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Abstract
Over the past several decades, researchers have explored a family of mathematical analogies that
relate inaccessible astrophysical phenomena to systems that can be manipulated in laboratory set-
tings. Now, a variety of these phenomena have been successfully scrutinised in a laboratory setting,
allowing for a deeper investigation of these analogies. This thesis presents results from a series of
studies of instabilities with astrophysical implications, undertaken in the context of analogue grav-
ity. From the perspective of analogue gravity, vortices in quantum fluids provide space-times with
discrete and topological features. It has long been known that a multiply charged quantum vortex
will decay into a cluster of singly charged vortices. Recently, it was pointed out that this instability
is similar to that of the rotational superradiance of black holes. This relationship is interpreted fur-
ther, and through numerical observations, a new phenomenon is encountered in the late stages of
the decay. Finally, an upper bound on the orbital frequency of a vortex pair is found, and related to
the sound wave responsible for the decay of a doubly charged vortex.

On the other hand, the relaxation of compact clusters of quantum vortices involves a complex
interplay between vortices and waves, with energy released as sound radiation. By applying tech-
niques from gravitational physics, the study uncovers the emergence of circular sound trajectories,
a large-scale feature that enables a straightforward prediction of radiated sound. This phenomenon,
called sound-rings, is closely related to the ringdown process of black holes. Furthermore, the linear
scaling of the sound-rings with the net charge of the cluster allows them to be located well outside
the vortex core.

In a completely different system, we investigate cosmological preheating via the parametric
instability appearing from applying a vertical oscillation to two-fluid interfaces. Using methods
adapted from field theories, a non-linear model is presented and compared with experimental re-
sults and numerical simulations. The appearance of secondary instabilities created by the nonlinear
contributions to the primary instability is observed and is well predicted by the model. Experimen-
tal results suggest that the analogy with cosmological preheating persists in the nonlinear regime.

Then, in preparation for the next generation of analogue gravity experiments, a new technique
of digital holography for the measurement of deformations of fluid interfaces is introduced. Due
to partial reflections of the optical beam, coherent light impinging on a fluid interface returns as a
multitude of rays. By applying, or exploiting, a tilt of the bed on which the fluid rests, multiple off-
axis holograms are formed and can independently be used to measure the interface. The method
is realisable with only a few basic optical components and provides a versatile scheme for high-
precision measurement of fluid interfaces.
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Chapter 1

Introduction

I. The formation of new theories

Every now and then, natural phenomena, for which there is no pre-existing framework of under-
standing, reveal themselves. When it happens, the race towards the formulation of a new theory
begins. We may think of this process as follows. First, a new physical law obeyed by the phenomena
is guessed. Then, this new law is incorporated into the theoretical framework, if there is any. If this
works, we use the updated framework to make predictions about the phenomenon. Then finally,
the guess is evaluated by comparing the predictions with reality. But how does one guess a new law
in the first place?

One particularly useful strategy for guessing new laws is to rely on analogies. By assuming as-
pects of an elusive phenomenon to be similar to some well-known mechanism, the principles and
predictions from the known theory can be transferred to the unknown theory. Needless to say, the
history of physics is full of this kind of reasoning (see e.g. [1]). For example, in1746, Leonhardt Euler
introduced a theory for light in analogy with the propagation of waves in a frictionless compressible
fluid [2], and, in1769, Joseph Priestley justified the inverse square law of the electrical forces by anal-
ogy with the laws of gravitation[3]. In the former example, the shared feature might be taken as the
diffraction patterns of light, and in the latter, the absence of electric field amplitude inside charged
hollow spheres. In his 1861 paper, James Clerk Maxwell introduces his electromagnetic theory in
analogy to incompressible fluid mechanics [4], an analogy which was later reversed to motivate in-
troducing concepts such as hydrodynamic charge [5, 6]. In 1911, Ernest Rutherford introduced a
planetary model for the atom [7], and in his 1926 paper, Erwin Schrödinger motivates his wave me-
chanics through analogies to and in classical mechanics and optics [8, 9]. A more recent example is
Jacob Bekenstein’s 1973 law for black-hole entropy, which was entirely based on analogies between
black-hole physics and thermodynamics [10, 11]. One year later, this analogy was further supported
by the discovery of the thermal evaporation of black holes by Steven Hawking [12]. Whereas there
is no doubt about the usefulness of analogies in forming and understanding new theories, it is hard
not to ponder what facilitates these arguments in the first place. How can theories belonging to
entirely different fields of physics be so similar in their mathematical description? Since attempts
to answer this question falls far outside the scope of this work, the interested reader is redirected
to philosophical treatises such as [1, 13, 14]. Instead, we shall focus on one particular class of exact
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Section II Analogue gravity 3

analogies that has been much discussed during the past 50 years.

II. Analogue gravity

The early 20th century brought with it the discovery of what is referred to as the two pillars of
modern physics: General Relativity and Quantum theory. These theories presented an unrivalled
accuracy in the prediction of physics at seemingly opposite scales, from astrophysical objects to
the constituents of matter. Moreover, they made it possible to approach philosophical problems
such as “why is there something rather than nothing?” and “what is the origin and fate of the
universe?” from a quantitative, scientific perspective. Today, a considerable portion of theoretical
physicists remain motivated by the promise of a final theory, often referred to as quantum gravity,
resulting from merging general relativity with quantum field theory. However, the scenarios where
such a theory is expected to play an important role tend to be at scales that are not likely to be
experimentally accessible in the foreseeable future.

One object for which such a theory is expected to play an important role is the so-called black
hole. Black holes were conceived just months after Einstein published his general theory of relativ-
ity [15], when Karl Schwarzschild introduced a spherically symmetric vacuum solution [16]. Due to
the presence of singularities – a genuine singular point at the centre, and a divergent time-coordinate
at the so-called horizon – this model was not taken too seriously until Chandrasekhar observed that
sufficiently massive stars would collapse [17]. By the late 60s, these objects had been widely accepted
under the term black hole, referring to the understanding of the horizon as the surface from inside
which nothing can escape [18]. However, this defining feature was challenged already in 1974, when
Hawking proposed that when considering quantum fields near black holes, they cease to be black,
and instead radiate a thermal spectrum [12].

Hawking’s calculation raised several concerns. On the one hand, the community was now
forced to take Bekenstein’s analogy [10, 19], between black hole physics and classical thermody-
namics, seriously. The central issue was how to reconcile the thermodynamic entropy, related to
information and the multitude of microstates, with the black-hole entropy, which was associated
with the inverse area of the horizon. On the other hand, there were serious concerns about the
technical details of Hawking’s prediction. For example, the derivation relied upon extrapolating
a free field theory to arbitrarily large frequencies – a regime where the model is expected to fail.
This issue became known as the trans-planckian problem [20]. Usually, such debates are settled by
investigating the validity of the prediction experimentally. However, black holes are elusive and dis-
tant, and their predicted temperature of radiation, which scales inversely with the mass of the black
hole, is extremely faint for the black hole of stellar origin (T ≃ 300nK for solar-mass black holes).
Therefore, it would seem that the only hope of experimental realisation of this effect in the foresee-
able future, would hinge on the existence and discovery of black holes with masses well below the
Chandrasekhar limit, e.g. primordial black holes [21, 22].
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It was following this discussion that Unruh published his seminal paper titled Experimental
black-hole evaporation? [23]. In it, he suggests that the same arguments that lead to the thermal ra-
diation of a black hole should hold for sound waves in the vicinity of a sonic horizon. Therefore,
consistency would seem to require sonic horizons to emit thermal radiation. The core of the argu-
ment is based on a mathematical analogy between the Klein-Gordon equation for the propagation
of a massless scalar field on curved spacetime, and the convective wave equation for sound waves
traversing a moving fluid.

In its most simple form*, the analogy states that the following two equations [20]

1√
−g
∂µ

√
−ggµν∂νϕ = 0 and (∂t + v · ∇)2ϕ− c2∇2ϕ = 0 (1.1)

are mathematically equivalent provided that one identifies
√
−ggµνdx

µdxν = −c2dt2 + (dx− vdt)2 , (1.2)

where c is the propagation speed of waves and g is the determinant of the space-time metric gµν.
Here, the first equation in (1.1) is the Klein-Gordon equation for the evolution of a scalar field ϕ
on a spacetime with metric tensor gµν, frequently appearing in the context of General relativity
and field theory. The latter is a convective wave equation for the scalar fieldϕ as it propagates in a
medium with background velocity v, often encountered in condensed matter systems. The central
idea is that exact mathematical analogies, like (1.1), enable transferring predictions from an experi-
mentally inaccessible system to a system, hereby referred to as the simulator, that can be scrutinized
in a laboratory. Once established, these analogies provide two-way streets that can be used to trans-
fer predictions and mathematical tools from one field to the other. Note that the analogy (1.1) is
kinematic and not dynamical, i.e. it links the movement of a scalar field under the influence of grav-
ity (Klein-Gordon equation), not the movement of the gravitational field itself (Einstein equation).
However, the thermal radiation of black holes can be predicted entirely on kinematic grounds and,
as such, does not rely on the full evolution of the gravitational field [25].

During the 90s, it was noticed that in the sonic black hole, Hawking radiation is insensitive to
the physics at higher frequencies, and was therefore relieved of the trans-plackian problem [24, 26–
29]. This ignited interest in experimentally examining the analogue to test if Hawking radiation
does indeed take place in the absence of trans-planckian frequencies. Although experimental real-
isations of sonic black holes were discussed, these systems were difficult to realise [30]. The reason
is partly that the speed of sound is dependent on the equation of state, which is not easily control-
lable, and partly that sound waves travel at inconvenient† speeds for tabletop experiments to exhibit

*This form is in the case of constant density ρ, for an incompressible flow (∇ · v = 0) with constant propagation
speed c. WritingDt ≡ ∂t + v · ∇, the general form that matches (1.2) is (Dt +∇ · v) ρ

c2
Dtϕ = ∇ · ρ∇ϕ, see e.g.

[24] for a complete discussion.
†The sonic analogy requires super-sonic flow velocities, which may void a perturbative treatment of the analogy

altogether.
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horizons. By the early 2000s, another analogy based on the propagation of light in inhomogeneous
media, dating back to Gordon’s work in 1923 [31]*, had been resurrected in the analogue black-hole
discussion [32, 33]. However, also these systems presented challenges as it was hard to obtain the
necessary control over the permittivity and permeability of the medium. In fact, around this time
it had become clear that black-hole analogies would be omnipresent in condensed matter systems
– all that was needed was a convective, non-dispersive and non-dissipative wave equation with an
adequate background flow [34]. Then, in 2002, Schützhold and Unruh introduced gravity-driven
interface waves as black hole simulators [35]. Despite being classical and two-dimensional, interface
waves were a particularly attractive analogue system due to the ease at which the propagation speed,
which is proportional to the root of the depth, can be manipulated.

III. Experiments on Gravitational Analogies

During the early 2000s, there had been significant theoretical development toward understanding
the necessary ingredients for Hawking radiation. The minimal set of requirements seemed to be
(1) the existence of a horizon and (2) the presence of non-negligible quantum fluctuations [25].
However, it was also noticed that the essential mechanism could be investigated by supplying the
noise by hand, thus bypassing the need for quantum fluctuations. This effect became known as the
stimulated Hawking effect, as opposed to its spontaneous counterpart.

Despite the theoretical development, it was first in 2008 that gravitational analogies were stud-
ied experimentally [20]. At first horizons were reported observed in a water wave system [36] and
in optical fibers [37]. Later, an effective sonic horizon was created in a Bose-Einstein condensate
(BEC) [38], horizons for laser pulses in dielectric media [39], acoustic horizons in polariton fluids
[40], and spin-precession waves in superfluid Helium-3 [41]. Stimulated Hawking radiation was
first observed in fluid interfaces in 2011 [42], and in optical fibres in 2019 [43]. In 2016, noise cor-
related by the Hawking effect was observed [44], followed by the first observation of spontaneuous
Hawking radiation in a BEC [45, 46].

Although the focus was on Hawking radiation initially, it became increasingly clear that a wide
variety of experimentally inaccessible astrophysical phenomena could be realised in condensed mat-
ter systems. One noteworthy example is the thermal radiation received by an accelerating observer
in a vacuum, which is commonly referred to as the Unruh effect [47] and is intimately related to
Hawking radiation. Experiments are currently being prepared to realise the Unruh effect in atomic
Bose-Einstein Condensates (BECs) [48, 49]. Another prominent example is that of rotational su-
perradiance, or Zel’dovich superradiance [50, 51].

*This is the same Gordon as in the aforementioned Klein-Gordon equation.
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III.1. Superradiance

Rotational superradiance, the amplification of incident waves by dissipative rotating bodies, was
proposed by Zel’dovich [50] in the 70s. The term superradiance was coined by Teukolsky and Press
in 1974 [51], when announcing that rotating black holes may amplify incident waves. One strik-
ing consequence is the perpetual amplification of these waves if an external reflector is introduced.
The result is the instability referred to as the black hole bomb [52]. Superradiance is also interesting
from an energetic perspective. The amplification of incident waves means that more energy comes
out than was put in, i.e. energy can be harvested from rotating black holes. Consensus is that the
extracted energy is collected from the rotation of the black hole [53, 54], much like the closely re-
lated Penrose process [55]. In light of this, one may wonder, for example, how superradiance would
proceed in a system where the amount of rotation can only take certain discrete values.

In fact, an essential ingredient for superradiance is the existence of an ergoregion, a region where
the energy of the system can be reduced as a result of increased motion within it. From this per-
spective, amplification occurs when waves scatter in such a way as to excite negative-energy states in
the ergoregion.

Superradiance was first observed experimentally in 2016 for interfacial waves on draining bath-
tub flows [56]. The phenomenon has since been observed in acoustic systems [57, 58] and optical
systems [59, 60]. In fact, it has recently been found that the instability of the quantum vortex is in-
timately related to the superradiance mechanism [61–64]. This is the topic of chapter 2 in this text.
Here, further insight into the dynamical decay of the multiply charged quantum vortex is provided
by an alternative perturbative approach. Moreover, we recognise a new phenomenon in the non-
linear regime, where the vortex fails to decay completely and instead enters a period of perpetual
decay and re-absorption.

Other examples of phenomena, besides rotational superradiance, recently studied in the context
the analogy includes the aforementioned Penrose process [60], as well as Gravitational lensing [65]
and black hole Quasi-Normal Modes (QNMs) [66].

III.2. Ringdown

The existence of black hole QNMs was proposed by Vishveshwara in 1970 [67] after a numerical
study of gravitational waves scattering off black holes. He observed that the black hole dissipated
its energy by emitting damped harmonic waves that were largely insensitive to the details of the
incident wave. Since these waves are much like the damped ringing of a perturbed bell, the phe-
nomenon is also referred to as black hole ringdown. The ringdown of a black hole was observed by
the LIGO collaboration in 2015 [68] as part of the first detection of the gravitational waves emitted
during the merging of two black holes. The observation of the exact frequency of ringdown modes
is of importance as they present tests of General relativity [69].

In 2020, it was announced that the interface of draining bathtub flows oscillates at frequencies
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analogous to those of black hole QNMs [66]. Black hole QNMs are closely connected to the pres-
ence of light rings, i.e. circular trajectories of light. Conceptually, the presence of such an unstable
radial fixed-point permits the trapping and slow emission of excitations. The ringdown process de-
scribes the relaxation of a black hole towards its resting state. As such, it is unclear to what extent
the mechanism carries over to processes that are out of equilibrium. Moreover, ringdown tends to
involve azimuthally rotating waves*, and so their emission involves the release, or accumulation, of
rotation emitted by the source. It is therefore not clear how ringdown would proceed in a spacetime
where rotation is discretized. In chapter 3, we investigate light-ring physics in a relaxing cluster of
quantum vortices in two-dimensional BECs, which is a non-equilibrium process in a system with
discrete circulation. Here, we shall see that the light-ring, which we call the sound-ring in this case,
gives rise to an emergent, large-scale feature, which enables characterising the radiated sound.

The use of mathematical analogies to realise exotic phenomena is by no means restricted to
black holes. Most of the phenomena investigated, that did not originate from black-hole physics,
are concerned with processes expected to take place in the very early Universe. Some noteworthy ex-
amples of phenomena that do not naturally belong to either of these groups include the dynamical
Casimir effect [70, 71] and false vacuum decay [72–75].

III.3. Preheating
In the early 1920s, solutions to Einstein’s equations for a homogeneous and isotropic universe,
known as the Friedmann-Lemaitre-Robertson-Walker (FLRW) metrics, were introduced [76, 77].
To everyone’s surprise at the time, these solutions seemed to suggest that the Universe as a whole is
not static, but space itself is evolving. When combined with Hubble’s observation [78] that galaxies,
in every direction, are moving away from us with a speed proportional to their distance, it became
clear that the universe must have originated in a compact, hot state, popularly referred to as the
big bang. This model was further supported by the observation of the Cosmic Microwave Back-
ground (CMB) radiation in the 60s[79, 80], which is the afterglow from when the Universe had
cooled sufficiently for matter to decouple from the photon-plasma. However, the CMB was found
to be almost perfectly uniform, with relative black-body temperature variations of only O(10−5)
– a number that was much smaller than what was necessary to facilitate the formation of galaxies.
This conundrum was resolved by introducing a cold decoupled species, referred to as Cold Dark
Matter (CDM), which resulted in the currentΛCDMmodel, also called the cosmological concor-
dance model, for the origin of the universe (see e.g. Planck 2015 [81]).

There are several theoretical concerns with the cosmological concordance model. For example,
it is unclear how causally disconnected regions of the universe could have attained such similar
temperatures in the first place, a problem now referred to as the horizon problem. Secondly, the
universe was found to be almost perfectly flat, which, since the curvature is determined by the total

*Here, azimuthally rotating waves refer to waves that evolve according to exp[imθ− iωt] for constantsm andω,
with t being time and θ being the azimuth angle in the usual cylindrical coordinates.
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energy content, raised concerns about fine-tuning; there had to be a reason for the lack of curvature.
This became known as the flatness problem. In the 80s, a mechanism to alleviate these issues, as well
as the absence of magnetic monopoles, was proposed under the name of cosmological inflation [82–
85]. The idea was to introduce a precursor field, the inflaton, responsible for an initial, temporary
exponential expansion, which diluted the fluctuations and curvature of the Universe. The horizon
problem is then resolved since regions of space that were causally disconnected at the time of the
CMB, had only temporarily lost causal contact during the late inflationary expansion.

During the 80s, it was noticed that at the end of inflation, standard model particles coupled to
the inflaton field would be produced, resulting in the re-thermalisation, or reheating, of the Uni-
verse [86, 87]. However, it was soon observed that this process would likely exhibit instabilities due
to parametric resonance [88, 89]. To distinguish this explosive particle production from that of the
slow and thermal reheating, it became known as preheating.

To illustrate the essential mechanism of preheating, consider a scalar inflaton field ϕ coupled
to a light scalar field χ, with coupling −1

2
g2ϕ2χ2, that is evolving in a flat FLRW background with

scale factor a(t). The fluctuations χk of χ with physical momentum k/a are then given by [88,
89]

χ̈k + 3Hχ̇k +

(
k2

a2(t)
+ g2ϕ2(t)

)
χk = 0, (1.3)

whereH ≡ ȧ/a is the Hubble parameter. In simple models of inflation,ϕ(t) is expected to oscil-
late harmonically at a frequency proportional to the mass ofϕ, for which (1.3) takes the form of a
damped Mathieu equation for slowly varying a(t).

Already in 2004, it was pointed out that cosmological inflation may be simulated in atomic
Bose-Einstein Condensates (BECs) [90, 91]. The idea was further supported by a follow-up study
using numerical simulations in 2007 [92]. The same year, the use of ion-chains to simulate expand-
ing universes was proposed [93]. Some years later, it was noticed [94] that the aforementioned ob-
servation of the dynamical Casimir effect [71] from 2012, was, in fact, better viewed as cosmological
preheating. In the years that followed, both expanding universe cosmology [95] and cosmological
particle production [96–98] were successfully simulated in a laboratory setting.

In a theoretical and numerical study of preheating dynamics arising from a two-component
BEC [99, 100], it was pointed out that a seemingly fundamental feature of preheating is the emer-
gence of secondary instabilities. In 2019, it was pointed out that classical two-fluid systems can
serve as simulators of cosmological inflation [101]. This proposal was the precursor for the results
presented in chapter 4 of this thesis. In chapter 4, we present experimental results [102] from a
classical simulator for cosmological preheating in a two-fluid system. Here we use the statistical
machinery adapted from field theories from the pioneering works [103, 104] to monitor the emer-
gence of secondary instabilities as waves are driven parametrically into the nonlinear regime. As we
shall see, our results suggest that aspect of the analogy may persist also in the nonlinear regime.
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III.4. The Vision
The analogue gravity program, which has seen numerous theoretical and experimental successes in
the past 20 years, has demonstrated that extreme astrophysical phenomena can be simulated in a
laboratory environment. The robustness of these simulations extends beyond the original analogy,
even when the conditions change, such as when they enter a dissipative, dispersive, or non-linear
regime. This has implications for our understanding of modified theories of gravity [20] and sug-
gests that these phenomena are more universal and persistent than previously believed.

It is in this spirit that a new generation of analogue simulators is being prepared, now with the
aim of investigating how the astrophysical phenomena unfold when being pushed further into un-
charted territory. Here, regimes in which topological, nonlinear and quantum effects are relevant,
are of particular interest as lessons from these limits may perhaps aid in the formulation of better
models and descriptions.

The main body of this thesis consists of four parts, which are divided into four chapters 2, 3, 4
and 5. In chapter 2, we investigate the relationship between superradiance and the instability of the
quantum vortex. Then, in chapter 3, we investigate the relaxation of quantum vortex clusters taking
inspiration from the ringdown of a black hole. In chapter 4, the nonlinear parametric resonance
of two-fluid interfaces is investigated and compared with cosmological preheating. Then, finally,
in chapter 5, we investigate the potential for using the principles of digital holography to measure
fluid interfaces.

These four studies are undertaken in preparation for an upcoming series of investigations of
how phenomena previously simulated classical hydrodynamics proceed when repeated in a super-
fluid. Here chapters 2 and 3 investigate superradiance and ringdown in quantum fluids, where
vorticity is topological, and circulation is quantised. In chapter 4 a classical hydrodynamic simu-
lator for preheating is investigated, with the intent of repeating the experiment with superfluids,
wherein mode populations are quantised. Finally, to observe these effects on the interface of a su-
perfluid, a flexible, non-destructive, high-precision measurement scheme is needed. The theoretical
foundation and early testing of such a scheme is presented in the final chapter 5 of this thesis.

IV. Statement of originality
All the chapters of this thesis are accounts of results produced in collaboration. The following is
a brief account of my specific role within these collaborations. Chapter 2 accounts for work that
resulted in the two published works [63] and [62]. My role in these projects was mainly focused
on the non-linear simulations of the GPE and dGPE, and the data-analysis techniques needed to
compare with the theory. The results from chapter 3 is presented in the published work [105]. I had
a significant role in all aspects of this project. Results from chapter 4 is presented in the preprint
[102]. Although I played some part in the early development and implementation of the detection
method of chapter 4, I had no role in the actual experiment. My main contribution was to the
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model-building and analysis of the experimental data. I played a central role in the development of
the detection method presented in chapter 5, which is currently being patented [106].



Chapter 2

Quantum Vortex Instabilities
The following is an account of the investigations that resulted in the two publications Quantum vor-
tex instability and black hole superradiance [62] and Origin and evolution of the multiply-quantised
vortex instability [63] by S. Patrick, S. Erne, C. Barenghi, S. Weinfurtner and myself. In the for-
mer, the relationship between the rotational superradiance of black holes and the instability of the
multiply quantised vortex is examined. The latter, which builds on the formalism of the former,
investigates the fate of the doubly quantised vortex. My role in these projects was weighted towards
numerical simulations.

I. Prelude

When a gas of bosonic particles is cooled down to very low temperatures, the system approaches
a state in which a considerable fraction of the particles occupy the (quantum) ground state. The
result is a macroscopic realisation of a quantum state, referred to as a Bose-Einstein Condensate
(BEC). Due to low temperatures involved, it took about70 years from BECs were first predicted [107,
108] until Bose-Einstein condensation was first observed in a dilute gas of rubidium-87 atoms in
1995 [109].

BECs are macroscopic quantum fluids which exhibit a wide range of exotic phenomena includ-
ing wave-propagation of heat (second sound) [110] and perfectly inviscid flow. Yet, one of the most
remarkable features of BECs, and quantum fluids in general, is the that circulation around vortices
is discretized and topologically protected by their phase winding [111]. For this reason, vortices in
quantum fluids are typically referred to as quantum vortices. The circulation around a quantum
vortex must be an integer multiple of κ ≡ 2π h/M, where M is the mass of the atomic species,
and this integer ℓ ∈ Z is referred to as the charge of the quantum vortex, or the winding number.
Experiments [112–114] show that a Multiply Quantised Vortex (MQV), with |ℓ| > 1, spontaneously
decays into a cluster of Singly Quantised Vortices (SQVs), each with |ℓ| = 1. The usual justification
for this is based on the observation that a cluster of SQVs is energetically more favourable than a
single MQV, so that any dissipative effect will naturally tear the MQV apart. However, in a non-
dissipative system, the decay can still happen due to a dynamical instability [115] arising from the
interaction between the surrounding phonons and the MQV. Recently, it has been argued [61] that
the dynamical instability of the MQV is closely related to the superradiant amplification [116] of

11
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waves due to the existence of an ergoregion around the MQV. Here, the term ergoregion, which is
a notion from black hole physics [117], is used from the perspective of the analogy between vortices
and rotating black holes [118]. I fact, rotational superradiance has recently been recognised in a wide
variety of systems such as hydrodynamic (classical) vortex flows [56], as well as in acoustic [119] and
optical [60] orbital angular momentum beams (see e.g. [120]).

As mentioned in the introduction, the relationship between vortex instabilities and superradi-
ance, or, more precisely, ergoregions, has been pointed out on several occasions in the literature.
Early studies focused on the non-dispersive regime and used ad-hoc boundary conditions (BCs)
near the vortex axis, where the fluid density drops to zero [121, 122]. These works described the in-
stability as an ergoregion instability, a term coined in the 1970s for describing instabilities of rapidly
rotating neutron stars [123]. The word ergoregion, which stems from the Greek word for work (er-
gon), refers to the possibility for energy to be released by increased movement in this region. An
ergoregion instability is related to the perpetual growth of waves in this region that can result from
the existence of a mechanism that can transfer energy out of the region.

The ergoregion instability is qualitiatively similar to the black hole bomb [52], see e.g. the black
hole bomb instability for massive scalar fields in the Kerr spacetime [124]. Whereas the black hole
bomb is the instability that arises when an external reflector is introduced to a superradiating body,
the ergoregion instability appears due to the existence of an internal reflector, inside the ergore-
gion. For this reason, the ergoregion instability has also been referred to as an inverted black hole
bomb [125].

Recently, it has been shown [61] that the link between the ergoregion and vortex instabilities also
carries over to the dispersive regime. Specifically, [61] showed that the vortex instability originates
in the vortex core, where the mode has negative energy, thereby identifying the phenomenon as an
ergoregion instability and not a BH bomb.

This chapter delves deeper into the superradiant instability of the Multiply Quantised Vortex
(MQV). In particular, we introduce a Wentzel-Kramers–Brillouin (WKB) framework which en-
ables us to interpret the underlying mechanism for the process.

By comparison with numerical simulations of the nonlinear, dynamical decay of a doubly quan-
tised vortex (ℓ = 2), we discover a new vortex state, where the separation distance of the resulting
pair of SQVs exhibits slow, repeated modulations. Finally, dissipative decay is considered, where we
comment on the asymptotic form of the orbital frequency of the vortex pairs and the significance
of their interactions with phonon modes.
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II. Quantised Vortices

II.1. The Gross-Pitaveskii Equation
In the limit of large particle numbers and low temperature, a dilute gas of bosonic particles exhibits
macroscopic population of the ground state – a phenomenon referred to as Bose-Einstein Con-
densation (BEC). Considering only point-like interactions, i.e. s-wave scattering, a BEC can be
described by the mean-field wavefunction Ψ(t, r), where t is time and r is the spatial coordinate.
The square modulus of the wavefunction can be interpreted as particle density ρ ≡ |Ψ|2 so that
ifN is the total number of particles in the condensate, then

∫
|Ψ|2d3r = N. In what follows, we

shall focus on two-dimensional condensates, which can be realised by applying strong harmonic
confinement along one axis [126, 127], and whose equation of motion takes the same mathemati-
cal form as the three-dimensional case [128]. In two-dimensions, the dynamics ofΨ is given by the
stationarity of the action [129]

S =

∫
dtd2r

[
i h

2
(Ψ∗∂tΨ− Ψ∂tΨ

∗) −
 h2

2M
∇Ψ ·∇Ψ∗ −U(r)|Ψ|2 −

1

2
g|Ψ|4

]
, (2.1)

whereU is an external trapping potential, and g is the two-dimensional interaction parameter and
M is the atomic mass of the bosons. Here, g is related to the three-dimensional interaction parame-
terg3 throughg = g3/

√
2πa2

z, whereaz is a length scale set by the strength of the vertical confine-
ment. More precisely, if the vertical confinement is of the form 1

2
Mω2

zz
2Ψ, thenaz ≡

√
 h/Mωz

is the harmonic oscillator length (see e.g. [111]). The three-dimensional interaction parameter g3 is
related to the S-wave scattering length as via g3 ≡ 4π h2as/M [111].

For future convenience, we use the parametersM and g along with the ground state energy µ,
which may be interpreted as the chemical potential [129], to define the following physical scales

ξ ≡
 h√
Mµ

, τ ≡
 h

µ
, ρc ≡

µ

g
. (2.2)

Here, ξ is the healing length, which appears when balancing kinetic energy with interaction en-
ergy, and may be interpreted as the length below which the self-interactions efficiently heal inho-
mogeneities in the density. Since the wavefunction rotates with µ, i.e. Ψ ∼ exp(−iµt/ h), the
cycle time τ sets a natural time-scale for the condensate. Lastly, the density ρc can be interpreted
as the density of a uniform (U = 0) condensate in the ground state and with negligible kinetic
energy [129]. Hereby, all physical quantities will be measured in units of these parameters unless
otherwise stated. That is, we set x/ξ→ x, t/τ→ t,Ψ/√ρc → Ψ,U/µ→ U and S/ h→ S, or,
if you like, we set  h =M = µ = g = 1. In these units, the action (2.1) takes the form

S =

∫
dt d2x

[
i

2
(Ψ∗∂tΨ− Ψ∂tΨ

∗) −
1

2
∇Ψ ·∇Ψ∗ −U(x)|Ψ|2 −

1

2
|Ψ|4
]
, (2.3)
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and imposing stationarity of the action with respect to variations inΨ∗ yields a non-linear Schrödinger
equation, referred to as the dimensionless Gross-Pitaevskii Equation (GPE)[130, 131]

i∂tΨ =

[
−
1

2
∇2 +U(x) + |Ψ|2

]
Ψ. (2.4)

If, instead, we impose stationarity of (2.3) with respect to Ψ, we obtain the complex conjugate of
the GPE (2.4).

II.2. The Hydrodynamic Formulation
By introducing a change of variables

Ψ =
√
ρeiΦ (2.5)

referred to as the Madelung representation [132], the GPE (2.4) splits into two separate equations

∂tρ+∇ · (ρ∇Φ) = 0, (2.6a)

∂tΦ+
1

2
(∇Φ)2 + ρ−

∇2√ρ
2
√
ρ

= 0. (2.6b)

When identifying v = ∇Φ, with the velocity field of the condensate, equation (2.6a) takes the
form of a continuity equation for the density ρ. Equation (2.6b) takes the form of a Bernoulli
equation with an additional term referred to as the quantum pressure. One way to motivate the
name quantum pressure is to re-introduce dimensions in (2.6b). Then, the quantum pressure term
is the only term with  h as a prefactor.

II.3. Quantized Vortices
Having identified the velocity field v with the gradient of the phase Φ of the wavefunction, the
velocity field must be irrotational, i.e. ∇×v = 0. However, one may always rotate the container, or
stir, a substance to enforce a non-zero circulation around a closed loopC. In a BEC, the circulation
is zero everywhere except at certain points (2D) or along certain lines (3D), where the wavefunction
Ψ vanishes so that its phase Ψ is undefined. These singular points, called quantum vortices, are
discretized and topologically protected by their phase-winding ℓ, i.e.∮

C

v · dr = 2πℓ for ℓ ∈ Z. (2.7)

That the circulation is quantized as integer multiples of (in physical units) 2π h/M is arguably one
of the most striking properties of BECs, and quantum fluids in general.



Section III Fluctuations 15

The topological and discrete nature of these vortices, first investigated theoretically by Feyn-
man [133] and Onsager [134], significantly affects the possible flow patterns (vortex lattices, turbu-
lence, etc. [135–137]).

We shall now focus on a stationary condensate in polar coordinates (r, θ) with a central vortex
with winding-number ℓ ∈ Z, i.e.

Ψ0(r, θ, t) = Y(r)e
iℓθ−it. (2.8)

When written this way, it is clear that the discretization of ℓ follows from azimuthal periodicity, i.e.
Ψ(θ = 0) = Ψ(θ = 2π). Here, the e−it-dependence comes from the ground-state oscillation
due to the chemical potential, which is 1 in our units. In the absence of a radial flow, i.e. Y ∈ R,
the velocity field around the vortex is

v =
ℓ

r
eθ. (2.9)

In what follows, we shall, for simplicity, assume the vortex to rotate in the anti-clockwise direction,
i.e. ℓ > 0.

Inserting (2.8) into the GPE (2.4) for a free (U = 0) condensate yields

1

2r
∂r (r∂rY) +

(
1−

ℓ2

2r2

)
Y = Y3, (2.10)

whose solutions give the ground state density ρ = Y2 of the vortex solution. In the vortex, the
density must be zero, i.e. Y(r = 0) = 0, and, far away, the condensate density must tend towards
that of a free, uniform condensate at rest, i.e. Y(r→ ∞) = 1. We note that at small radii, equation
(2.10) asymptotes to Bessel’s equation, and a polynomial ODE in the limit r→ ∞, allowing us to
write down the asymptotics

ρ(r) ∼

{
ρ0 J

2
ℓ(
√
2r) as r→ 0,

1− ℓ2

2r2
as r→ ∞,

(2.11)

where Jℓ is a Bessel function of the first kind.
In figure 2.1, the numerically computed density profiles ρ(r) for ℓ = 1, 2, ..., 9 are exhibited.

For details on how these profiles are computed, consult appendix B.2.

III. Fluctuations

Now we consider fluctuations of the condensate about the stationary vortex stateΨ0 =
√
ρ exp(iℓθ−

it) from (2.8) by writing Ψ → Ψ0 + δΨ with δΨ ≪ Ψ0. When expanding both GPE (2.4), and
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Figure 2.1 (Density profiles of vortices with low winding number)The density profiles ρ(r)
for the first 9 non-zero ℓ estimated with two different numerical methods. Densities obtained using
the shooting method (appendix B.2.1) are shown as solid lines, and the densities obtained using the
damped matrix evolution (see appendix B.2.1) are shown as dotted lines. It is clear that the larger
the winding number ℓ, the larger the radius where the vortex core intersects a given density.

its complex conjugate, the linear equations can be collected into a single matrix equation known as
the Bogoliubov de-Gennes (BdG) equation [61, 129],

i∂t|ψ⟩ = L̂|ψ⟩ for L̂ ≡
[
D+ ρ

−ρ −D−

]
, |ψ⟩ ≡

[
u
(m)
+

u
(m)
−

]
. (2.12)

Here, u(m)
± is defined through a decomposition of δΨ into azimutal modes*

[
δΨ(t, r, θ)
δΨ∗(t, r, θ)

]
=

∑
m∈Z

eimθ

[
u
(m)
+ (t, r)e+iℓθ−it

u
(m)
− (t, r)e−iℓθ+it

]
, (2.13)

and the differential operators are defined by

D± ≡ −
1

2

[
∂2r +

1

r
∂r −

(m± ℓ)2
r2

]
+ 2ρ+U− 1 . (2.14)

For brevity, the azimuthal indexm in u(m)
± will often be suppressed, writing u±.

The BdG equation (2.12) conserves the norm [61]

N = ⟨ψ|σ3|ψ⟩ =
∫
d2x

(
|u+|

2 − |u−|
2
)
, (2.15)

*Notice that the phase ofΨ0 is factored out of δΨ, i.e. a constant u± carries the phase ofΨ0.
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which can be interpreted as the particle content of a given mode. Here, σ3 is the third Pauli matrix,
which enters via the pseudo-unitarity σ3L̂†σ3 = L̂ of the BdG operator, and conservation of N
follows from inserting (2.15) into (2.12).

An alternative to the BdG perturbationΨ 7→ Ψ0 + δΨ is to consider fluctuations in hydrody-
namic variables introduced in section II.2, i.e.Φ 7→ Φ0+δϕ and ρ 7→ ρ(1+δρ)with δϕ≪ Φ0

and δρ≪ 1. The linearised form of equations (2.6) then takes the form

Dtδρ+ ρ
−1∇ · (ρ∇δΦ) = 0, (2.16a)

DtδΦ+ ρδρ− 1
4
ρ−1∇ · (ρ∇δρ) = 0, (2.16b)

whereDt ≡ ∂t + v · ∇ is, as usual, the convective derivative. Note that the BdG approach (2.12)
and the hydrodynamic approach (2.16) are equivalent, and one can be related to the other through

δΨ = Ψ0

(
1
2
δρ+ iδΦ

)
and δΨ∗ = Ψ∗

0

(
1
2
δρ− iδΦ

)
. (2.17)

Exploiting the absence of explicit time dependence, and rotational symmetry of equations (2.16),
we may decompose δΦ and δρ into azimutal numbers m and frequencies ω. Introducing the
indexing short-hand a = (ω,m), we separate positive and negative frequencies*

[
δΦ

δρ

]
=

∫∞
0

dω
∑
m∈Z

(
αa

[
φa
na

]
+ α∗

a

[
φ∗
a

n∗
a

])

=

∫∞
0

dω
∑
m∈Z

(
αa

[
φ̃a
ña

]
eimθ−iωt + α∗

a

[
φ̃∗
a

ñ∗
a

]
e−imθ+iωt

)
(2.18)

where αa are constants. Here, as before, we shall omit the index a whenever convenient. Since
equations (2.16) are linear by design, and Fourier modes are orthogonal, each mode satisfies (2.16)
independently. These equations follow from the stationarity of the action formed from the follow-
ing action

L =
ρ

2
(φ∗
aDtna +φaDtn

∗
a − n

∗
aDtφa − naDtφ

∗
a)

− ρ2|na|
2 − ρ∇φa · ∇φ∗

a −
ρ

4
∇na · ∇n∗

a −
1

2
∇ ·
[
∇ρ
(
|φa|

2 +
1

4
|na|

2

)]
.

(2.19)

This Lagrangian is invariant under phase rotations (φa,na) 7→ (φa,na)e
−iϵ, which results in

a Nöther-current of the form

ρN =iρ (φan
∗
a −φ

∗
ana) ,

jN =iρ
[
v (φan

∗
a −φ

∗
ana) +φa∇φ∗

a −φ
∗
a∇φa + 1

4
(na∇n∗

a − n
∗
a∇na)

]
,

(2.20)

*That δΦ and δρ share coefficients amounts to saying that their phases co-evolve, and differ only by a constant.



18 Quantum Vortex Instabilities Chapter 2

satisfying a conservation law
∂tρN +∇ · jN = 0. (2.21)

Inserting the mode definitions (2.13) and (2.18) into (2.17), we find that for u± at a fixed frequency
ω,

u± =
√
ρ

(
1

2
na ± iφa

)
αae

−iωt. (2.22)

This may be used to identify the conserved quantity (2.20) as the norm N introduced in (2.15), i.e.
N =

∫
ρNd

2x.
Before moving on, we may benefit from the observation that the linearised hydrodynamic La-

grangian (2.19) is also symmetric under time translations t 7→ t + ϵ. This results in the conserva-
tion of the energy current ρE and jE, which is related to the norm current through ρE = ωρN and
jE = ωjN.

This reinforces the idea of the norm as the particle number since each quasi-particle in the mode
contributes with an energy proportional toω. Moreover, we see that for positive frequency modes,
modes with negative norm have negative energy. Therefore, in the special case of positive frequency
modes, we may think of superradiance as the following conceptual mechanism: if a positive energy
mode excites a negative energy mode, energy conservation dictates that the positive energy mode
must return with larger energy than it had initially.

III.1. The WKB perspective
We now approach the linearised hydrodynamical equations (2.16) using the
Wentzel–Kramers–Brillouin (WKB) approximation. At the heart of the WKB method lies
the assumption that solutions look locally like plane waves. More precisely, the WKB method is
a type of multi-scale expansion where the phase is assumed to vary over much smaller scales than
the amplitude. Because we will use this approach throughout this thesis, appendix A has been
dedicated to the WKB method.

We start by writing equations (2.16) in terms of the decomposition (2.18), i.e.

∂2rφ̃+ (∂r ln ρ)∂rφ̃+
1

r
∂rφ̃ =

m2

r2
φ̃+ iΩñ, (2.23a)

∂2rñ+ (∂r ln ρ)∂rñ+
1

r
∂rñ =

m2

r2
ñ− 4iΩφ̃+ 4ρñ, (2.23b)

where
Ω = ω−

mℓ

r2
(2.24)

is the frequency in the co-moving frame. Unfortunately, applying the WKB approximation to equa-
tions (2.23) is unjustified close to the core, r ≃ 0. The problem is the factors ∂r ln ρ that appear
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in both equations. Using the asymptotics (2.11) for ρ as r → 0 along with the Bessel asymptotic
Jℓ(

√
2r) ∼ (r/

√
2)ℓ, we find ∂r ln ρ ∼ 2ℓ/r. Becausem and ℓ are of the same order, ln ρ changes

over the same scale as the phase (m/r), which violates the WKB assumption of a separation of scales
in phase and background.

Salvation comes from the realisation that the offending term can be eliminated by introducing

φ̃ ≡ ρ− 1
2 f, ñ ≡ ρ− 1

2g, (2.25)

which reduces the equations in (2.23) to,

r2∂2rf+ r∂rf− m̃
2f =iΩr2g, (2.26a)

r2∂2rg+ r∂rg− m̃
2g =4ρr2g− 4iΩr2f. (2.26b)

Here, the relation (2.10) for Y(r) has been used to write

m̃2 = m2 + ℓ2 + 2r2(ρ− 1). (2.27)

The factor 1/√ρ in (2.25) cancels that contained in Ψ (see e.g. (2.8)), so that the new equations
(2.26) can be viewed as an intermediate step in converting the BdG equation (2.12) to the hydro-
dynamic equation (2.16). The benefit of this rewriting is that there are no derivatives of any back-
ground quantities which become large when approaching the origin. Now we can write a WKB
ansatz for the waves

f(r) ≡ 1√
r
A(r)ei

∫
p(r)dr and g(r) ≡ 1√

r
B(r)ei

∫
p(r)dr, (2.28)

where ∂r(A/
√
r) ≪ pA, ∂r(B/

√
r) ≪ pB. Here, the factors of 1/

√
r have been taken out of

the amplitudesA andB for future convenience. Conceptually, these pre-factors correspond to the
geometrical decrease in the amplitude of a wave due to the spreading of energy over a larger circle as
the wave moves radially outwards. To leading order, the WKB expansion (see appendix A) of (2.26)
gives the dispersion relation

Ω2 = F(k)k2 where F(k) ≡ ρ+ 1
4
k2 for k2 ≡ p2 + m̃2/r2. (2.29)

Note that as r → ∞, inserting (2.11) into (2.27) informs us that m̃ → m as r → ∞. Therefore,
the dispersion relation (2.29) reduces to the well-known Bogoliubov dispersion (see e.g. [138, 139])
in polar coordinates. The dispersion relation has two branches

ω±
D =

mℓ

r2
±
√
F(k)k2, (2.30)

and modes withω = ω+
D are referred to as being on the upper branch and modes withω = ω−

D

on the lower branch. We shall soon see that modes on the upper branch have positive norm, and
that modes on the lower branch have negative norm.
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Being a quartic polynomial in p, the dispersion relation (2.29) has four roots in p for a fixed
frequencyω. We label these roots

p±(r) ≡ ±
√

−W+, p̃±(r) ≡ ∓i
√
W−, (2.31a)

W± ≡ ∓ 2
√
ρ2 +Ω2 + 2ρ+ m̃2/r2. (2.31b)

Modes with p̃± are evanescent everywhere, p̃+ grows with increasing r, and p̃− decays. At large r,
modes withp± are radially in and out-going propagating plane waves. The direction of propagation
is given by the radial component of the group velocity

vrg = ∂pω
±
D =

ρ+ k2/2

Ω
p. (2.32)

To determine the WKB amplitudesA andB (2.28), we consider the next-to-leading order WKB
expansion. The result, which can be found in equation (A.9), in appendix A, can be written*

∂r
(
QA2

)
= 0 withQ ≡ F−1Ωvrg =

ρ+ k2/2

ρ+ k2/4
p. (2.33)

This means that the radial variations ofA are given byA ∝ |Q|
− 1

2 , andB is given by vrgB = iQA,
see equation (A.6) in appendix A.

When the dust settles, we have obtained expressions for the original φa and na modes given
by,

φa ≃A exp

[
i

∫
p(r)dr+ imθ− iωt

]
for A ≡

∣∣rρF−1Ωvrg
∣∣−1/2

, (2.34a)

na ≃B exp

[
i

∫
p(r)dr+ imθ− iωt

]
for B ≡ i

∣∣rρFΩ−1vrg
∣∣−1/2

. (2.34b)

Armed with these expressions, we can write the norm density in (2.20), as

ρN =
2ρΩ|φa|

2

ρ+ k2/4
. (2.35)

Sinceρ,k2 andφa are non-negative everywhere, we see that the sign of the norm densityρN follows
the sign of Ω. That is, modes on the upper branch (ω+

D) have positive norm, and modes on the
lower branch (ω−

D) have negative norm. In particular, positive frequency modes can have negative
energy, provided they are on the negative norm branch.

*This equation is the motivation for the convenience factors 1/
√
r introduced in (2.28).
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III.2. Scattering of WKB modes

If the WKB approximation breaks down in some region, then one WKB-solution may be scattered
into one or more of the WKB-solutions on the other side of the failing region. An important ex-
ample of where this scattering occurs is at radial turning points rtp, which are the locations where
a wave stagnates radially, i.e. vrg = 0 (see section A.3 appendix A for details). From (2.32), we see
that this occurs for p = 0, and since W− > 0 everywhere, only the p± expressions from (2.31)
exhibit scattering. In fact, the p̃± modes are evanescent everywhere and do not scatter other than
potentially at the boundary.

To investigate the turning points rtp, it is convenient to introduce the turnover frequencies,

ω±(r) =
mℓ

r2
±
√
ρ
m̃2

r2
+
m̃4

4r4
, (2.36)

which sets the frequency of a mode that stagnates at r. That is, a mode with frequency ω has
turning points rtp atω = ω±(rtp). See Figure 2.2 for examples of turnover frequenciesω±(r)
for ℓ = 2 andm = 1, 2, 3, 4.
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Figure 2.2 (Turnover frequencies) The turnover frequencies ω+ (solid black line) and ω−

(dashed black line) with ℓ = 2 for the first four m > 0 values. Modes above ω+ have positive
norm whereas those below ω− have negative norm. Between the two curves (red region) modes
are evanescent, and not propagating. In the frequency band between the horizontal black dotted
lines, waves can be trapped in a cavity in the vortex core (yellow region) and become (quasi-)bound
states. The possibility of there being modes with positive norm at infinity but negative norm in the
cavity is what leads to the vortex instability. The frequency range where propagating modes outside
(ω ⩾ ω+) the core can interact with the cavity modes (ω ⩽ ω+) is coloured green. Inverting the
vertical axis aboutω = 0 and swapping the labelsω+ ↔ ω− gives the corresponding plots for
them < 0 modes.
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Note thatω = ω+ is a turning point on the positive norm branch (upper branch) andω =
ω− is a turning point on the negative norm branch (lower branch). If a positive frequency mode
ω > 0 has turning points on both branches, i.e ω = ω−(r1) and ω = ω+(r2), there exists a
scattering process between positive and negative energy modes. A positive energy mode at r > r2
may tunnel through the evanescent region r1 < r < r2, and scatter into negative energy modes in
r < r1. To conserve energy, such a process results in an amplification of the outer, positive energy
mode at r > r2. This is the essence of the superradiance mechanism.

Before formulating the exact scattering process, we need to check the asymptotic behaviour of
our WKB modes (2.34) as they approach the origin*.

From (2.11), we know that ρ → 0 as r → 0, meaning that the BdG equation (2.12) reduces to
the Schrödinger equation in the vortex core. In terms of u±, we have

1

2r
∂r (r∂ru±) −

(m± ℓ)2
2r2

u± + (1±ω)u± = 0, (2.37)

whose solution are of the form

u±(r→ 0) = α±Jm±ℓ
(
εr
)
+ β±Ym±ℓ

(
εr
)

for ε ≡
√
2± 2ω (2.38)

whereα± andβ± are constants. If the WKB modes (2.34) have the correct limiting behaviour, they
should agree with f and g in u± ∼ 1

2
g+ if using (2.38) when taking the limit r→ 0. For this, we

first need to know the asymptotic behaviour of the different values of p in (2.31), which is found to
be

−W±
r→0
∼ −

1

r2
(ℓ∓ |m|)2 + ε2± + O(r2) for ε2± ≡ 2∓ 2ω sgn(m). (2.39)

First, for the evanescent modes p̃± ≡ ∓i√W− we have p̃± ∼ |ℓ+|m||/r to leading order. Inserting
this in (2.33) and (2.34) results in the WKB amplitudes being constant. That is, we have the following
scaling relation

Ã±ei
∫
p̃±dr ∼ r∓|ℓ+|m||. (2.40)

First, if |m| = ℓ we have p± ≡ ±√
−W+ ∼ ε+. Inserting this in (2.33) and (2.34), results in the

amplitude scaling as1/
√
r. For |m| ̸= ℓ, we findp± = ±i|ℓ−|m||/r to leading order. Substituting

this for p in (2.33) introduces an additional factor of
√
r which cancels that in the amplitudes of

(2.34), leaving the amplitudes constant to leading order. That is

A±ei
∫
p±dr ∼

{
r−

1
2e±iε+r for |m| = ℓ

r∓|ℓ−|m|| for |m| ̸= ℓ (2.41)

*We have already seen that asymptotic behaviour as r → ∞ is, as expected, that of plane waves with Bogoliubov
dispersion.
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Notice that since ε2+ > 2− 2ω sgn(m), the modes (2.41) are propagating for allm < 0, and also
form > 0 withω < 1, and evanescent otherwise.

Since, for |m| ̸= ℓ, the Bessel functions scale as

Jm±ℓ ∼ r
|m±ℓ|, Ym±ℓ ∼ r

−|m±ℓ|. (2.42)

It is clear that for |m| ̸= ℓ the WKB modes can be written in the form of the solutions (2.38), i.e.
they have the correct limiting behavior.

For |m| = ℓ, it is a bit more complicated. Whereas the p̃± modes match the Bessel asymptotics
(2.42), the remaining two modes p± do not match the zeroth order Bessel asymptotics J0 and Y0.
This can be seen from noting that the amplitude in (2.41) is diverges as 1/

√
r, whereas J0 is regular

and Y0 is only logarithmically divergent, i.e. Y0 ∼ ln r as r → 0. In fact, that the amplitude in
(2.41) diverges for |m| = ℓ signals the breakdown of the WKB assumption, and we have to perform
an asymptotic matching procedure similar to that discussed in appendix A.4. That is, we consider
the asymptotics of the remaining exact solutions for u− in (2.38) as r → ∞, and match with the
asymptotics in (2.41) for |m| = ℓ. For large arguments, we recover the asymptotic behaviour of the
WKB modes,

[
J0(εr)
Y0(εr)

]
∼

1√
r

[
cos (εr− π/4)
sin (εr− π/4)

]
=

1− i

2
√
2

[
1 i

1 −i

] [
r−

1
2eiεr

r−
1
2e−iεr

]
, (2.43)

meaning that the J0 solution contains WKB modes with A− = iA+, whereas the Y0 solution con-
tains modes with A− = −iA+. Note, however, that since Y0 diverges at the origin, the amplitudes
of these modes must be zero. Therefore the boundary condition for |m| = ℓ as r→ 0 is

A−(r0) = iA
+(r0) (2.44)

In other words, for |m| = ℓ the boundary condition that ensures regularity at r = 0 is that of a
reflection with a phase shift if π/2. In fact, if we return to the case of |m| ̸= ℓ, we may use the
transfer matrix T̃ from (A.39), along with the condition that the evanescent mode (k̃+r ) that grows
with decreasing r is zero, to find that A− = iA+ at the innermost turning point r0. That is, the
boundary condition (2.44) is valid in both scenarios, with r0 = 0 for the case |m| = ℓ, and with
r0 being the innermost turning point for |m| ̸= ℓ. When a boundary condition at the origin is
necessary, as it is for numerical simulations, then it suffices to observe that for |m| ̸= ℓ, the relations
(2.42) and (2.38) requires u± → 0 as r → 0 for solutions to be regular at the origin. That is, for
u± with |m| ̸= ℓ, the boundary condition at the origin is Dirichlet, i.e. vanishing amplitude.

To summarise, in this section we have constructed a formalism for the evolution of fluctua-
tions in a condensate with a central ℓ-wound vortex. We saw that fluctuations conserve the norm
(2.15), and that using a WKB approximation, we can identify the two branches of the dispersion
relation ω±

D with positive (ω+
D) and negative (ω−

D) norm. We then considered the scattering of
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WKB modes in the presence of turning points, allowing us, by virtue of the formalism discussed in
appendix A, to relate amplitudes at any two points in the condensate. Finally, we confirmed that
the WKB modes have the correct behavior as r→ 0 comparing their asymptotic forms (2.40) and
(2.41) to the exact solutions (2.38) in the low-density limit.

IV. The dynamical origin of the multiply quantised
vortex instability

IV.1. Open systems

To start, let us consider a multiply wound vortex in an infinite, or open, two-dimensional con-
densate. That is, a system in which there either is no outer boundary perfectly absorbs impinging
waves.

We note that since the p̃+ mode diverges at infinity and p̃− diverges at the origin, and neither
of the two scatters, we may consistently set the amplitudes of these modes to 0. This leaves only
the p± modes, which for a given frequency ω may have zero, one, two or three turning points
(see figure 2.2). If there are no turning points, the wave will be reflected entirely off the origin.
Likewise, if there is only one turning point, then the mode is perfectly reflected off this point. Since
there are no incoming modes, there are no resonant frequencies in these cases. That is, in absence of
incoming modes, a cavity (orange region in figure 2.2) is needed in order to trap modes and facilitate
resonance.

Fortunately, the boundary condition (2.44) at the origin, which is needed when there are two
turning points, takes the same form as the boundary condition at the innermost turning point r0,
which is needed in the case of three turning points. That is, we may introduce radii r0 ⩽ r1 ⩽ r2
such that thep± modes are propagating in the regions r ∈ [r0, r1] and r ∈ [r2,∞), and evanescent
in r ∈ [r1, r2]. Here, we either identify all three r0, r1, r2 with turning points, or r1, r2 with turning
points and r0 = 0.

Using the transfer matrices*

T ≡ 1

2
e−

πi
4

[
2i 1
2 i

]
and T̃ ≡ 1

2
e−

πi
4

[
2 2i
i 1

]
(2.45)

derived in appendix A, amplitudes A±∞ at r→ ∞ can be related to amplitudes A±
0 at r0 using the

*Note that these matrices are defined differently from those in the published article [62]. In this convention, the
evanescent WKB propagator is diagonal, whereas in the alternative notation the propagator must be flipped for the
evanescent amplitudes to match on either side. This change in convention is chosen to be consistent with that of the
next chapter.



Section IV The dynamical origin of the multiply quantised vortex instability 25

following sequence of WKB propagators and transfer matrices
[
A+

0

A−
0

]
=

∣∣∣∣
Q(∞)

Q(r0)

∣∣∣∣
1
2
[
e−iS01 0

0 eiS01

]
T

[
eS̃12 0

0 e−S̃12

]
T̃

[
e−iS2∞ 0

0 eiS2∞
] [

A+∞
A−∞
]
, (2.46)

where
Sij ≡

∫ rj
ri

√
−W+dr (2.47)

and S̃ij ≡ iSij. Here, Sij is the accumulated WKB phase after propagation from rj to ri. From
the relation (2.44), the inner amplitudes A− and A+

0 are related by A−
0 = iA+

0 . Likewise, the
amplitudes at infinity are constrained by the absence of incoming waves, i.e. A−∞ = 0. As shown
in section A.4.3 of appendix A, equation (2.46) permits non-zero amplitudes when supplying the
aforementioned boundary conditions if

4 cot(S01) = ie
−2S̃12 (2.48)

For real frequencies ω, both S01 and S̃12 are real, meaning that (2.48) can only be solved if the
tunneling contribution is infinite, i.e. S̃12 → ∞. In general, one must allow for complex values
ωc = ω + iΓ ∈ C in (2.31b) for solutions to exist. Note that the existence of complex resonant
frequenciesωc = ω+iΓ means that the resonant modes are either exponentially growing (Γ > 0)
or decaying (Γ < 0) over time. To distinguish modes of this kind from normal resonant modes,
they are referred to as Quasi-Bound States (QBSs) or Quasi-Normal Modes (QNMs). Assuming
weak growth rates Γ compared to the oscillation frequencyω, i.e. |ω| ≪ |Γ |, we may expand the
integrated phases S01 in (2.48),

S01(ω) = S01(ωR) + iΓ∂ωRS01. (2.49)

Inserting this into (2.48) and separating real and imaginary parts yields

cosS01(ω) = 0, Γ = −
logX(ω)

2∂ωS01(ω)
for X ≡ 4+ e−2S̃12

4− e−2S̃12
. (2.50)

Where the first condition determines the oscillatory frequencyωR, and the second determines the
growth, or decay, rate. The oscillatory condition can be seen as a Bohr-Sommerfeld quantization
condition (A.44), with additional, non-trivial phase shiftsπ/4 supplied at each turning point. The
condition for the imaginary part can be interpreted by identifying T = 2|∂ωS01| with the time
it takes the mode to travel from r1, to r0 and back (see e.g. (A.20) from appendix A.3). Here, +
corresponds to a positive norm mode in the region r0 < r < r1, and − a negative norm mode.
Over a full period, the change in amplitude can be written eΓT = |R±| where |R+| ≡ 1/X for the
positive norm mode and |R−| ≡ X for the negative (see appendix A). Since X > 1, the positive
norm mode exponentially decays over time, while the negative norm mode grows exponentially.

Numerically estimated solutions to (2.50) are shown in Table 2.1. We find that the ℓ = 1 vortex
is stable, as it should be.
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ℓ m ω Γ

2 2 0.3965 2.565× 10−3

3
2 0.2476 1.926× 10−3

3 0.6619 7.867× 10−4

4 0.2166 2.398× 10−7

4

2 0.1855 1.617× 10−3

3 0.4782 8.759× 10−4

4 0.1172 3.548× 10−8

5 0.4715 1.245× 10−6

6 0.1284 6.886× 10−13

7 −0.2173 3.021× 10−8

5

2 0.1505 1.440× 10−3

3 0.3773 8.299× 10−4

4 0.6282 2.665× 10−4

5 0.3237 6.378× 10−7

6 0.6263 7.591× 10−7

...
...

...

Table 2.1 (WKB resonances in open systems) The numerically estimated unstable frequencies
ωc = ω+ iΓ for the first few ℓ computed numerically under the WKB approximation (2.50).

IV.2. Closed systems
We have now seen (section IV.1) how an instability of fluctuations around a multiply wound vor-
tex in an infinite system arises from the interaction between a negative energy mode in the vortex
cavity, and a positive energy mode outside. However, it is practically impossible to create truely
open systems in a laboratory setting. Instead, one typically has a finite outer boundary rB of the
condensate which is at least partially reflective. Note that this dramatically changes the resonance
condition (2.48) in open system as we now have to permit incoming modes in (2.46) resulting from
the reflection of outgoing modes at the finite boundary rB.

To model the outer wall, we shall, for the remaining part of this chapter, focus on the behaviour
of the aforementioned instability when the condensate is placed in a finite-sized box-trapU. This
external trapU is constructed such that outside the boundary at rB, the energy cost of a condensate
particle is larger than its chemical potential, i.e. U > 1 at r > rB. In this chapter, and the next, we
shall consider a family of smooth bucket traps of the form

U(r) =
U0

1+ (U0 − 1)ea(rB−r)
, (2.51)

whereU0 > 0 controls the strength of the trap outside rB, anda > 0 controls the abruptness of the
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step (see panel Figure 2.3(a) for the function plotted). The function (2.51) smoothly fromU(r) ≃ 0
for r ≪ rB toU(r) ≃ U0 for r ≫ rB with the slope at r = rB, which is a(U0 − 1)/U0, being
controlled by the parameter a. It is defined such thatU is larger than the chemical potential when
r ⩾ rB, i.e.U(rB) = 1. Note that if a,U0 → ∞, then the trap (2.51) is effectively an infinite wall,
i.e. U = 0 for r < rB withU = ∞ at r ⩾ rB.

The Outer Boundary Condition

If the outer boundary rB is distant, i.e. rB ≫ ℓ, then the equation (2.10) for the density around a
stationary vortex can be written in a one-dimensional form

∂2r
√
ρ ≈ 2(ρ− 1)

√
ρ, (2.52)

in the vicinity of rB. Then, determining the correct boundary conditions at rB is equivalent to
investigating how a fluctuations on a one-dimensional condensate collides with a wall. Using a
hard wallU = ∞ at r ⩾ rB withU = 0 for r < rB, one must have ρ(rB) = 0. The solution to
(2.52) satisfying this boundary condition is

ρ ≈
{
tanh2(rB − r) for r ⩽ rB
0 otherwise

, (2.53)

which changes from the uniform density ρ ≈ 1 to ρ = 0 at rB over a few healing lengths. This
transition arises due to the quantum pressure term in (2.6), and is related to the healing length in-
troduced in (2.2), which is the length scale below which the self-interaction of condensate particles
is able to efficiently heal inhomogeneities [111].

To confirm the boundary condition, three different numerical simulations of a right-moving
gaussian pulse colliding with a boundary at rB are considered. First, using a numerical method
for simulating the full one-dimensional GPE (see appendix B section B.2.3 for details) with the
soft trap introduced in (2.51). This is compared to a simulation of the BdG equation (2.12) (see
appendix B section B.2.2 for details) using the background density (2.53) with a dirichlet boundary
at rB, i.e. δψ(rB) = 0. Finally, we consider a simulation of the BdG equation (2.12) with a uniform
background density ρ = 1, and a Neumann boundary condition at rB, i.e. ∂rδψ(rB) = 0. The
result, shown in figure 2.3, confirms that the two choices of boundary conditions are equivalent.
That is, we can either include the density depression (2.53) in the background density and use a
dirichlet boundary condition δψ = 0 at rB, or we can take the uniform density ρ ≃ 1 at rB and
use a Neumann boundary condition ∂rδψ = 0 at rB. For convenience, we shall choose the latter,
which, in terms of A±

B becomes*
A+
B = A−

B . (2.54)

*This follows from imposing the Neumann criterion ∂rϕ = 0 on ϕ = A+(rB)e
ikrr + A−(rB)e

−ikrr at the
boundary r = rB.
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Figure 2.3 (Effective Boundary Condition) A right-moving gaussian pulse of width σ = 5
and amplitude a0 ≡ 0.01 is reflected off a boundary at x = 0 in three different situations: (1)
The simulated full GPE evolution (orange) using a soft bucket trap a = U0 = 5 of the form
(2.51) as depicted in panel (a), (2) the BdG evolution using the background density (black dashed)
ρ = tanh2 x from (2.53) with a Dirichlet boundary condition at x = 0 and (3) the BdG evolution
using a uniform density ρ = 1 (black solid) with a Neumann boundary at x = 0. In panel (b),
the background densities are shown, and in panels (c), (d) and (e) snapshots of the evolving pulse
is shown at three instances t0 = 69, t1 = 75 and t2 = 81. It is clear that evolving pulse using the
true background density and boundary conditions (orange) is well approximated by the hard wall
BdG (black dashed). Moreover, the agreement of the solid black lines with the black dashed lines
means that the boundary is well approximated by a uniform density all the way up to the boundary,
and an effective Neumann boundary condition at x = 0.
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Before computing the resonance condition, we note, as before, that the evanescent modes must
vanish at rB, i.e. Ã±

B = 0. Since it diverges at the origin, and it does not scatter, we must have
Ã−
B = 0. Then Ã+

B must also be zero since, if it was not, it would reflect into the forbidden mode
Ã−
B at rB.

The Resonance Condition

The formulation of the resonance condition (2.46) in open systems remains perfectly valid in the
closed system, provided that the amplitudes A±∞, and phases S2∞ are instead evaluated at rB, i.e.
A±∞ 7→ A±

B ≡ A±(rB),Q(∞) 7→ Q(rB) and S2∞ 7→ S2B. Therefore, the only missing ingre-
dient in the resonance condition (2.46) is the boundary condition at rB, which we found in the
previous section to be A+

B = A−
B . Note that in a closed system, we expect a discrete set of normal

modes also in the case of only one, or two turning points. As these do not exhibit any instabilities,
we shall specialise, as before, to the case of two or three turning points inside the boundary rB. Re-
cycling the notation from section IV.1, we write r0 < r1 < r2 < rB, so that the matrix that relates
amplitudes A±

B at rB to amplitudes A±
0 at r0 takes the form,

[
A+

0

A−
0

]
=

∣∣∣∣
Q(rB)

Q(r0)

∣∣∣∣
1
2
[
e−iS01 0

0 eiS01

]
T

[
e−S̃12 0

0 eS̃12

]
T̃

[
e−iS2B 0

0 eiS2B

] [
A+
B

A−
B

]
, (2.55)

in direct correspondence to (2.46). Now invoke the boundary condition A+
0 = iA−

0 from (2.44)
at the origin, and the Neumann boundary condition A−

B = A+
B from (2.54) at rB. Following the

procedure detailed in section A.4.4 of appendix A, the resonance condition in closed systems takes
the form

4 cot(S01) cot(S2B + π/4) = e−2S̃12 . (2.56)

Here, the only difference from the resonance condition (2.48) for open systems, is the inclusion of
an additional cotangent on the left at the expense of the imaginary unit on the right. If the two
propagating regions r ∈ [r0, r1] and r ∈ [r2, rB] are well separated, then exp(−2S̃12) ≃ 0, so that
if only one of the two cotangents in (2.56) are small, then the resonant modes are given by either
cos(S01) ≃ 0 or cos(S2B+π/4) ≃ 0. That is, the resonance condition decouples into two discon-
nected cavity conditions, where the first, which is located inside the vortex core, is in agreement with
the condition (2.50) found for open systems. We shall refer to modes of this kind as cavity modes, as
they are trapped inside the vortex cavity. The second, i.e. cos(S2B+π/4) ≃ 0, signals the presence
of normal modes outside the vortex core. These will be referred to as phonon modes. Here, the fac-
tor π/4 originates from the absence of a non-trivial phase-shift at the Neumann boundary rB. In
fact, as shown in section A.4.4 of appendix A, if we instead consider a general, reflecting boundary
condition of the form A−

B = e2iηA+
B at rB for η ∈ R, the result would be that of a phase-shift of

S2B by η, i.e. S2B 7→ S2B + η.
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Figure 2.4 (BdG Eigenmodes) Panels (a) and (b): The oscillation frequenciesω and mode func-
tions for different eigenmodes of the BdG equation (2.57) form = ℓ = 2 and two different sizes
rB = 19.5 (stable) and rB = 17.5 (unstable) for panels (a) and (b) respectively. The density fluctu-
ations√ρ0δρ = u++u− are drawn around the real frequencies Re(ω) and colored according to
their norm: green modes have positive norm (N > 0), orange modes have negative norm (N < 0),
and red modes have zero norm (N = 0). As in figure 2.2, the orange regions (ω < ω−) have nega-
tive norm and the green regions (ω > ω+) have positive norm. The vertical dotted lines signal the
location of the potential boundary rB. Panels (c) and (d): The eigenvaluesω of the BdG equation
(2.57) as functions of the trap size rB. Panel (c) shows the real part Re(ω) of the frequencies, and
panel (d) shows the imaginary part Im(ω). The BdG frequencies are colored as in panels (a) and
(b), i.e. red for N = 0 (unstable), orange for N < 0 (cavity) and green for N > 0 (phonon). Ver-
tical black lines highlights the values for rB chosen in panel (a) (dot-dashed) and (b) (dotted). The
solutions to the WKB resonance condition is shown as a black curve, solid for the cavity mode, and
dashed for the phonon modes.
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Examples of the density eigenfunctions √ρ0δρ = u+ +u− are shown in panels (a) and (b) of
figure 2.4 for trap sizes rB = 17.5 and rB = 19.5 respectively. Here, mode amplitudes in the region
ω < ω− (orange) contibutes negatively to the norm, whereas amplitudes in the regionω > ω+

(green) contributes positively.
Note that when cavity modes and phonon modes are decoupled, i.e. when only one of the

cotangents in (2.56) are close to zero, but not both, then the system is stable. If the roots of the cotan-
gents are close, however, then the system does not decouple into two cavities, i.e. cos(S01) ≃ 0
cos(S2B + π/4) ≃ 0. Instead, the two cavities interact and, as in the open system, complex fre-
quencies are needed to solve the resonance condition. The resulting unstable modes are a combi-
nation of cavity and phonon waves, which permits the outer, positive energy phonon part to grow
as it excites the negative energy wave in the cavity. In turn, the cavity mode is further amplified by
transmitting positive energy out of the cavity. This perpetual amplification is what causes the in-
stability. Note, however, that the exponential growth is permitted only because the unstable mode
is formed in such a way that it has zero norm. In fact, the BdG equation (2.12) can be shown to
respect the identity Im(ω)N = 0, meaning that any unstable mode with Im(ω) ̸= 0 must have
zero norm (N = 0).

To estimate the complex frequencies, we consider, as in the open system, an expansion to linear
order of all three phases S → S + iΓ∂ωS for S = S01, S̃12,S2B. The resulting expression for Γ
only takes non-zero values when the phase integrals fail to satisfy the resonance condition (2.56) for
real frequencies. The frequencies that solve the WKB resonance condition (2.56), are shown (black
curve) in panels (c) and (d) of Figure 2.4. For comparison, the BdG eigenmodes are shown in the
same panels as red (zero norm), orange (negative norm) and green (positive norm) curves. These
curves are found by diagonalising a discrete formulation, using 5-point centered finite difference
stencils for radial derivatives, of the BdG (2.12) decomposed in frequency, i.e.

L̂|ψ̃⟩ = ω|ψ̃⟩ for |ψ̃⟩ ≡ (ũ+, ũ−)
T (2.57)

with the corresponding eigenfunctions |ψ̃⟩ = (ũ+, ũ−)
T where u± ≡ ũ±e−iωt giving the solid

lines shown in panels 2.4(a) and 2.4(b). The figure depicts a system which is dynamically unstable
for some trap sizes rB, but not for others. As the system size rB increases, the density of states
increases, and every time a phonon mode in the outer cavity r ∈ [r2, rB] crosses the cavity mode,
an unstable region appears.

It should be noted that when (2.57) is solved by ũ± with a complex frequencyωc = ω + iΓ

then, since L̂ is a real operator, the conjugate ũ∗
± with ω∗

c = ω − iΓ is also a solution. That is,
the unstable growing mode, hereby labelled ũ↑

± is always part of a conjugate pair, with the other
solution, hereby labelled ũ↓

± ≡ (ũ↑
±)

∗, being an exponentially decaying solution. This mode de-
scribes the unstable process in reverse, i.e. the transmission of negative energies from the cavity to
the phonon.

From figure 2.4(c), we see that the BdG phonon spectrum (green curves) is very well predicted
by WKB (dashed black curves), which can be approximated by cot(S2B + π/4) ≃ 0. This is as
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expected since the background is slowly changing here. The cavity mode predicted by WKB (black
solid line), however, exhibits a clear mismatch with the BdG solutions (solid orange and red). This
mismatch, which can be associated with an inaccurate determination of the cavity phase S01, is also
expected due to the quickly varying density in this region. Despite this, the WKB resonances still
captures all the essential features of the instability and, in particular, the crossing of negative norm
modes with positivive norm modes. Therefore, the resonance condition (2.56) may still be used to
interpret the mechanism for the instability.

It has been noted in the literature (see e.g. [61, 140]) that for an asymptotically large system,
the unstable frequency should asymptote to that of the open system IV.1. This is not at all obvi-
ous as imposing open and closed boundary conditions are two completely different procedures.
Fortunately, our WKB boundary condition (2.56), which can be rewritten

e2iS01 + X = −ie2iS2B(Xe2iS01 + 1), for X ≡ 4+ e−2S̃12

4− e−2S̃12
, (2.58)

can help elucidate this behaviour. For small growth rates, i.e. |Γ | ≪ |ω|, we may, as before, ap-
proximate S2B(ωc) ≃ S2B(ω) + iΓτB with τB ≡ ∂ωS2B. It follows that the right side of (2.58)
becomes exponentially suppressed by τB, which can be interpreted as the time it takes the mode to
propagate from r2 to rB. Since, τB ∼ S2B, we must have τB → ∞ as rB → ∞, so that the res-
onance condition (2.58) for the closed system asymptotes to that of the open system, i.e. equation
(2.48). In other words, by the time a once escaping wave has returned from the reflecting boundary,
the waves near the core will have grown so much that the returning wave is negligible in comparison.

V. The Evolution of the Doubly Quantised Vortex
We now look more deeply into case of a doubly-wound (ℓ = 2) vortex in a finite-size bucket trap
of the form (2.51) by comparing with numerical simulations of the full non-linear dynamics of the
GPE (2.4). In the linear theory presented in the previous sections, there is no mechanism that pre-
vents the unbounded growth of the unstable mode. However, when nonlinearities are taken into
account, one expects the unstable mode to eventually become non-perturbative and modify the
background on top of which the fluctuations evolve. In particular, the multiply wound phase sin-
gularity at the centre should split into singly wound singularities. Armed with the formalism for the
origin of the instability discussed in the previous sections, we may now investigate the dynamical
decay of the doubly quantised vortex. In so doing, we will identify a peculiar recurrent behaviour
of the instability at late times.

V.1. Numerical Simulation
The numerical simulations of the vortex instability proceeds in three main steps: (1) Preparing the
initial state, (2) time evolution by numerically solving the GPE (2.4) and (3) extraction of the modes
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and tracking the phase singularities.
Because the instability of the multiply wound vortex (2.8) is caused by the exponential ampli-

fication of a certain fluctuation about the ground state, it needs to be seeded. In a realistic setup,
such an initial seed for the unstable mode is automatically provided by the ever-present background
noise. Instead of a full statistical treatment, we shall consider the idealised case of an initial state con-
sisting of a stationary background density ρ perturbed only by the unstable mode, and weakly at
that.

Following the procedure discussed in section IV.2 results in a discretized approximation for the
stationary background densityρ(ri) at linearly spaced radial locations ri, as well as the approximate
solutions for the mode functions |U⟩ = (u+,u−)

T , corresponding to the unstable solution, i.e.
the eigenvector whose eigenvalue has the largest (positive) growth rate Γ (see equation (2.49)). The
initial stateΨ0 may then be constructed from

Ψ0(r, θ) = e
iℓθ
[√
ρ(r) + εu+(r)e

imθ + εu∗
−(r)e

−imθ
]
, (2.59)

where ε ≪ 1 is the initial amplitude of the unstable mode. Note that to prevent artefacts in the
numerics, both the density ρ and the BdG eigenmodes |U⟩ are computed, including the density
depression at the boundary, and with a Dirichlet boundary condition at the numerical boundary
r≫ rB.

The initial phaseΦ(r, θ, t0) and density ρ(r, θ, t0) for an initial condition of the form (2.59)
is shown in panels (a) and (c) of figure 2.5 in the case of an ℓ = 2 vortex with an unstablem = 2
mode with amplitude ε = 10−3.

The state Ψ0(r) from (2.59) is taken as the initial state for the evolution given by the full GPE
(2.4). The cartesian plane is discretized into a linearly spaced mesh ofN×N pixels of separation∆l
in each dimension, where ∆l is taken to be well below 1 to resolve the vortex core accurately. The
time evolution is performed in discrete steps of duration∆t using a pseudo-spectral time-splitting
scheme (see B.2.3 for details). Here, a Fourier spectral basis is chosen so that the exponentiated
Laplacian ∇2 from the kinetic term in (2.4) can be efficiently evaluated. For this to work, the nu-
merical boundariesx,y = ± 1

2
(N−1)∆l of the simulated domain need to extend well outside the

potential boundary rB, so that the wavefunction Ψ is sufficiently periodic. Using this procedure,
8192000 = 16384 × 500 timesteps are performed, out of which every 500th frame is stored for
post-processing*. The result is a collectionΨ(xi,yj, tk) ∈ CN2×Nt ofN2×Nt complex numbers.

To extract the evolution of the fluctuations, the cartesian meshΨ(xi,yj, tk) is first interpolated
onto a polar mesh Ψ(ri, θj, tk), followed by a fourier transform in the azimuthal direction. The
result is ψmj

(ri, tk), where mj ∈ Z is the jth azimuthal component. Since the relaxed vortex is
rotationally symmetric, any population of non-zero azimuthal numbersm automatically gives the
fluctuations from (2.13), i.e. ψmj

(ri, tk) ≃ u(mj)
+ withψ∗

−mj
(ri, tk) ≃ u(mj)

− formj ̸= 0.

*The number of data points varies with each simulation.
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Figure 2.5 (Simulated vortex decay) Numerical simulation of an initial ℓ = 2 vortex in a trap of
size rB = 25 as it decays into two separate ℓ = 1 phase singularities caused by an unstablem = 2
mode of initial amplitude ε = 10−3. Panels (a) and (b) display the phaseΦ of the wavefunctionΨ
at times t0 = 0 and t1 = 763 respectively, and panels (c) and (d) show the density ρ at the same
times. In panel (e), the difference ρ(t1) − ρ(t0) in density between the two times is exhibited.

As described in appendix B.2.3, the wavefunctionψ is solved with the chemical potential for a
uniform condensate factored out, i.e. if Ψ̃ is the actual wavefunction in (2.4), then the solver gives
(in units)Ψ(xi,yj, tk) = Ψ̃(xi,yj, tk)eiµt/ h forµ = gρc defined as in (2.2). A correction δµ to
the chemical potential (see e.g. (2.2))µ = 1, which has been approximated by its uniform value up
to this point, is estimated by computing the slope in the phase of them = 0 component with time.
Although small (typically of the order O(δµ/µ) ∼ 10−6), this correction offers increased accuracy
in determining the frequencies. The result is a readjustment of all units in accordance with (2.2),
i.e. ∆l 7→ ∆l/

√
1+ δµ, ∆t 7→ ∆t/(1 + δµ), rB 7→ rB/

√
1+ δµ, and, most importantly,

ψmj
(ri, tk) 7→ ψmj

(ri, tk)
√
1+ δµe−iδµtk .

We shall now consider three simulations of the GPE, all with potential boundary rB within the
third instability region in figure 2.4(d). One simulation is at the most unstable trap size, i.e. rB = 25
(see figure 2.5), and the two others are equidistant in rB on either side with rB = 25±0.7. At early
times, the system exhibits a clear exponential growth of theψm=2 mode. For each simulation, the
frequencyωc = ω+iΓ of this unstable mode can be extracted fromψ2(r0, t) at a fixed radius r0 in
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two steps. First, the growth rate Γ is found from a linear regression of ln |ψ2| over the time window
that minimizes the error. Second, the real part of the frequency can be found either by locating the
dominant peak in the temporal Fourier spectrum ofψ2, or by a linear fit of the phase-unwrapped
Im(lnψ2). Both approaches give consistent results, and are, as can be appreciated in panels (c) and
(d) of figure 2.6, in agreement with the BdG eigenfrequencies computed in IV.2. In other words,
the superradiant instability does indeed occur, as predicted, in the fully nonlinear theory.

V.2. Late Stage Modulations
Having confirmed the presence of the unstable modes, we now investigate how it is that these ex-
ponentially growing modes lead to the splitting of the doubly quantised vortex into two singly
quantised vortices. To avoid confusion, we shall refer to the singly quantised vortices as phase sin-
gularities, or proto-vortices, during the early stage of the splitting. This is because at early times the
two phase singularities are confined within the same density depression, whereas individual quan-
tised vortices are typically thought of as occupying separate regions of density depression.

Curiously, when simulations of the GPE are left running for a long time, a recurrent be-
haviour becomes evident. Eventually, the exponential growth of the unstable mode becomes non-
perturbative and stops. Instead of remaining large, however, the mode enters a period of expo-
nential decay. Sometime later, the exponential decay seizes, and the exponentially growing mode
re-emerges. This behaviour is shown in figure 2.6(a) for the three different trap sizes, rB = 24.3
(red), rB = 25 (blue) and rB = 25.7 (green). Note that at early times (t ≲ 1000), the red and
green lines overlap since their growth rates are the same.

From numerically tracing the trajectories of the phase singularities (see appendix B.2.4 for de-
tails), the separation distance s(t) between the two singularities is obtained. The result is shown in
panel 2.6(b), for the three different system sizes. Here, it is clear that the vortex separation follows
the same recurrent pattern as the m = 2 mode, albeit on a linear scale. Note, with reference to
figure 2.5, that the vortices remain in the shared depressed-density region throughout this entire
process, and the density perturbation |δψ| is at most approximately 1/5 (see figure 2.5(e)). That is,
the density perturbations remain perturbative so that the full non-linear dynamics is well approxi-
mated by linearised dynamics.

To understand what is going on, first recall that the unstable frequencies in figure 2.4 involve
two modes: A growing modeu↑

± and modeu↓
± ≡ (u↑

±)
∗ that decays at the same rate asu↑

± grows.
Initially, the dynamically unstable mode u↑

± grows exponentially, providing an increasingly large
m = 2 density anisotropy in the vortex core. Eventually, the multiply wound vortex splits into
two phase singularities that are guided by the (two) troughs of the unstable mode. As the unstable
mode grows further, the two phase singularities spiral outwards, until the singularities are separated
by about two healing lengths (s ≃ 2). Then, surprisingly, the vortices start to spiral inwards, and
the amplitude of the m = 2 mode enters a period of exponential decay. During this period, ψ2

matches the waveform and the decay rate (see decreasing log-linear trends in figure 2.6(a)) of the
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Figure 2.6 (VortexModulations)Panel (a): The amplitude of them = 2modeψ2 as a function
of time t for three different simulations. The simulations are initialised with the same initial state
(2.59) with ε = 10−3, but with different trap sizes rB = 24.3 (red), rB = 25 (blue) and rB = 25.7
(green). The two times t0 = 0 and t1 = 763, for which the rB = 25 simulation is depicted in
figure 2.5 are highlighted as vertical dotted black lines. Panel (b): The vortex separation s for the
same three simulations as a function of time t. It is clear that the vortex separation exhibits the
same kind of recurrent behaviour as the unstable/stable mode. Panels (c) and (d) exhibits the real
and imaginary parts of the frequency obtained from the numerical simulations for the three sizes
rB = 24.3 (red), rB = 25 (blue) and rB = 25.7 (green) in comparison with the BdG eigenmodes
from 2.4 (black).
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decaying mode u↓
±. At some point, which varies greatly across system sizes, the exponential decay

stops, the vortices start spiralling outward again, and them = 2 mode adopts the waveform and
exponential growth rate of the u↓

± mode.
The essential physics responsible for the transition from the growing mode u(2)↑

± to the de-
caying mode u(2)↓

± is captured by the following qualitative argument. As the phase singularities
are pulled apart by the growing mode, it becomes increasingly hard for them to keep up with the
troughs of the unstable mode that guide them, resulting in a reduction of the frequency ωcav of
the cavity mode. Eventually, this shift in frequency decouples the cavity from the phonon mode
outside, which brings the unstable growth to an end. Since the phonon mode now oscillates at a
frequencyωph > ωcav faster than the cavity mode, there is a growing phase shift between the two,
and when this phaseshift reaches π, i.e.

∫
(ωph − ωcav)dt = π, the waveforms are just right to

form a decaying mode u(2)↓
± . At this point, the modes recombine, and the system enters the pe-

riod of decay. Note, however, that for this argument to hold, the density of phonon states must be
sufficiently low for the cavity mode not to couple to any other, lower frequency phonon modes.
Therefore, the modulations observed in figure 2.6 are not expected to occur in very large systems,
where the density of states approaches the continuum limit.

One might assume that this behaviour is highly sensitive to initial conditions and that any small
perturbation might be enough to destroy the effect. While this seems to be the case when the vortex
is placed far from the centre of the trap [114], we have found that modulations persist even when
the vortex is displaced from the origin by a few healing lengths.

V.3. Exchange of energy
The modulations observed in figure 2.6 can be associated with an exchange of energy between
phonons and the phase singularities. When phase singularities are separated, incompressible vortex
energy is released into the fluctuations as compressible energy. When the phase singularities spiral
inwards, the compressible energy is re-absorbed into incompressible energy.

To understand this process, consider a decomposition of the energy

E =

∫
d2x




1
2
|∇√

ρ|2︸ ︷︷ ︸
Eqnt

+ 1
2
|
√
ρ∇Φ|2︸ ︷︷ ︸
Ekin

+ Uρ︸︷︷︸
Epot

+
1

2
ρ2︸︷︷︸

Eint


 (2.60)

associated with a stateΨ =
√
ρeiΦ in the GPE, into quantum energy Eqnt, classical kinetic energy

Ekin, trap energy Epot, and interaction energy Eint (see e.g. [111])*. As first proposed by Nore et al.

*Note that the total kinetic energy density is Eqnt + Ekin, i.e. the sum of quantum energy and classical kinetic
energy.
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[141, 142], the kinetic energy Ekin may be further split into a compressible part Eckin and an incom-
pressible partEikin. Definingu ≡ √

ρ∇Φ and introducing Helmholtz decompositionu ≡ uc+ui
with ∇ · ui = 0, the two components of the kinetic energy take the form Eikin = 1

2
|ui|

2 and
Eckin = 1

2
|uc|

2. Numerically, such a decomposition may be obtained from the realisation that if F
denotes a spatial Fourier transform and k the corresponding wave vector, then uc is nothing but
the projection of u onto k, i.e.

uc = F−1

[
k(k · Fu)

|k|2

]
, (2.61)

where, in the absence of a mean flow, the k = 0 component may be ignored to avoid zero-
division. The resulting time evolution of the total compressible, and incompressible energies
Eikin ≡

∫
d2xEikin and Eckin ≡

∫
d2xEckin are shown in panels (a) and (b) of Figure 2.7 respectively.
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Figure 2.7 (Oscillator model) Panels (a) and (b): The numerically computed compressible (a)
Eckin and incompressible (b) Eikin energy as a function of time. The synchronisation of the in-
crease/decrease with vortex separation, and the correlation between the two energies, supports the
interpretation that the modulations are driven by an exchange of energy between the phase singu-
larities and the phonons. Panel (c): The positiveH+ (blue) and negativeH− (red line) energies of
the simple oscillator model forΩ = 1, σ = 1/50, g = 1/20, c+ = 0, and c− = 2. This captures
the behaviour of phase-singularities and phonons.

The two energies Eckin and Eikin are clearly correlated, where a temporary increase in compress-
ible (phonon) energy Eckin is accompanied with a decrease in incompressible (vortex) energy Eikin.
Moreover, the peaks in the compressible energy are exactly where the vortex separation and mode
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amplitude reach a maximum (see figure 2.6). This supports the interpretation that the modulations
in vortex separation are indeed driven by an exchange of energy between vortex configuration and
phonons.

The conservation of the total energy (2.60) within the system is found to be upheld to relative
variations on the order of 10−7. Consequently, the temporal noise plotted in the incompressible
energies Eikin(t), as depicted in panel (b) of Figure 2.7, is attributed solely to the exchange or ambi-
guity of energy distribution among the distinct channels.

To understand the mechanism responsible for the perpetual exchange of energies, consider
the following simplified model. Let the vortex movement and phonon modes be represented by
two dimensional oscillators at locations Z± = x± + iy± and with (non-interacting) frequencies
ω± = (Ω2 ±σ± c± |Z±|2)

1
2 . HereΩ is the central frequency, with σ being the frequency sep-

aration of the two modes, and c± controls the nonlinearity, i.e. the amplitude dependence of the
frequency. Since the cavity mode has negative energy, we take the excitations of the vortex oscillator
(−) to involve negative energies. Introducing the interaction energy gRe[Z+Z

∗
−] with g > 0, the

system is determined by the following Lagrangian

L =1
2
|Ż+|

2 − V+ − 1
2
|Ż−|

2 + V− − gRe[Z+Z
∗
−],

V± ≡ 1
2
(Ω2 ± σ)|Z±|

2 − 1
4
c±|Z±|

4,
(2.62)

where the two oscillators have energies H± = ±(1
2
|Ż±|2 + V±). Let us choose c+ = 0 for the

phonon, since the frequency is mostly determined by the system size, and c− = ε > 0 for the vor-
tices, mimicking the decrease in the orbital frequency of the two phase singularities as they spread
apart. Note that in the absence of a non-linearity, i.e. ε = 0,Z± oscillates as a linear superposition
of the frequenciesω± = (Ω2 ± √

σ2 − g2)
1
2 . In particular, if the frequency separation is lower

than the interaction strength, i.e. |σ| < |g|, then the system becomes unstable as the frequency
takes complex values. This is conceptually similar to the appearance of unstable regions in figure
2.4, when the frequency of a N > 0 mode couples close to a N < 0 mode.

In the regimeΩ≫ σ,g, ε|Z−|
2, the Lagrangian (2.62) takes the form

L ≃ ΩIm
(
z+ż

∗
+ − z−ż

∗
−

)
− 1

2
σ(|z+|

2 + |z−|
2) − 1

4
ε|z−|

4 − gRe[z+z∗−], (2.63)

for z± ≡ Z±eiΩt, where invariance under (common) phase rotations z± 7→ z±eiα results in
a conserved charge Q ≡ |z+|

2 − |z−|
2, in direct analogy with the norm (2.15). For exponentially

growing/decaying solutions conservation requires Q = 0, meaning that the two oscillators must
have equal radii, i.e. |z±| = R. Introducing z± = Reiφ± with phase difference ϑ ≡ φ+ − φ−,
whose equations of motion can be conveniently written as

ϑ̈+ ∂ϑW = 0, W(ϑ) = −
(σ+ g cos ϑ)2

2Ω2
, R(t) = R0 exp

(
1

2Ω

∫
g sin ϑ(t)dt

)
.

(2.64)
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This is the equation for the movement of a particle on the circle under the influence of an effective
potentialW(ϑ). When the equations are unstable, i.e. |σ| < |g|, this potentialW has two maxima
atϑ± = π±arccos(σ/g). From the form ofR(t), we see that these unstable equilibria correspond
to exponentially growing (ϑ−) and decaying (ϑ+) solutions. In particular, if the system is initialised
near the exponentially growing point ϑ− with ϑ̇ ̸= 0, then ϑ will keep rolling over both peaks.
The result is a perpetual switching between exponential growth and decay, as ϑ passes ϑ− and ϑ+
respectively. This is precisely the kind of behaviour we observe in figure 2.6. The corresponding
energies H± for a numerical solution of (2.64) are shown in figure 2.7(c) in comparison with the
compressible/incompressible energy.

Note, however, that this model, unlike our system, contains only two interacting modes. One
consequence of this is that modulations in the model are perfectly periodic, which is not the case
in the full system 2.6. If other modes are taken into account, i.e. otherω andmmodes around the
vortex, then energy can be transferred between these channels and we would expect the modulations
to lose their exact periodicity.

V.4. Damped Condensates and Experimental Feasibility
Up to this point, we have considered an idealised system with a central ℓ = 2 vortex in a rotationally
symmetric trap, subject to the conservative evolution dictated by the GPE (2.4). In experimental
realisations, however, there is always some source of dissipation, either of thermal origin or some
other mechanism.

In this section, we briefly consider the evolution of the multiply wound vortex under the in-
fluence of weak dissipation, which can be included in the GPE (2.4) by introducing a phenomeno-
logical damping parameter γ > 0 [143, 144], resulting the in dissipative Gross-Pitaevskii Equation
(dGPE)

i∂tΨ = (1− iγ)

[
−
1

2
∇2 +U(x) − 1+ |Ψ|2

]
Ψ, (2.65)

where the additional term −1 appears from the chemical potential having been factored out of
Ψ. The inclusion of γ results in energy slowly being removed from the system, forcing the phase
singularities to spiral apart and eventually develop separated core regions. That is, γ forces the two
singularities to decay completely, resulting in the damped evolution of two well-separated vortices,
which is given by the (dissipative) point-vortex dynamics (see e.g. [145, 146]). The point-vortex
model, which is valid for well-separated vortices (see appendix C), predicts an orbital frequency
Ωpv = 2/s2 of the two vortices, where s is the vortex separation.

On the other hand, when the vortices are very close, the two cores overlap and the system is
better seen as a small fluctuation (cavity mode) on an ℓ = 2 background. The consequence is that
the orbit of the phase-singularities is guided by the troughs of the unstablem = 2 mode such that
for small s, the orbital frequency is Ω0 = 1

2
ωinst, where ωinst is the frequency of the unstable

mode. Here, the factor 1/2 comes from the fact that the orbital frequencyΩ of the troughs/crests
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of an azimuthal modem ̸= 0 with frequencyω isΩ = ω/m. Instead of the divergent behaviour
of the point vortex model as s → 0, we must therefore have a modification Ωpve of the point-
vortex orbital frequencyΩpv such thatΩpve → Ω0 as s→ 0, andΩpve ≃ Ωpv for s≫ 1. Since
Ωpv → ∞ as s→ 0, a natural candidate for this extended model isΩ−2

pve = Ω
−2
pv +Ω

−2
0 .
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Figure 2.8 (Damped Pair Oscillation) The numerically computed (blue points) orbital fre-
quenciesΩ of the two singularities as a function of the distance s between them and the time t is
shown in panels (a) and (b) respectively. At small s, the singularities are guided by the troughs of
the unstable cavity mode, with orbital frequencyΩ0 (horizontal dotted line). At large s, the singu-
larities are true vortices which obey the point vortex dynamicsΩpv (dashed red line). The proposed
ansatz Ωpve (dot-dashed red line) captures the intermediate behaviour. For comparison, the data
is compared with that of Parker [147] (black crosses) who also considered the dynamics of vortices
in proximity. The frequencies 1

2
ωBdG for other lower frequency phonon modesωBdG (see figure

2.4) are shown as black dotted lines.

Figure 2.8 exhibits the instantaneous orbital frequencies Ω of the tracked phase-singularities
(blue dots) in a simulation of the dGPE (2.65) with size rB = 25 and dampingγ = 1× 10−3. The
extracted frequenciesΩ are shown as a function of vortex separation s and time t in panels (a) and
(b) respectively, and are compared with the modelsΩ0 (dotted red line),Ωve (dashed red line) and
the proposed extensionΩpve (dot-dashed red line). The prediction obtained by Parker [147], who
also considered the dynamics of close vortices, is included for comparison (black crosses).

We see that when the separation s is of the order s ≳ 5, the orbital frequency of the vortices
is well captured by the point-vortex model Ωpv. In the other limit, the orbital frequency clearly



42 Quantum Vortex Instabilities Chapter 2

levels off and is bounded from above, by the frequency Ω0 of the troughs of the unstable mode.
Moreover, the purely phenomenological ansatzΩpve for the extended model, captures the entire
process surprisingly well.

As the frequencyΩ of the cavity mode decreases, it couples to lower-frequency phonon modes,
shown as horizontal black dotted lines in figure 2.8. The result is a faster separation of the vortices
aided by the instability arising from the coupling of the two modes. Instead of a perpetual state of
modulations, the effective dissipation damps out the modulations, eventually allowing the vortices
to continue their spiralling apart. This behaviour can be observed in panel (b) of figure 2.8, where
the orbital frequency Ω swiftly passes each phonon frequency (black dotted line), resulting in a
brief period of damped oscillations ofΩ due to the modulations. Clearly, a sufficiently low density
of states is necessary for this phenomenon to occur. That is, one does not expect this behaviour to
persist in large systems.

For modulations to be observable in dissipative systems, it is necessary that the damping γ is
small. If the time taken by the singularities to spiral in and out, i.e. the period of modulation, is
larger than the characteristic time scale set by the dissipation γ, modulations are not expected to
be observable. From the results presented in this section, however, it is clear that modulations do
persist in dissipative systems. It is therefore expected that this phenomenon will have observable
consequences in real experiments where dissipation is important.

VI. Conlusion

In this chapter, we have investigated the dynamical instability of multiply quantised vortices in two-
dimensional BECs using three different methods: BdG stability analysis, WKB approximation and
nonlinear numerical simulations of the GPE. The WKB method allowed us to identify the origin
of the instability as a superradiant bound state local to the vortex core. From a careful consider-
ation of the boundary conditions involved, we then showed that in closed systems, the instability
is suppressed for certain trap sizes, which is well known in the literature [61, 114]. However, the
WKB method permitted an intuitive explanation for why the limiting behaviour of the closed sys-
tem is that of the open system. In particular, we noted that the unstable system sizes arise from a
resonant coupling between a negative energy mode in the vortex cavity with a positive energy mode
outside the vortex (phonon), and that it is the transmission of energy out of the cavity that causes
the exponential growth of the unstable mode.

When investigating the doubly-wound vortex (ℓ = 2) through numerical simulations, we con-
firmed that the instability predicted from the linear theory is present in the fully nonlinear regime.
However, we observed that the initial MQV does not always decay into a pair of SQVs, but that for
small systems the phase singularities can form a new state where at late times, the non-linearity in the
GPE pushes the singularities back together, resulting in a repeated modulation of their separation.
We saw that this behaviour is caused by a detuning of the cavity mode, forcing the unstable mode to
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decouple and, soon thereafter, re-connect as an exponentially decaying mode. This behaviour can
be associated with an exchange of compressible and incompressible energy, for which we saw that a
simplified model of two interacting oscillators captured the essential details of what was going on.

One consequence of this is that the system never enters the regime where one can apply Point-
Vortex dynamics [146] since this requires the vortex separation to be much larger than the healing
length.

Finally, when considering dissipative systems, we saw that vortices do separate, as expected, but
that the modulations persist. From observing the complete decay of the MQV, we saw that the
orbital frequency of a co-rotating vortex pair is bounded from above by half the frequency of the
unstable mode, i.e.Ω ⩽ 1

2
ωinst. This can be understood from the observation that when the vor-

tices are close together, their orbit is guided by the troughs of the unstable mode. Curiously, in the
dissipative evolution, we observed that the two vortices experience multiple periods of modulation,
one for each phonon frequency passed by twice the orbital frequency.

It would be interesting to see if this behaviour extends to more general scenarios e.g. clusters of
vortices. Then, the resulting dynamics may be more complicated since there are more instabilities
in the system, e.g. for ℓ = 3 there are instabilities in them = 2, 3, 4 modes, we also expect these
modulations to persist for higher winding numbers.



Chapter 3

The Sound-ring Radiation from Relaxing
Vortex Clusters

The following is an account of efforts that resulted in the publication titled Sound-ring radiation of
expanding vortex clusters [105] by S. Erne, S. Patrick, C. F. Barenghi, and S. Weinfurtner and myself.
There is considerable overlap with the previous chapter, but at heart, this project is very different.
Whereas the situation investigated in chapter 2 was relatively simple – a rotationally symmetric,
central multiply charged vortex – here we investigate the more complex situation of the dissipative
relaxation expansion of a compact vortex cluster. Therefore, this chapter is of a more phenomeno-
logical nature than the preceding chapter.

I. Introduction

When waves interact with rapidly rotating objects, exotic phenomena may occur. A prominent
example is that of rotational superradiance, which was the motivation for the previous chapter 2.
Another example is compact gravitational objects exhibiting circular orbits of light, referred to as
light-rings [148]. When light-rings are present, the gravitational field significantly affects the propa-
gation of nearby waves. In particular, light-rings are intimately connected to the late-stage relaxation
of perturbed black holes, often referred to as black hole ringdown, e.g. following merger events like
those recently observed by the LIGO collaboration [149, 150]. If waves are located at the light-ring,
they may slowly leak out in a process often, but not always [151], linked with emission of so-called
Quasi-Normal Modes (QNMs) [152], which are damped linear oscillations of the system as it strives
towards equilibrium. This kind of QNMs is qualitatively different from those encountered when
considering vortex instabilities in section IV.1 of chapter 2, in that they describe a relaxation process
rather than exponential growth. Like the mechanism for rotational superradiance, however, the
usefulness of the light-ring is not in any way limited to gravitational systems. For example, one can
identify effective light-rings for the interfacial waves of rapidly rotating fluids, opening the possi-
bility for non-destructive flow measurements [118]. In 2020, the free surface of a draining bathtub
flow was reported to oscillate at the effective light-ring frequency [66].

This chapter demonstrates that effective light rings, which we shall call sound-rings, exist
around vortex clusters in Bose-Einstein condensates (BECs). Being macroscopic quantum fluids,

44
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BECs exhibit a wide range of unusual phenomena such as the wave-propagation of heat (second
sound) [110], perfectly inviscid flow, and discretization of circulation [111]. Therefore it is not clear
that the concept of a light-ring, or rather sound-ring in this case, persists in these systems. As we
shall see, the notion of sound-rings permits an approximate prediction for the spectrum of sound
emitted from relaxing clusters of quantum vortices. In particular, we find that the sound-ring can
extend well outside the cluster and that the sound is emitted at frequencies independent of the vor-
tex configuration in the core. The result is the emergence of the sound-ring as a large-scale feature
created by the seemingly chaotic movement of vortices in the core.

The findings presented in this chapter are of relevance to the problem of wave-vortex inter-
action. Most past studies have considered either the properties of a single vortex (e.g. the bending
vortex lines [153]) or a large number of vortices of the same circulation (e.g. Tkachenko modes [154])
or different circulations (e.g. turbulence [155, 156]). The vortex clusters examined here represent in-
teresting physics at intermediate scales, which is challenging to approach in the thermodynamic
limit.

II. Modelling
We consider a system similar to chapter 2 for large winding numbers ℓ, but with two important
differences. Firstly, our focus shall be on the period after which the multiply wound vortex has
decayed into a cluster of singly wound vortices. Secondly, we now consider the evolution under
stochastic influence, as e.g. provided by thermal variations. That is, we study the non-linear relax-
ation of a rotating disc-shaped BEC from the perspective of the two-dimensional (2D) Stochastic
Gross-Pitaevskii Equation (SGPE) [143, 157],

i h∂tΨ = (1− iγ)

[
−

 h2

2M
∇2 +U(r) − µ+ g|Ψ|2

]
Ψ+ η(r, t). (3.1)

Here, as in chapter 2, t is time, r = (r, θ) is the spatial location in polar coordinates,M is the boson
mass, g is the effective 2D interaction constant, µ is the chemical potential, andU(r) is an external
trapping potential. The SGPE is a finite-temperature extension of the GPE (see (2.4) in chapter 2)
describing the evolution of a coherent stateΨunder the influence of dampingγ ⩾ 0 and stochastic
noise η(r, t). The inclusion of damping γ (see dGPE (2.65)) represents dissipative particle transfer
from the coherent, low energy modes, whose dynamics is given by the stateΨ, to the higher energy
modes in the thermal reservoir. The noise η represents the random nature of incoherent scattering
in the system. Over long times, the SGPE depicts a condensate in equilibrium with temperature T .
The equilibrium, being the state at which dissipation is kept at bay by fluctuations, is given by the
fluctuation-dissipation relation

⟨η∗(r, t)η(r ′, t ′)⟩ = 2 hγkBTδ(r− r ′)δ(t− t ′), (3.2)
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which imposes a temperature-dependent relation between the variance of the noiseη and the damp-
ing γ. In what follows, we shall consider a homogeneous damping γ = const and complex Gaus-
sian white noise η with zero mean. However, the exact values for the damping and noise are not
expected to affect the result as long as they are both sufficiently small.

Employing the same adimensionalisation procedure as in chapter 2 (see discussion following
equation (2.2)), i.e. x 7→ ξx, t 7→ τt, Ψ 7→ √

ρcΨ,U 7→ µU and η 7→ √
ρ0µη, the SGPE takes

the form
i∂tΨ = (1− iγ)

[
−
1

2
∇2 +U− 1+ |Ψ|2

]
Ψ+ σηη, (3.3)

where the standard deviation ση of η has been factored out, such that η denotes an adimensional
Wigner process of unit variance [158]. Note that ση generally depends on the microphysical pa-
rameters of the system. Using this adimensional formulation, the results from analysing equation
(3.3) remain applicable for a wide range of parameters. In the following, the numeric values for the
damping and noise are chosen to be γ = 2.5 · 10−3 and σ2η ≡ ⟨|η|2⟩ = 2.5 · 10−3. However,
the results presented are largely insensitive to the specific values ofγ andση provided they are both
small, i.e. γ,ση ≪ 1.

As in equation (2.51) of chapter 2, we choose the potentialU(r) to be a rotationally symmetric
bucket trap of the form

U(r) =
U0

1+ (U0 − 1)ea(rB−r)
, (3.4)

but now with a steeper wall a = 2 andU0 = 10, and for a fixed location rB = 121.5 of the outer
boundary*.

Imagine a rotationally symmetric, multiply wound vortex of charge ℓ = 29 located in the centre
of the aforementioned trap (3.4). Initially, the stochastic noise η provides seeds for all resonant
modes in the system. In particular, as seen in the previous chapter 2, azimuthal modesm satisfying
0 < m < 2|ℓ| may exhibit instabilities. For highly charged vortices (|ℓ| ≫ 1), this produces a
complicated competition of exponentially growing modes in the differentm channels. Eventually,
this instability results in the decay of the central, multiply wound phase singularity into a densely
packed cluster of interacting singly wound phase singularities. In the presence of small but non-zero
damping γ > 0, this dense cluster of phase singularities must slowly expand as the system evolves
towards a lower energy state. In the process, the rapid movement of the phase singularities inside the
core will effectively stir the condensate, resulting in the radiation of density fluctuations, or sound
waves, emitted from the cluster. As the system relaxes further, the core will keep expanding, and
eventually, the cluster will have developed sufficiently for the vortices to be well separated. At that
point, the vortices should effectively decouple from the sound field as they adopt the dynamics of
the (dissipative) point-vortex model [146].

*The motivation behind this choice is that the processes investigated in this chapter are significantly more violent,
so the outer wall should be taller to prevent shock waves from escaping. The size rB is taken to be as large as possible,
but still small enough for the simulations and analysis to be computationally feasible at the required spatial resolution.
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III. The coarse-grained Background
Before we investigate the fluctuations of the sound-field, we must specify a background for the
fluctuations. To start, we consider the SGPE (3.1) in terms of hydrodynamic variablesΨ ≡ √

ρeiϕ,

∂tϕ+ ρ+U− 1−
∇2√ρ
2
√
ρ

+
1

2
(∇ϕ)2 = γ

2ρ
∇ · (ρ∇ϕ) − ση√

ρ
Re (η) (3.5a)

∂tρ+∇ · (ρ∇ϕ) = −2γρ

[
ρ+U− 1−

∇2√ρ
2
√
ρ

+
1

2
(∇ϕ)2

]
+ 2

√
ρσηIm (η) (3.5b)

Note that this is a natural extension of the hydrodynamic formulation (2.6) of the GPE (2.4), where,
in the undamped (γ → 0) limit, (3.5a) and (3.5b) take the form of a Bernoulli-like equation and a
Continuity equation respectively*.

Although the vortex core contains a large number of moving vortices, all rapidly moving and
surrounded by a density depression, we consider an approximate background ρ0, ϕ0 given by the
coarse-grained, time-averaged quantities. From this perspective, the movement of the individual
vortices is averaged out, and one is left with a slowly evolving smooth background. More precisely,
for a gently sloped |∇ρ0| ≪ ρ0 and slowly evolving ∂tρ0,∂tϕ0 ≪ 1 free (U ≈ 0) condensate, the
deterministic (ση → 0) hydrodynamic formulation (3.5) requires

ρ0 = 1−
1

2
v2 (3.6a)

∇ · v = 0, (3.6b)
with v ≡ ∇ϕ0. Hence, the density ρ0 is reduced by the kinetic energy nearby (3.6a), and the
velocity is incompressible (3.6b). Note that perturbative consistency requires ∇v2 ≪ 2ρ0.

III.1. The azimuthally averaged velocity field of a vortex cluster
Imagine a collection ofN vortices, or phase singularities, with windings {ℓk} ⊂ Z \ {0} located at
{(xk,yk)} ⊂ R2. If these vortices originate in the decay of a single vortex of winding ℓ, then one
must have ℓ =

∑
k ℓk. However, in the decay’s early and most violent period, vortex-anti-vortex

pairs may be produced, and some vortices may only have decayed partially, i.e. |ℓk| > 1 for some
k. That is, we cannot assume |ℓ| = N, as this holds only for ℓk = sgn(ℓ) for all k. Assuming the
boundary of the system to be far away, the velocity potential ϕ0 can be approximated as a sum of
individual windings

ϕ0 =

N∑
k=1

ℓk arctan

(
y− yk
x− xk

)
. (3.7)

*Note that a substitution η 7→ ηeiϕ has been made in equations (3.5). This is due to the complex gaussian noise
being unaffected by a phase rotation.
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The velocity field v ≡ ∇ϕ0 can be conveniently written in terms of complex coordinates z ≡
x+ iy as

v∗ =

N∑
k=1

iℓk

zk − z
(3.8)

where zk ≡ xk + iyk is the location of the k’th vortex and ∗ denotes the complex conjugate. As
discussed in appendix C, insertion of the phase-ansatz (3.7) into the hydrodynamic GPE leads to
the well-known point-vortex model [146], assuming the vortices to be well separated.

For computational convenience, consider a configuration in which the centre of vorticity is
located at the origin, i.e.

∑
n ℓnzn = 0. Now, we may imagine an ordering 0 ⩽ |z1| ⩽ ...|zM| ⩽

|z| ⩽ |zM+1|... ⩽ |zN| of the vortices in terms of their radial distance |zn| from the origin, where
we shall refer to the largest radius as the cluster size R, i.e. R ≡ |zN|. Note that the indexM, being
the label of the outermost vortex inside a radius r = |z|, generally depends on the radius r. In polar
coordinates z ≡ reiθ, the azimuthal average ⟨·⟩θ may now be evaluated using the residue theorem

⟨ve−iθ⟩∗θ =

N∑
k=1

ℓk

2πr

∮
|z|=r

dz

zk − z
= −

iℓM(r)

r
for ℓM(r) ≡

M(r)∑
k=1

ℓk, (3.9)

where ℓM(r) is the net winding inside a disc of radius r. Recognising the unit vector eθ ≡ ieiθ

in complex coordinates, the azimuthally averaged velocity field can be written as a purely rotating
flow

⟨v⟩θ =
ℓM

r
eθ for ℓM ≡

M∑
k=1

ℓk . (3.10)

That is, the azimuthally averaged velocity field of a vortex cluster at a radius r is indistinguishable
from that of a central, multiply wound vortex with a charge equal to that of the net charge of the
cluster inside r. Indeed, outside the cluster, i.e. r > R, this statement holds to second order in per-
turbation theory, with perturbation parameter |zN| ≪ |z|, even without the need for an azimuthal
average. That is

v =
ℓ

r
eθ + O

(∣∣∣zN
z

∣∣∣
2
)

for ℓ ≡
N∑
k=1

ℓk. (3.11)

The coarse-grained velocity field referred to in equations (3.6) can further be estimated by consider-
ing the continuum limit of (3.11) and (3.10). That is, we think of the discrete sum ℓM(r) as emerging
from the integration of a discrete vortex density distribution ρℓ(z) ≡

∑
k ℓkδ(z− zk), where δ is

the Dirac delta distribution, on a disc of radius r. Since vortices have the tendency to spread evenly,
see e.g. the minimum-energy Rankine vortex of [159], we take the continuum limit of ρℓ to be that
of a uniform distribution (ρℓ = const) inside R. The result can be written

ℓM ≃ ℓ
(
r

rc

)2

where rc ≡
{

R for r ⩽ R
r for r > R

. (3.12)
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Inserting this into (3.11), or equivalently (3.10), the coarse-grained velocity field v adopts the form
of a drain-free Rankine vortex v = vθ(r)eθ often encountered in classical fluid mechanics [160],
i.e.

vθ =
ℓ

r

(
r

rc

)2

=

{
ℓr/R2 for r ⩽ R
ℓ/r for r > R

. (3.13)

This velocity field suggests that inside the cluster, i.e. r < R, the vortices rotate, with orbital fre-
quency Ωc ≡ ℓ/R2, as if the cluster was a solid body. Note that this corresponds to Feynman’s
rule [111, 161], stating that a rotating bucket of quantum fluid constitutes a uniform lattice of vortices
to mimic solid body rotation. On the outside (r > R), even without the need for coarse-graining,
one recovers the irrotational flow indistinguishable from a central, multiply wound vortex. That
is, the velocity field outside R is independent of the details inside the core as it depends only on the
net winding ℓ of the cluster.

Whereas we may find comfort in the fact that the Rankine velocity (3.13) is consistent with
the incompressibility condition (3.6b), it is not applicable for determining the background density
ρ0 = 1 − 1

2
v2 from (3.6a) inside the core. This is because the azimuthal average of the velocity

magnitude ⟨|v|2⟩θ is, in general, different from the magnitude of the azimuthally averaged velocity
|⟨v⟩θ|2. Note that the need for calculating this quantity separately arises because the azimuthally
averaged velocity is no longer irrotational inside the core, for which the Bernoulli-like equation
(3.5a) no longer holds. The following procedure is equivalent to including the integral ofv×(∇×v)
from r to ∞ in the Bernoulli equation, as is standard in classical fluid mechanics.

Going back to the expression (3.8) for the velocity field in terms of complex variables, we observe
that

v∗v =
∑
m,n

ℓnℓm

(zn − z)(z∗m − z∗)

≃ r6
∑
m,n

ℓnℓm

[
In⩽M
r4

−
In>M
(znz∗)2

] [
Im⩽M

r4
−

Im>M
(z∗mz)

2

]

=

[
ℓM

r
−

∑
n>M

r3ℓn

(znz∗)2

][
ℓM

r
−

∑
n>M

r3ℓn

(z∗nz)
2

]

=
ℓ2M
r2

− 2
ℓM

r2

∑
n>M

ℓnRe
(
z2

z2n

)
+ r2

∑
n>M

∑
m>M

ℓmℓn

(znz∗m)
2
, (3.14)

where IC is the indicator function, which is 0 outside C, and 1 inside. Applying the azimuthal
average ⟨·⟩θ results in the vanishing of all off-diagonal terms as well as the middle term, leaving only

⟨v∗v⟩ ≃ ℓ2M
r2

+ r2
∑
n>M

∑
m>M

ℓmℓn

(znz∗m)
2
. (3.15)
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In the case of a uniform distribution of vortices on the disc r < R, only the diagonal termsn = m
in the sum contribute, resulting in

⟨|v|2⟩ ≃
(
ℓ

rc

)2
[
2−

(
r

rc

)2
]
=

{
ℓ2 [2− (r/R)2] /R2 for r ⩽ R
ℓ2/r2 for r > R

, (3.16)

which, finally, enables us to invoke equation (3.6a) to obtain an expression for the background den-
sity

ρ0(r) = 1−
1

2

(
ℓ

rc

)2
[
2−

(
r

rc

)2
]
=

{
1+ 1

2
(ℓ/R)

2 (r/R)
2
− (ℓ/R)

2 for r ⩽ R,
1− 1

2
(ℓ/r)

2 for r > R
.

(3.17)
Outside the cluster, we find the density, like the velocity field, to be indistinguishable from a

multiply wound vortex, see e.g. the density asymptotics (2.11) from chapter 2. Inside the cluster,
the density ρ0 curves off to a constant value of ρ0(r → 0) = 1 − (ℓ/R)2 at the origin. Note,
however, that for very dense clusters the background density (3.17) takes negative values. This non-
sensical result can be traced back to a violation of the assumption of a gently sloped background
|∇ρ0| ≪ ρ0 needed to reach expression (3.6) for the background quantities. We could then go
back to (3.1) and use that ρ0 ≪ 1 for which we would find, as in (2.11), that in this limit the density
is better approximated by ρ0 ∼ J2ℓ(

√
2r). For our purposes, however, it will be sufficient to simply

set ρ0 = 0 where equation (3.17) predicts negative densitites.
As the cluster expands, i.e. ∂tR > 0, the density (3.17) asymptotically approaches the density

of a uniform condensate, i.e. limR→∞ ρ0 = 1. Going backwards in time, however, we observe that
as R→ 0, one eventually reaches a point at which ρ0 ≈ 0 everywhere inside some radius

rm ≡ ℓ√
2

(3.18)

outsideR. Since, at this point, the density becomes practically independent of the vortex positions,
this is hereby referred to as the minimal cluster size. When the cluster size R is smaller than rm, the
cluster behaves, for all practical purposes, as a single, multiply wound vortex of charge ℓ.

IV. Numerical Simulations

To investigate the details of the decaying, highly wound cluster in the context of the SGPE (3.1), we
compare our models with numerical simulations. Because of the stochastic nature of the SGPE, we
consider an ensemble {Ψ(a)(t, x)}a of identically prepared simulations. The results presented in
this chapter are computed using 51 such realisations, i.e. a ∈ {1, 2, ..., 51}.
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Each realisationΨ(a) is initialised in the approximate initial state

Ψ
(a)
0 (t, x,y) = Ψ0ρ0e

iℓθ(x,y), (3.19)

whereρ0 is the approximate density (3.17) andΨ0 is the numerically obtained ground state for a uni-
form condensate confined by the trap (3.4) found by long-time evolution of the SGPE (3.1) under
the influence of strong dampingγ. Note that the presence of damping leads to the relaxation of the
vortex core to its exact form over a timescale that is short compared to the overall evolution of the
system. Additionally, the transients due to the approximate form of ρ0 are rotationally symmetric,
and, due to the presence of noise and damping, are long gone by the time the vortex has started to
decay, i.e. R ⩾ rm.

Each realisation a is spatially discretized Ψ(a)
n,i,j ≡ Ψ(tn, xi,yj)

(a) into a mesh ofN ≡ 1536
equidistant points along each axis, i.e. {xi}, {yj} ∈ R1536, with resolution∆x ≡ xi+1−xi = 1/5.
The time evolution is performed in discrete timesteps of ∆t, i.e. Ψ(a)

n,i,j ≡ Ψ
(a)
i,j (tn) with ∆t ≡

tn+1 − tn, using a second-order pseudospectral splitting scheme (see appendix B.2.3 for details).
Here, the noiseη, which is sampled from a central gaussian distribution with unit variance, is added
after each timestep, i.e. Ψ(a)

n,i,j 7→ Ψ
(a)
n,i,j + σηη∆t. Although the stability of the solver generally

depends on γ, we choose ∆t = 5 × 10−3, which is safely within the stable region. From the
time evolution, every 200’th frame, leading to a duration ∆t = 1 between frames, is stored for
later processing. Periodicity ofΨ, needed for the Fourier-spectral scheme, is enforced by letting the
numerical boundaries x,y ∈ {±N∆x/2} extend well beyond the trap size rB ≃ 605∆x.

The density perturbations in a time-window t ∈ [t1, t2] are extracted from a single numeri-
cal realisation Ψ(a)(t, x,y) by interpolating the density ρ(a) = |Ψ(a)|2 to polar coordinates and
decomposing the result into Fourier amplitudes

ρ(a)m (ω, r) ≡
∫ t2
t1

∫ 2π

0

ρ(a)(t, r, θ)e−imθ+iωtdθdt. (3.20)

using a two-dimensional fast-Fourier transform.
The typical evolution of the relaxing cluster for a single realisationΨ(a)

n,i,j is illustrated in figure
3.1. In panel (a), the x-coordinate of the vortex trajectories found using a numerical tracking algo-
rithm detailed in appendix B.2.4, is shown as a function of time. Here, we recognise the minimal
cluster radius rm (3.18) (horizontal red dotted line), which is exceeded around times t ≈ 2000.
We identify three qualitatively different regimes, highlighted as coloured regions in red, yellow and
blue. In the early stage, referred to as stage I, the vortices in the cluster are confined inside a rota-
tionally symmetric low-density region effectively behaving as a slowly expanding multiply wound
vortex. An example of the densityρ and phaseϕ in stage I is shown in panels (b) and (c) respectively.
Eventually, the dynamic and energetic instability of the multiply wound vortex [61, 63, 111–113, 115]
leads to the decay into a dense cluster of singly wound vortices as the cluster size exceeds rm. Dur-
ing this period, the stochastic noise η seeds the instability (c.f. chapter 2) and provides the spatial
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Figure 3.1 (Simulations of a decaying vortex cluster) Panel (a): The x-coordinate of indi-
vidual vortices over time in a single simulation. The minimal cluster size rm (red dotted) and
the largest sound-ring radius rsr(m = 0) (blue dashed) is shown, together with rsr(m) at
m ∈ {−5,−15,−25, ...,−65} (short blue dashed). The coloured regions illustrate the time-
windows of three qualitatively different stages. Initial multi-wound vortex (I); multi-wound vortex
has decayed in many singly wound vortices forming a disordered cluster (II); cluster has expanded
(III). Panels (b,c,d,e,f,g): The density ρ ≡ |Ψ|2 (top row) and phase ϕ ≡ arg(Ψ) (bottom row)
at times (see horizontal black dashed lines in panel (a)) t = 1000 (panels (b) and (c)), t = 2650
(panels (d) and (e)), and t = 4300 (panels (f) and (g)).
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disorder needed to break the rotational symmetry of the system. Indeed, if the simulations were to
be performed in the absence of noise, but with damping γ, the only non-rotationally symmetric
feature able to provide the symmetry breaking of the initial cluster would be the four-fold discrete
rotational symmetry Z4 originating in the discretisation cartesian plane. In that case, one would
find the vortices to maintain a symmetric Z4 configuration until late times. Including noise, as e.g.
provided by quantum or thermal fluctuations, alleviates this problem and leads to realistic vortex
configurations. Note also, that whereas the total winding ℓ = 29 is conserved through the entire
simulation, the number of vortices varies greatly during in stage I due to the nucleation of vortex
anti-vortex pairs in the low-density region.

As the outermost vortices attain a radius of rm, density is allowed into the core, and the sys-
tem transitions to stage II. In this stage, the vortices have started separating sufficiently for density
to build up between them. The initial relaxation of this dense cluster of singly wound vortices
is accompanied by the radiation of sound-waves from the core [162]. This unrest of the conden-
sate outside the core can be seen in the example of the density and phase during stage II shown in
panels (d) and (e) respectively. As we shall soon see, during stage II the individual vortices form
time-independent sound-rings extending to radii r(m)

sr (see horizontal dashed blue lines in panel
(a)) located outside the cluster.

Finally, when the cluster expands beyond the largest sound-ring r(0)sr , it enters stage III. In this
stage, vortices are sufficiently isolated for their dynamics to effectively decouple from the sound-
field.

V. The Evolving Background
Using the numerical simulations introduced in the preceding section, we shall now briefly discuss
the adequacy of the coarse-grained background and its evolution in time.

During the late stage III, the slow expansion of large vortex clusters has been experimentally
observed to obey a diffusive growth [145]

R(t) ≃ 2

3

√
ℓ

π

(
1

ρ0
+ 2πℓγ(t− ts)

)
, (3.21)

as predicted by a dissipative vortex fluid theory. In figure 3.2, we confirm that if we take the initial
time ts (vertical dotted blue line) to be the time at which the vortices exceed the minimal radius
rm (horizontal dashed red line), then the simulated vortex decay (black lines) is in good agreement
with the diffusive expansion model (3.21) (blue solid line).

The sound-ring phenomenon is expected to influence the expansion of the cluster, but a de-
tailed study of this is beyond the scope of this chapter and is instead left for future investigations. It
should be noted, however, that if the damping γ is chosen too large, then waves become overcriti-
cally damped, and the cluster will expand too fast for the sound-ring phenomena to be relevant.
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Figure 3.2 (Cluster expansion)The radius rv(t) ≡
√
xv(t)2 + yv(t)2 for each vortex (xv,yv)

is shown as a function of time t as orange lines with the outermost vortex colored in black. For
comparison, the expected evolutionR(t) from equation (3.21) is drawn (solid blue line) with initial
time ts = 2000 (vertical dotted blue line). The time ts is chosen to be the time when the vortex
cluster exceeds the minimal size rm (horisontal red dashed line).

To investigate the adequacy of the coarse-grained background, the density ρ ≡ |Ψ(a)|2 and
velocity field v = Im∇ lnΨ(a) is computed at fixed times and over all realisationsa. Transforming
the result to polar coordinates, and computing azimuthal averages, results in radial profiles ρ0(r)
andv(r) that can be compared to equations (3.17) and (3.13) respectively. The result, shown in figure
3.3 for the initial t0 = 2391 and final frames t1 = 2902 of the analysis window, is in excellent
agreement with the numerical results outside the cluster. Inside the cluster, the velocity field vθ is
well predicted by the Rankine profile 3.3 but slightly weighted towards the rim of the core at early
times. That is, at early times, there is a slightly larger vortex population towards the rim of the core
compared to the centre. The densityρ0 in the core is, as anticipated, deviating from the model (3.17)
in the low-density region.

VI. Fluctuations

We now shift our focus towards the fluctuations of the condensate around the coarse-grained back-
ground by introducing perturbations ρ = ρ0 + δρ and ϕ = ϕ0 + δϕ, with δρ ≪ ρ0 and
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Figure 3.3 (Measured background) Panel (a): Measured velocity fields v = Im∇ lnΨ at the ini-
tial (red dot-dashed) and final (blue dashed) timeframe as a function of radius r. The ensemble aver-
aged azimuthal mean is plotted with the standard deviation over ensemble shaded. (b) Azimuthally
averaged density profile ρ(a)(r) at the initial (red dot-dashed) and final (blue dashed) timeframe.
The density is compared to the uniform Thomas-Fermi density ρ ≃ 1−U(r) (yellow dotted). In
both panels, the model is fitted to find the core size R (vertical lines) and plotted as black lines on
top.

δϕ ≪ ϕ0, to equations (3.5). Assuming γ,ση ≪ 1, i.e. weak stochastic influence, then the lin-
earised equations take the form

(∂t + v · ∇) δρ = −ρ0∇2δϕ , (3.22a)

(∂t + v · ∇) δϕ = −

(
1−

∇2

4ρ0

)
δρ . (3.22b)

In the limit of long wavelengths, the excitations (3.22) are phonons described by a single Relativistic
Klein-Gordon equation (see discussion around (1.1)) on an effective spacetime created by the back-
ground flow v. This is the mathematical equivalence that forms the basis of analogue gravity [20].
Here, as in the previous chapter, we shall keep the dispersion.

As in chapter 2, further insight into the sound waves can be obtained using a WKB approxima-
tion in equations (3.22), i.e.

[
δϕ

δρ

]
=

[
A(r)
B(r)

]
ei

∫
kr(r)dr+imθ−iωt. (3.23)

with slowly varying amplitudes, ∂rkr ≪ k2r, ∂rA ≪ krA and similarly for B. Here, the time-
independence and rotational invariance of the background (3.13) and (3.17) has been used to decom-
pose the fluctuations into separate frequencyω and azimuthalm components. Whereas this is a
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justified assumption outside the core, at r > R, it is unwarranted inside the cluster. In each realisa-
tion, there are rapidly moving topological defects inside the cluster clearly violating both time inde-
pendence and rotational invariance. In other words, the validity of the WKB expansion (3.23) inside
the core thus depends on whether the specific wave in question is sensitive to the movement of the
individual vortices. Intuitively, one would expect perturbations with wavelengths much larger than
the characteristic vortex separation to feel only the coarse-grained background, whereas short wave-
lengths should scatter off the individual vortices.

Inserting the WKB ansatz (3.23) into (3.22), and keeping only leading order terms, results in the
local dispersion relation

ω±
D =

mvθ

r
±
√(
ρ0 +

1
4
k2
)
k2, k =

√
k2r +

m2

r2
, (3.24)

which is the well-known Bogoliubov dispersion [138, 139] first seen in equation (2.30) of chapter
2, but now with a Rankine velocity profile (3.13) as the background flow. As before, a wave which
satisfies the equations of motion must lie either on the upper branch (ω = ω+

D) or on the lower
branch (ω = ω−

D).
Using the WKB ansatz (3.23), a Hamiltonian system for the radial phase space (r,kr) can be

constructed by considering a trajectory of constant phase, i.e. variational stationarity of the WKB
phase

∫
(krdr−ωD(r,kr)dt), where the dispersion relationω±

D appears as a functional Lagrange
multiplier constraint [163] (see appendix A.3 for details).

The result is a Hamiltonian flow

ṙ = ∂krω
±
D, (3.25a)

k̇r = −∂rω
±
D, (3.25b)

with the dispersion frequenciesω±
D as the hamiltonian function. Together, equations (3.25) con-

stitute a two Hamiltonian systems, one for ω+
D and one for ω−

D, for each azimuthal number m.
Note that by virtue of the symmetry−ω±

D(m) = ω∓
D(−m) in the dispersion relation (3.24), con-

sidering negative frequencies of ω±
D for some counter-rotating mode m < 0, informs us of the

behaviour of co-rotating modesm > 0.
For counter-rotating modes with positive frequencies, the Hamiltonian system (3.25) for the

upper branch (ω+
D) exhibits an unstable fixed point outside the core (see Figure 3.4). A mode at

such a fixed point will stagnate radially at some radius r(m)
sr while maintaining its constant angular

velocity θ̇ = ω/m. That is, the local phase fronts travel along a circular orbit.
From the approximate time independence of the background, it follows that modes must travel

along phase-space trajectories of constant frequency. Therefore, the possible mode trajectories are
entirely contained within a single level set ω+

D = ω0 for some constant ω0. Consequentially,
the phase-space trajectories that intersect the fixed-point (solid black lines in figure 3.4), referred to
as separatrices, can be associated with a specific frequency. We shall refer to this frequency as the
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sound-ring frequencyωsr, and the radial location of the associated fixed-point as the sound-ring
radius r(m)

sr .
The separatrices defined by the sound-ring frequency ωsr introduce a natural separation of

phase-space into three regions of qualitatively different behaviour. First, waves with a frequency
larger thanωsr, may propagate freely between the outer boundary rB and the vortex core, see the
orange region in figure 3.4. These modes are hereby referred to as A-modes (A for above). Waves
with frequency lower thanωsr may either disperse outward from the sound-ring radius r > rsr
(blue region in figure 3.4), or they may be geometrically bound to the outer rim of the cluster (red
region in figure 3.4). Waves that are unable to propagate inside the cluster (blue) will be referred to
asO-modes (O for outside), whereas waves trapped around the edge of the core (red) will hereby
be labelled I-modes (I for inner).
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Figure 3.4 (Phase space of waves) The analytical predictions for the effective phase space ω+
D

of an |m| = 15 mode in an ℓ = 29 cluster with Rankine radius R = 29 (vertical dashed line)
where the arrows indicate the flow of time. Panel (a): the counter-rotatingm = −15 phase-space
is drawn, with a separatrix (solid black line) indicating the trajectories that intersect the fixed-point
(black circle) located at the sound-ring radius rsr (vertical dotted black line). The separatrix defines
three regions: (1)A-modes, which can propagate between the cluster core and the outer boundary
(orange region), (2)O-modes, which are confined outside the core (blue region), and (3) I-modes,
that are trapped at the edge of the cluster (red). In the I-mode region, a white dashed line is drawn
around the region inside which there are only negative frequencies. Panel (b): the phase space for
co-rotating modes m = 15 is separated in two regions by the frequency with turnover radius at
the rankine radius R (black dashed line). This defines two regions (1) waves that can communicate
between the core and the boundary (red shaded region) and (2) waves that are confined outside
the boundary (blue shaded region). A white dashed curve is drawn around the positive frequency
contribution from the negative branch (ω−

D).
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Before moving on, we will benefit from thinking about what wave behaviour is anticipated from
the phase space shown in figure 3.4. First, let us consider an open system, without any noise, and
with a cluster that does not expand. If at some instant, waves are excited inside the core, the co-
rotating (m > 0) components will radiate out effortlessly, whereas only counter-rotating (m < 0)
frequencies that exceed the sound-ring frequencyωsr can escape to infinity. Modes with frequen-
cies lower thanωsr will be reflected back at some radius smaller than the sound-ring radius rsr. In
particular, the closer (from above) the frequency is toωsr, the longer time it will take the mode to
escape. A faraway observer will, therefore, first receive a complicated spectrum of frequencies that
depends on the details of the excitation, followed by a long-lived, but gradually decaying signal at
ωsr. This slow leakage of waves originating* at the light ring is widely accepted as the main inter-
pretation of the ringdown process for the relaxation of excited astrophysical compact objects[148,
164], although there are some exceptions (see e.g. [151]).

Next, imagine placing a rotationally symmetric reflecting boundary at some finite radius rB.
Now, the escaping waves are reflected back, and the inward-propagating waves interfere with the
waves that are still propagating outward, creating standing waves. After the second reflection, the
wave either adds to the already established standing wave or subtracts from it. As this cycle repeats,
some frequencies will be increasingly suppressed by this interference, while others are amplified,
and eventually, one is left only with a discrete collection of resonant frequencies. Because the per-
turbation originated in the core, however, no wave is excited in the blue regions of figure 3.4. At
this point a comment should be made on the validity of the phase space picture. When a wave turns
around, at kr = 0, the WKB assumption (3.23) of phases varying much more than the amplitudes
is badly violated. Instead, as discussed in detail in chapter 2 and appendix A, one may construct
transfer matrices at these turning points, relating propagating WKB modes on one side to evanes-
cent WKB modes on the other. The result is that modes are only partially reflected and with a phase
shift ofπ/4. The transmitted, evanescent component, which can be seen as a tunnelling amplitude
(see appendix A), enables amplitudes from one phase space orbit to bleed into another of the same
frequency, but with amplitudes suppressed by their separation. There are two situations in figure
A.4 for which this might happen. The first situation occurs for clusters that are sufficiently compact
for the negative branchω−

D to take positive values, in which case the system may exhibit a superra-
diating instability as discussed in chapter 2. In panel (a) of figure 3.4, a white dashed line is drawn
around them < 0 region in phase space that corresponds to negative frequencies. By virtue of the
symmetry −ω±

D(m) = ω∓
D(−m), these trajectories are the same as those of the negative branch

form > 0 (white dashed contour in panel (b)). However, in what follows we will find ourselves
in a situation where the positive frequencies in ω−

D are lower than the smallest frequency on the
positive branchω+

D, so that even if modes withω−
D > 0 exist, they cannot tunnel into modes on

the positive branch.
The second situation that is not captured by the phase space picture is the tunnelling of the
*In our system, the sound-ring/light-ring is populated by radiation trying to escape from inside the cluster. In

general, the ringdown modes are said to originate from, or at least nearby, the light-ring itself.
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I-modes (red region in panel (a) of Figure 3.4) into theO-modes (blue region) for frequencies that
exist in both regions. We shall see that this does indeed happen, resulting in some, although strongly
suppressed, counter-rotating resonant modes below the sound-ring frequency. That is, for a sta-
tionary, undamped system with reflecting boundary conditions, an excitation that originates in the
core is expected to eventually result in a population of resonant modes of typeA and I, as well as
some frequencies in theO-region of panel 3.4(a).

In reality, there is no sudden excitation in the core, but rather an active stirring by the moving
vortices. The presence of noise seeds all regions in figure 3.4, but only weakly compared to the
sound radiated from the cluster. Moreover, the damping reduces the population of resonant modes
that are not continuously sourced from the cluster. Although slow, the expansion of the cluster
introduces a drift in the resonant modes. However, the sound ring, being located safely outside the
cluster during the early stages, remains static during the entire process.

To determine the location of the sound-ring, we first observe from (3.25a) that a wave stagnates
radially, i.e. ṙ = 0, whenever kr = 0. As in (2.36) from chapter 2, this motivates the introduction
of the turnover frequencies

ω±(r) =
mvθ

r
±
√
ρ0
m2

r2
+
m4

4r4
, (3.26)

being the frequency of waves that stagnate at the radius r. For positive frequency counter-rotating
waves (mω < 0), the turnover frequenciesω+(r) on the positive branch can exhibit a local max-
imum which determines the location of the sound-ring

r(m)
sr =

√
1
2
(6ℓ2 −m2) + ℓ

√
6ℓ2 −m2, ωsr = ω

+(rsr). (3.27)
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Figure 3.5 (Anatomy of the spectrum) Three qualitatively different regions shaded for ℓ = 29
withR = |ℓ|: I-modes (red),O-modes (blue), andA-modes (orange). Panel (a): the effective poten-
tialω±(r) (solid black line) form = −15. From the symmetry −ω±

D(m) = ω∓
D(−m), negative

frequencies inform us ofm = +15. Frequencies at three key radii are labelled: the Rankine radius
R (vertical dotted line), the sound-ring radius r(m)

sr (ℓ) and the potential boundary rB. Coloured
horizontal lines are drawn at the resonant frequencies predicted using the WKB approximation.
Panel (b): allowed frequenciesω over azimuthal numberm for all radii r in the system. For a single
m = ±15, this corresponds to the middle panel projected onto the frequency axis. Here, the solid
black line gives the sound-ring frequenciesωsr, and the dashed black line is the frequencyω+(R)
of waves with a turning point at the Rankine radius. The solid points signal which modes stagnate
at the sound-ring (black), counter-rotating at the core (red), co-rotating at the core (yellow) and at
the boundary (blue) for |m| = 15.
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Here r(m)
sr is the radius of the sound-ring andωsr is the frequency of the wavefront which orbits

the system at this radius (see panel (a) of figure 3.5). Note that the sound-ring radius r(m)
sr only exists

provided that R < r(m)
sr . Importantly,ωsr is the lowest positive frequency needed for a counter-

rotating wave to travel freely from inside the vortex cluster to the potential boundary. Moreover,
since the effective Hamiltonian is locally flat at the sound-ring rsr, i.e. ∂rω+|r=rsr = 0, waves
which are created in this region will linger around rsr before eventually dispersing [165].

Note that the sound-ring is completely determined by ℓ and |m| and that it only exists when
the cluster is sufficiently compact, i.e. R < rsr, and only for azimuthal modes with |m| ≲

√
6|ℓ|.

For a singly wound vortex (|ℓ| = 1) the sound-ring is of the order of the healing length rsr ∼ 1.
The same coloring of regions as in figure 3.4 are used in figure 3.5, and the white region corre-

spond to modes that are evanescent. Here, the frequencies ω ⩾ ω+ gives the counter-rotating
spectrum in figure 3.4(a), whereas the negative frequenciesω ⩽ ω− correspond to the co-rotating
phase space in panel (b).

If the radial direction is projected out fromω± for allm, we are left with panel (b) of figure 3.5.
Here, the solid black line is drawn along the sound-ring frequencies, and the solid blue line gives the
frequencies of modes that stagnate at the potential boundary rB. On the co-rotating side, for which
there is no sound-ring, a dashed black line atω+(R), delimiting theA-modes from theO-modes,
is drawn along the frequencies that stagnate at the rim of the cluster. Counter-rotating (m < 0)
modes that stagnate the edge r = Rof the core are drawn as a dashed red line. Note that the negative
frequencies appear as co-rotating positive frequencies, as seen from the red region form > 0. As
the cluster expands, the dashed lines change their locations, while the solid lines do not. The result
is that in the co-rotating spectrum,O-modes are continually being promoted toA-modes, whereas
in the counter-rotating spectrum, they remain fixed.

Several brief observations should be made. Firstly, the I-modes in the co-rotating spectrum,
which carry negative energy, do not overlap withO-modes for the depicted core size (R = 29). An
overlap of these regions exists for smaller core sizes or larger trap sizes, for which a superradiating in-
stability can occur, leading to large mode populations in this region. Secondly, we observe that, due
to dispersion, the sound-ring seizes to exist when r(m)

sr ⩽ Rwhich happens for sufficiently large az-
imuthal numbers |m|. For azimuthal numbers larger than this threshold, the counter-rotating spec-
trum exhibits the same qualitative behaviour as the co-rotating spectrum. Thirdly, in the counter-
rotating spectrum, there is an overlap of regions I and O, which are precisely the frequencies for
which tunnelling may occur between regions I and O. The result is that in this region, I and O
modes are not naturally separated due to their interaction and one should instead refer to them as
joint IO-modes. The WKB resonance condition for I and O modes takes the same form as that
used for closed systems in chapter 2, i.e.

cot (Φ12)︸ ︷︷ ︸
I−modes

cot
(π
4
+Φ3B

)

︸ ︷︷ ︸
O−modes

= exp (−2Φ23) for Φab ≡
∫ rb
ra

|kr|dr, (3.28)
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Figure 3.6 (Simulation results) Panel (a): ensemble-averaged squared amplitudes form = ±15,
white lines show the turnover frequenciesω±(r) for the average Rankine radiusR = 29.45 (verti-
cal white dashed line). Panel (b): radially averaged spectrum from ra = 40 (see white vertical solid
line segment in left panel) to the boundary rB = 121.5.

where r1, r2, r3 are the (sorted) solutions toω± = ω for the frequency considered. Note, however,
that the background ρ0, v0 is different from that of chapter 2. The resonance condition for theA-
modes takes the form of a separatedO-mode, i.e. cos (Φ1B + π/4) = 0. The frequencies which
solve the resonance condition are shown in figure 3.5 as horizontal lines in panel (a) and dots in
panel (b).

VII. The observed spectrum

Armed with the analytic predictions summarised by figure 3.5, we now shift our focus towards the
numerical simulations. Using the approach outlined in section IV (see equation (3.20)), we obtain a
spectrum of (complex) amplitudesρ(a)m (ω, r) for each realisationa = 1, ..., 51, azimuthal number
m, frequencyω and radius r.
The ensemble-averaged result is shown in figure 3.6, in the same form as the predictions in figure 3.5.
Panel (a) illustrates the radial dependence of the sound in different frequencies form = −15. Su-
perimposing the turnover frequencies from our model (white solid lines), we see that the data is
in excellent agreement with our prediction for r > R, since ω± correctly separates the propa-
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gating and evanescent regions of the system. Inside the core, amplitudes are seemingly uniformly
distributed, other than a low-negative-frequency region of very large amplitudes where we expected
the modes to be evanescent. This region corresponds to slowly co-rotating modes associated with
the movement of vortices inside the core. As seen in the previous chapter, there is an intricate in-
terplay between the vortex (cavity mode) and the sound-field outside (phonon mode). That is, we
may expect this signal to partly consist of a remnant of the initial instability of the multiply wound
vortex discussed in chapter 2, and partly a numerical artefact due to the misinterpretation of the
density depressions around individual vortices as sound-waves. In any case, a detailed study of this
signal relies on the movement of individual vortices and their coupling to the surrounding density
fluctuations, which is beyond the scope of this investigation.

Focussing on the emitted sound, we consider the radially averaged spectrum on the interval
r ∈ [ra, rB], where ra = 40 is chosen to be a couple of healing lengths outside the final core
size*. The result is figure 3.6(b), which is in excellent agreement with the predicted spectrum in
figure 3.5(b). However, whereas the O-mode resonance frequencies are clearly excited (see faint
straight lines in figure 3.6(b)), there are no resonantA-modes visible. That is, the orange region in
figure 3.5(b) appears featureless in figure 3.6(b).

To understand what is going on, let us return to figure 3.6(a). For the propagating (ω ⩾ ω+ or
ω ⩽ ω−) outer regions (r > R), the turnover frequenciesω± and outer potential boundary rB
form an effective cavity. Following the discussion of the phase space 3.4, a discrete spectrum of reso-
nant frequencies emerges only when both boundaries in the cavity are well defined. In figure 3.6(a)
we observe that if this cavity lies entirely outside the cluster core, i.e. theO-modes in figures 3.4 and
3.5, then both boundaries of the cavity are well defined resulting in a curved checkerboard pattern
of high and low wave amplitudes (see region around r = 75 andω = −0.5 in figure 3.6(a)). The
result is the aforementioned discrete set of resonantO-mode frequencies visible in figure 3.6(b). If,
on the other hand, part of the cavity is inside the core, i.e. I-mode orA-mode in figure 3.5, then only
the boundary condition at rB is well defined. The result is the formation of standing waves, but not
a discretization of frequencies. This suggests that, for our choice of parameters, the model fails for
r < R since the studiedω-range is sensitive to the movement of individual vortices. The absence
of features in the core region of 3.6(a) can then be understood as a consequence of the scattering
across both frequencies (due to the time-dependence of vortex movement) and azimuthal numbers
(due to features in azimuthal direction).

In our simulations, and in experiments, dissipation acts on energies, meaning that higher fre-
quencies are damped more than lower frequencies. Therefore, the majority of the sound energy
escaping the cluster ought to reside in the frequencies delimiting theA-modes from theO-modes
in figure 3.5. Consequently, the peak in amplitude for co-rotating frequencies depends on the core
size, and therefore on the time, the waves were emitted from the core. In comparison, the peaks at

*It was confirmed that such an average remains unchanged for variations of ra when ra ⩾ r
(0)
sr , other than the

expected effects from the standing wave patterns.



Section VIII The observed spectrum 65

−70 −60 −50 −40 −30 −20 −10 0 10 20

m

0.00

0.25

0.50

0.75

1.00

ω
[µ
/
h̄

]

Figure 3.7 (Sound-ring spectrum) Relative (squared) amplitudes of the radially averaged spec-
trum ⟨|ρ(a)m (t, r)|2⟩a,r for a selection of azimuthal modes. The thickness of each vertical band is
proportional to the amplitudes of the corresponding slice in figure 3.6(b). Thin horizontal lines
are drawn at the resonant frequencies and thick red lines are drawn at the sound-ring frequencies
ωsr for the counter-rotating (m < 0) modes. For the co-rotating (m > 0) modes, the range of
turnover frequencies at the Rankine radiusR, i.e.ω+(R), is drawn (red bands) for estimated range
R ∈ [26.2, 32.7].

the sound-ring frequencies remain constant and are thus well resolved. This result is independent
of the validity of the model inside the core. In figure 3.7, the (relative) amplitudes from figure 3.6(b)
is plotted for a selection of azimuthal modesm, where the thickness of each (orange) band is pro-
portional to the mode amplitude at that frequency. We see that form < 0, where the sound-ring
exists, the spectrum is clearly peaked at the sound-ring frequencies ωsr (red horizontal lines). In
comparison, on the co-rotating side, where there is no sound-ring, the amplitudes have a wider peak,
somewhat above the band of delimiting frequenciesω+(R) for the range of core sizesRwithin the
analysis window. Crucially, due to the expansion of the core R over time and the finite speed of the
wave, the population of these frequencies depend on the core size R at the time of departure, when
the core was even smaller than the initial size within the analysed time window. That is, at a given
time t and radius r, the expected peak is not located atω+(R(t)), but rather atω+(R(t − ∆t)),
where∆t is the time it took the wave to propagate from R(t− ∆t) to r.

This is in contrast to the sound-ring frequenciesωsr, which, when they exist, do not depend
on the core size. Instead, the sound ring is static and located well outside the core, providing a
consistent lower threshold on the counter-rotating frequencies needed for the waves to escape the
cluster.
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VIII. Conclusion
In this chapter, we introduced the notion of sound rings to describe the wave dynamics of a compact
vortex cluster. By comparing with numerical simulations of the SGPE, we verified that the sound
ring of the average flow field is a strong signal in the measured spectrum. This complements recent
progress in black hole physics, where the gravitational waveform produced during binary mergers is
determined by the light-ring of the average one-body spacetime. In our case, the sound ring plays a
central role since it exists in a region of the flow which is highly symmetric and non-evolving at early
times. The resulting signal is, therefore, independent of the non-linear vortex dynamics inside the
cluster, provided the vortices are packed close enough together so that the cluster radius is smaller
than the sound-ring, i.e. R < rsr.

The findings are expected to be of interest in 2d-quantum turbulence. In a confined system
such as a trapped atomic condensate, the number of possible vortex configurations is bounded,
and the entropy reaches a maximum at a finite value of the energy [134]. Larger energy can then
be reached only by lower entropy creating clustering of vortices of the same sign. Therefore, the
injection of energy into such a two-dimensional flow will promote the formation of vortex clusters
and sound rings. A coarse-grained velocity field of ℓ same-sign vortices will induce a sound-ring
of radius rsr ∼ ℓ, see equation (3.27), in which a strong wave signal is localised around ωsr in
the frequency domain. This could be checked in current experimental, and numerical studies of
two-dimensional quantum turbulence in which vortex clustering can be induced by evaporative
heating, i.e. the annihilation of vortex-antivortex pairs [155, 156, 166].

Although we do not observe a discrete spectrum of modes which probe the inside of the cluster,
these modes are expected to be excited for larger vortex clusters with ℓ ≳ 100. In this limit, the
discretization of circulation in the underlying micro-structure is also expected to be hidden from
the long-wavelength modes, which perceive only the average “classical” Rankine background. These
considerations may be of interest for the corresponding quantum to classical limit around fluid
flows and rotating compact objects exhibiting discrete angular momentum.

Finally, it should be stressed that it is far from obvious that the sound-ring, a relatively simple
model, should have such a descriptive power in this system. The relaxation expansion of a vor-
tex cluster is a complex, highly non-linear system. The discovery of the sound-ring phenomenon
therefore not only builds intuition but also offers a remarkably simple theoretical description that
captures the essential features of a very complicated phenomenon.



Chapter 4

Non-linear Faraday Resonance of Two-Fluid
interfaces

The following accounts for the work presented in the preprint Primary thermalisation mechanism
of Early Universe observed from Faraday-wave scattering on liquid-liquid interfaces [102] by V. S.
Barroso, Z. Fifer, S. Erne, A. Avgoustidis, R. J. A. Hill, S. Weinfurtner and myself. This project
is a continuation of the proposal presented in [167]. My primary role focused on data analysis,
simulation and model building.

While writing this chapter, I realised that the non-linear treatment could be extended to incor-
porate surface tension to higher order in perturbation theory. In pursuit of this extension, all figures
and numerical simulations below are updated to incorporate the extended model.

I. Introduction

In 1831, Michael Faraday published his work on the patterns created by dust on vibrating sur-
faces [168, 169]. He noted that a similar instability appeared for fluid surfaces upon vibration of
the container. In particular, he observed that the fluid surface oscillated with twice the period of
the external vibration. This phenomenon, now referred to as Faraday instability or, more generally,
parametric resonance, has been studied extensively since then. It is responsible for the rolling of
ships at sea [170], the collapse of bridges [171], and for the thermalisation of the early universe after
the hypothesised period of cosmological inflation [89]. This thermalisation mechanism, referred
to as preheating, is a broad parametric resonance transferring energy from the primordial inflaton
field to other fields, eventually thought to result in the hot plasma taken as the initial state of hot big
bang cosmology. Unfortunately, the preheating mechanism, obscured by several hundred thousand
years of hot plasma, is likely to remain elusive to direct observation for the foreseeable future†.

In this chapter, we experimentally investigate the Faraday instability arising from a classical two-
fluid interface. The results are analysed from the perspective of cosmological preheating, and the
tools are motivated by recent adaptations of the statistical machinery from field theories [103, 104].
Using an ensemble of repeated experiments, we test our model against stochastic simulations of

†There may be hope in the field of gravitational wave astronomy.
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a non-linear model and identify a broadening of primary resonance bands and the appearance of
secondary instabilities as predicted by preheating [100].

II. Dynamics of parametrically driven confined
Two-fluid Interfaces

In the following section, we seek to introduce the dynamical equations of motion for the inter-
facial excitations of two immiscible fluids in a closed container oscillating vertically. This will be
done in three steps: (1) the introduction of the perturbative, linear dynamics, and relations for the
eigenmodes in an annular cylindrical geometry, (2) a discussion of the well-known unstable growth
dictated by Floquet theory and (3) the weakly non-linear extension to the linear dynamics, derived
in close correspondence to the approach of Miles [172, 173].

We take a phenomenological, effective field theory approach, where we start by considering an
oversimplified model and iteratively add the relevant corrections. Two main approximations greatly
simplify the calculations. Firstly, we ignore viscous effects and later correct for them by introducing
a phenomenological damping parameter. Secondly, we assume the meniscus of the fluid interface
to be negligible.

II.1. The linear theory
The dynamics of classical Newtonian fluids are well described by the Navier-Stokes equations [174],

ρ(∂t + v · ∇)v = ∇ · T+ F (4.1a)

∂tρ+∇ · ρv = 0 (4.1b)

which are nothing but a formulation of the conservation of mass (4.1b) and momentum (4.1a) in
continuous media. Here, ρ is the density and v the flow velocity of the fluid, F is the net external
force per unit volume acting on the fluid andT is the stress tensor with indices Tij. The Newtonian
stress tensor has an isotropic contribution from the thermodynamic pressure p, and a deviatoric
stress proportional to the velocity gradients, with the the viscosity being the constant of propor-
tionality.

We shall assume the fluid to be of constant density (∇ρ = 0 and ∂tρ = 0) and to be inviscid
(zero viscosity), in which case the stress tensor is defined entirely by the thermodynamic pressure
via

Tij = −pδij. (4.2)

Note, however, that to connect with the experiment in the subsequent sections, it will be necessary
to reintroduce an effective damping parameter to the equations of motion. In the inviscid case, the
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system (4.1a) and (4.1b) reduces to the incompressible Euler equations, with the substitution (4.2)
in (4.1a), and (4.1b) being reduced to ∇ · v = 0.

Next, we shall assume F to be the conservative, vertical force of gravitation F = ρ∇gz. Addi-
tionally, we will assume the flow to be irrotational, i.e. ∇× v = 0, permitting us to introduce the
velocity potential v = ∇Φ*. The resulting governing equations are the Bernoulli equation and the
incompressibility condition

∂tΦ+
1

2
|∇Φ|2 +

p

ρ
− gz = const, (4.3a)

∇2Φ = 0 . (4.3b)

Next, we need to set boundary conditions for the pressure p and the velocity potentialΦ. Let us
start with the velocity potential. In regions where the fluid volume is bound by an impenetrable wall
with normal vector n, there is no fluid flow in the direction ofn. That is, there is an impenetrability
condition of the form

n · ∇Φ = 0. (4.4)

Here, due to microphysical, viscous effects, one often takes also the tangential flow to be vanishing
at the boundary, i.e. ∇Φ = 0.

Next, let us consider a free boundary of the fluid, where the fluid does not touch a hard wall,
but rather another fluid. In this case, the surface must move with the fluid it bounds. Denoting this
free surface by Γ(r, t) = 0, this can be stated as

(∂t + v · ∇)Γ = 0. (4.5)

Surface tension, which arises due to microscopic cohesive forces, introduces an energy Vσ = σA

associated with the area A of the two-fluid interface itself (see e.g. Ch. 4.19 in [174]). One conse-
quence is that the stress tensorT is discontinuous across an interface between two fluids. Denoting
the two fluids by (±) and the surface normal vector pointing from the heavier fluid (−) to the
lighter fluid (+) by n, the stress tensors T± are related via [175]

n · (T− − T+) · n = σ∇ · n and n · (T− − T+) · t = ∇σ · t (4.6)

where, σ is the coefficient of surface tension and t is a unit vector tangent to the interface. In the
case of inviscid fluids the above reduces to the familiar Young-Laplace law

p+ − p− = σ∇ · n (4.7)
*Note that a natural extension of the theory would be, as in chapter V.3, to use the Helmholtz-Hodge decomposi-

tion v = ∇ ×ψψψ + ∇Φ in terms of the velocity potentialΦ and the stream functionψψψ, and consider the situation
where the flow is mostly irrotational, i.e. |∇Φ| ≫ |∇×ψψψ|.
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for the pressure difference across a two-fluid interface. Note that the above relations can be split into
two different systems. On the one hand, we have the dynamical boundary value problem (4.3b),
(4.4) and (4.5), which determines the modes that fit in the system. On the other hand, we have the
dynamical system defined by the two equations (4.3a) and (4.7), which determine the equations of
motion for the modes that fit in the system.

As noted by Miles [172, 173], both these systems can be formulated as variational principles in
such a way that the derivation carries naturally over to nonlinear deformations of the surface. Note,
that the inclusion of surface tension as a Lagrangian potential energy as proposed in appendix D
of Miles [173], was subject to a corrigendum [176]. This updated approach serves as the foundation
for the treatment of surface tension in the following sections.

The dynamical boundary value problem

We shall now focus on the dynamical boundary value problem (4.3b), (4.4) and (4.5), for two im-
miscible fluids, labelled (±), enclosed by an annular cylindrical container. We choose the labelling
such that in the resting position, fluid (−) is below fluid (+), i.e. ρ− ⩾ ρ+. The volumes occupied
by the two fluids are referred to asV±, with the total volume of the container beingV = V−∪V+.
The inner surface∂V of the container is subject to the impenetrability condition (4.4), whereas the
interface Γ(r, t) = 0 between the two fluid volumes V+ and V− obeys the dynamical boundary
condition (4.5). The result is a dynamical boundary value problem of the form

∇2Φ± = 0 in V± (4.8a)

n · ∇Φ± = 0 on ∂V , (4.8b)

(∂t +∇Φ± · ∇) Γ = 0 on Γ , (4.8c)

To start, we choose z to be the direction opposite to gravity and consider the linearised motion of
small deviations ξ from a flat (z = Γ ) interface at rest (∇Φ±|Γ = 0), i.e. Γ = z−ξ forΦ≪ 1 and
|ξ(t, r)| ≪ h

(±)
0 , where h(±)

0 is the average depth of fluid ±. The resulting linearised condition
for the free surface (4.8c) takes the form

∂tξ = −∂zΦ±. (4.9)

Now introduce cylindrical coordinates (x, z) = (r, θ, z) and eigenmodesψk(r, θ, z) of the hori-
zontal Laplacian, i.e. ∇2ψk ≡ ∂2zψk−k2ψk, and note that linearity ensures that eachψk satisfies
the equations of motion independently. Let the container ∂V consist of two horizontal surfaces
z = ±h0 that are equidistant from the resting position of the interface, with vertical walls that
are symmetric under z translations. Due to this symmetry, fixing the location of the top/bottom
lids of the container to z = ±h0 amounts to saying that the two fluids partition the volume of
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the container equally. By virtue of the translational symmetry of the vertical walls*, we may use the
incompressibility condition (4.8a) forψk in the bulk to connect the linearised dynamic boundary
condition on the interface (4.9) with the impenetrable horizontal wall (4.8b) at z = ±h0 to find
thatψk,± = fk(r, θ) cosh(k(z∓ h0)). Re-introducing this to (4.9) motivates the mode decom-
position

Φ±(t, r, θ, z) ≡
∑
a

ϕ±,a(t)ψ±,a(r, θ, z) for ψ±,a ≡ fa(r, θ)
cosh(ka(z∓ h0))

cosh(kah0)

(4.10a)

ξ(t, r, θ, z) ≡
∑
a

ξa(t)fa(r, θ), (4.10b)

for the linearised dynamics, where the extra constant cosh(kah0) inψ±,a is factored out ofϕ±,a

for future convenience. Note, however, that (4.10) can look deceiving. When the mode functions
fa are introduced to the boundary of the interface Γ , there will be a discretisation of the permitted
eigenvalueska. This will determine the exact form of the summation overa, which up to this point
remains unspecified. Crucially, if the boundary condition at the edge of the interface Γ is not the
same as that ofΦ, i.e. n · ∇Γ = 0, we cannot generally expect the summation over a in (4.10a) to
be the same as that in (4.10b). However, we have not yet specified a boundary condition for ξ on
the boundary of the interface Γ . Such a boundary condition is fixed by the contact angle θe of the
two fluids with the container wall, resulting in a boundary condition of the form [175]

n · ∇Γ
|∇Γ | = cos θe (4.11)

at the edge of the interface. For θe ̸= π this gives rise to a meniscus, whose presence is known
to source waves when interface waves are parametrically amplified [177, 178]. Because of this, our
experiment was prepared (see section III) using materials that minimise the meniscus. We shall
therefore use the assumption of a negligible meniscus (θe = π) for the remainder of this chapter.
Mathematically, this assumption is pleasing as it greatly simplifies the derivation due to both Γ and
Φ± now being subjected to the same boundary condition at the edge of the interface. This means
that we may now focus on determining the indexing set in equations (4.10a) and (4.10b), without
having to worry that these may not be the same.

For the remainder of this chapter, we shall specialise to an annular geometry wherein the vertical
walls consist of two nested cylinders, the outer of radius r1 and the inner of radius r2. In this case,

*It is the z-translation symmetry that ensures the eventual coefficients in the eigenmode basis to be the same at each
horizontal slice z = const.
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the mode functions fa, which obey the Helmholtz equation (∇2 − k2a)fa = 0, are given by

fa(r, θ) ≡ N−1
a Rma

(kar) cos(maθ), for (4.12a)
Rm(kr) ≡ Y ′

m(kr1)Jm(kr) − J
′
m(kr1)Ym(kr) and (4.12b)

N2
a ≡ 2

πAk2aJ
′2
ma

(kar2)

[(
1−

m2
a

k2ar
2
2

)
J ′2ma

(kar1) −

(
1−

m2
a

k2ar
2
1

)
J ′2ma

(kar2)

]
(4.12c)

where Jm and Ym are Bessel functions of the first and second kind, respectively, derivatives with
respect to r are denoted by a prime, i.e. ′ = ∂r, andA ≡ π(r22 − r

2
1) is the area of the interface at

rest. Here, we have introduced the azimuthal numbersma ∈ Z+, which are confined to integer
values due to angular periodicity fa(r, θ) = fa(r, θ+ 2π) in (4.12a). The azimuthal numberma
can be thought of as fixing the number of wave crests along a circle. The constantNa serves as a
normalization constant, as in equation (68) of Ziener [179], with respect to the L2 inner product
(·, ·) to ensure orthonormality

(fa(x), fb(x)) ≡
1

A

∫
d2xfa(x)fb(x) = δma,mb

δka,kb ≡ δab , (4.13)

of the mode functions*. Here, and in what follows, δab are the Kronecker delta symbols.
Whereasma is discretized by azimuthal periodicity,ka is discretised by the boundary condition

(4.8b) or, equivalently, (??), at r2. That is, ka are the values of k for which†

Y ′
m(kr1)J

′
m(kr2) = Y

′
m(kr2)J

′
m(kr1) . (4.14)

Note that the set {ka}a of values k that satisfy this condition generally depends on the azimuthal
numberm. There is no closed-form solution of (4.14), although approximations exist (see e.g [180]
and [181]). As a result, we determine kaa through the numerical solution of equation (4.14).

Before returning our focus to the determination of the linearised dynamics of ξ, we will benefit
from the observation that using the decomposition (4.10), along with the orthonormality relation
(4.13), allows us to write the linearised relation (4.9) as

ξ̇a(t) = ∓ϕ±,a(t)Ta for Ta ≡ ka tanh(kah0) . (4.15)

The equations of motion

The natural next step in the derivation of the linearised equations of motion for the modes ξa and
ϕ±,a would now be to linearise the Bernoulli equation (4.3a), at the interface z = ξ. Then, us-
ing our expression for the mode functions ξa and ϕ±,a from (4.10), along with the observation

*Here, the areaA is introduced in the denominator to adimensionalize the inner product and the mode functions
fa explicitly.

†The is nothing special about the outermost radius r2 here. In this case, the innermost radius r1 was used to obtain
the form (4.12b) forRm. If, instead, one were to use r2 in determining the coefficients in (4.12b), thenka would instead
be discretised from invoking (4.8b) at r1.
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that (4.15) requires ϕ+,a = −ϕ−,a, to consider the difference across the interface. The pressure
difference can be used to summon the Young-Laplace condition from (4.7). After using the or-
thonormality relations (4.13) to separate the modes, we would find the dynamical system

ξ̇a(t) = ∓ϕ±,a(t)Ta and ϕ̇∓,a =
(ρ∓ − ρ±)g− σk2a

ρ∓ + ρ±
ξa. (4.16)

However, as mentioned in the beginning of this section, we shall focus on the approach of
Miles [172, 173], including the surface tension as in the corrigenda [176] (see also [182]). The rea-
son that we choose this path, is the mathematical convenience of the Lagrangian formalism when
we consider the nonlinear extension of the model in section II.3.

In the presence of a single conservative vertical force f = −g(t)ez, the dynamics of the system
may be formulated* in terms of a Lagrangian of the form [172, 173, 176, 182]

L = L+ + L− − Vσ (4.17a)

L± = ρ±

∫∫∫
V±

dV

[
1

2
|∇Φ±|

2 − gz

]
(4.17b)

Vσ = σ

∫∫
(|∇Γ |− 1)dA, (4.17c)

where L± are the effective Lagrangians for the top (+) and bottom (−) fluids, and Vσ is the inter-
action energy due to tensile forces on Γ , with strength controlled by the surface tension σ. Note
that the integrals (4.17b) are nothing but the kinetic energy 1

2
ρ±|v±|2 minus the gravitational po-

tential energy ρ±gz of each fluid. The expression in (4.17c) introduces an energy proportional to
the area

∫∫
|∇Γ |dA of the interface, with proportionality σ, mentioned in the beginning of the

section when introducing surface tension. The factor −1 in the integrand ensures that the surface
energy Vσ is 0 for a flat fluid interface. In terms of the mode decomposition (4.10), the Lagrangian
(4.17), to leading order in |ξ| ≪ |h0| andϕ± ≪ 1, takes the form (see appendix D for details)

L ≃ A
∑
a

ρ− + ρ+
2Ta

[
ξ̇2a −ω

2
aξ

2
a

]
+ const forω2

a ≡ (ρ− − ρ+)g+ σk
2
a

ρ+ + ρ−
Ta, (4.18)

where (4.15) has been used to eliminate all appearances ofϕ±,a. Clearly, this is the same system as
found with standard perturbation theory in (4.16), i.e. the modesξa behave as harmonic oscillators
with frequenciesωa. Note that the Lagrangian (4.18) remains valid if the entire system is placed on
a vertically oscillating platform. Indeed, if the vertical position is parametrised by z = zs(t), then
the effective gravity becomes g 7→ geff(t) ≡ g+ f(t) for f(t) = z̈s, where g is the usual vertical
gravitational acceleration.

*Note that the time dependence of the force can either be included as an effective gravity g 7→ g + g(t), or it can
be taken as a time-dependent fluid volume V±(t) in the integration domain.
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Up to this point, we have assumed the fluids to be perfectly inviscid. As a first approach, we can
include dissipation phenomenologically by introducing a Rayleigh dissipation function

Rγ ≡
∑
a

(R+
a + R−

a ) for R±
a ≃

∑
a

Aγa
ρ±
Ta
ξ̇2a, (4.19)

in (4.18), as suggested by Miles [172]. Here, the dissipation function Rγ is responsible for a gen-
eralised non-conservative force −∂ξaRγ, modifying the equations of motion for the conservative
Lagrangian system (4.18) through

d

dt

∂L

∂ξ̇a
−
∂L

∂ξa
= −

∂Rγ

∂ξ̇a
. (4.20)

The dissipation function (4.19) is written in terms of the contributions from the top (R+
a ) and

bottom (R−
a ) fluids, where we have assumed the dissipation to be diagonal, i.e. absence of cross-

terms ξ̇aξ̇b for a ̸= b. Moreover, the phenomenological damping parameter γa, which accounts
for all viscous effects in the single-mode dynamics, has been introduced*.
The resulting equation of motion for the interface modes ξa is in the form of a damped harmonic
oscillator equation,

ξ̈a + 2γaξ̇a +ω
2
a(t)ξa = 0, where (4.21a)

ω2
a(t) ≡

(ρ− − ρ+)geff(t) + σk
2
a

ρ− + ρ+
ka tanh(kah0) , (4.21b)

subjected to a time-dependent vertical force f(t) = geff(t) − g. We shall now focus on the case
of parametric amplification, which is the instability that may arise in the case of a periodic vertical
force f(t).

If f(t) is periodic and vertical, the linear dynamics (4.21) takes a form comparable to that of
cosmological preheating (1.3), where the interfacial modes ξa correspond to the amplified matter
field, and the vertical oscillation plays the role of the inflaton field. A pleasing consequence of this is
that in an experiment, alternative inflationary models may be investigated by modifying the vertical
force. However, a comparison of this kind is beyond the scope of this text. Instead, we shall focus on
the non-linear regime in the hydrodynamical context. Towards the end of this chapter, we shall see
that even in its nonlinear description, the hydrodynamical equations capture the essential features
of the preheating mechanism.

II.2. Charting the instability
An unstable behavior arises in the linear dynamics (4.21) when the system is subjected to a vertically
oscillating force f(t) ≡ F0 cos(ωdt) of amplitude F0. In this case the linear dynamics (4.21) takes

*The interested reader is invited to consult the appendix of our paper [102], where an analytical model for the
phenomenological damping parameters γa is introduced.
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the form of the well-known Mathieu equation [183]. Let us start by writing equation (4.21) in matrix
form as a damped Hill’s equation

d

dt

[
ξa
ξ̇a

]
= D(t)

[
ξa
ξ̇a

]
for D(t) ≡

[
0 1

−ωa(t) −2γa

]
, (4.22)

whereD is periodic with period T ≡ 2π/ωd, i.e.D(t) = D(t+ T). This equation can be solved
for arbitrary initial conditions by considering the system Ċ = D(t)C where C is a 2 × 2 matrix
that starts as the identity matrix, i.e. C(0) = I. A solution C(t), referred to as the fundamen-
tal solution matrix, to this equation is such that at any given time t, it maps an initial condition
(ξ0, ξ̇0)

T to the evolved state (ξ(t), ξ̇(t))T . From Floquet theory, it follows that stability of the
system (4.22) is achieved if, and only if, every eigenvalue λn ofC(T) has modulus less than or equal
to one (|λn| ⩽ 1), see e.g. [184]. This can be seen from the realisation that for any initial condition
x0 = (ξ0, ξ̇0)

T , the solution at integer increments of the driving period T is given as powers of
C(T), i.e. x(nT) = Cn(T)x0 for n ∈ N. Moreover, provided that the damping γa in (4.22) is
constant, the determinant ofC(T), which can be identified with the Wronskian, is conserved, thus
leading to the observation that detC(T) = 1. It follows that the eigenvalues λ of C(T) are given
by 2λ = tC ±

√
t2C − 4, which takes real values when the trace tC ≡ trC(T) has magnitude

|tC| ⩾ 2, and complex for |tC| < 2. Since, detC(T) = λ1λ2 = 1 must include at least one
|λ| > 1 for distinct and real eigenvalues, the case |tC| ⩾ 2 is unstable, whereas |tC| < 2 is stable
since |λ1| = |λ2|.

Writing C(T) ≡ eAT , i.e. A is the matrix logarithm of C(T), permits defining p(t) ≡
e−Atx(t) which is a periodic function with period T . This result is commonly referred to as Flo-
quet’s theorem, and the implication for our case is that the solutions to (4.22) can be written

ξa(t) = e
iαatQ(t) for Q(t) ≡

∑
n∈Z

cne
inωdt (4.23)

whereQ(t) is some periodic function with period T , αa is a potentially complex number referred
to as the Floquet exponent, and cn ∈ C are constants in a Fourier series. In general, we shall
write αa ≡ ωα − iλa, where λa is the growth rate of the unstable growth. The real part ωa
of the Floquet exponent αa can be shown to either beωα = ωd/2, referred to as subharmonic
response, orωα = 0, referred to as harmonic response [183, 185].

The result of this stability analysis is shown in Figure 4.1(a), where (4.22) has been used to
compute the spectrum of C(T) numerically, using a Runge-Kutta-4 (RK4) scheme (see B.1.1),
for a range of driving frequencies ωd = 2ω0 and amplitudes F0 of the external force f(t) =
F0 cos(ωdt). The Figure exhibits the familiar [183] tongues (orange regions) of instability at inte-
ger multiples of half the driving frequencyω0 ≡ ωd/2, where odd multiples correspond to the
subharmonic response, and the even multiples the harmonic response.

For a given set of fluid parameters, the eigenvalues k can be found by solving the discretization
condition (4.14) for each azimuthal number m directly. However, as suggested by Ziener [179],
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Figure 4.1 (Instability regions) Panel (a): Stability plot for linear shaker system (4.22) at given
resonant frequencyω0 and shaker amplitude F0, i.e. with vertical force f(t) = F0 cos(2ω0t). The
white regions are always stable, while the orange regions may exhibit instabilities for sufficiently
low values of the damping γ. The orange lines in these regions correspond to 19 different values of
dampingγwith log-linear spacing from 0.015 to 15.84. The black lines are the stability boundaries
for γ = 0. The values in the experimental realisation are marked as a blue diamond. Panel (b) The
eigenfrequenciesωm,k for the modes in the system for r1 = 2cm, r2 = 4cm and h0 = 17.5mm
are drawn as red crosses as a function of azimuthal numberm. For a given azimuthal numberm,
the red crosses count the number of zero-crossings of Rm(kr) from left to right starting from 0.
The expected dominantm = 4mode is highlighted with a blue circle and the non-linear secondary
mode with a blue square. In both panels, vertical black lines are drawn at integer multiples of half
the driving frequency, dashed for odd multiples (subharmonic), and dotted for even (harmonic).
The driving frequency (first vertical dotted line) is that of the experimental setup.
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a more convenient numerical approach for determining k is to write the radial part of horizontal
Laplacian* for a given azimuthal numberm,

D̂ϕ = −k2ϕ for D̂ ≡ ∂2r +
1

r
∂r +

m2

r2
, (4.24)

and diagonalise a finite-difference formulation of D̂with Neumann boundary condition at r1 and
r2 (see Eq. (60) of Ziener [179]). By using the experimental parameters, which will be introduced
later, this method results in a spectrum of k ∈ Km for eachm that can be inserted into (4.21b) to
give the eigenfrequenciesωa for each mode a = (ka,ma) in the system. The resulting spectrum
is shown as red crosses in panel (b) of figure 4.1. Note that discrete k values that solve (4.14) can
be ordered by the number of zero crossings in the radial function, i.e. the number of solutions to
Rm(kr) = 0. Therefore, we shall hereby refer tok ∈ Km asknwhere the labeln = 0, 1, ... counts
the number of zero crossings of Rm(knr). That is, an eigenmode fa of the system is determined
by a pair of integers a = (m,n) ∈ Z+ × Z+, where m is the azimuthal number, and n is the
number of radial zero-crossings.

II.3. Corrections in the Nonlinear regime

We have now seen that instabilities arise from the linear system (4.21), in which modes are expected
to grow exponentially over time, see equation (4.23). However, in a realistic setup, this exponential
growth must eventually be halted as the excitations ξ of the interface approaches a size comparable
to the container. Note that in this regime, it is not always given that the notion of a single-valued
interface survives. For example, the waves may collapse into disconnected bubbles, or the two fluids
may mix, blurring the notion of the interface altogether. Assuming such complications to be absent,
we maintain the notion of an interface z = ξ(t, r, θ) and pursue the onset of nonlinearities. From
the modelling perspective, what happens is that the assumption |ξ| ≪ h0, which was used to
linearise the equations of motion for the free surface, is violated. In this section, we extend the
approach introduced by Miles [172, 173] to two-fluid interfaces with surface tension. The strategy is
to consider the weakly non-linear regime, in which the linear dynamics (4.21) receives higher order
terms in ξ. It is the appearance of such higher-order terms that must be responsible for preventing
the unbounded growth of modes in the system. The key insight is that the boundary value problem
(4.8), which remains valid in the non-linear regime, can be re-formulated as a variational principle
forΦ±, referred to as Dirichlet’s variational principle. The functional whose stationarity implies

*Here, the horizontal Laplacian refers to the Laplacian ∇2 = r−1∂rr∂r + r
−2∂2θ in the (r, θ)-plane.
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(4.8) is the Dirichlet action [172] (see appendix D for the full story)

S± =
1

A

∫∫∫
V±

1

2
(∇Φ±)

2dV± −
1

A

∫∫
ξ̇ Φ±|Γ=0 dA (4.25)

=
1

2
φ±,aK

(±)
ab φ±,b − ξ̇aD

(±)
ab φ±,b (4.26)

for each fluid (±) separately. In the final equality (4.26), summation over repeated indices is im-
plicit. Here, the coefficients of a decomposition into the linear eigenmodes (4.10) had been used as
generalised coordinates to introduce the two matrices

K
(±)
ab ≡

∫∫∫
V±

dV±∇ψ±,a · ∇ψ±,b and D
(±)
ab ≡ (fa,ψ±,b(r, θ, ξ)) , (4.27)

where (·, ·) refers to the L2 inner product introduced in (4.13).
Invoking the stationarity of (4.25) with respect to variations inϕ(j)

b then gives a matrix relation
Ka,bϕ

(j)
b = ξ̇aDa,b, that serves as a natural extension of the linear relation (4.15). The strategy is

to expand L±
ab = (K−1)acDcb in powers of ξa, resulting in non-linear relationship betweenϕa

and ξ̇a in powers of ξa, that should reduce to (4.15) in the limit |ξ| ≪ h0 to leading order. The
result, in correspondence with equation (2.14) of Miles [172], can be written (see appendix D for
details)

L

A
=
L0

A
+
∑
a

Σρ

2Ta

(
ξ̇2a −ω

2
a(t)ξ

2
a

)
(4.28)

+
∆ρ

2

∑
abc

ξcAcbaξ̇aξ̇b +
∑
abcd

Σρ

4
ξdξc

[
Adcbaξ̇aξ̇b +

σMcabd

2Σρ
ξaξb

]
, (4.29)

for ∆ρ ≡ ρ− − ρ+ and Σρ ≡ ρ− + ρ+, (4.30)

where L0 ≡ −1
2
AΣρgh2

0 − σA is a constant and the coefficients

Adcb ≡
(
2TbTc − k

2
b − k

2
c + k

2
d

) Cbcd

2TbTc
, (4.31a)

Adfcb ≡ −
Tb + Tc
TbTc

Dfdbc +
∑
e

CdceCfbe

2TbTcTe

(
k2e + k

2
c − k

2
d

) (
k2b + k

2
e − k

2
f

)
, (4.31b)

Cabc ≡ (fa, fbfc) , (4.31c)
Dabcd ≡ (fafb,∇fc · ∇fd) , (4.31d)
Mabcd ≡ (∇fa · ∇fb,∇fc · ∇fd) (4.31e)

are constants for a given geometry. Hence, and in what follows, we shall abbreviate Ta ≡
ka tanh(kah0).
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When parametrically amplified, multiple modes ξc may experience growth simultaneously, c.f.
Figure 4.1. However, as the growth continues, one mode, hereby denoted ξb, will grow more
rapidly than all the others. If so, this modeb eventually establishes dominance over all other modes,
i.e. |ξb| ≫ |ξa| for all a ̸= b. In that case, one may approximate the equations of motion that
follow from (4.28) supplied with the dissipation function (4.19) by (see appendix D for details)

ξ̈a + 2γaξ̇a +ω
2
aξa + ρ̃TaAbbaξbξ̈b +

1

2
ρ̃Ta(2Abba −Aabb)ξ̇

2
b

+Aabξbξ̇
2
b −Mabξ

3
b +

1

4
Ta (Abbba +Abbab) ξ

2
bξ̈b ≃ 0, (4.32a)

for Aab ≡ 1

4
Ta (2Abbba + 2Abbab −Ababb −Aabbb) and Mab ≡ Ta

σMbbba

2Σρ
,

(4.32b)
for any mode a, where ρ̃ ≡ ∆ρ/Σϕ. To leading order, the non-dominant modes a ̸= b evolve
according to the linear equations (4.21a), but are subject to non-linear sourcing by the dominant
mode ξb. The non-linear evolution equation for the dominant mode gives a form equivalent to
performing the substitution a = b in (4.32), i.e.

ξ̈b + 2γb
(
1−Abbξ

2
b

)
ξ̇b +

(
ω2
b − 2Mbbξ

2
b +Abb

[
ξ̇2b −ω

2
bξ

2
b

])
ξb ≃ 0. (4.33a)

This non-linear evolution containing effective self-interaction terms offers insight into the mecha-
nism responsible for preventing the growth of the unstable mode once it has reached a certain mag-
nitude. When the amplitude ξ2b grows, the natural frequency shifts and the effective damping is
modified, which eventually brings the parametric amplification to a halt. An approximate estimate
of this amplitude threshold ξb,thr can be found from |Abbξ

2
b,thr| ≃ 1, i.e. when nonlinear effects

become of order unity. Numerical computation of the coefficientAbb, withb = (m,n) = (4, 1),
gives ξb,thr ≃ 4.7mm for the geometry considered.

There are no quadratic terms in the non-linear effective self-interaction dynamics (4.33). One
consequence is that the interfacial height is manifestly symmetric under change of sign in ξb →
−ξb, i.e. it remains insensitive to the difference between up and down. Indeed, the nonlinear dy-
namics (4.33) is qualitatively similar to what one would have found by a phenomenological expan-
sion of γb andωb from (4.21a) that obeys this symmetry. Note also that the absence of quadratic
corrections to the non-linear dynamics means that the effective Lagrangian for the dominant mode
corresponds to aϕ4-type theory.

III. Experimental realisation
The experiment consists of an annular cylindrical container, with Nylon walls and lids made of
machined acrylic, with inner radius r1 = 20mm and outer radius r2 = 40mm of height
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+

−

Figure 4.2 (Experimental Setup) A platform (orange) is suspended by springs and guided verti-
cally by air bearings. The vertical movement of the platform is excited by an electromagnetic driver
(green). On top of the suspended platform is an annular cylindrical basin filled with equal amounts
of two immiscible fluids. The top and bottom lids of the container are transparent, and an illumi-
nated (red) checkerboard pattern is mounted on the rigid (blue) platform and is visible through the
top of the basin.

2h0 = 35mm (see Figure 4.2). The container is filled with an aqueous potassium carbonate so-
lution (fluid −) and ethanol-water solution (fluid +) of equal amounts. The measured densities
of the two fluids are ρ− = 1276(10)kg/m3 and ρ+ = 907(7)kg/m3, with surface tension
σ = 2.5(10) × 10−3N/m. The basin rests on a platform (orange in Figure 4.2) that is guided
by pneumatic bearings and suspended by springs. Attached to the platform is an electromagnetic
driver (green in Figure 4.2) whose oscillation supplies a vertical force. The springs are chosen so that
the spring-mass system has a resonant frequency that matches the frequency of the force applied by
the driver. Attached to the container are a thermometer and an accelerometer. The latter is used
to measure the off-axis motion of the platform, which serves to align the base (turquoise in Figure
4.2). Using the accelerometer, the frequency ωd ≡ 2ω0 = 6.07(2π)Hz (see blue diamond in
figure 4.1(a)) and amplitude F0 = 0.352g = 3.45m/s2 of the driving force f(t) is measured (See
Figure 4.3).

The driving force f(t) starts at time t0 = 0 and and stops at tstop = 26.36s, after having
completed 160 periods. The transients in the spring-mass system leads to a period of about 4s for
the acceleration of the container to reach a constant value after t0 and tstop (see Figure 4.3).

After the driving force is turned off at tstop, the system is set to relax over a period of 93.6 sec-
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Figure 4.3 (Driving force) The measured vertical acceleration (red curve) of the container in
a single experiment is plotted with its upper envelope (blue curve). The time tstop = 26.36s at
which the driving force is turned off is highlighted (vertical dashed line), as well as the constant
amplitude F0 = 3.45m/s2 (black dashed line).

onds, before the process is restarted after a total of 120 seconds has passed. This process is repeated
1500 times, over a total duration of 49 hours and 47 minutes. During the first 35 seconds of each
realisation the interface z = ξ(t, r, θ) is recorded. The result is a collection of 1500 measurements
{ξi(t, r, θ)}

1500
i=1 for t ∈ [0, 35]s.

To reconstruct the interface, a two-dimensional Fourier Transform Profilometry (FTP)
method [186–188], was used. The fundamental principle of this method is that when a periodic
pattern, in this case an illuminated cartesian checkerboard pattern, mounted on the rigid platform,
is observed through the interface, then local deformations of the pattern are proportional to the
surface gradient. This permits recovery of the surface gradients, which can be integrated to obtain
the full height fields {ξi(t, r, θ)}1500i=1 . Note, however, that due to a meniscus, which we have as-
sumed to be absent in the modelling, the reconstruction method breaks down near the walls of the
container. For this reason, a trustworthy height field ξ(t, r, θ) can only be obtained in the radial
window r ∈ [22mm, 38mm]. Due to these missing points in the reconstruction, the dominant
amplitudes ξb cannot be extracted using the orthonormality relation. Instead, the reconstructed
height fields ξ(t, r, θ) are decomposed into azimuthal numbers and separated into positive and
negative frequencies, i.e.

ξ(t, r, θ) =
∑
m∈Z

ξme
imθ ∝

∑
m∈Z

eimθ
∫
dω

[
bm,ωe

−iωt + b∗m,ωe
iωt
]
. (4.34)

Here, the constant of proportionality is chosen such that the amplitudebm,ω aligns with the theo-
retical amplitudesξb from the mode decomposition (4.10) with (4.12). That is, for a fixed radius r0,
the (complex) amplitudes bm,ω are related to the mode amplitudes ξb through 4Re(bmb,ωb) =
ξbN

−1
b Rmb

(kbr0)*.
*Here, the factor 4× comes from the factors 1/2 contained in the cos(mθ) and the (implicit) cos(ωt) in the
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The modulus of the resulting 1500 amplitudes for bm,ω(t, r0) for m = 4 and ω = ω0

are shown in panel (a) of Figure 4.4 for the fixed radius r0 ≃ 24mm. The figure shows the time
evolution of the ensemble as it passes four different regimes: (1) The time before the amplitudes
have grown beyond the noise floor of the detection method, (2) The steady exponential growth
expected from Floquet theory, (3) the non-linear regime in which the unusually large modes have
reached the plateau ξb,thr and (4) the damped stage after the shaker, and thus the instability, has
been turned off.
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Figure 4.4 (Experimental Data)Panel (a): The instantaneous amplitudes |bm,ω| form = 4 and
ω = ω0 (half the driving frequency) for all 1500 realisations (blue). An exceptionally non-linear
realisation is highlighted in solid black. The non-linear thresholdξb,thr and the average equilibrium
amplitudeξb,ns (see Eq. (4.36)) for the selected value ofση are drawn as dashed black lines. A dotted
black line is drawn to indicate the evolution ξb,nseλEt from initial amplitude ξb,ns, where λE is the
average growth rate. A vertical black dashed line is drawn to indicate the time tstop = 26.36s at
which the driving force was switched off. Panels (b),(c),(d): The reconstructed interface is rendered
at three instances t = 17.84s (b), t = 23.48s (c) and t = 29.1s (d) for the exceptionally non-linear
run. Note that the rendering is shown only for the trusted radii, i.e. 22mm ⩽ r ⩽ 38mm, and
that the top fluid is rendered transparent.

A rendering* of the full height field z = ξ(t, r, θ)measured in one of the experiments is shown
for three different temporal snapshots, t = 17.84s, 23.48s and 29.1s, in panels (b), (c) and (d) of

eigenmode definitions.
*The rendering is chosen such that the coloring is proportional to the (squared) dot product between the surface

normal and unit vector pointing away for a light-source.
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figure 4.4 respectively. These three snapshots, which correspond to regions (2), (3) and (4), show
a dominant m = 4 mode (see four crests at r1 in panel (c)) with one zero-crossing in excellent
agreement with the prediction from the numerical Floquet analysis presented in figure 4.1 (see the
blue circle in panel (b)).

24

26

T
[◦

C
]

(c)

0.52

0.54
λ

4
[s
−

1
]

(d)

0 20 40

t [h]

1.05

1.10

γ
4

[s
−

1
]

(e)

0.52

0.54

λ
4

[s
−

1
]

(a)

24 25

T [◦C]

1.050

1.075

1.100

1.125

γ
4

[s
−

1
]

(b)

Figure 4.5 (Thermal drift)Panels (a) and (b): The measured growth ratesλ4 (panel (a)) and decay
rates γ4 (panel (b)) for the all realisations versus the temperature T . It is clear that the damping γ4

is anti-correlated with temperature T . Panels (c),(d) and (e): The temperature T (panel (c)), growth
rate λ4 (panel (d)) and damping γ4 (panel (e)) versus the time t of the full repeated experiment. In
each panel of the three panels, the corresponding distribution is shown on the right side.

In each experimental realization ξ(t), the growth rate λ4 and decay rate γ4 can be extracted
from the data by finding, and fitting, linear segments of ln |b4,ω0

(t)|. The result of this procedure
is shown in Figure 4.5. Panels (a) and (b) depict the variation of λ4 andγ4 with temperature T , and
panels (c), (d) and (e) show the time dependence of these quantities. In panel (c) there are non-
Gaussian temperature variations, varying with the time of day. We see that whereas the growth rate
λ4 of them = 4 mode is relatively insensitive to temperature, the damping decreases linearly with
temperature. This is expected as the damping scales with viscosity, which is inversely proportional
to the temperature.
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IV. Numerically Simulated Stochastic Evolution
To compare the experimental results with the non-linear models, we consider numerical simula-
tions of equations (4.32) and (4.33) subject to the measured vertical force f(t). The measured accel-
erations f(t) are needed for two reasons: (1) the transients (see Figure 4.3) affects the dynamics, and
(2) there is some, although small, variation in f(t) from experiment to experiment.

A naive numerical implementation of the non-linear dynamics (4.32) and (4.33) is, however,
problematic as one would need knowledge of the initial state of the interface at rest. Moreover, dur-
ing the ramp-up period of the driving force f(t) (see Figure 4.3), the driving force is too small for the
instability to appear (see Figure 4.1) which, in combination with the phenomenological damping
γb, leads to an unrealistic damped evolution during this period.

This conundrum is resolved by the observation that there is no such thing as an interface at
rest. Instead, for sufficiently small amplitudes ξ, the dissipation due to γb is kept at bay by some
fluctuating, stochastic influence η(t, x). To model this, let us introduce a Langevinian stochastic
term η(t, x) on the right side of equations (4.32) and (4.33).

To see how the initial state of the interface is determined through the inclusion of such a noise
term, imagine that the driving force f(t) = 0 is turned off so that the system is left to relax towards
its equilibrium state. In this state, the amplitudes are expected to be very small, so that the evolution
of the system is well described by the linear dynamics (4.21a). Over long time scales, the acceleration
ξ̈b is negligible*, in which case the system becomes over-damped and can be formulated as stochastic
process (see e.g. [158])

2γadξa = −ω2
aξadt+ σηdBt, (4.35)

where the noise η has been assumed to be featureless white noise with standard deviation ση per-
mitting us to write dη = σηdBt where dBt is a Wiener process, i.e. dB2

t ≃ dt (see e.g. chapter
4 of Gardiner [158]). Equilibrium is reached when ensemble averages ⟨F(ξb)⟩ are constant for any
function F. This can be turned into a differential equation for the probability density function,
resulting in a central Gaussian with standard deviation σξ given by 4γbω2

bσ
2
ξ = σ2η. The average

amplitude of mode ξb is therefore expected to be

ξb,ns ≡ ⟨|ξb|⟩ =
ση√

2πγbωb
, (4.36)

prior to turning the driving force on. Note that if the equilibrium (4.36) was of a thermal nature,
the Gaussian distribution should take the form of a Boltzmann distribution with the quadratic
form of the Hamiltonian that follows from (4.18) in the overdamped limit. However, this is found
not to match the experimental data. That is, the initial state is not well approximated by thermal
excitations alone. Instead, the background noise is assumed to be significantly affected by external
noise sources.

*Here, long time is taken to mean large in comparison with the natural period 2π/ωb(0) of the considered mode.
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Now let ξb,n ≡ ξb(n∆t) and consider a deterministic timestep ξb,n 7→ ξb,n+1 performed
using a Runge-Kutta-4 (RK4) scheme (see B.1.1). After the step, we supply the stochastic contri-
bution by ξb,n+1 7→ ξb,n+1 + η(t)∆t, where η is sampled from a central Gaussian distribution
with variance* σ2η/∆t.

For a given geometry, measured driving force f(t), and set of fluid parameters, a simulation us-
ing the stochastic model therefore only depends on a single parameter ση, which is related to the
excitation of the interface at rest. However, to model the initial non-Gaussianity, which we shall
discuss in the next section, there is a need for a variation in the effective noise ση from experiment
to experiment. To match the initial distribution over experimental realisations, we consider a data-
driven ansatzση ∝ |bm,ω(t0)| at some reference time t0 chosen in the early linear regime†. Finally,
white gaussian noise is added to the simulated distributions ξb to mimic the detection noise rele-
vant at early times.

V. The Statistical Approach

As seen in section IV, the naive treatment of the noise predicts a Gaussian equilibrium distribution
for the mode amplitudes. However, we shall see that the ensemble starts off with a slight non-
gaussianity. Moreover, during the early growth, the modes evolve linearly with (4.21a), for which
the shape of the distribution remains effectively unchanged. This can be seen in panel (a) of figure
4.6, for which the fixed-time distribution of the experimentally observed amplitudes Re[b4,ω0

] is
depicted at four different times, with a fitted Gaussian distribution shown as a black dashed line for
comparison. The first (red) is at t = 7s, where the distribution is given by the gaussian white noise
from the detection method. The next (orange) is in the middle of the linear regime, at t = 17.84s,
where the distribution is found to be more sharply peaked (leptokurtic) than a Gaussian. This
distribution remains approximately unchanged until the early non-linear period (green) at t =
23.48s. Finally, after the non-linear period, when the system has entered the damped regime (blue),
the distribution is changed and has attained a skewness. The four selected times are highlighted with
vertical dashed lines in panels (b), (c) and (d) of figure 4.6.

In panel (b) of figure 4.6, the averaged square amplitude ⟨|b4,ω0 |
2⟩ is drawn (blue line) as a

function of time. Here, and in all that follows, averages over experimental realisations are referred
to as ⟨·⟩. For the numerically simulated data, averages ⟨·⟩ are computed over repeated runs. For
comparison, the corresponding values ⟨|ξ(sim)

b |2⟩ are drawn (red line) together with the experimen-
tal data. The agreement of the two curves confirms that the stochastic non-linear simulations IV
accurately predict the ensemble-averaged amplitude of the dominant mode.

*Note that if the simulation samples from a distribution with standard deviation σ each timestep of duration∆t,
then the parameter ση as defined in the stochastic process (4.35) is given by ση = σ

√
∆t.

†This can not be too early, as the signal is swamped by detection noise at early times, which is, as we shall see,
perfectly gaussian.
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Figure 4.6 (Ensemble evolution) Panel (a): Ensemble distributions of (the real part of) the in-
stantaneuous amplitudes Re[bm,ω0

(t)] of the dominant m = 4 mode at four different times;
the noise-floor (red), the log-linear unstable growth (orange), the non-linear period (green) and the
decay (blue). Panel (b): The average squared amplitudes ⟨|b4,ω0(t)|⟩ for experiment (blue) and
simulation (red). Panels (c) and (d), exhibit the statistical measuresM(2n)

m,ω forn = 2, 3 computed
on both experimental data (blue) and using numerical simulations (red), both with bootstrapped
bands of one standard deviation.

To investigate the distributional properties of the ensemble more quantitatively, we take inspi-
ration from the statistical machinery of Quantum Field Theory (QFT). In a recent study, a roadmap
on how to extract an effective QFT description purely from experimental data was presented [103].
Here, the central quantities are higher-order equal-time correlation functions, which can be used
to determine the effective action [104]. This effective description is, however, developed with quan-
tum many-body systems in mind, and a dedicated study is needed to determine exactly how these
methods, e.g. the recovery of a diagrammatic description from [103], would carry over to the case
of classical fluid interfaces. Taking inspiration from these works, we consider the generating func-
tional, or characteristic function,

Z[J] ≡
〈
exp

(
i

∫
J(s)X(s)ds

)〉
, (4.37)

where X(s) is a random variable with auxiliary function J(s) for each state s. In our case, this
corresponds to J(s)X(s)ds = sa(t)ξa(t)dt with s ∈ Z+ × R. The significance of the gener-
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ating functional Z[J] lies mainly in its ability to generate all statistical moments, or full correlation
functions, by taking functional derivatives δ/δJwith respect to the currents of interest, i.e.

⟨X(s1)...X(sn)⟩ ≡ (−i)n
δnZ[J]

δJ(s1)...δJ(sn)

∣∣∣∣∣
J=0

. (4.38)

Similarly, the logarithm ln(Z) generates all cumulants, which are also called n-point functions or
(connected) correlation functions ⟨X(s1)...X(sn)⟩C. Here, the n’th order cumulants can be ex-
pressed in terms of the n first moments via (see e.g. [158])

〈
n∏
j=1

X(sj)

〉

C

=
∑
p∈Pn

(−1)|p|−1(|p|− 1)!
∏
B∈p

〈∏
i∈B

X(si)

〉
, (4.39)

where {X(si)}i are random variables, p ∈ Pn is a partition of n elements into |p| subcollections,
B ∈ p is one of these subcollections and i ∈ B are the elements of B.

Since (4.37) factorizes over independent variables, the cumulants ⟨X1...Xn⟩C, being coefficients
in the series expansion of ln(Z), must vanish if, and only if, all variablesX1, ...,Xn are independent.
That is, if modes evolve independently, then the only non-zero cumulants are those involving equal
modes at equal times, i.e. ⟨|bm,ω(t)|

n⟩C. Since moments generally increase in magnitude as the
order increases, i.e. ⟨X2n⟩ ⩾ ⟨Xn⟩2, the nth cumulant scales with the nth moment. To eliminate
this scaling, let us consider the quantities

M(2n)
m,ω(t, r) ≡

⟨
(
b∗m,ωbm,ω

)n⟩C
⟨
(
b∗m,ωbm,ω

)n⟩
, (4.40)

hereby referred to as relative cumulants. Crucially, for a normally distributed classical ensemble,
the cumulant is zero for all n > 1 so that the quantitiesM(2n)

m,ω vanish entirely in this case [189].
That is, the deviation ofM(2n)

m,ω from zero is a measure of the non-gaussianity of the ensemble. In
QFT, the cumulant in equation (4.40) is referred to as the full correlation function, whereas the
moment is its connected part. The latter vanishes for non-interacting (quadratic) fields, and it is
the fundamental quantity for studying particle scattering and decay processes [190].

The quantityM(2n)
m,ω withm = 4 andω = ω0 (dominant mode) is exhibited for both exper-

imental and simulated data in panels (c) and (d) of figure 4.6 for n = 2 and n = 3 respectively.
As expected, the white detection noise during the early period up to about t = 8s is Gaussian, so
that M(2n)

m,ω is zero there. Thereafter, when the mode amplitudes have grown out of the detector
noise, the relative cumulants take a constant non-zero value, indicating a residual non-gaussianity
from the early period. When the exceptionally large modes enter the non-linear regime around
t = 22s, the distribution changes considerably. Conceptually, what is going on is that as the ensem-
ble reaches the non-linear threshold, the upper tail of the distribution is deformed by the non-linear
threshold, leading to a deformation of the initially symmetric distribution.
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The behaviour of the higher order cumulants exhibited in panels (b),(c) and (d) of figure 4.6
are in good agreement with the numerical predictions based on the stochastic non-linear model.
That is, the effective model recovers both the average behaviour and the behaviour of the ensemble
averages.

VI. The Emergence of Secondaries

We have now seen that the system consistently displays the exponential amplification, stagnation pe-
riod and subsequent decay of the resonantm = 4mode, with wavenumberk1/(2π) ≈ 0.35 cm−1

corresponding to one zero-crossing. Next, we turn our focus towards the excitation of other modes
as the dominant mode ξb turns non-linear. Here, the relevant equation of motion is the sourced
linear oscillator in equation (4.32), for which a numerical study of the coefficients shows that the
main contributions should lie in them = 4 mode at other wavenumbers k.

This presents a difficulty in the data analysis as the breakdown of the detection method near the
boundaries of the system prevents accurate decomposition of them = 4 mode into the respective
Bessel modes. This is further complicated by the fact the dominant b = (m,k) = (4,k1) mode
is, as expected, parametrically amplified at all integer multiples ofω0 (see e.g. [183]), meaning that
frequency-filtering is insufficient. Instead, we consider the radial Fourier spectrum b̃m,ω(t,kr) at
different frequency bandsω and radial wavenumbers kr.

In panel (a) of figure 4.7 this quantity is displayed for two different modes (blue) together with
the corresponding ξa and ξb from numerical simulations (red). The first mode (solid blue) is the
dominant mode, which is found from considering b̃m,ω(t,kr) the primary resonance band ω0

and filtered at around the value for kr = kr,1 ≈ 1/2cm for which the mode (4,k1)with one zero-
crossing is peaked (see blue circle in panel (b) of figure 4.1). The second, subdominant mode, is
taken at the third resonance band 3ω0 and with kr = kr,2 ≈ 2/cm, where kr,2 is where the mode
(4,k7) with seven zero-crossings is peaked (see blue square in figure 4.1(b)). Here the numerical
simulations are based on non-linear self-interactions (4.33) for the dominant mode (solid red) ξb
with b = (4,k1) as usual, and non-linear sourcing (4.32) for the subdominant (dashed red) ξa for
a = (4,k7).

We observe that experiment and simulation are in good agreement and that the subdominant
mode a = (4,k7) is amplified at a much larger rate than the dominant modes b = (4,k1). Here,
it should be stressed that the exponential growth of a is not the result of parametric resonance, as
this would result in a growth rate comparable to that of the primary resonance b. In fact, at early
times around t = 18s, the subdominant mode exhibits a contribution from parametric resonance
as the log-linear slope is parallel with the dominant one in this period.

The similarity between cosmic preheating and the interfacial dynamics of our two fluids lies in
the parametric amplification of field modes resulting from an oscillating background source and
the eventual breakdown of the instabilities. In fact, the linear dynamics for the two-fluid system
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Figure 4.7 (Secondaries) Panel (a): Radial Fourier transform of experimentally (blue) re-
constructed instantaneous amplitudes b̃4,ω(t,kr) in comparison with the results ξ(sim)

a and
ξ
(sim)
b from numerical simulations (red). The dominant mode, ξ(sim)

b for the simulation and
b̃4,ω0

(t,kr,1) for the experimental data is drawn as solid lines. The secondary modes ξ(sim)
a and

b̃4,3ω0(t,kr,2) are drawn as dashed lines. Dashed light blue lines are drawn to emphasise the log-
linear growth of the experimental data. These curves have growth rates λ0 = 0.52/s (top) and
λ1 = 1.48/s ≈ 2.85λ0 (bottom). Panels (b) and (c): The radial Fourier spectrum of the instanta-
neous amplitudes b̃4,ω(t,kr) are drawn at times t1 = 17.84s (b) and t2 = 23.48s (c).

(4.21a), which is a damped Mathieu equation, takes a similar mathematical form to the evolution of
a scalar field coupled to an oscillating inflaton field in simple models for Cosmological Preheating
(see e.g. [88]).

In their investigation of parametric resonance from the perspective of quantum field theory,
Berges & Serreau [100] identified a signature of preheating as the scattering from the primary in-
stabilities into the secondary instabilities, with the latter appearing at an integer multiple of the
frequency, and growth rate, of the former. In our case, this corresponds to the mode (4,k7)
at 3ω0 (dashed line in figure 4.7) having a growth rate that is an integer multiple of the rate at
which the mode (4,k1) atω0 grows. The growth rates (faint dashed blue lines in 4.7) of the two
experimentally (blue lines in 4.7) observed modes are found to be λ0 ≈ 0.52/s (primary) and
λ1 ≈ 1.48/s = 2.85λ0 (secondary). This is close to, but not quite, the ratio of 3 : 1 which is ex-
pected from preheating. However, as mentioned above, the experimental amplitudes are not easily
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Figure 4.8 (Simulated Slopes) The normalised distribution of log-linear growth/decay rates of
the primary and secondary instability is shown in panels (a) and (b) respectively. The secondary
instability, or subdominant mode, has a growth rate (vertical dashed line) three times as large as
that of the primary or dominant mode (vertical dotted line). In panel (a), the decay rateγ is marked
as a dot-dashed vertical line.

separated in k, meaning that these slopes are expected to be somewhat inaccurate. Having demon-
strated that the numerical model faithfully captures all the essential features of the experimental
data, we may compute the ratio of secondary to primary slopes produced by the simulations. For
simulations with zero detection noise, the result of this analysis is a ratio of3.06, which is in excellent
agreement with the integer prediction from preheating (see figure 4.8). Indeed, we could have antic-
ipated this result by inspecting the nonlinear dynamics for the subdominant mode in (4.32). For a
subdominant mode in the same azimuthal channelm as the primary, we haveAbba = Aabb = 0,
for which the subdominant mode ξa enters linearly, while the dominant mode ξb enters as cubic
terms, i.e. O(ξ3b, ξ̇bξ2b, ...). That is, if ξb scales with eλ0t, then ξa scales with (eλ0t)3.

Another feature of cosmological preheating is a broadening of the primary resonance band ac-
companying the population of the secondary [99], which signals the onset of the non-perturbative
regime. We can observe this broadening around |kr| = kr,1 in figure 4.7 as the radial Fourier spec-
trum transitions from relatively sharp peaks at time t1 = 17.86s in panel (b) to broad peaks in
panel (c) at time t2 = 23.48s. Note that the shoulders at |kr| = kr,2 represents the secondary.

VII. Summary and Conclusion

In this chapter, we have revisited the well-known phenomenon of parametric resonance, or Fara-
day instability, in two-fluid systems. We considered a collection of carefully prepared repeated ex-
periments, and discussed the four different stages experienced by the amplified wave: (1) Its initial
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stochastic amplitude in equilibrium (not necessarily thermal), (2) the exponential growth predicted
by the linear dynamics when a vertically oscillating force is applied, (3) the fully non-linear period,
where the mode is prevented from further growth and instead stagnates at a threshold amplitude
and (4) a period of damped exponential decay in absence of the applied force. Here our focus was on
the transition from (2) to (3), where we constructed an analytical model to capture the dynamics of
the weakly nonlinear regime. To synthetically replicate the experimental data, we considered a nu-
merical simulation of a stochastic extension of the nonlinear dynamics. We demonstrated that this
model not only fits a single experiment, but that it captures the behaviour of the entire ensemble of
experimental realisations, and it correctly predicts the excitation of secondary instabilities. Finally,
we commented on the similarity with the preheating scenario during cosmological inflation. In par-
ticular, we saw how the emergence of secondary instabilities is accompanied by a broadening of the
primary resonance, and that the instability grows at an integer multiple of the rate of the primary
instability.

Moreover, by extending the non-linear model introduced by Miles [172, 173], to incorporate
two-fluid interfaces with deep surface tension, i.e. higher-order nonlinear terms due to surface ten-
sion, we discovered an effective equation of motion for nonlinear self-interactions in (4.33), along
with the sourced oscillator dynamics of subdominant modes (4.32). This self-interaction model
can be seen as a classicalϕ4-type effective field theory, and as such, represents a platform for exper-
imentally simulating classical aspects of such theories.

From the perspective of fluid dynamics, the topics encountered in this chapter opens several
interesting avenues for further investigation. Firstly, since the instability acts as an amplifier, the en-
semble resulting from repeated experiments offers an indirect probe of the equilibrium fluctuations
of the interface at rest.

Secondly, with our state-of-the-art experimental setup, we were able to monitor not just a single
parametrically amplified mode, but also the subdominant modes that are sourced by the growth of
the dominant mode. This is interesting as experiments of this kind may permit a time-resolved
study of the onset of turbulence, see e.g. [191].



Chapter 5

Holographic Surface Measurements
This chapter presents the theoretical foundation and first experimental testing of a digital holog-
raphy approach to measuring spatiotemporal deformations of fluid interfaces. The idea is being
patented [106]. The technique has been developed in collaboration with V. Barroso, S. C. Ajithku-
mar, T. Kent and S. Weinfurter. I have played a central role in all aspects of this project. The adap-
tions of the method will be used in the next generation of the experiments presented in the previous
chapter, as well as in a series of superfluid 4He experiments that are currently being prepared.

I. Introduction

The need for fast and accurate measurements of surfaces has exploded with the advent of automatic
production lines and progress in computer vision. One popular approach to such measurements is
using the strategy of binocular vision, i.e. correlating images taken from slightly displaced vantage
points [192], a method referred to as Digital Image Correlation (DIC). A popular, computation-
ally inexpensive alternative is the so-called Fourier Transform Profilometry (FTP) method [186, 193,
194], which exploits the local deformations of periodic patterns on a surface. However, these meth-
ods can be inconvenient for fluid interfaces as one is often required to make the fluid opaque, e.g.
by adding contaminants to it, for standard approaches to work. A popular alternative is to exploit
the deflection of rays as they escape the fluid from underneath. Here, a particularly useful strategy
is to monitor the local deformations of randomised, or periodic, backdrop patterns, referred to as
Free-Surface Synthetic Schlieren (FS-SS) [188], or Fast Checkerboard Demodulation (FCD) [187]
respectively. The FCD method’s accuracy and domain of validity can be appreciated in figure 4.4
of the previous chapter 4, as this was the method implemented to reconstruct the fluid interface
in the experiment. The FCD method, however, rests on the assumption that the fluid interface is
sufficiently deformed for a camera to detect the refractive deflections of the rays. Therefore, long
wavelength deformations, and very low amplitudes, are not easily measured with this approach. An
example of this breakdown of the FCD method for low amplitudes can be seen for times t < 10s in
Figure 4.4 of the previous chapter. Moreover, the constant of proportionality between transverse
ray displacement and surface gradients scales with the difference in refractive index. Hence, the
sensitivity of FCD is drastically reduced by interfaces delimiting media of similar refractive index.

Over the last two decades, an intriguing avenue for high-precision profilometry has appeared

92
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in the field of Digital Holography (DH) [195–202]. Holography, the complete reconstruction of
the optical wavefront using diffraction theory, was introduced by Gabor in 1948 [203]. In the fol-
lowing years, Gabor demonstrated the ability to extract three-dimensional information from a two-
dimensional hologram to regain focus and spatial resolution [204, 205]. The basic observation of
holography is contained in the following argument. Consider two optical fields E1 and E2, whose
superposition results in an intensity

Ĩ = |E1 + E2|
2 = |E1|

2 + |E2|
2 + E1E

∗
2 + E

∗
1E2. (5.1)

Curiously, if this intensity pattern Ĩ is printed on a film and illuminated by one of the beams that
created it, then the result E1Ĩ contains a term E2|E1|

2 which is a complete reconstruction of the
other (complex) three-dimensional optical field E2. This is in stark difference from conventional
photography, which captures only optical intensities and is therefore blind to the phase of the op-
tical field. It is in this sense that holography is linked with the ability to store three-dimensional
information on a two-dimensional surface.

The first successful image reconstruction by digital holography appeared in 1967 [206]. How-
ever, it was not until 1994 that Schnars and Jüptner introduced the first ever digitally reconstructed
hologram using a CCD camera [207], based on the off-axis method proposed by Leith [208].
Henceforth, Cuche et al. introduced the possibility of using Digital Holography (DH) as a quan-
titative phase measurement [209], now called off-axis digital holography. The method of off-axis
holography can be summarised in the context of equation (5.1). By observing that if the two rays
E1 and E2 are not parallel, then the two last terms, referred to as the twins, receive a spatial fre-
quency which enables them to be separated in the Spatial-Frequency Domain (SFD) from the first
two terms. In fact, one may imagine a collection ofn > 2 optical fields in equation (5.1), for which
the principle of holography remains valid. This approach, which is typically used in conjunction
with the off-axis method, is referred to as Multiplexed Off-Axis Digital Holography [210–214].

In this chapter, we search for a holographic approach to measuring fluid interfaces in the regime
where the aforementioned techniques of fluid profilometry fail. That is, in the regime of small
surface gradients |∇h| ≪ 1 and similar refractive indices. The idea is to exploit the deformation of
the phase-front of coherent light impinging on the surface. In particular, we exploit the multitude
of optical rays born from the partial reflection of the interface (see Figure 5.1) similar to that of the
Digital Holographic Reflectometry introduced by Colomb [215, 216]. However, we shall see that
by making the bottom of the fluid tiltable, the superposition of rays constitutes intensities that can
be seen as multiplexed off-axis holograms.

II. Theoretical considerations
In this section, we will build the necessary theory for the experiment piece by piece. Starting from
a WKB ansatz, we see how the classical ray-tracing relations from geometrical optics emerge. These
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Figure 5.1 (Schematic of experimental setup)A laser source (L) emits a collimated optical beam
that expands to the desired diameter by passing through a Beam Expander (BE). A 50 − 50 non-
polarizing Beam Splitter (BS) divides the beam into two: a probe going through the fluid sample
and a reference, both reflecting from adjustable mirrors (M). The reflected trajectories recombine
in the beam splitter, and the resulting beam is captured by a camera (C). The reference beam is
labelled R, the beam that reflects off the free surface is labelled F, and the beams that reflect back
and forth inside the fluid j times are labelled Bj.

are used to obtain an approximate relation for the intensity of coherent light returning from a fluid
surface. We discuss how the returning light consists of an infinite number of rays, and that these
can be separated in k-space by introducing an adjustable submerged mirror.

II.1. A multitude of rays

Consider a collection of (complex) propagating electromagnetic waves that are traversing a medium
which is homogeneous on length scales comparable to the wavelength λ. Within the geometrical
optics limit, the electric field strengths can be written

En(t, r) = E0An exp (iΦn − iωt) for Φn(t, r) ≡
∫
γn

k · dr, (5.2)
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where ω is the angular frequency and An is a complex, dimensionless, two-dimensional vector
whose length gives the relative amplitude with respect to the reference amplitude E0, and with the
direction along the axis of polarization. Here, each phaseΦn depends on the path γn travelled by
the phase-fronts of the rayEn. For a superposition of rays {En} of the form (5.2) at same frequency
ω, the (time-averaged) intensity is given by

I(t, r) ≡ I0 + I0
∑
n ̸=k

Ank(t, r)e
iΦnk(t,r), (5.3)

for A†
nAm ≡ Anm andΦnm ≡ Φn −Φm, and the sum runs over all distinct values ofn and k.

Here, and in what follows, the conjugate transpose is denoted by a superscript †. We choose I0 ≡
1
2
εc|E0|

2 to be the average total intensity so that |E0| is defined through the relation
∑
n |En|

2 ≡
|E0|

2 or, equivalently,
∑
n |An|

2 = 1.
From equation (5.3), it is clear that for any two distinct rays n and k with unequally varying

phases (Φnk ̸= 0 and |∇Φnk| ̸= 0), the intensity I must fluctuate locally in space. Due to the
short wavelengths of optical light, the resulting intensity distributions, commonly referred to as
interferograms or interference patterns, are highly sensitive to relative changes along or of the paths
travelled by the conspiring beams.

Within the geometrical optics approximation, the trajectories followed by rays are given by the
stationarity of phasesΦn−ωt of the form (5.2). The result takes the form of a Hamiltonian system
(see appendix A) with the dispersion relationω = ω(x, k) as effective Hamiltonian [163], i.e.

dx

dt
= ∇kω and

dk

dt
= −∇ω. (5.4)

In an isotropic medium, where the frequency depends only on the magnitude k = |k| of the wave-
vector, the ray moves alongk, i.e. dr ∝ k, and stationarity of the phaseΦn is equivalent to Fermat’s
principle, i.e. that rays take the quickest route between any two points.

Indeed, a ray that passes through an infinitesimal distance dz of an isotropic medium with re-
fractive index n attains a phase dΦ = k0ndz, where k0 = 2π/λ is the wave-number, with cor-
responding wavelength λ, of the ray in vacuum. Consequently, to determine the contribution to
the phaseΦn of a ray from traversing a homogeneous medium, we only need the lengths of their
trajectories.

To model the geometry in Figure 5.1, we now consider the rays as they leave the beam splitter
(BS), and let z be the direction of the incident beam, i.e. the optical axis (see Figure 5.2). We shall
assume the incident beam is aligned with the direction of gravity, so that the fluid interface can be
written z = h(t, r), with h = const when the fluid is at rest. Here, t is time and r ≡ xex + yey
are coordinates for the transverse, horizontal plane. Submerged under the interface is a tilted plane
mirror with surface z = −mb · r. Here, mb determines the normal vector nb ∝ ez + mb of
the mirror. We shall assume the tilt to be small, i.e. |mb| ≪ 1, for which mb can be interpreted as
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Figure 5.2 (Geometry of rays) The three different types of rays R, F and Bn are illustrated. The
incoming beam starts at an altitudez = zp in the probe beam (left), andz = zr in the reference arm
(right). The probe beam reflects partially off the free surface z = h with reflection coefficient R12

resulting in the beam labelled F. The transmitted component is trapped inside the fluid, creating a
new transmitted ray Bn for every reflection n off the submerged mirror. The relative amplitudes
of these rays are given by −T12T21R

n
21. In the experiment, the angle of incidence on the surface is

negligible, and the normal vectors of the submerged mirror (ez +mb) and reference mirror (ez +
mr) are rotated relative to that of the free surface (ez), i.e. |mr|, |mb| ̸= 0.

the (vectorial) angle of rotation of the mirror from the optical axis. That is, mb is a vector in the
transverse (horizontal) plane, where mb = 0 corresponds to the submerged mirror being parallel
with the undisturbed fluid interface z = const.

The reference beam, labelledR in Figure 5.1, can be modelled similar to the geometry above, but
with the absence of the interfaceh. That is, we label the optical axis z and denote the surface of the
reference mirror by z = −mr · r, with |mr| ≪ 1. As for the submerged mirror, this determines
the surface normal of the reference mirror through nr ∝ ez +mr.

We shall assume the two mirrors to be perfectly reflecting. However, an incident ray on the
fluid interfaceh is generally partially transmitted, and partially reflected. At the interface, the back-
ground on which the rays propagate changes suddenly, leading to a violation of the WKB assump-
tion (5.2) that a phase changes over much smaller scales than the background. To relate amplitudes
on either side of the interface, we return to electrodynamics, where the projections of the electric
and magnetic field amplitudes must be continuous across an un-charged surface [217]. The result
is the well-known Fresnel equations, which for normal incidence take the form

Ei = R12Er + T12Et for R12 ≡
n1 − n2

n2 + n1

and T12 ≡ 1+ R12. (5.5)

Here Ei is the incident beam, from a medium with refractive index n1 towards a medium with
n2, and Er and Et are the reflected and transmitted rays respectively. Note that the reflection off a
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perfect mirror is included in the relation (5.5). Indeed, if we letn2 → ∞, then the surface becomes
a perfect mirror with a coefficient of reflection equal to −1. It should also be observed that the
relations (5.5) conserve the flow of power, contrary to what one would think at first glance. This is
because the medium traversed by the transmitted ray is different, so that the transmitted power T
is related to the coefficient T12 of transmission by T ≡ T12n2/n1.

The consequence of the partial reflection of the fluid interface is that the fluid acts as a cavity,
producing a new returning ray Bn for every reflection n = 1, ... off the submerged mirror (see
Figure 5.2).

For small surface gradients |∇h| ≪ 1 and tilts |mb|, |mr| ≪ 1, the leading order expression
(5.2) for the accumulated phase becomes a matter of accounting for the vertical distances. The result
can be conveniently written as

ΦF = 2k0n1L0h, ΦR = 2k0n1L0r, and ΦBj = 2k0(n1L0h + jn2Lhb) (5.6a)
for L0h ≡ zp − h(t, r), Lhb ≡ h(t, r) +mb · r, and L0r ≡ zr +mr · r . (5.6b)

Note that the expression (5.6) for the phases rests on the assumption that the horizontal deflection
of rays is negligible. Therefore, the domain of validity of a method based on these expressions starts
exactly where the FCD method [186–188], which exploits the ray displacements, starts failing.

From the intensity (5.3) interference patterns are formed by phase differences between any pair
of rays. Using the leading order expressions (5.6), we find

ΦRF = 2k0n1 (h+mr · r+ ∆z) , (5.7a)
ΦRBj = 2k0 [(n1 − jn2)h+ (n1mr − jn2mb) · r+ n1∆z] , (5.7b)
ΦFBj = 2k0n2 [jh+ jmb · r] , (5.7c)
ΦBℓBj = 2k0n2 [(ℓ− j)h+ (ℓ− j)mb · r] , (5.7d)

where∆z ≡ zr − zp is the difference in arm length of the reference beam zr and the probe beam
zp (see Figure 5.2). The corresponding amplitudes are found by invoking the Fresnel relation (5.5)
at each interaction with the free surface, and can be expressed in terms of R21 ⩾ 0. The result can
be written

ARF = R21 (5.8a)
ARBj = (1− R2

21)R
j−1
21 (5.8b)

AFBj = (1− R2
21)R

j
21 (5.8c)

ABℓBj = (1− R2
21)

2R
ℓ+j−2
21 , (5.8d)

for j ∈ N. Note that if the setup 5.1 is modified to make distinct polarizations of the reference
beam and probe beams, e.g. by using a polarizing beam splitter, then the amplitudes (5.8) must be
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modified. For example, if the two arms are linearly polarized with relative rotation angle θp, then
the amplitudesARF andARBj in (5.8) attain an additional suppression factor cos θp.

In all the above, we have implicitly assumed the beams to be perfectly coherent. Realistic laser
sources, however, have a finite coherence length. To take this into account, the amplitudes (5.8)
would be suppressed by a function that varies with the difference of the lengths (5.6) in units of the
coherence length (see e.g. [215]).

Because R21 is typically small (R21 ≃ 14.16% for air-water interfaces), the RB1 interfero-
gram has the largest amplitude. The sensitivity of its phase to variations in the height, ∂hΦRB1

=
2k0(n1 − n2), however, is the smallest. The most phase-sensitive of the j = 1 interferograms is
FB1, with ∂hΦFB1 = 2k0n2. In general, all phases in (5.7) are related to the interfacial height h
throughΦab ≃ 2k0αabh, where αab = α1n1 − α2n2 with integer coefficients α1,α2 ∈ Z. In
terms of the wavelength λ of the laser, the variations δΦab due to deformations of the interface h
is given by

(
δΦab

2π

)
= αab

(
h

λ/2

)
for αab =


n1 for RF
jn2 for FBj
n1 − jn2 for RBj

. (5.9)

That is, the fringes of the intensity pattern are shifted by a full period in regions where the height
h is elevated by λ/2αab. If, for example, the incident light is green with λ = 532nm and the fluid
is water, then a local elevation by 266nm of the height would shift the RF fringes by exactly one
period. Because shifts in the fringes can be observed well below a full period, we expect the method
to be sensitive to height fluctuations of the order of O(10nm). Note, however, that if the interface
delimits media of similar refractive index, i.e. |n2 − n1| ≪ 1, then the RB1-phase becomes less
sensitive. This separation of the scales probed by the different holograms in the limit n2 → n1

enables extending the domain of applicability. Note, however, that care must be taken as the limit
has implications for the reflection and transmission coefficients (5.5).

The intensity contributed by the three interferograms RF, RB1 and FB1 have distinct external
influences. For example, inhomogeneities in the bulk of the surrounding gas, from changes in the
composition of the gas, the temperature, or from sound waves, are picked up by RF and RB1, but
not by FB1, which only probes the fluid bulk. For transparent fluids, FB1 is expected to have the
largest signal-to-noise ratio, provided the reflection coefficient |R| is not too small.

Now imagine inspecting the spatial Fourier spectrum of the combined intensity (5.3) for phases
given by (5.7). By virtue of the distinct tiltsmr andmb of the reference and bottom mirrors respec-
tively, the interferograms separate into spatial carrier frequencies (see figure 5.3).

The formation of phase differences of the form (5.7) in a superposition (5.3) is the main in-
gredient in Multiplexed Off-axis Digital Holography. Here, the idea of off-axis digital holography
becomes more clear. It is the formation of interference between two optical beams, with phase dif-
ferenceΦab = Φa −Φb, with relatively tilted phase fronts, i.e. |∇Φab| ≈ kab ̸= 0, The signal,
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Figure 5.3 (Separation of Carrier Peaks) The separation of spatial carrier frequencies k =
(kx,ky) that results from small tilts mb and mr of the submerged mirror and reference mirror
respectively. Each node represents a hologram specified by the label. The holograms are categorised
into three groups (yellow, blue and red). Yellow holograms are independent of the configuration
of the reference mirror mr, the red hologram is independent of the submerged mirror mb and the
blue nodes respond to adjustments in both mirrors.

which for us is the deformations of the interfacial height h, then appears as modulations of the
spatial carrier kab, which for us is a superposition ofn1mr andn2mb. By introducing a tilt mb of
the submerged mirror, the collection of partially reflected rays separate into isolated off-axis holo-
grams formed by any pair of rays. With this simple step, i.e. adjustability of the submerged mirror,
we may use a basic Michelson interferometer in Figure 5.1 to perform simultaneous, independent
measurements of the surface by virtue of the multiplexing in (5.7).

II.2. Production of synthetic data with Numerical Phase-tracing
The first step toward experimental realisation is to mimic the setup numerically as realistic as pos-
sible. We keep the assumption of homogeneity of the bulk and ray optics, but with the inclusion
of non-linear deflections. This can be done numerically by iteratively propagating a mesh of rays
through the mathematical formulation of the setup in Figure 5.1.

The geometry is formulated analytically as in section II.1 (see Figure 5.2) by introducing two
separate geometries, the first contains only a reference mirror, defined by the relation z = −mr · r.
The other contains a submerged mirror z = −mb · r and a fluid interface z = h(r), which we
shall take to be of the form

h(r) = h0 +A [cos(k1 · r) + cos(k2 · r)] , (5.10)

forA = 250nm, h0 = 3mm, k1 = (−2, 2)/cm and k2 = (1, 1/2)/cm.
The simulation is initiated with a linearly spaced Cartesian mesh of 1536 × 1536 two-

dimensional locations rij ∈ R2 in the (x,y) plane, and at a fixed altitude z = z0. The resulting
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three-dimensional locationsxij = z0ez+rij are taken as the initial locations of the rays, and all rays
start facing perfectly downward, i.e. with initial direction dij = −ez. In addition to a position xij
and a direction dij of propagation, each ray is initialised with a phaseϕij = 0, unit (relative) am-
plitudeAij = 1 and refractive index nij = n1 of the current medium. Each ray is then simulated
independently using the following algorithm.

Step (1) For each mathematical surface Fk(x) = 0 in the geometry, solve the equation Fk(xij +
skdij) = 0 for sk is numerically, and determine the k = k0 with smallest non-negative
value s for sk, and label Fk0 as the current surface. If there are no solutions sk, choose s =
(z0−xij · ez)/(dij · ez) to propagate the ray back to z0, and move to step (4) after this step.
Update the position xij 7→ xij + sdij and the phaseϕij 7→ ϕij + k0nijs|dij|.

Step (2) Compute the normal vector n ≡ ∇Fk0/|∇Fk0 | of the current surface and find the re-
flected drij and refracted dtij directions about the surface normal using Snell’s law, i.e.

drij = dij − 2cn and dtij = rdij −
(
rc+

√
1− r2(1− c2)

)
n (5.11)

where c ≡ n ·dij and r = na/nb is the current refractive indexna divided by the refractive
index nb behind the surface. Duplicate the current ray, assign the (reflected) direction drij
to the duplicate, and reduce the amplitude by the Fresnel reflection coefficient*, i.e. Aij 7→
RabAij. Pass the duplicate to step (3). Update the refractive index na 7→ nb, direction
dij 7→ dtij and amplitudeAij 7→ Tab Aij of the current ray and pass it to step (3). Here
Tab is the Fresnel transmission coefficient.

Step (3) If the amplitude is sufficiently large, i.e. |Aij| > ε for some ε (the chosen value here is
ε = 5× 10−4), send the ray back to step (1). If not, discard the ray.

Step (4) Wait for all rays to reach this step. When they do, move to step (5).

Step (5) Use the (x,y) coordinates of the current position xij to interpolate the amplitudesAij
and phases ϕij to the original transverse coordinate rij. Then use equation (5.3) for rays
Aije

iϕij to compute the intensity Iij. The value of the resulting image Yij at pixel (i, j) is
chosen by sampling from a Poisson distribution with mean γIij (here we use γ = 100).

The result from this algorithm is a single imageYij of the expected intensity in the idealised situ-
ation of homogeneous bulk, but with taking the deflection of rays fully into account. An example of
a simulated image is shown for the interface (5.10) delimiting air (n1 = 1) from water (n2 = 1.33)
in panel (a) of Figure 5.4. The spatial Fourier transform of this image, shown in panel 5.4(b), con-
firms the anticipated separation of carriers, or multiplexing, from the leading-order phase relations

*Technically, the polarization averaged Fresnel relations for general angle of incidence is used here, but for the pur-
pose of the specific example discussed here, this is the same relations as those for normal incidence, i.e. (5.5).
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Figure 5.4 (Phase-tracing) Panel (a): Numerically simulated intensity Yij with an inset high-
lighting an expanded region (white dashed rectangle) of the image. Panel (b): The spatial Fourier
transform Ŷij of the simulated intensity, where the brightness of each pixel is proportional to
the logarithmic amplitude ln |Ŷij|. White lines are drawn to illustrate the carrier frequencies
2k0(n1mr − n2mb) (solid white), 2k0n1mr (dashed white) and 2k0n2mb (dotted white) of the
three holograms RB1, RF and FB1. The predicted modulation area for each peak is highlighted as
a rectangular region. The differences of simulated phase fields are shown in the four panels on the
right with a shared colorbar. The visibly correlated, spatial dependence of the phases is proportional
to the height-field h(r) in (5.10).

(5.7). As predicted, the three hologramsRB1,RF and FB1 are located at 2k0(n1mr−n2mb) (solid
white), 2k0n1mr (dashed white) and 2k0n2mb (dotted white) respectively.

The contribution from a hologram to a spatial frequency k is generally given by the local lin-
earization∇Φ of the phaseΦ. If the phaseΦ is of the form (5.7), then the k-space region of excited
amplitudes near each carrier peak km is given by km+C∇h for some constantC. The correspond-
ing areas, found from considering maxima of ∇h from (5.10), are shown for the three holograms
RB1, RF and FB1 as white rectangles in panel 5.4(b). These are in good agreement with the sim-
ulated data. Note that the strongest signal, which is the RB1 hologram (solid white line), has the
smallest modulation area. This is due to the prefactor |n2 − n1| < 1 in (5.7b), which reduces the
response∂hΦRB1

of the phaseΦRB1
to excitations of the interfaceh. The true phases from the ray-

tracing algorithm are shown in the four panels labelledRB1,RF, FB1 andRB2 in Figure 5.4. Notice
that the phase from theRF hologram is anti-correlated with all the other holograms and that all the
phases respond differently to the height field h(r). Here, the RB1-phase has the lowest amplitude,
and the RB2 has the largest.
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II.3. Procedure for recovery of the phase fields
In this section, we investigate how the different phase fields can be reconstructed from the digital
image alone. Our strategy shall focus on recovering information from the synthetic data exhib-
ited in Figure 5.4, for which the true height field is known. Before doing this, however, we should
investigate the theory. Here, we take the canonical approach, which in the digital holography com-
munity is referred to as the Angular Method [195], and Fourier Demodulation [186] in the fluid
profilometry community.

Consider a digital image Yij indexed by a cartesian mesh of pixel locations rij and formed from
capturing intensities of the form (5.3). That is, Yij = Γ̂ [I(rij)] + δYij where δYij is a stochastic
variable that describes the noise in the image, rij is the spatial (pixel) coordinate, and Γ̂ is a function
that transforms physical intensities to pixel values. To start, consider the idealised case of Γ̂ being a
linear operator, i.e. Γ̂ [A+B] = Γ̂ [A]+ Γ̂ [B], and assume all phase differencesΦab = Φa−Φb to
have small variationsϕ(ab)(t, r) around a stationary planar phasekab ·r as is the case for equations
(5.7). That is,Φab(t, r) = ϕ(ab)(t, r) + kab · r, so that

Yij ≡ Ỹij + δYij = Y0 +
∑
n

Bn exp
[
ikn · rij + iϕ(n)

ij

]
+ δYij (5.12)

for amplitudes Bn = Y0An with Y0 ≡ Γ̂ [I0]. Here Y0 is the pixel value corresponding to the
spatially averaged intensity I0. Here, the sum runs over all ordered pairs of distinct labels a ̸=
b, e.g. n = RF or n = RB1, as in (5.3). Since each pair of indices a ̸= b enters twice, once
with Φab and once with Φba = −Φab, the image Yij in (5.12) is real-valued. Now imagine a
Fourier filter Fm around a single carrier peak km, i.e. Fm ≡ F−1Gm(k)F, where F is a two-
dimensional, spatial Fourier transform with inverse F−1, andGm(k) is some function only taking
non-zero values nearby km. The role of the filter Fm is to isolate each modulated plane wave in
equation (5.12), meaning that ideally, we have

Fm[Y]ij = Bm exp
[
ikm · rij + iϕ(m)

ij

]
+ Fm[δY]ij. (5.13)

This equation forms the essential ingredient in Fourier demodulation, see e.g. Wildeman [187].
Using the Fourier filterFm, we have extracted a complex signal whose only deviation from a complex
plane wave, other than the noise, is due to the spatial variations ofϕ(m)

ij . Then, if the noise is small,
i.e. F[δY]ij ≪ Ỹij, the complex phase Im log F[Y]ij of the filtered image F[Y]ij takes the form

Im log Fm[Y]ij = km · rij + ϕ(m)
ij − Re[δϕ(m)

ij ] + O

(∣∣∣δϕ(m)
ij

∣∣∣
2
)

where δϕ
(m)
ij ≡ iFm[δY]ij

Ỹ
(m)
ij

. (5.14)
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Assuming no variation in the carrier km, and δYij to be a central random variable, i.e. ⟨δYij⟩ ≈ 0,
then the ensemble-averaged phase ⟨ϕ(m)

ij ⟩ is found from the relation

⟨ϕ(m)
ij ⟩ = Im log Fm[Y]ij − km · rij (5.15)

with the small fluctuations about it being given by

Re
[
δϕ

(m)
ij

]
≡ −

2

Bm
Im
[

Fm[δY]ij

eikm·rij−iϕ(m)
ij

]
. (5.16)

Provided that an ideal filter Fm can be constructed, equation (5.15) informs us how to recover the
phase fields {ϕ(m)

ij }m from the image Yij, and equation (5.16) sets the level of the noise. Here, we
should note, in passing, that the noise is inversely proportional to the amplitudeBm and is generally
dependent on the details of the filter Fm.

We shall refer to the demodulation scheme (5.15) as absolute reconstruction. In some cases, it
can be convenient to consider instead the relative change in the phasesϕ(m)

ij in the image Yij with
respect to those of some reference image Y0

ij, see e.g. the demodulation scheme of Wildeman [187]
for a discussion. This approach, which we shall refer to as relative reconstruction, can be written

⟨∆ϕ(m)
ij ⟩ = Im log

(
Fm[Y]ijFm[Y

0]∗ij
)
, (5.17)

where ∗ is the complex conjugate. The relative reconstruction has the pleasing property of being
relatively insensitive to the exact location of the carrier km. More importantly, any persistent de-
fects in the phase fronts are eliminated in the product Fm[Y]ijFm[Y0]∗ij, making the reconstruction
more robust. In what follows, the reconstruction strategy chosen is assumed to be absolute unless
otherwise stated.

Armed with the demodulation method (5.15), the only thing needed to recover the phases from
Figure 5.4 is to decide on a function Gm(k) in the definition of the Fourier filter Fm. Here, the
simplest and perhaps most natural choice would be a top-hat filter centred at the carrier km with
some radius rk, i.e.Gm(k) = 2 for |k− km| ⩽ rk and 0 otherwise*. However, the reconstruction
can be improved by using a Raised-Cosine filter

Gm(k) = Hb,rk(|k− km|) for (5.18a)

Hb,rk(x) ≡


1 for |x| ⩽ 1−b

2
rk

1
2

[
1+ cos

(
π
brk

[
|x|− 1−b

2
rk
])]

for 1−b
2
rk ⩽ |x| ⩽ 1+b

2
rk

0 for |x| ⩾ 1+b
2T

. (5.18b)

*The value two here is to compensate for the prefactor 1
2 in the complex plane waves of real harmonic functions.
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We may now construct the phases from the simulated image Yij exhibited in Figure 5.4. The
procedure is as follows. First, compute the two-dimensional Fourier transform Ŷij ofYij and locate
the carrier peakskm, i.e. the local maxima of |Ŷij|. Then, choose a filter size rk that is large enough to
contain the entire peak, but not so large that it includes other amplitudes, and use this to construct a
cosine filterGm(k) according to (5.18) around each peak km. The chosen filter sizes rk and centred
at the carrier peaks km are shown as dotted white circles in panel (a) of Figure 5.5.
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Figure 5.5 (Reconstructed artificial data) Panel (a): The logarithmic amplitudes log |Ŷij| of the
Fourier transform Ŷij of the synthetic image Yij in Figure 5.4(a). The six carrier peaks km chosen
are labelled 0-5, and (dotted white) circles are drawn to highlight the size rk of the filter (5.18). Panel
(b): The unwrapped, reconstructed phase fieldϕ(m)

ij for the chosen peakm = 1. This matches the
true phase field in panel (RF) from Figure 5.4. A horizontal line indicates the slice depicted in panel
(c). Panel (c): The reconstructed height fieldsh of a linear slice are shown (thin coloured) for all the
six carriers from panel (a). A black line is drawn on top to indicate the true height field (5.10). The
colour of each line is labelled by the histograms on the right, which show, for each of the carriers,
the distribution of deviations∆h = h−ht of the reconstructed heighth from the true heightht.

For each filter Fm, we may then apply the reconstruction (5.15) to obtain a wrapped phase field
ϕ

(m)
ij + 2πaij, where aij ∈ Z are unknown integers due to the phases only being retrievable

modulo 2π. By performing a spatial phase-unwrapping, as in [218], the 1536 × 1536 unknown
integers aij can be reduced to a single integer a ∈ Z, whose precise value would, in principle,
depend on the average total depth h0 of the fluid (see equation (5.10)). The resulting phase, for the
carrier peak labelled (1) in Figure 5.5(a) and RF in Figure 5.4(b), is shown in panel (b) of Figure 5.5.
This should be compared with the true, or exact, phase differenceΦRF exhibited in panel (RF) of
Figure 5.4.

Using the phase fieldsϕ(m)
ij along with the knowledge of which hologram in Figure 5.5(a) cor-

responds to which of the theoretically predicted phases(5.7), the height fields h, which should co-
incide for all holograms, can be estimated. Let us consider a single hologram, for example the one
labelled 1 in 5.5(a), to illustrate the process. We know this is the RF hologram from the synthetic
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image 5.4, but we can also discover this by revisiting the predicted carrier locations in Figure 5.3.
The RF hologram is a neighbour of the largest-amplitude hologram RB1, and it is at the end of the
straight line, in k-space, that avoids the origin but passes through all the holograms RBj. Having
identifiedϕ(m)

ij form = 1with theRF hologram, we visit the phases (5.7) to conclude that the pre-
dicted height is given byhRFij = (2k0n1)

−1ϕ
(1)
ij in this case. A horizontal slice (black line in 5.5(b))

of the reconstructed height hRFij is shown in panel (c) of Figure 5.5 as a blue line (see histogram to
the right).

A similar line of reasoning can be used to obtain, in this case six, height fields (all shown in
panel (c) of Figure 5.5) for each peak 0, 1, 2, 3, 4 and 5 corresponding to the holograms, RB1 (red),
RF (blue), RB2 (orange), FB1 (green), FB2 (teal) and RB3 (purple) respectively. Note, however,
that since absolute heights cannot be recovered, the knowledge of the parameter h0 = 3mm from
(5.10) is used to bring all the heights to the same level. On top of the reconstructed height hij, the
true height (5.10) is drawn in black. Other than some defects in the reconstruction of the very low-
amplitude hologramRB3, all reconstructed heights are found to be in excellent agreement with the
true height field.

To investigate the error from reconstruction, we consider the difference ∆h = h − ht of the
reconstructed height field h and the true height field ht (5.10). The distribution of this quantity
across all pixels is shown in to the right in Figure 5.5. Here, the RF hologram is found to have the
smallest error (O(0.5nm)∆h, whereas RB3 has the largest error (O(25nm).

To understand how the error varies from hologram to hologram, we should first observe that
there are two* main competing factors. On the one hand, when inspecting the prediction (5.16) for
the noise, we see that the error in the phase scales linearly with the size of the filter Fm[δY], which
in our case is equal for all holograms, and inversely with the amplitude Bm. From this alone, we
would conclude that the phase of theRB1 hologram, which has the largest amplitude c.f. (5.8), will
exhibit the least noise. On the other hand, when considering the translation of phases to heights h
in (5.7), theRB1-phaseΦRB1

responds the least to the height, withh ∝ ΦRB1
/(n2−n1), meaning

that the phase-noise is amplified the most when estimating the height. That is, the distribution of
errors in the right panels of Figure 5.5 is in accordance with the predictions.

At this point, it should be commented that a shortcut exists when one is not interested in the
full spatial dependence of the interface h(t, r), but only in the evolution of the overall, spatially
averaged height h(t). In that case, the Fourier demodulation (5.15) is not necessary. Indeed, since
any modulation of a carrier peak km ≡ ∇Φm is caused by gradients ∇h of the height field, the
overall heighth(t)must be proportional to the phase of the Fourier amplitudeF[Y](km) exactly at
the carrier km. That is, the overall phaseϕ(m)

ij may be obtained from the substitution Fm[Y]ij 7→
F[Y]ij(km), bypassing the demodulation altogether. Note, however, that the phase can only be

*There is a third, important but complicated factor influencing the error that is omitted from the arguments pre-
sented here. That is the horizontal displacement of the phase-fields, due to both the tilted mirrors and the surface
gradients.
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recovered modulo 2π. One can, therefore, not measure the full depthh(t) using the above scheme,
since only the wrapped phase fields can be recovered.

Note that the adjustability of a submerged mirror is what provides separate recovery of the
different phases, but it is still possible to use the method without it. Indeed, without the mirror
mr altogether, the RF-hologram would remain. In fact, any sufficiently flat surface underneath the
fluid has the potential to act as a mirror. That is, although an actual mirror is desirable, it can,
in principle, be replaced with any flat surface. If the mirror is present but perfectly parallel with
the undisturbed interface, i.e. mr = 0, then the holograms RBj and RF all modulate the same
carrier ∝ n1mr. A naive reconstruction would then hinge on the dominant amplitude of the RB1

hologram, which is certainly the case for similar refractive index n2 → n1. Alternatively, one may
use a fitting procedure as in [215, 216] to disentangle the different phases that co-inhabit the carrier
n1mr.

To determine if a tilted submerged mirror is feasible in a specific situation, consider the fol-
lowing. Take, for example, the FB1 beam whose carrier is kFB1 ≡ ∇ΦFB1 = 2k0n2mb ac-
cording to (5.7). In an image of the intensity (5.3), the fringes due to this carrier has wavelength
LFB1

≡ 2π/|kFB1
|. Denoting the physical width of a pixel in the image by px, e.g. px = mm/100,

we have

|mb| = 2× 10−3

(
λ

532nm

)( n2

1.33

)−1
(

L

10px

)−1(
px

mm/100

)−1

. (5.19)

That is, for an image with resolution px = mm/100 to exhibit a fringe of FB1 over a width of 10
pixels using a light-source with wavelength λ = 532nm, the mirror submerged under a fluid with
refractive index n2 = 1.33 would have to be tilted two milliradians off-axis. Note here that a reso-
lution of px = mm/100 corresponds to imaging a 2cmwide region with resolution 2000× 2000.
This is, in practical situations, a high resolution and a small region. The point is that in many prac-
tical situations, the tilt mb of the bottom mirror is of the order of magnitude one would expect
it to be in the first place. In other words, the tilt needed from the submerged mirror is practically
feasible, and often sufficiently small for it to have negligible effects on the dynamical deformations
of the interface.

III. Experimental realisation

The experimental setup depicted in 5.1 is realised with caged, non-polarising, one-inch optical com-
ponents using a green (λ = 532nm) laser* with power 0.9mW. The basin is made from machined
acrylic with a square cross-section of inner dimensions 89mm × 89mm and bottom thickness of

*Collimated Laser-Diode-Pumped DPSS Laser Module, (ThorLabs CPS532-C2).
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16.45mm. A cylindrical hole is made in the bottom to fit a broadband mirror inside, and a camera*
with focus at infinity, is used to image the output beam.

The camera is connected to a computer running a custom-built Graphical User Interface. The
app provides a live view of the images from the camera, along with various analysis pipelines on the
fly. For example, this includes monitoring the spatial Fourier transform of the camera footage live.
In the spatial Fourier transform view, the user can select carrier peaks and monitor the reconstructed
phasesϕ(m)

ij .
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Figure 5.6 (Experimental realisation) Panel (a): The experimentally imaged intensity Yij in
grayscale. A magnification of the region indicated by the white dashed rectangle is shown in the
inset. Panel (b): The logarithmic amplitude ln |Ŷ| of the spatial Fourier transform Ŷ of the image
in panel (a). The locations of four holograms are labelled 1-6, and a scaled view of the peak labelled
1 is shown in panel (c). For each of the four carriers 1-4, the corresponding demodulated phases
are shown in panels (1-4). Panels (1-4): The reconstructed phases for the four carrier frequencies
highlighted in panel (b) is shown in the regions where the carrier is sufficiently present (|Fm[Y]ij| ⩾
1px). In the lower left corner of each panel, a black cross is drawn to indicate the orientation of the
square fluid container.

A representative image captured by the camera, with the basin filled with water, is shown in
panel (a) of Figure 5.6. In panel (b) of Figure 5.6, the Fourier transform of the image in panel (a)
is shown. Here, the first striking difference from the synthetic data is the much larger number of
peaks than expected. Most of these can be attributed to a new family of holograms, also co-linear
in k-space, that arises due to partial reflections from the beam-splitter. Consequentially, almost all

*Basler ace (acA2440-75um).
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peaks appearing in panel (b) of 5.6 carry information about the height field. However, most of these
additional holograms behave as lower-amplitude replicas of the already established familiesRF,RBj
and FBj.

The large number of peaks appearing in the experimental data of Figure 5.6(b) introduces a
complication not encountered in the simulated image. It is not at all clear which peaks should be
associated with which of the predicted phases (5.7). On the one hand, the inclusion of reflections
from the beam splitter, or other surfaces in the setup, introduces new holograms. On the other
hand, discretization and saturation in the digital image is, for example, expected to create harmon-
ics, appearing at integer multiples of each carrier frequency.

When performing the experiment, the identity of the peaks can be revealed via a simple test: if
the reference beam R is blocked, then only the FBj holograms should remain. This test was per-
formed on the data exhibited in Figure 5.6, with the result that, out of the labelled peaks, only the
one labelled 3 remained. Hence suggesting the identification of the peak 3 with FB1. Likewise, the
most prominent peak, which is the carrier labelled 1, can be attributed to RB1. This peak identi-
fication was further supported by monitoring the response of the carrier locations when the two
mirrors are independently tilted. That is, when adjusting the submerged mirror, only the carrier
of the RF hologram remains fixed*. Likewise, an adjustment of the reference mirror leaves only the
FBj family fixed.

Although the carrier peaks can be identified when performing the experiment, all the informa-
tion should be contained within a single image. However, labelling the peaks is much less straight-
forward than one might think. To illustrate the ambiguities that may arise when identifying the
carriers using only a single image, let us attempt to label the peaks in Figure 5.6(b). To ease nota-
tion, we shall denote the location of each labelled peak in Figure 5.6(b) by pa, where a is the label
appearing in Figure 5.6(b). First, naively comparing Figure 5.6(b) with the anticipated carrier loca-
tions 5.3 suggests that holograms should reveal themselves by belonging to two straight lines. One
of the lines would be inhabited by the FBj family, given by the line passing p1 and p2. The other
would contain the RBj and RF families, spanned by the peaks p3 and p4. From this, we would
conclude that peak 1 should be labelled FB1, peak 2 as FB2, 4 as RF and 3 as RB1. However, such
an identification would be premature. For example, p1 is the brightest peak, which is responsible
for the most prominent fringes in Figure 5.6(a). Being the brightest peak, the amplitude relations
(5.8) suggests identifying p1 with RB1, and not FB1. This would mean that p2 is an unexpected
hologram, appearing either as a harmonic of the RB1-hologram, or as a genuine new hologram in-
troduced by the partial reflections of the beam splitter. Playing along with this labelling, the natural
candidates from RF and FB1 would be p3 and p4. From the geometrical placement of the carriers
in Figure 5.3, we expect the carrier for FB1 to give RB2 when added to that of RB1, and to give RF
when subtracted. Therefore, if we associate the peak p4 with FB1, then p3 ≃ p4 + p1 would be
RB2, but RFwould be absent. On the other hand, if we associate p3 with FB1, then −p4 could be

*Note that an adjustment of the submerged mirror excites waves on the surface. Therefore, the RF also responds
to the tilt, but returning quickly to its initial carrier after the initial perturbation is sufficiently damped.
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RF, in which case p5 ≃ p1+p3 would correspond toRB2. This would mean that the higher order
holograms such as FB2 andRB3 are absent, or greatly displaced. This is plausible as these holograms
are expected to have very low amplitudes (c.f. (5.8)). Note, however, that multiple alternative iden-
tifications can be entertained. For example by instead identifying p5 with RF. At this point, it is
clear that peak identification is, in itself, a formidable problem.

During the experiment, the table on which the experiment rests was tapped regularly to ensure
the presence of waves on the water surface. Due to the square cross-section of the basin, the re-
sulting interfacial waves should be resonant modes similar to those of the height field (5.10), with
orthogonal wave-vectors k1 and k2. In 5.6(b), the holograms do not appear as extended rectangu-
lar regions as in the synthetic data 5.4, which can be seen in the magnification of peak 1 shown in
panel (c) of Figure 5.6. This suggests, at first glance, that the aforementioned orthogonality of waves
on the interface is absent. However, this can be identified with an overall curvature of the surface
(perhaps due to a meniscus?), which can be eliminated by using the relative reconstruction scheme
(5.17). Taking the previous image, captured a time s/60 earlier, as the reference image Y0

ij in (5.17),
we obtain the four phases exhibited in panels (1-4) of 5.6. These phases, or rather the changes in
phase over one 60th of a second, all exhibit a clearly correlated signal consisting of orthogonal waves.
In each panel, a black cross is drawn to highlight the independently measured* orientation of the
fluid container. The alignment of the phase deformations with the walls of the fluid container fur-
ther validates the claim that the field independently measured by the separately reconstructed phase
fields is, indeed, the interfacial height h.

In what follows, we shall consider two quantitative tests of the method. Firstly, we shall in-
vestigate the phase ratios, which may enable automatic peak identification, and comment on the
possibility of measuring the refractive index as part of the experiment. Secondly, we shall validate
the predicted heights, i.e. the constants of proportionality between the phases (5.7) and the height
h, by changing the volume of the fluid by a known amount.

III.1. Peak Identification

Using the procedure outlined in section II.3, one may recoverM phases {ϕ(m)
ij }Mm=1 from a single

image Yij. However, it is not always straightforward to identify these phases with those anticipated
in (5.7). In this section, we shall discuss some promising approaches to this problem.

Firstly, in both the data analysis and when conducting the experiment, the RB1 beam is easily
identified using (5.8): it is the most prominent peak in k-space, i.e. the dominant plane wave in the
image Yij (see e.g. Figure 5.4). Because amplitudes vary with the details of the experimental setup,
however, one may benefit from verifying the identification by confirming that the modulation is
the smallest. This follows from the pre-factor ∂hΦRB1 = 2k0(n2−n1) in (5.7) being the smallest.

*This measurement is performed by aligning a striped transparency with the container, and determining the carrier
km of the resulting image in the usual way.
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When conducting the experiment, there are two simple tests one may perform to identify the
interferograms. While monitoring the k-space of the image live, perform a small adjustment of the
reference mirror. Then the RF and RBj holograms will change their carrier location, whereas the
FBj andBℓBj holograms remain fixed. To single out theRF-peak, one may subsequently adjust the
submerged mirror mb, to which all but theRF hologram should respond. Another simple test that
can be performed during the experiment is to cover the reference arm, which ought to leave only
the peaks associated with the FBj and BℓBj beams.

If manipulating the experimental setup is not possible, the holograms may, in most circum-
stances, be identified directly from the reconstructed phasesϕ(m)

ij . From equations (5.7), the con-
stants of proportionality between the phases ϕ(m)

ij and the interface h are all of the form 2k0αm
for some linear combination αm of n1 and n2 with integer coefficients. Here, one approach to
the identification problem would be to inspect the ratios ϕ(a)

ij /ϕ
(b)
ij for all distinct pairs a ̸= b

of reconstructions, and compare the fit results to the anticipated ratiosna/nb calculated from the
knowledge of the refractive indices n1 and n2. However, this approach is both problematic due
to potential zero-divisions in the ratios, and due to differences in the constant terms in the phases.
Moreover, when armed with more than two distinct holograms, the ratios of phases, which (ideally)
depend only on n1 and n2, are over-specified. Therefore, it is possible to perform a measurement
of the refractive indices as part of the experiment.

The collection of reconstructed phases {ϕ(m)
ij }Mm=1 can be seen as anM-dimensional vector field

p =
∑
mϕ

(m)
ij (t, x)em. Assume that the phases were collected from a configuration in which

the height field h was changing, either in space or time. Any spatial or temporal fluctuation of the
heighth 7→ h+δh results in a fluctuationp 7→ p+2k0vδh for a constant vectorv =

∑
m αmem

which depends only on the refractive indices. That is, the vector p always responds to variations
in h along the same axis v, and this axis determines all the phase ratios. More generally, we may
consider the spectrum Cvk = λkvk of the covariance matrix Cab = ⟨X(a)

ij X
(b)
ij ⟩ for the cen-

tralised variables X(a)
ij ≡ ϕ

(a)
ij − ⟨ϕ(a)

ij ⟩. Here, the average ⟨·⟩ is purposefully left unspecified, as
the preferred choice, e.g. average over space (pixels) or time (frames), will generally depend on the
specific scenario considered. Assuming all phases measure the same interface, there is one eigenvec-
tor vk of Cab with eigenvalue λk much larger than the others, hereby referred to as the principal
component. Note that this technique is commonly referred to as Principal Component Analysis
(PCA) [219, 220]. In our case, the principal component is precisely the aforementioned vector v.
How consistently variations in the entire data p can be represented by the single field h is captured
by the normalised eigenvalues sgk ≡ |λk|/

∑
a |λa|, where λk is the eigenvalue of the principal

component. The quantity sgk takes values from 0 to 1, where sgk = 0 would imply that there is
no variation in the data at all, and sgk = 1 that all the variation in the data is entirely along the
principal component v.

In light of equation (5.7), the principal component v fixes the ratios of the phase fields, leaving
only |v| as a free variable. Consequentially, we only need to identify one phase prefactor from equa-
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tions (5.7) to obtain them all. Since the RB1 beam can, in most situations, be easily identified, the
information needed to transform the M reconstructed phases into estimates of the height field is
thus obtained.
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Figure 5.7 (Phase Ratios) The phase prefactors vi predicted from a temporal PCA with sgk =
97% are shown. There is no successfully reconstructed FB1 beam, but the RF beam (13/green)
is present. Most holograms are equivalent to RB1 (red), or its doubling R̃B1 (blue). Prefactors
corresponding to holograms that could not be reconstructed consistently are coloured black.

An example of the entries vi of a principal component v is shown in Figure 5.7. The details of
this experiment will be discussed in the next section. Here, the averages ⟨·⟩ used in the PCA are
taken across time. The holograms are sorted by amplitude, so that 0 corresponds to the brightest
peak, 1 to the second brightest, and so on. In Figure 5.7, the 17 holograms considered are divided
into four categories. First, the brightest peak, hologram 0, can be identified with RB1. All holo-
grams that respond similarly (0,2,12,15,17) to variations in the height as the RB1 hologram are
coloured red. As such, the red holograms can be associated with the prefactor n2 − n1 in the en-
tries of the principal component. The second brightest peak, hologram 1, responds twice as much
as RB1 to variations in the height. Every hologram with this response (1,3,5,16) is coloured blue
in Figure 5.7. Note that these holograms, hereby referred to as the doublings R̃B1 of RB1, are not
expected from the theory. It is, however, not hard to imagine extensions of the theory that would
incorporate the doublings. For example, including the additional reflections from the beam splitter
would naturally produce candidates for R̃B1 at the right locations. Regardless of the model, it is
clear that the doublings can equally well be used to measure the interface. In Figure 5.7, there is
a single hologram, number 13 (green), with a height-response much larger than the others. The
response of this hologram is consistent with the label RF. The holograms (4,6,7,8,9,10,11,14) that
do not fall into the aforementioned categories, i.e. RB1, R̃B1 and RF, are coloured black in Figure
5.7. The phases of these holograms are only weakly correlated with the height field.
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III.2. Varying depth by injecting a known volume
To test of the validity of the reconstruction, consider the response of phasesΦa of the form (5.7)
to changes in the volume of the fluid. All phases in (5.7) can be written Φa = Φa0 + 2k0nah,
whereΦa0 is independent of the interface h, and na is some function of the refractive indices n1

and n2 of the fluid and the surrounding gas. The constant cross-sectional areaA of the container
(see figure 5.1) means that changesdV in the volumeV of the fluid is related to changesdΦa in the
phaseΦa through

dΦa ≃ 2k0na
A

dV . (5.20)

Based on this observation, we aim to inject a known amount of fluid into the basin slowly and
compare the predicted change in height∆hv(t) from the supplied volumeV(t)with the measured
overall change height h(t) from the spatially averaged phaseΦa(t) of a single hologram.

Figure 5.8 (Supplied volume schematic)The spatially averaged heights predicted from different
holograms are monitored while the basin is slowly being injected with fluid. A camera keeps track
of the volume in the syringe, which is used to independently predict the change in interfacial height
resulting from movement of the syringe piston.

This is done by attaching a 1mL syringe to a capillary tube pointing into the bottom of the
fluid (see figure 5.8). The syringe is slowly driven by a remote-controlled mechanical device set to
produce an even in/out-flux of water. The syringe volume is monitored by a camera*. By cross-
correlating images along the syringe-piston axis and measuring the result in units of the separation
of the increment indicators, a detailed curve of the volume over time is obtained. The measured
volumeV(t) is shown (black line) in panel (a) of figure 5.9, where the initial linear injection period
is measured to have flux rate 12.3µL/sec. This is sufficiently small for temporal phase-unwrapping

*The two image sequences of the cameras are synchronized by time-stamping.
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to be possible (see (5.7)) at the chosen acquisition rate of 60fps. During the first 75 seconds of
the experiment, volume is injected at a constant rate. Then, after a 5s period of rest, the volume is
withdrawn at approximately the same rate, but with regular brief pauses.

The resulting holographic data consists of a series of 8193 images with resolution 1024×1024.
From the initial image, 20 holograms are identified by locating the most prominent carrier peaks
(see panel (b) of figure 5.9). These are hereby labelled a = 0, ..., 19 by their order when sorted by
decreasing amplitude. The collection of unwrapped phasesΦa(t) for each hologram is found to be
consistent with a single principal component, having significance sgk of 97.4%, from applying the
PCA introduced in section III.1. Indeed, identifying the phaseΦ0(t) with the RB1 interferogram
for which the prefactorna = n2−n1 is known, the relation 5.20 may be used to obtain consistent
measurements of the overall height using 10 of these 20 holograms. These curves, shown as coloured
lines in figure 5.9(a), are all found to match the independently measured syringe volume (black line).

20 40 60 80 100 120

t [s]

0.00

0.25

0.50

0.75

V
(t

)
[m

L
]

(a)

0 2

ky [px−1]

−2

0

2

k
x

[p
x
−

1
]
0

1

2
3

5

10

12

13

15

16

17

(b)

Figure 5.9 (Known Volume) Panel (a): The volume V(t) added to the basin over time during
the experiment. The black line is the independently measured ejected volume from the syringe, and
the overlapping coloured lines are inferred changes in volume using the 10 holograms with carrier
frequencies shown in panel (b).

Note that although 10 holograms could be consistently used to recover the correct volume in
the basin independently, this does not mean that these are all distinct phases from (5.7). Indeed,
when inspecting the principal component, shown in Figure 5.7 in the previous section, we saw that
all except one of the weights are an integer multiple of the same prefactor.

IV. Summary and Conlusion

In this chapter, we have demonstrated the use of digital holography to measure waves on fluid sur-
faces. First, in section II, we found analytical predictions (5.7) for the phase differences associated
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with three families,R, F andBj, of rays. Crucially, all these phases are proportional to the interfacial
height, meaning each offers an independent measurement of the surface, provided that they can be
separately recovered. We discussed how introducing a gentle tilt of the two mirrors resulted in the
desired separation of the holograms in the spatial Fourier domain.

Next, we shifted focus towards a numerical simulation of an idealised optical setup. The sim-
ulated images were found to be in excellent agreement with the predicted separation of peaks, and
the phases could be reconstructed using standard Fourier demodulation techniques. We then in-
troduced a simple experimental realisation of the principle. Here, we discussed the additional chal-
lenges that appear in realistic data, emphasising the large number of unanticipated holograms that
can appear due to additional reflecting surfaces and discretization effects. We argued that rather
than presenting a problem for the method, these additional holograms can be used to reconstruct
the surface. We saw how the holograms could be identified using Principal Component Analysis
(PCA), and argued that this approach has the potential for extracting the values for the refractive
indices of the media as part of the experiment.

Finally, we considered a simple test of the method, wherein the volume of the measured fluid
was adjusted while the surface was monitored. The change in fluid volume deduced from10distinct
holograms was in excellent agreement with an independent measurement of the volume.

It is clear that the method is flexible and has wide applicability. Perhaps the most appealing fea-
ture is that spatial defects in the amplitude of the optical beam are relatively unimportant. Due to
the multiplexing, the technique can be realised with basic optical components, and is expected to
be applicable also in situations where more intricate optical setups are impractical. For example, on-
going investigations into the possibility of using the device to measure refractive index, evaporation
rates, and coefficients of thermal expansion have proven promising.
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Conclusion
In this thesis, we have investigated a variety of phenomena, in a variety of physical situations, rang-
ing from quantum vortices in two-dimensional BECs, to classical two-fluid systems and optical
profilometry. Our initial motivation came from analogue gravity, where previous studies have sug-
gested that astrophysical phenomena are more universal and robust than anticipated from mathe-
matical analogies. Motivated by this, we set out to investigate astrophysical effects from the perspec-
tive of the simulators when pushed further into incalculable regimes. In doing so, we discovered
novel tools and effects in each respective system. This brings us back to a claim made in the in-
troduction; that when an analogy is formed, it opens a two-way bridge between different fields of
physics. It seems, then, that if one of the systems exhibits an interesting phenomenon, then that
phenomenon is interesting in both systems. Let us briefly revisit the results of this thesis, and com-
ment on what we have learned from the perspective of the analogy.

In chapters 2 and 3, we investigated the dynamics of quantum vortices in two-dimensional
BECs. A quantized vortex of charge ℓ constitutes a rotating flow vθ = ℓ/r around it. Therefore,
from the perspective of the analogy, a quantised vortex can be thought of as a rotating spacetime
with discretized circulation, and without a horizon (c.f. (1.2)).

In the first part, chapter 2, we studied the dynamical instability of the multiply charged vortex
in the context of rotational superradiance. In black hole physics, rotational superradiance is a mech-
anism wherein incident waves are amplified at the expense of the rotational energy of the black hole.
At first glance, it is therefore unclear how superradiance would proceed in a system where the rota-
tion is of a discrete and topological nature. As it turns out, the supperradiance mechanism results in
an instability that tears multiply charged vortices apart. In the first part of chapter 2, we investigated
the details of this process. Here, we saw that the instability could be interpreted as a perpetual am-
plification of negative energy modes near the vortex core due to an interaction with positive energy
modes outside. In particular, we found that it is this negative energy mode in the core that guides
and splits the multiply charged vortex. Moreover, our approach naturally connected the instability
in open and closed systems. In closed systems, we saw that the vortex could be stabilised†.

In the last half of chapter 2 we studied the fate of the doubly-quantised vortex in detail using
nonlinear simulations. Here, we discovered a new phenomenon that may occur in small systems at

†Technically, we only investigated the stability of the doubly wound (ℓ = 2) vortex. For vortices with higher charge,
there will be more candidates for the instability, and one would expect stabilisation to be impossible for sufficiently large
ℓ.
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very low temperatures. Instead of decaying fully into two separate vortices, the vortex splits into two
phase singularities that perpetually switch from spiralling outwards, to spiralling inwards. We saw
that this process could be interpreted as a nonlinear phase-shift in the growing mode, transforming
it into a decaying mode, and that the process can be seen as a perpetual release and re-absorption
of compressible energy. Finally, we concluded that the effect should have observable consequences
also in dissipative systems, making it relevant in experiments.

From these investigations, it is clear that the superradiance mechanism is responsible for rele-
vant and interesting physics in the simulator. In particular, the consequences of superradiance are,
due to the instability that arises, rather different from those of a rotating black hole. In light of this,
a particularly interesting system to further investigate this link would be one where circulation is
quantized, as in the quantum vortex case, but the effective spacetime exhibits a horizon, as in the
black hole case. It has been argued that in such systems, the instability is stabilised. If the instability
is absent, we are again faced with the conundrum of how rotational energy can be harvested from a
system where rotation is topological. For example, if waves are continually superradiated off such a
system, it must continually shed rotational energy. It stands to reason that, perhaps, if the superra-
diance mechanism is not somehow prevented, that the vortex will eventually lose one quantum of
rotation. One system that exhibits such features is a draining bathtub flow of superfluid.

In chapter 3, we investigated a system closely related to the preceding chapter, namely the decay
of dense vortex clusters. Here, the motivation came from the ringdown process for the relaxation of
compact astrophysical objects. When these astrophysical objects are excited, they can relax through
the emission of long-lived, decaying waves referred to as Quasi-Normal Modes (QNMs). These
waves, which are ingoing at the horizon, and outgoing at infinity, are, in most cases, intimately
connected to the existence of circular trajectories of light, or light rings. In this context, light rings
can be thought of as unstable fixed points in the radial phase space for the waves. A wave excited
at a light ring is trapped by the geometry and will leak out slowly. It is in this sense that the waves
emanating from the light ring are often taken as approximations of the QNM spectrum.

Being a relaxation process, however, the ringdown is conceptually related to the strive of a com-
pact astrophysical object towards its equilibrium state. Therefore, it is not clear how the process
is modified if there is no equilibrium, and the background on which waves propagate is instead
evolving.

The relaxation of the vortex cluster represents an interesting platform to investigate these effects.
Since a cluster of high charge is energetically unstable, any dissipative mechanism may expand the
cluster. The result is the dissipative expansion of a vortex cluster investigated in chapter 3. Curiously,
while the core expands, the flow outside the vortex cluster is kept relatively fixed. The consequence
was that the light-ring, or rather the sound-ring in this case, was kept intact. The significance of the
sound-ring, however, appeared as something quite different from the black hole case. Whereas the
ringdown process for black holes is related to the late relaxation following an excitation in the past,
the sound-ring was continually excited by the escaping waves produced by the dynamically evolv-
ing vortices in the core. The sound-ring revealed itself not only as a relaxation channel, but as an
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emergent, geometrical feature that was independent of the vortex configurations in the core. Based
on this observation, we were able to predict the main features of the radiated spectrum of (counter-
rotating) sound using only one parameter; the net charge ℓ of the cluster. That such a simple model
can be used to predict features in a system of such complexity, is not at all obvious. Such a model
is, for example, expected to be of relevance for investigations into quantum turbulence. Here, the
sound-ring is an example of how the astrophysical phenomena can, often serendipitously, lead to
the discovery of effects that are relevant in the field of the simulator. Returning to the gravitational
perspective, the sound-ring offers the following lessons. Firstly, our results suggests that light-ring
physics remains predictive also when the background is evolving. Secondly, although the absence
of a horizon changes the consequences and interpretation of waves emanating from the light-ring,
aspects of the mechanism remain relevant and predictive also in this case. Finally, light-ring physics
seems relatively insensitive to the discretization of circulation. On this final point, it should be
stressed that whereas the light-ring remains predictive in the case of discretized circulation, it seems
likely that the phenomenon should affect the vortex configurations. For example, in the case of the
decaying vortex cluster, the sound-ring existed only in the counter-rotating part of the spectrum.
Since we interpreted the sound-ring mechanism as a blocking-mechanism of escaping waves, is it
tempting to entertain the idea that this suppression of counter-rotating radiation can somehow be
related to the reduction in rotational energy of the cluster.

In chapter 4, we shifted focus toward the parametric amplification of classical two-fluid inter-
faces. In particular, we experimentally investigated the well-known Faraday instability experienced
by a two-fluid interface upon vertical oscillation of its container. We presented an extended model
for the nonlinear dynamics, which incorporates two-fluid interfaces and higher order effects from
surface tension. To compare the experimental data with theory, we considered numerical simu-
lations of a phenomenological stochastic extension of the nonlinear dynamics. This model was
shown to not only reproduce the behaviour of a single experimental realisation but of the entire
experimental ensemble. We did this by introducing a measure of non-Gaussianity of the ensemble,
which to my knowledge, is a technique new to classical fluid dynamics. Moreover, we saw, in both
theory, numerical simulation and experiment, how the resonant mode turning nonlinear led to the
amplification of modes that would otherwise have been unable to grow. This is particularly inter-
esting as it opens the possibility for monitoring the appearance of secondary instabilities over time.
Such a time-dependent cascade of one mode into many can, for example, may help to shed light on
the nature of turbulence.

Finally, we commented on the similarities with cosmological preheating. In particular, the non-
linear effects, such as the emergence of secondaries and the broadening of resonance bands, remain
consistent with the preheating mechanism. Interestingly, this hints that aspects of the analogy may
indeed remain applicable when extrapolated into the nonlinear regime, which is not all obvious.
More generally, this system represents a promising, new, classical context, in which cosmological
preheating can be placed under experimental scrutiny.

In the final body of this work, chapter 5, we investigated a new technique for measuring fluid
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interfaces using the principles of holography. Here, the key idea is to exploit the multitude of rays
that appear due to partial reflections from the interface, along with a gentle tilt of the bottom face of
the fluid, to enable multiple independent measurements of the interface simultaneously. The first
prototype of a device implementing this principle confirms the applicability of the method. The
detection method presented in chapter 5 may be used when further investigating the relationship
between parametric amplification of two-fluid interfaces and cosmological preheating discussed in
chapter 4. This can, perhaps in combination with the currently used Fourier Checkerboard De-
modulation (FCD) method, permit monitoring the interfacial waves all the way from the equilib-
rium fluctuations of the interface at rest, to the nonlinear regime.

Work is in progress for setting up a draining bathtub flow in superfluid 4He. Such a flow repre-
sents a black hole simulator with topological and quantum features, and as such, can help elucidate
how gravitational phenomena are modified by such features. It is in anticipation of this coming
series of experiments that all the efforts of this work is united. Here, an adaptation of the holo-
graphic detection scheme will be implemented to recover the surface fluctuations of the superfluid.
This will enable investigation of the superradiance mechanism as well as the ringdown process in
the system. The same detection scheme will be used to repeat the preheating experiments, both in
further investigations of the classical setup and in the superfluid.

The superfluid simulator is bound to offer lessons on wave phenomena in spacetimes with dis-
crete and topologically non-trivial features. Who knows, perhaps observable consequences of quan-
tum features of spacetime will be revealed. Most certainly, however, these experiments will offer
lessons on the extent, robustness and universality of the various astrophysical phenomena. One
thing is certain: as we strive to push the simulated phenomena further into uncharted territory, we
will also learn about the physics of the simulator.



Appendix A

WKB scattering and resonances

In this appendix, I present different aspects and techniques surrounding the
Wentzel–Kramers–Brillouin (WKB) approximation for wave solutions of partial differential
equations, which focus on the rotationally symmetric case. Parts of the formalism is unique, but it
rests heavily on that of Patrick [221, 222] and Tracy [163].

A.1. Introduction

The WKB approximation is a special case of multiscale expansion in which one considers oscilla-
tory functions fwith a phase varying much faster than the amplitude. That is, the amplitude varies
slowly compared to the phase or, equivalently, the characteristic scale over which the background
varies is much larger than the local wavelength. When plane waves are exact solutions of the un-
derlying equations, such as for wave equations in a homogeneous medium, the WKB method is
exact. In such cases, the equations of motion determine a relation between the wavevector k and
the frequencyω of the waves called the dispersion relation. In an inhomogeneous medium, the dis-
persion relation appears as the leading order solution in the WKB expansion and gives the relation
between the local values of k andω.

The text is structured as follows. First, in section A.2, a WKB expansion for a class of systems is
investigated to leading, and next-to-leading order. In section A.3, a Hamiltonian system for the local
wavefronts is constructed. The resulting, particle-like dynamics is used to investigate what it takes
for waves to stagnate. Then, in A.4, we construct transfer matrices that relate WKB amplitudes
on different sides of stagnation points, where the method breaks. The analysis is specialised for
a radial coordinate. Finally, we discuss the different types of phenomena such as superradiance,
quasi-bound states and tunnelling in depth.
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A.2. TheWKB expansion
Suppose you have a differential equation for f for which the highest derivative is small. You may
then expand the equation using

f ≃ AeiΦ/ε with ∂ 7→ ε∂ andΦ =

∞∑
n=0

εnΦn (A.1)

and separate different powers of ε as ε → 0. Here, the symbol ∂ refers to any first-order partial
differential operator.

In this section, we shall consider a general system of coupled equations of the form

DtM1 = K̂1(−i∇)M2 (A.2a)

DtM2 = K̂2(−i∇)M1, (A.2b)

whereDt = ∂t + v · ∇ is the convective derivative, and K̂a is assumed to be expandable in −i∇,
i.e. an arbitrary smooth function f

K̂a(−i∇)f =
∑
n

K
(n)
a

n!
(−i∇)nf, (A.3)

where the coefficients K(n)
a may depend on the spatial coordinate. Note that if f = AeiΦ/ε then,

to linear order in ε,

e−
iΦ
ε Ka(−iε∇)Ae

iΦ
ε ≃ (A− iε∇A · ∇k)Ka(k) for k ≡ −i∇Φ. (A.4)

To invoke the WKB approximation, we introduce a change of variablesMn = Ane
iΦ/ε for n ∈

{1, 2}. Note that this does not require the two functions Mn to have the same phase, but rather
that difference in phase ofM1 andM2 varies slowly, i.e. on the same scale asAn. Introducing the
short-hand notationKa = K̂a(−i∇Φ), we have

− iAaΩ+AbKa + ε [−DtAa + i∇Ab · ∇kKa] = 0 (A.5)

whereΩ ≡ iDtΦ. To leading order, we have the dispersion relation

Ω2 = −KbKa withAa = Ab
Ka

iΩ
, (A.6)

and the linear equation demands

DtAa = i∇Ab · ∇kKa. (A.7)
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By using the dispersion relation (A.6) the linear order equation (A.7) can be written in the sugges-
tive form

∂tR+∇ · Rvg
R

= ∇ · v +
Ω

2

[∇ · ∇kKa
Ka

+
∇ · ∇kKb
Kb

]
(A.8)

for R ≡ AaAb, where vg ≡ ∇kΩ − v is the group speed. That is, R is conserved along the
group flow vg if the background is incompressible ∇ · v = 0, and there is no cross-terms, i.e.
∇ · ∇kKb = 0 for b = 1, 2. For rotationally symmetric and time-invariant amplitudes, we find

∇ · Rvg = 0. (A.9)

Let us consider some examples from the main text. First, in chapter 3, we constructed an effective
linear system (see (3.22)) that can be matched with (A.2) by identifying

Dtδρ = −ρ0∇2δϕ ,

Dtδϕ = −

(
1−

∇2

4ρ0

)
δρ

⇐⇒

M1 = δρ

M2 = δϕ

K1(k) = ρ0k
2

K2(k) = −

(
1+

k2

4ρ0

)
.

(A.10)

That is, the comoving dispersion relation takes the form

Ω2 =
(
ω±
D −

mvθ

r

)2
= F(k)k2 for F(k) ≡ ρ0 +

1

4
k2 (A.11)

which matches that of (3.24). Moreover, the amplitudes obey the conservation law (A.9), which
takes the form

∂r
(
rF−1ΩvrgA

2
)
= 0 with B = −iF−1ΩA, (A.12)

for the amplitudes A and B defined in (3.23).
Another example is the (corrected) WKB expansion of equations (2.16), from chapter 2. Here,

we argue that by introducing variables δΦ ≡ δΦ̃/
√
ρ and δρ ≡ δρ̃/

√
ρ, the WKB expan-

sion becomes well behaved. When supplied with the vortex density relation (2.10), i.e. ∇2√ρ =
[ℓ2 + 2r2(ρ− 1)]

√
ρ/r2, the resulting equation matches the general form (A.2), with

Dtδρ̃ =

[
−∇2 +

∇2√ρ√
ρ

]
δΦ̃

DtδΦ̃ = −
1

4

[
4ρ−∇2 +

∇2√ρ√
ρ

]
δρ̃

⇐⇒

M1 = δρ̃

M2 = δΦ̃

K1(k) = k2 +
ℓ2

r2
+ 2(ρ− 1)

K2(k) = −
1

4

[
4ρ+ k2 +

ℓ2

r2
+ 2(ρ− 1)

]

(A.13)



122 WKB scattering and resonances Chapter A

which, results in the form displayed in (2.29), i.e.

Ω2 = F(k)k2, F(k) ≡ ρ+ 1
4
k2, (A.14)

k2 ≡ p2 + m̃2/r2, m̃2 ≡ m2 + ℓ2 + 2r2(ρ− 1). (A.15)

In particular, we recover relation for the amplitudes (A.12).

A.3. Eikonal Ray-Tracing
In this section, I discuss how to use the leading order equation in a WKB expansion, as in (A.6),
to construct a Hamiltonian system local dynamics of solutions. We shall write

√
−K1K2 = c(k)k

so that the dispersion relation can be written in the formΩ2
d = c2k2, where c can be interpreted

as the speed of propagation. Our Hamiltonian system is constructed by following a trajectory of
constant phase (see e.g. [163]), where the dispersion relation is imposed as a Lagrange multiplier
constraint, i.e.

δ

∫λ1
λ0

[
ki
dxi

dλ
−ω

dt

dλ
+H

]
dλ

!
= 0 withH ≡ 1

2
Ω2 −

1

2
Ω2
d (A.16)

where the 1/2 factor is introduced for convenience and λ parametrises the trajectory. The sym-
bol δ signals infinitesimal change of the trajectory in the variational calculus sense. The resulting
dynamics is that of an Hamiltonian flow

ẋ = −∇kH, k̇ = ∇H (A.17a)
ṫ = ∂ωH, ω̇ = −∂tH (A.17b)

withΩ = ±Ωd. (A.17c)

Here, without loss of generality, we have ṫ = Ωd and therefore time t is related to the parametrisa-
tion λ of the trajectory through ∂t = Ω−1

d ∂λ. This means that ẋ = Ωdvg, where, as before, vg is
the group speed. That is, as it should, the location x of a wave-packet moves with the group speed.
One consequence of this is that a wave-front stagnates spatially ẋ = 0 whenever ∇kH = 0. At
these points the phase does not accumulate much faster than the amplitudes, casting doubt upon
the validity of the WKB approximation. Note also that we may write ∂tk = −∇ω, meaning that
the direction of propagation is refracted by spatial variations in the frequency.

We note that in polar coordinates x = (r, θ) we may write the phase asdΦ ≡ krdr+mdθ−
ωdt. In that case, the system (A.17) can be written

ṙ = −∂krH, k̇r = ∂rH (A.18a)
θ̇ = −∂mH, ṁ = ∂θH (A.18b)
ṫ = ∂ωH, ω̇ = −∂tH (A.18c)

withΩ = Ωd (A.18d)
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from which it is clear that rotational symmetry, i.e. ∂θH = 0, results in conservation of azimuthal
numberm, and time-translation symmetry, i.e. ∂tH = 0, results in the conservation of frequencies
ω. Note that the conservation ofm is associated with an angular velocity θ̇ ≡ −∂mH. In this case,
we may introduceΩd = ωd + v · k to observe thatωd acts as the effective Hamiltonian for the
radial phase space, i.e.

dr

dt
=
∂ωd

∂kr
and

dkr

dt
= −

∂ωd

∂r
. (A.19)

Here, we observe that turning points are given by radial stagnation ∂ωd/∂kr = 0. Note also that
the time it takes a wave to traverse a curve γ is

dr =
∂ωd

∂kr
dt =⇒

∫
dt =

∂

∂ωd

∫
kr
∂ωd

∂kr
dt = ∂ωd

∫
krdr, (A.20)

which is the equivalent of the energy-derivative of phase space area of a closed orbit is the time.

A.4. BeyondWKB: TransferMatrices and Resonances

At the turning points, where ∇kω = 0, one encounters problems. The radial derivative of the
amplitude diverges, and therefore violates the WKB assumption of a phase varying much faster
than the amplitude. We note, however, that all other quantities can remain linearized, so that we
have Hϕ = 0 where H is the Hamiltonian H from (A.16) but where k is kept as a differential
operator, i.e. k = −i∇. Close to a turning point x0, we then have

H ≃ H0 + (∂iH)(x
i − xi0) + (∂kiH)(k

i − ki0) (A.21)

+
1

2
(∂kj∂kiH)(ki − k

0
i)(kj − k

0
j) (A.22)

+
1

2
(∂j∂iH)(x

i − xi0)(x
j − xj0) + (∂ki∂iH)(x

i − xi0)(kj − k
0
j) (A.23)

= (∂iH)(x
i − xi0) +

1

2
(∂kj∂kkH)(−i∇k − k0k)(−i∇j − k0j) + O((x− x0)

2, (k− k0)
3)

(A.24)

in the case of axial symmetry, it suffices to expand only the radial phase space, so that

H ≃ (∂rH)(r− r0) +
1

2
(∂2krH)0(−i∂r − kr)

2 (A.25)

= (∂rH)(r− r0) +
1

2
(∂2krH)(k

2
r + 2kri∂r − ∂

2
r)
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so if ∂2krH ̸= 0 at the turning point, then the equation Hϕ = 0 takes the form

−∂2rϕ+ 2ikr∂rϕ+
[
k2r +Q(r− r0)

]
ϕ = 0 forQ ≡ 2

∂rH

∂2krH
(A.26)

which simplifies greatly when factoring out a plane wave by introducingϕ ≡ A exp(ikrr). Then
the above equation takes the form ∂2rA−Q(r− r0)A = 0. With the substitution

z ≡ Q1/3(r− r0) (A.27)

this is the Airy equation ∂2zA = zA, whose solutions are the Airy functions of the first (Ai) and
second (Bi) kind. Therefore, the solution to the wave equation around a turning point (r,kr) is

ϕ = eikrr [C1Ai(z) + C2Bi(z)] . (A.28)

The Airy functions are rarely nice to work with, but in this case, we are only interested in using
them to glue the WKB modes on each side of the turning point together. Therefore, it suffices to
observe the asymptotics

Ai(z) ≃ 1

2
√
π|z|1/4

 e−
2
3z

3
2 for z→ ∞

2 cos
(
−2

3
(−z)

3
2 + π

4

)
for z→ −∞ (A.29)

Bi(z) ≃ 1

2
√
π|z|1/4

 2e
2
3z

3
2 for z→ ∞

2 sin
(
−2

3
(−z)

3
2 + π

4

)
for z→ −∞ (A.30)

We now need to match this with the WKB solution close to this point. First note that (A.25) can
be inverted to inform us that if H = 0, then kr = kr0 ∓Q

1
3 (−z)

1
2 , and so∫

krdr = kr0r±
2

3
(−z)

3
2 + const. (A.31)

Knowing this, we use the perturbed Hamiltonian combined with (A.9) to estimate the WKB solu-
tionϕ near the turning point. The result is

ϕ∓ ≃ |z|−
1
4 exp

[
i

∫
krdr

]
≃ |z|−

1
4eikr0r±

2
3 i(−z)

3
2 = |z|−

1
4eikr0r±

2
3z

3
2 . (A.32)

Since both phases and amplitudes match, we can justify only looking at the phase on both sides
on the turning point. We first match at z ∼ −∞. If A± are the coefficients of WKB modes ∼
e±

2
3 i(−z)

3
2 , andC andD are the coefficients onAi(z) and Bi(z) respectively, then we must have

A+e
2
3 i(−z)

3
2 +A−e

− 2
3 i(−z)

3
2 = 2C cos

(
−
2

3
(−z)

3
2 +

π

4

)
+ 2D sin

(
−
2

3
(−z)

3
2 +

π

4

)

(A.33)
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which can be written in matrix form as
[
A+

A−

]
= e−

πi
4

[
1 i

i 1

] [
C

D

]
. (A.34)

Similarly, the matching requirement z ∼ ∞ with WKB amplitudes labelled B±, is

B+e
2
3z

3
2 + B−e

− 2
3z

3
2 = CAi(z) +DBi(z) ∼ D2e

2
3z

3
2 + Ce−

2
3z

3
2 (A.35)

which can be written in matrix form as
[
C

D

]
=

1

2

[
0 2
1 0

] [
B+

B−

]
. (A.36)

At the end of the day, we can relate the amplitudesA± at the z < 0 side of the turning point to the
amplitudes B± on the z > 0 side of the turning point

[
A+

A−

]
=M

[
B+

B−

]
forM ≡ e−πi

4
1

2

[
i 2
1 2i

]

whereM is the linear transformation that maps WKB amplitudes B± at z > 0 to amplitudesA±
at z < 0. Next, we will benefit from transforming these relations back from z as defined in (A.27)
into the radial coordinate r. First, observe that

kr = −i∂r

(
∓2

3
i(−z)

3
2

)
= −i∂r

(
±2

3
z

3
2

)
= ∓i

√
Q(r− r0), (A.37)

meaning that there are four different cases, corresponding to the signsQ and z,

kr =



{
k±r ≡ ±

√
|Q|(r0 − r) for r < r0 has z < 0

k̃∓r ≡ ∓i
√

|Q|(r− r0) for r > r0 has z > 0
forQ > 0{

k±r ≡ ±
√
|Q|(r− r0) for r > r0 has z < 0

k̃±r ≡ ±i
√

|Q|(r0 − r) for r < r0 has z > 0
forQ < 0

(A.38)

Here, k±r refers to propagating modes with positive (+) and negative (−) radial wavenumber kr.
Likewise, k̃±r refers to the evanescent modes that grow (−) and decay (+) with radius r. To match,
we note that z < 0 whenever Q > 0 and r < r0 or Q < 0 and r > r0. Then, for Q > 0
we may associate A∓ above with the propagating WKB modes k±r , and B± with the evanescent
WKB modes k̃∓r (notice the different sign). For Q < 0, the direction of z is opposite to that
of r soMmaps inner amplitudes to outer amplitudes, andM−1 maps outer amplitudes to inner
amplitudes. That is,M−1 maps outer amplitudesA± corresponding to k±r into inner amplitudes
B± corresponding to k̃±r .
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Staying with this notation, we may depict the transition as a graphical mnemonic (with radius
growing towards the right)

M

k̃−r

k̃+r

k−r

k+r

M−1

k+r

k−r

k̃+r

k̃−r

M ≡ 1

2
e−

πi
4

[
i 2
1 2i

]
M−1 ≡ 1

2
e−

πi
4

[
2 2i
i 1

]

for Q > 0 and Q < 0 respectively. Here, arrows point to the right if the phase – real or imagi-
nary part – increases with radius, and the left if it decreases. That is, arrows on propagating lines
indicate the direction of increasing phase with r, i.e. the direction of propagation of a positive
frequency (and positive branch of the dispersion relation) modes. The arrows on the evanescent
modes indicate the direction in which the mode decays.

We note that if we define the matrix F by F(a,b) = (b,a) – i.e. the flipping matrix – thenMF
flips the right arms of the diagram (swaps column vectors ofM), and FM flips the left arms of the
diagram (swaps row vectors ofM). It may therefore be convenient to define the matrices T ≡ FMF
and T̃ such that the diagrams take consistent “arrow conventions”:

T

k̃+r

k̃−r

k+r

k−r

T̃

k+r

k−r

k̃+r

k̃−r

T ≡ FMF = 1

2
e−

πi
4

[
2i 1
2 i

]
T̃ ≡M−1 =

1

2
e−

πi
4

[
2 2i
i 1

]
(A.39)

These matrices transfer amplitudes, from just outside to just inside a turning point.
One immediate consequence of these expressions is that the absence of an incoming evanescent

mode k̃+r from the left is equivalent to imposing the boundary condition A− = iA+ at the in-
nermost turning point. Likewise, the absence of an incoming evanescent mode k̃−r from the right
is equivalent to imposing the boundary condition A+ = iA− on the outermost turning point.
Therefore, perfect reflections of oscillatory modes off a turning point contribute with a phase-shift
of π/2.

The arrow convention in (A.39) is consistent in that the top line always points outwards, while
the bottom line always points inwards. However, we can only interpret the arrows causally, i.e. the
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direction of propagation, when positive frequencies are considered. For negative (comoving) fre-
quencies, the outward-pointing oscillatory line, for example, is in fact travelling inwards. Therefore,
care should be taken when imposing boundary conditions of diagrams of the form (A.39).

When taken together with the WKB propagator,

Wab ≡
[
W+
ab 0
0 W−

ab

]

for W±
ab ≡ Q±

abe
±iSba with Sba ≡

∫ ra
rb

krdr andQ±
ab ≡ A±(rb)

A±(ra)
, (A.40)

we have all the ingredients needed to relate WKB amplitudes on one boundary of the system to
another. We shall, in most of what follows, assume thatQ+

ab = Q−
ab ≡ Qab. That is, the change

in amplitude of a WKB mode as it propagates from rb to ra is independent of the direction of
propagation. Under these assumptions, the WKB propagator (A.40) can be written

Wab ≡ Qab
[
e−iSab 0

0 eiSab

]
. (A.41)

We shall now consider a range of frequently encountered scenarios.

A.4.1. Case I: Bound states
Typically, the need for this formalism appears when hunting resonant frequencies. The simplest,
purely geometric, resonance is a single well, separated by infinite evanescent regions of on either
side. This corresponds to a diagram of the form

T̃ T

(A.42)

Here, the symbol ⊗ is placed on dangling legs of the diagram to indicate the absence of amplitude
in the channel. Here, ⊗ is placed on the two evanescent sources, indicating that we are interested
in situations where there are no incoming amplitudes.

Labelling the two turning points 1 and 2, from left to right, the resonance condition can be
written

[
0

b̃−

]
= T̃W21T

[
B̃+

0

]
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Here, the operator T̃W21T , which maps evanescent amplitudes on the right to evanescent ampli-
tudes on the left, can be written

T̃W21T =
e−

πi
2

4

[
2 2i
i 1

] [
W+

12 0
0 W−

12

] [
2i 1
2 i

]
=

1

4i

[
2 2i
i 1

] [
2iW+

12 W+
12

2W−
12 iW−

12

]
=

[
2α β

−β α/2

]

for α ≡ W+
12 +W−

12

2
and β ≡ W+

12 −W−
12

2i

Therefore, if the oscillatory loop between r1 and r2 is isolated, i.e. absence of evanescent sources
b̃+ = B̃− = 0, then the evanescent amplitudes must be related through

0 = 2αB̃+ and b̃− = −βB̃+.

The only way to produce a non-trivial solution is by havingα = 0. To investigate what this means,
we may summon the relation (A.41) to recognise that in this case, one has

α = Q12 cos(S12) and β = −Q12 sin(S12). (A.43)

That is, the resonance condition takes the form of a Bohr-Sommerfeld quantization criterion from
the old quantum theory, i.e.

cos

(∫ r2
r1

kr(ω,m, r)dr

)
= 0. (A.44)

A.4.2. Case II: Tunneling
Another frequently encountered case is the opposite of the previous scenario, i.e. a barrier separat-
ing two oscillatory regions. We may depict the scenario as follows

T T̃

(A.45)

Here, we shall investigate the reflection and transmission of a mode trying to escape from the left,
hence the ⊗ on in incoming node from the right. The relevant quantity is

TW̃12T̃ =
1

4
e−

πi
2

[
2i 1
2 i

] [
W̃+

21 0

0 W̃−
21

] [
2 2i
i 1

]
=

4+ γ

4X
W̃+

12

[
X i

−i X

]
for X ≡ 4+ γ

4− γ
(A.46)
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whereγ ≡ W̃−
12/W̃

+
12 has been introduced. Considering an outward-propagating oscillatory mode

with unit amplitude, we may introduce the relative reflected R and transmitted T portions of the
incident wave. That is [

1
R

]
=

4+ γ

4X
W̃+

12

[
X i

−i X

] [
T

0

]
(A.47)

for which we find

T =
4

4W̃+
12 + W̃−

12

and R =
1

i

4W̃+
12 − W̃−

12

4W̃+
12 + W̃−

12

. (A.48)

Using the WKB propagator (A.41) we find

γ =
1

4
e−2S̃21 for S̃ba ≡

∫ ra
rb

|kr|dr, (A.49)

where one generally has S̃ba = iSba for evanescent modes. The expressions for the reflected am-
plitude R and the transmitted T are therefore

iR =
1

X
=

4− e−2S̃12

4+ e−2S̃12
and T =

1

Q12

4e−S̃12

4+ e−2S̃12
(A.50)

As expected, the transmitted amplitude, referred to as the tunnelling amplitude, is exponentially
suppressed by the phase difference S̃12 accumulated from points 1 to 2. Note also the presence
of the geometric factor Q12 caused by the physical width of the barrier. We also observe that the
reflection coefficient’s multiplicative factor of i indicates that the effective scattering imposes aπ/2
phase shift on the reflected oscillatory modes. Moreover, sinceX > 1we always have |R| < 1. That
is, the reflected amplitude never exceeds the incident amplitude. However, this changes for negative
frequencies since (A.47) must then be modified to incorporate the flipped direction propagation
with respect to the arrows in the diagram. If the right side of the barrier is a negative frequency
mode, then the two outer amplitudes (0 and T) in (A.47) must be interchanged. The result is that
iR = X, which means that now, one has |R| > 1 instead. That is, the incident wave returns
amplified. Finally, we may observe that the same argument holds for scattering from the outside,
with (iR = X) or without (iR = 1/X) negative frequencies inside.

A.4.3. Case III: Quasi-Bound States
One natural extension to the Bound-State scenario is to include an outer, oscillatory region. The
result, which can be depicted as follows

T̃ T T̃

(A.51)
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is a combination of the two previous cases. Following the same procedure and assumptions as in
the previous case, we find

T̃W12TW̃23T̃ =
4+ γ

4X
W̃+

23

1

2
e

−πi
4

[
2 2i
i 1

] [
W+

12 0
0 W−

12

] [
X i

−i X

]
(A.52)

=
(
1+

γ

4

) 1

X
W−

12W̃
+
23e

−πi
4

[
gX+ 1 i(X+ g)
i
2
(gX− 1) 1

2
(X− g)

]
for g ≡ W+

12

W−
12

= e−2iS12 (A.53)

where points 1, 2, 3 refer to the three turning points sorted by increasing radius, and X and γ
are defined as in (A.46), but for the region r ∈ [r2, r3]. It follows that nontrivial solutions exist
provided that gX+ 1 = 0, i.e.

e2iS12 + X = 0 for X ≡ 4+ e−2S̃23

4− e−2S̃23
. (A.54)

or, equivalently
4 cotS12 = ie

−2S̃23 . (A.55)

Clearly, if the phases S12 and S̃23 are real, then the only way to solve (A.55) is if S̃23 → ∞, which
results in case I. The resonance condition (A.55) does, however, exhibit solutions if one permits
complex frequenciesω ∈ C. Solutions of this kind are not oscillating like normal modes, as their
amplitude oscillation is exponentially damped or amplified over time. Therefore, resonant modes
of this kind is often referred to as being Quasi-Normal, or Quasi-Bound.

A.4.4. Case IV: Double well
An important, further extension of Case III is the situation in which there is an outer boundary,
with boundary condition B, that reflects escaping modes back into the Quasi-Bound State loop:

T̃ T T̃ B

(A.56)

We have essentially already computed this – all that remains is to append a propagator W34 to the
right of the previous case (A.52), and to fix a boundary condition, labelledB, at the outermost point
4. UsingA− = νA+ for B, we find

[
0
b+

]
=
(
1+

γ

4

) 1

X
W−

12W̃
+
23e

−πi
4

[
gX+ 1 i(X+ g)
i
2
(gX− 1) 1

2
(X− g)

] [
W+

34A+

W−
34νA+

]
(A.57)
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resulting in the resonance condition

e2iS12 + iνe2iS34 +
(
1+ iνe2iS12e2iS34

)
X = 0, (A.58)

or, alternatively
4 cot(S12) cot(S34 + η+ π/4) = e

−2S̃23 (A.59)

where we have assumed |ν| = 1 for which we may write ν ≡ e2iη with η ∈ R. That is, ν is a
parameterisation of a perfectly reflecting boundary condition.

To investigate if this makes sense, let us first consider the case of a strong separation S̃23 ∼ ∞.
Then either cot(S21) = ∞ or cot(S34+η+π/4) = ∞. That is, cos(S12) = 0 or cos(S43+η+
π/4) = 0, which is what we expect from two isolated wells, i.e. the case 1 calculation.

Equation (A.59) is, in a certain sense, the limiting behaviour of equation (A.54). For when
a realistic mode travels, there will always be some loss of energy. If the outer region is large, i.e.
Φ43 7→ ∞, then even the tiniest dissipative contribution k±r ∓ 7→ k±r ∓ iε for ε≪ 1 will result in
e2iΦ43 → 0. Then, equation (A.58) asymptotes to the form of (A.54). Note also that for relatively
large systems, only S34 will depend on the system size.



Appendix B

Numerical Methods

B.1. General tools
In this section, I briefly list a set of standard numerical tools used throughout this text.

B.1.1. Runge-Kutta-4 (RK4) Scheme
Runge-Kutta-4 (RK4) is a method for numerically approximating solutions to differential equa-
tions of the form

dy

dt
= f(t,y). (B.1)

For discrete time-steps tn+1 = tn + ∆t and yn ≡ y(tn), RK4 is given by

y(tn + ∆t) = y(tn) +
1
6
(k1 + 2k2 + 2k3 + k4)∆t (B.2)

k1 ≡ f(tn,yn) (B.3)
k2 ≡ f(tn + 1

2
∆t,yn + 1

2
k1) (B.4)

k3 ≡ f(tn + 1
2
∆t,yn + 1

2
k2) (B.5)

k4 ≡ f(tn + ∆t,yn + k3). (B.6)

This is a fourth-order method, i.e. the error scales asO(∆t4). The RK4 scheme is e.g. used, together
with a stochastic step, in the simulations of chapter 4.

B.1.2. Bisection method
Given some function f(x), for which we know that f(a)f(b) < 0, the mid-point method recur-
sively searches for a point c ∈ [a,b] for which f(c) = 0. The idea is to introduce a recursive func-
tionbisect(a,b, f,N)which continually subdivides the interval [a,b] (N times), always throwing
away the half of [a,b] where the function f has equal sign on the endpoints. That is

bisect(a,b, f,N) =


a+b
2

ifN = 0

bisect
(
a, a+b

2
, f,N− 1

)
if f
(
a+b
2

)
f(a) < 0 andN ̸= 0

bisect
(
a+b
2

,b, f,N− 1
)

otherwise
. (B.7)

132
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B.1.3. Construction of numerical stencils
Consider a function f : R → R that has been discretized on a set of pointsxiwith uniform spacing
∆x ≡ xi+1 − xi. Writing fi ≡ f(xi), we may observe that the firstN terms in a Taylor series of
fk+l around xk can be interpreted as a matrix operation

fk+l =

N−1∑
n=0

ln∆xn

n!
∂nx fk+O(∆xN) = Al,n∂

n
x fk+O(∆xN) for Al,n ≡ ln

n!
∆xn, (B.8)

mapping theN first derivatives, to theN first locations. This means that if we write f ≡ ∑
n fnen

and Dfk ≡ ∑
n en∂

n
x f(xk), then the nth derivative of f at xk may be approximated as a linear

combination of fk+l for at least n + 1 different l’s, i.e. Dfk = A−1fk. There is freedom in the
choice of values for l. For example, one may consider consecutive points l = k + j for j ∈ Jam ≡
{a −m, ...,a +m}, where a sets the shift from the centre and N = 1 + 2m is the number of
points used. Then

∂nx f(xk) = D
(n)
k,i fi + O(∆xN−n) (B.9)

for D
(n)
k,i ≡

∑
j∈Jam

∆
(m;a)
n,j δk+j,i and ∆

(m;a)
n,l ≡ A−1

n,k+l,

whereδa,b are the Kronecker delta symbols. Here, the matrixD(n)
k,i is the finite difference matrix ap-

proximating thenth derivative of fwith the stencil matrix∆(m;a)
n,l . The matrix∆(m;a)

n,l determines
the weights on fk+l for l ∈ Jam needed in the linear relation of fi’s that would, when summed, re-
sult in an approximation of ∂nx fk. For example, the 3 and 5-point centred (a = 0) stencil matrices
are


fk
∂fk
∂2fk


 ≈ ∆(1;0)



fk−1

fk
fk+1


 for ∆(1;0) ≡ 1

2




0 2 0
−1 0 1
2 −4 2


 (B.10)




fk
∂fk
∂2fk
∂3fk
∂4fk




≈ ∆(2;0)




fk−2

fk−1

fk
fk+1

fk+2




for ∆(2;0) ≡ 1

12




0 0 12 0 0
1 −8 0 8 −1
−1 16 −30 16 −1
−6 12 0 −12 6
12 −48 72 −48 12




(B.11)

where∆x = 1 has been set for notational convenience. Naively implementing (B.9) can, however,
be problematic. Since the matrix derivativeD(n)

k,i is determined by convolution of the stencil matrix
∆

(m;a)
n,j with the identity matrix, the dimensionality of f must, in general, be larger than of ∂nx f .

This is caused by the non-locality of the derivative and makes the evaluation of derivatives at the
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boundaries of f ambiguous. In the case of the points Jam, one is left with 2m values for fi that are
unspecified. We now consider the case of Np points x0, ..., xNp−1, and split the matrices ∆(n;a)

k,i

in the three parts ∆(n;a) = [L(n;a),D(n;a),R(n;a)], where L(n;a)i,j ≡ ∆
(n;a)
i,j for j < m encodes

the left boundary, D(n;a)
i,j−m ≡ ∆

(n;a)
i,j for Np + m > j > m and R(n,a)

i,j−Np−m
≡ ∆

(n;a)
i,j for

j > Np +m. What remains is to determine how to map L(n;a) and R(n;a) intoD(n;a) using a
generic boundary condition. One possible approach is to use a range of relatively shifted stencils to
estimate the same derivative.




S
(n;0)
−m S

(n;0)
1−m · · · S

(n;0)
m−1 S

(n;0)
m

0 S
(n;1)
−m · · · S

(n;1)
m−2 S

(n;1)
m−1

...
... . . . ...

...
0 0 · · · S

(n;a−1)
−m S

(n;a−1)
1−m

0 0 · · · 0 S
(n;a)
−m







fk0−m
fk0−m+1

...
fk0+m−1

fk0+m




=




1
1
...
1
1



∂nx fk0 (B.12)

If k0 is a boundary point, with ∂nx fk0 = 0, then the matrix may be split to solve for fk0−i for i > 0
in terms of fk0+i for i ⩾ 0. That is




S
(n;0)
0 S

(n;0)
1 · · · S

(n;0)
m

S
(n;1)
−1 S

(n;1)
2 · · · S

(n;1)
m−1

...
... . . . ...

S
(n;a)
−a S

(n;a)
1−a · · · S

(n;a)
m−1−a




︸ ︷︷ ︸
≡A




fk0
fk0+1

...
fk0+m


 = −




S
(n;0)
−m S

(n;0)
1−m · · · S

(n;0)
−1

0 S
(n;1)
−m · · · S

(n;1)
−2

...
... . . . ...

0 0 · · · S
(n;a)
−1−a




︸ ︷︷ ︸
≡B




fk0−m
fk0−m+1

...
fk0−1




(B.13)
such that −B−1Amaps fi for i ⩾ k0 to fi for i < k0. That is, the map L(n;a) 7→ −L(n;a)B−1A

results in a contribution to the upper left corner ofD(n;a) that accounts for the boundary condi-
tions at the left boundary. An analogous procedure can be used to map R(n;a) into the lower right
corner ofD(n;a) provided that the boundary condition on the right is ∂nx f = 0 for some n.

One convenient property of this approach is that boundary conditions may be imposed near,
but not exactly at, the numerical boundaries. This is illustrated in Figure B.1, where the stencils
are tested on unshifted (left) and shifted (right) boundary conditions. In both cases, the boundary
condition is ∂0xf = 0 (Dirichlet) on the left and ∂1xf = 0 (Neumann) on the right. In both cases,
the eigenvectors (with small eigenvalues) of the boundary-adjusted matrices D(2;0) are shown in
comparison with the corresponding theoretical eigenmodes of ∂2x.
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Figure B.1 (Stencil design)Examples of interpolated boundary conditions in stencil construction
using a 16x16 matrix. These are eigenvectors of the discretized ∂2x matrix. The black lines are the
theoretical linesϕ = sin(ωn(n− n0)) forωn = π(2n+ 1)/2.

B.2. Atomic Condensates

B.2.1. Numerical estimates of Vortex Profiles

In this section, two numerical strategies for obtaining the ground-state density surrounding a mul-
tiply wound vortex are detailed. There are two numerical complications with solving (2.10) directly:
(1) the spatial separation of boundary conditions, with one of them at infinity and (2) the sensitivity
of the equation to initial conditions.

Shooting method

Based on the asymptotic expansion (2.11), we may make an initial guess for the numerical value of
Y0 =

√
ρ0 at a very small radius r = ε ≪ 1 and use equation (2.10) to evolve this to a radius r∞

using a finite difference scheme. That is, we solve

∂r

(
Y

Z

)
=

(
Z

−1
r
Z−

(
2− ℓ2

r2

)
Y + 2Y3

)
(B.14)
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with Y(ε) = Y0Jℓ(ε) with Z(ε) = Y0J
′
ℓ(ε). Using a Taylor expansion of (2.10) around r → ∞

we find

Y∞(r) ∞
∼ 1−

ℓ2

4r2
−

(
1+

ℓ2

8

)
ℓ2

4r4

−

(
8+ 2ℓ2 +

ℓ4

16

)
ℓ2

8r6
+ O

(
1

r8

)
,

(B.15)

which is used to estimate the asymptotic value for Y and Z at r∞. We then solve (B.14) iteratively
using RK4 (see B.1.1), where the initial guessY0 is updated each step using the bisection method (see
B.1.2) based on the sign of Y∞(r∞) − Yn(r∞; Y0), where Yn(r∞; Y0) is the numerically obtained
value for Y using the guess Y0. Due to the instability of (B.14), the density is then stiched together,
using a linear ramp function, from the asymptotic (2.11) at small radii, to the numerical solution Yn
at intermediate radii, and to the asymptotic (B.15) at large radii.

Damped matrix evolution

A convenient alternative to the above approach is found by considering the GPE (2.4) under imag-
inary time. The background density ρ ≡ |Ψ|2 can be found from fixing the phase Ψ ≡ √

ρeiℓθ

and evolving the modulus √ρ in imaginary time τ ≡ it, i.e.

∂τ
√
ρ =

(
1

2
∂2r +

1

2r
∂r −

ℓ2

2r2
− V(r) + 1− ρ

)√
ρ. (B.16)

Using B.1.3 the radial derivatives ∂r and ∂2r may be represented as matrices, with a Dirichlet bound-
ary condition (ρ(0) = 0) at the origin. The boundary condition at the outermost radius rB gen-
erally depends on the potential V(r). If V(rB) ≫ 1 then a Dirichlet condition may be used. If
V = 0 and the boundary is far from the core, i.e. rB ≫ ℓ, then the boundary condition may be
approximated as Neumann at rB.

B.2.2. Numerical Simulation of BdG
When linearizing the adimensionalised GPE using Ψ 7→ Ψ0 + δψ, for |δψ| ≪ |Ψ0|, we are left
with the Bogoliubov de-Gennes (BdG)quation

i∂t

[
δψ

δψ∗

]
=

[
Ĥ Ψ2

0

−(Ψ∗
0)

2 −Ĥ

][
δψ

δψ∗

]
for Ĥ ≡ −

1

2
∇2 +U− 1+ 2|Ψ0|

2. (B.17)

This is, by design, a linear system, meaning that it may in principle be exactly solved using a spectral
evolution. First note that the system takes a nice form if δψ carries the phase of Ψ0, i.e. if Ψ =
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√
ρeiΦ then δψ = ψeiΦ. Then

i∂t

[
δψ

δψ∗

]

︸ ︷︷ ︸
≡|ψ(t)⟩

=

[
D+ ρ

−ρ −D−

] [
δψ

δψ∗

]
≡ L̂

[
δψ

δψ∗

]
for D± ≡ e∓iΦĤe±iΦ, (B.18)

which is the case of the BdG presented in equation (2.12). From factorising L̂ = PDP−1 numer-
ically, where D is a diagonal matrix, any initial state u(t0) can be evolved to a time ∆t later by
applying u(t0 + ∆t) = P exp(−iD∆t)P−1u(t0).

The numerical simulations of the BdG are used to determine the boundary conditions in sec-
tion IV.2 of chapter 2 in two different scenarios: (1) the reflection of a BdG wave off a hard wall
with step-approximated background with Neumann boundary conditions and (2) the reflection of
a BdG wave off a hard wall with true/exact background density.

B.2.3. The (S)GPE solver
There is a wide variety of numerical strategies devised for solving the GPE numerically (see
e.g. [223]). One particularly popular family of schemes are the so-called Time-Splitting Pseudo-
Spectral Methods [224]. These methods, which rely on splitting the time-evolution operator into
parts that are diagonal in different function bases, tend to be both computationally efficient and
benefit from explicit conservation of the norm.

The key realisation to these methods is that for small time-steps ∆t, the time step can be per-
formed using a state-dependent time evolution operator

ψ(t+∆t, x) = ei∆tH(x,ψ)ψ(t, x) forH(x,ψ) = (1−iγ)

(
−
1

2
∇2 +U− 1+ |Ψ|2

)
. (B.19)

Note that this is the time evolution operator for the dGPE, which reduces the conservative GPE
when setting γ = 0. In particular, H(x,ψ) is a sum of a non-local derivative term, K, which de-
pends on space only through the spatial derivatives, and a spatially dependent scalar termV . Defin-
ing,

K(∇2) ≡ i∆t (1− iγ) 1
2
∇2 (B.20)

V(x) ≡ −i∆t (1− iγ)
[
U(x) − 1+ |Ψ(x)|2

]
(B.21)

the goal is then to split the exponentiated operator

eK+V = eKeVe−
1
2 [K,V]e−

1
6 (2[V ,[K,V]−[K,[K,V])... (B.22)

using the Zassenhaus formula [225]. The key realisation is thatK andV and of the order∆t, mean-
ing that for small timesteps, the nested commutators in (B.22) become increasingly suppressed. For
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example, to leading order, one has eK+V = eKeV , which corresponds to the two-split methods.
Note that in some cases, an ambiguity arises from there being multiple available states ϕ to the
spatial step eV (see e.g. [226]). Armed by the factorization of the exponentiated derivative eK and
spatial term eV , all that remains is to evaluate K in a function basis that permits a closed-form ex-
pression for the exponentiated derivatives. If periodicity of the state Ψ is enforced by setting the
potentialU≫ 1 in a sufficiently large region around the numerical boundary, then a Fourier basis
exp(ik ·x) may be used. This is particularly convenient due to the efficient numerical Fast-Fourier
Transform (FFT) algorithm, which drastically reduces the computational cost. These schemes are
referred to as Fourier Pseudo-Spectral Time-Splitting methods. Denoting a spatial Fourier trans-
form by F, with inverse F−1, the two-split Fourier pseudo-spectral method can be summarised as
follows:

Ψ1 = e
V Ψ(t0, x) (B.23)

Ψ(t0 + ∆t, x) = F−1 exp[K(−k2)]F Ψ1 (B.24)

where ∇2 is replaced by −k2 inK. An implementation of (B.23) for γ = 0 gives a discrete numer-
ical estimate, with error O(∆t), for the state evolved according to the GPE (2.4). For γ ̸= 0, the
evolution is that of the dGPE (2.65). The full stochastic evolution, i.e. the SGPE (3.1),

i∂tΨ =

[
−
1

2
∇2 +U− 1+ |Ψ|2

]
+ η (B.25)

can be obtained by supplying the noise after the timestep, i.e.

Ψ1 = e
V Ψ(t0, x) (B.26)

Ψ2 = F−1 expK(−k2)F Ψ1 (B.27)
Ψ(t0 + ∆t, x) = Ψ2 + s(x)∆t. (B.28)

Here, s(x) is sampled from a central, complex gaussian distribution at each spatial location.
To implement the above algorithms, the coordinatex is discretised into linearly spaced cartesian

pixels xij. In this case, the spatial Fourier transform F must be replaced with the pseudo-spectral
Fast-Fourier Transform (FFT).

Conservation

To ensure the validity of the numericalGPE simulations, the energy is monitored. The full energy
decomposition discussed around Equation (2.60) in chapter 2 is shown in Figure B.2 for the same
dataset (see 2.5). Here, the total energy is 955.18905±9.6×10−5, with relative variations of 10−7.
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Figure B.2 (Evolution of energy components) The different energy components discussed
around (2.60) is shown relative to the initial energy.

Boundary Conditions

Numerical simulations of the GPE are used to inspect the boundary condition at the potential
boundary in comparison with the BdG, see section IV.2 in chapter 2. Here, the one-dimensional
GPE is initialised with the Thomas-Fermi density Ψ = 1 − U and iterated under the influence of
damping (γ = 1/100) and with potential of the form (2.51) substituting |x| for the radial coordinate
r. The resulting state is used as background, to which a gaussian pulse is added. This state is evolved
with the GPE using the scheme outlined in B.2.3, resulting in a time-dependent density ρ = |Ψ|2,
as depicted in Figure 2.3.

B.2.4. The Vortex Tracker

To extract the vortex trajectories within a numerical simulationΨknm = Ψ(tk, xn,ym), the prob-
lem is first split into two parts: (1) Locating all the vortex locations ri in a single frame k and (2)
obtaining the optimal matching of vortex locations across neighbouring temporal snapshots k.

For part (1), consider a finite difference evaluation of Ci,j ≡ ∇ × vi,j for v = Im(∇Ψ/Ψ).
Then, the extrema of Ci,j gives the vortex locations. Alternatively, writing vi,j = vyi,jex + v

y
i,jey

one may consider the convolution

C̃ij ≡ vx ⋆ cosϕ(x,y) + vy ⋆ sinϕ(x,y) for ϕ(x,y) = arctan (y/x) (B.29)
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where ⋆ denotes a spatial convolution, which corresponds to estimating the circulation around
nested circles at each point. Here vx and vy are already discretized, whereas there is freedom in the
discretization ofx andy. We choosex 7→ xn andy 7→ yn to be central, i.e. xn = n−N/2 forn =
0, ...,N and yn = n−N/2 for n = 0, ...,N, withN = 4. The approach based on C̃i,j matches
well with the approach based on Ci,j, but with slightly better resolution. Finally, suppose that
(in, jn) forn = 1, 2, ... are the pixel locations of the local extrema of C̃i,j. If ri,j = (xi,j,yi,j) are
the physical coordinates corresponding to the pixels (i, j), then a sub-pixel resolution estimate for
the vortex locations rn can be found by taking the weighted average of (

∑
ri,j|C̃i,j|)/(

∑
|C̃i,j|),

where the sum runs over immediate neighbours of in, jn.
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Figure B.3 (Vortex tracking)

The result of this procedure is a collection {rkn}
Nv
n=1 ofNv vortex locations rkn at each time-frame

k. To match the vortices across time-frames, the indicesn are shuffled so as to minimise the trace of
Dnm = |rkn− rk+1

m |2. However, nucleation and annihilation of vortex pairs, as well as the decay of
multiply charged vortices, complicates the matching of vortices across time frames. To incorporate
this, the shuffling of indices across timeframes is performed backwards in time and is avoided if the
minimal distanceminn |r

k
n−rk+1

m | far exceeds the characteristic distance travelled by vortices across
time frames. An example of the vortex trajectories extracted from a simulation is shown in Figure
B.3.



Appendix C

A view on the point-vortex model
In this appendix, we consider derivation of the point-vortex model from the phase ansatz

ϕ =
∑
i

ℓi arctan

(
y− yi
x− xi

)
(C.1)

in the context of the Gross-Pitaevskii equation. Here, the ansatz (C.1) should be seen as a simple
model that captures the essential topology of a two-dimensional condensate with vortices, of wind-
ings ℓj, at locations rj = (xj,yj). One essential feature not contained in the phase (C.1) is the
modification due to boundaries. However, for an impenetrable boundary with normal vector n,
i.e. n ⊥ ∇ϕ = 0, one may add additional fictitious “ghost vortices” to the phase ansatz (C.1) to
ensure the boundary condition to be obeyed, see e.g. [146].

Our strategy is to impose (C.1) on the GPE in hydrodynamic form, i.e.

∂tϕ+G+
1

2
(∇ϕ)2 = 0 (C.2a)

∂tρ+∇ · (ρ∇ϕ) = 0 (C.2b)

G[ρ] ≡ ρ+U− 1−
∇2√ρ
2
√
ρ

. (C.2c)

which depends implicitly on the vortex coordinates ri = xiex + yiey from (C.1) through the
quantities

∂tϕ = −
∑
j

ℓj
(x− xj)∂tyj − (y− yj)∂txj

(x− xj)2 + (y− yj)2
=

∑
j

ℓj
∆rj
|∆rj|2

· R∂t∆rj (C.3)

∇ϕ =
∑
j

ℓj
ey(x− xj) − ex(y− yj)

(x− xj)2 + (y− yj)2
=

∑
j

ℓjR
∆rj
|∆rj|2

(C.4)

(∇ϕ)2 =
∑
i,j

ℓiℓj
(x− xi)(x− xj) + (y− yi)(y− yj)

[(x− xi)2 + (y− yi)2] [(x− xj)2 + (y− yj)2]
=

∑
i,j

ℓiℓj
∆ri · ∆rj
|∆ri|2|∆rj|2

(C.5)

with R ≡
[
0 −1
1 0

]
and ∆ri ≡ r− ri and ∇2ϕ = 0. (C.6)
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where the spatial coodinate r ≡ (x,y) has been introduced. Using these relations, equation (C.2a)
takes the form

G−
∑
j

ℓj∆rj
|∆rj|2

·
[
R∂trj −

1

2

∑
i

ℓi∆ri
|∆ri|2

]
= 0 (C.7)

where RT = −R is the transpose of R. In the limit r → rn, this equation is divergent. As r → rn,
then divergent terms must obey the equation independently, and so

2∆rn ·
[
R∂trn −

∑
i ̸=n

ℓi∆rni
|∆rni|2

]
=

1

ℓn

(
2|∆rn|

2G[ρ] + ℓ2n
)

(C.8)

where the vortex separation∆rni ≡ rn−ri has been introduced. Here, the left side of the equation
is linear in the direction ∆rn from which we approach the vortex rn, and the term in the bracket
depends only on the vortex coordinates ri, and not r. The term on the right side depends only on
the distance ∆rn through the density ρ. Therefore, if G is rotationally symmetric, the two sides
of the equation must vanish independently in the limit ∆rn → 0. Here, it is pleasing to note
that in the case of a central multiply wound vortex in a free region (U = 0), we rediscover the
divergent term from the relation (2.10) discussed in chapter 2. As for the left hand side of (C.8), we
are free to choose any direction of∆rnwhen taking the limit, to the term in the bracket must vanish
independently of∆rn. The resulting expression, which is valid whenG is rotationally symmetric,
is exactly the point-vortex dynamics (see e.g. [146])

∂trn = −
∑
i ̸=n

R
ℓi∆rni
|∆rni|2

. (C.9)

Here, we should recall that equation (C.9) is in dimensional units. Re-introducing the length unit
ξ =  h/

√
mµ and time unit τ =  h/µ from (2.2) into (C.9), is equivalent to setting ℓj 7→  hℓj/m.

When expressing vectors the vectors rj = xjex+yjey as complex numbers, e.g. zj ≡ xj+iyj,
and realising that the rotation matrixR can be identified with i, the point-vortex model (C.9) takes
the particularly slick form (

dzn

dt

)∗
=

∑
k̸=n

iℓk

zn − zk
. (C.10)

Let us consider the case of only two vortices z1 and z2 with windings ℓ1 and ℓ2. Clearly, the relevant
degrees of freedom are relativeD ≡ (z1 − z2)/2 and collective motionsC ≡ (z1 + z2)/2, so

(
dC

dt

)∗
=
i(ℓ2 − ℓ1)

4D
and

(
dD

dt

)∗
=
i(ℓ2 + ℓ1)

4D
. (C.11)
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Therefore, if the two vortices are counter-rotating and equally charged, i.e. ℓ2 ≡ ℓ = −ℓ1, then
there is no relative motion (D = const) and the vortex pair travels collectively with

dC

dt
= −v

iD

|D|
for v ≡ ℓ

2|D|
(C.12)

That is, they travel in a direction perpendicular to the line defined by their positions and at a con-
stant speed inversely proportional to their separation.

If the two vortices are co-rotating and equally charged, i.e. ℓ2 ≡ ℓ = ℓ1, then there is no
collective motion (C = const) and the two vortices orbit the pointC at radius |D|, i.e.

dD

dt
= −iΩpvD for Ωpv ≡

ℓ

2|D|2
. (C.13)

This is the expression for the Point-vortex orbital frequency used in e.g. Figure 2.8. Note, however,
that here |D| is the radius (with centerC) of oscillation, whereas s = 2|D| is the vortex separation
used in chapter 2.



Appendix D

Derivation of non-linear two-fluid interface
dynamics

In this section, the derivation of the non-linear interfacial dynamics of a vertically oscillated two-
fluid interface is presented. The calculations follow those of Miles [172, 173] closely, but with two
main differences. First, the contribution from surface tension is considered differently. Whereas
Miles [173] proposes to add surface tension perturbatively to linear order, it is here taken into ac-
count from the start, leading to additional quartic terms in the final Lagrangian. The second dif-
ference is the explicit inclusion of the lighter fluid resting on top of the interface.

Consider two inviscid fluids, with densities ρ− < ρ+, occupying volumes V±. The fluids are
assumed to be immiscible, i.e. V+∩V− = 0, with flow fieldsv± ≡ ∇Φ± given in terms of velocity
potentialsΦ±. The boundary separating the two fluids is referred to as Γ and assumed to be single-
valued in the vertical coordinate, i.e. z = h(t, r), where r = (r, θ) is the horizontal coordinate.
Each fluid has kinetic energy density ρ±∇|Φ±|2, whereas the potential energy density is dictated
by the hydro-static pressure, i.e. gρ±z. In addition to the self-energies of the two fluids, there is
energy due to tensile forces in the shape of the interface. This energy is proportional to the surface
area of the interface Γ , with the proportionality constant being the surface tension σ. That is, the
Lagrangian for the system can be written

L = L+ + L− − Vσ (D.1)

L± = ρ±

∫∫∫
V±

dV

[
1

2
|∇Φ±|

2 − gz

]
(D.2)

Vσ = σ

∫∫
(|∇Γ |− 1)dA, (D.3)

Here, we are armed with Dirichlet’s variational principle

S± =
1

A

∫∫∫
V±

1

2
(∇Φ±)

2dV± −
1

A

∫∫
ξ̇ Φ±|Γ=0 dA (D.4)

whose stationarity with respect to variations δΦ± in Φ± for a given interface z = ξ fixes the
boundary-value problem (4.8). Our strategy is to use the linear eigenmodes ξa and ϕ±,a from
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(4.10) as generalised coordinates forξ andΦ±. Introducing this in the Dirichlet action (D.4) results
in

S± =
1

2
φ±,aK

(±)
ab φ±,b − ξ̇aD

(±)
ab φ±,b (D.5)

for

K±
ab ≡

∫∫∫
V±

dV±∇ψ±,a · ∇ψ±,b and D±
ab ≡ (fa,ψ±,b(r, θ, ξ)) . (D.6)

Here, stationarity of (D.5) with respect to variations in ϕ±,a yields K±
abϕ±,b = ξ̇bD

±
ba which

can be perturbatively inverted to eliminateϕ±,a from the non-linear Lagrangian (D.1).
We start by considering the expansion ofD±

ab, which can be written

D±
ab ≡ (fa,ψj,b(x, ξ))

≃ (fa,ψj,b(x, 0)) + (fa, ξ∂zψj,b(x, 0)) +
1

2

(
fa, ξ

2∂2zψj,b(x, 0)
)

= δab ∓
∑
c

ξcTb (fa, fcfb)︸ ︷︷ ︸
Cabc

+
1

2

∑
c,d

ξcξdk
2
b (fa, fcfdfb)︸ ︷︷ ︸

Cabcd

(D.7)

where ∂zψj,b(x, 0) = ∓fbTb with Tb ≡ kb tanh(kbh0) and ∂2zψj,b(x, 0) = fbk2b.
ForK±

ab, first writeK±
ab = K0,ab+δK

±
abwhereK±

0,ab isK±
ab integrated to the resting position

z = 0. Writingψ±,a ≡ faχ±,a for χ±,a = cosh(ka(z∓ h0))/ cosh(ka), we have

K±
0,ab =∓ 1

A

∫∫
S

dA

∫ 0

±h0

dz∇ψ±,a · ∇ψ±,b (D.8)

=∓ 1

A

(∫∫
S

dA∇fa · ∇fb
) ∫0

±h0
dz cosh(ka(z∓ h0)) cosh(kb(z∓ h0))

cosh(kah0) cosh(kbh0)
(D.9)

∓ kakb(fa, fb)
∫0

±h0
dz sinh(ka(z∓ h0)) sinh(kb(z∓ h0))

cosh(kah0) cosh(kbh0)
(D.10)

Invoking Green’s theorem gives

1

A

∫∫
S

dA∇fa · ∇fb = −
1

A

∫∫
S

dAfa∇2fb = k2b(fa, fb) = k
2
bδab, (D.11)

so thatK±
0,ab = δabTa is a diagonal matrix with diagonal entries Ta ≡ ka tanh(kah0). Writing

G±(x, z) ≡ ∇ψ±,a · ∇ψ±,b = χaχb∇fa · ∇fb + fafb∂zχ±,a∂zχ±,b (D.12)
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and using thatχ±,a(z = 0) = 1,χ ′
±,a(z = 0) = ∓Ta andχ ′′

±,a(z = 0) = −k2a, where ′ denotes
vertical derivatives, i.e. ′ = ∂z, we find

K±
ab ≡ K±

0,ab +
1

A

∫∫
S

dA

∫ξ
0

G±(x, z) ≃ K±
0,ab ∓ (G±(x, 0), ξ)∓

1

2

(
ξ2,∂zG±(x, 0)

)

(D.13)

= Taδab ∓
∑
c

ξc (∇fa · ∇fb, fc)∓ TaTb
∑
c

ξc (fafb, fc) (D.14)

+
1

2

(
k2aTb + k

2
bTa
)∑
cd

ξcξd (fcfd, fafb) +
1

2
(Ta + Tb)

∑
cd

ξcξd (fcfd,∇fa · ∇fb)

(D.15)

at this point, we benefit from introducing

Cabc ≡ (fa, fbfc) (D.16a)

Cabcd ≡ (fafb, fcfd) =
1

k2c
(Dabcd +Ddabc +Ddbac) (D.16b)

Dabc ≡ (fa,∇fb · ∇fc) = k2bCabc −Dcab =
1

2
(k2b + k

2
c − k

2
a)Cabc (D.16c)

Dabcd ≡ (fafb,∇fc · ∇fd) (D.16d)
Mabcd ≡ (∇fa · ∇fb,∇fc · ∇fd) (D.16e)

for which the coefficientsK±
ab andD±

ab take the form

K±
ab =δabTa ∓

∑
c

(Dcab + TaTbCabc) ξc (D.17)

+
∑
cd

1

2

[
(k2aTb + k

2
bTa)Cabcd + (Ta + Tb)Dcdab

]
ξcξd (D.18)

D±
ab =δab ∓

∑
c

ξcTbCabc +
1

2

∑
cd

ξcξdk
2
bCabcd (D.19)

Using that K±
abϕ±,b = ξ̇bD

±
ba we now search for L± ≡ (K±)−1D, which can be done order by

order. That is, if K = K0 + K1 + K2 are orders of the expansion of K, then we postulate a matrix
G = G0 +G1 +G2 such thatGK = I. The result is

G0 = K
−1
0 , G1 = −G0K1G0, G2 = −G0K2G0 +G0K1G0K1G0, ... (D.20)
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and so on. Since (K±)−1
ab ≃ δabT−1

a to leading order, it can be identified withG0. We find

(G0)ab = δabT
−1
a (D.21a)

(G1)ab = −
1

TaTd

∑
cd

δac(K1)cdδdb = ±
∑
c

(
Dcab

TaTb
+ Cabc

)
ξc (D.21b)

(G2)ab = −
1

TaTb
(K2)ab +

1

TaTb

∑
e

1

Te
(K1)ae(K1)eb (D.21c)

= −
∑
cd

ξcξd

2TaTb

[
(k2aTb + k

2
bTa)Cabcd + (Ta + Tb)Dcdab

]
(D.21d)

+
∑
cde

ξcξd

(
DcaeDdeb

TaTbTe
+

CebcDdae

Ta
+

CeacDdbe

Tb
+ TeCaecCebd

)
(D.21e)

This permits computing the matrix product L± ≡ (K±)−1DT order by order, i.e.

(L±0 )ab =
∑
c

(G0)acD
0
bc = T

−1
a δab (D.22a)

(L±1 )ab =
∑
c

[
(G0)acD

1
bc + (G1)acD

0
bc

]
= ±

∑
c

ξc
Dcab

TaTb
(D.22b)

(L±2 )ab =
∑
c

[
(G0)acD

2
bc + (G1)acD

1
bc + (G2)acD

0
bc

]
(D.22c)

=
∑
cd

ξcξd

[
−
k2b
2Tb

Cbacd −
Ta + Tb
2TaTb

Dcdab +
∑
e

Ddbe

TaTbTe
(Dcae + TaTeCeac)

]
.

(D.22d)

This matches equation (2.14) of Miles [172] for the bottom fluid (−) and, crucially, depends only
on the fluid position ± through the linear term. That is, we have now found the matrix L±ab ≡
L±0 + L±1 + L±2 that maps ξ̇b toϕ±,a, i.e. ϕ±,a = L±abξ̇b, which follows from the stationarity of
the Dirichlet action.

Next, we focus on the Lagrangian (D.1), where we first note that

Vσ

A
=
1

A
σ

∫∫
A

dA|∇Γ | = σ

A

∫∫
A

dA
√

1+ (∇ξ)2 (D.23)

≃σ+
σ

2

∑
a

k2aξ
2
a −

σ

8

∑
abcd

ξaξbξcξdMabcd (D.24)
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Next, we consider the Lagrangians of the bulk piece by piece

L±
A

=
1

A
ρ±

∑
ab

∫∫∫
V±

dV±

[
1

2
ϕ±,aϕ±,b∇ψ±,a · ∇ψ±,b − gz

]
(D.25)

=
1

2
ρ±

∑
abc

ξ̇bξ̇cL
±
acD

±
ba ±

1

2
ρ±

∑
a

gξ2a −
1

2
ρ±gh

2
0 (D.26)

for which we need to perform one last matrix product:

∑
a

L±acD
±
ba =

δcb

Tc
∓

∑
d

ξdAdcb +
1

2

∑
fd

ξdξfAdfcb, (D.27)

where

Adcb ≡
(
Cbcd −

Ddbc

TbTc

)
=
(
2TbTc − k

2
b − k

2
c + k

2
d

) Cbcd

2TbTc
(D.28)

Adfcb ≡ −
Tb + Tc
TbTc

Dfdbc +
∑
e

CdceCfbe

2TbTcTe

(
k2e + k

2
c − k

2
d

) (
k2b + k

2
e − k

2
f

)
(D.29)

Note that up to this point, there has been no need to assume equal depths z = ±h0 of the two
fluids. In fact, the above relations can easily be extended to uneven depths by setting ±h0 → ±h±

0

with h−
0 ̸= h+

0 , i.e. Ta 7→ T±a . In the case of equal depths, however, the Lagrangian becomes
exceptionally simple

L

A
=
L0

A
+
∑
a

Σρ

2Ta

(
ξ̇2a −ω

2
a(t)ξ

2
a

)
(D.30a)

+
∆ρ

2

∑
abc

ξcAcbaξ̇aξ̇b +
∑
abcd

Σρ

4
ξdξc

[
Adcbaξ̇aξ̇b +

σMcabd

2Σρ
ξaξb

]
(D.30b)

for ∆ρ ≡ ρ− − ρ+ and Σρ ≡ ρ− + ρ+ (D.30c)

where L0 ≡ −1
2
AΣρgh2

0 − σA is a constant.
Armed with the nonlinear Lagrangian (D.30a) to quartic order in ξa, we now consider the case

of a single dominating mode ξb in the system. That is |ξb| ≫ |ξa| for all a ̸= b. We may then
perturb the Lagrangian around ξb, keeping only linear contributions from ξa. This will provide
us with an effective nonlinear self-interaction for the dominant mode to leading order, and a source
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equation for the subdominant mode ξa as it evolves in the presence of the dominant mode ξb.

L

A
=
L0

A
+
Σρ

2Tb

(
ξ̇2b −ω

2
bξ

2
b

)
+
∆ρ

2
Abbbξbξ̇

2
b +

Σρ

4

[
Abbbbξ

2
bξ̇

2
b +

σMbbbb

2Σρ
ξ4b

]

(D.31)

+
∑
a̸=b

[
Σρ

2Ta

(
ξ̇2a −ω

2
aξ

2
a

)
+
∆ρ

2

(
2Abbaξbξ̇aξ̇b +Aabbξaξ̇

2
b

)]
(D.32)

+
∑
a̸=b

Σρ

4

[
(Abbba +Abbab) ξ

2
bξ̇aξ̇b + (Ababb +Aabbb)ξaξbξ̇

2
b + 4

σMbbba

2Σρ
ξaξ

3
b

]

(D.33)

Before approaching the equations of motion, we will benefit from the observation that Cabc is an
off-diagonal tensor, i.e. Caaa = 0, which follows from the azimuthal integral. Then

L

A
=
L0

A
+
Σρ

2Tb

(
ξ̇2b −ω

2
b(t)ξ

2
b

)
+
Σρ

4

[
Abbbbξ

2
bξ̇

2
b +

σMbbbb

2Σρ
ξ4b

]
(D.34)

+
∑
a̸=b

[
Σρ

2Ta

(
ξ̇2a −ω

2
a(t)ξ

2
a

)
+
∆ρ

2

(
2Abbaξbξ̇aξ̇b +Aabbξaξ̇

2
b

)]
(D.35)

+
∑
a̸=b

Σρ

4

[
(Abbba +Abbab) ξ

2
bξ̇aξ̇b + (Ababb +Aabbb)ξaξbξ̇

2
b + 4

σMbbba

2Σρ
ξaξ

3
b

]

(D.36)

To leading order, the equation of motion for the dominant mode then takes the form
(
1+Abξ

2
b

)
ξ̈b + 2γbξ̇b +

(
ω2
b(t) +Abξ̇

2
b −Mbξ

2
b

)
ξb (D.37)

where the prefactor of ẍib may be perturbatively inverted to give

ξ̈b + 2γb
(
1−Abξ

2
b

)
ξ̇b +

(
ω2
b +Ab

[
ξ̇2b −ω

2
bξ

2
b

]
−Mbξ

2
b

)
ξb ≃ 0 (D.38)

with the definitionsAb ≡ 1
2
TbAbbbb andMb ≡ TbσMbbbb/Σρ. Here, the Rayleigh dissipation

function has been used to reintroduce the equations to a phenomenological damping γb.
Similarly, the equation of motion for the subdominant mode ξa, is found to be

ξ̈a + 2γaξ̇a +ω
2
aξa + ρ̃TaAbbaξbξ̈b +

1

2
ρ̃Ta(2Abba −Aabb)ξ̇

2
b (D.39)

+Aabξbξ̇
2
b +

1

4
Ta (Abbba +Abbab) ξ

2
bξ̈b −

1

2
Mabξ

3
b (D.40)
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where

Aab ≡ 1

4
Ta (2Abbba + 2Abbab −Ababb −Aabbb) (D.41)

Mab ≡ Ta
σMbbba

2Σρ
. (D.42)

When the subdominant mode ξa is in the same m as the dominant mode ξb, then Abba =
Aabb = 0 so that

ξ̈a + 2γaξ̇a +ω
2
aξa +Aabξbξ̇

2
b +

1

4
Ta (Abbba +Abbab) ξ

2
bξ̈b −Mabξ

3
b ≃ 0 (D.43)

which reduces to the equation of motion for the dominant mode when b = a.
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[41] M. Človečko, E. Gažo, M. Kupka, and P. Skyba, “Magnonic Analog of Black- and White-
Hole Horizons in Superfluid He3-B,” Physical Review Letters, vol. 123, no. 16, 2019, issn:
1079-7114. doi: 10.1103/physrevlett.123.161302.

[42] S. Weinfurtner, E. W. Tedford, M. C. J. Penrice, W. G. Unruh, and G. A. Lawrence, “Mea-
surement of stimulated Hawking emission in an analogue system,” Phys. Rev. Lett., vol. 106,
p. 021 302, 2011. doi: 10.1103/PhysRevLett.106.021302.

[43] J. Drori, Y. Rosenberg, D. Bermudez, Y. Silberberg, and U. Leonhardt, “Observation of
Stimulated Hawking Radiation in an Optical Analogue,” Physical Review Letters, vol. 122,
no. 1, 2019, issn: 1079-7114. doi: 10.1103/physrevlett.122.010404.
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[77] A. Friedmann, “Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des
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