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5.7 Sérsic index redshift evolution for each morphology class . . . . . . 187

5.8 Morphology fractions compared to B/T morphological type selec-
tion in EAGLE+FLARES for massive galaxies (M∗ ≥ 1010M⊙) . . . 190

5.9 Morphology Fraction vs Redshift . . . . . . . . . . . . . . . . . . . 191

5.10 Fraction of stellar mass (fm) in each morphology subsample vs Red-
shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.11 Morphology fractions vs average specific star formation . . . . . . . 195

5.12 A HST vs. JWST comparison . . . . . . . . . . . . . . . . . . . . . 198

ix



Abstract

This thesis is prepared in two parts. In the first half (Chapter 2 and Chapter 3)
we discuss the evolution of galaxy mergers at 0.5 < z < 3.0 in all the CANDELS
fields based on a supervised deep learning model trained on the IllustrisTNG
cosmological simulations. The second half is dedicated to the rest-frame optical
morphological evolution of galaxies from z = 1.5 to 8 as observed by JWST in the
SMACS 0723 field, and in the early observations of the CEERS program.

In Chapter 2 we describe a supervised deep learning framework designed for the
classification of high redshift galaxy mergers based on data from the IllustrisTNG
cosmological simulations. We generate a large dataset of before mergers/post-
mergers/non-mergers galaxy mocks labeled with information from IllustrisTNG
300-1 merger trees. These imaging data are prepared to be CANDELS-like and
are then used to train deep learning models capable of achieving 90% of accuracy
within the simulations. Using these them we describe the evolution of the galaxy
merger fractions and rates in the CANDELS fields and we discuss how these
deep learning classifications are related to visual classifications. We report the
first agreement of galaxy merger rates between galaxy pair statistics methods and
morphologically selected mergers, with R(z) = 0.02 ± 0.004 × (1 + z)2.76±0.21,
showing that the highest merger rates are found at the highest redshifts.

We tackle the challenging problem of separating recently coalesced galaxy
mergers from non-interacting highly star forming galaxies in Chapter 3. These
two populations present ambiguous morphologies due to asymmetric features. We
refine our methods reported in Chapter 2 for this particular question, generating
a dataset of TNG100-1 post-mergers and star forming galaxies at 0.5 < z < 3.0,
including a full radiative transfer treatment with the SKIRT code, producing ∼
160,000 images with realistic morphologies. We explore the relative populations of
post-mergers and non interacting star forming galaxies in this redshift range. We
show that the population of high redshift asymmetric galaxies are more likely to
be of post-merger origin than their low redshift counterparts. The interpretabil-
ity of our models is discussed by exploring the feature space extracted from the
mock imaging and the real CANDELS galaxies. We show that for this particu-
lar problem, deep learning models provide an 30% improvement over quantitative
morphology methods.

We focus on the early release JWST observations of the SMACS 0723 cluster
in Chapter 4. We report the first ever morphological study of rest-frame optical
structure in 1.5 < z < 6 with NIRCam, within the wavelength range λ = 0.9µm
- 4.4µm. We conduct visual classifications and quantitative morphology measure-
ments on a sample of ∼ 200 galaxies previously detected with HST. We report a
surprising mismatch between the number of disk galaxies detected with HST and
JWST. Around ten times more disks are found. We briefly discuss the implica-
tions of this result and how it fits in the galaxy formation and evolution evolution

x



picture.

Over Chapter 5 we expand the framework of Chapter 4 to the early CEERS
JWST observations that have overlap with the EGS observations from the CAN-
DELS fields with HST. We release to the community the biggest sample of visually
classified galaxies observed with JWST to-date, with 4265 galaxies that are both
observed by HST and JWST. With this dataset, we carefully discuss the evolu-
tion of the Hubble sequence up to z ∼ 8, finding that it is already present at the
earliest of times for low to intermediate mass galaxies, while evolution driven by
mergers is observed for massive galaxies. We detail the quantitative morphology
characteristics of this sample, and how it correlates with visual optical morphology.

We finish with a brief discussion on the results presented in this thesis, how
the merger evolution at 0.5 < z < 3.0 and the general morphological evolution at
z > 3.0 are linked, and what are the next steps to explore this connection further.
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Chapter 1

Introduction

Galaxies and their contents – stars, gas, dust, black holes, and dark matter –

are the fundamental building blocks of our Universe. Understanding the interplay

between galaxies and their environment, how their contents change over time, how

their mass is assembled, and the key physical processes behind these changes is

fundamental for a correct description of galaxy formation and evolution, and for a

description of cosmology. No two galaxies are equal, and they present themselves

with rich forms and properties. Naturally, the first step towards this understanding

is establishing a taxonomy system for their morphological appearance, much like

what is common practice for biological systems and other systems in nature. In

fact, one of the backbones of our modern view on galaxies is their morphological

classification, visual or quantitative, as to group them by similar features.

In this thesis, I will explore new ways to quantitatively classify galaxy mergers

at high redshifts, a type of system that plays a central role in the morphological

transformation of galaxies, as well as discuss for the first time the optical rest-

frame morphology of z > 3 galaxies as observed by the brand new James Webb

Space Telescope (JWST).

1



1.1. Galaxy Morphology 2

1.1 Galaxy Morphology

Over the last century, astronomical observations went from uncovering the extra-

galactic nature of galaxies (Opik, 1922; Hubble, 1929b), known before as ’nebulae’,

to dozens of facilities scattered across the globe and in space capable of observing

millions of galaxies, and soon billions (e.g., SDSS, DES, Rubin, EUCLID, York

et al., 2000; The Dark Energy Survey Collaboration, 2005; LSST Science Collab-

oration et al., 2009; Laureijs et al., 2011; Euclid Collaboration et al., 2022a,b)

covering all the electromagnetic spectrum, up to potentially the very first galaxies

ever formed (Adams et al., 2022; Atek et al., 2022; Donnan et al., 2022; Castel-

lano et al., 2022; Yan et al., 2022; Naidu et al., 2022). This abundant landscape

of astronomical data is very unlike the one available to Hubble when he designed

his morphological classification scheme (Hubble, 1926, 1929a, 1936, Figure 1.1).

However, his framework continues to be widely adopted today, as it relies on the

apparent dominance of some morphological structures which galaxies can display:

featureless oblate spheroids (ellipticals, E), feature-rich disks (spiral, S), and irreg-

ulars (Irr). Each of these categories can be subdivided into smaller bins, ellipticals

based on their roundness and spirals based on emergent features from the disk.

These are broad categories that encompass the majority of the galaxies observed

in the nearby universe, in fact ∼ 97% of the Shapley-Ames catalog (Sandage &

Tammann, 1981) of galaxies are fully accounted for in E or S categories (Sandage,

2005). More recent classification schemes built up on the Hubble Sequence to

refine these bins or to fit new discovered types (van den Bergh, 1960, 1976), as it

is the case of lenticulars galaxies (S0s, Kormendy & Bender, 2012).

These morphological models encode the dynamics of the stellar orbits, but are

not directly related to their stellar masses and other physical properties regard-
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Figure 1.1: The Hubble Sequence as described in Hubble (1936) showing the main
morphological groups, as well as the hypothetical (at the time) S0 morphology
class between the elliptical and spiral galaxies. The spirals are subdivided in
unbarred and barred spirals.

ing the formation and evolution of galaxies, they are at at top level descriptive.

Some argue that this is the correct way to establish a morphological classification

system (Sandage, 2005), as including physical information could create circular

arguments when interrogating the morphology against physical properties. The

triumph of the Hubble sequence lies in its simplicity, and how general it is. At

higher redshifts, as we will see throughout this thesis, fewer finer details are avail-

able compared to nearby galaxies, due to the lower angular resolution. Thus, even

with spiral arms, bars, and dust lanes being more difficult to resolve, the simple

separation of E/S/Irr is still powerful, or even simpler, the more agnostic terms of

disc-dominated and bulge-dominated (Kartaltepe et al., 2015). Tracking how the

demographic of these populations changes over cosmic time give us clues on how

galaxies evolve and assemble (Conselice, 2014).

Since the establishment of the Hubble sequence, it was noted that morphology

correlate with several physical properties of galaxies, and the dichotomy between
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ellipticals and spirals seems to be fundamental. Galaxies with different morpholo-

gies seem to be segregated in colours based on the color-magnitude diagram (de

Vaucouleurs, 1961; Strateva et al., 2001; Hogg et al., 2003; Bell et al., 2004; Schaw-

inski et al., 2014), where in general Es are red and not star-forming while Ss are

blue and star-forming. Still, types that challenge these categories exist, but are

usually rare (e.g., red spirals and blue ellipticals, Melvin et al., 2014; George,

2017). This is consequently associated with age, star formation rates, metallicity

and dust contents. Spatially resolved spectroscopy studies of galaxies, such as

ATLAS3D, CALIFA and MaNGA (Cappellari et al., 2011a; Sánchez et al., 2012;

Bundy et al., 2015), show that morphology correlates with kinematics, as disk

galaxies are supported by rotation while ellipticals are in dominated by tri-axial

motion with high velocity dispersions (Cappellari et al., 2011b). Fundamental

relations between the stellar mass content (or luminosity as a proxy), the overall

morphologies and stellar kinematics also exists, such as the Tully-Fisher rela-

tion for disks (Tully et al., 1975), and the Faber-Jackson relation for ellipticals

(Minkowski, 1962; Faber & Jackson, 1976).

Key to morphology is also the environmental dynamics on which galaxies in-

habit. The demographics of the Hubble classes highly also vary depending on the

local galaxy density, as in dense clusters and galaxy groups, elliptical morpholo-

gies and lenticulars are more common, while star forming spirals are rare. This

is known as the Morphology-Density relation (Dressler, 1980; Houghton, 2015;

Sazonova et al., 2020). Another piece of the puzzle, as the environment dynamics

that galaxies experience have a strong effect on its morphology.
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1.1.1 Galaxy Mergers

In early works on galaxy morphology, little attention was given to interacting

galaxies. They compromised a tiny fraction (∼ 1%) of the galaxy population in

the local Universe, and hence were seem as unimportant. The Atlas of Peculiar

Galaxies (Arp, 1966) was one of the first comprehensive catalog of Peculiar galaxies

that included a large sample (at the time) of merging galaxies. Figure 1.2 shows an

example of a merger as imaged by HST, the IC 1623 galaxy pair, and its fabulous

chaotic features, including tidal tails, clumpy star forming regions and strong

reddening from dust (Cortijo-Ferrero et al., 2017). Features like these motivated

the seminal work of the Toomre brothers on the first computational simulations of

pairs of interacting galaxies (Toomre & Toomre, 1972). These simulations showed

how such features could be created by the gravitational interaction of galaxies, and

their disruptive influence on galactic components. Also noted was that the merging

of two disc galaxies could produce a spheroidal remnant. This scenario is now

widely accepted as one of the ways galaxies can be transformed morphologically

along the Hubble sequence, where similar mass discs merge together to form larger

elliptical galaxies, the first physically motivated evolutionary link between classes

in the literature. Accordingly, the study of this rare population was critically

central to the development of the modern theory of how galaxies form and grow.

More recent studies of morphological features of galaxy mergers show that they

are transient on timescales of several million years to a few billion years (Lotz

et al., 2008; Conselice, 2009; Pawlik et al., 2016; Snyder et al., 2017; Whitney

et al., 2021; McElroy et al., 2022). This poses a challenge for the identification of

such systems, as some soon to be merging galaxies may not display any feature as

it approaches its companion, or that recently merged system would be dynamically

relaxed soon thereafter as to not contain any obvious merging signatures (Bottrell
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Figure 1.2: IC 1623 interacting galaxy pair as observed by the Hubble Space
Telescope. The chaotic display of forms is a clear deviation from Hubble’s sequence
Ellipticals and Spirals. The morphology is rich with star-forming regions, tidal
features and dust. Image credit: ESA/Hubble & NASA, R. Chandar.
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et al., 2019). Additionally, some of these features are faint and difficult to detect.

Hence, in the age of the wide field deep sky surveys such as SDSS, DES and

CANDELS, techniques to find mergers accurately are sought after, and an active

area of research in astronomy (Conselice et al., 2003; Lotz et al., 2004; Lotz et al.,

2006; Lotz et al., 2008; Pawlik et al., 2016; Ackermann et al., 2018; Pearson et al.,

2019; Bickley et al., 2021).

The importance of mergers is not limited to the morphological transformation,

however. Mergers are also believed to be one of the main sources by which galaxies

grow their mass (Duncan et al., 2019), trigger AGN (Ellison et al., 2011) by fueling

central super massive black holes, enhance star formation (Genzel et al., 2001; Lotz

et al., 2004; Patton et al., 2020) by the addition of gas to a galaxy and by mixing

its material, and trigger quenching, and thus lead to quenching, as the mechanisms

above expel the star-forming gas or prevent it from forming stars (Hopkins et al.,

2008; Ellison et al., 2022).

1.1.2 Quantitative Morphology

As a natural development from the visual characterization of morphology, more

quantitative methods of morphological study were developed. These can be di-

vided in two types: parametric and non-parametric. Parametric methods estimate

the light distribution of sources adjusting it to an analytical form, one common

choice is the Sérsic profile. Through aperture photometry, iso-photal ellipses are

adjusted over the galaxy light profile and then fitted to a Sérsic law (Sérsic, 1963),

of the form

I(R) = I0 exp

[
−b(n)

R
1
n

Re

− 1

]
, (1.1)
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where n is known as the Sérsic index, which defines the slope of the light distribu-

tion, while b(n) is defined such that Re is the galaxy effective radius (e.g. half-light

radius). This law is a generalization of the de Vaucouleurs law (de Vaucouleurs,

1948), where the index was fixed as n = 4, and was used to describe the light

distribution of elliptical galaxies. The Sérsic law is then more general, and can

be used to describe point sources, disks, ellipticals. Galaxies with multiple com-

ponents can be modeled by co adding Sérsic profiles together. The steepness of

the profile is a good indicator if the galaxy is dominated by a disk or a centrally

concentrated bulge component (Kelvin et al., 2012), and thus correlates with mor-

phology. This approach is robust when the source is well sampled (Häussler et al.,

2007). However, parametric methods assume that the light of the source takes a

particular shape, and can not account for fine structures such as bars, rings, and

spiral arms without introducing elements of high complexity to the fitting process

(e.g., Jiménez-Teja & Beńıtez, 2012), which in turn can hinder the real world

application of such models.

On the other hand, non-parametric methods have no assumption of the under-

lying shape of the galaxy and are generally measured directly to the pixel values

of the image. The Concentration, Asymmetry and Smoothness (CAS, Abraham

et al., 1994; Bershady et al., 2000; Conselice et al., 2003) is one of these systems,

where it captures how concentrated is the source, how asymmetric, or how clumpy

it is through simple transformations of the original image. Another system is

the Gini-M20 plane (G-M20, Abraham et al., 1994; Lotz et al., 2004), designed

to measure how the light is distributed among the pixels of the source. These

measurements are then used together to characterize morphology and as a classi-

fication tool. For example, the CAS system and G-M20 are extensively used to

find galaxy mergers, as its measurements are sensitive to disturbances are the light
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profile of sources, or when there is two galaxies in the same image.

Other methods exist, and are designed for specific tasks on characterizing

galaxy morphology, such as identifying how many components there is in a galaxy

(?), how strong non-radial features are (Ferrari et al., 2015) or even if a galaxy is a

merger remnant (Pawlik et al., 2016). Most of these (including CAS and G-M20)

are widely available in astronomical software such as Morfometryka (Ferrari

et al., 2015), Statmorph (Rodriguez-Gomez et al., 2019), GALFIT (Peng et al.,

2010).

These methods, however, can be strongly affected by contamination, as galax-

ies with different physical properties can present similar morphologies, which can

cluster them together in the parameter space of these measurements, producing

regions that are highly ambiguous among classes. Additionally, observational ef-

fects, such as seeing and depth, can shift and bias these indices, making it hard to

produce selections that are general for all instruments (Ferreira & Ferrari, 2018;

Snyder et al., 2015).

1.2 Morphological Classifications

The previous section discussed the morphology of galaxies in general terms, how it

is related to galaxies’ physical evolution and ways to quantify morphology. How-

ever, little was said about how galaxies are actually classified. I dedicate this

section for the actual act of classification, the main theme running behind this

thesis.

When only photographic plates were available, or astronomers could only ob-

serve galaxies over the eyepiece of their telescopes, visual classification was all that
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existed. This is the main reason the first morphological studies were so focused

in what the eye could easily distinguish, like the spiral arms emerging from the

disk of a galaxy, or other particular features such as rings, bars, dust lanes. Albeit

this being the classic way a galaxy image is classified, it is still one of the most

robust and reliable ways to identify patterns on astronomical images. Astronomers

continue to classify data-sets by eye and to produce highly detailed morphological

samples, such as FREI (Frei et al., 1996), EFIGI (Baillard et al., 2011; de Lappar-

ent et al., 2011), the Nair & Abraham sample (Nair & Abraham, 2010), and the

CANDELS visual classifications (Kartaltepe et al., 2015), to name a few. These

however, are only sub-samples of the overall available data. With the advent of the

wide-field surveys, such as SDSS and DES, or the deep NIR surveys, such as CAN-

DELS (Grogin et al., 2011; Koekemoer et al., 2011), the number count of galaxies

detected and observed far surpasses the capabilities of any individual astronomer,

or groups of astronomers. To classify thousands to millions of galaxies by eye is a

huge undertaking, as it is generally necessary for sources to be identified by more

than one classifier, as to mitigate subjective effects on classifications.

One very successful take on visual classifications enabled within the World

Wide Web is the GalaxyZoo citizen science project (Lintott et al., 2011), where

a large number of non-expert volunteers have access to a tool that instructs them

how to classify galaxies visually, through a guided approach based on simple ques-

tions. The continuous engagement of citizens on this process trains them to become

efficient classifiers rivalling to any expert on galaxy morphology (Marshall et al.,

2015). Subjectivity is still at play, but the statistical classification of sources (i.e.

many volunteers classify the same galaxy) and careful treatment later by the lead-

ing scientists in the project generate a powerful framework that produces large

visually classified samples of galaxies, reaching the scale of hundreds of thousands
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of galaxies far surpassing what is possible by experts alone. Not only that, but the

engagement of the volunteers with the platform is proven to lead to new discoveries

based on particular observations that were not possible before (Cardamone et al.,

2009; Masters et al., 2010), and provides good opportunities for science outreach

and public engagement.

Astronomers are very good at breaking the order of magnitude scale of their

datasets with new instruments and surveys, such that even citizen science projects

are not sufficient to classify all1 galaxies. Hence, one of the active and vibrant areas

of research in astronomy is designing fast and robust fully automated methods

for morphological classifications. Some of these methods use the quantitative

morphology measurements described earlier (§ 1.1.2) and other physical processes

to define regions on the parameter space that are dominated by one morphological

class (or type of merger, for instance). These include, but are not limited to,

linear discriminant analysis (LDA, Ferrari et al., 2015), decision trees (Snyder

et al., 2019), artificial networks (Storrie-Lombardi et al., 1992) and support vector

machines (Cheng et al., 2020). They all rely on previously extracted features

from the observations, and only act as a way to organize these on a particular

model for the final classification. Some of these methods are very successful,

such as the merger classification based on CAS parameters (Bershady et al., 2000;

Conselice et al., 2008) or G-M20 (Lotz et al., 2004, 2008; Snyder et al., 2019).

However, it is difficult to benchmark their results on new data without prior visual

classification, as the decision boundaries for classes move around based on several

factors, such as the noise levels/redshift (Thorp et al., 2021). Thereby, visual

classifications will never be out of fashion, as they are benchmarking backbones

of any automated classification task. More critical even, they have a central role

1One might ask themselves if this is really necessary, but there is no such thing as too much
data.



1.3. Hierarchical Structure Assembly and Λ-CDM 12

in end-to-end learning algorithms, where visual classifications are used as training

data for deep learning models. Models such as these, including the Convolutional

Neural Network, using supervised learning, are the central framework used in

Chapters 3 and Chapter 4. Details are given in the appropriate Chapter, however

in §1.5 we give a basic outline on how Deep Learning and Convolutional Neural

Networks work.

1.3 Hierarchical Structure Assembly and Λ-CDM

Within a dynamic universe, the evolution of galaxies has to be put into context

with the evolution of the Universe itself. As contemporary extragalactic astron-

omy evolved alongside observational cosmology, the foundations for the concor-

dance cosmological model widely adopted today, the Λ-CDM model, are also the

foundations for galaxy formation and evolution. The Λ-CDM cosmological model

describes a Universe expanding following a Big Bang, around ≈ 14 billion years

old, dominated at present day by a matter component and a pressure energy of

unknown origin. The total matter density makes up to ≈ 30% of the total en-

ergy density of the universe, only 4% of this matter being in the form of baryons

(e.g stars, gas, dust), while the rest is in the form of Dark Matter. This high

level description seems very elusive, but this is a powerful and simple cosmological

framework that explains key observational evidence, such as the Cosmic Microwave

Background (CMB, Alpher & Herman, 1948; Gamow, 1946; Penzias & Wilson,

1965; Planck Collaboration et al., 2018), the recession velocity of galaxies (Hubble,

1929a), the chemical abundances of galaxies (Font et al., 2006), and the distribu-

tion of matter and the large scale structure of the universe (Colless et al., 2001;

Eisenstein et al., 2005).
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Dark matter haloes formed from small density anisotropies in the early uni-

verse. After recombination, when photons could freely travel, the universe became

transparent. As the Universe cooled down and expanded, the radiation pressure

started to give way for gravity, allowing baryonic matter to gravitationally collapse

in these previously formed dark matter haloes. Therefore, the distribution of mat-

ter in the Universe can be traced back to these density fluctuations (Blumenthal

et al., 1984). The formation of structure follows suit, with galaxies forming through

the hierarchical clustering of these dark matter haloes (White & Rees, 1978; Cole

et al., 2000), with smaller galaxies merging together to form larger ones, and also

bigger structures, such as galaxy groups and clusters (White & Frenk, 1991). Fig-

ure 1.3 illustrates what we call a merger tree of dark matter haloes or galaxies

where their formation and evolution is depicted by this hierarchy with smaller

components merging together to form larger ones.

Unfortunately, this information is inaccessible from real observations (i.e., it

is impossible to recover the full merger tree of a individual galaxy). However,

by searching for galaxies undergoing merging, and by a statistical survey across

cosmic time, one can track the rate of this clustering over the age of the Universe

(Mantha et al., 2018; Duncan et al., 2019) and compare to theoretical models and

simulations (Vogelsberger et al., 2014; Schaye et al., 2015). Therefore, one of the

best ways of understanding the evolution of galaxies in the Universe is by tracing

parallels between numerical simulations of these systems with observations. In

Chapter 2 and Chapter 3 we leverage deep learning models as a way to construct

this bridge.
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Figure 1.3: Schematic of a galaxy merger tree. Smaller galaxies merge together
with other galaxies to form larger, more massive systems, as time progresses and
these systems interact gravitationally. This tree shows a simplified case with only
a few galaxies; in practice merger trees are very complex, the massive galaxies we
see in the nearby universe are the result of hundreds and thousands of these small
systems coalescing. Source: Mo et al. (2010)
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1.3.1 Cosmological Simulations

Numerical simulations of isolated and interacting galaxies evolved from few parti-

cle N-body systems (Toomre & Toomre, 1972) to complex gravito-hydrodynamical

simulations such as EAGLE and Illustris (Vogelsberger et al., 2014; Schaye

et al., 2015; Nelson et al., 2019) capable of simulating entire universes in periodic

boxes, including gas physics, stellar particles, black holes, dark matter, feedback

mechanisms, and chemical enrichment. These highly sophisticated simulations are

capable of generating massive galaxies at z = 0 that reproduce similar morpholo-

gies to what is observed in the local universe (Huertas-Company et al., 2019), by

evolving the initial conditions of the CMB within a Λ-CDM cosmology.

Essentially, data from these cosmological simulations can be forward modeled

to the observational domain by simulating how the light of sources within these

simulated galaxies interacts with the ISM and travels until it reaches a hypothetical

detector (Bottrell et al., 2019). Then, observational effects can be applied to these

synthetic images so to make them as similar to observations as possible (Bottrell

& Hani, 2022; Marshall et al., 2022b). Then, one can explore the merger trees

from the simulations, select galaxies of interest, undergoing particular physical

processes, and produce images to interrogate how that type of object would look

like in the observations. We discuss this in detail in Chapter 2 and Chapter 3.

1.3.2 Distance Measurements and Redshift Effects

The cosmological principle, which states that the universe in large scales is ho-

mogeneous and isotropic – a fair assumption based on contemporary evidence –

produces solutions to Einstein’s field equations that describe how the Universe

as a whole evolves, and how it depends on its matter content, Ωm, the curvature
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Figure 1.4: Simulated mock imaging of a galaxy after a merger event in Illus-
trisTNG 50-1 simulation (z=0.79, ID=381587) produced with the radiative trans-
fer pipeline discussed in Chapter 3 in four different orientations (top), and corre-
sponding SEDs to each vieweing angle shown on the bottom. Simulated galaxies
show rich structural components, star forming regions, dust effects.
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κ and the cosmological constant Λ. These solutions are known as the Friedman

equations which ultimately can take the useful form of

H(t) = H0

[
Ωm,0(1 + z)3 + ΩΛ,0

]1/2
, H(t) =

(
ȧ

a

)
(1.2)

where H(t) is the Hubble factor, and a the scale factor encoding the expansion,

describes how the scale factor changes with time. H0 is the Hubble constant, Ωm,0

is the matter density term, and ΩΛ,0 the density contribution of dark energy. The

dark energy contributions are indirectly inferred by

Ωm,0 + ΩΛ,0 = 1. (1.3)

The form of Eq. 1.2 is useful as it is defined by two parameters that are observable,

H0 and Ωm,0, and from this equation relations can be traced between the observed

redshift of galaxies to distance measurements, particularly the co-moving distance

is defined as

Dc(z) =
c

H0

∫ z

0

dz

[Ωm,0(1 + z)3 + ΩΛ,0]
1/2

, (1.4)

and all other distance relations follow Dc(z) (Hogg, 1999). Many of the redshift

dependent effects discussed in the following chapters of this thesis can be derived

from Eq 1.2, with the cosmological parameters as measured by Planck Collabora-

tion et al. (2018).

1.4 High Redshift Morphology

Hubble types are still found in the early Universe, but in a different proportion

as to what is found in the local Universe (Driver et al., 1995; Schade et al., 1995;
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Delgado-Serrano et al., 2010; Mortlock et al., 2013). Likewise, the visual morphol-

ogy of distant galaxies deviates for nearby galaxies for a number of reasons. First,

distant objects are imaged at lower angular resolution, and many of the distinct

signatures featured in the original Hubble sequence are unresolved. This is aggra-

vated by observations made from the ground, as the atmospheric seeing imposes

a high constraint on angular separations in astronomical images, thus galaxies

outside the local universe z > 0.1, are mostly poorly resolved for morphology

studies. Second, distant galaxies are moving away from us, and their Spectral

Energy Distribution (SED) is shifted towards redder wavelengths as λ × (1 + z).

This bandpass shifting, consequentially moves away the rest-frame optical emitted

light from the galaxy to redder filters out of an optical telescope range (Blanton

et al., 2003). Our atmosphere absorbs some of the near infrared to infrared light,

limiting what can be detected from the ground. Moreover, due to cosmological

effects, the emitted light from larger distances is dimmed, and distant galaxies are

fainter and more difficult to detect (Lubin & Sandage, 2001). Figure 1.5 shows

simulations of how a nearby galaxy (NGC 497) would be observed at higher red-

shifts by 4 different instruments, the SDSS survey camera, DES camera, LSST

camera and HST ACS (?) through the FERENGI code (Barden et al., 2008).

From simulations such as the one presented, it’s clear that morphological studies

from ground-based facilities requires rare observing conditions and use of complex

techniques such as adaptive optics. On the other hand, HST is able to resolve

morphological features out to high redshifts, being only limited by its wavelength

coverage.

These effects are only observational, and do not include any evolutionary trends

in galaxies. However, high redshift galaxies are found to experience tremendous

evolution beyond the local Universe, and this adds to the complexity of observing
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Figure 1.5: Example of redshift simulations of the NGC 497 galaxy using FER-
ENGI (Barden et al., 2008) as it was observed by SDSS, DES, LSST and HST.
The resolution difference between ground and space instruments is critical in mod-
erated to high redshifts. Important structures for the classification process, such
as spiral arms, become too small or end up vanishing in the image ?.
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distant systems. For example, galaxies were smaller in the past (Whitney et al.,

2019) and peculiar galaxies are more common in the early universe (Mortlock

et al., 2013) as a consequence of more frequent mergers (Duncan et al., 2019).

For these reasons, we focus our efforts on space-based observations with HST and

JWST.

The HST wavelength coverage goes up to λ ∼ 1.6 µm, and for that reason is

only able to probe the rest-frame UV at z > 2.5. Fortunately, the successful launch

of the JWST extend this window to z ∼ 10, as its high resolution NIRCam coverage

goes up as λ ∼ 4.4 µm, and highly supersedes the resolution IR capabilities of

Spitzer. Thus, for the first time, we are able to investigate the optical morphology

of z > 3.0 galaxies. Chapter 4 and Chapter 5 are focused on this question.

1.5 Deep Learning

Deep Learning methods gained notoriety for being very efficient and robust on

image classification tasks, achieving superhuman performance (Krizhevsky et al.,

2017). But even before modern deep learning models were employed, artificial

neural networks were already used for classification tasks (Storrie-Lombardi et al.,

1992), and deep learning follows the same underlying principles anchored in a

robust optimization algorithm known as the gradient-descent (Ruder, 2016), to-

gether with the backpropagation (Rumelhart et al., 1986).

Here we limit our discussion to the case of supervised learning, where a dataset

of annotated examples (labels) is used to train a model to predict these annota-

tions, and then used on non-annotated data. An approach that can produce mod-

els that are heavily tailored at a specific task. This is in contrast to unsupervised

learning ( clustering) where labels are not a requirement, and representations that
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cluster different examples together is learned as part of the training,

The overall basic idea behind supervised machine learning is that one wants to

map a set of inputs (x) to a set of ground truth values (y) through an unknown

function f that is based on a set of learned parameters called weights (w), that is

y = f(x,w), (1.5)

where w is learned from data points {x,y}, through the optimization (minimiza-

tion) of a cost function L, usually taking the form of

L =
1

2

∑
n

[f(x,w) − y]2 . (1.6)

The weights w are them updated iteratively by the process called back propagation

using the gradient of the cost function with respect to the weights, hence gradient

descent,

wi
t+1 = wi

t − α
∂L
∂wi

(1.7)

until convergence or when a set criteria is met, and that this function f is capable

of generalizing generalize beyond the already seen data. This framework is general

and applies to a wide range of machine learning methods. Deep learning, in this

case, defines the functions f through an hierarchical combination of several sets

of artificial neurons, that take an input, apply a non-linear function based on its

weight wi, usually known as the activation function, and passes this result to the

next layer of neurons, until it reaches the output. The optimization algorithm in

this case, adjusts the parameters of each of these neurons such that network is

trained for the particular task in hand. The backpropagation algorithm defines

the way and order in which these weights need to be updated, usually starting
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from the last layer (the output) all the way back to the inputs. This creates a

highly non-linear model capable of learning patterns from data, encoding them in

its weights.

Convolutional Neural Networks (CNNs, for uses in astronomy, see Huertas-

Company et al., 2015; Bottrell et al., 2019; Bickley et al., 2021; Walmsley et al.,

2022) are a type of artificial neural network that takes as input 2D representa-

tions, such as images, and replace some of the neuron operations of some layers

by convolutions, so that as the convolutional kernels are learned instead of scalar

weights. This makes the CNNs end-to-end models, where it is not necessary to

produce scalar features that are going to be used as inputs, the network itself

extracts the best features and patterns during optimization as well. In Chapter 2

and Chapter 3 we will discuss the use of CNNs that are similar to the AlexNet

type of networks (Krizhevsky et al., 2017). Neural networks are computationally

expensive to train, but once their parameters are optmized, the inference time

is very fast. Millions of images can be processed in seconds (Tohill et al., 2021),

enabling the community to deal with new scales of data. Moreover, with the popu-

larization of Graphics Processing Units (GPUs), together with software optimized

for it, such as Tensorflow (Abadi et al., 2016) and PyTorch (Paszke et al.,

2019), training deep neural networks is more manageable than ever before.

We are particularly interested in the capabilities of CNNs to encode and learn

from information only available in cosmological simulations, such as what is done

for low redshift galaxies in Bottrell et al. (2019) and Pearson et al. (2019), and

then be used to do classifications of high redshift galaxies in real observations.

This framework and the resulting models act as a bridge between simulations and

observations.
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1.6 Thesis Format and Outline

In this thesis, I will explore the evolution of galaxy morphology and structure

throughout the Universe’s first 10 billion years, within 0.5 < z < 8, with a focus

on galaxy mergers for z < 3, and more general morphological evolution with the

newly available JWST data for z > 3. The main goal of this thesis is to explore new

ways to characterize the morphology and structure of high redshift galaxies, and

thus measure how galaxies evolved across cosmic time. Quantitative morphology

from ground-based data is limited due to the atmospheric seeing (§ 1.4) having

too large an angular size in comparison to the angular size of z > 0.5 sources

(?), and thus limited to z < 0.5 studies. Therefore, this thesis is entirely focused

on space-based HST and JWST data, exploring morphology on the CANDELS

survey fields.

Given the time-frame, and the uncertainty regarding the JWST launch, I did

not expect to work on JWST data as part of my PhD. Yet, as soon as this pos-

sibility became real, I made all the efforts I could to include it in this thesis. In

light of this, this thesis consists of two parts. The first half, Chapter 2 and Chap-

ter 3, is focused on a new way of forward modeling cosmological simulations to the

observational domain using convolutional neural networks (CNNs). While on the

second half, Chapter 4 and Chapter 5, I discuss for the first time the rest-frame

optical morphologies of galaxies at z > 3 observed by the JWST.

In Chapter 2 I show that CNNs are a powerful tool to encode the information

from the cosmological simulation merger trees, capable of performing merger clas-

sification on real high redshift HST CANDELS data. With our trained models

on IllustrisTNG TNG300-1 mock observations, we measure galaxy-galaxy merger

fractions and galaxy merger rates. This is the first agreement between morphology-
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based merger rates and pair statistics merger rates.

In Chapter 3 I explore the morphological distinction between already coalesced

merging galaxies and non-interacting highly star forming galaxies. These two mor-

phologies pose a challenging problem for automated methods, as visual properties

are similar. We show that our CNN framework developed in Chapter 2, together

with a refined mock observations pipeline is capable of producing models that

reach 80% accuracy on this particular separation. Previous methods based on

non-parametric morphologies are highly insensitive to this problem, and are very

incomplete. We use these methods to discuss the evolution of post-mergers in the

CANDELS fields and provide a detailed discussion on interpretability of our deep

learning methods.

In Chapter 4 we report the very first morphological study with JWST, ob-

serving galaxies in the SMACS 0723 cluster field. We use a visual classification

effort together with quantitative morphology measurements to report a surprising

mismatch between the number of disk galaxies detected with HST and JWST.

Around ten times more disks are found than expected from previous HST stud-

ies. We briefly discuss the implications of this result and how it fits in the galaxy

formation and evolution big picture.

Chapter 5 we expand the framework of Chaper 4 to the CEERS observation

program that has an overlap with the EGS observations in the CANDELS fields.

We release to the community the biggest sample of visually classified galaxies

observed with JWST to-date, with 4265 galaxies that are both observed by HST

and JWST. With this dataset, we carefully discuss the evolution of the Hubble

sequence up to z ∼ 8, how it seems to be always present for low to intermediate

mass galaxies, while an evolution driven by mergers is observed for the massive

galaxies. We detail the quantitative morphology characteristics of this sample,
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and how it correlates with visual optical morphology.

We finish with a brief discussion in Chapter 6 of the results presented in this

thesis, how the merger evolution at 0.5 < z < 3.0 and the general morphological

evolution at z > 3.0 are linked, and what are the next steps to explore this

connection further.



Chapter 2

Galaxy Merger Rates up to z∼3

Using a Bayesian Deep Learning

Model: A Major-merger Classifier

Using IllustrisTNG Simulation Data

The content of this chapter has been published (Ferreira et al., 2020) in The

Astrophysical Journal.

2.1 Abstract

Merging is potentially the dominant process in galaxy formation, yet there is still

debate about its history over cosmic time. To address this, we classify major merg-

ers and measure galaxy merger rates up to z ∼ 3 in all five CANDELS fields (UDS,

EGS, GOODS-S, GOODS-N, COSMOS) using deep learning convolutional neural

networks trained with simulated galaxies from the IllustrisTNG cosmological sim-

26
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ulation. The deep learning architecture used is objectively selected by a Bayesian

optimization process over the range of possible hyperparameters. We show that

our model can achieve 90% accuracy when classifying mergers from the simulation

and has the additional feature of separating mergers before the infall of stellar

masses from post-mergers. We compare our machine-learning classifications on

CANDELS galaxies and compare with visual merger classifications from Kartal-

tepe et al., and show that they are broadly consistent. We finish by demonstrating

that our model is capable of measuring galaxy merger rates, R, that are consis-

tent with results found for CANDELS galaxies using close pairs statistics, with

R(z) = 0.02 ± 0.004 × (1 + z)2.76±0.21. This is the first general agreement between

major mergers measured using pairs and structure at z < 3.

2.2 Introduction

Galaxy mergers are an explicit display of the hierarchical assembly of the universe,

where galaxies and their dark matter halos merge together to form more massive

systems (e.g. Mo et al., 2010). Indeed, the rate by which galaxies merge is a

consequence of how the universe evolved, and can be used as an observable for the

history of mass assembly of galaxies (Conselice et al., 2014). The understanding of

how mass is assembled by galaxies is a very important piece of the galaxy formation

and evolution landscape. It is known to happen in two ways: merging (Duncan

et al., 2019) and through the accretion of gas from the environment, resulting in

star formation (Almeida et al., 2014). The contribution of star formation to the

mass assembly of galaxies is well measured even to high redshifts, where a peak

in star formation rates are observed around z ∼ 2 (Madau & Dickinson, 2014).

The contribution from mergers, however, is less straightforward to measure and
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has some difficulties linked to how we identify merging systems (Conselice, 2006;

Lotz et al., 2008; Conselice, 2014; Man et al., 2016).

Overall, two distinct methods are currently used to find galaxy mergers. One

consists of finding close pairs of galaxies that fulfill a maximum separation criteria

(both in redshift and angular separation) such that their orbits will dynamically

decay with time resulting in a merger event. This is a quite successful approach

and enabled merger fractions and rates to be estimated up to z ∼ 6 (e.g. Mundy

et al., 2017; Duncan et al., 2019). The second method relies on non-parametric

morphological measurements that are robust for finding galaxies with disturbed

morphologies, which is a strong suggestion (but not solely) for galaxy merging

and interactions. In this case, a suite of measurements, generally the CAS (Con-

centration, Asymmetry, Smoothness) and the G-M20 systems, are used together

to generate a parameter space which serves as a diagnostic tool for galaxy mor-

phological classification (Conselice, 2003; Lotz et al., 2004). Some regions of this

parameter space are in general dominated by merging galaxies, which then can be

used to determine if a galaxy is likely a merger or not (Conselice, 2003; Lotz et al.,

2004, 2008).

Both methods have had success (Conselice et al., 2003; Lotz et al., 2004; Con-

selice, 2009; Mundy et al., 2017; Duncan et al., 2019), but they probe galaxy

mergers in different ways and rely on different assumptions. For example, in the

case of galaxy pairs, merger fractions and rates are measured taking into consid-

eration that the merger event did not happen yet, and may not happen, while the

traditional non-parametric approach is only able to probe around one third of the

period of the merger event, when morphologies are disturbed enough to distinguish

from normal galaxies (Hubble type galaxies; Conselice, 2006). On top of that, not

all regions of the parameter space generated by non-parametric measurements are
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purely compromised of galaxy mergers, some can be highly contaminated by non-

merging galaxies. Other types of galaxies can have signatures that produce similar

values, and not all mergers occupy that defined parameter space for the entirety

of the merging event. This results in some contamination, generally from star

forming galaxies, where star formation regions show themselves as clumpy light

in the morphology of the galaxy which can, by eye mimic the appearance of an

ongoing merger.

Another problem inherent in measuring merger rates is the knowledge of the

time-scales involved in the merger event. It is very difficult to infer time-scales

from observations, as we are limited to a single snapshot for each observed galaxy,

and the merging timescale depends on several dynamical properties of the system

(Lotz et al., 2008; Conselice, 2009). Fortunately, galaxy simulations can be used

to estimate such timescales. Not only that, it is also possible to infer timescales

attached to each method, for they probe different stages of the merger event (Lotz

et al., 2008). Thus, large scale cosmological simulations can be used to estimate

the dependence on redshift of merger timescales and visibilities (Snyder et al.,

2017).

This scenario motivates us to develop new methods of finding mergers, and to

improve upon current methods. One potential way to make progress in this di-

rection is by using Deep Learning techniques where groups and layers of functions

are laid out in a structure inspired by how the neurons in our brain works. In fact,

some of these techniques, such as Convolutional Neural Networks, are dedicated

to solve computer vision problems (CNNs; Goodfellow et al., 2016). For instance,

CNNs are widely used in astronomy to tackle several problems, like galaxy morpho-

logical classification, segmentation and deblending (e.g. Huertas-Company et al.,

2018; Reiman & Göhre, 2019; Huertas-Company et al., 2019; Cheng et al., 2020;
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Martin et al., 2020).

One of the attempts to detect galaxy mergers with CNNs was done by Acker-

mann et al. (2018), where their network was trained with SDSS data labeled with

classifications from Darg et al. (2010). They were able to detect new mergers in

the SDSS data that were not originally found by Darg et al. (2010). This shows

that indeed, CNNs are able to learn imaging aspects of merging galaxies. However,

any bias in the classifications from Darg et al. (2010) are also incorporated in the

model, since galaxies used for training were classified by eye.

Another experiment was conducted by Pearson et al. (2019), where galaxy

mergers from the EAGLE cosmological simulation (Schaye et al., 2015) were used

to train a CNN. In cosmological simulations such as this the merger history of

all simulation galaxies is available through merger trees generated by Friend-of-

Friends methods. This is a potential solution for labelling training data since this

represents a ground truth relative to when two galaxies (or more) are merging,

in contrast to eyeball classifications that can be uncertain. These authors also

conduct cross training experiments, where simulated galaxies are classified with

models trained with real galaxies, and the other way around. However, the results

from the application of this trained model fails to classify galaxy mergers, even

within the simulation. They attribute the performance of the network to the

difference between EAGLE galaxies and real galaxies. Their conclusions is that

mergers in the simulation have different morphologies from real galaxy mergers.

Although these differences exist, their small sample size and low resolution mocks

can also play a role on the poor performance achieved.

A different approach was recently employed by Snyder et al. (2019), where the

authors used a combination of non-parametric morphological parameters, random

forests, and ensemble learning to create a model which is capable of classifying
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galaxy mergers using the Illustris simulation (Vogelsberger et al., 2014) galaxies

as the training sample. This approach however does not use the embedded pow-

erful feature extraction layers present in CNNs and resembles more the classic

classification methods in combination with some of the aspects of basic machine

learning.

With this background in mind, we further explore how deep learning methods

can help us extract more information regarding mergers from imaging data. We

do this by training a model with only simulated data labeled with information

available from merger trees in cosmological simulations. This has the potential

to avoid biases that emerge from visual classifications, and by leveraging all the

potential information deep learning methods provides, we can construct a full

probabilistic approach to conduct predictions in real galaxies.

To do this, we construct a sample of galaxies from the IllustrisTNG suite of

cosmological simulations (Nelson et al., 2019) with their complete merger histories

available as a training sample, and then train a CNN to distinguish major mergers

from non-merging galaxies with the goal of applying this to The Cosmic Assembly

Near-infrared Deep Extragalactic Legacy Survey (CANDELS) fields (Grogin et al.,

2011; Koekemoer et al., 2011). We check if our results are consistent with visual

classifications from Kartaltepe et al. (2015) and galaxy merger rates from Duncan

et al. (2019).

This Chapter is organized as follows: in §2.3 we describe how the data from

IllustrisTNG was prepared while we elaborate our Deep Learning architecture

in §2.4. We dedicate §2.5 to discuss our results both with the simulation data

and real data and we summarize the Chapter in §2.6. All transformations and

measurements here assume the same cosmological model used by IllustrisTNG,

which are consistent with Planck Collaboration et al. (2018) results that show
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ΩΛ,0 = 0.6911, Ωm,0 = 0.3089 and h = 0.6774. Magnitudes are quoted in the AB

system (Oke & Gunn, 1983) unless otherwise specified.

2.3 Data

Our goal is to develop a major-merger classifier model trained with galaxies from

cosmological simulations and explore whether it is capable of carrying out predic-

tions on real galaxies. In these simulations, a galaxy’s complete merger history

is generally available through merger trees (Rodriguez-Gomez et al., 2015). This

approach enables us to use a completely objective way of labelling our training

data, bypassing any visual bias that might affect visual classifications, especially

in this merger/non-merger classification task that deals with morphological fea-

tures that can be the result of several processes, not only merging. However, this

comes with drawbacks. The resolution of the simulation must be good enough to

generate similar morphologies to the ones present in real galaxies. Not only that,

but post-processing steps are necessary to mimic the same observational effects

and characteristic noise of the data where predictions will be conducted. It is of

utmost importance that the simulation is able to provide enough galaxy numbers

for the classification task (i.e tens of thousands), as we expect it to be able to gen-

eralize to a different dataset. We also want to probe galaxies to moderate redshifts

(0 < z ≤ 3) so we can estimate galaxy merger rates using our predictions.

2.3.1 IllustrisTNG

All these requirements lead us to the IllustrisTNG project (Nelson et al., 2019),

a suite of cosmological, gravo-magnetohydrodynamical simulation runs, ranging
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within a diverse set of particle resolutions for three comoving simulation boxes of

length size, 50, 100, 300 Mpc h−1, named TNG50, TNG100 and TNG300, respec-

tively. Each of these simulations probe a different resolution regime, in a trade-off

between galaxy numbers and simulation resolution. As we are interested in build-

ing a large training sample, we recur to the largest simulation available, TNG300.

Within each simulation box there are also different setups, with variations in the

number of gas and dark matter particles. We limit ourselves to the highest res-

olution available in the largest simulation box, namely TNG300-11. We briefly

discuss how subfind defines a galaxy (subhalo) in the following section.

It is important to note, however, that the physical resolution of TNG300-1

does not perfectly match the CANDELS resolution, especially at higher redshifts.

TNG100-1 and TNG50 would provide better resolution matched candidates if the

dominant concern was physical resolution. Instead, our choice here was driven

by the simulation volume, and the need to have the largest number of galaxies

available to train our machine learning. As a way to mitigate potential issues

that could come with this resolution mismatch we only use in our analysis massive

galaxies with M∗ > 1010M⊙ and major mergers in the case of mergers.

From TNG300-1 we draw two samples: a major-mergers (hereafter MM) only

sample and a sample of non-interacting galaxies (hereafter NM). Details on how

both samples are selected are described in §2.3.1 and §2.3.1, respectively. After

selecting and creating a sample of clean galaxy images from IllustrisTNG, we need

to apply effects to the imaging data to generate realistic galaxy mocks, this process

is described in §2.3.3. For our sample of real galaxies, we choose to use galaxies

in all of the CANDELS fields (COSMOS, UDS, GOODS-S, GOODS-N and EGS).

1As a comparison, the TNG100-1 simulation has approximately 4.3 million subfind groups at
z = 0 while TNG300-1 has 14.4 million. These groups are sets of simulation particles that are
bound together by the Sublink algorithm, which in a general sense can represent galaxies.
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How we select galaxies from CANDELS is described in §2.3.2.

Subfind Friends-of-Friends algorithm

Subfind is a software that detects substructures by identifying clusters of particles

with higher density that are bounded gravitationally (Springel et al., 2001). The

process begins by using the Friends-of-Friends algorithm to identify a main cluster.

Then, for each particle, a local density is estimated using a kernel estimation

method with a fixed number of smoothing neighbors. From these isolated density

peaks, particles with decreasing density are sequentially added. If a saddle point is

reached in the global density field that connects two separate high-density regions,

the smaller cluster is considered a substructure candidate, and the two regions are

merged. The substructure candidates undergo an iterative unbinding process using

a tree-based calculation of the potential.

Major-Merger (MM) Sample

All our samples are selected through available merger trees. First, we limit our

exploration to z ≤ 3 (snapshots 99 to 25). As we will later use near-infrared

imaging, this redshift limit is applied to ensure that we are not probing rest-frame

UV observations. We limit this work to the near-infrared to mitigate the effects of

dust attenuation, as the IllustrisTNG imaging data used here is not produced by a

proper radiative transfer process. As such, it is essential to avoid probing the rest-

frame UV of the simulated galaxies where the effects of dust would be extreme.

Thus, within our redshift range we expect the impact of dust to increase as our

rest-frame wavelength is closer to the UV rest-frame. A full radiative transfer

treatment of the images would be necessary to completely avoid this problem.
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An alternative would be to use longer wavelengths, which will be possible with

JWST imaging in the future. However, both solutions are beyond the scope of

this Chapter.

Then, for each galaxy at z = 0 (snapshot 99), we climb the merger tree by

checking for cases where there is more than one progenitor in a previous snapshot

that fulfill the major-merger mass ratio, µ, criteria,

µ ≥ 1

4
, (2.1)

and at least one of the progenitors has M∗ ≥ 1010 M⊙. This mass criteria is

used to ensure that our galaxies are well sampled within the mass resolution of

TNG300-1. If that is the case, we select the snapshot where these criteria are met

as the central snapshot of the merger event. This means that this is the snapshot

where the subfind algorithm decided that particles from its progenitors became one

descendant. However, it is still possible that in the central snapshot such galaxies

are still separated by some distance in the sky, but will appear as only one galaxy

in snapshots moving forward. With the central snapshot defined, we select all

progenitors and descendants within ± 0.3 Gyr of the central snapshot as mergers

as well. By doing so, we are selecting galaxy mergers in different stages of the

merger event around a well defined time-scale. Galaxies in this selection window

can appear as pairs, disturbed morphologies that indicate recent infall, and also

cases where two or more galaxies already merged and little to no disturbance is

visible.

For all selections before the central snapshot, we measure the distance between

each progenitor, Dn. Here we apply an additional cut by limiting the distance

between each pair of galaxies by Dn < 20 kpc h−1. We are only interested in
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galaxies that are close enough to appear as if they are going to merge in the

future. Such distance separation is within the range generally used for close-pair

studies (e.g., Duncan et al., 2019), but we use it in the lower limit so that all pairs

of galaxies involved in a merger event can be sampled in the image’s field of view

used in this work.

This selection procedure yields ∼ 30, 000 distinct major-merger candidates.

The information in each selected object with respect to its central snapshot enables

us to also categorize this sample further in different cases of mergers. All selected

objects that have redshifts higher or equal to the redshift of the central snapshot

are marked as merger candidates before the merger event (hereafter BM) and

the cases with redshifts lower than the central snapshot’s redshift are considered

post-mergers (hereafter PM).

This will not limit our approach towards classifying galaxy mergers only in

these two classes, as in §2.4.1 we will show that we can still use the prior probability

to do a MM/NM classification instead of a BM/PM/NM classification. The

only difference when moving from specialized classes to general mergers is using

appropriate corresponding observing timescales. It is necessary to use τobs =

0.3 Gyr when working with BM and PM classes, and τobs = 0.6 Gyr when working

with MM in general, to appropriately reflect our sampling windows. To help with

the visualization of our method, we show in Fig. (2.1) a simplified sketch of our

selection criteria for two galaxies undergoing a merger.

The division between major mergers and minor mergers adopted (µ > 1/4) is

arbitrary and follows the conventional use among merger studies (Conselice et al.,

2003; Lotz et al., 2004, 2008; Snyder et al., 2017; Duncan et al., 2019).
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Figure 2.1: Diagram with a simplified example of two galaxies merging and the
resulting label selection for each object and snapshot. Area in blue shows galaxies
selected with BM labels, orange represent galaxies with PM labels and in green
NM. Both BMs and PMs are selected with our selection timescale, τobs = 0.3 Gyr ,
whilst NMs are defined with a longer interval from the central snapshot. Selection
windows are drawn based on the central snapshot, tc ± τobs. The BM window
include the central snapshot. Note that the average time between snapshots in
IllustrisTNG is of about τ ∼ 0.15 Gyr, which makes out selection window around
2 snapshots wide.
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Non-Merger (NM) sample

A sample of non-mergers is a requirement for our classification task, and neces-

sary for our model to learn how to distinguish major-mergers from other types

of galaxies. As there are many more galaxies in the simulation than just major-

mergers, we use the number of major-mergers found in the MM sample selection

as a guideline to define a control sample of non-interacting galaxies.

First we apply redshift and stellar mass cuts to select galaxies in the same

range as the MM sample, with z < 3 and M∗ ≥ 1010 M⊙. Next, we clean this

pre-selection from interacting galaxies as best as possible. This can not be done

by just simply removing the galaxies found in the MM sample from this new

selection as there are other mergers occurring, with lower mass ratios, and cases

where a merger event can have longer timescales than τobs ± 0.3 Gyr, for selecting

the MM sample. This means that it is possible to have merging morphologies with

broader timescales in the simulation. Thus, to solve this we do a broader search

of merging galaxies, looking at all mass ratios and mergers occurring in ±0.5 Gyr.

Then, we proceed to remove all galaxies found in this way from the initial redshift

and stellar mass cut. The resulting sample is then separated in the same bins

of redshift as the major merger sample, enabling us to draw randomly the same

number of galaxies for each redshift bin in order to construct a sample that has a

similar redshift distribution, as shown in Fig (2.2) (in the outer plot by the blue

solid line and green dashed line, for mergers and non-mergers, respectively).

Nevertheless, these selections are made only within the simulation merger trees.

We still need to produce the imaging data that will be used to train our model.

However, it is important first to define the data in which we are going to apply

our model to make predictions, as we have to apply similar instrumental and
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Figure 2.2: Redshift distribution for the simulated Major Merger sample (blue
solid line), simulated non-interacting sample (green dashed line) and the CAN-
DELS sample (red dot dashed line). The redshift distribution for our IllustrisTNG
mergers and non-merger samples are by construction very similar. We also display
the CANDELS redshift distribution to show that it does not match the redshift
distribution of the samples used for training, but its numbers are within the range
of the simulation distribution, as demonstrated by the unnormalized redshift his-
togram in the inner plot, showing all the IllustrisTNG galaxies in blue and CAN-
DELS galaxies in red.
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observational effects in order to mimic the data the best way possible. In our case,

we want to apply our model to galaxies in the CANDELS fields.

2.3.2 CANDELS Fields

One goal of this work is to do predictions on CANDELS WFC3/IR imaging data

(Grogin et al., 2011; Koekemoer et al., 2011). This consists of wide field data with

enough depth to detect galaxies in the limit of our selection on the simulation

data. This data was already used extensively within galaxy merger studies, with

merger rates estimated up to z ∼ 6 (Duncan et al., 2019). There are also visual

morphology classification catalogues (Kartaltepe et al., 2015), photometric red-

shifts and stellar mass estimates (Duncan et al., 2019), which are essential if we

want to make the same selection cuts as the ones done in IllustrisTNG simulation

data, as we are only interested in predictions on a similar parameter space.

Here our selection is similar to the one applied to the IllustrisTNG merger

trees, with the exception that we do not use any merger classifications available

to select it. The first step consists in removing all objects that have problems

with quality flags in the original photometry catalogue and the Kartaltepe et al.

(2015) catalogues, as we want to avoid edges, artifacts and stars. Then, we apply

a magnitude cut in the H band of H < 24.5 mag following the same cut used

in Huertas-Company et al. (2016) and Kartaltepe et al. (2015). A signal-to-noise

(SNR) cut of SNR > 20 is also applied, as the magnitude cut would bias the SNR

of our sample against extended sources. Then we proceed with the same cuts we

made to the IllustrisTNG selection, using z < 3 and M∗ > 1010M⊙. This results

in a sample of 3759 galaxies wish high enough SNR.

Fig. (2.2) shows the redshift distribution of this subsample of CANDELS
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galaxies (red dot dashed line). It can be seen that this redshift distribution does

not match the redshift distribution for IllustrisTNG galaxies. However, the inner

plot shows an unnormalized redshift histogram of IllustrisTNG (blue) and CAN-

DELS galaxies (red), which demonstrates that our training sample of IllustrisTNG

galaxies is large enough to have at least similar galaxy counts to the CANDELS

sample at higher redshifts. One might argue that it would be ideal to construct the

training sample with the same redshift distribution as the data we are planning to

do predictions with, but in this case, we are limited by resolution, which requires

us to limit the scope to massive galaxies (M∗ ≥ 1010M⊙) only. At the same time,

we are not introducing redshift information during training, apart from embedded

instrumental and cosmological effects, so the variability on merger morphologies

available in the regime where both redshift distributions disagree (z < 0.5) is

essential to the learning model.

In the training step we tested matching the redshift distribution of the training

sample with the CANDELS redshift distribution by removing low redshift galaxies

from the training sample. However, our findings suggest that the performance of

the model suffers from the smaller training sample by over predicting mergers at

low redshifts. This is due the lack of generalization by the model when limited

to smaller training samples. In this way, additional tests with different training

samples are left for future work. Even though galaxies at different redshifts are

intrinsically different, their morphologies can be degenerate.

Finally, we produce cutouts from the imaging data that represents a field of

view of 50 kpc × 50 kpc using available redshift. In this way, we choose to

rely on the redshift information available instead of using any assumption about

the sizes of galaxies in our samples, as it is difficult to define it when two or

more galaxies are interacting in the field of view. By using this approach, we are
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also preserving relative sizes between galaxies within our samples, which might

provide important information for the network to use during the classification.

As we are using CANDELS Near IR data, we proceed to produce galaxy images

from IllustrisTNG and apply instrumental and cosmological effects to the images

so that they are a realistic representation of CANDELS galaxies.

2.3.3 IllustrisTNG Imaging Data

We take advantage of the tools available in the IllustrisTNG API and website to

select stellar maps for a given object in the simulation. The ’Galaxy and Halos

Vizualization’2 (Nelson et al., 2019) tool enables us to select a galaxy by combining

the simulation run, snapshot and subfind identification to visualize a given object

in several filters. It uses a pipeline coupled with CLOUDY (Ferland et al., 2017)

photoionization code and Flexible Stellar Population Synthesis (FSPS)3 through

python-fsps (Conroy et al., 2009; Conroy & Gunn, 2010), a stellar population

synthesis code, generating stellar density maps for the appropriate ages and met-

alicities (in rest or observational frames), as selected by the chosen filter, refer to

Nelson et al. (2019) for details. However, this procedure has its limitations, as

described earlier, as it does not include a full radiative transfer treatment, and

does not account for dust.

This could impact some of the morphologies presented, especially for the star

forming galaxies. Although studies using IllustrisTNG mocks generally use a

complete radiative transfer approach for galaxies with high star formation rates

(?Rodriguez-Gomez et al., 2019; Huertas-Company et al., 2019), we limit our sam-

ple only to near-infrared filters as a way to mitigate potential biases due the

2http://www.tng-project.org/data/vis/
3FSPS uses Kroupa IMF whilst stellar masses in our CANDELS catalogs are measured with

Chabrier IMF, a ∼ 5% offset is expected.

http://www.tng-project.org/data/vis/
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absence of dust in our treatment. Bottrell et al. (2019) shows that realistic instru-

mental effects, such as noise and an appropriate PSF, are more important than

radiative transfer effects when training deep learning models, where the slight im-

provement in performance comes with a huge computational cost of producing

galaxy mocks with full radiative transfer, especially for large samples of galaxies.

Moreover, we do not explicitly use any color information in our model. In this

way, one might use our galaxy mocks as stellar density maps, which will be closely

related to the true morphology of the galaxy.

The following is a brief overview of our complete mock pipeline. The first step

consists of the selection pipelines described in §2.3.1 and §2.3.1. The result of the

selection is a list with each galaxy snapshot, subfindID and redshift. This is then

fed to the Illustris API, requesting the mock produced by the Galaxy and Halos

Vizualization pipeline. These images have field of views of 120 kpc × 120 kpc

and are imaged in the observed frame for the HST F125W and F160W filters,

which are available for the CANDELS fields. For each subsample, we randomly

request 80% of the galaxies as face-on and 20% as edge-on, as we do not have

the freedom to choose arbitrary orientations using this tool4. This proportion of

face-on and edge-on galaxies is draw from axis ratio statistics from real galaxies

in the CANDELS fields (e.g., Ravindranath et al., 2004; Mowla et al., 2019). This

produces a set of clean images from the IllustrisTNG in the appropriate band, with

cosmological dimming and k-correction applied. However, it is necessary to apply

transformations in order to make mocks of these images as if they were observed

by HST.

We apply cosmological geometric effects based on ’redshifting’ (e.g., Conselice

4As this Chapter goes to press a new feature in IllustrisTNG API enable the user to use
different projections and orientations instead of only face-on and edge-on orientation. This was
not available when we generated our sample and we advise anyone doing a similar approach to
use this new feature instead of only edge-on and face-on cases.
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et al., 2003; Barden et al., 2008) approaches and add features of image realism

(Bottrell et al., 2019) by appropriately simulating characteristics of CANDELS

images, such as noise, PSF and adding the resulting image to a patch of the sky

from the CANDELS fields. First, for each galaxy we apply a random rotation to

the image following a crop to 50 kpc × 50 kpc field of view for both filters. The

reason why images have such large fields of view is to have an adequate window

for image transformations. If one would crop a galaxy image after a random

rotation, artifacts would be noticeable around the edges, especially for cases with

intermediate rotation angles. Then, as we know the exact pixel scale of the clean

image, we can transform it to 60 mas/pixel HST WFC3/IR pixel scale and apply

PSF effects by convolving it with a simulated PSF produced with TinyTim (Krist

et al., 2004).

Noise is then added by converting the image to e/s−1, multiplying it by an

appropriate exposure time, and drawing a sample of it from a Poisson distribution.

This is done to ensure that our mock images have similar shot noise to the real data.

Then the resulting distribution is added to a empty sky region of the CANDELS

fields. This region is selected randomly from a pool of pre-prepared regions. This

is necessary, as the CANDELS fields are produced by a stack of multi-epoch sky

subtracted images, which creates correlated noise (Koekemoer et al., 2011). These

regions are empty since we expect the impact from crowding to be small in the

redshift range probed here. Bottrell et al. (2019) shows that the presence of

neighbour sources during training is important for the success of the deep learning

model, but their simulations are limited to low redshifts. However, we show in

§2.5.1 that the presence of crowded sky regions impacts the model negatively.

After all of these effects are introduced to the image, we prepare it for the CNN

by re-sampling it to 128x128 pixels. This is the same as changing the pixel scale
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once more, but in most cases we are oversampling the image, as by this stage all

images should be smaller than 128x128 pixels, thus we are not losing information

by doing this. This particular resolution is selected so as to provide the CNN

with the possibility of having more convolutional layers. Then, we package the

whole sample in a HDF5 file with its train, test and validation split, including

normalization. This is the package that is then used by the CNN.

The result of the selection and imaging data pipeline is summarized in Table

(2.1).

2.4 Methods

We employ a Deep Learning approach with Convolutional Neural Networks

(CNNs) to our images, a state of the art tool to solve computer vision problems

(Goodfellow et al., 2016) that is gaining popularity among galaxy merger studies

(Ackermann et al., 2018; Pearson et al., 2019; Bottrell et al., 2019). In a CNN,

convolutional layers use convolution operations on multidimensional data, such as

images, to extract features that can then be used for classification tasks in regular

fully connected layers at the top of the CNN architecture. The convolutional

part of the network can be divided into convolutional blocks, which can then

nest more types of layers than just convolutional layers. However, each block is

generally limited to probe a specific resolution range of the input data. Pooling

operations are usually located between convolutional blocks with the goal of

changing the input image to a lower (or higher) resolution. How these blocks and

layers are organized and how wide the network is, including the number of filters,

size of the kernels, and other properties, are defined by hyperparameters.

We briefly describe our method for finding a good model with an optimization
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Redshift Snaps Number of Galaxies Before Merger After Merger Non Interacting
Train Test Val Train Test Val Train Test Val Train Test Val

0.0 ≤ z <
0.5

99-66 19633 4257 4214 5331 1076 1171 4966 1117 1035 9336 2064 2008

0.5 ≤ z <
1.0

67-51 13410 2837 2931 3240 669 726 3434 697 755 6736 1471 1450

1.0 ≤ z <
1.5

50-41 6127 1342 1299 1377 292 295 1599 348 320 3151 702 684

1.5 ≤ z <
2.0

40-33 2821 563 551 715 148 122 681 141 137 1425 274 292

2.0 ≤ z <
2.58

33-27 993 213 216 257 62 60 240 44 44 496 107 112

2.58 ≤ z <
3.0

28-25 210 44 45 57 12 14 51 7 9 102 25 22

Totals 43194 9256 9256 10977 2259 2388 10971 2354 2300 21246 4643 4568
61706 15624 15625 30457

Table 2.1: Summary of the IllustrisTNG samples of major-mergers and non interacting galaxies separated in redshift bins,
label and the Training, Testing and Validation subsamples.
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approach in §2.4.1, together with a short description of each hyperparameter;

We describe the metrics used to evaluate the performance of our models and the

architecture found by our optimization approach in §2.4.2.

2.4.1 Bayesian Optmization of Hyperparameters

Generally, CNNs and other Deep Learning methods are regarded as black boxes

since their parameters are adjusted by an automated training process in order to

maximize its performance, with little control over it apart from the architecture

of the network. Its architecture is defined by a set of parameters that control

how big a network is, how many layers there are, the learning rate and batch

size, among other configurations. The results produced by a network model are

highly dependent on its hyperparameters, so it is of utmost importance to fine-tune

them as best as possible (Hacohen & Weinshall, 2019). Unfortunately, there is no

method that is capable of finding the best set of hyperparameters without training

the network and assessing its performance. Often, this is done by brute force

methods such as grid searches, where a large domain of possible values for each

hyperparameter is defined and portions of the domain are evaluated by training

the corresponding network. If a high number of hyperparameters are present, the

result is a very expensive task and might not lead to the best model.

To avoid this treatment, we use a Bayesian Optimization approach to find a

good set of hyperparameters by modeling our architecture as a surrogate gaussian

function g(x1, ...,xn), where x1, ...,xn are the hyperparameters. Each possible

combination of hyperpameters is a different model. This function is very expensive

to evaluate, but with few samples it is possible to reach a set of hyperparameters

that best optimizes the performance of the model by updating the posterior at
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each sample, using it to make informed guesses for the next observation. This

technique is faster and can yield a set of hyperparameters that results in models

with better performances than ones optimized manually, reducing the number of

configurations necessary to reach a good model (Snoek & Larochelle, 2017).

Hyperparameters

We first define what will be considered a hyperparameter in our architecture by

defining what aspects of it can be changed, setting a domain for each case. Here we

briefly describe each of the hyperparameters of the architecture while a summary

is displayed in Table (2.2).

We define a convolutional block as a group of convolutional layers that probe

similar input resolutions. Each block is separated by pooling layers that change the

size of the input for the next block by a factor of 2. The number of convolutional

blocks, number_conv_blocks, is one of the main hyperparameters to define how

long the convolutional portion of the network will be. Thus, the number of layers

in each block, number_conv_per_block is also a hyperparameter. Every convolu-

tional layer in a given block has the same number of filters and kernel size. The

possible number of blocks varies between 1 and 5 while each block can have from 1

to 3 convolutional layers. Convolutional blocks not only group convolutional layers,

but their activation and other auxiliary counterparts as well. Additionally, we set

the number of filters in the first convolutional block, initial_number_filters,

and the kernel size of the first convolutional block, initial_kernel_size, as

hyperparameters. In a analogous way to the number convolutional layers, we con-

sider the number of fully connected layers, number_fullyconnected_layers, and

their size, size_fullyconeccted_layers, as hyperparameters as well. The loss

function adopted for our classification problem is the binary cross-entropy log loss
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(Good, 1952), the loss generally used for training with one hot encoded labels.

In neural networks, an optimizing function is used to maximize the performance

of the network (minimize an error function). There are several distinct methods to

accomplish this and different methods work better for different problems, as they

represent strategies to find minima in the topology generated by parameters in

parameter space. Here we choose from a pool of all optimizers available in Keras

(Chollet & others, 2015) and let it also act as a hyperparameter of the architecture,

even though it is not usually considered a hyperparameter.

We dedicate two hyperparameters to control the regularization of the architec-

ture, namely the L2 regularization λ term, l2_regularization, and the dropout

rate, dropout. The former act as a way to regularize the weights of the convo-

lutional portion of the network by adding a penalty to the loss function in order

to prevent spiked weights in favor of more diffuse configurations, while the later

applies regularization to the fully connected layers by deactivating a percentage of

the neurons for each layer equal to the dropout rate (dropout). By using dropout

we will also be able to assess uncertainties in the network predictions. This is

done by measuring probability distributions for each prediction by running the

model for the same input with the dropout layers several times, as each time only

portions of the fully connected layers are going to be used by the model. This ap-

proach is known as a Monte Carlo dropout (Cook et al., 2000; Huertas-Company

et al., 2019).

Finally, we set a range of possible batch sizes, batch_size, and possible initial

learning rates, initial_learning_rate, as hyperparameters.
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Hyperparameter Best Model
batch size 256

number conv blocks 2
number conv per block 2

initial number filters 32
initial kernel size 11

number fullyconnected layers 2
size fullyconnected layers 1024

optimizer Adadelta
initial learning rate 0.1

l2 regularization 0.62
dropout 0.38

Table 2.2: Set of hyperparameters of our architecture and the best parameters
found by doing Bayesian Optimization.

2.4.2 Performance Metrics and Best Model

In order to evaluate each of the possible models within our domain of hyperparam-

eters, we first define how our models are going to be evaluated, since the Bayesian

Optimization employed here runs as an automated process which tries to find the

set of hyperparameters resulting in the best performance. This is assessed by

training the network as a binary classifier of MM/NM (see §2.3.1 for definitions)

with the training sample and performance evaluated in the testing sample. As

we are not concerned with class imbalance problems at the moment, we simply

try to minimize the loss function within our architecture. Models with low loss

will represent models with high performance metrics. We also track the accuracy,

precision and recall of each model, which inversely follow the loss very closely.

We perform the Bayesian optmization in the domain described with the GPy-

Opt python package (The GPyOpt, 2016). The model with the lowest validation

loss is shown in Table 2.2.
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2.4.3 Bayesian Neural Networks

Even though we carry out the hyperparameter optimization with the binary

MM/NM classification, it is also important for us to probe if our CNN is

capable of separating merger classes into further sub-classes, where galaxies are

undergoing mergers at different stages. An easy distinction that we use from

our selection procedure (Section 2.3.1) is to have a BM/PM/NM classifier. We

follow a similar approach as is done by Huertas-Company et al. (2019), where a

hierarchy of binary classifiers are used to develop classifiers that are specialized in

a specific separation task. In our case, this means that we will have a MM/NM

classifier trained with all our sample and another one trained only with mergers

to separate them into BM/PM. Then, the output for this set of binary classifiers

can be combined with Bayes Theorem to yield the probability in each merger

class by:

P (BM) = P(MM) × P

(
BM

MM

)
, (2.2)

P (PM) = P(MM) × P

(
PM

MM

)
, (2.3)

where the probability of being a NM is simply the output for the NM class in the

MM/NM classifier. In this sense, the MM acts as a prior probability.

By combining multiple binary classifiers together to do multi-class classification

we are combining models refined to perform very specific tasks instead of using

only one classifier that has to share all its weights and parameters among all

classes. However, even though in some cases the output probabilities will not have

any meaning, they can still be used to investigate the classification process. For
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example, a relatively high P (PM) value for NM galaxies might indicate that their

morphology has aspects resembling a disturbed galaxy. A high value of P (BM)

in a NM galaxy might indicate that the galaxy has companions. Nevertheless,

this should not be common within the simulation data but might be useful when

performing predictions in real data where no labels are available.

2.5 Results

With the architecture and the sample from the simulation described in Section

(2.3.1), we train our model and explore how it performs in the validation sample.

In this way it is possible to analyze how the model generalizes to simulation data

it has not seen. This is necessary before we apply it to real data. After checking if

the results are what we would expect within the simulation, we apply our model

to the sub-sample of galaxies from all the CANDELS fields as described in §2.3.2.

2.5.1 Predictions using IllustrisTNG

By exploring how our models perform in the validation data, it is possible to iden-

tify its performance in a sample of galaxies from the simulation that the model has

not seen during training or testing. Even though it should follow the performance

of the testing set, this procedure enables us to verify if there are any biases in

our set of classifiers. These, if present, can then be used to adjust predictions on

real data later. We apply our model to the validation data to classify all galaxies

in the sample in three classes: BM, PM and NM, as defined in §2.3.1. In Fig.

(2.3) we show the distribution of probabilities assigned to each class using pre-

dictions within our hierarchy of models, as described in §2.4.3. We can see that
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Figure 2.3: Class probability distribution of IllustrisTNG galaxies in the validation
sample for each class in bins of 0.1 probability. This shows that our network has
high confidence in the NM classifications whilst the probability distribution for
the merger classes are more spread out. There is also a discrepancy between BM
and PM in P > 0.9, a sign that the PM class is the case that the network is less
sure about, which has more ambiguity among the other types.

the classifier is fairly balanced between MM and NM, which is expected since the

distribution of our simulation data is balanced. However, when comparing merger

sub-classes, the distribution is skewed towards BM, as the network is less sure

about PM classifications.

The class probability distributions shown in Fig. (2.3) are not enough to draw

conclusions about our CNN’s performance, we further explore performance metrics

with our validation sample. We evaluate our hierarchy of models by looking at its

normalized confusion matrix, which is shown in Fig. (2.4). The confusion matrix
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gives us an overview of the performance of the model by comparing the predicted

labels with the true labels for each class. It shows this by listing the precision of

each class in the diagonal, the fraction of correct classifications among all examples

for the given class, while also showing the relative miss-classifications between each

pair of classes. Our model is capable of identifying BM and NM types with 87%

and 94% accuracy, respectively, with a contamination between both classes of less

than 5%. However, in the PM case, the model has a lower performance, with 78%

correct classifications with 13% contamination with BM and 9% contamination

with NM. Even though it has almost a 10% performance difference with the other

classes, almost two thirds of its miss-classifications are still merger classifications.

Also, as in some cases the morphology of PM systems have no clear distortions,

we therefore expected it to have some degeneracy with NM galaxies, while this is

not true for the BM and NM classes.

It is also useful to verify the model with other metrics, especially the Re-

ceiver Operating Characteristic curves (ROC curves) and Precision-Recall dia-

grams (Powers, 2011). These are important because they also take classification

threshold into account, while the confusion matrix only uses one threshold speci-

fied before-hand (i.e predictions should be in binary form). In Fig. (2.5) we show

ROC curves for each class in the left panel and the Precision-Recall curves in the

right panel. Precision-Recall curves can also be thought of as Purity-Completeness

diagrams, which are a more common convention in astronomy. As we are using

Monte Carlo dropout, we have ways of estimating the uncertainty of our classifi-

cations. Due to this feature of our model, we can plot the mean curves for each

diagram with confidence intervals. This can be seen in each of the plots in Fig.

(2.5) by the shaded area, which represents ±4 σ from the mean of the model,

shown as a solid line. For the ROC curves, this uncertainty is very small and all
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Figure 2.4: The normalized confusion matrix for our classifier hierarchy. Each
column represents the true labels for each class while rows represent the predicted
class. The diagonal of a multi-class classifier present the precision for each class,
while other cells show the contamination between each possible pair of classes. It
is important to note that almost two thirds of the contamination of PM happens
with PM being classified as BM, which is still a merger classification. Errors shown
are measured with the Monte Carlo dropout. This confusion matrix is measured
within our balanced validation sample and do not represent the performance of
the method with real galaxies.



2.5.
R
esu

lts
56

Figure 2.5: Performance metrics for classifications using the validation data. ROC curves for each class are shown in the left
plot with BMs, PMs, NMs in blue, orange and green, respectively. The compromise between completeness and precision is
shown in the right with the same color code. The performance shown here is based on the balanced validation sample, real
galaxy samples will have very unbalanced configurations and hence this metric does not translate directly to applications on
real galaxies.
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classes follow a similar trend to what we might expect for a model with a confusion

matrix equal to the one presented in Fig. (2.4). The area under the curve is also

shown in the legend.

For the Precision-Recall diagram in the right panel of Fig. (2.5), it is possible

to check that the uncertainties in our model are more apparent in the region of high

precision. This is due to the fact that in this regime the threshold is very high,

limiting the model to only very precise classifications. This results in smaller

sets of classified galaxies, with very poor completeness, that are more prone to

variability.

For visualization purposes, we plot a mosaic of images with galaxies randomly

drawn for each class in Fig (2.6). Every galaxy plot shows the probabilities for

the three classes, P(BM), P(PM), P(NM). Thus, as these galaxies are randomly

selected, we also have cases that are miss-classifications. It is important to note

that the threshold used here is the binary threshold, for probabilities P > 0.5, so

this show the standard performance of the model, based on the confusion matrix

of Fig. (2.4).

It is also useful to characterize each type of miss-classification produced by the

network. In our case, this represents 6 different kinds of miss-classifications, one

for each possible pair of classes in our three class hierarchy. We plot in Fig. (2.7)

a panel of 15 miss-classified galaxies for each possible pair. The title of each panel

refers to the true class, and what was the classification based on the probability

from the model. Here, we see that the classifier uses very clear characteristics of

merging for classifying galaxies as BM, as all galaxies misclassified as BM look as

though they have two nuclei, or featuring two or more galaxies very close together.

This even appear for NM systems classified as BM, a clue that our selection

process for NM has some, even though small, contamination from galaxies with
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Figure 2.6: Mosaics for each class as classified by our model using simulated Il-
lustrisTNG data. All galaxies were randomly drawn from the validation sam-
ple. In each galaxy image, all three probabilities are shown on each image.
P(Before Merger), P(Post Merger), P(Non Merger), top-left, top-right and bot-
tom, respectively. Varying signal-to-noise in the images are due to the varying
intrinsic luminosity of the simulated galaxies or due to cosmological dimming.
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close companions. It is possible that the selection is not accounting for some

types of mergers. Likewise, galaxies misclassified as NM are in general more

symmetric than their true counterparts. For instance, BMs classified as NM still

show companions and some sort of interaction, but are more symmetric than most

BM in Fig. (2.6).

We also see that BM systems classified as PMs show clearly signs of two nuclei,

but for those which are closer together than regular BM systems. This is a sign

of some degeneracy on the Sublink algorithm. Even if two galaxies are roughly in

the same space, such that can still be regarded as two distinct galaxies. A similar

pattern is seen in the case of NMs classified as PMs, as these non-interacting

galaxies are more disturbed than their true counterparts. This shows us, overall,

that the miss-classifications say a lot about how our model classifies a galaxy,

as it follows properties that would also be used in visual classifications. Often,

miss-classifications happen for cases where the morphology is really degenerate

between classes, which would be expected. These are generally regarded as hard

cases to learn, a natural limitation to the method based on visual structure, as

they represent less than 3% of the training data which is not enough to represent

significant shift in the weights of the model.

Yet another meaningful test is to generate images of pure random noise to check

how our methods deal with images that are not representative of the parameter

space we are interested in. As the model has to assign probabilities that sum to

1 to any image given to it, it will by design likely classify a random noise image

as one of the possible classes. By generating a relatively large sample of random

noise images we can inspect the output probabilities to check the behavior of the

network in this case. To do so we generate 1000 random images within two filters
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Figure 2.7: Mosaics for each possible case of miss-classification in the simulated
IllustrisTNG data. Each title describes what is the truth class being miss-classified
as a different class (truth class as wrong class) on given panel. All galaxies were
randomly drawn from the validation sample for each specific case. In each galaxy
image, all three probabilities are shown in each plot. P(BM), P(PM), P(NM),
top-left, top-right and bottom, respectively. Varying signal-to-noise in the images
are due to the varying intrinsic luminosity of the simulated galaxies or due to
cosmological dimming.
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Figure 2.8: Mean Posterior Probabilities for all images in the random noise sample.
Our hierarchy of model tends to classify most of the random noise images as BM
and NM while none of the high probability noise images are classified as PM.

each5, representative of the filters of our regular input data, and feed it to the

network. We explore the probability distribution of each class in Fig. (2.8).

These probabilities show that our model tends to classify ∼ 60% of the noisy

images as BM and ∼ 40% as NM. This is a good sign, as we have two opposite

classes that show a similar behavior towards noise. The network did not classify

any of the input random images as PM, where the maximum probability among

all classifications was P (PM) = 0.48. This means that we can be fairly secure

that miss-classification of PMs due to image quality effects, like noise, will be rare.

5We also investigated completely random noise and different images for each filter and the
same random noise for both filters, with similar results.
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Finally, we assess how the presence of crowded sky regions impacts our model

classification. Bottrell et al. (2019) shows that the presence of contamination from

neighboring sources is important during training when using simulated galaxies at

low redshift. To show if this statement is true for the data used here, we retrain our

model with a new dataset of simulated galaxies prepared with random patches of

the sky from the CANDELS fields. These random regions are selected by searching

for places that are centrally empty but have neighbor sources around the center.

The confusion matrix displayed in Fig. (2.9) shows that in this situation the

classification precision of BMs slightly improves from 87% to 91%, whilst PMs

and NMs decrease, from 78% to 67% and 94% to 92%, respectively. Even though

our results for the presence of crowded backgrounds diverge from what is shown

in Bottrell et al. (2019), we attribute it to the difference in scope of our data.

We probe higher redshifts (0 < z ≤ 3) and different wavelengths with simulated

galaxies from cosmological simulations, which have lower resolution than galaxy-

galaxy simulations. This experiment, however, shows that in crowded regions we

should expect our model to display worse performances for PMs. In the case of

galaxies in the CANDELS fields, we are selecting small fields of view and expect

low contamination from crowded regions. As the overall results are worse with

crowded regions of the sky, we conduct the rest of the Chapter with the class

hierarchy trained with the original dataset.

It is important to note, however, that all performance metrics shown in this

section are valid within the scope of our simulation validation sample. This needs

to be taken into account when applying our classifier hierarchy to real data, as we

expect to have an unbalanced sample of BMs, PMs and NMs. As we do not have

ways to directly assess the performance of this classifier in the real data, we have

to make comparisons with visual classifications and galaxy merger rates to test it.
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Figure 2.9: The normalized confusion matrix for our classifier hierarchy trained
with simulated galaxies included in crowded patches of the sky from the CANDELS
fields. Each column represents the true labels for each class while rows represent
the predicted class. The diagonal of a multi-class classifier present the precision
for each class, while other cells show the contamination between each possible pair
of classes. It is important to note that almost two thirds of the contamination of
PM happens with PM being classified as BM, which is still a merger classification.
Errors shown are measured with Monte Carlo dropout.
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2.5.2 Predictions on CANDELS

We test our methodology on CANDELS imaging data described in §2.3.2. For

predicting classes on real data, we use an independent indicator to check if the

observed galaxies are mergers or not. We rely on the visual classification of the

CANDELS fields conducted in Kartaltepe et al. (2015), where detailed information

about the morphology is available. Using this, we have a set of indicators that

can help us decide if the galaxy looks like a merger or not. With this subsample

of CANDELS galaxies that have similar properties to our simulation galaxies,

we carry out predictions in the same way as we do for the validation data, as

shown in Fig. (2.10). However, it is important to keep in mind that these visual

indicators are not ground truths and are prone to the subjectivity of the classifiers.

The apparent morphology of a galaxy merger can be produced by other physical

processes.

Visual Classification

The Kartaltepe et al. (2015) classification effort on CANDELS galaxies includes a

set of indicators dedicated to describe galaxy mergers, with the goal to develop a

group of characteristics only related to merging aspects of the morphology of the

galaxy. Here, in order to assess how our model performs using real CANDELS

galaxies, we compare how its classification relates to these indicators.

Namely, we use the classification fractions f_any, f_int1, f_int2, f_none,

f_merger, f_comp, plus two indicators that are not in the set of merger indicators

but might relate to mergers, f_tadpole and f_irr. These fractions represent the

overall fraction of total classifiers that marked the galaxy with given property. We

briefly discuss each of these indicators here, for a full discussion please refer to
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Figure 2.10: Probability distribution for the three classes that are classified by
our hierarchy of models in the CANDELS selected sample. Overall these distri-
butions are very distinct from the validation data. Here they are more irregular,
especially those with intermediate confidence probabilities. This shows signs that
the network is less certain about the classes in general than with was in the val-
idation sample. This is expected since the validation sample is prepared to look
very similar to but it is not equal to the CANDELS data.
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Figure 2.11: Mean class fractions from 100 samplings of a class balanced sub-sample (700 galaxies of each class) of CANDELS
galaxies with the given indicator from visual classifications above the shown threshold. The first point represent the mean of
the complete sub-sample of evenly distributed classes, while following points show only the fraction of those galaxies above
the threshold. Error bars show 1 ± σ for class fractions among all samples. BM, PM and NM are displayed in blue, orange
and green, respectively.
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Kartaltepe et al. (2015).

f_any is used when the galaxy has any type of interaction. Usually, if a classifier

marked a galaxy in any of the other indicators, it will also be marked with f_any;

f_int1 represent galaxies with interactions within their segmap, while f_int2 is

for galaxies with interactions beyond their segmap; f_none is used when the galaxy

has no signs of interaction and f_merger when the galaxy look like it underwent

a recent merger event; f_comp indicates if the galaxy has a non-interacting com-

panion, with no signs of interaction and tidal features; The other two non-merger

indicators, f_tadpole and f_irr, represents whether the galaxy look like a tad-

pole galaxy with strong tidal features, or if the galaxy has an irregular morphology,

which in general might be a sign of merging, but not uniquely. So each indicator

represents the fraction of classifiers that mark the galaxy as having the assigned

characteristics. Thus, this fraction is related to how obvious and how unified the

classification was among all expert classifiers. A fraction of 0 represents a galaxy

that no classifier marked as having those characteristics, while a fraction of 1 rep-

resents the cases where all classifiers marked the galaxy with the given indicator.

Intermediate fractions might result from morphologies that are ambiguous, thus

objects with higher fractions represent less ambiguous morphologies. However, it

is important to none that for some indicators very few objects were unanimously

classified. Thus these indicators are subject to the subjectivity of the classifiers,

while a higher fraction means that the classification is less prone to biases.

To explore how our model’s classification of CANDELS galaxies correlates

with the visual classification available from Kartaltepe et al. (2015), we randomly

generate 100 balanced sub-samples based on the model classification with 700

galaxies in each class. We do this as our resulting sample of CANDELS classified

galaxies is very imbalanced towards non-mergers as shown in Fig. (2.10). If we use
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the entire sample, trends in our class fraction would be more difficult to visualize,

especially for the case of PMs, which consists of the class with the fewer number of

classified objects. We then compare each sub-sample against increasing thresholds

within the given indicator. Fig. (2.11) show the class fraction mean ±1 σ for each

class among all sub-sample for an increasing threshold. The BMs are shown in

blue, PMs in orange and NMs in green.

The overall trend with all merger indicators (f_any, f_int1, f_int2,

f_merger) is dominated by an increase in the fraction of BM classifications, as

one would expect. Plus, the fraction of PMs do not follow this trend with BMs,

a sign that both classes represent different objects. Indeed, by solely following

these merger indicators, one might assume that PM and NM represent the same

type of objects since f_none shows the fraction of NM and PM to be similar.

However, f_tadpole and f_irr show similar trends for BM and PM. In this case,

PMs classified by our model might represent galaxies without companions and

clear signs of recent merger interactions by disturbed morphologies. Meanwhile,

f_comp show different behaviors for each class with a very small scatter, which

suggest that PMs as classified by our network are isolated galaxies, with no clear

signs of companions, while NM can have companions but no signs of interactions.

This might represent a bias from the network towards objects without any

companion in the field, which indicates that BM might have a significant impact

from sky projections. On the other hand, this is expected since we do not factor in

any redshift information in the central and neighbor galaxies in our classification

method. The introduction of this information in the classification pipeline might

further improve the quality of the model, but this is left for a future work.

In Fig. (2.12) we show CANDELS galaxies as classified by our method with

corresponding probabilities for each class, similarly to Fig. (2.6).
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Figure 2.12: Mosaic with classifications done on CANDELS data for each class,
BM, PM and NM, respectively. Mean probabilities for each class are shown
in each image, top values represent merger classes (BM and PM) while bottom
value represents the NM probability. The low probabilities represent cases where
the network is more unsure and appears ambiguous. Increasing the probability
threshold would produce more precise classifications with more clearly distinct
morphologies, but we display here classifications above 50% probability as this
represents the peak completeness of our classifications and the threshold used
throughout this Chapter.
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Merger Fractions and Merger Rates

One of our main goals in this Chapter is to estimate galaxy merger fractions, fm

and galaxy merger rates, R, with our CNN method. We proceed to estimate fm

by counting merger classifications with probabilities P (class) > 0.5 in ∆z = 0.5

bins of redshift in the range 0.5 < z < 3. We do this for both merger sub-classes,

BM, PM and also for MM. Even though we train our model with low redshift

galaxies, our CANDELS samples have only a few galaxies with redshifts z < 0.5,

which results in poor statistics for merger fractions in that regime. The measured

merger fractions we derive are shown in Table (2.3).

We estimate galaxy merger rates by using merger fractions and appropriate

timescales for each class, with τobs = 0.3 Gyr for BM and PM, and τobs = 0.6 Gyr

for MM. Our timescales are defined by our sample selection steps, as described

in §2.3.1. Although a consistent merger rate measurement does not validate indi-

vidual classifications, it would represent that the overall statistics of the sample

of classifications would follow one expected from other classification methods. By

comparing merger rates estimated by our method with previous results we demon-

strate a real application of our approach.

Redshift BM PM MM
0.5 ≤ z < 1.0 0.041 ± 0.008 0.014 ± 0.004 0.055 ± 0.009
1.0 ≤ z < 1.5 0.048 ± 0.009 0.059 ± 0.010 0.107 ± 0.013
1.5 ≤ z < 2.0 0.110 ± 0.016 0.084 ± 0.014 0.196 ± 0.021
2.0 ≤ z < 2.5 0.180 ± 0.032 0.112 ± 0.026 0.292 ± 0.037
2.5 ≤ z < 3.0 0.181 ± 0.043 0.206 ± 0.044 0.383 ± 0.052

Table 2.3: BM, PM and MM fractions in bins of redshift based on the classification
from our models.

We estimate merger rates using our model by simply taking our merger frac-

tions averaged over our timescale, that is
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R =
fm
τobs

. (2.4)

We plot our estimated merger fractions and rates in Fig. (2.13), in the left

panel and right panel respectively, comparing with the results of merger fractions

and rates as estimated with CANDELS galaxies from Mundy et al. (2017) and

Duncan et al. (2019).

One important point is that our model was not prepared to measure merger

fractions by construction, as it was trained with a balanced sample of mergers

and non-mergers. Additionally, no redshift bias for mergers was used. In fact, the

redshift distribution of our training sample is also balanced between mergers and

non-mergers (Fig. 2.2).

It is possible to check in Fig. (2.13) that our results are in general consistent

with merger rates found by Mundy et al. (2017) and Duncan et al. (2019). Here,

even though we are making comparisons to close pairs statistics results, we do not

make any assumptions on the fraction of pairs that will actually merge, Cpair, in R

as all galaxies considered as mergers in our training sample are actually mergers,

as we use information from IllustrisTNG’s merger trees. Moreover, based on our

selection approach, we are also not introducing information about the simulation’s

intrinsic merger rates into our model.

We fit power laws to our merger fractions and rates of the form

fm(z) = f0 × (1 + z)m (2.5)

R(z) = R0 × (1 + z)m, (2.6)
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Figure 2.13: Merger fractions fm (left) and galaxy merger rates R (right) in bins of redshift for our BM (blue circles), PM
(orange diamonds) and MM (green triangles) classifications. Error bars represent ±1 σ uncertainties and account for the
accuracies displayed in the confusion matrix in Fig. (2.4). We fit a power law for fractions and rates and show the best fit
in purple together with ±1 σ uncertainties of the fit in the shaded area. We show results from Duncan et al. (2019) (red
squares) and from Mundy et al. (2017) (gray X’s and hexagons) for comparison. Overall, the trend estimated by our model
agrees very well with previous results.
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to our merger fractions and rates respectively. We do this fit by a simple least

squares fit to all our data points, including BM, PM and MM, and show the

uncertainty based on ±1 σ (shaded region in Fig. 2.13). We find

fm(z) = 0.005 ± 0.001 × (1 + z)2.85±0.24, (2.7)

and

R(z) = 0.02 ± 0.004 × (1 + z)2.76±0.21, (2.8)

which is expected since our observing timescale, τobs, is flat and defined by our

selection (§2.3.1). These fits were done to all our data points (PM, BM) as well

its associated error bars. We extract the uncertainties from the covariance matrix

of the fit, and use it to show confidence levels of 1 σ in the purple shaded area,

based on the lower and upper bounds of the power law two parameters. The lower

limits are drawn from

fm(z) = 0.004 × (1 + z)2.61, (2.9)

and

R(z) = 0.0196 × (1 + z)2.55, (2.10)

while the upper limits are from

fm(z) = 0.006 × (1 + z)3.09, (2.11)

and

R(z) = 0.0204 × (1 + z)2.97. (2.12)

Overall this shows that the trend represented by our findings using major
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merger classifications by a deep learning model agrees with the trend found by

Duncan et al. (2019) using close pair statistics for all the CANDELS fields, where

within the redshift range probed here 0.5 < z < 3, the highest merger rates, R, are

found in the highest redshift probed. Different assumptions regarding timescales

and a different method of identifying mergers yield similar results, and even though

our uncertainty is larger at all redshifts, the mean of our classifications match pairs

well.

We cannot probe higher redshifts with our current model as it is limited by our

training data, which was prepared to probe redshifts up to z = 3 with observed

near-infrared data. One could expand the model to probe higher redshifts by

training it with rest-frame UV data, but in this case the effects of dust and the lack

of a radiative transfer treatment would become more important and the training

sample should be prepared in a different manner, however this will be examined

in a future study.

2.6 Summary

In this work we show that it is possible to train deep learning models to find galaxy

mergers using only simulated galaxies and then to carry out predictions on real

data by training a deep learning Convolutional Neural Network (CNN) model. We

do this by classifying galaxy mergers with IllustrisTNG data and then carrying

out predictions on real CANDELS galaxies. We show that

• Using automated methods for optimizing deep learning hyperparameters is a

good way of achieving high performance architectures for solving astronomy

classification tasks. This not only speeds up the training step of working
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with deep learning networks, but removes some of the subjectivity present

when fine tuning such hyperparameters by hand.

• It is possible to train a model capable of achieving ∼90% accuracy in classi-

fying galaxy mergers within the simulated balanced validation sample. Not

only that, but our model can classify mergers in two stages: mergers before

the merger event (BM) and post mergers PM, with 87% and 78% accu-

racy, respectively. The performance of the model using simulated galaxies

from IllustrisTNG does not directly translate to the same performance that

would be achieved using real galaxies, as the validation sample is balanced

in the simulation, which is not true in our CANDELS sample. The quality

of the model with real galaxies must be assessed by the visual classification

comparison and the estimated galaxy merger rates.

• We show that predictions using real galaxy images are possible, and galaxies

classified in the validation and CANDELS samples share similarities. We

show that our model classifications follows visual classification indicators for

mergers from Kartaltepe et al. (2015). Even though merger classifications

can be ambiguous between visual classifiers, our blind classifications based on

the information from mergers trees from the IllustrisTNG show that galaxy

mergers classified by our network have similar visual cues to those classified

by visual experts. This is shown by the different trends for mergers before

the merger event, post mergers and non-mergers when compared to merger

indicators from visual classifications. Galaxies before the merger event (BM)

dominate samples selected with higher thresholds of the merger indicators

from the visual classification.

• By using our model to classify CANDELS galaxies we measure galaxy merger
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fractions and rates between 0.5 ≤ z ≤ 3 that are consistent with previous

results for CANDELS galaxies estimated with close pair statistics from Dun-

can et al. (2019). This was done without any prior merger fraction or rate

information embedded in our training step. Our model, by construction, was

not prepared to do such measurements and this is an independent method

of estimating merger fractions and rates, even though the uncertainties are

higher than when using other methods.

Our results are based on a sample of simulated galaxies with several constraints:

our mocks do not account for the effects of dust, we do not explore arbitrary orien-

tations besides face-on and edge-on orientations, and our results are only limited

to massive galaxies with M∗ > 1010M⊙. Addressing these points will further im-

prove results when carrying out predictions on real galaxies, as it would serve to

lessen the gap between simulated and real galaxies. This approach is limited by

the quality of the training data, and improvements in the post-processing of the

simulation data should further improve the results displayed here. It is of utmost

importance to always use large training samples, as the parameter space in the

training step is crucial for the learning of the model.

This work shows the potential of using a combination of galaxy simulations

and machine learning techniques as an avenue for solving problems where observ-

ables are impossible or expensive to estimate from real observations of galaxy

mergers. Approaches like the one presented here will naturally improve alongside

cosmological simulations.



Chapter 3

A Simulation-driven Deep Learning

Approach for Separating Mergers and

Star-forming Galaxies: The

Formation Histories of Clumpy

Galaxies in All of the CANDELS

Fields

The content of this chapter has been published (Ferreira et al., 2022a) in The

Astrophysical Journal.
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3.1 Abstract

Being able to distinguish between galaxies that have recently undergone major-

merger events, or are experiencing intense star formation, is crucial for making

progress in our understanding of the formation and evolution of galaxies. As such,

we have developed a machine-learning framework based on a convolutional neu-

ral network to separate star-forming galaxies from post-mergers using a data set

of 160,000 simulated images from IllustrisTNG100 that resemble observed deep

imaging of galaxies with Hubble. We improve upon previous methods of machine

learning with imaging by developing a new approach to deal with the complexities

of contamination from neighboring sources in crowded fields and define a quality

control limit based on overlapping sources and background flux. Our pipeline suc-

cessfully separates post-mergers from star-forming galaxies in IllustrisTNG 80% of

the time, which is an improvement by at least 25% in comparison to a classification

using the asymmetry (A) of the galaxy. Compared with measured Sérsic profiles,

we show that star-forming galaxies in the CANDELS fields are predominantly disk-

dominated systems while post-mergers show distributions of transitioning disks to

bulge-dominated galaxies. With these new measurements, we trace the rate of

post-mergers among asymmetric galaxies in the universe, finding an increase from

20% at z = 0.5 to 50% at z = 2. Additionally, we do not find strong evidence

that the scattering above the star-forming main sequence can be attributed to

major post-mergers. Finally, we use our new approach to update our previous

measurements of galaxy merger rates R = 0.022 ± 0.006 × (1 + z)2.71±0.31.
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3.2 Introduction

The first deep Hubble Space Telescope (HST) images of the distant universe

revealed that many distant and faint galaxies are in fact irregular/peculiar in

appearance (e.g., Williams et al., 1996). Because the first cameras on HST,

WFPC1/WFPC2 were sensitive in optical wavelengths only, probing distant galax-

ies was limited to their rest-frame ultra-violet light, due to the effects of redshift.

It was unclear whether the peculiar appearances were the result of observational

limitations or real. The question thus remained whether the observed irregulari-

ties were in fact just the star forming areas of these galaxies, while the older stars

remained below detection. When the NICMOS camera was launched in 1998 on

HST it became clear that the morphologies of distant galaxies were peculiar in

their rest-frame optical wavelengths as well, implying that the bulk stellar mass

in these galaxies was indeed out of equilibrium (e.g., Dickinson et al., 2000; Pa-

povich et al., 2005; Conselice et al., 2005; Mortlock et al., 2013; Whitney et al.,

2021). The common consensus was that distant galaxies are indeed intrinsically

peculiar. However, it remained unclear why and how this finding relates to the

various possible modes that could be responsible for producing these irregularities

in galaxy structures at high redshifts. The peculiar appearance is likely linked

to the formation process of the galaxies, but details of the origin of the observed

irregular structures have proven difficult to fully understand.

Since then, it has become clear that, overall, galaxies gradually transition from

peculiar galaxies at higher redshifts to ellipticals and disc systems at lower redshifts

(e.g., Conselice et al., 2003; Lotz et al., 2004; Mortlock et al., 2013; Huertas-

Company et al., 2015). This conclusion was made possible with the advent of

the WFC3 camera on HST which allowed astronomers to trace the morphological
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evolution of galaxies over large areas of the sky. Galaxies are therefore undergoing

a transformation, and their irregular origins reveal clues about the processes which

drive galaxy formation. One popular and well explored hypothesis is that these

systems are in fact undergoing hierarchical mergers to form larger systems. The

basic idea is that two galaxies in the early universe smash together to form a larger

galaxy, a process which is predicted to be a critical element in the cosmological

context of galaxy formation within a Cold Dark Matter (CDM) universe, with well

defined predictions of this process (e.g., Jogee et al., 2009; Bertone & Conselice,

2009; Mundy et al., 2017).

Today, the merger rate can be accurately measured to high redshifts (z ∼ 3)

using galaxy structure (e.g., Conselice et al., 2003; Conselice et al., 2008; Man

et al., 2016; Mantha et al., 2018; Ferreira et al., 2020; Whitney et al., 2021). Using

e.g., CAS parameters, the measurements show that the merger rate increases at

higher redshifts up to z ∼ 3, such that fmerger ∼ (1 + z)2−3 (e.g., Conselice, 2014),

an evolution which scales similarly to the density of the universe, which evolves

as ∼ (1 + z)3. This implies that with identifications of mergers at both high and

low redshifts, we are able to trace the galaxy merger history and investigate the

role of mergers within the formation of galaxies over time (e.g. Conselice, 2006;

Mundy et al., 2017).

In addition to high merger rates, distant galaxies have much higher star for-

mation rates than today, peaking at z ∼ 2 (e.g., Madau & Dickinson, 2014). We

further know that galaxy structure is highly dependent on the star formation rate

in the sense that intensely star forming galaxies generally appear more clumpy

and irregular than quiescent galaxies at all redshifts (e.g., Windhorst et al., 2002;

Guo et al., 2015; Mager et al., 2018; Guo et al., 2018; Sazonova et al., 2021). In

fact, these two different types of galaxies – mergers and non interacting intensely
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star forming galaxies – can look very similar by eye, which complicates visual clas-

sifications. Even kinematically it can be challenging to distinguish mergers from

rotating galaxies with high dispersions (e.g., Simons et al., 2019; Bottrell et al.,

2021). In addition, classifications and selections of galaxies after a merger event

(post-mergers) are highly contaminated by misclassified isolated galaxies with high

specific star formation rates (sSFR). This is because their star forming regions and

dusty inter stellar medium (ISM) can generate asymmetric features reminiscent

of (post-) merger features. It is therefore currently unknown if and how we can

correctly distinguish whether a galaxy is undergoing intense star formation, or

some type of merger using galaxy structures and morphologies.

One way to approach this question is through novel techniques using machine

learning. Recently, tremendous progress has been made in applying supervised

deep learning methods to investigate galaxy morphology (e.g. Huertas-Company

et al., 2018; Reiman & Göhre, 2019; Huertas-Company et al., 2019; Cheng et al.,

2020; Martin et al., 2020; Huertas-Company et al., 2020; Walmsley et al., 2020,

2022). These end-to-end techniques are also very promising for investigating

galaxy mergers specifically (Ackermann et al., 2018; Pearson et al., 2019; Pearson

et al., 2019; Bottrell et al., 2019; Wang et al., 2020; Ferreira et al., 2020; Bickley

et al., 2021), as they are able to extract features from the images in an automated

fashion, without the need for feature processing prior to the classification task.

Additionally, one can also leverage information not only from visual classifications

and observations, but also by forward modeling cosmological simulations to the

observational domain (Ćiprijanović et al., 2020, 2021).

We have recently started a machine learning exercise to determine the merger

history of galaxies using cosmological simulation runs from IllustrisTNG (Vogels-

berger et al., 2014; Pillepich et al., 2018b; Nelson et al., 2019). In Ferreira et al.
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(2020) we were able to separate mergers from other types of galaxies in Illus-

trisTNG to a success rate of 90% up to z ∼ 3. The present Chapter is a followup

to Chapter 2, in which we now investigate whether it is possible to distinguish

merging galaxies from intensely star forming galaxies (above the SFR-stellar mass

main sequence). These galaxies have the lowest success rates in classifications

from Ferreira et al. (2020). Our task in this Chapter is to correctly distinguish

mergers from star forming galaxies by only using their morphology and structure.

This Chaper is organized as follows: in §3.3 we describe the data sets we

constructed for this task, from IllustrisTNG (simulations) and CANDELS (obser-

vations). A description of the methods we used to train a Deep Learning model

and how we measure the structure of the galaxies in our samples is given in §3.4.

We present our results in §3.5 while a discussion on the implications is laid out in

§3.6. Finally, we summarize and conclude our findings in §3.7.

3.3 Data

To test our new Deep Learning approach, we use simulated galaxies from cosmo-

logical simulations post-processed with the SKIRT (Camps & Baes, 2015, 2020)

dusty radiative transfer code. The simulations are based on IllustrisTNG (Sec.

§3.3.1) which are used for the construction of the training sample for a Convolu-

tional Neural Network (CNN) that is subsequently applied to observed galaxies

from the CANDELS fields (Sec. §3.3.3). Our sample definitions for post-mergers

and star forming galaxies are given in Sec. §3.3.2. We discuss the pipeline used

to generate CANDELIZED mock images from IllustrisTNG in Sec. §3.3.4.
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3.3.1 IllustrisTNG

As already described in Chapter 2, IllustrisTNG is a suite of cosmological, gravo-

magneto-hydrodynamical simulation runs with a diverse set of particle resolutions

(Pillepich et al., 2018a; Naiman et al., 2018; Nelson et al., 2019; Springel et al.,

2018; Marinacci et al., 2018; Nelson et al., 2019; Pillepich et al., 2019).

However, as opposed to the previous chapter, we use the higher resolution

TNG100-1 simulation (intead of TNG300-1), which has proven to be a good com-

promise between resolution and volume1. TNG100 has already been used exten-

sively in studies that analyze galaxy morphologies and structures, including the

comparison between simulations and observations (Huertas-Company et al., 2019;

Blumenthal et al., 2020), including as training datasets for deep learning (Wang

et al., 2020; Bickley et al., 2021; Bottrell & Hani, 2022). Specifically, Zanisi et al.

(2021) show that TNG100 galaxies reproduce observed objects well, especially

disc-dominated sources. While there are some deviations in the small-scale struc-

ture of highly concentrated spheroidal systems, this is a minor issue in our analysis

since they only make up a small fraction of our sample. In addition, our galaxies

are resolution limited at the current redshift of interest, meaning that tiny details

of structure are not relevant in this analysis.

To counterbalance any limitations from resolution we limit our analysis to

galaxies with M∗ > 109.5M⊙. Above this limit, and at our explored redshift

range z > 0.5, galaxies are represented by thousands of stellar particles. This

enabled sampling of the simulated galaxies into resolutions comparable to that of

the observed CANDELS data. Specifically, the gravitational softening length of

the simulation, ϵ, is not a limitation when compared to the HST ACS and WFC3

1We tested our selections on TNG50-1 but resulting samples are too small for Deep Learning
training.
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cameras resolution. This is a lower stellar mass limit than the one used in Chapter

3 as we are levering the higher resolution TNG100-1 simulation run.

This approach is a noticeable refinement to our previous treatment in Ferreira

et al. (2020), where the research question did not demand the resolution of fine

morphological features like clumpy regions and tidal features which are required

for the present analysis.

To select appropriate galaxies from TNG100-1, we isolate galaxies with M∗ >

109.5M⊙, in the redshift range 0.5 < z < 3. To limit contamination in our sample,

we use a minimum dark matter to total mass ratio of

MDM

Mtotal

> 0.1, (3.1)

as a way to avoid subhalos created as a result of disk fragmentation. This means

that at least 10% of the subhalo’s mass needs to be in the form of dark matter.

We acknowledge that this could also inadvertently remove galaxies that had their

dark matter stripped, however this number is small and does not impact the final

sample. This criteria removes ≈ 2% of galaxies from the overall pool of available

sources (subhalos) in TNG100.

We also remove objects that are smaller than the ACS PSF size from the

selection. To identify these objects, we first convert the half mass radius R1/2

provided in the simulation group catalogs in kpc, to a pixel scale based on the

cosmological model adopted by IllustrisTNG and the ACS pixel scale

R1/2Mass,pix =
a(z)

h
R1/2Mass,kpc, (3.2)

where a(z) is the angular size at z and h the Hubble constant / 100. Any galaxy



3.3. Data 85

with R1/2Mass,pix < 3 pix was then filtered out from our selections. This step

removes ≈ 3% of galaxies from the total pool of available sources.

3.3.2 Sample Definitions

Our goal is to separate star forming galaxies from post-mergers at intermediate

to high redshifts based on their morphology. We define post-mergers as galaxies

with at least one major merger event with a mass ratio

µ =
M2

M1

, µ ≥ 0.25, (3.3)

where M1, M2 are the stellar masses of the galaxy pair involved in the merg-

ing event, ranked by their stellar mass respectively, with M1 > M2. Galaxies are

considered post-mergers if they have coalesced into a single galaxy in the past

500 Myrs, where a single galaxy is represented by a subhalo in the simulation as

identified by friends-of-friends algorithms (Rodriguez-Gomez et al., 2015). This se-

lection window timescale is motivated by the observability timescales of disrupted

structures caused by mergers identified by structure measurements in IllustrisTNG

(Whitney et al., 2021), and are higher than what was previously used in Ferreira

et al. (2020). We allow post-mergers to have low sSFRs. Their asymmetric fea-

tures likely arise from the merging process rather than from star forming clumps.

In contrast, non-interacting star forming galaxies are defined here as galaxies that

have sSFRs above the star-forming main sequence (SFMS) at redshift z ∼ 0 with

the following threshold,

sSFR > 10−9.5 yr−1 (3.4)
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and are not interacting with other galaxies. To isolate non-interacting cases, we

exclude any galaxy from the simulation that had major or minor merger events

(µ > 0.1) around ±1 Gyr of its current redshift. Minor mergers are excluded

completely from both definitions, and any conclusions presented in this Chapter

should be considered with this in mind. Importantly, this selection is not intended

to limit the non-interacting cases to extreme starbursting episodes alone, but to

select non-interacting galaxies with sufficiently high sSFR to produce clumpy and

asymmetric features that could be mistaken for merging signatures.

In summary, this selection results in a sample of ∼ 6, 000 post-mergers and

∼ 110, 000 non-interacting star forming galaxies. While this may be a realistic

representation of actual fractions (only ∼ 5% of the sample are post-mergers),

training the network requires a balanced dataset. We thus use the post-merger

sample as the baseline and separate it in bins of redshift, stellar mass, and size,

randomly sampling the same number of non-interacting galaxies within each bin.

We remove bins without adequate matched numbers of star forming galaxies. This

becomes noticeable in the higher mass bins where post-mergers dominate and very

few star forming galaxies are present.

After matching the samples, we count ∼ 4, 000 galaxies in each class as our final

sample. A summary of this sample separated by class and redshifts is available

in Table 3.1. The distribution of redshifts, star forming rates, stellar masses,

and stellar half-mass radius are shown in Figure 3.1 for post-mergers in red and

star forming galaxies in blue. Both classes have very similar physical properties,

with a small excess of large, passive and massive post-mergers in comparison to

the star forming galaxies. Additionally, the top right and bottom right panels of

Figure 3.1 show the time since the last major merger event, τ , and the mass ratio,

respectively, for post-mergers. The nature of the distribution for τ arises from the
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Redshift Post-Mergers Star Forming Total
0.5 ≤ z < 1.0 1214 1167 2381
1.0 ≤ z < 1.5 1082 1140 2222
1.5 ≤ z < 2.0 847 881 1728
2.0 ≤ z < 2.5 589 556 1145
2.5 ≤ z < 3.0 333 321 645

Table 3.1: Summary of the initial IllustrisTNG sample. The numbers in this
table present the sample before each galaxy was post-processed with SKIRT and
CANDELIZER (see text for detail), during which each image was augmented by
20 for 4 orientations and 5 different fields.

average time between snapshots in the simulation of around ∼ 0.15 Gyr. This

timescale represents 1 to 3 snapshots after the coalescence of stellar masses.

3.3.3 CANDELS Fields

One of the main goals of this work is to predict star forming and post-mergers

galaxies in the observed CANDELS imaging data (Grogin et al., 2011; Koekemoer

et al., 2011), which comprises high-quality HST observations from COSMOS, UDS,

EGS, GOODS-South, GOODS-North (Grogin et al., 2011; Koekemoer et al., 2011).

CANDELS data has been already discussed in Chapter 2, and here we focus on

how we select our new sample.

To select CANDELS galaxies we first remove all problematic objects accord-

ing to their quality flags as recorded in the photometric catalogue and in the

Kartaltepe et al. (2015) catalogues to avoid edges, artifacts and stars. Follow-

ing Huertas-Company et al. (2016) and Kartaltepe et al. (2015), we then select

galaxies with H-band magnitudes H < 24.5 mag. Because this cut can bias our

sample against extended sources, we also include a signal-to-noise (SNR) lower

limit of SNR > 50 to exclude any compact source with only a few bright pixels.
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Figure 3.1: Physical properties of the 8,000 IllustrisTNG TNG100-1 selected sim-
ulated galaxies. For both types of galaxies we show distributions for redshifts (top
left), star formation rates (top middle), stellar masses (bottom left) and stellar
half-mass radius (bottom middle) in red for post-mergers, and blue for star form-
ing galaxies. Distributions agree in general, with a small excess of stellar mass
and size for the post-mergers. The time since the last major merging event and
the mass ratio, µ, – properties unique to the post-mergers – are shown in top right
and bottom right, respectively.
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This magnitude cut removes 1074 sources, while the SNR cut further removes

430 sources. Then we proceed with the same cuts we used to select IllustrisTNG

galaxies, using 0.5 < z < 3 and M∗ > 109.5M⊙. We apply a final cut using the

asymmetry (A > 0.1, Sec. §3.4.3) to remove regular unambiguous galaxies with

no apparent disturbed or asymmetric features. This ultimately results in a sample

of 23,494 galaxies from all the CANDELS fields combined.

Finally, we produce cutouts for I814, J125 and H160W bands centering on each

selected CANDELS galaxy, each with a field of view of 50 kpc × 50 kpc, using

photometric redshifts from Duncan et al. (2019), preserving relative sizes between

galaxies. Importantly, this selection does not rely on size measurements that could

easily be spurious in interacting or merging galaxies. We do not find any bias in

our classifications that could be attributed to small changes of the field of view

caused by the photometric redshift uncertainties.

3.3.4 Pipeline to produce CANDELIZED Mocks

In order to guarantee realistic representations of CANDELS galaxies in the simu-

lated sample, we must include instrumental and cosmological effects to the images

of the IllustrisTNG galaxies. An overview of the steps are shown in Fig. 3.2 and

are detailed in this section. IllustrisTNG data holds information on the stellar, gas

and dark matter particles for each source. Each particle represents a large physical

region that can be described by rich stellar populations, that vary depending on

age, mass and metallicity. The resampling of the star forming regions is particu-

larly important to avoid problems with the coarse representations (Camps et al.,

2016; Trayford et al., 2017).

To create mock broadband images, we thus process each stellar particle with
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Figure 3.2: Example of the processing steps of our mock pipeline. a) Noiseless
F814W broadband image generated from the simulated galaxy datacube with 0.03
′′/pix pixel scale. b) The same image after rebinning from z=0.5 to z=0.6. c)
Image convolved by the HST F814W PSF. d) Image with Gaussian noise added.
e) Image added on top of a random patch of the sky within a CANDELS field with
no neighbouring sources. f ) Image added randomly to a patch of sky with other
sources in the field of view. As this patch of the sky is randomly selected, all final
images have varying levels of contamination from nearby sources. We quantify
this by the total flux in the sky patch before adding the simulated source to it.
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a population synthesis model following the recipes from Trayford et al. (2017) &

Vogelsberger et al. (2020). This entails post-processing the simulation data with

the Monte Carlo dusty radiative transfer code SKIRT (Camps & Baes, 2015, 2020).

Each stellar particle in the simulation is considered as a Single Stellar Popula-

tion (SSP) with GALAXEV (Bruzual & Charlot, 2003) or MAPPINGSIII (Allen

et al., 2008) SEDs based on its stellar mass, absolute metallicity, and age. We

choose to adopt these particular templates because, firstly, they are implemented

in SKIRT and, secondly, they had been tested previously in similar pipelines to

generate mock observations from cosmological simulations (Trayford et al., 2017;

Rodriguez-Gomez et al., 2019). Finally, Bruzual & Charlot (2003) are also the

templates used to derive stellar masses and star formation rates for all the CAN-

DELS fields in Duncan et al. (2019) which are used in this study.

To account for the fact that each stellar particle represents an extended area

(rather than treating them as a point source), we model the particles with a

smoothing length of a truncated Gaussian emissivity profile equal to the distance

to its 64th neighbor particle (Trayford et al., 2017). We then define a grid of

wavelengths covering all spectral features we want to probe within the HST filter

response functions, similar to the grid used in Trayford et al. (2017). For each

wavelength bin of this grid, we launch 106 photon packets, assuming isotropic

emission until they reach the virtual detector.

This process produces IFU datacubes over the SKIRT wavelength grid which

we then reduce to broadband images with the same properties as the CANDELS

HST images. SKIRT’s reference frame used to generate the datacubes is located

at a distance of 10 Mpc (initial redshift z0) of the sources. We must therefore shift
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Figure 3.3: A random selection of IllustrisTNG simulated galaxies in our test
sample; post-mergers (left) and star forming galaxies (right), with their redshifts,
SFRs, and stellar masses printed in each stamp. Images are ordered from left
to right in redshift, and top to bottom in SFR. For post-mergers we also display
the time since merger, Tm, and the mass ratio µ. All stamps use a square-root
normalization.
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Figure 3.4: Demonstration of the augmentation pipeline for one random galaxy
from TNG100-1 (ID=192802, z=0.55, at different orientations). We increase our
sample by augmenting the dataset, reproducing it in four orientations (rows) in
each of the CANDELS fields (columns). The simulated galaxy is placed in a
random patch of the sky in the CANDELS fields and thus can have other sources
in the final cutout. The amount of contamination from neighbouring sources varies
widely due to the random sampling of the background described in §3.3.4. This
contamination is quantified by the overlapping percentage, Θ, and the average flux
of the background patch, BGflux.
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the IFU data to each target’s redshift, zt, by (1 + zt) while dimming its flux by

ft
fo

= (1 + zt)
−1

(
DLo

DLt

)2

, (3.5)

due to cosmological dimming (Hogg, 1999, eq. 15). Next, we convolve the IFU

data with the broadband filters response functions for I814, J125 and H160W . The

results are clean, noiseless images from the simulation galaxies at 30 mas/pix

(matching the ACS pixel scale) before adding any PSF effects (Fig. 3.2, images a)

to c). We rebin J and H bands from 30 mas/pix to the WFC3 images pixel scales

of 60 mas/pix. Examples for stamps where the background was added can be

seen in Fig. 3.2, images e) and f). Figure 3.3 shows randomly selected examples

of galaxies in our sample before any contamination from the CANDELS sky is

included, separated by their class.

The data-driven paradigm of Deep Learning methods imposes high require-

ments on the amount of data necessary to train a model that is capable of gen-

eralizing the training data well. In practice this means that for the majority of

models, a successful approach requires tens, hundreds or even millions of exam-

ples. We are far away from these numbers in cosmological simulations. Our initial

selection results in a balanced set of ∼ 4000 examples of each class (Sec. 3.3.1).

Fortunately, in the case of galaxy images there are ways to increase the initial

dataset by exploiting aspects of the final image that do not depend directly on the

simulated galaxy. In our case, we apply data augmentation to our dataset in three

ways outlined below. An example of this approach is shown in Fig. 3.4, following

the same galaxy in each possible combination of orientation/field.

First, since IllustrisTNG provides the 3D distribution of all particles associ-

ated with a galaxy, we generate each galaxy with different line of sight projections,
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treating each new representation as a new galaxy. We select four different projec-

tions, three aligned with the axis of the simulation, XY, XZ and YZ, respectively,

and a fourth line of sight aligned with one octant of the simulation cube.

Secondly, each CANDELS field has unique observational properties (e.g. differ-

ent noise levels, depth). We exploit this aspect and reproduce each of the different

orientations from the previous step on top of a random patch of sky of each CAN-

DELS field, taking care to use appropriate noise levels for the simulated galaxy.

To find empty patches of sky, we randomly sample the RA and DEC within each

field, and make a large cutout of the area that is 4 times larger than the final size

of the cutout. Using positions given in the CANDELS catalogs, we then identify

all sources within this cutout and reselect a new RA and DEC within the cutout

that does not centrally overlap with another source. We allow some degree of

overlapping source, but require a unique central position. We do this interactively

until a patch of sky that matches all above criteria is found. This, combined with

all the orientations, augments our data set 20 times. In addition, this also helps

the network to generalize the impact of contamination from neighbouring sources,

as the same galaxy in one field might be isolated in its cutout, but in a denser

environment in another.

Finally, we apply random flips, rotations and small zoom-in/zoom-outs around

the central source on the fly during training as a regularization technique. This

does not increase the overall size of the sample, but at each training epoch the

network sees different realizations of the same sample.

Overall, our sample increases from ∼ 8, 000 examples to ∼ 160, 000. However,

having multiples of similar galaxies in our dataset can result in overfitting. To

reduce this risk, we do not allow different realizations of the same galaxy to fall

in both the training sample and the test sample. This ensures that testing and
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validating are performed on unique datasets.

3.3.5 Contamination Quantification

Providing realistic levels of contamination and the inclusion of neighbouring

sources are some of the most important requirements for a good generalization

between samples of simulated galaxies and real observations (Bottrell et al., 2019).

In an update to what was done in Ferreira et al. (2020), we included realistic

contamination in our IllustrisTNG sample, as described in §3.3.4. By comparing

clean galaxy realizations to their respective background-added images, we can

thus test how our methods behave when faced with a variety of contamination

levels, drawing direct conclusions for real world applications. We quantify the

degree of contamination in each image using two measurements, which are also

listed in Fig. 3.4.

First, we define how much of the background sources is covered by the central

source. We call this the overlapping percentage, Θ. For this we measure segmen-

tation maps both for the central source and all background sources of each image

stamp. Θ is the percentage of the segmentation map of the central galaxy that is

covered by segmentation map(s) of background sources and ranges from 0%, for

no overlap, to 100%, where the central galaxy is completely covered by another

galaxy in the field.

Second, we estimate the average flux (per pixel) of all background sources,

BGflux, by averaging the flux of the sources within the segmentation map over its

area. BGflux values are given in units of e s−1 pix−1. This ranges from BGflux ∼ 0,

where there is no apparent or very faint source in the background, to values that

are comparable to or even higher than the flux of the central source. Very high
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Figure 3.5: Contamination characterization for 162, 000 IllustrisTNG simulated
images in our sample. We show the logarithm of the average flux per pixel of the
background measured in each cutout, log(BGflux) vs. the overlapping percentage,
Θ, which indicates how much the central galaxy segmentation map is covered by
the segmentation map of the sources in the background. We define a conservative
region of low contamination shown by the dashed line and blue area, which contains
90% of the whole sample. Every point represents at least one image.
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values may be due to bright neighbouring sources that outshine the central galaxy.

Stars can also be identified by this method.

We use the overlapping percentage, Θ, and the flux of background sources,

BGflux, to define galaxy images with low contamination. Figure 3.5 shows the

parameter space formed by these two measurements for the entire sample of ∼

160, 000 simulated and candelized images. The blue box framed by the dashed

line defines a region of galaxies with low contamination,

Θ < 15%, BGflux < ×10−1.5 e s−1 pix−1, (3.6)

which can be considered as a conservative choice. We find that ∼ 90% of our

sample is located in this region. We do not remove the remaining 10% of the

galaxies from our sample, because such highly contaminated cases will also be

present in observations. We use these contamination estimates to understand how

our methods are impacted by it.

These two properties form a simple and powerful way to characterize the con-

tamination of our sample, as they control different contributions to contamination.

Because these are challenging to measure directly in real CANDELS observations,

we trained a deep learning model to predict the same values in real images. We

describe this exercise in § 3.3.5. By inference, any discussion based on contam-

ination measurements in our simulation sample is also valid for the CANDELS

observations.

Contamination Network

Based on the contamination measurements described in §3.3.5, we are in a privi-

leged position to provide the community with a model capable of estimating the
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overlapping percentage (Θ) and the background flux (BGflux) measurements from

real observations, as this is also a dataset that can be used for training. In this way,

contamination thresholds can be applied to real observational samples in a similar

way to what is done in the simulations. However, the sample de-contamination

provided by such models are not a requirement for the results discussed in this

Chapter, as the imaging mock dataset contains all the contamination expected

from real surveys.

The contamination quantification depends on our ability to separate the back-

ground patch of the sky from the central source, a feature that is only available

when we are post-processing simulated galaxies. In the case of real CANDELS

observations, directly measuring these properties is difficult, because it is not

straightforward to de-blend background/foreground sources if they are projected

on top of one another or are close enough to be a potential interaction.

We use all the contamination information from our data pipeline (§3.3.4) to

train a neural network to predict these values from the final image, without sepa-

rating source and background. We use the same network architecture described in

this work, but replacing the final sigmoid layer with a linear activation function,

changing the loss function as well. The result is a model that can be directly

applied to real observations, where the image is the input and the outputs are

values for Θ and BGflux.

Figure 3.6 displays the performance of these predictions based on the origi-

nal measurements, together with Pearson and Spearman correlation indices. In

general, the performance of the model is in good agreement with the original mea-

surements, with root mean square errors in the order of ∼ 10−3 for BGflux and

∼ 5% for Θ. These limits are well within the region of the parameter space formed

by these indices that we defined as a low contamination region. Apart from the
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small bias making the predictions undervalue the truth values, the performance

is good enough to separate high contamination cases from the rest of the sam-

ple, which is ultimately our goal. In Figure 3.7 we show examples of different

combinations of Θ and BGflux.

Figure 3.6: Performance of the contamination quantification network. (top) The
relationship between true and predicted values for BGflux and (bottom) relation-
ship between truth and predicted values for Θ. Pearson and Spearman correlation
indices are displayed for each case, as well as the root mean square error.

Even though this network is designed to be used within the context of this

work as a way to reproduce contamination quantification in the same manner as

what was done with the simulated images, we recognize that this can be useful for

a wider application. For example, this can be used as a fast selection tool that can

remove catastrophically bad cases from big samples in just a couple of seconds,

thus it can be a powerful tool for quick exploration. In this regard, we release this

model independent of the classification models presented in 3.4.1.
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Figure 3.7: Panel with cutouts of IllustrisTNG galaxies demonstrating four dif-
ferent selections on the Of and < fBG > parameter space. Isolated galaxies with
almost no noticeable contamination have low overlap and low background flux (top
left). Low overlap and high background flux show cases where the central galaxy
is overshadowed by a bright companion, but with no overlapping (top right). High
overlap and low background flux show galaxies overlapping with similar brightness,
cases where projection effects can be misinterpreted as a major merger (bottom
left). High overlap and high background flux show central galaxies with very large
and bright companions that extend over its segmentation map (bottom right).
This illustrates how useful these two measurements can be for proper selections.
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3.4 Methods

We use a deep learning framework with a Convolutional Neural Network (CNN)

based on Chapter 2 but with significant updates related to the improved and

more robust data pipeline that was discussed in §3.3.4. In this section we describe

our Deep Learning analysis (§3.4.1), where we also highlight the improvements

to Chapter 2. In Section §3.4.2, we discuss how to avoid overfitting due to the

augmentation of the TNG sample, which was part of our sample pipeline. We fur-

ther wish to compare the resulting classifications to “traditional” classifications.

We thus measure non-parametric morphology indices, structural parameters and

Sérsic profiles for both the TNG sample and the CANDELS sample with Mor-

fometryka (Ferrari et al., 2015; Albernaz Ferreira & Ferrari, 2018; Lucatelli &

Ferrari, 2019), for which we provide a brief overview in Section §3.4.3.

3.4.1 Deep Learning Classifications

We employ neural networks to forward model the simulations into the observa-

tional domain. The neural network takes galaxy images as input and outputs a

probability associated with its classification, in this case whether it is a post-merger

or a star forming galaxy.

Neural networks are known for being able to approximate complex functions

where no analytical approach is feasible, based on the universal approximation the-

orem (Lu et al., 2017). Deep neural nets combine several layers of nodes (neurons)

in a feed forward fashion, mapping inputs to outputs using non-linear activation

functions. As a data-driven method, the underlying rules are not explicitly pro-

grammed into the network but learned from pattern recognition on the relationship

between inputs and outputs of data. These rules are found by minimizing a loss
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function between the true outputs and the predicted outputs. It is optimized by

adjusting the weights and biases of the network so that the loss function reaches

a minimum.

A Convolutional Neural Network (CNN) is an end-to-end method, where the

most meaningful spatial features are also learned from the data itself through

convolution operations. These features are then combined for a classification task,

producing the desired outcome based on the input.

In this work, we use an improved version of the CNN architecture described in

Ferreira et al. (2020). This consists of a feed-forward network with an input image

size of 128x128 pixels, where the number of convolutional blocks, convolutional

layers, fully connected layers, number of filters, and kernel sizes, are all defined by

the following hyper-parameters:

• number_conv_blocks define the number of convolutional blocks, each will

probe features of different scales;

• number_conv_per_block describe how many convolutions each block will

have;

• initial_number_filters define the starting number of filters, that are then

doubled after each convolutional block;

• initial_kernel_size is the initial size of the convolutional kernel, that is

then reduced by 2 after each block, down to a minimum of 3;

• n_fc_layers and size_fc_layers define the number of hidden layers and

their respective size, respectively;

• l2_regularization and dropout are the degrees for each regularization
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technique used, respectively. l2 regularization is applied to all convolutional

layers, where dropout is applied only after the hidden layers;

The approach of variable depth and width for neural networks is similar to the fam-

ily of networks described in Tan & Le (2019). However, in our case the networks

are smaller due to the smaller image size used.

We modify the methods from Ferreira et al. (2020) to improve generalization of

our models. First, instead of using two binary classification networks and combin-

ing their predictions to construct a multi-class classification, we now only use one

network for the binary classification of post-mergers and star forming galaxies.

Second, we treat the learning rate differently. In Ferreira et al. (2020), we

monitored the learning rate decays during training as a hyper-parameter. Here,

we use Cosine Annealing, a type of learning rate scheduling (e.g., Loshchilov &

Hutter, 2016, for an explanation) combined with a regular Stochastic Gradient

Descent (SGD) optimizer (Zhou et al., 2020). This approach probes several dif-

ferent learning rate regimes during training and uses cyclic resets that serve as a

way to avoid unstable local minima, improving generalization of the solutions.

All hyper-parameters are determined by a Bayesian Optimization process

(The GPyOpt, 2016), and the values for the best model used here are summarized

in Table 3.2. These values can be directly used in conjunction with our public

keras implementation.

3.4.2 Augmentations and Overfitting Avoidance

To avoid overfitting pitfalls from using our CANDELS background augmentation

pipeline (§3.3.4), we train a suite of models, one for each CANDELS field. Because

we have included areas of all the CANDELS fields as background in our training
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Hyperparameter Best Model
batch size 128

number conv blocks 3
number conv per block 2

initial number filters 32
initial kernel size 11
number fc layers 2

size fc layers 128
l2 regularization 0.1

dropout 0.5

Table 3.2: The best hyper-parameters of our architecture found through Bayesian
Optimization (The GPyOpt, 2016). These define the depth, width, and number of
trainable parameters of our architecture. This process is done using our set-aside
validation samples. The same model is used for all the CANDELS datasets.

set, the network could potentially memorize these and use them for predictions,

impairing the results. To ensure this is not the case, each CANDELS field has two

models – one at low redshift, 0.5 < z < 1.5, and one at high redshift, 1.5 < z < 3.0

– trained only with images augmented with regions of the other four fields. All

datasets (training, validation and test) are restricted in this way, guaranteeing

that any overfitting of the CANDELS background will have no impact in the final

application of our models.

An example of this process is outlined in Figure 3.8, for the models that will be

used for predictions in the GOODS North (GDN) field. The training set contains

galaxies augmented with the COSMOS (COS), GOODS South (GDS), Extended

Groth Strip (EGS) and The UltraDeep Survey (UDS) fields while the validation

and test sets only contain galaxies from GDN.

This ensures that each model is tailored to one CANDELS field and that no

source from that particular field is used during training, i.e., the network never

sees any of its data. We further apply a regularization method that makes use of

random rotations and image flips on the fly during the training time.
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0.5 < z < 1.5
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1.5 < z < 3.0
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Figure 3.8: Schematics of the training pipeline leveraging multiple fields for aug-
mentation. Each pair of models, at low redshift (LZ), and high redshift (HZ), is
trained only with data that is augmented with the CANDELS fields that are not
the target for the model. In this example we show a model designed for predic-
tions on GOODS North (GDN), trained on data augmented with characteristics
of all the remaining four fields (GDS, COS, EGS, UDS). This model is also tuned
and evaluated in validation and test sets that have only of target CANDELS field
augmentations, ensuring that no overfitting of neighbouring sources is part of the
predictive process.
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3.4.3 Galaxy Structure and Morphology

Non-parameteric structure measurements of galaxies are a traditional way to se-

lect galaxy mergers (Conselice et al., 2003; Lotz et al., 2004, 2008; Snyder et al.,

2017). To measure structures for our sample, we fit Sérsic profiles to all galaxies,

using the software Morfometryka (Ferrari et al., 2015; Albernaz Ferreira &

Ferrari, 2018; Lucatelli & Ferrari, 2019). Morfometryka measures asymmetry

(A) concentrations (C), the Gini coefficient (G), moment of light of the brightest

pixels (M20), normalized information entropy (H) and others. It also measures

several structural parameters and fits 1D and 2D Sérsic profiles. For our purpose,

we are particularly interested in the asymmetry of the galaxies (A), as well as their

smoothness (S) since, together, they define a common criterion for finding galaxy

mergers:

(A > 0.35), (A > S).

The asymmetry is defined as the pixelwise normalized difference between the orig-

inal image and the same image rotated by 180 degrees,

A =
Σ|I − I180|

Σ|I| − Abg,

where I is the image, I180 is the rotated image and Abg is an asymmetry term

associated with the background (e.g., Conselice, 2014). We measure Abg in each

cell of a meshgrid overlayed onto the image, omitting the area occupied by the

segmentation map of the central galaxy. We then use the median of these values

as Abg. This ensures a robust modeling of the impact of the background in the

resulting asymmetry of the image (e.g., Tohill et al., 2021).

Finally, as we are especially interested in investigating the nature of the pecu-
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liar/irregular cases, we follow the hybrid method proposed by Bickley et al. (2021).

We first filter out regular symmetric galaxies from the sample using the asymme-

try (A). Instead of using the widely used cut for selecting mergers (A > 0.35), we

choose a conservative selection of galaxies with,

(A > 0.1).

This will remove cases that are irrelevant for our research question. These are

galaxies without any disturbances that would classify them as peculiar or irregular.

In Fig. 3.9 we show the distribution of asymmetries A measured with Mor-

fometryka for star forming galaxies (in blue) and post-mergers (in red) for the

simulated galaxies. The distributions largely overlap, though asymmetries for

post-mergers are generally slightly higher. The difference between both distribu-

tions is small enough that using solely the asymmetry (A > 0.35) will produce

samples with low completeness and purity, and given that the fraction of merging

galaxies is lower than regular star forming galaxies, it is likely that this approach

produces very contaminated samples.

3.5 Results

Here we discuss what our trained models reveal, first from the test dataset of

IllustrisTNG selected galaxies (§3.5.1), and then applied to the CANDELS fields

(§3.5.2).
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Figure 3.9: Distribution of asymmetries A measured with Morfometryka for
our TNG100-1 sample of galaxies. Star forming non-mergers and post-mergers are
shown in blue and red, respectively. The dashed vertical line illustrate the typical
threshold (A > 0.35) used to classify galaxies as mergers.
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Figure 3.10: Performance metrics for our four trained models and comparison with the classical Asymmetry index A for the
simulated images. Left: ROC curves for both the network trained with the pristine mocks dataset (dashed lines) and with
the realistic mocks dataset (solid lines) applied to both datasets, color coded in red (pristine) and blue (realistic).
The green dotted line indicates the ROC curve for a classifier using only the asymmetry A. The area under each curve can
be read in the label. Right: Precision-Completeness diagrams for the baseline network trained with the CANDELS matched
mocks with asymmetry A, color-coded by classification threshold levels for CNN (inferno) and asymmetry (viridis). A
small region in red is printed over the asymmetry curve to point out the region where the classification threshold is A > 0.35.
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3.5.1 Predictions within IllustrisTNG

We measure the performance of our trained models in our prepared test sets.

This is done by training the network with two realizations of the test datasets,

one with full HST-matched properties including a CANDELS background patch

of the sky (§3.3.4, §3.4.2) (which we call realistic mocks) and one with clean

mocks with no sky noise and contamination included (which we call pristine

mocks). For simplicity, in cases where we only mention the realistic mocks

without specifying which CANDELS fields it was augmented with, we consider

the average of all 20 models described in §3.4.2.

To compare between models and realizations of these datasets, we use tradi-

tional performance metrics common for evaluating Machine Learning model per-

formance. These consist of Receiver Operating Characteristic (ROC) curves and

Precision-Completeness diagrams (Powers, 2011), as well as confusion matrices

and their individual indices. Here, we are dealing with a single binary classi-

fication task, such that the probabilities of both classes respect the condition

P(NMSF) + P(PM) = 1. Fig. 3.10 displays the overall performance for each

network.

The left panel shows four different realizations of the network for comparison

purposes. The network is trained twice to generate two different types of models:

one labeled base that consists of a network trained with the realistic mocks,

and a second labeled clean, which is trained with the pristine mocks. Then,

each model is applied to both datasets. We do this to measure the best case

scenario within the simulations, in the absence of any contamination or impact

from observational effects. Models trained with the realistic mocks dataset are

plotted as solid lines, while models trained with the pristine mocks dataset are
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shown by dashed lines. Furthermore, the color conveys the dataset in which the

model was applied to, red and blue for pristine mocks and realistic mocks,

respectively. In addition to these, a single parameter classifier based on the asym-

metry (A) is also evaluated and displayed as the green dotted line. The area under

the curve (AUC) for each case can be found in the legend of the left panel.

The different realizations of our network (base and clean) cross-correlated

with the realistic mocks and pristine mocks datasets confirms the impor-

tance of realistic observational modeling of the mocks (discussed in detail by Bot-

trell et al. (2019)). This is especially important when crossing domains from

cosmological simulations to real observations. Figure 3.10 shows that the base

network performs just as well as the clean network when applied to the pristine

mocks, resulting in similar performance metrics, as can be seen by the overlapping

red curves. However, the base network outperforms by ∼ 10% the clean network

when applied to the realistic mocks dataset, as displayed by the difference be-

tween the blue curves in Figure 3.10. This demonstrates that correctly modeled

observational features increase the generalization capabilities of the resulting mod-

els. A network that is only trained on pristine images will perform poorly in the

real observations domain.

Importantly, all cases outperform the asymmetry by 20−30%. To some extent,

this is expected because asymmetries of post-mergers are lower than asymmetries

of galaxies that are just in the beginning of their merging event, including cases

of closely interacting galaxies. Evidently, the asymmetry function is a much more

general morphological descriptor while the network is very specialized for the par-

ticular task of dividing post-mergers from star forming galaxies. Here, even the

clean CNN applied to the realistic mocks overperforms the asymmetry by 20%,

while in the best case scenario the base network applied to the pristine dataset
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overperforms the asymmetry by 30%.

We compare the performance of asymmetry (A) and CNN predictions further

and show completeness-purity diagrams in the right panel of Figure 3.10. It dis-

plays outcomes for our ensemble of CNN models in inferno colormap, and for the

classic asymmetry parameter in viridis corlormap. The commonly used asym-

metry value to classify galaxy mergers is generally higher than (A > 0.35), which

is shown in the figure by the red patch over the curve. However, here we compare

an asymmetry classifier with our neural network to exemplify how one can use the

classification threshold of the network as a way to control the trade-off between

precision and completeness. This is a useful feature when dealing with unbalanced

datasets, like the case for galaxy mergers.

The precision and completeness of the asymmetry behaves in unpredictable

ways. First, the precision of the selection increases slowly, then it decreases again

around (A ∼ 0.2), and spikes above 0.6 precision for (A > 0.8), but with very low

completeness. We do not seek to redefine its use, but merely contrast it with our

deep learning approach, and show in broad terms when it might fail when dealing

with ambiguous morphologies.

Our network is able to correctly identify post-mergers and star forming galax-

ies from the IllustrisTNG simulation in ∼ 80% of the cases. Figure 3.11 shows the

confusion matrix for the realistic mocks dataset identified within each individ-

ual CANDELS field, as well as for the pristine mocks sample, where accuracy

reaches ∼ 90%. All classifications are done with the model trained with the real-

istic mocks. We show True Positives (TP) and True Negatives (TN) in blue, and

False Positives (FP) and False Negatives in pink. The CLEAN case represents the

best case scenario, where our current method and dataset achieves an even higher

performance of ∼ 91% True Positives. A histogram of the redshift distribution for
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each cell helps to visualize any possible biases in redshift for the miss-classification

cases. This demonstrates that the models are more likely to correctly classify low

redshift galaxies, as they represent the majority of the samples.

Impact of Redshift

With the goal to apply our models to a wide range of redshifts, we explore how our

performance metrics are impacted by increasing redshifts. Following the angular

size – distance-relation, galaxies at increasingly larger distances from low to inter-

mediate redshifts will be greatly impacted by decreasing resolution, which means

that morphological features are less well sampled. The right panel of Figure 3.12

shows this effect on the performance of our models, where the scores of the metrics

gradually decrease with increasing redshift, going from 85% accuracy at z = 0.5

to around 80% at z = 2. The errorbars – sampled from boostraping our testing

samples – follow accordingly.

Contamination impact on classification

We use the contamination estimates measured in §3.3.5 to find the contamination

failure threshold of our classifier, comparing performance metrics for subsets of the

test set selected in bins of both the overlapping percentage, Θ, and the average

background flux per pixel, BGflux, as shown in Fig.3.12. The horizontal black

dashed line at 0.8 shows the accuracy of the model when evaluated in the complete

test set (80%). The metrics outperform this baseline in sub-samples of images with

low contamination, decreasing as we increase each of the contamination factors.

As described in Section §3.3.5, we select the point where the average mean

values for each metric falls below the dashed line, which is our contamination
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Figure 3.11: Confusion matrix for all the samples matched to CANDELS fields as
well as the the pristine sample (highlighted by gray shading in the bottom right).
These confusion matrices were evaluated with the ensemble of models trained with
the CANDELS matched mocks. We show True Negative (TN) and True Positives
(TP) highlighted in blue while the False Negatives (FN) and False Positives (FP)
are shown in pink. The colors are based on the rate percentage, which is also
printed in each cell. All the CANDELS fields have TP and FN rates of around
∼ 80%. For the pristine case performance can reach as high as ∼ 90%, marking
the intrinsic limit of our method based on the data available. The histograms show
the redshift distribution for the galaxies in each category, which demonstrate that
it is easier to recover correct classifications at lower redshifts.
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Figure 3.12: Impact of contamination and redshifts on the performance of our models. The left and central panels show how
accuracy, precision and recall (blue squares, orange circles and green hexagons, respectively) behave for increasing percentages
of overlap (Θ) and for increased background flux (BGflux). In the right panel we show how the accuracy, precision and
recall of our methods change in bins of ∆z = 0.25 redshift. Errorbars are sampled from bootstraping the test sample. The
performance gradually decreases with z, decreasing below 80% beyond z = 2. There is a slight uptick at z = 2.5, but with
large errorbars. The cutoff at z > 2.5 is the result of a combination of small sample size and redshift effects. The black
dashed line at score = 0.8 indicates the overall accuracy of the model in the complete test set.
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cutoff, i.e.,

Θ ∼ 15%, BGflux ∼ 10−1.5 e s−1 pix−1.

Since it is not possible to directly measure the contamination parameters in the

real observations, we refer the reader to our deep learning model trained to measure

the contamination in Appendix §3.3.5.

3.5.2 Classifications on CANDELS

We use our network to carry out predictions in all real CANDELS galaxies at

0.5 < z < 3, M∗ ≥ 109.5M⊙, S/N > 50 and HMAG < 24.5. We filter out regular

galaxies using a conservative asymmetry cut of A > 0.1 as we are interested only

in asymmetric, irregular/peculiar systems. This selection results in a sample of

23, 494 galaxies, for which 14, 410 have visual classifications from Kartaltepe et al.

(2015). Based on the classifications from our networks, we separate these galaxies

in post-mergers and non-interacting star forming galaxies using a threshold prob-

ability of 60%. Galaxies with probabilities 50% < P (PM) ∧ P (SF ) < 60% are

not considered in any class. These represent 2125 galaxies (≈ 15%) of the sample

with visual classifications. Figure 3.13 showcases some examples of galaxies in the

CANDELS fields separated by the classification of our models. Post-mergers in

the left panel and star forming galaxies in the right panel.

To investigate how the relative number of post-mergers and star forming galax-

ies changes over cosmic time, we divide the CANDELS sample in bins of ∆z = 0.25.

Figure 3.14 shows the change of class fractions change with redshift. We do this

analysis in two mass regimes: low mass galaxies with 9.5 < log(M∗/M⊙) < 10.0

(left panel) and high mass systems with log(M∗/M⊙) > 10.0 (right panel). Non-

interacting star forming galaxies are shown in blue circles while post-mergers are
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Figure 3.13: Examples of CANDELS galaxies with A > 0.1 classified by our models
into Post-mergers (left) and star forming galaxies (right), with their redshifts,
SFRs, and stellar masses. Images are ranked from left to right with increasing
redshift and top to bottom with increasing SFR. All stamps use a square-root
normalization.
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Figure 3.14: Relative class fractions for post-mergers and star forming galaxies vs.
redshift for real galaxies in the CANDELS fields. The fraction of post-mergers
increases from 30% at z ∼ 0.75 to 50% by z ∼ 2. Errorbars are drawn from
bootstrapping the samples and applying the underlying uncertainty associated
with the performance of our models, which decreases with redshift.

shown in red squares. The upper dashed line displays the fraction of galaxies that

are not mergers, including the star forming galaxies and other low probability

cases not included in any class.

There is no direct comparison to the fraction of post-mergers reported in Chap-

ter 2. We are showing in Figure 3.14 only the cases with high asymmetries, and

as a consequence our fractions here are intrinsically higher. We produce a smaller

sample by removing all the regular galaxies with A < 0.1 – the majority of the

sample in Chapter 2 – and thus end up with fractions that are 5 to 10 times higher.

Additionally, our timescales here are also longer, which increase the fractions as

well.

For the lower mass post-mergers we see an upward trend from ∼ 15% at z = 0.5

to ∼ 35% at z = 2, then a slight decrease beyond z = 2. This is still consistent

with a ∼ 35% fraction within the error-bars. The star forming galaxies behave

in the opposite way, decreasing from ∼ 70% at z = 0.5 to around ∼ 55% at
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z = 2. This suggests that among asymmetric galaxies of this mass range, there is

an exchange between the classes as we go to higher redshifts up to z = 2. This

once again emphasizes that classifications of local galaxies that are purely based

on the asymmetry (A) are highly contaminated with non-interacting star forming

galaxies. However, this is mitigated at higher redshifts where we find more post-

mergers. Nevertheless, samples selected based on A are still dominated by star

forming galaxies, albeit to a lesser extent.

Trends for higher mass galaxies are substantially different (right panel of Figure

3.14). While the post-mergers exhibit a similar but more steep upward trend from

∼ 20% at z = 0.5 fraction to ∼ 50% at z = 2, the relative fraction of star forming

galaxies show a constant value of ∼ 50% at 0.5 < z < 3, while the fraction of the

rest of the sample (dashed line) goes from ∼ 75% to ∼ 50%.

At the highest redshift bins, the error bars are large, indication for our networks

to perform less accurately above z = 2. The fraction of post-mergers changes

from 30% to around 50% at z = 2. We therefore attribute the downtrend in post-

mergers beyond z = 2 to the poor performance of our models at high redshifts

and do not take this to imply a real evolutionary effect.

We know that mergers are more common in the past (e.g, Mundy et al., 2017;

Duncan et al., 2019; Ferreira et al., 2020; Whitney et al., 2021), and here we find

further evidence that this is also the case for peculiar galaxies, indicating that the

nature behind these disturbed morphologies at earlier times can be attributed to

merging. To further investigate this, we select all galaxies from Kartaltepe et al.

(2015) that are classified as an irregular / peculiar with f_Irr > 0.75, i.e., cases

where more than 50% of the visual classifiers agree on the classification, and check

how our networks perform on this subset. We observe similar trends with redshift,

with the fraction of post-mergers increasing by ∼ 20% from z = 0.5 (∼ 30%) to
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z = 2 (∼ 50%), which agree with the results for the complete sample. Furthermore,

our methods classify ∼ 50% of the galaxies visually classified as potential mergers

(f_merger > 0.75) in Kartaltepe et al. (2015) as post-mergers. This is higher than

random, but does show the difficulty of obtaining exact matches between mergers

determined visually compared with a quantitative process.

Visual representation of the classification

As a way to visualize how our networks organize the features extracted from the

images to produce the final classification, we generate a 2D representation of the

final dense layer of the network corresponding to 128 neurons (128 dimensions) us-

ing an UMAP (Fig. 3.15). The color code of the points expresses their respective

labels, red for post-mergers and blue for star forming galaxies. Then, we overplot

the positions assigned by the network for unlabeled CANDELS galaxies. We also

include some examples of images of CANDELS galaxies close to their original po-

sition in this manifold as a way to visualize how the morphologies change with its

position. Each region in the parameter space of this diagram is directly related

to a probability. The maximum probability is found in the extreme regions fur-

ther away from the center, which represents how different these objects are for

the network. Images of galaxies the network struggles to identify are mixed in

the bottom middle, representing the region where both probabilities are similar

P (PM) ∼ P (SF ).

3.6 Implications

Making use of the classifications from our deep learning models, we first explore the

impact of major-mergers on classifications above the Star Forming Main Sequence
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Figure 3.15: UMAP representation of the output from the last dense layer of the
network. This representation shows the parameter space used for the network to
generate the final probability. Probabilities are highest in the extremes at the
top, and uncertainty increases due to increased contamination as we go along this
structure towards the middle. Same random examples of CANDELS galaxies are
placed close to their points in this manifold. Small regions identified by circles
show the clustering of non-galactic detections in this parameter space, located
close to the region of uncertain classifications at the bottom of the UMAP. ”Stars”
are stars in the center and ”Stars in FOV” correspond to stars at the edge of the
stamps.
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Figure 3.16: Mean distance to the star formation main sequence (∆MS) vs. log stellar mass in bins of redshift for CANDELS
galaxies above the star formation main sequence. Post-mergers are plotted as red squares, star forming galaxies as blue
circles. Errorbars are estimated using bootstrapping and show ±1 σ. The classes are indistinguishable between 0.5 < z < 2,
both increase similarly in ∆MS as we increase redshift. This represents the increase in scatter above the main sequence. All
galaxies included in this diagram lie above the SFMS, as we are only interested in exploring the scattering above the SFMS.
For the last redshift bin (2 < z < 2.5), there is a significant difference between the two classes both at the low mass end
and at the high mass end. At low masses (log(M∗/M⊙) < 10.0), post-mergers scatter higher than star forming galaxies with
a difference of ∆MS ∼ 0.1 dex. At high masses ( log(M∗/M⊙) > 10.0) the trend reverses and star forming galaxies scatter
higher with a ∆MS difference of ∼ 0.1 dex. However, care needs to be taken in the interpretation of this trend as it could be
spurious or insignificant given the errorbars and the performance metrics of our models at high redshift (Fig. 3.12).
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as parametrized by Schreiber et al. (2015) (§3.6.1). We then discuss the structure

of the two galaxy classes using Sérsic profile measurements (§3.6.2). In §3.6.3,

we update classifications from Chapter 2 with our new specialized model, thus

increasing certainty for previously undefined classifications. We then add to the

discussion proposed by Bickley et al. (2021) regarding the Bayesian limitations of

classifying post-mergers by considering an evolving merger fraction. We finish with

§3.6.5, in which we compare extracted features from real CANDELS galaxies to

features extracted from IllustrisTNG galaxies, as a way to address the challenges

of transferring the model from simulations to real observations.

3.6.1 Classifications above the star forming main sequence

The influence of merging on the structure of peculiar / irregular galaxies at in-

termediate redshifts (0.5 < z < 3.0) is directly related to the question of whether

merging galaxies can induce more starbursting episodes than galaxies evolving sec-

ularly. Enhanced star formation can then lead to more clumpy and asymmetric

structures, and thus can impact the morphological appearance of galaxies greatly.

By examining the star formation main sequence of galaxies, one can investigate the

nature of galaxies with unusually high SFRs and the formation path that resulted

in this physical effect.

In order to investigate this, we select only galaxies in our CANDELS fields

sample that lie above the star forming main sequence as parametrized by Schreiber

et al. (2015). We separate these sources by stellar masses, redshifts, and their

post-merger/star forming classification, measuring the mean distance to the star

formation main sequence (∆MS), as:

∆MS = log(SFR) − log(SFRMS), (3.7)
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where log(SFR) is the log star formation rate of a particular galaxy and

log(SFRMS) is the parametrization from Schreiber et al. (2015). The SFRs and

stellar masses used here for CANDELS galaxies were compiled by Duncan et al.

(2019) through SED fitting. We refer the reader to this publication for further

details. In Figure 3.16 we show the mean value of each stellar mass bin, for four

redshift ranges (one in each panel), separated into star forming and post-merger

galaxies by our classifications. For the 0.5 < z < 2.5 redshift range (panels A, B

and C), we do not find any impactful difference between the classes and ∆MS,

with all offsets well within the errorbars. However, for redshifts 2.5 < z < 3.0

post-mergers with log(M∗/M⊙) < 10.0 are on average ∼ 0.1 dex higher than star

forming galaxies of the same mass. The opposite is found for log(M∗/M⊙) > 10.0,

however uncertainty is higher here. Additionally, ∆MS increases with redshift in

all cases, which describes a larger scatter above the star forming main sequence.

However, given the performance metrics of our models at high redshift (Figure

3.12), we cannot claim that this is a real effect. We stress that in Figure 3.16 we

only select galaxies above the SFMS, which is why the distance is always positive.

In summary, locations of post-mergers and non-interacting galaxies in the star

forming main sequence diagram are comparable, with the possible exception at

the highest redshifts. This suggests one of the following: within our sample of

CANDELS galaxies, major-merging is not playing a major role in enhancing star-

bursting episodes; or the timescale probed by our method is too large and the SFR

enhancement from the captured post-mergers is short lived.

A relevant result was discussed in Hani et al. (2020), who investigated TNG300-

1 post-mergers at 0.0 < z < 1.0. They showed that post-mergers have enhanced

specific star formation rates by a factor of ∼ 2, but that this effect decays in

timescales of ∼ 0.5 Gyr, which can be driven in part by minor-mergers. Although
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we do not find evidence for an enhancement in starbursts due to major mergers,

we do not rule out the importance of minor mergers to this effect. We trained our

models without the presence of minor mergers, but we can not be sure that the

star forming galaxies classified by our models are not in some cases triggered by

minor mergers.

3.6.2 Structure and light profiles

Our deep learning classifications relate to two different formation pathways. These

formation scenarios could result in structures that differ for post-mergers and

star forming galaxies. To verify if in fact their structures are diverse from one

another, we investigate light profile fitting by using Sérsic profiles measured by

Morfometryka.

Figure 3.17 shows the distribution of Sérsic indices for post-mergers in red,

and star forming galaxies in blue. In general, each class presents very distinct

distributions: the post-mergers have a mean Sérsic index n ∼ 1.8+0.7
−0.6 roughly

representative of a transition from disks to spheroids; star forming galaxies have

systematically lower Sérsic indexes with n ∼ 1.1+0.5
−0.5, which is more consistent

with disk dominated galaxies. This offset of ∼ 1 dex increases for classification

thresholds at higher values. The average Sérsic profile (n) of post-mergers increases

while the distribution for star forming galaxies continues with a similar shape. This

is quantitative evidence that 1) post-mergers with higher light concentrations are

more easily separable from non-interacting star forming galaxies, and 2) these

types of galaxies are intrinsically different from each other.
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Figure 3.17: Sersic index distribution for post-mergers and star forming galax-
ies, in red and blue respectively. Post-mergers display more concentrated light
distributions with n ∼ 1.8+0.7

−0.6 while the star forming galaxies have n ∼ 1.1+0.5
−0.5

consistent with disk dominated galaxies.
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3.6.3 Merger Fractions and Rates

By using the new classifications from this work we can update classifications from

Ferreira et al. (2020) for cases where the previous method had ambiguous proba-

bilities for some major-mergers and non-mergers.

Our new dataset accounts for the effects of dust, it is not limited by orienta-

tion and probes the rest-frame optical. Thus we can check if any major merger

classifications in the previous work can be attributed to non-interacting star form-

ing galaxies or if any non-mergers can be re-classified as post-mergers. This is

done by comparing the probabilities for major-mergers and non-mergers, P (MM)

and P (NM), respectively, from Chapter 2 to the new probabilities P (PM) and

P (SF ). We update a non-merger classification to post-merger if

P (PM) > P (NM),

and update the major-merger classifications to non-merger if

P (SF ) > P (MM).

In other words, we reclassify galaxies from the previous sample where our new

method is more certain about its classification than the previous one. This leads to

∼ 5% of major-mergers reclassified as star forming non mergers, which lowers the

overall merger fractions at lower redshifts and keeps it similar at higher redshifts.

In Figure 3.18 we compare the new merger fraction measurements, in green, to

the results from Chapter 2, in gray.
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The updated fit of the cosmic evolution of the merger fraction, fm(z)

fm(z) = 0.011 ± 0.002 × (1 + z)2.71±0.31, (3.8)

with errors estimated with boostraping, agrees with the previous measurement in

Ferreira et al. (2020) within errors. To measure the galaxy major-merger rate (R),

we combine the timescale (τm = 0.5 Gyr) used in our selection (§3.3.1) with this

merger fraction through

R =
fm
τm

. (3.9)

The updated galaxy major merger rate is

R = 0.022 ± 0.006 × (1 + z)2.71±0.31. (3.10)

We emphasize that this correction is a minor adjustment to the galaxy major-

merger rates presented in Chapter 2, which remain broadly consistent with each

other.

3.6.4 Bayesian Analysis of Mergers

We now investigate the possible contamination in merger samples that are selected

through our method. This approach is fairly direct and based on Bayesian statis-

tics, and relies on some understanding of the true intrinsic merger fraction and

how it evolves with time. It also requires that we have a good understanding of

the fraction of contamination in merger samples (Bickley et al., 2021). The basic

Bayesian formula to understand this is given by the following.
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Figure 3.18: Major-merger fractions as a function of redshift. We show corrected
merger fractions from Chapter 2 by re-classifying galaxies with our new method
in mergers and non-mergers, shown in green. The original estimates are shown in
gray.
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Figure 3.19: Extracted features by our networks in a UMAP 2D representation. For each model in our ensamble we generate
a UMAP from the extracted features from the last convolutional layer of the trained networks, both when applied to the
Illustris galaxies, color-coded by the class, and to the unlabeled CANDELS galaxies shown in black dots. Both Illustris
and CANDELS extracted features populate the same region of this representation, showing that the features used by the
network to then perform the classification task are in general domain invariant. Additionally, both classes – post-mergers
and star forming galaxies – form separated clusters with some overlapping. Classification could be done in this representation
alone, but it is then better organized by the fully connected layers that combine these features to produce the final output
probability.
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P (M|S) = P(S|M) × P (M)

P (S)
, (3.11)

where P (M|S) is the probability of a merger, given that a method used to select

mergers, (S), identifies it as such. The value of P(M) is the probability that an

object is a merger before a selection of merger is made. P(S) is the probability

that a galaxy is selected as a merger, whether a real merger or a false-positive.

Because of the results of this Chapter, we know that this last number is very likely

not equal to unity. It in fact can depend on various factors and methods of finding

mergers. We can write the probability P(S) as:

P (S) = P (S|M) × P(M) + P(S|NM) × P(NM) (3.12)

where NM standard for non-mergers, where P(S|NM) is the probability of iden-

tifying correctly a non-mergers, and the value of P(NM) is the probability that

the galaxy is not a merger. We can simplify this if we know, a priori, what the

merger fraction is based on previous work. If we denote the merger fraction as fm,

and the machine learning probability of finding a merger/non-merger as pm and

pmn then we can rewrite equation (3.11), as:

P (M|S) =
pm × fm

(pmfm + (1 − pnm)(1 − fm))
. (3.13)

Thus, for example, if the accuracy of a machine learning method for finding a

merger is 0.9 and the accuracy for finding a non-merger is 0.9, and the merger

fraction fm = 0.1, then the probability that a galaxy identified as a merger is

actually a merger is P (M|S) = 0.5. This implies that even when the accuracy
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of finding mergers and non-mergers is 90%, at the lowest redshifts, where the

merger fraction is low ∼ 10%, there is still a 60% chance that an identified merger

is identified incorrectly as such. At higher redshifts, where the intrinsic merger

fraction is higher, the probability of finding a merger correctly increases to ∼ 80%

when the merger fraction is as high as fm ∼ 0.3.

We can generalise the equation for P (M|S), as a function of z, by considering

how the merger fraction fm evolves with redshift, such that:

P (M|S, z) =
pm(z) × fm(z)

pm(z)fm(z) + (1 − pnm(z))(1 − fm(z))
,

fm(z) ≡ f0(1 + z)m,

which gives us a tool to understand how our classifications might be contaminated

by sample imbalance effects with respect to redshift.

From this we can conclude that a significant fraction of individual galaxies

within the CANDELS imaging may be incorrectly identified as either mergers

or non-mergers. From our results here, our method effectiveness for correctly

classifying mergers increases from ∼ 40% at z ∼ 0.5 to ∼ 70% at z ∼ 3. This

is likely what can account for some of our misidentified galaxies as discussed in

§3.5 when discussing the success of our method of separating star forming systems

from those that are undergoing mergers.

These are conservative estimates which do not include the fact that we

pre-select CANDELS galaxies based on their asymmetry. This should increase

P (M|S, z) further since fm is higher among galaxies with A > 0.1.
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3.6.5 On Domain Adaptation Issues

There is a growing concern on the applicability of simulation trained deep learning

models when applied to a intrinsically different domain. For us this is the case with

going from cosmological simulations to real observations. When transferring from

one domain to another, deep learning models might fail due to relying too much

on domain specific features. Several techniques were developed to address this

problem, focused on forcing neural networks to learn domain invariant features,

leading to more robust models. Ćiprijanović et al. (2021) show that adopting tech-

niques for domain adaptation could increase model performance when applying to

the target domain by 20%.

In our case, the source domain is the IllustrisTNG galaxies and the target

domain the CANDELS observations. To check if we need to apply domain adap-

tation techniques to this particular problem, we used UMAPs (Uniform Manifold

Approximation and Projection, as described in Sec. 3.5.2) (McInnes et al., 2018)

to reduce the high dimensional space generated by the features extracted by our

network to a 2D-space that is easy to visualize2. Then, for each of our trained

models we compare whether the features extracted by the network show similar

distributions for Illustris and CANDELS galaxies. In Figure 3.19 we show UMAPs

for each of the CANDELS fields models, for low redshift (left) and high redshift

(right), color coded by their class in the case of Illustris and in black for real CAN-

DELS galaxy images. As can be seen, these distributions of simulated galaxies

and real observations are clustered together, with very few outliers not following

the main cluster. Additionally, we can see that each class forms its own cluster,

with overlapping regions, showing that features between classes are distinct and

2We also tested with t-SNEs with similar results.
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in general not domain specific.3

We attribute the generalization success of our models to our mock data

pipeline, which is tailored to mimic each individual CANDELS field with

maximum fidelity – with their instrumental and observational features. Also aug-

mentations with patches of the sky from CANDELS introduce real observations

into our source domain, which not only make our training sets big (∼ 140.000

images) but also help with domain confusion within the network. Thus, we do

not include any domain adaptation process in our pipeline.

3.7 Summary

To shed light on the nature of peculiar/irregular objects at intermediate to high

redshifts, we have constructed a framework based on forward-modelling of cosmo-

logical simulations with deep learning algorithms, that allows classifications with

physically motivated labels based on the formation history of galaxies.

We used data from the IllustrisTNG TNG100-1 simulation to create realistic

mocks of galaxies with CANDELS-like properties, including a full radiative trans-

fer treatment with SKIRT for two specific classes of galaxies: post-mergers and

non-merging star forming galaxies. These are selected so that their main difference

is their formation history.

We produced a dataset of ∼ 160, 000 images of simulated IllustrisTNG galaxies

with realistic visual properties that mimick CANDELS observations in the redshift

range 0.5 < z < 3.0. The images are used to train Deep Convolutional Neural Net-

works to distinguish between formation histories of post-mergers and star forming

3We also tested generating random noise images to check their position in this parameter
space. As expected, they cluster away from the image regions, forming its own outlier region
which is far from the main locus where galaxies are found.
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galaxies. The main conclusions drawn from this work are summarized as follow:

• The classifier network combined with our new dataset produces classification

models with a balanced performance of ∼ 80% accuracy, precision, and

completeness when applied to a single-band imaging dataset, outperforming

the asymmetry (A) by at least 25% within the simulated data. Additionally,

for pristine images without any contamination and observational effects, the

theoretical limit of our model is ∼ 91% accuracy. This is evidence that using

the asymmetry (A) alone for ambiguous morphological cases might generate

highly contaminated samples.

• We define two new contamination indicators, the overlapping percentage,

Θ, and the average flux of the background sources, BGflux, by leveraging

how simulated galaxies are combined with true CANDELS background sky

patches. Θ controls how sources overlap and are projected in the same stamp,

while the BGflux value probes the effect of the brightness of external sources

on the classification of the central object. These allow us to explore in detail

how deep learning classifications are impacted by contamination. We show

that both crowded environments and projections and the relative brightness

of external sources to the central galaxy negatively impacted our results.

Based on this, we define quality control limits to our approach within the

CANDELS fields as Θ ∼ 10% and BGflux < 10−3 e s−1 pix−1. Although not

universal, these limits provide guidelines for sample selection when applying

our models to data.

• By applying our model to real CANDELS observations of galaxies with high

asymmetries, we show that the relative fraction of post-mergers to star

forming galaxies increases with higher redshift for two mass regimes. For
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low mass sources (9.5 < log(M∗/M⊙) < 10.0), the post-merger fraction in-

creases by ∼ 20% within 0.5 < z < 2.0, while the fraction of star forming

galaxies decreases by ∼ 15% in the same redshift range. In the high mass

case (log(M∗/M⊙) > 10.0), the post-merger fraction increases by ∼ 25%

at 0.5 < z < 2.0, while the fraction of star forming galaxies stays broadly

constant.

• We explore the impact of major mergers on galaxies located above the star

formation main sequence (SFMS) as parametrized by Schreiber et al. (2015).

We separate CANDELS galaxies above the SFMS in the classes provided by

our model and in bins of stellar mass. At 0.5 < z < 2.0 we do not find

any clear signs that major mergers play a critical role on the scattering

above SFMS, with similar trends for post-mergers and star forming galaxies.

However, in the highest redshift bin with good sample statistics (2.0 < z <

2.5) we see a post-merger driven SFR enhancement at lower masses of about

∼ 0.1 dex.

• We show that the light distribution parametrized through Sérsic profiles of

the CANDELS galaxies classified by our models as post-mergers are intrinsi-

cally distinct from those classified as star forming galaxies. The star forming

galaxies sample is dominated by disk-like objects with an average Sérsic in-

dex of n = 1.1+0.5
−0.5 while the post-mergers have more concentrated light

profiles corresponding to higher central concentration with n = 1.8+0.7
−0.6, with

a long tail at higher Sérsic indices. Moreover, when we increase the proba-

bility threshold of our classifications to improve the purity of our selections,

only the post-merger distribution display higher Sérsic indices. Evidently,

our model predicts that post-mergers are more likely to be bulge-dominated

galaxies.



3.7. Summary 138

• By using our updated data pipeline and models specifically tailored to distin-

guish between post-mergers and star forming galaxies, we revisit the merger

fractions and merger rates from Chapter 2 by correcting ambiguous cases.

This leads to updated galaxy merger rates that are slightly lower, but con-

sistent with previously reported rates: R = 0.022 ± 0.006 × (1 + z)2.71±0.31.

• We show that our models use similar features to classify IllustrisTNG and

real CANDELS galaxies, with no clear discrepancy between the two domains.

Using the features extracted by the convolutional layers of our network,

we generate UMAPs, which visualize the complex parameter space in 2D.

Features of IllustrisTNG galaxies and CANDELS galaxies overlap for all the

CANDELS fields. Although the CANDELS galaxies do not span the entire

feature space of the IllustrisTNG galaxies used here, they are contained

within that feature space.

Our machine learning driven approach provides a new way to investigate the

formation history of galaxies with models that are informed by cosmological sim-

ulations. This includes the use of the models themselves, and the application of

these models within accurate observing conditions.

Nevertheless, currently we are still limited to high-mass major merger cases

due to resolution limitations from the simulations and mass completeness from

the observations. In the upcoming years, combining the next generation of high

resolution, small box simulations (e.g. TNG50-1, New Horizons) with observa-

tional data from the James Webb Space Telescope (JWST) and Euclid Telescope

will open a new window to incorporate the effect of minor mergers and lower mass

systems. Together, this will represent a major step towards uncovering unresolved

questions of galaxy evolution.



Chapter 4

First Rest-frame Optical Observations

of Galaxy Structure at z > 3 with

JWST in the SMACS 0723 Field

The content of this chapter has been accepted for publication (Ferreira et al.,

2022b) in The Astrophysical Journal Letters. I acknowledge the help from Christo-

pher Conselice and Elizabeta Sazonova for the visual classification effort reported

here.

4.1 Abstract

We present early results regarding the morphological and structural properties

of galaxies seen with the James Webb Space Telescope (JWST) at z > 3 in the

Early Release Observations towards the SMACS 0723 cluster field. Using JWST

we investigate, for the first time, the optical morphologies of a significant number

of z > 3 galaxies with accurate photometric redshifts in this field to determine

139
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the form of galaxy structure in the relatively early universe. We use visual mor-

phologies and Morfometryka measures to perform quantitative morphology

measurements, both parametric with light profile fitting (Sérsic indices) and non-

parametric (CAS values). Using these, we measure the relative fraction of disk,

spheroidal, and peculiar galaxies at 3 < z < 8. We discover the surprising result

that at z > 1.5 disk galaxies dominate the overall fraction of morphologies, with

a factor of ∼ 10 relative higher number of disk galaxies than seen by the Hubble

Space Telescope at these redshifts. Our visual morphological estimates of galaxies

align closely with their locations in CAS parameter space and their Sérsic indices.

4.2 Introduction

The James Webb Space Telescope (JWST) was launched on December 25, 2021

with its first operational image released to the public on July 11, 2022 by US Pres-

ident Joe Biden. This first image is a very deep image of the RELICS cluster

SMACS J0723.3-732 (SMACS 0723, Ebeling et al., 2010; Repp & Ebeling, 2018;

Coe et al., 2019). SMACS 0723 is massive cluster of galaxies at z = 0.390 which

is also known to contain an extensive collection of strong gravitational arcs with

a measured and modelled mass profile (e.g., Golubchik et al., 2022; Pascale et al.,

2022). As this is the first JWST image to be released for a field where many

objects have existing accurate photometric redshifts, it enables us to study the

morphological evolution of galaxies with the earliest JWST data available.

Even before the release of the raw imaging, it was clear from the publicly

released promotional color image that this cluster contained a collection of red

and spiral galaxies that were not obviously present in the Hubble Space Telescope

(HST) imaging. These observations provide the ideal resource for a first exam-
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ination of the problem of how galaxy morphology changes from HST to JWST,

and how rest-frame optical morphologies appear in the un-probed region z > 3.

To understand this question better, we have undertaken an early analysis of this

Early Release Observation (ERO) data released by the Space Telescope Science

Institute (STScI) on July 13, 2022 to the public.

This Chapter is a first-look study of the morphological evolution of galaxies

seen in the field around SMACS 0723, giving us our first look at how galaxy struc-

ture changes with redshifts up to z = 8. This is the first field where this analysis

can be performed due to the limited available accurate photometric redshifts in

other, early release observations.

Galaxy structure and morphology are one of the key aspects for understanding

galaxy evolution, and will be a key measurement that JWST will make throughout

its lifetime. Following the first servicing mission to Hubble, distant galaxies started

to have their structure resolved in the mid-nineties. This revealed that faint,

distant galaxies appear more peculiar and irregular than local ones, and cannot be

easily classified on the Hubble sequence (Griffiths et al., 1994; Dressler et al., 1994;

Driver et al., 1995; van den Bergh et al., 1996). Why that is the case has remained

a major topic of discussion for almost three decades. These early observations,

however, only showed that galaxies became more peculiar at fainter magnitudes,

which did not necessarily correlate with further distances.

When redshifts became available, at first within the Hubble Deep Field, it was

clear that galaxy structures evolve strongly and systematically with redshift, such

that peculiar galaxies dominate the population at z > 2.5 (e.g., Conselice, 2003;

Papovich et al., 2005; Elmegreen & Elmegreen, 2005; Dahlen et al., 2007; Buitrago

et al., 2008; Conselice et al., 2008; Huertas-Company et al., 2009; Buitrago et al.,

2012; Mantha et al., 2018). It is now well-established that galaxies as observed
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with HST become smaller and more irregular/peculiar at higher redshifts, and this

has been accounted for by the merger process for a significant fraction (40-50%)

of systems (Conselice et al., 2014).

However, although HST was revolutionary, morphological evolution measure-

ments still suffer some limitations. First among these is that due to HST’s limited

red wavelength coverage, we have not measured the rest-frame optical light of

galaxies within the first two Gyr after the Big Bang, that is at z > 3. Very few

galaxies have been observed in the rest-frame optical bands at such redshifted

wavelengths, and most of these utilise ground-based adaptive optics. This is due

to the fact that the F160W band on HST only probes rest-frame optical light up

to z ∼ 2.8, whereas JWST permits us to obtain this information up to z = 8

with F444W, and even beyond with MIRI. Second, HST infrared imaging does

not provide the necessary spatial resolution to resolve most high-redshift objects.

Furthermore, we have found in previous observations (e.g., Conselice et al., 2005;

Huertas-Company et al., 2009; Mortlock et al., 2013; Huertas-Company et al.,

2016) that the number of galaxies that are classifiable as disks or spheroids (in-

cluding ellipticals) declines quickly when observing systems at higher redshifts, up

to z = 3.

Observations of galaxy structure and morphology at z > 3 do show that in the

rest-frame UV, galaxies are peculiar and irregular (e.g., Elmegreen & Elmegreen,

2005; Conselice & Arnold, 2009). Galaxies at these redshifts are also often found

to be clumpy, as seen with deep Wide Field Camera 3 (WFC3) data (Elmegreen

& Elmegreen, 2005; Oesch et al., 2010; Margalef-Bentabol et al., 2018; Whitney

et al., 2021; Margalef-Bentabol et al., 2022). Measurements of galaxies in pairs

also demonstrates that the merger rate and the fraction of galaxies in mergers at

z ∼ 6 is as high as 50% (e.g., Conselice & Arnold, 2009; Duncan et al., 2019).
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This implies that galaxy structure should likewise be distorted accordingly (e.g.,

Duncan et al., 2019; Shibuya et al., 2022). At the same time, we have believed for

30 years that the Hubble sequence is established quite early at z ∼ 1 (e.g., Mortlock

et al., 2013; Huertas-Company et al., 2016). However, all of these conclusions are

based on HST imaging, which has now been superseded in significant ways by the

redder bands, higher resolution, and better sensitivity of JWST.

Thus, in this Chapter we explore the morphological properties of the earliest

galaxies through an approach based on galaxy classification and measurement. We

demonstrate that these early galaxies have a more normal morphology than ex-

pected, with classifications showing that disk galaxies are much more common than

previous observations suggested (e.g., Conselice et al., 2005; Huertas-Company

et al., 2009; Conselice et al., 2014; ?; Margalef-Bentabol et al., 2022). Overall,

we argue that the formation of the Hubble sequence appears to be ongoing much

earlier than we had anticipated based on HST observations.

We opt for a more classical approach to this novel dataset instead of the deep

learning methods discussed in Chapter 3 and Chapter 4 due to the lack of visual

classifications available, and the lack of cosmological simulations focused on the

high redshift universe. This is the first step on moving towards the application of

supervised methods to JWST data.

This Chapter is organized as follows: in § 4.3 we describe the data and our

methods and outline. In § 4.4 we describe the morphological results of our

study, § 4.5 is a short discussion of our results, and § 4.6 is an overall summary.

Throughout this Chapter we assume a Λ cold dark matter cosmological model

with ΩΛ = 0.7, ΩM = 0.3 and H0 = 70 km s−1 Mpc−1. All magnitudes are given

in the AB system (Oke, 1974; Oke & Gunn, 1983).
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4.3 Data Reduction and Products

The data we use for this analysis originates from the Early Release Observations of

SMACS 0723 (Pontoppidan et al., 2022) and include observations taken with the

Near Infrared Camera (NIRCam; Rieke et al., 2005, 2008, 2015). The images were

obtained on June 06, 2022 (PI: Pontoppidan; Program ID 2736) in the F090W,

F150W, and F200W short-wavelength (SW) bands, and F356W, F277W, and

F444W long-wavelength (LW) bands. The total integration time for this target

is 12.5 hr. Figure 1 shows the combined color image of SMACS 0723 which we

created from our own reduction.

We reprocess the uncalibrated lower-level JWST data products following a

slightly modified version of the JWST official pipeline. This is because the initial

release of the higher-level data products have been found to contain WCS align-

ment issues as well as sub-optimal background subtraction. The key differences

are as follows: (1) We use version 1.5.2 of the pipeline as opposed to version 1.5.3,

which was the most up-to-date version at the time of writing. This is because

version 1.5.3 has a significant bug in the background subtraction step that led

to sub-optimal performance.1 (2) We apply the CEERS 1/F noise and flat field

correction (Bagley et al. in prep) between stages 1 and 2 of the official pipeline.

(3) We extract the SkyMatchStep from stage 3 and run it independently on each

NIRCam frame, allowing for quicker assessment of the background subtraction

performance and fine-tuning. (4) After Stage 3, we align the final science im-

ages onto a GAIA-derived WCS using tweakreg, part of the DrizzlePac python

package2. We then pixel match the images with the use of astropy reproject3.

Finally, we re-align the RELICS SMACS 0723 HST imaging to the GAIA DR2

1https://github.com/spacetelescope/jwst/issues/6920
2https://github.com/spacetelescope/drizzlepac
3https://reproject.readthedocs.io/en/stable/

https://github.com/spacetelescope/jwst/issues/6920
https://github.com/spacetelescope/drizzlepac
https://reproject.readthedocs.io/en/stable/


4.3. Data Reduction and Products 145

catalog due to large 1′′ offsets, and match it with astropy reproject as well.

We then apply astrometric corrections to the positions of sources available in the

RELICS catalogs.

Overall, this data set allows us to probe the rest-frame optical images of galax-

ies out to z = 8. In Figure 4.2, we show the rest-frame wavelength probed by each

individual filter and how they can be combined together for up to z = 8 optical

rest-frame coverage. In addition to this, we combine our observations with HST

Archival data in the WFC3 F160W band.

We employ two different approaches to the SMACS 0723 data: first a quan-

titative analysis using Morfometryka (Ferrari et al., 2015), where we mea-

sure non-parametric morphology estimates such as concentration, asymmetry, and

smoothness (CAS; Conselice et al., 2003); Gini-M20 (Lotz et al., 2004), various

sizes, as well as light profile fitting, which is described in detail §4.3.2. Second, we

provide simple visual classifications for all sources with S/N > 10 in their optical

rest-frame filters, described in detail in §5.3.3.

4.3.1 Photometric Redshifts

We use photometric redshifts derived through the Bayesian photo-z code (BPz)

(Beńıtez, 2000; Beńıtez et al., 2004; Coe et al., 2006) by the RELICS program

(Salmon et al., 2020), which used HST imaging in 7 bands for 41 clusters, including

SMACS 0723, and archival Spitzer IRAC measurements to measure photometric

redshifts of galaxies up to z = 8. The BPz code compares RELICS fluxes to 11

templates for ellipticals, spirals and starburst galaxies. The overall method for

this is described in detail in Coe et al. (2019).

For our analysis, we selected 355 galaxies with RELICS photometric redshifts
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Figure 4.1: JWST color image of SMACS 0723 showing the overall distribution
of galaxy shapes and morphologies, including the lensing arcs. This image was
produced from our reduced data products via a composite of data in 6 bands:
F090W, F150W, F200W, F277W, F356W, and F444W. F090W and F150W were
assigned blue colours, F200W and F277W green, and F356W and F444W orange
and red respectively.
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Figure 4.2: Rest-frame wavelength at a given redshift for the F200W, F277W,
F356W, and F444W filters. The hatched regions show the areas where NIRCam
filters probe the optical rest-frame for z > 3, with the color corresponding to the
respective optimal filter for the redshift range. To follow galaxies’ optical rest-
frames we use F277W for 3 < z < 4, F356W for 4 < z < 6, and F444W for
6 < z < 8.
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from the JWST footprint of the SMACS 0723 field, restricting our sample to

1.5 ≤ z ≤ 8. The distribution of redshifts across the SMACS 0723 field is shown

in Figure 4.3. From these 355 sources 280 were considered classifiable, excluding

stars and point sources.

As an additional sanity check of these redshifts, and to see if they could be

improved upon, we conduct our own SED fitting procedure with the use of LePhare

(Arnouts et al., 1999; Ilbert et al., 2006). Within LePhare, we use the COSMOS

galaxy templates (Ilbert et al., 2009) which are based on the commonly used BC03

template set (Bruzual & Charlot, 2003). These templates are modified with dust

attenuation up to E(B − V ) = 1.5 (Calzetti et al., 2000) and attenuation from

the IGM following Madau (1995). We initially run the SED fitting process on the

original RELICS photometry and obtain strong agreement with their BPz based

redshifts. We then add in photometry from an F200W selected NIRCam catalogue

which is cross matched to the RELICS catalogue with a 0.5 arcsecond tolerance.

To be consistent with the photometry derived in the RELICS catalogues, we use

isophotal magnitudes as measured by SExtractor (Bertin & Arnouts, 1996) for

our sources. We find that the photo-z’s are consistent with the original RELICS

estimations when the bluest NIRCam bands available (F090W and F150W) are

added to the SED fitting procedure. However, when photometry from F200W and

redwards are added, we find that some originally high redshift sources (z > 3)

in the RELICS catalogue are given new solutions at z < 1, this is found to be

the result of a lack of a strong Balmer break at ∼ 2µm. Examining these sources

in detail reveal them to be classified as star-forming disks in our later analysis.

Estimations of the proper size and absolute magnitudes of these objects reveal

many of the new low-z solutions to give extremely small (≤ 0.1 pkpc) and faint
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Figure 4.3: The distribution of redshifts across the SMACS 0723 field. Different
redshift regimes, where we use our methodology to investigate the morphological
evolution, are shown as differently-colored markers.

(MF415W > −16) properties for the sources4. Additionally, the current dataset was

reduced prior to the calibration updates based on on-flight observations, which had

large offsets on zero-points of up to ∼ 0.4 mag (Adams et al., 2022; Rigby et al.,

2022). This observation, combined with the subsequent disk classification lead us

to proceed with the original RELICS BPz redshifts for all sources.

4The results presented here are robust against putting these sources at lower redshifts since
they represent a small fraction of the overall sample.
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Figure 4.4: Plots showing the morphological evolution of the galaxies found in the SMACS 0723 field up to z = 6. These
show the fraction of the total number of galaxies, within a given redshift bin, which has the given type as determined by
visual morphologies. We also include the morphological evolution which has been derived from HST observations of the
CANDELS fields in Mortlock et al. (2013). Circled markers denote the JWST observations at higher redshifts. We note
that the increase in spheroids can be attributed to smaller sizes with increasing redshift z as discussed in § 4.4.1.
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4.3.2 Quantitative morphologies: Morfometryka

Morfometryka was designed to perform several structural measurements on

galaxy images, in an automatic non-interactive way (Ferrari et al., 2015; Lucatelli

& Ferrari, 2019). It was devised mainly to measure non-parametric morphometric

quantities, but also performs single-component Sérsic model fitting. It takes as

input the galaxy and point spread function (PSF) images, estimates the back-

ground with an iterative algorithm, deblends the sources and defines which one

is the target. Then, it filters out external sources using GalClean5 (?). From the

segmented region it calculates basic geometrical parameters (e.g. center, position

angle, axial ratio) using image moments. Following this, it performs photometry,

measuring fluxes in ellipses with the aforementioned parameters. Along the way,

it masks point sources over the ellipse annulus with a sigma clipping criterion.

From the luminosity growth curve it establishes the Petrosian radius and the

Petrosian Region, inside which all measurements are made. The 1D Sérsic fit is

performed on the luminosity profile. For robustness, the 1D outputs are used as

inputs for a 2D Sérsic fit done with the galaxy image and JWST PSF images

generated with the official package WebbPSF6. Morfometryka uses the PSF to

produce the Sérsic profiles and to mask an area of the size of the PSF FWHM

from the central region of the source stamp for non-parametric morphology calcu-

lations. Even though these simulated PSFs are realistic, we note that deviations

from the true PSF might exist. However, as we are interested in extended sources,

effects of this type are neglible. Finally, Morfometryka measures several mor-

phometric parameters (concentration; asymmetry; Gini; M20; entropy, spirality,

and curvature, among others).

5GalClean – https://github.com/astroferreira/galclean
6https://webbpsf.readthedocs.io/

https://github.com/astroferreira/galclean
https://webbpsf.readthedocs.io/
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4.3.3 Visual Classification

All galaxies in the sample were classified by three co-authors of this Chapter

with experience with galaxy structure and classification (CC, LF, ES). The visual

classification scheme that we use is described in detail in Ferreira et al. (2022; in

prep). Here we give a quick summary. In general, we use four categories for visual

classifications, following Mortlock et al. (2013); these are defined as described

below, and differ slightly from a traditional Hubble classification scheme, but are

generally very similar.

• Class 0: Unclassifiable: Galaxies too small and/or too faint to classify, and

images with artifacts.

• Class 1: Spheroids: These galaxies are resolved, symmetrically and centrally

concentrated, with a smooth profile and are round/elliptical in shape.

• Class 2: Disks: This category includes galaxies that exhibit a resolved disk

in the form of an outer area of lower surface brightness with a regularly

increasing brightness towards the center of the galaxy. This classification

does not depend on there being a spiral pattern in the system, although one

can be present in this classification.

• Class 3: Peculiar. This class is for well-resolved galaxies with a morphology

which is dominated by a disturbance or peculiarity and has no obvious disc

or spheroid component.

Each galaxy is further classified as smooth or structured, where structured

galaxies have features standing out from the smooth stellar envelope, such as star-

formation clumps, tidal features, and merger signatures. Galaxies with distinct
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disk and bulge components were also classified as structured. Finally, the classifiers

were able to provide additional notes on each source to aid in future analysis. We

do not however use these further detailed morphologies in this Chapter.

These classifications were all carried out separately and then combined into

an average, which we then use throughout this work. Our process was such that

we only classified each galaxy in our sample in the wavelength which most closely

matches the rest-frame optical wavelength of the observations. This allows us

to match the classifications at different redshifts to determine how morphological

evolution is occurring. We find that the classifications by the three classifiers agree

2/3 in ∼ 63% (177) of the sources while perfect agreement 3/3 happens ∼ 33% (87)

of the time. Catastrophic classifications where all 3 classifiers disagree happens

only in ∼ 5% (16) of the cases. Table 4.1 shows the average of the fractions for

each of the three classifiers for the three different types (sph, disk and peculiar).

Also listed as the error-bar on these averages is the standard deviation of the

fractions among the classifiers, showing that these are always relatively small and

in some cases the agreement is to within a few percent.

4.4 Results

4.4.1 Distribution of Morphology with Redshift

One of the main questions that we can investigate with this early imaging from

JWST is the distribution of morphological types with redshift. Given the red-

shifts we have from HST and the morphologies from JWST we can make the first

measurement of the morphological distribution of galaxies up to z < 8.

In Figure 4.4 we plot the morphological distribution of our sample of galaxies
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Figure 4.5: Comparison HST vs JWST images for 9 objects in each class within
our sample. Left columns shows the HST F160W image, whilst the middle panel
shows the JWST view at the same orientation, in the rest-frame optical. The
far right panel shows the color image of this system as seen through the JWST
NIRCam F277W, F356W and F444W filters, generated by TRINITY (Coe et al.,
2012). The IDs refer to the original RELICs catalogs identification.
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Table 4.1: The filters used in this study with the redshift ranges used within that filter and the average rest-frame wavelength
in which that filter probes at that redshift. Also shown are the classification fractions for our three main types of galaxies;
spheroids, disks, and peculiars. These are the averages of the three classifiers with the standard deviation listed as the value
σ. Sérsic indices for each class and redshift bin is also provided, showing the mean of the distribution together with 15%
and 85% percentile scatter.

Filter z <Rest-λ > class (sph) σ(sph) class (disk) σ(disk) class (pec) σ(pec) nsph ndisk npec
F090W 1.5-3.0 0.36-0.22 µm 0.18 0.02 0.38 0.10 0.43 0.12 1.321.6

1.14 1.121.62
0.58 0.761.54

0.37

F227W 3.0-4.0 0.69-0.55 µm 0.21 0.08 0.48 0.05 0.31 0.03 1.221.32
1.12 1.041.3

0.8 1.041.53
0.31

F356W 4.0-6.0 0.71-0.50 µm 0.37 0.01 0.40 0.02 0.23 0.03 1.581.81
1.08 1.111.29

0.81 1.671.09
1.26
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with morphological classifications from the JWST imaging. As can be seen, we

find a remarkable increase in the number of disk galaxies over what was thought

to exist in previous analysis of the deepest HST imaging in the NIR, which found

that that there were very few disk galaxies at z > 1.5, with a rapid decline in the

numbers at higher redshifts (e.g., Conselice & Arnold, 2009; Mortlock et al., 2013;

?).

More generally, a decline in spheroids was also seen, but the morphological

change with redshift was not as pronounced as it was for the disk galaxies. Fig-

ure 4.5 shows some examples of different galaxy types and how they appear dif-

ferently in the JWST vs. the HST imaging, revealing that morphologies are often

much easier to make out within the JWST data. There is however, a propensity

for these disks and spheroids to contain peculiar features, such as tidal features

and clumpy regions, that can differentiate them from z = 0 examples. We however

do not investigate these further in this Chapter.

Overall, we find that the disk galaxy population makes up about half of the

galaxies that are identified within the field of SMACS 0723 at z > 2.5. This

is a remarkable result, as it shows that galaxies such as the Milky Way could

potentially have retained the same overall morphological state for over 12 billion

years if these distant disk galaxies are similar to the ancestor galaxy of the Milky

Way.

Morphology at z > 4

The morphologies of z > 4 galaxies, as probed by the F356W filter, differ from

the rest-frame UV morphologies determined from HST imaging (Conselice &

Arnold, 2009). Despite what might have been expected from HST observations,
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Figure 4.6: Concentration vs. Asymmetry. The abundance of disks results in
their populating the area originally used for selecting late-type galaxies. Decision
thresholds shown here are drawn from (Bershady et al., 2000).

the morphologies of at least the brightest galaxies are much less distorted than

had been previously been thought based on HST observations. Also, the galax-

ies at this epoch are often very tiny, such that their size in a NIRCam image

is just a bit larger, or within, the PSF of JWST. In fact, the larger number of

spheroids/compact objects is in part due to the fact that so many of these sys-

tems are unresolved, an indication that their sizes are quite tiny. Future studies

carefully measuring sizes with the use of the JWST PSF will examine these sizes

and their evolution.
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Figure 4.7: Plot showing the Sérsic index evolution in bins of redshift. Shown are
the morphological types and their mean values for these indices alongside error
bars representing the 15% and 85% percentiles of the distribution. We can see
that the average hovers about n = 1, but that the spheroids appear to have higher
values even at the higher redshifts. This is in contrast to low redshift Sérsic index
distributions, where the populations of spheroids have higher Sérsic indexes with
n ∼ 4, while the disk galaxies generally.
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4.4.2 Quantitative Morphologies

We quantify the structures of these galaxies based on the NIRCam imaging. This

can be done in a number of ways, and will be the focus of future dedicated papers.

We give a broad overview of quantitative morphology for our sample and leave it

to future papers to elaborate on these issues.

First we show the concentration-asymmetry diagram, which has been used to

classify galaxies and has a broad correspondence with galaxy types in the nearby

universe (e.g., Conselice et al., 2000; Conselice et al., 2003; Conselice et al., 2008;

Bluck et al., 2012; Whitney et al., 2021). We present the concentration-asymmetry

diagram in the SMACS 0723 field in Figure 6 as measured by Morfometryka.

What we find is that there is no great distinction between the disks and the

spheroids, but we do find that the peculiars are in the region of high asymmetry

where mergers are located (Conselice et al., 2000; Whitney et al., 2021). We also

find that there are few galaxies with very high concentration values, consistent with

previous work that found even massive galaxies to have low light concentrations

(Buitrago et al., 2012).

Another avenue of investigation is the examination of the light profiles of our

galaxies, which we have also measured. Previous work has shown that almost all

massive galaxies at z > 2 have Sérsic indices which are n ∼ 1, which differs for

galaxies at lower redshifts where n ∼ 4 for similar mass galaxies (e.g., Buitrago

et al., 2012; Bluck et al., 2014). We show a basic view of the average Sérsic

index evolution for our sample in Figure 5.7, which demonstrates that many of

our galaxies contain indices with n ∼ 1, with most disks around this value, as

expected. We also find many spheroids at this Sérsic index, but on average these

spheroids have a larger n value.The mean values together with 15% and 85%
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percentiles of the distributions for each redshift bin and class are displayed in

Table 4.1.

4.4.3 Formation of the Hubble Sequence

One of the primary goals of galaxy morphology and structural analysis is to de-

termine when the Hubble sequence was established. By Hubble sequence we mean

the establishment of spheroids (e.g., ellipticals) and spiral galaxies as we see in

the case of the most massive galaxies in the nearby universe. We know for certain

that there are fewer ellipticals and spirals at high redshift. However, an important

question is: when did the first spheroids and disk galaxies form?

It is important to be clear about what we mean by this, as a definition of

these galaxy types is neither trivial nor simple. By a ‘spheroid’ we mean a galaxy

that exhibits a round or elliptical shape with a classical, steep light profile and a

smooth structure. A ‘disk galaxy’ is one that is either a smooth, disk-like object,

or something with visible spiral arms.

The trend of galaxy type with redshift has been measured by several different

papers (Wuyts et al., 2011; Mortlock et al., 2013; Huertas-Company et al., 2015;

Zhang et al., 2019). We include the analysis in Mortlock et al. (2013) as the basis

for our understanding of the morphological evolution at z < 3. As Figure 4.4

shows, we have not reached the limit of where the first ellipticals and spheroids

have formed. We will need to probe even higher redshifts to find when and if

there are no spheroids or disk galaxies. Thus, at least some aspect of the Hubble

sequence was in place at z ∼ 6. It is, however, important to point out that these

classifications are done purely by visual estimates in one band. We have not used

colour or other features to classify galaxies, and we know from work with WFC3
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that galaxy structure and physical properties of their stars becomes decoupled at

higher redshifts z > 1.5 (Conselice et al., 2011). It remains to be seen how the

physical properties of our ‘Hubble types’ here correlate with the underlying stellar

masses in these systems.

4.5 Discussion

This is one of the earliest studies on the morphologies of galaxies at high redshift

with JWST, and thus our conclusions will be revisited by others in the months and

years to come. However, it does appear from an initial analysis that there are far

more disk galaxies at high redshift than originally thought with HST. We in fact

find that at the highest redshifts probed by the HST CANDELS results (Mortlock

et al., 2013) there are up to 10 times more disk galaxies than we had thought, based

on the JWST visual morphologies. Although some studies find higher fractions of

disks among massive galaxies at high redshift (Wuyts et al., 2011; Zhang et al.,

2019) in HST in comparison to Mortlock et al. (2013), they are often restricted

to only the population of star-forming galaxies, which are generally dominated by

disks or elongated shaped galaxies. Even with the sample mismatch, our fractions

are still higher than the star-forming fractions from (Zhang et al., 2019) by about

10%, for example.

This implies that disk galaxies have existed in large numbers for quite a sig-

nificant amount of time. This may mean that the morphologies of some disk

galaxies, such as the Milky Way, have remained in their current form for over 10

billion years. This would challenge our ideas about mergers being a very common

process, and it might be the case that mergers are only a dominant process for

forming the stellar masses of certain types of galaxies, namely spheroids, which
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have a relatively constant merger fraction at z > 2.5 at around 10%. Although

on average galaxies should go through multiple mergers over cosmic time (Duncan

et al., 2019), it is not clear how these mergers would affect disk morphologies or

if there are only certain galaxies that go through mergers multiple times while

others, such as the disks we find here, do not undergo these mergers very often or

at all at z < 6.

Alternatively, it is also possible that these high redshift disks undergo major

mergers, but reform their disks after the disruptive event. This is a process that is

found to happen in simulations of gas-rich mergers (e.g., Sparre & Springel, 2017;

Peschken et al., 2020).

There are a few caveats with this study that future studies will be able to

flesh out in much more detail. The first is that we only use the visual rest-frame

optical morphology of a galaxy to determine whether or not it is a spheroid, disk,

or a peculiar. These systems, however, are more obvious than they were in the

HST imaging, implying that in the rest-frame optical we are seeing the underlying

morphology in a much clearer way than we are in the rest-frame UV, despite

strongly star-forming galaxies having a very similar appearance in the UV and

optical, at least at z < 3 (Windhorst et al., 2002; Papovich et al., 2005; Taylor

et al., 2015; Mager et al., 2018). It would appear that at least disk galaxies are not

easily seen in the UV, and this is an indication that their stellar population and star

formation histories are spatially segregated (old/young stars in bulges/disks, for

example), just as they are at lower redshifts. Future studies will certainly be able

to study these resolved structures in more detail to learn about the detailed process

of disk formation, as done for HST observations at z < 3 (Huertas-Company et al.,

2016; Margalef-Bentabol et al., 2022).

Finally, there is also the fact that this was conducted in a small field of view
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area of 2.2’x2.2’, around a lensing cluster. In the future we will probe non-cluster

regions and larger areas to allow for a more detailed comparison with previous

results from HST imaging, such as CANDELS (Grogin et al., 2011; Koekemoer

et al., 2011).

4.6 Summary and Conclusions

In this Chapter we present a morphological and structural analysis on some of

the earliest galaxies imaged by the JWST, which has provided rest-frame optical

morphologies and structures for a statistically significant number of galaxies at

z > 3 for the first time. We also examine the structures of galaxies at 1.5 < z < 3,

where HST has not had the depth and resolution to infer galaxy morphology

correctly. Three of the authors classified 280 galaxies visually at 1.5 < z < 8

to determine basic morphological types - spheroid, disk, peculiar, at rest-frame

optical wavelengths given by JWST. We also ran quantitative parametric and

non-parameteric morphologies on these galaxies.

Our key findings are:

I. The morphological types of galaxies changes less quickly than previously

believed, based on precursor HST imaging and results. That is, these early JWST

results suggest that the formation of normal galaxy structure was much earlier

than previously thought.

II. A major aspect of this is our discovery that disk galaxies are quite common

at z ∼ 3−6, where they make up ∼ 50% of the galaxy population, which is over 10

times as high as what was previously thought to be the case with HST observations.

That is, this epoch is surprisingly full of disk galaxies, which observationally we
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had not been able to determine before JWST.

III. Distant galaxies at z > 3 in the rest-frame optical, despite their appearance

in the HST imaging, are not as highly clumpy and asymmetric as once thought.

This effect has not been observed before due to the nature of existing deep imaging

with the HST which could probe only ultraviolet light at z > 3. This shows the

great power of JWST to probe rest-frame optical where the underlying mass of

galaxies can now be traced and measured.

This study is the first examination of the problem of distant galaxy morphology

with JWST, and specifically the formation of galaxy structure at z > 3. Our

results suggest many directions for immediate future study. We have not included

any new JWST galaxies that were not seen with HST, and have not examined the

structural properties as a function of stellar mass or other physical properties. All

of these will need to be fully examined in the future. Since the conclusion of this

Chapter, many results based on newly available JWST are finding an abundance

of disk galaxies at higher redshifts. For example, Kartaltepe et al. (2022) finds a

similar fraction of disks up to redshift z ∼ 8, while Nelson et al. (2022) discovers

a population of red disk galaxies that are completely undetected in previous HST

observations. In Chapter 5 we will touch on this new studies on the larger area

dataset covered by the CEERS JWST survey.

The present study, however, shows the importance of JWST for understanding

the structural evolution of galaxies, which is now open for detailed investigation.



Chapter 5

The JWST Hubble Sequence: The

Rest-Frame Optical Evolution of

Galaxy Structure at 1.5 < z < 8

The content of this chapter has been submitted for publication in The Astro-

physical Journal. I acknowledge the help from Christopher Conselice, Elizabeta

Sazonova, Geferson Lucatelli, Joseph Caruara, Clar-Brid Tohill for the visual clas-

sification effort reported here.

5.1 Abstract

We present results on the morphological and structural evolution of a total of 4265

galaxies observed with JWST at 1.5 < z < 8 in the JWST CEERS observations

that overlap with the CANDELS EGS field, the biggest visually classified sample

observed with JWST yet, ∼ 20 times larger than previous studies. All sources

were classified by six individual classifiers using a simple classification scheme

165
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aiming at producing disk/spheroid/peculiar classifications, whereby we determine

how the relative number of these morphologies evolves since the Universe’s first

billion years. Additionally, we explore structural and quantitative morphology

measurements using Morfometryka, and show that galaxies at z > 3.0 are not

dominated by irregular and peculiar structures as previously thought. We discuss

the dominance of morphologically selected disk galaxies up to z = 8, a far higher

redshift than previously thought possible. We compare our results to theory to

show that the fraction of types we find is predicted by cosmological simulations,

and that the Hubble Sequence was already in place as early as one billion years

after the Big Bang. Additionally, we make our visual classifications public for the

community.

5.2 Introduction

Since the discovery of galaxies, a principal aim of their study has been to charac-

terize their structure and morphology. The very fact that galaxies appear to be

extended, as opposed to point sources, already provides an elusive clue to their

nature being different from that of the stars. In fact, it can be said that it was the

extended nature of these objects that instigated the debate about whether they

were external to our own galaxy, a problem solved through obtaining distances

to these systems (Hubble, 1926). Even before then, however, the fact that the

structure of galaxies holds important information had been known since at least

the time of Lord Rosse and his discovery of spiral structure in nearby massive

galaxies such as M51 (Rosse, 1850).

Since that time, galaxy structure, morphology, and how these properties evolve

with time has remained a key aspect to understanding galaxy evolution (e.g.,
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Delgado-Serrano et al., 2010; Lotz et al., 2004; Mortlock et al., 2013; Conselice

et al., 2014; Ferreira et al., 2022b). The resolved structure of distant galaxies,

in particular with the advent of the Hubble Space Telescope, clearly revealed

that faint distant galaxies were more peculiar and irregular, and few fit into the

Hubble sequence (e.g. Driver et al., 1995). Later, once redshifts became available,

it became clear that galaxy structures evolve strongly, but systematically, with

redshift, such that peculiar galaxies which dominate the population at z > 2.5

(e.g., Conselice et al., 2008; Conselice et al., 2014). However, because of the

limited red wavelengths of Hubble, we still have not yet been able to trace the

rest-frame optical light of galaxies back to within the first few Gyr of the Big

Bang. The F160W band on the Hubble Space Telescope (HST) can only probe

rest-frame visible light up to z ∼ 2.8, but JWST permits us to obtain the same

type of data out to z ∼ 9 with F444W. Moreover, JWST’s superior resolution and

longer wavelength filter set allows galaxy structure to be better measured than

with the lower resolution of HST.

Observations of galaxy structure and morphology at z > 3 do show that in the

rest-frame UV galaxies are peculiar and irregular (e.g., Conselice, 2009). Moreover,

galaxies are often very clumpy at these redshifts, as seen with deep WFC3 data

(e.g., Oesch et al. 2010). Furthermore, observations of pairs of galaxies show that

the merger rate and fraction of galaxies up to z ∼ 6 is very high, and therefore

that galaxy structure should likewise be affected significantly (e.g., Duncan et al.,

2019). At the same time, we know that the Hubble sequence is established at

z < 1 (e.g., Mortlock et al., 2013). However, whether the Hubble sequence already

existed in the earlier Universe remains an open question. While earlier HST-based

studies found that the dominating majority of galaxies at z > 2 are peculiar, recent

JWST-based studies find a high number of regular disk galaxies at high redshift
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(e.g., Ferreira et al., 2022b; Nelson et al., 2022; Jacobs et al., 2022; Robertson

et al., 2022), consistent with an even earlier emergence of the Hubble sequence.

Quantitative measures of galaxy structure and morphology also present strin-

gent constraints for numerical simulations to reproduce. In recent years, full hy-

drodynamic simulations (Schaye et al., 2015; Nelson et al., 2019; Lovell et al.,

2021; Marshall et al., 2022b) enable resolved morphologies to be predicted in a

self-consistent manner, and recent novel simulation approaches allow these to be

tested out to the highest redshifts (Roper et al., 2022). There are a number of

difficulties when comparing morphologies between simulations and observations,

however simple measures of the abundance of e.g. disk and elliptical galaxies can

provide hints as to the underlying mechanisms leading to morphological evolution.

In this Chapter we explore the morphological properties of 4265 galaxies ob-

served with JWST through visual galaxy classifications and quantitative morphol-

ogy, from z = 1.5 to 8. We demonstrate that these early galaxies have predom-

inantly disk morphologies, and that the Hubble sequence seems to be already

established as early as z ∼ 8.

The Chapter is organized as follows. In § 5.3 we describe the data products

used, our reduction pipeline, the visual classification scheme adopted as well as

our methods of quantitative morphology. § 5.4 describes the results from our

classification effort and the quantitative morphology measurements of this sample.

We follow with a discussion on the implications of these results in § 5.5, and finish

with a summary of our main results in § 5.6.
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5.3 Data and Methods

We use the public NIRCam JWST observations from the Cosmic Evolution Early

Release Science Survey (CEERS; PI: Finkelstein, ID=1345, Finkelstein et al. in

prep), that overlap with the Cosmic Assembly Near-IR Deep Extragalactic Legacy

Survey (CANDELS; Grogin et al. 2011; Koekemoer et al. 2011) on the Extended

Growth Strip field (EGS). These data are reduced independently using a custom

set-up of the JWST pipeline version 1.6.2 using the on-flight calibration files

available through the CDRS 0942, an extensive description is given in § 5.3.1.

We select 4265 sources with z > 1.5 from the CANDELS catalogs which overlap

with the area covered by CEERS. We take advantage of the robust photometric

redshifts, star formation rates and stellar masses already derived for CANDELS

in previous works (Duncan et al., 2014, 2019) to conduct this analysis. Neither

morphological information is used for the selection of sources, and nor magnitude

cuts are employed as we want to make sure that we include sources that might

be faint in HST, but bright in JWST observations. This is also the case for

morphology; we are also interested in sources that can show dramatic changes in

morphology between the two instruments.

We employ two different approaches to these data: first we perform visual

classifications for all sources, which is described in detail in §5.3.3. Second, we

perform quantitative morphology through Morfometryka (Ferrari et al., 2015),

where we measure non-parametric morphology estimates such as CAS, G-M20, H,

Spirality, Sizes, as well as light profile fitting, which is described in detail §4.3.2.
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5.3.1 Data Reduction

We reprocess all of the uncalibrated lower-level JWS data products for this field

following our modified version of the JWST official pipeline. This is similar to

the process used in Adams et al. (2022); Ferreira et al. (2022b) but with minor

updates and improvements and can be summarised as follows: (1) We use version

1.6.2 of the pipeline with the Calibration Reference Data System (CRDS) version

0942 which was the most up-to-date version at the time of writing. Use of CRDS

0942 is essential for zero point issues we discuss in (Adams et al., 2022). (2) We

apply the 1/f noise correction derived by Chris Willott on the resulting level 2 data

of the JWST pipeline.1 (3) We extract the sky subtraction step from stage 3 of

the pipeline and run it independently on each NIRCam frame, allowing for quicker

assessment of the background subtraction performance and fine-tuning. (4) We

align calibrated imaging for each individual exposure to GAIA using tweakreg,

part of the DrizzlePac python package.2 (5) We pixel-match the final mosaics with

the use of astropy reproject.3 The final resolution of the drizzled images is 0.03

arcseconds/pixel. There is rapid development in the above procedure, and so we

anticipate future studies to continue to make refinements to the JWST pipeline.

Each one of the four June CEERS observations was processed into individual

mosaics.

5.3.2 Photometric Redshifts and Stellar Masses

The photometric redshifts that we use in this Chapter originate from the red-

shifts calculated in Duncan et al. (2019) for EGS. These are based on the original

1https://github.com/chriswillott/jwst
2https://github.com/spacetelescope/drizzlepac
3https://reproject.readthedocs.io/en/stable/

https://github.com/chriswillott/jwst
https://github.com/spacetelescope/drizzlepac
https://reproject.readthedocs.io/en/stable/
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CANDELS+GOODS WFC3/ACS imaging and data, Spitzer/IRAC S-CANDELS

(Ashby et al., 2015) and ground based observations with CFHT (Stefanon et al.,

2017). The overall method for this is described in detail in Duncan et al. (2019).

5.3.3 Visual Classification

As a way to define the morphologies of the galaxies in our sample of 4265 sources,

we construct a simple classification scheme that yields a large amount of infor-

mation with a small number of classification questions, as opposed to having a

very detailed sub-classification scheme of structure sub-components. The classifi-

cation scheme is summarized in the fluxogram in Fig. 5.1. At high redshift, fine

structural details are often difficult to recover and in general are ambiguous, hence

these questions capture the overall appearance of the source.

Our sample is the biggest visually classification sample observed with JWST

yet, ∼ 20 times larger than what is reported in previous JWST morphology results

(Ferreira et al., 2022b; Nelson et al., 2022; Jacobs et al., 2022). A brief description

of each possible resulting class is given below:

• Class 0: Unclassifiable: Galaxies not clearly visible, too faint to classify, and

images with artifacts.

• Class 1: Point Sources: Sources that are smaller in angular size than the

PSFFWHM or that present clear wings/spike patterns consistent with point-

like objects but no extended component.

• Class 2: Disks: This category includes galaxies that exhibit a resolved disk

in the form of an outer area of lower surface brightness with a regularly

increasing brightness towards the center of the galaxy. This classification
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does not depend on there being a spiral pattern in the system, although one

can be present in this classification.

• Class 3: Spheroid: These galaxies are resolved, symmetrically and centrally

concentrated, with a smooth profile and are round/elliptical in shape.

• Class 4: Peculiar. This class is for well-resolved galaxies with a morphology

which is dominated by a disturbance or peculiarity, where the disturbance

dominates any smooth components.

Each galaxy is further classified as smooth or structured, where structured

galaxies have features standing out from the smooth stellar envelope, such as star-

formation clumps, tidal features, and merger signatures. Galaxies with distinct

disk and bulge components were also classified as structured. Finally, the classifiers

were able to provide additional notes on each source to aid in future analysis.

Ultimately, after all classifications are aggregated we determine the final class

of each object as the the one receiving the majority of the votes, as discussed

in detail in Sec. 5.3.3. In the cases where classifiers disagreed, we included an

ambiguous class.

Based on this classification scheme (Fig. 5.1), six volunteers classified all the

4265 sources. This effort produced a robust catalog where every galaxy has all six

classifications combined in classification fractions, one for each individual question

present in the scheme (Fig. 5.1).

To perform each classification, the classifiers were given access to a web ap-

plication build with flask, jinja and bootstrap specifically tailored for this

task. The volunteers were presented with the rest-frame image in the filter that

corresponds to the source redshift (minimizing for λrest/(1 + z)), a RGB image
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(F277W+F356W+F444W) generated with Trilogy (Coe et al., 2015), the PSF

image of the respective filter together with the size of the PSFFWHM and a ques-

tionnaire that reproduces Fig. 5.1. Results are stored in a MySQL database, that is

then reduced and aggregated with pandas (Reback et al., 2022).

Each individual classifier results are combined in a single table using the fol-

lowing criteria.

First, we define how many votes there are for each source. That is, the votes

that are not considered to be unclassifiable and point source. Then, if at

least 50% (i.e., 3 or more votes are exclusively in these categories) of all votes are

assigned to any of these individual classes, we consider the source to be unclas-

sifiable or point-like, by the labels n/a and ps, respectively. For the point-like

sources, we compare its size to the PSFFWHM. If it is larger than the PSFFWHM,

we change its classification to spheroid. Same is done the other way around,

sources smaller than the PSFFWHM are changed programatically to ps.

Second, for all the rest of the sources that have more than 50% of the votes

in disk, spheroid or peculiar categories, we average each individual classification

decision in a class fraction. Hence, this class fraction is only based on the number

of good votes (i.e., votes that are for classifiable and extended galaxies).

Third, to all galaxies that have a clear majority as frac > 0.5, we assign the

given class as the final class. For all the remaining cases that the classifiers disagree

on (e.g., 2 votes in each category), we define those sources to have an ambiguous

class.

Finally, we include a structure index, the smooth_fraction, that is indepen-

dent of the general appearance, designed as a large umbrella to capture sources

with rich structures, sub-components, merging features.
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Figure 5.1: Fluxogram of our visual classification process. The clas-
sification is based on 4 basic questions that can produce a simple
disk/spheroid/peculiar/compact classification and additional flags regarding
whether the source is smooth or structurally rich.
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This framework enables sources that might be ambiguous between two classi-

fiers to have a more robust classification. The class fractions can also be used to

control the purity of the samples, as higher agreement will represent a less con-

taminated dataset. We proceed, however, with the final classifications assigned by

the majority of the classifiers.

We run Morfometryka for all filters available but only report results for the

band that closest matches the rest-frame optical of the source (λ = 0.5µm-0.7µm).

5.3.4 BlueTides high-z Mocks

For a comparison to these observations, we also consider mock JWST images from

the BlueTides Mock Image Catalogue (Marshall et al., 2022b,a). This is a cat-

alogue of mock image stamps of ∼ 100, 000 galaxies from z = 7 to 12, with the

particle distributions and SEDs of each galaxy taken from the BlueTides hydrody-

namical simulation (Feng et al., 2015). The images are created with the NIRCam

transmission curves and convolved with JWST model PSFs from WebbPSF (Per-

rin et al., 2015), to produce a realistic mock image for each galaxy. The BlueTides

mock images have a pixel scale of 00155 for the NIRCam short-wavelength filters,

half of our observed pixel scale, and 00315 for the long-wavelength filters, equiva-

lent to our observed pixel scale. Here we use the F444W filters, the same used for

this redshift restframe.

It is important to note that the images of the BlueTides galaxies are created in

the ‘face-on’ direction, which is defined by the angular momentum of particles in

the galaxy (see Marshall et al., 2020). However, studies suggest that the angular

momentum of early galaxies does not correlate with their morphological structure

(e.g. Park et al., 2022)—indeed, visual inspection of the BlueTides images shows
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that this direction does not necessarily correspond to the visual morphological

‘face-on’ direction. Thus, we do not expect this feature of the simulation to highly

affect our comparison, although some biases could be present.

We select all galaxies that overlap with the redshift range probed here from

z = 7 to 8. For each source stamp we add Gaussian noise to match the depth of

the CEERS observations levels. Then, we run Morfometryka for all stamps

together with the PSF generated with WebbPSF.

5.4 Results

We report the morphology and structure evolution of the sample of 4265 galaxies

(§ 5.3) based on visual classifications (§ 5.3.3) and in quantitative morphology

measurements (§ 4.3.2). The aggregated classifications catalog based on 6 inde-

pendent classifiers contains 1696 disks (∼ 40%), 561 spheroids (∼ 13%), 1112

peculiars (∼ 26%), 434 ambiguous sources (∼ 10%), 66 point sources (∼ 1%) and

396 unclassifiable sources (∼ 9%). Examples of each of these types are shown in

Figure 5.2 in bins of increasing redshift. These visual classifications are the basis

for the discussion in this section. In Section § 5.4.1 we detail the three base classes

and the caveats from the visual classifications. We follow with a description of

the quantitative morphologies of these sources and how they relate to the visual

classifications in Section § 5.4.2. Finally, we compare these classifications with

predictions from cosmological simulations in Section § 5.4.3.
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Figure 5.2: Rest-frame optical images for sources in our sample. The three pan-
els show the three main classes disks, spheroids and peculiars, respectively.
Galaxies are ordered horizontally by redshift, lowest redshifts in the left, highest
redshifts to the right. Stamps are shown in square root normalization. Redshifts
are from Duncan et al. (2019) based on the CANDELS fields.
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5.4.1 Disks, Spheroids and Peculiars

Figure 5.2 displays examples randomly drawn from the catalog for the three main

morphological classes: disks, spheroids and peculiars, respectively.

The visual distinction between these classes is clear, with the disks often

showing two structural components in the form of a concentrated bulge and a

disky envelope, while the spheroids are mostly single-profile, centrally concentrated

sources, with some exhibiting PSF-like structure due to the central concentration

or AGN emission. However, we note that for most cases, telling apart two types

of light concentrations by eye is a difficult task, as sources at high redshifts do not

show other clear, disk-like features such as spiral arms, bars and rings, and overall

display lower concentrations (Buitrago et al., 2008; Buitrago et al., 2013). For a

better distinction between face-on disks and spheroids, a quantitative approach

such as Sérsic fitting might be used alongside visual classification.

Figure 5.3 shows three indicators for visual distinctions between the overall

sample of disks and spheroids. spheroids are more compact with lower ef-

fective radius, higher axis ratios and lower information entropy indicating lack of

structure. These distributions follow what is found for high redshift spheroids in

previous studies, in that they are round and smaller than disks (Buitrago et al.,

2013). However, the axis ratios found here are on the high end, with a lack of

spheroids with intermediary axis ratios 0.4 < b/a ∼ 0.7. Ultimately, some biases

might be present, such as the elongation/axis ratio causing some contamination,

thus we possibly miss some elongated spheroids, but this is expected due to each

classifier’s subjective perspective on what defines these. We advise the user of the

catalog to leverage the class fractions to control purity by only selecting sources

with strong agreement.
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The peculiars on the other hand vary wildly, from mild disturbances, to clear

signs of galaxy merging, often with a companion nearby. Additionally, some high

redshift disks and spheroids might end up being classified as peculiars due to

them showing more asymmetric/disturbed morphologies than their low redshift

counterparts. However, as discussed in § 5.4.2, for most peculiars, the quantitative

morphology is consistent with disturbed morphologies.

5.4.2 Quantitative Morphology Evolution

Cross-examining the morphologies defined by eye using quantitative methods is

essential for understanding how their appearance changes across cosmic time. We

explore the visual morphologies with several quantitative morphology indicators,

both non-parametric and parametric (§ 4.3.2).

Figure 5.4 shows the concentration (C) and asymmetry (A) plane based on

Morfometryka measurements for 4 redshift bins. The mean values alongside

the distribution’s 15% and 85% percentiles for disks, spheroids and peculiars are

plotted as blue squares, red circles and pink diamonds, respectively. Each class has

its distributions positioned within the expected regions for high redshift galaxies,

with peculiars occupying the top of the diagram, the disks the central region and

the spheroids around the lower right, including a high overlap. The positions of

each of the three classes remain fairly stable over all redshifts, but the spheroids

have higher asymmetries and lower concentrations overall at higher redshift, with

larger overlaps with the disks. Also displayed with solid lines is the merger criterion

based on asymmetry, as

A > 0.35, (5.1)

and the diagonal late-type vs. intermediate types boundary based on Bershady
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Figure 5.3: Effective radius (Rn) (top), axis ratio (b/a) (middle) and information
entropy (H) (bottom). We show key measurements that clue to differences most
used by the classifiers for the spheroid × other classes. Spheroids are defined by
their lack of structure, low elongation and small sizes in general.
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et al. (2000). We also explore the G-M20 plane (Lotz et al., 2004, 2008) but we

do not find any clear separation between the types, apart from the distinction

between sources with close companions or isolated, similar to what is reported in

Rose et al. (2022).

For the highest redshift bin (4 < z < 8), we also show the contours for the

distribution of the measurements for 50,000 galaxy mocks from the BlueTides

simulations (Marshall et al., 2022b). The measurements from the real observations

are in well agreement with the measurements for BlueTides mocks. We note that

the effective spatial resolution of the BlueTides simulation is 1.5/h ckpc, which

corresponds to 0.269 pkpc, or 005 at z = 7. This resolution may have an effect

on the resulting galaxy morphologies, particularly the inner regions and thus their

concentration, but no clear effect is seen here, different to what is found for high-z

IllustrisTNG mocks (Whitney et al., 2021).

The spirality index, the standard deviation of the galaxy polar image (r, ϕ)

gradient map, designed to measure the amount of non-radial structures in the

galaxy, has proven to be very effective in discriminating different classes in this

sample. If the galaxy is smooth, its polar image will consist of a single horizontal

strip, which will imply a low value for σψ. On the other hand, although we cannot

resolve spiral arms in most cases, if the galaxy contains peripheral structures or

companions, the polar image will be irregular with a corresponding high σψ. Please

see the Morfometryka (Ferrari et al., 2015) paper for a full description of the

σψ calculation.

In Figure 5.5 we show that combining σψ with the asymmetry (A) warrants a

reasonable quantitative separation of the overall classes, as the center of each class

distribution is well separated in this plane, unlike in the C-A or G-M20 diagram.

As an example as to what is captured by the σψ measurement, we show three
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Figure 5.4: Concentration vs. Asymmetry diagrams. The evolution of the Concentration (C) and Asymmetry (A) in 4
different redshift bins, one for each panel. Peculiars are shown as pink diamonds, disks as blue squares and spheroids as
red circles. The highest redshift panel shows contour lines based on the distribution of C-A measurements for BlueTides
(Marshall et al., 2022b) galaxy mocks at z ≥ 7 as discussed in § 5.3.4. The solid lines denote the merger selection threshold
on the top, and the late type / early type separation on the lower diagonal line. Peculiars display high asymmetries when
compared to other types. Disks display late type-like morphology, while spheroids are regular at lower redshifts, located on
the bottom right of the plots, but move towards the center with increasing asymmetry and decreasing concentration with
redshift. Galaxies overall get less concentrated and more asymmetric with increasing redshift. However, at high redshifts,
sources display higher concentrations and asymmetries when compared to simulations. In comparison to what is expected
from the local universe, classes are clustered more closely, while at z ∼ 0 classes are more easily to distinguish, with wider
concentrations and asymmetry ranges.
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galaxies in Figure 5.6, one for each class, with their respective polar coordinate

image and the gradient lines that are used to compute σψ. The distinction between

spheroids and disks is subtle, however it is very powerful when large non radial

structure is present in the outskirts of the source.

Here in both Fig 5.4 and Fig 5.5 we see that we can distinguish the centre of

the cluster for each class. However, this is not true in the non-parametric results

reported in Chapter 4, where the spheroid population is almost indistinguishable

from the disks, and the disks have higher overlap with the peculiars. We attribute

this difference to a high contamination of point sources as spheroids in Chapter 4,

which have intrinsically lower concentrations and can display higher asymmetries

due to the JWST PSF, as opposed to extended sources. This is further corrobo-

rated by the distinct class fractions for spheroids reported later here in Fig 5.9 in

comparison to Fig 4.4. This can also be seen in the Sersic profiles reported between

the two Chapters. In the case of higher degree of mixture between peculiars and

disks, we recognize that the cluster environment can affect these non-parametric

measurements negatively due to both magnification and stray light from more

neighboring sources. Galaxies in the sample of Chapter 4 are slightly distorted

due to strong lensing (hence higher Asymmetries), and the measurement of the

asymmetry itself can also suffer from strong gradients that might not be captured

by the asymmetry of the background estimation. We do not do a systematic anal-

ysis of these effects here, as both this Chapter and Chapter 4 are focused on visual

classifications. Nevertheless, we limit our comparisons between physical properties

and the morphology of these galaxies only using the visual classifications.

Finally we explore the evolution of the Sérsic profiles (Sérsic, 1963) through the

redshift evolution of the Sérsic index for galaxies with M∗ > 109M⊙. In Figure 5.7

we report mean values together with the 15% and 85% percentile limits as error



5.4. Results 184

Figure 5.5: log Asymmetry (A) vs. log Spirality (σψ) 2D distributions for each
class. Kernel density estimation distributions for the top 50% of each morpho-
logical class in 5 bins of 10% fractions of the distribution. The asymmetry and
σψ correlates strongly, but are independent measurements as each classification
distribution has a different slope. Spheroids show high diversity in A and low
diversity in σψ, while the contrary is true for disks. These two measurements form
a parameter space capable of separating the classes in this sample relatively well
compared to C-A.
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Figure 5.6: Three examples of the spirality σψ measurement. Top row shows the
standarized images of the sources (q = 1, PA = 0) while the bottom row displays
the polar coordinates transformation (r, ϕ) of the above image. Black lines display
the gradient field of the image. The σψ measurement is based on the standard
deviation of these field lines.
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bars to represent the distributions at each redshift bin for each class. Disks and

Peculiars exhibit similar Sérsic profiles, with n ≈ 1.0 at z ∼ 6 to n ≈ 1.3 at

z ∼ 1.5. The spheroids, on the other hand, show higher Sérsic indicies at all

redshifts, with n ≈ 1.8 at z ∼ 6 to n ≈ 2.5 at z ∼ 1.5. The distinction between

the classes is clearer than what was reported in Ferreira et al. (2022b) as the

CANDELS overlap allows us to quickly select high mass galaxies only. The slopes

for each class are also different, with the spheroids increasing in Sérsic index more

rapidly. The similarities among disks and peculiars suggest that the majority of

these disturbed and merging systems are still disk dominated.

5.4.3 Predictions from Simulations

We now look at numerical simulation results for morphological evolution over a

similar redshift range. Simulations that resolve galaxies self-consistently typically

model mass elements either on a grid or as particles. Particle–based decompo-

sition methods (e.g. Abadi et al., 2003; Crain et al., 2010; Thob et al., 2019;

Irodotou & Thomas, 2021; Zana et al., 2022) have been extensively used in order

to split galaxies into different morphological classes and facilitate a comparison

between observed and simulated galactic properties (Tissera et al., 2012; Pillepich

et al., 2015; Irodotou et al., 2019; Monachesi et al., 2019; Trayford et al., 2019;

Rodriguez-Gomez et al., 2022). However, the true morphology of a system may

not always be accurately captured, as particle–based methods can be sensitive to

small perturbations in the distribution of particles, which become progressively

more significant at lower stellar masses as these galaxies are resolved with fewer

particles.

In this work, to ensure that both galaxies and their components are sufficiently
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Figure 5.7: Sérsic index redshift evolution for each morphology class. Displayed
as blue squares, red circles and pink diamonds are the means for disks, spheroids
and peculiars, respectively. Error bars define the 15% and 85% percentile of the
distributions.
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resolved, and thus a particle–based decomposition is applicable, we use central

and satellite galaxies from the Eagle (Schaye et al., 2015; Crain et al., 2015,

for 1.5 < z < 4) and Flares (Lovell et al., 2021, for 5 < z < 8) simulations

with stellar masses log(M∗/M⊙) > 10 (i.e. even for a galaxy with B/T ∼ 0.2 the

bulge is resolved with more than a thousand particles with mass of a few × 106

each). We use the method developed in Irodotou & Thomas (2021) to decompose

galaxies by firstly creating a Mollweide projection of the angular momentum map

of each galaxy’s stellar particles. Then, stellar particles are assigned to a disc

or spheroid component based on their angular separation from the densest grid

cell. This allows us to calculate bulge-to-total mass ratios (B/T ) and use these

to split galaxies into two morphological classes: (i) spheroids with B/T > 0.75,

(ii) spirals with B/T < 0.75. The aforementioned B/T limits were calibrated at

z ∼ 0 in order for the Eagle galaxies to match the morphological classes in the

Conselice (2006) sample. In Figure 5.8 we show the comparison of these fractions

with the relative fraction of disks and spheroids from the visual classifications for

high mass galaxies with M∗ ≥ 1010M⊙, ignoring the peculiars, as we do not have

a direct way to classify peculiars in the simulation dataset. The trends between

simulations and visual classifications agree for z > 3, with the exception of a single

anomalous visual classification redshift bin showing similar fractions of disks and

spheroids in 5 < z < 6. Fractions for z < 3 overall disagree, with an excess of 10%

of disks in the visual classifications. It is worth noting, however, in this redshift

range (i.e. 1.5 < z < 3), (Lagos et al., 2018) showed that the fraction of dry major

mergers in the Eagle volume increases. Since this type of mergers can efficiently

reduce the angular momentum of the remnant, this will translate in a negative

correlation between our B/T values and redshift, as also seen in e.g. Fig. 4 of

(Clauwens et al., 2018) for M∗ ≥ 1010.5M⊙.
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Park et al. (2022) reports similar findings for the Horizon simulations, with the

z ≥ 5 fraction of disks dominating at around 75% by using quantitative morphol-

ogy indicators as a proxy for morphology.

5.5 Implications

There are several implications from our visual classifications and quantitative

morphology measurements. We explore the evolution of the Hubble Sequence

in § 5.5.1, the evolution of the contribution of each morphological class to star

formation and stellar mass in § 5.5.2, and in § 5.5.3 we briefly discuss the main

differences between HST and JWST imaging that could explain some of the dis-

crepancies from previous studies.

5.5.1 Evolution of the Hubble Sequence

One principal goal of looking at galaxy morphology and structure is to establish

when and how the Hubble Sequence (Hubble, 1926) emerges in the context of the

hierarchical assembly of the universe.

Here we report the redshift evolution of morphological classes that encompass

the three main categories of the Hubble Sequence from 1.5 < z < 8, from when

the Universe was only ∼ 0.6 Gyrs old up to ∼ 4.2 Gyrs. In Figure 5.9 we show

this evolution in two mass bins, with the left panel displaying sources with M∗ ≤

109.5M⊙ while the right panel shows this evolution for M∗ > 109.5M⊙. Spheroids

are displayed by red circles, peculiars as pink diamonds, disks as blue squares,

and the other three possible categories as other (point sources, ambiguous and

unclassifiable) in gray crosses. The fraction of disks from Chapter 4 are shown as
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Figure 5.8: Morphology fractions compared to B/T morphological type selection
in EAGLE+FLARES for massive galaxies (M∗ ≥ 1010M⊙). The relative fraction
of disks and spheroids are shown as blue squares and red circles, respectively.
The blue dotted line shows mean values for galaxies with B/T < 0.75 in EA-
GLE+FLARES. Dashed line shows galaxies with B/T > 0.75. Shaded regions
represents ±2 sigma for each distribution. The visual classification fractions only
account for disks and spheroids to allow a more direct comparison with the two
thresholds in B/T in the simulations.
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Figure 5.9: Morphology Fraction vs Redshift. The morphology fraction evolution with redshift for the main morphological
classes of our classification framework (Fig. 5.1) in two mass bins, log(M∗/M⊙) < 9.5 (left) and log(M∗/M⊙) > 9.5 (right).
Disks, spheroids, peculiars and other in blue squares, red circles, pink diamonds, and gray crosses, respectively. This other

category aggregates the ambiguous, point source and unclassifiable sources. The black squares show the Disk fractions
reported in Chapter 4.
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black squares for comparison.

For low masses (M∗ ≤ 109.5M⊙) we do not find any systematic evolution

with redshift, with all class fractions remaining fairly constant, with disks at ∼

40%, peculiars at ∼ 25% and spheroids at ∼ 15%. The only exception is at the

highest redshift bin 6 < z < 8, where all fractions go down to ∼ 10% due to the

sharp increase of faint and ambiguous sources, artifacts and unclassifiable cases,

representing the limits on the depth of our dataset at the low mass range. The

disk fractions between 2 < z < 5 agrees well with what was previously reported in

Chapter 4, but now with a 20 fold increase in sample size, as shown by the smaller

error bars.

On the high mass cases (M∗ > 109.5M⊙) we observe an evolution of the disk

fraction from ∼ 55% at z ∼ 2 to ∼ 35% at z ∼ 7 while the fractions of peculiars

increases from ∼ 20% to ∼ 30% in the same redshift range, and spheroids increase

from ∼ 10% to ∼ 15% between 1.5 < z < 6.

These trends suggest that the classic picture of morphology and structural

evolution driven by merging might be only important for massive galaxies, where

the low mass universe can be described broadly by a consistent Hubble Sequence

in the range 1.5 < z < 6.

The apparent abundance of disk galaxies in the high redshift universe is also

reported by other recent JWST studies (Ferreira et al., 2022b; Nelson et al., 2022;

Jacobs et al., 2022; Robertson et al., 2022).
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5.5.2 Star Formation Evolution

One important goal of tracking morphologies across cosmic time is determining

if different morphologies contribute to the star formation budget of the universe

differently. In the previous section we explored the fractional evolution with red-

shifts, concluding that disk galaxies dominate the overall fraction of morphologies

at 1.5 < z < 6. In Figure 5.11 we show the class fractions in bins of specific star

formation rates (sSFR) divided in four redshift bins. The overall fraction of galaxy

types for each redshift panel can be seen in Fig. 5.9, while each bin in Fig. 5.11

shows these fractions for a given sSFR bin. Once more, the disks dominate the

overall contribution in sSFR, with spheroids showing similar fraction to the overall

fraction of spheroids in the sample. However, we see that at high sSFR bins, the

contribution of peculiar galaxies increases, to become as important as disk galaxies

despite their lower overall fractions in the sample. The same trend is shown for all

redshift bins, as the fraction of peculiars increase with increasing sSFR. For the

highest redshift bin (4 < z < 8), peculiars display roughly the same contribution

as disks. Spheroid fractions are slightly higher at lower sSFR. This suggests that

peculiar galaxies are important sites of star formation at all times in the Universe,

and especially at higher redshifts.

In Figure 5.10 we show the contribution of each morphological class to the total

stellar mass in each redshift bin. This shows that most of the mass in the early

universe was located in peculiar galaxies, while a clear trend with redshift is evident

for disk galaxies, such that for z < 3 most of the mass of the sample is distributed

among disk galaxies. More massive overall individually, the spheroid galaxies hold

just a small fraction of the total stellar mass in this sample (fm ∼ 10%) as it is

greatly outnumbered by the amount of mass in galaxies with disk morphologies.

This is in contrast to what is found in the Hubble Deep Field (Conselice et al.,
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Figure 5.10: Fraction of stellar mass (fm) in each morphology subsample vs Red-
shift. We show the contribution to total mass of each redshift bin from each
morphological class. This represents how much each class contributes to the total
mass in that redshift. Disks, spheroids, peculiars and other in blue squares, red
circles, pink diamonds, and gray crosses, respectively. The other category aggre-
gates the ambiguous, point source and unclassifiable sources. The contribution
from disks shows a trade off with respect to peculiars and spheroids at higher
redshifts.
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Figure 5.11: Morphology fractions vs average specific star formation. Disks, spheroids, peculiars and the other class are
plotted in blue squares, red circles, pink diamonds, and gray crosses, respectively. Four redshift bins are shown and the
other category aggregates the ambiguous, point source and unclassifiable sources. For all redshift bins and sSFR bins the
disk galaxies dominate, with the exception of the highest redshift bin where disks and peculiar present similar contributions.
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2005) due to the very different morphology fractions reported.

5.5.3 HST vs JWST

As discussed in Sec. 5.5.1, there is a stark difference between morphological clas-

sifications derived with HST and JWST observations. The new JWST data is

challenging our understanding of galaxy evolution and structure formation in the

early Universe. Here we discuss some differences between HST and JWST obser-

vations and analysis that contribute to this discrepancy.

A comparison for a select number of galaxies in our sample between the NIR-

Cam stamps and the HST ACS and WFC3 stamps is shown in Figure 5.12. Many

galaxies show very clear structures in NIRCam but ambiguous morphologies in

HST. In some cases, such as EGS23205, only the central component is clearly

seem in HST, while a disk, spiral arms and a bar pops up in the longer wavelength

bands. In a few cases, such as EGS22543, the source is barely detected in the

WFC3 and SW NIRCam images, while a clear disk is visible for the LW NIRCam

stamps.

A detailed comparison with the CANDELS classifications (Kartaltepe et al.,

2015) is beyond the scope of this Chapter as our classifications do not align per-

fectly with the scheme defined in Kartaltepe et al. (2015). However, we briefly

discuss the modes for which the discrepancies between classifications based on HST

imaging and NIRCam can be explained. First, many of the fine structure such

as bars and spirals, are hard to resolve at high redshifts due to the WFC3 pixel

scale, and can be mistaken by merging signatures or disturbances, such as the case

of EGS14565. It shows clear spiral structure in JWST but not as clear in HST,

which could be mistaken as a merger in HST. Secondly, we find the wavelength
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coverage to be critical, as many of the galaxies at high redshift in HST are probed

in the blue side of the optical, and are prone to absorption from dust, giving rise

to asymmetric looking structures. Moreover, the bluer bands probe the youngest

stars, which have more irregular spatial distributions tracing sites of ongoing star

formation but not the underlying mass distribution. Galaxies such as EGS522543

and EGS16559 are good examples of this. This is also expected to be an issue for

galaxies at z > 7 in NIRCam images, as we start having the same issue as WFC3

for 2 < z < 3.

Future morphology classification studies, with more detailed descriptions and

covering larger datasets, such as the complete cycle of CEERS, PRIMER, Cos-

mosWeb and NGDeep, together with the scope of citizen science projects like

Galaxy Zoo (Lintott et al., 2011), will enable a detailed discussion on the main

differences between HST and JWST morphology in the overlap region 2 < z < 3.

5.6 Summary and Conclusions

We present results on the rest-frame optical morphologies and the structural evo-

lution of JWST observed galaxies at z = 1.5 to 8 in a statistically significant

sample of 4265 galaxies for the first time, using both visual classifications and

quantitative morphology. We focus on galaxies observed by the CEERS program

that overlap with the CANDELS fields, enabling us to use robust measurements

of redshifts, stellar masses and star formation rates available in CANDELS.

Our major findings are:

• I. Distant galaxies at z > 1.5 display surprisingly regular disk morphologies

at early times, such that for galaxies with M∗ < 109.5M⊙, the fraction of
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Figure 5.12: A HST vs. JWST comparison. We show 13 galaxies in this sample
that have observations in the four main CANDELS filters (left panel) and SW and
LW filters in JWST (right panel). Faint features in CANDELS are generally very
clear in JWST. In some cases only the central core of the galaxy is visible with
the HST imaging. Some merging signatures in HST are also resolved be to regular
structures, such as disks and spirals.
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disks/spheroids/peculiars seems to be constant for 1.5 < z < 6, showing

that the Hubble Sequence was already in place as early as one billion years

after the Big Bang.

• II. For galaxies with higher masses M∗ > 109.5M⊙, tremendous evolution is

observed in the fraction of disks and peculiars, suggesting that the role of

mergers might be more important to the massive cases.

• III. Non-parametric morphology measurements agree well with visual clas-

sifications. However, a large overlap exists between classes in the usual

CAS and G-M20 planes. We find that the spirality index (σψ) when com-

bined with the asymmetry (A) makes a powerful diagnostic to separate

disks/spheroids/peculiars.

• IV. Comparisons with B/T studies from EAGLE and FLARES show that

quantitative structures at high redshifts agree well with simulations, and

are not unexpected from a theoretical standpoint, even if discrepant with

previous morphological studies with HST.

• V. Galaxies with disk morphologies dominate both the low sSFR population

of galaxies and high sSFR populations, fairly outnumbering spheroids. How-

ever, the peculiar contribution to the sSFR budget increases with increasing

sSFR and redshift, such that at the highest redshifts, the majority of the

highly star forming galaxy population has disturbed/peculiar morphologies.

• VI. The contribution to the total stellar mass of galaxies at high redshift is

dominated by peculiar galaxies, while most of the stellar mass in the Universe

at z < 3 is located in disk galaxies.

• VII. We report clear examples of galaxies whose morphologies are hidden
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in HST imaging, but become clear and unambiguous in the NIRCam obser-

vations. Spirals and bars are better resolved and clear in the LW NIRCam

filters.

In addition to the morphology study presented in this Chapter, we release

the first version of our catalog of aggregated classifications to the community.

Our goal is that this large sample of visually classified galaxies will serve as a

base for early studies on morphology and structure, and will help the community

develop methods and tools to tackle scheduled larger area observations such as

CosmosWeb while data releases from large citizen science classifications projects,

such as GalaxyZoo, are not available. These classifications can be used, for ex-

ample, as an early training dataset for deep learning methods, or as a transfer

learning sample for already established models.



Chapter 6

Conclusions and Future Work

In this thesis we discussed the rest-frame morphological evolution of galaxies from

z = 0.5 to 8 with ACS and WFC3 HST imaging from the CANDELS fields,

NIRCam JWST imaging from the CEERS programs, and datasets of mock ob-

servations generated from the IllustrisTNG cosmological simulations, both from

TNG300-1 and TNG100-1. This was done by combining several independent

methodologies, ranging from visual classifications to quantitative morphologies

with Morfometryka, and artificial intelligence deep learning models.

In Chapter 2 and Chapter 3 we combined cosmological simulations and deep

learning to explore challenges regarding the nature of cosmic evolution of galaxy

mergers in CANDELS. Chapter 4 and Chapter 5 are dedicated to the rest-frame

optical morphological evolution of galaxies from z = 1.5 to 8 in the newly available

observations from JWST with NIRCam, covering the wavelength range from λ =

0.9µm − 4.4µm, opening a complete new window to the resolved morphology of

extremely high redshift galaxies.

Over the subsequent sections I will summarize the key results presented in this
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thesis, following with a brief discussion future avenues of exploration enabled by

these developments.

6.1 Deep learning based galaxy merger rates since z ∼

3

Supervised deep learning based methods rely on previously defined labels. Com-

mon practice is the use of visual classifications to inform data-sets used for training.

However, in the case of mergers their morphologies are so varied and rich, with

strong dependence on timescales and their dynamical state, such that defining

the stage of a merger through visual classifications is a very challenging task, as

information about its evolution is not available directly from observations. In

Chapter 2 we describe a novel way to combine deep learning and cosmological

simulations to produce classification models that are physically motivated by the

formation histories of galaxies extracted from merger trees. With a large F125W

and F160W imaging mock dataset of mergers and non-mergers from IllustrisTNG

300-1, covering a wide range of states and configurations, we trained CNN models

capable to classifying mergers with up to 90% accuracy, with only their images as

input.

Applying these models to all the CANDELS fields enabled us to measure the

galaxy merger rates up to z = 3. This is the first agreement between morphology

and results based on galaxy pairs counts. We find that these rates follow a power

law of the form R(z) = 0.02 × (1 + z)2.76±0.21, with the highest merger rates at

the highest redshifts. Additionally, we show that the deep learning classifications

follow similar cues to the ones that visual classifications are based on, and that
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miss-classifications are often due ambiguous visual morphologies.

6.2 The cosmic evolution of clumpy galaxies in CAN-

DELS since z ∼ 3

The successful approach described in Chapter 2 led us to use the same framework

to explore other open questions regarding the high redshift morphology of merging

galaxies. One such challenge is the difficult selection between galaxies that recently

underwent a major merging event, and non-interacting galaxies that are highly

star-forming. These two different populations are notorious for being ambiguous,

both can be asymmetric, peculiar looking and clumpy, but for different physical

reasons.

To uncover the nature of these clumpy galaxies, we refine the framework from

Chapter 2, adapting it for the higher resolution simulation Illustris TNG100-1, and

making adjustments to our mock imaging pipelines to include a full description

of unresolved and resolved dust with the radiative transfer code SKIRT, a critical

requirement for the modeling fidelity of clumpy star forming regions and dust

lanes that contribute to the complexity of these morphologies. We generate a

large sample of 160,000 galaxy mocks of non-interacting star forming galaxies

and post-mergers. With these data, we design a training schedule with two target

models for each one of the CANDELS fields, a model for low redshift (z < 1.5) and

a model for high redshifts (z > 1.5), given the different sampling scale between

the ACS and NIR-WFC3 cameras.

With these models, we classify all asymmetric galaxies in CANDELS (A > 0.1)

in one of the two classes. By exploring their relative fractions on this sample we
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are able to trace the evolution of post-merger counts over 0.5 < z < 1.5, showing

that there is an increase in post-mergers among the peculiar galaxies from z = 0.5

to 3.

By visualizing the outputs of the layers of these models, we compare the fea-

tures extracted from the simulated images and from real CANDELS galaxies,

showing that they are very similar and occupy similar regions of a UMAP dia-

gram. Moreover, we show that the asymmetry alone performs very poorly at this

task, with almost 100% overlap between the distributions.

Finally, we show that recent major mergers have a similar impact to the scat-

tering above the star forming main sequence of galaxies as non-interacting star-

forming galaxies. Finally we discuss how to update the merger rates from Chap-

ter 2.

6.3 Abundance of disk galaxies in the early universe

Following the first data release of the recently launched JWST, we quickly prepared

to process the raw data products for the NIRCam observations covering λ = 0.9µm

to 4.4µm. Within this wavelength coverage, we are able to resolve the rest-frame

morphologies of galaxies at z > 3 for the first time. In particular, we investigate

the morphologies of galaxies previously detected with HST in the ERO SMACS

0723 cluster observations in Chapter 4.

Through visual classifications of disks, spheroids and peculiars, we show that

the fraction of disk galaxies in the JWST observations for z > 1.5 compared

to HST observations (Mortlock et al., 2013) are 10 times higher than expected.

By measuring the quantitative morphologies of these galaxies we also report that
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their concentrations, asymmetries and Sersic profiles are overall consistent with a

dominance of disky features.

6.4 Evidences for the Hubble sequence at z > 3 with

JWST

Based on the unexpected results we reported in Chapter 4, we follow up in Chap-

ter 5 with an investigation using the early observations of the CEERS ERS JWST

program that overlap with the EGS observations in the CANDELS fields. Using

galaxies previously detected in the CANDELS fields, we select 4265 galaxies that

are observed by both imaging programs, that have photometric redshifts, stellar

masses and star formation rates.

We carry out an extensive classification effort to visually classify all the galax-

ies in this sample and investigate the evolution of the rest-frame optical Hubble

sequence from z = 1.5 to 8. We show that the abundance of disks in the early

universe is also present in this larger sample, covering a wider area, and the frac-

tion of disk, peculiar and spheroid morphologies seem to be fairly constant over

that redshift range for galaxies with M∗ < 109.5M⊙. For high mass galaxies with

M∗ > 109.5M⊙, there is a strong evolution between disks and peculiar galaxies.

However, these trends happen much earlier than what is predicted and observed

by HST observations.
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6.5 Future work

The pathway forward has a multitude of parallel branches of investigation on the

morphological evolution of galaxies since z = 8, especially now with the start of

operations of JWST. The most obvious next step based on the results presented in

this thesis is a detailed study on the importance of galaxy mergers to morphological

transformation at z > 3 leveraging JWST observations of the CEERS, PRIMER,

and NGDEEP programs, extending the morphology-based galaxy merger rates to

higher redshifts. Chapter 4 and Chapter 5 suggests that the role of merging on the

morphology of galaxies seems to be very complex and to have started earlier than

anticipated. In fact, the visual classifications that are part of Chapter 5 together

with the still unexplored ’smooth’ indicator, could provide merging classifications

that could be used for this. These early JWST works are in preparation for that,

and will help us understand and develop methods for larger programs, such as

COSMOS-WEB.

On the other hand, the deep learning methods described in Chapter 2 and

Chapter 3 will be soon available to be applied to JWST data, levering cosmolog-

ical simulations especially dedicated to the early universe, such as the BlueTides

simulations and the FLARES simulations. We still lack publicly available merger

trees to make this possible, but this is possible to be produced from the current

particle data.

The rest-frame optical size evolution of galaxies in this redshift range is now

possible, given NIRCam observed sources as high as z=8 can be now resolved.

Moreover, we now have new eyes to understand the SFR density of the universe.
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