting that the 

introduction of geometric deviations does indeed reduce stiffness, however, these 

results are a significant overestimation of the experimentally determined Young’s 

modulus. A number of areas could be explored to improve this disparity, in particular, 

the updating of the material model used in the analysis. 

In summary, the work in this thesis demonstrates the versatility of SDFs for the 

modelling of strut-based lattice structures. The XCT results showed strong trends 

between strut overhang angle and the exacerbation of geometric deviations and 

surface defects. The cross sectional data from the XCT measurement was well 

described by the PDFs; the simulated data showed very strong agreement to the XCT 

data. The FE modelling requires further investigation to improve its agreement with 

experimental data. 
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Chapter 1 – Introduction 

This chapter provides an introduction and overview of the thesis. Section 1.1 discusses 

the motivations for this work, followed by the aim and objectives in Section 1.2. Next, 

Section 1.3 gives an overview of the stages of work and highlights the thesis’ novel 

contributions. Lastly, Section 1.4 explains the structure of the remaining chapters of 

the thesis. 
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1.1 Motivation 

Additive manufacturing (AM) is a popular area of research because it greatly 

increases design opportunities, allowing for significantly more geometric freedom 

than in more established manufacturing methods, such as machining, casting and 

forming. Within AM, a popular area of study is that of lattice structures—a unit cell 

tessellated in three axes. Lattice structures have many desirable properties, such as 

high specific strength, high surface area to volume ratio, and high impact energy 

absorption properties [1]. 

As shown in Figure 1.1, lattice structures have been studied for a range of applications, 

using various techniques. The study of lattice structures generally focuses on 

investigating lattice designs and documenting their mechanical properties (e.g. [2–7]) 

via mechanical testing (Figure 1.1a), or exploiting known lattice structure properties 

for specific applications, such as biomedical implants (Figure 1.1b) [8–12], heat 

exchangers/heat sinks (Figure 1.1c) [13–16] and sandwich structures for the 

lightweighting of engineering components [17,18]. 

The utility of lattice structures produced by AM extends to precision engineering, 

where the vibrational wave propagation properties of lattice structure designs have 

been investigated (e.g. [19–21]) and could be used for vibration attenuation 

applications. For example, vibration attenuating lattice structures could be 

incorporated into machine frames for reducing the noise in a measurement system. 

Figure 1.1d shows an experimental setup used for studying the vibrational properties 

of a lattice structure. Sources of vibration which are relevant to precision engineering 

include: moving stages; camera shutters; contact between tool and workpiece; rotary 

components, for example, spindles, cutting tools and electronic fans; nearby road 

traffic. 

Figure 1.2 shows some numerical modelling results taken from the PhD thesis of 

Elmadih [22] in which several lattice structure designs—more specifically, unit cell 

designs—were studied for their vibrational wave propagation properties; these plots 

are known as dispersion curves. Although a full explanation of the terminology in 
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Figure 1.2 is beyond the scope of this section, a simplified interpretation of these 

results must be provided. To identify if a unit cell design is appropriate for vibration 

attenuation applications, it must possess “bandgaps”—that is, it must possess ranges 

of frequencies in which there is no wave propagation in any direction. In Figure 1.2, 

the y-axes denote “frequency” (𝑓 ∙ 𝐿 ∙ 𝜐−1) and the x-axes denote “wave vector” 

(Γ, Χ, R,M, Γ) which can be considered as the direction of a vibration. Bandgaps can be 

seen in the plots in Figure 1.2a-b which show ranges of frequencies in which there are 

no data points i.e. no wave propagation in any of the directions of the wave vectors. 

This is a promising result which strongly supports the suitability of some lattice 

structure designs for vibration attenuation. For further introduction to the topic of 

dispersion curves, the reader is directed to Chapter 3 of Elmadih’s thesis [22]. 



30  Chapter 1 – Introduction 

 

 

 

 

Figure 1.1. Example applications of lattice structures..(a) The 

study of compressive properties of lattice structures [4] (b) 

Testing the tensile strength of a lattice structure for use as a 

biomedical implant; the figure shows the implant inside a rabbit 

tibia [9]. (c) Concept design for a monolithic LED lamp unit 

including a lattice structure heat sink [15]. (d) A study on the 

vibrational properties of a lattice structure [23].   
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Figure 1.2. Dispersion curves for various unit cell designs. (a) A 

body centred cubic (BCC) unit cell, in which a bandgap is 

identified. (b) A BCC unit cell with an internal resonator, in 

which another bandgap is identified. (c) A gyroid unit cell, in 

which no bandgap is identified [22]. 



32  Chapter 1 – Introduction 

Within AM, there are “process categories” which are used to group subsets of AM 

processes which share similarities. The AM processes which are often used to 

manufacture lattice structures fall under the process category called “powder bed 

fusion” (PBF). All PBF processes are governed by similar types of parameters which 

must be optimised to improve the quality of manufactured parts. However, even with 

optimisation, there are distinct ways in which designs manufactured by PBF processes 

can deviate from their initial designs. The term “defect” can sometimes be used to 

broadly describe such deviations (e.g. [24–30]), although more specific and descriptive 

terms are also used and are defined later (see Chapter 2, § 2.3.3). Furthermore, a 

distinct set of defects also form among the features which are common in lattice 

structure designs (see Chapter 2, § 2.4). 

The presence of defects in lattice structures is a potential issue in all fields in which 

lattice structures are studied, as defects have the potential to alter the behaviour of 

any design. In the case of lattice structures for vibration attenuation, defects may 

detrimentally alter the structural and vibrational properties of lattice structures. There 

are increasing numbers of studies investigating the impact of defects on the function 

of a lattice structure for a particular application (see Chapter 2). 

A large of range of measurement techniques have been applied to lattice structures 

(see Chapter 2, § 2.5). Some of these techniques are destructive and potentially 

undesirable due to the destroying of the sample. For example, using a scanning 

electron microscope (SEM) to obtain cross-sectional measurement data requires prior 

sectioning of the sample. Additionally, the complicated geometries associated with 

lattice structures present line-of-sight limitations. For this reason, a measurement 

process not hindered by line-of-sight is desired. X-ray computed tomography (XCT) 

is an increasingly popular measurement method for lattice structures; XCT is not 

limited by line-of-sight and is able to obtain both internal and external images of a 

sample. However, a significant disadvantage of XCT is the measurement time; an XCT 

measurement can often take several times longer than the manufacturing and 

preparation of the sample. Additionally, the quality of XCT data can be difficult to 

interpret, due to the complex interactions between the X-rays and the samples, 
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coupled with the vast range of interrelated parameters which must be configured for 

each measurement. 

Modelling defects and simulating their impact is useful for understanding the 

potential influence of a defect on a particular lattice structure property. Additionally, 

models allow for the development of parametric studies, from which relationships can 

be drawn between a particular lattice structure property and a defect which is varied 

over a range of values. Modelling can aid the tolerancing process for lattice structures 

by allowing designers to discern whether the presence of a given defect is critical or 

negligible for a particular application. Finite element (FE) methods are often used for 

these modelling studies, in which the lattice structure is replaced by a representative 

mesh. These meshes can be generated using different “element types” (see Chapter 2, 

§ 2.7); typically either tetrahedral elements or beam elements. 

1.2 Aim and objectives  

The aim of the work in this thesis is to develop a modelling method for investigating 

the impact of geometric deviations on the stiffness of lattice structures. This work is 

inspired by previous work in the field of precision engineering in which certain lattice 

structure designs were shown to possess three-dimensional bandgaps [22], as 

mentioned in Section 1.1. This thesis supports existing work in the field of vibration 

attenuating lattice structures and aims to provide a means for assessing the impact of 

defects on a lattice structure’s vibrational properties, for example, stiffness. 

To pursue this aim, the following objectives are set: 

1. Develop an approach for modelling lattice structure defects/geometric 

deviations and performing simulations via finite element (FE) modelling. 

2. Perform a sensitivity study on the developed modelling approach to define 

limits on its underlying parameters. 

3. Use X-ray computed tomography (XCT) to quantify manufacturing 

defects/geometric deviations in lattice structures and extract defect parameters 

which can be applied to the FE model. 
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4. Perform mechanical testing and validate the developed model using the 

experimental data. 

The term “lattice structure“ technically describes a large group of designs which can 

be split into two main categories, based on their common features: strut-based and 

surface-based (see Chapter 2 § 2.1). This thesis focuses strongly on the subset of lattice 

structures known as “strut-based lattice structures”. A key reason for restricting the 

scope of this thesis in this way is found in the results of Elmadih’s thesis [22]: certain 

strut-based lattice structures possess three-dimensional (3D) bandgaps whereas 

surface-based lattice structures do not. These observations are illustrated in Figure 1.2 

in which the designs shown in Figure 1.2a-b are strut-based and possess3D bandgaps, 

whereas the design in Figure 1.2c is surface based and does not possess bandgaps. It 

must be noted, however, that one-dimensional (1D) bandgaps have indeed been 

observed in some surface-based lattice structures but a 1D bandgap is significantly 

less applicable to precision engineering applications which require 3D vibration 

attenuation. For further discussion on 1D and 3D bandgaps, the reader is referred to 

Chapter 6 and Chapter 7 respectively of Elmadih’s thesis [22], supported by the 

following journal papers [31,32]. 

In line with the above objectives, publications were produced and are referred to in 

the thesis at the beginning of relevant chapters. A full list of the author’s publications 

and conference presentations is given on page 223, List of publications and 

presentations.  

1.3 Overview of work and novelty 

The following paragraphs provide an overview of the work contained in each of the 

main stages of the thesis, explaining their novel contributions when required. The five 

stages into which the thesis’ work is divided is shown in the flowchart in Figure 1.3. 

In Stage 1, a modelling approach is proposed for generating surface models of lattice 

structures with manufacturing defects which can then be converted into tetrahedral 

meshes and used for finite element modelling. A fundamental part of the modelling 
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approach is the use of signed distance functions (SDFs) for generating surfaces of 

lattice structure geometries. The novelty is found extending SDFs beyond modelling 

only ideal lattice structures and demonstrating how SDFs can be extended to also 

model a range of defects in lattice structures. It should also be noted that this 

SDF-based modelling approach can be applied to any strut-based lattice structure, 

since the model can adapt to any configuration of lattice struts. 

Next, Stage 2 performs a sensitivity study on the proposed modelling approach, 

determining optimal parameters for modelling lattice structure geometries and 

defects. Although sensitivity studies are a common and necessary practice in 

numerical analysis, this sensitivity study can also be considered a novelty because it 

is in supporting the novel modelling work from Stage 1. 

In Stage 3, a lattice structure design is selected for manufacture using laser powder 

bed fusion and measurements are performed using XCT. The measurement data 

provides quantitative information on a range of defects, and is required for Stage 5, in 

which the proposed model is configured to replicate the defects according to the 

measurement data. 

In Stage 4, compression tests are performed on the manufactured lattice structure 

samples in order to calculate their stiffness. These mechanical tests are also required 

for Stage 5, in which the proposed model is used to predict lattice stiffness and is 

compared to the experimentally determined stiffness. 

In Stage 5 and Stage 6, the proposed model is validated by first incorporating the 

measured defects and then predicting the stiffness of the lattice structure design 

selected in Stage 3, using FE analysis. To incorporate the defects into the model, 

statistical analysis is performed on the XCT measurement data, obtaining parameters 

which are used by the model to generate simulated defects which are statistically 

equivalent to the XCT measurement data. Again, although model validation is a 

common practice, Stage 5 is considered novel as is necessary for the completion of the 

proposed modelling approach, for making informed judgments on the model’s 

suitability and for justifying further simulations. A potential additional novelty is 
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found in the use of simulated defects which allow for fast generation of lattice 

structure surface models which statistical equivalence to real-world data. High quality 

simulated data has many potential applications, for example, the training of machine 

learning algorithms which require very large data sets. Additionally, the ability to 

model useful lattice structure surfaces from statistical parameters may reduce reliance 

upon slow XCT measurements. There are some modelling approaches—known as 

image-based methods—in which lattice structure properties are determined from the 

XCT data (e.g. [33–35]), for example via conversion into an FE mesh. Image-based 

methods bear a significant time cost. 

 

Figure 1.3. Flowchart showing the main stages of work in this 

thesis.  

1.4 Structure of thesis 

In Chapter 1, the motivation of the thesis is stated, alongside the aim and objectives 

and statements of novel contribution. 

In Chapter 2, a review of the background and relevant literature is provided, on topics 

such as cellular solids, additive manufacturing, X-ray computed tomography and 

finite element modelling. 

In Chapter 3, the methodology of the thesis is outlined, explaining the procedures 

used in obtain all the results. 
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In Chapter 4, the proposed modelling approach is explained in detail, demonstrating 

how existing mathematical tools—namely, signed distance functions—can be 

extended for modelling a range of defects in lattice structures. 

In Chapter 5, a sensitivity study of the proposed modelling approach is performed, 

defining regions of stability.  

In Chapter 6, the results of the procedures explained in the methodology are 

presented, namely, X-ray computed tomography results, compression testing and 

finite element analysis.  

In Chapter 7, the conclusions of the thesis are provided, the aim and objectives are 

reviewed and suggestions for future work are made. 

 

 

 





 

Chapter 2 – Background and State of 

the art 

This chapter provides the background information for this thesis and reviews the state 

of the art in relevant fields. Section 2.1 introduces the more general form of lattice 

structures—cellular solids—before specifically describing strut-based lattice 

structures in more detail in Section 2.2; strut-based lattice structures are the focus of 

this thesis. Next, Section 2.3 discusses the basic principles of additive manufacturing, 

focusing on powder bed fusion and its process parameters and defect formation 

mechanisms. Section 2.4 reviews the literature and collates a range of observations on 

defects formation specifically within lattice structures. The literature on a large range 

of measurement techniques for lattice structures is reviewed in Section 2.5. Section  2.6 

discusses X-ray computed tomography in more depth, due to its popularity in the 

literature and its use for this thesis. Section 2.7 reviews the literature on finite element 

modelling methods for lattice structure analysis. A discussion of the chapter is given 

in Section 2.8, followed by a summary in Section 2.9. 

Reviewing these topics is necessary for achieving the aim (Chapter 1, § 1.2). This 

chapter provides the required information for understanding lattice structures and the 

processes by which defects are produces, as well methods for measuring the defects 

and modelling their impact. 

Note that portions of this chapter were used in the publishing of a review paper, [30]. 
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2.1 Cellular solids 

Cellular solids are defined by Gibson and Ashby as “an interconnected network of 

solid struts or plates which form the edges and faces of cells” [1]. Cellular solids exist 

in many forms; Figure 2.1 shows the categories of the main types of cellular solids.  

Based on their geometrical structure, cellular solids are grouped into two main 

categories: foams and lattice structures. Foams consists of a stochastic geometries 

generated through processes which hold little control over local features. Therefore, 

foams are more appropriately defined through their global properties, for example, 

density. An example foam manufacturing process is the introduction of a gas into a 

molten material; the amount of gas used will influence the foam’s density but specific 

geometric features will form stochastically. Conversely, lattice structures possess 

highly ordered geometries at both local and global scales. On a local scale, a lattice 

structure is defined by a unit cell which is then tessellated to create the global lattice 

structure. The ability of a lattice structure to be controlled via unit cell design allows 

for much greater control of its properties, in comparison to foams.  

Continuing with Figure 2.1, lattice structures can be further categorised. Unit cells are 

generally grouped into two categories: strut-based and surface-based. Strut-based 

unit cells consist of a network of struts connected at nodes, analogous to a truss 

structure; the example in Figure 2.1 is a body centred cubic lattice structure. 

Surface-based unit cells are mathematically defined using a surface connecting set of 

points for which a given function has a constant value, that is, an isosurface (see 

Chapter 4, § 4.1.1 for further discussion on isosurfaces). The most common types of 

surface-based unit cells are called triply periodic minimal surfaces (TPMS). TPMS unit 

cells can be categorised according to the method by which the geometry is generated. 

If the unit cell geometry is generated through the thickening of its isosurface, this is 

considered as sheet/matrix-TPMS. However, if the geometry is generated through the 

the solidification of the volume enclosed by the thickened isosurface, this is called 

skeletal/network-TPMS. Examples of sheet/matrix and skeletal/network TPMS are the 

double gyroid and gyroid respectively. 
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An example TPMS lattice structure is called the gyroid, defined by the equation 

 cos(𝑘𝑥𝑥) sin(𝑘𝑦𝑦) + cos(𝑘𝑦𝑦) sin(𝑘𝑧𝑧) + cos(𝑘𝑧𝑧) sin(𝑘𝑥𝑥) − 𝑡 (2.1) 

where the number of cells—that is, the periodicity—in each direction 𝑥, 𝑦 and 𝑧 is 

given by 

 𝑘𝑖 = 2𝜋
𝑛𝑖

𝐿𝑖
. (2.2) 

𝑛𝑖 is the number of unit cell repetitions in the directions 𝑥, 𝑦 and 𝑧, and 𝐿𝑖 is the 

absolute length of the structure in those directions. The isosurface in Eq. (2.1) can be 

treated as the boundary between solid and void regions in the unit cell volume. 𝑡 is a 

variable that can be used to control the relative density (as defined in the following 

paragraph) of the lattice structure. 

A key property of a cellular solid is its relative density 𝜌 ∕ 𝜌𝑠 , which is defined as the 

ratio of the density of the cellular solid 𝜌 to the density of the material from which the 

lattice is made 𝜌𝑠. As relative density increases, more of the design space is filled with 

material. A value of 𝜌 ∕ 𝜌𝑠 = 1 corresponds to the case where 𝜌 = 𝜌𝑠, denoting that the 

design space is now completely full of material. The relative density of the unit cell is 

a design feature of key importance, largely controlling the mechanical properties of 

the structure. 
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Figure 2.1. Hierarchical display of the main types of cellular 

solids. Note that the entire structure of the foam must be shown, 

due to its stochastic geometric structure [36]. Conversely, for the 

lattice structures, it is sufficient to only show images of the unit 

cells [37]. 
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2.2 Strut-based lattice structures 

Strut-based lattice structures are categorised into groups, based on their compressive 

stress-strain response which is controlled by the configuration of the lattice’s struts 

and nodes. Two such categories are defined: bending-dominated and 

stretch-dominated [38]. To understand these categories, Maxwell’s stability criterion 

must first be defined. Maxwell’s stability criterion [39] states that for a frame 

consisting of 𝑏 struts and 𝑗 pin-jointed frictionless joints to be both statically and 

kinematically determinate in three dimensions, it must satisfy 

 𝑀 = 𝑏 − 3𝑗 + 6 = 0. (2.3) 

If 𝑀 < 0, the frame is a mechanism; it is not load-bearing and possesses one or more 

degrees of freedom in which displacements are allowed. However, lattice structures 

produced by additive manufacturing (AM) possess rigid joints, therefore if 𝑀 < 0 then 

the struts will bend under load and the structure is classed as bending-dominated. If 

𝑀 ≥ 0 then the structure is classified as stretch-dominated (for both pinned and rigid 

joints), as axial displacements will dominate the struts. Figure 2.2 shows examples of 

bending-dominated and stretch-dominated unit cells. 

 

Figure 2.2. Examples of bending-dominated and 

stretch-dominated unit cells, according to Maxwell’s stability 

criterion.  
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Figure 2.3 shows the characteristics of the compressive stress-strain response of 

bending-dominated and stretch-dominated structures. Both bending-dominated and 

stretch-dominated structures possess initial elastic deformation until the yield point 

and include a stage of plastic deformation at near constant “plateau stress”, concluded 

by “densification” which occurs when the structure is nearly flattened and the crushed 

struts begin to make contact with each other. Stretch-dominated structures possess 

several unique characteristics: higher Young’s modulus and yield strength, and a 

gradual decrease in stress after yield, called post-yield softening [38]. 

Bending-dominated structures are more suitable for applications where impact 

energy-absorption is desirable, due to its long plateau region. Stretch-dominated 

structures are more suitable for high load-bearing structural applications, due to the 

higher Young’s modulus and yield strength [38]. 

 

Figure 2.3. Example compressive stress strain response of 

bending-dominated and stretch-dominated strut-based lattice 

structures.  

To conclude this section, the following paragraphs provide definitions of terms 

relating to lattice structures which are referred to throughout the thesis. 
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Medial axis 

The mathematical definition of a medial axis for a planar shape is given as “the locus 

of the centres of a set of disks that maximally fit into the shape” [40]. Figure 2.4 shows 

an example of the medial axis of a planar shape. Extending the definition into three 

dimensions, the medial axis of a three-dimensional shape is defined as the locus of the 

centres of a set of spheres that maximally fit into the shape. 

Cell size 

The cell size of a unit cell defines the edge length of the bounding box which minimally 

encloses the medial axes of the unit cell’s struts, as shown in the example in Figure 2.5. 

Note that the bounding box must be cubic, such that the cell size can be derived from 

any edge length. 

Overhang angle 

In AM, overhangs refer to features which are not positioned perpendicular to the build 

bed (see § 2.3.1 for the definition of the build bed). Mathematically, a feature can be 

considered as an overhang if the surface normal of that region is not parallel to the 

build bed. Overhang angle 𝜃, in degrees, defines the severity of the overhang. For a 

lattice strut, overhang angle 𝜃 is best visualised using Figure 2.6 which shows the 

right-angled triangle whose hypotenuse is the strut’s medial axis. This right-angled 

triangle is in a plane perpendicular to the 𝑥𝑦 plane. 𝜃 is determined using 

trigonometry. The maximum and minimum values of 𝜃 are, respectively, 90° and 0°, 

corresponding, respectively, to a strut whose medial axis is parallel or perpendicular 

to the build bed.  

Tessellation 

Tessellation refers to the duplication of a unit cell in up to three axes. A tessellation is 

notated as 𝑎 × 𝑏 × 𝑐 where 𝑎, 𝑏 and 𝑐 are integers denoting the number of unit cells in 

𝑥, 𝑦 and 𝑧 respectively. 
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Porosity 

Porosity is defined as any unintentional voids within the material of a lattice structure. 

Designed porosity 

Contrary to porosity, the term “designed porosity” will be used to refer to the enclosed 

void space intentionally designed into a given unit cell. Designed pores are of interest 

particularly to the biomedical implant industry, where the void space in a lattice 

structure has significant effect on bone ingrowth. The literature in the biomedical field 

often uses “porosity” to refer to “designed porosity” and therefore a distinction must 

be made here. 

 

Figure 2.4. Diagram of the definition of the medial axis. 

 

Figure 2.5. Diagram of the definition of cell size. 
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Figure 2.6. Diagram of the definition of overhang angle 𝜃. 

2.3 Additive manufacturing 

Due to the highly complex geometries present in lattice structures, AM methods are 

most often employed for their production (to the best of the author’s knowledge). In 

this section, an overview of AM is provided, followed by additional discussion on 

specific AM processes most commonly used for the manufacturing of lattice 

structures. 

Additive manufacturing (AM) is defined as the “process of joining materials to make 

parts from 3D model data, usually layer upon layer as opposed to subtractive 

manufacturing and formative manufacturing methodologies” [41]. In order to sort the 

vast range of AM methods, “process categories” are used to group AM methods 

according to similar process characteristics. There are seven process categories, listed 

in the following bullet points and accompanied by their definitions, according to [41]:  

• Binder jetting: a liquid bonding agent is selectively deposited to join powder 

materials. 

• Directed energy deposition: focused thermal energy is used to fuse materials 

by melting as they are being deposited. 
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• Material extrusion: material is selectively dispensed through a nozzle or orifice. 

• Material jetting: droplets of build material are selectively deposited. 

• Powder bed fusion: thermal energy selectively fuses regions of a powder bed. 

• Sheet lamination: sheets of material are bonded to form a part. 

• Vat photopolymerization: liquid photopolymer in a vat is selectively cured by 

light-activated polymerisation. 

2.3.1 Powder bed fusion 

From the author’s own observations of the literature, powder bed fusion (PBF) 

appears to be the most commonly used process category for manufacturing lattice 

structures. This observation is further supported by a review paper from Nazir et al. 

[42], in which an attempt was made to count the frequency with which different AM 

methods were employed for lattice structure manufacture. Nazir’s results found the 

majority of AM process to belong to the PBF process category, as shown in Figure 2.7, 

where SLM and EBM—selective laser melting and electron beam melting, 

respectively, both of which are PBF processes—form the majority (~50%). A similar 

observation on the dominance of PBF in the literature is made by a review by Helou 

and Kara [43]. Therefore, since PBF appears most relevant to lattice structures, further 

discussion of this process category will now be provided. 



2.3 Additive manufacturing 49 

 

Figure 2.7. Bar chart showing various AM processes used for 

manufacturing lattice structures. [42] 

Within PBF, there are four primary mechanisms by which the fusion of powder is 

performed: solid state sintering, chemically induced binding, liquid phase sintering 

and full melting—full melting is the predominant method for metal processing [44]. 

In full melting, the thermal energy is high enough to create a melt pool whose depth 

ensures the creation of well-bonded, high-density structures. There are two main 

methods which utilise full melting: laser melting (LM)—previously referred to as 

SLM—and electron beam melting (EBM). Figure 2.8 shows a diagram of the LM 

process, which is summarised in the following steps: 

• A layer of powder is spread across the build bed using a recoating mechanism. 

• A laser is focused onto the powder bed and fuses some regions of the layer of 

powder, according to a predefined laser scanning path. 

• The build bed is lowered by one layer thickness. 

• The process repeats until completion. 
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LM is performed in an enclosed chamber which is filled with an inert gas (e.g. argon) 

to minimize oxidation. Infrared heaters are used to maintain the powder material at a 

temperature just below its melting point. This raised temperature reduces the thermal 

gradients subjected to the powder upon interaction with the focused thermal energy 

source. 

LM and EBM differ fundamentally in energy source, using a laser and electron beam 

respectively—this difference yields several effects such as a reduced feature resolution 

in EBM due to the defocusing of the beam to prevent a build-up of negative charge 

[44]. Figure 2.9 shows a diagram of an EBM system. The EBM manufacturing process 

follows the same steps as described for LM in the above bullet points, where “laser” 

should be substituted for “electron beam”. 

 

Figure 2.8. Diagram of the laser melting AM process.  
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Figure 2.9. Diagram of an electron beam melting system. [44]  

2.3.2 Process parameters 

There are many process parameters which dictate the quality of an AM part. PBF 

process parameters can be grouped into four categories, according to [44]: thermal 

source parameters, scan parameters, powder parameters and temperature-related 

parameters. Thermal source parameters, such as laser/electron beam power, most 

directly control the fusing of powder material and, in the case of full melting, directly 

affect the melt pool characteristics. Higher powered energy sources tend to increase 

the size of the melt pool and thus produce denser parts. Scan parameters, for example 

scan speed and scanning patterns, control how the thermal energy is directed within 

the powder bed, which can control surface finish. The scanning of the energy source 

often occurs in two modes: contour mode and fill mode. Contour mode is often used 

to scan the perimeter of a cross section, often to increase accuracy and surface finish. 

The rest of the cross section is then scanned using a fill pattern. Example fill patterns 

include rastering, diagonal lines and random paths. Powder parameters such as 

powder size and layer thickness can control the thermal conductivity of the powder 

bed, powder bed density, powder spreading characteristics and the thickness of each 
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layer. Finer powders have a higher overall surface area and absorb the energy source 

more efficiently than coarser powders. Temperature related parameters, such as 

powder bed temperature, can have a strong influence on the repeatability of the 

manufacturing process, where constant temperatures encourage uniformity 

throughout the build bed and between batches of production.  

Many of these process parameters are strongly interdependent. For example, powder 

bed temperature, laser/electron beam power, scan speed and scan pattern all influence 

melt pool size, dimensional accuracy and surface finish. Keeping powder bed 

temperature uniform helps to achieve repeatable results. The combination of a higher-

powered laser/electron beam and high powder bed temperature tends to produce 

dense parts but can also produce poorer dimensional accuracy—due to larger melt 

pools—than using a combination of a lower powered laser/electron beam and lower 

powder bed temperature. Higher laser/electron beam power also requires higher 

powder bed temperature in order to reduce warping due to residual stresses formed 

through the thermal gradients produced during melting. A lower powdered 

laser/electron beam requires lower scan speeds in order to ensure sufficient melting at 

each location. The spacing of scanning paths must also provide sufficient overlap to 

ensure good bonding between melted material in adjacent scanning paths. 

The term energy density defines the relationship between key process parameters. 

Energy density is defined as: 

 
𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =

𝑃

𝑣ℎ𝑓
, (2.4) 

where 𝑃 is laser power, 𝑣 is scan speed, ℎ is hatch spacing (the spacing between 

scanning paths) and 𝑓 is layer thickness [45]. These parameters are often used to 

investigate the effects of process parameters on print quality (for example [46,47]). 

Lastly, a mention is given to support structures. Support structures are often 

manufactured alongside designs containing overhanging features which would 

otherwise distort under their own weight. Additionally, support structures are often 

required in metal PBF processes to prevent distortion from residual stresses induced 
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through high thermal gradients[44]. Naturally, support structures must be removed 

from the design post-manufacture. 

2.3.3 Powder bed fusion: defect formation mechanisms 

The previously mentioned interrelated PBF process parameters (§ 2.3.2) have been 

shown to give rise to a range of defects in AM parts. In this section, a discussion is 

provided on the mechanisms by which different defects can form in parts produced 

by PBF. This section serves as the foundation for Section 2.4, in which the defects 

observed specifically in lattice structures will be discussed. As first mentioned in 

Section 1.1, the term “defect” can sometimes be used in a general sense to describe any 

aspect of a manufactured part which deviates from its initial design. However, in the 

following paragraphs in this section, more specific terms will be used to describe each 

defect more effectively. The following defects will be discussed: porosity, incomplete 

fusion, cracks, warping, balling, spatter and surface texture variations. 

Porosity is defined by Zhang et al. [48] as approximately spherical voids with diameter 

typically less than 100 µm (Figure 2.10a). Pores can form in AM parts when gases 

within the melt pool are entrapped due to high cooling rates (up to 108 Ks-1). The 

entrapped gases initially form either from gaps within the powder bed or through 

evaporation of lower melting point constituents within the powder material. Pores 

can also form through the use of hollow powder particles and through ridges formed 

in previous layers which impede the flow of the melt pool. 

Incomplete fusion defects are explained by Zhang et al. [48] to occur mainly due to 

insufficient input energy and thus form irregular voids containing un-melted powders 

(Figure 2.10b). For easily oxidised materials, (for example AlSi10Mg) the formation of 

oxide layers impedes melt pool flow and can cause additional incomplete fusion. 

Cracks can form in parts produced by PBF, due to the residual stresses created 

through high thermal gradients which subject the part to rapid expansion and 

contraction [48]. Residual stresses can also cause shrinkage or warping in the AM part 

[49]. Cracking is more likely to occur in materials with low thermal conductivity and 

high coefficient of thermal expansion such as stainless steels and nickel-based 



54                                                                       Chapter 2 – Background and State of the art 

superalloys [48]. Mercelis and Kruth [50] define two mechanisms through which 

residual stresses are induced. Firstly, the temperature gradient mechanism where, 

upon heating the part, expansion is hindered by the solidified material beneath, 

creating compressive residual stresses. Secondly, upon cooling of molten layers, 

contraction is hindered, creating tensile residual stresses. Mercelis and Kruth note that 

the temperature gradient mechanism does not require the material to be molten and 

can, therefore, occur in both solid state sintering and full meting processes, whereas 

the cooling mechanism requires the formation of a melt pool and thus only occurs in 

full melting processes. 

Unstable melt pools can cause balling and spatter. Balling occurs when the melt pool 

solidifies into a sphere instead of spreading onto, i.e. “wetting”, the underlying 

substrate to form a layer—wetting is mainly controlled by the length-to-width ratio of 

the melt pool, where a ratio <  2.1 is desirable [51] (Figure 2.10c). Spatter occurs at 

relatively high energy densities, where molten material is expulsed by the recoil 

pressure generated by evaporation within the melt pool (Figure 2.10d). 

In PBF, the overall surface texture of a region will be strongly affected by orientation 

of that region in space. Regions of a surface possessing a surface normal which is 

directed towards the build bed—such regions are called down-skin surfaces—

produce significantly more irregular surfaces than regions with surface normals 

facing away from the build bed—called up-skin surfaces. This discrepancy between 

down-skin and up-skin surfaces will be called a “texture bias”. Texture bias is caused 

by the support powder which is a poor conductor of heat. Down-skin surfaces 

experience excess heating and poor cooling through the support powder, whereas 

up-skin surfaces cool faster via conduction through the solidified part underneath 

[49]. Note that the chosen convention here is that surface normals are directed 

outwards away from the part, not inwards. 

Lastly, some consideration is given to the quality of the powder material which 

naturally has a fundamental effect on the quality of manufactured parts. In particular, 

powder recycling can have adverse effects on the quality of parts produced by PBF, 

these effects vary based on the material. To share some examples, He et al. [52] 
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observed porosity increases when using recycled powder in AM parts manufactured 

using laser melting of Hastelloy X (a nickel-based alloy). Similarly, porosity increases 

were observed by Ahmed et al. [53] when using recycled powder for laser melting of 

17-4 PH stainless steel. 

 

Figure 2.10. Examples of the defects which form in PBF 

processes. (a) porosity [54] (annotations from [26]) (b) 

incomplete fusion [55] (c) balling occurring at higher scanning 

speeds [56] (d) spatter [57]. 

2.4 Lattice structure defects 

This section discusses the range of defects commonly observed in lattice structures. 

Lattice structures possess numerous overhanging, often millimetre-scale, features 
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which challenge the performance limits of PBF manufacturing systems, therefore, 

lattice structures are particularly prone to defects. Furthermore, the absence of the use 

of support structures in manufacturing lattice structures can increase defect 

formation; support structures cannot be used in lattice structures due to the 

unfeasibility of their removal post-manufacture. The defect formation mechanisms 

mentioned in Section 2.3.3 cause the formation of characteristic defects in lattice 

structures produced by PBF. Additionally, defects are more prevalent in metallic 

lattice structures produced by PBF, due to higher processing temperatures and 

therefore higher thermal gradients. Defects can significantly hinder the desired 

operating performance of AM parts, for example through the introduction of stress 

concentrations causing a reduction in fatigue strength [47]. 

As has been established in this thesis, the term “defect” is useful for general 

discussions regarding discrepancies between an initial design and the manufactured 

part, but more descriptive terms are appropriate for the following discussions. The 

following defects are discussed in the remainder of this section: geometric deviations, 

surface texture variations and porosity. Only defects in metal PBF lattices are 

discussed in this section, due to their prevalence in the literature. In this section, 

comparisons will be made between a manufactured lattice structure and its initial 

design; the terms “as-built” and “nominal” will be used to refer to the manufactured 

lattice structure and the initial design respectively. 

2.4.1 Geometric deviations 

Geometric deviations are a type of defect defined by deviations in the geometry of 

lattice structures which are on the scale of the dimensions / design features of a given 

lattice structure, for example, deviations in strut radius. This section discusses the 

geometric deviations which have been observed in the following lattice features: strut 

diameter, wall-thickness, cross section, medial axis, lattice nodes and designed pores.  

Significant deviations have been observed between the nominal and as-built average 

diameter of lattice struts; both over-sizing and under-sizing has been observed in 

as-built lattice struts, as shown in Table 1. Cuadrado et al. [58] and Arabnejad et al. 
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[59] showed the relationship between as-built strut diameter and strut orientation, 

where vertically oriented struts (i.e. overhang angle of 0°) were under-sized by up to 

45%, and horizontal struts (i.e. overhang angle of 90°) were over-sized by over 100%. 

Zhang et al. [60] observed similar orientation-dependent thickness variations in the 

surfaces of TPMS unit cells; the wall-thickness of horizontally oriented surfaces was 

larger than the nominal thickness, and vertically oriented surfaces were thinner than 

nominal. The cross sectional shape of as-built lattice struts has been shown to often 

deviate from its nominal circular shape and into an elliptical shape [59–61]. Arabnejad 

et al. [59] notes that this deviation is also dependent upon orientation, occurring the 

most in horizontally oriented struts, due to overmelting. Sercombe et al. [62] discuss 

some of the effects of diameter variations (Figure 2.11) and found horizontal struts to 

cause failure in lattice structures loaded under compression, due to the tensile load 

carried by the horizontal struts. 

The term “waviness” is used to describe deviations between the as-built medial axis 

and the nominal medial axis. Melancon et al. [63] and Liu et al. [64] have both observed 

waviness (Figure 2.12) in lattice struts, where the waviness was present to a greater 

degree in horizontal struts. Liu et al. [64] found the maximum waviness—i.e. the 

maximum distance between as-built and nominal medial axes—to increase from 

approximately 8% to 17% of the nominal radius in diagonally oriented struts and 

horizontal struts respectively. Similarly, Melancon et al. [63] found the maximum 

waviness to increase from of 7% to 9% in diagonal and horizontal struts respectively. 

Similar observations on strut orientation dependency are also observed in [60,65–67]. 

Several defects have been observed at lattice nodes. Excess material accumulation—

known also as mass agglomeration—at lattice nodes has been observed by Gümrük et 

al. [68]. Similar results were seen by Li et al. [69], where strut diameters increased by 

approximately 30% near the nodes. Al-Ketan et al. [70] compared several unit cell 

designs and found nodes to be smoother in surface-based unit cells in comparison to 

strut-based. Additional comments on geometric deviations around lattice nodes are 

made in references [71,72]. 
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Hollander et al. [73] and Lin et al. [74] both observed mass agglomeration, referred to 

as “surface protrusions”, in the designed pores (first defined in § 2.2) of lattice 

structures, the most severe of these extended across 0.3 mm (30%) of the diameter of 

the designed pore [73]. Surface protrusions form obstructions within designed pores 

which can impede bone ingrowth in lattice structures used for biomedical implant 

applications. 

Table 1. Observed deviations in strut diameters. 

 
Designed strut 

diameter/mm 
Strut deviation/mm 

Sing et al. [75] 0.6 to 0.8 
-0.5 to -0.2 

Up to ~60% 

Tancogne-Dejean et al. 

[71] 
0.534 

Average strut deviation  

-0.01 (~2%) 

Choy et al. [76] 0.4 to 1.2 
-0.138 to +0.156  

(-10% to +40%) 

Cuadrado et al. [58] 0.65 

Vertical: 0.46 (-30%) 

Sloped: 0.36 (-45%) 

Horizontal: 1 (+54%) 

Arabnejad et al. [59] 0.2 

Vertical: 0.11 (-45%) 

Sloped: 0.26 (+30%) 

Horizontal: 0.45 (+128%) 
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Figure 2.11. Example of strut orientation-dependency. Top row: 

CAD representation of unit cell. Bottom row: 3D rendering of 

XCT model. The geometry of the horizontal struts is shown to be 

highly irregular. The “build direction“ labels on the left and 

right correspond to the left and right columns in the image [62]. 

 

Figure 2.12. SEM micrograph showing strut waviness  The 

nominal medial axis and as-built medial axis are shown in black 

and white respectively [63]. 

2.4.2 Surface texture variations 

As previously mentioned, (§ 2.3.3) PBF processes produce parts with highly complex 

surfaces and undesirable surface texture variations can form due to melt pool 

instabilities. In this section, two surface texture variations are considered: texture bias 



60                                                                       Chapter 2 – Background and State of the art 

and stair-stepping effects. Surface texture is considered at a scale much smaller than 

that of the dimensions of the lattice structure and exists at high spatial frequencies. 

Texture bias can be clearly observed when comparing down-skin and up-skin surfaces 

of lattice struts. Lattice structures often possess many down-skin surfaces due to their 

many overhanging struts; these down-skin surfaces are subjected to local over-heating 

[34,62,69,70,77–79]. Pyka et al. [80] and Leary et al. [72] analysed up-skin and 

down-skin surfaces of lattice structures using surface roughness parameters, as 

defined by ISO 4287 [81]. Pyka et al. [80] examined the surfaces of lattice struts and 

found the Ra value of down-skin surfaces to be approximately twice that of up-skin 

surfaces. Leary et al. [72] calculated Ra and Rz values for down-skin and up-skin 

surfaces of struts with overhang angles of approximately 45° and 55°. Leary et al. 

showed that increasing the overhang angle of struts from 45° to 55° caused the Ra 

value of down-skin surfaces to increase by almost 200%. Similarly, the Rz values for 

down-skin surfaces showed significant increase upon increasing overhang angle. 

Conversely, for up-skin surfaces the Ra values showed little variation upon changing 

overhang angle. Although the parameters Ra and Rq provide insights on the surface 

texture of surfaces produced by AM, these parameters are particularly limiting 

because they are one-dimensional measurements i.e. profile measurements. 

Two-dimension—that is, areal—measurements have several distinct advantages over 

profile measurements, as discussed by Townsend et al. [82]. Firstly, because a 

measured surface is three-dimensional in nature, profile measurements provide 

ambiguous and/or incomplete descriptions of the measured surface. Due to the 

popularity of the Ra parameter, the areal parameter Sa—which is mathematically 

equivalent to Ra but extended into two dimensions—is commonly used for areal 

characterisation of surfaces produced by AM [82]. There are other areal parameters 

which provide more descriptive information on a given measured surface; areal 

parameters are defined in ISO 25178-2 [83]. For an example work in which a range of 

areal parameters are used on surfaces produced by AM, the reader is directed to 

Thompson et al. [84] in which areal surface characterisation is performed using a range 

of areal parameters on surfaces produced using various measurement instruments. 
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Stair-stepping defects have also been investigated in lattice structures. Stair-stepping 

defects are a natural by-product of the layer-wise PBF process, in which 

discontinuities form between successive layers. Al-Ketan et al. [70] compared the 

surfaces of strut-based and surface-based unit cells produced by laser-PBF of 

Maraging steel and observed the stair-stepping effect to be less severe in surface-based 

unit cells, an example of which is shown in Figure 2.13. The reduced stair-stepping 

effect in surface-based unit cells has been attributed to the fact that surface-based 

designs possess a continuous change in overhang angle. Other supporting comments 

on the surface texture of lattice surfaces can be found elsewhere [68,71,73,85–98]. 

 

Figure 2.13. SEM micrographs showing stair-stepping defects. 

From left to right: gyroid (surface-based) unit cell and Kelvin 

structure (strut-based) unit cell. A more pronounced 

stair-stepping effect can be seen in the Kelvin structure [70]. 

2.4.3 Porosity 

To the author’s knowledge, there are few studies in the literature which study the 

relationship between specific lattice structure features and porosity formation. Yan et 

al. [99] investigated the effects of increasing unit cell size on porosity. Porosity was 

found to increase by up to approximately 10% upon increasing the size of gyroid unit 

cells from 2 mm to 8 mm. This porosity increase was attributed to the longer scanning 

paths required for the larger unit cells which in turn allows a greater period of time 

for pores to form in between adjacent scanning tracks; each unit cell was 

manufactured using the same process parameters. Yan et al. [99] highlight that further 

optimisation of the parameters depending on unit cell size should alleviate any 

increase in porosity. Amani et al. [33] also attribute scan strategy to an increase in 
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porosity, where pore size was observed to increase at the nodes of lattices in 

comparison to the struts (Figure 2.14). 

 

Figure 2.14. XCT results showing increased porosity in the 

nodes of a lattice  [33]. 

2.4.4 Post processing 

After the PBF manufacturing process is completed, post processing can be performed 

to improve the quality of the part. Post processing methods can be performed for 

many reasons, such as to reduce porosity, to alter grain structure or to modify surface 

texture. This section discusses post processing methods which have been employed 

for smoothening the surface texture of and reducing porosity in lattice structures. 

To smoothen the surface texture of AM parts, mechanical surface treatment 

methods—such as sandblasting—are commonly used [73,93]. However, limited 

access to the internal features in lattice structures may prove difficult to treat, as 

highlighted by Hollander et al. [73]. Chemical etching has also been used in several 

studies to investigate its effect on the surface texture of Ti6Al4V lattice structures 

[78,80,100,101]. de Formanoir et al. [100] investigated the effect of hydrofluoric acid 

and nitric acid solutions on the surface texture of Ti6Al4V octet lattice structures. A 

clear decrease in attached particles was observed and a corresponding reduction in 

profile parameters (Ra and Rt) was calculated from XCT data of the lattice structure 

surface (the reader is referred to § 2.4.2 for discussions on profile and areal 

parameters). The etching process also caused the volume fraction to decrease by 

approximately 7%. Compression tests revealed a reduction in stiffness upon etching, 
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with this reduction being proportional to the change in volume fraction. Chemical 

etching was also observed to reduce the discrepancies between experimentally 

determined and simulated stiffness values. This stronger agreement with simulation 

data was attributed to the removal of attached particles which allowed for a better 

representation of nominal, cylindrical struts. 

To reduce the porosity in AM parts, hot isostatic pressing is commonly used, a process 

in which porous parts are subjected to high pressure and temperature [102–104]. Wu 

et al. [105] observed a significant improvement in fatigue properties upon hot isostatic 

pressing of Ti6Al4V lattice structures, quantified by an increased endurance ratio of 

approximately 80%. The improved fatigue properties were attributed to a phase 

change from brittle 𝛼′-martensite to tough 𝛼 + 𝛽 mixed phases causing an increase in 

toughness—the key material property for resisting crack propagation. A 20% and 30% 

reduction in hardness and yield strength respectively was also recorded. Hot isostatic 

pressing was also performed by Dutton et al. [106] on EBM and LM parts. It was 

observed that for LM parts, the high pressure caused the gas filled pores to compress 

into sharp edges. However, EBM parts were unaffected due to the evacuated chamber 

preventing gas filled pores from forming. Van Hooreweder et al. [107] studied the 

effects of stress relieving, hot isostatic pressing and chemical etching on the fatigue 

properties of Ti6Al4V lattice structures; the results showed all of these post processing 

methods to increase fatigue life. In particular, the combination of hot isostatic pressing 

and chemical etching produced the largest improvement in fatigue life. 

2.5 Measurement techniques 

As previously mentioned (Chapter 1, § 1.1), many studies of lattice structures involve 

the use of a measurement technique to assess the quality of manufacture parts and, in 

particular, to obtain quantitative data on a given defect. Table 2 lists various 

measurement methods used for observing different defects in lattice structures. 

Regarding the measurement of geometric deviations, X-ray computed tomography 

(XCT) data can be aligned to the original CAD model for comparison against the 

nominal values. This alignment can be used to calculate the maximum or average 
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deviation of the XCT data points [34,93,95]. Other methods using XCT include 

measuring the volume or surface area of the lattice structure, as demonstrated by Van 

Bael et al. [108,109] and Parthasarathy et al. [92]. For local strut measurements, Qiu et 

al. [94] and Melancon et al. [63] calculated strut diameter using fitting algorithms to 

inscribe circles within individual XCT slice images. Pyka et al. [80] and Heinl et al. [86] 

expand this into three dimensions (3D) by using sphere-fitting algorithms to measure 

the diameters of struts and designed pores respectively. Hrabe et al. [87] suggest that 

using the median value of inscribed sphere diameter is a more appropriate 

representation of the strut diameter. SEM [68,69,73,89,90,94,98,110–113] and optical 

microscopy [58,76,77,95,114–117] have also been used for measuring dimensions in 

lattice structures. It is also relatively common to use Vernier calipers for the 

measurement of outer dimensions (for example, lattice diameter, length, width) 

[75,112,114,118]. The lattice’s mass has been used to calculate volume fraction, as 

performed by Al-Ketan et al. [70] and Wieding et al. [119].  

For the measurement of surface texture variations, Ra values from profiles of strut 

surfaces have been calculated using XCT, by Kerckhofs et al. [78], Pyka et al. [80], and 

de Formanoir et al. [100], and using optical microscopy by Leary et al. [72]. Similarly, 

Ra was determined using the variation in strut cross-sectional area using XCT by 

Tancogne-Dejean et al. [71]. 

Porosity is often calculated using Archimedes’ method wherein the mass of the lattice 

is weighed in two different fluids [76,93,99,120]. XCT has been used to calculate 

porosity [33,34,65,121]. Amani et al. [33] employ a stitching method with XCT, 

whereby small portions of the lattice are imaged at higher magnification and are 

stitched together. This enabled smaller voxel sizes to be achieved and a greater 

proportion of pores were detected. Optical microscopy was used by Qiu et al. [94] and 

Köhnen et al. [2] to calculate an average porosity from a select number of cross-

sections. SEM has also been used by Tancogne-Dejean et al. [71] to view surface 

porosity. 
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Table 2. Defect measurement methods 

  

Defect 
Measurement 

system 
Reference Measurement technique 

Geometric 

deviations 

XCT [27,28,33,34,59,62–

64,71,72,74,80,86,87

,92–

95,108,109,122,123] 

Comparison to CAD model 

 

Calculate total volume 

 

Analyse cross sectional shape 

SEM [68,69,73,89,90,94,9

8,110–113] 
Dimensional measurements 

(length, diameter, etc.) 

Infer relative density 

Optical 

microscopy 

[58,76,77,95,114–

117] 

Vernier calipers [75,112,114,118] 

Weighing [70,119] Infer relative density 

Surface 

texture 

variations 

XCT [34,71,74,78,80,94,1

00] 

Calculate Ra value from strut 

profile or cross-sectional area 

Optical 

microscopy 

[72,92,97,116] 
Ra value from strut profile 

SEM [68,69,80,85–

89,93,96,98,115,117

] 

Qualitative analysis 

Porosity 

Archimedes’ 

method 

[76,93,99,120] Infer porosity from weight in 

two fluids 

XCT [33,34,65,121] Calculate total porosity 

Optical 

microscopy 

[2,94] Average porosity determined 

from select cross sections 

SEM [71] Surface porosity 
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2.6 X-ray computed tomography 

As demonstrated in the previous section, X-ray computed tomography (XCT) is 

commonly used for the measurement of lattice structures [30] due to its ability to 

image both external and internal geometries; XCT does not suffer from line-of-sight 

issues. For these reasons, XCT was used for all measurements of lattice structures in 

this thesis (see Chapter 3, § 3.3.1). This section will discuss the basic principles of XCT 

(§ 2.6.1), followed by explaining how measurement data is acquired (§ 2.6.2-2.6.4) and 

will conclude with a discussion on XCT metrology considerations (§ 2.6.5). 

2.6.1 Principles of X-ray computed tomography 

There are several methods by which X-ray production can be achieved [124], this 

section explains the method utilised by the XCT system in thesis (see Chapter 3, 

§ 3.3.1): the X-ray tube. As shown in Figure 2.15, the main components of an X-ray 

tube are a cathode and anode inside an evacuated chamber. A voltage is applied to 

the cathode—often a tungsten filament—which is heated by the Joule effect. As the 

cathode temperature continues to rise, the kinetic energy of the electrons overcomes 

the attractive forces of the nuclei (i.e. the work function) and are released from the 

metal. Electron optics are then used to form an electron beam, which is accelerated 

towards the anode target—also often tungsten—forming a focal spot on the target. 

Incoming electrons interact with the atoms in the target causing emission of X-ray 

photons either through the deceleration of incoming electrons, by the refilling of 

vacancies in electron shells, or by colliding with the atoms’ nuclei [124]. The X-ray 

beam is then shaped by passing through a beryllium window.  
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Figure 2.15. Diagram of an X-ray tube [124]. 

2.6.2 Measurement procedure 

XCT imaging systems exist in many different configurations, each of which is 

designed to suit a specific set of needs. For the imaging of engineering components, 

industrial XCT systems are used. More specifically, only the industrial cone beam 

system will be considered here, as this is the system used in this thesis. Other XCT 

systems are discussed here [124]. 

Figure 2.16 shows a diagram of a typical industrial cone-beam XCT system, with 

further detail on select components provided in Figure 2.17. The three main 

components of this system are as follows: an X-ray source, the sample platform and 

an X-ray detector. The X-ray source produces the X-ray beam; the sample platform 

holds and rotates the sample during the scanning process; the detector, or solid-state 

detector, consists of a grid of scintillation crystals which are used in the conversion of 

the X-rays into an electric current. 

To perform a measurement on a given sample, the sample is placed on the rotation 

stage and irradiated by a cone-shaped X-ray beam. Absorption of X-ray photons by 

the sample causes attenuation in the X-ray beam intensity. Individual pixels in the flat 

panel detector record the attenuated intensities, thus completing one cycle in the 

measurement i.e. one projection. The rotation stage then rotates the sample by a small 

increment 𝜃𝑝𝑟𝑜𝑗 and the process restarts until the sample has been rotated by 360°. 

For each projection, a slice is defined as the data recorded by one row of scintillation 

crystals in the detector. A sinogram is defined as the projection data for all rotations 
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for a given slice. A sinogram is formed by stacking all of the projections acquired for 

a given slice. Raw XCT data is often stored in sinograms. 

 

Figure 2.16. Diagram of an industrial cone-beam XCT system. 

 

Figure 2.17. Diagram of a sample platform and detector panel. 

(a) The sample platform moves via translations in 𝑧 and 

rotations about 𝑦. (b) The detector uses scintillation crystals for 

conversion into electrical current. 
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2.6.3 Data processing 

Reconstruction, the first step in XCT data processing, is the process of combining all 

of the data from each projection and converting it into a three dimensional scalar field 

of ‘grey-values’. The reconstruction processing is outside of the scope of this section; 

the reader is referred to [124] for further discussion. Each point in the grey-value scalar 

field corresponds to the amount of X-ray attenuation caused from that location in the 

scanning volume. The more dense the material is at a given point, the higher the 

grey-value. The points in a grey-value scalar field are equally spaced in all three 

dimensions; the term “voxel size” is used to define this spacing. 

As shown in Figure 2.18, these grey-values can be represented in a histogram. Peaks 

in the histogram correspond to specific materials within the scanning volume. Figure 

2.18 shows an example histogram for a mono-material sample; the higher grey-value 

peak corresponds to the sample material, the lower grey-value peak corresponds to 

the surrounding air (note that the surrounding air is itself a material). A histogram 

with three or more peaks suggests a multi-material sample. 

Surface determination, the second step in XCT data processing, is the process of 

extracting a surface from the grey-value scalar field. This surface is extracted by first 

specifying a threshold value and then searching the grey-value scalar field for the 

coordinates of the threshold value—interpolating where necessary. The threshold 

value can be specified either globally or locally. The most common global thresholding 

method uses the mean grey-value of the material and air peaks in the histogram. This 

mean is commonly called ISO50, an example of which is in Figure 2.18. The static 

nature of ISO50 thresholding presents a number of limitations. ISO50 can be clearly 

unsuitable for some multi-material histograms, particularly in cases where grey-value 

distributions begin to overlap and thus fail to provide a distinct point between the 

materials. Additionally, imaging artefacts produce erroneous grey-values which may 

be undetected by a global threshold method. Therefore, ISO50 is prone to systematic 

errors. Local thresholding methods allow for the threshold value to vary within a 

small search distance of voxels, depending on the grey-value data within that region. 
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In each of these regions, a starting threshold (often ISO50) is compared to the 

grey-values in its region and the local threshold value is altered when deemed 

necessary by criteria defined in the thresholding algorithm. Local methods allow for 

more reliable results even in the presence of artefacts (which manifest as sudden local 

changes in grey-value). 

After completing reconstruction and surface determination, the XCT data can be 

analysed. Analysis can be performed through manual selection of points on the 

surface—which can be used to calculate dimensions—or through fitting techniques 

such as the fitting of geometrical primitives (e.g. spheres, cylinders and planes) for use 

in geometric dimensioning and tolerancing (e.g. flatness and cylindricity). Internal 

porosity is also often calculated, which is particularly common for AM measurements 

[125,126]. The determined surface can also be aligned to the original CAD model to 

assess the deviations from the initial design. Examples of these types of analyses were 

discussed earlier in this chapter (§ 2.5). 

 

Figure 2.18. Grey-value histogram showing the ISO50 value. 
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2.6.4 Measurement parameters 

There are many parameters to consider when setting up an XCT measurement. This 

section will define the following parameters: 

• Voltage 

• Current 

• Filtering 

• Number of projections 

• Exposure time 

• Images per projection 

• Magnification 

The voltage of an XCT system controls the speed at which the electrons are guided 

into the anode. Increasing the voltage of an XCT system will increase the average 

energy of the X-ray beam; this is required for imaging dense and highly attenuating 

materials. 

The X-ray tube current controls the number of X-ray photons produced per unit time. 

Controlling the current can remove noise in the captured images. Changing the 

current does not change the energy of the X-ray beam.  

A filter is a piece of metal, up to a few millimetres thick, placed in front of the X-ray 

source. Filtering of the X-ray beam can help to remove unwanted low-energy X-ray 

photons before the beam interacts with the sample. If filtering is not used, a sample 

may cause beam hardening to occur, which describes a scenario in which the sample 

absorbs low-energy X-ray photons and thus increases the average energy of the beam 

which passes through and is recorded by the detectors. Beam hardening can lead to 

erroneous pixel values in the images, known as “beam hardening artefacts”. An 

example of beam hardening can be seen in Figure 2.19a which shows an XCT 

projection of a spherical mono-material sample in which the grey values of the edge 

are incorrectly higher than the rest of the material. Note that same beam hardening 

artefacts can be removed using image processing algorithms; Figure 2.19b shows an 

example. 
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Figure 2.19. An example of a beam hardening artefact. (a) The 

beam hardening artefact causes the grey values of the edges of 

the material to be incorrectly higher that the rest of the material. 

(b) A result of an image processing algorithm used for removing 

beam hardening artefacts. [127] 

The number of projections is best described by considering the angle 𝜃𝑝𝑟𝑜𝑗  through 

which the sample is rotated during its one revolution in the scanning process 

(previously mentioned in Section 2.6.2). 𝜃𝑝𝑟𝑜𝑗, in degrees, is given by 

 
𝜃𝑝𝑟𝑜𝑗 =

360

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠
. (2.5) 

The number of projections is inversely proportional to 𝜃𝑝𝑟𝑜𝑗. A high number of 

projections produces more accurate reconstructions, as the sinograms are built using 

more slices.  

Exposure time describes the duration for which the sample is irradiated by the X-ray 

beam in each projection. The number of images per projection describes the number 

of times the sample is irradiated by the X-ray beam in each iteration. When using 

multiple images per projection, each pixel of the detector records the average intensity 

of the attenuated X-ray beam through all images per projection. This averaging 

method is useful for counteracting outliers during image acquisition. 

Magnification describes the distance between the rotation stage and the X-ray source. 

The distance from the rotation stage and the X-ray source is labelled 𝑆𝑅𝐷; the distance 

between the X-ray source and the detector is labelled 𝑆𝐷𝐷. Magnification is given by 
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𝑀𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =

𝑆𝐷𝐷

𝑆𝑅𝐷
. 

(2.6) 

Increasing magnification results in a smaller voxel size and thus yields higher quality 

images. 

2.6.5 Metrology considerations 

The term “measurement uncertainty” is defined in the International Vocabulary of 

Metrology [128] as a “non-negative parameter characterizing the dispersion of the 

quantity values being attributed to a measurand, based on the information used”. In 

other words: for a given measurement system, there is always some variation (i.e. 

dispersion) in a given set of repeat measurements (i.e. quantity values) of a given 

sample (i.e. measurand); this variation should be characterised (i.e. by a non-negative 

parameter). Calculating uncertainty in XCT measurements is a difficult task due to the 

complex relationships between influence factors [124]. In metrology, the term 

“influence factor” is used to describe anything that can cause variation in the output 

of a measurement system. 

The VDI/VDE 2630-1.2 [129], provides an extensive list of XCT influence factors and 

the effects they may have on an XCT system. As shown in Table 3, provided by Stofi 

et al. [130], there is a wide range of influence factors for XCT measurements. An 

in-depth discussion on the full range of documented influence factors is beyond the 

scope of this section, nevertheless, some consideration will be given to influence 

factors which are commonly modified in XCT measurements.  

The X-ray source is controlled by several sub-factors: the electron accelerating voltage, 

filament current, focal spot size and anode target material. Accelerating voltage and 

current affect the energy in the electron beam and ultimately the quality of the 

projections. Both voltage and current control the focal spot size of the electron beam 

which is susceptible to drifting in size, shape and location and thus affects the system’s 

maximum resolution. In turn, the focal spot size controls the extent to which the target 

material is degraded during operation, and the target material controls the average 

X-ray photon energy.  
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The sample being measured can also have significant influence on the XCT 

measurement. The severity of beam hardening effects increases with the absorption 

and thickness of the sample. However, polymers cause a very low amount of beam 

hardening in comparison to metals, even at larger thicknesses. Beam hardening can 

affect measurements by decreasing inner dimensions (such as an inner diameter) and 

increasing outer dimensions (such as the height of a sample). According to Muller et 

al.[131], this effect may be because beam hardening modifies the inner and outer grey 

values of the surrounding background air, which influences the contrast and surface 

determination. As stated by Lifton et al. [132], beam hardening also causes greater 

measurement error for outer dimensions than for inner dimensions because the 

relationship between X-ray attenuation and thickness is non-linear for the first 

millimetres of material being penetrated. 

Data processing methods are a very crucial part of obtaining XCT measurement data 

and therefore can have strong effects on a dataset. For example, surface determination 

has been shown to cause greater errors in edge-to-edge length measurements over 

sphere-centre distances [124]. Adding to previous discussions on global and local 

surface determination methods (§ 2.6.3), several comparisons between these surface 

determination methods have been conducted. Townsend et al. [133] compared areal 

parameters extracted from XCT and focus variation measurements of a Rubert plate, 

for the XCT measurements, several surface determination methods were used 

including ISO50 and a local iterative method. The results showed the local iterative 

method outperform ISO50 and achieved results significantly closer to those obtained 

using focus variation. Further issues with the ISO50 method have been identified, for 

example, Tawfik et al. [134] observed ISO50 to be unable to detect the contours of 

unfused powder in a AlSi10Mg sample produced by laser melting; pores filled with 

air were successfully detected, however. 
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Table 3. X-ray computed tomography influence factors [124] 

Group Influence factors 

CT system X-ray source 

Detector 

Positioning system 

Data processing 3D reconstruction 

Threshold determination and surface generation 

Workpiece Material composition 

Dimension and geometry 

Surface texture 

Environment Temperature 

Vibrations 

Humidity 

Operator Workpiece fixturing and orientation 

Magnification 

X-ray source settings 

Number of projections and image averaging 

Measurement strategy 

 

2.7 Finite element modelling 

This section discusses a range of finite element (FE) modelling approaches used to 

study the impact of defects on the mechanical properties of lattice structures. This 

section focuses on reviewing studies in which a method has been developed for 

incorporating measurement data of lattice structures into the FE model. FE modelling 

approaches for lattice structures utilise either beam element or tetrahedral element 

meshes. Section 2.7.1 will discuss tetrahedral element modelling approaches and 



76                                                                       Chapter 2 – Background and State of the art 

Section 2.7.2 will discuss beam element modelling approaches. For a further 

discussion of FE modelling, additional studies can be found in a review by Dong et al. 

[135]. 

2.7.1 Tetrahedral elements 

Ravari et al. [89] modelled the impact of radius variation and strut waviness on the 

compressive stress strain response of BCC and BCCZ lattice structures produced by 

LM of an NiTi alloy. These geometric deviations were implemented into a CAD model 

by modelling each strut using a connection of spheres (Figure 2.20a-b), where radius 

variation and strut waviness were applied to the strut by varying the radius and 

position respectively of each sphere. The FE meshes were then generated via 

conversion of the CAD model, using quadratic tetrahedral elements. Scanning 

electron microscopy (SEM) data of the lattice struts was used to determine the values 

for the geometric deviations in the CAD model. The diameter 𝐷 of each sphere was 

given by 

 𝐷 = 𝐷𝑚𝑖𝑛 + 𝑟 × (𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛) (2.7) 

where 𝑟 is a randomly generated number between 0 and 1, and 𝐷𝑚𝑖𝑛 and 𝐷𝑚𝑎𝑥 are the 

minimum and maximum diameters of the struts measured via SEM. Similarly, the 

position of the spheres is varied by applying a displacement 𝐴𝑑 to each sphere in a 

random direction  

 𝐴𝑑 = 𝑟 × 𝐴𝑑
𝑚𝑎𝑥 (2.8) 

where 𝐴𝑑
𝑚𝑎𝑥 is the maximum offset obtained from SEM data of lattice struts and 𝑟 is as 

defined in Eq. (2.7). 

Discussing one of several FE studies in this paper, Ravari et al. performed a 

compression test on a BCC lattice structure and compared the results to two FE 

models: one with no defects and one with the above defects implemented. The results 

showed the maximum error between simulated and experimental stress-strain 

response of BCC lattices to reduce from 53% to 27% upon incorporating defects into 

the FE model. These results are shown in Figure 2.20c, where the FE models of the 
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lattice with and without defects are denoted by “MCD” and ”MC” respectively. The 

reader is referred to the full text [89] for further discussion of results. 

 

Figure 2.20. FE modelling of geometric deviations, using 

connected spheres. (a) CAD model of lattice structure with strut 

waviness and radius variation (b) individual strut modelled 

using spheres of varied position and radius (c) a set of results 

comparing various simulation approaches to experimental data 

[89]. The labels “MCD” and “MC” describe simulations of lattice 

structures with and without defects respectively. 

Lozanovski et al. [28] used X-ray computed tomography (XCT) to measure the form 

of the cross sections of lattice struts produced by LM of Inconel 625 (a nickel-based 

alloy). Ellipses were fitted to the cross sectional images of the struts (Figure 2.21a) and 

the data was used to compute probability density functions (PDFs) describing the 
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cross sections. These PDFs were then used for creating CAD models of lattice struts 

with statistically similar cross sections (Figure 2.21b). The surface of the struts was 

generated by performing a loft operation over the cross sections. Linear tetrahedral 

elements were used to convert the CAD models into meshes. Compressive Young’s 

modulus, yield strength and buckling studies were all performed, the results showed 

improved adherence to experimental data upon the inclusion of defects into the 

model.  

Defects can also be incorporated into FE meshes by direct conversion of measurement 

data into an appropriate mesh; such an approach is often referred to as an image-based 

technique. Using a lattice structure produced by EBM of a titanium alloy (Ti-6Al-4V), 

Suard et al. [136] suggest an image-based FE technique by using XCT images of 

individual struts and converting them into tetrahedral meshes which are used to 

calculate the stiffness of individual struts. Suard et al. then suggest that future FE 

models could use struts of constant radius (i.e. no geometric deviations) but then 

modify the radius value of each strut such that its theoretical stiffness matches that 

which was calculated from the image-based method. This approach could potentially 

save significant computational power for any simulations performed after the 

image-based modelling, however, validation of this method via comparison to 

experimental data is yet to be performed. Additionally, though this method aims to 

increase efficiency of future simulations, the image-based portion of the work is 

nevertheless very computationally expensive. Furthermore, Suard et al. state that a 

mesh simplification had to be performed on the meshes converted from XCT data, 

bringing into question the integrity of the data. 
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Figure 2.21. Modelling of defects using elliptical cross sections. 

(a) elliptical cross sections of lattice struts (b) CAD models of 

struts at different overhang angles with defects implemented 

[28]. 

2.7.2 Beam elements 

Beam elements are also often used to model geometric deviations in lattice struts. Due 

to their geometrical limitations, beam elements are generally only capable of 

modelling radius variation and strut waviness. Each strut is modelled using several 

beams; radius variation and strut waviness are modelled by varying the radius and 

location respectively of each element [61,64,137–141]. To give one example, Liu et al. 

[64] modelled the compressive stress-strain response of octet-truss lattices and 

rhombicuboctahedron lattices produced by LM of an aluminium alloy (AlSi10Mg). 

X-ray computed tomography was used to develop probability density functions for 

strut radius and centre position. Similar to Lozanovski et al. [28] (§ 2.7.1), beam 
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element models were then generated using the statistical parameters from the 

probability density function (Figure 2.22a). Figure 2.22b shows the results of 

comparing the simulated stress-strain data of an octet-truss lattice to experimental 

data. The results showed that applying geometric deviations produces a significant 

reduction in the discrepancy between experiment and simulation; the model which 

used the as-designed geometry was proven highly inaccurate. Further examples of 

beam element models can be found in from [61,64,137–140]. 

 

Figure 2.22. Modelling and simulation of an octet-truss lattice 

structure, using beam elements.  (a) Beam element model of an 

octet-truss unit cell with radius variation and strut waviness (b) 

results of comparing the simulated stress-strain data of an octet-

truss lattice to experimental data. The “statistical domain” 

marks the full range of stress-strain data from multiple 

simulations. 

A particularly powerful aspect of FE modelling is the ability to perform parametric 

studies wherein a specific deviation or defect can be controlled and analysed in depth. 

Parametric studies for defects in lattice structures can help quantify the unique impact 

of a specific defect (or combination of defects) on the mechanical properties of a given 

lattice structure. Several parametric studies have been performed for defects in lattice 

structures [29,64,137]. Discussing one example, Liu et al. [64] performed a parametric 

study on strut waviness and radius variation in octet-truss lattices. In the first 

simulation, Young’s modulus 𝐸𝑧𝑜
 of the model with no defects was calculated and 
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used as a baseline, for comparison to future results. In subsequent simulations, strut 

waviness and radius variation were independently modified and the Young’s 

modulus Ez was calculated. Figure 2.23 shows a result of this study, where the Young’s 

modulus from each simulation has been normalised to the baseline 𝐸𝑧𝑜
. Visual 

inspection of Figure 2.23 shows that the Young’s modulus is more sensitive to strut 

waviness than radius variation; the Young’s modulus decreases more rapidly upon 

increasing the strut waviness parameter. The reader is directed to [64] for a full 

explanation of the notation in Figure 2.23. Results like these are useful for determining 

the sensitivity of a design to specific defects and are crucial for designing defect-

tolerant lattice structures.  

 

Figure 2.23. Results from a parametric study on strut waviness 

and radius variation [64]. 

2.8 Discussion and conclusion 

Cellular solids exist in a vast range of forms. Strut-based lattice structures are of 

particular interest due to the significant control they provide over the structure’s 
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mechanical properties, in contrast to surface-based lattice structures which are less 

configurable. Furthermore, referring again to the thesis’ motivation, strut-based lattice 

structures have been shown to possess 3D bandgaps, unlike surface-based lattice 

structures (Chapter 1, § 1.1-1.2). AM processes are commonly used for producing 

lattice structures, due to their highly complex geometries. Within AM, the most 

commonly used process category is PBF, this is likely due to its suitability for metal 

processing. Though there are other process categories which handle metals, such as 

directed energy deposition, these are likely less popular due to being inferior to PBF 

in terms of dimension accuracy and complexity of geometry [44,142,143]. There is a 

significant number of PBF process parameters, many of which are strongly 

interrelated and bear significant control over part quality. A stable melt pool is 

particularly crucial to high-quality AM parts; calculating energy density (Eq. (2.4)) is 

helpful for assessing melt pool stability. A stable melt pool can help reduce formation 

of defects such as porosity, balling and spatter. Defects such as texture bias and stair-

stepping (the latter is more strictly a geometric deviation) can only at best be reduced, 

as these are natural by-products of the layer-wise process. 

A range of defects have been observed in lattice structures, many of which—for 

example, geometric deviations and texture bias—are exacerbated by overhanging 

features, these can be overhanging struts or unit cell walls. Classification of defects in 

more specific terms—geometric deviations, surface texture variations and porosity—

is useful for more accurately describing the features present in lattice structures 

produced by AM. In the literature on lattice structure defects (§ 2.4), it is design 

parameters that are often varied—for example strut overhang angle—whilst process 

parameters are kept constant. Additionally, it is often not stated if the chosen process 

parameters underwent optimisation. Therefore, it could be valuable for these studies 

to be extended by investigating the effects and optimisation of process parameters. 

Many techniques have been employed for performing measurements on lattice 

structures. Significantly, XCT is most often used, due to its freedom from line-of-sight 

issues and its 3D capabilities. Unfortunately, XCT is controlled by a vast number of 

influence factors, and understanding the relationships between these factors is a 
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highly complex problem, for which there is currently significant effort to solve. 

Incremental progress is being made and this enables the development of general 

measurement guidelines which can be helpful for optimising a particular 

measurement and more accurately interpreting the results. For example, since surface 

determination causes greater errors in edge-to-edge length measurements over 

sphere-centre distances (§ 2.6.5), the measurement of strut diameter may possess 

higher error than the measurement of the position of strut centres and node centres. 

Alignment of XCT and CAD data is effective for analysing the overall geometry of a 

lattice, however, segmentation of individual features is a more informative approach 

for analysing local deviations. Furthermore, large-scale deviations, such as shrinkage 

and warping, present a challenge during alignment of significantly dissimilar 

geometries. For porosity measurement, employing a stitching method [33] enables 

detection of smaller pores through the smaller voxel size, however, errors may form 

at the boundaries of reconstructed volumes [124]. 

FE modelling approaches have been developed for studying the impact of defects on 

lattice structure mechanical properties. FE meshes are generated using either 

tetrahedral elements or beam elements, each of which possess different advantages 

and disadvantages which can be described in their underlying mathematical 

formulations. In-depth information regarding FE formulations can be found at [144–

148] (and many other sources).To summarise, tetrahedral elements are a type of “3D 

continuum element”, which is often best suited for meshing very complex geometries. 

Meshing a geometry using tetrahedral elements often requires using many elements, 

and therefore these meshes bear a significant computational cost. Beam elements are 

a type of “structural element” best suited for meshing geometries whose size in one 

dimension is far greater than in the other two dimensions (i.e. a beam); beam elements 

are not well suited to complex geometries. Beam elements, however, have the 

advantage of being very computationally efficient. Figure 2.24 shows examples of a 

BCC unit cell which has been meshed using tetrahedral elements and beam elements. 

The higher node count for a tetrahedral mesh results in a much larger stiffness 

matrix—the central part of FE calculations [149–151])—which greatly increases the 



84                                                                       Chapter 2 – Background and State of the art 

computation cost of tetrahedral elements. It is therefore important to consider which 

element type is most appropriate for a given modelling scenario and to justify the 

chosen element type. 

 

Figure 2.24. BCC unit cell meshed using tetrahedral elements 

and beam elements. Significantly more nodes are required to 

generate the tetrahedral mesh. 

The reviewed studies demonstrated improvements upon model which do not include 

defects, however, it is not clear how adaptable these approaches are for the wide range 

of defects observed in the literature. The method by Ravari et al. [89] of modelling 

defects using a connection of spheres improves upon ideal models, but this method 

assumes a geometry which might not be an appropriate description of a lattice strut, 

due to the periodic geometry imposed by the connected spheres, which is not present 

in lattice structures. The method by Lozanovski et al. [28] appears to more 

appropriately describe lattice struts and the FE models demonstrated reduces lattice 

stiffness upon incorporating defects, however, the explicit definition of the elliptical 

cross sections, combined with the loft operation in CAD software may be difficult to 

modify for new geometrical features. Additionally, the modelling approaches in the 

literature do not include any sensitivity studies which are crucial for understanding 

the stability of the model under varied inputs. Furthermore, comments on mesh 

quality are lacking in these studies. 
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2.9 Summary 

In this chapter, background information and a review of the state of the art were 

provided, supported with definitions where necessary. First, the topic of cellular 

solids was introduced, defining their main categories. Next, a subset of cellular solids, 

namely strut-based lattice structures, was discussed in further detail, providing 

classifications, characteristic mechanical properties and key terminology. Strut-based 

lattice structures are the focus of this thesis. The seven process categories of additive 

manufacturing were next discussed, followed by a review of the powder bed fusion 

(PBF) process category in more detail, due to its prevalence in the literature. Laser 

melting and electron beam melting processes were reviewed, as well and process 

parameters and defect formation mechanisms. Building on the more general 

information surrounding PBF, the literature on defects in lattice structures was 

reviewed, namely, geometric deviations, surface texture variations and porosity. 

Studies regarding attempts to reduce defects via post processing methods were also 

discussed. Next, the wide range of measurement techniques for lattice structure 

imaging was reviewed, identifying X-ray computed tomography (XCT) as the most 

commonly used technique. Given its common use, and its use in this thesis, XCT was 

further discussed, explaining its basic principles, procedures, parameters and 

influence factors. The last section of the review discussed the FE modelling 

approaches used for simulating the impact of defects on lattice structure mechanical 

properties. Tetrahedral element and beam element approaches were discussed, 

contrasting their strengths and weaknesses. 

 

 

 





 

Chapter 3 – Methodology 

In this chapter the methodology of the thesis is explained and justifications are 

provided for the decisions that were made. The methodology of this thesis is broad 

and is divided into several stages. Section 3.1 provides an overview of the 

methodology and subsequent sections provide further detail. 
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3.1 Overview 

Figure 3.1 shows a flowchart of the six main stages of the methodology; this flowchart 

was first shown in Section 1.3. The first stage is the development of a modelling 

approach for strut-based lattice structures and a range of geometric deviations and 

defects, followed by a sensitivity study of the modelling approach in which regions of 

stability for the model’s parameters are identified. These two stages are of 

considerable length and are therefore described in detail in their own dedicated 

chapters, Chapter 4 and Chapter 5. In the remainder of this chapter, references to 

Chapter 4 and Chapter 5 are made when necessary. 

The remaining stages (three to six) serve as a case study for validating the proposed 

modelling approach through a comparison to experimental data. In Section 3.2 and 

Section 3.3 (stage three in Figure 3.1), a lattice structure sample is selected for 

manufacturing and measurement using X-ray computed tomography (XCT). Next, 

Section 3.4 describes the compression tests which were performed for obtaining 

stiffness values for the manufactured lattice structures (stage four). Section 3.5 

describes how the XCT data is used in the proposed modelling approach to produce 

tetrahedral meshes of lattice structures which resemble the manufactured samples 

(stage five). Lastly, Section 3.6 (stage six) describes the configuring of the simulations 

of lattice structure stiffness using finite element (FE) analysis.  

 

Figure 3.1. Flowchart showing the main stages of work in this 

thesis (duplicate of Figure 1.3).  
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3.2 Manufacture 

The BCCZ (body centred cubic, with z-axis reinforcement) lattice design was chosen 

for study in this thesis because this design has been shown to have promising 

vibration attenuation properties (as observed by Elmadih et al, see Figure 1.2). 

Additionally, this design is generally prevalent in the literature. As shown in Figure 

3.2a, the BCCZ unit cell contains 12 struts and 9 nodes, making it a bending-dominated 

structure, according to Maxwell’s criterion (𝑀 = −9). The struts in the unit cell are 

grouped into two categories: vertical and inclined. The vertical struts are four outer 

struts which are positioned perpendicular to the 𝑥𝑦 plane i.e. overhang angle 𝜃 = 0°. 

The remaining 8 struts are the inclined struts, with 𝜃 = 54.7°. The chosen lattice 

dimensions are as follows: 

• Strut radius: 0.5 mm 

• Node radius: 0.75 mm 

• Cell size: 7 mm 

• Tessellation: 4 x 4 x 4. 

The surface model of the lattice structure was generated using the signed distance 

function method described in Chapter 41. As shown in Figure 3.2b, the lattice design 

includes the cropped faces first; the terms “top face” and “bottom face” will be used 

to refer to these upper and lower flat regions of the lattice respectively. 

 
1 Signed distance function with resolution 𝑑𝑥 𝑟⁄ = 0.125 (see Chapter 5, § 5.2.1). 
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Figure 3.2. BCCZ lattice structure, the design selected for 

manufacture. (a) BCCZ unit cell. (b) Example model of the BCCZ 

lattice structure. 

STL files of the lattice structures were generated using an open-source function from 

the MATLAB File Exchange, “stlwrite.m” [152] (note that an official MATLAB 

function for creating STL files has now been made available, from MATLAB version 

2018b onwards). The lattice structure samples were manufactured using the ReaLizer 

laser powder bed fusion system with Ti6Al4V powder, an example is shown in Figure 

3.3. The Realizer has a maximum build volume of approximately (40 x 40 x 40) mm 

which must include the substrate to which the samples are fused; the volume is 

approximate because the substrate thickness can vary.  Five lattice samples were 

produced on the ReaLizer using the following process parameters: 

• Laser voltage: 25 V 

• Laser current: 3300 µA 

• Hatch distance: 90 µm 

• Point distance: 20 µm 
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• Exposure time: 20 µs 

• Layer thickness: 40 µm 

These parameters were selected by in-house technicians.  

The samples were oriented such that the bottom face and top face were parallel to the 

build bed. Post-manufacture, the samples were manually cut from the substrate and 

the remaining support structures were manually smoothed, using a belt sander. 

 

Figure 3.3. 4 x 4 x 4 BCCZ lattice manufactured by laser powder 

bed fusion. 

3.3 Measurement 

The measurement stage of the methodology consists of three sub-stages: X-ray 

computed tomography (XCT), data processing and dimensional analysis. The XCT 

stage (§ 3.3.1) is the actual measurement procedure, which outputs raw greyscale data. 

The data processing stage (§ 3.3.2) converts the raw data in point clouds of individual 

struts, suitable for dimensional analysis (§ 3.3.3), which is the final stage.  

3.3.1 X-ray computed tomography 

XCT measurement and reconstruction was performed externally by industrial 

sponsor (The Manufacturing Technology Centre). The XCT measurement was 
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performed using the diondo d2 XCT system. The settings of the diondo d2 system 

were as follows (see Appendix A for full settings): 

• Voltage: 130 kV 

• Current: 90 µA 

• Filter: Aluminium 1 mm thickness 

• Number of projections: 3500 

• Exposure time: 750 ms 

• Images per projection: 1 

• Magnification: 8.571 

These parameters yielded a voxel size of 16 µm. Approximate scan time of 45 minutes. 

Reconstruction was performed on the reconstruction software diControl. Default 

reconstruction settings were used, apart from additional beam hardening correction 

(“setting 3”). 

3.3.2 Data processing 

As shown in Figure 3.4, the data processing stage consists of six stages which are used 

convert the raw greyscale data from the XCT measurement into point cloud data of 

the individual strut in the lattice structure. Each of these stages will now be explained. 

 

Figure 3.4. Flowchart of the XCT data processing stages. 
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Surface determination 

Surface determination was performed using XCT data processing software VG Studio 

MAX 3.0. The “advanced mode” (a local thresholding method) was used with the 

following settings: 

• Starting contour: as defined in histogram 

• Search distance: 4 voxels 

• Void and particle removal 

“Starting contour” refers to the initial surface that is extracted from the grey-scale data 

which is then modified to produce a final determined surface. The initial surface is “as 

defined by histogram”, which means that the ISO50 value was used. The starting 

contour is then iteratively modified by evaluating the grey-values within a “search 

distance” of the starting contour i.e. four voxels perpendicular to the surface. Figure 

3.5 shows an example of a starting contour and modified contour based off grey scale 

data. The search distance is indicated by the perpendicular lines.. 

 

Figure 3.5. Illustration of surface determination.  The starting 

contour is modified according to the grey value data found 

within the search distance. 
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Global registration 

Global registration is used to take an arbitrarily oriented surface and reorient into a 

position favourable for analysis. In this case, the surface is repositioned into an upright 

position such that the top and bottom faces are parallel with the 𝑥𝑦 plane. A “3-2-1 

registration” method was used, which requires the fitting of three “geometry 

elements”: a plane, a line, and a single point. The name “3-2-1” corresponds to the 

minimum number of points required to define a plane, line and point respectively. 

The plane was defined by manually selecting three fit points on the top face of the 

surface. Each of the two points used to define the line were defined as the intersection 

between the fitted plane and the centre of a cylinder fitted to a strut perpendicular to 

the top face, as shown in Figure 3.6. To fit the cylinders, ten points were manually 

selected. The 3-2-1 registration was then performed using the plane, the line 

connecting the two points, and any of the two single points (this was arbitrarily 

selected). 

 

Figure 3.6. Fitting of geometry elements to determined surface. 

(a) Example lattice in VG Studio MAX with geometry elements 

fitted. (b) Close-up of one strut. ‘x’ marks the intersection of the 

fitted cylinder and the plane. 
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Figure 3.7. A unit cell ROI.  Geometry elements are fitted to the 

ROI: cylinders to the vertical struts; a plane to the top face; two 

points—marked ‘x’—at the intersection of the centre of each 

cylinder and the plane. Cell size is calculated as the distance 

between the two points marked ‘x’. The 3-2-1 registration is 

configured such that the bottom face is coincident with the 𝑥𝑦 

plane and the centre of the fitted cylinder of one vertical strut is 

coincident with the origin. 

Segmentation  

The determined surface was segmented in order to extract specific regions of interest 

(ROIs) for analysis. Due to the manual nature of this method, four unit cells were 

arbitrarily selected as ROIs from each of the five samples – two from the top and 

bottom layers of each lattice. A 3-2-1 registration was performed again on each ROI, 

using the same settings as in the global registration. This secondary registration is 

performed so that the bottom face is coincident with the 𝑥𝑦 plane and the centre of the 

fitted cylinder of one vertical strut is coincident with the origin of the coordinate 

system (Figure 3.7), this becomes useful for the later stage when the reference 

geometry is defined. Lastly, the cell size of each unit cell is calculated; the cell size is 

given as the distance between the two points which are defined by the intersection 
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between the plane and the two fitted cylinders (Figure 3.7). The cell size of all unit 

cells is estimated by calculating the average of all the cell sizes calculated in each ROI. 

STL export/import 

The ROIs were exported from VG Studio MAX 3.0 as STL files using the following 

settings: 

• Preset: Normal 

• Surface definition: use determined surface 

• Resampling: normal 

• No mesh simplification 

The STL files of each unit cell were imported into MATLAB using an open-source 

function from the MATLAB File Exchange, “stlread.m” [153] (note that an official 

MATLAB function for reading STL files has now been made available, from MATLAB 

version 2018b onwards). The STL was then converted into a point cloud by discarding 

the triangulation and only saving the coordinates of each point. 

Reference geometry definition 

Before the point clouds of each strut can be extracted, a method is required for 

uniquely identifying each strut in the point cloud. A reference line segment is defined 

for each strut, where this line segment is analogous to the medial axis of the strut. 

Given that the point cloud inherits the coordinate system from the segmentation stage, 

the point cloud is positioned at the origin in the same way as the ROI was positioned. 

Therefore, the coordinates of each reference line segment were derived from the cell 

size calculated in the Segmentation section.  

Strut extraction 

To extract each individual strut from the unit cell point cloud, the distance between 

each point and all the reference line segments in the unit cell is calculated and used to 

divide the point cloud into groups, where each group shares the property of being 

closest to the same reference line segment. Figure 3.8a-c shows examples of a two 

struts being extracted from the unit cell. Note that Figure 3.8b actually shows a pair of 
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inclined struts (separated by a central node), whose medial axes lie on the same line. 

Such pairs of struts are treated as a single strut for this analysis. 

Lastly, the cylindrical section of each strut in the point cloud is extracted, removing 

the points at the nodes. To extract the cylindrical sections a parameter called the 

intersection ratio 𝑡 is used as a threshold value which filters out points based on where 

they are positioned along the strut2. For the vertical struts, the threshold value 𝑡𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 

is used to retain the points whose 𝑡 value satisfies the following condition 

For inclined struts, the threshold value 𝑡𝑖𝑛𝑐𝑙𝑖𝑛𝑒𝑑 is used to retain the points which 

satisfy the criteria  

Figure 3.9 illustrates how the struts are filtered using Eq. (3.1) and Eq. (3.2); the nodes 

in the vertical struts are located at 𝑡 values of 0 and 1; the nodes in the inclined struts 

are located at 𝑡 values of 0, 0.5 and 1. 

 
2 The reader is referred to Eq. (4.14) where intersection ratio is defined thoroughly. 

 𝑡𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 < 𝑡 < 1 − 𝑡𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 . (3.1) 

 𝑡𝑖𝑛𝑐𝑙𝑖𝑛𝑒𝑑 < 𝑡 < 0.5 − 𝑡𝑖𝑛𝑐𝑙𝑖𝑛𝑒𝑑 
(3.2) 

  𝑜𝑟 

 0.5 + 𝑡𝑖𝑛𝑐𝑙𝑖𝑛𝑒𝑑 < 𝑡 < 1 − 𝑡𝑖𝑛𝑐𝑙𝑖𝑛𝑒𝑑. 
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Figure 3.8. Extraction of individual struts from point cloud data. 

(a) point cloud of unit cell with reference line segments (b) 

extracted inclined strut (c) extracted vertical strut. 

 

Figure 3.9. Examples of extraction of the cylindrical section 

inclined and vertical struts. 

For explanation on the implementation in MATLAB of stages from STL import until 

strut extraction, the reader is referred to Appendix B, Figure B.1, Figure B.2 and Figure 

B.6. 
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3.3.3 Dimensional analysis 

This section describes four methods of dimensional analysis: cross section analysis, 

convergence analysis, texture bias analysis and surface unwrapping. These analyses 

were developed using MATLAB in order to maintain full control of the dataset, as 

opposed to using proprietary software (e.g. VGSTUDIO). These particular deviations 

were selected due to their relevance lattices, demonstrated by their prevalence in the 

literature. 

Cross section analysis 

To perform cross section analysis on the strut point cloud, a transformation is applied, 

if required, in order to orient the point clouds such that the reference line segment (as 

defined in the “reference geometry definition” stage in Section 3.3.2) is perpendicular 

to the 𝑥𝑦 plane. The reference line segment is used to calculate the angles of rotation. 

Cross sections of the point cloud were then extracted by isolating a set of points whose 

𝑧 coordinate is within a given slice depth (Figure 3.10a). The slice depth is defined by 

the layer thickness used in the manufacturing of the samples, that is, 40 𝜇𝑚. After 

extracting the point cloud, a circle is fitted to each cross section (Figure 3.10b) using a 

least squares method. This circle is defined by centre coordinates (𝑥, 𝑦) and radius 𝑟. 

For a given point cloud of a strut, the vector 𝑹𝑝𝑡𝑐𝑙𝑜𝑢𝑑 stores the radius values of all 

cross sections as 

where 𝑛 is the number of cross sections. 𝑹𝑝𝑡𝑐𝑙𝑜𝑢𝑑 gives insight into the radius variation 

in a given strut. The matrix 𝑿𝑝𝑡𝑐𝑙𝑜𝑢𝑑 stores the 𝑥, 𝑦 coordinates of the centre of each of 

the cross sections 

 𝑹𝑝𝑡𝑐𝑙𝑜𝑢𝑑 = [𝑟1, 𝑟2, … , 𝑟𝑛] (3.3) 

 𝑿𝑝𝑡𝑐𝑙𝑜𝑢𝑑 =

[
 
 
 
 𝑋⃗1

𝑋⃗2

⋮

𝑋⃗𝑛]
 
 
 
 

= [

𝑥1 𝑦1

𝑥2 𝑦2

⋮ ⋮
𝑥𝑛 𝑦𝑛

]. (3.4) 
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The coordinates of average centre 𝑐 of all the fitted circles are determined by 

calculating the mean 𝑥, 𝑦 coordinates from 𝑿𝑝𝑡𝑐𝑙𝑜𝑢𝑑. Insight into the waviness in a 

given strut can be achieved by calculating the distance between the centre of a given 

slice 𝑋⃗𝑖 and the average centre 𝑐 of all the cross sections of that strut. The distance 

between 𝑋⃗𝑖 and 𝑐 is termed the offset and stored in the vector 𝑶𝑝𝑡𝑐𝑙𝑜𝑢𝑑  

For information on the cross section analysis implementation in MATLAB, the reader 

is referred to Appendix B. 

Convergence analysis 

Convergence analysis is necessary for assessing whether the arbitrary selection of 

struts from the XCT data is representative of the full measurement dataset. The 

convergence analysis is performed by calculating the cumulative mean of the radius 

and offset of the cross sections. For a given set of cross sectional data, the cumulative 

mean of the radius data 𝑹𝑝𝑡𝑐𝑙𝑜𝑢𝑑 is given by 𝑹𝜇  

 

where 𝑛 is the number of slices. The percentage change in 𝑹𝜇 is given by 

 

The cumulative mean 𝑶𝜇 of the offset data 𝑶 and the percentage change can be 

obtained from Eqs. (3.6) and (3.7) via symmetry. 

 𝑶𝑝𝑡𝑐𝑙𝑜𝑢𝑑 = [

𝑜1

𝑜2

⋮
𝑜𝑛

] =

[
 
 
 
 |𝑋⃗1 − 𝑐|

|𝑋⃗2 − 𝑐|

⋮

|𝑋⃗𝑛 − 𝑐|]
 
 
 
 

. (3.5) 

 

𝑹𝜇 = [𝑅1, 𝑅2, 𝑅3, … , 𝑅𝑛] 

= [
𝑟1
1

,
𝑟1 + 𝑟2

2
,
𝑟1 + 𝑟2 + 𝑟3

3
,… ,

𝑟1 + 𝑟2 + 𝑟3 + ⋯+ 𝑟𝑛
𝑛

] 
(3.6) 

 % = [
𝑅2 − 𝑅1

𝑅1
,
𝑅3 − 𝑅2

𝑅2
, … ,

𝑅𝑛 − 𝑅𝑛−1

𝑅𝑛−1
] × 100. (3.7) 
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Texture bias analysis 

In the point cloud of a given strut, each point has a Euclidean distance 𝑑 to its reference 

line segment and a surface angle 𝛼3. Plotting 𝑑 vs 𝛼 gives insight into the character of 

the surface as a function of 𝛼 and can thus be used for texture bias analysis. Figure 

3.11 shows a diagram illustrating 𝑑 and 𝛼; this figure shows the local coordinate 

system (𝑥⃗′, 𝑦⃗′) which is used to calculate 𝛼. The texture bias plots of multiple struts 

can be averaged by binning the data at a fixed 𝛼 interval and averaging the distances 

𝑑 within each 𝛼 interval. 

Surface unwrapping 

Surface unwrapping can be considered as an extension of texture bias analysis. 

Texture bias considers two dimensions, 𝑑 and 𝛼; surface unwrapping adds a third 

dimension 𝑡, the intersection ratio. For each strut in the point cloud, plotting the 

distance 𝑑 as a function of surface angle 𝛼 and intersection ratio 𝑡 unwraps the surface 

onto a plane, removing the cylindrical form. The unwrapped surface can be averaged 

by binning the data at fixed intervals for 𝛼 and 𝑡 and averaging the distances 𝑑 within 

each interval. 

 
3 The reader is referred to Eq. (4.32) where intersection ratio is defined. 
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Figure 3.10. Extraction of strut cross sections from point cloud 

(a) A slice depth is defined for extracting each cross section (b) 

A circle is fitted to each cross section. 

 

Figure 3.11. Illustration of the definition the parameters used for 

texture bias analysis , 𝑑 and 𝛼. 

3.4 Mechanical testing 

Uniaxial compression tests of the lattice structure samples were conducted using an 

Instron 5969 universal testing machine equipped with a 50 kN load cell. The 

compressive displacement was applied at a rate of 0.28 mms-1. Strain data was 

recorded directly from readout provided by the machine’s software. Samples were 

compressed until complete failure was observed in one layer of the lattice. Video of 

each test was recorded using a Canon EOS 1300D camera at a rate of capture of 30 
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frames per second. The raw data of each test – Force (N), displacement (mm) – were 

recorded in a .csv file. 

The .csv files were imported into MATLAB for calculation of Young’s modulus. The 

force-displacement data of each test was combined by sampling the force values from 

each .csv at equally spaced extension values of  0 𝑚𝑚, 0.01 𝑚𝑚, 0.02 𝑚𝑚,… ,7.65 𝑚𝑚 

using linear interpolation. The sampling spacing of 0.1 𝑚𝑚 was chosen as this was the 

average spacing from all of the test data. The mean and standard deviation of the 

combined force values was calculated. The mean force-displacement data was 

converted into stress-strain using the nominal area of the lattice structures, 784 𝑚𝑚2. 

Young’s modulus was determined by arbitrarily selecting two points in the elastic 

regime of the stress-strain graph and calculating the gradient. 

3.5 Incorporation of deviations into model 

The XCT data captured in Section 3.3.3 was used to apply geometric deviations to 

lattice structures generated using signed distance functions. The strut’s medial axis is 

divided into multiple line segments, denoted by the matrix 𝑳 (Eq. (4.18)). Waviness is 

modelled by displacing the points in 𝑳, radius variation is modelled by changing the 

radius assigned at these points. No modifications are made to the positions of 𝑙1 and 

𝑙𝑁. 

The vectors 𝑶 (Eq. (3.3)) and 𝑹𝑝𝑡𝑐𝑙𝑜𝑢𝑑 (Eq. (3.5)), derived from the XCT data describe 

the waviness and radius variation in the measured samples. The data in 𝑶 and 𝑹𝑝𝑡𝑐𝑙𝑜𝑢𝑑 

was fitted to probability density functions (PDF) using a Kernel density estimation. 

Waviness was modelled by applying displacements to the points in 𝑳, where the 

magnitude 𝑎 of the displacement is determined from randomly generated values from 

the PDF fitted to 𝑶. The displacements are applied to each point in a local plane 

perpendicular to the medial axis and coincident to each point in its initial position. 

The local 𝑥 and 𝑦 components of the displacement are given by 𝑎cos(𝛽) and 𝑎sin(𝛽) 

respectively, where 𝛽 is a randomly generated number between 0 and 2𝜋 radians. 

Radius variation is modelled by using the PDF fitted to 𝑹𝑝𝑡𝑐𝑙𝑜𝑢𝑑 to assign radius values 
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to the points in the strut’s medial axis (Eq. (4.23)), using linear interpolation between 

these values. 

The key parameters (𝑑𝑥 𝑟⁄ , 𝑚𝑎𝑥𝑣𝑜𝑙 𝑣𝑜𝑙𝑟⁄ , 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄ ) for the generation of the 

meshes are given in Table 4. These values were selected due to their proven stability 

and convergence, as described in Chapter 5. 

Table 4 Lattice modelling parameters. 

𝑑𝑥 𝑟⁄  𝑚𝑎𝑥𝑣𝑜𝑙 𝑣𝑜𝑙𝑟⁄  𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄  

0.0625 0.1 0.05 

3.6 Finite element analysis  

The tetrahedral meshes were configured for simulation using commercial finite 

element software, Abaqus. As shown in Figure 3.12, the first step was to configure an 

.inp file which contained all the necessary information about the mesh and the 

simulation instructions for Abaqus to execute. Abaqus then performs the simulation 

by running the .inp file, and then outputs the results to a .dat file. Note that both .inp 

files and .dat files are text files.  

 

Figure 3.12. Flowchart of FEA stages. 

To configure the .inp file for a given tetrahedral mesh, several steps of data processing 

are required. Firstly, all of the points in a given mesh must be defined by the matrix 

𝑴𝑚𝑒𝑠ℎ 
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𝑴𝑚𝑒𝑠ℎ =

[
 
 
 
 𝑀⃗⃗⃗1

𝑀⃗⃗⃗2

⋮

𝑀⃗⃗⃗𝑛]
 
 
 
 

= [

𝑥1, 𝑦1, 𝑧1

𝑥2, 𝑦2, 𝑧2

⋮
𝑥𝑛, 𝑦𝑛, 𝑧𝑛

]. (3.8) 

where 𝑛 is the number of vertices in the mesh. The mesh’s indexing matrix 𝑰𝑚𝑒𝑠ℎ is 

given by 

 

𝑰𝑚𝑒𝑠ℎ =

[
 
 
 

𝑝1
1, 𝑝2

1, 𝑝3
1, 𝑝4

1

𝑝1
2, 𝑝2

2, 𝑝3
2, 𝑝4

2

⋮
𝑝1

𝑚, 𝑝2
𝑚, 𝑝3

𝑚, 𝑝4
𝑚]

 
 
 
. (3.9) 

where 𝑚 is the number of tetrahedra in the mesh. To clarify the notation in Eq. (3.9), 

each row in 𝑰𝑚𝑒𝑠ℎ identifies a unique tetrahedron in the mesh and contains four 

integers, each of which references a row of 𝑥, 𝑦, 𝑧 coordinates in 𝑴𝑚𝑒𝑠ℎ. In Eq. (3.9),  𝑝𝑗
𝑖  

is a positive integer which refers to the 𝑗th point of 𝑖th tetrahedron in the mesh, that is 

𝑀⃗⃗⃗
𝑝𝑗

𝑖 .  

Next, the vertices in the mesh upon which boundary conditions and initial conditions 

are to be applied must be identified. As shown in Figure 3.13, two sets of vertices are 

created, “top node set” and “bottom node set”, along with two corresponding 

indexing matrices 𝑰𝑡𝑜𝑝 and 𝑰𝑏𝑜𝑡𝑡𝑜𝑚. 𝑰𝑡𝑜𝑝 is given by 

 

𝑰𝑡𝑜𝑝 = [

𝑛𝑜𝑑𝑒1

𝑛𝑜𝑑𝑒2

⋮
𝑛𝑜𝑑𝑒𝑘

]. (3.10) 

where 𝑘 is the number of nodes in 𝑰𝑡𝑜𝑝. 𝑰𝑡𝑜𝑝 is a column vector where each entry 

identifies a point in the mesh which belongs to “top node set”. Every entry in 𝑰𝑡𝑜𝑝 is 

an integer referring to a row in 𝑴𝑚𝑒𝑠ℎ. The definition of indexing matrix 𝑰𝑏𝑜𝑡𝑡𝑜𝑚 can 

be determined from Eq. (3.10) by symmetry.  



106                                                                                                          Chapter 3 – Methodology 

 

Figure 3.13. Example mesh of a BCCZ lattice with cropped top 

and bottom faces. The top and bottom node sets have been 

labelled. 

Boundary conditions are applied to the bottom node set by restricting all degrees of 

freedom (i.e. no translation or rotation) using the “𝐸𝑁𝐶𝐴𝑆𝑇𝑅𝐸” setting. Initial 

conditions are applied to the top node set by applying an arbitrary displacement in 

the negative 𝑧 direction, the displacement was selected as a hundredth of the lattice 

height. Two material properties are applied to the mesh: Young’s modulus 126 GPa 

and Poisson ratio 0.32. Lastly, the output variables - the reaction force in the positive 

𝑧 direction – is requested from the top node set. 

To configure the .inp file, a MATLAB script was written which creates an .inp file 

containing all the above information, namely: 

• 𝑴𝑚𝑒𝑠ℎ 

• 𝑰𝑚𝑒𝑠ℎ, 𝑰𝑡𝑜𝑝, 𝑰𝑏𝑜𝑡𝑡𝑜𝑚 

• Boundary conditions i.e. bottom node set 𝐸𝑁𝐶𝐴𝑆𝑇𝑅𝐸 

• Initial conditions i.e. displacements on top node set 

• Material properties 

• Output variables 

The simulation is performed by sending the .inp file to abaqus, using the following 

command: Abaqus job=filename. 
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After simulation, the output .dat file is read in MATLAB and the sum of the reaction 

forces 𝐹 at each node in the top set is calculated. The Young’s modulus 𝐸 of the lattice 

is then calculated using 

 
𝐸 =

𝐹𝐿

𝐴𝑈
 (3.11) 

where 𝑈 is the displacement applied to the top node set and 𝐴 is the area of the lattice. 

𝐿 is the lattice height. 

 

 

 





 

Chapter 4 – SDF-based modelling of 

strut-based lattice structures 

In this chapter an approach for modelling strut-based lattice structures and applying 

geometric deviations and defects is proposed. A signed distance function (SDF) forms 

the base of this approach. SDFs are a well-known tool for generating surfaces and this 

proposed modelling approach applies novel extensions to the SDFs, making them 

adaptable to any strut-based lattice structure and also capable of replicating a range 

of geometric deviations observed in the literature. 

Section 4.1 introduces the topic of implicit surfaces which provides the foundation 

necessary for understanding SDFs (§ 4.1.2). Section 4.2 explains the novel extensions 

applied to the basic SDF, providing intuitive mathematical definitions for strut-based 

lattice structures and a range of geometric deviations. Section 4.3 discusses the chosen 

method for conversion of triangulated surface meshes into tetrahedral meshes 

required for finite element analysis. Discussions and summaries of the chapter are 

given in Section 4.4 and Section 4.5 respectively. 

Note that the extension of the SDF for lattice structures was published in a journal 

paper, [154]. 
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4.1 Implicit surfaces 

To introduce the topic of implicit surfaces, Section 4.1.1 first explains implicit 

functions, after which Section 4.1.2 discusses a specific implicit function—a signed 

distance function—and demonstrates its ability to generate complex geometries using 

implicit definitions. 

4.1.1 Implicit functions 

Consider a domain Ω in which the unit circle is defined, as shown in Figure 4.1. This 

circle divides the domain into two regions, Ω− and Ω+, which define the regions inside 

and outside the circle respectively. The circle is the interface between Ω− and Ω+, 

which is denoted by 𝜕Ω. The unit circle can be defined by the function 𝜙(𝑥⃗) 

 𝜙(𝑥⃗) = 𝑥2 + 𝑦2 − 1 = 0. (4.1) 

Eq. (4.1) is an implicit function in which 𝜕Ω is defined by the set of points where 

𝜙(𝑥⃗) = 0. The term “level set” defines the set of points for which a function yields a 

constant value. Therefore, in Eq (4.1), the unit circle is a level set of 𝜙(𝑥⃗), specifically 

the zero level set, corresponding to the solution 𝜙(𝑥⃗) = 0. Naturally, 𝜙(𝑥⃗) < 0 

corresponds to the region Ω−. 𝜙(𝑥⃗) > 0 corresponds to the region Ω+. 

Level sets can also be called isocontours or isosurfaces. In Eq. (4.1), 𝜙(𝑥⃗) is defined in 

a two-dimensional domain; the interface 𝜕Ω is therefore a one-dimensional isocontour 

that separates the two-dimensional regions Ω− and Ω+. In the case where a function 

𝜙(𝑥⃗) is defined in three dimensions, the interface 𝜕Ω will be two dimensional i.e. an 

isosurface which separates the three dimensional regions Ω− and Ω+.  
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Figure 4.1. The unit circle defined by an implicit function. The 

unit circle is the interface 𝜕𝛺, separating the inner and outer 

regions 𝛺− and 𝛺+ respectively. 

4.1.2 Signed distance functions 

Continuing with the example of a unit circle, a distance function 𝑑(𝑥⃗), as provided by 

Osher and Fedkiw [155], is defined as 

 𝑑(𝑥⃗) = min(|𝑥⃗ − 𝑥⃗𝐼|)        for all    𝑥⃗𝐼 ∈ 𝜕Ω (4.2) 

Eq. (4.2) finds the shortest distance between a given point 𝑥⃗ and the interface 𝜕Ω. As 

shown in Figure 4.2, if 𝑥⃗ ∈ 𝜕Ω then 𝑑(𝑥⃗) = 0. If 𝑥⃗ ∉ 𝜕Ω then 𝑥⃗𝐶 is defined as the point 

in the interface which is closest to a given point 𝑥⃗ and 𝑑(𝑥⃗) is then given by 

 𝑑(𝑥⃗) = |𝑥⃗ − 𝑥⃗𝐶|. (4.3) 

A signed distance function (SDF) is an implicit function 𝜙(𝑥⃗) with the property 

(provided again by Osher and Fedkiw) 

In words, Eq. (4.4) states that for a given point 𝑥⃗, an SDF calculates a distance whose 

magnitude is always equal to 𝑑(𝑥⃗). The distinguishing property of SDFs is that the 

sign of the distance 𝜙(𝑥⃗) denotes whether 𝑥⃗ ∈ Ω−  or 𝑥⃗ ∈ Ω+. As shown in Figure 4.3, 

the sign of the SDF 𝜙(𝑥⃗) can immediately identify the inner and outer regions Ω− and 

 |𝜙(𝑥⃗)| = 𝑑(𝑥⃗). (4.4) 
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Ω+; conversely, the distance function 𝑑(𝑥⃗) in Figure 4.2 is ambiguous because 𝑑(𝑥⃗) >

0 in both regions Ω− and Ω+. 

 

Figure 4.2. An illustration of a distance function. Note that 

𝑑(𝑥⃗) > 0 in both 𝛺− and 𝛺+ which is ambiguous. 

 

Figure 4.3. An illustration of a signed distance function. 𝜕𝛺 is 

well defined, due to the change of sign between 𝛺− and 𝛺+. 

Rearranging Eq. (4.1), the unit circle can be implicitly defined using the SDF 

 𝜙(𝑥⃗) = √𝑥2 + 𝑦2 − 𝑟 = 0 (4.5) 
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where 𝑟 = 1. 𝜙(𝑥⃗) calculates the signed distance between a given point 𝑥⃗ and the 

closest point on the interface. The unit circle is represented as the zero level set of 𝜙(𝑥⃗).  

SDFs can be considered as comprising of two stages: distance calculation and 

adjustment. In the distance calculation stage, the distance between each point 𝑥⃗ and 

some predefined boundary (note that this boundary is not the interface 𝜕Ω) is 

calculated, creating a distance field. In the adjustment stage, values in the distance 

field are adjusted such that the interface 𝜕Ω is found at the solution 𝜙(𝑥⃗) = 0. 

Inspection of Eq. (4.5) shows that the distance calculation stage is performed by the 

square root term and the adjustment stage is performed by the subtraction of a 

constant 𝑟. Significant geometric complexity can be obtained by modifying either the 

distance calculation or adjustment stage. For example, the adjustment stage in Eq. (4.5) 

is modified by adding an additional term 𝑎𝑖 to give 

where 𝑁 is the number of points in the domain at which the SDF is computed. The 

subscript 𝑖 is now introduced to indicate a numerical implementation wherein the SDF 

is computed iteratively through each point of a discrete domain. Eq. (4.6) adjusts the 

unit circle into a “petal-like” structure, as shown in Figure 4.4a. 𝑎𝑖 is defined as 

where 

and 𝐵 and 𝜔 are the amplitude and angular frequency of the sine function 

respectively. Simple modification of 𝐵 and 𝜔 can create significant changes to the 

geometry, as shown in Figure 4.4b-c. 

𝜙(𝑥⃗𝑖) = √𝑥𝑖
2 + 𝑦𝑖

2 − 𝑟 + 𝑎𝑖 = 0          𝑖 = 1, 2, … , 𝑁 (4.6) 

 𝑎𝑖 = 𝐵𝑠𝑖𝑛(𝜔𝜃), (4.7) 

 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑦𝑖, 𝑥𝑖) (4.8) 
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Figure 4.4. An example of modifying the signed distance 

function of a unit cell to increase geometric complexity, 

generating a petal-like structure. (a), (b) and (c) show examples 

where the 𝑎𝑖 term has been modified.  

Geometric complexity can also be increased by combining multiple distance fields. 

SDFs are suitable for Boolean operations (unions, additions, subtractions, etc.) which 

are used in constructive solid geometry tools. As an example, two shapes are 

generated, 𝜙1 and 𝜙2, based on the SDF defined in Eq. (4.6) and the union of these two 

shapes is computed by min(𝜙1, 𝜙2), as shown in Figure 4.5. Because negative distance 

values are used to define Ω−, computing min(𝜙1, 𝜙2) gives precedence to the negative 

values and so the result combines the geometries from the two input distance fields. 

 

Figure 4.5. A Boolean union of two distance fields. A more 

complex geometry is created. 

Lastly, consideration is given to the numerical implementation of SDFs. As first 

implied in Eq. (4.6), SDFs are computed over a discretized domain i.e. a Cartesian grid, 

as illustrated in Figure 4.6a. The interface 𝜕Ω is located within the Cartesian grid by 



4.2 Surface modelling 115 

calculating the coordinates locating where the SDF 𝜙(𝑥⃗) = 0. This calculation is 

performed by linear interpolation between adjacent points where a sign change is 

detected in the distance field, as shown in Figure 4.6b.  

 

Figure 4.6. Illustration of the locating of 𝜙(𝑥⃗) = 0 in a discrete 

distance field (a) Cartesian grid in which an SDF is computed (b) 

Enlarged view. Linear interpolation is used to locate the points 

where 𝜙(𝑥⃗) = 0, marked with the red ‘x’. 

4.2 Surface modelling 

This section builds upon the basic theory of SDFs (§ 4.1.2) and explains how SDFs can 

be used for generating lattice structure geometries. Mathematical definitions will be 

provided by for modelling lattice struts (§ 4.2.1), unit cells and lattice structures 

(§ 4.2.2), and geometric deviations/defects (§ 4.2.3). 

4.2.1 Lattice strut 

The surface of a lattice strut is defined by the set of points at an equal distance 𝑟 from 

the strut’s medial axis, as shown in Figure 4.7a. The medial axis 𝑳 is a line segment 

specified by two points 𝑙1 and 𝑙2, that is 

 𝑳 = [𝑙1, 𝑙2]. (4.9) 

The lattice strut surface can be modelled as the zero level set of the SDF that calculates 

the distance between the medial axis and each point 𝑥⃗𝑖 in a three-dimensional 

Cartesian grid. The SDF 𝜙(𝑥⃗) for the strut is given by 
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 𝜙(𝑥⃗) = |𝑥⃗𝑖 − 𝜈⃗𝑖| − 𝑟 = 0            𝑖 = 1,2, … ,𝑀 (4.10) 

where 𝑀 is the total number of points in the three-dimensional Cartesian grid and 𝜈⃗𝑖 

is the point on 𝑳 which is closest to 𝑥⃗𝑖. 𝜈⃗𝑖 is analogous to 𝑥⃗𝐶 in the distance function 

given by Eq. (4.3) . Note that all arrow notation (e.g. 𝜈⃗𝑖) denotes coordinates in three 

axes, for example 

 𝜈⃗𝑖 = (𝑥𝜈⃗⃗⃗𝑖
, 𝑦𝜈⃗⃗⃗𝑖

, 𝑧𝜈⃗⃗⃗𝑖
). (4.11) 

Therefore, in Eq. (4.10), 

 |𝑥⃗𝑖 − 𝜈⃗𝑖| = √(𝑥𝑥⃗𝑖
− 𝑥𝜈⃗⃗⃗𝑖

)2 + (𝑦𝑥⃗𝑖
− 𝑦𝜈⃗⃗⃗𝑖

)2 + (𝑧𝑥⃗𝑖
− 𝑧𝜈⃗⃗⃗𝑖

)2. (4.12) 

𝜈⃗𝑖 is given by 

Eq. (4.13) is simply the vector equation of a line. 𝑡𝑖 is termed as the intersection ratio 

which describes the location of 𝜈⃗𝑖 within 𝑳, as a ratio of the vector (𝑙2 − 𝑙1). Thus, 0 ≤

𝑡𝑖 ≤ 1 for all points on the line segment. The intersection ratio is calculated using 

 𝑡𝑖 =
(𝑙2 − 𝑥⃗𝑖) ∙ (𝑙2 − 𝑙1)

|𝑙2 − 𝑙1|
2 . (4.14)4 

In Eq. (4.14) 𝑙2 and 𝑙1 define a line of infinite length, therefore, there are some cases 

where 𝑥⃗𝑖 is located such that 𝑡𝑖 > 1 or 𝑡𝑖 < 0 , as shown in Figure 4.7b. Such cases 

identify when the point 𝜈⃗𝑖 extends beyond the line segment and to prevent this, the 

following condition is added 

The last term in Eq. (4.10), 𝑟, is subtracted from |𝑥⃗𝑖 − 𝜈⃗𝑖| in order for the lattice strut of 

radius 𝑟 to be represented by 𝜙(𝑥⃗) = 0.  

 
4 See [165]. 

 𝜈⃗𝑖 = [𝑙1 + (𝑙2 − 𝑙1)𝑡𝑖]. (4.13) 

 𝑡𝑖 = {
0, for 𝑡𝑖 < 0
1, for 𝑡𝑖 > 1

 . (4.15) 
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Figure 4.7. A lattice strut generated using a signed distance 

function. (a) Illustration of a lattice strut modelled as the points 

at distance r from the line segment (𝑙2 − 𝑙1). (b) Illustration of 

how the intersection ratio, 𝑡, is used in the distance calculation. 

At x⃗⃗1, ν⃗⃗1 is located in between 𝑙2 and 𝑙1 and therefore 0 < t1 < 1. 

At x⃗⃗2, a case is shown where the Euclidean distance would 

naturally cause 𝜈⃗2 to extend beyond the line segment, t2 is 

therefore adjusted. 

For further information regarding the numerical implementation of SDFs using 

MATLAB, the reader is referred to Appendix B, Figure B.3. 

4.2.2 Unit cell and lattice structure 

Unit cells are modelled by performing a Boolean union on the distance fields of 

individual struts. The isosurface of a unit cell 𝜙𝑐𝑒𝑙𝑙 is defined as 

 𝜙𝑐𝑒𝑙𝑙 = min(𝜙1, 𝜙2, … , 𝜙𝑁 ) = 0 (4.16) 

where 𝑁 is the number of struts in the unit cell. Figure 4.8 shows a BCC unit cell 

generated using Eq. (4.16); each distance field 𝜙 for each individual strut is generated 
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using the SDF in Eq. (4.10). Note that, where symmetry applies in the unit cell, struts 

can be generated by duplicating existing distance fields and performing a rotation, 

thus saving computational load. For example, 𝜙2, 𝜙3 and 𝜙4 in Figure 4.8 can all be 

generated by duplicating and rotating 𝜙1. 

 

Figure 4.8. Boolean union performed to create the BCC unit cell. 

The distance field for the first strut 𝜙1 is duplicated and rotated 

to create three additional struts, 𝜙2, 𝜙3, 𝜙4. The unit cell 𝜙𝑐𝑒𝑙𝑙 is 

created by calculating min(𝜙1,, 𝜙2, 𝜙3, 𝜙4). 

Lattice structures are modelled by tessellating the distance field 𝜙𝑐𝑒𝑙𝑙 of a given unit 

cell. Conceptually, the tessellation process is performed by first initialising a distance 

field that is large enough to store all the unit cells, and then iteratively positioning 

each unit cell in its correct location. See Appendix B, Figure B.4 for more information 

on the implementation of the tessellation function, using MATLAB. 

After tessellation, a final modification is made to the lattice structure 𝜙𝑙𝑎𝑡𝑡𝑖𝑐𝑒 wherein 

the upper and lower regions of 𝜙𝑙𝑎𝑡𝑡𝑖𝑐𝑒 are cropped to create flat surfaces which are 

parallel to the 𝑥𝑦 plane, as shown in Figure 4.9a-b. These modifications are necessary 

for configuring the finite element model, as explained in Section 3.6. Two planes are 

defined, 𝑧 = 𝑧𝑚𝑖𝑛 and 𝑧 = 𝑧𝑚𝑎𝑥, where z𝑚𝑖𝑛 and z𝑚𝑎𝑥 are defined as the minimum and 

maximum 𝑧 coordinates of the medial axis 𝑳 of the lattice structure respectively, as 

shown in Figure 4.9c. The regions of 𝜙𝑙𝑎𝑡𝑡𝑖𝑐𝑒 which are outside of both planes are 
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cropped out. see Appendix B, Figure B.5 for further explanation of the cropping 

function, using MATLAB.  

 

Figure 4.9. Cropped surfaces created on the lattice structure (a) 

ϕlattice before cropping (b) ϕlattice after cropping (c) the two 

planes used in the cropping, z = zmin and z = zmax. zmin and zmax 

are defined by the minimum and maximum z coordinates of the 

medial axis of the lattice structure respectively. 

4.2.3 Defects and geometric deviations 

The following subsections demonstrate how a range of the geometric deviations and 

defects observed in lattice structures (see Chapter 2, § 2.4) can be implemented into 

this SDF-based modelling approach. The following defects are discussed due to their 

prevalence in the literature: waviness, radius variation, elliptical cross sections, 

porosity, surface defects. The reader is reminded that an SDF can be considered as 

comprising of two stages: distance calculation and adjustment (see § 4.1.2). 

4.2.3.1 Waviness 

To model waviness, the SDF remains similar to Eq. (4.10), however, the distance 

calculation stage is modified. As shown in Figure 4.10, the medial axis is now 

partitioned, creating additional vertices used to modify the strut’s medial axis. The 

vertices of the medial axis are now defined as 

 𝑙𝑗 = (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗)             𝑗 = 1,2, … ,𝑁 + 1 (4.17) 

where 𝑁 is the number of line segments. Again, the vertices of the medial axis are 

stored in the matrix 𝑳 
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𝑳 = [

𝐿1

𝐿2

⋮
𝐿𝑁

] =

[
 
 
 
 𝑙1 𝑙2

𝑙2 𝑙3
⋮ ⋮

𝑙𝑁 𝑙𝑁+1]
 
 
 
 

. (4.18) 

where each line segment in the medial axis is defined by 𝐿𝑗. The SDF now calculates 

the distance between a given point 𝑥⃗𝑖 and the closest line segment in 𝑳. This SDF is 

given by 

 𝜙(𝑥⃗) = min(𝑫𝑥⃗𝑖
) − 𝑟 = 0 (4.19) 

where min(𝑫𝑥⃗𝑖
) is the minimum of the distances between a given point  𝑥⃗𝑖 and all the 

line segments in 𝑳. To clarify, consider again an arbitrary point  𝑥⃗𝑖 in the Cartesian grid 

(Figure 4.10). The distance 𝑫𝑥⃗𝑖
 between 𝑥⃗𝑖 and all the line segments is given by 

 𝑫𝑥⃗𝑖
= [𝑑1, 𝑑2, … , 𝑑𝑁]. (4.20) 

Computing the min(𝑫𝑥⃗𝑖
) gives the Euclidean distance to the closest line segment. 

Once this distance is found, the constant 𝑟 is subtracted in order for the desired surface 

to be represented by 𝜙 = 0.  

 

Figure 4.10. Illustration of the signed distance function used for 

modelling waviness. The strut’s medial axis has been modified. 
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4.2.3.2 Radius variation 

To apply radius variation, the SDF will be similar to Eq. (4.19), but the 𝑟 term must be 

modified; in other words, the adjustment stage of the SDF must be changed. Eq. (4.19) 

is modified to  

 𝜙(𝑥⃗) = min(𝑫𝑥⃗𝑖
) − 𝑟𝑖 = 0 (4.21) 

where 

    𝑟𝑖 = 𝑓(𝑡𝑖). (4.22) 

The value of 𝑟𝑖 depends on the intersection ratio of the line segment closest to 𝑥⃗𝑖. The 

radius of the strut can be made to vary along the strut’s medial axis by defining the 

vector 𝑹 which assigns a radius value to each point 𝑙𝑗 in the medial axis 𝑳 

 𝑹 = [𝑅1, 𝑅2, … , 𝑅𝑁+1]. (4.23) 

For every point 𝑥⃗𝑖 in the domain, after locating the closest line segment 𝐿𝑗, Eq. (4.21) 

is computed, where 

 
𝑟𝑖 = {

𝑅𝑗, 𝑖𝑓 𝑡𝑖 = 0 𝑜𝑟 𝑡𝑖 = 1

interpolate, 𝑖𝑓 0 <  𝑡𝑖 < 1
. (4.24) 

Recalling the definition of 𝜈⃗𝑖 from Eq. (4.13), if 𝜈⃗𝑖 is coincident with any of the vertices 

𝑙𝑗, then the first condition of Eq. (4.24) will be true and thus the 𝑟𝑖 value will equal the 

value in 𝑹 assigned to 𝑙𝑗. In all other cases, 𝑟𝑖 is found by interpolating within 𝑹. An 

example of Eq. (4.24) is shown in Figure 4.11, where cubic interpolation is used. Lastly, 

because 0 ≤ 𝑡𝑖 ≤ 1 for all 𝑥⃗𝑖, there is currently no way of identifying the line segment 

to which 𝑡𝑖 is associated. Therefore, the following condition is added 

 𝑡𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝑗 − 1 + 𝑡𝑖 (4.25) 

𝑡𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 is used in Eq. (4.24) instead of 𝑡𝑖, as shown in Figure 4.11. 
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Figure 4.11. Illustration of how radius variation is applied to the 

signed distance function. (a) Radius values are assigned to the 

vertices of the line segments. (b) An example of 𝑹, which assigns 

radius values to each point 𝑙𝑗. 

4.2.3.3 Elliptical cross sections 

An ellipse is defined as the set of points in the plane which satisfy  

 𝑟1 + 𝑟2 = 𝑎. (4.26) 

𝑎 is the major axis of the ellipse and 𝑟1 and 𝑟2 are the distances between the two points 

𝐹1 and 𝐹2 separated at a distance 𝑐, where 𝑐 < 𝑎, as shown in Figure 4.12a. Eq. (4.26) 

is used to build an SDF which can model struts with elliptical cross sections 

 𝜙(𝑥⃗) = min (𝑫𝟏𝑥⃗𝑖
) + min (𝑫𝟐𝑥⃗𝑖

) − 𝑎𝑖 = 0. (4.27) 

Figure 4.12b shows an example strut with elliptical cross sections; the figure also 

shows two sets of connected line segments which are parallel to each other. For each 

point 𝑥⃗𝑖 in the domain, the distances to each set of line segments is calculated. 𝑫𝟏𝑥⃗𝑖
 is 

given by 

 𝑫𝟏𝑥⃗𝑖
= [𝑑1, 𝑑2, … , 𝑑𝑁]. (4.28) 

and stores the distances between a given point 𝑥⃗𝑖 and one set of line segments; 𝑫𝟐𝑥⃗𝑖
 

stores the distances to the second set of line segments can be defined through 

symmetry from Eq. (4.28). Calculating min (𝑫𝟏𝑥⃗𝑖
) and min (𝑫𝟐𝑥⃗𝑖

) gives the distance 
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between 𝑥⃗𝑖 and the closest line segment in each set of line segments. min (𝑫𝟏𝑥⃗𝑖
) and 

min (𝑫𝟐𝑥⃗𝑖
) correspond to 𝑟1 and 𝑟2 respectively in Eq. (4.26). 

 

Figure 4.12. Modelling a strut with an elliptical cross section. (a) 

Diagram of an ellipse with major axis 𝑎. (b) Lattice strut with an 

elliptical cross section. 

4.2.3.4 Porosity 

SDFs can be used to model porosity, as shown in Figure 4.13. Conceptually, each pore 

is generated using its own SDF, and then the surfaces of all pores and struts can be 

combined. To model 𝑛 spherical pores of equal radius 𝑟, each pore is defined by a 3D 

point 𝑝⃗𝑖 and stored in 𝑷 

 𝑷 = [𝑝⃗1, 𝑝⃗2, … , 𝑝⃗𝑛]. (4.29) 

The SDF 𝜙(𝑥⃗) is then given by 

 𝜙(𝑥⃗) = min(𝑫𝑷) − 𝑟 = 0 (4.30) 

where 𝑫𝑷 stores the distances between the point in the Cartesian grid 𝑥⃗𝑖 and 𝑷. To 

model spheres of differing radii—as demonstrated in Figure 4.13— separate sets of 

spheres must be defined and Eqs. (4.29) and (4.30) must be computed with a different 

radius for each set. 
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Figure 4.13. Example of modelling porosity. Larger pores have 

been used to aid visibility. 

4.2.3.5 Surface defects 

Surface defects can be applied to the model by modifying the surface mesh produced 

by the SDF. These modifications can be made by applying displacements to specific 

points on the surface. Before any displacements can be applied, each point on the 

surface of each strut must be characterised so it can be uniquely identified. Figure 

4.14a shows an example of a surface of a lattice strut produced from an SDF. Three 

parameters are defined which are used to describe any point  𝑥⃗𝑖 on the surface: 

overhang angle 𝜃𝑖, intersection ratio 𝑡𝑖, and surface angle 𝛼𝑖. 

Overhang angle 𝜃𝑖 (see Chapter 2, § 2.2) and intersection ratio 𝑡𝑖 (Eq. (4.14)) are already 

familiar terms. To define the surface angle 𝛼𝑖, a local coordinate system must first be 

defined. For a given point 𝑥⃗𝑖 a two-dimensional local coordinate system is defined in 

the strut’s cross-sectional plane i.e. a plane perpendicular to the medial axis and 

coincident with 𝑥⃗𝑖  (Figure 4.14a). The origin of this local coordinate system is located 

at the centre of the cross-sectional circle. The base vectors of this local coordinate 

system are given by (𝑥⃗′, 𝑦⃗′). As shown in Figure 4.14a, 𝑦⃗′ in global coordinates is given 

by the vector at the local origin in the direction of the vector 𝑅⃗⃗. 𝑅⃗⃗ is the a reference line 

in the positive 𝑧 direction starting at the lower point of the medial axis. (𝑥⃗′, 𝑦⃗′) are 

transformed into local coordinates, where 𝑦⃗′ = (0, 1, 0) and 𝑥⃗′ = (1, 0, 0), as shown in 
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Figure 4.14b. The surface normal 𝑛⃗⃗𝑖 of any point 𝑥⃗𝑖 is transformed into local 

coordinates 𝑛⃗⃗𝑖
′, where  

 𝑛⃗⃗𝑖
′ = (𝑥𝑖

′, 𝑦𝑖
′, 0). (4.31) 

Lastly, to define the surface angle 𝛼𝑖, 𝛼𝑖 is defined in degrees as the anti-clockwise angle 

between 𝑛⃗⃗𝑖
′ and 𝑥⃗′, given by 

 𝛼𝑖 = {
𝑎𝑟𝑐𝑡𝑎𝑛2(𝑦𝑖

′, 𝑥𝑖
′) 𝑖𝑓 𝑦𝑖

′ ≥ 0

360 + a𝑟𝑐𝑡𝑎𝑛2(𝑦𝑖
′, 𝑥𝑖

′) 𝑖𝑓 𝑦𝑖
′ < 0

. (4.32) 

𝛼𝑖 has a range 0° ≤ 𝛼𝑖 ≤ 360° and describes whether the point  𝑥⃗𝑖 is up-skin or down-

skin. Up-skin and down-skin values of 𝛼𝑖 are given by the ranges 

 Up-skin: 0° ≤ 𝛼𝑖 ≤ 180°. (4.33) 

 Down-skin: 180° < 𝛼𝑖 < 360°. (4.34) 

The most up-skin point is given by 𝛼𝑖 = 90°, which can also be considered as the angle 

for which the 𝑦′ component of 𝑛⃗⃗𝑖
′ is maximum. Similarly, the most down-skin point is 

given by 𝛼𝑖 = 270°, which can be considered as the angle for which the 𝑦′ component 

of 𝑛⃗⃗𝑖
′ is minimum. Note that when 𝜃 = 0° or 𝜃 = 90° the global coordinates of (𝑥⃗′, 𝑦⃗′) 

cannot be determined via the relationship between the local origin and the vector 𝑅⃗⃗. 

When 𝜃 = 0°, the local origin is coincident with 𝑅⃗⃗ and therefore 𝑦⃗′ is automatically 

defined in both global and local coordinates as (0, 1, 0). When 𝜃 = 90°, 𝑦⃗′ in global 

coordinates is parallel to 𝑅⃗⃗, therefore, 𝑦⃗′ is automatically defined in global coordinates 

as (0, 0, 1) which is transformed into local coordinates (0, 1, 0). 
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Figure 4.14. Diagram showing how the surface angle is defined. 

(a) A strut showing how the local coordinate is first defined. (b) 

Local coordinate system in which α is calculated. 

The three parameters 𝜃, 𝑡, 𝛼 can now be used to apply surface defects. The reader is 

referred to Appendix B, Figure B.6, for further information on the how MATLAB was 

used to derive these parameters.  

Figure 4.15a shows an example for values of 𝜃, 𝑡, 𝛼 for different points on the surface 

of a BCCZ unit cell. To apply surface defects to the surface geometry, a function must 

be defined that displaces each point  𝑥⃗𝑖 by an amount 𝛿𝑖 in the direction of its surface 

normal 𝑛⃗⃗𝑖 according to a given criteria defined by 𝜃, 𝑡, 𝛼. Figure 4.15b shows an 

example of a unit cell to which displacements have been applied to model texture bias. 

For further discussion on the building of functions for modelling texture bias, the 

reader is referred to Appendix C. 
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Figure 4.15. Derivation of surface parameters and application of 

surface defects (a) Examples of overhang angle 𝜃, intersection 

ratio 𝑡 and surface angle 𝛼 for points on a BCCZ unit cell. (b) 

Example surface with texture bias applied. 

4.3 Tetrahedral modelling 

This section discusses the open source MATLAB meshing software, Iso2mesh [156], 

which was used to create the tetrahedral meshes, necessary for finite element (FE) 

modelling. Iso2mesh is a toolbox of functions used for generating tetrahedral meshes 

from triangulated surfaces, as well as 3D binary and 3D grey-scale volumetric images 

[157]. 

Tetrahedral meshes were generated using one function from Iso2mesh, CGALS2M. 

Note that CGALS2M is developed by the Computational Geometry Algorithms 

Library (CGAL) [158]. CGALS2M converts a triangulated surface into a tetrahedral 

mesh using a restricted Delaunay tetrahedralisation (RDT). An example of the 

conversion from surface mesh to tetrahedral mesh is shown in Figure 4.16. 

The CGAL documentation [159] describes the RDT algorithm in two main stages. In 

the first stage, a set of sample points are generated on the input triangulated surface 

and an initial tetrahedral mesh is generated using these sample points. The second 

stage iteratively modifies the initial tetrahedral mesh until a given mesh criteria on the 

size and shape of the mesh elements is satisfied.  
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The terms “surface elements” and “body elements” will now be defined to make a 

distinction between elements with a face on the surface of a mesh and elements with 

all faces beneath the surface, respectively. Additionally, the term “surface triangle” 

refers to the one face (out of four) of a surface element that is located on the surface of 

a mesh. 

The mesh criteria is defined by several parameters controlling either the shape or size 

of the tetrahedral elements in the mesh. The parameters which control the surface 

triangles are named as follows: 

• Angular bound 

• Radius bound 

• Distance bound 

“Angular bound” is a shape parameter which specifies the lower bound (in degrees) 

for the internal angles of the surface triangles. “Radius bound” is a size parameter 

which defines the upper bound of the radius of the circumcircle of the surface 

triangles. “Distance bound” is a size parameter which define the upper bound for the 

distance between the circumcentre of all surface triangles and the centre of their 

associated circumsphere. 

The parameters which control all tetrahedra are named as follows: 

• Radius-edge bound 

• Max volume 

“Radius-edge bound” is a shape parameter which defines the upper bound for the 

ratio between the radius of the tetrahedron’s circumsphere and the shortest edge in 

the tetrahedron. “Max volume” is an upper bound on the radius of the tetrahedron’s 

circumsphere. For the work in this thesis, two parameters are used to optimise the 

meshes of lattice structures: 

• Radius bound 

• Max volume 
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Illustrations of these two parameters are shown in Figure 4.16. Hereafter, “radius 

bound” and “max volume” will be referred to as 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 and 𝑚𝑎𝑥𝑣𝑜𝑙 respectively. 

The combination of these two parameters allows for the generation of graded meshes, 

where smaller surface elements can be generated by modifying 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑, and larger 

body elements can be generated within the rest of the mesh by modifying 𝑚𝑎𝑥𝑣𝑜𝑙. 

Smaller surface elements must be used in order to provide a good approximation of 

the input geometry, however, reducing the size of the body elements can help to 

optimise computational load. The shape parameters were kept at default values, in 

order to prevent from detrimentally effecting element shape, particularly given the 

limited CGAL documentation. Further discussion on the effects of 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 and 

𝑚𝑎𝑥𝑣𝑜𝑙 on tetrahedral meshes is provided in Chapter 5  

 

Figure 4.16. Example conversion from surface mesh to 

tetrahedral mesh . Also shown (right): illustrations of meshing 

parameters radbound and 𝑚𝑎𝑥𝑣𝑜𝑙. 



130                               Chapter 4 – SDF-based modelling of strut-based lattice structures 

4.4 Discussion and conclusion 

This chapter has described an SDF-based approach for modelling a range of defects in 

strut-based lattice structures. Figure 4.17 shows a flowchart which summarises the 

modelling approach defined in this chapter. As shown in Figure 4.17, there are three 

main stages, each with its own set of inputs and outputs. The first stage in the 

flowchart is the SDF, which produces triangulated surface meshes of strut, unit cell, 

and lattice geometries. These lattice geometries are defined by a medial axis and a 

radius; geometric deviations and porosity can be modelled by modifying the medial 

axis and/or SDF. The second stage is the surface defects function which modifies the 

triangulated surface mesh by applying displacements defined by the displacement 

function 𝛿. The modified triangulated surface mesh is passed to the third stage—the 

meshing function—which produces the tetrahedral mesh. Naturally, combinations of 

defects can also be applied to these lattice geometries. For example, the SDF can first 

apply form defects to the struts, after which texture bias can be applied to the surface. 

As demonstrated, this modelling approach is highly versatile and easily modifiable. 

Since the medial axes can be easily reconfigured, this approach is capable easily 

adapting to any strut-based lattice structure design. Additionally, the capability to 

model a range of common defects has been well demonstrated. Modelling geometric 

deviations via modification of the SDF is particularly effective and applicable to other 

defects not yet demonstrated. For example, a surface protrusion (see § 2.4.1) could 

easily be modelled by simply defining its own medial axis. 

The trade-off that must be considered with this modelling approach is its 

computational requirements; SDFs can generate significant computational load when 

domains are discretised at high resolution. In particular, porosity modelling would 

require extremely high resolution, as this defect occurs at a significantly smaller scale 

than other lattice features. Additionally, the chosen tetrahedral modelling approach is 

significantly more computationally expensive in comparison to beam element 

modelling (as discussed in Chapter 2, § 2.8). However, beam elements are not suitable 

for the range of geometric complexity demonstrated with this SDF-based approach. 
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Figure 4.17. Summary of the proposed modelling approach. I/O 

corresponds to inputs/outputs. 

4.5 Summary 

This chapter has described the SDF-based approach which is used in this thesis for the 

modelling of strut-based lattice structures with the inclusion of a range of defects. 

Firstly, the topic of implicit functions was discussed as this is the basis upon which 

SDFs are built. Next, novel extensions to basic SDFs were demonstrated, showing how 

the mathematical definitions of basic SDF can be intuitively extended for modelling 

strut-based lattice structures and a range defects. Following this, an overview was 

provided of the selected tetrahedral meshing process, Iso2mesh, an open-source 

meshing toolbox. 

 

 

 





 

Chapter 5 – Sensitivity study of the 

proposed modelling approach 

The proposed modelling approach in the previous chapter is controlled by a range of 

parameters, each of which will have an effect on the geometries being generated. The 

aim of this chapter is to perform a sensitivity study of the proposed modelling 

approach, determining the behaviour of each of the parameters on the outputs of the 

modelling functions and locating regions of both stability and instability. This 

sensitivity study is necessary because the proposed model cannot be confidently used 

without first understanding how the selection of parameters impacts the integrity of 

the output. 

Section 5.1 defines the outputs of the modelling approach, namely SDF error, meshing 

error and mesh quality which will be used to assess sensitivity. Section 5.2 defines all 

the inputs of the modelling approach; these values will be varied to observe their 

impact on the sensitivity of the model’s outputs. Section 5.3 to Section 5.5 contain the 

results of the three sensitivity studies, corresponding to the three outputs defined in 

Section 5.1. Concluding discussions and summaries are provided in Section 5.6 and 

Section 5.7 respectively. 
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5.1 Outputs 

This section defines the set of outputs which will be used to assess the sensitivity of 

the SDF and the meshing function. This sensitivity study is performed by considering 

three separate areas: SDF error sensitivity, meshing error sensitivity and mesh quality 

sensitivity. The following paragraphs will explain how SDF error, meshing error and 

mesh quality are calculated. 

SDF error 

The error in an SDF can be considered as the discrepancy between the output 

triangulated surface mesh and the input geometry defined by the SDF’s geometrical 

input parameters. This error can be quantified by comparing the volume of the output 

triangulated surface mesh to the volume of the input geometry defined by the 

geometrical input parameters. This discrepancy is quantified as a percentage error, 

SDF error, 𝜖𝑆𝐷𝐹  

where 𝑉𝑆𝐷𝐹
𝑖  and 𝑉𝑆𝐷𝐹

𝑜  are the volumes of the SDF input geometry and output geometry 

respectively. 𝑉𝑆𝐷𝐹
𝑖  must be determined analytically for whichever input geometry is 

being used (see Appendix D). 𝑉𝑆𝐷𝐹
𝑜  is given by 

where 𝑚 is the total number of triangular faces in the surface mesh [160]. For each 

triangle in the surface mesh, 𝑉𝑗 denotes the signed volume of the tetrahedron defined 

by the connecting the 𝑗th triangle 𝑎⃗𝑗 , 𝑏⃗⃗𝑗 , 𝑐𝑗 to the origin, that is  

as shown in Figure 5.1. The sign of 𝑉𝑗 is determined by 

 
𝜖𝑆𝐷𝐹 =

𝑉𝑆𝐷𝐹
𝑖 − 𝑉𝑆𝐷𝐹

𝑜

𝑉𝑆𝐷𝐹
𝑖

× 100. (5.1) 

  𝑉𝑆𝐷𝐹
𝑜 = ∑ 𝑉𝑗

𝑚
𝑗=1  (5.2) 

 
𝑉𝑗 =

1

6
𝑎⃗𝑗 ∙ (𝑏⃗⃗𝑗 × 𝑐𝑗) (5.3) 

 𝑎⃗𝑗 ∙ 𝑛⃗⃗𝑗   (5.4) 
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where 𝑛⃗⃗𝑗  is the surface normal of the triangle; the convention requires 𝑛⃗⃗𝑗  to be in the 

direction pointing away from the volume being calculated. A positive value for 𝑎⃗𝑗 ∙ 𝑛⃗⃗𝑗 

yields a positive signed volume, and vice versa. 

 

Figure 5.1. Triangulated surface mesh of a sphere geometry. An 

example of 𝑎⃗𝑗 , 𝑏⃗⃗𝑗 , 𝑐𝑗 which is used in calculating the volume of a 

triangulated surface. 

Meshing error 

The error in the meshing function can be considered in two ways, depending on 

whether surface defects are present in the geometry. Firstly, if there are no surface 

defects in the geometry, the error 𝜖𝑚𝑒𝑠ℎ in the meshing function can be considered 

using a similar method as the SDF error 𝜖𝑆𝐷𝐹. The meshing error 𝜖𝑚𝑒𝑠ℎ can be 

quantified by comparing the volume of the output tetrahedral mesh to the volume of 

the input triangulated surface mesh. This discrepancy is quantified as a percentage 

error, 𝜖𝑚𝑒𝑠ℎ  

Eq. (5.5) for the meshing error 𝜖𝑚𝑒𝑠ℎ is similar to Eq. (5.1) for 𝜖𝑆𝐷𝐹, however, in Eq. (5.5) 

both 𝑉𝑚𝑒𝑠ℎ
𝑖  and 𝑉𝑚𝑒𝑠ℎ

𝑜  are determined using Eq. (5.2), as both the input and output 

geometries are triangulated surfaces. 

Secondly, if surface defects are present in the geometry, the error 𝜖𝑚𝑒𝑠ℎ
′  in the meshing 

function can be considered by comparing the points on the surface of the tetrahedral 

mesh to their corresponding values in the input displacement function 𝛿. For each 

 
𝜖𝑚𝑒𝑠ℎ =

𝑉𝑚𝑒𝑠ℎ
𝑖 − 𝑉𝑚𝑒𝑠ℎ

𝑜

𝑉𝑚𝑒𝑠ℎ
𝑖

× 100. (5.5) 
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point on the output tetrahedral mesh to which surface defects have been applied, there 

is a discrepancy between the actual displacement 𝛿′ on the surface of the tetrahedral 

mesh and the corresponding displacement value 𝛿 in the input displacement function. 

This discrepancy is expressed as an absolute difference |𝛿 − 𝛿′|. Therefore,  

denotes the mean error between the surface of the tetrahedral mesh and the input 

displacement function and 𝑛 is the total number of points on the surface. The standard 

deviation is given by 

which is expressed as a percentage of the mean. Therefore, meshing error 𝜖𝑚𝑒𝑠ℎ
′  when 

surface defects are applied is given by  

Mesh quality 

Mesh quality can be quantified by calculating shape properties of the elements in the 

tetrahedral mesh; mesh quality is not quantified by comparing inputs and outputs of 

the meshing function. Calculating mesh quality analysis is an important analysis step 

because finite element analysis can be negatively affected by the shape of the mesh’s 

tetrahedral elements. The results produced in FE analysis are affected by the shape of 

the elements and may be erroneous if the mesh elements’ edge lengths vary 

drastically. Additionally, an element with zero volume will cause simulation failure. 

As shown in Figure 5.2, the quality 𝑞𝑘 of an element can be considered by comparing 

the volume 𝑉𝑒𝑙𝑒𝑚𝑒𝑛𝑡
𝑘  of the element to the volume 𝑉𝑒𝑞𝑢𝑖𝑙

𝑘  of the equilateral tetrahedron 

derived from the element’s circumsphere, that is 

 

𝜇 =
∑

|𝛿𝑖 − 𝛿𝑖
′|

𝛿𝑖

𝑛
𝑖=1

𝑛
× 100 

(5.6) 

 

𝜎 =

√∑ (𝛿𝑖 − 𝜇 )𝑛
𝑖=1

𝑛 − 1
𝜇

× 100 
(5.7) 

 𝜖𝑚𝑒𝑠ℎ
′ = 𝜇 ± 𝜎. (5.8) 
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where 𝑚 denotes the total number of elements in the mesh and 

Figure 5.2 shows an example tetrahedral element, from which the equilateral 

tetrahedron has been derived. If 𝑞𝑘 = 1 then 𝑉𝑒𝑙𝑒𝑚𝑒𝑛𝑡
𝑘 = 𝑉𝑒𝑞𝑢𝑖𝑙

𝑘  which is the most ideal 

result. If 𝑞𝑘 = 0 then 𝑉𝑒𝑙𝑒𝑚𝑒𝑛𝑡
𝑘 = 0 which means that the points in the element lie in the 

same plane or line, therefore the tetrahedron is undefined and this is a failure. Mesh 

quality is therefore defined by the vector 𝒒 which stores all the mesh quality values 

for the elements in a mesh 

The equilateral tetrahedral is the most desirable shape for an element in a mesh as its 

edge lengths are of equal length. 

 

Figure 5.2. Illustration of mesh quality calculation. Every 

tetrahedral element can be compared to the equilateral 

tetrahedron derived from the element’s circumsphere. 

5.2 Inputs 

This section defines all the inputs used in this sensitivity study. Figure 5.3 shows an 

expanded version of the flowchart in Figure 4.17, listing all the parameters which 

 𝑞𝑘 =
𝑉𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑘

𝑉𝑒𝑞𝑢𝑖𝑙
𝑘      𝑘 = 1,2, … ,𝑚 (5.9) 

 0 ≤ 𝑞𝑘 ≤ 1. (5.10) 

 𝒒 = [𝑞1, 𝑞2, … , 𝑞𝑚]. (5.11) 
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serve as inputs to the proposed modelling approach. The expanded flowchart in 

Figure 5.3 has several differences. Firstly, the inputs are now notated as IF and IG, 

corresponding to “functional input parameters” and “geometrical input parameters”, 

respectively. Functional input parameters describe parameters which must always be 

configured each time a function is used; functional input parameters exist 

independent of the geometry being modelled. Geometrical input parameters are 

parameters which are dependent on the geometry being modelled. The second change 

in the expanded flowchart is the introduction of 𝑑𝑥. 𝑑𝑥 is a functional input parameter 

that defines the resolution of the Cartesian grid over which a signed distance function 

is computed; 𝑑𝑥 is simply the edge length of a voxel in a Cartesian grid. 

 

Figure 5.3. Expanded flowchart of proposed modelling 

approach. 

5.2.1 Functional input parameters 

The SDF has one functional input parameter, 𝑑𝑥, which controls the resolution of the 

Cartesian grid over which the function is computed. For a given fixed set of 

geometrical input parameters, modifying 𝑑𝑥 will produce surfaces with varying SDF 

error. Figure 5.4 shows the surface of a sphere generated from an SDF using different 

𝑑𝑥 values. Visual inspection of Figure 5.4 illustrates the intuitive trend that decreasing 

the 𝑑𝑥 𝑟⁄  value produces a geometry which more accurately resembles a true sphere. 
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Note the use of the term 𝑑𝑥 𝑟⁄ , as 𝑑𝑥 has been normalised to the radius 𝑟. 𝑑𝑥 𝑟⁄  will be 

referenced extensively in the remaining sections. 

The meshing function has two functional input parameters, 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 and 𝑚𝑎𝑥𝑣𝑜𝑙. 

𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 defines the upper bound of the circumcircle of surface triangles, 𝑚𝑎𝑥𝑣𝑜𝑙  

defines the upper bound of the volume of the circumsphere of all elements. Consider 

a strut of radius 𝑟 and volume 𝑣𝑜𝑙𝑟. The terms 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄  and 𝑚𝑎𝑥𝑣𝑜𝑙 𝑣𝑜𝑙𝑟⁄  are used 

to normalise 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 and 𝑚𝑎𝑥𝑣𝑜𝑙 to the sphere radius and volume of a sphere with 

radius 𝑟, respectively. Figure 5.6 shows the effect of 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄  and 𝑚𝑎𝑥𝑣𝑜𝑙 𝑣𝑜𝑙𝑟⁄  on 

an example mesh. Again, by visual inspection, Figure 5.5 shows that decreasing 

𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄  creates geometries which more closely resemble a true sphere and 

therefore reduces the meshing error. Figure 5.6 shows how decreasing 𝑚𝑎𝑥𝑣𝑜𝑙 𝑣𝑜𝑙𝑟⁄  

reduces the size and shape of the elements and therefore is closely related to mesh 

quality. 

 

Figure 5.4. Spheres generated from signed distance functions 

using different resolutions.  As 𝑑𝑥 𝑟⁄  decreases the geometry can 

be seen to more closely resemble a true sphere. 

 

Figure 5.5. Examples of the effects of 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 on the mesh of a 

sphere. As 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄  decreases the geometry can be seen to 

more closely resemble a true sphere. 
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Figure 5.6. Examples of the effect of the 𝑚𝑎𝑥𝑣𝑜𝑙 parameter on 

the mesh of a sphere. The images show the cross section of the 

sphere; the surface elements remain the same size and the body 

elements change size, thus impacting mesh quality. 

5.2.2 Geometrical input parameters 

Any given lattice structure may require a unique set of geometrical input parameters, 

depending on the design of the lattice structure and the presence of form and surface 

defects. Therefore, the sensitivity studies in this chapter require a simplified, finite set 

of geometrical input parameters which can still be considered as representative of all 

modelling scenarios for strut-based lattice structures in this thesis. Figure 5.7 shows a 

set of four geometries which have been selected and considered as representative of 

all modelling scenarios in this thesis: a sphere, a strut, a strut intersection and a radius 

deviation. This section will explain the geometrical input parameters which define 

these geometries, followed by justifying why this set has been considered as 

representative of lattice structures and the modelling scenarios in this thesis. 
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Figure 5.7. Geometries considered representative of strut-based 

lattice structures and geometric deviations. (a) sphere (b) strut 

(c) strut intersection/waviness (d) radius variation. 

The sphere (Figure 5.7a) is defined by a centre point 𝑥⃗ and radius 𝑟; the only parameter 

which modifies its geometry is the radius 𝑟. The strut (Figure 5.7b) is defined by 

medial axis 𝑳 = [𝐿1] = [𝑙1 𝑙2] and radius 𝑟. The strut geometry can be altered by 

modifying the radius 𝑟 and the length 𝑙𝑠 of the strut, given by 𝑙𝑠 = |𝑙1 − 𝑙2|; the term 

𝑙𝑠 𝑟⁄  denotes strut length normalised to its radius. The strut intersection (Figure 5.7c) 

is defined by medial axis 

and radius 𝑟. The line segments in the strut intersection are of equal length, that is 

|𝑙1 − 𝑙2| = |𝑙2 − 𝑙3|. As shown in Figure 5.7, there are two parameters, 𝑙𝑖𝑛𝑡 and 𝑎 which 

are derived from the medial axis coordinates 𝑙1, 𝑙2, and 𝑙3. 𝑙𝑖𝑛𝑡 is the length of the strut 

intersection; 𝑎 is the “offset” and defined as the distance between 𝑙2 and the line 

connecting 𝑙1 and 𝑙3. 𝑙𝑖𝑛𝑡 and 𝑎 are given by 

and 

 
𝑳 = [

𝐿1

𝐿2
] = [

𝑙1 𝑙2

𝑙2 𝑙3
]. (5.12) 

 𝑙𝑖𝑛𝑡 = |𝑙3 − 𝑙1|. (5.13) 
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respectively. Note that |𝑙1 − 𝑙2| can be used in place of |𝑙2 − 𝑙3| in Eq. (5.14). Modifying 

𝑙𝑖𝑛𝑡 or 𝑎 will alter the geometry of the strut intersection. The terms 𝑙𝑖𝑛𝑡 𝑟⁄  and 𝑎 𝑟⁄  

denote strut length and offset normalised to its radius. Additionally, the term 𝛽 can 

be used in the strut intersection to describe the angle created between the two line 

segments which meet at 𝑙2. 𝛽 can be considered as twice the size of the angle between 

the line 𝑎 and either of the line segments, that is 

Therefore,  

𝛽 will be referred to as the intersection angle. The radius deviation (Figure 5.7d) is 

defined by the same medial axis in Eq. (5.12), however, the points 𝑙1, 𝑙2, and 𝑙3 lie on 

the same line and are each assigned a radius 𝑟1, 𝑟2 and 𝑟3. 

A fixed radius 𝑟 is applied to 𝑟1 and 𝑟3, that is 

and the radius 𝑟2 can be modified, thus altering the geometry of the radius deviation. 

The term 𝑟2 𝑟⁄  denotes normalisation to the original radius 𝑟. 

The justification for the selection of these geometries is as follows. The sphere and 

strut were selected because a sphere is a simple three-dimensional shape which 

naturally extends into a lattice strut, which is the foundational geometry of all strut-

based lattice structures. The strut intersection was selected because it is representative 

of two lattice features. Firstly, any lattice structure will consist of multiple pairs of 

struts which meet at lattice nodes, hereafter referred to as a “strut connection” in this 

chapter. Therefore, the strut intersection in Figure 5.7c is a simplified case of a single 

strut connection; the parameters 𝑙𝑖𝑛𝑡 and 𝑎 can be modified to match any pair of 

intersecting struts in a lattice structure. For example, Figure 5.8 shows a BCCZ unit 

 
𝑎 = √|𝑙2 − 𝑙3|

2
− (

𝑙𝑖𝑛𝑡

2
)
2

. (5.14) 

 𝛽 = 2 tan−1 (
𝑙𝑖𝑛𝑡

2𝑎
)           𝑓𝑜𝑟 𝑎 > 0 𝑎𝑛𝑑 𝑙𝑖𝑛𝑡 > 0. (5.15) 

 0° < 𝛽 < 180°. (5.16) 

 𝑟1 = 𝑟3 = 𝑟 (5.17) 
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cell, highlighting different strut intersections; if a cell size equal to unity is assumed, 

the highlighted strut intersection in Figure 5.8a has a length 𝑙𝑖𝑛𝑡 = 1, each line segment 

has a length of √3 2⁄  and thus 𝑎 = √(√3 2⁄ )
2
− (1 2⁄ )2 = 0.707, and 𝛽 = 70.5°, from 

Eqs. (5.14) and (5.15) respectively. 

The second reason for selecting the strut intersection is because it is also representative 

of one of the form deviations, waviness. Waviness is modelled by dividing the medial 

axis of a strut into multiple line segments and applying displacements to the 

additional points which have been generated. Therefore, the simplest geometry 

representative of form deviations can be defined by using only two line segments. 

Figure 5.9a further illustrates how the strut intersection can be considered 

representative of waviness. 

Distinguishing between these two features can be achieved by considered the scale of 

the parameters 𝑙𝑖𝑛𝑡 and 𝑎. Using the terms 𝑙𝑖𝑛𝑡 𝑟⁄  and 𝑎 𝑟⁄  to normalise the strut 

intersection parameters to its radius, visual inspection of Figure 5.8 and Figure 5.9 

confirms that in the case of modelling struts meeting at nodes (Figure 5.8) 𝑙𝑖𝑛𝑡 𝑟⁄  and 

𝑎 𝑟⁄  are significantly larger than in the case of modelling waviness (Figure 5.9a). For 

clarity, the following convention is defined for making an approximate distinction 

between strut connections and the waviness deviation: 

Furthermore, in the case where the strut intersection is representative of waviness, the 

length 𝑙𝑖𝑛𝑡 can be shown to relate to Eq. (4.18) which defines how form deviations are 

modelled in the general case. From Eq. (4.18), the term 𝑙′ is now used to define the 

distance between any two points in the medial axis which are separated by a single 

point, that is 

 0 <  𝑙𝑖𝑛𝑡 𝑟⁄ < 1, 𝑎 𝑟⁄ < 1        waviness deviation (5.18) 

 𝑙𝑖𝑛𝑡 𝑟⁄ ≥ 1, 𝑎 𝑟⁄ > 1        strut connection. (5.19) 

 𝑙′ = |𝑙𝑖 − 𝑙𝑖+2|. (5.20) 
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The length 𝑙𝑖𝑛𝑡 in the strut intersection is analogous to 𝑙′ in the generalised case of 

modelling form deviations, as illustrated in Figure 5.9a. In Eq. (4.18), as the medial 

axis is divided into more line segments, 𝑙′ will decrease; this is analogous to decreasing 

𝑙𝑖𝑛𝑡 in the strut intersection, and vice versa. 

Lastly, the radius deviation (Figure 5.7d) is selected because it can be considered as 

representative of the second form deviation, radius variation. Similar to waviness, 

radius variation is modelled by increasing the number of line segments defining the 

strut’s medial axis. 

 

Figure 5.8. BCCZ unit cell showing examples of strut 

connections. 
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Figure 5.9. Illustrations of a strut intersection and radius 

deviation. (a) The strut intersection relates to waviness (b) an 

example of the radius deviation geometry within a strut. 

5.2.3 Surface defect parameters 

Surface defects are modelled by defining a displacement function 𝛿 which modifies 

the surface geometry produced by the SDF. For the purposes of this chapter, a basic 

displacement function 𝛿 is defined for applying peaks and troughs of varying 

frequency and amplitude to lattice surfaces. This displacement function is given by  

The key parameters of this function are the amplitude 𝐴, and the frequencies 𝜔𝑡 and 

𝜔𝛼 in the 𝑡 and 𝛼 axes respectively. The reader is reminded that 𝑡 and 𝛼 define the 

intersection ratio and surface angle respectively, as defined in Eq. (4.14) and Eq. (4.32) 

respectively. The term 𝐴 𝑟⁄  is used to normalise the amplitude to the strut radius 𝑟. 

The frequency terms can be expressed in terms of normalised wavelengths. Firstly, the 

frequencies 𝜔𝑡 and 𝜔𝛼 can be expressed in terms of wavelengths 𝜆𝑡 and 𝜆𝛼 

respectively. 𝜆𝑡 is given by  

where 𝑙 is the strut length. Similarly, for the frequency 𝜔𝛼 in the 𝛼 axis is given by 

 𝛿 = 𝐴 sin(𝜔𝑡𝑡𝑖) sin(𝜔𝛼𝛼𝑖). (5.21) 

 𝜆𝑡 = 𝑙 𝜔𝑡⁄  (5.22) 

 𝜆𝛼 = 𝐶 𝜔𝛼⁄  (5.23) 



146                                 Chapter 5 – Sensitivity study of the proposed modelling approach 

where 𝐶 is the circumference of the strut, defined by 2𝜋𝑟. The terms 𝜆𝑡 𝑙⁄  and 𝜆𝛼 𝐶⁄  are 

used to normalise the wavelengths to the strut length and circumference respectively.  

5.2.4 Summary 

Table 5 lists all the input parameters which have been defined in previous sections 

and will be used in the subsequent sensitivity studies. In line with the following 

sections, the parameters are expressed in their normalised forms. Parameters are 

normalised to strut radius 𝑟, sphere (of radius 𝑟) volume 𝑣𝑜𝑙𝑟, strut length 𝑙; strut 

circumference 𝐶. 
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Table 5. Summary of input parameters used in the sensitivity 

studies. 

 Parameter 

(normalised) 

Definition 

Functional 

input 

parameters 

𝑑𝑥 𝑟⁄   Cartesian grid resolution; edge length of a 

voxel.  

𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄   Upper bound of the circumcircle of surface 

triangles in a mesh. 

𝑚𝑎𝑥𝑣𝑜𝑙 𝑣𝑜𝑙𝑟⁄   Upper bound of the volume of the 

circumsphere of all elements in a mesh 

Geometrical 

input 

parameters 

𝑙𝑠 𝑟⁄   Strut length (when modelling no defects) 

𝑙𝑖𝑛𝑡 𝑟⁄   Length of the strut intersection 

𝑎 𝑟⁄   Offset of strut intersection 

𝑙𝑟 𝑟⁄   Strut length (when modelling radius 

deviations) 

𝑟2 𝑟⁄   Modified radius 

𝐴 𝑟⁄   Amplitude of displacement function 

𝜆𝑡 𝑙⁄   Wavelength of displacement function in 𝑡-axis 

𝜆𝛼 𝐶⁄   Wavelength of displacement function in 𝛼-axis 
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5.3 Study #1: SDF error sensitivity 

This section assesses how the SDF error 𝜖𝑆𝐷𝐹 is affected by 𝑑𝑥 and the geometries 

which are representative of lattice structures and geometric deviations. The following 

geometrical input parameters are investigated: 

• Sphere: centre 𝑥⃗, radius 𝑟 

• Strut: length 𝑙𝑠, radius 𝑟 

• Strut intersection: length 𝑙𝑖𝑛𝑡, offset 𝑎 

• Radius deviation: length 𝑙𝑟, original radius 𝑟, modified radius 𝑟2 

As explained in Section 5.1, 𝜖𝑆𝐷𝐹 is calculated by comparing the volumes of the input 

and output geometries. The volumes of the input geometries must be determined 

analytically; these derivations are provided in Appendix D. Each geometry is tested 

with a fixed radius 𝑟; the variables in all tests will be expressed normalised to the 

radius 𝑟 of their respective geometries. 

The notation used for volume and error calculations in Section 5.1 will be expanded 

on in order to clarify which type of geometry is being referred to. Note the following: 

𝜖𝑆𝐷𝐹,𝑠𝑝ℎ𝑒𝑟𝑒, 𝜖𝑆𝐷𝐹,𝑠𝑡𝑟𝑢𝑡, 𝜖𝑆𝐷𝐹,𝑖𝑛𝑡, 𝜖𝑆𝐷𝐹,𝑟𝑎𝑑 refer to the SDF error specifically for spheres, 

struts, strut intersections and radius deviations respectively, all of which are 

calculated using Eq. (5.1). 

5.3.1 Sphere 

To gain insight into the SDF error for sphere surfaces, 𝜖𝑆𝐷𝐹,𝑠𝑝ℎ𝑒𝑟𝑒, multiple spheres 

were generated at range of resolutions, 𝑑𝑥. Each sphere was generated with a fixed 

centre 𝑥⃗ = 0,0,0. As shown in Figure 5.10, the relationship between 𝜖𝑆𝐷𝐹,𝑠𝑝ℎ𝑒𝑟𝑒 and 

𝑑𝑥 𝑟⁄  is an intuitive result, demonstrating that the error 𝜖𝑆𝐷𝐹,𝑠𝑝ℎ𝑒𝑟𝑒 reduces upon 

reducing 𝑑𝑥 𝑟⁄ . Regarding stability, the results suggest that 𝑑𝑥 𝑟⁄ ≤ 0.125 is a stable 

region as at 𝑑𝑥 𝑟⁄ ≤ 0.125, 𝜖𝑆𝐷𝐹,𝑠𝑝ℎ𝑒𝑟𝑒 begins to strongly converge to less than 1%. 
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Figure 5.10. Relationship between SDF error for a sphere and the 

domain resolution. Plot shows  𝜖𝑆𝐷𝐹,𝑠𝑝ℎ𝑒𝑟𝑒 vs 𝑑𝑥 𝑟⁄ .Strut 

To investigate the SDF error for strut surfaces, 𝜖𝑆𝐷𝐹,𝑠𝑡𝑟𝑢𝑡, multiple strut surfaces were 

generated with different strut lengths 𝑙𝑠 𝑟⁄ , using a range of domain resolutions 𝑑𝑥 𝑟⁄ . 

The medial axis of each strut was defined by 𝑙1 = (0, 0, 0) and 𝑙2 = (0, 0, 𝑙𝑠). Figure 5.11 

shows the results of calculating the SDF error 𝜖𝑆𝐷𝐹,𝑠𝑡𝑟𝑢𝑡 for the range of strut lengths 𝑙 

and the domain resolutions 𝑑𝑥. 

The first observation is that the output 𝜖𝑆𝐷𝐹,𝑠𝑡𝑟𝑢𝑡 consistently increases in stability as 

𝑙𝑠 𝑟⁄  increases, and the point of stability is reached earlier for higher values of 𝑑𝑥 𝑟⁄ . 

For each 𝑑𝑥 𝑟⁄  plot, 𝜖𝑆𝐷𝐹,𝑠𝑡𝑟𝑢𝑡 decreases upon increasing 𝑙𝑠 𝑟⁄  and displays a converging 

behaviour. The decrease in error upon increasing 𝑙𝑠 𝑟⁄  may be due to the increasing 

size of the cylindrical section of the geometry, which possesses zero curvature in its 

longitudinal direction. Because linear interpolation is used to extract the geometries 
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in SDFs, increasing 𝑙𝑠 𝑟⁄  creates a greater portion of the geometry which possesses zero 

curvature – which is ideal for the linear interpolation – and thus 𝜖𝑆𝐷𝐹𝑠𝑡𝑟𝑢𝑡
 decreases 

with increasing 𝑙𝑠 𝑟⁄ . This reasoning is further supported by the fact that the maximum 

error in each plot is found at 𝑙𝑠 𝑟⁄ = 0, which represents a sphere; a sphere possesses 

curvature in all directions and therefore produces the greatest error. At higher values 

of 𝑙𝑠 𝑟⁄ , 𝜖𝑆𝐷𝐹𝑠𝑡𝑟𝑢𝑡
 converges towards the minimum error possible for a given 𝑑𝑥 𝑟⁄ . The 

second observation is that at values of 𝑑𝑥 𝑟⁄ ≤ 0.125, the error 𝜖𝑆𝐷𝐹𝑠𝑡𝑟𝑢𝑡
 is less than 1% 

and is near constant for all 𝑙𝑠 𝑟⁄ , suggesting that 𝑑𝑥 𝑟⁄ ≤ 0.125 produces low error strut 

surfaces. 

SDFs with domain resolution 𝑑𝑥 𝑟⁄ ≤ 0.125 have now been shown to be stable and 

low error for both spheres and struts (𝜖𝑆𝐷𝐹𝑠𝑝ℎ𝑒𝑟𝑒
≤ 0.93% and 𝜖𝑆𝐷𝐹𝑠𝑡𝑟𝑢𝑡

< 0.68% 

respectively). Therefore, for all following tests of the SDF, a fixed value of 𝑑𝑥 𝑟⁄ =

0.125 is used. 
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Figure 5.11. Relationship between SDF error for a strut and 

domain resolution Plot shows 𝜖𝑆𝐷𝐹𝑠𝑡𝑟𝑢𝑡𝑒
 vs 𝑙𝑠 𝑟⁄ , for differing 

values of 𝑑𝑥 𝑟⁄ . 

In Figure 5.11, the trend of decreasing error for fixed values of 𝑑𝑥 𝑟⁄  suggests that the 

SDF error for a strut (𝑙𝑠 𝑟⁄ > 0), is always less than the SDF error for a sphere (𝑙𝑠 𝑟⁄ =

0), that is 

Since the results in Figure 5.11 were generated using a strut of fixed orientation, 

namely 𝑙1 = (0, 0, 0) and 𝑙2 = (0, 0, 𝑙), Monte Carlo simulation (MCS) can be used to 

generate a high number of randomly positioned struts and, for each strut, compare 

the SDF error in the strut 𝜖𝑆𝐷𝐹,𝑠𝑡𝑟𝑢𝑡 to the SDF error of a sphere 𝜖𝑆𝐷𝐹,𝑠𝑝ℎ𝑒𝑟𝑒. The 

 𝜖𝑆𝐷𝐹,𝑠𝑝ℎ𝑒𝑟𝑒 > 𝜖𝑆𝐷𝐹,𝑠𝑡𝑟𝑢𝑡 (5.24) 
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flowchart in Figure 5.12 describes the implementation of the MCS; the flowchart is 

split into two stages: initialisation and iteration. The initialisation stage is as follows: 

• Define the value of the first iteration 𝑖 = 1 and the total number of iterations 𝑛 

i.e. the total number of randomly positioned struts. 

• Define the fixed parameters 𝑟 and 𝑑𝑥 𝑟⁄  which will be constant for all SDFs in 

the MCS. 

• Calculate 𝜖𝑆𝐷𝐹,𝑠𝑝ℎ𝑒𝑟𝑒. Because 𝑟 and 𝑑𝑥 𝑟⁄  are fixed, 𝜖𝑆𝐷𝐹,𝑠𝑝ℎ𝑒𝑟𝑒 is a constant and 

does not need to be calculated for each iteration. 

The iteration stage is as follows: 

• Randomly position a strut by generating random values for 𝑙1 and 𝑙2. 

• Compute the SDF for this randomly oriented strut. 

• Calculate 𝜖𝑆𝐷𝐹,𝑠𝑡𝑟𝑢𝑡. Because 𝑙1 and 𝑙2 are not fixed, 𝜖𝑆𝐷𝐹,𝑠𝑡𝑟𝑢𝑡 will change with 

every iteration. 

• Compare the current value of 𝜖𝑆𝐷𝐹,𝑠𝑡𝑟𝑢𝑡 to the value of 𝜖𝑆𝐷𝐹,𝑠𝑡𝑟𝑢𝑡 in all previous 

iterations. If the current iteration of 𝜖𝑆𝐷𝐹,𝑠𝑡𝑟𝑢𝑡 is larger than all previous 

iterations, store the current value in max(𝜖𝑆𝐷𝐹,𝑠𝑡𝑟𝑢𝑡). 

• If 𝑖 = 𝑛 then end the MCS, otherwise, increment 𝑖 and repeat the iteration. 

The following parameters were used for the MCS: 𝑛 = 5000, 𝑟 = 1, 𝑑𝑥 𝑟⁄ = 0.125 . 𝑛 

and 𝑟 were arbitrarily selected, 𝑑𝑥 𝑟⁄ = 0.125 was selected as this value was observed 

to produce low error for spheres and struts (Figure 5.10, Figure 5.11). Figure 5.13 

shows a plot of the results. Figure 5.13 suggests that the value of max(𝜖𝑆𝐷𝐹,𝑠𝑡𝑟𝑢𝑡) 

converges to a value less than the constant 𝜖𝑆𝐷𝐹,𝑠𝑝ℎ𝑒𝑟𝑒, that is 

The value of max(𝜖𝑆𝐷𝐹,𝑠𝑡𝑟𝑢𝑡) is determined from all the iterations of randomly 

positioned struts in the MCS. The strong convergence of max(𝜖𝑆𝐷𝐹,𝑠𝑡𝑟𝑢𝑡) to a value less 

than 𝜖𝑆𝐷𝐹,𝑠𝑝ℎ𝑒𝑟𝑒 suggests that the assertion in Eq. (5.24) remains true for a strut in any 

orientation. 

 𝜖𝑆𝐷𝐹,𝑠𝑝ℎ𝑒𝑟𝑒 > max(𝜖𝑆𝐷𝐹,𝑠𝑡𝑟𝑢𝑡). (5.25) 
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Figure 5.12. Flowchart of Monte Carlo simulation steps. 

 

Figure 5.13. Results of the Monte Carlo simulation. 
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5.3.3 Strut intersection 

To gain insight into the SDF error for strut intersections, 𝜖𝑆𝐷𝐹,𝑖𝑛𝑡, multiple strut 

intersections were generated using a range of values for 𝑎 𝑟⁄  and 𝑙𝑖𝑛𝑡 𝑟⁄ . The medial 

axis of each strut intersection was defined by 𝑙1 = (0, 0, 0), 𝑙2 = (𝑎, 0, 𝑙𝑖𝑛𝑡 2⁄ ), 𝑙3 =

(0, 0, 𝑙𝑖𝑛𝑡). The range of values for 𝑎 𝑟⁄  and 𝑙𝑖𝑛𝑡 𝑟⁄  were selected such that the strut 

intersection would model scenarios of both lattice features (strut connection and 

waviness). A new term is introduced, 𝑑𝑥 𝑙𝑖𝑛𝑡⁄ , which normalises the fixed domain 

resolution (𝑑𝑥 𝑟⁄ = 0.125) to the length 𝑙𝑖𝑛𝑡 of the strut intersection and is useful for 

interpreting the results in Figure 5.14. 

The first observation from the results in Figure 5.14a is that, upon increasing 𝑎 𝑟⁄ , 

𝜖𝑆𝐷𝐹,𝑖𝑛𝑡 is very unstable in the plots where 𝑑𝑥 𝑙𝑖𝑛𝑡⁄ ≥ 0.5; the maximum error reaches 

over 500%. Although Figure 5.14a may initially suggest that results have no structure, 

further inspection proves insightful. Figure 5.14b and Figure 5.14c show zoomed in 

versions of the results, which reveal a clear structure. In Figure 5.14c, at 𝑎 𝑟⁄ = 0, 

𝜖𝑆𝐷𝐹,𝑖𝑛𝑡 increases systematically (although only a small amount) upon increasing 

𝑑𝑥 𝑙𝑖𝑛𝑡⁄ . The second observation in Figure 5.14c is that increasing 𝑎 𝑟⁄  eventually 

causes instability in 𝜖𝑆𝐷𝐹,𝑖𝑛𝑡, where that instability occurs earlier as 𝑙𝑖𝑛𝑡 𝑑𝑥⁄  decreases. 

This instability is characterised by a rapid ‘decrease’ in the error 𝜖𝑆𝐷𝐹,𝑖𝑛𝑡, however, this 

decrease is not indicative of increased accuracy, as convergence is not observed. 

The behaviour highlighted in Figure 5.14c is intuitive, namely, that the SDF error for 

any geometry can only be low if the resolution 𝑑𝑥 of the domain is several times 

smaller than the dimensions of the geometry being generated. Secondly, increasing 

𝑎 𝑟⁄  creates an increasingly large discontinuity in the surface of the strut intersection 

that can only be stably generated at low 𝑑𝑥 𝑙𝑖𝑛𝑡⁄ . A region of stability 𝑑𝑥 𝑙𝑖𝑛𝑡⁄ < 0.167 

has been determined for modelling strut intersections. 

The limits of stability shown in Figure 5.14c are useful for informing how strut 

intersections can be used practically for modelling lattice structures; the reader is 

reminded of the approximate ranges defined for waviness and strut connections in 

Eqs. (5.18) and (5.19) respectively. When waviness is being modelled (0 <  𝑙𝑖𝑛𝑡 𝑟⁄ < 1, 
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𝑎 𝑟⁄ < 1 Eq. (5.18)), only small displacments 𝑎 𝑟⁄  are permitted before the SDF 

becomes unstable. If 𝑙𝑖𝑛𝑡 𝑟⁄  is reduced significantly, 𝑑𝑥 should also be reduced in order 

to maintain stability. When a strut connection is being modelled (𝑙𝑖𝑛𝑡 𝑟⁄ ≥ 1, 𝑎 𝑟⁄ > 1 

Eq. (5.19)), much larger displacements 𝑎 𝑟⁄  are permitted before the SDF becomes 

unstable. 

 

Figure 5.14. Relationship between the SDF error and the 

displacement applied to the strut intersection. Plot 

shows 𝜖𝑆𝐷𝐹,𝑖𝑛𝑡 vs 𝑎 𝑟⁄ , plotted for different values of 𝑙𝑖𝑛𝑡 𝑟⁄  (which 

is also expressed in terms of 𝑑𝑥 𝑙𝑖𝑛𝑡⁄ . 
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5.3.4 Radius deviation 

To understand the sensitivity of the SDF error for radius deviations 𝜖𝑆𝐷𝐹,𝑟𝑎𝑑, multiple 

radius deviations were generated using a range of values for 𝑟2 𝑟⁄  and 𝑙𝑟 𝑟⁄ . The medial 

axis of each radius deviation was defined by 𝑙1 = (0, 0, 0), 𝑙2 = (0, 0, 𝑙𝑟 2⁄ ), 𝑙3 =

(0, 0, 𝑙𝑟). 

Figure 5.15 shows the results; the term 𝑑𝑥 𝑙𝑟⁄  is provided and useful for interpreting 

the results. The first observation from Figure 5.15a is that, for 𝑑𝑥 𝑙𝑟⁄ ≤ 0.5, the results 

are very stable; increasing the radius variation 𝑟2 𝑟⁄  causes negligible change to 𝜖𝑆𝐷𝐹,𝑟𝑎𝑑 

as the error remains below 1%. This negligible change is more clearly observed in 

Figure 5.15b which shows a zoomed in portion of Figure 5.15a. The second 

observation from Figure 5.15a is that, at 𝑑𝑥 𝑙𝑟⁄ > 0.5, the error 𝜖𝑆𝐷𝐹,𝑟𝑎𝑑 becomes 

unstable and increases rapidly, from approximately 1% to nearly 6% upon increasing 

𝑟2 𝑟⁄ . 

The trend in Figure 5.15 is again intuitive and similar to the results for the strut 

intersection in Section 5.3.3. Low error is only possible when the SDF domain 

resolution 𝑑𝑥 is several times smaller than dimensions of the geometry being 

generated. For the radius deviation, a stable modelling region of 𝑑𝑥 𝑙𝑟⁄ ≤ 0.5 has been 

located. 
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Figure 5.15. Relationship between the SDF error and the varied 

radius applied to the radius deviation. Plot shows 𝜖𝑆𝐷𝐹,𝑟𝑎𝑑 vs 

𝑟2 𝑟⁄ , plotted at different values of 𝑙𝑟 𝑟⁄  (which is also be 

expressed as 𝑑𝑥 𝑙𝑟⁄ ). 

5.3.5 Key findings 

This section provides a summary of the key findings from the SDF error analysis tests 

conducted in Sections 5.3.1-5.3.4: 

• 𝑑𝑥 𝑟⁄ = 0.125 to was found to be a suitable resolution for the sphere and strut 

geometries, producing stable errors less than 1%. 

• Strut error 𝜖𝑆𝐷𝐹,𝑠𝑡𝑟𝑢𝑡 initially reduces and then converges upon increasing strut 

length 𝑙𝑠 𝑟⁄ . 

• 𝜖𝑆𝐷𝐹,𝑠𝑡𝑟𝑢𝑡 > 𝜖𝑆𝐷𝐹,𝑠𝑝ℎ𝑒𝑟𝑒 for all strut orientations. 

• For strut intersections, a region of stability 𝑑𝑥 𝑙𝑖𝑛𝑡⁄ < 0.167 has been 

determined for modelling strut intersections. 

• For radius deviations, a region of stability of 𝑑𝑥 𝑙𝑟⁄ ≤ 0.5 has been located  
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5.4 Study #2: Meshing error sensitivity 

The aim of this section is to investigate how the meshing error 𝜖𝑚𝑒𝑠ℎ is affected by the 

functional input parameter 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 and the geometries considered representative 

of lattice structures, form deviations and surface defects. The following geometrical 

input parameters are investigated: 

• Sphere: centre 𝑥⃗, radius 𝑟 

• Strut: length 𝑙𝑠, radius 𝑟 

• Strut intersection: length 𝑙𝑖𝑛𝑡, offset 𝑎 

• Radius deviation: length 𝑙𝑟, original radius 𝑟, modified radius 𝑟2 𝑟⁄  

• Displacement function: amplitude 𝐴 𝑟⁄ , wavelengths 𝜆𝑡 𝑙⁄  and 𝜆𝛼 𝐶⁄  

In this section, all input geometries for the meshing function are produced by a SDF 

using a fixed resolution 𝑑𝑥 𝑟⁄ = 0.125, as Section 5.3 has demonstrated that this 

produces stable, low error, geometries for spheres and struts. The medial axis of each 

geometry is defined in the same way as the corresponding geometry used for the SDF 

error analysis in Section 5.3. Again, modifications to meshing error notation first 

introduced in Section 5.1 will be made here to clarify the meshing error associated to 

a specific geometry (e.g. 𝜖𝑚𝑒𝑠ℎ,𝑠𝑡𝑟𝑢𝑡). 

5.4.1 Sphere 

Figure 5.16 displays the relationship between 𝜖𝑚𝑒𝑠ℎ,𝑠𝑝ℎ𝑒𝑟𝑒 and 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄ . The results 

in Figure 5.16 show an intuitive result: 𝜖𝑚𝑒𝑠ℎ,𝑠𝑝ℎ𝑒𝑟𝑒 reduces as 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄  decreases 

because smaller surface elements are being used in the tetrahedral mesh, this will 

better approximate the input surface. The region of stability can be seen at 

𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄ ≤ 0.05, the error 𝜖𝑚𝑒𝑠ℎ,𝑠𝑝ℎ𝑒𝑟𝑒 is very low and is less than 1%. 
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Figure 5.16. Relationship between the meshing error for a sphere 

and𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑. Plot shows 𝜖𝑚𝑒𝑠ℎ,𝑠𝑝ℎ𝑒𝑟𝑒 vs 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄ . 

5.4.2 Strut 

Figure 5.17 displays the relationship between 𝜖𝑚𝑒𝑠ℎ,𝑠𝑡𝑟𝑢𝑡 and the normalised length of 

the strut 𝑙𝑠 𝑟⁄  for several values of 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄ . 

The first observation of the results is that the pattern is very similar to the results for 

𝜖𝑚𝑒𝑠ℎ,𝑠𝑡𝑟𝑢𝑡 in Section 5.3.2; the error 𝜖𝑚𝑒𝑠ℎ,𝑠𝑡𝑟𝑢𝑡 is greatest for the sphere (𝑙𝑠 𝑟⁄ = 0) and 

becomes stable upon increasing 𝑙𝑠 𝑟⁄ . Naturally, this behaviour may be due to the same 

reasons described in Section 5.3.2, namely that increasing 𝑙𝑠 𝑟⁄  creates a greater region 

with zero curvature in the strut’s longitudinal axis and is therefore easier for the 

meshing function to generate. Also observed in these results is that when 

𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄ ≤ 0.05, the value of 𝑙𝑠 𝑟⁄  has little effect on the error when 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄ ≤

0.05 and, although slight convergence is observed, the error is near constant and is 
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very stable. At 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄ ≤ 0.05, the output meshes possess very small surface 

elements which approximate the input geometry with very low error.  

The parameter 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄  has now been shown to produce very stable and low 

meshing error for both sphere and struts. Therefore, for all following tests of the 

meshing function, a fixed value of 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄ = 0.05 is used. 

 

Figure 5.17. Relationship between the meshing error and the 

strut length, plotted at different values of 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 . Plot shows 

𝜖𝑚𝑒𝑠ℎ,𝑠𝑡𝑟𝑢𝑡 vs 𝑙𝑠 𝑟⁄ , plotted at different values for 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄ . 



5.4 Study #2: Meshing error sensitivity 161 

5.4.3 Strut intersection 

Figure 5.18, displays the relationship between 𝜖𝑚𝑒𝑠ℎ,𝑖𝑛𝑡 and 𝑎 𝑟⁄   and 𝑙𝑖𝑛𝑡 𝑟⁄ , with fixed 

parameter 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄ = 0.05. The first observation from Figure 5.18 is the general 

decrease in the error 𝜖𝑚𝑒𝑠ℎ,𝑖𝑛𝑡 upon increasing 𝑎 𝑟⁄   It must be noted that the error is 

very low for all plots; maximum error is approximately 0.17%. The decrease in error 

may again be due to the increased cylindrical section which is better preserved by the 

meshing function. Figure 5.18b shows that the initial increase in 𝑎 𝑟⁄   appears to have 

negligible effect on the error for each 𝑙𝑖𝑛𝑡 𝑟⁄  plot. The small fluctuations shown in 

Figure 5.18b may be due to the inherent variations in the meshing function (the 

meshing function does not produce identical geometries for constant input 

parameters). It can also be observed that decreasing 𝑙𝑖𝑛𝑡 𝑟⁄  produces a systematic, 

small increase in the error. The consistent convergence which can be observed in 

Figure 5.18 implies that the meshing error becomes more stable as 𝑎 𝑟⁄  increases, 

however, given the very low values of error it may also suggest that the entire plot is 

generally stable. 
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Figure 5.18. Relationship between the meshing error and the 

displacement 𝑎 applied to the strut intersection. Plot shows 

𝜖𝑚𝑒𝑠ℎ,𝑖𝑛𝑡 vs 𝑎/𝑟, plotted at different values of 𝑙𝑖𝑛𝑡 𝑟⁄ . 

5.4.4 Radius deviation 

Figure 5.19 shows how the meshing error 𝜖𝑚𝑒𝑠ℎ,𝑟𝑎𝑑 is affected by 𝑙𝑟 𝑟⁄  and 𝑟2 𝑟⁄ . The 

behaviour in Figure 5.19 is unclear, with no obvious trend. Firstly, when 𝑙𝑟 𝑟⁄ > 0.5, 

increasing 𝑟2 𝑟⁄  has negligible effect on the error. However, at 0.25 ≤ 𝑙𝑟 𝑟⁄ ≤ 0.5, 

increasing 𝑟2 𝑟⁄  causes the error to diverge. Lastly, at 𝑙𝑟 𝑟⁄ < 0.15, 𝑟2 𝑟⁄  appears to again 

have negligible effect on the error.  It is unclear what may be causing the meshing 

function to exhibit this behaviour. The unstable behaviour at 0.25 ≤ 𝑙𝑟 𝑟⁄ ≤ 0.5 

requires further investigation. Overall, the error is still low, with a maximum error of 

approximately 0.3% found in the 𝑙𝑟 𝑟⁄ = 0.25 plot at 𝑟2 𝑟⁄ = 1.5. 
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Figure 5.19. Relationship between the meshing error and the 

varied radius applied to the radius deviation  Plot shows 

𝜖𝑚𝑒𝑠ℎ,𝑟𝑎𝑑 vs 𝑟2 𝑟⁄ , plotted at different values for 𝑙𝑟 𝑟⁄ . 

5.4.5 Surface defects 

To investigate the effect of surface defects on meshing error, two parameters of the 

displacement function—amplitude 𝐴 𝑟⁄  and wavelengths 𝜆𝛼 𝐶⁄ —were varied and the 

meshing error 𝜖𝑚𝑒𝑠ℎ
′  was calculated for each of the generated meshes. For simplicity, 

and ease-of-plotting, the wavelength 𝜆𝑡 in the 𝑡 axis is kept constant and fixed at 𝜆𝑡 𝑙⁄ =

1. 

Figure 5.20a shows the results for the mean 𝜇 of the error 𝜖𝑚𝑒𝑠ℎ
′ . The general trend in 

Figure 5.20a shows the mean error 𝜇 to rise as the amplitude increases. At 𝐴 𝑟⁄ = 0, 

where no surface defects are applied, the mean error 𝜇 is approximately 0.2%; as the 

wavelength 𝜆𝛼 𝐶⁄  reduces, the mean error increases at a higher rate. At maximum 

amplitude 𝐴 𝑟⁄ = 0.5, the mean error at 𝜆𝛼 𝐶⁄ = 1 increases to approximately 1%, 

however, the mean error increases to approximately 4.5% at low wavelength 𝜆𝛼 𝐶⁄ =

0.1. This trend is intuitive, as increasing the amplitude and decreasing the wavelength 

of the displacement function creates increased distortion to the surface which will be 

harder for the meshing function to preserve. 
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Figure 5.20b shows the plot of the standard deviation 𝜎 of the error 𝜖𝑚𝑒𝑠ℎ
′ , which is 

expressed as a percentage of the mean 𝜇. Initially at 𝐴 𝑟⁄ = 0, where no surface defects 

are applied, the standard deviation 𝜎 is approximately 46%. Between 0 ≤ 𝐴 𝑟⁄ ≤ 0.1, 

𝜎 can be seen to rise sharply to approximately 75% for all 𝜆𝛼 𝐶⁄ . At 𝐴 𝑟⁄ > 0.1, 𝜎 rises 

at a slower rate, to a maximum of approximately 90% for 𝜆𝛼 𝐶⁄ = 1. The rapid increase 

in 𝜎 suggests that some specific points on the surface may possess large errors at 𝐴 𝑟⁄ >

0.1. 

Regarding stability, Figure 5.20a suggests that the meshing error is generally unstable 

in response to modifications via the surface defects function. Further analysis, in 

which the errors are not averaged, may be necessary. 

 

Figure 5.20. Relationship between the meshing error and the 

parameters of the surface defects function The plots show how 

the mean error 𝜇 and standard deviation 𝜎 are affected by 

varying the amplitude 𝐴 𝑟⁄  and wavelength 𝜆𝛼 𝐶⁄ . 

5.4.6 Key findings 

This section provides a summary of the key findings from the sensitivity study of 

meshing error conducted in Sections 5.4.1-5.4.5: 
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• The sphere error 𝜖𝑚𝑒𝑠ℎ,𝑠𝑝ℎ𝑒𝑟𝑒 is stable and converges to less than 1% at 

𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄ ≤ 0.05. 

• The strut error 𝜖𝑚𝑒𝑠ℎ,𝑠𝑡𝑟𝑢𝑡 converges upon increasing 𝑙 𝑟⁄ ; it is very stable and is 

close to constant, for 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄ ≤ 0.05. 

• The very low error values for 𝜖𝑚𝑒𝑠ℎ,𝑖𝑛𝑡 could suggest that it is stable through all 

the tested values. However, the visual trend does show that 𝜖𝑚𝑒𝑠ℎ,𝑖𝑛𝑡 initially 

decreases as 𝑎 𝑟⁄  is increased, followed by converging.  

• The relationship between 𝜖𝑚𝑒𝑠ℎ,𝑟𝑎𝑑 and 𝑙𝑖𝑛𝑡 𝑟⁄  and 𝑟2 𝑟⁄  is unclear and presents 

no obvious trend. 

• The mean 𝜇 of the meshing error 𝜖𝑚𝑒𝑠ℎ
′  for surface defects increases 

systematically upon increasing 𝐴 𝑟⁄  and 𝜆𝛼 𝐶⁄   

• The standard deviation 𝜎 of the meshing error 𝜖𝑚𝑒𝑠ℎ
′  for surface defects behaves 

similarly for all wavelengths 𝜆𝛼 𝐶⁄ ; an initial rapid increase in 𝜎 is followed by 

a relative plateau. 

• The meshing error is generally unstable in response to modifications via the 

surface defects function 

5.5 Study #3: Mesh quality sensitivity 

The aim of this section is to investigate how the quality 𝒒 of a mesh is affected by 

modifying the parameters which define all the geometries defined in Section 5.2.2. All 

of the meshes generated in the section are produced by an SDF with fixed resolution 

𝑑𝑥 𝑟⁄ =  0.125 and are meshed with fixed surface element size 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄ = 0.05. 

These fixed parameters have been shown to generate surfaces with stable SDF error 

and stable meshing error for spheres and struts. 

An additional parameter is introduced, 𝑑, denoting the distance between an element’s 

centroid and the medial axis of the geometry from which the mesh is generated. For a 

sphere or strut of radius 𝑟, 𝑑 𝑟⁄  denotes the normalised distance between an element’s 

centroid and the medial axis. Values of 𝑑 𝑟⁄  near to unity indicate an element on the 

surface of the mesh; values of 𝑑 𝑟⁄  near zero indicate an element very close to the 

medial axis. 𝑑 𝑟⁄  is useful for identifying the location of elements within the mesh. 
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5.5.1 Sphere 

For the sphere geometry, Figure 5.21 shows histograms of the mesh quality 𝒒 for 

selected values of 𝑚𝑎𝑥𝑣𝑜𝑙 𝑣𝑜𝑙𝑟⁄ , including the chosen minimum and maximum of 

𝑚𝑎𝑥𝑣𝑜𝑙 𝑣𝑜𝑙𝑟⁄ = 0.05 and 𝑚𝑎𝑥𝑣𝑜𝑙 𝑣𝑜𝑙𝑟⁄ = 0.2 respectively. 

Firstly, in Figure 5.21a, at 𝑚𝑎𝑥𝑣𝑜𝑙 𝑣𝑜𝑙𝑟⁄ = 0.2, the histogram shows a low quality 

distribution of 𝑞 values; the mesh mainly consists of surface elements of low quality – 

most elements have a quality value 𝑞 near 0.2. As 𝑚𝑎𝑥𝑣𝑜𝑙 𝑣𝑜𝑙𝑟⁄  decreases, the 

histogram of mesh quality improves. At 𝑚𝑎𝑥𝑣𝑜𝑙 𝑣𝑜𝑙𝑟⁄ = 0.1 (Figure 5.21b) the mesh 

still consists predominantly of surface elements, but the distribution of values has 

improved and most elements have a quality value 𝑞 near 0.4. At 𝑚𝑎𝑥𝑣𝑜𝑙 𝑣𝑜𝑙𝑟⁄ = 0.05 

(Figure 5.21c) the distribution improves significantly; most elements have a quality 

value 𝑞 near 0.7. Decreasing the 𝑚𝑎𝑥𝑣𝑜𝑙 𝑣𝑜𝑙𝑟⁄  beyond 0.05 was found not to change 

the histogram distribution; the mesh quality can be considered stable at 

𝑚𝑎𝑥𝑣𝑜𝑙 𝑣𝑜𝑙𝑟⁄ ≤  0.05. 

The trend shown in Figure 5.21 is intuitive and is due to the relationship between 

𝑚𝑎𝑥𝑣𝑜𝑙 and 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑. Note that 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 has been fixed at 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄ = 0.05 and, 

therefore, the surface triangles of the surface elements are of relatively small size. At 

higher values of 𝑚𝑎𝑥𝑣𝑜𝑙, the meshing function is permitted to generate meshes with 

elements of higher volumes, therefore, surface elements possess large discrepancies 

in their edge lengths, resulting in low quality. As 𝑚𝑎𝑥𝑣𝑜𝑙 reduces, the volume of each 

element must be smaller, thus reducing the discrepancies between edge lengths. 

Naturally, decreasing 𝑚𝑎𝑥𝑣𝑜𝑙 increases the total number of elements in a mesh.  
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Figure 5.21. Histogram showing how mesh quality is impacted 

by the parameter controlling element size , 𝑚𝑎𝑥𝑣𝑜𝑙. 

5.5.2 Strut 

For the strut geometry, Figure 5.22 shows histograms of the mesh quality 𝒒 for selected 

values of strut length 𝑙𝑠 𝑟⁄ . Using the results from the previous section, 𝑚𝑎𝑥𝑣𝑜𝑙 is now 

fixed at 𝑚𝑎𝑥𝑣𝑜𝑙 𝑟⁄ = 0.05. 

As shown in Figure 5.22, modifying 𝑙𝑠 𝑟⁄  is shown to produce no change to the 

distribution of quality values in the mesh; mesh quality is stable. Most elements have 

quality values near 0.7. This result is expected; increasing the strut length only 
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increases the cylindrical section of the strut and does not present any geometrical 

change for the meshing function.  

 

Figure 5.22. Histogram showing how mesh quality is impacted 

by strut length, 𝑙 𝑟⁄ . 

5.5.3 Strut intersection 

To gain insight into the mesh quality for the strut intersection, a simplified study was 

performed in which the lengths of the line segments of the strut intersection were 

fixed, and only the intersection angle 𝛽 was varied. A local analysis was employed, 

where mesh quality was only calculated for surface elements within a distance 0.2𝑟 of 

the strut intersection’s plane of symmetry (as illustrated in Figure 5.23), where 𝑟 is the 

strut radius. This local analysis is used because the actual points of intersection in a 



5.5 Study #3: Mesh quality sensitivity 169 

strut intersection only constitute a small area of its surface. The results in Figure 5.23 

suggest that mesh quality is not impacted by strut intersection angle 𝛽, as the general 

distribution of the mesh quality does not change as 𝛽 is varied; the mesh quality 

remains stable. Most elements are of high quality and near 𝑞 = 0.7. One explanation 

for these results may be that the meshing algorithm prioritises mesh quality over mesh 

accuracy; mesh quality may be unchanged at low 𝛽 because the meshes being 

produced have been modified in such a way as to maintain mesh quality, to the 

detriment of mesh accuracy. 
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Figure 5.23. Histogram showing how mesh quality is impacted 

by intersection angle , 𝛽. 
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5.5.4 Radius deviation 

Figure 5.24 shows how mesh quality for the radius deviation is affected by 𝑟2 𝑟⁄ . For 

simplicity, the length 𝑙𝑟 of the radius deviation is fixed at 𝑙𝑟 𝑟 = 0.5⁄ . The results in 

Figure 5.24 show that, upon increasing 𝑟2 𝑟⁄ , an increase in body elements is observed, 

but there appears to be no change in the distribution of the quality. The quality of both 

surface and body elements is high, with most near 𝑞 = 0.7. Mesh quality remains 

stable. 

 

Figure 5.24. Histogram showing how mesh quality is impacted 

by the radius in the radius deviation , 𝑟2 𝑟⁄ . 

5.5.5 Surface defects 

To investigate the effect of surface defects on mesh quality, two parameters of the 

displacement function 𝛿 - amplitude 𝐴 and wavelength 𝜆𝛼 – were varied and the mesh 

quality 𝒒 was calculated for each of the generated meshes. As in Section 5.4.5, for 

simplicity, and ease-of-plotting, the wavelength 𝜆𝑡 in the 𝑡 axis is kept constant and 

fixed at 𝜆𝑡 𝑙⁄ = 1. For each test, the quality values of each mesh were separated into 

body and surface elements and the mean 𝜇 and standard deviation 𝜎 of the mesh 

quality 𝒒 of each group was calculated. 𝜎 is expressed as a percentage of the mean. 

Figure 5.25 shows the results. For the body elements (Figure 5.25a-b), modifying the 

amplitude 𝐴 𝑟⁄  and wavelength 𝜆𝛼 𝐶⁄  has no clear effect on the mean and standard 

deviation of the mesh quality. For all 𝜆𝛼 𝐶⁄ , as the amplitude is increasing, small 
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fluctuations in the mean between approximately 0.67 and 0.68 are observed; the 

standard deviation fluctuates between approximately 23.5% and 25.0%. 

For the surface elements (Figure 5.25c-d), modifying 𝐴 𝑟⁄  and 𝜆𝛼 𝐶⁄  has a more 

significant effect. Initially, upon increasing the amplitude at high wavelength 𝜆𝛼 𝐶⁄ =

1, a change to the mean quality of the surface elements is not clearly observed. 

However, as 𝜆𝛼 𝐶⁄  is decreased, the mean quality of the surface elements decreases as 

𝐴 𝑟⁄  is increased; the lowest mean quality of approximately 0.665 is observed at 

𝜆𝛼 𝐶⁄ = 0.2 and 𝐴 𝑟⁄ = 0.5. The maximum change in mean quality of surface elements 

is observed at 𝜆𝛼 𝐶⁄ = 0.2, where the mean quality changes from 0.6802 to 0.6641 upon 

increasing 𝐴 𝑟⁄  from 0 to 0.5; this is a 2.4% change in mesh quality. 

Similarly for the standard deviation, at high wavelengths, increasing the amplitude 

bears little effect. However, as 𝜆𝛼 𝐶⁄  is decreased, the standard deviation of the mesh 

quality of the surface elements also steadily increases; the maximum standard 

deviation of approximately 25% is observed at maximum amplitude 𝐴 𝑟⁄ = 0.5 and 

minimum wavelength 𝜆𝛼 𝐶⁄ = 0.2. 

The maximum change in standard deviation of the quality of surface elements is 

observed at 𝜆𝛼 𝐶⁄ = 0.33, where the mean quality changes from 22.75%  to 24.40% 

upon increasing 𝐴 𝑟⁄  from 0 to 0.5; this is a 6.7% change in standard deviation. 

The results observed for body elements and surface elements in Figure 5.25 are 

intuitive. The body elements are not on the surface of the mesh, therefore, body 

elements are unaffected by changes to the displacement function and remain stable. 

The fluctuations in Figure 5.25a-b are likely due to the inherent variations in the 

meshing function. The reader is reminded that the meshing function generates meshes 

using an algorithm that iteratively modifies the mesh until a criteria (defined by 

functional input parameters) is satisfied. The meshes are not unique solutions and, 

therefore, slight variation can exist between meshes generated using the same criteria. 

Surface elements, however, are affected by variations in surface defects. Decreasing 

the wavelength 𝜆𝛼 𝐶⁄  and increasing the amplitude 𝐴 𝑟⁄  increases the distortion being 

apply to the surface and thus requires smaller surface elements to maintain quality. 
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Since 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 is fixed in this study, a decrease in mesh quality of the surface 

elements is observed. The mesh quality of surface elements can be considered 

increasingly unstable as wavelength decreases and amplitude increases. 

 

Figure 5.25. Influence of surface defects on the mesh quality of 

body and surface elements.  Mean quality of body elements and 

surface elements shown in (a) and (c) respectively. Standard 

deviation of quality of body elements shown in (b) and (d) 

respectively. 
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5.5.6 Key findings 

This section provides a summary of the key findings from the analysis of the impact 

of deviations on SDF error and meshing error, Sections 5.5.1-5.5.5.  

• After optimising 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 for reducing mesh error (Section 5.4), 𝑚𝑎𝑥𝑣𝑜𝑙 can 

be optimised to improve mesh quality.  

• For the sphere geometry, fixing the mesh parameters at 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 𝑟⁄ = 0.05 

and 𝑚𝑎𝑥𝑣𝑜𝑙 𝑣𝑜𝑙𝑟⁄ ≤  0.05 produces a high-quality mesh, with most mesh 

quality values approximately 0.7. 

• Strut length 𝑙𝑠 𝑟⁄ , strut intersection angle 𝛽, and radius deviation 𝑟2 𝑟⁄  appear 

to have no effect on mesh quality; mesh quality remains stable. 

• Modifying the displacement function 𝛿 does not affect the mesh quality of body 

elements, they remain stable. 

• The mesh quality of surface elements can be considered increasingly unstable 

as wavelength decreases and amplitude increases. 

5.6 Discussion and conclusion 

This chapter is important for understanding the limitations of the modelling approach 

and for selecting appropriate parameters which will produce stable outputs. The three 

selected outputs—SDF error, meshing error and mesh quality—enable the sensitivity 

study to cover the full scope of the modelling approach and thus all the model’s inputs 

have been studied. 

The SDF error study revealed key regions of stability for the function’s parameters. 

For an ideal geometry, 𝑑𝑥 𝑟⁄ ≤ 0.125 was observed to be a sufficient value for stability, 

producing converged errors less than 1%. However, in the case of modelling form 

deviations, where there are scenarios in which there are other dimensions shorter than 

the radius, the ranges 𝑑𝑥 𝑙𝑖𝑛𝑡⁄ < 0.167 and 𝑑𝑥 𝑙𝑟⁄ ≤ 0.5 were found as suitable 

constraints. These values of 𝑑𝑥 highlight the significant computational load associated 

with this approach; significant amounts of memory may be required to produce stable 

geometries, if modelling small features. To potentially counteract the computational 
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load, however, the values of 𝑑𝑥 which have been identified can also be used for 

creating a Cartesian grid of variable resolution which would increase computational 

efficiency. 

The meshing error study provided mixed results. In some cases, the trends are 

intuitive. However, the behaviour of the strut intersection and radius deviation is 

unclear; ability to comment on this behaviour is hindered due to the limited 

information on the meshing function. 

The studies in this chapter illustrate that some values for the input parameters may 

produce stable, converged error values in the meshes, but the error values themselves 

are not low. In such scenarios, the mesh remains undesirable for a different reason: 

the mesh is a poor representation of the ‘real’ geometry defined by its geometrical 

input parameters. In short, the error must be both low and stable in order to be suitable 

for further uses such as conversion to an STL before manufacturing, or FE analysis. 

The results of this chapter provide users of the proposed modelling approach a means 

of ensuring that the parameter selection meets theses constraints. 

The mesh quality analysis revealed the relationship between 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 and 𝑚𝑎𝑥𝑣𝑜𝑙 

with regards to the quality of surface and body elements. Mesh quality appears 

unaffected by strut, strut intersection and radius deviation geometries. For surface 

defects, a relationship between the displacement function 𝛿 and the quality of the 

surface elements was observed; body elements appeared unaffected. These results are 

useful for optimising mesh quality for FE analysis. 

5.7 Summary 

This chapter has performed a sensitivity study for the modelling approach proposed 

in Chapter 4. Firstly, all of the inputs and outputs of the modelling approach were 

listed. Next, three outputs—SDF error, meshing error and mesh quality—were 

defined which could be used to measure the model’s sensitivity to its inputs. The input 

parameters were categorised as either functional input parameters and geometrical 

input parameters. For the geometrical input parameters, justification for their selected 
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was provided, since a simplified set of parameters was used. Next, the results of three 

sensitivity studies—SDF error sensitivity, meshing error sensitivity and mesh quality 

sensitivity—were provided, identifying the regions of stability and the corresponding 

values of the input parameters. 

 

 

 



 

Chapter 6 – Results: XCT, experiments, 

modelling and simulations 

This chapter discusses the results of the X-ray computed tomography (XCT) 

measurement of lattice structures and the use of the XCT data to model lattice 

structures with geometric deviations. Section 6.1 shares the XCT results, Section 6.2 

shows the compression test results and Section 6.3 shows the FEA. 
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6.1 XCT 

6.1.1 Cross sectional analysis 

Figure 6.1 and Figure 6.2 show histograms of the radius 𝑹𝑝𝑡𝑐𝑙𝑜𝑢𝑑 and offset 𝑶𝑝𝑡𝑐𝑙𝑜𝑢𝑑 

vectors obtained from the cross sectional data of the vertical and inclined struts. 

Superscripts 𝑣 and 𝑖 have been used to refer to the vertical set and inclined sets 

respectively. 

For the vertical struts, the histogram of the radius (Figure 6.1a), 𝑹𝑝𝑡𝑐𝑙𝑜𝑢𝑑
𝑣 , shows that 

the most frequent radius value is approximately 0.49 mm, which indicates that the 

vertical struts are generally slightly undersized. The histogram of the offset of the 

vertical struts (Figure 6.1b), 𝑶𝑝𝑡𝑐𝑙𝑜𝑢𝑑
𝑣 , shows a very small offset, the most frequent 

offset is approximately 0.01 mm. 

For the inclined struts, the histogram of the radius (Figure 6.2a), 𝑹𝑝𝑡𝑐𝑙𝑜𝑢𝑑
𝑖 , shows the 

most frequent radius value to be around 0.52 mm, implying that the radius of the 

inclined struts is generally oversized. The histogram of the offset of the inclined struts 

(Figure 6.2b), 𝑶𝑝𝑡𝑐𝑙𝑜𝑢𝑑
𝑖 , shows the most frequent offset to be near 0.03 mm. 

Comparing the radius histograms for the vertical and inclined struts, 𝑹𝑝𝑡𝑐𝑙𝑜𝑢𝑑
𝑣  (Figure 

6.1a) displays multiple peaks, located on both sides of the nominal radius 0.5 mm, 

implying that the deviations in the radius of the vertical struts are not strongly biased 

towards oversizing or undersizing. In comparison, the histogram of 𝑹𝑝𝑡𝑐𝑙𝑜𝑢𝑑
𝑖  (Figure 

6.2a) contains only one strong peak implying a strong bias of the inclined struts 

towards oversizing. The differences in the shapes of the plots in Figure 6.1 and Figure 

6.2 may be because the 0° overhang angle in the vertical struts applies no bias to the 

deviations in radius, whereas the overhang angle in the inclined struts applies a bias 

towards oversizing, caused by overheating due to contact with supporting powder 

material. 
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Figure 6.1. XCT cross section results for the vertical struts. 

Histograms of the (a) radius of the cross sections of vertical 

struts (b) offset of the cross sections of vertical struts. 

 

Figure 6.2. XCT cross section results for the inclined struts. 

Histograms of the (a) radius of the cross sections of inclined 

struts (b) offset of the cross sections of inclined struts. 

Comparing the offset histograms for the vertical and inclined struts, the distributions 

of 𝑶𝑝𝑡𝑐𝑙𝑜𝑢𝑑
𝑣  (Figure 6.1b) and 𝑶𝑝𝑡𝑐𝑙𝑜𝑢𝑑

𝑣  (Figure 6.2b) possess very similar shapes. The 
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fact that these distributions are very similar may imply that, to some degree, the offset 

in vertical and inclined struts is caused by the same error source, a systematic error 

within the laser, for example. Additionally, the increased offset in the inclined struts 

implies that the error source produces stronger effects in inclined struts. There is a 

significant disparity between the location of the peak offset for the inclined and 

vertical struts, showing that the offset is generally greater in the inclined struts. 

Additionally, the increased offset in Figure 6.2b may be due to the aforementioned 

overheating effects of inclined struts. 

6.1.2 Texture bias and surface unwrapping 

Figure 6.3 shows plots of the average texture bias in the vertical and inclined struts, 

where the data was binned at 𝛼 intervals of 1°. The texture bias plot for the vertical 

struts (Figure 6.3a) shows 𝑑 to be a minimum of approximately 0.47 mm, at 

approximately 𝛼 = 180°. On either side of this minimum 𝑑 value, 𝑑 ≈ 0.5 which 

corresponds to the nominal radius of 0.5 mm. The undersizing observered in Figure 

6.3a corresponds to the undersizing observed in Figure 6.1. Although 𝛼 typically is 

used to identify up-skin or down-skin surfaces, the vertical struts do not possess up-

skin/down-skin surfaces, due to their overhang angle 𝜃 = 0°. Therefore, the strong 

bias implied in Figure 6.3a must be revealing a different type of bias, which is not yet 

accounted for. Again, this bias may be related to a systematic error within the 

alignment of the laser beam. 

The texture bias plots for the inclined struts (Figure 6.3b) consistently show a different 

trend, displaying a sinusoidal behaviour. When 𝛼 < 180, 𝑑 is generally less than 0.5 

mm, with a minimum observed at approximately 90°. When 𝛼 > 180, 𝑑 is generally 

greater than 0.5 mm, with a maximum observed at approximately 270°. Given that the 

inclined struts do possess up-skin and down-skin surfaces (due to the overhang angle 

𝜃 = 54.7°), the results in Figure 6.3b clearly display undersizing and oversizing in the 

up-skin surfaces (0° ≤ 𝛼 ≤ 180°) and down-skin surfaces (180° < 𝛼 < 360°) 

respectively. The location of these minimum and maximum 𝑑 values are found at 
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approximately 𝛼 = 90° and 𝛼 = 270°, which are the most up-skin and down-skin 

angles in the strut (as described in Section 4.2.3.4). 

 

Figure 6.3. Plots of the average texture bias for vertical and 

inclined struts. 

Figure 6.4 shows the results of the surface unwrapping, displaying the average of all 

unwrapped surfaces for the vertical and inclined struts. The data was binned at 

𝛼 intervals of 1° and 𝑡 intervals of 0.01. The addition of the 𝑡 axis shows the average 

distances 𝑑 along the entire length of the struts. For the vertical struts (Figure 6.4a), 

again, slight undersizing can generally be observed throughout the plot near 𝛼 =

180°. However, for any value of 𝑡, the values 𝑑 changes seemingly randomly. The 

randomness in the vertical struts is again likely due to the overhang angle 𝜃 = 0°. In 

comparison, the inclined struts (Figure 6.4b) have a very strong trend which is 

consistent for all values of 𝑡; the most severe oversizing and undersizing is observed 

for at approximately 𝛼 = 270° and 𝛼 = 90° respectively. 
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Figure 6.4. Results of the average unwrapped surface of the 

vertical and inclined struts (a) vertical struts, scale shown left (b) 

inclined struts, scale shown right. 

6.1.3 Influence factors 

As mentioned in Section 2.6.5, XCT measurements are potentially affected by a large 

number of influence factors. Referring to Table 3, an introductory consideration is 

given to the following influence factors: surface generation and measurement 

strategy. 

To consider the effects of surface generation, Figure 6.5 shows average texture bias 

plots produced using different settings for point cloud generation in the XCT software, 

VG Studio MAX. The selected settings are named “fast”, “default” and “precise”, all 

of which take increasing amounts of time to generate point clouds from the data. The 

plots in Figure 6.5 also plot the standard deviation above and below the mean 𝑑 in 

each 1° bin. These results are accompanied by Table 6 which shows the minimum and 

maximum 𝑑 in each of the point clouds, notated as 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 respectively. Figure 
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6.5 shows a smoothing effect to occur between the “fast” and “precise” point cloud 

generation settings, most clearly observed in the plots of the standard deviations. 

Table 6 shows that as the settings are changed from “fast” through to “precise”, 𝑑𝑚𝑖𝑛 

increases and 𝑑𝑚𝑎𝑥 decreases, which may be caused by the removal of points being 

considered as erroneous. Comparing only the “fast” and “precise” results, for the 

vertical struts, 𝑑𝑚𝑖𝑛 increases by 9.2% from 0.420 mm to 0.459 mm; 𝑑𝑚𝑎𝑥 decreases by 

5.7% from 0.558 mm to 0.526 mm. For the inclined struts, 𝑑𝑚𝑖𝑛 increases by 11.3% from 

0.380 mm to 0.423 mm; 𝑑𝑚𝑎𝑥 decreases by 1.4% from 0.642 mm to 0.633 mm. Given the 

voxel size of 0.016 µm, the differences between the “fast” and “precise” methods more 

confidently suggest a significant, detectable change; comparisons to “default” are less 

significant and therefore less confident. 

To consider the effects of an element of the measurement strategy, Figure 6.6 and 

Figure 6.7 show the results of the convergence analysis of the radius 𝑹𝜇 and offset 𝑶𝜇 

data. The superscripts 𝑣 and 𝑖 are used to differentiate between the vertical and 

inclined struts respectively. For the vertical struts, the plot of cumulative mean of the 

radius data 𝑹𝜇
𝑣  (Figure 6.6a) implies convergence to 𝑹𝜇

𝑣 ≈ 0.495 mm after 

approximately 2000 slices, before which the plot is characterised by rapid fluctuations. 

The percentage change becomes negligible beyond slice numbers greater than 

approximately 1000. The cumulative mean of the offset data 𝑶𝜇
𝑣  (Figure 6.6b) shows 

𝑶𝜇
𝑣  to converge near 0.017 mm after approximately 4000 slices 

Figure 6.7a shows the convergence of the cumulative mean 𝑹𝜇
𝑖  of the radius of the 

inclined struts, suggesting convergence at approximately 2000 slices. Figure 6.7b 

shows the convergence of the cumulative mean of the offset of the inclined struts, 𝑶𝜇
𝑖 , 

suggesting convergence at approximately 6000 slices, which is the largest amount of 

slices required for convergence from all plots in Figure 6.6 and Figure 6.7.  
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Figure 6.5. Texture bias plots using different settings for point 

cloud generation. 
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Table 6. Minimum and maximum distances 𝑑 for different 

settings used for point cloud generation. 

 

Vertical struts Inclined struts 

𝒅𝒎𝒊𝒏 

(mm) 

𝒅𝒎𝒂𝒙 

(mm) 

Range 

(mm) 

𝒅𝒎𝒊𝒏 

(mm) 

𝒅𝒎𝒂𝒙 

(mm) 

Range 

(mm) 

Fast 0.420 0.558 0.138 0.380 0.642 0.262 

Default 0.433 0.547 0.114 0.395 0.638 0.243 

Precise 0.459 0.526 0.067 0.423 0.633 0.210 

 



186                          Chapter 6 – Results: XCT, experiments, modelling and simulations 

 

Figure 6.6. Convergence analysis for the vertical struts. (a) 

Convergence of the cumulative average of the radius 𝑹𝜇
𝑣  of the 

cross sections. (b) Convergence of the cumulative average of the 

offset 𝑶𝜇
𝑣  of the cross sections. 
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Figure 6.7. Convergence analysis for the inclined struts. (a) 

Convergence of the cumulative average of the radius 𝑹𝜇
𝑖  of the 

cross sections. (b) Convergence of the cumulative average of the 

offset of the cross sections 𝑶𝜇
𝑖 . 

6.2 Compression testing 

Figure 6.8 shows a plot of the average stress-strain data from the five compression 

tests of the lattice samples, accompanied by images of the samples during different 

stages of the test. Figure 6.9 to Figure 6.13 show the individual results from the five 

compression tests. 

The averaged results show an elastic response approximately for strain values ≤ 0.05. 

From this elastic region, the Young’s modulus was calculated as 984.1 MPa. At near 

0.05 strain, the struts begin to fail at peak stress of approximately 30 MPa. Figure 6.8c 
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shows the initial buckling in the struts, this is followed by rapid decrease in stress due 

to failure by buckling in the first layer of unit cells in the lattice (Figure 6.8d). A local 

peak in stress is observed at 0.15 strain, which is likely due a random configuration of 

the failed struts temporarily becoming more load-bearing. At 0.25 strain, the stress 

begins to rise significantly, indicating that full failure has occurred in the first layer 

and the remaining layers have become load-bearing again.  

 

 

Figure 6.8. Average results from the compression tests. (a) 

Average stress strain results of lattice samples (b)-(e) images of 

compressive failure developing in the samples. 

The following graphs show the data for each of the individual compression tests. 
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Figure 6.9. Compression test results of sample 1. 

 

Figure 6.10. Compression test results of sample 2. 
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Figure 6.11. Compression test results of sample 3. 

 

Figure 6.12. Compression test results of sample 4. 
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Figure 6.13. Compression test results of sample 5. 

6.3 FEA 

6.3.1 Modelling of geometric deviations 

The probability density functions fitted to the cross sectional data in Section 6.1 (using 

a Kernel density estimation) were used to generate simulated cross sectional data for 

the radius and offset of vertical and inclined struts, as shown in Figure 6.14, where 

each histogram contains 50 000 values. The similarity between the XCT cross section 

data (Figure 6.1 and Figure 6.2) and the histograms in Figure 6.14 demonstrate the 

suitability of Kernel density estimations for fitting probability density functions to the 

XCT data. 

The histograms in Figure 6.14 show the maximum offset and radius values to be 0.15 

mm and 0.54 mm respectively. These maximum values can be related to the 

parameters 𝑎 and 𝑟2 to help understand how the signed distance function (SDF) can 

be configured for modelling deviations using the data shown in Figure 6.14. The 

reader is reminded of the parameters 𝑎 𝑟⁄  and 𝑟2 𝑟⁄  which define the strut intersection 

and radius deviation, which are part of the simplified set of geometrical input 
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parameters in Section 5.2.2, used for waviness and radius variation respectively. The 

lattice structures in this study have a radius 𝑟 = 0.5 mm, therefore 𝑎 𝑟⁄ = 0.15 0.5⁄ =

0.3 and 𝑟2 𝑟⁄ = 0.54 0.5⁄ = 1.08. From Figure 5.14, 𝑎 𝑟⁄ = 0.3 can be stably generated if 

𝑑𝑥 𝑙𝑖𝑛𝑡⁄ ≤ 0.25.; from Figure 5.15, 𝑟2 𝑟⁄ = 1.06 can be stably generated if 𝑑𝑥 𝑙𝑟⁄ ≤ 0.5. 

Therefore, 𝑑𝑥 𝑙𝑖𝑛𝑡⁄  is the more constraining parameter for the SDF, given that 𝑑𝑥 𝑙𝑖𝑛𝑡⁄  

must be lower than 𝑑𝑥 𝑙𝑟⁄ . 

 

Figure 6.14 Simulated cross sectional data for the radius and 

offset of vertical and inclined struts, using probability density 

functions fitted to the XCT data. 

Figure 6.15 shows examples of surfaces generated by the SDF, where waviness and 

radius variation deviations have been applied using the probability density functions 

fitted to the XCT data. Since the SDF was computed with resolution 𝑑𝑥 𝑟⁄ =
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0.0625 mm, the constraint 𝑑𝑥 𝑙𝑖𝑛𝑡⁄ ≤ 0.25 (defined in the previous paragraph) 

corresponds to 𝑙𝑖𝑛𝑡 ≥ 0.0625 0.25⁄ = 0.25 mm. As described in Eq. (5.20), 𝑙𝑖𝑛𝑡 is 

analogous to the distance 𝑙′ between any two points in the medial axis which are 

separated by a single point, therefore, the length of a single line segment is given by 

𝑙′ 2⁄  and is subject to the constraint 𝑙′ 2⁄ ≥ 0.125 mm. Figure 6.15 also shows the effect 

of increasing the number of line segments in the underlying medial axis of each strut, 

thus decreasing line segment length 𝑙′ 2⁄ . 

Table 7 shows the results of the FE simulations. Two simulations were performed, 

firstly a lattice without deviations, followed by a lattice with both radius variation and 

waviness. For the lattice with deviations, the line segment length was defined as 

𝑙′ 2⁄ = 0.7 which complies to the constraint in the above paragraph, as well as being 

high enough to perform stably when applying waviness deviations (see § 5.3.3). The 

results in Table 7 show that the inclusion of the geometric deviations resulted in a 

reduction in the stiffness of the lattice, however, both results have significantly 

overestimated the stiffness, in comparison to the experimentally determined value of 

948.1 MPa (see § 6.2). This overestimation may be due to the values of Young’s 

modulus and Poisson’s ratio used in the material model for the simulations; these 

values were not obtained via tensile tests of specimens manufactured from the same 

powder supply as used for the lattice structures. 
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Figure 6.15. Example struts generated with deviations defined 

from probability density function fitted to XCT cross sectional 

data. 
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Table 7 FEA results. 

 Young’s Modulus (MPa) 

Ideal lattice 4148 

Lattice with radius variation and 

waviness 
4023 

6.4 Conclusion 

This chapter has displayed the results of this thesis, namely XCT measurements, 

compression testing and FEA. 

The XCT results showed the inclined struts to be significantly more prone to geometric 

deviations; radius variation, waviness and texture bias all showed greater deviations 

in the inclined struts. The consistency between the results obtained from each 

measurement approach, and their agreement to trends in the literature, confirms the 

suitability of each technique. As for the investigation in the effects of the settings for 

point cloud generation, using ‘precise’ settings does appear to remove noise from the 

results, however, this may not be significant for this application because the noise is 

of very high spatial frequency. 

The FEA results suggest that the inclusion of geometric deviations will decrease lattice 

stiffness. Further simulations should be performed wherein the PDFs are resampled 

in order to generate new sets of geometric deviation data. This is important since the 

PDFs must be sampled many times before they become representative of the XCT data 

on which they’re defined. 

 

 

 





 

Chapter 7 – Discussions, conclusions 

and future work 

This chapter provides a summary of the work presented in the thesis, providing a 

critical discussion of each chapter and concluding with considerations for future work. 
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7.1 Thesis summary 

The following paragraphs summarise the content within all previous chapters of the 

thesis. 

Chapter 1 introduced the motivations for this work, namely that lattice structures are 

an incredibly versatile design with features which can encourage the formation of 

defects and geometric deviations. The application of lattice structures for vibration 

isolation was also explained, which is the context in which this thesis’ aim and 

objectives were defined. As a reminder, the objectives of the thesis were as follows: 

1. Develop an approach for modelling lattice structure defects/geometric 

deviations and performing simulations via finite element (FE) modelling. 

2. Perform a sensitivity study on the developed modelling approach to define 

limits on its underlying parameters. 

3. Use X-ray computed tomography (XCT) to quantify manufacturing 

defects/geometric deviations in lattice structures and extract defect parameters 

which can be applied to the FE model. 

4. Perform mechanical testing and validate the developed model using the 

experimental data. 

Chapter 2 reviewed the relevant literature, demonstrating significant popularity of 

lattice structures and additive manufacturing (AM), the range of observed defects and 

geometric deviations which can form, and the measurement and modelling tools used 

to examine their impact. X-ray computed tomography (XCT) was identified as the 

most used measurement technique for imaging lattice structures. FE modelling is the 

most used modelling approach for lattice structures, modelling with either beam 

elements of tetrahedral elements. Reviewing the literature helped identify the need 

for exploring versatile modelling approaches which are suitable not only to the 

modelling of defects and geometric deviations, but also suitable for modelling highly 

configurable lattice structure designs. 

Chapter 3 explained the methodology designed for meeting the thesis’ objectives. The 

foundation of the work is a signed distance function (SDF) based modelling approach, 
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from which triangulated surfaces of lattice structures can be converted into tetrahedral 

meshes. In addition to the modelling, XCT is used for capturing geometric deviation 

data from a BCCZ lattice, which is then imported back into the model, for comparison 

between experimentally determined and simulated lattice stiffness. 

Chapter 4 explained the SDF-based modelling approach in detail. An intuitive set of 

mathematical functions were defined for creating surface meshes of strut-based lattice 

structures with the inclusion of geometric deviations and surface defects. Signed 

distance functions (SDFs) were used to first model ideal lattice struts before being 

extended to apply geometric deviations via modification of the medial axis and/or 

distance calculation. Surface defects were applied by defining a displacement function 

𝛿 which modified the surface produced by the SDF. The surface meshes were then 

converted into tetrahedral meshes via open-source MATLAB toolbox, iso2mesh. 

Chapter 5, performed a sensitivity study of the SDF-based modelling approach. Three 

quantities were defined for the assessment of the model’s stability, namely SDF error, 

meshing error and mesh quality. A simplified, finite set of parameters were defined 

for use in each analysis method, this set was considered representative of the lattice 

geometries. Intuitive relationships between the resolution of the domain and the 

model’s stability were demonstrated. Additionally, regions of stability for the 

geometrical input parameters were identified; these regions are less intuitive. This 

chapter was crucial for determining a method for identifying modelling parameters 

which can be proven to produce stable outputs, and these results were used for 

subsequent simulations. 

Chapter 6 displayed results of the XCT measurement, compression testing, FE 

modelling and simulation. The XCT measurement results showed clear differences 

between the geometric deviations and texture bias in the vertical and inclined struts. 

In the cross section analysis, the radius of the vertical struts showed no strong bias 

towards oversizing or undersizing, conversely, the radius of the inclined struts 

showed a strong bias towards oversizing. Similarly, the offset of the cross sections of 

the vertical struts was significantly less severe than the inclined struts. The texture 

bias and surface unwrapping results were useful for gaining additional insight on the 
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vertical and inclined struts, revealing that a consistent area of the surface of vertical 

struts was undersized, potentially indicating a systematic error which may be related 

to laser misalignment. Additionally, for the inclined struts, the texture bias analysis 

and surface analysis showed significant oversizing and undersizing in the down-skin 

and up-skin areas, respectively.  

Chapter 6 also contained introductory considerations to the effect of influence factors 

on the measurement data. Convergence analysis was used to increase confidence on 

the minimum number of slices which can be considered representative of the full XCT 

dataset. The effects of point cloud conversion settings were quantified. Lastly, 

probability density functions (PDFs) were fitted to the extracted XCT data and used 

to generate models with statistically similar defects. The fitting of PDFs to the 

measurement data proved effective for generating surfaces of lattice struts with 

defects.  

Lastly, Chapter 6 also compared the experimentally determined lattice structure 

stiffness to FEA results based on lattice structures with geometric deviations applied 

using PDFs. The cross sectional data from the XCT measurement was well replicated 

by the PDFs, allowing for the modelling of lattice struts with statistically equivalent 

form defects. Each of the compression tests behaved similarly, with failure occurring 

by the buckling of the vertically reinforcing struts, an intuitive result. However, 

comparing the experimentally determined lattice structure stiffness to the FE 

calculations showed a current significant disparity between the FE model and the 

experimental data. As previously mentioned, a significant improvement may be 

found by updating the material model with properties obtained via mechanical testing 

of specimens manufactured from the same powder material. However, this is outside 

of the time and resource constraints of this work.  
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7.2 Discussion 

For the proposed modelling approach, it must be stated that, although the approach 

is very geometrically versatile, the approach is also very computationally expensive 

(as expected and discussed in Chapter 2 as well as elsewhere). As lattice tessellation 

increases, it becomes harder to find the resources for the modelling and simulations. 

The use of tetrahedral elements could perhaps be better suited for more localised 

analysis, the results of which could be transferred into a larger model using beam 

elements, for example. 

Regarding implementation of the SDF-based modelling approach, attempts were 

made to optimise functions, only when necessary for achieving more practical 

computation times. Therefore, there are still computational limitations to the SDF 

implemented in its current form. The SDF operates in a domain of equally spaced 

points (using the MATLAB function, meshgrid.m), therefore, increasing the resolution 

results in an exponential increase in the number of points in the domain. More 

specifically, the total number of points in a three-dimensional Cartesian grid is given 

by 𝑛3, where 𝑛 is the number of points in any dimension. To mitigate memory 

limitations – and reduce the number of points in the distance field –, the distance field 

could be optimised using an adaptive grid in which the high resolution is only located 

near the interface in which the level set is location. An example of such an optimisation 

is the Octree structure, which can recursively subdivide regions of interest in a three-

dimensional Cartesian grid (the two-dimensional equivalent is called a quadtree 

structure). Additional aspects can also be considered to optimise the implementation 

of the SDF. For example, computing 𝑫𝑥⃗𝑖
 (Eq. (4.20)) can become computationally 

expensive upon increasing the number of line segments as the medial axis increases.  

Considering the XCT measurement results, firstly, further analysis of the effects of 

influence factors in the XCT measurement process would be valuable. For the point 

cloud conversion, a wider range of settings could be investigated and their effects on 

specific stages in the data processing stages (Figure 3.4) could be studied – for 

example, reference geometry definition which may be sensitive to 
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variations/erroneous points in the XCT point cloud. Analysing many XCT influence 

factors is difficult, partly because time constraints very limiting; XCT scans can 

quickly require several hours. The XCT measurements in this thesis were performed 

by an external company, further increasing the waiting times. 

For the XCT surface determination stage, an iterative approach was selected which is 

well established as superior to a global ISO50 method, however, it may still be 

valuable to compare the effects of these two methods. As mentioned in Section 2.8, 

surface determination has been shown to cause greater error in edge-to-edge length 

measurements over sphere-centre distances [124]. Therefore, from the results in 

Chapter 6, the offset data (which is calculated using the centre of the circles fitted to 

the cross sectional data) may be more reliable than all the other measurement results 

(which can all be considered as edge-to-edge length measurements). Global 

registration is dependent upon the manual selection of fit points; determining an ideal 

number of fit points is not straightforward, particularly because the presence of 

defects displaces the data points from their “true” location. Future considerations 

could attempt to align the determined surface to a CAD model. The reference 

geometry definition stage will be significantly dependent upon the accuracy of the 

global registration stage. 

There are several other aspects of the XCT data processing to consider. The data from 

the surface unwrapping is expressed using the same axes (i.e. 𝑡 vs 𝛼) as the 

displacement function which models surface defects and therefore can be directly 

applied into the model. However, to capture the high frequencies in the surface 

unwrapping data, a very dense surface mesh will be required, which raises potential 

issues related to the limitations of the domain resolution 𝑑𝑥 of the SDF. Alternatively, 

the higher frequencies could be discarded (again, they are likely to have negligible 

effect on lattice stiffness), for example, through Fourier analysis. An example of using 

Fourier analysis to remove higher frequencies from XCT lattice structure data is 

provided by Lei et al. [138], in which a method for smoothing the radius struts was 

determined. Lastly, it is also worth considering the stages at which arbitrary decisions 

are made when converting the XCT measurement data into defects used in the model. 
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For example, waviness is currently modelled by displacing the points in the medial 

axis in a random direction. Future investigations could consider developing a method 

which uses the XCT data to determine the direction, perhaps again through the fitting 

of a PDF.  

Lastly, the results of this thesis are now considered in light of the initial objectives. 

Progress has certainly been made towards the initial project aim of developing a 

modelling approach for investigating the impact of defects on lattice structures. The 

objectives have also all been achieved, though some would still benefit from further 

work, in particular the validation of the model and further investigating the disparity 

between the experimental and FE results.  

A summary of the main points discussed in this section is provided below: 

• The proposed modelling approach is geometrically versatile but very 

computationally expensive. Optimisation options are still available for 

improving the proposed approach, but at higher lattice tessellations, beam 

elements are likely a more suitable choice. 

• Further analysis of XCT influence factors would be beneficial, in particular the 

sensitivity of the reference geometry definition to variations in the XCT point 

cloud. 
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7.3 Future work 

The first place to direct future efforts must be the comparison of the FE modelling 

results to the experimental data. As previously stated, the Ti6Al4V powder material 

should first be used for generating specimens for mechanical tests, from which 

Young’s modulus and Poisson’s ratio can be determined. These properties should 

then be used in the FE material model. 

To further investigate the utility of the proposed modelling approach, it would be 

useful to investigate alternative meshing tools which use quadratic tetrahedral 

elements, given that linear tetrahedral meshes were used for this work. In FEA, the 

displacement field described by linear tetrahedral elements is often inaccurate 

(because linear displacements are not representative of complex displacement fields). 

Additionally, quadratic tetrahedral elements may be better suited for describing the 

displacement field of bending-dominated lattice structures, as opposed to stretch 

dominated. A comparison between using linear and quadratic tetrahedral elements 

for stretch-dominated and bending-dominated structures would be useful for 

understanding which element types are more appropriate for FEA of strut-based 

lattice structures. Comparisons to beam element modelling methods should also be 

made, to determine when this more computationally efficient approach can be 

utilised. 

Additional geometric deviations and defects should be investigated, to determine 

which ones have a crucial impact on lattice properties. Alternative methods for 

determining lattice structure mechanical properties may need to be considered. 

Homogenisation methods could be used, these methods operate by performing 

simulations on individual unit cells and using the derived properties to infer 

mechanical properties of the lattice structure ([64,161]). Homogenisation techniques 

have an advantage of reducing computational load. Other alternative methods 

include the finite cell method ([162,163]), an imaged-based method which converts 

XCT voxel data into meshes for FEA. 
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The MATLAB-based method which was implemented for the dimensional analysis 

proved sufficient for capturing geometric deviations which are in line with similar 

observations in the literature, however, this method should be compared to 

established XCT software tools such as VGSTUDIO. Such a comparison will be helpful 

for determining if there is any significant detail being missed by the MATLAB-based 

approach. Further investigation into the effects of the XCT data during conversion 

from volume data through to STL would be valuable. However, this may be 

challenging do to the restrictions on proprietary software.  

Given the large data files produced for XCT, a future study could be performed to 

investigate the impact on parameters such as number of projections on file size. 

As for the manufacturing of the samples, further investigation into the effects of 

process parameters on geometric deviations should be studied. For example, the 

impact of hatch spacing and layer thickness of radius deviation and waviness. 

A summary of the main points discussed in this section is provided below: 

• The material model for the FEA must be updated using properties obtained 

from the powder used for sample manufacture. 

• The performance of other mesh types—quadratic tetrahedral elements; beam 

elements—should be performed. 

• Homogenization methods should be considered for increasing the proposed 

approach’s computational efficiency. 

• The bespoke XCT data processing algorithms written for this work should be 

compared to any similar functions available in commercial software 

alternatives, such as VGSTUDIO. 
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Appendix A – XCT settings 

X-ray parameter 

Voltage (kV) 130 

Current (μA) 90 

Power (W) 11.7 

Filter Aluminium, 1 mm 

Detector parameter 

Columns (pixels) 3000 

Columns (mm) 417 

Rows (pixels) 300 

Rows (mm) 417 

Pixel binning 1:1 

Integration time (ms) 750 

Framebinning 1 

Capacity (pF) 1x1 1 

Pitch (mm) 0.139 

Scan parameter 

Mode: CtMode 

Number of projections 3500 

StopAndGo Off 

Scan Field Extension Vertical Off 

Scan Field Extension Horizontal Off 

Rotation Mode Continuous Mode 

Image Type RAW 

Scan time (HH:MM:SS) 00:44:07 

Recon parameter 

Projection Tilt A 0 

Projection Tilt B 0 
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Projection Tilt C 0 

Recon mode FovExtOff 

Detector offset X (mm) -0.744 

Voxel size X (mm) 0.016 

Voxel size Y (mm) 0.016 

Voxel size Z (mm) 0.016 

Dimension X (pixels) 3008 

Dimension Y (pixels) 3008 

Dimension Z (pixels) 2360 

Median Off 

Volume Size X 48.672 

Volume Size Y 48.672 

Volume Size Z 48.672 

Cubic voxel On 

Opt. Volume Height On 

Optimize On 

Image Type RAW 

Beam Hardening 3 

Manipulator parameter 

FOD (mm) 140.000 

FDD (mm) 1199.989 

Height (mm) 402.499 

Magnification 8.571 
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Appendix B – MATLAB code 

This appendix provides information on the MATLAB code which has been referred to 

in previous chapters of the thesis. A mixture of both functions and scripts are 

described in this appendix. Pseudocode has been used, to help readers gain a 

high-level understanding of the code. Raw code is available for viewing at this GitHub 

repository. 

In the pseudocode in this appendix, all inputs, outputs, and variable names are given 

in 𝒃𝒐𝒍𝒅 𝒊𝒕𝒂𝒍𝒊𝒄. MATLAB built-in functions are referred to with an asterisk (*). 

  

https://github.com/iecheta/LatticeLib
https://github.com/iecheta/LatticeLib
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Importing point cloud and segmentation 

 

Figure B.1. Pseudocode describing the point cloud import and 

segmentation script. 

  

• Import STL file of BCC unit cell and extract the point cloud 

• Define medial axes for each strut represented in the point cloud. Assume nominal positions 

for the medial axes, 8 in total (i.e. assume that the STL file has been correctly configured 

before import) 

• Using surfaceanalysis.m, calculate the following information for each point on the STL 

surface: overhang angle; surface angle; intersection ratio 𝒕; distances to each medial axis 

• Segment the point cloud into individual struts (in practise this is performed using logical 

indexing). Extract cylindrical sections by discarding points outside of a predefined range of 

values for the intersection ratio 

for 𝒊 = 1 to number of points: 

if 𝒊th point is closest to 1st medial axis 

• Put 𝒊th point into group 1 

if 𝒊th point is closest to 2nd medial axis 

• Put 𝒊th point into group 2 

  ⋮  

  ⋮ 

if 𝒊th point is closest to 8th medial axis 

• Put 𝒊th point into group 8 

if 𝒕𝒊 < predefined lower 𝑡 boundary OR 𝒕𝒊 > predefined upper 𝑡 boundary 

• Remove the 𝒊th point from its group 

https://github.com/iecheta/LatticeLib/blob/main/scripts/xct/import_point_cloud.m


Appendix B – MATLAB code  229 

Cross section analysis 

 

Figure B.2. Pseudocode describing the cross section analysis 

script. 

  

• Enter layer thickness 

• Import point cloud of cylindrical section of strut 

if the strut overhang angle (using nominal medial axis) ≠ 0: 

• Use the nominal medial axis to calculate rotation matrices 

• Perform rotations on point cloud such that its overhang angle = 0 

• Using the layer thickness, calculate the number of slices present in the point cloud and the 

𝑧-coordinates bounding each slice 

for 𝒊 = 1 to number of slices: 

• Use logical indexing to extract the points bounded by the 𝒊th slice 

if number of points in slice < 10: 

• Discard this slice 

• continue 

• Fit a circle (𝑥, 𝑦 coordinates and radius) to the slice, using non-linear least squares 

(lsqnonlin.m*, [166])  

• Calculate the mean 𝑥, 𝑦 coordinates of the fitted circles 

for 𝒊 = 1 to number of fitted circles: 

• Calculate 𝑥 and 𝑦 offset 

• Fit PDF to offset and radii data, using kernel density estimation 

https://github.com/iecheta/LatticeLib/blob/main/scripts/xct/cross_section_analysis.m
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Signed distance function 

Inputs 

𝑛 = the number of points in the medial axis 

𝒙, 𝒚, 𝒛 𝒙, 𝒚, 𝒛 are 3D matrices representing the 𝑥, 𝑦 and 𝑧-coordinates of the Cartesian grid 

over which the distance field is computed. Generated using meshgrid.m*(see [164]). 

𝒗𝒆𝒓𝒕𝒊𝒄𝒆𝒔 Matrix storing the vertices of the medial axis. Size 𝑛 × 3. 

𝒔𝒆𝒈𝒎𝒆𝒏𝒕𝒔 An indexing matrix, size (𝑛 − 1) × 2, used for assigning vertices to line segments. For 

example, first row in 𝒔𝒆𝒈𝒎𝒆𝒏𝒕𝒔 is [1 2], corresponding to the line segment defined 

by the first and second rows in 𝒗𝒆𝒓𝒕𝒊𝒄𝒆𝒔. The second row is [2 3], etc. 

𝒓𝒂𝒅𝒊𝒊 Column vector, of length 𝑛, storing the radius value assigned to each vertex in the 

medial axis. If no radius variation is being applied to the strut, all the values of 𝒓𝒂𝒅𝒊𝒊 

will be equal 

Outputs 

𝒅 Distance field of the given geometry 
 

 

Figure B.3. Pseudocode describing the signed distance function.   

[𝒅] = sdf(𝒙, 𝒚, 𝒛, 𝒗𝒆𝒓𝒕𝒊𝒄𝒆𝒔, 𝒔𝒆𝒈𝒎𝒆𝒏𝒕𝒔, 𝒓𝒂𝒅𝒊𝒊) 

• Create array 𝒅 with size equal to 𝒙, with values initialised to infinity 

• Create column vectors 𝒅𝒎𝒆𝒅𝒊𝒂𝒍 and 𝒕𝒎𝒆𝒅𝒊𝒂𝒍, with number of rows equal to number of 

rows in 𝒗𝒆𝒓𝒕𝒊𝒄𝒆𝒔, with values initialised to zero 

for 𝒊 = 1 to the number of elements in 𝒅: 

• 𝒙𝟎 = 𝒙(𝒊), 𝒚(𝒊), 𝒛(𝒊) 

for 𝒋 = 1 to the number of line segments: 

• For the 𝒋th line segment, i.e. 𝒗𝒆𝒓𝒕𝒊𝒄𝒆𝒔(𝒋:𝒋 + 𝟏, :), firstly calculate 𝝂𝒊 and 𝒕𝒊, then 

calculate the Euclidean distance 𝒅𝒋 between 𝒙𝟎 and the 𝒋th line segment. 

• 𝒅𝒎𝒆𝒅𝒊𝒂𝒍(𝒋) = 𝒅𝒋 

• 𝒕𝒎𝒆𝒅𝒊𝒂𝒍(𝒋) = 𝒕 

• Calculate 𝒅𝒎𝒊𝒏 =  min(𝒅𝒎𝒆𝒅𝒊𝒂𝒍) to find the smallest of the Euclidean distances 

between 𝒙𝟎 and all line segments; store the index of this smallest value in the 

variable 𝒌 

• 𝒓𝒎𝒂𝒙 = max(𝒓𝒂𝒅𝒊𝒊) 

if |𝒅𝒎𝒊𝒏 − 𝒓𝒎𝒂𝒙| ∕ 𝒓𝒎𝒂𝒙 > 1: 

• continue (𝒙𝟎 is not near the interface.) 

if no radius variation: 

• 𝒓 =  𝒓𝒂𝒅𝒊𝒊(𝟏) 

else: 

• Find the value of 𝒕 used for calculating 𝒅𝒎𝒊𝒏 i.e. 𝒕𝒎𝒆𝒅𝒊𝒂𝒍(𝒌) 

if 𝒕 = 0: 

• 𝒓 =  𝒓𝒂𝒅𝒊𝒊(𝒌) 

if 𝒕 = 1: 

• 𝒓 =  𝒓𝒂𝒅𝒊𝒊(𝒌 + 𝟏) 

else: 

• 𝒓 = interpolation between 𝒓𝒂𝒅𝒊𝒊(𝒌) and 𝒓𝒂𝒅𝒊𝒊(𝒌 + 𝟏) 

• 𝒅(𝒊)  = 𝒅𝒎𝒊𝒏 − 𝒓 

https://github.com/iecheta/LatticeLib/blob/main/functions/sdf.m
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Tessellation 

Inputs 

𝒅 Distance field of the unit cell to be tessellated 
𝒄𝒔 Cell size  

𝒓𝒂𝒅𝒊𝒖𝒔 Strut radius 
𝒏 3 × 1 row vector defining the number of repeated unit cells 𝑥, 𝑦 and 𝑧 
𝒛 See the 𝒛 input for sdf.m 
𝒅𝒙 The value of the spacing between adjacent points in the Cartesian grid 

Outputs 

𝒕𝒗𝒐𝒍𝒖𝒎𝒆 A tessellated volume of the distance field of the lattice structure 
𝒙𝟏, 𝒚𝟏, 𝒛𝟏 𝒙1, 𝒚𝟏, 𝒛𝟏 are 3D matrices representing the 𝑥, 𝑦 and 𝑧-coordinates of the Cartesian 

grid over which the distance field is computed for the lattice structure. Generated 

using meshgrid.m*(see [164]).  

 

 

Figure B.4. Pseudocode describing the tessellation function. 

  

[𝒕𝒗𝒐𝒍𝒖𝒎𝒆, 𝒙𝟏, 𝒚𝟏, 𝒛𝟏] = tessellate(𝒅, 𝒄𝒔, 𝒓𝒂𝒅𝒊𝒖𝒔, 𝒏, 𝒛, 𝒅𝒙) 

• 𝒄𝒆𝒍𝒍𝒄𝒐𝒖𝒏𝒕 = 𝒏(𝟏) × 𝒏(𝟐) × 𝒏(𝟑) 

• Create array 𝒕𝒗𝒐𝒍𝒖𝒎𝒆 of size equal to a tessellated version (according to 𝒏) of 𝒅 and 

initialise values to infinity  

• Using z and 𝒄𝒔, calculate the index of the third dimension of z corresponding to the z-

coordinate of the highest point in the unit cell’s medial axis. Assign this value to the variable 

𝒊𝒏𝒅𝒆𝒙𝟏 

• Using z and 𝒄𝒔, calculate the index of the third dimension of z corresponding to the z-

coordinate of the lowest point in the unit cell’s medial axis. Assign this value to the variable 

𝒊𝒏𝒅𝒆𝒙𝟐 

• 𝒔𝒉𝒊𝒇𝒕 = 𝒊𝒏𝒅𝒆𝒙𝟐 − 𝒊𝒏𝒅𝒆𝒙𝟏. 𝒔𝒉𝒊𝒇𝒕 expresses the cell size of the unit cell in terms of indices. 

• Using 𝒔𝒉𝒊𝒇𝒕 and 𝒏, find the indices corresponding to the locations of all the unit cells that 

will be positioned into 𝒕𝒗𝒐𝒍𝒖𝒎𝒆 

for 𝒊 = 1 to 𝒄𝒆𝒍𝒍𝒄𝒐𝒖𝒏𝒕 

• Iterate through the regions of 𝒕𝒗𝒐𝒍𝒖𝒎𝒆 corresponding to the locations of each unit 

cell. Perform a Boolean union between this region of 𝒕𝒗𝒐𝒍𝒖𝒎𝒆 and 𝒅 

• Use meshgrid.m* to generate Cartesian grid 𝒙𝟏, 𝒚𝟏, 𝒛𝟏 for 𝒕𝒗𝒐𝒍𝒖𝒎𝒆 

https://github.com/iecheta/LatticeLib/blob/main/functions/tessellate.m
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Lattice cropping 

Inputs 

𝒖 Distance field of the unit cell/lattice structure to be cropped 
𝒛𝒎𝒂𝒙 A constant, defining the plane 𝑧 = 𝑧𝑚𝑎𝑥 (see § 4.2.2) 
𝒛𝒎𝒊𝒏 A constant, defining the plane 𝑧 = 𝑧𝑚𝑖𝑛 (see § 4.2.2) 
𝒛 3D matrix representing the 𝑧-coordinates of the Cartesian grid over which the 𝒖 is 

computed (i.e. the [~,~,z] output of the meshgrid.m*(see [164])) 

 

Outputs 

𝒖𝒄𝒓𝒐𝒑 Distance field of the cropped unit cell/lattice structure 

 

 

Figure B.5. Pseudocode describing the cropping function. 

  

[𝒖𝒄𝒓𝒐𝒑] = cropvolume(𝒖, 𝒛𝒎𝒂𝒙, 𝒛𝒎𝒊𝒏, 𝒛) 

• Using z calculate the index of the third dimension of z corresponding to 𝒛𝒎𝒂𝒙. Assign this 

value to the variable 𝒊𝒏𝒅𝒆𝒙𝟏 

• Using z calculate the index of the third dimension of z corresponding to 𝒛𝒎𝒊𝒏. Assign this 

value to the variable 𝒊𝒏𝒅𝒆𝒙𝟐 

• Create an array 𝒄𝒓𝒐𝒑 of size equal to 𝒖 and initialise values to infinity 

• Assign the value of zero to all elements in 𝒄𝒓𝒐𝒑 with a third-dimension index ≤ 𝒊𝒏𝒅𝒆𝒙𝟏 or 

≥ 𝒊𝒏𝒅𝒆𝒙𝟐 

• 𝒖𝒄𝒓𝒐𝒑 = min(−𝒖, 𝒄𝒓𝒐𝒑). This performs the Boolean subtraction 

https://github.com/iecheta/LatticeLib/blob/main/functions/cropvolume.m
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Surface analysis 

Inputs 

𝑛 = the number of points on the surface. 𝑚 = number of strut medial axes 

𝒔𝒖𝒓𝒇𝒂𝒄𝒆𝑽𝒆𝒓𝒕𝒊𝒄𝒆𝒔 n x 3 matrix of surface points 
𝒔𝒕𝒓𝒖𝒕𝑽𝒆𝒓𝒕𝒊𝒄𝒆𝒔 3 x 2m matrix of strut start/end points. For example, columns 1 and 2 store the 

start/end points of one medial axis, then columns 3 and 4 store another strut 

etc. 
𝒔𝒕𝒓𝒖𝒕𝑰𝑫 Row binary vector showing which pairs of adjacent columns strutVertices 

should be used for the medial axis 

Outputs 

𝑛 = the number of points on the surface 

𝒔𝒖𝒓𝒇𝒂𝒄𝒆𝑵𝒐𝒓𝒎𝒂𝒍𝒔 n x 3 matrix of surface normals 

𝒔𝒕𝒓𝒖𝒕𝑨𝒏𝒈𝒍𝒆 n x 1 vector of overhang angle 𝜃 (in degrees) of the strut that each point on 

the surface is associated to 

𝒔𝒌𝒊𝒏𝑨𝒏𝒈𝒍𝒆 n x 1 vector of surface angle 𝛼 (in degrees) between surface normal and 

reference vector (normalRef). Angular range of 0-180 degrees 

𝒕 n x 1 vector of intersection ratios of all points (these values are modified 

where necessary so that 𝑡 is never < 0 or > 1) 

𝒏𝒐𝒓𝒎𝒂𝒍𝑹𝒆𝒇 n x 3 matrix of reference vectors used for calculating surface angle for each 

point 

𝒗𝒂𝒓𝒈𝒐𝒖𝒕{𝟏} n x 1 vector of distances between surface points and closest strut 

𝒗𝒂𝒓𝒈𝒐𝒖𝒕{𝟐} n x 1 vector of integers used to indicate which medial axis is closest to the 

n-th point. The numbering convention for the integers is arbitrary 

𝒗𝒂𝒓𝒈𝒐𝒖𝒕{𝟑} n x 1 vector of surface angles 𝛼, but with angular range between 0-360° 

 

 

Figure B.6. Pseudocode describing the surface analysis script. 

  

[𝒔𝒖𝒓𝒇𝒂𝒄𝒆𝑵𝒐𝒓𝒎𝒂𝒍𝒔, 𝒔𝒕𝒓𝒖𝒕𝑨𝒏𝒈𝒍𝒆, 𝒔𝒌𝒊𝒏𝑨𝒏𝒈𝒍𝒆, 𝒕, 𝒏𝒐𝒓𝒎𝒂𝒍𝑹𝒆𝒇, 𝒗𝒂𝒓𝒈𝒐𝒖𝒕] = … 

surfaceanalysis(𝒔𝒖𝒓𝒇𝒂𝒄𝒆𝑽𝒆𝒓𝒕𝒊𝒄𝒆𝒔, 𝒔𝒕𝒓𝒖𝒕𝑽𝒆𝒓𝒕𝒊𝒄𝒆𝒔, 𝒔𝒕𝒓𝒖𝒕𝑰𝑫) 

 

• 𝒏𝒖𝒎𝑶𝒇𝑷𝒐𝒊𝒏𝒕𝒔 = the number of rows in 𝒔𝒖𝒓𝒇𝒂𝒄𝒆𝑽𝒆𝒓𝒕𝒊𝒄𝒆𝒔 

• 𝒕𝒐𝒑𝒔𝒖𝒓𝒇 = maximum 𝑧-coordinate of 𝒔𝒖𝒓𝒇𝒂𝒄𝒆𝑽𝒆𝒓𝒕𝒊𝒄𝒆𝒔  

• 𝒃𝒐𝒕𝒕𝒐𝒎𝒔𝒖𝒓𝒇 = minimum 𝑧-coordinate of 𝒔𝒖𝒓𝒇𝒂𝒄𝒆𝑽𝒆𝒓𝒕𝒊𝒄𝒆𝒔  

for 𝒊 = 1 to 𝒏𝒖𝒎𝑶𝒇𝑷𝒐𝒊𝒏𝒕𝒔: 

• 𝒙𝒐 = the 𝒊th row in 𝒔𝒖𝒓𝒇𝒂𝒄𝒆𝑽𝒆𝒓𝒕𝒊𝒄𝒆𝒔  

• Calculate the distances between 𝒙𝒐 and all the medial axes in 𝒔𝒕𝒓𝒖𝒕𝑽𝒆𝒓𝒕𝒊𝒄𝒆𝒔 

• Store the minimum distance in 𝒗𝒂𝒓𝒈𝒐𝒖𝒕{𝟏}. 

• Store the integer corresponding to the closest medial axis in 𝒗𝒂𝒓𝒈𝒐𝒖𝒕{𝟐}. 

• Calculate the reference vector for the closest medial axis, used for calculating surface 

angle 𝛼 

• Calculate the surface normal at 𝒙𝒐 

• Calculate surface angle 𝛼 and store in 𝒗𝒂𝒓𝒈𝒐𝒖𝒕{𝟑} 

https://github.com/iecheta/LatticeLib/blob/main/functions/surfaceanalysis.m
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Appendix C – Texture bias functions 

This appendix discusses the approaches which were considered for applying 

displacements to lattice surfaces, for the modelling of texture bias. Two methods have 

been considered: an implicit definition and an explicit definition.  

With an implicit definition, the displacement 𝛿𝑖 is applied to the point  𝑥⃗𝑖 on the 

surface, where 𝛿𝑖 is randomly selected from a normal distribution, that is  

with mean 𝜇 = 0 and standard deviation 𝜎𝑖. The mean of the normal distribution 

should be zero because 𝜇 < 0 would cause the average strut surface to be less than 

nominal, and vice versa for 𝜇 > 0. The standard deviation in Eq. (C.1) is given by 

If 𝜎𝑖 > 0, a non-zero displacement is applied to  𝑥⃗𝑖 and will modify the surface to 

introduce some irregularities into the surface. Therefore, Eq. (C.2) can be used to 

model texture bias by increasing 𝜎𝑖 for down-skin points and for overhanging struts. 

Note that 𝑡𝑖 is not included in Eq. (C.2) because the random selection of values 

inherently varies 𝛿𝑖 across the strut’s length. Figure C.1a shows an example of Eq. (C.2) 

applying texture bias to the strut in Figure C.1b. 

 𝛿𝑖 = 𝜇 ± 𝜎𝑖 (C.1) 

 𝜎𝑖 =  𝑓(𝛼𝑖, 𝜃𝑖). (C.2) 
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Figure C.1. Example of using pseudorandom displacements 

used to apply texture bias.  (a) Example function which defines 

the standard deviation of the distribution from which 

displacements are applied to a strut surface. (b) An example 

strut after texture bias applied. 

The approach of pseudorandom displacements is useful for fast generation of texture 

bias in strut surfaces, as Eq. (C.1) uses the normal distribution to define displacements 

implicitly, allowing for a simple definition of the surface texture which doesn’t require 

explicitly predefining specific displacements on the surface. One drawback, however, 

is that having no control over the exact values of the displacements can result in highly 

different displacements being applied to adjacent points – this can adversely affect the 

quality of the surface and create tetrahedral meshing issues (note that the likelihood 

of this problem occurring reduces at lower 𝜎 values and can become negligible). 

The second approach is an explicit approach which defines all the displacements that 

will be applied to all the points on the surface. Explicitly defining the displacements 

provides greater control and allows for the modelling of surface defects whilst 

guaranteeing a locally smooth surface (i.e. no sudden changes to adjacent points). 

The function 𝛿𝑖 which explicitly defines the displacement is given by 

 𝛿𝑖 = 𝜓 × 𝜒 × Δ  (C. 3) 
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where  

The three functions 𝜓, 𝜒, Δ enable the surface of a lattice structure to be modified 

depending on the intersection ratio 𝑡 the surface angle 𝛼 and the overhang angle 𝜃. 𝜓 

is a base surface which describes the general distribution of peaks to be applied to all 

the struts. 𝜒 then modified specific areas of 𝜓, depending on the surface angle 𝛼𝑖 which 

allows for the application of texture bias. Δ is a scaling function, which applies equal 

amplification/dampening to all the points on the surface, depending on overhang 

angle, allowing for texture bias to be stronger/weaker in struts with greater/smaller 

overhang angle. Examples of 𝜓, 𝜒, Δ are shown in Figure C.2. The base surface 𝜓 in 

Figure C.2a is given by 

In Eq. (C.5), the two sine terms create peaks of frequency 𝜔𝛼, 𝜔𝑡 in the 𝛼𝑖 and 𝑡𝑖 axes, 

respectively. 

 𝜓 =  𝑓(𝛼𝑖, 𝑡𝑖), 𝜒 =  𝑓(𝛼𝑖), Δ =  𝑓(𝜃).      (C.4) 

 𝜓 =  𝑓(𝛼𝑖, 𝑡𝑖) = sin(𝜔𝛼𝛼𝑖) sin(𝜔𝑡𝑡𝑖). (C.5) 
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Figure C.2. Examples of functions used to explicitly define the 

displacements applied to model surface defects.  (a) Base surface 

ψ.(b) χ applies texture bias by modifying the amplitudes of 

specific areas of ψ, depending on surface angle α. (c) Δ modifies 

all peaks in ψ using a multiplier that is dependent on overhang 

angle θ. 
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Appendix D – Analytical calculation of lattice 

volumes 

This appendix provides the equations used for determining 𝑉𝑆𝐷𝐹
𝑖  for the four 

geometries defined in Chapter 5, Section 5.2.2, (Figure 5.7). 

𝑉𝑆𝐷𝐹,𝑠𝑝ℎ𝑒𝑟𝑒
𝑖  is simply given by 

𝑉𝑆𝐷𝐹,𝑠𝑡𝑟𝑢𝑡
𝑖  can be considered as the sum of the volumes of a cylinder and the volumes 

of two half-spheres (i.e. one sphere), that is 

To calculate 𝑉𝑆𝐷𝐹,𝑟𝑎𝑑
𝑖 , the radius defect geometry (Figure D.1a) must first positioned 

such that its medial axis is coincident with the 𝑦-axis and 𝑙2 is coincident with the 

origin (Figure D.1b). Then, after splitting the geometry in half at the 𝑥𝑧 plane (Figure 

D.1c), 𝑉𝑆𝐷𝐹,𝑟𝑎𝑑
𝑖  can be considered as 

where 𝐴𝑟𝑎𝑑 and 𝐵𝑟𝑎𝑑 are the volumes shown in Figure D.1c, given by 

 

To calculate 𝑉𝑆𝐷𝐹,𝑖𝑛𝑡
𝑖 , the strut intersection (Figure D.2a) must first be positioned such 

that 𝑙2 is coincident with the origin and the medial axis is parallel to the 𝑥𝑦 plane. 

 
𝑉𝑆𝐷𝐹,𝑠𝑝ℎ𝑒𝑟𝑒

𝑖 =
4

3
𝜋𝑟3. (D.1) 

 𝑉𝑆𝐷𝐹,𝑠𝑡𝑟𝑢𝑡
𝑖 = 𝜋𝑟2𝑙 +

4

3
𝜋𝑟3 = 𝜋𝑟2(𝑙 +

4

3
𝑟). (D.2) 

 𝑉𝑆𝐷𝐹,𝑟𝑎𝑑
𝑖 = 2 × (𝐴𝑟𝑎𝑑 + 𝐵𝑟𝑎𝑑) (D.3) 

 
𝐴𝑟𝑎𝑑 =

2

3
𝜋𝑟3 (D.4) 

 

𝐵𝑟𝑎𝑑 = ∫ 𝜋 (
𝑟2 − 𝑟3

|𝑙2 − 𝑙3|
𝑦 + 𝑟3)

2

𝑑𝑦

|𝑙2−𝑙3|

0

 

=
𝜋

3
|𝑙2 − 𝑙3|(𝑟2

2 + 𝑟3𝑟2 + 𝑟3
2) 

(D.5) 
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Next, the strut intersection is split in the 𝑥𝑧 plane (Figure D.2b), this plane can be 

defined by the vector 𝑛⃗⃗ = (𝑎, 𝑏, 𝑐) which is located at the origin 𝑜⃗ = (0, 0, 0), Next, a 

rotation of 𝜃 (in degrees) is applied in the 𝑧 axis, such that the medial axis 

(disregarding the part of the medial axis that was split off) is coincident with the 𝑦 axis 

(Figure D.2c). As shown in Figure D.2d, 𝑉𝑆𝐷𝐹,𝑖𝑛𝑡
𝑖  can then be considered as  

where 

where 𝑥1 = 0, 𝑥2 = 𝑟, 𝑧1 = −√𝑟2 − 𝑥2, 𝑧2 = √𝑟2 − 𝑥2, 𝑦2 = |𝑙2 − 𝑙3| and 𝑦1 is the plane 

defined by the vector 𝑛⃗⃗ = (𝑎, 𝑏, 𝑐) located at the origin. Therefore,  

which simplifies to 

because 𝑑 = 𝑛⃗⃗ ∙ 𝑜⃗ = 0, and 𝑐 = 0 (as 𝑛⃗⃗ is in the 𝑥𝑦 plane). 

 𝑉𝑆𝐷𝐹,𝑖𝑛𝑡
𝑖 = 2 × (𝐴𝑖𝑛𝑡 + 𝐵𝑖𝑛𝑡 + 𝐶𝑖𝑛𝑡 + 𝐷𝑖𝑛𝑡) (D.6) 

 𝐴𝑖𝑛𝑡 =
𝜋

2
𝑟2|𝑙2 − 𝑙3| (D.7) 

 
𝐵𝑖𝑛𝑡 =

2

3
𝜋𝑟3 (D.8) 

 
𝐶𝑖𝑛𝑡 =

4

3
𝜋𝑟3 × (

𝜃

360
) (D.9) 

 
𝐷𝑖𝑛𝑡 = ∫ ∫ ∫ 1

𝑥2

𝑥1

𝑑𝑥 𝑑𝑧 𝑑𝑦
𝑧2

𝑧1

𝑦2

𝑦1

 (D.10) 

 𝑦1 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 (D.11) 

 𝑦1 = 𝑎𝑥 + 𝑏𝑦 (D.12) 
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Figure D.1. Volume calculation for the radius defect. The initial 

geometry (a) is divided into two sections (b) from which the 

volumes of 𝐴𝑟𝑎𝑑 and 𝐵𝑟𝑎𝑑 can be derived. 

 

Figure D.2. Volume calculation for the strut intersection. The 

initial geometry (a) is divided into two sections (b) and 

repositioned in the coordinate system (c), after which the 

volumes of 𝐴𝑖𝑛𝑡, 𝐵𝑖𝑛𝑡, 𝐶𝑖𝑛𝑡 and 𝐷𝑖𝑛𝑡 can be derived. 
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