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Abstract

This thesis captures the ongoing development of twisted cubes, which is a modification

of cubes (in a topological sense) where its homotopy type theory does not require paths

or higher paths to be invertible. My original motivation to develop the twisted cubes

was to resolve the incompatibility between cubical type theory and directed type theory.

The development of twisted cubes is still in the early stages and the intermediate

goal, for now, is to define a twisted cube category and its twisted cubical sets that can be

used to construct a potential definition of (∞,n)-categories.

The intermediate goal above leads me to discover a novel framework that uses

graph theory to transform convex polytopes, such as simplices and (standard) cubes, into

base categories. Intuitively, an n-dimensional polytope is transformed into a directed

graph consists 0-faces (extreme points) of the polytope as its nodes and 1-faces of the
polytope as its edges. Then, we define the base category as the full subcategory of the

graph category induced by the family of these graphs from all n-dimensional cases.

With this framework, the modification from cubes to twisted cubes can formally be

done by reversing some edges of cube graphs. Equivalently, the twisted n-cube graph
is the result of a certain endofunctor being applied n times to the singleton graph; this

endofunctor (called twisted prism functor) duplicates the input, reverses all edges in the

first copy, and then pairwisely links nodes from the first copy to the second copy.

The core feature of a twisted graph is its unique Hamiltonian path, which is useful

to prove many properties of twisted cubes. In particular, the reflexive transitive closure

of a twisted graph is isomorphic to the simplex graph counterpart, which remarkably

suggests that twisted cubes not only relate to (standard) cubes but also simplices.
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Chapter

1

Introduction

§ 1.1 Motivation and Overview

Twisted cubes was born from a motivation to fix the incompatibility issue between two

of the most important sub-disciplines in homotopy type theory, which are cubical type

theory and directed type theory:

• Cubical type theory interprets cubical sets (together with at least certain model struc-

tures) as ∞-groupoids; opening a new perspective of an equality type (a.k.a. path

type) of some ambient type A as a function from the interval type to A (see sec-

tion 2.6 for further detail).

• Directed type theory generalises the interpretation of types from ∞-groupoids to

∞-categories; in other words, it removes the constraint on the equality types to

not necessarily be invertible types (see section 2.5 for further detail).

10



The incompatibility issue between these two sub-disciplines arises from the fact that

cubical sets, when combined with the Kan filler condition, can produce an invertible

counterpart for all paths. This “built-in” invertibility, although it is one intended inter-

pretation for many areas of homotopy theory theory, is not desirable for directed type

theory, e.g. in concurrency where a non-invertible entity such as time plays a vital role.

⟨𝟶𝟷⟩ ⟨𝟷𝟷⟩ y x ⟨𝟶𝟷⟩ ⟨𝟷𝟷⟩

⟨𝟶𝟶⟩ ⟨𝟷𝟶⟩ x x ⟨𝟶𝟶⟩ ⟨𝟷𝟶⟩

〈⋆𝟷〉

〈⋆𝟶〉

〈𝟷⋆〉〈𝟶⋆〉

id(x)

p id(x)

p−1

〈𝟶⋆〉 〈𝟷⋆〉

〈⋆𝟶〉

〈⋆𝟷〉

Figure 1.1: Standard 2-cube (left) has a built-in invertibility (middle). This can be
removed by reversing the arrow ⟨𝟶⋆⟩ and then become twisted 2-cube (right).

To really understand the problem, we need to know what cubes (in section 3.1)

and the Kan filler condition (in subsection 3.1.7) really are; but for now, it is suffice to

use the left square in figure 1.1 to illustrates a 2-dimensional cube; here, the Kan filler

condition states that if we have a square with exactly one side missing, we can use the

condition to find the missing one and fill the inside.

The middle square in figure 1.1 shows us that, given a path p from point x to point
y, we can always find an inverse of p, denoted as p−1 , by assigning ⟨𝟶⋆⟩, ⟨⋆𝟶⟩, and
⟨𝟷⋆⟩ with p, id(x), and id(x), respectively; then, the missing one is ⟨⋆𝟷⟩, which we can

use the Kan filler condition to find and assign it to be p−1 . Actually, p−1 can be produced

regardless of what square side is used as the missing one. Please see subsection 3.2.1

for a deeper explanation of this built-in invertibility.

To tackle this issue, we forcefully reverses ⟨𝟶⋆⟩ from the right square in figure 1.1

upside down and restrict the Kan filling condition to accept only ⟨𝟷⋆⟩ as the missing
face. We call this modified square a twisted 2-cube, which invalidate the problematic

method in the previous paragraph. In addition, the arrangement of ⟨𝟶⋆⟩, ⟨⋆𝟶⟩, and ⟨𝟷⋆⟩

11



in the right square (i.e. twisted 2-cube) in figure 1.1 really resembles how composition

in category theory works. Section 1.3 will later discuss about this.

This intuition of a twisted 2-cube, as a modification of a “standard” 2-cube, may
seems artificial and specific to the case of 2 dimensions, but the number of dimensions
can indeed be generalised to arbitrary natural number n. In other words, we can define

a twisted n-cube, which is denoted as 𝕀n⋈ , as a modification of a standard n-cube, which
is denoted as 𝕀n◻ .

We informally construct 𝕀n⋈ by recursion on the natural number n. For the base
case, we define 𝕀0⋈ as 𝕀0◻ , which is just the unique point in 0-dimensional space.
For the recursive case, we use the process called thickening-and-twisting that transforms

𝕀n⋈ into 𝕀(n+1)
⋈ as follows:

• The thickening phase — we prepend a new dimension as the first dimension and

expand 𝕀n⋈ along this new dimension to get (𝕀 × 𝕀n⋈ ); this thickening phase is

actually the same as constructing 𝕀(n+1)
◻ from 𝕀n⋈ , i.e. its cylinder object.

• The twisting phase — we reverse every direction in all other dimensions at the

starting point of the new dimension.

Figure 1.2 shows how this process transforms 𝕀0⋈ to 𝕀1⋈ then 𝕀2⋈ and then 𝕀3◻ , iteratively.

Every n-cube (either twisted or standard) will have (n − 1)-cubes enclosed as its

boundary that are called facets (see definition 3.5). We use a notation b∂nr to represent

the facet of an n-cube located at where the value at dimension r is b where (𝟶 ⩽ b ⩽ 𝟷)
and (0 ⩽ r < n) . For example, figure 1.3 shows all possible facets with n ⩽ 3.

One important property of standard cubes which twisted cubes retain is that every

facet of a twisted n-cube is a twisted (n − 1)-cube (see subsection 3.2.4). An interesting

example is the construction of 𝕀3⋈ in figure 1.2 where the left and right facets of 𝕀3⋈
are already 𝕀2⋈ in thickening phase whereas the rest are (𝕀 × 𝕀1⋈); the twisting phase

doesn’t affected the right facet but reversed the left facet entirely (yet it is still 𝕀2⋈).

12



⟨⟩ ⟨𝟶⟩ ⟨𝟷⟩ ⟨𝟶⟩ ⟨𝟷⟩

⟨𝟷⟩ ⟨𝟶𝟷⟩ ⟨𝟷𝟷⟩ ⟨𝟶𝟷⟩ ⟨𝟷𝟷⟩

⟨𝟶⟩ ⟨𝟶𝟶⟩ ⟨𝟷𝟶⟩ ⟨𝟶𝟶⟩ ⟨𝟷𝟶⟩

⟨𝟷𝟷⟩ ⟨𝟶𝟷𝟷⟩ ⟨𝟷𝟷𝟷⟩ ⟨𝟶𝟷𝟷⟩ ⟨𝟷𝟷𝟷⟩

⟨𝟷𝟶⟩ ⟨𝟶𝟷𝟶⟩ ⟨𝟷𝟷𝟶⟩ ⟨𝟶𝟷𝟶⟩ ⟨𝟷𝟷𝟶⟩

⟨𝟶𝟷⟩ ⟨𝟶𝟶𝟷⟩ ⟨𝟷𝟶𝟷⟩ ⟨𝟶𝟶𝟷⟩ ⟨𝟷𝟶𝟷⟩

⟨𝟶𝟶⟩ ⟨𝟶𝟶𝟶⟩ ⟨𝟷𝟶𝟶⟩ ⟨𝟶𝟶𝟶⟩ ⟨𝟷𝟶𝟶⟩

Figure 1.2: The thickening-and-twisting process for (n ⩽ 2); where the first column (𝕀n⋈ )
is thicken into the next one (𝕀 × 𝕀n⋈ ), which is then twisted into the last one (𝕀(n+1)

⋈ ).

〈𝟶〉
𝟶∂1

0

〈𝟷〉
𝟷∂1

0
⟨𝟶𝟷𝟷⟩ ⟨𝟷𝟷𝟷⟩

⟨𝟶𝟷𝟶⟩ ⟨𝟷𝟷𝟶⟩

⟨𝟶𝟷⟩ ⟨𝟷𝟷⟩ ⟨⋆⋆⋆⟩

⟨⋆⋆⟩ ⟨𝟶𝟶𝟷⟩ ⟨𝟷𝟶𝟷⟩

⟨𝟶𝟶⟩ ⟨𝟷𝟶⟩ ⟨𝟶𝟶𝟶⟩ ⟨𝟷𝟶𝟶⟩

〈𝟶⋆〉𝟶∂2
0 〈𝟷⋆〉𝟷∂2

0

〈⋆𝟷〉
𝟷∂2

1

〈⋆𝟶〉

𝟶∂2
1

〈⋆〉

〈𝟶⋆⋆〉 𝟶∂3
0 〈𝟷⋆⋆〉 𝟷∂3

0

〈⋆𝟶⋆〉 𝟶∂3
1

〈⋆𝟷⋆〉 𝟷∂3
1

〈⋆⋆𝟶〉 𝟶∂3
2

〈⋆⋆𝟷〉 𝟷∂3
2

Figure 1.3: Illustration of 𝕀1⋈ , 𝕀2⋈ , and 𝕀3⋈ annotated with ternary numbers and b∂nr .

13



§ 1.2 Related Work

Most of related references will be cited along chapter 2, which is about prerequisite

disciplines; in particular, references in directed type theory (section 2.5) and cubical

type theory (section 2.6). In order to avoid repeated citation, this section will only

mention the related references that haven’t been cited before (or will be cited along in

chapter 2).

When I first came up with this idea of twisted cubes, I tried to search though

the literature to assure that I had not coincidentally rediscovered someone else’s idea.

Although the idea itself did not exist before, the “twisted square” pattern does appear

elsewhere in other usages, i.e. in the fundamental polygon of the Klein Bottle [Hat02,

section 2.1, page 102] and the twisted arrow categories [Law70] (a.k.a. the categories of

factorisations [BW85]). However, it is unclear how to generalise these ideas to more than

squares; but that is not a problem because they have been developed to solve different

problems; for example, there is a notion of twisted systems [Err99], that uses the twisted

arrow categories to model categorical transition systems.

Prior to this thesis, the idea of twisted cubes has been published as a paper [PK20],

with the title “From Cubes to Twisted Cubes via Graph Morphisms in Type Theory” (co-

authored with Nicolai Kraus), in the post-proceedings of TYPES2019 (an international

conference dedicated to type theory and its related fields). This paper is indeed used to

form a backbone of this thesis. Beside the main paper, the idea of twisted cubes has

been further published as two extended abstracts. The first extended abstract [PK19]

was accepted to TYPES2019 under the title “Twisted Cubes” (co-authored with Nicolai

Kraus), which is a sketch in preparation of the main paper above. The second extended

abstract [Pin21] was accepted to TYPES2021 under the title “Interpreting Twisted Cubes

14



as Partially Ordered Spaces”. The main concept with the relevant perspectives of these

three papers is properly utilized in order to improve the idea of twisted cubes proposed

in this thesis.

Last but not least, I would like to reference two extended abstracts that I did

during this PhD but prior to the discovery of the twisted cubes. This might not be

directly related to twisted cubes but it was important for me to understand type theory

anyway. The first extended abstract [AP17] was accepted to TYPES2017 under the title

“Monadic Containers and Universes” (co-authored with Thorsten Altenkirch, my super-

visor), which explores the relationship between monadic containers [Abo+03; AAG05]

and type theoretic universes that are closed under sigma-types and unit-types. The

second extended abstract [AP18] was accepted to TYPES2018 under the title “Integers as

a Higher Inductive Type” (again, co-authored with Thorsten Altenkirch, my supervisor),

which applies the feature of quotient inductive types [AK16] to modify the canonical

type of natural numbers to be a type of integers by further stating that the constructor

succ : ℕ → ℕ is an equivalence.
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§ 1.3 Application to (Higher) Category Theory

Please note that, this section enforces convention 3.3 (first index as zero).

Twisted cubes do not only remove the discussed source of invertibility, but they also

change the way we view the composition of morphisms. The filling of a standard

2-cube can be interpreted as the statement “the composition of two edges equals the

composition of the other two edges” (see figure 3.8); if we want to see the lid as the

composition of the three other edges, then one of them has to be inverted. In contrast,

the lid of a twisted 2-cube can directly be seen as the single composition of the three

other edges (see the right digram of figure 1.1).

Embedding Categorial Composition: In category theory, to compose any morph-

ism f to morphism g in some category 𝒞, it is necessary that the codomain of f must
be strictly equal to the domain of g. This equality is as strict as the associativity and

unital laws; however, when generalising a category into a weak higher category, we

never relax this equality into an equivalence in the same way that associativity and

unital laws become associator and unitors. Sure, this relaxation hasn’t had any practical

motivations, but if someone want to try this, then the shape of composition will change

from triangle to twisted 2-cube as figure 1.4 illustrates.

x z x z dom(f) cod(g)

y y y cod(f) dom(g)

f g

f ⬝ g

f g

id(y)

f ⬝ g

f ◉ g f g

p

f ⬝p g

f ◉p g

Figure 1.4: Generalising categorical composition to a twisted 2-cube.
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This relaxation allows us to think that the composition is a (meta) function that takes

any pair of morphisms f and g then returns another function that takes an equivalence

between cod(f) and dom(g) then returns a morphism from dom(f) to cod(g).

(𝝺 ❲p❳ ⇒ f ⬝p g) : equiv( cod(f) , dom(g) ) → morph( dom(f) , cod(g) )

We also use a notation (f ◉p g) as the filler that has (f ⬝p g) as its lid. Please note that,
unlike the traditional definition of composition, this (meta) function doesn’t require an

instantiation of the objects that are domains/codomains of the inputting morphisms,

which is similar to how a path is encoded in existing models of cubical type theory.

Embedding 2-Cell in Twisted 2-Cube: Twisted 2-cube isn’t only a target to gen-
eralise a composition but also a target to generalise 2-cell, i.e. morphism between

morphisms; to construct a 2-cell α from morphism f to morphism g, we need to ensure
that the domain and codomain of f are strictly equal to g counterpart. These strictly

equalities can be relaxed in same way that we do for the composition as illustrated

in figure 1.5.

x y dom(g) cod(g)

x α y α α

x y dom(f) cod(f)f

g

f

id(y)id(x)

g

f

qp

g

Figure 1.5: Generalising categorical 2-cell to a twisted 2-cube.

This relaxation allows a 2-cell from f to g to be seen as ⟨ p , q , α ⟩ such that

• p is an equivalence between dom(f) and dom(g),
• q is an equivalence between cod(f) and cod(g), and
• α is a filler with the boundary f, g, p, and q.
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Please note that, unlike the traditional definition of 2-cell, the “hom-set” from f to g
doesn’t require f and g to have the same domain and codomain, we just need to find

equivalences p and q to prepend a 2-cell. This fits well with how cubical type theories

construct a 2-path, i.e. they construct an arbitrary standard 2-cube first then assign its

domain and codomain later.

Embedding n-Cell in Twisted n-Cube: The generalisation from a 2-cell to a

twisted 2-cube can be lifted as the generalisation from an n-cell to a twisted n-cube; for
example, figure 1.6 shows how a 3-cell can be generalised to a twisted 3-cube.

x y

x y

x y

x y

x y

g

g

f

f

id(id(x)) id(id(y))

α

β

id(g)

id(f)

γ

f

g

α β
γ

Figure 1.6: Generalising categorical 3-cell to a twisted 3-cube.

An interesting observation in figure 1.6 is that α and β must use facets 𝟷∂30 and 𝟷∂31
because only at dimension 0 that both facets has the same orientation. This is also true

when n :≡ 2 in figure 1.5; in fact, for any twisted n-cube, the facet 𝟶∂nr will have the

same orientation as the facet 𝟷∂nr iff (r = 0); the proof can be easily deduced from

subsection 3.2.5. Please note that, this is not the case for standard n-cubes.
This leads me to the following conjecture.
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◤ Conjecture 1.1 ⬣ Let f and g be (n − 1) cells in some higher category and let

α be an n-cell from f to g; then, α can be embed as a twisted n-cube such that

• its facet 𝟶∂n0 is assigned to f,
• its facet 𝟷∂n0 is assigned to g, and
• the rest of facets are the canonical choices of degenerated (n − 1)-cell
determined by the shared boundaries with f and g.

The embedding above can be further generalised as:

• if f and g don’t share the same domains or codomains,

• there is a (n − 1)-cell named p as an equivalence from dom(f) to dom(g),
• there is a (n − 1)-cell named q as an equivalence from cod(f) to cod(g), and
• α is a generalised n-cell from f to g with p and q as boundaries

(similar to the right diagram of figure 1.5);

then, α can also be embed as a twisted n-cube such that

• its facet 𝟶∂n0 is assigned to f,
• its facet 𝟷∂n0 is assigned to g,
• its facet 𝟶∂n1 is assigned to p,
• its facet 𝟷∂n1 is assigned to q, and
• the rest of facets are the canonical choices of degenerated (n − 1)-cell
determined by the shared boundaries with f, g, p, and q.

Moreover, if p and g don’t share the same domains or codomains

but there are equivalences with their respective domains and codomains,

then those equivalences will be assigned as 𝟶∂n2 and 𝟷∂n2 .
This iterative process can be repeated until the facets

at dimension (n − 1) are assigned. ◢
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Compositing Higher Twisted Cubes: Recall that the composition for twisted 1-
cubes can be seen as a construction of a twisted 2-cube by a Kan-filling condition that

restrict the facet 𝟷∂21 as the only possible lid. Similarly, the composition for twisted

2-cubes can be seen as a construction of a twisted 3-cube by a Kan-filling condition.

However, there are 2 ways to compose twisted 2-cubes:

The first way uses the facet ⟨⋆𝟷⋆⟩ as the lid; imagine that we look into 𝕀3⋈
in figure 1.3 from the above through the facet ⟨⋆𝟷⋆⟩, this results in the perspective

projection shown as the left diagram in figure 1.7. The following composition algorithm

transforms the path ⟨𝟶𝟷𝟷⟩-⟨𝟶𝟷𝟶⟩-⟨𝟷𝟷𝟶⟩-⟨𝟷𝟷𝟷⟩ to ⟨𝟶𝟷𝟷⟩-⟨𝟷𝟷𝟷⟩ using other five facets.

⟨𝟶𝟷𝟷⟩-⟨𝟶𝟷𝟶⟩-⟨𝟷𝟷𝟶⟩-⟨𝟷𝟷𝟷⟩

⇒ ⟨𝟶𝟷𝟷⟩-⟨𝟶𝟷𝟶⟩-⟨𝟶𝟶𝟶⟩-⟨𝟷𝟶𝟶⟩-⟨𝟷𝟷𝟶⟩-⟨𝟷𝟷𝟷⟩ [using ⟨⋆⋆𝟶⟩ backwardly]

⇒ ⟨𝟶𝟷𝟷⟩-⟨𝟶𝟷𝟶⟩-⟨𝟶𝟶𝟶⟩-⟨𝟶𝟶𝟷⟩-⟨𝟷𝟶𝟷⟩-⟨𝟷𝟶𝟶⟩-⟨𝟷𝟷𝟶⟩-⟨𝟷𝟷𝟷⟩ [using ⟨⋆𝟶⋆⟩ backwardly]

⇒ ⟨𝟶𝟷𝟷⟩-⟨𝟶𝟶𝟷⟩-⟨𝟷𝟶𝟷⟩-⟨𝟷𝟶𝟶⟩-⟨𝟷𝟷𝟶⟩-⟨𝟷𝟷𝟷⟩ [using ⟨𝟶⋆⋆⟩ forwardly]

⇒ ⟨𝟶𝟷𝟷⟩-⟨𝟶𝟶𝟷⟩-⟨𝟷𝟶𝟷⟩-⟨𝟷𝟷𝟷⟩ [using ⟨𝟷⋆⋆⟩ forwardly]

⇒ ⟨𝟶𝟷𝟷⟩-⟨𝟷𝟷𝟷⟩ [using ⟨⋆⋆𝟷⟩ forwardly]

The second way uses the facet ⟨⋆⋆𝟷⟩ as the lid; imagine that we look into 𝕀3⋈
in figure 1.3 from the back through the facet ⟨⋆⋆𝟷⟩, this results in the perspective

projection shown as the right diagram in figure 1.7. The following composition algorithm

transforms the path ⟨𝟶𝟷𝟷⟩-⟨𝟶𝟶𝟷⟩-⟨𝟷𝟶𝟷⟩-⟨𝟷𝟷𝟷⟩ to ⟨𝟶𝟷𝟷⟩-⟨𝟷𝟷𝟷⟩ using other five facets.

⟨𝟶𝟷𝟷⟩-⟨𝟶𝟶𝟷⟩-⟨𝟷𝟶𝟷⟩-⟨𝟷𝟷𝟷⟩

⇒ ⟨𝟶𝟷𝟷⟩-⟨𝟶𝟷𝟶⟩-⟨𝟶𝟶𝟶⟩-⟨𝟶𝟶𝟷⟩-⟨𝟷𝟶𝟷⟩-⟨𝟷𝟷𝟷⟩ [using ⟨𝟶⋆⋆⟩ backwardly]

⇒ ⟨𝟶𝟷𝟷⟩-⟨𝟶𝟷𝟶⟩-⟨𝟶𝟶𝟶⟩-⟨𝟶𝟶𝟷⟩-⟨𝟷𝟶𝟷⟩-⟨𝟷𝟶𝟶⟩-⟨𝟷𝟷𝟶⟩-⟨𝟷𝟷𝟷⟩ [using ⟨𝟷⋆⋆⟩ backwardly]

⇒ ⟨𝟶𝟷𝟷⟩-⟨𝟶𝟷𝟶⟩-⟨𝟶𝟶𝟶⟩-⟨𝟷𝟶𝟶⟩-⟨𝟷𝟷𝟶⟩-⟨𝟷𝟷𝟷⟩ [using ⟨⋆𝟶⋆⟩ forwardly]

⇒ ⟨𝟶𝟷𝟷⟩-⟨𝟶𝟷𝟶⟩-⟨𝟷𝟷𝟶⟩-⟨𝟷𝟷𝟷⟩ [using ⟨⋆⋆𝟶⟩ forwardly]

⇒ ⟨𝟶𝟷𝟷⟩-⟨𝟷𝟷𝟷⟩ [using ⟨⋆𝟷⋆⟩ forwardly]

20



This pattern of composition leads me to the following conjecture.

◤ Conjecture 1.2 ⬣ There should be n ways to compose twisted n-cubes. Each
way r, for all (0 ⩽ r < n), will construct a twisted (n + 1)-cube by a Kan-filling

condition that uses the facet 𝟷∂n+1
r+1 as its lid. ◢

⟨𝟶𝟷𝟷⟩ ⟨𝟷𝟷𝟷⟩ ⟨𝟶𝟷𝟷⟩ ⟨𝟷𝟷𝟷⟩

⟨𝟶𝟶𝟷⟩ ⟨𝟷𝟶𝟷⟩ ⟨𝟶𝟷𝟶⟩ ⟨𝟷𝟷𝟶⟩

⟨𝟶𝟶𝟶⟩ ⟨𝟷𝟶𝟶⟩ ⟨𝟶𝟶𝟶⟩ ⟨𝟷𝟶𝟶⟩

⟨𝟶𝟷𝟶⟩ ⟨𝟷𝟷𝟶⟩ ⟨𝟶𝟶𝟷⟩ ⟨𝟷𝟶𝟷⟩

〈⋆⋆𝟶〉

〈⋆⋆𝟷〉

〈𝟶⋆⋆〉 〈𝟷⋆⋆〉

〈⋆𝟶⋆〉

〈⋆𝟷⋆〉

〈𝟶⋆⋆〉 〈𝟷⋆⋆〉〈⋆𝟶⋆〉 〈⋆⋆𝟶〉

Figure 1.7: Looking 𝕀3⋈ from ⟨⋆𝟷⋆⟩ downward (left) and from ⟨⋆⋆𝟷⟩ outward (right).

Embedding Higher Composition: Surprisingly, the first way to compose twisted

2-cubes generalises the horizontal composition between 2-cells whereas the second way
generalises the vertical composition; please see figure 1.8 for their illustrations.

This observation lead me to conjecture 1.3.

◤ Conjecture 1.3 ⬣ Each way r, for all (0 ⩽ r < n), to compose twisted n-cubes
discussed in conjecture 1.2 should generalises each corresponded way to compose n-cells
in a higher category. For example:

• The first (and only) way to compose twisted 1-cubes is with the 1-composition.

• The first way to compose twisted 2-cubes is with the horizontal 2-composition.

• The second way to compose twisted 2-cubes is with the vertical 3-composition.
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To be more precise, let α and β be a pair of (way-r) composable n-cells then there

is a twisted (n + 1) cube such that

• its facet 𝟶∂n+1r is assigned to the twisted n-cube that embedded α,

• its facet 𝟷∂n+1r is assigned to the twisted n-cube that embedded β,

• its facet 𝟷∂n+1
r+1 is assigned to the twisted n-cube that embedded

the result of way-r composition from α to β, and

• the rest of facets are the canonical choices of degenerated (n − 1)-cell determined
by the shared boundaries with α, β, and the result of composition. ◢

x z x y

y y x y

y y x y

x z x y

x y z x y

f ⬝ f′

g ⬝ g′

g

f

g′

f′

g

h

f

g

f

h

g

f

g

f′

g′

f ◉ f′

g ◉ g′

α β

α

β

id(id(x)) id(id(y))

β

α

α β

id(g)id(id(y))

Figure 1.8: Generalising horizontal (left) and vertical (right) compositions.
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Chapter

2

Prerequisite Disciplines

In order to make the main ideas and concepts proposed in this thesis easier to understand

and accessible to wider audience, this chapter introduces the important fundamental

knowledge regarding twisted cubes.

Please note that, this chapter also take this opportunity to establish further non-

standard conventions as well as review some more relevant literature.

§ 2.1 Dependent Type Theory

Dependent type theory (or just type theory for short) is a discipline that lies between pure

mathematics and theoretical computer science.
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§ 2.1.1 From a Mathematical Perspective

Type theory is the study of formal systems, which are also called type theories, that can

be used as foundations of mathematics alternative to set theories. The notable example

of type theories is the Martin-Löf intensional type theory (or MLTT for short) [Martin-

Löf72; Martin-Löf73; Martin-Löf79; Martin-Löf84], which is the original dependent type

theory proposed by Per Erik Rutger Martin-Löf.

The most important entities in any type theory are called types. A type will have

zero or more associated entities called terms. We use the form of judgements

t : A

to denote that a term t belongs to a type A. Intuitively, a type can be interpreted as

a set where each of its terms will be interpreted into an element of the set correspond

to the original type. In fact, many sets in Zermelo-Fraenkel set theory, which is the

most commonly accepted standard foundation of mathematics, can be translated to a

type theory. This allows most of the mathematical concepts that have been formalised

in (axiomatised) set theories, to be naturally formalised in type theories; however, this

process is non-trivial because sets and types are built by different concepts. Please

see [HoTT, Section 1.1] for more detail.

In addition to the “set-interpretation” from the paragraph above, a type can also

be interpreted as a proposition where any of its terms, if it exists, serves as “evidence”

that the corresponding proposition is valid. In fact, many propositions in most logical

systems, such as propositional or first-order logic, can be translated to a type theory1.

One immediate and important benefit of this interpretation is a new technique to prove

validity of a proposition. This technique encodes a proposition as a type, then try to

1Only if the propositional truncation is included as a type former.
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find one of its term; if successful, then that term will serve as evidence that the original

proposition is valid.

The ability of a type theory to interpret a type as a set and a proposition simultan-

eously gives a type theory an advantage over a set theory. This is because a set theory

needs another logical system, such as first-order logic, to reason about sets. In contrast,

a type theory can use itself2 to reason about types, which removes duplications in many

places in formalisation and even allows us to reason about propositions themselves.

◤ Convention 2.1 (meta theory of this thesis) ⬣
The entire thesis, including this chapter, will use the type theory3 defined in [HoTT,

Chapter 1] as the underlining foundation with modification explained in later conven-

tions. Nevertheless, this meta theory is only for the completeness propose and this thesis

is still aiming to be self-contained as much as possible; so readers who are unfamiliar

with type theory should be able to follow the thesis anyway.

One particular notation that should be mention here anyway is the difference of

between notations ( :≡ ) and (=) where x :≡ t is a judgement stating that a variable
x is assigned to be a term t whereas (a = b) is a type of proofs that a term a is

propositionally equal to a term b.

The reader may intuitively use the traditional set-theoretic foundation for this thesis,

but please keep in mind that the meaning of a set is redefined to be a type that contains

no further information than being a collection of its elements. This is always the case

until we introduce other type theories, e.g. homotopy type theory in section 2.4, which

state that a type represents an ∞-groupoid, which is more general than a set. ◢

2Technically, a type theory can reason only a fraction of itself, otherwise, it will have a Russell-like
paradox. To fully reason about the original type theory, we need another type theory that is large enough
to encode the original type theory.

3Our type theory is not necessary HoTT because we use only chapter 1 where all HoTT concepts
haven’t been introduced.
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§ 2.1.2 From a Programming Perspective

Type theory is also the study of certain (functional) programming languages, which

allows programmers to reason about their program within the same language. The core

idea behind this is called the Curry-Howard correspondence [How80] (a.k.a. propositions

as types) stating that there is one-to-one correspondence between mathematical objects

and computer programs. Therefore, a mathematical proof can be recursively translated

into a computer program, and vice versa. For example:

• Logical conjunctions (∧) correspond to Cartesian products (×):
The statement “proposition (P ∧ Q) is valid if and only if both propositions P
and Q are vaild” is similar to statement “a term of type (P × Q) is constructed
from terms of types P and Q”.

• Logical implications (→) correspond to functions (→):
The statement “if proposition (P → Q) is valid then the validity of Q can be

derived from the validity of P” is similar to statement “with a function f of type
(P → Q), a term of type Q can be constructed from a term of type P by applying

it to f”. This is also the reason why we can overload the symbol (→) for both
logical implication and function without any ambiguity.

Using the fact that every type theory is both a foundation of mathematics and a

programming language, one can build a proof assistant (a.k.a. interactive theorem prover),

which is a compiler of the specific programming language that allows mathematicians

to formalise their mathematical objects by writing them as computer programs. If those

programs are successfully compiled, then the original mathematical objects are well

defined. By doing a formalisation, mathematicians can be confident that their theorems

are consistent, at least up to the consistency of the underline type theory itself, and there
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are no human errors to be concerned with. The concept of mathematical formalisation

is an active area of research and there are several well-known proof assistants such as:

Coq [Coq], Agda [Agda; AgdaD], Idris [Idris], and Lean [Lean].

The paragraph above explains how mathematics benefits from computer science;

conversely, computer science also benefits from mathematics because programmers can

use a proof assistant to verify that their programs respect certain laws of its specification.

The process is: First, programmers treat a proof assistant as an ordinary programming

language and write their programs in it. Then, convert some laws (i.e. proposition)

of its specification into types by the Curry-Howard correspondence. Finally, find a

term for each of those propositions and compile them. If successful, those programs

are guaranteed to respect those specifications (up to the consistency of the type theory

behind each compiler).

Formal verification requires a high learning curve from programmers and takes an

excessive amount of time just to prove some easy proposition. This is infeasible for most

areas in software engineering where “absolute correctness” are not critical and testing

is good enough. Nevertheless, it starts to have some application on some software that

bugs are unacceptable, e.g. software in astronautics, military, finance, or medicine.
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§ 2.2 Category Theory

Category theory is a discipline in pure mathematics that formalises mathematical struc-

tures using categories. It was originally developed by Samuel Eilenberg and Saunders

Mac Lane [EM45] as a tool to study algebraic topology. Subsequently, mathematicians

discovered strong connections from category theory to many other branches in mathem-

atics and related disciplines such as computer science and physics. Nowadays, category

theory is mainly used as a tool to abstract away and unify many concepts among differ-

ent academic disciplines. Due to its accumulating complexity, category theory became

an important discipline of its own right. There are several text books that introduce the

subject including a book: Categories for the Working Mathematician [Mac98] by Saunders

Mac Lane himself. There is even an encyclopedia [nLab] dedicated to category theory.

Category theory has a profound and substantial connection with type theory. In

particular, the Curry-Howard correspondence can be extended into the Curry-Howard-

Lambek correspondence which is a three-way one-to-one correspondence between math-

ematical objects, computer programs, and categorical entities. For instance, logical

conjunctions and Cartesian products correspond to categorical entities called products

while logical implications and functions correspond to categorical entities called exponen-

tial objects. In fact, one could map an entire structure of any type theory to a categorical

entity called a category with families [CCD19]. Conversely, we can assign a categorical

semantic of a type theory by defining its model using a category with families.

Definition of Categories: The main idea of category theory is about entities

called categories that consist of arrows called morphisms that can be composed with one

another together with associativity and unitality.
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◤ Definition 2.2 ⬣ A record 𝒞 is called a category, if it contains these fields:

• 𝒞.obj — a set of things called objects, which usually abbreviated as ob(𝒞).

• 𝒞.hom(X, Y) — a set of arrows called morphisms from an object X : ob(𝒞) to

another object Y : ob(𝒞) , usually abbreviated as 𝒞(X , Y ), a.k.a. hom-set.

• 𝒞.comp — a function called composition that takes two composable morphisms

f : 𝒞(X , Y ) and g : 𝒞( Y , Z ) then combines them as another morphism

𝒞.comp(f, g) : 𝒞(X , Z ), which usually abbreviated as (f ⬝ g),

together with another field 𝒞.assoc called the associativity law stating that

𝒞.assoc(f, g, h) : f ⬝ (g ⬝ h) = (f ⬝ g) ⬝ h,

i.e. the order of composition doesn’t matter, both sides can be written as f ⬝ g ⬝ h.

• 𝒞.ident — a function that takes X : ob(𝒞) then return an identity morphism

𝒞.ident(X) : 𝒞(X , X ), which usually abbreviated as id(X),

together with fields 𝒞.unitL and 𝒞.unitR called the unitality laws stating that

𝒞.unitL(f) : id(X) ⬝ f = f and 𝒞.unitR(f) : f ⬝ id(X) = f

where f : 𝒞(X , Y ) , i.e. composing any morphism with an identity morphism

(on either side) will result in the morphism itself. ◢

◤ Convention 2.3 (small and large sets) ⬣
To avoid a boilerplate about sets verses proper classes, we redefine the meaning of sets

to possibly include something bigger than (traditional) sets, e.g. a class of all sets is

now a set. The traditional meaning of sets will be referred as small sets whereas proper

classes or larger entities will be referred as large sets. These terminologies will also apply

for categories and other mathematical entities that relate to sets as well. ◢
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◤ Convention 2.4 (direction of composition operation) ⬣
Traditionally, the composition operation in category theory is denoted by (∘) and the

composite direction goes from right to left, i.e. the composition of f : 𝒞(X , Y ) and

g : 𝒞( Y , Z ) is (g ∘ f) : 𝒞(X , Z ) . This traditional convention is borrowed from the

function composition, which is in the form of (g ∘ f)(x) :≡ g(f(x)).

This thesis, in contrast, composes morphisms from left to right because this is

the direction that most other concepts operate. For example, transitivity in relations,

concatenation in sequences, piping in functional programmings, and most importantly

the direction of the arrow that notates function types. To avoid the confusion, we

change the composition notation from (∘) to ( ⬝ ), and reserve the original notation

(∘) for the situation where compositing from right to left is more appropriate. ◢

◤ Example 2.5 ⬣ Prominent examples of categories including:

• the category 𝗦𝗲𝘁 where objects are small sets and morphisms are functions,

• the category 𝗥𝗲𝗹 where objects are small sets and morphisms are relations,

• the category 𝗣𝗼𝘀𝗲𝘁 where objects are partially ordered sets (a.k.a. posets)

and morphisms are order-preserving functions (a.k.a. monotonic functions),

• the category 𝗣𝗿𝗼𝗽 for propositions and logical implications,

• the category 𝗧𝗼𝗽 for topological spaces and continuous functions,

• the category 𝗩𝗲𝗰𝘁 for vector spaces and affine maps. ◢

◤ Convention 2.6 (partial definitions of categorical entities) ⬣
The example above omits composition operations and identity morphisms because they

can be canonically derived from objects and morphisms. In addition, associativity and

unitality are just mere propositions which can be easily proven. We will also partially

define some of the upcoming categories and related categorical entities whenever they

are obvious to do so. ◢
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§ 2.2.1 Commutative Diagrams

One of outstanding features of category theory is the ability to visualise categorical

components by drawing a diagram called a commutative diagram, which visualises

a category (or a fraction of a category) by drawing nodes and arrows to represent

objects and morphisms, respectively. For simplicity, identity morphisms and compositing

morphisms are omitted in a commutative diagram; they must exist by definition of

categories anyway.

Besides objects and morphisms, we need equalities between morphisms to define

categories, e.g. to define associativity and unitality. Each equality can exist as a closed

area in a diagram such that its boundary consists of two (possibly composing) morphism,

we say that the area is commuting if and only if both arrows are equal.

V Y W

X Z

f g h

d e

Figure 2.1: A diagram representing a category 𝒞 as a toy example.

For example, the diagram in figure 2.1 shows a category 𝒞 as a toy example that

has V , X, Y, Z, and W as its objects. This category 𝒞 does not only have d, e, f, g, h
as its morphisms but also id(V), id(X), id(Y), id(Z), id(W), d ⬝ g, d ⬝ e, f ⬝ g, f ⬝ e, g ⬝ h,
d ⬝ g ⬝ h, and f ⬝ g ⬝ h as morphisms as well. The diagram also contains one triangle

that has boundary as g ⬝ h and e; therefore, g ⬝ h must equal to e.

Unless explicitly state otherwise, all of closed areas in any commutative diagram

always commute. In addition, a commutative diagram usually represents only just a

subset of objects and morphisms intending to visualise some information of the category.
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Y Z

X Z X Y Y

X X
f

g

f ⬝ g

id(X)

id(Y)

f

f

ff ⬝ (g ⬝ h)

(f ⬝ g) ⬝ h

Figure 2.2: Diagrams for associativity, unitality, and composition operation.

In figure 2.2, the left diagram visualises the associativity. The middle diagram visualises

the unitality, which doesn’t only contain the lower and upper triangles that visualise

(id(X) ⬝ f = f) and (f = f ⬝ id(Y)), respectively, but also contains a square that visualises
(id(X) ⬝ f = f ⬝ id(Y)). The right diagram visualises the composition operation; it is a

common convention to use a dashed arrow for a newly defined morphism.

§ 2.2.2 Upgrading Sets to Categories

Recall that the main strength of category theory is an ability to transfer some concepts

from one discipline into another. Since the category theory itself is a discipline; therefore,

it can import some concepts from another discipline, such as set theory, which is the

main objective of this subsection. In other words, this section will transfer some

operations in set theory to category theory by upgrading them to operate on categories

instead of sets.

◤ Convention 2.7 (“upgrade” as a custom vocabulary) ⬣
For simplicity, we will simply call the process that transfer some operations in set theory

to category theory as upgrading. Please note that, this is not a standard convention in

the literature and we will restrict its usage to be in this chapter exclusively. ◢
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◤ Example 2.8 ⬣ Many mathematical disciplines have an object of interest as a

set (a.k.a. carrier set) equipped with the rest of components. For example:

• In topology, a topological space is a set (of its points) equipped with its topology.

• In order theory, a partially ordered set is a set equipped with a partial order.

• In logic, a proposition is a set (equipped with nothing) where truth and false are

skeleton set and empty set, respectively.

Similar to how we can assemble those carrier sets to become the category 𝗦𝗲𝘁; we can
assemble topological spaces, posets, and propositions to be become the categories 𝗧𝗼𝗽,
𝗣𝗼𝘀𝗲𝘁, and 𝗣𝗿𝗼𝗽, respectively. ◢

Similar to other objects in example 2.8, a category can be seen as a set of its objects

equipped with the rest of components that we mention in definition 2.2. This allows

us to upgrade any set to a category by adding a meaning behind that set. Since one set

can have multiple meanings, so it can be upgraded to multiple categories depending our

choices of additional morphisms. For instance, the set of all small sets can be upgraded

as both categories 𝗦𝗲𝘁 and 𝗥𝗲𝗹 by defining morphisms to be functions and relations,

respectively.

Despite the non-uniqueness of the upgrading process, a set usually has a category

that is the canonically-upgraded version; we can think about this canonically-upgraded

category as the default choice of upgrading. For instance, e.g. 𝗦𝗲𝘁 is more sensible and
has more applications than 𝗥𝗲𝗹 or the rest of other choices; so, the canonical lifted

version of the set of all small sets is 𝗦𝗲𝘁.

◤ Remark 2.9 ⬣ Our upgrading concept is closely related to categorification but

they are not exactly the same. Categorification means finding a higher dimensional

structure whose lower dimensional part recovers some existing set-level concept. For

example, the category of finite sets is a categorification of the natural numbers. ◢
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Product Categories: Now, let us start upgrading on Cartesian products. To

upgrade the Cartesian product (C × D), we first to upgrade the sets C and D themselves

as categories 𝒞 and 𝒟, then we upgrade (C × D) to the product category (𝒞 × 𝒟),
defined in definition 2.10. Please note that, the object of (𝒞 × 𝒟) is indeed the Cartesian
product (C × D).

◤ Definition 2.10 ⬣ Let 𝒞 and 𝒟 be categories, we define the product category

(𝒞 × 𝒟) as another category that consists of:
• ob(𝒞 × 𝒟) is the Cartesian product between ob(𝒞) and ob(𝒟).
• Let X, X′ : ob(𝒞) and Y, Y′ : ob(𝒟) , a morphism from object ⟨ X , Y ⟩ to object
⟨ X′ , Y′ ⟩ is a pair of morphism in 𝒞(X , X′ ) and morphism 𝒟(Y , Y′ ).

• The rest of the components are defined pairwisely. ◢

Functors: Another important entities to be upgraded are functions. To upgrade

some function f from a set C to a set D, we first upgrade sets C and D to categories 𝒞
and 𝒟, then we upgrade the function f to a functor F, defined in definition 2.11, where

the map on objects of F is indeed the function f itself.

If we look definition 2.11 from the perspective of example 2.8, then the functor F is
the function f equipped with an additional map on morphisms and laws that preserve

identity and composition.
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◤ Definition 2.11 ⬣ A record ℱ is called a functor ℱ from a category 𝒞 to another
category 𝒟, if it contains these fields:

• ℱ.mapObj — a function that maps each object X in ob(𝒞) to another object in

ob(𝒟), Please note that, an image ℱ.mapObj(X) is usually abbreviated as ℱ(X).

• ℱ.mapHom(X, Y)— a function that maps every morphism f in 𝒞(X , Y ) to another
morphism in 𝒟(ℱ(X) , ℱ(Y) ) for all X, Y : ob(𝒞) , Please note that, an image

ℱ.mapHom(X, Y)(f) is usually abbreviated as ℱ(f).

• ℱ.presComp — a proof ensures that the functor preserves composition, i.e.

ℱ.presComp(f, g) : ℱ(f ⬝ g) = ℱ(f) ⬝ ℱ(g).

for each composable morphisms f and g in 𝒞.

• ℱ.presIden — a proof ensures that the functor preserves identity, i.e.

ℱ.presIden( X : ob(𝒞) ) : ℱ(id(X)) = id(ℱ(X)). ◢

𝒞 𝒟

𝒢(X) 𝒢(Y)

ℱ(X) ℱ(Y)

𝒢

ℱ

ℱ(f)

𝒢(f)

α(X) α(Y)

α

Figure 2.3

Natural Transformations: The set of functors from

a category 𝒞 to another category 𝒟 can be canonically up-

graded as the functor category from 𝒞 to 𝒟, denoted as

[𝒞,𝒟] where the morphisms are called natural transform-

ations described below. Let ℱ and 𝒢 be functors from

a category 𝒞 to a category 𝒟, then a natural transforma-

tion α from functor ℱ to functor 𝒢, which consists of a

function that maps each object X : ob(𝒞) to a morph-

ism α(X) : 𝒟(ℱ(X) , 𝒢(X) ) together with a law called

a naturality square. Such a law illustrated as the second

commutative diagram in figure 2.3, which is a visual way

to say that

α(X) ⬝ 𝒢(f) = ℱ(f) ⬝ α(Y) for every f : 𝒞(X , Y ) .

35



Category of Categories: Since sets and functions can be upgraded as categories

and functors, so the category 𝗦𝗲𝘁 as a whole should be able to be upgraded as well.

We may attempt to upgrade 𝗦𝗲𝘁 as another category called 𝗖𝗮𝘁 where objects are small
categories and morphisms are functors between them.

The hom-sets of 𝗦𝗲𝘁 are sets of functions, so their canonically-upgraded version

must be functor categories. However the hom-sets of the category 𝗖𝗮𝘁 must be sets by
the definition of hom-sets. Therefore, we can’t upgrade 𝗦𝗲𝘁 as another category. In fact,

upgrading any category will always result in something more complex than the category

itself because its hom-sets are sets and will be upgraded as hom-categories. This is where

we need to enter the realm of higher category theory later in section 2.3.

Isomorphisms: The concept of upgrading even works on equalities, i.e. a proof

of an equality between two objects in a category can be upgraded as isomorphism.

◤ Definition 2.12 ⬣ Let X and Y be objects in some category 𝒞, a morphism f
in 𝒞(X , Y ) is called isomorphism if it is further equipped with another morphism

f−1 : 𝒞( Y , X ) such that f ⬝ f−1 = id(X) and f−1 ⬝ f = id(Y).

If there exists such an isomorphism f, we also say that “X is isomorphic to Y”, denoted as
(X ≅ Y), which can be seen as an upgraded version of the equality (X = Y) itself. ◢

Isomorphisms are ubiquitous in category theory: Although the (strict) equalities

itself still works on categorical entities, the uniqueness properties in category theory

almost always hold only up to isomorphisms and the corresponding objects may not

necessary (strictly) equal to one another. In other words, isomorphisms are the notion of

sameness in categories. The role of isomorphism will become vital when we generalise

strict higher categories to weak higher categories in section 2.3.
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§ 2.3 Higher Category Theory

Higher category theory is an active discipline that generalises category theory. There

are various ways to generalise categories to higher categories; each of them leads to a

different definition and characteristics of higher categories.

§ 2.3.1 Strict Higher Categories

For pedagogical propose, this subsection still keep associativity and unital laws as equal-

ities, which will be relaxed as isomorphisms, equivalences, even ∞-groupoids later in

the section.

2-Categories: The first and easiest way to generalise a category is to upgrade its

hom-sets to hom-categories, together with an appropriate replacement for the rest of

the components. This results in a new kind of higher categories called 2-categories. To
be more precise, a 2-category ℬ is a higher category representing a upgraded version of

some category 𝒞 such that:

• The set objects ob(𝒞) remains the same but relabelled as ob(ℬ).
Objects are also called 0-cells.

• Every hom-set 𝒞(X , Y ) is upgraded to be a hom-category ℬ(X , Y ). Objects and
morphisms in each hom-category are also called 1-cells and 2-cells, respectively.
The composition operations here are called vertical compositions.

• A composition operation of 𝒞 can be represented as a function from a Cartesian

product of hom-sets (𝒞(X , Y ) × 𝒞( Y , Z )) to the hom-set 𝒞(X , Z ). This com-
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position function is now upgraded as a functor from the product category of

hom-categories (ℬ(X , Y ) × ℬ(Y , Z )) to the hom-category ℬ(X , Z ). This kind
of composition of functors is called horizontal compositions to disambiguate them

from the vertical compositions; the notation ( ⬝ ) is also replaced with ( ⬪ ). The
associativity is also upgraded accordingly.

• An identity morphism id(X), which is equivalently a function from a singleton set

(i.e. a set with a single element) to the hom-set 𝒞(X , X ), can be upgraded as a

functor from a terminal category (i.e. a category with a single object and morphism)

to the hom-category ℬ(X , X ). The unitality is also upgraded accordingly.

The archetypical example of 2-categories is 1𝗖𝗮𝘁 which is a 2-category that expands

the category 𝗖𝗮𝘁 (that has been defined in subsection 2.2.2) by replacing each set of

functors with the functor category counterpart. The identity morphisms can be easily

upgraded as identity functors. However, upgrading the composition operations is more

involved and will be omitted here for reasons of brevity.

ω-Categories: After a set is upgraded into a category, which, in turn, upgraded

into a 2-category; we can further upgrade a 2-category into a new categorical entity

called a 3-category which is a category where its hom-sets are replaced with hom-2-
categories and so on. The archetypical example of 3-categories is 2𝗖𝗮𝘁 where objects
are 2-categories and morphisms are categorical entities called 2-functors, the canonically-
upgraded version of functors. The iteration process can continue to infinity called

ω-category.
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§ 2.3.2 Weak Higher Categories

There are many interesting mathematical entities that resemble ω-categories (or their
special cases) but can’t really fit in them. The problem is that associativity and unitality

may no longer hold in the form of equality but still hold in some weaker sense of

sameness, e.g. isomorphisms. Such mathematical entities will be called weak higher cat-

egories to disambiguate them from the definitions of higher categories that we described

before, which will now also be called strict higher categories. Please note that, a weak

higher category is not necessary an actual category, in the sense that we can’t undo

the replacement of hom-sets, e.g. hom-categories, back to hom-sets; this is because the

definition of a category require associativity and unitality as equalities.

Bi-Categories: We will start by generalising 2-categories to their weaker version
called bi-categories. The first thing that must be done is to replace each of associativity

and unitality from equalities to isomorphisms, which now are called associators and

unitors. Unlike equalities, two isomorphisms that have the same domain and codomain

may not be equal to each other; therefore, we need ensure that they are indeed equal to

one other by asserting additional equalities, a.k.a coherence laws, between associators

and unitors, i.e. Mac Lane’s pentagon and triangles. Please see [Lei98] as a reference of

definitions of a bi-category and its coherence theorem; see also [Lac09] for the motivation

and further explanation of bi-category.

Complexity of Weak n-Categories: Next, we generalise 3-categories to its weaker
version called tri-categories, which is similar to the generalisation from 2-categories to
bi-categories but the associators and unitors are now also upgraded by replacing their

equalities by isomorphisms. To make things worse, the coherence laws above are also
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upgraded into isomorphisms, which, in turn, need other coherence laws between them.

This makes the complete definition of a tri-category become very long and complicated.

To appreciate the complexity of tri-categories, please see the PhD thesis [Gur06] of Mi-

chael Gurski and the article [DH16] by Douglas and Henriques. Despite the complexity

of tri-categories, Todd Trimble managed to go beyond and write down the definition

of a tetra-category, i.e. a weak 4-category, the result has later been polished [Hof13] by

Alexander E. Hoffnung.

Potential Definitions of Weak n-Categories: Due to their complexity, we can-

not continue this trend of manually defining a weak higher category. Mathematicians

in this area have been trying to systematically define a weak n-category, for all natural
number n (possibly also including the case where n :≡ ∞); and there are already many

proposed definitions for a weak n-category, each of them has many interesting proper-

ties, especially some of them even managed to cover the case when n :≡ ∞, i.e. weak

ω-categories. For further details of the potential definitions of a weak n-category, please
see this survey [Lei01] by Tom Leinster and this guidebook [CL04] by Eugenia Cheng

and Aaron Lauda.

Despite having many potential definitions, mathematicians are not confident to use

any of them as “the” definition of a weak n-category. The problem is about how to

compare the strength among these candidates; in fact, we haven’t found any suitable

way to universally define a map from one candidate to another because doing so would

require the definition of a weak n-category in the first place; and this is where the

problem self-referencing begins. Nevertheless, the is a result that all of the main

candidates of the potential definition of (∞,n) agree up to homotopy (except the case

of n :≡ ∞). For further reference, please see [INCat; Ber10; BS11].
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§ 2.3.3 Commutative Diagrams for Higher Categories

Commutative diagrams are also upgraded for higher categories. Nodes and arrows still

represent 0-cells and 1-cells, respectively, but the closed areas now represent 2-cells
annotated by a double-line arrow pointing from one boundary arrow to another; for

example, α in the first commutative diagram in figure 2.3 is annotated by double-line

arrow pointing from ℱ to 𝒢.

In general, an n-category has (n + 2) kinds of data, which are 0-cells, 1-cells, …, n-
cells, and equalities between n-cells. Commutative diagrams can encode these additional
kinds of data by introducing n-arrows, each of them will intuitively be an n-dimensional
ball that has boundary consisting of two (possible composed) (n − 1)-arrows annotated
by n-lines arrow from one boundary arrow to another.

§ 2.3.4 Infinity-Groupoids

Although the ultimate definition of a weak n-category is still an open research problem,

there are special cases of them that are well-defined and well-understood. For instance,

an ∞-groupoid, which is a weak ∞-categories that all morphisms in every dimension

are invertible, has many several definitions but all of them are equivalent to one another.

The ∞-groupoids, despite being just a special case of weak ∞-categories, are con-

sidered ubiquitous in algebraic topology (in particular, a sub-discipline called homotopy

theory) because every topological space has a fundamental ∞-groupoid that captures

many characteristics of such the topological space. In particular, two topological spaces

with different fundamental ∞-groupoids can’t be homeomorphic to each other.

41



§ 2.4 Homotopy Type Theory

Homotopy type theory (or just HoTT for short) is a sub-discipline in type theory that

studies variations of MLTT that the main interpretation of a type is enriched from a

set to an ∞-groupoid. This is useful for algebraic topology because a type can also be

interpreted as a topological space due to the Grothendieck’s homotopy hypothesis, which

states that ∞-groupoids are equivalent to topological spaces.

§ 2.4.1 History of Homotopy Type Theory

HoTT is relatively a young discipline starting around 2006 from independent works by

Awodey and Warren [AW09] and Voevodsky [Voe06], but it was inspired by Hofmann

and Streicher’s earlier groupoid interpretation [HS98].

Later, there is an important event of HoTT in 2012–2013; a special year on univalent

foundations of mathematics was held at the Institute for Advanced Study (IAS); due to

the accumulative results, the participants decided to write a book [HoTT] dedicated to

HoTT, which I highly recommend a newcomer to read as the starting point to study

this discipline.
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§ 2.4.2 Weakening the Equalities to Infinity Groupoids

The motivation of upgrading MLTT to HoTT is because equalities in MLTT are some-

time too strict to formalise many of the important mathematical structures, in particular,

structures that arise in algebraic topology. This problem is similar to why those math-

ematical structures are incompatible with strict higher categories. To remedy this, we

need to “weaken” an equality in a type theory down to an equivalence, which is the

correct notion of sameness in an ∞-groupoid.

The “weakening” modification above requires a slight adjustment to the original

MLTT by upgrading the equality types from being just mere propositions to arbitrary

types which can contain multiple elements. In other words, let each of x and y be an

element of a type A, the equality types (x = y) can contain multiple proofs that are not
necessary equal to each other. Moreover, let p and q be proofs of (x = y) then there is

the equality type (p = q) that can contain multiple proofs that are not necessary equal

to each other. Then, let α and β be proofs of (p = q) then there is the equality type

(α = β) that can contain multiple proofs that are not necessary equal to each other.

This process can repeats up to infinity.

To mimic the topological spaces interpretation, we may call an element of (x = y)
a path from a point x to a point y. As a consequence, equality types can also be

interpreted as ∞-groupoids themselves; therefore, most (if not all) components of an

∞-groupoid can be represented in the syntax of HoTT: Let A be a type and 𝒜 be the

∞-groupoid that represents A. An object X in 𝒜 is represented by the element x in A,
a hom-∞-groupoid 𝒜(X , Y ) is represented by the type (x = y), and so on.
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§ 2.4.3 The Univalence Axiom

Recall that the outstanding property of HoTT is an ability to construct equalities using

a weaker sense of sameness. To do this, we introduce a new type called equivalence,

denoted as (A ≃ B), where its elements are interpreted as equivalences between the

∞-groupoids that interpret types A and B (see [HoTT, Chapter 4] for more detail). Then

we axiomatise the univalence axiom by postulating that

idToEquivA,B : (A = B) → (A ≃ B) is an equivalence,

which allows us to construct an equality between types by first constructing an equi-

valence between them and apply idToEquivA,B backwards; thus, making it possible to

formalise mathematical concepts that involve some degree of sameness but might not

as strict as equality.

Moreover, the univalence axiom implies other important axioms such as function

extensionality (which states that two functions are equal if they return the same output

for every given input) and propositional extensionality (which states that two propositions

are equal if they imply each other); thus, the univalence axiom simplifies a type theory

considerably.

§ 2.5 Directed Type Theory

Directed type theory is a sub-discipline in type theory that generalises HoTT where the

main interpretation of a type is generalised from an ∞-groupoid to an ∞-category. To

put in simply, directed type theory is HoTT but equalities (or whatever takes place of
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equalities) may not be invertible. There are many proposals for directed type theories

including Peter Lumsdaine [Lum10]; Licata and Harper [LH11], Nuyts [Nuy15]; Riehl

and Shulman [RS17]; North [Nor19]; Benjamin, Finster, and Mimram [BFM21].

Choices of the Definition of ∞-Categories: Although section 2.3 says that the

definition of an actual ∞-category is still an open research problem, we can pick any

potential definition as our definition of an ∞-category. Alternatively, there are other

special cases of ∞-categories that are more complex than ∞-groupoids from which we

can choose. The notable examples are (∞,n)-categories, which are∞-categories that all

m-cells (a.k.a. m-morphisms) for all (m > n) are invertible. The archetypical example
of (∞, 1)-categories is the (weak higher) category of small ∞-groupoids called ∞𝗚𝗽𝗱,
which can also be seen as the interpretation of a universe in type theory, i.e. a type that

has types as elements, in HoTT.

Connection to Directed Spaces: Analogous to an ∞-groupoid that represents

a topological space, an ∞-category represents a directed space, which is a topological

space equipped with some notion of direction. This connects directed type theory to a

discipline outside type theory, such as concurrency, because concurrent processes can be

represented by directed spaces (please see [FRG06]).

We also need a notion of directed spaces to geometrically realise the twisted

cubes in chapter 7. Rather than using one of the most-developed theories by Marco

Grandis [Gra09] or Sanjeevi Krishnan [Kri08], we utilise only the main concept and

use simpler notion called partially-ordered spaces, or pospaces for short, which is less

expressive than those theories above but covers all of the directed spaces that we target.
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§ 2.6 Cubical Type Theory

Cubical type theory is a sub-discipline in HoTT that implements ∞-groupoids using

cubical sets, i.e. presheaves4 on a cube category. Please note that, the meaning of a cube

in abstract topology (and this thesis) is actually a hypercube in general context.

Cubical type theory has recently gained significant attention from the HoTT com-

munity because many of its models allow their type theories to have desired properties,

such as constructivity (which means a type theory doesn’t use certain kind of axioms,

such as law of excluded middle or axiom of choice) and canonicity (which means the

evaluation of every closed term of natural numbers will lead to a term only consisting

of zero and the successor function).

§ 2.6.1 History of Cubical Type Theory

Originally, simplicial sets, i.e. presheaves on the simplex category (which will be later

defined in section 4.2), were considered to be the best candidate to interpret∞-groupoids

in HoTT because simplicial sets are the most ubiquitous shapes in algebraic topo-

logy [Hat02] together with many interesting properties when being used to implement

topological spaces (please see section 4.2 for further detail).

The first model of HoTT, given by Voevodsky [Voe10] (see also the presentation by

Kapulkin and Lumsdaine [KL12]), uses simplicial sets to implement ∞-groupoids. How-

4A presheaf on a category 𝒞 is a functor from 𝒞op to 𝗦𝗲𝘁, where 𝒞op is the category 𝒞 where the
domain and codomain of each morphism are swapped.
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ever, it is still an open question how simplicial sets can be used to build a constructive

model of type theory with univalent universes [GS17].

This is where cubical sets start to shine. The first constructive model for cubical

sets has been discovered by Bezem, Coquand, and Huber [BCH]. Soon after that, the

first model that has the canonicity property has been discovered by Cohen, Coquand,

Huber, and Mörtberg [CCHM]; this is a big discovery because the canonicity implies

that the univalence axiom can be defined as a theorem rather than only an axiom.

Consequently, cubes have gathered a lot of attention in the type theory community,

leading to various cubical type theories, e.g. [BCH; CCHM; CHM; AFH; Ang+; Sat17;

Awo18; OP18; Uem19; CMS20].

§ 2.6.2 Diversity of Cube Categories and their Common Pattern

Please note that, the cubical type theories above are different to one another mainly

because they use different definitions of the cube category [BM17], which leads to

different syntactic construction of the interval type explained later in subsection 3.1.1.

Nevertheless, these categories share equivalent configuration of objects and face

maps in the sense that if we filter out all of morphisms that are not face maps on each

of these categories, then the resulting categories will become equivalent to one another,

which we will call them the categories of semi-cubes and generally denoted in this thesis

as ◻semi. This equivalent configuration allows us to generally discuss about the main

cubical concept that applies to all of those cubical type theories in section 3.1.
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Chapter

3

Twisted Cubes

as a Modification

of Standard Cubes

This chapter gives a another overview of twisted cubes, which can be seen as a detailed

expansion of chapter 1. We also change the narrative to tackle the twisted cubes from

explaining the twisted cubes as-is to comparatively explaining the twisted cubes from

standard cubes perspective.

48



§ 3.1 Common Framework to Reason about Standard Cubes

Recall that twisted cubes is a modification of standard cubes so this section provides a

common framework1 for standard cubes in such a comfort way that the framework can

be modified to accommodate the motivation and intuition of twisted cubes.

◤ Convention 3.1 (standard cubes vs twisted cubes) ⬣
Unlike other variations of cubes mentioned in section 2.6, the face-maps configuration

of twisted cubes is not equivalent to those variations counterparts in subsection 2.6.2. To

disambiguate twisted cubes from those variations, we now refer them as standard cubes

and redefine the definition of cubes to be any cubes including twisted cubes. ◢

◤ Convention 3.2 (abbreviation for an n-dimensional shape) ⬣
A word “n-dimensional shape” will be abbreviated to “n-shape”. In particular, an n-
dimensional simplex, an n-dimensional standard cube, and an n-dimensional twisted
cube will be abbreviated into an n-simplex, a standard n-cube, and a twisted n-cube,
respectively. ◢

◤ Convention 3.3 (first index as zero) ⬣
Everything that looks like sequence will have the first index start at 0, unless explicitly

stated otherwise. In other words, the element at index i is indeed the (i + 1)th. For
example the index 0 is the first index, the index 1 is the second index, and so on. ◢

1Not to be confused with the graph-theoretic framework defined in chapter 5.
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§ 3.1.1 Paths as Functions from the Interval Type

There is an outstanding feature that all cubical type theories enjoy, which is an ability

to treat a path as a function from the interval type to the type of its endpoints.

𝟶 𝟷

x yp

Figure 3.1

The interval type, denoted as 𝕀, is interpreted as the closed

interval { x : ℝ | 0 ⩽ x ⩽ 1 }. Syntactically, we only have

2 elements2 in 𝕀, denoted as 𝟶 and 𝟷 that represent the real

numbers 0 and 1, respectively. For instance, let x and y be

elements of a type A, and let p be a path between x and y
(i.e. p : x = y ) then p can be represented as a function

p : 𝕀 → A where p(𝟶) :≡ x and p(𝟷) :≡ y.

x x

x x

y x

id(x)

p−1

Figure 3.2

This technique can easily construct some properties of

equalities, such as the reflexivity of x and the symmetry of

p, which can be defined as

id(x)(i) :≡ x and p−1(i) :≡ p(1 − i), respectively.

The constant path id(x), for any element x : A , is derivable

from its endpoints (both of them must be x anyway) so we may
remove the label id(x) on the diagram and use double line to

emphasize them instead.

These constant paths are semantically interpreted as identity morphisms in the ∞-

groupoid that interprets A. Intuitively, we may treat a constant path as a point that acts

like a path, which is now called a degenerated path; more on this later in subsection 3.1.6.

2Each cubical type theory may have more components but these two elements are required.
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Partial Definitions as Types: An element of type (𝕀 → A) will semantically be
interpreted as a morphism in an ∞-groupoid 𝒜 (that interprets the type A) but without
information about its domain or codomain. To assert such information we need a new

type former to construct a subtype of (𝕀 → A) such that some components are partially
defined. Therefore, we introduce a new type former

{ t : T | t0 :≡ u0 ; t1 :≡ u1 ; t2 :≡ u2 ; … },

which is a subtype of a type T such that an element t must agree that the evaluation of

a term ti (that may depend on t) is equal to ui. Now we can define a type of functions

from 𝕀 to A such that each function p of this type must agree that p(𝟶) and p(𝟷) are
equal to x and y, respectively, as

{ p : 𝕀 → A | p(𝟶) :≡ x ; p(𝟷) :≡ y }.

Each element of this type will still semantically be interpreted as a morphism in 𝒜 but

now equipped with the additional information that its domain and codomain interpret

x and y, respectively.

§ 3.1.2 Generalising the Interval to the Standard n-Cube

To access higher components of ∞-groupoids, we generalise the interval type to the

template3 standard n-cube type, denoted as 𝕀n◻ , for all n : ℕ , which is defined to

be the type 𝕀 multiplied by itself n times. This allows any n-cell of the ∞-groupoid

𝒜 to be represented as a function of type (𝕀n◻ → A), possibly equipped with partial

definitions explained in subsection 3.1.5, which has now become the definition of a

standard n-cube.

3The word “template” is added to the name of 𝕀n◻ to disambiguate elements of 𝕀n◻ from the actual
standard n-cubes which are functions.
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Using Ternary Numbers to Encode Faces: Combinatorially, the type 𝕀 does not

only consist of points 𝟶 and 𝟷 but also a single path that connects both points, now

denoted as ⋆; this allows us to think that 𝕀 has 3 components. Recall that 𝕀n◻ is the type 𝕀

multiplied by itself n times, so it should abstractly have 3n components corresponding to

points (0-faces), lines (1-faces), squares (2-faces), and so on. We denote each component
as ⟨t0t1…tn−1⟩ where each ti can be either 𝟶, 𝟷, or ⋆ (as shown in figure 3.3). To be

precise, an m-face of 𝕀n◻ is a ternary number of length n that has m occurrences of ⋆.

◤ Remark 3.4 ⬣ Binary and ternary numbers will be explicitly defined later

in definitions 4.16 and 4.17, respectively. Regarding the order of digit, the first index

means the most significant digit, which is also at the left-most position. ◢

◤ Definition 3.5 (facets) ⬣
Due to the frequent usage of (n − 1)-faces, we will simply call them as facets. Each

of these facets can be uniquely represented by a ternary number of length n that

every index contains ⋆ except at index r which contains b. We denote such the facet

as b∂nr (see figure 3.3 for b∂nr examples) where b : 𝟚fin , n : ℕ , and r : fin(n)
(see definition 4.12 for fin(n)). ◢

〈𝟶〉
𝟶∂1

0

〈𝟷〉
𝟷∂1

0
⟨𝟶𝟷𝟷⟩ ⟨𝟷𝟷𝟷⟩

⟨𝟶𝟷𝟶⟩ ⟨𝟷𝟷𝟶⟩

⟨𝟶𝟷⟩ ⟨𝟷𝟷⟩ ⟨⋆⋆⋆⟩

⟨⋆⋆⟩ ⟨𝟶𝟶𝟷⟩ ⟨𝟷𝟶𝟷⟩

⟨𝟶𝟶⟩ ⟨𝟷𝟶⟩ ⟨𝟶𝟶𝟶⟩ ⟨𝟷𝟶𝟶⟩

〈𝟶⋆〉 𝟶∂2
0 〈𝟷⋆〉𝟷∂2

0

〈⋆𝟷〉
𝟷∂2

1

〈⋆𝟶〉

𝟶∂2
1

〈⋆〉

〈𝟶⋆⋆〉 𝟶∂3
0 〈𝟷⋆⋆〉 𝟷∂3

0

〈⋆𝟶⋆〉 𝟶∂3
1

〈⋆𝟷⋆〉 𝟷∂3
1

〈⋆⋆𝟶〉 𝟶∂3
2

〈⋆⋆𝟷〉 𝟷∂3
2

Figure 3.3: Illustration of 𝕀1◻ , 𝕀2◻ , and 𝕀3◻ annotated with ternary numbers and b∂nr .
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§ 3.1.3 Ternary Numbers as Face Maps

A ternary number of length n may not necessarily be an element of 𝕀n◻ . For instance,

every ternary number that contains ⋆ can’t be expressed an element of 𝕀n◻ ; this is

because an element of 𝕀n◻ is an n-tuple containing elements of 𝕀, of which ⋆ is not an

element.

Instead, a ternary number ⟨t0t1…tn−1⟩ that represents an m-face of 𝕀n◻ should

be seen as an injective function from 𝕀m◻ to 𝕀n◻ such that, when given an input

⟨ x0 , x1 , … , xm−1 ⟩ : 𝕀m◻ , the function returns ⟨ t0 , t1 , … , tn−1 ⟩ : 𝕀n◻ but sub-

stituting any tj that is the occurrent i of ⋆ with xi.

By seeing an m-face of 𝕀n◻ as a function of type (𝕀m◻ → 𝕀n◻ ), we can post-compose

it with a standard n-cube of type (𝕀n◻ → A) to become a standard m-cube of type

(𝕀m◻ → A).

Standard Semi-Cubes Category: Instead of formal definition mentioned in defin-

ition 4.34, we can for now simply define a category of standard semi-cubes, denoted as

◻comb
semi , where objects are natural numbers, morphisms in ◻comb

semi (m , n ) are m-faces of
𝕀n◻ , and the rest of components behave exactly the same as in 𝗦𝗲𝘁.

Face Maps: All morphisms in ◻semi(m , n ) are morphisms that represent m-
faces of a standard n-cubes, so we will call them face maps. This phenomenon also

applies to simplex categories and twisted cube categories.
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§ 3.1.4 Cubical Diagrams

Unlike earlier diagrams, figures 3.1 to 3.3 use different style of arrows to indicate

that they are not commutative diagrams but rather a new kind of diagrams called

cubical diagrams (please note that, this is not a standard terminology), which is a affine

transformation of4 an n-cube from an n-dimensional vector space into a 2-dimensional
page in this thesis.

Unlike commutative diagrams that use double-line arrows to represent 2-cells, cu-
bical diagrams use double-line arrows to represent degenerated paths. Also, moving the

position of points around will not alter the underlining information in commutative

diagrams, but it is indeed the case for commutative diagrams.

◤ Notation 3.6 ⬣ We refer the direction of dimension i to be the image of the

affine transformation from the basis at dimension i of the original vector space. ◢

◤ Convention 3.7 (order of cubical dimension) ⬣
Given a cubical diagram of a standard n-cube, although it is easy to identify all of n
directions using the positions of points and directions of arrows, but it is impossible to

determine the order among these dimensions without extra indicators, since we want to

refer the components as ternary numbers.

4Technically, each diagram in figure 3.3 illustrates a template standard n-cube, i.e. 𝕀n◻ , rather a standard
n-cube, i.e. (𝕀n◻ → A) for some type A. We implicitly assume that there is a function f : (𝕀n◻ → A)
that each cubical diagram in figure 3.3 projected where each label t⃗ represents (t⃗ ⬝ f).
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To avoid the redundant specification on the order of dimensions on every cubical

diagram, we use the order in figure 3.3 as the default reference. In other words, unless

state otherwise, the directions of dimensions are ordered as: from left to right, from

bottom to up, and from bottom-left to top-right. ◢

§ 3.1.5 Partially Defining Standard n-Cubes

w z

x y

p p′

q′

q

Figure 3.4

Like the case of interval, an element of type (𝕀n◻ → A) is
semantically interpreted as an n-cell in an ∞-groupoid 𝒜
but without any further information such as domain and

codomain. To regain those detail, we assign all of facets

using the mechanism of subtypes defined above, but with a

restriction that every (n − 2)-face, i.e. facet of facets, must
be equal to component-wisely.

Unlike the case of the interval, we don’t partially define the standard n-cube by

function application; instead, we partially define it by assigning a standard (n − 1)-cube
to the composition between each facet b∂nr and the original standard n-cube. For

example, the type 2-cells illustrated in figure 3.4 can be defined as

{ h : 𝕀2◻ → A | ⟨𝟶⋆⟩ ⬝ h :≡ p ⟨𝟷⟩ ⬝ p = w = ⟨𝟶⟩ ⬝ q′

; ⟨𝟷⋆⟩ ⬝ h :≡ p′ ⟨𝟶⟩ ⬝ p = x = ⟨𝟶⟩ ⬝ q

; ⟨⋆𝟶⟩ ⬝ h :≡ q ⟨𝟶⟩ ⬝ p′ = y = ⟨𝟷⟩ ⬝ q

; ⟨⋆𝟷⟩ ⬝ h :≡ q′ }, ⟨𝟷⟩ ⬝ p′ = z = ⟨𝟷⟩ ⬝ q′

which has already satisfied the conditions for each of 4 points on the right.
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§ 3.1.6 Defining n-Paths from Standard n-Cubes

x y

x yp

q

Figure 3.5

An n-path is a standard n-cube such that the facets 𝟶∂ni and
𝟷∂ni , for some dimension i, are assigned to be source and

target, respectively, whereas other facets are degenerated.

For example in case of 2-path, let x and y be elements in a

type A, and let p and q be paths from x to y, then a type

of 2-paths from p to q can be constructed vertically as

{ h : 𝕀2◻ → A | ⟨⋆𝟶⟩ ⬝ h :≡ p ; ⟨𝟶⋆⟩ ⬝ h :≡ id(x)

; ⟨⋆𝟷⟩ ⬝ h :≡ q ; ⟨𝟷⋆⟩ ⬝ h :≡ id(y) }.

Alternatively, another type of 2-paths from p to q can be constructed horizontally by

using the first dimension for endpoints instead of the second dimension, i.e. using facets

⟨𝟶⋆⟩ and ⟨𝟷⋆⟩ instead of facets ⟨⋆𝟶⟩ and ⟨⋆𝟷⟩ for domain and codomain, respectively.

In general, there will be n ways to construct n-paths depending on what dimension

that we choose to assign endpoints.
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§ 3.1.7 Kan Filler Condition

The last important component of cubical type theories is the Kan filler condition, which

states that there exist a lid together with its filler for every n-horn where; an n-horn is

syntactically5 a type of standard n-cubes that partially defines every facet except one of
them; a lid of an n-horn is a standard (n − 1)-cube that has type as the missing facet
of the horn; and a filler of the lid above is a standard n-cube that has type as the horn
of its lid that also include its lid in its partial definition.

x z

x yp

p ⬝ q

q

Figure 3.6

We can use the lids of these horns to construct the

transitivity property of paths: Let x, y, and z be elements
of type A, and let p be a path from x to y and q be a

path from y to z. Then we define p ⬝ q to be the lid of the

following 2-horn.

{ h : 𝕀2◻ → A | ⟨𝟶⋆⟩ ⬝ h :≡ id(x)

; ⟨⋆𝟶⟩ ⬝ h :≡ p ; ⟨𝟷⋆⟩ ⬝ h :≡ q }

The Kan filler condition is important for every cubical type theory because it

enables cubical sets to be interpreted as ∞-groupoids: Cubical sets alone only provide

data structures to store n-cells and their identity (n + 1)-morphisms. Then, the Kan

filler allows these cells to be composed and generate their associators and unitors, and

handle the rest of coherent structures. For example, composable morphisms can be seen

together as a horn, then a lid of this horn acts as a composing morphism while the

filler of this lid acts as an equivalence between the horn and the lid.

5To avoid technical detail, we simplified the actual definition of a horn, which is originally defined
categorically.
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§ 3.2 Motivation and Intuition of Twisted Cubes

Twisted cubes originated from my attempt to modify cubical type theory in such the way

that it is compatible with directed type theory. In other words, I want to make a directed

cubical type theory, which is a cubical type theory that generalises the interpretation of

types from ∞-groupoids to ∞-categories.

§ 3.2.1 Invertibility of Standard Cubes

As the first step of designing a directed cubical type theory, we may try to artificially

modify (i.e. hack) the syntax of some existing cubical type theory to forbid the construc-

tion of p−1 for any path p in the context of figure 3.1.

y x

x x

p

p−1

Figure 3.7

However, this is not as easy as removing the constructor

(1 − i) because the inverse of path p can also be constructed by

the Kan filling condition using the 2-horn in figure 3.7.

{ h : 𝕀2◻ → A | ⟨𝟶⋆⟩ ⬝ h :≡ p

; ⟨⋆𝟶⟩ ⬝ h :≡ id(x) ; ⟨𝟷⋆⟩ ⬝ h :≡ id(x) }

Obviously, we can’t simply remove all lids and fillers because they define the composition

operation and the rest of components. In fact, we can’t even partially forbid some of

them because every another lid can construct p−1 in similar fashion anyway. The cause

of this invertibility is the orientation of the standard cubes itself; to illustrate this, let us

transform the cubical diagram of 𝕀2◻ in figure 3.3 to be the first commutative diagram

in figure 3.8, and assign ⟦⋆⋆⟧ to be a 2-cell from ⟦⋆𝟶⟧ ⬝ ⟦𝟷⋆⟧ to ⟦𝟶⋆⟧ ⬝ ⟦⋆𝟷⟧.
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The Kan filler condition says that if we miss an arrow then we can compose the

rest and get the missing one (as a lid) together with a square that connects them (as a

filler). Now, if we miss one of those four arrows, then the existing arrow on same side

of boundary of the missing one must act inversely compose with the other two arrows.

§ 3.2.2 The Twisted 2-Cube as a Modification of the Standard 2-Cube

We change our approach from hacking around the syntax to modifying the orientation

of the cubes themselves. Recall from figure 3.7 that if we want to fill a 2-horn such that

⟨⋆𝟷⟩ is the missing facet, then the path assigned to the facet ⟨𝟶⋆⟩ must act inversely.
This suggests us to forcefully reverse the direction of the facet ⟨𝟶⋆⟩ in 𝕀2◻ . This action

transforms the first commutative diagram in figure 3.8 to the second one.

⟦𝟶𝟷⟧ ⟦𝟷𝟷⟧ ⟦𝟶𝟷⟧ ⟦𝟷𝟷⟧

⟦𝟶𝟶⟧ ⟦𝟶𝟷⟧ ⟦𝟶𝟶⟧ ⟦𝟶𝟷⟧⟦⋆𝟶⟧

⟦𝟶⋆⟧

⟦⋆𝟷⟧

⟦𝟷⋆⟧

⟦⋆𝟶⟧

⟦𝟶⋆⟧

⟦⋆𝟷⟧

⟦𝟷⋆⟧
⟦⋆⋆⟧

⟦⋆⋆⟧

Figure 3.8: Transforming 𝕀2◻ into 𝕀2⋈ as commutative diagrams

The 2-cell ⟦⋆⋆⟧ in the second diagram is now pointing from ⟦𝟶⋆⟧ ⬝ ⟦⋆𝟶⟧ ⬝ ⟦𝟷⋆⟧ to

⟦⋆𝟷⟧; so, we can safely fill a horn whose missing facet is ⟨⋆𝟷⟩ without worrying that it
will cause the invertibility. Then, we relax the Kan filler condition to fill only the horns

whose missing facet is ⟨⋆𝟷⟩. Now, figure 3.7 is no longer valid. Syntactically, we call

the type of squares that forcefully reverse the facet ⟨𝟶⋆⟩ as the template twisted 2-cube
type, denoted as 𝕀2⋈ , which has components as a 2-digits ternary number similar to 𝕀2◻
except that the compositions ⟨𝟶⟩ ⬝ ⟨𝟶⋆⟩ and ⟨𝟷⟩ ⬝ ⟨𝟶⋆⟩ don’t evaluate to ⟨𝟶𝟶⟩ and ⟨𝟶𝟷⟩
but rather evaluate to ⟨𝟶𝟷⟩ and ⟨𝟶𝟶⟩, respectively.
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§ 3.2.3 Twisted n-Cube via Thickening-and-Twisting Process

The modification in subsection 3.2.2 may seem artificial and specific to the case of 2
dimensions, but in fact it can be generalised to be the template twisted n-cube type,
denoted as 𝕀n⋈ , by recursion on the natural number n. For the base case, we define 𝕀0⋈
as 𝕀0◻ , which is a type containing a 0-tuple. For the recursive case, we use the process
called thickening-and-twisting that constructs 𝕀(n+1)

⋈ from 𝕀n⋈ as follows.

First, the thickening phase, we prepend a new dimension as the first dimension and

expand 𝕀n⋈ along this new dimension to get (𝕀 × 𝕀n⋈ ); this thickening phase is actually
the same as constructing 𝕀(n+1)

◻ from 𝕀n◻ , i.e. its cylinder object. Then, the twisting phase,

we reverse all other dimensions at the starting point of the new dimension.

⟨⟩ ⟨𝟶⟩ ⟨𝟷⟩ ⟨𝟶⟩ ⟨𝟷⟩

⟨𝟷⟩ ⟨𝟶𝟷⟩ ⟨𝟷𝟷⟩ ⟨𝟶𝟷⟩ ⟨𝟷𝟷⟩

⟨𝟶⟩ ⟨𝟶𝟶⟩ ⟨𝟷𝟶⟩ ⟨𝟶𝟶⟩ ⟨𝟷𝟶⟩

⟨𝟷𝟷⟩ ⟨𝟶𝟷𝟷⟩ ⟨𝟷𝟷𝟷⟩ ⟨𝟶𝟷𝟷⟩ ⟨𝟷𝟷𝟷⟩

⟨𝟷𝟶⟩ ⟨𝟶𝟷𝟶⟩ ⟨𝟷𝟷𝟶⟩ ⟨𝟶𝟷𝟶⟩ ⟨𝟷𝟷𝟶⟩

⟨𝟶𝟷⟩ ⟨𝟶𝟶𝟷⟩ ⟨𝟷𝟶𝟷⟩ ⟨𝟶𝟶𝟷⟩ ⟨𝟷𝟶𝟷⟩

⟨𝟶𝟶⟩ ⟨𝟶𝟶𝟶⟩ ⟨𝟷𝟶𝟶⟩ ⟨𝟶𝟶𝟶⟩ ⟨𝟷𝟶𝟶⟩

Figure 3.9: The thickening-and-twisting process for (n ⩽ 2); where the first column (𝕀n⋈ )
is thicken into the next one (𝕀 × 𝕀n⋈ ), which is then twisted into the last one (𝕀(n+1)

⋈ ).
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§ 3.2.4 All Faces of a Twisted Cube are Instances of Twisted Cubes

Twisted cubes preserve an important property from standard cubes; that is, every m-face
of 𝕀n⋈ is an instance of 𝕀m⋈ . As a sanity check, we can exhaustively verify this property

for all (m ⩽ n ⩽ 3) by inspecting figure 3.9. In addition, theorem 3.9 shows that we

can actually prove this.

◤ Lemma 3.8 ⬣ Every facet of 𝕀(n+1)
⋈ is an instance of 𝕀n⋈ , for all n : ℕ . ◢

Proof. Let’s imagine that 𝕀n⋈ is going though the thickening-and-twisting process.

• First, in the thickening phase, 𝕀n⋈ is thickened into (𝕀 × 𝕀n⋈ ).
– The facets ⟨𝟶⋆⋆…⋆⟩ and ⟨𝟷⋆⋆…⋆⟩, which are respectively the left and

right facets in the middle column of figure 3.9, are still instances of 𝕀n⋈ .
– The rest of facets become instances of (𝕀 × 𝕀(n−1)⋈ ).

• Then, in the twisting phase, (𝕀 × 𝕀n⋈ ) is twisted into 𝕀(n+1)
⋈ :

– The right facet ⟨𝟷⋆⋆…⋆⟩ is unaffected.
– The left facet ⟨𝟶⋆⋆…⋆⟩ is reversed in all dimensions, but still keep itself as

an instance of 𝕀n⋈ (as the completely upside down version).
– The rest of facets are recursively twisted and change from being instances of

(𝕀 × 𝕀(n−1)⋈ ) to being instances of 𝕀n⋈ . QED

◤ Theorem 3.9 ⬣ A face ⟨t0t1…tn−1⟩ of 𝕀n⋈ is also a twisted cube. ◢

Proof. We will iteratively prove through the smaller cases for ⟨⟩, ⟨tn−1⟩, ⟨tn−2tn−1⟩,
… all the way until the original face ⟨t0t1…tn−1⟩. To be more precise, we want to

prove that, ⟨titi+1…tn−1⟩ is an instance of 𝕀k⋈ where k is the number of ⋆ among

titi+1…tn−1 for all (0 ⩽ i < n).
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We will prove this by induction on (n − 1 − i), i.e. i but in backward order. The base
case is when i :≡ (n − 1), which is automatically true by the definition of 𝕀0⋈ . Regarding

the inductive step, we have the induction hypothesis witnessing that ⟨ti+1ti+2…tn−1⟩
is an instance of 𝕀k⋈ , this only leaves us to prove that ⟨titi+1…tn−1⟩ is an instance of

𝕀k′⋈ where k′ :≡ (k + 1) if (ti = ⋆) otherwise k′ :≡ k.

Before proving the remaining goal, we provide an intermediate result stating that the

face ⟨⋆ti+1ti+2…tn−1⟩ is an instance of 𝕀(k+1)
⋈ . Recall that the face ⟨ti+1ti+2…tn−1⟩

is an k-face of 𝕀(n−1−i)⋈ and imagine that 𝕀(n−1−i)⋈ is going though the thickening-and-

twisting process.

• First, during the thickening phase that 𝕀(n−1−i)⋈ becomes (𝕀 × 𝕀(n−1−i)⋈ ),
the face ⟨ti+1ti+2…tn−1⟩, which is an instance of 𝕀k⋈ , also becomes

the face ⟨⋆ti+1ti+2…tn−1⟩, which is an instance of (𝕀 × 𝕀k⋈).
• Then, during the twisting phase that (𝕀 × 𝕀(n−1−i)⋈ ) becomes 𝕀(n−i)⋈ ,

the face ⟨⋆ti+1ti+2…tn−1⟩ changes from being an instance of (𝕀 × 𝕀k⋈) to being
an instance of 𝕀(k+1)

⋈ because of the same reason in the special case of facets.

Now, let’s prove the remaining goal by splitting the scenario into three cases depending

on the value of ti:
• If ti :≡ ⋆, then the face ⟨titi+1…tn−1⟩ is the face ⟨⋆ti+1ti+2…tn−1⟩,
so we can apply lemma 3.8 to prove the goal.

• If ti :≡ 𝟷, then the face ⟨titi+1…tn−1⟩ is the face ⟨𝟷ti+1ti+2…tn−1⟩,
which in turn, is a facet of ⟨⋆ti+1ti+2…tn−1⟩, which in turn again, is an instance
of 𝕀(k+1)

⋈ by lemma 3.8. Therefore, ⟨titi+1…tn−1⟩ is an instance of 𝕀k⋈ due to the

special case of facets.

• If ti :≡ 𝟶, then we use the same reasoning as the case when ti :≡ 𝟷.
Please note that, this case does reverse the face ⟨titi+1…tn−1⟩ in addition to the

case when ti :≡ 𝟶, but this reasoning above doesn’t take the reversal into account
so it is fine. Nevertheless, the fact that reversal happens in this case will matter

when subsection 3.2.5 refers back here to count the number of reversals. QED
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§ 3.2.5 Direction of an Arrow inside Twisted n-Cube

Recall from subsections 3.1.3 and 3.1.4 that an arrow in a cubical diagram is a 1-face
of some n-dimensional cube, which can be represented as a ternary number of length

n that has exactly one occurrence of ⋆. To be more precise, an arrow at dimension i is
defined to a ternary number of length n such that the digit at index i is ⋆ and the rest

of digits are booleans.

In the case of standard cubes, all arrows at dimension i will have the same direction
as dimension i in the cubical diagram (i.e. the projection of the basis vector of axis i in
the n-dimensional vector space into the diagram). This is because both endpoints of an

arrow share the same values in all dimensions except at dimension i where the value
of source (which is 𝟶) is less than the target counterpart (which is 𝟷).

In the case of twisted cubes, the direction of an arrow at dimension i can either

be in the same direction or in the opposite direction (relative to dimension i) depending
on how many times that arrow is reversed. Since reversing an arrow two times is the

same as not reverse it at all; therefore, the arrow is in the opposite direction iff it is

reversed with an odd number of times.

The Parity Function: To precisely capture this concept of direction, we introduce

a function parityarr that takes an arrow ⃗t at dimension i and returns a boolean

representing the truth value of the proposition “the direction of the arrow ⃗t is in the

opposite direction relative to dimension i”. We also introduce an auxiliary function

numRevarr that takes an arrow ⃗t and returns the number of reversals of the arrow ⃗t.
With this auxiliary function, we can define parityarr( ⃗t) to be numRevarr( ⃗t) modulo 2.
However, the actual definition of numRevarr requires more context and we will come

back to define it later at the end of this subsection.
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The First Application of the Parity Function: One immediate application of

parityarr is to syntactically determine the source and target of an arrow. For pedagogical

purposes, let’s first briefly review the case of standard cubes. Recall from subsection 3.1.3

that the position of each endpoint b of an arrow is the ternary representation of that

arrow itself except that now the occurrence of ⋆ is substituted by b where b :≡ 𝟶 if

this endpoint is the source, otherwise, b :≡ 𝟷 if this endpoint is the target.

Now in the case of twisted cubes, we will repeat the same process as in the case

of standard cubes counterpart except that we change the substitution of ⋆ from b to

(b ⊕ b′) where b′ is the parity of the arrow. The boolean operator ⊕, a.k.a. exclusive or,
is used here because if b′ :≡ 𝟶, i.e. the arrow is in the same direction, then (b ⊕ 𝟶)
becomes b, which is the same as the case of standard cubes; otherwise, if b′ :≡ 𝟷,
i.e. the arrow is in the opposite direction, then (b ⊕ 𝟷) becomes (1 − b), which is

essentially the same as swapping the value between source and target.

◤ Theorem 3.10 (counting the number of reversals for an arrow) ⬣
Let n, , i : ℕ such that (i < n) and let ⟨t0t1…ti−1⋆ti+1ti+2…tn−1⟩ be an arrow,

then numRevarr( ⃗t) is equal to the number of occurrences of 𝟶 among ⟨t0t1…ti−1⟩. ◢

Proof. As a sanity check, we can exhaustively verify this proposition for all (0 ⩽ i < 3)
by inspecting figure 3.9. In the general case, we will backwardly iterate through ⃗t in
the same way as we did for ⟨t0t1…tn−1⟩ in theorem 3.9 but now we rename variable

i in there as j and detect any potential reversal of ⟨tjtj+1…tn−1⟩ from each iteration

(n − 1 − j). There are a total of n iterations of the thickening-and-twisting process,

which will be split as follows:

• Each iteration (n − 1 − j) where (j > i) can’t produce any reversals. This is

because the iteration concludes that ⟨tjtj+1…tn−1⟩ is an instance of 𝕀0⋈ due to

the fact that there are no occurrences of ⋆ among tjtj+1…tn−1; therefore, any
reversal happens here will only apply to the ⟨⟩ of 𝕀0⋈ and change nothing.
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• Each iteration (n − 1 − j) where (j ⩽ i) will produce at most one reversal because
the iteration concludes that ⟨tjtj+1…tn−1⟩ is an instance of 𝕀1⋈ due to the fact

that there is one occurrence of ⋆ at ti so we can reverse the arrow here; however,

the reverse will only happen if tj :≡ 𝟶. QED

Explicit Definitions of numRevarr and parityarr: Since the value of numRevarr( ⃗t)
only depends on t0t1…ti−1 where all digits there must be boolean; therefore, occurrences
of 𝟶 must be i subtracted by the occurrences of 𝟷. This allow us to explicitly define

the functions numRevarr and parityarr as definition 3.11. Please note that, we define

the function parity like that because parityarr is the modulo-2 arithmetic version of

numRevarr and modulo-2 arithmetic has the property

(b + b′) = (b ⊕ b′) = (b − b′).

◤ Definition 3.11 ⬣

numRev(⟨b0b1…bi−1⟩) :≡ i − (b0 + b1 + … + bi−1)

parity(⟨b0b1…bi−1⟩) :≡ (i mod 2) ⊕ b0 ⊕ b1 ⊕ … ⊕ bi−1
:≡ (1 − b0) ⊕ (1 − b1) ⊕ … ⊕ (1 − bi−1)

numRevarr(⟨t0t1…ti−1⋆ti+1ti+2…tn−1⟩) :≡ numRev(⟨t0t1…ti−1⟩)

parityarr(⟨t0t1…ti−1⋆ti+1ti+2…tn−1⟩) :≡ parity(⟨t0t1…ti−1⟩) ◢
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§ 3.2.6 The Order of Dimensions in Twisted Cubes

When we draw a cubical diagram for a standard cube, it is impossible to recover the

original order of dimensions unless convention 3.7 is enforced. Interestingly, this is not

the case for twisted cubes.

To recover the order of dimensions in a cubical diagram of a twisted (n + 1)-cube,
we first separate all of (n + 1) ⋅ 2n arrows into buckets where two arrows will be in the

same bucket if their direction is either the same or completely in the opposite direction,

otherwise those arrows must be in different buckets.

Recall that all directions of dimensions (see notation 3.6) are linearly independent

to one another. It is obvious to see that there will be exactly (n + 1) buckets where
each bucket contains 2n arrows and represents exactly one dimension (of the main

(n + 1)-cube).

So far, this separation method also works in the case of a standard (n + 1)-cube
with an additional property that each bucket having all arrows in the same direction.

However, in the case of a twisted (n + 1)-cube, there will be exactly one bucket having all
arrows in the same direction whereas other buckets will have half of arrows pointing in

the same direction whereas other half pointing in the opposite direction. This interesting

property of arrows in a twisted (n + 1)-cube comes from the fact that:

• All arrows in dimension 0 has the parity as 𝟶. This is because, each arrow ⃗t here
must has the occurrence of ⋆ at the first index and it is impossible to have any

occurrences of 𝟶 that come before the first index.

• Half of arrows in dimension (i + 1) has the parity as 𝟶 whereas another half has

the parity as 𝟷. To justify this, we assume that the dimension i, a twisted n-cube
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(that is about to go though the twisting-and-thickening process) has k arrows and
(2n−1 − k) arrows that have parity 𝟶 and 𝟷, respectively. After the twisting-and-
thickening process, the first copy has (2n−1 − k) and k arrows that have parity 𝟶
and 𝟷 because all of them are reversed whereas the second copy still have k and

(2n−1 − k) arrows that have parity 𝟶 and 𝟷. The dimension i in the twisted n-cube
now become dimension (i + 1) in the twisted (n + 1) cube with (2n−1 − k) + k
and k + (2n−1 − k) arrows that have parity 𝟶 and 𝟷.

With the property above, we can select the only bucket that has arrows in the same

direction as the first dimension of the main twisted (n + 1)-cube. Next we recursively
find the order of dimensions of the facet ⟨𝟷⋆⋆…⋆⟩ (which is indeed a twisted n-cube)
and treat dimension i in this facet as dimension (i + 1) in the main twisted (n + 1)-cube.
In this way, the order of dimensions in the twisted cubes can be interestingly recovered.
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Chapter

4

Geometric Shapes

for Higher Category Theory

Geometric shapes are often used to define various higher categories and related higher

structures where a higher category is intuitively visualised as a conglomerate of cells

of some particular shapes, together with some properties. In other words, a higher

category will usually be encoded as a presheaf on a category of certain shapes, together

with certain conditions.

There are many interesting examples of geometric shapes for higher structures in

the literature [GeoHS]; for example, simplices, prisms1, standard cubes, trees, globes,

opetopes. However, I decide to focus only on simplices and standard cubes. This

1Not to be confused with the standard prism iterator prismstd defined in definition 5.40
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is because our graph-theoretic framework in chapter 5 is currently working only for

geometric shapes that are convex polytopes (see convention 4.5). Moreover, simplices

and standard cubes themselves are ubiquitous in the HoTT community.

If the reader would like to learn more detail on higher structures and related

shapes, then I recommend this guidebook [Chang2004HigherdimensionalCA] by Eu-

genia Cheng and Aaron Lauda for an introduction. For further reference, I recommend

the further reading of this survey [Lei01] by Tom Leinster.

◤ Convention 4.1 ⬣ Unlike other chapters that use the type theory mentioned

in convention 2.1 as the meta-theory, some part of this chapter (and later in chapter 7)

may use the traditional set-theory to explain concepts related to geometry. Even though

type theory also works with geometry as well as set theory (if not actually better) doing

so will require more prerequisites and overcomplicate the thesis. ◢

§ 4.1 Prerequisite Definitions and Conventions

§ 4.1.1 Topological Spaces of our Geometric Shapes

This chapter assumes some basic prerequisites on topological spaces that exist on ele-

mentary textbooks such as [Jän84]. We also try to make the distinction between a

particular set and its usual topological space, see definition 4.2 for an example.
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◤ Definition 4.2 (Euclidean spaces) ⬣
Let n : ℕ , we define ℝn as the Cartesian product of ℝ that multiplied by itself

n times, we also define ℝn
top as the n-dimensional Euclidean space. This makes ℝn

becomes the set of points for ℝn
top. ◢

◤ Definition 4.3 (discrete topological spaces) ⬣
Given a set X, we define TopDiscrete(X) to be a topological space that consists of the
set X (as the carrier set) together with the discrete topology generated from the set X,
i.e. every subset of X is an open set in TopDiscrete(X). ◢

◤ Lemma 4.4 ⬣ Let X be a set, every function between topological spaces that

has TopDiscrete(X) as it domain is guaranteed to be continuous. ◢

Proof. A function between topological spaces is continuous if every open set in codomain

has its preimage as an open set in codomain. This condition is true in our case because

every subset of X is already an open set. QED

◤ Convention 4.5 (compatibility of geometric shapes) ⬣
To avoid unnecessary complexities, this thesis restricts the meaning of an n-dimensional
geometric shape that is an n-dimensional convex polytope, which is a subspace of ℝn

top

defined as by the convex hull of some subset in ℝn.

Please note that, a convex hull is a set (determined by points called extreme points)

to be the intersection of all convex sets that contain those extreme points. A convex set

is a set that every line segment connecting any two points in this set lies entirely with

in the set. ◢
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§ 4.1.2 Reedy Categories

Later in this chapter, we will extract information from each geometric shape to produce a

category where objects are natural numbers represent the shape at finite dimensions and

morphisms are affine transformations. Each resulting category should be Reedy category;

in addition, if the resulting category contains only non-degenerated transformations it

should be direct category as well.

◤ Definition 4.6 (subcategories) ⬣
Let 𝒞 and 𝒟 be categories, we say that 𝒞 is a subcategory of 𝒟 iff there is a functor ℱ
from 𝒞 to 𝒟 with the following conditions:

• Its object-mapping function ℱ.mapObj is injective; so we know that ob(𝒞) can be

seen as a subset of ob(𝒟).

• Let X and Y be objects in 𝒞, the function ℱ.mapHom(X, Y) is injective; so we

know that 𝒞(X , Y ) can be seen as a subset of 𝒟(ℱ(X) , ℱ(Y) ).

Please note that, in most cases, ob(𝒞) ⊆ ob(𝒟) and 𝒞(X , Y ) ⊆ 𝒟(ℱ(X) , ℱ(Y) )
so both ℱ.mapObj and ℱ.mapHom(X, Y) can simply be inclusion functions. ◢

◤ Definition 4.7 (wide subcategories) ⬣
Let a category 𝒞 be a subcategory of another category 𝒟, we say that 𝒞 is a wide-

subcategory of 𝒟 iff ob(𝒞) is equal to ob(𝒟). ◢
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◤ Definition 4.8 (direct categories) ⬣
A category 𝒞 is a direct category iff it is equipped with a function2 deg : ob(𝒞) → ℕ

(called a degree function) such that, if there is a non-identity morphism in 𝒞(X , Y ),
then deg(X) < deg(Y) for all objects X and Y in 𝒞. ◢

◤ Definition 4.9 (Reedy categories) ⬣
A category 𝒞 is a Reedy category iff it is equipped with a function2 deg : ob(𝒞) → ℕ

(called a degree function) together with other two wide-subcategories ℒ and ℛ that

satisfy the following conditions:

• If there is a non-identity morphism in ℒ(X , Y ), then deg(X) > deg(Y).
• If there is a non-identity morphism in ℛ(X , Y ), then deg(X) < deg(Y).
• Each morphism in 𝒞 factors uniquely as (l ⬝ r) where
the morphism l is in ℒ and the morphism r is in ℛ. ◢

◤ Lemma 4.10 ⬣ Every direct category is a Reedy category. ◢

Proof. Given 𝒞 as a direct category, we define 𝒞 as a Reedy category by assigning:

• The function deg as the degree function that come with 𝒞 as a direct category.

• The wide-subcategory ℒ as the discrete category on ob(𝒞).
• The wide-subcategory ℛ as 𝒞 itself.

• Each morphism f in 𝒞 factors uniquely as f (which is in ℒ)
composing with an identity morphism (which is in ℛ). QED

2In the literature, the codomain of the degree function can be any ordinal but this thesis will use only
ℕ as the codomain so I simplify it.
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§ 4.1.3 Miscellaneous Definitions

This subsection contains other definitions that don’t fit well in other places.

◤ Definition 4.11 ⬣ Let A and B be sets, let f be a function from A to B, let x
and y be elements of A, and let p to be a proof that x is equal to y.

We define cong(f, p) to be a proof that f(x) is equal to f(y). ◢

◤ Definition 4.12 (finite sets) ⬣
Let n : ℕ , we define fin(n) as a subset of ℕ containing all numbers less than n.

fin(n) :≡ {0 , 1 , … , n − 1} ◢

◤ Definition 4.13 ⬣ We use notations 𝟘fin, ⊥, and ∅ to denote fin(0). ◢

◤ Definition 4.14 ⬣ We use notations 𝟙fin and ⊤ to denote fin(1).
We also use 𝟶 : 𝟙fin and trivial : ⊤ to denote 0 : fin(1) . ◢

◤ Definition 4.15 (booleans) ⬣
We use a notation 𝟚fin to denote fin(2) and call its elements booleans. We also use

𝟶 : 𝟚fin and 𝟷 : 𝟚fin to denote 0 : fin(2) and 1 : fin(2) , respectively. ◢
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◤ Definition 4.16 (binary numbers) ⬣
Let n : ℕ , we define binary(n) to be a sequence of binary numbers of length n
where each digit here is a boolean (a.k.a. an element of 𝟚fin).

If b⃗ : binary(n) , we may use a notation ⟨b⃗0b⃗1… b⃗n−1⟩ or ⟨ b⃗0 , b⃗1 , … , b⃗n−1 ⟩
to represent the binary number b⃗ where b⃗i is the digit of b⃗ at index i, which we can

also denote it as b⃗[i]. ◢

◤ Definition 4.17 (ternary numbers) ⬣
Let n : ℕ , we define ternary(n) to be a sequence of ternary numbers of length n
where each digit here is an element of { 𝟶 , 𝟷 , ⋆ }.

If ⃗t : ternary(n) , we may use a notation ⟨ ⃗t0 ⃗t1… ⃗tn−1⟩ or ⟨ ⃗t0 , ⃗t1 , … , ⃗tn−1 ⟩ to
represent the ternary number ⃗t where ⃗ti is the digit of ⃗t at index i, which we can also

denote it as ⃗t[i].

Please note that, although { 𝟶 , 𝟷 , ⋆ } and fin(3) are isomorphic to each other,

but they have different underlining meanings. In particular, ⋆ : { 𝟶 , 𝟷 , ⋆ } should

not be treated as 2 : fin(3) because (𝟶 ⩽ ⋆ ⩽ 𝟷) whereas (0 < 1 < 2). ◢
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§ 4.2 Simplices

Simplices are generalisations of points, lines, triangles, and tetrahedrons into higher

dimensions. If the reader is not familiar with simplices, then I recommend this pa-

per [Fri20] by Greg Friedman.

§ 4.2.1 Geometry of Simplices

Simplices are essential for the study of algebraic topology and higher categories; in

particular, the definitions of ∞-groupoids and quasi-categories depend on simplicial sets

which are presheaves on the category of simplices.

◤ Definition 4.18 ⬣ A geometrical n-simplex is a subspace of the ℝn
top determined

by the convex hull of (n + 1) extreme points. Also, it will be called degenerated if it is

possible to remove some extreme points and the convex hull is still be the same. ◢

In any given dimension n, there will be many distinct geometrical non-degenerated
n-simplices but all of them are topologically equivalent to one another; so, we can select

one of them to be the canonical geometrical n-simplex, denoted as △n
top.

◤ Definition 4.19 ⬣ We define the canonical n-simplex, denoted as △n
top, to be a

subspace of ℝn
top induced by the following set △n

set.

△n
set :≡ { ⟨ x0 , x1 , … , xn−1 ⟩ : ℝn | 0 ⩽ x0 ⩽ x1 ⩽ ⋯ ⩽ xn−1 ⩽ 1 } ◢

75



◤ Remark 4.20 ⬣ In literature, it is common for △n
top to be defined by

́△n
set :≡ { ⟨ x0 , x1 , … , xn−1 ⟩ : ℝn | (0 ⩽ xi ⩽ 1) ∧ (x0+x1+⋯ +xn−1 ⩽ 1) }

which is more intuitive and perhaps geometrically easier to work with. However, I still

prefer △n
set over ́△n

set because the former behaves better when dealing with ordering (in

particular for chapter 7). ◢

◤ Theorem 4.21 ⬣ ́△n
set is isomorphic to △n

set in the category 𝗩𝗲𝗰𝘁. ◢

Proof. Let ϕ and ψ be matrices on ℝ with size n × n where:

ϕi,j :≡
⎧⎪
⎨⎪
⎩

1 if i ⩾ j

0 otherwise
ψi,j :≡

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪
⎩

1 if i = j

−1 if i = j + 1

0 otherwise

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

x0
x1
x2
⋮
xn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

ϕ :≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

x0
x0 + x1

x0 + x1 + x2
⋮

x0 + x1 +⋯+ xn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

x0
x1
x2
⋮
xn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

ψ :≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

x0
x1 − x0
x2 − x1
⋮

xn−1 − xn−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

Then, we define an isomorphic structure ( ́△n
set ≅ △n

set) as a tuple of ϕ, ψ, and proofs

that both ϕ ⬝ ψ and ψ ⬝ ϕ equal to the identity matrix. QED

◤ Definition 4.22 ⬣ We defined the extreme point of △n
top at index i to be

⟨ x0 , x1 , … , xn−1 ⟩ such that xj :≡ 0 if (i + j < n), otherwise xj :≡ 1.

Thus, the extreme points of △n
top at index 0, 1, 2, (n − 2), and (n − 1) to be

⟨𝟶, … ,𝟶 ⟩, ⟨𝟶, … ,𝟶,𝟷 ⟩, ⟨𝟶, … ,𝟶,𝟷,𝟷 ⟩, ⟨𝟶,𝟷, … ,𝟷,𝟷 ⟩, and ⟨𝟷, … ,𝟷 ⟩, respectively. ◢
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§ 4.2.2 Categories of Semi-Simplices

In this subsection, we want to gather non-degenerated simplices in subsection 4.2.1 and

define the binary and combinatoric versions of the semi-simplex category, which are

isomorphic to each other.

Please note that, the combinatoric version is more common than the binary version

in the literature; nevertheless, I also define the binary version here for the pedagogical

purpose, i.e. it is easier to understand and can be generalised from simplices to cubes.

◤ Definition 4.23 ⬣ We define the category △bin
semi to be the binary version of the

semi-simplex category defined as followed.

• An object is a natural number n, representing △n
top.

• A morphism from m to n is a binary number of length (n + 1) with (m + 1)
occurrences of digit 𝟷.

• An identity morphism of n is the the binary number ⟨𝟷𝟷…𝟷⟩ with (n + 1) digits.

• Let ⃗f : △comb
semi (m , k ) and g⃗ : △comb

semi ( k , n ) , the composing morphism ⃗f ⬝ g⃗ is

the binary number g⃗ but each occurrence i of digit 𝟷 is replaced by ⃗f[i]. This

results in binary number of length (n + 1) but the occurrences of digit 𝟷 is reduced
from (k + 1) to (m + 1).

Each morphism b⃗ from an object m to another object n represents a non-degenerated

m-simplex of △n
top where each b⃗[i] determines whether extreme point at index i is

included in this face: 𝟷 means included whereas 𝟶 means excluded. ◢
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◤ Lemma 4.24 ⬣ The category △bin
semi is a direct category. ◢

Proof. We use the identity function on ℕ as the degree function. For any natural

numbers m and n, we want to prove that deg(m) < deg(n) if there is a non-identity
morphism in △bin

semi(m , n ). This can be done by comparing m and n:

• If m < n, then deg(m) < deg(n) holds by unfolding the degree function.

• If m = n, then only the binary number ⟨𝟷𝟷…𝟷⟩ can be in △bin
semi(m , n ),

so it doesn’t have a non-identity morphism.

• If m > n, then △bin
semi(m , n ) contains no morphisms because it impossible for

any binary number to have occurrences of digit 𝟷 more than total number of digits

itself. QED

◤ Definition 4.25 ⬣ We define the category △comb
semi to be the combinatoric version

of the semi-simplex category defined as followed.

• An object is a natural number n, representing △n
top.

Alternatively, we may see the object n as the set fin(n + 1) that represents all
(n + 1) extreme points of an n-simplex; therefore, we may use the set fin(n + 1)
or the natural number n to represent the same object interchangeably.

• A morphism from m to n is a function f : fin(m + 1) → fin(n + 1) where

the function f is strict-monotone, i.e. (i < j) implies (f(i) < f(j)).

• The rest of components inherits from the category 𝗦𝗲𝘁. ◢
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Each morphism f : △comb
semi (m , n ) represents the action of picking (m + 1) out

of (n + 1) extreme points (to construct △m
top in △n

top) where the extreme point at index

i : fin(m + 1) of △m
top is the extreme point at index f(i) : fin(n + 1) of △n

top.

Each function here must be strict-monotone to make sure that the picking process

is in order; otherwise, there may be different picking methods that has the same result,

e.g. both “picking the first then second” and “picking the second then first” have the

same result containing the first two extreme points.

Actually, each function f must also be injective, i.e. (f(i) = f(j)) implies (i = j),
to make sure that there no distinct picks of the same extreme point (otherwise, the

face will become degenerated). However, we don’t require injectivity in this definition

because strict-monotonicity implies injectivity anyway.

◤ Lemma 4.26 ⬣ The category △comb
semi is isomorphic to the category △bin

semi. ◢

Proof. Since both △comb
semi and △bin

semi have the same set of objects, our goal now becomes

△comb
semi (m , n ) ≅ △bin

semi(m , n ) for every m, n : ℕ .

In the forward direction, we define ϕ : △comb
semi (m , n ) → △bin

semi(m , n ) . Given

f : △comb
semi (m , n ) , which is a strict-monotone function from fin(m + 1) to fin(n + 1),

we define ϕ(f) : △bin
semi(m , n ) where ϕ(f)[i] for each index i : fin(n + 1) is the

digit 𝟷 if i is an image of the function f; otherwise, it is the digit 𝟶.
Please note that, there will be (m + 1) indices that have digit 𝟷 because the domain of

f has (m + 1) elements and f is injective (derived from strict-monotonicity) so the are

(m + 1) images from f.

79



In the backward direction, we define ψ : △bin
semi(m , n ) → △comb

semi (m , n ) .
Given b⃗ : △bin

semi(m , n ) , which is a binary number with (n + 1) digits such that the oc-
currences of digit 𝟷 is equal to (m + 1), we define ψ(b⃗) : fin(m + 1) → fin(n + 1)
as an strict-monotone function that takes number i : fin(m + 1) then returns the

index of the element in b⃗ that is the occurrence i of digit 𝟷.
Please note that, the image ψ(b⃗)(i) can be at most n because the last index of b⃗ is n,
so it fits the set fin(n + 1).

Finally, it is obvious to see that both ϕ ⬝ ψ and ψ ⬝ ϕ are identity morphisms in

△comb
semi and △bin

semi, respectively. QED

◤ Lemma 4.27 ⬣ The category △comb
semi is a direct category. ◢

Proof. By applying lemma 4.26 to lemma 4.24 QED

§ 4.2.3 Categories of Simplices

In this subsection, we relax the semi-simplex category to the simplex category by allowing

the affine transformation to be degenerated. This allow us to define the combinatoric

version of the simplex category from △comb
semi by relaxing the property of morphisms from

strict-monotone functions to monotone functions.
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◤ Definition 4.28 ⬣ We define the category △comb
full to be the combinatoric version

of the simplex category defined as followed.

• An object is a natural number n, representing △n
top.

Alternatively, we may see the object n as the set fin(n + 1) that represents all
(n + 1) extreme points of an n-simplex; therefore, we may use the set fin(n + 1)
or the natural number n to represent the same object interchangeably.

• A morphism from m to n is a function f : fin(m + 1) → fin(n + 1) where

the function f is monotone, i.e. (i ⩽ j) implies (f(i) ⩽ f(j)).

• The rest of components inherits from the category 𝗦𝗲𝘁. ◢

◤ Lemma 4.29 ⬣ The category △comb
semi is a wide-subcategory of △comb

full . ◢

Proof. We can define a functor ℱ from △comb
semi to from △comb

full such that ℱ.mapObj is an

identity function (which is an injective function) and ℱ.mapHom(m,n) is an inclusion

function (which is an injective function) for all m, n : ob(△comb
semi ) . QED

◤ Lemma 4.30 ⬣ The category △comb
full is a Reedy category. ◢

Proof. According to definition 4.9; we define deg to be an identity function, define ℛ to

be the category △comb
semi , and define ℒ to be a wide-subcategory of △comb

full containing all

morphisms of △comb
full that are surjective functions.

Regarding the factorisation, each morphism f : △comb
full (m , n ) , which is a mono-

tone function from fin(m + 1) to fin(n + 1), we can always find a number (k ⩽ min(m,n))
together with morphisms l : △comb

full (m , k ) and r : △comb
full ( k , n ) such that l ⬝ r = f.

The following algorithm tells us how to find k, l, and r.
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• Define an auxiliary set, named imgs, as the set containing all images of f.

• Define k to the cardinality of imgs minus 1.

• Define an auxiliary function rank : fin(k + 1) → imgs where rank(i) is the ele-
ment in imgs at index i when imgs is sorted in ascending order. Since the function

rank is bijective, so we also have an inverse function rank−1 : imgs → fin(k + 1) .

• We define l : fin(m + 1) → fin(k + 1) where l :≡ f ⬝ rank−1.

• We define r : fin(k + 1) → fin(n + 1) where l :≡ rank.

Now it is easy to see l and r are morphisms in ℒ and ℛ, respectively. QED

◤ Remark 4.31 (augmented simplex category) ⬣
There is an important variant of the simplex category called augmented simplex category,

which is the simplex category augmented with an additional object called (−1)-simplex
together with a face map from the (−1)-simplex to each other simplex.

Recall that an n-simplex can be represented by a set of (n + 1) extreme points; so,
it is natural to algebraically extend the definition of simplices by including (−1)-simplex
that is represented by a set of 0 extreme points.

There are some applications of the augmented simplex category but it is significantly

fewer than the original simplex category; so, we can still say that there is a unique

variation of the simplex category (up to the equivalence of categories). The prefix

“augmented” is necessary to refer to augmented simplex category. ◢
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§ 4.3 Standard Cubes

Standard cubes are generalisations of points, lines, squares, standard 3-cubes, and tesser-
acts into higher dimensions. Please note that, the meaning of cubes in topology is

actually hypercubes in general context; to refer the original meaning of cubes from

general context, we explicitly call them standard 3-cubes in this thesis.

§ 4.3.1 Geometry of Standard Cubes

Standard cubes are important for algebraic topology and higher categories; however

simplices are usually preferred to standard cubes due to several reasons including:

• Most standard definitions in algebraic topology have tight-coupling dependency on

the category of simplices. For example, a quasi-category, a popular representation

of (∞, 1)-category, is defined to be simplicial set satisfying a property called inner
Kan conditions.

• The complexity of standard cube categories; for instance, an n-simplex has (n + 1)
extreme points whereas a standard n-cube has 2n extreme points, which is signi-

ficantly larger.

• The diversity of standard cube categories [BM17] fragments the research on cubical

sets: some theorem that works on one variation of standard cube category may

not work in another variation. This is not the case for the simplex category.
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Despite standard cubes having less popularity than simplices, there are some ap-

plications that prefer standard cubes to simplices because of their better behaviour in

certain use cases; a prominent example is the categorical semantics of homotopy type

theory that we have discussed in section 2.6.

◤ Definition 4.32 ⬣ A geometrical n-cube is a subspace of the ℝn
top determined

by two points, denoted as ⟨ u0 , u1 , … , un−1 ⟩ and ⟨ v0 , v1 , … , vn−1 ⟩ that generates

{ ⟨ x0 , x1 , … , xn−1 ⟩ : ℝn | min (ui, vi) ⩽ xi ⩽ max (ui, vi) }

Also, it will be called degenerated if there is i : fin(n) such that (ui = vi). ◢

◤ Definition 4.33 ⬣ We define the canonical standard n-cube, denoted as ◻ntop,

to be a subspace of ℝn
top induced by points ⟨ 0 , 0 , … , 0 ⟩ and ⟨ 1 , 1 , … , 1 ⟩ that

generate the following set

◻nset :≡ { ⟨ x0 , x1 , … , xn−1 ⟩ : ℝn | 0 ⩽ xi ⩽ 1 }. ◢

84



§ 4.3.2 Categories of Standard Semi-Cubes

◤ Definition 4.34 ⬣ We define the category ◻comb
semi to be the combinatoric version

of standard semi-cube category defined as followed.

• An object is a natural number n, representing ◻ntop.

• A morphism from m to n is a ternary number of length n
with m occurrences of ⋆.

• An identity morphism on object n is the a ternary number ⟨⋆⋆…⋆⟩ with n digits.

• Let ⃗f : ◻comb
semi (m , k ) and g⃗ : ◻comb

semi ( k , n ) , the composing morphism ⃗f ⬝ g⃗ is

the ternary number g⃗ but each occurrence i of ⋆ is replaced by ⃗f[i]. This is a

ternary number of length n but the occurrences ⋆ is reduced from k to m.

Each morphism ⃗t : ◻comb
semi (m , n ) represents a non-degenerated m-face of ◻ntop where:

• ⃗t[i] :≡ 𝟶 means that the face is only at the source endpoint of dimension i,
• ⃗t[i] :≡ 𝟷 means that the face is only at the target endpoint of dimension i,
• ⃗t[i] :≡ ⋆ means that the face occupy everywhere in dimension i. ◢

◤ Lemma 4.35 ⬣ The category ◻comb
semi is a direct category. ◢

Proof. We use the identity function on ℕ as the degree function. For any natural

numbers m and n, we want to prove that deg(m) < deg(n) if there is a non-identity
morphism in ◻comb

semi (m , n ). This can be done by comparing m and n:

• If m < n, then deg(m) < deg(n) holds by unfolding the degree function.

• If m = n, then only the ternary number ⟨⋆⋆…⋆⟩ can be in ◻comb
semi (m , n ),

so it doesn’t have a non-identity morphism.

• Ifm > n, then ◻comb
semi (m , n ) contains no morphisms because any ternary number

cannot have the occurrences of ⋆ more than total number of digits itself. QED
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Chapter

5

Categorifing Shapes by

a Graph-Theoretic Framework

This chapter explores a novel framework to transform geometric shapes, such as sim-

plices and cubes, into the categories of the corresponding shapes described in chapter 4,

by using graphs and their morphisms as the intermediate representation.

Although the main motivation of this new framework is to rigorously define twisted

cubes later in chapter 6, the framework itself deserves its own attention because it is a

general framework that is applicable to any other shapes that resemble convex polytopes,

that have been discussed in convention 4.5.
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§ 5.1 Graph-theoretic Representation

This section defines data structures and related concepts from graph and order theories

that are essential for our framework later in the rest of this chapter.

§ 5.1.1 Definitions of Graphs and Graph Morphisms

Although there are many varieties of graphs in graph theory; this thesis only considers

directed graphs that allow loops but forbid parallel edges nor weighted edges. This

restriction makes any considered graph to be equivalent to its set of nodes equipped

with an endorelation representing its edges. For computational purposes, we further

require that the each graph has finite nodes the endorelation of edges is decidable.

◤ Definition 5.1 (graphs) ⬣
A record G is called a graph, if it contains these fields:

• G.Nodes — a set of things called nodes (a.k.a. vertices).

• G.isEdge — a function that takes two nodes s and t then returns

a proposition stating whether “there exists an edge from s to t” or not.

• G.hasFinNodes — a proof ensures that the graph has finite nodes.

• G.decideEdges — a function that takes two nodes s and t then returns a proof

that ensures the proposition G.isEdge(s, t) is decidable.

We may also omit G.hasFinNodes and G.decideEdges if it is obvious to do so. ◢
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◤ Convention 5.2 (alternative representation of graphs) ⬣
Alternative to definition 5.1, we may replace the fields G.isEdge and G.decideEdges with

another (pseudo) field called G.Edges, which is a decidable subset of the Cartesian

product (G.Nodes × G.Nodes) where each pair ⟨ s , t ⟩ represents an edge from s to t.

This is because we can recreate G.isEdge as a function that takes nodes s and t
then returns a proposition stating whether “the pair ⟨ s , t ⟩ is in G.Edges” or not. The

resulting proposition is also decidable because G.Edges is a decidable subset of a finite

set (due to G.hasFinNodes); therefore we get G.decideEdges for free.

On the other hand, we can also define G.Edges by iteratively executes the function

G.isEdge against every possible pair of nodes ⟨ s , t ⟩; if G.isEdge(s, t) is true, then

⟨ s , t ⟩, which is now a legitimate edge, will be added into G.Edges.

The algorithms from two paragraphs above allow us to use definition 5.1 and the

alternative definition with G.Edges interchangeably. ◢

The most basic examples of graphs are the empty graph (a.k.a. null graph), trivial

graph, and unit graph, which are denoted by 𝟘grp, ϵgrp, and 𝟙grp, respectively.

◤ Example 5.3 ⬣ We define 𝟘grp, ϵgrp, and 𝟙grp to be the empty, trivial, and unit

graphs, respectively, where:

𝟘grp.Nodes :≡ 𝟘fin 𝟘grp.isEdge(␣, ␣) :≡ ⊥ 𝟘grp.Edges :≡ ∅

ϵgrp.Nodes :≡ 𝟙fin ϵgrp.isEdge(␣, ␣) :≡ ⊥ ϵgrp.Edges :≡ ∅

𝟙grp.Nodes :≡ 𝟙fin 𝟙grp.isEdge(␣, ␣) :≡ ⊤ 𝟙grp.Edges :≡ { ⟨𝟶 , 𝟶 ⟩ }

Please note that, the definitions of these graphs use only the first and second columns;

however, the third column shows how to alternatively define these graphs according

to convention 5.2. ◢
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Next, we explore the notion of notation of a graph morphism, which is a homo-

morphism between two graphs; that is, a function between sets of nodes, together with

a requirement that such the function preserves edges.

◤ Definition 5.4 (graph morphisms) ⬣
A record f is called a graph homomorphism from a graph G to another graph G′, if it

contains these fields:

• f.mapNode — a function that maps nodes from G.Nodes to G′.Nodes.

Please note that, we usually abbreviate f.mapNode( v : G.Nodes ) as f(v).

• f.mapEdge — a proof ensure that f preserves edges, i.e. we have

f.mapEdge(s, t) : G.isEdge(s, t) → G′.isEdge(f(s), f(t)).

for each nodes s and t in G.Nodes. ◢

◤ Lemma 5.5 (extensionality of graph morphisms) ⬣
Let f and g be graph homomorphisms from a graph G to another graph G′;

if (f.mapNode(v) = g.mapNode(v)) for every v : G.Nodes , then (f = g). ◢

Proof. To prove that (f = g), we need to prove that (f.mapNode = g.mapNode) and
(f.mapEdge = g.mapEdge). The former can be achieved by applying function exten-

sionality to the assumption. The latter can also be achieved by applying function

extensionality to this new auxiliary goal.

f.mapEdge(s, t) = g.mapEdge(s, t) for every s, t : G.Nodes

To this auxiliary goal, both terms on the equation have the same type because f.mapNode(s)
and f.mapNode(t) are equal to g.mapNode(s) and g.mapNode(t), respectively.
The types belongs to Prop; therefore, f.mapEdge(s, t) is equal to g.mapEdge(s, t) by
proposition extensionality. QED
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§ 5.1.2 Graph Paths

The next entities to be defined are paths on graphs. We start by defining graphs that act

as the “templates” of paths called linear graphs. Then, we define a path of any graph

G to be a graph homomorphism from one of these linear graphs to the graph G itself.

◤ Definition 5.6 (linear graphs) ⬣
Let n : ℕ , we define linengrp to be a graph where

linengrp.Nodes :≡ fin(n + 1)

linengrp.Edges :≡ { ⟨ i , i + 1 ⟩ | i : fin(n) } ◢

◤ Lemma 5.7 ⬣ The empty and unit graphs can be presented as the linear graphs

of lengths 0 and 1, respectively.

𝟘grp :≡ line0
grp 𝟙grp :≡ line1

grp ◢

◤ Definition 5.8 (graph paths) ⬣
A record p is called a path of a graph G, if it contains these fields:

• p.length — the total number of edges in the path.

• p.map — a graph homomorphism from linep.length
grp to G itself.

Please note that, the field p.map is overloaded as the path p itself. For example, the

source and target of p are p(0) and p(p.length − 1), respectively. ◢
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§ 5.1.3 Category of Graphs

Intuitively speaking, if one see a graph as an upgraded version of its set of nodes (similar

to example 2.8), then a graph morphism is just an upgraded version of its underlining

function (by equipping the condition that all edges are preserved). This allow us to

define the category of graphs using 𝗦𝗲𝘁.

◤ Definition 5.9 ⬣ We define 𝗚𝗿𝗮𝗽𝗵 to be the category of graphs where

• objects are graphs defined in definition 5.1 (or convention 5.2),

• morphisms are graph homomorphisms defined in definition 5.4, and

• the rest of fields can be canonically derived from nodes and node-maps which are

objects and morphisms in 𝗦𝗲𝘁. ◢

There are many other concepts about sets (or more precisely, topos [Topos; Lan92;

Gol06]) that are applicable to graphs. For example, we says that a set X can be regarded

as a subset of another set Y if there is an injective function from X to Y; this statement
can be enriched for graphs as follows.

◤ Definition 5.10 ⬣ Let G, G′ : ob(𝗚𝗿𝗮𝗽𝗵) , we says that G is a subgraph of

G′ if we have f : 𝗚𝗿𝗮𝗽𝗵(G , G′ ) such that the function f.mapNode is injective. ◢

◤ Lemma 5.11 ⬣ The category 𝗚𝗿𝗮𝗽𝗵 has 𝟘grp and 𝟙grp as its initial object and

terminal object, respectively. ◢

◤ Lemma 5.12 ⬣ If ℱ is an endofunctor on 𝗚𝗿𝗮𝗽𝗵 and G, G′ : ob(𝗚𝗿𝗮𝗽𝗵) ,

then G ≅ G′ implies ℱ.mapObj(G) ≅ ℱ.mapObj(G′). ◢
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Proof. Let ⟨ ϕ : 𝗚𝗿𝗮𝗽𝗵(G , G′ ) , ψ : 𝗚𝗿𝗮𝗽𝗵(G′ , G ) , η : id(G) = ϕ ⬝ ψ , and

ε : ψ ⬝ ϕ = id(G′) ⟩ to be a quadruple obtained from (G ≅ G′). Then, we define

ϕ′ : 𝗚𝗿𝗮𝗽𝗵( ℱ.mapObj(G) , ℱ.mapObj(G′) ) :≡ ℱ.mapHom(ϕ),

ψ′ : 𝗚𝗿𝗮𝗽𝗵( ℱ.mapObj(G′) , ℱ.mapObj(G) ) :≡ ℱ.mapHom(ψ),

η′ : id(ℱ.mapObj(G)) = ϕ′ ⬝ ψ′ :≡ cong(ℱ.mapHom, η), and

ε′ : ψ′ ⬝ ϕ′ = id(ℱ.mapObj(G′)) :≡ cong(ℱ.mapHom, ε)

to construct ⟨ϕ′ , ψ′ , η′ , ε′ ⟩ : ℱ.mapObj(G) ≅ ℱ.mapObj(G′) . QED

In the homotopy type theory setting, lemma 5.12 is also true even if ℱ is down-

graded from an endofunctor on 𝗚𝗿𝗮𝗽𝗵 to an endofunction on graphs. This is shown

in lemma 5.13.

◤ Lemma 5.13 ⬣ Given a context with homotopy type theory. If F is an endo-

function on graphs and G, G′ : ob(𝗚𝗿𝗮𝗽𝗵)

then G ≅ G′ implies F(G) ≅ F(G′). ◢

Proof.

(G ≅ G′) ≅ (G = G′) [by the univalence]

≅ (ℱ.mapObj(G) = ℱ.mapObj(G′)) [by identity on definition 5.1]

(G ≅ G′) ≅ (ℱ.mapObj(G) ≅ ℱ.mapObj(G′)) [by the univalence] QED
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§ 5.1.4 Borrowing Concepts from Order Theory

Because an endorelation is used to represents the edges of a graph; therefore, we should

be able to borrow some concepts from order theory to our framework; in particular, the

predicates (and closures later in subsection 5.1.5) of reflexivity and transitivity (please

note that, symmetry is not presented here because we don’t use it in our framework).

◤ Definition 5.14 ⬣ We define isRefl, isTran isIrrefl, and isIntran to be

predicates of reflexivity, transitivity, irreflexivity, and (strong) intransitivity, respectively.

Let G be a graph and let s, t, and v be arbitrary nodes of G, then:

isRefl(G) :≡ ∀ ❲ v : G.Nodes ❳ → G.isEdge(v, v)

isTran(G) :≡ ∀ ❲ s, v, t : G.Nodes ❳ →

G.isEdge(s, v) → G.isEdge(v, t) → G.isEdge(s, t)

isIrrefl(G) :≡ ∀ ❲ v : G.Nodes ❳ → ¬ G.isEdge(v, v)

isIntran(G) :≡ ∀ ❲ s, v, t : G.Nodes ❳ →

G.isEdge(s, v) → G.isEdge(v, t) → ¬ G.isEdge(s, t) ◢

Although the predicates isRefl and isIrrefl are mutually exclusive, i.e.

∀ ❲G : ob(𝗚𝗿𝗮𝗽𝗵) ❳ → ¬ (isRefl(G) ∧ isIrrefl(G)),

both predicates are not complement of each other, i.e.

∃ ❲G : ob(𝗚𝗿𝗮𝗽𝗵) ❳ × (¬ isRefl(G) ∧ ¬ isIrrefl(G)).

For example, that G can be a graph such that

G.Nodes :≡ 𝟚fin and G.Edges :≡ { ⟨𝟶 , 𝟷 ⟩ , ⟨𝟷 , 𝟷 ⟩ }.
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The predicates isTran and isIntran also have the same relationship as isRefl and

isIrrefl above. In addition, the predicate isIntran also implies the predicate isIrrefl.

Please note that, the reflexivity is discussed in more detail than transitivity here because

the former is used more often than the latter.

§ 5.1.5 Reflexive and Transitive Closures

This subsection defines reflexive and transitive closures. We first define these closures

as functions that take a graph then return another graph as shown in definitions 5.15

and 5.16.

◤ Definition 5.15 ⬣ For any graph G, we define a reflexive closure of G, denoted
as reflcl(G), to be another graph where:

reflcl(G).Nodes :≡ G.Nodes

reflcl(G).Edges :≡ G.Edges ∪ { ⟨ v , v ⟩ | v : G.Nodes } ◢

◤ Definition 5.16 ⬣ For any graph G, we define a transitive closure of G, denoted
as trancl(G), to be another graph where:

trancl(G).Nodes :≡ G.Nodes

trancl(G).Edges :≡ { ⟨ p(0) , p(p.length − 1) ⟩

| each path p in G such that (p.length ⩾ 1) } ◢
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◤ Lemma 5.17 ⬣ Given that G : ob(𝗚𝗿𝗮𝗽𝗵) , the following propositions hold:

isRefl(reflcl(G)) reflcl(reflcl(G)) = reflcl(G)

isTran(trancl(G)) trancl(trancl(G)) = trancl(G)

reflcl(trancl(G)) = trancl(reflcl(G)) ◢

◤ Lemma 5.18 ⬣ Let G be a graph and let s and t be nodes on G that are not

equal to each other, then trancl(G).isEdge(s, t) is equivalent to G.isEdge(s, t) ◢

◤ Lemma 5.19 ⬣ Let F is an endofunction on graphs that preserves reflexivity

(i.e. if isRefl(G′) then isRefl(F(G′)) for every graph G′) and let G be a graph,

then reflcl(F(G)) ≅ F(reflcl(G)) in the category 𝗚𝗿𝗮𝗽𝗵. ◢

Proof. We know that the graphs on both sides of the goal has the same set of nodes

since both reflcl(F(G)).Nodes and F(reflcl(G)).Nodes can be evaluated to F(G).Nodes;

therefore, this left us to prove that, for every F(G).Nodes,

reflcl(F(G)).isEdge(s, t) if and only if F(reflcl(G)).isEdge(s, t).

To prove the goal above, we compare the node s against the node t.

• If they are equal, then the edge ⟨ s , t ⟩ must in exists in both graphs because

they are reflexive. The graph reflcl(F(G)) is reflexive by lemma 5.17 whereas

F(reflcl(G)) is reflexive because F preserves the reflexivity from reflcl(G).

• If they are not equal, then both propositions on each side can be evaluated to

F(G).isEdge(s, t) due to lemma 5.18; therefore, both propositions on each side are

equivalent to each other. QED
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◤ Definition 5.20 (endofunctor of the reflexive closure) ⬣
We define reflftr

cl to be an endofunctor analogous to the endofunction reflcl, where:

reflftr
cl.mapObj :≡ reflcl and reflftr

cl.mapHom :≡ reflmor
cl

such that reflmor
cl is defined to be a function that takes f : 𝗚𝗿𝗮𝗽𝗵(G , G′ ) then returns

reflmor
cl (f) : 𝗚𝗿𝗮𝗽𝗵( reflcl(G) , reflcl(G′) ) , where the node mapper reflmor

cl (f).mapNode

is f.mapNode and the edge mapper is a function that takes e : reflcl(G).isEdge(s, t)
then returns

reflmor
cl (f).mapEdge(s, t)(e) : reflcl(G′).isEdge(f(s), f(t)).

To define the output above, we need to prove that the edge ⟨ f(s) , f(t) ⟩ is in

reflcl(G′) given that ⟨ s , t ⟩ is in reflcl(G). We compare s and t.

• If they are equal, then we also know that (f(s) = f(t)), so the edge ⟨ f(s) , f(t) ⟩
must exist because reflcl(G′) is reflexive.

• If they are not equal, then the edge ⟨ s , t ⟩ is also in the graph G where it can

be mapped by f.mapEdge then become ⟨ f(s) , f(t) ⟩ in the graph G′, it is also in

reflcl(G′) by definition 5.15. ◢

◤ Lemma 5.21 ⬣ Let G and G′ be graphs such that (G ≅ G′)
in the category 𝗚𝗿𝗮𝗽𝗵, then we also have reflcl(G) ≅ reflcl(G′). ◢

Proof. By applying the functor reflftr
cl into lemma 5.12 QED
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◤ Definition 5.22 (endofunctor of the transitive closure) ⬣
We define tranftr

cl to be an endofunctor analogous to the endofunction trancl, where:

tranftr
cl.mapObj :≡ trancl and tranftr

cl.mapHom :≡ tranmor
cl

such that tranmor
cl is defined to be a function that takes f : 𝗚𝗿𝗮𝗽𝗵(G , G′ ) then returns

tranmor
cl (f) : 𝗚𝗿𝗮𝗽𝗵( trancl(G) , trancl(G′) ) , where the node mapper tranmor

cl (f).mapNode

is f.mapNode and the edge mapper is a function that takes e : trancl(G).isEdge(s, t)
then returns

tranmor
cl (f).mapEdge(s, t)(e) : trancl(G′).isEdge(f(s), f(t)).

To define the output above, we need to prove that the edge ⟨ f(s) , f(t) ⟩ is in

trancl(G′) given that ⟨ s , t ⟩ is in trancl(G). By definition 5.16, the goal now is to

find a path in G′ from f(s) to f(t) given that there is a path in G from s to t.
Let p be the assuming path, we know that p.map is in 𝗚𝗿𝗮𝗽𝗵( linep.length

grp , G ); we also
know that f is in 𝗚𝗿𝗮𝗽𝗵(G , G′ ), this allow us to compose p.map with f that resulting
in a graph homomorphism from linep.length

grp to G′ that can be used to construct a path

in G′ from the node f(s) to the node f(t). ◢

◤ Lemma 5.23 ⬣ Let G and G′ be graphs such that (G ≅ G′)
in the category 𝗚𝗿𝗮𝗽𝗵, then we also have trancl(G) ≅ trancl(G′). ◢

Proof. By applying the functor tranftr
cl into lemma 5.12 QED
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§ 5.2 Face Graphs for Non-Degenerated Shapes

Before jumping into the full versions of the simplex or standard cube categories, it is

easier to first focus on the non-degenerated versions of them. Here, we construct the

graph-theoretic versions of semi-simplex category and standard-semi-cube category as

full sub-categories of 𝗚𝗿𝗮𝗽𝗵 determined by the families of graphs called face graphs,

which encode all points and lines of the corresponded shapes as their nodes and edges,

respectively.

§ 5.2.1 Face Graphs for Semi-Simplices

For each dimension n : ℕ , we will define the face graph for the canonical n-simplex,
denoted as 𝔽n△, that acts as a template for a non-degenerated n-simplex.

◤ Definition 5.24 (face graphs for simplices) ⬣
Let n : ℕ , we define a graph 𝔽n△ to be the face graph for △n

top

𝔽n△.Nodes :≡ fin(n + 1) 𝔽n△.isEdge(s, t) :≡ (s < t) ◢

◤ Lemma 5.25 ⬣ Let n : ℕ , then 𝔽n△ ≅ trancl(linengrp) in 𝗚𝗿𝗮𝗽𝗵. ◢
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◤ Definition 5.26 (graph theoretic version of semi simplex category) ⬣
We define the category △graph

semi to be a full-subcategory of 𝗚𝗿𝗮𝗽𝗵 induced by the family

of graphs 𝔽n△ for all n : ℕ . Please note that, we may use the number n or the graph

𝔽n△ to denote each object in △graph
semi interchangeably. ◢

Although each object 𝔽n△ : ob(△graph
semi ) only encodes 0-faces and 1-faces of △n

top

as its nodes and edges but the category △graph
semi surprisingly contains all possible faces of

△n
top by regarding them as subgraphs of 𝔽n△. To be precise, an m-face of △n

top can be

represented as an injective graph morphism from 𝔽m△ to 𝔽n△.

For example, a 0-face of △n
top that is encoded as a node v of 𝔽n△, can be regarded as

a subgraph of 𝔽n△ by transforming v into a graph morphism ̅v : △graph
semi ( 0 , n ) below.

Similarly a 1-face of △n
top that is encoded as an edge e of 𝔽n△ can be regarded as a

subgraph of 𝔽n△ by transforming e into a graph morphism ̅e : △graph
semi ( 1 , n ) .

v : 𝔽n△.Nodes ̅v.mapNode(0) :≡ v

̅v : 𝗚𝗿𝗮𝗽𝗵(𝔽0
△ , 𝔽n△ ) ̅e.mapNode(0) :≡ s

e : 𝔽n△.isEdge(s, t) ̅e.mapNode(1) :≡ t

̅e : 𝗚𝗿𝗮𝗽𝗵(𝔽1
△ , 𝔽n△ ) ̅e.mapEdge(0, 1) :≡ e

In general, recall from section 4.2 that eachm-face of △n
top can be uniquely represen-

ted as a morphism f : △comb
semi (m , n ) . We can transform f into ̅f : 𝗚𝗿𝗮𝗽𝗵(𝔽m△ , 𝔽n△ )

where ̅f.mapNode is f and ̅f.mapEdge comes from the strict monotonicity property of f.

Since the category △graph
semi excludes all of degenerated simplices, every morphism of

△graph
semi (m , n ) must represent an m-face of n-simplex, which is a subgraph of 𝔽n△. This

requires us to assure that there are no non-injective morphisms in △graph
semi .
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◤ Remark 5.27 (irreflexive graphs for semi shapes) ⬣
Instead of the operator ( ⩽ ), we use ( < ) in the definition of 𝔽n△.isEdge in order to

make 𝔽n△ irreflexive. This essentially restricts every morphism in △graph
semi to be injective;

this is because any two edges must have different endpoints; therefore, any non-injective

node-map cannot find a suitable edge map counterpart.

In fact, every graph G : ob(𝗚𝗿𝗮𝗽𝗵) representing a semi-shape in this framework

must satisfy isIrrefl(G). This is to make sure that all morphisms in the resulting

category are monomorphisms. ◢

To show that this new △graph
semi makes sense we show that it is isomorphic to the

traditional △comb
semi as follows.

◤ Lemma 5.28 ⬣ The category △graph
semi is isomorphic to the category △comb

semi . ◢

Proof. Since both △graph
semi and △comb

semi have the same set of objects, our goal now becomes

△graph
semi (m , n ) ≅ △comb

semi (m , n ) for every m, n : ℕ .

In the forward direction, we define ϕ : △graph
semi (m , n ) → △comb

semi (m , n ) . Given
f : △graph

semi (m , n ) , which is a graph homomorphism from 𝔽m△ to 𝔽n△, we define

ϕ(f) : △comb
semi (m , n ) where ϕ(f) :≡ f.mapNode.

• We know that ϕ(f) is injective because 𝔽n△ is irreflexive so it is impossible for

f.mapNode to map two distinct nodes to the same image.

• We also know that ϕ(f) is strict-monotone because, given s, t : fin(m + 1) , a
proof of (s < t) can be translated to a proof of 𝔽m△ .isEdge(s, t), which, in turn,

get mapped by f.mapEdge and become a proof of 𝔽n△.isEdge(f(s), f(t)), which, in
turn again get translated back to a proof of (f(s) < f(t)).
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In the backward direction, we define ψ : △comb
semi (m , n ) → △graph

semi (m , n ) . Given
f : △comb

semi (m , n ) , which is an injective strict-monotone function from fin(m + 1) to
fin(n + 1), we define ψ(f) : 𝗚𝗿𝗮𝗽𝗵(𝔽m△ , 𝔽n△ ) .

• Regarding ψ(f).mapNode, it is the function f itself.

• Regarding ψ(f).mapEdge, given s, t : fin(m + 1) , a proof of 𝔽m△ .isEdge(s, t)
can be translated to a proof of (s < t), which, in turn, get mapped by the strict-

monotonicity of f and become a proof of (f(s) < f(t)), which, in turn again, get

translated back to a proof of 𝔽n△.isEdge(f(s), f(t)).

Finally, it is obvious that both ϕ ⬝ ψ and ψ ⬝ ϕ are identity morphisms in 𝗚𝗿𝗮𝗽𝗵. QED

◤ Corollary 5.29 ⬣ The category △graph
semi is a direct category. ◢

Proof. By applying lemma 5.28 to lemma 4.27. QED

§ 5.2.2 Graph Definitions using Recursion

Alternative to definition 5.24, we can define 𝔽n△ recursively on the natural number n
by defining an endofunction, cone, that takes 𝔽n△ and returns 𝔽(n+1)

△ .

In addition, if isRefl(G), then we add an edge from the new node to itself; this

is to make sure that cone preserves reflexivity, which is a requirement of lemma 5.19

that will be used later in section 5.3.
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◤ Definition 5.30 (cone iterator) ⬣
Let G be a graph, we define another graph cone(G) as a modification of the graph G
by adding a new node that attaches an edge from itself to each of original nodes. If

isRefl(G), then include a looping edge on the new node.

cone(G).Nodes :≡ 𝟙fin ⊎ G.Nodes

cone(G).Edges :≡ { ⟨ inr(s) , inr(t) ⟩ | ⟨ s , t ⟩ : G.Edges }

∪ { ⟨ inl(𝟶) , inr(v) ⟩ | v : G.Nodes }

∪ ( if isRefl(G) then { ⟨ inl(v) , inr(v) ⟩ } else ∅ ) ◢

Similar to reflcl and trancl, we want to upgrade the endofunction cone to an

endofunctor; unfortunately, this is not possible because of the edge ⟨ inl(𝟶) , inl(𝟶) ⟩
that exists conditionally on the reflexivity.

The counter example is any graph morphism in 𝗚𝗿𝗮𝗽𝗵(G , G′ ) such that the

graph G is reflexive but the graph G′ is not; this is because there will be the edge

⟨ inl(𝟶) , inl(𝟶) ⟩ in cone(G) but not in cone(G′) so we can’t define any graph morph-

ism from cone(G) to cone(G′). Nevertheless, will can still get (cone(G) ≅ cone(G′))
by applying lemma 5.13 instead of lemma 5.12.

◤ Lemma 5.31 ⬣ Let G and G′ be graphs such that (G ≅ G′)
in the category 𝗚𝗿𝗮𝗽𝗵, then we also have cone(G) ≅ cone(G′). ◢

Proof. By applying the function cone into lemma 5.13 QED

◤ Definition 5.32 (face graphs for simplices using recursion) ⬣
Let n : ℕ , we define a graph 𝔽́n△ to be a recursive version of graph 𝔽n△.

𝔽́0
△ :≡ ϵgrp 𝔽́(n+1)

△ :≡ cone(𝔽́n△) ◢
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◤ Lemma 5.33 ⬣ Let n : ℕ , then 𝔽(n+1)
△ ≅ cone(𝔽n△). ◢

Proof. We define ϕ : 𝗚𝗿𝗮𝗽𝗵(𝔽(n+1)
△ , cone(𝔽n△) ) and ψ : 𝗚𝗿𝗮𝗽𝗵( cone(𝔽n△) , 𝔽(n+1)

△ )
as graph homomorphisms for forward and backward direction, respectively, where:

ϕ.mapNode : fin(n + 2) → (𝟙fin ⊎ fin(n + 1))

ψ.mapNode : (𝟙fin ⊎ fin(n + 1)) → fin(n + 2)

ϕ.mapNode(0) :≡ inl(𝟶) ψ.mapNode(inl(𝟶)) :≡ 0

ϕ.mapNode(n + 1) :≡ inr(n) ψ.mapNode(inr(n)) :≡ n + 1

Regarding ϕ.mapEdge and ψ.mapEdge, it is obvious that ϕ and ψ preserve edges by

inspecting ϕ.mapNode and ψ.mapNode, respectively. Finally, it is obvious that both

ϕ ⬝ ψ and ψ ⬝ ϕ are identity morphisms in 𝗚𝗿𝗮𝗽𝗵. QED

◤ Theorem 5.34 ⬣ Let n : ℕ , then 𝔽́n△ ≅ 𝔽n△ in 𝗚𝗿𝗮𝗽𝗵. ◢

Proof. Using induction on the natural number n: The base (𝔽́0
△ ≅ 𝔽0

△) case is obvious
because both 𝔽0

△ and 𝔽́0
△ have a single node with no edges. Regarding the inductive

step, assuming that (𝔽́n△ ≅ 𝔽n△), we need to construct (𝔽́(n+1)
△ ≅ 𝔽(n+1)

△ ).

𝔽́(n+1)
△ ≅ cone(𝔽́n△) [by definition 5.32]

≅ cone(𝔽n△) [by the induction hypothesis and lemma 5.21]

𝔽́(n+1)
△ ≅ 𝔽(n+1)

△ [by lemma 5.33] QED
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◤ Convention 5.35 (simplices coercion from their recursive graphs) ⬣
We define a coercion from 𝔽́n△ to 𝔽n△ using the isomorphic structure of theorem 5.34.

This convention allows us to use both definitions 5.24 and 5.32 as the definition for

face graph of n-simplex without duplication of related components. For instance, the

category △graph
semi doesn’t need its recursive version because any graph morphism of type

𝗚𝗿𝗮𝗽𝗵( 𝔽́m△ , 𝔽́n△ ) will automatically be a morphism in △graph
semi (m , n ).

Recursive and non-recursive definitions are not superior to each other. On one hand,

the recursive definition makes proof-by-induction become easier (and more natural). On

the other hand, the non-recursive definition provide a compact and intuitive notation

to mention about nodes and edges.

The duality of recursive and non-recursive definitions are not specific for simplices

but persists through other shapes, such as standard cubes and even twisted cubes.

Therefore, this convention of coercion will also apply to those shapes as well (provide that

the shapes have isomorphic structure between recursive and non-recursive definitions,

which is also the case in this thesis anyway). ◢

§ 5.2.3 Face Graphs for Standard Semi-Cubes

Similar to 𝔽n△, we will define the face graph for the canonical standard n-cube, denoted
as 𝔽n◻ , that acts as a template for a non-degenerated standard n-cube where its nodes
are binary numbers and a pair of these binary numbers is an edge iff their digits are

pairwisely equal to one another except for one index that the digit of former must be

less than the latter.
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◤ Definition 5.36 (face graphs for standard cubes) ⬣
Let n : ℕ , we define a graph 𝔽n◻ to be the face graph for ◻ntop

𝔽n◻ .Nodes :≡ binary(n)

𝔽n◻ .isEdge( ⃗s, ⃗t) :≡ ∃ ❲ i : fin(n) ❳ × ∀ ❲ j : fin(n) ❳ →

if (i = j) then ⃗s[j] < ⃗t[j] else ⃗s[j] = ⃗t[j]◢

◤ Definition 5.37 (graph theoretic version of standard semi cube category) ⬣
We define the category ◻graph

semi to be a full-subcategory of 𝗚𝗿𝗮𝗽𝗵 induced by the family

of graphs 𝔽n◻ for all n : ℕ . Please note that, we may use the number n or the graph

𝔽n◻ to denote each object in ◻graph
semi interchangeably. ◢

◤ Lemma 5.38 ⬣ The category ◻graph
semi is isomorphic to the category ◻comb

semi . ◢

Proof. Since both ◻graph
semi and ◻comb

semi have the same set of objects, our goal now becomes

◻graph
semi (m , n ) ≅ ◻comb

semi (m , n ) for every m, n : ℕ .

In the forward direction, we define ϕ : ◻graph
semi (m , n ) → ◻comb

semi (m , n ) . Given
f : ◻graph

semi (m , n ) , which is a graph homomorphism from 𝔽m◻ to 𝔽n◻ , we compute

ψ(f) : ◻comb
semi (m , n ) using the following algorithm:

• Create a new variable named ⃗t that contains a ternary number of length n.

• Let a⃗ be a binary number of length m where every digit is 𝟶, i.e. a⃗ :≡ ⟨𝟶𝟶…𝟶⟩.

• Assign ⃗t to be f(a⃗). Please note that, f(a⃗) is a binary number of length n but

it can be casted as a ternary number because a binary number is just a ternary

number that is impossible to contain any occurrences of ⋆.

• Iterate a local variable i : fin(m) from 0 to (m − 1). In each iteration, we

compare f(a⃗) against f(b⃗) where b⃗ is a⃗ but the digit at index i is replaced from

𝟶 to 𝟷. If the comparison mismatched, replace the digit of ⃗t at index j to be ⋆
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where j : fin(n) is the index of the different digit in the comparison.

• Return the variable ⃗t as ψ(f) : ◻comb
semi (m , n ) .

In the backward direction, we define ψ : ◻comb
semi (m , n ) → ◻graph

semi (m , n ) .
Given ⃗t : ◻comb

semi (m , n ) , which is a ternary number of length n with m occurrences

of ⋆, we define ψ( ⃗t) : 𝗚𝗿𝗮𝗽𝗵(𝔽m◻ , 𝔽n◻ ) where

• Regarding ψ( ⃗t).mapNode, it is a function that takes b⃗ : binary(m) then return
⃗t except that each occurrence i of ⋆ is replaced by b⃗[i].

• Regarding ψ( ⃗t).mapEdge, it is easy to see that ψ( ⃗t) preserves edges.

Finally, it is obvious that both ϕ ⬝ ψ and ψ ⬝ ϕ are identity morphisms in 𝗚𝗿𝗮𝗽𝗵. QED

◤ Corollary 5.39 ⬣ The category ◻graph
semi is a direct category. ◢

Proof. By applying lemma 5.38 to lemma 4.35. QED

Similar to 𝔽́n△, there is a recursive version of 𝔽n◻ , denoted as 𝔽́n◻ , that use an

endofunction prismstd(G) to iterate though ϵgrp in total n times.

◤ Definition 5.40 (standard prism iterator) ⬣
Let G be a graph, we define another graph prismstd(G) as a modification of the graph

G by duplicating it into two copies then adding edges from nodes on the first copy to

the second copy counterpart pairwisely.

prismstd(G).Nodes :≡ 𝟚fin × G.Nodes

prismstd(G).Edges :≡ { ⟨ ⟨ b , ⃗s ⟩ , ⟨ b , ⃗t ⟩ ⟩ | b : 𝟚fin , ⟨ ⃗s , ⃗t ⟩ : G.Edges }

∪ { ⟨ ⟨𝟶 , v⃗ ⟩ , ⟨𝟷 , v⃗ ⟩ ⟩ | v⃗ : G.Nodes } ◢
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◤ Definition 5.41 ⬣ Let G and G′ be graphs, and f : 𝗚𝗿𝗮𝗽𝗵(G , G′ ) we define

prismmor
std (f) to be a graph homomorphism from prismstd(G) to prismstd(G′).

prismmor
std (f).mapNode : (𝟚fin × G.Nodes) → (𝟚fin × G′.Nodes)

prismmor
std (f).mapNode (⟨ b , v⃗ ⟩) :≡ ⟨ b , f.mapNode(v⃗) ⟩

prismmor
std (f).mapEdge(s, t) : prismstd(G).isEdge(s, t) → prismstd(G′).isEdge(f(s), f(t))

prismmor
std (f).mapEdge (⟨ b , ⃗s ⟩ , ⟨ b , ⃗t ⟩) (e) :≡ f.mapEdge( ⃗s, ⃗t)(e)

prismmor
std (f).mapEdge (⟨𝟶 , v⃗ ⟩ , ⟨𝟷 , v⃗ ⟩) (e) :≡ cong(f.mapNode, e) ◢

◤ Lemma 5.42 ⬣ Given two composable graph homomorphisms f and g, then

prismmor
std (f ⬝ g) = prismmor

std (f) ⬝ prismmor
std (g). ◢

Proof. By applying the following proof to lemma 5.5.

prismmor
std (f ⬝ g).mapNode(⟨ b , v⃗ ⟩)

= ⟨ b , (f ⬝ g).mapNode(v⃗) ⟩

= ⟨ b , g.mapNode(f.mapNode(v⃗)) ⟩

= prismmor
std (g).mapNode(⟨ b , f.mapNode(v⃗) ⟩)

= prismmor
std (g).mapNode(prismmor

std (f).mapNode(⟨ b , v⃗ ⟩))

= (prismmor
std (f).mapNode ⬝ prismmor

std (g).mapNode)(⟨ b , v⃗ ⟩)

= (prismmor
std (f) ⬝ prismmor

std (g)).mapNode(⟨ b , v⃗ ⟩) QED

◤ Lemma 5.43 ⬣ Let G be a graph, then

prismmor
std (id(G)) = id(prismstd(G)). ◢
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Proof. By applying the following proof to lemma 5.5.

prismmor
std (id(G)).mapNode(⟨ b , v⃗ ⟩) = ⟨ b , id(G).mapNode(v⃗) ⟩

= ⟨ b , v⃗ ⟩

prismmor
std (id(G)).mapNode(⟨ b , v⃗ ⟩) = id(prismstd(G)).mapNode(⟨ b , v⃗ ⟩)QED

◤ Definition 5.44 (endofunctor of the standard prism) ⬣
We define prismftr

std to be an endofunctor analogous to the endofunction prismstd,

where:

prismftr
std.mapObj :≡ prismstd prismftr

std.presComp :≡ lemma 5.42

prismftr
std.mapHom :≡ prismmor

std prismftr
std.presIden :≡ lemma 5.43 ◢

◤ Lemma 5.45 ⬣ Let G and G′ be graphs such that (G ≅ G′)
in the category 𝗚𝗿𝗮𝗽𝗵, then we also have prismstd(G) ≅ prismstd(G′). ◢

Proof. By applying the functor prismftr
std into lemma 5.12 QED

◤ Definition 5.46 (face graphs for standard cubes using recursion) ⬣
Let n : ℕ , we define a graph 𝔽́n◻ to be a recursive version of graph 𝔽n◻ .

𝔽́0
◻ :≡ ϵgrp 𝔽́(n+1)

◻ :≡ prismstd(𝔽́n◻) ◢
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◤ Lemma 5.47 ⬣ Let n : ℕ , then 𝔽(n+1)
◻ ≅ prismstd(𝔽n◻). ◢

Proof. We define ϕ : 𝗚𝗿𝗮𝗽𝗵(𝔽(n+1)
◻ , prismstd(𝔽n◻) ) and ψ : 𝗚𝗿𝗮𝗽𝗵( prismstd(𝔽n◻) , 𝔽(n+1)

◻ )
as graph homomorphisms for forward and backward direction, respectively, where:

ϕ.mapNode : binary(n + 1) → (𝟚fin × binary(n))

ψ.mapNode : (𝟚fin × binary(n)) → binary(n + 1)

ϕ.mapNode(⟨ b0 , b1 , … , bn ⟩) :≡ ⟨ b0 , ⟨ b1 , b2 , … , bn ⟩ ⟩

ψ.mapNode(⟨ b0 , ⟨ b1 , b2 , … , bn ⟩ ⟩) :≡ ⟨ b0 , b1 , … , bn ⟩

Regarding ϕ.mapEdge and ψ.mapEdge, it is obvious that ϕ and ψ preserve edges by

inspecting ϕ.mapNode and ψ.mapNode, respectively. Finally, it is obvious that both

ϕ ⬝ ψ and ψ ⬝ ϕ are identity morphisms in 𝗚𝗿𝗮𝗽𝗵. QED

◤ Theorem 5.48 ⬣ Let n : ℕ , then 𝔽́n◻ ≅ 𝔽n◻ in 𝗚𝗿𝗮𝗽𝗵. ◢

Proof. Using induction on the natural number n: The base (𝔽́0
◻ ≅ 𝔽0

◻) case is obvious
because both 𝔽0

◻ and 𝔽́0
◻ have a single node with no edges. Regarding the inductive

step, assuming that (𝔽́n◻ ≅ 𝔽n◻), we need to construct (𝔽́(n+1)
◻ ≅ 𝔽(n+1)

◻ ).

𝔽́(n+1)
◻ ≅ prismstd(𝔽́n◻) [by definition 5.46]

≅ prismstd(𝔽n◻) [by the induction hypothesis and lemma 5.21]

𝔽́(n+1)
◻ ≅ 𝔽(n+1)

◻ [by lemma 5.47] QED

◤ Convention 5.49 (standard cubes coercion from their recursive graphs) ⬣
We define a coercion from 𝔽́n◻ to 𝔽n◻ , which is analogous to convention 5.35. ◢
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§ 5.3 Reflexive Graphs for (Possibly-Degenerated) Shapes

We generalise categories of non-degenerated shapes to include degenerated shapes. The

main concept is to apply the reflexive closure to a face graph to become a reflexive graph.

§ 5.3.1 Reflexive Graphs for Simplices

Technically, while we can define 𝔾n
△ as reflcl(𝔽n△) there is more elegant but equivalent

way to define it, which is to replace the operator ( < ) with the operator ( ⩽ ) in 𝔽n△.

◤ Definition 5.50 (reflexive graphs for simplices) ⬣
Let n : ℕ , we define a graph 𝔾n

△ to be the reflexive graph for ◻ntop.

𝔾n
△.Nodes :≡ fin (n + 1)

𝔾n
△.isEdge s, t :≡ s ⩽ t ◢

◤ Lemma 5.51 ⬣ Let n : ℕ , then 𝔾n
△ ≅ reflcl(𝔽n△) in 𝗚𝗿𝗮𝗽𝗵. ◢

◤ Corollary 5.52 ⬣ Let n : ℕ , then 𝔾n
△ ≅ reflcl(trancl(linengrp)). ◢

◤ Definition 5.53 (graph theoretic version of simplex category) ⬣
We define the category △graph

full to be a full-subcategory of 𝗚𝗿𝗮𝗽𝗵 induced by the family

of graphs 𝔾n
△ for all n : ℕ . Please note that, we may use the number n or the graph

𝔾n
△ to denote each object in △graph

full interchangeably. ◢
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◤ Lemma 5.54 ⬣ The category △graph
full is isomorphic to the category △comb

full . ◢

Proof. This proof is similar to the proof of lemma 5.28, which shows that the category

△graph
semi is isomorphic to the category △comb

semi . Since both △graph
full and △comb

full have the same

set of objects, our goal now becomes

△graph
full (m , n ) ≅ △comb

full (m , n ) for every m, n : ℕ .

In the forward direction, we define ϕ : △graph
full (m , n ) → △comb

full (m , n ) . Given
f : △graph

full (m , n ) , which is a graph homomorphism from 𝔾m
△ to 𝔾n

△, we define

ϕ(f) : △comb
full (m , n ) where ϕ(f) :≡ f.mapNode. We also know that ϕ(f) is mono-

tone because, given s, t : fin(m + 1) , a proof of (s ⩽ t) can be translated to a

proof of 𝔾m
△ .isEdge(s, t), which, in turn, get mapped by f.mapEdge and become a

proof of 𝔾n
△.isEdge(f(s), f(t)), which, in turn again get translated back to a proof of

(f(s) ⩽ f(t)).

In the backward direction, we define ψ : △comb
full (m , n ) → △graph

full (m , n ) . Given
f : △comb

full (m , n ) , which is a monotone function from fin(m + 1) to fin(n + 1), we
define ψ(f) : 𝗚𝗿𝗮𝗽𝗵(𝔾m

△ , 𝔾n
△ ) .

• Regarding ψ(f).mapNode, it is the function f itself.

• Regarding ψ(f).mapEdge, given s, t : fin(m + 1) , a proof of 𝔾m
△ .isEdge(s, t)

can be translated to a proof of (s ⩽ t), which, in turn, get mapped by the

monotonicity of f and become a proof of (f(s) ⩽ f(t)), which, in turn again, get

translated back to a proof of 𝔾n
△.isEdge(f(s), f(t)).

Finally, it is obvious that both ϕ ⬝ ψ and ψ ⬝ ϕ are identity morphisms in 𝗚𝗿𝗮𝗽𝗵. QED

◤ Corollary 5.55 ⬣ The category △graph
full is a Reedy category. ◢

Proof. By applying lemma 5.54 to lemma 4.30. QED
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To upgrade the recursive version of 𝔾n
△ as reflexive graph, it is as easy as replacing

ϵgrp with 𝟙grp in the base case.

◤ Definition 5.56 (reflexive graphs for simplices using recursion) ⬣
Let n : ℕ , we define a graph 𝔾́n

△ to be a recursive version of graph 𝔾n
△.

𝔾́0
△ :≡ 𝟙grp 𝔾́(n+1)

△ :≡ cone(𝔾́n
△) ◢

◤ Lemma 5.57 ⬣ Let n : ℕ , then 𝔾́n
△ ≅ reflcl(𝔽́n△) in 𝗚𝗿𝗮𝗽𝗵. ◢

Proof. Given that G, G′ : ob(𝗚𝗿𝗮𝗽𝗵) , the following propositions hold:
• reflcl(cone(G)) ≅ cone(reflcl(G)) [by lemma 5.19]

• if (G ≅ G′) then cone(G) ≅ cone(G′) [by lemma 5.31]

• if (G ≅ G′) then reflcl(G) ≅ reflcl(G′) [by lemma 5.21]

Then, 𝔾́n
△ ≅ cone(cone((… cone(𝟙grp) )))

≅ cone(cone((… cone(reflcl(ϵgrp)) )))

≅ cone(cone((… reflcl(cone(ϵgrp)) )))

≅ cone(reflcl((… cone(cone(ϵgrp)) )))

≅ reflcl(cone((… cone(cone(ϵgrp)) )))

Hence, 𝔾́n
△ ≅ reflcl(𝔽́n△) QED

◤ Theorem 5.58 ⬣ Let n : ℕ , then 𝔾́n
△ ≅ 𝔾n

△ in 𝗚𝗿𝗮𝗽𝗵. ◢

Proof. 𝔾́n
△ ≅ reflcl(𝔽́n△) [by lemma 5.57]

≅ reflcl(𝔽n△) [by lemma 5.21 and theorem 5.34]

𝔾́n
△ ≅ 𝔾n

△ [by lemma 5.51] QED
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§ 5.3.2 Reflexive Graphs for Standard Cubes

Technically, while we can define 𝔾n
◻ as reflcl(𝔽n◻) there is more elegant but equivalent

way to define it by modifying fin(n) to be fin(n + 1) in the existential quantifier 𝔽n◻
(but still keep the universal quantifier as is).

◤ Definition 5.59 (reflexive graphs for standard cubes) ⬣
Let n : ℕ , we define a graph 𝔾n

◻ to be the reflexive graph for ◻ntop

𝔾n
◻ .Nodes :≡ binary(n)

𝔾n
◻ .isEdge( ⃗s, ⃗t) :≡ ∃ ❲ i : fin(n) ❳ × ∀ ❲ j : fin(n) ❳ →

if (i = j) then ⃗s[j] ⩽ ⃗t[j] else ⃗s[j] = ⃗t[j] ◢

◤ Lemma 5.60 ⬣ Let n : ℕ , then 𝔾n
◻ ≅ reflcl(𝔽n◻) in 𝗚𝗿𝗮𝗽𝗵. ◢

Proof. Since 𝔾n
◻ and reflcl(𝔽n◻) have identical set of nodes, we only need check their

edges to solve the main goal. Therefore, the remaining goal become

𝔾n
◻ .isEdge( ⃗s, ⃗t) iff reflcl(𝔽n◻).isEdge( ⃗s, ⃗t) for all ⃗s, ⃗t : binary(n)

To make the proof become shorter, we say

• LHS (left hand side) as 𝔾n
◻ .isEdge( ⃗s, ⃗t),

• RHS (right hand side) as reflcl(𝔽n◻).isEdge( ⃗s, ⃗t),

• variable i means the binding of the outer existential quantifier, and

• variable j means the binding of the inner universal quantifier.
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To prove this remaining goal, we split the scenario into three cases depending on

the comparison of ⃗s against ⃗t index-wisely.

• When there are no distinguishing indices, then:

– LHS holds because, for every variable j, we have ( ⃗s[j] = ⃗t[j]),
which implies both then-clause and else-clause of LHS

(regardless of variable i assignment because both clauses don’t depend on it).

– RHS holds because ( ⃗s = ⃗t) holds so we unfold the definition of reflcl.

• When there are multiple distinguishing indices, then:

– LHS doesn’t hold because, for every variable i, there is always some variable j
such that (i ≠ j) and ( ⃗s[j] ≠ ⃗t[j]), which contradicts the else-clause of LHS.

– RHS is now reduced to 𝔽n◻ .isEdge( ⃗s, ⃗t) because ( ⃗s = ⃗t) doesn’t hold so we

unfold the definition of reflcl in contrapositive fashion.

– The new RHS doesn’t hold because the contradiction in else-clause similar to

the case of LHS above.

• When there is a unique distinguishing index, then:

– We define k : fin(n) to be this distinguishing index.

– RHS is now reduced to 𝔽n◻ .isEdge( ⃗s, ⃗t) because ( ⃗s = ⃗t) doesn’t hold so we

unfold the definition of reflcl in contrapositive fashion.

– The only different between LHS and RHS is the different in their then-clauses.

– Both LHS and RHS can be reduced to their respective then-clauses with

variables i and j assigned to k because:

* Let ite(i′, j′) denotes the if-then-else clause inside LHS/RHS but
variables i and j are substituted by i′ and j′, respectively.

* Let TERM denotes ∃ ❲i❳ × ∀ ❲j❳ → ite(i, j).
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* We need to show that TERM can be reduced to ite(k, k).

* When the existential quantifier assigns i :≡ k′ for any k′ : fin(n) not

equal to k, then the universal quantifier can assign j :≡ k to falsify

(i = j) and make ite(k′, k) goes through the else-clause and has a con-

tradiction (because j :≡ k which is the distinguishing index). Therefore,

∀ ❲j❳ → ite(k′, j) reduces to ⊥.

* Since TERM now is in a form of a disjunction between ∀ ❲j❳ → ite(i, j)
for every possible i : fin(n) ; however, ((p ∨ ⊥) = p); therefore

TERM is reduced to ∀ ❲j❳ → ite(k, j).

* When the universal quantifier assigns j :≡ k′ for any k′ : fin(n) not

equal to k, then the if-condition doesn’t hold and make ite(k, k′) goes
through the else-clause. Therefore, ite(k, k′) holds by reflexivity.

* Since TERM now is in a form of a conjunction between ite(k, j) for
every possible i : fin(n) ; however, ((p ∧ ⊤) = p); therefore TERM
is reduced to ite(k, k).

– The new LHS is really just the disjunction between

the the new RHS and the proposition ( ⃗s[k] = ⃗t[k]).

– The assumption of index k is ( ⃗s[k] ≠ ⃗t[k]);
therefore, LHS is now identical to RHS. QED
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To upgrade the recursive version of 𝔾n
◻ as reflexive graph, it is as easy as replacing

ϵgrp with 𝟙grp in the base case.

◤ Definition 5.61 (reflexive graphs for standard cubes using recursion) ⬣
Let n : ℕ , we define a graph 𝔾́n

◻ to be a recursive version of graph 𝔾n
◻ .

𝔾́0
◻ :≡ 𝟙grp 𝔾́(n+1)

◻ :≡ prismstd(𝔾́n
◻) ◢

◤ Lemma 5.62 ⬣ Let n : ℕ , then 𝔾́n
◻ ≅ reflcl(𝔽́n◻) in 𝗚𝗿𝗮𝗽𝗵. ◢

Proof. Given that G, G′ : ob(𝗚𝗿𝗮𝗽𝗵) , the following propositions hold:
• reflcl(prismstd(G)) ≅ prismstd(reflcl(G)) [by lemma 5.19]

• if (G ≅ G′) then prismstd(G) ≅ prismstd(G′) [by lemma 5.45]

• if (G ≅ G′) then reflcl(G) ≅ reflcl(G′) [by lemma 5.21]

Then, 𝔾́n
◻ ≅ prismstd(prismstd((… prismstd(𝟙grp) )))

≅ prismstd(prismstd((… prismstd(reflcl(ϵgrp)) )))

≅ prismstd(prismstd((… reflcl(prismstd(ϵgrp)) )))

≅ prismstd(reflcl((… prismstd(prismstd(ϵgrp)) )))

≅ reflcl(prismstd((… prismstd(prismstd(ϵgrp)) )))

Hence, 𝔾́n
◻ ≅ reflcl(𝔽́n◻) QED

◤ Theorem 5.63 ⬣ Let n : ℕ , then 𝔾́n
◻ ≅ 𝔾n

◻ in 𝗚𝗿𝗮𝗽𝗵. ◢

Proof. 𝔾́n
◻ ≅ reflcl(𝔽́n◻) [by lemma 5.62]

≅ reflcl(𝔽n◻) [by lemma 5.21 and theorem 5.48]

𝔾́n
◻ ≅ 𝔾n

◻ [by lemma 5.60] QED
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Chapter

6

Graph-Theoretic Representation

of Twisted Cubes

This chapter modifies the graph-theoretic and categorial definitions of standard semi-

cubes (that are described in subsection 5.2.3) into the twisted cubes counterpart.

§ 6.1 Face Graphs for Twisted Semi-Cubes

The fundamental concept here is to make the graph-theoretic version of the thickening-

and-twisting process defined in subsection 3.2.3.
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§ 6.1.1 The Twisted Prism Iterator

Recall from subsection 3.2.3 that a twisted (n + 1)-cube is a twisted n-cube after apply-
ing the thickening-and-twisting process, the thickening phase is essentially the iterator

prismstd, whereas the twisting phase reverses all edges at the first copy.

◤ Definition 6.1 (twisted prism iterator) ⬣
Let G be a graph, we define another graph prismtw(G) as a modification of the graph

G in the same way as prismstd(G) but the edges in first copy are reversed.

prismtw(G).Nodes :≡ 𝟚fin × G.Nodes

prismtw(G).Edges :≡ { ⟨ ⟨𝟶 , ⃗t ⟩ , ⟨𝟶 , ⃗s ⟩ ⟩ | ⟨ ⃗s , ⃗t ⟩ : G.Edges }

∪ { ⟨ ⟨𝟷 , ⃗s ⟩ , ⟨𝟷 , ⃗t ⟩ ⟩ | ⟨ ⃗s , ⃗t ⟩ : G.Edges }

∪ { ⟨ ⟨𝟶 , v⃗ ⟩ , ⟨𝟷 , v⃗ ⟩ ⟩ | v⃗ : G.Nodes } ◢

◤ Definition 6.2 ⬣ Let G and G′ be graphs, and f : 𝗚𝗿𝗮𝗽𝗵(G , G′ ) we define

prismmor
tw (f) to be a graph homomorphism from prismtw(G) to prismtw(G′).

prismmor
tw (f).mapNode : (𝟚fin × G.Nodes) → (𝟚fin × G′.Nodes)

prismmor
tw (f).mapNode (⟨ b , v⃗ ⟩) :≡ ⟨ b , f.mapNode(v⃗) ⟩

prismmor
tw (f).mapEdge(s, t) : prismtw(G).isEdge(s, t) → prismtw(G′).isEdge(f(s), f(t))

prismmor
tw (f).mapEdge (⟨𝟶 , ⃗t ⟩ , ⟨𝟶 , ⃗s ⟩) (e) :≡ f.mapEdge( ⃗s, ⃗t)(e)

prismmor
tw (f).mapEdge (⟨𝟷 , ⃗s ⟩ , ⟨𝟷 , ⃗t ⟩) (e) :≡ f.mapEdge( ⃗s, ⃗t)(e)

prismmor
tw (f).mapEdge (⟨𝟶 , v⃗ ⟩ , ⟨𝟷 , v⃗ ⟩) (e) :≡ cong(f.mapNode, e) ◢
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◤ Lemma 6.3 ⬣ Given two composable graph homomorphisms f and g, then

prismmor
tw (f ⬝ g) = prismmor

tw (f) ⬝ prismmor
tw (g). ◢

Proof. By applying the following proof to lemma 5.5.

prismmor
tw (f ⬝ g).mapNode(⟨ b , v⃗ ⟩)

= ⟨ b , (f ⬝ g).mapNode(v⃗) ⟩

= ⟨ b , g.mapNode(f.mapNode(v⃗)) ⟩

= prismmor
tw (g).mapNode(⟨ b , f.mapNode(v⃗) ⟩)

= prismmor
tw (g).mapNode(prismmor

tw (f).mapNode(⟨ b , v⃗ ⟩))

= (prismmor
tw (f).mapNode ⬝ prismmor

tw (g).mapNode)(⟨ b , v⃗ ⟩)

= (prismmor
tw (f) ⬝ prismmor

tw (g)).mapNode(⟨ b , v⃗ ⟩) QED

◤ Lemma 6.4 ⬣ Let G be a graph, then

prismmor
tw (id(G)) = id(prismtw(G)). ◢

Proof. By applying the following proof to lemma 5.5.

prismmor
tw (id(G)).mapNode(⟨ b , v⃗ ⟩) = ⟨ b , id(G).mapNode(v⃗) ⟩

= ⟨ b , v⃗ ⟩

prismmor
tw (id(G)).mapNode(⟨ b , v⃗ ⟩) = id(prismtw(G)).mapNode(⟨ b , v⃗ ⟩) QED

◤ Definition 6.5 (endofunctor of the twisted prism) ⬣
We define prismftr

tw to be an endofunctor analogous to the endofunction prismtw, where:

prismftr
tw.mapObj :≡ prismtw prismftr

tw.presComp :≡ lemma 6.3

prismftr
tw.mapHom :≡ prismmor

tw prismftr
tw.presIden :≡ lemma 6.4 ◢
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◤ Lemma 6.6 ⬣ Let G and G′ be graphs such that (G ≅ G′)
in the category 𝗚𝗿𝗮𝗽𝗵, then we also have prismtw(G) ≅ prismtw(G′). ◢

Proof. By applying the functor prismftr
tw into lemma 5.12 QED

§ 6.1.2 Non-Recursive Face Graphs for Twisted Cubes

We define 𝔽n⋈ as a modification of 𝔽n◻ by changing the then-clause from ( ⃗s[j] < ⃗t[j]) to
(( ⃗s[j] ⊕ p) < ( ⃗t[j] ⊕ p)) where p : 𝟚fin represents the parity of this edge that has

been discussed discussed in subsection 3.2.5.

◤ Definition 6.7 (face graphs for twisted cubes) ⬣
Let n : ℕ , we define 𝔽n⋈ to be the face graph for a twisted n-cube.

𝔽n⋈.Nodes :≡ binary(n)

𝔽n⋈.isEdge( ⃗s, ⃗t) :≡ ∃ ❲ i : fin(n) ❳ × ∀ ❲ j : fin(n) ❳ →

if (i = j) then ( ⃗s[j] ⊕ p) < ( ⃗t[j] ⊕ p) else ⃗s[j] = ⃗t[j]

where p :≡ parity ⟨ ⃗t[0] , ⃗t[1] , … , ⃗t[i − 1]⟩ ◢

§ 6.1.3 Recursive Face Graphs for Twisted Cubes

◤ Definition 6.8 (face graphs for twisted cubes using recursion) ⬣
Let n : ℕ , we define a graph 𝔽́n⋈ to be a recursive version of graph 𝔽n⋈.

𝔽́0
⋈ :≡ ϵgrp 𝔽́(n+1)

⋈ :≡ prismtw(𝔽́n⋈) ◢

120



◤ Lemma 6.9 ⬣ Let n : ℕ , then 𝔽(n+1)
⋈ ≅ prismtw(𝔽n⋈). ◢

Proof. We define ϕ : 𝗚𝗿𝗮𝗽𝗵(𝔽(n+1)
⋈ , prismtw(𝔽n⋈) ) and ψ : 𝗚𝗿𝗮𝗽𝗵( prismtw(𝔽n⋈) , 𝔽(n+1)

⋈ )
as graph homomorphisms for forward and backward direction, respectively, where:

ϕ.mapNode : binary(n + 1) → (𝟚fin × binary(n))

ψ.mapNode : (𝟚fin × binary(n)) → binary(n + 1)

ϕ.mapNode(⟨ b0 , b1 , … , bn ⟩) :≡ ⟨ b0 , ⟨ b1 , b2 , … , bn ⟩ ⟩

ψ.mapNode(⟨ b0 , ⟨ b1 , b2 , … , bn ⟩ ⟩) :≡ ⟨ b0 , b1 , … , bn ⟩

Regarding ϕ.mapEdge and ψ.mapEdge, it is obvious that ϕ and ψ preserve edges by

inspecting ϕ.mapNode and ψ.mapNode, respectively. Finally, it is obvious that both

ϕ ⬝ ψ and ψ ⬝ ϕ are identity morphisms in 𝗚𝗿𝗮𝗽𝗵. QED

◤ Theorem 6.10 ⬣ Let n : ℕ , then 𝔽́n⋈ ≅ 𝔽n⋈ in 𝗚𝗿𝗮𝗽𝗵. ◢

Proof. Using induction on the natural number n: The base (𝔽́0
⋈ ≅ 𝔽0

⋈) case is obvious
because both 𝔽0

⋈ and 𝔽́0
⋈ have a single node with no edges. Regarding the inductive

step, assuming that (𝔽́n⋈ ≅ 𝔽n⋈), we need to construct (𝔽́(n+1)
⋈ ≅ 𝔽(n+1)

⋈ ).

𝔽́(n+1)
⋈ ≅ prismtw(𝔽́n⋈) [by definition 6.8]

≅ prismtw(𝔽n⋈) [by the induction hypothesis and lemma 5.21]

𝔽́(n+1)
⋈ ≅ 𝔽(n+1)

⋈ [by lemma 6.9] QED

◤ Convention 6.11 (twisted cubes coercion from their recursive graphs) ⬣
We define a coercion from 𝔽́n⋈ to 𝔽n⋈, which is analogous to convention 5.35. ◢
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§ 6.1.4 The Twisted Semi-Cubes Category

◤ Definition 6.12 (graph theoretic version of twisted semi cube category) ⬣
We define the category ⋈graph

semi to be a full-subcategory of 𝗚𝗿𝗮𝗽𝗵 induced by the family

of graphs 𝔽n⋈ for all n : ℕ . Please note that, we may use the number n or the graph

𝔽n⋈ to denote each object in ⋈graph
semi interchangeably. ◢

◤ Lemma 6.13 ⬣ The category ⋈graph
semi is a direct category. ◢

Proof. We use the identity function on ℕ as the degree function. For any natural

numbers m and n, we want to prove that deg(m) < deg(n) if there is a non-identity
morphism in ⋈graph

semi (m , n ). This can be done by comparing m and n:

• If m < n, then deg(m) < deg(n) holds by unfolding the degree function.

• If m = n, then only the identity morphism can be in ⋈graph
semi ( n , n ).

This is because if it contains a non-identity graph homomorphism f, then some

nodes got swapped by f.mapNode, which violate the unique order given by the

unique Hamiltonian path of 𝔽n⋈ later in theorem 6.17.

• If m > n, then ⋈graph
semi (m , n ) contains no morphisms because

if there is f : ⋈graph
semi (m , n ) , then there must be distinct nodes v and v′ in 𝔽m⋈

that shares the same image from f.mapNode because of the pigeonhole principle

on the fact that 𝔽m⋈ has more nodes than 𝔽n⋈; however, the graph 𝔽n⋈ is irreflexive

so we can’t assign f.mapEdge(v, v′) to anywhere. QED
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§ 6.2 Unique Hamiltonian path for Twisted Semi-Cubes

The most important feature of 𝔽n⋈ is its unique Hamiltonian path, which is useful to

prove many theorems related to twisted cubes. As a sanity check, figure 6.1 shows the

unique Hamiltonian path at lower dimensions.

§ 6.2.1 Existence and Uniqueness of the Hamiltonian Path

⟨𝟶⟩ ⟨𝟷⟩ ⟨𝟶𝟷𝟷𝟷⟩ ⟨𝟷𝟷𝟷𝟷⟩

⟨𝟶𝟷⟩ ⟨𝟷𝟷⟩ ⟨𝟶𝟷𝟷𝟶⟩ ⟨𝟷𝟷𝟷𝟶⟩

⟨𝟶𝟷𝟶𝟷⟩ ⟨𝟷𝟷𝟶𝟷⟩

⟨𝟶𝟶⟩ ⟨𝟷𝟶⟩ ⟨𝟶𝟷𝟶𝟶⟩ ⟨𝟷𝟷𝟶𝟶⟩

⟨𝟶𝟷𝟷⟩ ⟨𝟷𝟷𝟷⟩ ⟨𝟶𝟶𝟷𝟷⟩ ⟨𝟷𝟶𝟷𝟷⟩

⟨𝟶𝟷𝟶⟩ ⟨𝟷𝟷𝟶⟩ ⟨𝟶𝟶𝟷𝟶⟩ ⟨𝟷𝟶𝟷𝟶⟩

⟨𝟶𝟶𝟷⟩ ⟨𝟷𝟶𝟷⟩ ⟨𝟶𝟶𝟶𝟷⟩ ⟨𝟷𝟶𝟶𝟷⟩

⟨𝟶𝟶𝟶⟩ ⟨𝟷𝟶𝟶⟩ ⟨𝟶𝟶𝟶𝟶⟩ ⟨𝟷𝟶𝟶𝟶⟩

Figure 6.1: 𝔽1
⋈, 𝔽2

⋈, 𝔽3
⋈, and 𝔽4

⋈ annotated by their unique Hamiltonian path.
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◤ Definition 6.14 (Hamiltonian paths) ⬣
A path is a Hamiltonian path iff the path visits every node in the graph exactly once.

To be more precise, a Hamiltonian path of some graph G is a path p such that p.map

a is bijective function. ◢

◤ Lemma 6.15 (Hamiltonian path exists) ⬣
Let n : ℕ , then 𝔽n⋈ has a Hamiltonian path. ◢

Proof. We prove this by induction on n. For the base case, it is obvious that the

Hamiltonian path of 𝔽0
⋈ is a path of length zero where the endpoint is ⟨⟩, which is the

single node of 𝔽0
⋈. For the inductive step, the induction hypothesis is that 𝔽n⋈ has a

Hamiltonian path and we need to prove that it is also the case for 𝔽(n+1)
⋈ .

First, we prepend digit 𝟷 to every node in 𝔽n⋈. This new graph is clearly a subgraph

of 𝔽(n+1)
⋈ so the Hamiltonian path in this new graph becomes a path in 𝔽(n+1)

⋈ , now

denoted t, that visits every node that starts with digit 𝟷.

Then, we prepend digit 𝟶 to every node in 𝔽n⋈ and reverse every edge in the graph.

This new graph is also a 𝔽n⋈ so the Hamiltonian path in this new graph, which is the

same Hamiltonian path before the reversing process but in the reverse order, becomes

a path in 𝔽(n+1)
⋈ , now denoted s, that visits every node that starts with digit 𝟶.

Now, let v⃗ be the first node in the Hamiltonian path of 𝔽n⋈. This implies that 𝟷v⃗
is the first node of t whereas 𝟶v⃗ is the last node of s. Because there is an edge that

link 𝟶v⃗ to 𝟷v⃗, so we use that edge to concatenate s with t. This results in a path that

visit every node in 𝔽(n+1)
⋈ ; thus, it is a Hamiltonian path for 𝔽(n+1)

⋈ . QED

◤ Lemma 6.16 (Hamiltonian path is unique) ⬣
Let n : ℕ , then 𝔽n⋈ has at most one Hamiltonian path. ◢
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Proof. We prove this by contradiction. Assuming that there are distinct Hamiltonian

paths for 𝔽n⋈, so there is at least a pair of distinct nodes v⃗ and ⃗v′ such that v⃗ comes
before ⃗v′ in the first Hamiltonian path and vice-versa in the second Hamiltonian path.

Let p be a sub-path of the first Hamiltonian path that starts from v⃗ and ends at ⃗v′.
Let p′ be a sub-path of the second Hamiltonian path that starts from ⃗v′ and stops at

v⃗. The concatenation of p and p′ is a cyclic path, i.e. a path of length more than zero

but has the same starting point with stopping point. However, the graph 𝔽n⋈ is acyclic;

therefore, it is impossible for 𝔽n⋈ to have multiple Hamiltonian paths. QED

◤ Theorem 6.17 (Hamiltonian path exists uniquely) ⬣
Let n : ℕ , then 𝔽n⋈ has a unique Hamiltonian path. ◢

Proof. By lemmas 6.15 and 6.16 QED

◤ Corollary 6.18 ⬣ Let n : ℕ , then trancl(𝔽n⋈) ≅ 𝔽(2n)△ . ◢

◤ Theorem 6.19 ⬣ Let n : ℕ , then the reflexive transitive closure of face graph

for twisted n-cube is the reflexive graph for a 2n-simplex. ◢

Proof. reflcl(trancl(𝔽n⋈))

≅ reflcl(𝔽(2
n)

△ ) [by corollary 6.18 and lemma 5.21]

≅ 𝔾(2n)
△ [by lemma 5.51] QED
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§ 6.2.2 Sorting the Nodes for Twisted Cubes

The existence of the unique Hamiltonian path of 𝔽n⋈ inspires me to find an algorithm

to “sort” nodes in 𝔽n⋈. This resulting in a function called sortnnum that takes a node

𝔽n⋈ in binary format then return the index of that node. If we set the codomain of

the function sortnnum to be fin(2n), then it is easy to see that the function is indeed

bijective; therefore, we can define its inverse function called unsortnnum.

◤ Definition 6.20 (sorting function in Hamiltonian path order) ⬣
Let n : ℕ , then we define sortnnum : binary(n) → fin(2n) that takes a node of

𝔽n⋈ and returns the index that this node belongs in the Hamiltonian path.

sort0
num (⟨⟩) :≡ 0

sort(n+1)
num (𝟶 ∷ b⃗) :≡ 2n − sortnnum(b⃗)

sort(n+1)
num (𝟷 ∷ b⃗) :≡ 2n + sortnnum(b⃗) ◢

◤ Definition 6.21 (unsorting function in Hamiltonian path order) ⬣
Let n : ℕ , then we define unsortnnum : fin(2n) → binary(n) that takes an number
i : fin(2n) and return the node of 𝔽n⋈ at index i of the Hamiltonian path.

unsort0
num 0 :≡ ⟨⟩

unsort(n+1)
num ( i : fin(2n+1) ) :≡

⎧⎪
⎨⎪
⎩

𝟶 ∷ unsortnnum(2n − i) if i < 2n

𝟷 ∷ unsortnnum(2n + i) if i ⩾ 2n ◢
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◤ Lemma 6.22 ⬣ Let n : ℕ and ⃗s, ⃗t : binary(n) ,

𝔽n⋈.isEdge( ⃗s, ⃗t) implies sortnnum( ⃗s) ⩽ sortnnum( ⃗t) ◢

◤ Lemma 6.23 ⬣ Let n : ℕ and s, t : fin(2n) ,

line2n
grp.isEdge(s, t) implies 𝔽n⋈.isEdge(unsortnnum(s), unsortnnum(t)) ◢

◤ Definition 6.24 ⬣ Let n : ℕ , we define HamPathntw to be a path in 𝔽n⋈.

HamPathntw.length :≡ 2n

HamPathntw.map.mapNode :≡ unsortnnum

HamPathntw.map.mapEdge :≡ lemma 6.23 ◢

◤ Theorem 6.25 ⬣
Let n : ℕ , the path HamPathntw is only the Hamiltonian-path in 𝔽n⋈. ◢

Proof. We know that HamPathntw is a Hamiltonian-path because unsortnnum, which defines

HamPathntw.map.mapNode, is bijective. It is also unique because of lemma 6.16. QED

In addition, we also define sortnbin and unsortnbin that do the same thing as sortnnum

and unsortnnum but replacing fin(2n) with binary(n); so, sortnbin and unsortnbin are

endofunction on binary(n) and can be defined bit-wisely and much simpler comparing

to the original counterparts.

To get a better understanding of sortnbin and unsortnbin, we illustrate 𝔽n⋈ for all

(1 ⩽ n ⩽ 3) in figure 6.2 where nodes of 𝔽n⋈ are positioned linearly in order of

HamPathntw. In addition to the original binary number that represents each node, we

also label the order of each node in binary number so how each original binary number

get mapped to the order using sortnbin and vice-versa using unsortnbin.
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⟨⟩

⟨⟩

⟨𝟶⟩ ⟨𝟷⟩

⟨𝟶⟩ ⟨𝟷⟩

⟨𝟶𝟷⟩ ⟨𝟶𝟶⟩ ⟨𝟷𝟶⟩ ⟨𝟷𝟷⟩

⟨𝟶𝟶⟩ ⟨𝟶𝟷⟩ ⟨𝟷𝟶⟩ ⟨𝟷𝟷⟩

⟨𝟶𝟷𝟷⟩ ⟨𝟶𝟷𝟶⟩ ⟨𝟶𝟶𝟶⟩ ⟨𝟶𝟶𝟷⟩ ⟨𝟷𝟶𝟷⟩ ⟨𝟷𝟶𝟶⟩ ⟨𝟷𝟷𝟶⟩ ⟨𝟷𝟷𝟷⟩

⟨𝟶𝟶𝟶⟩ ⟨𝟶𝟶𝟷⟩ ⟨𝟶𝟷𝟶⟩ ⟨𝟶𝟷𝟷⟩ ⟨𝟷𝟶𝟶⟩ ⟨𝟷𝟶𝟷⟩ ⟨𝟷𝟷𝟶⟩ ⟨𝟷𝟷𝟷⟩

⟨ 0 , ⟩
⟨ 0 , 𝟶 ⟩

⟨ 0 , 𝟷 ⟩

⟨ 1 , 𝟶 ⟩ ⟨ 1 , 𝟷 ⟩

⟨ 0 , 𝟶𝟶 ⟩

⟨ 0 , 𝟶𝟷 ⟩

⟨ 0 , 𝟷𝟶 ⟩

⟨ 0 , 𝟷𝟷 ⟩

⟨ 1 , 𝟶𝟶 ⟩

⟨ 1 , 𝟶𝟷 ⟩

⟨ 1 , 𝟷𝟶 ⟩

⟨ 1 , 𝟷𝟷 ⟩

⟨ 2 , 𝟶𝟶 ⟩⟨ 2 , 𝟶𝟷 ⟩ ⟨ 2 , 𝟷𝟶 ⟩ ⟨ 2 , 𝟷𝟷 ⟩

Figure 6.2: Horizontal sorting the nodes of 𝔽1
⋈, 𝔽2

⋈, and 𝔽3
⋈ annotated by their positional

labels (lower number) and their index in the Hamiltonian path (upper number).

◤ Definition 6.26 ⬣ Let n : ℕ , then we define sortnbin and unsortnbin to be

alternative versions of sortnnum and unsortnnum but replacing fin(2n) with binary(n).

sortnbin , unsortnbin : binary(n) → binary(n)

sortnbin(⟨ b0 , b1 , … , bn−1 ⟩) :≡ ⟨ b′0 , b′1 , … , b′n−1 ⟩

where b′i :≡ bi ⊕ parity(⟨b0b1…bi−1⟩)

unsortnbin(⟨ b0 , b1 , … , bn−1 ⟩) :≡ ⟨ b0 , b′1 , b′2 , … , b′n−1 ⟩

where b′i :≡ bi ⊕ bi−1 ◢
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§ 6.2.3 Alternative Twisting Process and the Gray Code

The definitions of sortnbin and unsortnbin are similar to the encoding and decoding

algorithm of Gray code, a.k.a. reflected binary code (RBC), which has a Hamming

distance 1 between consecutive words. In fact, if we tweak the thickening-and-twisting

process by reversing everything at 𝟷 instead of at 𝟶 then the sorting and unsorting

functions match exactly to the encoding and decoding algorithm of Gray code.

Alternatively, we can use the tweaked version thickening-and-twisting to reason

about everything in this thesis; on one hand, this will even simplify the definition of

parity(⟨b0b1…bi−1⟩) from (1 − b0) ⊕ (1 − b1) ⊕ … ⊕ (1 − bn−1) to b0 ⊕ b1 ⊕… ⊕ bn−1;
on the other hand, this will make the composition in section 1.3 much harder.

⟨𝟶𝟷⟩ ⟨𝟷𝟷⟩ ⟨𝟶𝟷⟩ ⟨𝟷𝟷⟩ ⟨𝟶𝟷⟩ ⟨𝟷𝟷⟩

⟨𝟶𝟶⟩ ⟨𝟷𝟶⟩ ⟨𝟶𝟶⟩ ⟨𝟷𝟶⟩ ⟨𝟶𝟶⟩ ⟨𝟷𝟶⟩

f ⬝ g

f g

f ⬝ g

f g

f ⬝ g

f g

The first diagram represents a composition using the original thickening-and-twisting,

which can be tweaked and become the second diagram; here, the composition is no

longer makes sense so we need to swap the duty of ⟨⋆0⟩ and ⟨⋆1⟩ so it become the

third diagram where you can see that the direction of composition is opposite to the

direction of the second dimension, which is not the case for the first diagram; so it is a

lot easier to be confused if we use this alternative.

Moreover, if we see an arrow as a function from its domain to its codomain, it is

more sensible to reverse something in domain than codomain because pre-composition

is contrapositive whereas post-composition is not. In conclusion, I think the original

thickening-and-twisting is easier and it is not worth to switch to the alternative.
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§ 6.2.4 Using the Order of Nodes to Redefine the Face Graphs

There is an alternative definition of 𝔽n⋈, denoted as 𝔽n⧖, that directly use the binary

representation to store the order of the nodes themselves.

Surprisingly once we relabel 𝔽n⋈ to 𝔽n⧖, the definition become simpler and doesn’t

rely on the parity function. Moreover, 𝔽n⋈ can be seen as a modification of 𝔽n◻ where

the if clause is changed from (i = j) to (i ⩽ j).

◤ Definition 6.27 (sorted version of the face graphs for twisted cubes) ⬣
Let n : ℕ , we define a graph 𝔽n⧖ to be the sorted version of the face graph for a

twisted n-cube where each node b⃗ is relabelled as sortnbin(b⃗), i.e. the binary number

that label node is changed from its position to its order in the Hamiltonian path.

𝔽n⧖.Nodes :≡ binary(n)

𝔽n⧖.isEdge( ⃗s, ⃗t) :≡ ∃ ❲ i : fin(n) ❳ × ∀ ❲ j : fin(n) ❳ →

if (i ⩽ j) then ⃗s[j] < ⃗s[j] else ⃗s[j] = ⃗t[j] ◢

◤ Theorem 6.28 ⬣ Let n : ℕ , then 𝔽n⧖ ≅ 𝔽n⋈ in 𝗚𝗿𝗮𝗽𝗵. ◢

Proof. The isomorphism can be directly constructed using sortnbin to map nodes for-

wardly and unsortnbin to map nodes backwardly. QED

◤ Convention 6.29 (twisted cubes coercion from their sorting graphs) ⬣
We define a coercion from 𝔽n⧖ to 𝔽n⋈ using the isomorphisms in theorem 6.28. ◢
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§ 6.3 Reflexive Graphs for Twisted Cubes

The modification (by adding twisting phase) from 𝔽n◻ to 𝔽n⋈ and the modification (by

changing fin(n) to fin((n + 1))) from 𝔽n◻ to 𝔾n
◻ fit well together. This results in

the graph 𝔾n
⋈ that can be seen as either the former modification on 𝔾n

◻ or the latter

modification on 𝔽n⋈.

§ 6.3.1 Non-Recursive Reflexive Graphs for Twisted Cubes

◤ Definition 6.30 (reflexive graphs for twisted cubes) ⬣
Let n : ℕ , we define 𝔾n

⋈ to be the reflexive graph for a twisted n-cube.

𝔾n
⋈.Nodes :≡ binary(n)

𝔾n
⋈.isEdge( ⃗s, ⃗t) :≡ ∃ ❲ i : fin(n) ❳ × ∀ ❲ j : fin(n) ❳ →

if (i = j) then ( ⃗s[j] ⊕ p) ⩽ ( ⃗t[j] ⊕ p) else ⃗s[j] = ⃗t[j]

where p :≡ parity ⟨ ⃗t[0] , ⃗t[1] , … , ⃗t[i − 1]⟩ ◢

◤ Lemma 6.31 ⬣ Let n : ℕ , then 𝔾n
⋈ ≅ reflcl(𝔽n⋈) in 𝗚𝗿𝗮𝗽𝗵. ◢

Proof. Use the proof of lemma 5.60 but replacing symbol ◻ with symbol ⋈. QED

§ 6.3.2 Recursive Reflexive Graphs for Twisted Cubes
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To upgrade the recursive version of 𝔾n
⋈ as reflexive graph, it is as easy as replacing

ϵgrp with 𝟙grp in the base case.

◤ Definition 6.32 (reflexive graphs for twisted cubes using recursion) ⬣
Let n : ℕ , we define a graph 𝔾́n

⋈ to be a recursive version of graph 𝔾n
⋈.

𝔾́0
⋈ :≡ 𝟙grp 𝔾́(n+1)

⋈ :≡ prismtw(𝔾́n
⋈) ◢

◤ Lemma 6.33 ⬣ Let n : ℕ , then 𝔾́n
⋈ ≅ reflcl(𝔽́n⋈) in 𝗚𝗿𝗮𝗽𝗵. ◢

Proof. Given that G, G′ : ob(𝗚𝗿𝗮𝗽𝗵) , the following propositions hold:
• reflcl(prismtw(G)) ≅ prismtw(reflcl(G)) [by lemma 5.19]

• if (G ≅ G′) then prismtw(G) ≅ prismtw(G′) [by lemma 6.6]

• if (G ≅ G′) then reflcl(G) ≅ reflcl(G′) [by lemma 5.21]

Then, 𝔾́n
⋈ ≅ prismtw(prismtw((… prismtw(𝟙grp) )))

≅ prismtw(prismtw((… prismtw(reflcl(ϵgrp)) )))

≅ prismtw(prismtw((… reflcl(prismtw(ϵgrp)) )))

≅ prismtw(reflcl((… prismtw(prismtw(ϵgrp)) )))

≅ reflcl(prismtw((… prismtw(prismtw(ϵgrp)) )))

Hence, 𝔾́n
⋈ ≅ reflcl(𝔽́n⋈) QED

◤ Theorem 6.34 ⬣ Let n : ℕ , then 𝔾́n
⋈ ≅ 𝔾n

⋈ in 𝗚𝗿𝗮𝗽𝗵. ◢

Proof. 𝔾́n
⋈ ≅ reflcl(𝔽́n⋈) [by lemma 6.33]

≅ reflcl(𝔽n⋈) [by lemma 5.21 and theorem 6.10]

𝔾́n
⋈ ≅ 𝔾n

⋈ [by lemma 6.31] QED
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§ 6.3.3 Dimension-Preserving Graph Homomorphisms

Similar to the family of 𝔾n
△ that constructs △graph

full , we can use the family of 𝔾n
⋈ to

construct a twisted cube category (graph-theoretic version), denoted as ⋈graph
full .

◤ Definition 6.35 (graph theoretic version of twisted cube category) ⬣
We define the category ⋈graph

full to be a full-subcategory of 𝗚𝗿𝗮𝗽𝗵 induced by the family

of graphs 𝔾n
⋈ for all n : ℕ . Please note that, we may use the number n or the graph

𝔾n
⋈ to denote each object in ⋈graph

full interchangeably. ◢

Unfortunately, we still don’t know whether the category ⋈graph
full is a Reedy category

or not; to work around this open problem we select only some morphisms in ⋈graph
full

that “behave well”.

◤ Definition 6.36 ⬣ We define a function

dim : 𝔾n
⋈.isEdge( ⃗s, ⃗t) → fin(n+1) for every n : ℕ and ⃗s, ⃗t : 𝔾n

⋈.Nodes

that takes an edge ⟨ ⃗s , ⃗t ⟩ from 𝔾n
⋈ and returns the index i that ( ⃗s[i] ≠ ⃗t[i]), if such

an index exists; otherwise, returns n : fin(n + 1) .

Please note that, if a distinguishing index exists, then it is unique because the

definition of 𝔾n
⋈.isEdge prevents a pair ⟨ ⃗s , ⃗t ⟩ that has multiple distinguishing indices

from being an edge.

Alternatively, we can think that dim( e : 𝔾n
⋈.isEdge( ⃗s, ⃗t) ) returns the variable i in

the existential quantifier in of 𝔾n
⋈.isEdge( ⃗s, ⃗t) in definition 6.7. ◢
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◤ Definition 6.37 ⬣ We define presDim to be a predicate that takes

f : 𝗚𝗿𝗮𝗽𝗵(𝔾m
⋈ , 𝔾n

⋈ ) for some m, n : ℕ then return the following proposition.

∀ ❲ ⃗s, ⃗s′, ⃗t, ⃗t′ : 𝔾m
⋈ .Nodes ❳ ❲ e : 𝔾m

⋈ .isEdge( ⃗s, ⃗t) ❳ ❲ e′ : 𝔾m
⋈ .isEdge( ⃗s′, ⃗t′) ❳ →

(dim(e) = dim(e′)) → dim(f.mapEdge( ⃗s, ⃗t)(e)) = dim(f.mapEdge( ⃗s′, ⃗t′)(e′)) ◢

◤ Definition 6.38 ⬣ We define ⋈graph
dim to be the wide-subcategory of ⋈graph

full such

that a morphism f in ⋈graph
full will also be in ⋈graph

dim iff presDim(f) ◢

◤ Theorem 6.39 ⬣ Let m, n : ℕ , there is exactly one surjective morphism in

⋈graph
dim mn for (m ⩾ n) (Clearly, there is none if (m < n)). ◢

Proof. See [PK20, Theorem 27] QED

◤ Theorem 6.40 ⬣ The category ⋈graph
dim is a Reedy category. ◢

Proof. See [PK20, Theorem 33] QED
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Chapter

7

Geometric Realisation

of Twisted Cubes

This chapter transforms the intuition in chapter 4 from topological spaces to “direct”

spaces, which we use partially ordered spaces to implement them. Then, differentiate

the geometric realisation of twisted cubes from standard cubes, which is impossible to

do so in topological spaces alone.

Please note that, the content here can’t be merged into chapter 4 because the

content here depends on the notion of graphs in chapter 5 and the implementation

of twisted cubes in chapter 6 but these two chapters happen to depend on chapter 4;

therefore, the order of these chapters must be as is.
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§ 7.1 Partially Ordered Spaces

Topological spaces alone are not expressive enough to fully encode the representation of

twisted cubes because paths in twisted cubes are not necessary reversible; therefore, we

upgrade topological spaces to partially ordered spaces, which have sense of “direction”.

◤ Remark 7.1 ⬣ As we mention in the last paragraph of section 2.5, I would

like to remind the reader that there are other definitions of directed spaces by Marco

Grandis [Gra09] or Sanjeevi Krishnan [Kri08] that are more developed than pospaces

i.e. all pospaces can be transferred to these definitions but not the other way around.

However, I decide to use pospaces in this thesis because the definition is simpler yet

covers all direct spaces that are important in this thesis. ◢

◤ Definition 7.2 (pospaces) ⬣
A partially ordered space, or pospace for short, is a pair ⟨ X , ⩽X ⟩ where X is a

topological space and ( ⩽X ) is a closed partial order on X, i.e. ( ⩽X ) is a partial order
on the set of points on X such that { ⟨ x , y ⟩ : X2 | x ⩽X y } is a closed set. ◢

◤ Definition 7.3 (dimaps) ⬣
A dimap f from a pospace ⟨ X , ⩽X ⟩ to a pospace ⟨ Y , ⩽Y ⟩ is a continuous function
from X to Y that preserves the partial order, i.e. if (u ⩽X v) then f(u) ⩽Y f(v). ◢

◤ Example 7.4 ⬣ Let n : ℕ , then the Euclidean space ℝn
top can be upgraded

to the Euclidean pospace ℝn
po :≡ ⟨ℝn

top , ⩽ℝnpo ⟩, where

x⃗ ⩽ℝnpo y⃗ :≡ (x⃗0 ⩽ y⃗0) ∧ (x⃗1 ⩽ y⃗1) ∧ ⋯ ∧ (x⃗n−1 ⩽ y⃗n−1) ◢
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§ 7.2 Generating Pospaces from Real-Valued Metric Spaces

This section introduce an algorithm that takes an arbitrary continuous function from

some metric space to ℝtop and produces a pospace.

According to definition 7.2, the usual way to define a pospace is to; first, compare

any two points in the original topological space; then, make sure that the comparison is

a closed partial order; this might be counter-intuitive and tedious in some cases, e.g. the

earlier attempts when I try to define twisted cubes as pospaces.

Alternatively, we can try to define a pospace by assigning a real number to each

point in the original topological space, which is equivalent to defining a continuous

function from the original topological space to ℝtop, then generating a pospace from it.

However, the relation arises from simply comparing real numbers between two points

might not be a closed partial order; this is where I need to restrict spaces of interest

from topological spaces to metric spaces so we can always get a closed partial order.

◤ Definition 7.5 ⬣ Let (X, d) be a metric space and let f be a continuous function
from (X, d) to ℝtop, we define ( ⊑f ) to be a relation on X such that

(x ⊑f y) :≡ d(x, y) ⩽ f(y) − f(x) ◢

Regarding the intuition, let x and y be points in X, if the assigned value at x is

less than or equal to the assigned value at y, i.e. (f(x) ⩽ f(y)), then there should be

a path from x to y. To preserve its continuity, we further require that the difference

between the assigned values must be at least the distance between them. On the other

hand, if (f(y) > f(x)), then there should be no path from x to y.
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◤ Lemma 7.6 ⬣
Given the context as definition 7.5, the relation ( ⊑f ) is a closed partial order. ◢

Proof. First, we show that ( ⊑f ) is a partial order.

• Regarding reflexivity, d(x, x) ⩽ f(x) − f(x) is obviously true because
d(x, x) = 0 = f(x) − f(x) by definiteness of the metric and algebra in ℝtop.

• Regarding transitivity, given d(x, y) ⩽ f(y) − f(x) and d(y, z) ⩽ f(z) − f(y)
adding these inequalities together, we get d(x, y) + d(y, z) ⩽ f(z) − f(x);
therefore, d(x, z) ⩽ f(z) − f(x) by the triangle inequality, d(x, z) ⩽ d(x, y) + d(y, z).

• Regarding antisymmetry, given d(x, y) ⩽ f(y) − f(x) and d(y, x) ⩽ f(x) − f(y)
adding these inequalities together, we get d(x, y) + d(y, x) ⩽ 0.
Then, because of the symmetry, d(x, y) = d(y, x), we get 2 ⋅ d(x, y) ⩽ 0
but d can’t output negative number so d(x, y) = 0;
therefore, x and y must be the same point due to the definiteness of d.

The remaining goal is to show that is { ⟨ x , y ⟩ : X2 | x ⊑f y } is a closed set in
the product topological space X2.

Since { ⟨ x , y ⟩ : X2 | x ⊑f y } is the preimage of a function

g(x, y) :≡ f(y) − f(x) − d(x, y)

of the closed interval [0,∞); hence, it must be closed because g is continuous, by

continuity of f, d, and subtraction. QED

◤ Definition 7.7 ⬣
Given the context as definition 7.5 and let a topological space X′ be a subspace of X, we
define mkPospc(X′, f) to be a pospace consisting of the topological space X′, together
with the partial order ( ⊑f ) restricted to X′. ◢
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§ 7.3 Embedding Graphs to Pospaces

We want to translate a graph into a pospace because many results in twisted cubes relay

on graph theoretic representations. To do this, we treat nodes and paths in a graph G
to represent points and (topological) paths of the resulting pospace mkGraphPospc(G).

Next, we check whether each pospace (that will be defined later) is compatible

its graph counterpart. In other words, let S be a shape that respects convention 4.5

and let GS be a graph that encodes the shape S, we want to ensure that the graph

mkGraphPospc(GS) can be embedded into a pospace PS that we will define to realise

the shape S. If this is the case then the proposition canEmbed(GS, PS) holds.

◤ Definition 7.8 ⬣
Given an acyclic graph G, we define mkGraphPospc(G) to be a pospace where:

• The topological space of mkGraphPospc(G) is TopDiscrete(G.Nodes).

• The partial order of mkGraphPospc(G) is ( ⩽G ), where (x ⩽G y) if and only if

there is a path in the graph G from the node x to the node y. Please note that,
we require G be acyclic to make sure that ( ⩽G ) has an anti-symmetric property;
otherwise, ( ⩽G ) will only a pre-order and not necessary partial order. ◢

◤ Definition 7.9 ⬣
Given an acyclic graph G and a pospace P, we define canEmbed(G, P) to be a proposition
stating that there is a dimap from mkGraphPospc(G) to a pospace P such that the

underlying function is injective and contains every extreme point of P in its image. ◢
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§ 7.4 Pospaces of Standard Cubes

This section will define the pospace of a standard n-cube, denoted as ◻npo. To do this,

we first assign a value for each point of ℝn
top according to ranknstd in definition 7.10.

We also show that mkPospc(ℝn
top, ranknstd) imitates ℝn

po using lemmas 7.12 and 7.13.

Then, we follow section 7.2 to get the definition of ◻npo as stated in definition 7.11.

Finally, to make sure that the definition of ◻npo makes sense, we follow section 7.3 by

embedding 𝔽n◻ into ◻npo using theorem 7.16.

◤ Definition 7.10 ⬣ We define ranknstd : ℝn → ℝ such that

ranknstd(⟨ x0 , x1 , … , xn−1 ⟩) :≡ x0 + x1 +⋯ + xn−1 ◢

◤ Definition 7.11 ⬣ We define the pospace of a standard n-cube,
denoted as ◻npo, to be mkPospc(◻ntop, ranknstd). ◢

◤ Lemma 7.12 ⬣
The partial order ( ⩽ℝnpo ) is a sub-relation of ( ⊑ranknstd

) for every n : ℕ . ◢

Proof. The goal is equivalent to

∀ ❲ x⃗, y⃗ : ℝn ❳ (x⃗ ⩽ℝnpo
y⃗) → (x⃗ ⊑ranknstd

y⃗)

∀ ❲ x⃗, y⃗ : ℝn ❳ ∧n−1i=0 (xi ⩽ yi) → d(x⃗, y⃗) ⩽ Σn−1i=0 yi − Σn−1i=0 xi
∀ ❲ x⃗, y⃗ : ℝn ❳ ∧n−1i=0 (0 ⩽ yi − xi) → √Σ

n−1
i=0 (yi − xi)2 ⩽ Σn−1i=0 (yi − xi)

∀ ❲ ⃗z : ℝn ❳ ∧n−1i=0 (0 ⩽ zi) → √Σ
n−1
i=0 z2i ⩽ Σn−1i=0 zi
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Now, let ⃗z : ℝn such that all elements of ⃗z are non-negative, the goal becomes

√Σ
n−1
i=0 z2i ⩽ Σn−1i=0 zi for every i : fin(n) .

By comparing each term, we know that

Σn−1i=0 z2i ⩽ (Σn−1i=0 zi)2 for every i : fin(n) ,

which can be used to prove the goal by the monotonicity of square root function. QED

◤ Lemma 7.13 ⬣
The partial order ( ⩽ℝnpo ) is equivalent to ( ⊑ranknstd

) for every n : fin(3) . ◢

Proof. In the forward direction, we can simply apply lemma 7.12. In the backward

direction, we need to prove that

√Σ
n−1
i=0 z2i ⩽ Σn−1i=0 zi implies ∧n−1i=0 (0 ⩽ zi)

for every n : fin(3) and ⃗z : ℝn .

When n :≡ 0, the goal is vacuously true. When n :≡ 1, the assumption is

√z
2
0 ⩽ z0, we also know that 0 ⩽ √z

2
0 due to the square root property of real numbers,

concatenate these two inequality we get, 0 ⩽ z0.

When n :≡ 2, the assumption is √z
2
0 + z21 ⩽ z0 + z1. We can square both sides

of the assumption because √z
2
0 + z21 is non-negative due to the square root property

of real numbers, which, in turn, makes z0 + z1 become non-negative as well. Now we

have z20 + z21 ⩽ z20 + 2z0z1 + z21 therefore 0 ⩽ z0z1 which means the sign of z0 and z1
must be the same in order to make z0z1 still be non-negative. However, both of them

can’t be negative because we already know that z0 + z1 is non-negative. Therefore, both
z0 and z1 must be non-negative which satisfy the goal. QED
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◤ Definition 7.14 ⬣
We define embnstd : TopDiscrete(𝔽n◻ .Nodes) → ◻ntop to be a continuous function that

takes a binary number ⟨ b0 , b1 , … , bn−1 ⟩ then returns an n-tuple ⟨ x0 , x1 , … , xn−1 ⟩
such that the value of xi : ℝ is either zero if bi :≡ 𝟶 or one if bi :≡ 𝟷 for each

i : fin(n) . Please note that, embnstd is continuous because of lemma 4.4. ◢

◤ Lemma 7.15 ⬣ Let n : ℕ and b⃗ : binary(n) , we have

embnstd(b⃗) :≡ emb1
std(b0) + emb1

std(b1) + ⋯ + emb1
std(bn−1). ◢

◤ Theorem 7.16 ⬣ The proposition canEmbed(𝔽n◻ ,◻npo) holds. ◢

Proof. We use embnstd as the underlining continuous function for the dimap of the main

goal. First, it is obvious to see that the continuous function embnstd is injective and

contains every extreme point of ◻npo in its image. Then, we ensure that the continuous

function embnstd preserves the relation from mkGraphPospc(𝔽n◻) to ◻npo.

The remaining goal can be translated as

𝔽n◻ .isEdge( ⃗s, ⃗t) implies embnstd( ⃗s) ⊑ranknstd
embnstd( ⃗t).

Please note that, we check only edges instead of all paths because each path is a

collection of edges composed together anyway.

Assuming that ⟨ ⃗s , ⃗t ⟩ is an edge and let j : fin(n) is the index that (si = 𝟶)
and (ti = 𝟷). Please note that, such the index exists uniquely due to definition 5.36.

Because of lemma 7.15, we can generalise the remaining goal to

emb1
std(sj) ⊑rank1std

emb1
std(tj) for every j : fin(n)

If (i = j), then the goal holds because (𝟶 ⊑rank1std
𝟷); otherwise, we have (sj = tj)

and the goal holds because the reflexivity of ( ⊑rank1std
). QED
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§ 7.5 Pospaces of Twisted Cubes

This section will define the pospace of a twisted n-cube, denoted as ⋈n
po. To do this, we

first assign a value for each point of ℝn
top according to rankntw in definition 7.20.

Then, we follow section 7.2 to get the definition of ⋈n
po as stated in definition 7.21.

Finally, to make sure that the definition of ⋈n
po makes sense, we follow section 7.3 by

embedding 𝔽n⋈ into ⋈n
po using theorem 7.27.

◤ Definition 7.17 ⬣ We define the canonical twisted n-cube, denoted as ⋈n
top,

to be a subspace of ℝn
top induced by points ⟨−1 , − 1 , … , − 1 ⟩ and ⟨ 1 , 1 , … , 1 ⟩

that generate the following set

⋈n
set :≡ { ⟨ x0 , x1 , … , xn−1 ⟩ : ℝn | − 1 ⩽ xi ⩽ 1 }. ◢

◤ Definition 7.18 ⬣ We define mapBitToSignntop to be an affine transformation

from ◻ntop to ⋈n
top such that each element of the input is multiplied by 2 then minus 1.

mapBitToSignntop(⟨ x0, x1, … , xn−1 ⟩) :≡ ⟨ 2⋅x0−1, 2⋅x1−1, … , 2⋅x(n−1)−1 ⟩ ◢

◤ Definition 7.19 ⬣ The topological space ◻ntop is homeomorphic to ⋈n
top. ◢

Proof. It is obvious that mapBitToSignntop is a homeomorphism from ◻ntop to ⋈n
top. QED
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◤ Definition 7.20 ⬣ We define rankntw : ℝn → ℝ as the following.

rank0
tw (⟨⟩) :≡ 0

rankn+1
tw (x0 ∷ ⃗x′) :≡ x0 ⋅ (2n + x0 ⋅ rankntw( ⃗x′))

Equivalently, rankntw can be defined without recursion as the following.

rankntw(⟨ x0 , x1 , … , xn−1 ⟩) :≡ ∑
n−1
i=0 (xi ⋅ 2

(n−1−i) ⋅ ∏
i−1
j=0
xj) ◢

◤ Definition 7.21 ⬣ We define the pospace of a twisted n-cube,
denoted as ⋈n

po, to be mkPospc(⋈n
top, rankntw). ◢

◤ Remark 7.22 ⬣ Intuitively, rankntw is a modification of ranknstd where

• The term (∏i−1
j=0 xj) is multiplied by xi because each earlier dimension j could

reverse the direction of dimension i.

• The term 2(n−1−i) is multiplied by xi in order to ensure that the sums of later

terms will not outweigh the current term i.e.

|xi ⋅ 2(n−1−i) ⋅∏
i−1
j=0
xj| ⩾ ∑

n−1
k=i+1 |xk ⋅ 2

(n−1−k) ⋅∏
k−1
j=0

xj|,

which is effective because |xi| ⩽ 1.

Consequently, rankntw only works in ⋈n
top; If we want rankntw to work for the entire

ℝn
top, then we needs to change the codomain of rankntw to hyperreal numbers [Rob74]

and replace 2(n−1−i) with ω(n−1−i). ◢
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◤ Example 7.23 ⬣ The following diagram visualises definition 7.20 by illustrating

the anatomy of the twisted n-cube when 1 ⩽ n ⩽ 3.

⟨𝟶⟩ ⟨𝟷⟩ −1 +1 −1 +1

⟨𝟶𝟶⟩

⟨𝟶𝟷⟩

⟨𝟷𝟶⟩

⟨𝟷𝟷⟩

−1,−1

−1,+1

+1,−1

+1,+1

−1

−3

+1

+3

⟨𝟶𝟶𝟶⟩

⟨𝟶𝟶𝟷⟩

⟨𝟶𝟷𝟶⟩

⟨𝟶𝟷𝟷⟩

⟨𝟷𝟶𝟶⟩

⟨𝟷𝟶𝟷⟩

⟨𝟷𝟷𝟶⟩

⟨𝟷𝟷𝟷⟩

−1,−1,−1

−1,−1,+1

−1,+1,−1

−1,+1,+1

+1,−1,−1

+1,−1,+1

+1,+1,−1

+1,+1,+1

−3

−1

−5

−7

+3

+1

+5

+7

For each row where 1 ⩽ n ⩽ 3, the left and middle columns show 𝔽n⋈ and ⋈n
top,

respectively. The right column shows the value of rankntw(p), for each extreme point p
in ⋈n

po, together with arrows in the direction that the value increases. ◢

◤ Definition 7.24 ⬣ We define embntw to be a continuous function from

TopDiscrete(𝔽n⋈.Nodes) to ⋈n
top with the following definition.

embntw :≡ embnstd ⬝ mapBitToSignntop ◢

◤ Theorem 7.25 ⬣ Let n : ℕ and let b⃗ : 𝔽n⋈.Nodes , we have

rankntw(embntw(b⃗)) = 2 ⋅ sortnnum(b⃗) −
⎧⎪
⎨⎪
⎩

0 if n = 0

2n−1 − 1 otherwise. ◢
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Proof. We prove this by induction on n. For the base cases:

• If n :≡ 0 and b⃗ :≡ ⟨⟩, then both sides of the equation are 0.

• If n :≡ 1 and b⃗ :≡ ⟨𝟶⟩, then both sides of the equation are −1.

• If n :≡ 1 and b⃗ :≡ ⟨𝟷⟩, then both sides of the equation are 1.

For the induction case, we need to prove that

rankn+2
tw (embn+2

tw (b0 ∷ ⃗b′)) = 2 ⋅ sortn+2
num (b0 ∷ ⃗b′) − (2n+2 − 1),

given the induction hypothesis as

rankn+1
tw (embn+1

tw ( ⃗b′)) = 2 ⋅ sortn+1
num ( ⃗b′) − (2n+1 − 1),

for every b : 𝟚fin and ⃗b′ : binary(n + 1) . We now alias the left and right sides of

the goal as LHS and RHS, respectively. In addition 𝟶 and 𝟷 will be appended to both

LHS and RHS once b0 is assigned to be 𝟶 and 𝟷, respectively.

LHS = rankn+2
tw (embn+2

tw (b0 ∷ ⃗b′)) [unfold LHS]

= rankn+2
tw ((2 ⋅ b0 − 1) ∷ rankn+1

tw (embn+1
tw ( ⃗b′))) [unfold embn+2

tw ]

= (2 ⋅ b0 − 1) ⋅ (2n+1 + rankn+1
tw (embn+1

tw ( ⃗b′))) [unfold rankn+2
tw ]

= (2 ⋅ b0 − 1) ⋅ (2n+1 + 2 ⋅ sortn+1
num ( ⃗b′) − (2n+1 − 1)) [induction hypo]

LHS = (2 ⋅ b0 − 1) ⋅ (2 ⋅ sortn+1
num ( ⃗b′) + 1) [rearrangement]

LHS0 = (−1) ⋅ (2 ⋅ sortn+1
num ( ⃗b′) + 1) [assign b0 :≡ 𝟶]

LHS1 = (+1) ⋅ (2 ⋅ sortn+1
num ( ⃗b′) + 1) [assign b1 :≡ 𝟷]

RHS0 = 2 ⋅ sortn+2
num (𝟶 ∷ ⃗b′) − (2n+2 − 1) [unfold RHS0]

= 2 ⋅ (2n+1 − sortn+1
num ( ⃗b′)) − (2n+2 − 1) [unfold sortn+2

num ]

RHS0 = (−1) ⋅ (2 ⋅ sortn+1
num ( ⃗b′) + 1) [rearrangement]
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RHS1 = 2 ⋅ sortn+2
num ((𝟷 ∷ ⃗b′)) − (2n+2 − 1) [unfold RHS1]

= 2 ⋅ (2n+1 + sortn+1
num ⃗b′) − (2n+2 − 1) [unfold sortn+2

num ]

RHS1 = (+1) ⋅ (2 ⋅ sortn+1
num ( ⃗b′) + 1) [rearrangement]

We prove the goal by splitting b0 : 𝟚fin into 2 cases.

• When b0 :≡ 𝟶, the goal holds because (LHS0 = RHS0).
• When b0 :≡ 𝟷, the goal holds because (LHS1 = RHS1). QED

◤ Lemma 7.26 ⬣ Let n : ℕ and ⃗s, ⃗t : 𝔽n⋈.Edges , we have

𝔽n⋈.isEdge( ⃗s, ⃗t) implies ( ⃗s ⊑rankntw
⃗t) in ⋈n

po . ◢

Proof. 𝔽n⋈.isEdge( ⃗s, ⃗t)

⇒ sortnnum( ⃗s) ⩽ sortnnum( ⃗t) [By lemma 6.22]

⇒ rankntw(embntw( ⃗s)) ⩽ rankntw(embntw( ⃗t)) [By theorem 7.25]

⇒ ( ⃗s ⊑rankntw
⃗t) in ⋈n

po [By definition 7.21] QED

◤ Theorem 7.27 ⬣ The proposition canEmbed(𝔽n⋈,⋈n
po) holds. ◢

Proof. The proof is quite similar to the proof of theorem 7.16 but we use embntw as the

underlining continuous function instead of embnstd. Another difference is the remaining

goal that now becomes

𝔽n⋈.isEdge( ⃗s, ⃗t) implies embntw( ⃗s) ⊑rankntw embntw( ⃗t).

where ⃗s and ⃗t are node in 𝔽n⋈.Nodes.

This remaining goal can be proven by lemma 7.26. QED
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Chapter

8

Conclusions and Future Work

Although the graph-theoretic framework introduced in chapter 5 was originally de-

veloped to formalise the concept of twisted cubes, the framework itself has a value on

it own right: It suggests a new perspective to reasoning about the simplices, standard

cubes, and possibly other combinatorial concepts that don’t necessary have geometric

intuition. One possibility of related future work is to use this graph-theoretic framework

to analyse other categories that have been used to construct presheaves.

Algebraic descriptions via generators and relations is also in the list of future work.

Such presentations exist for many different cube categories in the literature. This, I hope,

will make it possible to develop the higher categorical structures that can be encoded as

presheaves on the category of twisted cubes. An ultimate goal would be to model some

form of directed cubical type theory.
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Another possible application of our twisted cube categories might be building a

syntax for a parametric type theory or cubical type theory without an interval as sug-

gested by Altenkirch and Kaposi [AK18]. A major difficulty in their development was

the presence of multiple degeneracies, a problem which does not occur in the current

work.

A further direction which may be worth exploring is to not consider set-valued

presheaves, but type-valued presheaves instead. To facilitate this, I can consider the

category of twisted semi-cubes. From there, type-valued presheaves can be encoded

as Reedy-fibrant diagrams in a known style [Shu15]. We can then add a condition

reminiscent of Rezk’s Segal-condition [Rez01] by stating that the projection from twisted

semi-cubical types to the sequence of types along the Hamiltonian path is an equivalence.

This corresponds to saying that the partial n-cube with missing inner part and lid

(cf. subsection 3.1.7) have a contractible type of fillers. It seems that this could be

a first step towards the construction of composition and higher coherences, although

further conditions seem to be necessary. The relation to the (complete) semi-Segal types

by Capriotti and others [Ann+19; Cap16; CK17] remains to be studied.

Another possible future work is to prove conjectures 1.1 to 1.3 as a sanity check

that twisted cubical sets can generalise (∞,n)-categories well.

Finally, I would like to emphasize again that the development of twisted cubes is

still in the early phase. This thesis only serves as the snapshot of the research that I have

done before finishing this PhD. If the reader would like to see the current state-of-the-art

regarding the twisted cubes, please check

https://orcid.org/0000-0002-8483-5261

which is my OCRID webpage, thank you for your interest.
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