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Summary

Bacteriophages, viruses that obligately infect bacteria, represent the most abundant
and diverse biological entities on the planet, with key and complex ecological roles in
all environments where they have been studied. Agricultural wastes and manures (i.e.,
cattle slurry) are economically important fertilisers that are applied to land. Despite the
widespread use of slurries, there is a paucity of knowledge regarding the microbial

composition within them.

The first part of this thesis sought to optimise viral metagenomics, for the study of viral
communities in nature. As the study of uncultivated viral genomes is underpinned by
known complete viral genomes, | assessed the current extent of viral sequencing to
provide the most complete reference database possible in an updated and
reproducible fashion. This led to the INPHARED database, now published in PHAGE
and available on GitHub; a community resource that provides genomes and
annotation files to aid in viral genomic and metagenomic analyses. Furthermore, |
investigated biases in the current collection of phage genomes and demonstrated that
clear biases towards phages of a small subset of clinically relevant bacteria.
Subsequently, | sought to benchmark sequencing technologies and assembly
approaches for the recovery of viral genomes from viral metagenomes. This work, in
part published in Microbiome and under review in Microbial Genomics, demonstrated
that choice of sequencing technology and assembly algorithm will have significant
impacts on downstream analyses and estimates of viral diversity. Overall, these
analyses demonstrated that a combination of long and short read sequencing

approaches performed best at recovering viral genomes in a mixed community.
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The second part of this thesis applied the understandings described above to the dairy
farm environment. | utilised long- and short-read sequencing to characterise the viral
community of agricultural slurry in a longitudinal study, as well as modelled slurry tanks
that contained agricultural antimicrobials, and the dairy cattle gut across life stages.
Analysis of the cattle slurry virome, now published in Microbiome, revealed a diverse
and novel community that was stable over time, despite constant influx and efflux of
material. Notably, there was widespread phage carriage of a virulence determinant—
VapE—that is associated with bovine mastitis-causing pathogens such as
Streptococcus spp. Subsequent experiments with mock slurry tanks revealed the
slurry virome may be influenced by the presence of footwash, although the reasons
for this remain unclear. Analysis of the dairy cow virome uncovered 1,338 predicted
complete phage genomes, the most of a single virome study to date. The phages
within the dairy cow gut were largely novel, and their community composition changed

over key life stages.

The results within this thesis have advanced the methodology of viral metagenomics
approaches in general, and show that viruses likely play important ecological roles
within agricultural environments, including augmenting the virulence of relevant

veterinary pathogens.
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Chapter 1 Introduction

12



1.1  AnIntroduction to Bacterial Viruses

Bacteriophages, hereafter phages, are viruses that specifically infect bacteria. There’s
an often-used opening sentence in phage-related publications — “Phages are the most
abundant and diverse biological entities on the planet’ —it’s a cliché, but you’d struggle
to argue against it. There are thought to be 103! phages within the biosphere;
ubiquitous within all environments where their bacterial hosts can be found (Suttle,

2007; Comeau et al., 2008; Clokie et al., 2011; Cobian Guemes et al., 2016).

First discovered independently by Frederick Twort in 1915 (Twort, 1915) and Félix
d’'Hérelle in 1917 (D’'Hérelle, 2007), phages are obligate intracellular parasites of
bacteria. Although their structure and genomes vary greatly, all phages consist of
nucleic acids encapsulated within a protein coat and rely on host-cell machinery to

produce progeny viral particles.

1.2 The Lifecycles of Phages

The lifecycles and infection strategies of phages are diverse and complex, although
they generally fall into three main categories: phages may be (1) obligately lytic
(hereafter lytic; sometimes described as virulent); (2) temperate, whereby they have
access to both the lytic and lysogenic lifecycles; or (3) chronic, whereby a phage that
may or may not be temperate continually produces and releases viral progeny without
lysing the host cell (Rakonjac et al., 2011; Salmond and Fineran, 2012). All three life
cycles begin with the phage attaching to specific cell surface host receptors and
injecting their DNA into the host cytoplasm (Orlova, 2012). After this, the three cycles

differ.

13



1.2.1 The Lytic Cycle

Following injection of their genome into host cytoplasm, lytic phages will redirect (or
“hijack”) host metabolism to produce viral progeny. The viral genome will be replicated
and viral proteins are synthesised, from which new viral particles are subsequently
produced (Ofir and Sorek, 2018). Following this, the host cell will undergo lysis due to
the expression of phage-derived holins and lysins, killing the host cell and releasing
the viral progeny (Ofir and Sorek, 2018). This life cycle may be accessed by both lytic
and temperate phages, and is exemplified by the widely studied obligately lytic

bacteriophage T4 (Miller et al., 2003).

1.2.2 The Lysogenic Cycle

Whereas lytic phages exclusively follow the lytic lifecycle, temperate phages can
access both the lytic cycle and the lysogenic cycle. In the lysogenic cycle, following
injection of genetic material into host cytoplasm, a latent infection is established. The
viral genome is incorporated within the bacterial host genome and replicates alongside
the host, with the phage genome being transmitted vertically to all bacterial progeny,
as demonstrated by the Escherichia phage A (Casjens and Hendrix, 2015). However,
in some instances, such as the Leptospira biflexa phage LE1, the integrated phage
genome exists freely within the host cytoplasm as a circular replicon (Girons et al.,
2000). The integrated phage genome is described as a prophage, and the prophage-
containing host cell is known as a lysogen. Changes in host-cell conditions (for
example, environmental stressors such as radiation or nutrient depletion) can release
the prophage, leading to proliferation of new viral progeny via the lytic cycle (Howard-

Varona et al., 2017).
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1.2.3 The Chronic Cycle

Whilst phages in the lytic cycle lyse their hosts to release viral progeny, those in the
chronic cycle will continually produce and release progeny without lysing the host cell
(Russel and Model, 2006). For filamentous phages of the family Inoviridae, such as
the Escherichia phage M13, a productive infection results in viral particles being
secreted from the host cell without the need for lysis (Rakonjac et al., 2011). Due to
some chronic phages also being able to access the lysogenic cycle, there have been
calls for phages to be classified based upon whether virions are released (e.g.
productive infection versus lysogeny) and the means of release (e.g. lytic versus

chronic) (Hobbs and Abedon, 2016).

1.3  The Diversity and Classification of Phages

Phages are thought to be the most diverse biological entities in the biosphere, and
currently known viral diversity may represent only the tip of the iceberg. Their diversity
encompasses a range of properties including morphology (e.g., tailed vs non-tailed
and shape of capsid), genome molecule and replication strategy (e.g., dsDNA, ssRNA,
etc.), host specificity and range, lifecycles used (e.g., temperate vs lytic), and genomic
sequence similarity. Due to the absence of a universal phylogenetic marker, the
success of microbial 16s rRNA gene sequencing for taxonomic classification cannot
be applied to phages (Yarza et al., 2014; Dion, Oechslin and Moineau, 2020). Phage
classification is curated by the International Committee on Taxonomy of Viruses

(ICTV) (Walker et al., 2021).
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1.3.1 Morphological Diversity and Historical Classification

Whilst the classification of phages is now based upon genomic similarity, historically,
the classification of phages centred around morphological characteristics (Aiewsakun
et al., 2018; Walker et al., 2021). Researchers would observe the phage using
transmission electron microscopy (TEM) and the phage would be classified in a
framework that examined capsid structure, genome molecule and the

presence/absence of an envelope (Ackermann, 2009; King et al., 2012).

The morphological diversity of phages is known to be wide, although the majority of
currently cultured phages are tailed and possess dsDNA genomes, historically
belonging to the now outdated Caudovirales, which was previously divided into three
families based upon their morphological characteristics; Myoviridae (with long
contractile tails), Siphoviridae (with flexible non-contractile tails), and Podoviridae (with
short tails) (Ackermann, 2009; Fokine and Rossmann, 2014; Dion, Oechslin and
Moineau, 2020). Whilst tailed phages are arguably the most widely studied, there is a
wide range of observed non-tailed morphologies including: polyhedral phages (e.g.,
Microviridae), flamentous phages (e.g., /noviridae), and pleomorphic phages (e.g.,
Plasmaviridae) (Ackermann, 2009; Fokine and Rossmann, 2014; Dion, Oechslin and
Moineau, 2020). Furthermore, despite tailed phages comprising the majority of phages
studied within the lab, electron microscopy has revealed that non-tailed phages
dominate the oceans and their diversity may be under-represented within current
databases and collections (Borsheim, Bratbak and Heldal, 1990; Wommack et al.,

1992; Brum, Schenck and Sullivan, 2013).

16



1.3.2 Genomic Diversity and Current Classification

The genome structure and replication strategies of viruses are varied and include
genomes comprised of dsDNA, ssDNA, dsRNA and ssRNA (Fokine and Rossmann,
2014; Dion, Oechslin and Moineau, 2020). Our current understanding of phage
genomic diversity is primarily based upon those with dsDNA genomes, as these are
the most widely cultivated (Cook, Brown, et al., 2021). However, exploration of global
transcriptome datasets has uncovered a previously unknown diversity of RNA viral
genomes (Wolf et al., 2020; Neri et al., 2022). The current collection of available phage
genomes within publicly available databases is therefore likely biased towards

particular types of phages.

Currently available phage genomes obtained from cultured isolates range in size from
2.3 kb (Pseudomonas phage phi12, accession NC 004174) to 497.5 kb (Bacillus
phage G, accession NC_023719). Additionally, putative phage genomes >500 kb of
so-called “mega-phages” have been assembled from metagenomes, although these

have not been brought into culture (Devoto et al., 2019; Michniewski et al., 2021).

The composition of phage genomes is equally diverse, with many phages sharing little
or no sequence similarity with others. Furthermore, those with similar morphology may
share little sequence similarity and vice versa. For this reason, viral classification has
moved away from morphology and towards a genome-organisation based taxonomy

(Aiewsakun et al., 2018).

Genome-based taxonomic frameworks based upon nucleotide and/or protein
sequence and proteome comparisons have been suggested and there are notable

examples of their implementation. Proteomic approaches have successfully been
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used to classify members of the now redundant order Caudovirales, including the
notable families Myoviridae (Lavigne et al., 2009), Podoviridae (Lavigne et al., 2008),
and Siphoviridae (Adriaenssens et al., 2015), which resulted in the introduction of sub-
families and genera that were ratified by the ICTV. Later, these frameworks were built
upon and made available as online tools such as ViPTree (Nishimura et al., 2017) and
VICTOR (Meier-Kolthoff and Goker, 2017) which are able to rapidly classify a user's
sequence(s) based upon shared proteins. Similarly, a hierarchical cluster based
approach based upon the presence/absence of shared proteins, dubbed vConTACT2,
was developed for the classification of uncultivated viruses and is scalable to large
numbers of genomes (Bin Jang et al., 2019). Other protein-based approaches have
been built around the phylogeny of so-called “viral hallmark genes” (VHGs) that are
highly conserved across diverse groups of viruses. For example, a framework that
concatenates single-copy protein markers has been developed for the classification of
dsDNA phages belonging to the historical order Caudovirales (Low et al., 2019), and
was recently implemented on large-scale datasets of uncultivated viruses (Nayfach et
al., 2021). Furthermore, the proposed viral “megataxonomy” from Koonin et al. is a
hierarchical taxonomy based upon the phylogeny of VHGs (Koonin et al., 2020).
Alternatively to the protein-based method, VICTOR is able to classify phages using
the nucleotide sequence of the whole genome (Meier-Kolthoff and Goker, 2017).
Another approach, VIRIDIC, uses nucleotide-based intergenomic similarity and can
help to classify phage to the levels of genus and species, but is less effective for more
distantly related phages for which protein based metrics are suggested (Moraru,

Varsani and Kropinski, 2020).
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Therefore, genome-based frameworks for the classification of phage have been
successful despite the absence of a universal phylogenetic marker (Dion, Oechslin
and Moineau, 2020), and extensive horizontal gene transfer (or mosaicism) between

phages (Lawrence, Hatfull and Hendrix, 2002; Iranzo, Krupovic and Koonin, 2016).

As of September 2022, the ICTV recognises 50 families, 100 sub-families, and 1,652

genera of viruses that infect prokaryotes (https://ictv.global/taxonomy).

1.4 Distribution and Abundance of Phages

The distribution and abundance of phages has most extensively been studied in the
oceans, where the number of virus-like particles (VLPs) was found to range between
10° and 107 per millilitre of seawater in 95% of samples, and the number of putative
viruses typically outnumber microbial cells by 10:1 (Wigington et al., 2016). Other
environments where phages have been found to be abundant include soils, with each
gram of soil (dry weight) typically containing 10° VLPs (Swanson et al., 2009), and the
human gut, with each gram of human faeces containing up to 10" VLPs (Sutton and

Hill, 2019).

Whilst phages are ubiquitous within the marine environment, their distribution is not
homogenous. Phages are known to form distinct communities within different marine
environments, and the composition of this viral community has been used to
distinguish between different aquatic samples (Hayes et al., 2017; Parmar et al.,
2018). Furthermore, analysis of the Pacific Ocean Virome dataset has revealed
significant variability of community composition based upon season, depth and

proximity to land (Hayes et al., 2017).
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As phages are a natural predator of bacteria, fully reliant on their hosts for viral
replication, it would therefore make sense that the composition of the viral community
is shaped by the bacterial community and vice versa. For example, studies of the infant
gut show a strong temporal correlation between phages and their predicted hosts
(Beller et al., 2022). Furthermore, phages of the human gut are potentially induced

from early colonising bacteria (Liang et al., 2020; Beller et al., 2022).

1.5 Phages as Agents of Horizontal Gene Transfer

Alongside plasmids, transposons, and other integrative and conjugative elements
(ICEs), phages are known to be widespread mediators of horizontal gene transfer
(HGT) (Arnold, Huang and Hanage, 2021). The transfer of genetic material between
cells facilitated by phages is broadly referred to as transduction (Canchaya et al.,
2003). However, there are many forms of transduction which rely upon entirely
different biological processes. The two most well characterised are generalised and
specialised transduction, although lateral transduction and auto-transduction are also

described.

1.5.1 Generalised Transduction

In the later stages of phage replication, those with dsDNA genomes typically form
concatemers that are cut by the terminase protein during packaging into the capsid
(Black, 1989). There are four widely characterised mechanisms by which dsDNA
phages recognise and cleave their own DNA prior to packaging into the capsid: (1) for
phages such as A (Feiss et al., 1983) and HK97 (Juhala et al., 2000), the terminase
recognises a specific cohesive end site (cos site) where it introduces a staggered cut,

consistently generating DNA with fixed termini at a fixed length. (2) For phages such
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as P1 (Bachi and Arber, 1977) and P22 (Tye, Huberman and Botstein, 1974), the
terminase recognises a specific packaging site (pac site) to initiate packaging and the
DNA is cleaved once the capsid (or “head”) is full. This is described as headful
packaging and may lead to variable lengths of DNA being packaged into the capsid.
(3) For phages such as T5 (Wang et al., 2005) and T7 (Dunn, Studier and Gottesman,
1983), the DNA is cut at a fixed position to generate direct terminal repeats, leading to
packaging of circularly permuted genomes that may be re-circularised upon injection
into host cytoplasm. (4) For T4-like phages (Kalinski and Black, 1986), a variant of
headful packaging is used during which no pac site is recognised and packaging of
DNA is initiated randomly. Although these four mechanisms are the most widely
characterised, other mechanisms have been described (e.g. those in phages P2, Mu,
and phi29) (Pruss and Calendar, 1978; George and Bukhari, 1981; Bjornsti, Reilly and

Anderson, 1983), and many more likely exist in nature.

Generalised transduction, first discovered in the Salmonella phage P22, was the first
phage mediated HGT mechanism to be identified and is mediated by phages that
utilise pac site initiated headful packaging (Zinder and Lederberg, 1952; Thierauf,
Perez and Maloy, 2009). During generalised transduction, the pac-terminase will
recognise pseudo-pac sites (pac site homologues) on the bacterial genome and
subsequently package host DNA into the viral capsid, rather than a viral genome
(Chelala and Margolin, 1976; Schmieger, 1982; Thierauf, Perez and Maloy, 2009).
The host DNA containing particles may go on to infect other cells, upon which the DNA
is injected into the cytoplasm of recipient cells (Figure 1.1A). Although generalised
transduction can be performed by phages with a cos-terminase, the chances of two

pseudo-cos sites occurring on the host DNA and being separated by the optimum
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distance is highly unlikely, and so cos-terminase facilitated generalised transduction

is thought to be rare (Chiang, Penadés and Chen, 2019).

1.5.2 Specialised Transduction

Specialised transduction results from the aberrant excision of a prophage from the
bacterial chromosome, and is exemplified by the archetypal Escherichia phage A
(Morse, 1954; Morse, Lederberg and Lederberg, 1956b, 1956a). During specialised
transduction, bacterial host DNA flanking the prophage attachment site (affB) is
excised alongside the prophage. The phage-host hybrid DNA may then be replicated
and packaged into viral progeny, which may horizontally transfer the host DNA to
recipient cells (Figure 1.1B). Specialised transduction can be performed by both cos-
and pac-terminase phages. However, specialised transduction is thought to be rare,
as aberrant prophage excision is not a common event (Chiang, Penadés and Chen,

2019).

1.5.3 Lateral Transduction

In 2018, a third type of transduction was described and termed “lateral transduction”
(Chen et al., 2018). In lateral transduction, DNA packaging is initiated from pac sites
of integrated prophages which have delayed excision and underwent bi-directional
(theta-form) replication. As a result, part of the phage genome is packaged into a
capsid, alongside up to seven headfuls of host DNA. Meanwhile, some prophages will
undergo excision and follow typical maturation (Figure 1.1C). Lateral transduction
therefore results in normal titres of phage progeny, alongside numbers of transducible
particles that may transfer host DNA at far higher frequencies than those reported for

generalised and specialised transduction (Chen et al., 2018; Fillol-Salom et al., 2021).
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Figure 1.1 Phage transduction

The transfer of bacterial DNA mediated by phages through (A) generalised, (B) specialised, and (C) lateral transduction. Note that
auto-transduction (see 1.5.4) is also described but not shown in this figure.
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1.5.4 Auto-transduction

A fourth type of transduction, termed “auto-transduction”, has also been described
(Haaber et al., 2016). In auto-transduction, a sub-population of lysogenic bacteria
release active phages which go on to infect a susceptible population of bacteria that
do not contain the prophage. The phage undergoes lytic replication, lyses the
susceptible cells, and encapsulates some of the susceptible host DNA into viral
progeny. The progeny may then re-infect the lysogenic sub-population of bacteria,
transferring some of the susceptible population host DNA to the lysogenic population

in the process (Haaber et al., 2016).

1.6 Lysogenic Conversion

In addition to facilitating the HGT of bacterial DNA, phages can alter the phenotype of
their hosts through lysogenic conversion. Lysogenic conversion (or phage conversion)
is the process by which a prophage alters the metabolism of its host through the
expression of phage-encoded genes. These accessory genes, or “morons” (“more on”
the phage genome), may provide a fithess advantage to the bacterial cell in which the
prophage resides which is mutually advantageous for the prophage (Juhala et al.,

2000; Brussow, Canchaya and Hardt, 2004).

1.6.1 Phage Morons

Most bacteria harbour multiple prophages and the genomes of some bacteria are
composed of up to 20% prophage sequences (Casjens, 2003). As the prophage and
lysogen exist in a stable mutualistic relationship, it is therefore advantageous for the
prophage to encode genes that provide a fithess advantage to its host. These genes,

or “morons”, may modulate host metabolism in a number of ways, including but not
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limited to: mediation of resistance to further phage infection (Panis, Méjean and
Ansaldi, 2007; Ali et al., 2014; Cumby et al., 2015); regulating the expression of genes
relating to motility phenotypes (Su et al., 2010; Addy et al., 2012; Tsao et al., 2018);
effecting quorum sensing pathways (Hargreaves, Kropinski and Clokie, 2014a,

2014b); and augmenting bacterial virulence (see 1.6.2).

1.6.2 Phage-Encoded Virulence Determinants

Whilst the term moron was first described by Roger Hendrix in 2000, phages have
been known to have significant impacts on the virulence of bacteria for decades
(Freeman, 1951; Juhala et al., 2000). The impact of lysogenic conversion by phage-
encoded toxins and virulence factors is significant, with phages contributing to the
pathogenesis of clinically relevant pathogens including Clostridium botulinum, Vibrio
Cholerae, Escherichia coli and Shigella spp. (Freeman, 1951; Eklund et al., 1974;
Waldor and Mekalanos, 1996; Wagner et al., 2002; Fortier and Sekulovic, 2013; Khalil
et al., 2016). Furthermore, there are many examples where the expression of phage-
encoded toxins cause otherwise harmless commensal bacteria to convert into a
pathogen, including multidrug-resistant ST11 strains of Pseudomonas aeruginosa
(van Belkum et al., 2015; Tsao et al., 2018), and the Shiga-toxin encoding Escherichia

coli (O’Brien et al., 1984).

1.7 Phage-Encoded Auxiliary Metabolic Genes

The terms lysogenic conversion factor and moron were coined to describe genes
encoded within prophages that effect host metabolism. However, obligately lytic
phages that do not form a prophage are also known to possess non-phage genes that

modulate host metabolism, and these have been dubbed auxiliary metabolic genes
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(AMGs) (Breitbart et al., 2007). The term AMGs broadly encompasses all phage-
encoded “host genes” that may augment the metabolism of their bacterial hosts
(therefore, whilst morons and lysogenic conversion factors are AMGs, not all AMGs
are morons or lysogenic conversion factors) (Breitbart et al., 2007). Unlike morons and
lysogenic conversion factors, phage-encoded AMGs may simply drive the metabolism
of their host towards their own purposes. For example, lytic phages of cyanobacteria
are known to possess photosynthetic genes to ensure photosynthesis is continued

during viral replication (Mann et al., 2003; Lindell et al., 2004).

Since their first description (Breitbart et al., 2007), AMGs have been described in a
plethora of environments, including oceans and soils, with potential impacts on
bacterial metabolism including augmentation of photosynthesis, carbon metabolism,
sulphur metabolism, nitrogen uptake and complex carbohydrate metabolism (Yooseph
et al., 2007; Dinsdale et al., 2008; Sharon et al., 2011; Hurwitz, Hallam and Sullivan,
2013; Anantharaman et al., 2014; Zhang, Wei and Cai, 2014; Hurwitz, Brum and
Sullivan, 2015; Hurwitz and U'Ren, 2016; Roux, Brum, et al., 2016; York, 2017; Monier
et al., 2017; Jin et al., 2019). The widespread presence of AMGs within the genomes
of phages is thought to have significant impacts on the ecology and metabolic

processes of bacteria, and their subsequent role within global biogeochemical cycling.

1.8 Phages as Vectors for Antimicrobial Resistance

Given the widespread roles of phages in shaping bacterial phenotypes through
lysogenic conversion and HGT, it may be logical to assume a similar pattern is
observed for the transfer of antimicrobial resistance genes (ARGs). However, this is

not necessarily the case. The significance of phages in the spread of antimicrobial
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resistance (AMR) in the wider environment is unclear, as prominent studies within this
field have reached polarising conclusions (Enault et al., 2017; Debroas and Siguret,

2019).

1.8.1 Phage-Encoded ARGs

Screening the genomes of all cultured phages (n=16,928; 01/March/2022; (Cook,
Brown, et al., 2021)) against the Virulence Factor Database and ResFinder database
using Abricate with default parameters results in 534 phage genomes predicted to
contain a virulence factor (3.15%) and only 53 to contain an ARG (0.31%) (Seemann,
no date a; Zankari et al., 2012; Chen et al., 2016). Moreover, ARGs are 10-fold less
abundant in free phages than in prophages (Kleinheinz, Joensen and Larsen, 2014),
and a number of well characterised prophages that do encode ARGs have been
shown to exhibit no lytic activity and are likely unable to facilitate HGT (Banks, Lei and
Musser, 2003; Brenciani et al., 2010; Wang et al., 2010; Billard-Pomares et al., 2014;
lannelli et al., 2014; Wipf, Schwendener and Perreten, 2014). However, a recently
characterised prophage of Streptococcus pyogenes was found to encode the mef(A)-
msr(D) macrolide resistance gene pair (Santoro et al., 2022). Whilst free phages
frequently encode genes that act as fitness factors for their bacterial host within their
ecological niche, including the augmentation of virulence, they seem to rarely encode

ARGs.

1.8.2 Phage Transfer of ARGs
Despite phages rarely encoding ARGs, there are known cases of clinically relevant
bacterial species acquiring antimicrobial resistance through mechanisms mediated by

phages. With regard to generalised transduction (see 1.5.1), one study reported the
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phage mediated transfer of ampicillin resistance in E. coli at frequencies between 10
and 1073 transductants per plaque forming unit (PFU) (Kenzaka et al., 2007), and more
recently, a study investigating 243 coliphages isolated from chicken meat found that
24.7% were able to transduce one or more ARGs (encoding resistance to ampicillin,
chloramphenicol, kanamycin, and/or tetracycline) to a laboratory strain of E. coli

(ATCC 13706) (Shousha et al., 2015).

Beyond generalised transduction, temperate phages of Staphylococcus aureus have
been implicated in the spread of antimicrobial resistance through auto-transduction
(see 1.5.4) (Haaber et al., 2016), and lateral transduction has likely played a significant
role in the acquisition of AMR for clinically relevant bacteria such as Salmonella spp.
and Staphylococcus aureus (see 1.5.3) (Chen et al., 2018; Fillol-Salom et al., 2021).
Furthermore, although not directly mediated by the phages, a number of “super-
spreader” phages have been shown to promote HGT of plasmids by transformation
through lysing bacteria and leaving large quantities of intact transformable plasmid
DNA (Keen et al., 2017). Additionally, a recent analysis of so-called "phage-plasmids”
(elements that both phage and plasmid) found them to commonly carry ARGs (Pfeifer,
Bonnin and Rocha, 2022). Phages therefore have the potential to transfer ARGs
between bacteria belonging to well characterised genera, however the role of phages

in the transfer of ARGs in the wider environment is a topic of debate.

1.8.3 Viral ARGs in the Wider Environment
Whilst individual phages have been demonstrated to facilitate HGT of AMR through a
number of mechanisms, studies of individual phages do little to demonstrate the

importance of phages in the transfer of AMR in the wider environment. To investigate
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this, much research is focussed on investigating the total viral community within an
environmental sample. Common methods involve isolating the total viral DNA from an
environmental sample of interest and either sequencing the DNA (see 1.10) or using

it as template in (q)PCR reactions for the detection of specific ARGs of interest.

Despite the widespread belief that HGT of ARGs is mediated by plasmids, ICEs and
generalised transduction (Munita and Arias, 2016; Haudiquet et al., 2022), a number
of prominent virome analyses suggested that ARG carriage within phages was much
higher than previously thought and a paradigm shift was needed. These studies
include: analyses of viromes produced from human pulmonary samples of cystic
fibrosis (CF) patients concluding phage-carriage of ARGs to be at high levels (Fancello
et al., 2011; Rolain et al., 2011); an analysis of viromes from murine faecal samples
concluding phages were likely key drivers of multidrug resistance, and that the extent
of which was increased after treatment with antibiotics (Modi et al., 2013); a
metagenomic analysis of hospital wastewater concluding ARGs were more prevalent
in the viral DNA fraction (0.26%) than the bacterial DNA fraction (0.18%) (Subirats et
al., 2016); and analyses of viromes from a plethora of environments concluding that
non-human viromes were key reservoirs of ARGs that may be disseminating AMR in
the wider environment (Lekunberri et al., 2017). However, all of these analyses used
read-based approaches for the quantification of ARGs. Typically, a read-based
approach involves comparison of reads against a database of ARGs (e.g., CARD or

Arg-annot) using an aligner algorithm (e.g., BLASTx or DIAMOND).

The use of read-based approaches for the quantification of ARGs within viromes was

brought into question in a prominent re-analysis of the Fancello, Rolain and Modi
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datasets (Enault et al., 2017). The re-analysis concluded that the carriage of ARGs
within phage genomes was likely over-estimated in the original analyses. The
quantification of ARGs within the CF samples was likely misled by high levels of all
bacterial DNA and not specifically ARGs (Fancello et al., 2011; Rolain et al., 2011,
Enault et al., 2017). Furthermore, the level of ARGs estimated in the murine samples
was likely inflated due to exploratory cut-offs being used for the detection of ARGs
which led to a number of false-positive ARGs that were later found to not confer an

AMR phenotype (Modi et al., 2013; Enault et al., 2017).

The conclusions from the Enault et al., re-analysis provided a cautionary tale and
offered suggestions to guide the identification of ARGs within viromes, including: (1)
bacterial contamination should be quantified using methods outlined in their analyses
or other automated methods (a dedicated programme for this, ViromeQC, is now
available (Zolfo et al., 2019)), (2) conservative thresholds should be used for the
identification of putative ARGs to avoid false-positives, (3) assembly in contigs should
be used where possible to confirm that the ARG is on a contig of demonstrably viral
origin to avoid being misled by generalised transduction or contaminating bacterial
DNA, and (4) only experimental testing will validate the predicted open reading frame

(ORF) as a true ARG (Enault et al., 2017).

Conversely, a more recent analysis of bacterial genomes and viromes from a range of
environments that used conservative thresholds for the prediction of ARGs concluded
that phages were key reservoirs of AMR in the wider environment (Debroas and
Siguret, 2019), furthering the difficulty to determine the importance of phages in the

transfer of AMR in the environment. Despite conflicting reports, it is still widely believed
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that phage-carriage of ARGs is rare and that generalised transduction is the most
widespread phage-mediated mechanism for the HGT of ARGs in the environment,
although the contribution of generalised transduction is still minimal when compared
to transformation and conjugation. However, if ARGs truly are rarely carried in phage

genomes, it posits the question; why have they not been selected for?

1.9 Phage Sequencing

The advent of genome sequencing has expanded our understanding of phage-host
interactions, and the level of this understanding has increased with the number of
phages to be sequenced. Since the genome of ®X174, the first DNA phage to be
sequenced, was sequenced in 1977 using Sanger sequencing (Sanger et al., 1977),
the number of phage genomes to be sequenced has increased massively due to the
ease of high-throughput sequencing and a resurgence of interest in the therapeutic
potential of bacteriophages (Hatfull, 2008; Perez Sepulveda et al., 2016; Luong,
Salabarria and Roach, 2020). Furthermore, the relatively simple nature of phage
genomes means that the vast majority of isolated phage genomes can be fully
assembled using short-read next-generation sequencing approaches only (Rihtman

et al., 2016).

This expansion in the number of sequenced phage genomes has accelerated our
understanding of the diversity, size, and composition of phage genomes. For example,
between 2013 and 2016 a number of phages with surprisingly large genomes (>200
kb) were sequenced and named “jumbo-phages” (Yuan and Gao, 2017). However,

isolation of so-called jumbo-phages is thought to be rare, and a recent analysis of
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jumbo-phage genomes suggested that 180 kb was a more informative cut-off than the

previous 200 kb cut-off (lyer et al., 2021).

In addition to deepening our understanding of phage genomics, the larger number of
phage genomes to be sequenced allows for common analyses that advance the field
of bacteriophage research in a number of ways, such as: (1) comparative genomics,
where the sequencing of cyanophages has uncovered novel AMGs within their
genomes (Mann et al., 2003; Lindell et al., 2004), provided insights to their phylogeny
by identifying niche-differentiating genes (Gregory et al., 2016), and combined with
proteomic analysis to inform the identification of tail fibres likely responsible for host
range (Michniewski et al., 2019); (2) informed continual improvements and advances
of viral taxonomy, including the revision of N4-like viruses into the family Schitoviridae
(Wittmann et al., 2020) and the reclassification of the Spounavirinae subfamily of the
former family Myoviridae to form the new family Herelleviridae (Barylski et al., 2019);
(3) known phage genome sequences are typically used to inform and train software
for prediction of novel phages from metagenomic sequence data (Akhter, Aziz and
Edwards, 2012; Roux et al., 2015; Arndt et al., 2017; Bolduc et al., 2017; Ren et al.,
2017, 2018) and to subsequently predict their bacterial hosts (Villarroel et al., 2016;
Ahlgren et al., 2017; Galiez et al., 2017; Leite et al., 2018, 2019; Boeckaerts et al.,
2021; Roux et al., 2022; Ruohan et al., 2022); and (4) often the first step in the analysis
of viral metagenomics (hereafter, viromics) is the comparison of sequences with a
database of known phage genomes. Therefore, a greater number of publicly available

viral genomes helps to inform the field of bacteriophage research as a whole.
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1.10 Viral Metagenomics

Whilst the sequencing of individual phages has provided invaluable insight to how
phages may alter the metabolism of their hosts, the power of sequencing in the
exploration of phage diversity and ecology has been exemplified by the field of

viromics.

The isolation, cultivation and sequencing of individual phages relies upon the
cultivation of their bacterial hosts. However, due to technical challenges in culturing
fastidious bacteria, it is thought that most bacteria remain uncultured (Steen et al.,
2019; Thrash, 2021); and therefore, so are their phages. Viromics offers an elegant
solution to uncover the unseen diversity of prokaryotic viruses, as it allows for the high-

throughput analysis of large numbers of uncultivated viruses (predominantly phages).

In short, viromics involves separating the viral particles from an environmental sample
through methods such as centrifugation and filtration to remove environmental debris
and cellular organisms. The resultant filtrate may be concentrated, using a centrifugal
filter column for example, and the nucleic acids are extracted for downstream
applications (e.g., sequencing). However, as viruses are far smaller than bacteria and
their genomes are much shorter, the amount of viral DNA extracted from
environmental samples is typically very low and therefore insufficient to be sequenced
directly. Thus, early viromics work-throughs developed methods for the amplification

of viral DNA prior to sequencing.

Notably, the linker amplified shotgun library (LASL) was developed to sequence the

first virome (Breitbart et al., 2002). The LASL approach involved randomly shearing
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viral DNA, ligating dsDNA linkers to repaired ends, amplifying the fragments by DNA
polymerase, and ligating into a vector prior to electroporation into recipient cells.
Plasmids were isolated from the resultant clones and sequenced. As viral genomes
often contain modified nucleotides that cannot be directly cloned into E. coli and many
viral genes are toxic to bacteria and must be disrupted prior to cloning (e.g., holins and
lysins), the LASL approach offered an elegant solution to these issues in addition to
generating sufficient material for sequencing. This approach was implemented to
study viromes in a plethora of environments, including the ocean (Breitbart et al., 2002;
Bench et al., 2007), human gut/faeces (Breitbart et al., 2003, 2008), blood (Breitbart
and Rohwer, 2005), and soil (Fierer et al., 2007); revealing a previously unknown
diversity of phage-encoded genes. However, the LASL approach is time-consuming
and still required relatively high input quantities of DNA that may be inhibitory from

some environments.

Alternatively to LASL, multiple displacement amplification (MDA) has been used for
the amplification of viral DNA to perform viromics (Angly et al., 2006). MDA utilises the
®29 DNA polymerase to amplify DNA isothermally and has been used to study
viromes from diverse environments, including the ocean, (Angly et al., 2006), human
gut (Reyes et al., 2010), and an Antarctic lake (Lopez-Bueno et al., 2009). Much like
LASL, the use of MDA overcame issues with low yields of viral DNA from
environmental samples and allowed for exploration of previously unseen viral
diversity. Furthermore, the implementation of MDA is less technically difficult to
perform than cloning based approaches and requires even lower starting DNA
concentrations (Polson, Wilhelm and Wommack, 2011). However, MDA has been

associated with the preferential amplification of ssDNA genomes (Kim et al., 2008),
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formation of chimeras (Lasken and Stockwell, 2007), and quantitative biases that
make inter-sample abundance comparisons impossible (Yilmaz, Allgaier and
Hugenholtz, 2010). Whilst LASL and MDA offered new insights into viral communities,
a notable comparison of the two methods applied to the same surface seawater
sample found that the resulting sequence data, and subsequent taxonomic and

functional assignments, varied widely between the two (Kim and Bae, 2011).

Whilst LASL and MDA approaches differed in how the viral DNA was amplified, most
viromes of this era were sequenced using the same platform: Roche 454
pyrosequencing, which was typically favoured over lllumina platforms available at the
time due to its longer read lengths. The application of this era of viromics is exemplified
by the study of aquatic samples which provided early estimates of richness and
diversity across globally distributed viral communities (Rodriguez-Brito et al., 2010;
Roux et al., 2012; Hurwitz, Hallam and Sullivan, 2013; Hurwitz, Brum and Sullivan,
2015), and human gut samples, shedding light on a previously unseen component of
the human microbiome and uncovering the enigmatic crAssphage (Reyes et al., 2010;

Kim et al., 2011; Minot et al., 2011; Dutilh et al., 2014).

In 2014, Dutilh et al. re-analysed the faecal viromes described in the Reyes et al.
(2010) dataset using a cross-assembly approach. The reads from the viromes were
pooled and assembled de novo using gsAssembler and crAss (Margulies et al., 2005;
Dutilh et al.,, 2012). Upon examination of the cross-assembly, the researchers
observed a contig which was comprised of reads from all 12 individuals in the original
dataset, suggesting it may be derived from a universal viral entity. To find other contigs

derived from the same potential genome, they used depth-profile binning and
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homology binning, which unveiled a number of contigs that had significant similarity to
unknown sequences from unrelated gut metagenomes; further suggesting the
universal viral genome was present in other human datasets. Subsequently, they
carefully re-assembled the reads from the individual virome in which most reads of the
ubiquitous contig were derived from. This re-assembly yielded a complete ~97 kb
genome that was designated crAssphage (Dutilh et al., 2014). Since its first assembly,
the crAssphage was found to be the most abundant phage in the human gut and has
subsequently been brought into culture, four years after its initial discovery (Dutilh et
al., 2014; Guerin et al., 2018; Shkoporov et al., 2018). Thus, the discovery of
crAssphage provides an elegant example as to how viromic studies allow for the

exploration of ecologically important viruses, before they can be brought into culture.

However, like the sequencing technologies that came before it, pyrosequencing has
since been superseded by high throughput sequencing (HTS) platforms (e.g., the
lllumina MiSeq, HiSeq and NovaSeq). In the early 2010’s, lllumina platforms became
the sequencer of choice as they offered much greater sequence coverage at a lower
cost than pyrosequencing, and generated far fewer sequencing errors (Loman et al.,
2012). The accessibility of HTS and improvements to genome assembly have driven
a viromics revolution. The greater sequence coverage obtained from these platforms
has facilitated deeper understanding of the micro-diversity of distinct groups of globally
distributed viral communities (Gregory et al., 2019), and allowed for the construction

of so-called “mega-phages” with genomes >500 kb (Devoto et al., 2019).

Although the use of short-read viromics has expanded our understanding of viruses

within nature, short-read sequencing is not without its limitations. Phage genomes that
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contain genomic islands and/or have high micro-diversity, such as those of the
ubiquitous Pelagibacterales (Zhao et al., 2013; Martinez-Hernandez et al., 2019), may
cause genome fragmentation during assembly (Temperton and Giovannoni, 2012;
Mizuno, Ghai and Rodriguez-Valera, 2014; Roux et al., 2017; Olson et al., 2019).
Furthermore, the choice of assembler will have a large impact on the quality of the
final assembly (Sutton et al., 2019). Other approaches, such as cloning large
fragments into fosmids or techniques involving single-cell and/or single-virus MDA
have been used, although these methods are technically challenging (Mizuno et al.,
2013; Roux et al., 2014; Martinez-Hernandez et al., 2019). Long-read sequencing may

offer a more convenient solution.

1.10.1 Long-Read and Hybrid Viromics

The two predominant technologies for long-read sequencing are Oxford Nanopore
Technology (ONT) and PacBio. ONT sequencing relies upon lengths of DNA being
pulled through nanoscale protein pores (or nanopores) which are embedded into a
membrane that separates a differential charge (Wang et al., 2021). The DNA is pulled
from the negatively charged side to the positively charged side, and differences in
ionic current are measured and attributed to individual nucleotide bases (Wang et al.,
2021) (Figure 1.2). PacBio utilise an approach termed circular consensus sequencing
(CCS). This approach involves attaching ssDNA hairpin adapters to target dsDNA,
primers are annealed to the adapter and a DNA polymerase binds. The now circular
sequence is amplified and sequenced in multiple passes to form subreads, which are
then used to generate a consensus read (Kanwar et al., 2021) (Figure 1.3). Whilst
ONT and PacBio are both able to generate individual reads hundreds of kb long, the

theoretical maximum for ONT is higher, with reads over 2 Mb having been obtained
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(Payne et al., 2019; Kanwar et al., 2021; Wang et al., 2021). Long read sequencing is
therefore able to produce reads that span the entire length of phage genomes,

potentially overcoming issues associated with fragmentation and assembly.
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A schematic showing the main principals of PacBio sequencing.
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To date, there are limited but notable examples of ONT sequencing being used for the
analysis of viromes. ONT sequencing of a human gut virome uncovered novel phage
genomes and was able to detect epigenetic modifications that would be undetectable
with short reads (Cao et al., 2020), and novel oral bacteriophages have been
uncovered from ONT sequenced metagenomes (Yahara et al., 2021). However, the
input requirements for ONT sequencing require large quantities of DNA. To overcome
this, the human gut study isolated total nucleic acids and amplified them using a
reverse transcription PCR reaction, and the oral metagenome sequenced DNA from
the bacterial fraction, which yields higher quantities of DNA but offers less information
about total viral diversity (Cao et al., 2020; Yahara et al., 2021). Alternatively, an
assembly-free single-molecule approach was used to uncover previously unknown
viral diversity within seawater samples (Beaulaurier et al., 2020). This approach
overcame the input requirements by filtering ~100 litres of seawater per sample and
concentrating the resulting filtrate via tangential flow filtration (TFF) (Beaulaurier et al.,
2020). Whilst this could be achieved with pristine seawater, it can not from more

viscous and heterogeneous environments.

It is possible to amplify DNA prior to sequencing with ONT, however, amplification
techniques such as MDA may preferentially amplify some genomes (e.g., ssDNA)
more than others and introduce biases in the abundance of genomes (Kim et al., 2008;
Yilmaz, Allgaier and Hugenholtz, 2010). Furthermore, there are other limitations
beyond the input requirements. Long read sequencing platforms are known to have
higher sequence error rates than Illumina (Buck et al., 2017), which may in turn affect

coding sequence (CDS) prediction and functional annotation (Watson and Warr,
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2019). Due to the input requirements and higher error rate associated with long read

sequencing, there is an emerging interest in the use of hybrid sequencing approaches.

Hybrid sequencing is an approach which utilises both short and long read sequencing
platforms to sequence the same DNA sample. This approach aims to overcome the
assembly fragmentation issues associated with short reads, and the higher error rates
associated with long reads. A typical hybrid work-through may involve producing a
long-read assembly, mapping short reads to the assembly and then using the short

reads to correct, or “polish”, errors in the long read assembly.

Hybrid sequencing approaches have been shown to increase the completeness and
quality of bacterial metagenome assembled genomes (MAGs) from human and
environmental samples (Bertrand et al., 2019; Liu et al., 2020, 2021; Brown et al.,
2021; Jin et al., 2022). However, there are limited examples of hybrid sequencing

being applied to viromes.

A hybrid approach that combined lllumina and ONT reads found inclusion of ONT
reads improved the quality of MAGs for bacterial and viral genomes from groundwater
samples (Overholt et al., 2020). However, this study was of metagenomes and not
VLP-enriched viromes. With regard to viromes, the most notable hybrid virome was
sequenced and analysed using an approach dubbed virlON (Warwick-Dugdale et al.,
2019). To overcome issues associated with input DNA requirements and biases of
amplification, the virlON method combined MinlON sequencing with a long-read
LASL, alongside lllumina sequencing (Warwick-Dugdale et al., 2019). The virlON

approach improved recovery of high-quality genomes and was later improved to lower
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the required quantity of input DNA (Zablocki et al., 2021). Moreover, recent
improvements were made to the metaFlye assembler (Kolmogorov et al., 2020) to
produce viralFlye with the specific aim of assembling viral genomes from long-read
sequence data (Antipov et al., 2022). This is the first long read assembler designed

specifically for viral metagenomes.

Whilst there are a couple of examples of ONT sequencing being used to explore viral
diversity, there are no notable equivalents conducted with PacBio sequencing. There
are examples of single phage genomes being sequenced with PacBio (Akhwale et al.,
2019), and a study of prophages predicted from a PacBio bacterial metagenome
(Zaragoza-Solas et al., 2022), however there are no prominent viromes that have been
sequenced with PacBio. The reasons for the absence of PacBio viromes are currently
unclear. Furthermore, there is no robust comparison of different sequencing platforms

for the recovery of viral genomes with a virome.

1.11 Cattle Manure and its Microbial Composition

Manure is an unavoidable by-product from the rearing of livestock. As manures are
rich in nitrates and phosphates, they are a valuable source of organic fertiliser, which
is typically applied to land in the form of semi-solid slurry. To produce slurry from
manure, solids are separated using apparatus such as a screw press. The liquid
fraction forms the basis of slurry, which is stored in a tank or lagoon, where it is mixed

with water and other agricultural wastes before its application to land.

In the UK, dairy farms are estimated to be responsible for 80% of livestock manure

production (Smith and Williams, 2016). There are ~ 2.7 million dairy cattle in the UK,
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with ~ 1.8 million in milking herds (AHDB, 2018). An adult milking cow produces 7-8%
of their own bodyweight as manure per day (Font-Palma, 2019), leading to an
estimated 67 million tonnes produced annually (Smith and Williams, 2016). The
economic value of cattle slurry is thought to be significant, estimated at an average

value of £78 per cow per year (AHDB, no date b).

Despite their importance as a fertiliser, agricultural manures and slurries can be an
environmental pollutant. Inadequate storage and agricultural run-off may lead to an
increased biological oxygen demand (BOD) of freshwaters, leading to algal blooms
and eutrophication (Sandars et al., 2003; Thomassen et al., 2008; Prapaspongsa et
al., 2010; De Vries, Groenestein and De Boer, 2012). Areas particularly at risk of
nitrate pollution of ground or surface waters are classified as nitrate vulnerable zones
(NVZs), and these constitute 55% of land in England (UK Government, 2013). To
prevent pollution of freshwater, the application of organic fertilisers to fields in the UK
is strictly controlled and can only be applied during certain times of the year (UK
Government, no date). Thus, there is the requirement to store vast volumes of slurry

for several months.

As cattle manure is the primary input of slurry, what is being excreted by the cow will
likely be found within the slurry. Antibiotics given to livestock comprise 73% of global
antibiotic sales (Van Boeckel et al., 2017), the use of which has been implicated in the
emergence of drug-resistant infections in humans (O’Neill, 2015) and animals
(Aarestrup et al., 2000). In the UK, dairy cattle are routinely treated with antibiotics for
common illnesses including mastitis and respiratory illnesses (Oliver, Murinda and

Jayarao, 2011). Furthermore, lameness—the costliest disease to UK dairy cattle
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(CHAWG, 2020)—is typically prevented by treatment with footbaths that contain
antimicrobial metals (e.g., copper and zinc) and/or other chemicals (e.g., formalin and
glutaraldehyde) that are known to co-select for AMR (Pal et al., 2015; Griffiths, White
and Oikonomou, 2018; Davies and Wales, 2019). Therefore, dairy cattle slurries may
contain selective and co-selective pressures for the transmission of AMR.
Consequently, there is much interest in how antimicrobial resistant bacteria and ARGs
associated with livestock may enter humans, whether directly through consuming
animal products, or indirectly though animal wastes that are applied to the wider

environment.

Culture-based techniques for the identification of multidrug resistant (MDR) bacteria
within dairy wastes have found extended-spectrum beta-lactamase (ESBL) producing
E. coli (Seiffert et al., 2013; Ibrahim et al., 2016), and metagenomic analyses have
uncovered a diverse range of ARGs within the bacterial fraction of manure (Wichmann
etal., 2014; Zhou et al., 2016). To ameliorate the risk of AMR transmission from cattle
slurry into the wider environment, current recommendations are to store slurry for three
months prior to application to ameliorate the risk of AMR (UK Government, 2016).

However, there is no evidence given to justify this guidance.

To investigate the potential role of dairy cattle slurry in the transmission of AMR into
the wider environment, a recent study profiled the bacterial fraction of a slurry tank
over six months using a mixed methods approach (Baker et al., 2022). Metagenomic
analysis of the slurry tank samples revealed the tank to contain a diverse community
of bacteria that was stable over time, with the two most dominant phyla being

Bacteroidetes and Firmicutes (Baker et al., 2022). Predicted ARGs in the
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metagenomes were also stable over time, with the most common predicted ARGs
conferring resistance to multiple drugs, tetracycline, MLS antibiotics (macrolides,
lincosamides, and streptogramines), aminoglycosides, and beta-lactams. The diverse
but stable profile of ARGs predicted in the metagenomes was mirrored in phenotypic
resistance patterns observed in E. coli (Baker et al., 2022). Furthermore, “mock” slurry
tanks which did not receive regular influent after initial setup were profiled over time.
These mock tanks showed that the abundance of many classes of resistance and
clinically relevant bacterial genera decreased over time when the tank did not receive
further influent (Baker et al., 2022). Overall, this study concluded that dairy slurry tanks
did not necessarily represent an AMR “hotspot”, but rather, that good management
practises and storage of slurry could ameliorate the risk of transmission of AMR from

livestock into the wider environment (Baker et al., 2022).

Whilst there is emerging research into the bacterial fraction of cattle slurry, very little
is known about the viral fraction. Viromic analyses of cattle has largely focused on
rumen samples, which are now known to have a diverse and largely novel viral
community that may augment host metabolism to aid the breakdown of complex
carbohydrates (Berg Miller et al., 2012; Ross et al., 2013; Anderson, Sullivan and
Fernando, 2017). Moreover, a recent analysis of pig faeces viromes that focused on
the abundance of ARGs concluded that phage carriage of ARGs within pig samples
was a rare event (Billaud et al., 2021). However, the composition of the virome within
cattle wastes and slurry is poorly studied. Individual phages infecting Escherichia coli
have been isolated from slurry and characterised (Smith et al., 2015; Sazinas et al.,
2018; Besler et al., 2020), and there are limited studies into the rumen and cattle gut

viromes (Ross et al., 2013; Park and Kim, 2019), but total viral diversity within cattle

46



slurry remains largely unexplored. Given the widespread use of slurry in the

environment, this paucity of knowledge is alarming.

1.12 Project Overview

It is increasingly clear that phages have significant ecological impacts, as this has
been demonstrated in every environment in which they have been studied in detail.
Phages are known to augment the metabolism of their hosts in a plethora of
environments, however their impact in the transfer of ARGs remains a subject of
debate. Our understanding of the specific mechanisms by which phages may augment
the metabolism of their hosts is underpinned by genomics and viromics. The continual
improvement of sequencing platforms and bioinformatic pipelines will continue to
deepen our understanding of viruses in nature. Whilst we are implementing these
work-flows in environments such as the human gut and ocean, there is a paucity of

knowledge concerning phages within agricultural settings.

1.13 Research Objectives

The aim of this PhD project was to determine the diversity and ecological roles of
bacteriophages within the dairy farm environment, with an emphasis on their potential
roles in augmenting the metabolism of their bacterial hosts. Therefore, the objectives

were to:

1. To develop methods to retrieve all currently sequenced bacteriophage

genomes and investigate any biases within the current collection of complete

phage genomes
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. To determine which sequencing platforms and bioinformatic approaches are
best at recovering viral communities in nature

. To characterise the viral community of agricultural slurry and determine the
potential for bacteriophages to disseminate ARGs and virulence determinants
in the wider environment through application of slurry to land

. To determine if the presence of antimicrobials influences the viral communities
within agricultural slurry

. To characterise the viral community of the healthy dairy cow gut across key life
stages and investigate the role of diet and age on the natural gut virome

. To determine the functionality of putative phage-encoded ARGs
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Chapter 2 INfrastructure for a PHAge REference Database
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21 Chapter Preface

This chapter presents the work previously published in a paper format ‘INfrastructure
for a PHAge REference Database: Identification of Large-Scale Biases in the Current
Collection of Cultured Phage Genomes. Cook, R. et al (2021) PHAGE'

https://doi.org/10.1089/phage.2021.0007. The text and figures from the published

paper have been inserted into this chapter verbatim. As this work is not mine alone,

the contribution of other authors is outlined below.

2.1.1 Author Contributions

Study design and the writing of an early version of the script that would go on to
become INPHARED were performed prior to commencement of this PhD project.
Andrew Millard, Martha Clokie, Branko Rihtman and Nathan Brown conceived the
study. Ryan Cook and Andrew Millard carried out the bioinformatic analysis. Ryan
Cook, Nathan Brown, Michael Jones and Andrew Millard drafted the manuscript. All

authors approved and contributed to the final manuscript.

2.1.2 Chapter Objectives
The aim of this work was to determine how many phage genomes have been
sequenced from cultured isolates to date, and to investigate any biases within the

current collection of publicly available genomes. Therefore, the objectives were to:

1. To develop a method for the automatic retrieval of bacteriophage genomes and
associated metadata

2. To create re-producible community resources to aid phage genomic analysis

3. To investigate biases in the collection of publicly available genomes (e.g., are

bacteriophages from different hosts represented equally)
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2.2 Abstract
Background: With advances in sequencing technology and decreasing costs, the
number of phage genomes that have been sequenced has increased markedly in the

past decade.

Materials and Methods: We developed an automated retrieval and analysis system
for phage genomes (https://github.com/RyanCook94/inphared) to produce the
INfrastructure for a PHAge REference Database (INPHARED) of phage genomes and

associated metadata.

Results: As of January 2021, 14,244 complete phage genomes have been
sequenced. The INPHARED data set is dominated by phages that infect a small
number of bacterial genera, with 75% of phages isolated on only 30 bacterial genera.
There is further bias, with significantly more lytic phage genomes (~70%) than
temperate (~30%) within our database. Collectively, this results in ~54% of temperate
phage genomes originating from just three host genera. With much debate on the
carriage of antibiotic resistance genes and their potential safety in phage therapy, we
searched for putative antibiotic resistance genes. Frequency of antibiotic resistance
gene carriage was found to be higher in temperate phages than in Iytic phages and

again varied with host.

Conclusions: Given the bias of currently sequenced phage genomes, we suggest to
fully understand phage diversity, efforts should be made to isolate and sequence a
larger number of phages, in particular temperate phages, from a greater diversity of

hosts.
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2.3 Introduction

Bacteriophages (hereafter phages) are viruses that specifically infect bacteria and are
thought to be the most abundant biological entities in the biosphere (Suttle, 2007).
Phages may be obligately lytic (hereafter lytic) or temperate, whereby they have
access to both the lytic and lysogenic cycle. Phages have many roles; in the oceans
they are important in diverting the flow of carbon into dissolved and particulate organic
matter through the lysis of their hosts (Suttle, 2007), or directly halting the fixation of
CO2 carried out by their cyanobacterial hosts (Puxty et al., 2016). In the human
microbiome, it is becoming increasingly clear that phages play roles in the severity
and symptoms of several diseases. Many recent studies have shown disease-specific
alterations can be seen in the gut virome community in both gastrointestinal and
systemic conditions, including irritable bowel disease (Norman et al., 2015), AIDS

(Monaco et al., 2016), malnutrition (Reyes et al., 2015), and diabetes (Ma et al., 2018).

Phages alter the physiology of their bacterial hosts such as by causing increased
virulence, a notable example being phage CTX that actually encodes the toxins within
the genome of Vibrio cholerae, which cause cholera (Waldor and Mekalanos, 1996).
Furthermore, there are many cases where the expression of phage-encoded toxins
cause otherwise harmless commensal bacteria to convert into a pathogen, including
multidrug-resistant ST11 strains of Pseudomonas aeruginosa (van Belkum et al.,
2015; Tsao et al., 2018), and the Shiga-toxin encoding Escherichia coli (O’'Brien et al.,
1984). As well as increasing the virulence of host bacteria, phages can also utilize
parts of their genomes known as auxiliary metabolic genes, homologues of host
metabolic genes, to modulate their host's metabolism that can again have profound

impacts on bacterial physiology and disease (Breitbart et al., 2007).
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Our understanding of how phages alter host metabolism has increased as the number
of phage genomes has been sequenced. The first phage genome in 1977 (Sanger et
al., 1977), and since then, the relative ease of high-throughput sequencing combined
with the resurgence of interest in this topic, has led to a rapid increase in the number
of sequenced phage genomes (Hatfull, 2008; Perez Sepulveda et al., 2016). The
relatively simple nature of phage genomes means that the vast majority of isolated
phage genomes can be fully assembled using short-read next-generation sequencing
approaches (Rihtman et al., 2016). As temperate phages can integrate into the
genomes of their bacterial hosts as prophages, it is possible to predict prophage
genomes within their bacterial hosts. However, not all predicted prophages can
produce virions. Therefore, for the purposes of this study, phage genomes are those

that have been experimentally verified to produce virions.

As sequencing capacity has increased, our understanding of the size of phage
genomes has also increased. Between 2013 and 2016, a significant number of phages
with genomes >200 kb were sequenced and dubbed “jumbo phages” (Yuan and Gao,
2017), although the isolation of “jumbo phages” is still thought to be rare. More
recently, phages with genomes >500 kb have been reconstructed from metagenomes
and referred to as megaphages, further expanding the known size of phage genomes

(Devoto et al., 2019).

The greater number of phage genomes available results in common analyses,
including (1) comparative genomic analyses (Michniewski et al., 2019; Rezaei Javan
et al., 2019), (2) taxonomic classification (Rohwer and Edwards, 2002; Adriaenssens

et al., 2018; Barylski et al., 2019; Chibani et al., 2019), (3) software for prediction of

53



novel phages (Akhter, Aziz and Edwards, 2012; Roux et al., 2015; Arndt et al., 2017,
Bolduc et al., 2017; Ren et al., 2017, 2020), and (4) often the first step in analysis of
viromes is the comparison of sequences with a known database. The huge amount of
potential resource within phage genomes requires a comprehensive set of complete
and consistently curated genomes from cultured isolates that can be used to build

databases for further analyses.

When analyzing new phage genomes, it is important to know exactly how many phage
genomes you are comparing the search with, and any biases (or not) inherent in that
data set. Although this should be a relatively trivial question to answer, it is not
because there are currently no such databases that contain only complete phage
genomes that allow extraction in an automated reproducible manner. Although RefSeq
provides well annotated complete phage genomes, it is not representative of the
diversity of complete phage genomes. RefSeqs are only created for exemplar phage
species, as defined by the International Committee on Taxonomy of Viruses (ICTV).
Despite the tremendous work from the ICTV, the process of taxonomy approval is
done annually and many phages remain without taxonomy. Thus, RefSeqgs will always
be catching up with the submission of new phage genomes and lag behind latest
submissions. We have created an automated method for researchers to extract
complete phage genomes from GenBank in a reproducible manner for use in genomic
and metagenomic analyses, and provide general properties of the data set, thus

allowing for better understanding of its features and limitations.
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24 Materials and Methods

Phage genomes were download using the “PHG” identifier along with minimum and
maximum length cutoffs. We also assume the genomes are from phages that have
been shown to produce virions and are not predictions of prophages, a requirement of
submitting phage genomes. Genomes were filtered based on several parameters to
identify complete and near complete phage genomes. This includes initial searching
for the term “Complete” and “Genome” in the phage description, followed by
“‘Complete” and (“Genome” or “Sequence”) or a genome length of >10 kb. The list of
genomes was then manually curated to identify obviously incomplete phage genomes,
the accession numbers of genomes that are obviously incomplete were added to an
exclusion list. As new genomes are added to GenBank continually, the INfrastructure
for a PHAge REference Database (INPHARED) is designed to be updated continually.
The use of an exclusion list allows the same incomplete genomes to be identified each
time it is updated. An exclusion list is maintained on GitHub that can be added by the
community. Although this process is not perfect, it provides a mechanism for the
community to manually curate complete phage genomes that is better than one
individual checking thousands of genomes repeatedly. Efforts to identify “false hits”
were reported by many researchers, we would like to thank all members of the phage

community who helped in initial curation.

After filtering, genes are called using Prokka with the --noanno flag, with a small
number of phages using --gcode 15 (Seemann, 2014; Devoto et al., 2019). Gene
calling was repeated to provide consistency across all genomes, which is essential for
comparative genomics. A prebuilt database

(https://doi.org/10.25392/leicester.data.14242085) is provided so gene calling only
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occurs on newly deposited genomes. The original GenBank files are used to gather
metadata including taxa and bacterial host, and the Prokka output files are used to
gather data relating to genomic features. The gathered data are summarized in a tab-
delimited file that includes the following: accession number, description of the phage
genome, GenBank classification, genome length (bp), molecular GC (%), modification
date, number of coding sequences (CDS), proportion of CDS on positive sense strand
(%), proportion of CDS on negative sense strand (%), coding capacity (%), number of
transferRNAs (tRNAs), bacterial host, viral genus, viral subfamily, viral family, viral
realm, Baltimore group (derived from phylum), and the lowest viral taxa available (from
genus, subfamily, and family). Coding capacity was calculated by comparing the
genome length with the sum length of all coding features within the Prokka output, and
tRNAs were identified by the use of tRNA identifier. Other outputs include a fasta file
of all phage genomes, a MASH index for rapid comparison of new sequences,
vConTACT2 input files, and various annotation files for IToL and vConTACT2. The
vConTACT2 input files produced from the script were processed using vConTACT2
v0.9.13 with --rel-mode Diamond --db “None” --pcs-mode MCL --vcs-mode
ClusterONE --min-size 1 and the resultant network was visualized using Cytoscape

v3.8.0 (Shannon et al., 2003; Bin Jang et al., 2019).

To identify genes indicative of a temperate lifestyle within genomes, we used a set of
protein families Hidden Markov Models (HMM) as described previously (Clooney et
al., 2019; Cook, Hooton, et al., 2021). These HMMs cover the integrase and
transposase genes that are associated with the known integration methods of phages
into bacterial genomes (PF07508, PF00589, PF01609, PF03184, PF02914, PF01797,

PF04986, PF00665, PF07825, PF00239, PF13009, PF16795, PF01526, PF03400,
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PF01610, PF03050, PF04693, PF07592, PF12762, PF13359, PF13586, PF13610,
PF13612, PF13701, PF13737, PF13751, PF13808, PF13843, and PF13358)
(Clooney et al., 2019; Cook, Hooton, et al., 2021). If a genome encoded one of these
genes, it was assumed to be temperate. Antimicrobial resistance genes (ARGs) and
virulence factors were identified using Abricate with the resfinder and VFDB databases
using 95% identity and 75% coverage cutoffs (Seemann, no date a; Zankari et al.,

2012; Chen et al., 2016).

The phylogeny of “jumbo phages” was constructed from the amino acid sequence of
the TerL protein, extracted from 313/314 of the “jumbo phage” genomes. Sequences
were queried against a database of proteins from non “jumbo phages” using Blastp
and the top 5 hits were extracted with redundant sequences being removed (Altschul
et al., 1990). Sequences were aligned with MAFFT, with a phylogenetic tree being
produced using 1Q-Tree with “m WAG -bb 1000” that was visualized using IToL
(Nguyen et al.,, 2015; Nakamura et al., 2018; Letunic and Bork, 2019). Additional

information was overlaid using IToL templates that are generated through INPHARED.

Rarefaction analysis was carried out for phage genomes from the top 10 most
common hosts. Phage genomes were clustered at the level of genus if they belonged
to the same vConTACT2 subcluster, and species using ClusterGenomes v5.1 (95%
ID over 95% length) on the final set of nondeduplicated genomes, although RefSeq
duplicates had been removed at this point (GitHub - simroux/ClusterGenomes:
Archive for ClusterGenomes scripts, no date). An additional set of these genomes
pooled together was included. Rarefaction curves and species richness estimates

were produced using Vegan in R (Team, 2018; Oksanen et al., 2020).

57



All data from January 2021 are available at Figshare

https://doi.org/10.25392/leicester.data.14242085 and the script used for downloading

and analyzing genomes is available on GitHub (https://github.com/RyanCook94/).
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2.5 Results

The output of the INPHARED script provides a set of complete phage genomes, where
all genes have been called in a consistent manner that allows comparative genomics
and phylogenetic analysis. Unlike RefSeq, it will include all complete phage genomes,
including those that have not been classified by the ICTV, and strains of the same
phage species (or genome neighbors as they are referred to in the National Center for
Biotechnology Information [NCBI] Viral Genomes Resource). In addition, it provides a
MASH database to allow rapid comparison of new phage genomes against to identify
close relatives, along with formatted databases for input into vConTACT2 to allow
identification of more distant relatives. The host data (genus) for each phage are
extracted along with summary information for each genome, which is reformatted to
allow overlay onto trees in IToL so that the most common analyses for classification

of new phages can be easily produced (Figure 2.5).

For this study, we used a lenient definition of “complete” to identify complete phage
genomes. Strictly speaking, a complete phage genome would include the terminal
ends of the phage genome, but because many phages are sequenced using a
transposon-based library preparation (Rihtman et al., 2016; Michniewski et al., 2019),
these terminal bases are never obtained (as transposons have to insert between
bases). Another limitation for completeness is that for phage genomes with long
terminal repeats; if the length of the repeat is larger than the library insert size, the
repeats cannot be resolved. Details of library preparation, and if terminal ends have
been confirmed, are not included in GenBank files, thus preventing automated

retrieval of this information.
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We then identify how many phage genomes have been sequenced to date and 18,134
genomes were extracted from GenBank. Of these, 3890 phage genomes are RefSeq
entries that are derived from primary submissions, resulting in 14,244 complete phage

genomes.

Current recommendations by the ICTV are that phages are uniquely named
(Adriaenssens and Rodney Brister, 2017). Assuming a unique name represents a
unique phage there are 12,127 phages. However, there are multiple examples of
phages with the same name that are not genetically identical. Thus, phage names are
not a suitable method for determining the number of unique phage genomes. As an
alternative, deduplication of genomes at 100%, 97%, and 95% identity results in

13,830, 12,845, and 12,770 genomes, respectively.

Having established a data set of “complete” phage genomes, we then analyzed these
data to look at how the number of phage genomes being sequenced over time is
changing, the host they are isolated on, and overall genomic properties. First, we
looked at the increase in the number of phage genomes that are sequenced over time.
Although the number of phage genomes has rapidly increased over the past 20 years,
the rate of increase has slowed in the past decade (Figure 2.1), with the number of

phage genomes doubling every 2-3 years.
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Figure 2.1 Number of complete phage genomes in GenBank over time

Dates were estimated based on date of submission (for 235 genomes, the date of update was used as no submission date was
available). The reference lines showing doubling rates (dashed) begin in 1989, as this is when the number of phage genomes
increased beyond the first submission in 1982.
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2.5.1 Phage hosts and predicted gene function

Utilizing our INPHARED database, we extracted the bacterial hosts and information
on the predicted number of “hypothetical” proteins for each phage (i.e., so those with
no predicted function). Across all phages, 56% of genes encoded hypothetical
proteins, supporting the often quoted idea that the majority of genes encode proteins

within unknown function (Edwards and Rohwer, 2005).

The host of 87% (12,402/14,244) of phages could be identified, with 13% of phages
not having a known host or identifiable host information in the GenBank file, resulting
in the genomes of phages infecting 234 different hosts (bacterial genera) having been
sequenced. However, there is a clear bias in the isolation of phages against the same
host (Figure 2.2A). Phages that infect Mycobacterium spp. are the most commonly
deposited genomes (~13%), largely due to the pioneering work of the Science
Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science
(SEA-PHAGES) program (Hatfull et al., 2006). This is followed by Escherichia spp.,

Streptococcus spp., and Pseudomonas spp. (Figure 2.2A).
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Figure 2.2 Overall properties of phages

(A) Proportion of phages isolated on the top 30 most abundant hosts. (B) Distribution
of phage genome sizes with colors indicating Baltimore group and labels indicating
typical phages for prominent peaks. (C) Proportion of “jumbo phages” on top 30 hosts
for which at least one “jumbo phage” has been isolated with the total number of phages
isolated against that host shown in brackets after its name.
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Phages isolated on just 30 different bacterial genera account for ~75% of all phage
genomes in the database (Supplementary Table S2.1). For non-deduplicated
genomes isolated against the top 10 hosts specified in the GenBank file, we used
rarefaction analysis to determine the diversity of these genomes and establish
redundancy with respect to host. Using a cutoff of 95% identity over 95% length to
define a species and vConTACT2 subclusters to define a genus, the number of
phages continues to increase with the number of genomes sequenced (Figure 2.3).
Suggesting that there is little redundancy within the database and we are not reaching
the point where identifying new phage species is a rare event. Utilizing the rarefaction
data for the top 10 hosts, we estimated how many different species of phages might
infect each of these different bacterial genera (Supplementary Table S2.2). For
Mycobacterium, there are 695 current phage species that lead to an estimation of
2132-2282 species that might infect Mycobacterium. Thus, even for hosts wherein
thousands of phages have been isolated, we are only just scratching the surface of
total phage diversity. We are also likely underestimating the total number of different
phage species. In the case of Mycobacterium, a large proportion of phages have been
isolated on only a single strain as part of the SEA-PHAGES program (Hatfull et al.,
2006). Thus, these phages are unlikely to be representative of phages that infect all
bacterial species within the genus Mycobacterium. Increasing the diversity of the host
Mycobacterium, that is, using more species of Mycobacterium for phage isolation, is

likely to lead to more species of phage being isolated, increasing our estimates.
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Figure 2.3 Genome diversity of phages on the top 10 most abundant hosts

Rarefaction curve of phage genera (A). Genera were defined by vConTACT2
clustering. Rarefaction curve of phage species (B). Species were defined as 95%
identity over 95% of genome length.
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2.5.2 Lytic and temperate phages

To identify whether phages are lytic or temperate, we searched for genes that facilitate
a temperate lifestyle (e.g., integrase and recombinase) that have been used in
previous studies to predict lytic/temperate phages (Clooney et al., 2019; Cook,
Hooton, et al., 2021). This process is only a prediction and having such genes does
not always mean the phage will enter a lysogenic cycle. However, it is a useful starting
point that facilitates large scale comparative analyses when experimental data for all

phages are either not available or readily accessible on such a scale.

Within the INPHARED data set, 4258 (~30%) phages have the potential to access a
lysogenic lifecycle. The frequency of putative temperate phages was highly variable
depending on the host (Figure 2.6A). The number of putative temperate phages is also
biased toward a small number of hosts with 1217, 846, and 214 isolated on
Mycobacterium, Streptococcus, and Gordonia, respectively. Collectively, these three
hosts account for ~54% of all putative temperate phage genomes sequenced to date

(Figure 2.6A).

2.5.3 Genome Sizes
Phage genomes ranged from 3.1 to 642.4 kb in size, with a wide distribution in the size
of genomes with several observable peaks in genome size. The most prominent peaks

are at 5-10, 40, 50, and ~165 kb (Figure 2.2B).

2.5.4 Coding capacity

The mean and median coding capacity was 90.45% and 91.52%, respectively (Figure

2.6B). Of the 14,244 genomes, 5731 (~40%) have 290% of coding features on one
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strand and 3293 (~23%) of these are entirely on one strand (Figure 2.6C). The number
of phages with genes encoding tRNAs was 4590 (~32%) and the number of tRNAs
ranged from 1 to 62 with a median of 3 (mean of 7.23, and mode of 1). Although there
is much literature on phage-encoded tRNAs, the roles they play remain unclear (Bailly-

Bechet, Vergassola and Rocha, 2007).

2.5.5 Jumbo phages

Phages with genomes >200 kb are often referred to as “jumbo phages” and are
reported to be “rarely isolated” and indeed only 314 genomes (~2.2%) fitting this
definition were identified, suggesting that they are indeed rare (Yuan and Gao, 2017).
To further investigate whether “jumbo phages” are as rare as is thought, we looked at
the distribution in the context of the previously identified host bias. “Jumbo phages”
have only been isolated on 31 of 234 identifiable bacterial hosts (Supplementary Table
S2.1) and are far more commonly isolated on some hosts than others. Noticeably
absent are any “jumbo phages” that infect Mycobacterium, Gordonia, Lactococcus,
Arthrobacter, and Streptococcus, with >4000 phages having been sequenced from

these bacterial hosts (Figure 2.2C).

For host bacteria that have had far fewer phages isolated on them such as
Caluobacter, Sphingomonas, Erwinia, Areomonas, Dickeya, and Ralstonia, the
frequency of “jumbo phage” isolation is far higher (Figure 2.2C). Owing to the small
sampling depth of some of these hosts (e.g., Photobacterium and Tenacibaclum), it is
not possible to determine whether the high proportion of genomes is merely a result
of the low number of genomes sequenced. However, for other hosts such as

Aeromonas, Erwinia, and Caulobacter from which >20 phages have been isolated,
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~26%, ~44%, and ~63% are categorized as “jumbo,” respectively. Therefore

suggesting “jumbo phages” are not always rare on particular hosts.

We further investigated the phylogeny of “jumbo phages” using the translated
sequence of the terL gene. The “jumbo phages” are well distributed across the tree
and do not form a single monophyletic clade, suggesting that they have arisen on
multiple occasions with 14 clades containing at least one “jumbo phage.” Of these 14
clades, 12 also contain a non-“jumbo phage”. Furthermore, not all “jumbo phages” are
equal, with “jumbo” cyanophages infecting the cyanobacteria Synechococcus and
Procholorococcus only marginally larger than their non-“jumbo” cyanophage relatives.
These “jumbo phages” are also more closely related to their non-‘jumbo” cyanophages
relatives than other “jumbo phages” (Figure 2.4). A closer relationship of “jumbo
phages” with non-‘jumbo” phages than other “jumbo phages” is not limited to
cyanophages (Figure 2.4). A similar pattern of grouping non-‘jumbo” with “jumbo
phages” is observed when a reticulate approach is used to look at the relatedness of

phage genomes using vConTACT2 (Figure 2.7).
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Figure 2.4 Phylogenetic tree of translated terL gene for 313 “jumbo phages”
and their closest relatives

The alignment was produced using MAFFT and tree produced using IQTree using
WAG model with 1000 bootstrap repeats (Nguyen et al., 2015; Nakamura et al., 2018).
Colored regions indicate viral clades, colored rings indicate viral genus, subfamily, and
family (innermost to outermost), and bars indicate genome length with blue and orange
bars belonging to non-‘jumbo” and “jumbo” phages, respectively. Bootstrap values
indicated by black circles are scaled to the bootstrap value, with a minimum value of
70% displayed. Tree is rooted at the mid-point.
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2.5.6 Virulence factors and ARGs

The presence of ARGs and virulence factors is a major concern for phage therapy, as
the use of phages carrying such genes may make the populations of bacteria they are
intended to kill more virulent or resistant to antibiotics. We therefore, used this
database to investigate the frequency and diversity of phage-encoded virulence
factors and ARGs. In total, 235 genomes (~1.6%) were found to encode a putative
virulence factor and 43 genomes (~0.3%) to encode a putative ARG. The most
common virulence genes were the stxoa (72 genomes) and stx2s (71 genomes) genes
that encode subtypes of the Shiga toxin (Supplementary Table S2.3). The most
common ARGs were the mef(A) (14 genomes) and msr(D) genes that confer
resistance to macrolide antibiotics (Supplementary Table S2.4) (Daly et al., 2004).
Most genomes encoding a virulence factor were predicted to be from temperate
phages (222/235), and were found to infect six bacterial genera, with the three most
abundant hosts being Streptococcus, Staphylococcus, and Escherichia, respectively.
The hosts for some genomes could not be determined (55/235). The genomes
encoding virulence factors were widely distributed over 26 putative genera (Figure
2.7). All genomes encoding an ARGs were predicted to be temperate and were found
to be isolated from eight bacterial genera, with the majority of phages linked to

Streptococcus spp. (27/43).
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2.6 Discussion

Defining how many different complete phage genomes have been sequenced is not
as simple a question as it might appear. Based on accession numbers, there are
14,244 phage genomes, once RefSeq duplicates have been removed. Using unique
names results in 12,127 phages, however, using names alone does not give an
accurate estimate of the number of different phages, as genetically different phages
have the same name. The use of deduplication at 100% identity suggests 13,830
unique phage genomes (January 2021) from cultured isolates. This also highlights that
although RefSeq is a valuable resource, it is not at all representative of phage
diversity. INPHARED provides a more comprehensive set of complete phage
genomes from cultured phage isolates than RefSeq, in an easily accessible format.
There are other resources that provide more comprehensive sets of phage genomes
than RefSeq, including the NCBI Viral Genomes Resource (O’'Leary et al., 2016;
Sayers et al., 2020). The NCBI Viral Genome Resource allows manual filtering of
phages through a graphical user interface and access to the same genomes in
INPHARED. The automated filtering provided by INPHARED is a key difference, which
prevents a user having to exclude the same genomes every time the database is
updated. The integrated microbial genomes viral resource (IMG/VR) provides access
to >2 million viral genomes, including phages, through a graphical interface (Roux et
al., 2021). The overwhelming majority of genomes in IMG/VR are constructed from
metagenomes and have never been cultured. INPHARED is not designed to replace
these valuable resources. The INPHARED provides rapid access to complete phage
genomes from cultured phage isolates, without the need for continued manual filtering
and provides metadata in an accessible format to allow initial analysis commonly used

with phages to be carried out.
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The INPHARED reveals clear patterns in phage genomes and biases in the selection
of phage genomes that are currently available, but not always discussed in the
analysis of genomes. The first is that the number of phage genomes is relatively small.
Even for hosts wherein the highest number of phages have been isolated on, our
estimates suggest thousands of new phage species remain to be isolated and
sequenced. If we consider there are now >300,000 assembled representative bacterial
genomes in GenBank, with many hundreds of thousands more for particular genera
(e.g., >300,000 Salmonella and Escherichia genomes alone) compared with only 558
and 1075 of their respective phages, the representation of phage genomes to date is
tiny compared with their bacterial hosts (Zhou et al., 2020). Furthermore, the rate at
which phage genomes are being sequenced is slowing down rather than increasing.
Given the renewed interest in phages, and increased accessibility of sequencing, the

decrease in the rate over time was surprising.

The second point of note is the bias in phage genomes. There is a clear bias in the
isolation of phages from a small number hosts, with far more lytic than temperate
phages. Thus, these phages are representative of these particular hosts, rather than
phages in their entirety. Owing to the enormous success of the SEA-PHAGES
program, many phages have been isolated on Mycobacterium and Gordonia (Hanauer
et al., 2017). This in turn results in approximately one-third of all temperate phage
genomes being isolated on these two bacterial genera, whereas the remaining two-

thirds are distributed across 142 different hosts.
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The overrepresentation of phages infecting particular hosts can lead to truisms that
may not be correct. For instance, “jumbo phages,” those that have genomes >200 kb,
are rarely isolated (Yuan and Gao, 2017). Analysis of the INPHARED data set
suggests ~2.2% of genomes fall into this category. However, this needs to be viewed
in the context of the large bias in the hosts used for isolation, with ~75% of phages
isolated on only ~16% of bacterial hosts that could be identified. When the number of
‘jlumbo phages” is expressed as a percentage of all phage genomes, their isolation is
clearly rare. For some hosts, such as Mycobacterium, many hundreds of phages
isolated on the same host strain have been sequenced without the isolation of a
‘lumbo phage,” suggesting they are truly rare for this host (Hatfull et al., 2006).
However, for other hosts such as Procholorococcus, Synechococcus, Caulobacter,
and Erwinia, the isolation of “jumbo phages” is not a rare event. Although
methodological adjustments of decreasing agar viscosity and large pore size filters
may increase the number of phages isolated that have larger genome sizes, we
suggest that using a wider variety of hosts may increase the number of “jumbo phages”
isolated (Yuan and Gao, 2017). Phylogenetic analysis demonstrated that many “jumbo
phages” are more closely related to non-‘jumbo” phages than other “jumbo phages.”
Thus, as the number of phage genomes has increased, an arbitrary descriptor of
‘lumbo” for phages with genomes >200kb in length has less meaning. Recent
comparative analysis of 224 “jumbo phages” used proteome size and analysis of
protein length to determine a cutoff of 180 kb to separate “jumbo phages” from other
phages. Using a clustering-based approach, three major clades of “jumbo phages”
were identified (lyer et al., 2021). In this study, using terL as a phylogenetic marker to
determine the phylogeny of 313 “jumbo phages” and their closely related phages

suggests they have arisen on multiple occasions, as has been demonstrated
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previously (lyer et al., 2021). “Jumbo phages” are clearly not monophyletic and what
applies to one “jumbo phage” does not hold true for many others (lyer et al., 2021). As
the number and diversity of “jumbo phages” increase, the use of the term seems to

have less meaning.

With the increasing interest and use of phages for therapy, the isolation of phages that
do not contain known virulence factors or ARGs is imperative. How frequently phages
encode antibiotic resistance genes is a topic of much debate (Enault et al., 2017;
Debroas and Siguret, 2019). A previous study of 1181 phage genomes found that they
are rarely encoded by phages, with only 13 candidate genes, of which 4 were
experimentally tested and found to have no functional antibiotic activity (Enault et al.,
2017). We estimate that ~0.3% of phage genomes encode a putative ARG (none have
been experimentally tested), a finding that is consistent with previous reports of low-
level carriage in phage genomes in a data set that is ~10 x larger using similarly
stringent cutoffs (Enault et al., 2017). Critically, all of these ARGs were found in
phages that are predicted to be temperate or have been engineered to carry ARGs as
a marker for selection. With the frequency of carriage in temperate phages being ~1%
overall. However, these data are still biased by the majority of temperate phages being
isolated on only three bacterial genera. Notably no ARGs were detected on phages of
Mycobacterium, which accounts for ~28% of temperate phages. In comparison,
~2.6% (27/1055) of temperate phages of Streptococcus carry putative ARGs and 50%
of phages from Erysipelothrix (1/2) carry putative ARGs. Clearly a much deeper
sampling of temperate phages from a broader range of hosts is required to get an
accurate understanding of the role of phage in the carriage of ARGs. Based on the

skewed data available to date, it seems unlikely there will be issues in the isolation of
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lytic phages for therapeutic use that carry known ARGs within their genomes.
However, we cannot determine whether these lytic phages can spread ARGs through

transduction, or through carriage of as-yet uncharacterized ARGs.

Although there is much debate on the presence and importance of ARGs in phage
genomes, the role of genes encoding virulence factors is well studied and the process
of lysogenic conversion is well known (O’Brien et al., 1984; Waldor and Mekalanos,
1996; van Belkum et al., 2015; Tsao et al., 2018). However, how widespread known
virulence genes are in phages is not widely reported. We estimate ~1.6% of phages
encode at least one putative virulence factor, with the frequency of carriage far higher
in temperate phages (5.5%) than in lytic phages (0.13%). Again, these overall
percentages are skewed by host bias with no known virulence factors detected in
Mpycobacterium temperate phages (0/1217), in comparison, 72% of temperate phages
of Shigella (5/7) and 7% (61/846) of Streptococcus contain virulence factors. It is
currently impossible to determine whether the higher proportion of ARGs and virulence
factors in phages of known pathogens is a feature of their biology, or a skew in the

database toward phages of clinically relevant isolates.

Given the biases in the data set, it is not clear whether the general phage patterns
(e.g., jumbo phages are rarely isolated, more temperate phages on particular hosts,
and the carriage of ARGs and virulence genes) are linked to biology or chronic
undersampling of phage genomes that results in some bias. We speculate the latter,
which distorts some generalizations about phages. Therefore, far deeper sampling of

phage genomes across different hosts is required at an increasing rate.

76



2.7 Conclusions

We have provided a method to automate the download of a curated set of complete
genomes from cultured phage isolates, providing metadata in a format that can be
used as a starting point for many common analyses. Analysis of the current data
highlights what we know about phage genomes is skewed by the majority of phages
having been isolated from a small number of bacterial genera. Furthermore, the rate
at which phage genomes are being deposited is decreasing. Although understanding
of genomic diversity is always influenced by the data available, this is particularly acute
for phage genomes with so many phages isolated on a small number of hosts. To
obtain a greater understanding of phage genomic diversity, larger number of phages,
in particular temperate phages, isolated from a broader range of bacteria need to be

sequenced.
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2.8 Supplementary Figures

Below are supplementary figures from the publication ‘INfrastructure for a PHAge
REference Database: Identification of Large-Scale Biases in the Current Collection of
Cultured Phage  Genomes. Cook, R. et al (2021) PHAGE'

https://doi.org/10.1089/phage.2021.0007.
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Figure 2.6 Genomic features for common hosts

Genomic features for phages of the ten most common bacterial hosts, showing (A)
predicted lifestyle, (B) genome length, and (C) strand bias (defined as 290% of coding
features on one strand).
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Figure 2.7 Distribution of ARGs, virulence factors, and jumbo-phages

vConTACT2 network showing large scale taxonomy of publicly available phage
genomes, with shape indicating lifestyle, and colour indicating jumbo-phages, as well
as the distribution of ARGs and virulence factors.
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Chapter 3 Comparison of lllumina, Nanopore and PacBio sequencing

for virome analysis
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3.1 Chapter Preface

This chapter presents work prepared for submission to a journal in manuscript format
‘Comparison of lllumina, Nanopore and PacBio sequencing for virome analysis’. The
text and figures from the manuscript have been inserted into this chapter verbatim. As

this work is not mine alone, the contribution of other authors is outlined below.

3.1.1 My Contributions

The study design, phage propagation and DNA extraction, sequencing, and some
initial assemblies were performed prior to commencement of this PhD project. |
completed the assemblies and performed the bioinformatic analyses. | drafted the
manuscript with Andrew Millard. The version of the manuscript presented here has
been contributed to and edited by Nathan Brown, Branko Rihtman, Slawomir
Michniewski, Tamsin Redgwell, Martha Clokie, Dov J Stekel, Jon L Hobman, Michael

A Jones, Darren Smith, and Andrew Millard.

3.1.2 Chapter Objectives
The aim of this work was to benchmark widely available sequencing technologies and
assembly algorithms for the recovery of viral genomes from a mixed viral community.

Therefore, the objectives were to:

1. To compare assemblies produced using different sequencing technology-
assembler combinations against known genomes in a mock community

2. To determine the effect of polishing long-read assemblies (PacBio and ONT)
with short-reads (lllumina)

3. To investigate whether the choice of sequencing platform and assembler

affects common viromics analyses
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3.2 Abstract

Viral metagenomics has fuelled a rapid change in our understanding of global viral
diversity and ecology. Long-read sequencing and hybrid approaches that combine
long and short read technologies are now being widely implemented in bacterial
genomics and metagenomics. However, the use of long-read sequencing to
investigate viral communities is still in its infancy. While Nanopore and PacBio
technologies have been applied to viral metagenomics, it is not known to what extent

different technologies will impact the reconstruction of the viral community.

Thus, we constructed a mock phage community of previously sequenced phage
genomes and sequenced using lllumina, Nanopore, and PacBio sequencing
technologies and tested a number of different assembly approaches. When using a
single sequencing technology, lllumina assemblies were the best at recovering phage
genomes. Nanopore- and PacBio-only assemblies performed poorly in comparison to
lllumina in both genome recovery and error rates, which both varied with the
assembler used. The best Nanopore assembly had errors that manifested as SNPs
and INDELs at frequencies ~4x and 120x higher than found in lllumina only
assemblies respectively. While the best PacBio assemblies had SNPs at frequencies
~3.5 x and 12x higher than found in Illumina only assemblies respectively. Despite
high read coverage, long-read only assemblies failed to recover a complete genome
for any of the 15 phage, down sampling of reads did increase the proportion of a

genome that could be assembled into a single contig.

Overall the best approach was assembly by a combination of Illlumina and Nanopore

reads, which reduced error rates to levels comparable with short read only assemblies.
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When using a single technology, lllumina only was the best approach. The differences
in genome recovery and error rates between technology and assembler had
downstream impacts on gene prediction, viral prediction, and subsequent estimates
of diversity within a sample. These findings will provide a starting point for others in

the choice of reads and assembly algorithms for the analysis of viromes.
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3.3 Introduction

Due to the distribution and abundance of viruses, it is becoming increasingly apparent
they play critical roles in all environments they are found. In particular viruses that
infect bacteria, bacteriophages (from hereon in phages) are known to play important
roles in regulating the abundance of their bacterial hosts, facilitating horizontal gene
transfer and playing crucial roles in global biogeochemical cycles by augmenting host
metabolism (Cobian Guemes et al., 2016; Perez Sepulveda et al., 2016; Breitbart et

al., 2018).

It is now over 40 years since the sequencing of the first DNA phage genome, by
Sanger sequencing (Sanger et al., 1977). The number of complete phage genomes
from phage isolates is now >22,000 (Cook, Brown, et al., 2021). However, millions
more phage genomes have been sequenced through metagenome sequencing and
are available through a variety of databases (Paez-Espino et al., 2017; Gregory et al.,
2019; Roux et al., 2021). Viral metagenomics (viromics) has revolutionised our
understanding of the diversity of phages and their potential ability to augment host
metabolism. Initial virome studies required DNA to be cloned into a vector and the
clone sequenced by Sanger sequencing. As new sequencing technologies developed
that did not require the cloning of DNA, such as Solexa (becoming lllumina), 454 and
SOLID, the field of viromics expanded. With Illumina sequencing becoming the
dominant technology, more and more viromes have been sequenced from pristine
ocean environments (Gregory et al., 2019), the abyssal depths and from the faeces of
a wide variety of animal species (Shan et al., 2011; Babenko et al., 2020; Camarillo-

Guerrero et al., 2021).
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Whilst viromes produced using lllumina short-read sequencing have provided great
insight into viral diversity, short reads are not able to resolve all viral genomes within
a virome. Phages that contain hypervariable regions and or high microdiversity are
known to cause virome assemblies to fragment, resulting in reduced contig size and
exclusion from further analyses (Warwick-Dugdale et al., 2019). To overcome these
associated problems, alternative approaches to viromics can be taken, including the
production of single cell viromics or the cloning of viral genomes into fosmids (Roux et
al., 2014). Whilst both of these approaches are beneficial, they are technologically

challenging compared to more standard viromics workflows.

Recent technological developments have led to the production of long reads by both
Oxford Nanopore Technology (ONT) (Wang et al., 2021) and PacBio (Kanwar et al.,
2021). While the technologies differ in their approach, both platforms sequence single
molecules and are capable of producing sequences of tens of kilobases in length
(Kanwar et al., 2021; Wang et al., 2021). The ability to sequence long DNA molecules
offers the ability to overcome the issues of microdiversity and or hypervariable regions
found within phage genomes (Warwick-Dugdale et al., 2019). To date there have been
limited studies using ONT sequencing for viromics. One of the first studies to do so
was able to acquire complete phage genomes from single ONT reads, utilising
tangential flow filtration (TFF) of marine samples to obtain the required significant
amounts of DNA for library input (Beaulaurier et al., 2020). Extraction of such
quantities of phage DNA is likely prohibitive from more viscous and heterogeneous
environments where multiple displacement amplification (MDA) is already used to
obtain enough DNA for library preparation for short read sequencing. While MDA

provides a solution to the amount of input material, it does not come without problems.
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It has been well documented that MDA can introduce biases in metagenomic libraries,
in particular the over representation of ssDNA phages within samples (Yilmaz, Allgaier
and Hugenholtz, 2010; Kim and Bae, 2011; Marine et al., 2014). To overcome the
problem of library input requirements, MDA for ONT library preparation, combined with
unamplified short read libraries for quantification has been utilised (Cook, Hooton, et
al., 2021). Alternatively, ONT sequencing (minlON) in combination with long-read
linker amplified shotgun library (LASL) to sequence PCR products on a minlON,
combined with Illumina short reads were used in an approach dubbed virlON
(Warwick-Dugdale et al., 2019; Zablocki et al., 2021). Both approaches were

successful in increasing the number and completeness of viral genomes.

While the number of viromes that utilise ONT alone or in combination with lllumina
sequencing is slowly increasing (Warwick-Dugdale et al., 2019; Cook, Hooton, et al.,
2021; Michniewski et al., 2021; Yahara et al., 2021; Zablocki et al., 2021; Zaragoza-
Solas et al., 2022), reports of utilising PacBio sequencing for viromes are scarce
(Zaragoza-Solas et al., 2022). A recent study predicted phages from a bacterial
metagenome assembled from PacBio reads, identifying phages not identified when
the same sample was sequenced with short reads (Zaragoza-Solas et al., 2022). Why
there are not more viromes that are sequenced with long read technology, as has
become commonplace for sequencing of bacterial metagenomes, is not clear. Even
for the sequencing of individual phage isolates, there are relatively few studies that
have utilised long reads (Akhwale et al., 2019; Eckstein et al., 2021; Kupritz et al.,
2021; Song et al., 2021). In part, this is likely because the vast majority of phage
genomes can be assembled from short read lllumina sequences alone (Rihtman et

al., 2016). Thus, unlike sequencing their bacterial hosts, long reads do not provide the
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immediate benefit of a better genome assembly for an isolate and thus the need to
use them is reduced. The lack of long-read data generally for phage isolates,
combined with the lack of a comparative benchmarked dataset comparing different
methods is likely contributing to long read sequencing not being widely adopted for

viromes, despite clear benefits from the limited studies to date.

We have therefore sequenced a mock community of phages with three different

sequencing technologies (PacBio, minlON and lllumina) to benchmark the different

approaches, in order to identify the benefits and limitations of each approach.
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3.4 Materials and Methods

3.4.1 Mock Virome Preparation and Sequencing

Phages (vB_Eco_SLUR29, vB_EcoS swan01, vB_Eco_mar001J1,
vB_Eco_mar002J2, KUW1, PARMAL1, HP1, DSS3_PM1, vB_Eco_mar005P1, S-
RSM4, vB_Eco _mar003J3, vB_Vpa_sm033, vB_VpaS sm032, CDMH1) were
propagated as previously described (Rihtman et al., 2016), and DNA was extracted
using a standard phenol:chloroform method. DNA was quantified with Qubit dsDNA
high sensitivity kit. ®X174 DNA was obtained from the spike in control provided with
lllumina library preparation kits. Genomic DNA was combined to produce a mock
community of fifteen phages that covered a range of lengths (44,509 - 320,253 bp)
and molGC content (38% - 61%). Genomes were combined across a range of
abundances (169,000 - 684,329,545 genome copies) within the mock community
(Supplementary Table S3.1). Genome copies were estimated by using the formula:
(ng of DNA * 6.022 x 1023) / (Genome Length * 660 * 1 x 109). The genomes were
chosen to include both highly divergent and highly similar phages (Supplementary

Table S3.2; Figure 3.12).

lllumina library preparation was carried out using the NexteraXT library preparation Kit,
with a minor modification to the number of PCR cycles as described previously
(Michniewski et al., 2019). In addition, no ®X174 spike was added to the library as is
part of the normal lllumina library preparation protocol. Sequencing was carried out
with a MiSeq 2 x 250 bp kit. For minlON and PacBio sequencing, the DNA was
amplified prior to sequencing with the GenomiPhi V3 DNA Amplification Kit, following
the manufacturer's instructions. Eight individual amplification reactions were

performed with 10 ng of DNA input for each amplification. Following amplification, DNA
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was treated with S1 nuclease with 10 U per ug of input DNA and the enzyme
deactivated, prior to cleanup and concentration with a DNA Clean & Concentrator-25
column (Zymo Research). Three independent amplification reactions were sequenced

via PacBio or ONT sequencing.

Libraries were prepared for minlON sequencing using SQK-LSK109 (Version:
NBE_9065 v109 revB_23May2018) with the native barcoding kit, following the
manufacturer's instructions (Oxford Nanopore Technologies, Oxford, UK) with
omission of the initial g-tube fragmentation step. Base calling was carried out with
Guppy v2.3.5, with reads demultiplexed using Porechop

(https://github.com/rrwick/Porechop). PacBio sequencing was carried out at NUomics

using the Sequel platform.

3.4.2 Bioinformatics Analyses

To determine coverage and depth, reads from each library were mapped to the 15
reference genomes using Minimap2 v2.14-r892-dirty with “-ax sr”, “-ax map-ont”, or “-
ax map-pb” for lllumina, ONT and PacBio reads respectively (Li, 2018). Minimap2
output was piped and sorted using the Samtools sort command to produce sorted bam

files (Li et al., 2009). Coverage and depth were taken from the bam files using the

Samtools coverage command (Li et al., 2009).

Assemblies were separately produced for the three libraries, and additional
assemblies were produced by pooling the three libraries together, resulting in four
assemblies per read/assembler combination. lllumina reads were trimmed with Trim

Galore v0.4.3 prior to assembly (https://github.com/FelixKrueger/TrimGalore). lllumina
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reads were assembled using SPAdes v3.12.0 with parameters “--meta -t 16” (Nurk et
al., 2017). Flye assemblies were produced with parameters “--nano-raw/or --pacbio-
raw --threads 90 --meta” (Kolmogorov et al., 2019). Unicycler assembly of long reads
was used with default parameters (Wick et al., 2017), that utilise miniasm (Li, 2016)
for an overlay consensus assembly followed by racon for polishing (Vaser et al., 2017).
wtdbg2 was used with the parameters “-p 21 -k 0 -AS 4 -K 0.05 -s 0.05 -L 1000 --edge-

min 2 --rescue-low-cov-edges -t 90” (Ruan and Li, 2020).

To determine whether using long and short reads together improved the assembilies,
three methods that utilised a hybrid approach were used. (1) Long read-only
assemblies were polished with multiple rounds of polishing using Pilon (Walker et al.,
2014) (hereafter referred to as “polished”). (2) For a hybrid assembly with Unicycler,
long and short reads were provided with default parameters (hereafter referred to as
“hybrid”). (3) The hybrid Unicycler assemblies were combined with the Illumina-only
assemblies and de-replicated at 95% average nucleotide identity (ANI) over 80%
genome length using the ClusterGenomes script (GitHub - simroux/ClusterGenomes:

Archive for ClusterGenomes scripts, no date) (hereafter referred to as “deduped”).

To assess completeness and quality assemblies were compared to the 15 reference
genomes using metaQUAST v5.0.2 with default parameters (Mikheenko, Saveliev and
Gurevich, 2016). All resultant plots were produced using ggplot2 in R v3.5.1. When
investigating the fidelity of assemblies to the reference genomes, we included
assemblies for which 50% of the genome was covered by contigs, no matter how
fragmented the assembly was (i.e., if 100 individual contigs mapped to 50% of genome

length, despite the longest contig only being 10% of genome length, this was still
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included. This was to exclude misassembly data for which only small portions of
genomes were assembled, potentially leading to under-estimation of error
frequencies). To investigate the effect of sequence depth on long read assembly,
reads mapping to the genome of interest were extracted and downsampled using

seqtk sample with -s100 to the desired depth (https://github.com/Ih3/seqtk).

To determine the effect of polishing long-read assemblies with short-reads on viral
prediction software, we processed the long-read assemblies and their polished
counterparts using VIBRANT v1.2.1 (Kieft, Zhou and Anantharaman, 2020) with the
following parameters “-t 8 -1 10000 -virome” and compared against DeepVirFinder v1.0
(Ren et al., 2020) with contigs >10 kb and a P-value <0.05. Prodigal v2.6.2 with default
settings was used for predicting open reading frames on the vOTUs and the 15

reference genomes (Hyatt et al., 2010).

To investigate the effect of different sequencing platforms and assemblers on
estimates of viral diversity, we applied a typical virome analysis workflow to the
assemblies. Each assembly was separately processed using DeepVirFinder v1.0 (Ren
et al., 2020). Contigs 210 kb or circular were included as viral operational taxonomic
units (vOTUs) if they obtained a P-value of <0.05. Reads from the corresponding
lllumina library were mapped to the assembly using Bbmap v38.69 at 90% minimum
ID and the ambiguous=all flag (Bushnell, 2013). vOTUs were deemed as present in a
sample if they obtained = 1x coverage across =75% of contig length (Roux et al.,
2017). The number of reads mapped to present vOTUs were normalised to reads
mapped per million. Relative abundance values were analysed using Phyloseq

v1.26.1 (McMurdie and Holmes, 2013) in R v3.5.1 to calculate diversity statistics
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(Team, 2018). The number of predicted vOTUs and alpha diversity statistics were

compared to the genome copy numbers used in the original mock community.
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3.5 Results

3.5.1 Mock Virome Composition

To assess the performance of short, long, and hybrid sequencing approaches for
viromic analyses, we sequenced a mock community of 15 bacteriophage genomes
with an lllumina MiSeq, PacBio Sequel, and ONT minlON. For lllumina sequencing,
no MDA was used to provide a library as free from bias as possible. For PacBio and
ONT sequencing, the mock community was first amplified with MDA to obtain sufficient
material for library preparation and sequencing. The Illumina and ONT libraries yielded
similar amounts of data with 0.5 - 1.1 Gb and 0.6 - 1.1 Gb respectively, and 0.3 - 0.5
Gb from PacBio libraries. Pooling the libraries resulted in 2.4, 2.7 and 1.1 Gb for

lllumina, ONT and PacBio libraries respectively (Supplementary Table S3.3).

3.5.2 Limits of Detection by Read Mapping

First, we assessed the limits of detection of each sequencing platform using a
mapping-based approach, with detection of a genome set at 1x coverage across =297%
of a genome. Four phage genomes were not detected at all (CDMH1, HP1,
vB_Eco_mar005P1 and ®X174) by any sequencing technology (Figure 3.1A). The
lllumina and ONT libraries detected a similar number of genomes (8-10 genomes),
with PacBio detecting between 7-8 genomes across the separate libraries (Figure
3.1B). Although lllumina and ONT both recovered between 8-10 genomes across all
libraries, the average number of genomes detected in a single Illumina library was
higher than that of a single ONT library (Figure 3.1B). The least abundant phage to be
detected was S-RSM4 (465,530 copies) and was only detected by Illlumina

sequencing, although a small percentage of the genome was covered in the PacBio
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and ONT libraries. The least abundant phages detected in ONT and PacBio libraries

were vB_VpaS_sm032 (52,465,265 copies) and J1 (53,672,906 copies), respectively.

The use of unamplified DNA for lllumina libraries allowed any effects of MDA to be
identified in the long read assemblies. Encouragingly, the abundance of a genome
within a sample generally correlated across different sequencing platforms, even after
MDA for PacBio and ONT sequencing (ONT vs lllumina r=0.9903948, PacBio vs
lllumina r=0.9883086, ONT vs PacBio r=0.9996938) (Figure 3.2A, B, and C;
Supplementary Table S3.4). Although, it should be noted that phage ®X174 was not
detected in any sample, suggesting we may have been overly cautious in the amount

we added to the mock community.
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Figure 3.1 Detection of genomes by read mapping

(A) Boxplots showing the proportion of each genome to which reads were mapped
from each of the three sequencing platforms for library repeats, and (B) the number of
genomes detected by read mapping by each sequencing platform at 1x coverage over
297% of genome length.
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Figure 3.2 Comparison of sequencing depth between platforms

Correlation plots showing average sequence depth of a genome between (A) lllumina
and ONT, (B) lllumina and PacBio, and (C) ONT and PacBio. An additional plot (D)
shows sequence depth for the three sequencing platforms versus the estimated
number of genome copies in the original mock community from which DNA libraries
were prepared and sequenced. Values shown are the mean across three libraries and
a pooled library, with bars showing standard error.
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3.5.3 Assembly Results - Genome Recovery

As assembly options for each read type were tested to optimise assembly methods,
assemblies were obtained for all samples and assemblers tested, with the exception
of PacBio reads using Unicycler (miniasm + racon) so were excluded from further
analysis. To investigate whether combining read technologies led to more complete
assemblies, PacBio and ONT reads were separately assembled alongside Illlumina
reads using Unicycler to produce “hybrid” assemblies. The hybrid assemblies were
separately combined with lllumina only assemblies and de-replicated at 95% average
nucleotide identity (ANI) over 80% to produce “deduped” assemblies (Nayfach et al.,

2020).

For individual sequencing platforms, only short reads (lllumina) resulted in any
completely assembled genomes (3-4) (Figure 3.3 and Figure 3.13). Despite having
>1,000x coverage of some genomes in long-read-only libraries, the reads did not
assemble into complete genomes, suggesting the coverage is not a limitation and may
well be a hindrance to assembly. The lllumina + ONT hybrid assembly (Unicycler)
recovered the most genomes (2-6 genomes) (Figure 3.3 and Figure 3.13). The
addition of long reads to short reads increases the number of genomes recovered

(particularly ONT).
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Figure 3.3 Comparison of genome recovery across sequencing technologies and
assemblies

Boxplot showing the number of genomes fully assembled within each assembly
(successful assembly defined as a single contig covering 97% of genome length), with
the reads used for assembly shown in different colours. Boxes contain values for the
3 libraries and a pooled library.
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3.5.4 Assembly Results - Limits of Detection for Assembled Genomes

The phage with the lowest input abundance to be recovered in a single contig within
any assembly was vB_Eco_mar001J1 (53,672,905 genome copies), which was
recovered in the ONT + lllumina hybrid assembly. The least abundant genome to be
recovered from an lllumina only assembly, and a PacBio + lllumina hybrid assembly
was KUW1 (72,995,151 genome copies), suggesting the addition of ONT reads to
lllumina reads improves the recovery of lowly abundant genomes, but the addition of

PacBio reads to the same lllumina reads did not.

KUW1 was recovered from lllumina libraries at a lower average sequence depth than
any other genome (139 x coverage in the largest lllumina library, 225 x coverage in
the pooled library), although it was not the genome with the lowest input abundance.
Furthermore, KUW1 was not assembled in the two smaller lllumina libraries (37 and
49 x coverage obtained), suggesting that the depth of lllumina sequencing impacts the

limits of detection.

As previously discussed (Section 3.5.2), the least abundant genomes to be detected
by read mapping were vB_VpaS_sm032 and S-RSM4. Summed lllumina contigs from
the pooled library mapped to 87% and 97% of vB_VpaS _sm032 and S-RSM4
respectively. However, the longest individual contigs only covered a small fraction of
the genomes (22% and 9% respectively). The average read depth for
vB_VpaS_sm032 and S-RSM4 contigs was 10 x over 98.7% and 14 x over 99.6% of
genome lengths respectively in the pooled Illumina library. Manual inspection of
alignments revealed that breaks in the assemblies typically coincided with a drop in

read coverage which was often associated with a sudden and sharp change in molGC
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(either upwards or downwards) (Cheung et al., 2011; Sato et al., 2019; Browne et al.,

2020) (Figure 3.4; Supplementary Table S3.4).

The longest genome to be recovered in a single contig, vB_Vpa_sm033 (320,253 bp),
was assembled in lllumina-only, lllumina + PacBio, and lllumina + ONT assemblies.
The shortest genome to be recovered in a single contig, KUW1 (44,509 bp), was
assembled in lllumina-only, lllumina + PacBio, and Illlumina + ONT assemblies. Whilst
KUW1 was assembled from only one individual lllumina library, it was assembled in
two each of the ONT + lllumina, and PacBio + lllumina hybrid assemblies.
Furthermore, dereplicating these hybrid assemblies with the Illumina-only assemblies

led to KUW1 being assembled in all individual libraries.
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Figure 3.4 Fragmentation of lllumina assemblies

Plots showing molGC (%) content against median coverage (500bp sliding window)
for (A) SRSM-4 and (B) vB_VpaS_sm032, which both fragmented in the pooled
lllumina SPAdes assembly despite reads mapping to ~99% of both genomes. Breaks
in the assembly are shown with black circles.
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3.5.5 Assembly Results - Resolution of Highly Similar Genomes

It was possible to assemble a single genome that was representative of
vB_Eco_mar001J1 or/and vB_Eco_mar002J2 from Illumina + ONT hybrid assemblies.
As these genomes have >99% ANI between them, it was not surprising the assemblies
contained a single genome that was a chimaera of both, rather than two individual
genomes. It was also possible to obtain the genome of vB_EcoS_swan01 using an
lllumina + ONT hybrid assembly (Figure 3.13), which has ~80% ANI with

vB_Eco_SLUR29. However, the genome of vB_Eco_SLUR29 could not be resolved.

3.5.6 Assembly Results - Comparison of Long Read Assemblers

Despite high read coverage (Supplementary Table S3.4), long-read only assemblies
failed to recover a complete genome (Figure 3.3). To identify the optimal long-read
only assemblies, we used the NGASO0 statistic (Figure 3.5). While nine genomes were
detected by mapping long reads in at least one library, only eight are included in this
analysis, due to the very low coverage of vB_Eco SLUR29 recovered from any
assembly. For this comparison, we also included long read assemblies that were

polished with lllumina reads, as this was found to affect the results.

The NGA50 values averaged across the eight genomes and four libraries obtained
from ONT assemblies were higher than those from PacBio, again this varied
depending on the assembler used. ONT reads assembled with Flye, wtdbg2 and
Unicycler obtained average NGA50 values of 28%, 10% and 8% respectively,
whereas PacBio reads obtained values of 5% and 4% for wtdbg2 and Flye assemblies
respectively. While ONT reads assembled with Flye typically produced the longest

alignments in relation to reference genomes, its performance in the individual libraries
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was higher than that in the pooled library; with the average NGA50 values as
proportion of genome length being 27%, 39% and 30% for individual libraries, and only
16% for the pooled library (Figure 3.14). Conversely, the highest NGA50 values for
ONT reads assembled with Unicycler were obtained from the pooled library (26%),
and 3%, 1% and 0.1% from individual libraries (Figure 3.14). Therefore, whether

pooling reads increases assembly length depends on the assembler being used.

For all five long-read only assemblies, its polished counterpart typically obtained more
complete assemblies than before polishing (Figure 3.5 and Figure 3.14). This is
particularly apparent with the individual ONT libraries assembled with Unicycler which
went from obtaining some of the lowest average NGA50 values to having some of the
highest (3%, 1% and 0.1% increasing to 43%, 35% and 29% respectively) (Figure
3.14). This suggests the ONT-Unicycler assemblies contained contigs below the 90%
ANI threshold required for mapping and were only aligned to the reference genomes
post-polishing (Figure 3.14). This post-polish increase was more modest in PacBio
assemblies, which increased from 3.7% to 3.8% and from 4.9% to 5.1% for the Flye
and wtdbg2 assemblies respectively (Figure 3.14). Manual inspection of contig
alignments from long-read only assemblies to the reference genomes revealed large
numbers of overlapping misassembled contigs that were not resolving into a single
assembly. This is potentially due to the higher error frequency associated with ONT

and PacBio reads.
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Figure 3.5 Comparison of genome assembly completeness for long-read assemblies

Boxplots showing the NGASO0 statistic per genome as a percentage of genome length
for each assembly, with the reads used for assembly shown in different colours. Boxes
contain values for the three libraries and a pooled library.
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To determine if the long-read assemblies were failing due to high sequencing depth,
we individually extracted the reads mapping to genomes with 2100 x coverage and re-
assembled the mapped reads only, as well as randomly downsampled subsets. For
both ONT and PacBio, and all assemblers used, downsampling the reads prior to re-
assembly led to more complete assemblies (Figure 3.6; Supplementary Table S3.5).
Furthermore, successful assemblies using PacBio reads with Unicycler were only
obtained after downsampling. However, Nanopore reads assembled with Unicycler
obtained the most complete assemblies using the original mixed community reads

(i.e., rather than reads mapping to that genome only).
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Figure 3.6 Effect of read depth on long-read assembly

The longest alignments per genome are shown for all long-read only assemblies using
their pooled libraries (Metagenome Sample), reads mapping to the genome only
(Maximum Coverage Observed), and randomly downsampled reads to approximate
read depths.
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3.5.7 Assembly Results - SNPs, INDELs and Misassemblies

To investigate the fidelity of assemblies, we compared assembled contigs to the mock
community reference genomes to identify the frequency of SNPs and INDELSs per 100
kb. Both SNPs and INDELs were calculated for genomes where = 50% of the genome
was covered by contigs. Using lllumina only reads resulted in the lowest number of
SNPs per 100 kb (503) with ONT long-read only assemblies having the highest
number of SNPs (2038-4159). The number of SNPs in long read assemblies was also
dependent on the assembler used. Using ONT reads with Flye (2038) resulted in fewer
SNPs than when wtdbg2 (3545) or Unicycler (4159) (Figure 3.7A and Figure 3.15).
Conversely, PacBio reads assembled with Flye had a higher SNP frequency (2180)

than those produced using wtdbg2 (1806) (Figure 3.7A and Figure 3.15).

A similar pattern of results was observed for the number of INDELs per 100 kb,
although a much larger difference between the different read technologies was
observed. Again, the assembler used had an impact on the frequently of INDELs. ONT
assemblies produced by far the largest number of INDELS when using Unicycler
(miniasm + racon; 4521) compared with Flye (1702) and wtdbg2 (1982) assemblies
(Figure 3.7B and Figure 3.16). PacBio assemblies had far fewer INDELs than ONT
with far fewer INDELs observed in Flye assemblies (176) than wtdbg2 assemblies
(946). lllumina only assemblies had by far smallest number of INDELs (14) (Figure

3.7B and Figure 3.16).

Whilst long-read-only assemblies had a high frequency of SNPs and INDELs, hybrid

assemblies produced with Unicycler that combined lllumina reads with ONT or PacBio
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reads obtained SNP and INDEL levels comparable to lllumina only assemblies (Figure

3.7).
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Figure 3.7 Effect of sequencing technology and assembler on error rate

Plots showing the frequency of SNPs (A) and INDELs (B) per 100kb of reference
genome, where at least 50% of the reference genome was recovered by contigs. Error
bars show standard error of mean and the number above the bar indicates the number
of genomes included in mean calculation (from a total possible maximum of 60 (15
genomes, 4 assemblies)).
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3.5.8 Effect of Polishing Long-Read Assemblies on SNPs, INDELs and ORF
Prediction

Using short reads to polish contigs produced from long read assemblies generally
reduced the number of SNPs per 100 kb, although this was dependent on the specific
assembly. Polishing ONT assemblies produced with Unicycler and wtdbg2 decreased
the frequency of SNPs by 42% and 26%, respectively (Figure 3.8A). The Flye
assembly resulted in a small increase in the number of SNPs (Figure 3.8A). Rather
than introducing errors, this is likely as a result of contigs prior to polishing having SNP
frequencies that prevented recruitment to a reference genome at 90% identity by
mapping. Post polishing, these contigs are now recruited to genomes, but still contain
a number of SNPs (Figure 3.8A). With PacBio reads assembled with Flye, polishing
had no effect on the number of SNPs (Figure 3.8A). For the PacBio wtdbg2 assembly,
the number of SNPs increased, as observed with ONT reads assembled with Flye.
Again, this increase is likely due to the increased number of contigs that are mapped

to the reference genome (Figure 3.8A).

The effect of polishing on the frequency of INDELs was more apparent. The ONT
assemblies had a higher number of INDELs than PacBio assemblies prior to polishing
(Figure 3.8B). For ONT reads assembled with Unicycler (miniasm + racon), which had
the highest frequency of INDELSs initially, there was a 55% decrease in INDELs post
polishing (Figure 3.8B). For ONT reads assembled with wtdbg2 and Flye, there was a
~34% decrease in the number of INDELs per 100 kb (Figure 3.8B). For PacBio
assemblies the starting frequency of INDELs was lower than ONT prior to polishing
but polishing with Illumina reads still resulted in a 21% and 4.5% decrease in INDEL

frequency for wtdbg2 and Flye assemblies respectively (Figure 3.8B).
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Figure 3.8 Effect of polishing on error rate

Plots showing the frequency of SNPs (A) and INDELs (B) per 100kb of reference
genome before and after polishing with lllumina reads, where at least 50% of the
reference genome was recovered by contigs. Error bars show standard error of mean
and the number above the bar indicates the number of genomes included in mean
calculation (from a total possible maximum of 60 (15 genomes, 4 assemblies)).
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As assembly errors can have an effect on ORF prediction and functional annotation
(Watson and Warr, 2019), we investigated the number and length of predicted ORFs
on contigs which mapped to reference genomes before and after polishing. Polishing
with short reads had the greatest effect on ONT data regardless of the assembler
used, with mean ORF length increasing for all assemblies. Both Unicycler and wtdgb2
observed mean ORF length increases of ~66%, with a ~24% increase for Flye (Figure
3.9). For PacBio assemblies, the increases in mean ORF length were more modest at
~11% for wtgb2 assemblies and ~0.2% for Flye assemblies (Figure 3.9). While there
was an increase in mean ORF length for all combinations of reads and assemblers
post-polishing, all combinations were still smaller than the value obtained for the 15

reference genomes (Figure 3.9).
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Figure 3.9 The effect of polishing long-read assemblies on predicted ORF lengths

Boxplots showing the distribution of predicted ORF length per assembly in base pairs
with dashed vertical lines show the mean value before (red) and after (blue) polishing,
as well as the expected value that was obtained from the reference genomes (709 bp;
black).

116



3.5.9 Effect of Polishing Long-Read Assemblies on Viral Prediction

Many viral prediction programs use similarity of predicted proteins to known hallmark
proteins for virus prediction. Thus, truncated proteins may alter the ability to predict
viral contigs from viromes and metagenomes. To test if truncated proteins affect virus
prediction, we compared VIBRANT (Kieft, Zhou and Anantharaman, 2020) which in
part uses predicted proteins, and DeepVirFinder (Ren et al., 2020) a K-mer based
prediction system on all assembled contigs. Although we utilised purified phage
isolates to create the mock community, up to 20% of the reads from lllumina libraries
did not map to the reference genomes. Therefore, we utilised this unfortunate level of
contaminating host bacterial DNA for benchmarking viral prediction. To determine how
many predictions represented “true” viral predictions, we mapped the predicted vOTUs

against the reference genomes.

For DeepVirFinder predictions, there were minimal differences in the number of
predicted viral contigs (vVOTUs) before and after polishing for all assemblies. The
largest difference was observed for ONT reads assembled using Flye (61 before, 52
after) (Figure 3.10; Table 3.1). However, there was a marked increase in the number
of vOTUs that could be verified as phage. For Flye, the number that could be verified
as phage increased from 82% to 96% after polishing, wtdbg2 assemblies increased
from 83% to 98%, and Unicycler assemblies increased from 93% to 99%. Thus,
polishing ONT assemblies with lllumina reads led to an overall decrease in the number
of erroneous viral predictions when using DVF (Figure 3.10; Table 3.1). For the PacBio
assemblies, there was no difference in the number of predicted vOTUs and those that

could be verified as phage when using DVF (Figure 3.10; Table 3.1).
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When using VIBRANT for prediction, polishing of PacBio assemblies had no or
minimal effect on the number of predictions or the number of verified predictions
(Figure 3.10; Table 3.1). However, the polishing of ONT assemblies led to vastly
different numbers of predicted vOTUs, and this varied with assembler used. The
largest difference was for the ONT wtdbg2 assembly, decreasing from 199 to 133
predicted vOTUs, and the proportion of verified phages increased for all ONT
assemblies after polishing. For Flye, the number of verified phages increased from
75% to 81%, Unicycler increased from 72% to 96%, and wtdbg2 increased from 51%

to 87% (Figure 3.10; Table 3.1).

Thus, when using DeepVirFinder there was minimal impact of polishing on the
prediction of vOTUs from either PacBio or ONT assemblies. However, there were clear
benefits to the polishing of ONT assemblies when using VIBRANT for vOTU
prediction, as the percentage of vOTUs that could be verified to be phage increased

post polishing.
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Table 3.1 Effect of polishing on vOTU predictions

Mapped /
Platform Software Assembler Polish Predicted Mapped Predicted
(%)
No 61 50 82.0%
Flye
Yes 52 50 96.2%
No 95 88 92.6%
DVF Unicycler
Yes 100 99 99.0%
No 110 91 82.7%
wtdbg2
Yes 109 107 98.2%
Nanopore
No 85 64 75.3%
Flye
Yes 82 66 80.5%
No 130 93 71.5%
VIBRANT  Unicycler
Yes 104 100 96.2%
No 199 101 50.8%
wtdbg2
Yes 133 115 86.5%
No 173 146 84.4%
Flye
Yes 173 146 84.4%
DVF
No 206 197 95.6%
wtdbg2
Yes 205 196 95.6%
PacBio
No 178 159 89.3%
Flye
Yes 179 159 88.8%
VIBRANT
No 237 212 89.5%
wtdbg2
Yes 238 212 89.1%
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Figure 3.10 The effect of polishing long-read assemblies on viral prediction

Polish
$ No

Yes

Boxplots showing the number of predicted contigs for the five different long-read
assemblies before and after polishing, with the lower two panels showing the number
of contigs which mapped to the reference genomes. The left two panels show vOTUs
predicted with DeepVirFinder, and the right two panels show predictions from
VIBRANT. The individual boxes contain values from three individual libraries and a
pooled library.
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3.5.10 Effect of sequencing technology on predicted virome diversity

Having established DeepVirFinder generally performed better for all sequencing
technologies, we utilised the output of DeepVirFinder predictions to assess how
diversity statistics of the mock community varied with sequencing technology and

assembly.

Overall, there were two clear trends in estimating alpha diversity of the mock
community. When using long read assemblies for vOTU prediction, there was an
overestimation in the alpha diversity. In contrast, when using lllumina and lllumina +
ONT/PacBio hybrid vOTUs, there was an underestimation of alpha diversity. Within
these two general trends there was also variation with the assembler used. For any
assembly including short reads, there were relatively small differences in the predicted
Shannon's diversity ranging from 1.1 for ONT + Illumina with Unicycler (miniasm +
racon) to 1.5 for PacBio + lllumina using Unicycler (Figure 3.11). The PacBio + lllumina
Unicycler assembly obtained the most accurate prediction of diversity based on
Shannon's diversity index, compared to the known value of 2.05 (or 1.8, if only

including those that could be detected by read mapping).

In contrast, long-read only assemblies predicted more diverse communities, with
predictions ranging from 2.3 for ONT reads assembled with Unicycler (miniasm +
racon) to 3.6 for PacBio reads assembled with wtdgb2 (Figure 3.11). When assessing
the diversity based purely on the number of predicted vOTUs, long-read only
assemblies generally overestimate the number of vOTUs within the sample (Figure

3.11). The ONT reads assembled with Unicycler (miniasm + racon) were the exception
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to this, and most closely reflected the true number of vOTUs within the mock

community, however this assembly still over-estimated the number of vOTUs.
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Figure 3.11 The effect of sequencing platform and assembler on diversity
estimates

Boxplots showing the number of predicted vOTUs for mock virome analysis (top), and
Shannon’s index (middle) and Simpson’s index (bottom) alpha diversity measures.
Black dashed lines indicate true values for mock virome input, and blue dashed lines
indicate true values excluding genomes that were not detected by read mapping in
any library.
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3.6 Discussion

The use of long read sequencing technologies is becoming increasingly common for
the sequencing of metagenomic samples, in particular those that focus on the bacterial
community. A number of studies have demonstrated the advantage of long-reads in
assembling complete genomes from a variety of samples (Xie et al., 2020; Arumugam
et al., 2021; Cuscé et al., 2021; Yahara et al., 2021). There have also been a number
of studies benchmarking the assembly and/or recovery of bacteria from mock
communities using long-reads (Nicholls et al., 2019; Leidenfrost et al., 2020), along
with benchmarking of assembly algorithms for prokaryotic genomes (excluding
phages) (Wick and Holt, 2021; Hackl, Harbig and Nieselt, 2022). However, there are
no such comprehensive studies that have directly compared Illlumina, ONT, and

PacBio sequencing technologies for the study of viromes.

Previous benchmarking of short-read assemblers has demonstrated minimal
differences in genome recovery of phage genomes when comparing multiple
assemblers on a mock viral community (Roux et al., 2017). For this reason, we chose
only one short-read assembly algorithm: SPAdes. For long-read assembly, we chose
three frequently used approaches of Unicycler (miniasm + racon), Flye, and wtdgb2
as well as using Unicycler for a direct hybrid assembly. For long read sequencing
alone, we were unable to obtain assemblies from PacBio reads alone with Unicycler,
even when combining all three samples suggesting it was not due to a lack of

sequence coverage.

When using a single sequencing technology, only lllumina reads resulted in the

complete assembly of a phage genome within any sample. Utilising a hybrid approach
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increased the number of genomes that could be assembled, with ONT + Illumina reads
assembled with Unicycler (minimisam + racon) recovering the largest number of
genomes, whereas the addition of PacBio reads did not result in the same increased
recovery of genomes. However, this may well be due to reduced yield of PacBio reads
compared to ONT reads, thus increased yield of PacBio data might improve this

metric.

The combination of long and short reads improving recovery of assembled genomes
is consistent with previous benchmarking of a mock viral community using a virlON
approach (Warwick-Dugdale et al., 2019). Unlike the virlON approach, we were only
able to assemble a complete genome with just long-reads after downsampling to lower
read depths prior to assembly. However, direct comparison between the studies is
difficult given the different phages used in each mock community. Furthermore, the
reasons for improved assembly after down-sampling remain unclear; it is possible that
the higher frequency of errors associated with long-reads is compounded as more
reads are added, leading to a highly fragmented assembly when high read depths are
used. Here, we utilised MDA application to provide sufficient material for long-read
sequencing, whereas the virlON utilises PCR to provide sufficient material (Warwick-
Dugdale et al., 2019; Zablocki et al., 2021). The virlON approach has comprehensively
demonstrated relative abundance of phages are maintained due to the LASL-PCR
approach (Warwick-Dugdale et al., 2019; Zablocki et al., 2021). Here, we observed a
strong correlation in the abundance of phages in the un-amplified lllumina viromes and
amplified long-read viromes. However, we are cautious in the interpretation of this
data. The DNA from a ssDNA phage (®X174) was spiked into our mock community

at a deliberately low level, as we wanted to avoid flooding our amplified DNA with
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ssDNA given known biases of MDA. However, given the lack of detection of X174 in
any samples, we may have been overly cautious in the amount added. Thus, when
ssDNA phages are present in a community, it is likely the biases observed previously
are still likely to hold true (Yilmaz, Allgaier and Hugenholtz, 2010; Kim and Bae, 2011;

Marine et al., 2014).

When assessing any individual sequencing technology alone, the lowest number of
SNPs or indels obtained was unsurprisingly observed when using lllumina reads. With
ONT assemblies having a larger number of SNPs, and in particular INDELs, compared
to PacBio assemblies. Both INDELs and SNPs were also affected by the method used
for assembly. For ONT reads, Flye produced assemblies with the lowest number of
INDELs or SNPs compared to wtdgb2 and Unicycler (miniasm + racon). It is likely for
ONT data that the number of SNPs and indels will further decrease with improvements
in accuracy reported for both R10 flow cells and the latest base calling algorithms that
have been developed since this data was collected, as this data was generated with
R9 flow cells. In contrast, Flye assemblies of PacBio reads had the lowest number of
SNPs, but highest number of INDELs. Thus, the choice of assembly method should
be adjusted for the type of long-reads being used. The addition of short reads to polish
the long read assemblies resulted in a reduction of both SNPs and indels, as has been
observed in other studies (Warwick-Dugdale et al., 2019; Cook, Hooton, et al., 2021;

Zaragoza-Solas et al., 2022).

While the combination of both short lllumina reads with long reads resulted in the

“‘best” overall assemblies, it may well not be feasible to sequence samples with both

technologies. Therefore, we treated the assemblies from multiple approaches to
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assess how the different approaches affected the predicted diversity of the sample.
Although polishing long read assemblies had a significant impact on reducing the
number of SNPs and INDELs, there was minimal effect on the number of predicted
contigs that were viral when using DVF for prediction. However, VIBRANT, which in
part utilises the identification of hall-mark phage genes and was more sensitive to the
higher error rates of un-polished long-read assemblies and obtained far fewer
erroneous viral predictions post-polishing. Thus, choice of sequencing technology may

have ramifications for downstream choices in viral prediction software.
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3.7 Conclusions

We have benchmarked lllumina, ONT, and PacBio sequencing platforms for virome
analysis using a number of read and assembler combinations and offer
recommendations for the community: (i) if only using one sequencing platform,
lllumina performs best at genome recovery and has the lowest error rates; (ii) the
addition of long-reads to lllumina reads improves the assembly of lowly abundant
genomes, particularly ONT; (iii) whilst long read assemblies, particularly ONT, have
higher error frequencies, polishing with lllumina reads can reduce these errors to
levels comparable with Illlumina-only assemblies; (iv) down-sampling of long reads
may aid assembly; and (v) the choice of sequencing platform should be considered
when making downstream analyses decisions, such as assembler algorithm and viral

prediction software.
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3.8 Supplementary Figures
Below are supplementary figures from the manuscript ‘Comparison of lllumina,

Nanopore and PacBio sequencing for virome analysis. Cook, R. et al (2022).’
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Figure 3.12 Relatedness of phages in mock community
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Figure 3.13 Genome by genome breakdown of assembly completeness

Boxplots showing the longest contig obtained per assembly per genome.
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Figure 3.14 Averaged NGA50 for long-read assemblies

Boxplots show the NGAS50 statistic averaged across genomes for long-read
assemblies and their polished counterparts.
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Figure 3.15 Genome by genome breakdown of SNPs per assembly

Boxplots showing number of SNPs per 100kb by assembly, by genome.
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Figure 3.16 Genome by genome breakdown of INDELs per assembly

Boxplots showing number of INDELs per 100kb by assembly, by genome.
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Chapter 4 Exploring Phages within Dairy Farm Slurry
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4.1 Chapter Preface

This chapter presents the work previously published in a paper format ‘Hybrid
assembly of an agricultural slurry virome reveals a diverse and stable community with
the potential to alter the metabolism and virulence of veterinary pathogens. Cook, R.

et al (2021) Microbiome.’ https://doi.org/10.1186/s40168-021-01010-3. The text and

figures from the published paper have been inserted into this chapter verbatim. As this

work is not mine alone, the contribution of other authors is outlined below.

4.1.1 Author Contributions

Study design, sample collection, and sequencing were performed as part of the wider
EVAL-FARMS consortium, prior to commencement of this PhD project (Baker et al.,
2022). Michael Jones, Andrew Millard, Jon Hobman, Christine Dodd and Dov Stekel
conceived the study. Steven Hooton and Liz King collected and processed the
samples. Ryan Cook, Steven Hooton, Urmi Trivedi and Andrew Millard carried out the
bioinformatic analysis. Ryan Cook, Michael Jones and Andrew Millard drafted the

manuscript. All authors approved and contributed to the final manuscript.

4.1.2 Chapter Objectives
The aim of this work was to characterise the viral community of agricultural slurry over
time, and to determine if long read sequencing would uncover more viruses in a natural

community. Therefore, the objectives were to:

1. To perform a comparison of lllumina, Nanopore, and hybrid approaches for
sequencing a natural viral community
2. To characterise the viruses present in slurry and investigate their community

dynamics over time

139



3. To determine if the viruses present may augment the metabolism of their

bacterial hosts in the wider environment
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4.2 Abstract

Background

Viruses are the most abundant biological entities on Earth, known to be crucial
components of microbial ecosystems. However, there is little information on the viral
community within agricultural waste. There are currently ~ 2.7 million dairy cattle in the
UK producing 7-8% of their own bodyweight in manure daily, and 28 million tonnes
annually. To avoid pollution of UK freshwaters, manure must be stored and spread in
accordance with guidelines set by DEFRA. Manures are used as fertiliser, and widely
spread over crop fields, yet little is known about their microbial composition. We
analysed the virome of agricultural slurry over a 5-month period using short and long-

read sequencing.

Results

Hybrid sequencing uncovered more high-quality viral genomes than long or short-
reads alone; yielding 7682 vOTUs, 174 of which were complete viral genomes. The
slurry virome was highly diverse and dominated by lytic bacteriophage, the majority of
which represent novel genera (~ 98%). Despite constant influx and efflux of slurry, the
composition and diversity of the slurry virome was extremely stable over time, with
55% of vOTUs detected in all samples over a 5-month period. Functional annotation
revealed a diverse and abundant range of auxiliary metabolic genes and novel
features present in the community, including the agriculturally relevant virulence factor
VapE, which was widely distributed across different phage genera that were predicted
to infect several hosts. Furthermore, we identified an abundance of phage-encoded

diversity-generating retroelements, which were previously thought to be rare on lytic
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viral genomes. Additionally, we identified a group of crAssphages, including lineages

that were previously thought only to be found in the human gut.

Conclusions

The cattle slurry virome is complex, diverse and dominated by novel genera, many of
which are not recovered using long or short-reads alone. Phages were found to
encode a wide range of AMGs that are not constrained to particular groups or
predicted hosts, including virulence determinants and putative ARGs. The application
of agricultural slurry to land may therefore be a driver of bacterial virulence and

antimicrobial resistance in the environment.
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4.3 Introduction

Bacteriophages, or simply phages are recognised as the most abundant biological
entities on the planet (Cobian Guemes et al., 2016) and drive bacterial evolution
through predator-prey dynamics (Bohannan and Lenski, 2000; Buckling and Rainey,
2002), and horizontal gene transfer (Canchaya et al., 2003). In all systems where
phages have been studied in detail, they have significant ecological roles (Clokie et
al., 2011; Breitbart et al., 2018; Sutton and Hill, 2019). The contribution of phages to
microbial communities has arguably been most extensively studied in the oceans
(Yooseph et al., 2007; Hurwitz and U’'Ren, 2016; Paez-Espino et al., 2016; Roux,
Brum, et al., 2016; Gregory et al., 2019) where, in addition to releasing large quantities
of organic carbon and other nutrients through lysing bacteria, marine phages are
thought to contribute to biogeochemical cycles by augmenting host metabolism with
auxiliary metabolic genes (AMGs) (Anantharaman et al., 2014; Zhang, Wei and Cai,
2014; Roux, Brum, et al., 2016; York, 2017). Since their initial discovery, AMGs have
been identified in diverse environments, including the ocean and soils (Hurwitz and
U'Ren, 2016; Jin et al., 2019). The putative functions of AMGs are wide-ranging with
the potential to alter photosynthesis, carbon metabolism, sulphur metabolism, nitrogen
uptake and complex carbohydrate metabolism (Yooseph et al., 2007; Dinsdale et al.,
2008; Sharon et al., 2011; Hurwitz, Hallam and Sullivan, 2013; Anantharaman et al.,
2014; Hurwitz, Brum and Sullivan, 2015; Roux, Brum, et al., 2016; Monier et al., 2017;

Jin et al., 2019).

In addition to augmenting host metabolism, phages can contribute to bacterial
virulence through phage conversion via the carriage of virulence factors and toxins

(Freeman, 1951; Eklund et al., 1974; Waldor and Mekalanos, 1996; Wagner et al.,
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2002; Fortier and Sekulovic, 2013; Khalil et al., 2016). Phages have also been
implicated in the transfer of antimicrobial resistance genes (ARGs) (Balcazar, 2020);
however, the study into the importance of phages in the transfer of ARGs has reached
polarising conclusions (Enault et al., 2017; Debroas and Siguret, 2019). Despite the
vital and complex contributions of phages to microbial ecology, there is a lack of

knowledge about their roles in agricultural slurry.

Manure is an unavoidable by-product from the farming of livestock. There are ~2.7
million dairy cattle in the UK, with ~ 1.8 million in milking herds (AHDB, 2018). A fully
grown milking cow produces 7—-8% of their own bodyweight as manure per day (Font-
Palma, 2019), leading to an estimated 28.31 million tonnes of manure produced by
UK dairy cattle in 2010 alone (Smith and Williams, 2016). These wastes are rich in
nitrates and phosphates, making them valuable as a source of organic fertiliser, with
an average value of £78 per cow per year (AHDB, no date b). However, agricultural
wastes can be an environmental pollutant. Inadequate storage and agricultural run-off
may lead to an increased biological oxygen demand (BOD) of freshwaters, leading to
algal blooms and eutrophication (Sandars et al., 2003; Thomassen et al., 2008;
Prapaspongsa et al., 2010; De Vries, Groenestein and De Boer, 2012). Areas
particularly at risk of nitrate pollution of ground or surface waters are classified as
nitrate vulnerable zones (NVZs), and these constitute 55% of land in England (UK
Government, 2013). For this reason, the application of organic fertilisers to fields in
the UK is strictly controlled and can only be applied during certain times of the year
(UK Government, no date). Thus, there is the requirement to store vast volumes of

slurry for several months.

144



To produce slurry, solids are separated from manure using apparatus such as a screw
press. The liquid fraction forms the basis of slurry, which is stored in a tank or lagoon,
where it is mixed with water and other agricultural wastes before its application as
fertiliser. Despite being widely used as a fertiliser, the composition of the virome within
slurry is poorly studied. Culture-based approaches have been used to study phages
infecting specific bacteria such as Escherichia coli (Smith et al., 2015; Sazinas et al.,
2018; Besler et al., 2020), but total viral diversity within cattle slurry remains largely

unexplored.

Short-read viromics has transformed our understanding of phages in other systems,
allowing an overview of the abundance and diversity of phages (Brum et al., 2015;
Paez-Espino et al., 2016; Roux, Brum, et al., 2016; Gregory et al., 2019) and AMGs
found within their genomes (Anantharaman et al., 2014; Roux, Brum, et al., 2016; Jin
et al., 2019). The power of viromics is exemplified by the study of crAssphage, which
was first discovered in viromes in 2014 (Dutilh et al., 2014) and has subsequently been
found to be the most abundant phage in the human gut and has recently been brought
into culture (Dutilh et al., 2014; Guerin et al., 2018; Shkoporov et al., 2018). However,
the use of short-reads is not without limitations. Phages that contain genomic islands
and/or have high micro-diversity, such as phages of the ubiquitous Pelagibacterales
(Zhao et al., 2013; Martinez-Hernandez et al., 2019), can cause genome
fragmentation during assembly (Temperton and Giovannoni, 2012; Mizuno, Ghai and
Rodriguez-Valera, 2014; Roux et al., 2017; Olson et al., 2019). The development of
long-read sequencing technologies—most notably Pacific Biosciences (PacBio) and
Oxford Nanopore Technologies (ONT)—offer a solution to such issues. The longer

reads are potentially able to span the length of entire phage genomes, overcoming
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assembly issues resulting from repeat regions and low coverage (Temperton and
Giovannoni, 2012; Mizuno, Ghai and Rodriguez-Valera, 2014; Olson et al., 2019). The
cost of longer reads is a higher error rate, which can lead to inaccurate CDS prediction

(Buck et al., 2017; Watson and Warr, 2019).

Recently, a Long-Read Linker-Amplified Shotgun Library (LASL) approach was
developed that combines LASL library preparation with ONT MinlON sequencing
(Warwick-Dugdale et al., 2019). This approach overcame both the requirement for
high DNA input for MinlON sequencing and associated assembly issues with short-
read sequencing. The resulting assembly increased both the number and
completeness of phage genomes compared to short-read assemblies (Warwick-
Dugdale et al., 2019). An alternative approach that has utilised long-read sequencing
used the ONT GridlION platform to obtain entire phage genomes using an
amplification-free approach on high molecular weight DNA (Beaulaurier et al., 2020).
While this approach recovered over 1000 high-quality viral genomes that could not be
recovered from short-reads alone, it requires large amounts of input DNA (Beaulaurier

et al., 2020), that may be a limiting factor of many environments.

The aim of this work was to utilise viral metagenomics to investigate the diversity,

community structure and ecological roles of viruses within dairy cattle slurry that is

spread on agricultural land as an organic fertiliser.
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44 Materials and Methods

4.41 DNA extraction and sequencing

DNA from the viral fraction was extracted from 10 ml of slurry as previously described
(Sazinas et al., 2019). Briefly, slurry was mixed with PBS buffer and centrifuged, prior
to filtration to remove bacteria. Viral particles were concentrated using an Amicon
column (Sigma-Aldrich) and DNA was extracted using a standard phenol-chloroform
extraction. For short-read sequencing on un-amplified DNA, lllumina sequencing was
carried out on NovaSeq using 2 x 150 library. For long read sequencing, DNA from
four viral samples was pooled and subject to amplification with lllustra Ready-To-Go
Genomphi V3 DNA amplification kit (GE, Healthcare) following the manufacturer’s
instructions. Post amplification DNA was de-branched with S1 nuclease (Thermo
Fisher Scientific), following the manufacturer’s instructions and cleaned using a DNA
Clean and Concentrator column (Zymo Research). Sequencing was carried out by
Edinburgh Genomics, with size selection of DNA to remove DNA < 5 kb prior to running

on single PromethlON flow cell. Reads were based called with guppy v2.3.35.

4.4.2 Assembly and quality control

lllumina virome reads were trimmed with Trimmomatic v0.36 (Bolger, Lohse and
Usadel, 2014) using the following settings; PE illuminaclip, 2:30:10 leading:15
trailing:15 slidingwindow:4:20 minlen:50. Reads from the five samples were co-
assembled with MEGAHIT v1.1.2 (Li et al., 2016) using the settings; --k-min 21 --k-
max 149 --k-step 24. Long-reads were assembled with flye v2.6-g0d65569, reads
were mapped back against the assembly with Minimap2 v2.14-r892-dirty (Li, 2018) to

produce BAM files and initially corrected with marginPolish v1.0.0 with
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‘allParams.np.ecoli.json’. Bacterial contamination and virus-like particle (VLP)

enrichment was assessed with ViromeQC v1.0 (Zolfo et al., 2019).

4.4.3 ldentifying viral operational taxonomic units

To identify viral contigs, a number of filtering steps were applied. All contigs =10 kb
and circular contigs <10 kb (Roux et al., 2017) were processed using MASH v2.0
(Ondov et al., 2016) separately against the RefSeq70 database (O’Leary et al., 2016)
and a publicly available database of phage genomes (March 2020; P = 0.01). If the
closest RefSeq70 hit was to a phagel/virus, the contig was included as a viral
operational taxonomic unit (vOTU). Failing this, if the contig obtained a closer hit to
the phage database than RefSeq70, the contig was included as a vOTU. Remaining
contigs were included as vOTUs if they satisfied at least two of the following criteria;
1: VIBRANT v1.0.1 indicated sequence is viral (Kieft, Zhou and Anantharaman, 2020),
2: obtained adjusted p value <0.05 from DeepVirFinder v1.0 (Ren et al., 2020), 3: 30%
of ORFs on the contig obtained a hit to a prokaryotic virus orthologous group (pVOG)
(Grazziotin, Koonin and Kristensen, 2017) using Hmmscan v3.1b2 (-E 0.001)
(‘(HMMER’, no date). However, circular contigs < 10 kb only had to satisfy either criteria

1 or 3, as DeepVirFinder scores for these contigs were inconsistent.

4.4.4 Prophage analysis

A set of prophage sequences was identified from bacterial metagenomes from the
same tank were included. These were filtered as above, however contigs < 10 kb were
not included even if circular. To determine which prophage vOTUs could be detected
in the free viral fraction, lllumina virome reads were mapped to vOTUs using Bbmap

v38.69 (Bushnell, 2013) at 90% minimum ID and the ambiguous=all flag, and
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PromethlON reads were mapped to prophage vOTUs using Minimap2 v2.14-r892-
dirty (Li, 2018) with parameters ‘-a -x map-ont’. vOTUs were deemed as present in the
free viral fraction if they obtained = 1x coverage across =75% of contig length in at
least one sample (Roux et al., 2017). To determine the ends of prophages, differential
coverage obtained by mapping the Illumina virome reads was investigated. Median
coverage of the whole prophage was calculated and compared to median coverage
across a 500 bp sliding window (Supplementary Tables S4.6 & S4.7). If the 500 bp
window had a depth of coverage =2x standard deviations lower than the median
coverage of the whole prophage, this was considered a break in coverage and used

to infer the ends of the prophage. An example is provided in Figure 4.7.

4.4.5 Hybrid assembly composition

lllumina reads were mapped to PromethlON vOTUs using Minimap2 v2.14-r892-dirty
(Li, 2018) and the contigs were polished using Pilon v1.22 (Walker et al., 2014). The
PromethlON vOTUs underwent multiple rounds of polishing until changes to the
sequence were no longer made, or the same change was swapped back and forth
between rounds of polishing. The lllumina vOTUs, hybrid vOTUs and prophage
vOTUs (only those detected in the viral fraction) were de-replicated at 95% average
nucleotide identity (ANI) over 80% genome length using ClusterGenomes v5.1
(GitHub - simroux/ClusterGenomes: Archive for ClusterGenomes scripts, no date) to
produce a final set of vOTUs, hereby referred to as the Final Virome. To determine
assembly quality, CheckV v0.5.0 (Nayfach et al., 2020) was used. As this pipeline was
released after the analysis in this work was performed, this was performed post-

analysis.
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4.4.6 Alpha diversity and population dynamics

To estimate relative abundance, lllumina reads were mapped to vOTUs using Bbmap
v38.69 (Bushnell, 2013) at 90% minimum ID and the ambiguous=all flag. vOTUs were
deemed as present in a sample if they obtained = 1x coverage across 2 75% of contig
length (Roux et al., 2017). The number of reads mapped to present vOTUs were
normalised to reads mapped per million. Relative abundance values were analysed
using Phyloseq v1.26.1 (McMurdie and Holmes, 2013) in R v3.5.1 (Team, 2018) to

calculate diversity statistics.

Statistical testing of similarity of vOTU profiles between samples was carried out using
DirtyGenes (Shaw et al, 2019). We used the randomization option with 5000
simulations rather than chi-squared because of the small number of samples, but
resampling from the null hypothesis Dirichlet distribution because there are no
replicated libraries; the wupdated code has been wuploaded to GitHub

(https://github.com/LMShaw/DirtyGenes). The analysis was repeated using both the

preferred cut-off of minimum 1% abundance in at least one sample and also with
minimum abundance at 0.5% in at least one sample. This is because with a 1% cut-
off only seven vOTUs were included (plus an ‘other’ category binning all remaining
lower abundance vOTUs) which we did not consider to be sufficiently representative;

with 0.5%, 22 vOTUs were included (plus an ‘other’ category).

4.4.7 Functional annotation
Final Virome vOTUs were annotated using Prokka v1.12 (Seemann, 2014) with a
custom database created from phage genomes downloaded at the time (March, 2020)

(Michniewski et al., 2019), and ORFs were compared to profile HMMs of pVOGs
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(Grazziotin, Koonin and Kristensen, 2017) using Hmmscan v3.1b2 (-E 0.001)
(‘(HMMER’, no date). Final Virome vOTU ORFs were clustered at 90% ID over 90%
contig length using CD-HIT v4.6 (Fu et al., 2012) to reduce redundancy. The resultant
proteins were submitted to eggNOG-mapper v2.0 (Huerta-Cepas et al., 2018) with
default parameters, and the output was manually inspected to identify AMGs of
interest. Translated ORFs identified as carbohydrate-active enzymes (CAZYmes) by
eggNOG were submitted to the dbCAN2 meta-server for CAZYme identification using

the HMMER method to confirm their identity (Zhang et al., 2018; Jin et al., 2019).

4.4.8 Diversity-generating retroelement analysis

vOTUs found to encode a putative reverse transcriptase were processed using
MetaCCST (Yan et al., 2019) to identify potential diversity-generating retroelements
(DGRs). To identify hypervariable regions in the target gene of DGRs, reads from each
sample were individually mapped to vOTUs using Bbmap v38.69 (Bushnell, 2013) at
95% minimum ID with the ambiguous=all flag. Resultant bam files were processed
with Samtools v1.10 (Li et al., 2009) to produce a mpileup file. Variants were called
using VarScan v2.3 (Koboldt et al., 2012) mpileup2snp command with parameters ‘--
min-coverage 10 --min-avg-qual-30’. The percentage of SNP sites per gene were
calculated for both DGR target gene(s) and all other genes on the vOTU, in order to
identify if the DGR target gene(s) contained more SNP sites than on average across

the vOTU.

449 Taxonomy and predicted host

Final Virome vOTUs were clustered using vConTACT2 v0.9.13 (Bin Jang et al., 2019)

with parameters; --db ‘ProkaryoticViralRefSeq85-Merged’ --pcs-mode MCL --vcs-
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mode ClusterONE. A set of publicly available phage genome sequences (7527), that
had been deduplicated at 95% identity with dedupe.sh v36.20 (Bushnell, 2013), were
included. The resultant network was visualised using Cytoscape v3.7.1 (Shannon et
al., 2003). This method clusters vOTUs based upon shared proteins, with vOTUs
belonging to the same cluster likely belonging to the same genus/sub-family. Although
not precise enough for robust species/genus level classification, this method allows

users to rapidly classify large numbers of vOTUs at higher taxonomic ranks.

To determine if any previously known phage genomes were present in slurry viromes,
reads were mapped to a dataset of publicly a set of publicly available phage genome
sequences (March, 2020; 11,030), that had been deduplicated at 95% identity with
dedupe.sh v36.20 (Bushnell, 2013). lllumina reads were mapped using Bbmap v38.69
(Bushnell, 2013) at 90% minimum ID (Roux et al., 2017) and the ambiguous=all flag.
PromethlON reads were mapped using Minimap2 v2.14-r892-dirty (Li, 2018) with
parameters ‘-a -x map-ont’. Phages were deemed as present if they obtained = 1x

coverage across 2 75% of sequence length (Roux et al., 2017).

Putative hosts for viral vOTUs were predicted with WiSH v1.0 (Galiez et al., 2017)
using a database of 9620 bacterial genomes. A p value cut-off of 0.05 was used.
Taxonomy for the predicted hosts was obtained using the R (Team, 2018) package

Taxonomizr v0.5.3 (Sherrill-Mix, 2018).

4.4.10 Lifestyle prediction

To determine which Final Virome vOTUs were temperate, ORFs were compared to a

custom set of 29 profile HMMs for transposase, integrase, excisionase, resolvase and
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recombinase proteins downloaded from Pfam (PF07508, PF00589, PF01609,
PF03184, PF02914, PF01797, PF04986, PF00665, PF07825, PF00239, PF13009,
PF16795, PF01526, PF03400, PF01610, PF03050, PF04693, PF07592, PF12762,
PF13359, PF13586, PF13610, PF13612, PF13701, PF13737, PF13751, PF13808,
PF13843 and PF13358) (El-Gebali et al., 2019) using Hmmscan v3.1b2 (HMMER’,
no date) with the --cut_ga flag. Any vOTUs with an ORF which obtained a hit were

classified as temperate.

4.4.11 Positive selection analysis

Final Virome vOTUs which obtained =15x median coverage across =75% of contig
length in every sample (excluding PHI75) were included in variant analysis. Briefly,
reads were mapped onto the contigs using Bbmap v38.69 (Bushnell, 2013) at 95%
minimum ID with the ambiguous=all flag, and a sorted indexed BAM file was produced.
Snippy v4.4.5 (Seemann, no date b) was used to call variants with parameters ‘--
mapqual 0 --mincov 10’. For genes which contained at least one single nucleotide
polymorphism (SNP) or multiple nucleotide polymorphism (MNP), natural selection
(pPN/pS) was calculated using a method adapted from Gregory et al. (Gregory et al.,

2019). In this method, adjacent SNPs were linked as MNPs by Snippy.
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4.5 Results

The farm in this study is a high-performance dairy farm in the East Midlands, UK with
~ 200 milking cattle. It houses a three million litre capacity slurry tank and an additional
seven million litre lagoon to house overflow from the tank. The tank receives daily
influent from the dairy farm including faeces, urine, washwater, footbath and waste
milk through a slurry handling and general farm drainage system. Slurry solids are
separated using a bed-press and solids are stored in a muck heap. The slurry tank
and muck heap are open to the elements and the slurry tank also receives further
influent from rainwater, muck heap run-off, and potentially from wildlife. The tank is
emptied to ~ 10% of its maximum volume every ~ 6 weeks and the slurry is applied on

fields as fertiliser.

4.5.1 Comparison of short- and long-read assemblies

Five samples were collected from the slurry tank over a five-month period
(07/06/2017-10/10/2017) (Supplementary Table S4.1) with lllumina libraries prepared
from each sample. Initial analysis of the five samples sequencing data using viromeQC
(Zolfo et al., 2019) indicated that one sample (PHI75) had high levels of bacterial
contamination (Supplementary Table S4.1). Sample PHI75 was excluded from further
analysis, with remaining DNA from the other four samples pooled, amplified and

sequenced by PromethlON sequencing.

Assembly was carried out with just lllumina or PromethlON reads, resulting in 1844
and 4954 vOTUs 210 kb respectively. The PromethlON assembly resulted in an
increase in the median contig size from 12,648 to 14,658 compared to the lllumina

only assembly (Figure 4.1A). The number of predicted genes per kb was also higher
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in the PromethlON assembly. The increased error rate of Nanopore sequencing
compared to Illlumina sequencing is known to result in truncated gene calls (Buck et
al., 2017; Watson and Warr, 2019). To alleviate this, PromethlON contigs were
polished with lllumina reads, creating a hybrid assembly and resulting in a decrease
in the number of genes per kb from 2.059 (median length: 85 aa) to 1.706 (median

length: 103 aa; Figure 4.1B).
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Figure 4.1 Overview of the effect of polishing PromethlON vOTUs with lllumina

reads

(A) Distribution of the length of vOTUs obtained from lllumina, PromethlON and Hybrid
assemblies. (B) Distribution of predicted ORF lengths obtained from lllumina,
PromethlON and Hybrid assemblies. (C) Quality assessment of vOTUs obtained from
lllumina, PromethION and Hybrid assemblies from checkV analysis. (D) Genome
completeness assessed by CheckV for the lllumina and Hybrid assemblies. The
dashed lines in plots A, B and D indicate median values.
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As whole genome amplification was used to gain sufficient material for PromethlON
sequencing, all diversity statistics and relative abundance data was determined from
lllumina reads only. The percentage of reads that could be recruited to each different
assembly was assessed. Both the PromethlON (32.663%) and hybrid (33.976%)
assemblies recruited more reads than the lllumina assembly (9.048%; Figure 4.2B).
The median number of observed vOTUs per sample was higher in the PromethlON
(3,483) and hybrid (3,532) assemblies than that of the lllumina assembly (2028; Figure
4.2A). The predicted Shannon and Simpson diversity indices increased in the hybrid
(Shannon: 6.909; Simpson: 0.997) and PromethlON (Shannon: 6.867; Simpson:
0.997) assemblies compared to the lllumina assembly (Shannon: 5.557; Simpson:

0.972; Figure 4.2C, D).
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To determine the completeness and quality of the identified viral contigs, CheckV
(Nayfach et al., 2020) was used. The hybrid assembly contained a lower proportion of
low-quality genomes (65.886%), and a higher proportion of medium and high-quality
(15.015%) genomes than the lllumina assembly (low-quality: 73.217%; medium and
high-quality: 4.083%; Figure 4.1C). Conversely, the Illumina assembly contained more
predicted complete genomes than the hybrid assembly (lllumina: 167; hybrid: 40). This
may be due to the size selection of PromethlON sequencing for longer reads, reflected
in the longer average length of the complete genomes obtained from hybrid assembly

(Figure 4.1D).

To fully understand the diversity of phages within the slurry tank, we also investigated
the presence of prophage elements in the bacterial fraction. A total of 2892 putative
prophages were predicted, of which only 407 could be detected in the free phage
fraction by read mapping. We combined the predicted 407 active prophages, with the
lllumina and hybrid assemblies. Redundancy was removed using
cluster_phages_genomes.pl (GitHub - simroux/ClusterGenomes: Archive for
ClusterGenomes scripts, no date), resulting in 7682 vOTUs. Having established the

most comprehensive DNA virome possible, the data was further analysed.

4.5.2 Characterisation of the slurry virome

The percentage of reads that could be recruited from each sample varied from
36.943% (PHI73; 07/06/2017; Figure 4.2B) to 39.996% (PHI76; 05/09/2017; Figure
4.2B). Across the five-month sampling period, the Shannon’s index alpha diversity
estimates only varied from 7.02 (PHI77; 10/10/2017) to 7.141 (PHI73; 07/06/2017),

suggesting a stable and diverse virome across seasons (Figure 4.2C, D). Although
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diverse, the virome remained stable across all sampling points with 55% (4,256) of
7682 vOTUs found in all samples, and only 477 (~6%) of vOTUs unique to any one
sampling point. Furthermore, testing with DirtyGenes (Shaw et al., 2019) found no
significant difference between the vOTU abundance profiles of the samples (p =
0.1142 with 1% cut-off; p = 0.863 with 0.5% cut-off). To determine if the stability in
macro-diversity was mirrored by changes in micro-diversity, we assessed which
predicted phage genes were under positive selection (pN/pS >1). Our analysis
showed 1610/210,997 genes (0.763%) to be under positive selection in at least one
sample (Supplementary Table S4.2). From these, putative function could be assigned
to 388 translated genes. The most common predicted functions were related to phage

tail (30), and phage structure (24).

To give a broader overview of the type of viruses present in the sample, pVOGs were
used to infer the taxonomic classification of each vOTU. Of the vOTUs that contained
proteins that matched the pVOG databases (Grazziotin, Koonin and Kristensen,
2017), 91% were associated with the order Caudovirales, 2.17% associated with non-
tailed viruses and the remainder not classified. Approximately 10% (710) of vOTUs
were identified as temperate, suggesting that the community is dominated by lytic
phages of the order Caudovirales. The abundance of temperate vOTUs was constant
across samples, ranging from 5.605% (PHI76; 05/09/2017) to 8.866% (PHI77,

10/10/2017), further demonstrating the stability of the system across time.

In order to identify the species of phages present within the slurry, all vOTUs were

compared against all known phages (March, 2020) using MASH (Ondov et al., 2016),

with an average nucleotide identity (ANI) of >95% as currently defined as a cut-off for
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phage species (Adriaenssens and Rodney Brister, 2017). Only vOTUs ctg5042 and
ctg217 with similarity to Mycoplasma bacteriophage L2 (accession BL2CG) and
Streptococcus phage Javan630 (accession MK448997) respectively were detected.
Furthermore, no vOTUs were similar to any phages that have previously been isolated
from this system (Smith et al., 2015; Sazinas et al., 2018; Besler et al., 2020). Thus,

the vast majority of vOTUs represent novel phage species.

To gain an understanding of the composition at higher taxonomic levels, vConTACT2
(Bin Jang et al., 2019) was run. Only 217 (2.825%) vOTUs clustered with a reference
genome, indicating they are related at the genus level (Figure 4.3A). Notably, 18
vOTUs formed a cluster with ®CrAss001 (accession MH675552) and phage IAS
(accession KJ003983), with ctg20 appearing to be a near-complete phage genome
(~ 99 kb; Figure 4.4B). The other 7465 vOTUs clustered only with other vOTUs (3369;
43.856%) or were singletons (4096; 53.319%), indicating 5242 putative new genera.
These new genera comprised 98.037% of phages across all samples, suggesting this
system is dominated by novel viruses (Figure 4.3B). Working on the assumption that
if a vOTU within a viral cluster (VC) was identified as temperate all other vOTUs in the
cluster are, the relative abundance of temperate phages was predicted. This ranged
from 13.09% (PHI76; 05/09/2017) to 16.249% (PHI77; 10/10/2017), further
demonstrating the dominance of lytic viruses and stability of the system over time

(Figure 4.3C).
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Figure 4.4 Phylogenetic and genomic analysis of slurry crAssphages

(A) Phylogeny of four genes that encode a primase, terminase, portal protein and major capsid protein. The analysis followed the
same method as described by Guerin et al. (Guerin et al., 2018), with the ten major clades as previously defined marked. (B) Genomic
comparison between the complete genome of phage ctg20 and the IAS virus was produced using EasyFig with tBLASTx algorithm
and 0.001 E value and length filter 30. Gene products with a predicted function are coloured. The predicted or known host are shown

in parentheses.
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Hosts were predicted for 3189 vOTUs and the system was found to be dominated by
phages predicted to infect bacteria belonging to Firmicutes and Bacteroidetes, the
most dominant phyla found in the cow gut (Kim and Wells, 2016; Delgado et al., 2019;
Li et al., 2019). The proportions of host-specific abundances appeared stable across

all time points (Figure 4.8).

4.5.3 ldentification of CrAss-like phages in the slurry virome

The appearance of a cluster of 18 vOTUs that are similar to crAssphage was surprising
given the discovery and abundance of crAssphage in human gut viromes (Dutilh et al.,
2014; Guerin et al., 2018; Shkoporov et al., 2018, 2019). To further investigate this,
phylogenies based on the method of Guerin et al. were used (Guerin et al., 2018) for
15 vOTUs that contained the specific marker genes. All vOTUs formed part of the
previously proposed genus VI (Guerin et al., 2018), including the near complete phage
(ctg20; Figure 4.4A; Figure 4.9). Furthermore, the crAssphages identified from slurry
did not form a single monophyletic clade. Instead, they were interspersed with human
crAssphages, with some slurry crAssphages more closely related to human
crAssphages than other slurry crAssphages (Figure 4.4A; Figure 4.9). Genome
comparison of ctg20 and phage IAS from genus VI identified synteny in genome
architecture between the phages, yet there are clearly several areas of divergence
(Figure 4.4B). The predicted host of ctg20 was Clostridium, which contrasts to the
Bacteroides and Bacteroidetes that other crAssphages have been demonstrated or

predicted to infect respectively (Shkoporov et al., 2018; Yutin et al., 2018).
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4.5.4 Abundance and diversity of auxiliary metabolic genes

In order to understand the role phages might have on the metabolic function of their
hosts, function was assigned to proteins using eggNOG (Huerta-Cepas et al., 2018).
Out of 210,997 predicted proteins, only 48,819 (23.137%) could be assigned a putative
function. The most abundant clusters of orthologous groups (COG) categories
(Tatusov et al., 2000) were those associated with viral lifestyle; notably replication,
recombination and repair, cell wall/membrane/envelope biogenesis, transcription and

nucleotide transport and metabolism (Figure 4.10).

In addition to this, a number of putative AMGs were identified, including putative
ARGs, CAZYmes, assimilatory sulfate reduction (ASR) genes, MazG, VapE and Zot
(Supplementary Table S4.3). These AMGs were found to be abundant and not
constrained to particular set of phages or hosts they infect (Figure 4.3A;
Supplementary Table S4.4). For instance, carbohydrate-active enzymes were
identified on 91 vOTUs across 77 putative viral genera, with 41 vOTUs predicted to
infect bacteria spanning 21 families (Supplementary Table S4.4), and genes involved
in the sulphur cycle were identified on 148 vOTUs across 138 putative phage genera,
with 42 vOTUs predicted to infect bacteria spanning 19 families (Supplementary Table

S4.4).

4.5.5 Abundance of virulence-associated proteins

Genes encoding Zot were identified on 36 vOTUs across 33 putative genera, predicted
to infect five different families of bacteria (Supplementary Table S4.4). The bacterial
virulence factor VapE which is widespread in the agricultural pathogens Streptococcus

and Dichelobacter was also detected (Billington, Johnston and Rood, 1996; Bloomfield
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et al., 1997; Ji et al., 2016). Recently, it has been demonstrated that deletions of
prophage encoded vapE in Streptococcus have decreased growth rate in serum
compared to wild type strains (Rezaei Javan et al., 2019). VapE homologues were
found on 82 vOTUs (~1%) across 65 clusters, including 10 high-quality genomes
(Figure 4.3A). Bacterial hosts could be predicted for 17 vOTUs and spanned 10
families of bacteria (Supplementary Table S4.4). One vOTU (ctg217) shared ~95%
ANI with the prophage Javan630 (accession MK448997) (Rezaei Javan et al., 2019).
Genome comparison between ctg217 and Javan630 revealed highly conserved
genomes, with insertion of a gene encoding a putative methyltransferase in ctg217

being the largest single difference (Figure 4.5).
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Figure 4.5 Genome comparison of Streptococcus phage Javan630 and ctg217

Genome comparison of Streptococcus phage Javan630 and ctg217 was produced using EasyFig with tBLASTx algorithm and 0.001
E value and length filter 30. The vapE gene that is known virulence factor is marked in red. The two genomes had genomes with an
ANI >95% across the genome. The insertion of a gene encoding a methyltransferase within the genome of ctg217 is marked in

yellow.
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4.5.6 Detection of putative antimicrobial resistance genes

Putative metallo-beta-lactamases (MBLs) were identified on 146 vOTUs across 116
putative genera, with 60 vOTUs predicted to infect bacterial hosts that spanned 23
families (Supplementary Table S4.4). Although low in sequence similarity, structural
modelling with Phyre2 (Kelley et al., 2015) found many of these sequences to have
the same predicted structure as the novel blapngu-1 beta-lactamase (100% confidence
over 99% coverage) (Park et al., 2018). Furthermore, these sequences contained
conserved zinc-binding motifs characteristic of subclass B3 MBLs (Park et al., 2018).
Phylogenetic analysis of putative phage MBLs, along with representative bacterial
MBLs and a known phage-encoded blanrvm-1 (Moon et al., 2020), showed some
clustered with previously characterised bacterial MBLs and others with a characterised
phage blanrvm-1 (Figure 4.11). In addition to MBLs, two putative multidrug efflux pumps
were identified on two vOTUs predicted to infect two different bacterial genera

(Supplementary Table S4.4).

4.5.7 ldentification of diversity-generating retroelements

In addition to AMGs, we also identified 202 vOTUs that carry genes encoding a
reverse transcriptase. Although dsDNA phages are known to have genes that encode
for a reverse transcriptase as part of diversity-generating retroelement (DGR) and the
mechanism understood (Liu et al., 2002), they are rarely reported. To determine if the
identified genes encoding a reverse transcriptase were part of a DGR, MetaCCST
(Yan et al., 2019) was used to identify such elements. Of the 202 vOTUs carrying a
reverse transcriptase gene, 82 were predicted to be part of a DGR, which accounts

for ~1% of vOTUs in the virome. In comparison, we calculated the number of DGRs
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that can be identified in publicly available phage genomes (12,354 unique genomes -

March 2020) to be 0.178% (22 genomes).

For vOTUS where a complete DGR system (template repeat, variable repeat, reverse
transcriptase and target gene) could be identified, the most commonly predicted
function of the target gene was a tail fibre. The distribution of DGRs across 74 viral
clusters and 15 families of predicted host bacteria (Supplementary Table S4.4)
suggest that this is not a feature that is unique to a particular VC of phages or hosts

they infect (Figure 4.3A).

DGRs were predicted to occur on four phages that were deemed high-quality complete
genomes (Figure 4.6). These phage genomes varied in size from 40.3 to 52.07 kb,
with  two genomes containing putative integrases (k149 1459596 and
k149 1764855), suggesting they are temperate, with the other two likely lytic phages
(ctg154 and k149 _1404499). Interestingly, phage k149 1459596 could not be
detected between 07/06/2017 and 05/09/2017 but was the most abundant vOTU on
10/10/2017, representing over 3% of the viral population at that time. As vConTACT2
(Bin Jang et al., 2019) analysis was unable to classify the phages, phylogenetic
analysis was carried out with gene encoding TerL to identify the closest known
relatives (Figure 4.12). Phage k149 1459596 closest relative was Vibrio phage
Rostov 7 (accession MK575466) and member of the Myoviridae, whilst the closest

known members of the three others phages are all members of the Siphoviridae.
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Figure 4.6 Genome maps of complete genomes containing DGRs

The four phages ctg154, k149 1459596, k149 1764855 and k149 1404499

all

contain a DGR as highlighted by a dashed box. The percentage of reads that contain

SNPs that map to the consensus genome was plotted below.
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We hypothesised that the widespread distribution of DGRs would reflect widespread
tropism switching in these phages, and that hypervariable DGR target genes could be
detected. To investigate this, we examined variants per gene and calculated which
genes were under positive selection. For the 69 DGR containing vOTUs in which a
target gene could be identified, 22 of these contained a higher proportion of SNP sites
in the DGR target gene(s) than the average proportion of SNP sites for non-DGR
target genes on that given vOTU. One of which, a predicted phage tail protein
(ctg187_00023), was predicted to be under positive selection. Thus, many of the DGR

target genes were more variable than other genes on a given vOTU (Figure 4.6).
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46 Discussion

4.6.1 Assembly comparison

Comparison of assemblies between both short-read and long-read based sequencing
methods revealed significant differences in the distribution of viral contigs and the
median gene length. As has been found previously, the use of long-reads alone
causes problems in gene calling due to higher error rates (Watson and Warr, 2019).
We therefore used short-reads to polish the long-read assembly and alleviate these
issues (Warwick-Dugdale et al., 2019). In contrast to previous methods that used
LASLs combined with ONT MinlON sequencing (Warwick-Dugdale et al., 2019), we
utilised whole genome amplification followed by size selection for PromethlON

sequencing.

In using MDA for production of PromethlON libraries, a bias in the amplification of
ssDNA phage most likely occurred due to well established preference for ssDNA using
this method (Roux, Solonenko, et al., 2016). A size selection of fragments was applied
prior to PromethlON sequencing that would likely remove some of these smaller
ssDNA genomes. However, there was a peak in contigs of 4-5 kb length in the
PromethlON assembly, indicative of ssDNA genomes. Given the known MDA bias, we
only utilised lllumina libraries (no MDA amplification) for determining the abundance
of contigs and estimates of diversity. Comparison of diversity statistics on lllumina,
PromethION and hybrid assemblies suggest lllumina only assemblies may
underestimate the diversity within a sample, whereas diversity estimates even on un-
corrected PromethlON assemblies is closer to that of hybrid assemblies. We also
observed a number of smaller genomes that were obtained from lllumina only

assemblies and were not present in the PromethlON assembly. This likely results as
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part of the selection process for high molecular weight DNA (HMW) for PromethlON
sequencing that would exclude some small phage genomes. Therefore, whilst long-
reads improved assembly statistics, the use of long-reads alone may result in
exclusion of smaller phage genomes if size selection is included (as we did) and may

introduce a bias of increased ssDNA genomes.

To provide the most comprehensive set of viral contigs, we included 230 predicted
prophages derived from bacterial metagenomes that could be detected in the free viral
fraction but were not assembled from virome reads, thus providing a more

comprehensive set of viral contigs.

4.6.2 Virome composition

Comparison of diversity across the period of five months revealed a highly diverse and
stable virome across time. Initially, this may be somewhat surprising given the
dynamics of the slurry tank, which has constant inflow from animal waste, farm effluent
and rainwater, and is emptied leaving only ~ 10% of the tank volume every ~ 6 weeks.
We reason that most viruses in the slurry tank will originate from cow faeces, as this
is the most dominant input of the tank. Host prediction suggested the virome was
dominated by viruses predicted to infect bacteria belonging to Firmicutes and
Bacteroidetes, which are the two most abundant bacterial phyla in the cow rumen and
gut (Kim and Wells, 2016; Delgado et al., 2019; Li et al., 2019). To date, there has
been limited study into the dairy cow gut virome and its dynamics over time. However,
there is a parallel with the human gut virome which is known to be temporally stable
despite constant influx and efflux (Reyes et al., 2010; Minot et al., 2013; Garmaeva et

al., 2019), and its composition influenced by environmental factors including diet
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(Minot et al., 2011; Lim et al., 2015; Moreno-Gallego et al., 2019). Assuming most
viruses in the slurry tank are derived from cow faeces, the controlled environment and

diet of dairy cattle results in a temporally stable virome.

Our positive selection analyses found the most common genes to be under positive
selection were those involved in bacterial attachment and adsorption. We reasoned
that these findings, in conjunction with the extreme stability in macro-diversity, fit with
the Royal Family model of phage-host dynamics (Breitbart et al., 2018). This model
suggests that dominant phages are optimised to their specific ecological niche, and in
the event of bacterial resistance to infection, a highly similar phage will fill that niche.
Changes in community composition over time would therefore be reflected in fine-
scale diversity changes, and macro-diversity would be relatively unchanged (Breitbart
et al., 2018). Instead of population crashes, phages may overcome bacterial
resistance through positive selection of genes involved in attachment and adsorption,

and are potentially accelerating the variation of these genes with DGRs.

4.6.3 Diversity-generating retroelements

DGRs were first discovered in the phage BPP-1 (accession AY029185) where the
reverse transcriptase, in combination with terminal repeat, produces an error-prone
cDNA that is then stably incorporated into the tail fibre (Liu et al., 2002). This
hypervariable region mediates the host switching of BPP-1 across different Bordetella
species (Liu et al., 2002). Very few DGRs have been found in cultured phage isolates
since, with only two DGRs found in two temperate vibriophages (Benler et al., 2018;
Wu et al., 2018). We expanded this to 22 phages (0.178%) by searching publicly

available phage genomes. Whilst not common in phage genomes, DGRs have been
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identified in bacterial genomes, with phage associated genes often localised next to
the DGRs (Wu et al., 2018). A recent analysis of ~32,000 prophages was able to
identify a further 74 DGRs in what are thought to be active prophages from diverse
bacterial phyla (Benler et al., 2018). Within this study, we were able to predict a further
82 DGRs on phage genomes, four of which are thought to be complete. Two of these
complete phage genomes are thought to be lytic. In fact, the majority of DGR-
containing contigs in this study are thought to be lytic, thus demonstrating that DGRs
on phage are far more common than previously found and also observed widely on

lytic phages, which has not previously been observed.

Given the prevalence of DGRs, we expected to find evidence of widespread phage
tropism switching by occurrence of SNPs in DGR target genes as others have done
(Benler et al., 2018). Whilst SNPs could be identified in DGR target genes supporting
this, many other areas in the same phage genome contained similar levels of variation.
This is likely a result of multiple evolutionary pressures and mechanisms that are
exerted on a phage genome, with DGRs only one such mechanism of creating

variation.

4.6.4 CrAss-like phages

Currently, crAss-like phages are classified into four subfamilies and ten genera
(Guerin et al., 2018), and found in a variety of environments including human waste
(Dutilh et al., 2014; Guerin et al., 2018; Shkoporov et al., 2018), primate faeces
(Edwards et al., 2019), dog faeces (Cusco et al., 2019) and termite guts (Yutin et al.,
2018). Here, we identified a further 18 crAss-like phages, including a near complete

genome that belongs to the proposed genus VI (Guerin et al., 2018). Genus VI is part
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of the Betacrassvirinae subfamily and currently only includes other crAss-like phages
occurring within the human gut, including IAS virus that is highly abundant in HIV-1
infected individuals (Oude Munnink et al., 2014). Thus, we have expanded the
environments genus VI crAss-like phages are found in to include non-human hosts.
The exact source of these phages is unknown due to the number of possible inputs of
the slurry tank. However, the most likely reservoir is from cows, as this is the most
abundant input. Unlike its human counterpart IAS virus, which can account for 90% of
viral DNA in human faeces (Dutilh et al., 2014), crAss-like phages in the slurry tank

were only found at low levels (~ 0.065%).

Phylogenetic analysis clearly demonstrated that human and slurry tank crAss-like
phages share a common ancestor, with genetic exchange between them. The
direction and route of this exchange is unclear. It may be linked to modern practices
of using slurry on arable land used to produce product consumed by humans.
Alternatively, it may be transferred from humans to cows via the use of biosolids
derived from human waste that are applied to crops that serve as animal feed

(Biosolids Assurance Scheme, 2020).

4.6.5 Auxiliary metabolic genes

We identified a vast array of diverse and abundant AMGs in dairy farm slurry including
putative ARGs, CAZYmes, ASR genes, MazG, VapE and Zot. Whilst these have all
been identified before in viromes from different environments (Romero et al., 2009;
Liu et al., 2016; Enault et al., 2017; Castillo et al., 2018; Debroas and Siguret, 2019;
Jin et al., 2019; Rezaei Javan et al., 2019; Rihtman et al., 2019; Gao et al., 2020), this

is the first time they have been identified in slurry. The presence of different AMGs is
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likely a reflection of the unique composition of slurry that has a very high water content
combined with organic matter. CAZYmes were detected, which have previously been
identified in viromes from mangrove soils and the cow rumen where they are thought
to participate in the decomposition of organic carbon and boost host energy production
during phage infection (Anderson, Sullivan and Fernando, 2017; Jin et al., 2019).
Given the high cellulose and hemicellulose content of slurry (Chen et al., 2003), they
likely act in a similar manner within slurry to boost energy for phage replication. As
well as involvement in the cycling of carbon, it also appears phage derived genes are
involved in sulphur cycling within slurry. Sulfate-reducing bacteria (SRB) are active in
animal wastes (Cook et al., 2008; St-Pierre and Wright, 2017), and sulfate may
therefore be limiting within the tank. The ASR pathway makes sulphur available for
incorporation into newly synthesised molecules, such as L-cysteine and L-methionine
(Ruckert, 2016), so the presence of phage encoded ASR genes on both lytic and
temperate phages may overcome a metabolic bottleneck in amino acid synthesis.
Alternatively, the newly synthesised ASR pathway products may be degraded for

energy via the TCA cycle (Howard-Varona et al., 2020).

The AMG mazG, that is widespread within marine phages, in particular cyanophages
(Millard et al., 2009; Sullivan et al., 2010; Rihtman et al., 2019), was also found to be
abundant. The cyanophage MazG protein was originally hypothesised as a modulator
of the host stringent response by altering intracellular levels of (p)ppGpp (Clokie and
Mann, 2006; Clokie, Millard and Mann, 2010). However, more recent work found this
not to be the case (Rihtman et al., 2019). The identification in a slurry tank suggests
this gene is not limited to marine environments and is widespread in different phage

types, although its precise role remains to be elucidated.
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4.6.6 Antibiotic resistance genes

There is ongoing debate as to the importance of phages in the transfer of ARGs
(Enault et al., 2017; Debroas and Siguret, 2019). We identified ARGs on ~2% of
vOTUs; accounting for ~0.082% of total predicted phage genes from assembled viral
contigs. The predicted ARGs were dominated by putative MBLs that contain core
motifs and structural similarity with the known bacterial and phage MBLs blapngm-1
(Park et al., 2018) and blairvm-1 (Moon et al., 2020) respectively. Thus, are likely
functionally active, although this remains to be proven. Our estimate of the abundance
of ARGs in slurry is lower than earlier reports from other environments that predict an
upper estimate of ~ 0.45% of genes in viromes are ARGs (Balcazar, 2014; Lekunberri
et al., 2017). However, some of these studies have used unassembled reads to
estimate abundance (Balcazar, 2014; Lekunberri et al., 2017), whereas we only
counted ARGs on contigs that had passed stringent filtering. Our prediction of
~0.082% is similar to more recent estimates of 0.001% to 0.1% in viromes from six
different environments that also used assembled viromes (Debroas and Siguret,

2019), suggesting that phages might be an important reservoir of ARGs in slurry.

4.6.7 Virulence-associated proteins

The virulence genes zot and vapE were found to abundant and carried by several
vOTUs that were predicted to infect a range of bacterial hosts. The role of zot has
been well studied in Vibrio cholerae and has previously been reported in a range of
Vibrio and Campylobacter prophages (Koonin, 1992; Schmidt, Kelly and van der
Walle, 2007; Liu et al., 2016; Castillo et al., 2018). Here, we found zot homologues in
phages with predicted hosts other than Vibrio and Camplyobacter, further expanding

the diversity of phages that carry these genes.
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A similar observation was found for the virulence factor vapE, which has previously
been found in several agricultural pathogens including Streptococcus and
Dichelobacter (Billington, Johnston and Rood, 1996; Bloomfield et al., 1997; Ji et al.,
2016). VapE encoded on prophage elements is known to enhance the virulence of
Streptococcus and is widespread on Streptococcus prophages (Rezaei Javan et al.,
2019). Whilst the role of vapE in virulence has been established, previous work did
not demonstrate the mobility of these prophage-like elements. Here, we identified a
high quality near-complete phage genome (ctg217) which was remarkably similar to
the vapE encoding prophage Javan630. Phage Javan630 was originally identified as
a prophage within a mastitis causing strain of Streptococcus uberis isolated from a
dairy cow some 15 years earlier on a dairy farm ~ 100 mi away (Rezaei Javan et al.,
2019). The identification of ctg217 in the free viral fraction indicates that a close
relative of phage Javan630 is an active prophage. Along with the numerous other
phages encoding vapE found in the free virome, it suggests that phage is active in
mediating the transfer of vapE. The horizontal transfer of vapE is of particular concern
in the dairy environment where mastitis causing pathogens Strep. uberis, Strep.
agalactiae and Strep. dysgalactiaea are found (Keefe, 1997; Whist, Jsteras and
Selvergd, 2007; Zadoks et al., 2011). Any increase in virulence of these pathogens is
detrimental to the dairy industry as it affects both animal welfare and economic viability
(Ruegg and Petersson-Wolfe, 2018). Streptococcus infections result in mastitic milk,
which cannot be sold and is often disposed of into slurry tanks. The continual detection
of phages containing vapE in slurry suggests a likely continual input, given the regular
emptying of the tank. The exact source of phages containing vapE cannot be

ascertained but is likely cow faeces or mastitic milk. It remains to be determined if the
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use of slurry as an organic fertiliser contributes to the spread of phage encoded
virulence factors and toxins. However, their abundance and presence suggests it is

worthy of further investigation.
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4.7 Conclusions

We have demonstrated that using a hybrid approach produces a more complete
virome assembly than using short or long-reads alone. Whilst short-reads may
underestimate the total viral diversity of a given environment, estimates from long-
reads alone were far closer to the hybrid values than short-reads. The use of low input
amplified genomic DNA allows the technique to be applied to previously sequenced
metagenomes without need for further DNA extraction. We provide a comprehensive
analysis of the slurry virome, demonstrating that the virome contains a diverse and
stable viral community dominated by lytic viruses of novel genera. Functional
annotation revealed a diverse and abundant range of AMGs including virulence
factors, toxins and antibiotic resistance genes, suggesting that phages may play a
significant role in mediating the transfer of these genes and augmenting both the

virulence and antibiotic resistance of their hosts.
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4.8 Supplementary Figures

Below are supplementary figures from the publication ‘Hybrid assembly of an
agricultural slurry virome reveals a diverse and stable community with the potential to
alter the metabolism and virulence of veterinary pathogens. Cook, R. et al (2021)

Microbiome.’ https://doi.org/10.1186/s40168-021-01010-3.
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Supplementary figure 1
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Figure 4.7 Representative figure for the identification of prophage ends

Reads were mapped against vOTU k87_12210044 at 95 % identity threshold, the
median coverage was calculated for 500 bp windows with the cutoff value calculated
as median coverage minus (2 * standard deviations of median coverage) and plotted
in orange. In this particular example, only one end was predicted.
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Supplementary figure 2
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Figure 4.8 Predicted hosts of viral contigs at the phylum level

Predicted hosts were obtained using WiSH. The relative abundance of phages
predicted to infect different hosts was calculated by stringent mapping of reads to each
viral contig as normalising for contig length and sequencing depth as described in
materials and methods.

185



Supplementary figure 3
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Figure 4.9 Phylogeny of crAss-like vOTUs based upon the method of Guerin et
al.

Phylogeny of four genes that encode a primase, terminase, portal protein and major
capsid protein. The analysis followed the same method as described by Guerin et al.,
with the ten major clades as previously defined marked. Bootstrap values >70% are
marked by a circle.
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Supplementary figure 4
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Figure 4.10 Functional classification of viral proteins into COG categories by
eggNOG mapping

Abundance of COG categories for vOTU predicted proteins.
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Supplementary figure 5

Tree scale: 1 ——————

MBL Class
[ sturry
[] Phage
3 &1
N &2
N 83

Figure 4.11 Phylogeny of putative metallo-B-lactamases

The phylogeny was built on the alignment of the amino acid sequences that were
aligned by MAFFT. A WAG model of evolution was used in IQ-TREE with 1000
boostraps. Putative MBLs identified in the slurry tank are marked in orange, along with
a previously experimentally validated phage-encoded MBL (yellow). Bacterial
subclass B1 (green), B2 (blue), B3 (red) MBLs are also marked. Bootstrap values
>70% are marked by a circle. Tree is rooted at the mid-point.
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Supplementary figure 6

Tree scale: 1 +————

Viral Families
W Ackermannviridae
¥ Autographiviridae
Y Chaseviridae

Yy Corticoviridae

Y Cystoviridae

¢ Demerecviridae
i Drexlerviridae

Yy Herelleviridae

Yy Inoviridae

i Leviviridae

¥ Lightbulbvirus

W Microviridae

¢ Myoviridae

W Plasmaviridae
i Podoviridae

W Siphoviridae

¥ Sphaerolipoviridae

‘a ay \"
I."\n_l——

Figure 4.12 Phylogeny of phage genomes that contain a complete DGR

Phylogeny was constructed from the amino acid sequence of TerL protein that were
aligned in mafft and phylogeny constructed with IQTREE with a WAG model of
evolution and 1000 bootstraps. Bootstrap values >70% are marked by a circle.
Different viral families are differentiated by the coloured ring around the outside of the
tree. Tree is rooted at the mid-point.
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Chapter 5 Determining the Effect of Antimicrobials on Modelled

Slurry Tank Viromes
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5.1 Introduction

Antimicrobial resistance is a growing global concern. The widespread use of
antimicrobials in the rearing of livestock has been implicated in the emergence of drug-
resistant infections in humans and animals (Aarestrup et al., 2000; O’Neill, 2015; Van

Boeckel et al., 2017).

In the UK, dairy cattle are routinely treated with antibiotics for common ilinesses
including mastitis and respiratory illnesses (Oliver, Murinda and Jayarao, 2011).
Furthermore, lameness—the costliest disease to UK dairy cattle (CHAWG, 2020)—is
typically prevented by treatment with footbaths that contain antimicrobial metals (e.g.,
copper and zinc) and/or other chemicals (e.g., formalin and glutaraldehyde) that are
known to co-select for AMR (Pal et al., 2015; Griffiths, White and Oikonomou, 2018;
Davies and Wales, 2019). Therefore, dairy cattle slurries may contain selective and

co-selective pressures for the transmission of AMR.

Phages are known to encode a plethora of diverse genes that confer an advantage to
the fitness of their host, with the potential to augment nutrient acquisition and
metabolism (Yooseph et al., 2007; Dinsdale et al., 2008; Sharon et al., 2011; Hurwitz,
Hallam and Sullivan, 2013; Anantharaman et al., 2014; Zhang, Wei and Cai, 2014;
Hurwitz, Brum and Sullivan, 2015; Hurwitz and U’'Ren, 2016; Roux, Brum, et al., 2016;
York, 2017; Monier et al., 2017; Jin et al., 2019), as well as virulence (Freeman, 1951;
Eklund et al., 1974; Waldor and Mekalanos, 1996; Wagner et al., 2002; Fortier and
Sekulovic, 2013; Khalil et al., 2016). However, the carriage of ARGs in phage
genomes is seemingly a rare event (Enault et al., 2017; Cook, Brown, et al., 2021).

The paucity of reported phage-encoded ARGs may be a true reflection of their rarity,
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however, phages and viromes are commonly isolated from environments where the
concentration of antibiotics that may not be high enough to have a selective pressure

for ARG carriage.

Prior to commencement of this PhD project, a study was designed to determine the
effect of agricultural antimicrobials, including foot-wash, on the microbial ecology of
agricultural slurry. Miniaturised versions of the slurry tank described in Chapter 4 were
devised to assess the impact of storing slurry, and the impacts of particular
antimicrobial additions, as described in Baker et al., (2022). The twelve “mini-tanks”
were buckets containing 10 L of slurry taken from the tank described in Chapter 4,
stored at ambient temperature on the farm for a duration of seven weeks. The mini-
tanks were protected from rain and direct sunlight, and unlike the main slurry tank, the
mini-tanks did not receive further influent after initial setup. Six different conditions
were tested in duplicate (Table 5.1), with samples being taken at the point of setup
(T=0) and seven weeks later (T=7). Viral fractions were taken from the samples and
sequenced. Study design, sample collection, and sequencing were performed as part
of the wider EVAL-FARMS consortium, prior to commencement of this PhD project.

For the work described in this chapter, | started with the existing raw virome datasets.

The aim of this work was to determine the impact of agricultural antimicrobial

compounds on the diversity and community composition of bacteriophages within

agricultural slurry, as well as the phage carriage of ARGs. Therefore, the objectives

were to:

1. To describe the viromes for model slurry mini-tanks
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2. To determine the selective effect of the agricultural antimicrobials footwash and
cefquinome on the composition and structure of viral communities in
agricultural slurry

3. To determine if the exposure of agricultural antimicrobials increases the

frequency of phage-encoded ARGs
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5.2 Materials and Methods

Study design, sample collection, and sequencing were performed as part of the wider
EVAL-FARMS consortium, prior to commencement of this PhD project (Baker et al.,
2022). In brief, twelve mock slurry tanks containing 10L samples of slurry from the
surface of the main slurry tank were positioned on the farm for a seven-week period
at ambient temperature (mean 24 h temperature in liquid ranged between 7° to 17°)
and protected from rain and direct sunlight. Six different conditions were tested in
duplicate (all amounts per litre): control; + SSD (SSD being 0.2 mL of slurry solids
homogenised by stomacher, including 67 CFU of CTX-resistant E. coli); + SSD + 3 ug
cefquinome weekly addition; + SSD + 40 ug cefalexin weekly addition; + SSD + 16.8
g of footbath mix (Cu + Zn); + SSD + footbath + cefquinome). Mini-tanks were sampled
four times as part of the main study (0, 2, 4 and 7 weeks after initial filling), and twice
for virome sequencing (0 and 7 weeks after initial filling). The experimental conditions

and timepoints of the samples used for virome sequencing are shown in Table 5.1.
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Table 5.1 Minitank conditions and timepoints

Timepoint .
Sample Tank (Weeks) Condition
MiniTOPhi49 0
1
MiniT7Phi61 7
Control
MiniTOPhi55 0
7
MiniT7Phi67 7
MiniTOPhi50 0
2
MiniT7Phi62 7 SSD (0.2 mL of slurry solids homogenised
by stomacher, including 67 CFU of CTX-
MiniTOPhi56 o 0 resistant E. coli)
MiniT7Phi68 7
MiniTOPhi51 0
3
MiniT7Phi63 7
SSD + 16.8 g of footbath mix (Cu + Zn)
MiniTOPhi57 0
9
MiniT7Phi69 7
MiniTOPhi52 0
4
MiniT7Phi64 7
SSD + 3 pg cefquinome weekly addition
MiniTOPhi58 0
10
MiniT7Phi70 7
MiniTOPhi53 0
5
MiniT7Phi65 7
SSD + footbath + cefquinome
MiniTOPhi59 0
11
MiniT7Phi71 7
MiniTOPhi54 0
6
MiniT7Phi66 7
SSD + 40 ug cefalexin weekly addition
MiniTOPhi60 0
12
MiniT7Phi72 7
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5.2.1 Virome Preparation, Sequencing and Assembly

The preparation of viromes and sequencing (Section 4.4.1), quality control and
assembly (Section 4.4.2), and filtering of vOTUs (Section 4.4.3) was the same as
described in Chapter 4. After filtering, the mini-tank vOTUs were de-replicated
alongside the main-tank vOTUs at 95% average nucleotide identity (ANI) over 80%
genome length using ClusterGenomes v5.1 (GitHub - simroux/ClusterGenomes:
Archive for ClusterGenomes scripts, no date) to produce a combined set of slurry
vOTUs. The de-replicated vOTUs were processed using CheckV v0.9.0 (Nayfach et
al., 2020), and those with the "no viral genes” warning, < 3 total genes, or = 25% “host”
genes (and not identified as a prophage) were excluded. For those identified as
prophages, the CheckV trimmed versions were used in downstream analyses

(Nayfach et al., 2020).

The detection of known phages, and functional annotation, lifestyle prediction, and
taxonomic analysis of the new vOTUs were performed as described earlier (Sections
4.4.7,4.4.9, and 4.4.10). Host prediction was performed using iPHoP v0.9beta (Roux
et al., 2022); a pipeline that combines RaFAH (Coutinho et al., 2021), WIsH (Galiez et
al., 2017), oligonucleotide frequencies (Ahlgren et al., 2017), PHP (Lu et al., 2021),

and BLAST (Altschul et al., 1990).

5.2.2 Population Dynamics

Reads from each sample were separately mapped to the vOTUs using Bowtie 2
v2.3.4.3 with --non-deterministic --maxins 2000 (Langmead and Salzberg, 2012), as
described in the MetaPop paper (Gregory et al., 2022). MetaPop was performed with

--genome_detection_cutoff 75 --no_viz (Roux et al., 2017; Gregory et al., 2022). To
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allow previously predicted genes to be used as input for MetaPop, they were modified
with an in-house script (Supplementary File 1). The main-tank samples described in
Chapter 4 were included in this analysis as a point of orientation. Pairwise
comparisons of beta-diversity between groups were performed by PERMANOVA with
1,000 permutations using adonis as part of Vegan (Oksanen et al., 2020), and p-
values were adjusted for multiple comparisons using the Benjamini-Hochberg
correction (Benjamini and Hochberg, 1995). Pairwise comparison of means (for
Shannon’s index, observed vOTUs, microdiversity, and abundance of temperate and
novel genera) were performed using the T-test with all groups compared to the T=0

samples.
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5.3 Results

lllumina sequencing of 24 viromes produced from agricultural slurry from 12 “mini-
tanks” over two sampling points (T=0 at initial setup, and T=7 seven weeks later)
yielded 419.2 Gb of sequence data. Individual viromes ranged from 9.6 — 29.7 Gb with
a mean of 17.5 (x 5.6 standard deviation) (Figure 5.1B). ViromeQC enrichment scores

ranged from 3.1 — 19.1 with a mean of 11.4 (+ 3.4 standard deviation) (Figure 5.1A).

Co-assembly of mini-tank viromes, followed by viral filtering, and de-replication with
the slurry main-tank vOTUs (Chapter 4) resulted in 12,566 vOTUs with mean and
median lengths of 18,107 and 13,962 bp respectively (Figure 5.1C). Prediction of
vOTU completeness using CheckV estimated 107 vOTUs to represent complete

genomes, with a further 372 estimated high-quality (= 90% complete; Figure 5.1D).
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Figure 5.1 Mini-tanks data summary

Summary of data obtained from the mini-tank datasets, showing (A) ViromeQC
enrichment scores, (B) amount of sequence data generated per sample in gigabases,
(C) distribution of vOTU lengths with mean (red dashed line) and median (blue dashed
line) values shown, and (D) CheckV quality estimates for filtered vOTUs.

200



5.3.1 Effect of footwash and cefquinome on beta-diversity

Comparison of beta-diversity using Bray-Curtis dissimilarity (i.e., the distance between
communities) demonstrated that there was little difference between the viral
communities at the start of the experiment (T=0), although there was one obvious
outlier (Effect of footwash on viral community composition). The T=0 samples were
most similar to the viromes taken from the main slurry tank described in Chapter 4
(Effect of footwash on viral community composition). However, the viral communities
were varied at the end of the seven-week experiment (T=7), with many T=7 samples
were substantially different to those at T=0, although others remained similar (Effect

of footwash on viral community compositionA).

The original experimental conditions (Table 5.1) were performed in duplicate. To
increase the statistical power of the experiment, | grouped conditions that shared an
addition. This led to two conditions being investigated: the addition of footwash (16.8
g of footbath mix (Cu + Zn) added at setup) and the addition of cefquinome (3 pg
weekly addition). This increased the number of samples in each condition from two to

four.

The T=7 samples that had received footwash remained similar to the T=0 and main-
tank samples (Effect of footwash on viral community compositionB). PERMANOVA
analysis showed the difference between T=7 samples with and without footwash was
significant (p = 0.04, adjusted using BH for multiple comparisons). Suggesting that the
inclusion/exclusion of footwash has an influence of the viral community composition.
Conversely, the addition of cefquinome seemingly had no effect on the composition of

the virome (Figure 5.3C).
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Figure 5.2 The effect of footwash and cefquinome on beta-diversity

Bray-cutis dissimilarity showing beta-diversity of mini-tank samples (A) at the beginning and end of the experiment, (B) with and

without footwash, and (C) with and without cefquinome. All plots include the main-tank samples as a point of reference, and ellipses
show normal distribution of data.
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5.3.2 Effect of footwash on viral community composition

The samples that received footwash maintained a high species richness (observed
vOTUs) and alpha diversity (Shannon’s index) that was comparable to the T=0
samples (Figure 5.3). Conversely, those that did not receive footwash observed a
marked decrease in species richness and alpha diversity (Figure 5.3). Whilst only the
T=7 samples without footwash had a decrease in macro-diversity, all T=7 samples
obtained a significant decrease in micro-diversity (nucleotide diversity 11) regardless

of inclusion/exclusion of footwash (Figure 5.3).

The exclusion of footwash led to a significant increase in the proportion of novel and
lytic phages (Figure 5.3). Although the proportion of novel genera seemed to decrease
at T=7 with the inclusion of footwash, this difference was not significant (Figure 5.3).
Furthermore, the inclusion of footwash led to no changes in the proportion of putatively

lytic genera over the course of the experiment (Figure 5.3).
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Figure 5.3 Influence of footwash on virome composition

Boxplots showing the species richness, Shannon’s index, nucleotide diversity, and proportions of novel and lytic genera for T=7
samples with and without the addition of footwash. Significance was tested using the T-test with the T=0 samples as a reference
group. P-values were adjusted for multiple comparisons (*0.05, **0.01).
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5.4 Discussion

Building upon previous work that characterised the virome of agricultural slurry
(Chapter 4), | analysed previously generated viromes from agricultural slurry of mock
slurry “mini-tanks” to determine the effect of footwash and cefquinome on the
composition of the virome. Whilst there is limited study into the effect of agricultural
antimicrobials on the bacterial fraction of slurry (Baker et al., 2022), there is no such

work on the viral fraction.

Previous work demonstrated that the agricultural slurry virome was stable over time,
despite constant influx and efflux (4.5.2 (Cook, Hooton, et al., 2021)). This work has
shown that footwash may be an important component for the maintenance of the viral
community, suggesting that the constant addition of footwash to the slurry tank via
farm waste may be a factor in the stability of the slurry virome described earlier (4.5.2
(Cook, Hooton, et al., 2021)). The footwash mix, used to control lameness, contains
copper and zinc. As these metals are antimicrobial, it is possible that the footwash
selects for a particular bacterial community composition which is mirrored in the viral
fraction. It may be that footwash prevents the growth of metal-sensitive bacteria that
may otherwise proliferate, hence the divergence of mini-tank viromes that did not
contain footwash. The same effect was not observed for cefquinome. Conversely, it
may be that the metal ions have a more direct effect on the viral community. Heavy
metals such as copper are known to induce prophages (Lee et al., 2006; Guo et al.,
2017), and chromium-contaminated soil viromes have been found to be enriched for
temperate phages (Huang et al., 2021). Therefore, the higher proportion of temperate
phages in mini-tanks with footwash than those without footwash may be due to higher

levels of prophage induction caused by the presence of copper ions.
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Whilst there are preliminary results, the work described in this chapter is largely
incomplete. Metal ions, such as those used in footwash, are known to co-select for the
carriage of ARGs on mobile genetic elements such as plasmids and transposons (Pal
et al., 2015; Giriffiths, White and Oikonomou, 2018; Davies and Wales, 2019).
However, | did not investigate whether the use of footwash or cefquinome impacted
the carriage of phage-encoded ARGs. As phages commonly carry niche-specific
genes that confer fitness advantages to their hosts, it is possible that the continued
selective pressure of agricultural antimicrobials will select for ARGs to be encoded on
phages. Furthermore, metal resistance genes are known to be prevalent in farmed
environments that contain high levels of heavy metal ions (Li et al., 2022). The carriage
of metal resistance genes on vOTUs could be determined using MEGARes and
BacMet (Pal et al., 2014; Doster et al., 2020). It may also be possible to use a read-
based approach for the quantification of ARGs in the viral fractions to assess whether
ARGs are packaged into virions more commonly in the presence of agricultural
antimicrobials (i.e., generalised transduction), however, read-based approaches
should always be used with caution as it is impossible to differentiate ARGs found
within viral particles from contaminating bacterial DNA (Enault et al., 2017). Beyond
ARGs, it would also be of note to determine the abundance and distribution of other
AMGs within the mini-tank viromes, as phages are known to have diverse impacts on

the metabolism of their hosts (discussed in Section 1.7).

It is likely that the differences observed in the viral fraction with and without footwash
are mirroring changes in the bacterial fraction. It would therefore be of interest to
determine the changes to bacterial taxa and see how this corresponds to what was

observed in the viral fraction. As part of the wider EVAL-FARMS research consortium,
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there are high quality bacterial metagenomes derived from the same samples as the
viral fractions. The metagenomes are briefly described in Baker et al., (2022), although
no in-depth analysis of bacterial community structure is performed. Additionally, | have
predicted the hosts of the vOTUs using iPHoP (Roux et al., 2022). Future work could
determine if the abundance of vOTUs predicted to infect bacterial taxa correlates with
the abundance of said bacterial taxa, as determined from the metagenomes using
tools such as Kraken 2 (Wood, Lu and Langmead, 2019). Additional analyses using
the bacterial fraction could predict prophages (as done in Section 4.4.4). Furthermore,
the use of viral and bacterial fractions together could elucidate whether prophages are
being induced via tools such as PropagAtE (Kieft and Anantharaman, 2022). These
future analyses could shed light on the apparent shift from temperate to lytic phages

in the absence of footwash.
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Chapter 6 Characterising the Dairy Cow Gut Virome Across Life Stages
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6.1 Introduction

The farming of cattle constitutes 50% of global Livestock Standard Units (FAO, 2020),
with an estimated 265 million dairy cows globally (AHDB, 2020). Consequently, the
dairy industry has significant impacts on the health and welfare of enormous numbers
of cattle, global food production, agricultural economics, and the wider environment

(Peterson and Mitloehner, 2021).

The life of a UK dairy cow can be split into several distinct stages, during which the
cows are housed separately from other groups and given a diet specific for their
requirements at the time. The infant cow is referred to as a calf. Although timings will
differ, dairy calves are fed a liquid diet of either milk or milk replacer (i.e., formulated
milk) for the first few months of life (Khan et al., 2016). Although there is no defined
cut-off between calves and heifers, a sexually mature female dairy cow that has not

yet calved is commonly referred to as a heifer (Sakaguchi, 2011).

As mammals, dairy cattle need to calve to produce milk (Sakaguchi, 2011). After their
first calving, the cow will enter the milking herd. For optimum dairy production, ideally
a dairy cow will calve every 12 months, with the average UK dairy cow yielding over
8,000 litres of milk per year (AHDB, 2022b). To optimise milk production after calving,
the lactation cycle and diets of the cows is tightly monitored and controlled. A dairy
cow is only able to produce milk for ~ten months of the year, and the final two months
of pregnancy are commonly referred to as the “drying off” period (AHDB, no date a).
During the drying off period, the cows are housed separately to the milking herd, and
given a diet designed to optimise milk production post-calving (AHDB, 2022a). A

summary of the lactation cycle is shown in Figure 6.1.
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Previously, | characterised the virome of agricultural slurry that is primarily derived
from dairy cattle faeces (see Chapter 4 (Cook, Hooton, et al., 2021)), however study
into the cattle virome remains limited. Whilst there has been a handful of studies that
have investigated the rumen virome (Berg Miller et al., 2012; Ross et al., 2013;
Anderson, Sullivan and Fernando, 2017), the only recent dairy cow gut virome study
focussed on the bacterial fraction and its virome analysis was limited (Park and Kim,
2019). Conversely, there has been extensive study into the human gut virome,
showing the human gut is sterile at birth and the virome develops in multiple stages of
ecological succession (Beller et al., 2022). Once developed, the human gut virome is
temporally stable, with 80% of vOTUs being maintained over a 2.5 year period (Minot
et al., 2013), and likely shaped by environmental factors such as diet (Minot et al.,
2011; Edwards et al., 2019; Shkoporov et al., 2019). Whilst the impacts of the gut
virome on human health are yet to be elucidated, there is a growing body of evidence
that the human gut virome is altered in certain disease states, such as Crohn’s disease
and ulcerative colitis (Norman et al., 2015; Clooney et al., 2019). The gut virome of

other animals may therefore have roles in health and disease.

The aim of this work was to determine the diversity and ecological roles of
bacteriophages within the dairy cow gut, and to elucidate how this community differs

across life stages. Therefore, the objectives were to:

1. To isolate and sequence the viral fraction of dairy cattle across different life
stages
2. To compare the composition and structure of viral communities between

sampling groups
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3. To compare the dairy cow gut virome with that of the slurry tank and human
gut, to determine if the dairy cow shares properties with more characterised

systems
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6.2 Materials and Methods

6.2.1 Sample Collection and Processing

Cow faeces was collected from a UK dairy farm using a drop catch method (i.e.,
catching the sample in a sterile tube before it can contact the ground). Samples (n =
20) were collected from five each of pre-weaning calves (< 30 days old), heifers, dry
adults, and milking adults (Figure 6.1). Samples were kept on ice and processed the
same day. Sample collection for this project was reviewed and approved by the SVMS

ethics committee on the 14th of November 2017 with approval number 2132 171010.

Viral-like particle (VLP) enrichment was performed as described previously (Chapter

4), based on the method of Sazinas et al., (2019).
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Figure 6.1 Longitudinal overview of the dairy cow lactation cycle

A longitudinal overview of life stages of the dairy cow, highlighting the ages and diets of calves, heifers, milking adults and dry adults.
Note that beyond 36 months, the cow enters a ~12 month cycle that repeats months 24-36 birthing one calf per year.
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6.2.2 Short Read Sequencing

All 20 individual samples were used as template for short-read sequencing by
NUomics at Northumbria University. DNA was quantified using Qubit high sensitivity
and normalised to 2ng per library starting concentration. The libraries were prepared
using DNAprep (M) (lllumina, San Diego, CA, USA) with unique dual indexes as per
manufacturer’s instructions. The library was checked using BioAnalyzer (Agilent,
Santa Clara, CA, USA) and Qubit high sensitivity and normalised to 30 nM. The
libraries were pooled and ran on a MiSeq V2 300 cycle nano kit prior to sequencing

on the Novaseq 6000 300 cycle SP kit.

6.2.3 Long Read Sequencing

DNA from the 20 samples was pooled and amplified separately using either the
REPLI-g Mini kit (Qiagen, Valencia, CA, USA) or GenomiPhi V3 (GE Healthcare,
Chicago, IL, USA) to gain sufficient material for ONT sequencing. As yields for
GenomiPhi were comparatively low, | proceeded with REPLI-g amplifications only.
Amplified DNA was de-branched using S1 Nuclease (Promega) at 10 units per pg of
DNA (quantified using a Qubit) to minimise chimeras introduced during amplification
(Lasken and Stockwell, 2007), followed by passage through a Zymo Clean &
Concentrator-25 column. To enrich for high molecular weight DNA, a 10 kb short read
exclusion kit (Circulomics, Baltimore, MD, USA) was used following manufacturer’s
instructions, with the following modifications. The DNA pellet was re-suspended in 50
Ml of nuclease-free water rather than the provided buffer. Libraries were prepared
using the SQK LSK-110 ligation sequencing kit (ONT, Oxford, UK) prior to sequencing

on ten MinlON flow cells (six r9.4.1 and four r10.3), with four out of ten being loaded
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with DNA that had been processed using the short read exclusion kit prior to library

preparation.

6.2.4 Quality Control and Assembly

Adapters were trimmed from short reads using bbduk.sh v38.84 with ktrim=r
minlen=40 minlenfraction=0.6 mink=11 tbo tpe k=23 hdist=1 hdist2=1 ftm=5 ref=
/bbmap/resources/adapters.fa (Bushnell, 2013), followed by quality trimming with
maqg=8 maxns=1 minlen=40 minlenfraction=0.6 k=27 hdist=1 trimg=12 qtrim=rl
(Bushnell, 2013). Tadpole.sh v38.84 was used to correct sequencing errors with
mode=correct ecc=t prefilter=2 (Bushnell, 2013). Trimmed reads were mapped to the

Bos taurus reference genome (NKLS00000000) using bbmap.sh v38.84 with local=t

minid=0.95 maxindel=6 tipsearch=4 bandwidth=18 bandwidthratio=0.18 usemodulo=t
printunmappedcount=t idtag=t minhits=1, and unmapped reads were split back into
paired end files using reformat.sh v38.84 (Bushnell, 2013). VLP enrichment of
samples was estimated using ViromeQC v1.0 (Zolfo et al., 2019). Assembly was
performed using MEGAHIT v1.1.1-2-g02102e1 with "--k-min 21 --k-max 149 --k-step

24" and contigs = 1.5 kb were retained (Li et al., 2016).

Long reads were pooled, and low-quality reads removed using Filtlong v0.2.1 with --

min_length 1000 --keep_percent 95 (https://github.com/rrwick/Filtlong). Assembly was

performed using Flye v2.8.1-b1676 with --meta --min-overlap 1000 (Kolmogorov et al.,
2020). Long read polishing was performed with Medaka v1.6.0 with -b 50

(https://qgithub.com/nanoporetech/medaka) in two rounds, first with reads obtained

from r9.4.1 flow cells followed by reads obtained from r10.3 flow cells. lllumina reads

were pooled, and forward and reverse reads were mapped separately to the medaka-
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polished assembly using bwa v0.7.12-r1039 to generate SAM files (e.g., bwa mem -a
medaka_polished.fa pooled_R1.fq.gz > alignments_1.sam and bwa mem -a
medaka_polished.fa pooled_R2.fq.gz > alignments_2.sam) (Li and Durbin, 2009).
Alignments were filtered using polypolish_insert_filter.py and the medaka-polished
contigs were polished using Polypolish v0.5.0 (Wick and Holt, 2022). The polished
ONT contigs were processed using CheckV v0.9.0 and any with a kmer frequency of

= 1.5 were excluded to remove potential chimeras (Nayfach et al., 2020).

6.2.5 Filtering vMAGs and vOTUs

The 20 samples of lllumina reads were mapped separately to the lllumina assembly
using minimap2 v2.17-r941 with -ax sr and sorted BAM files were produced using
samtools v1.9 (Li et al., 2009; Li, 2018). The lllumina assembly and BAM files were
used as input for vRhyme v1.1.0 to produce vMAGs (Kieft et al., 2022). vMAGs from
the “best bins” were concatenated into single contigs padded with N’s using
concatenate.sh v38.84 and processed using CheckV v0.9.0 (Bushnell, 2013; Nayfach
et al., 2020). Bins that obtained a CheckV quality estimate of “low-quality” or “not-
determined”, a protein redundancy > 1, a contamination estimate > 10%, the warning
flag “no viral genes”, or 2 25% “host” genes (and not identified as a prophage) were
excluded from filtering. Bins = 10 kb (and one < 10 kb bin that was estimated to be
complete due to a high confidence DTR) that satisfied at least one of the following
conditions were included: (1) predicted viral by VIBRANT v1.2.0 (Kieft, Zhou and
Anantharaman, 2020), (2) obtained an adjusted P-value from DeepVirFinder of <0.05,
or (3) had a significant (-E 0.001) to either the viral RefSeq or INPHARED databases
using MASH v2.0 (July 2022) (O’Leary et al., 2016; Ondov et al., 2016; Cook, Brown,

etal., 2021). For any tool used to process the concatenated vMAGs that uses Prodigal
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to predict open reading frames (ORFs), the -m flag was manually added to their code

so ORFs were not predicted over ambiguous bases (Ns) (Hyatt et al., 2010).

lllumina and polished ONT contigs = 10kb and those predicted to be circular

(determined using apc.pl (https://qgithub.com/jfass/apc)) were de-replicated using the

MIUVIG recommended parameters (95% ANI over 85% length of the shorter
sequence) with blast and CheckV scripts as described in the CheckV documentation

(https://bitbucket.org/berkeleylab/checkv/src/master/) (Altschul et al., 1990; Nayfach

et al., 2020). Contig clusters that belonged to an included vVMAG were excluded from
further analysis. The remaining clustered contigs were filtered using the same three
criteria as the vMAGs. The filtered contigs were processed using CheckV v0.9.0 and
those with the "no viral genes” warning, < 3 total genes, or =2 25% “host” genes (and
not identified as a prophage) were excluded (Nayfach et al., 2020). For those identified
as prophages, the CheckV trimmed versions were used in downstream analyses
(Nayfach et al., 2020). The contigs and vVMAGs that passed filtering formed the 30,321

vOTUs included in this analysis.

6.2.6 Functional Annotation and AMG Analysis
vOTUs were annotated using Prokka v1.14.6 with a publicly available set of HMMs

derived from PHROGs (http://s3.climb.ac.uk/ADM share/all phrogs.hmm.gz)

(Seemann, 2014; Terzian et al., 2021). Translated ORFs were processed using
METABOLIC v4.0 (Zhou et al., 2022), and submitted to eggNOG for additional
annotation and AMG prediction (Huerta-Cepas et al., 2018). Translated ORFs on

predicted complete vOTUs with a hit to a CAZYme from eggNOG were submitted to
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Phyre2 to predict their structure (Kelley et al., 2015). Diversity-generating

retroelements (DGRs) were predicted using MetaCSST (Yan et al., 2019).

6.2.7 Taxonomy

The vOTUs were processed alongside the INPHARED database (August 2022) using
vConTACT2 with --rel-mode 'Diamond' --db 'None' --pcs-mode MCL --vcs-mode
ClusterONE --min-size 1 (Bin Jang et al., 2019; Cook, Brown, et al., 2021). If a viral
cluster (VC) contained a reference genome belonging to Crassvirales, the VC was

considered to be crAss-like.

6.2.8 Lifestyle and Host Prediction

Phages that may be able to access a lysogenic lifestyle (temperate phages) were
identified with PhagelLeads (Yukgehnaish et al., 2022) and BACPHLIP (= 95%
probability only) (Hockenberry and Wilke, 2021). If a temperate vOTU was identified,
all vOTUs within its vConTACT2 VC were also classified as temperate. Hosts were
predicted for the vOTUs using iPHoP v0.9beta (Roux et al., 2022); a pipeline that
combines RaFAH (Coutinho et al., 2021), WIsH (Galiez et al., 2017), oligonucleotide
frequencies (Ahlgren et al., 2017), PHP (Lu et al., 2021), and BLAST (Altschul et al.,

1990).

6.2.9 Micro- and Macro-Diversity Statistics
Each read set was randomly down-sampled to the size of the smallest sample in which
=1 could be detected by read mapping (Calf 3: 481,471 x 2 paired end reads) using

seqtk with -s 100 (https://qgithub.com/In3/seqtk). Rarefied reads were mapped to the

vOTUs using Bowtie 2 v2.3.4.3 with --non-deterministic --maxins 2000 (Langmead and

218



Salzberg, 2012), as described in the MetaPop paper (Gregory et al., 2022). MetaPop
was performed with --genome_detection_cutoff 75 --no_viz (Roux et al., 2017,
Gregory et al., 2022). To allow our previously predicted genes to be used as input for
MetaPop, they were modified with an in-house script (Supplementary File 1). Mapping
and MetaPop analyses were subsequently re-performed using the full read sets (i.e.,
not rarefied). Pairwise comparisons of beta-diversity between groups were performed
by PERMANOVA with 1,000 permutations using adonis as part of Vegan (Oksanen et
al., 2020), and p-values were adjusted for multiple comparisons using the Benjamini-

Hochberg correction (Benjamini and Hochberg, 1995).

6.2.10 Detection of Previously Characterised Phages, Human Gut Phages and
Slurry vOTUs

Reads were mapped separately to the INPHARED database (August 2022) (Cook,
Brown, et al., 2021), a set of vOTUs produced from a virome analysis of a dairy cattle
slurry tank on the same farm (Cook, Hooton, et al., 2021), viral RefSeq (August 2022)
(O’Leary et al., 2016), and a human gut phage database (Unterer, Khan Mirzaei and
Deng, 2021) using bbmap.sh v38.84 with minid=0.90 ambiguous=all (Bushnell, 2013).
A sequence was determined as present if it obtained = 1x coverage over = 75%

sequence length (Roux et al., 2017).

6.2.11 Curation of Predicted Complete Genomes

The annotations of vOTUs predicted complete by CheckV (n = 1,338) were manually
inspected to determine if the vOTU was demonstrably viral (e.g., presence of viral
signature genes (such as terminase, portal, tail, capsid etc), a high number of

hypothetical proteins, and few genes typically associated with bacteria). The complete
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vOTUs were pooled with ICTV classified dsDNA phage genomes (n = 3,652) and used
as input for ViPTree v1.1.2 (Nishimura et al., 2017). The terminase large subunit (ferL)
could be readily identified on 1,109 vOTUs. For those 1,109, the translated terL
sequence was aligned with the terL of 3,451 ICTV classified phage genomes using
MAFFT (Nakamura et al., 2018). The resultant alignment was used as input for IQ-
Tree (Nguyen et al., 2015), and visualised using IToL (Letunic and Bork, 2019). The
ICTV classified genomes and terL sequences are publicly available at

http://millardlab.orqg/2022/08/04/ictv-bacteriophage-genera/.
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6.3 Results

The farm in this study is the same high-performance dairy farm in the East Midlands,
UK with ~ 200 milking cattle described in chapter four (Exploring Phages within Dairy
Farm Slurry). The dairy cattle sampled are Holstein-Friesian, a high yielding breed that
is commonly farmed for dairy. A summary of the four sampling groups (calves, heifers,
milking adults, and dry adults) and a timeline of the dairy lactation cycle is shown in

Figure 6.1.

6.3.1 Sequencing and Assembly Statistics

The twenty Illumina viromes (one for each cow/sample) and the pooled Nanopore
virome produced ~277 and ~104 Gb of data, respectively. The four Nanopore flow
cells loaded with DNA that had been processed with a short read exclusion kit obtained
median read lengths of 6.9, 6.0, 6.9, and 6.2 kb whereas those that had not used short
read exclusion obtained 2.6, 1.9, 1.8, 3.0, 1.9, and 1.7 kb (Figure 6.2). Furthermore,

the short read exclusion did not reduce the total output of data produced (Figure 6.2).
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Figure 6.2 Effect of short read exclusion

Histograms showing read lengths obtained from the ten Nanopore flow cells with colour indicating the use of short read exclusion.
Dashed lines show median read length. In panel labels indicate the median read length (kb) and total amount of data produced (Gb).
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The ViromeQC predicted VLP enrichment (i.e., how enriched for viruses the sample
is compared to the expected level obtained from a metagenome, with a score of 5
indicating a 5x enrichment) for the samples typically grouped within samples with
mean values of 1.41, 7.30, 11.28, and 11.58, for calves, heifers, dry adults, and milking
adults respectively (Figure 6.3A, B). The difference in predicted VLP enrichment may
be due to differences in the viral community between these groups, or through
differences in sample consistency/heterogeneity leading to differences in VLP
extraction from the sample. Further to this, the calf sample with the highest VLP
enrichment score had a different colour and consistency to other calf samples that was
more similar to the adult samples (Sample C1; Figure 6.4). Whilst four of the calf
samples were a viscous off-white liquid, one of them was semi-solid and brown

(Sample C1; Figure 6.4).

The final filtered virome comprised 30,321 unique vOTUs ranging from 1.5 kb to 1.2
Mb, with mean and median lengths of 25.3 kb and 16.9 kb respectively (Figure 6.3C).
CheckV estimated completeness scores of 1,338 complete, 3,898 high-quality, 6,497

medium-quality, 18,587 low-quality vOTUs, with one not-determined (Figure 6.3D).
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Figure 6.3 Virome summary statistics

A summary of the cows virome dataset including (A) number of high-quality reads and
(B) viral enrichment as determined by ViromeQC (Zolfo et al., 2019), (C) length of
predicted vOTUs, and (D) completeness of vOTUs as determined by CheckV
(Nayfach et al., 2020).

224



Figure 6.4 Stool samples from cows

Photographs showing individual cow faeces samples with sample ID beneath each
sample. Rows from top to bottom show calf (C), heifer (H), dry adult (D), and milking
adult samples respectively.
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6.3.2 Virome composition

To determine the taxa of dairy cow gut viruses, vConTACT2 was used alongside all
publicly available complete phage genomes (Bin Jang et al., 2019; Cook, Brown, et
al., 2021). Of the 30,321 unique vOTUs, only 587 clustered with a known viral genome
at the level of genus, and a further 78 shared the same overlap space (i.e., they
overlapped with the same two viral clusters). The remaining 29,656 vOTUs were found
to represent 14,506 novel genera (1,032 were singletons and 8,904 were outliers).
Notably, 1,926 vOTUs were found to cluster with a member of Crassvirales, 234 of
which estimated to be complete and a further 333 high-quality (Supplementary Table
S6.1). Of the vOTUs related to a known virus at the level of genus, only three were

related to a known genome at the level of species (95% ANI).

6.3.3 Comparison of the dairy cow virome across life stages

To investigate the presence/abundance of vOTUs within the 20 samples, down-
sampled reads were mapped to the vOTUs, and the community structure of individual
samples was investigated. No vOTUs could be detected in two of the calf samples (1x
coverage over 75% vOTU length (Roux et al., 2017)), and these samples were
excluded from further analysis. From the remaining three calf samples, 225 vOTUs
could be detected in =2 1 sample (35 of which were detected in all three). Of the 225
vOTUs detected in = 1 calf sample, only 47 could be detected in = 1 adult sample;

suggesting the calf virome is vastly different from that of the adult cows.

The three adult groups each had a large “core” virome with 3,385, 3,049, and 3,254

vOTUs detected in 4/5 samples for heifers, dry cows, and milkers respectively.

However, many of these vOTUs were not shared between the adult groups with a core
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virome of 711 vOTUs in the adult dairy cow gut (defined by detection in = 4 of all three

adult groups).

With regard to alpha diversity (the diversity within a sample), the mean Shannon’s
index obtained for the calves (2.46), was far lower than that obtained from any of the
adult groups (6.239, 6.506, and 5.296 for heifers, dry adults, and milking adults
respectively; pairwise comparisons of the groups were performed using PERMANOVA
with 1,000 permutations and P-values were adjusted for multiple comparisons using
the Benjamini-Hochberg method, resulting in P < 0.05 for calves versus adult groups);
suggesting the adult gut virome is more diverse than that of the calf (Figure 6.5D).
This difference in macro-diversity was reflected in the micro-diversity, with the adult
cow groups all obtaining high nucleotide diversity than the calf groups (Figure 6.5F).
For all groups, a large proportion of detected vOTUs were found to have = 1 gene
under positive selection within that sample, with the dry adults obtaining the highest
value (means of 26.24%, 33.03%, 38.03%, and 31.15% for calves, heifers, dry adults,

and milking adults respectively) (Figure 6.5E).

Comparisons of beta-diversity using Bray-Curtis dissimilarity demonstrated the calf
virome to be vastly different from that of the adult cows (Figure 6.5A), and the three
adult groups to be significantly different from one another (Figure 6.5B) (Pairwise
comparisons of the groups were performed using PERMANOVA with 1,000
permutations and P-values were adjusted for multiple comparisons using the

Benjamini-Hochberg method, resulting in P = 0.020979021 for all groups).
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When examining the types of phages within the groups, clear differences can be
observed between the calves and adults (Figure 6.5). The calf virome contains a far
higher proportion of known and temperate genera than adults, which are dominated
by novel and lytic genera (Figure 6.5G, H). This finding was supported by read
mapping to viral datasets, from which the calves had the highest proportion of reads
mapping to known viral databases (INPHARED and Viral RefSeq) when compared to
the adult groups (Figure 6.51). Notably, the calf samples contained a large proportion
of reads which mapped to the human gut phage database (mean 50.7%) (Figure 6.5I).
To determine similarity of the groups to the slurry tank virome analysed in Chapter 4,
cow virome reads were mapped to the vOTUs produced from the slurry virome
analysis. Only a small proportion of cow virome reads mapped to the slurry vOTUs
(means of 0.334684801, 1.800015517, 3.231737382, and 4.362275069 for calves,

heifers, dry adults, and milking adults respectively) (Figure 6.5l).
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Figure 6.5 Comparison of abundance and diversity of viruses in different cow
groups

Macro- and Micro-diversity. Beta-diversity for the four different groups with (A) and
without calves (B), with the ellipses using normal (dashed) and t (solid) distributions.
Pairwise comparisons of the groups were performed using PERMANOVA with 1,000
permutations and P-values were adjusted for multiple comparisons using BH method,
resulting in P = 0.020979021 for all groups. (C) Observed vOTUs and (D) Shannon’s
index for each library. (E) The percentage of vOTUs with = 1 gene under positive
selection and (F) mean microdiversity (8) for vOTUs in each library. (G) Relative
abundance of vOTUs which did not cluster with a known phage using vConTACT2
and (H) relative abundance of vOTUs predicted to be temperate. (I) The proportion of
reads which mapped to relevant databases. Note for panels A-D, rarefied reads were
used and for panels E-l the full read sets were used.
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6.3.4 Predicted hosts for vOTUs reflective of gut metabolism

Host genera could be predicted for 2,416 (~8%) vOTUs with = 90% confidence using
iPHoP (Roux et al., 2022). Of these, 121 were core. The most commonly predicted
host phyla were Bacteroidota (n=999) and Firmicutes (n=919) (Figure 6.6), the two
most dominant phyla in the cow gut (Kim and Wells, 2016; Delgado et al., 2019; Li et
al., 2019). Notably, 51 of the vOTUs were predicted to infect the domain Archaea, with
phyla including class | methanogens such as Methanobacteriota (n=21), and class Il
methanogens such as Halobacteriota (n=10), as well as Thermoplasmatota (n=8),
Nanoarchaeota (n=6), Asgardarchaeota (n=3), Aenigmatarchaeota (n=2), and
Thermoproteota (n=1) (Figure 6.6). Of the vOTUs predicted to infect Archaea, one
was core (based on 4/5 of all three adult groups); predicted to infect Asgardarchaeota.
Furthermore, 35 vOTUs were predicted to infect Fibrobacterota (a major component
of the rumen microbiota), three were predicted to infect the sulfate-reducing phylum
Desulfobacterota, and one high quality vOTU (predicted 95.76% complete) was
predicted to infect Fusobacterium, an environmental bacterium associated with bovine

foot rot.
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Figure 6.6 Diversity and large-scale taxonomy of cow vOTUs by host phylum

A vConTACTZ2 network showing taxonomy of cow vOTUs coloured by host phylum, with bar chart indicating the number of vOTUs
predicted to infect each phylum. Those in grey are reference sequences, and those in pale blue are cow vOTUs with no host predicted.
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6.3.5 Compendium of complete genomes

CheckV predicted 1,338 complete viral genomes which were checked manually to
identify any that were clearly not viral (Section 6.2.11), of which none were identified.
To investigate the diversity of the complete cow vOTUs, ViPTree was used alongside
all phage genomes classified at the level of genus by the ICTV (n=3,652) (Nishimura
etal.,2017) (Figure 6.7). Many cow vOTUs were interspersed with known viral familes,
including Intestiviridae (n = 1), Steigviridae (n = 4), Salasmaviridae (n = 10),
Microviridae (n = 84), Autographviridae (n = 5), and Peduoviridae (n = 1) (Figure 6.7).
However, large numbers of cow vOTUs formed monophyletic clades which did not
contain an ICTV classified genome. Notably, a deeply branching clade of 295 cow
vOTUs was not represented by any currently classified phages (Figure 6.7).
Furthermore, the nearest sister clades to this large clade of cow vOTUs contain
reference genomes that are classified to the level of genus but currently do not belong
to a family. These results suggest there are families, and possibly orders, of novel

phages in the cow gut that have yet to be isolated and sequenced.
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Figure 6.7 Phylogeny of complete genomes

VipTree phylogeny of complete cow vOTUs alongside all classified phages at level of
genus. Coloured rings indicate viral taxa (inner to outer: genus, sub-family, family,
order, class, phylum, kingdom, and realm). Solid green indicates a cow vOTU, and the
green star indicates the large cow-only monophyletic clade described in section 6.3.5.
Coloured branches indicate viral family. Tree visualised using IToL. Tree is rooted at
the mid-point.
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6.4 Discussion

Building upon previous work (Chapter 3 and Chapter 4), and that of others (Warwick-
Dugdale et al., 2019; Zablocki et al., 2021), this analysis has continued to develop the
methodology of hybrid viromics. The use of short read exclusion prior to library
preparation obtained median read lengths = 6 kb for all flow cells used, whereas a
previously used LASL approach obtained median read length of ~4kb (Warwick-
Dugdale et al., 2019). Increasing the length of reads may help to uncover and
assemble more viral genomes from mixed community samples. Furthermore, this
analysis has expanded the use of hybrid viromics to a new environment, the Holstein-

Friesian dairy cattle gut.

To date, there has been limited study into the dairy cattle gut virome and most dairy
cattle viromics has focussed on the rumen, where most phages are novel and some
are thought to augment their host metabolism to aid the breakdown of complex
carbohydrates (Berg Miller et al., 2012; Ross et al., 2013; Anderson, Sullivan and
Fernando, 2017). However, a more recent study examined the dairy cattle gut virome
and compared it to that of horses found on the same farm, however the methodology
of this analysis focussed on the bacterial fraction and their investigations into the viral
fraction were minimal (Park and Kim, 2019). Conversely, studies into the human gut
virome have revealed ecologically significant phages (Dutilh et al., 2014), and
enigmatic eukaryotic viruses whose role in human health remains to be elucidated
(e.g. Anelloviridae) (Reyes et al., 2015). Exploring the viromes of other animals may
therefore uncover viruses with significant ecological impacts on widely reared

members of livestock.
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This study identified 30,321 non-redundant vOTUs from the cow gut that represent
14,506 new genera that are not currently represented in cultured phage isolates. As
the ICTV currently recognises 1,652 genera of viruses that infect prokaryotes

(September 2022; https://ictv.global/taxonomy), this represents an enormous volume

of previously unseen viral diversity. Whilst there are no studies of a comparable size
regarding the gut of a non-human animal, there have been large studies into the
human gut. Most notably, a recent meta-study that mined viral genomes from 11,810
publicly available human stool metagenomes using data from 61 previously published
studies was able to identify vOTUs belonging to 5,800 genera (Nayfach et al., 2021).
However, the two studies differ in how viral taxonomy is assigned. Furthermore, the
cow vOTUs described here are estimated to represent 11,733 = 50% complete phage
genomes, with 1,338 predicted to be 100% complete and manually verified to be viral
in origin. Whilst the human gut meta-study identified 26,030 complete phage
genomes, these were not manually inspected and the data was obtained from 61
different studies (Nayfach et al., 2021). The work described here therefore likely
represents the single highest number of complete (or near complete) vOTUs obtained

from a single study of gut viruses.

Phylogenetic analysis of the complete genomes revealed large monophyletic clades
that contained no currently classified phage genomes, suggesting the presence of
novel families (and potentially orders) in the dairy cow gut that are not represented in
currently known viral diversity. Therefore, agricultural sites may offer a reservoir of
novel viruses. However, this is not necessarily surprising as are likely far from reaching
saturation of viral diversity even for commonly sampled hosts and sites (Cook, Brown,

et al., 2021).
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The large number of novel and diverse vOTUs presented in this work may therefore
offer a community resource; a compendium of complete phage genomes derived from
the cow gut. This dataset contains extensive viral genomic diversity —not represented
in currently classified phages —that may aid the further study of viromes from a variety
of animal and environmental reservoirs. For example, this compendium may be able
to provide genomic context for under-sampled groups of phages that do not currently

belong to a family and aid their taxonomic classification.

Although many of the predicted complete genomes likely represented novel families,
there were some that fell within clades of currently classified viral families
(Intestiviridae, Steigviridae, Salasmaviridae, Microviridae, Autographviridae, and
Peduoviridae). Notably Intestiviridae and Steigviridae being members of Crassvirales.
The Crassvirales are an enigmatic order of phages that are known to be dominant in
the human gut (Shkoporov et al., 2018; Yutin et al., 2018; Camarillo-Guerrero et al.,
2021). Whilst early studies suggested crAss-like phages (before the order
Crassvirales was ratified) were unique to the human gut, the number of environments
they are found in has expanded beyond the human gut (Yutin et al., 2018; Cuscé et
al., 2019; Edwards et al., 2019), and this work has expanded this further to include the
dairy cattle gut. However, this is not necessarily surprising, as previous work found
Crassvirales to be present in agricultural slurry that is largely derived from cattle faeces
(Cook, Hooton, et al., 2021). Although Crassvirales were found to be present in both
cattle faeces and slurry, a read mapping approach showed the dairy cattle gut virome
shared little similarity to the slurry tank virome from the same site (Chapter 4),

suggesting that most viruses in the slurry tank are not those found in cattle faeces. As
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cattle faeces is the main input of the slurry tank, this posits the question, where are

the slurry phages coming from?

Comparison of the community composition of the dairy cow gut virome across life
stages revealed the calf virome was significantly different from that of the adult dairy
cow. The calf virome is less diverse than that of adults and contains a higher proportion
of temperate phages. This draws a parallel from the more widely studied human gut
virome, which is thought to be initially colonised by prophages induced from early
colonising bacteria, with the virome become more complex and diverse over stages of
ecological succession (Lim et al., 2015; Liang et al., 2020; Beller et al., 2022). The calf
virome may therefore follow a similar path of early seeding prophages followed by
stages of ecological succession, as the adult cow virome was far more diverse than
that of the calf. Moreover, the predicted VLP enrichment for calf samples was typically
far lower than that of the adult samples. Whilst this may be indicative of lower levels
of viral diversity in the calf gut similar to what is known of the infant human gut (Lim et
al., 2015; Liang et al., 2020; Beller et al., 2022), it may simply represent a technical
challenge with extracting VLPs from this particular sample type, as the consistency of
the calf faeces was different to that of the adult cows. Although the calf viromes shared
similarity with human gut viruses, and the ecological succession of the dairy cow
virome over time may be similar to that of humans, the adult dairy cow virome shared
little with the human gut virome. Future work would compare the dairy cow gut viromes
to those of other domesticated animals that share more similar environmental
conditions (e.g., diet and housing) to cows than humans, such as horses and pigs

(Park and Kim, 2019; Babenko et al., 2020; Billaud et al., 2021). It may be that
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domesticated animals have a more similar virome to one another than they do to

humans.

Comparison of three different groups of adult cow samples (heifers, dry adults, and
milking adults) revealed the virome to be significantly different across groups. These
adult cows are at different stages of the lactic cycle, with different housing and different
diets. The human gut virome is known to be influenced by environmental factors, such
as diet (Minot et al., 2011; Edwards et al., 2019), and so this finding in dairy cattle is
not necessarily surprising. Notably, the cows in the drying off period contained the
highest proportion of vOTUs under positive selection. The drying off period sees dairy
cattle transition to a different diet for a ~2 month period. Therefore, the sudden change
in diet may alter the bacterial composition of the dairy cattle gut, which is reflected in
increased selection pressures on the viral community. However, a more robust
longitudinal study that follows individual cows over time may be better positioned to

investigate these differences.

The host-prediction analysis revealed vOTUs predicted to infect a diverse range of
bacterial and archaeal phyla. The two most commonly predicted host phyla were
Bacteroidota and Firmicutes, which is unsurprising as these are the two most dominant
phyla in the cow gut (Kim and Wells, 2016; Delgado et al., 2019; Li et al., 2019). Other
commonly predicted bacterial host phyla included Fibrobacterota, which is known to
be an important member of the rumen microbiota involved in lignocellulose
degradation (Xie et al., 2018), and Desulfobacterota that are thought to contribute to
biogas production in animal wastes through H>S production (St-Pierre and Wright,

2017). Moreover, 51 vOTUs were predicted to infect the domain Archaea, including
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class | methanogens (e.g., Methanobacteriota) and class |l methanogens (e.g.,
Halobacteriota). The viral community of dairy cattle may therefore have significant
impacts on the microbial community that contributes to greenhouse gas emissions
resulting from the rearing of dairy cattle (Lahart et al., 2021). Furthermore, one vOTU
was predicted to infect Fusobacterium, an environmental bacterium associated with
bovine foot rot; the costliest disease to UK dairy cattle (Van Metre, 2017; CHAWG,
2020). The recent interest in the development and application of phage therapy may
be suitable for the treatment of relevant agricultural pathogens (Luong, Salabarria and
Roach, 2020), such as foot rot, although those against Dichelobacter may have more
clinical relevance as D. nodosus is thought to be the main aetiological agent of foot rot

(Prosser et al., 2020).

Although there are exciting initial results described in this chapter, there is much
analysis yet to be performed. Whilst previous work investigated the diversity and
abundance of AMGs within agricultural slurry (Section 4.5.4), | have not yet done so
for the cow viromes. Phages in the rumen are thought to contribute to complex
carbohydrate metabolism through the presence of AMGs (Ross et al., 2013;
Anderson, Sullivan and Fernando, 2017), and there may be a similar pattern of AMGs
present in the dairy cattle gut. Furthermore, it would be of note to determine if the
pattern of AMGs varies with the life stages used in this study. Additionally, the
differences in the virome of cows across life stages may be reflected by changes in
the bacterial flora. As part of a linked study, bacterial metagenomes from the same 20
cow samples have been sequenced. These may be incorporated into this study with
analyses including the prediction of bacterial community composition and detecting

prophages.
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Chapter 7 General Discussion
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7.1 Conclusions
In this thesis, | have compared how viromic approaches are currently used to
investigate viral communities and implemented viromics to explore the diversity and

community composition of viruses in the dairy farm environment.

In Chapter 2, | explored the current extent of sequencing for complete phage genomes
obtained from cultured isolates. As reference databases are vital for numerous
viromics analyses (e.g., virus prediction and phylogenetic analyses), a deeper
understanding of complete phage genomes will likely aid the field of viromics. |
demonstrated that, while the number of complete genomes is continuing to increase
at a rapid rate, there are biases within the current collection of available genomes,
likely due to common sampling hosts and sites. However, even for hosts most
commonly sampled, we are far from reaching saturation of viral diversity in nature.
Therefore, to uncover more viral diversity, we need to isolate phages using a wider

range of hosts from a wider range of environments.

In Chapter 3, | benchmarked long, short and hybrid sequencing approaches using a
number of different assembly algorithms for the recovery of viral genomes from a mock
viral community. The continual improvement of sequencing technologies, such as the
move away from cloning-based approaches, has allowed for a deeper understanding
of global viral diversity. This upward trend can only continue as a result of continuous
improvements to sequencing platforms and assemblers, and benchmarking these
approaches allows for the community to use optimised work-through for their analyses
(Roux et al., 2017; Fung et al., 2022). Building upon the work of others, | demonstrated

that the addition of long-reads to short-reads is able to aid the recovery of viral
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genomes from a mixed viral community (Warwick-Dugdale et al., 2019). However, this
work was the first to comprehensively benchmark different sequencing approaches
using a mock viral community and was the first use of PacBio sequencing on a VLP-
enriched virome. The use of multiple sequencing platforms, and continual optimisation
of viromic work-throughs will expand our understanding of viral diversity. Future work
should seek to enhance viral nucleic extraction for sequencing with long read

platforms.

In Chapter 4, | analysed the virome of dairy cattle slurry in a longitudinal study with
lllumina and ONT sequencing. Building upon previous work (Chapter 3), and that of
others (Warwick-Dugdale et al., 2019), this work demonstrated that the addition of
long-reads to short-reads aids the recovery of viral genomes. | characterised the viral
community of a unique agricultural environment that had not yet been explored,
despite the widespread application of slurry to land. This work demonstrated a diverse
and stable community of novel viruses that may impact on the metabolism of their
hosts, notably through widespread virulence determinants that are associated with
relevant agricultural pathogens. Subsequent analyses of viromes from modelled slurry
“mini-tanks” suggested the stable composition of this community may be due to the
continual addition of footwash, used for the prevention of lameness (Chapter 5).
Furthermore, | uncovered a large number of putative phage-encoded metallo-beta-
lactamases, although subsequent experimental work suggested these may not be
functional (Error! Reference source not found.). Whilst the putative ARGs in this
work are likely non-functional, more phenotypic screening of putative AMGs (not just
ARGs) is required to better understand the role of phages in augmenting the

metabolism of their hosts in the wider environment.
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In Chapter 6, | characterised the gut virome of dairy cattle across life stages. This work
continued the improvement of viromic sequencing, by demonstrating the use of a short
read exclusion kit prior to ONT sequencing increases the median read length obtained
from VLP-enriched viromes. Furthermore, this work expanded the use of hybrid
viromics to a new environment, for which there was a paucity of knowledge: the cow
gut. | showed that the cow gut virome differs across stages of the lactic cycle, likely
caused by age, diet and communal housing. Additionally, this work uncovered the
highest number of predicted complete phage genomes obtained from a single study

that | am currently aware of.
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7.2 Next steps

This study has comprehensively characterised the virome of agricultural slurry,
however, there are still many questions to be addressed. Due to time constraints, the
analysis of the slurry “mini-tanks” is still largely incomplete (Chapter 5). The next
logical steps would be to further characterise the viral communities and to link these
analyses with bacterial metagenomes obtained from the same samples. This would
allow for a deeper understanding of the role footwash plays in shaping the microbial

ecology of agricultural slurry.

Similarly, the analysis of the cow gut viromes remains incomplete (Chapter 6). The
diversity and phylogeny of the predicted complete genomes can be analysed further,
to gain a deeper understanding of the novel families that likely reside within cows.
Additionally, | prepared bacterial DNA fractions from the same cow samples, that were
sequenced for a fellow PhD student’s project. Whilst this linked project has performed
analyses of the bacterial fraction, no linked analyses between viral and bacterial
fractions have been performed thus far. Creating synergy between the two datasets
would likely maximise the understanding of microbial ecology within the cow gut
across the life stages sampled in this experiment. Furthermore, whilst these analyses
show clear differences between the groups that we infer are due to age and diet, a

longitudinal study of the same cows over time would demonstrate this further.

Although | appear to have successfully cloned at least two of the putative MBLs
identified on phage contigs (Error! Reference source not found.), this work was still
in its infancy at the end of the PhD project. Future work would perform a more robust

antimicrobial susceptibility assay to determine if the successfully cloned inserts are
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indeed functional. This would involve using a larger range of beta-lactam antibiotics at
a larger range of concentrations, as well as using a positive control such as the phage-
encoded MBL characterised previously (Moon et al., 2020). With regard to the inserts
| suggest may be toxic to E. coli, future work could clone these into a tightly regulated

inducible expression system to determine if they are indeed toxic.

As mentioned previously, | characterised the virome of agricultural slurry that is applied
to land as fertiliser. However, the consequences of the application to land remain
unknown. Future experiments could study the virome of soil to which the slurry is
applied, compared against those that do not receive slurry. Whilst we identified a
number of putative virulence factors and ARGs in agricultural slurry, it is not clear if

these persist in the wider environment after the slurry is applied to land.
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