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Abstract 

Maximum Demand (MD) management is essential to help businesses and 

electricity companies saves on electricity bills and operation cost. Among different MD 

reduction techniques, demand response with battery energy storage systems (BESS) 

provides the most flexible peak reduction solution for various markets. One of the major 

challenges is the optimization of the demand threshold that controls the charging and 

discharging powers of BESS. To increase its tolerance to day-ahead prediction errors, 

state-of-art controllers utilize complex prediction models and rigid parameters that are 

determined from long-term historical data. However, long-term historical data may be 

unavailable at implementation, and rigid parameters cause them unable to adapt to 

evolving load patterns. Hence, this research work proposes a novel incremental DB-

SOINN-R prediction model and a novel dynamic two-stage MD reduction controller. 

The incremental learning capability of the novel DB-SOINN-R allows the model to be 

deployed as soon as possible and improves its prediction accuracy as time progresses. 

The proposed DB-SOINN-R is compared with five models: feedforward neural 

network, deep neural network with long-short-term memory, support vector regression, 

ESOINN, and k-nearest neighbour (kNN) regression. They are tested on day-ahead and 

one-hour-ahead load predictions using two different datasets. The proposed DB-

SOINN-R has the highest prediction accuracy among all models with incremental 

learning in both datasets. The novel dynamic two-stage maximum demand reduction 

controller of BESS incorporates one-hour-ahead load profiles to refine the threshold 

found based on day-ahead load profiles for preventing peak reduction failure, if 

necessary, with no rigid parameters required. Compared to the conventional fixed 

threshold, single-stage, and fuzzy controllers, the proposed two-stage controller 

achieves up to 6.82% and 306.23% higher in average maximum demand reduction and 

total maximum demand charge savings, respectively, on two different datasets. The 

proposed controller also achieves a 0% peak demand reduction failure rate in both 

datasets. The real-world performance of the proposed two-stage MD reduction 

controller that includes the proposed DB-SOINN-R models is validated in a scaled-

down experiment setup. Results show negligible differences of 0.5% in daily PDRP 

and MAPE between experimental and simulation results. Therefore, it fulfilled the aim 

of this research work, which is to develop a controller that is easy to implement, requires 

minimal historical data to begin operation and has a reliable MD reduction performance.  
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Chapter 1 – Introduction 

1.1 Overview 

This chapter introduces the research work in this thesis. An overview of the thesis is 

presented. Following this, the problem statements of the research work is given. The 

aim and objectives of the research are listed. In the subsequent sections, the significant 

of research is highlighted, followed by the scope of research. The outline of this thesis 

is provided in the last section. 

The electricity consumption in different sectors is increasing yearly due to 

urbanization and electrification. To cope with the increasing trend, the capacity of 

installed electricity generation and transmission systems may need to be expanded 

periodically, or significantly oversize to defer the next expansion period. However, this 

is not an economic approach. Electricity companies seek other methodologies such as 

demand-side management or demand response to defer the expansions, thus cutting 

down investment costs and greenhouse emissions substantially. One of the methods is 

a time-of-use tariff in the form of maximum demand (MD) charges. The MD charge 

introduces awareness of peak demand management among consumers. The higher the 

consumers’ participation in peak demand reduction, the higher the effectiveness of the 

tariff at reducing the peak demand at the distribution level. To reduce the MD charge, 

consumers apply peak shaving or peak reduction to reduce their peak demand or MD. 

Although MD charges are typically calculated monthly, it is common to reduce the 

daily peak demand because estimating the peak demand of a day is always easier than 

predicting the peak demand of the month and on which day it occurs. Successfully 

reducing daily peak demand for a month is equivalent to successfully reducing the peak 

demand of a month. Therefore, this research work studies both daily peak demand 

reduction and monthly maximum demand controller, with maximum demand 

controllers prioritized on the amount of monthly MD reduction. 

Battery energy storage systems (BESS) is an approach to achieve peak shaving. 

The BESS stores energy during low demand or off-peak hours and discharge its energy 

to the grid during high demand or peak hours. When it discharges to the grid, the power 

goes to the load, so the load draws less power from the utility, thus the utility company 

sees a lower demand usage. This approach has the highest potential due to its high 

flexibility and high compatibility with most buildings. Unlike load management 
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approaches that pre-determines a specific operating schedule for the controllable loads 

that may switch off some loads to reduce the demand usage, BESS needs no control of 

the load. Unlike diesel generators where its location must not be near common buildings 

and renewable energy sources such as photovoltaic where its installation location must 

be optimal, BESS can be installed virtually anywhere with no frequent maintenance 

required. One of the major challenges for peak shaving with BESS is the optimization 

of the demand threshold that controls the charging and discharging powers of BESS. A 

demand threshold that is too high may result in a very small peak reduction while too 

low may result in excessive BESS discharge and insufficient energy to reduce all 

anticipated demands, resulting in little or no peak reduction. There are two types of 

conventional peak reduction controllers for BESS. The first type is fixed threshold 

controllers that use a fixed threshold that is predetermined from historical data at the 

time of implementation. The second type is adaptive threshold controllers that adjusts 

the threshold in real-time based on the predicted day-ahead load profile. 

Conventional fixed threshold controllers are easy to implement as the controller 

just maintain the power demand at the pre-determined fixed threshold during the peak 

reduction operations without any threshold adjustments. However, it usually requires a 

large amount of historical data to predetermine an optimal fixed threshold, and the rigid 

threshold makes it not able to cope with load profile variation in the future, thus a high 

chance of peak reduction failure for load profiles that differs considerably from the 

historical data used to determine the fixed threshold. Conventional adaptive threshold 

control adjusts the threshold in real-time based on predicted day-ahead load profiles. 

The goal of conventional adaptive threshold control is to minimize the peak demand by 

maximizing the BESS utilization for peak reduction. If the day-ahead load profile is 

under-forecasted, the threshold may be too low for the actual profile, causing 

unnecessary high BESS discharge. As a result, the BESS may be exhausted before 

successfully reducing all anticipated demands, resulting in little or no peak demand 

reduction. Hence, the peak reduction performance of conventional adaptive threshold 

controllers is highly dependent on the accuracy of day-ahead load profiles. 

To tackle this issue of high dependency on accurate day-ahead load profiles for 

conventional adaptive threshold controller, researchers proposed different state-of-the-

art controllers. Some controllers tackle this by improving the prediction accuracy, but 

cannot eliminate prediction errors completely, so there is still the possibility of poor 
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accuracy for some days. Additionally, the identification and validation of an appropriate 

prediction model for different sites and buildings are time-consuming. Alternatively, 

some controllers minimize peak demand reduction failure rate by considering the 

potential of inaccurate day-ahead load profiles when adjusting the threshold. Typically, 

they achieve this with the inclusive of rigid parameters that are predefined from at least 

a year of historical data at the time of implementation. Rigid parameters cause these 

systems unable to adapt to evolving profiles where the prediction errors may become 

larger and render the existing rigid parameters inappropriate, causing low or no peak 

reduction. Moreover, users may not necessarily have the historical data collected at the 

time of implementation, and it is unrealistic to wait for a year of data collection before 

the implementation of the peak reduction controller. There is limited research that 

considers the problem of lack of historical data at the time of implementation, which is 

important for actual implementation. For monthly maximum demand reduction, a day 

of peak reduction failure can cause little to no MD reduction for that month, which 

defeats the purpose of the maximum demand reduction controller. 

This research work aims to develop a maximum demand reduction controller 

that can be implemented with a little amount of historical data and can be easily 

implemented for different buildings. Therefore, this research work proposes a dynamic 

two-stage maximum demand reduction controller that consists of a novel incremental 

model named DB-SOINN-R for time-series load prediction and a novel two-stage 

control strategy. The novel controller adjusts the demand threshold in real-time based 

on two load predictions of different lead times, which are day-ahead and one-hour-

ahead. The novel DB-SOINN-R incremental prediction model can be in operation after 

its initial training with simple data of as low as 30 days, and it can update its model 

with new data as time progress. Results show it has better prediction accuracies and is 

faster compared to conventional supervised models. Despite that, it does not eliminate 

prediction errors, and there may still have days with high prediction errors. The goal is 

of the DB-SOINN-R is to make sure the prediction model can adapt to future profiles 

through incremental learning, so the prediction errors are within the correctable range 

of threshold control.  

Hence, there is still a need for the novel two-stage control that can achieve a 

considerable amount of peak reduction when the day-ahead load prediction has poor 

accuracy for that day. Unlike other state-of-the-art controllers, the novel two-stage 
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controller achieves it without relying on rigid parameters that can deteriorate the 

adaptability of the controller. The novel two-stage controller achieves this by 

incorporating one-hour-ahead load prediction in its threshold real-time optimization 

control. The novel two-stage control consists of two stages. The first stage determines 

the threshold based on the predicted day-ahead load profile to achieve the highest 

possible peak reduction with the remaining BESS energy. The second stage refines the 

threshold based on the predicted one-hour-ahead load profile to prevent peak demand 

reduction failure when necessary. This ensures successful peak demand reduction 

regardless of the accuracy of day-ahead load profiles. To the author’s knowledge, no 

article utilizes one-hour-ahead for daily peak demand reduction. This research work 

presents the proposed two-stage control as an example that incorporates one-hour-

ahead for daily peak demand reduction.  

Combining both the novel DB-SOINN-R prediction model and the novel two-

stage control forms the two-stage maximum demand reduction controller proposed in 

this research work. Both the DB-SOINN-R prediction model and novel two-stage 

control need no large amount of historical data at the time of implementation. This 

allows the controller adapts to future profiles automatically and prevent peak demand 

reduction failure without requiring rigid parameters that need to be determined from 

long-term historical data at the time of implementation. Therefore, the controller is easy 

to implement for different buildings, and can potentially boost consumer’s demand 

response participation.  

In this research work, the DB-SOINN-R and proposed two-stage control 

strategy are evaluated in MATLAB. The DB-SOINN-R is compared with six 

conventional models: feedforward neural network (FFNN), support vector regression 

(SVR), deep LSTM neural network (LSTM), enhanced self-organizing incremental 

neural network (ESOINN), and k-nearest neighbour (kNN) regression. The proposed 

two-stage control strategy is compared with a conventional fixed threshold controller, 

a conventional adaptive threshold controller, and a state-of-the-art fuzzy controller. The 

proposed two-stage controller is also tested in a single-phase AC 240V experiment 

setup with a peak power of 1.8kW and a 48V lead-acid battery system to validate its 

performance in real-world. The real-world results are also compared with simulation 

results for validation and identification of potential rectification necessary for real-

world implementation.   
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1.2  Problem Statement 

Some of the research issues which may regarded as problem statements are as follows: 

• Conventional adaptive threshold controllers are highly dependent on accurate 

day-ahead load predictions. They may fail to reduce the peak demand if the 

accuracy of load prediction is too low, and the controller is unable to cope with 

the low accuracy. Some studies proposed controllers that use day-ahead load 

prediction with better accuracy. However, it is difficult to produce a consistent 

prediction accuracy that also works for future profiles, especially for predictions 

of buildings’ load profiles. Studies have shown buildings’ load profiles have 

lower predictability due to the distinct occupant behaviours and activities. 

Moreover, conventional threshold optimization control lacks the handling of 

unexpected high prediction errors and result in poor peak demand reduction 

performance.  

• There are state-of-the-art controllers that rely on rigid parameters to prevent 

peak demand reduction failure when the day-ahead load profile is under-

forecasted. The use of rigid parameters may deteriorate the adaptability of the 

controller, where the existing parameters may not necessarily be suitable for 

future profiles, thus increasing the possibility of peak reduction failure. Studies 

have shown that the load variations are evolving due to climate change and 

increased sector coupling. This makes the adaptability of the controller an 

important factor for reliable long-term MD reductions. 

• Although the incremental learning of ESOINN has the potential to tackle the 

issue of lack of historical data and is adaptive to future trends, it is originally 

designed for clustering applications. For prediction tasks, it has three problems 

that need to be solved. The first problem is the original denoising of ESOINN 

may incorrectly remove important nodes when the data has an uneven density 

distribution. The second problem with the original ESOINN is the use of 

Euclidean distance often causes the selection of incorrect nodes that has a 

significantly different timestamp or minute of the day, resulting in the predicted 

profile lagging the actual profile. The third problem is the ESOINN cannot 

produce a unique output for each input. The predicted output of the original 

ESOINN is based on the nearest node. Hence, two different inputs may result 

in the same predicted output.  
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• To combat adaptability, conventional prediction models and controllers often 

use a large amount of historical data, which is typically longer than one year, to 

train the initial model and to pre-define the rigid parameters used for preventing 

peak reduction failures. The assumption is that the longer the data, the more 

trends can be captured. However, the user may not necessarily have a large 

amount of historical data at the time of implementation, and it is impractical to 

wait for the collection of data. Insufficient historical data can worsen the 

prediction accuracy and rigid parameters determined from it may be 

inappropriate for future operations and cause the peak reduction performance to 

decline significantly. There are limited studies that consider this issue, which is 

an important factor for actual system implementation.  

• The implementation complexity and compatibility are also factor that user 

should consider. Most studies need their proposed controller to be specifically 

designed per site. The rigid parameters used by these controllers often need to 

be determined from collected historical data of the target building and cannot 

be shared with other buildings directly. To improve load prediction accuracy, 

studies often suggest the use of complex and difficult-to-acquire input features, 

such as buildings’ internal environment readings, weather information, and 

occupants’ behaviour. However, the correlations of these features may not 

necessarily be applicable to other buildings. It is time-consuming to identify and 

evaluate the feasibility of the prediction model for each specific building based 

on its collectable data. A high complexity system increases the time required 

before implementation, while users always want to reduce the monthly 

maximum demand charge as soon as possible. 

• Although studies have shown the feasibility of their system through actual 

implementation, the results presented are often in the period of days. However, 

long-term monthly results should be presented to validate its consistency for 

monthly maximum demand reduction. Also, no study considers and studies the 

effect of using a small amount of historical data at the time of implementation.  
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1.3  Aims and Objectives 

The aim of this research work is to develop an MD reduction controller of BESS that 

is easy to implement, requires minimal historical data to begin operation, and has a 

reliable MD reduction. To fulfil the aim of the research work, the following objectives 

need to be accomplished: 

• To design an incremental load prediction model that uses basic input features 

and performs better or is comparable to conventional models. 

• To design a new prediction-based threshold control strategy that use dynamic 

values and can prevent peak demand reduction failure if the predicted day-ahead 

load profile has low accuracy.  

• To validate the MD reduction performance based on the integration of the 

incremental load prediction model and two-stage control strategy into a 

controller. 

1.4  Significance of Research 

This research work proposes a two-stage controller that consists of a novel incremental 

unsupervised DB-SOINN-R prediction model and a novel dynamic two-stage control 

strategy. The significant contributions that have been made in this research work are 

listed below:  

1. Unlike other controllers that rely on improved prediction models or rigid 

parameters to handle under-forecasted prediction error, the proposed controller 

needs no rigid parameters that need to be obtained from historical data analysis 

at the time of implementation. The proposed controller uses two load 

predictions of different lead times, which are day-ahead and one-hour-ahead, to 

optimize the threshold in real-time. With the integration of one-hour-ahead load 

prediction, the controllers adjust the threshold dynamically, not using any pre-

determined rigid parameters or constants but only values obtained in real-time. 

To the author’s knowledge, there is no article found using one-hour-ahead load 

prediction in daily peak demand reduction. This research work demonstrates the 

usage of one-hour-ahead load prediction in daily peak demand reduction. 

Results show the proposed controllers have zero peak demand reduction failure 

up to ten months of operations and outperform the conventional fixed threshold 
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controller, conventional adaptive threshold controller and a state-of-the-art 

fuzzy controller. 

2. Unlike other load prediction models that require a large amount of training data, 

the incremental DB-SOINN-R prediction model can be trained with a small 

amount of data and updates its model daily. Its incremental learning capability 

allows it to update its model instead of retraining the model, significantly 

reducing the training time spent on updating the model. The proposed DB-

SOINN-R has the highest prediction accuracy compared to other models. 

Moreover, the DB-SOINN-R is an unsupervised model, so it has both faster 

prediction time and training time compared to other supervised models.  

3. Combining both the incremental DB-SOINN-R model and the dynamic two-

stage control, it forms the novel dynamic two-stage maximum demand 

reduction controller. The controller can begin peak reduction operations with 

30 days of historical data only. The DB-SOINN-R uses only load profile data, 

reducing the complexity of the controller. The dynamic two-stage control 

strategy automatically optimizes the threshold based on the installed BESS 

capacity and predicted profiles. To demonstrate the adaptability of the proposed 

controller, the long-term evaluation (up to ten months of MD reduction) of the 

controller is evaluated on two different datasets. The settings of the controller 

remain the same for all tests. The proposed controller is also tested on a different 

BESS size to demonstrate its flexibility. The controller dynamically finds the 

optimal threshold based on the installed BESS capacity, so users can allocate 

BESS capacity based on their affordability. The higher the BESS capacity, the 

higher the MD reduction. Then, the controller is evaluated for up to ten months 

of MD reduction on two different datasets, which such long-term evaluation is 

not commonly found in demand reduction articles.  

1.5 Scope of Research 

This research work focuses on developments of a new prediction model and a new 

threshold control strategy that can be implemented with limited historical data at the 

time of implementation, capable of peak demand reduction under various 

circumstances, adaptive to evolving profiles, and easy to implement for different target 

buildings or sites. The optimal sizing of BESS and advanced optimization algorithm 

are not in the scope of this research work. Instead, this research work focuses on the 
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development of an easy-to-implement controller that can automatically adjust and adapt 

to the installed BESS capacity. This allows users to scale the BESS capacity depending 

on the affordability of the user.  

1.6  Thesis Outline 

This thesis consists of 7 chapters. Chapter 1 discusses the overview, problem statements, 

research aim, research objectives, significance of research, and scope of research of this 

research work. 

Chapter 2 presents the background information on demand reduction, different 

demand reduction methodology, the definition of maximum demand, the conventional 

demand reduction with BESS, and different load prediction models. It also includes a 

comprehensive literature review on state-of-the-art peak demand and maximum 

demand reduction controllers of BESS and state-of-the-art unsupervised self-

organizing incremental neural networks. Lastly, the research gaps found based on the 

literature review are presented.  

Chapter 3 presents the structure of maximum demand reduction using BESS. 

Two load profiles are used in this research work, with one profile collected specifically 

for this research work while another one is online data. The collection of the data is 

explained in this chapter. The characteristics of the two load profiles are also discussed 

in this chapter. 

Chapter 4 proposes the first novelty of this research work, which is an improved 

unsupervised self-organizing incremental neural network, namely DB-SOINN-R. The 

prediction model is compared with five conventional prediction models. Unlike 

conventional evaluation methods that have more training data than testing data, this 

chapter evaluates their incremental prediction by pretraining the models with a small 

amount of historical data and testing on a long period of testing data, with the models 

updating incrementally daily. The execution times are also evaluated by measuring the 

time taken to train the initial model, predict and daily incremental training.  

Chapter 5 proposes the second novelty of this research work, which is a novel 

dynamic two-stage maximum demand reduction controller. This controller uses the 

proposed DB-SOINN-R in Chapter 4 as the prediction model and incorporates a new 

two-stage control strategy at finding the optimal threshold that prevents peak demand 

reduction failure when the accuracy of the day-ahead load profile is inadequate. It is 
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compared with two conventional controllers and one state-of-the-art fuzzy controller 

on the two different datasets. To demonstrate the flexibility of the proposed controller, 

it is also tested on a different BESS size.  

Chapter 6 demonstrates the real implementation of the proposed dynamic two-

stage maximum demand reduction controller that includes the proposed DB-SOINN-R 

prediction models. The controller is tested on a single-phase AC 240V setup with a 48V 

battery bank. The detailed setup of the whole experiment, including the specification of 

the sensors and equipment used, is presented. The differences between actual 

implementation and MATLAB simulations are presented. Lastly, it presents the effect 

of the controller on the grid quality.  

Chapter 7 draws the conclusion of the research work and recommends potential 

future works to further enhancement of the research work. 
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Chapter 2 – Literature Review 

2.1  Overview 

The chapter presents the literature review for this research work. Section 2.2 explains 

peak demand and why peak demand reduction is required. Section 2.3 discusses the 

different methodologies for peak reduction, specifically demand-side management 

(DSM) and demand response (DR). Following in Section 2.4 provides the definition of 

maximum demand, its implication for specific consumers in the form of MD charges, 

and the calculation of MD charges. Then, the different maximum demand reduction 

techniques for demand-side are discussed in Section 2.5. A comprehensive literature 

review on state-of-the-art peak demand reduction controllers of BESS is presented in 

Section 2.6. One of the crucial components for many peak demand reduction controllers 

is the load prediction model. Section 2.7 shows different conventional and state-of-the-

art time-series load prediction models. Section 2.8 provides a comprehensive literature 

review on self-organizing incremental neural networks (SOINN), including improved 

versions of SOINN. Section 2.9 discusses the different optimization algorithms that are 

suitable for demand threshold optimization. The research gaps found based on the 

literature reviews are discussed in Section 2.10. Lastly, a summary is provided in 

Section 2.11.  

2.2  Peak demand 

Figure 2.1 shows the notably increasing trend in electricity consumption in different 

sectors in Malaysia due to urbanization and electrification. As the electricity 

consumption increases, it is safe to assume the peak demand increases as well.  
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Figure 2.1: Retrieved from [1], it shows the electricity consumption per sector in 

Malaysia between years 1978 – 2018 

Electricity companies need to ensure the energy generated met all consumers’ 

demands with proper sizing of generators and equipment in distribution stations. Since 

energy is the total amount of power used over a period of time, electricity companies 

also need to ensure their generators and distributions can supply the required power 

demand at any moment. For example, a 10W light bulb that operates for ten hours has 

the same energy consumption of 100Wh as a 100W light bulb that operates for one hour. 

However, the 100W light bulb draws a peak power of 100W. Hence, the generators 

need to be able to provide that peak power of 100W for an hour. This is known as peak 

demand. Hence, electrical companies need to ensure the capacities of generation, 

transmission, and distribution fulfil both the energy and peak power demands. However, 

the pure expansion of the existing system is not economical to cope with the increasing 

trend, in which the costs will be passed to customers through tariffs [2]. Therefore, they 

seek other methodologies, such as demand-side management or demand response (DR) 

[3], to defer the expansions, thus cutting down investment costs and greenhouse 

emissions substantially [4].  

2.3 Peak reduction methodology 

Peak reduction, which is also referred to as peak shaving [3], is a process of 

flattening the load profile by shifting workloads during high demands to periods with 

lower demand. From the perspective of electricity companies, they are looking forward 

to peak reduction on the demand-side instead of expanding the generation and 
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distribution capacities. There are two types of demand-side management (DSM) [3]. 

The first type involves retrofitting existing equipment and devices with more energy-

efficient alternatives. For example, replacing conventional fluorescent lights with LED 

lights and replacing conventional air-conditioners with inverter air-conditioners. 

However, it is better for long-term energy consumption (kWh) reduction instead of peak 

demand (kW) reduction. The second type of DSM is demand response (DR), which 

targets peak demand reductions. Instead of expansion of generation and distribution 

capacities for short-duration peak demands, DR helps defer these expansions by 

regulating the peak demands. 

There are two types of DR mechanisms: price-based and incentive-based [5]. 

Price-based DR uses different dynamic pricing mechanisms, which include Time of use 

(TOU), Real-Time pricing (RTP), Critical Peak Pricing (CPP), Variable Peak pricing 

(VPP), Extreme Day Pricing (EDP), and Peak Time Rebate (PTR). A simple definition 

of each pricing is summarized in Table 2.1. In response to the changes in electricity 

prices, users change their usage patterns, consuming energy during periods with lower 

tariffs to reduce the electricity bills, thus reducing the peak demand on the grid. The 

purpose of this DR mechanism is to introduce awareness of peak demand management 

among consumers. Users will try to reduce peak demand to reduce the operation cost. 

Incentive-based DR is programs initiated by the utilities, such as direct load control and 

interruptible load [5], where users allow the electricity companies to alter their load 

usage in response to electricity prices, incentives, or overall stability [6], [7]. Table 2.2 

shows the definition of the different incentive-based DR programs. 
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Table 2.1: Definition of different pricing-based DR mechanisms 

Pricing 

mechanism 

Definition 

TOU Different pricing based on time. (Eg. On-peak, off-peak, 

seasons.) 

RTP Electricity price fluctuates every interval (Eg. 15-min, 60-min) 

with the changes reported ahead to customers. 

CPP A high rise in pricing for a particular period in case of critical 

events. 

VPP High electricity rate for a specified period.  

EDP Similar to CPP but applied for the whole day of a 24-hour period. 

PTR In events of high wholesale price anticipation or power system 

emergency, the customers are offered rebates if their load 

activities are below a baseline load.  

 

Table 2.2: Definition of different incentive-based DR programs 

DR program Definition 

Direct load 

control 

Utility controls the customer’s loads, and the customer is 

incentivized. 

Interruptible 

load 

Customers agree to meet their demands with their power 

generation.  

Emergency 

demand 

response 

program 

Customers are incentivized for curtailing loads during a utility-

declared emergency when there is a reserve shortfall. 

Capacity market 

program 

In this program, the customers agree to reduce their loads to a pre-

specified level at the time of system contingencies. The customers 

receive guaranteed payments for such obligations and are 

penalized if load reduction is not observed. 

Demand bidding 

program 

The customers—usually large consumers—are allowed to bid for 

curtailing loads in wholesale and retail electric markets.  

Ancillary 

services market 

program 

Customers can bid for load curtailment in ISO/RTO markets. If a 

bid is accepted, the customers are incentivized at market price for 

their obligation to be on standby. When a load reduction is 

required, these customers are asked for curtailment and are paid 

according to the market energy price. 
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Both price-based and incentive-based DR are common in their effect on the 

consumers’ electricity bills. Ultimately, the consumers are penalized for higher peak 

demand usage with a higher electricity bill while rewarded with a lower electricity bill 

if they can reduce peak demands successfully.  

For DR to thrive at peak reduction and be relevant for electricity companies, it 

requires customers’ participation and supporting infrastructures [5]. The effect of DR 

and peak reduction seen by electricity companies will be minimal if the participation 

rate is low. Instead, the companies only receive payment for continuous capacity 

expansion and potentially electricity rate inflation to cope with the upward growth of 

electricity usage. Various DR programs, such as the incentive-based DR programs in 

Table 2.2, are introduced to increase customers’ participation. However, not all 

countries have different DR programs. In Malaysia, there is no incentive-based DR 

program but relies on the TOU pricing only, in which consumers are charged a 

maximum demand (MD) charge on top of the typical energy consumption.  

2.4  Maximum demand (MD) 

On top of the typical charge based on energy consumption of the billing month, the 

applicable commercial and industrial businesses in Malaysia are also charged based on 

their maximum demand (MD) of the billing month. Unlike energy consumption, which 

has a unit of kilowatt-hours (kWh), the unit of MD is kilowatts (kW). As shown in 

Figure 2.1, these two sectors have significantly higher load consumption compared to 

residential. They should contribute a significant portion of the peak demand. Moreover, 

they show a steeper growth rate than other sectors, especially in the past decade, as 

observed by the increasing difference between the lines.  

According to Tenaga National Berhad (the only electricity distribution company 

in Peninsular Malaysia), the MD is twice the largest energy consumption recorded 

during any consecutive 30-minutes interval per billing month [8]. Since energy is power 

multiplied by time, with E referred to as the energy consumption of any consecutive 

30-min interval, the MD is effectively the conversion between energy and power, as 

shown in equation (1).  

𝐸 = 𝑀𝐷 × 0.5ℎ 

𝑀𝐷 = 2𝐸 

(1) 
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Since MD is twice the largest energy consumption recorded during any 

consecutive 30-minutes interval, the energy consumption per 30-minutes can be 

converted to kW using equation (1). The converted energy consumption per 30-minutes 

is referred to as MDblock in this research work. There are 48 MDblock per day, and the 

highest MDblock of the month will be the MD for the month. For example, if the highest 

MDblock in June happens at 15:00 – 15:30 of 15th June with a recorded energy 

consumption of 40kWh for this 30-minute interval, the MD for June would be 80kW. 

Other than the doubling energy consumption approach, as shown in equation 

(1), the MDblock can be calculated by averaging the power. Assuming a load profile with 

an interval of m minute and the power (Pt) remains the same within the m interval, the 

energy per m minute interval (Et) can be obtained using equation (2). Then, equation 

(3) is used to calculate the total energy consumption of the 30-min (Etotal). Finally, the 

Etotal is converted to MDblock using equation (4).  

𝐸𝑡 = 𝑃𝑡 ×
𝑚

60
 (2) 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐸𝑡

30
𝑚

𝑡=1

=
𝑚

60
∑ 𝑃𝑡

30
𝑚

𝑡=1

 
(3) 

𝑀𝐷𝑏𝑙𝑜𝑐𝑘 = 𝐸𝑡𝑜𝑡𝑎𝑙 ÷
30

60
=

𝑚

30
∑ 𝑃𝑡

30
𝑚

𝑡=1

 
(4) 

If the load profile has an interval of 1-min (m = 1), the MDblock will be the sum 

of thirty Pt and then divided by 30. If the load profile has an interval of 5-min (m = 5), 

the MDblock will be the sum of six Pt and then divided by 6. In other words, the MD 

block is the average power during the 30-min interval. 

Table 2.3 shows the different rates for the different tariffs by Tenaga National 

Berhad Malaysia. Tariffs B and D are low voltage and do not have the MD charge. For 

tariffs C2, E2, and E3, their MD charge only considers within the peak period, which 

is from 08:00 to 22:00, according to TNB’s Tariff book [9].  
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Table 2.3: MD Rates for Different Tariffs by Tenaga National Berhad Malaysia [10] 

Tariff Rates (RM/kW) 

B - Low Voltage Commercial Tariff - 

C1 - Medium Voltage General Commercial Tariff 30.30 

C2 - Medium Voltage Peak/Off-Peak Commercial Tariff 45.10 

D - Low Voltage Industrial Tariff - 

E1 - Medium Voltage General Industrial Tariff 29.60 

E2 - Medium Voltage Peak/Off-Peak Industrial Tariff 37.00 

E3 - High Voltage Peak/Off-Peak Industrial Tariff 35.50 

Maximum demand (MD) charges have always been a concern for commercial 

and industrial sectors, in which the charges can be as high as 50% of the electricity bill 

[11]. The high percentage means the customer is not performing peak reduction with 

most loads operating at the same short period of time, resulting in a higher MD charge 

when compared to the energy consumption charge. Hence, it urges different MD 

reduction systems to reduce the MD charges. 

Theoretically, MD reduction can be achieved by simply reducing the peak 

demand of the month, which could be just one or a few days. However, it is very 

difficult to accurately predict which days have the peak demand of the month. Instead, 

it would be easier to predict the next day’s profile and reduce the peak demand daily. 

With daily peak demand reduced, the MD of the month will also be reduced. Therefore, 

the following section discusses not only monthly MD reduction methods but also covers 

daily peak reduction methods.  

2.5 Demand-side peak reduction 

Unlike the direct load control under the incentive-based DR programs that operate at 

the demand-side but are controlled by utility, this section focuses on methodologies that 

are implemented, controlled, and maintained at the demand-side by consumers. 

Generally, demand-side peak reduction can be achieved with direct load control and 

distributed energy resources. 

One of the direct load management systems reduces or shifts specific 

controllable loads. A simple method is turning off pre-allocated and pre-prioritized 

loads to prevent power demands from exceeding a predetermined demand threshold 

[12]. Another type of direct load management system turns off certain loads to reduce 

the power drawn from the grid [13] or shift the operation of controllable loads to a low 
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demand period [14], [15], with [14] also use a small wind turbine, solar panels, and 

batteries. The most common controllable and shiftable loads are air conditioning, water 

heater, and electrical vehicle (EV) charging. Other than load management, the 

integration of distributed generators can also greatly improve flexibility compared to 

BESS-only systems. A multi-level demand-side management algorithm is proposed in 

[16] that achieves peak reduction with a generator and BESS. Stochastic optimization 

is used in [17] to optimize operations of multiple generators and BESS for operation 

cost reduction. The integration of BESS can provide more flexibility to load variations 

[18]. However, the BESS in [7], [14]–[16] is mostly for storing renewable generation 

surplus, while the peak reductions are mainly achieved by generators and direct load 

control systems.  

One of the limitations of the implementation of direct load control systems is 

the incapability and unwillingness of users to shift the operation of loads to a different 

time. Another problem is the requirement of sophisticated planning with detailed 

knowledge of loads, such as the specification, priority, operation time, expected usage, 

and more. With these data, users can decide which loads can be shifted to a different 

time for peak demand reduction without significantly disturbing the occupants’ comfort 

and daily operations. The shifting of loads’ operation time decreases operational 

flexibility since the usage of the loads is predetermined based on the schedule. Although 

different topologies have been proposed to regain schedule flexibility [19]–[21], they 

may not satisfy certain businesses and users.  

Generation units such as diesel generators, renewable energy sources, and 

energy storage systems (ESS), such as battery energy storage systems (BESS), are 

categorized under distributed energy resources [22]. Peak reduction with on-site 

generators supplies extra power to the load if necessary. It reduces the power drawn 

from the grid, and the electricity company sees a smaller load demand. Diesel 

generators are typically used [23] as the capital cost of these small generators is low, 

but the operating and maintenance costs are high [3]. Moreover, they have high carbon 

emissions [24]. Many countries have pledged towards net-zero emissions by 2050, in 

which Malaysia has also increased its commitment to carbon reduction [25]. The 

installation of diesel generators may require a permit or license from the government 

due to their noise and carbon emissions, as stated in the Environmental Quality Act 
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1974 under the laws of Malaysia [26]. The potential of the imposition of carbon tax [27] 

is also further reducing the interest of generators among consumers.  

Intermittent renewable energy sources alone, such as photovoltaic and wind 

have limited potential for peak reduction due to their non-dispatchable output power 

[28] that is unpredictable in nature [29]. They are recommended to pair with BESS for 

reliable peak reduction [4]. Peak demand reduction can also be achieved using BESS 

alone, and it is the most flexible method since it is compatible with the implementation 

in most buildings and sites. With BESS, it does not need to alter the operation of loads, 

thus not affecting daily operations and occupants’ comfort. One of the key challenges 

for peak reduction using BESS is finding the optimal demand threshold that determines 

the charging and discharging powers of BESS [3]. The BESS recharges from the grid 

when the load demand is lower than the threshold and discharges energy to the load 

when the load demand is higher than the threshold to reduce power drawn from the 

utility grid.  

Another challenge for peak shaving with BESS is finding the optimal BESS size 

[3]. The size of the BESS determines the amount of peak reduction. The higher the 

BESS capacity, the higher the possible peak reduction. A demand threshold that is too 

low can cause the BESS to be exhausted before reducing all anticipated demands. Once 

the BESS is exhausted, the peak demand reduction is halted until the BESS is recharged. 

As a result, the day may have low or no peak demand reduction. The BESS size is 

typically fixed after implementation, and the BESS size may vary depending on users’ 

affordability and expected peak demand reduction. On the other hand, the demand 

threshold can be adjusted by the controller in real-time, depending on the type of 

controller. EVs parked in the parking lot can also be utilized for peak reduction [30]. 

The EVs replace a dedicated BESS system for peak shaving. It utilizes vehicle-to-grid 

technology to allow bidirectional power flows between the EVs and the grid. In such a 

setup, the available BESS capacity varies depending on the number of EVs in the 

parking lot and the SOC of EVs. The available BESS energy varies over time and is 

different every day. The management system not only needs to use the EVs for peak 

reduction but also needs to ensure the EVs are charged when the EVs are leaving. 

Another alternative to conventional BESS is using hydrogen fuel cells paired with a 

solar-wind hybrid hydrogen generator [31]. Although it provides better efficiency and 

higher energy density, it requires more complex controls and maintenance of the 
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generator. This research work focuses on the development of a controller that performs 

real-time threshold adjustment automatically based on the installed BESS size. 

2.6 Peak reduction controllers with BESS 

There are two types of conventional controllers for peak demand reduction. The first 

type is the fixed threshold controller, which uses a fixed threshold that must be 

predetermined from historical load profiles before implementation [32], [33]. The fixed 

controller is simple and easy to implement, but its threshold does not adjust in real-time, 

so it cannot cope with daily variations in load patterns [32]. Unexpected high demand 

may result in peak demand reduction failure for fixed threshold controllers, as shown 

in Figure 2.2(a), where the BESS is emptied before reducing all anticipated demands. 

The blue-shaded region is the energy supplied by the ESS. Since the fixed threshold 

controller uses a fixed threshold that remains unchanged, the ESS discharges 

completely at time t, and demand after t cannot be further reduced, so the grid and load 

powers are the same.  

The second type of conventional controller utilizes day-ahead predicted load 

profiles and linear optimization or model predictive control (MPC) to adjust the 

threshold in real-time [34]–[38]. This second type of MPC controller is referred to as 

single-stage control in the remaining of this thesis. For maximizing the BESS utilization 

for peak demand reduction, the threshold is optimal when the remaining BESS energy 

matches the total anticipated BEES discharge energy for the rest of the day based on 

the predicted day-ahead load profile. MPC has been used for peak demand reduction in 

a university building in Malaysia [35], Korea [34], and an office building with a PV 

microgrid [37]. Although MPC shows a higher peak reduction than fixed threshold 

control [38], it needs a relatively good day-ahead load prediction accuracy. If the day-

ahead load profile is significantly under-forecasted, peak demand reduction failure can 

occur [37], as shown in the example in Figure 2.2(b). Although the controller did have 

a consistent threshold increment over time to compensate for the day-ahead prediction 

error, it underestimates the under-forecast error, and the threshold increment is 

insufficient to compensate for the errors. As a result, the BESS is emptied at time t with 

no demand reduced after t, indicating peak demand reduction failure. Therefore, peak 

demand reduction failure can occur if the error exceeds the prediction error tolerance 

of the conventional single-stage controller.  
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Figure 2.2: An example of peak demand reduction failure for (a) fixed threshold and 

(b) single-stage controllers 

It is inevitable for a prediction model to have prediction error and fail to predict 

some peak demands [39] and some days of inaccurate day-ahead load profiles 

throughout a period, especially for buildings that have low predictability due to their 

distinct occupant activities and facilities [40]. A day with peak demand reduction failure 

may contribute to no MD charge reduction for the month [41]. Hence, it is important to 

prevent peak demand reduction failure for reducing the monthly MD. Table 2.4 lists 

the state-of-the-art peak demand reduction controllers using BESS. Different 

approaches are applied to prevent peak demand reduction failure that is caused by 

inaccurate day-ahead load profiles.  

One of the approaches is using an improved prediction model such as the 

ensemble prediction method [42], complex-valued neural network [43], probabilistic 

forecast using scenario tree [44], and improved regression approach [45]. There are also 

controllers that incorporate predicted profile manipulations for reducing the prediction 

errors, such as linear regression using historical prediction errors [46], interpolating the 

next hour data of the day-ahead predicted profile [47], and applying an offset to the 

day-ahead predicted profile [4], [48]. Despite the accuracy improvement, it does not 

guarantee zero uncorrectable error, especially for buildings. Compared to aggregated 

load profiles of multiple buildings or houses at distribution or generation stations, 

individual buildings’ load profiles have less predictability [49] due to the distinct 

occupant activities and facilities [40]. Additionally, the identification and validation of 

an appropriate prediction model are time-consuming.  
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Alternatively, peak demand reduction failure rate can be minimized by adopting 

controllers that consider potentially inaccurate day-ahead load profiles when adjusting 

the threshold. Y. Hida et. al. [48] adds a margin to the optimized threshold. It is simple 

to implement but difficult to find one margin that fits all scenarios. Instead of demand 

thresholds, K. H. Chua et. al. [36] presents a novel fuzzy controller for peak demand 

reduction. Instead of demand thresholds, it determines the discharge power for the next 

interval based on the time of the day and SOC. The fuzzy rules are optimized daily at 

the beginning of each day using the predicted day-ahead load profile. However, its 

membership functions need to be specifically customized using historical data to suit 

the load characteristics of each building. It includes the predetermination of the range 

for the discharge power, time of operation, and SOC for the membership function. 

These membership functions are rigid and are obtained from historical data. The fuzzy 

controller is tested on two educational buildings in Malaysia. However, the 

methodology of the prediction model and the accuracy of predicted day-ahead load 

profiles are not showed or discussed. Moreover, the results demonstrate that the 

conventional single-stage controller performs better in three of the four cases in the 

second building. There are only results for four days of peak reduction for two buildings. 

The SOC of the battery is also not shown in the results. Load prediction and SOC are 

important to determine whether a controller misbehaves by adjusting the threshold 

unintentionally.  

L. C. Hau et. al. [4] presents a self-adjusting controller for MD reduction for an 

educational building in Malaysia. It consists of anticipated action that adds a negative 

20% offset to the predicted day-ahead load profile and preparatory actions that reserve 

30% of the battery energy for demand reduction after 13:00. The offset should be 

determined through the historical net demand analysis of the building and is constrained 

to the range of -20% to 15%. Both the 30% reserve amount and 13:00 time used in the 

preparatory action are rigid parameters that are user-defined from historical demand 

analysis. The amount of historical data used to predetermine these rigid parameters is 

not specified, but it mentioned the usage of data from the previous year in its next-day 

load profile prediction. Hence, it should have at least one year of historical data to 

predetermine the rigid parameters at the time of implementation. 
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Table 2.4: The state-of-the-art peak demand reduction controllers using BESS 

Ref Description Limitation 

[44] • Using scenario tree to determine the 

different possible scenarios. 

• There are days with peak demand 

reduction failure. 

[42] • Using complex combination 

forecast method that is a weighted 

combination of five least-squares 

linear regression models. 

• Using linear optimization to adjust 

the threshold. 

• Requires accurate day-ahead load 

profile. 

• Using long one-year data to train the 

prediction model.  

• Does not present accuracy of load 

forecast. 

[43] • Using day-ahead load forecast for 

peak reduction and 20mins-ahead 

for load smoothing. 

• Using complex-valued neural 

networks for load forecasts. 

• Requires accurate day-ahead load 

profile.  

• Tested on one day of profile only. 

[35] • Using scenario tree to determine the 

different possible scenarios. 

• There are days with peak demand 

reduction failure.  

[38] • Using linear optimization to adjust 

the threshold. 

• Requires accurate day-ahead load 

profile. 

• Tested on one day of profile only. 

[36] • Using fuzzy control to determine the 

BESS discharge power. 

• Does not present day-ahead load 

prediction method and accuracy. 

• Tested on five days of profile only. 

[41] • Using an  MPC-based nonlinear 

optimization model to minimize the 

daily electricity usage cost while 

regulating the peak.  

• Peak regulation with rule-based 

control to handle day-ahead load 

forecast uncertainty.  

• Needs to predefine a fixed threshold 

from one year of historical data.  

• No real-time threshold adjustment. 

• Uses a simple rule-based for peak 

reduction if violated the pre-defined 

peak limit or threshold. 

[33]  • Fixed threshold controller  • Needs to predefine a fixed threshold. 

• Tested on one day of similar profile 

only.  

[50]  • A decision-tree based algorithm to 

mitigate peak demand complications 

in an islanded microgrid.  

• Not reducing peak gird power but 

reducing peak generator power for 

optimal cost-benefits. 

[4] • A spontaneous self-adjusting 

controller that employs MPC and 

dynamic programming for monthly 

maximum demand reduction.  

• Needs to predefine multiple rigid 

parameters (minimum threshold, 

offset, reserve amount, reserve time) 

from historical data analysis.  
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2.7  Short-term Load Prediction 

Load predictions can be categorized based on their predict horizon. Predict horizons of 

30-min ahead and up to the next two weeks are considered short-term [23]. This 

research work uses one-hour-ahead and day-ahead load predictions. Therefore, the 

literature focuses on short-term load prediction and pays extra attention to articles 

discussing the two abovementioned predict horizons.  

Building load prediction is one of the crucial components in many different 

tasks, such as energy management and optimization. Compared to aggregated load 

profiles at distribution or generation stations, individual buildings have significantly 

different load patterns [51]. The approaches for load prediction can be categorized into 

three: white-box or statistical, black-box or data-driven, and grey-box or ensemble [52]. 

White-box approach performs prediction based on equations and known relations. 

There are software programs designed to predict the load profile based on the inputs 

entered by the user. The more detailed the inputs are, the better the accuracy. Black-

box approaches are data-driven. Historical data is used to construct a model that maps 

the relationship between input and output. It is the simplest method since it requires 

only historical data to train the model.  

The most common prediction models are artificial neural network (ANN), 

which includes feedforward neural network (FFNN) [53], reinforcement neural 

network [54], generalized neural network [55], wavelet neural network [56], regression 

neural network [57], recurrent neural network [58], [59], convolutional neural network 

[60], and long-short-term-memory (LSTM) [61], [62], with recurrent neural network 

and LSTM only applicable to deep neural networks. In general, they can be classified 

into two groups based on their layer depth. Networks with a three layers configuration 

(input-hidden-output) are known as shallow networks, while networks with more than 

one hidden layer are known as deep neural networks (DNN). LSTM is a type of 

recurrent neural network that is specifically designed for learning time-series data and 

long-term dependencies [52]. It has memory nodes that feedback on the outputs from 

the previous timestep for new prediction output.  

There are also regression-based models, such as autoregressive integrated 

moving average (ARIMA) and support vector regression (SVR). SVR is a regression 

model of support vector machines and has been studied [63]–[66]. An advantage of 



25 

 

SVR is its capability to find global solutions [63] since conventional ANN networks 

such as FFNN often suffer from overfitting and the possibility of being stuck in a local 

minima solution. K-nearest-neighbor (kNN) regression [67], [68] that works by 

averaging the target data of the k number of nearest neighbors are also used in prediction. 

Its improved version uses inverse distance weighting (IDW) instead of simple 

averaging [69] and is known as kNN-IDW regression in this thesis. Training data are 

used directly for searching the k number of nearest neighbors. The disadvantage of kNN 

regression is the storage and handling of a large amount of data as more historical data 

is collected and its incapability to deal with noise data in the collected historical data. 

Other than the single prediction model, studies have also proposed ensemble 

models that fuse the outputs of multiple different prediction models [67]. The downside 

of such ensemble models is the increased complexity and difficulty. For example, the 

parameters of each model need to be optimized separately. Ensemble models based on 

decision trees are gaining popularity, such as gradient boosting (GB) and random forest 

(RF) [52], [67], [68], [70]. These tree-based models have fewer hyperparameters to 

optimize but require more computing resources to train the trees, especially with high 

numbers of trees.  

Most research works aimed to improve prediction accuracy and did not consider 

practicality, such as implementation and long-term performance. Data collection is 

important for load prediction, both before and after implementation. Although there is 

increasing usage of smart meters and internet-of-things (IoT) sensors, it does not apply 

to all countries and existing buildings. Some of the inputs are difficult to measure. This 

paper [71] uses an IoT-based big data platform for the day-ahead prediction of building 

heating and cooling demands. K-means clustering is used to cluster the data then each 

cluster is trained with its own ANN model. Various types of readings are measured, 

which include (i) inside building surface temperatures, (ii) outside building surface 

temperatures, (iii) indoor air temperature, (iv) recorded schedules of occupants, 

equipment, and lighting, (v) recorded weather profile, and (vi) historical building 

heating and cooling demands. It studied the correlation coefficient between the various 

types of data, and the measure of correlation used in the article is shown in Figure 2.3. 

Results indicate that the temperature of inside building surfaces, the temperature of 

outside building surfaces, indoor air temperature, outdoor dry air bulb temperature, and 

global radiation have weak or no relation with the heating and cooling demands. The 
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operating schedules of lightning and equipment have weak or general relation with the 

heating and cooling demands. Generally, the schedule of occupants has high relation 

with the cooling and heating demand. Since the cooling and heating demand often holds 

up to 40% of the buildings’ demand [72], the building’s cooling and heating demand 

should be correlated to the building’s total demand.  

 

Figure 2.3: Measure of Correlation [73] 

However, the building studied in this thesis is not equipped with these sensors. 

It is difficult to incorporate all the necessary sensors into existing buildings in terms of 

execution and cost. The collection, storage, and processing of data are complex 

processes. The difficulty of implementing sensors for existing buildings has been 

studied in [74]. Instead, only historical load demands are used since it is easy to obtain, 

and only the installation of one sensor at one location is required. 

Another concern of implementation is the lack of historical data. Every model 

needs to be pre-trained with a certain amount of historical data, but the historical data 

is not always available when consumers may want the prediction model to be deployed 

as soon as possible. One of the potential solutions to this problem is transfer learning 

[75], [76]. It sources a trained model from a different site, with weights tunable for 

better prediction accuracy at the target site [77]. The problem with transfer learning is 

the availability of the model. J. Moon et. al. proposed a transfer learning-based model 

to solve the cold-start problem, which is the lack of historical data [76]. Its predicted 

output is the combination of outputs of two models. The first transfer learning model is 

trained using profiles of the most similar buildings in 15 different source buildings. The 

second time-based model is trained using data from the target building. As given in the 

results of the study, there is no source building data that is similar to the target building. 

The transfer-learning model has a much worse MAPE than the time-based model, 

resulting in worse accuracy after combination. Hence, profiles of a source building that 
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has a similar pattern to the target building are recommended, but such profiles cannot 

be easily acquired.  

2.8  Self-Organizing Incremental Neural Network 

Another potential solution to the lack of historical data is incremental learning. It 

updates the trained model with newly collected data, thus adapting to any new trend in 

the profile. However, incremental learning is rarely studied, which is probably due to 

the assumption of the trained model can handle new trends and the lack of algorithms 

that has native incremental learning. Native incremental learning models update their 

trained model with newly collected data only, instead of retraining a new model with 

all collected data, including data used to train the previous model. Hence, the self-

organizing incremental neural network (SOINN) is an appealing option as it is designed 

for life-long learning through incremental learning. Unlike the previously mentioned 

supervised learning models, SOINN is an unsupervised learning model. The advantages 

of SOINN are as follows: 1) it does not require a pre-defined network architecture, 2) 

it learns faster than supervised learning, and 3) its incremental learning capability 

allows adaptation to evolving patterns. There are many different versions of SOINN 

since the original version was published by S. Furao et. al. [78] in 2006. In 2007, an 

enhanced SOINN (ESOINN) was proposed by S. Furao et. al. [79], that improves the 

usability and stability of SOINN. It replaces the two-layer of SOINN with a single-layer 

network and requires fewer hyperparameters. It also has a subclass update process that 

better separates classes that overlap at high-density regions. In 2008, S. Furao et. al. 

[80] proposed the adjusted SOINN (A-SOINN), which is part of its adjusted SOINN 

classifier that consists of k-mean-clustering, noise-reduction, and center-cleaning. The 

A-SOINN is almost identical to ESOINN but without the subclass update process and 

a simple denoising stage. The denoising of A-SOINN is simplified because it is 

proposed alongside external denoising after the learning process, forming the adjusted 

SOINN classifier. In 2010, S. Furao et. al. [81] proposed a semi-supervised version of 

SOINN (S-SOINN) with a simplified subclass update process and added the capability 

to learn unlabeled and labeled data. In 2014, H. Zhang et. al. [82] proposed a load-

balancing SOINN (LB-SOINN) with improvements over ESOINN. It incorporates a 

load balancing process after the denoising process, a new subclass update process that 

is better at separating high-density overlaps than ESOINN, and a new distance metric 

to tackle the unsuitability of Euclidean distance with high-dimension data. The new 
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distance metric is a combination of Euclidean and cosine distances that works by having 

the Euclidean distance as the majority with low-dimension data and the cosine distance 

as the majority with high-dimension data. Y. Nakamura et. al. [83] proposed kernel 

density estimation SOINN (KDE-SOINN) in 2017, which is an improvement of A-

SOINN. It incorporates a new condition at the competition stage that determines 

whether the new data should be inserted as a new node or merged with the existing 

node. Instead of the typical hypersphere threshold region, the threshold region is 

defined using the Mahalanobis distance with local network covariance matrices. The 

new threshold region makes the nodes less likely to merge, thus less edge connection. 

For compensation, the denoising process removes only nodes with no edge instead of 

nodes with no or one edge, and new edges are created based on k-NN graph after the 

denoising process. C. Wiwatcharakoses et. al. [84] proposes SOINN+ in 2020 that 

differs at the creation and deletion of edges, and the deletion of nodes, to achieve a 

more graceful forgetting for the incremental learning of SOINN.  

The abovementioned studies use SOINN for clustering, but it can also be 

applied for time-series prediction. T. Avdeenko et. al. [85] used ESOINN to predict taxi 

service pricing. It achieved good accuracy and fast speed. K. W. Kow et. al. [86] 

proposed memory SOINN (M-SOINN) to predict output powers for power fluctuation 

event detection. The M-SOINN is a simplified version of SOINN. It only finds the first 

winner and does not form edge connections, and the denoising process is removed. 

Instead of age for edges, it counts the age for nodes, and the nodes are removed if their 

age exceeds a user-defined threshold. B. K. Puah et. al. [87] proposes a regression-

enhanced SOINN (RE-SOINN) for one-hour-ahead solar irradiance time-series 

prediction. Since the original ESOINN only outputs discrete output, it adds a regression 

method to the ESOINN to obtain continuous outputs. Table 2.5 summarized the 

different SOINN models proposed over the years, with their highlights and application.  
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Table 2.5: Summary of different SOINN models 

Model Year Highlight Application Source 

SOINN 2006 • Incremental learning.  Clustering [78] 

ESOINN 2007 • Simpler structure, fewer 

hyperparameters, and more stable 

than SOINN.  

• New subclass update to better 

separation of high-density 

overlapping classes. 

Clustering [79] 

A-

SOINN 

2008 • Simpler subclass update and 

denoising than SOINN.  

Clustering [80] 

S-

SOINN 

2010 • A semi-supervised version of SOINN 

that can learn both unlabelled and 

labelled data.  

Clustering [81] 

LB-

SOINN 

2014 • Introduce load balancing and a new 

subclass update for better separation 

of high-density overlapping classes. 

• Use a new distance metric to cater for 

both high and low dimensions data. 

Clustering [82] 

KDE-

SOINN 

2017 • Use a new threshold region to reduce 

the merging of low similarity data.  

Clustering [83] 

M-

SOINN 

2018 • A simplified version of SOINN. 

• Removed the subclass update and 

denoising 

Output 

power time-

series 

prediction 

[85] 

SOINN+ 2020 • Different creation, deletion of edges, 

and the deletion of nodes to achieve a 

more graceful forgetting for the 

incremental learning. 

Clustering [84] 

RE-

SOINN 

2020 • Uses the original ESOINN and added 

regression to the output to obtain 

continuous outputs. 

Solar 

Irradiance 

time-series 

prediction. 

[86] 
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2.8.1  Enhanced Self-Organizing Incremental Neural Network (ESOINN) 

The ESOINN is a single-layer network with nodes that are self-expandable during 

training and edges that connect nodes. Each edge is associated with age. ESOINN has 

four parameters: max age for edge (agemax), denoise interval (λ), and two denoise 

controls (C1 and C2). Figure 2.4 illustrates the flowchart for the ESOINN, and 

Algorithm 3 in Appendix 1 shows the pseudocode for the ESOINN. Table 2.6 shows 

the definitions of variables used in this section.  

 

Figure 2.4: Flowchart of the ESOINN Algorithm  
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Table 2.6: Definitions of variables for ESOINN and DB-SOINN 

Variable Definition 

𝜉 New data 

𝒩 Set of all nodes 

Na The a-th node in 𝒩 

N1 The 1st winner 

N2 The 2nd winner 

Ta Threshold of node a 

𝒫𝑁𝑎
 Set of nodes connected to node a 

WTa Winning time of node a 

LTa Lifetime of node a 

𝓅𝑎 Number of edges for node a 

da Node density of node a 

Da Local density of node a 

λ Denoise interval 

agemax Maximum age for edges 

C1 Denoise control parameter for 𝓅𝑎 = 1 

C2 Denoise control parameter for 𝓅𝑎 = 2 

kidw_ Number of k used in IDW 

kdenoise_ Number of k used in denoising of DB-SOINN 

𝒦𝑎 Set of kdenoise nearest neighbor nodes to node a 

The ESOINN is first initialized with two training data randomly selected from 

the training data, with other necessary variables such as threshold (T) and winning time 

(WT). For each new training dataset (𝜉), the first winner (N1) and the second winner 

(N2) are found (lines 5-6 of Algorithm 3). The ESOINN uses Euclidean distance (Ed) 

in equation (5) as the distance metric. 

 ‖𝜉 − 𝑁‖ = 𝐸𝑑(𝜉, 𝑁) = √∑ (𝜉𝑖 − 𝑁𝑖)2𝑛
𝑖=1  (5) 

where n denotes the number of dimensions of 𝜉 or N. If the distances to the winners 

exceed the threshold of either winner, the 𝜉 is added to 𝒩 as a new node (lines 7-8 of 

Algorithm 3). Otherwise, the 𝜉 is merged with N1, the weights of its connected nodes 

are updated, the N1 and N2 are connected with an edge, edges connected to N1 have their 

age increment by 1, and edges that exceed the user-defined parameter agemax are 

removed  (lines 9-15 of Algorithm 3). Then, the threshold of the N1 (T1) and threshold 

of N2 (T2) are updated using equations (6) and (7), respectively (line 17 of Algorithm 

3). 
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 𝑇𝑁1
= {

‖𝑁1 − 𝑁2‖, 𝓅𝑁1
= 0

max𝑎∈𝒫𝑁1
‖𝑁1 − 𝑁𝑎‖, 𝓅𝑁1

> 0
 (6) 

 𝑇𝑁2
= {

‖𝑁2 − 𝑁1‖, 𝓅𝑁2
= 0

max𝑎∈𝒫𝑁2
‖𝑁2 − 𝑁𝑎‖, 𝓅𝑁2

> 0
 (7) 

If the number of trained data is the multiple of the user-defined parameter λ, it 

performs the subclass update (line 19 of Algorithm 3), and denoising (lines 20-23 of 

Algorithm 3). The purpose of the subclass update is to separate subclasses at high-

density overlapped regions, which is not used in prediction, so is not discussed in this 

research work. During denoising, nodes with 𝓅 = 0 are removed, and for nodes with 

𝓅 = 1 ∧ 2, their WT are checked and removal if eligible (lines 22-23 of Algorithm 3).  

2.9  Optimization algorithm 

Optimization algorithms are used to solve optimization problems, such as optimizing 

the parameters of a prediction model for better accuracy. as reported in [57], [88]. 

Generally, the optimization algorithms are classified under two groups: swarm 

intelligence, such as particle swarm optimization (PSO),  and evolutionary computation, 

such as genetic algorithm (GA) [89]. There are also classical optimization methods, 

such as dynamic programming and mixed integer programming. Similar to ANN, 

dynamic programming also encounters the “curse of dimensionality” problem [45]. 

PSO and GA are the common optimization techniques applied for control optimization 

[90]. 

Studies have shown that PSO converges faster than GA with comparable results 

[91]–[93]. Both GA and PSO are applied for tuning the PID controller for power level 

control in nuclear power plants in [93]. Results show GA and PSO have negligible 

differences in the final output, while PSO converges faster than GA. F. D. Wihartiko 

et. al. [91] compares the performance of GA and PSO for model integer programming 

bus timetabling problem and stated PSO is easier to implement when compared to GA. 

Y. Ding et. al. [92] demonstrated that PSO has a quicker and closer convergence 

solution than GA based on the three-component parallel reaction mechanism of biomass 

pyrolysis. As a result of the closer solutions, the PSO achieves a 30% outcome better 

than GA.  

There are modified PSO aimed at achieving better peak reduction. A new 

algorithm named Multi-pass Iteration Particle Swarm Optimization (MIPSO) is 
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proposed in [94] to find the optimal BESS operating schedule for industrial Time-Of-

Use (TOU) rate users with a wind turbine generator. The MIPSO is an improved version 

of PSO modified based on dynamic programming. Differing from the MD calculation 

used by the power company in Malaysia, the Taiwan power company has a different 

calculation method for MD charges. Each industrial customer has a contract capacity 

where the demand charge is two times the exceeded amount if the over-contract load is 

less than or equals to 10% of the contract capacity and is three times the exceeded 

amount if the over-contract load is higher than 10% of the contract capacity. It means 

the rate is higher if exceeds 110% of the contract capacity. Therefore, the goal of the 

controller is to reduce the power below 110% of the contract capacity to prevent getting 

charged at a higher rate, and thus 110% of the contract capacity is set as the threshold. 

This approach makes it similar to a fixed threshold controller. Instead, the MIPSO is 

targeted to improve computation efficiency and solution quality. 

A novel SOM-PSO is also proposed in [95] to find the charge and discharge 

threshold for performing peak shaving on a battery with a supercapacitor. It achieves 

up to 68.97% faster optimization time compared to conventional PSO. With this faster 

optimization time, it is able to perform optimization per minute and outperforms 

filtration-based controller and PSO-optimized fuzzy logic controller by up to 7.33 times 

higher supercapacitor utilization, up to 91.94% reduction in the mean absolute rate of 

change of battery power, and up to 61.36% reduction in battery peak demand.  

Since using improved state-of-the-art optimization to achieve faster 

convergence speed and better convergence is not within the scope of this research work, 

PSO is selected to be the optimization algorithm used in this research work due to its 

simplicity, reliable performance, and ease to adapt to different applications [96]. As 

previously discussed, PSO has been well applied and proven to be functional for the 

applications in this research work. When compared to other swarm algorithms, PSO 

may not necessarily have the best performance, but it can achieve similar results while 

having an average convergence time [97]. Comparing GA and PSO, they have 

negligible differences in results, but the PSO converges earlier than GA [93]. Therefore, 

PSO is better for optimizing the threshold in the MD reduction controller.  
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2.9.1  Stopping condition 

PSO and GA work by evaluating the inputs with an objective function. Both require a 

stopping condition to stop evaluating the inputs and return the results. Generally, there 

are five stopping conditions [98]:  

• Maximal time budget – This algorithm returns result after a predefined 

absolute time. 

• Maximal number of generations – The algorithm returns result after running 

for a given maximum number of generations. 

• Maximal number of objective function evaluations – The algorithm returns 

result after running for a given maximum number of objective function 

evaluations. 

• Hitting a bound – The algorithm returns results if the best cost of the objective 

function is obtained.  

• K-iterations - The algorithm returns results if the cost of the objective function 

remains unchanged for K iterations. 

This research work uses a combination of Hitting a bound and K-iterations. The 

objective function in this work is designed to be optimal when the cost is zero. 

Therefore, the evaluation stops if it is Hitting a bound, which is when the cost is zero 

for this research work. However, it is possible that the cost stays very close to zero but 

stays relatively static and does not equal zero even after many iterations. Thus, the K-

iterations condition is used as the second stopping criteria. If the cost remains 

unchanged for K iterations, the optimization stops and returns the result.  
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2.10  Research gap 

Below lists the research gaps found based on the literature review:  

• There are limited studies that consider the availability of historical data at the 

time of implementation. Historical data is crucial for both load prediction and 

peak reduction. Prediction models use historical data to pre-train the prediction 

models. For peak reduction with BESS, historical data are used for BESS sizing. 

Conventional fixed threshold controller uses historical data to pre-determine the 

fixed threshold. Some state-of-the-art controllers, such as [4], [33], [36], [41], 

require historical data for pre-determining some important rigid parameters that 

are used in the demand threshold finding process. They often require historical 

data of one year or longer [41].  

• Models with incremental learning can update their trained model with new data 

without retraining a new model. It helps adaptability and prediction accuracy by 

learning the recent data. However, incremental learning is rarely studied. There 

are not many available models that support native incremental learning. To 

achieve incremental learning with conventional models, a new model needs to 

be retrained with accumulated data.  

• For a model with native incremental learning, the existing model is updated with 

new data only. ESOINN is one of the models designed for incremental learning. 

ESOINN is an unsupervised learning algorithm that is not commonly used in 

time-series load prediction.  

• There is a research gap where no peak reduction controller can be implemented 

with limited historical data and is capable of continuously adapting to future 

load profiles. Conventionally, state-of-the-art peak reduction controllers use 

day-ahead load prediction for optimizing the demand threshold. However, it is 

inevitable for day-ahead load prediction to have prediction errors. To prevent 

peak reduction failure due to poor day-ahead load prediction accuracy, most 

state-of-the-art peak reduction controller uses rigid parameters [4], [33], [36], 

[41]. These rigid parameters are impacting the adaptiveness of the controller. 

Pattern variations are evolving over time due to climate change and increased 

sector coupling. As a result, controllers that cannot adapt may lead to undesired 

outcomes [99]. 
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• Prediction models with a shorter lead time, such as one-hour-ahead, are 

typically more accurate than day-ahead prediction models [52], [70], [100], 

[101]. Despite that, to the authors’ knowledge, no study is found incorporating 

load prediction with lead times shorter than day-ahead for daily peak demand 

reduction of buildings. E. Reihani [100] does use two load predictions of 

different lead times but for different purposes, with day-ahead for peak demand 

reduction and 20-min ahead for load demand smoothing.  

2.11 Summary 

This chapter presents the literature review about the peak reduction methodology, 

maximum demand, demand-side peak reduction approaches, optimization algorithms, 

peak reduction controllers with BESS, and short-term load prediction models. Lastly, 

this chapter listed the research gaps found based on the literature review.  

The literature review highlighted that the peak reduction with BESS has the 

highest potential among other approaches due to its compatibility and flexibility. 

Generally, studies do not consider the implementation practicality and adaptiveness of 

a controller. This includes the availability of historical data at the time of 

implementation, the complexity of the data acquisition, the determination of parameters, 

the time to implement, and its ability to deal with pattern variations that are evolving 

over time. These are applied to both prediction models and control strategy, which are 

the two main components of a modern peak demand reduction controller. This chapter 

has identified ESOINN as the potential prediction model that can solve the problems 

and fill the discovered research gaps. Since one-hour-ahead load prediction has better 

and more consistent accuracy than day-ahead load prediction, it should be able to 

incorporate into the peak reduction controller to assist the threshold optimization 

process instead of relying on rigid parameters that deteriorate the adaptability of the 

controller to evolving patterns.   
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Chapter 3 – Maximum Demand Reduction System with 

BESS 

3.1  Overview 

The overall structure of the maximum demand reduction systems with BESS is 

presented in this chapter. Following this, the two load profile datasets that are used to 

evaluate the performance are provided. Both datasets are analysed with autocorrelation 

function (ACF) and partial autocorrelation function (PACF), which are useful to 

determine the length of time lag for the time-series load prediction in Chapter 4.  

3.2  Structure of Maximum Demand Reduction System 

Figure 3.1 shows the system structure of the MD reduction system with BESS for 

implementation in a building. The BESS recoups energy during off-peak periods and 

discharges to the building’s AC bus during peak hours. Thus, the building’s loads draw 

less power from the grid, reducing the grid power (Pgrid) that is seen by the electricity 

company. The MD reduction controller consists of two components: load prediction 

and threshold control. The load prediction collects the building’s load power (Pload) and 

uses it to predict the future load profile. The threshold control determines the demand 

threshold (PTh) for the next interval based on the predicted profile and state-of-charge 

(SOC) of the BESS. In this research work, the controller re-optimizes the PTh every 5 

minutes.  

 

Figure 3.1: System structure of a MD reduction system with BESS [102] 
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The discharge power (PD) and charge power (PC) of the BESS are calculated 

using equations (8) and (9), respectively. When Pload is higher than PTh, the difference 

in power is supplied by the BESS. When Pload is lower than PTh, the difference in power 

is recouped to the BESS. The relationship between Pgrid and Pload is shown in equation 

(10). The PD and PC affect the Pgrid only, and the Pload remains unchanged. 

,   

0 ,

−
=








load Th Th load

D

P P if P P
P

otherwise
 (8) 

,   

0 ,


=




−
Th load Th load

C

P P if P P
P

otherwise
 (9) 

,     0,  0

,    0, 0

−  =
= 

+  =

load D D C

grid

load C C D

P P if P P
P

P P if P P
 (10) 

This research work proposed a novel incremental prediction model for time-

series load prediction and a novel dynamic two-stage controller that will be covered in 

the succeeding chapters. 

3.3 Load Profile Datasets 

The aim of this research work is to reduce MD for buildings in Malaysia, and the MD 

in Malaysia is calculated using energy consumption per 30-minute. Therefore, the 

demand threshold for MD reduction is allowed to adjust within this 30-minutes interval. 

This research work decided to have adjustments every 5-minutes, which allows up to 6 

adjustments per 30-minute interval. Since MD is obtained monthly, it needs at least one 

month of complete data. Moreover, it also needs data for training the prediction model. 

Hence, the load profiles used in this research work are required to meet the three criteria 

below: 

1. Has a data interval of 5-minutes or smaller, 

2. Has at least three months of data for evaluating monthly MD reduction, and 

3. Load profile collected in Malaysia.  

After searching for online data intensively, no load profiles that met the criteria can 

be found. Hence, a dataset is collected within the premise of the University of 

Nottingham Malaysia Campus. The location is determined to be at the building of the 

faculty of electrical and electronics (Block D) at the University of Nottingham Malaysia. 

It is the only site with meter installation approved by the university and requires 

replacing two analogue meters with digital power meters only to keep the cost within 
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the available research budget. The collection of data is discussed in detail in Section 

3.3.3. This dataset is referred to as Dataset A in the remaining of this thesis. 

To demonstrate the scalability and adaptability of the algorithm, the system should 

be tested on more than one dataset. As previously mentioned, there is no online data 

that met the three requirements. Therefore, one online profile that met the 2nd and 3rd 

criteria is selected as the second dataset. The publicly available online load profile also 

allows this research work to be compared with other research works using the same 

dataset. This dataset is referred to as Dataset B in the remaining of this thesis. 

3.3.1 Dataset A 

Figure 3.2 depicts the Dataset A that is collected from 28th June 2019 to 16th December 

2019. The data set has a time interval of 1-min. Figure 3.3 shows the layout of Block 

D. The building consists of two floors. The ground floor has different teaching facilities, 

while the first floor comprises of lecturer offices and meeting rooms. The building has 

cooling air conditioning that operates during working hours ranging from 09:00 to 

18:00 on weekdays, excluding public holidays. The facility in the building has different 

operation type. Some facilities operate on-demand while some facilities operate as per 

teaching schedule. The operations of the facilities are summarized in Table 3.1.  

Both Figure 3.2 and Table 3.2 show an increasing trend for the MD. The MD 

for July, August, and September are lower than other months as the facilities in the 

building are under-utilized due to the summer break of the campus. As the semester 

begins in October, the MD increases by 9.34%, from 51.69kW in September to 

56.52kW in October. The relatively low increment of 9.34% is due to the low utilization 

of most lab facilities despite the semester starting in the mid of September. As the 

utilization rate rises and more equipment are operating at the same time, the MD begins 

to increase. The usage increases gradually as the usage of equipment increases as 

practical lectures begin in October. Additionally, the building does not shut down 

during the semester break since there are open for minority students, such as foundation 

and research students. The facilities that are always open include lights, air conditioning, 

the teaching computer lab, and lecturers’ offices. When comparing the lowest and the 

highest MD within the period of collected data, which are the lowest MD of 47.195kW 

in July 2019 and the highest MD of 56.521kW in October 2019, the difference is at 

17.76%, which is considerably higher.  
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The MD for November is similar to the MD for October. In December, the MD 

is slightly lower than the previous two months due to a lower utilization rate as it 

progresses towards the end of the semester. This research work considers only the load 

profiles on working days since the low power demand on non-working days does not 

contribute to the MD. 

 

Figure 3.2: Dataset A 

 

Table 3.1: Facilities in the educational building of Dataset A 

Facility Operation type 

Teaching computer lab • Operates as per teaching schedule. 

• Opens for all students outside teaching schedule. 

Microprocessor lab • Operates as per teaching schedule. 

• Opens for all students outside teaching schedule. 

Technicians’ and lecturers’ 

office 

• Operates during working hours. 

Studio lab • Operates as per teaching schedule. 

Undergraduate research lab • Operates on-demand. 

High computing lab • Operates on-demand. 

High power motor lab • Operates on-demand. 

Postgraduate research lab • Operates on-demand. 

Server room • Operates 24 hours a day. 
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Figure 3.3: Layout of Block D in University of Nottingham Malaysia 

Table 3.2: MD per month before MD reduction for Dataset A 

Month MD before MD reduction (kW) 

Jul 47.195 

Aug 49.864 

Sep 51.587 

Oct 56.521 

Nov 56.036 

Dec 54.879 
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3.3.2  Dataset B 

Figure 3.4 shows the second dataset is hourly load data of the power supply company 

of the city of Johor in Malaysia generated in 2009, which is publicly available online at 

[103]. Since a publicly available load profile with a 1-min interval cannot be found, this 

hourly data is up-sampled to 1-min interval using spline interpolation to maintain the 

same 1-min resolution as the Dataset A. This dataset is referred to as Dataset B in this 

research work.  

 

Figure 3.4: Dataset B 

There is no detailed description of the building provided. Table 3.3 shows the 

MD before reduction per month for Dataset B. This dataset has a MD of 70kW between 

February to June that is higher than the MD for other months. The MD for February is 

the highest at 75.5kW. 
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Table 3.3: MD per month before MD reduction for Dataset B 

Month MD before MD reduction (kW) 

Jan 67.485 

Feb 75.473 

Mar 74.699 

Apr 74.054 

May 70.494 

Jun 73.814 

Jul 69.958 

Aug 69.028 

Sep 69.172 

Oct 69.554 

Nov 67.792 

Dec 67.555 

  

3.3.3  Dataset A Data Collection 

Originally, the sub-switch board (SSB) room in block D installed two analogue power 

meters to measure the two power lines connected to the ground and first floors of Block 

D. The connected loads per line are unknown, but the combined profile of these two 

meters is the load profile of the building. Since the analogue power meters do not 

support data logging or any communication protocol for data extraction, they are 

replaced with ION7330 digital power meters. Figure 3.5 presents the two ION7330 

power meters and the wireless router in the Sub-switch board (SSB) room.  

Figure 3.6 depicts the block diagram of the load profile data collection. The 

power meters are connected to a wireless router via ethernet. The wireless router is 

configured to have a local network. Other devices can connect to this local network via 

its password-protected Wi-Fi network to access and configure the meters. A raspberry 

pi 3B is used as the data logger to log the data from both meters every 5s through TCP 

Modbus protocol. Then, the data is then averaged to an interval of 1-min. With the 5 

seconds sampling interval, it allows up to 11 data retrieve failures with a minimum of 

one success read. The ION7330 does have logging functionality but it is limited in terms 

of the type of data and the length of logging due to its limited storage capacity. 

Therefore, it is only used for redundant logging where it can log up to 2 weeks of 1-

min important values in the event the raspberry pi 3 stopped working unexpectedly. 
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The raspberry pi 3 is the primary logger responsible for logging all values the meter 

measure. The raspberry pi 3 can store years of data with its 16GB microSD card. 

 

Figure 3.5: ION 7330 meters and the wireless router in SSB room 

 

Figure 3.6: Block Diagram of Load Profile Data Collection 

3.3.4  Load Data Analysis 

Dataset A and Dataset B are from different business sectors. The educational load 

profile of Dataset A can be easily influenced by the semesters, while Dataset B depends 

on the number of people working or visiting the building, which may vary daily. Both 

datasets have observed variations in the monthly MD, which are suitable to test the 

adaptability of the maximum demand reduction system. The purpose of the second 
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profile is also to make sure the proposed MD reduction system not only works on a 

single load profile. Moreover, it is to test the adaptability and ease of implementation 

of the controller. The controller should require no changes in the algorithm when testing 

on the two datasets. 

Autocorrelation function (ACF) and partial autocorrelation function (PACF) are 

applied to identify the suitable historical data included as input features for the load 

prediction models. As indicated in Figure 3.7(ii), it shows significance at the time lag 

of 288 (There are 288 data points for a day of profile with 5-min interval). Hence, the 

historical data for the day-ahead models are selected as the previous 288 historical data 

points. For the one-hour-ahead models, the previous 12 data points are selected and 

should be sufficient for the shorter one-hour lead time.  

 

(i) 

 

(ii) 

Figure 3.7: ACF and PACF plots of Dataset A 

Figure 3.8 depicts the ACF and PACF plots of Dataset B. It shows high 

significance at time lag of 268. Although there is also relatively high significance time 

lag up to 364, the historical data for day-ahead is selected as previous 288 historical 

datapoints. This makes it uses the same amount of historical data points as Dataset A. 

The historical data points for one-hour-ahead models are selected as previous 12 data 

points, which is the same as Dataset A.  
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(i) 

 

(ii) 

Figure 3.8: ACF and PACF plots of Dataset B 

3.4  Summary 

This chapter presents the overall structure of the maximum demand reduction system 

with BESS and the two load profile datasets used in this research work. An MD 

reduction system with BESS consists of four main components: power meters that 

measure loads of the building, BESS that stores and discharges energy, a bidirectional 

converter that control the charging and discharging powers of the BESS, and an MD 

reduction controller that is responsible for finding the optimal demand threshold. A 

modern MD reduction controller, including the proposed controller in this research 

work, consists of two parts: load prediction and threshold control. The load prediction 

predicts the load profile. The threshold control optimizes the demand threshold on the 

SOC, current load power, and the predicted load profile.  

 Two datasets, namely Dataset A and Dataset B, are used in this research work. 

Dataset A is collected from Block D in the University of Nottingham Malaysia, while 

Dataset B is a publicly available dataset. The purpose of using two datasets is to ensure 

the proposed system does not only work on a specific profile and does work on different 

profiles. The use of publicly available datasets allows cross-studies comparison with 

the same dataset. The collection of Dataset A is also explained in this chapter.  

ACP and PACF are applied to both datasets to find the significance of time lag, 

which is used to determine the number of historical data points used for training the 

model. Dataset A shows the significance of time lag at up to 288 data points or one day 

of data, while Dataset B shows the significance of time lag at up to 364 data points or 

1.26 days of data. Hence, the previous 288 historical data points or one day of historical 

data points are selected as the inputs for the day-ahead load prediction models, while 
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the previous 12 data points or one hour of data are selected as the inputs for the one-

hour-ahead load prediction model. The selection of the shorter lead time for the one-

hour-ahead load prediction model is better suited for the shorter lead time. These 

selections are applied to the prediction models of both Dataset A and Dataset B, so it 

is a common configuration for different profiles.  
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Chapter 4 – Improved Self-Organizing Incremental Neural 

Network Model for Short-term Time-series Load Prediction 

4.1  Overview 

To achieve a controller that is adaptive and can be implemented with limited historical 

data, the prediction model used by the controller needs to be adaptive and can be 

implemented with limited historical data. This chapter proposes a new incremental DB-

SOINN-R prediction model for time-series day-ahead and one-hour-ahead load 

predictions. The DB-SOINN-R is first presented, followed by the elaboration of the 

simulation setup used to evaluate the proposed model. Then, the results and discussion 

are presented. In the last section, the findings of this chapter are summarized. 

In this chapter, the proposed DB-SOINN-R is compared with six conventional 

models: feedforward neural network (FFNN), support vector regression (SVR), deep 

neural network with long short-term memory (LSTM), enhanced self-organizing 

incremental neural network (ESOINN), and kNN regression. All models are tested on 

lead times of day-ahead and one-hour-ahead, which are common lead times for building 

energy managements that have been used in other researches [52], [70], [104]. For 

example, one-hour-ahead is commonly used for reducing load fluctuation [95], [105], 

while day-ahead prediction is used for demand-side management peak reduction, 

distributed power network operation, and the integration of renewable energy sources 

[68]. Other than evaluating the prediction accuracy of models, the effect of incremental 

learning is also investigated by comparing the accuracy of the models that are trained 

with the training data only with models that are trained with the training data and 

updated or re-trained daily if native incremental learning is not supported.  

4.2 Density-based Self-Organizing Incremental Neural Network with 

regression (DB-SOINN-R) 

Based on the literature review of prediction models in Chapter 2, ESOINN is a great 

candidate. Its incremental learning allows learning of new data as time progress, instead 

of waiting to collect a long period of historical data. However, there are three problems 

with ESOINN. The first problem is the simple winning time (WT) based denoising 

process of the ESOINN may incorrectly remove important nodes when the data has 

uneven density distribution. The WT-based denoising process works by comparing the 
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WT of nodes with the mean WT of all the nodes in the model. It does a simple 

assumption that the higher the WT, the less likely it is a noise node. But not all nodes 

have similar WT. It is possible to have clusters that tend to have more nodes with low 

WT instead of fewer nodes but high WT. They are similar but not close enough to be 

merged. Moreover, the original denoising stage does not consider how many iterations 

have executed since the node is inserted, so a recently inserted node may be removed. 

The second problem is the inappropriate use of Euclidean distance as the distance 

metric when the input dataset consists of different type of data with each having 

different dimensions. The use of Euclidean distance often causes the selection of 

incorrect nodes that has a significantly different timestamp or minute of the day, 

causing the predicted profile to lag the actual profile. This imbalance in dimensions 

causes the minority data variables to have less impact compared to other variables. As 

a result, the predicted outputs may lag the original profile. The third problem is the 

ESOINN cannot produce unique output for each input. As the original ESOINN is 

designed for clustering, its predicted output is based on the nearest node. Hence, two 

different inputs may have the same predicted output. In other words, the output is 

discrete and cannot produce continuous predicted values.  

To solve these problems, this chapter proposed a new improved ESOINN 

named DB-SOINN-R. The DB-SOINN-R consists of three modifications: (i) a new 

density-based denoising that replaces the WT-based denoising, (ii) a new mean 

Euclidean distance (mEd) as the distance metric, and (iii) incorporates the k-nearest-

neighbors inverse distance weighting (kNN-IDW) regression [69] so a unique output is 

obtained based on the distance. The model is first trained with the DB-SOINN. Then, 

the trained DB-SOINN is used alongside the kNN-IDW regression to achieve the final 

prediction, forming the DB-SOINN-R model. 

4.2.1  Density-based Self-Organizing Incremental Neural Network (DB-SOINN) 

The DB-SOINN is based on ESOINN and there are three changes. The first change is 

the change of merging condition. The second change is the introduction of the new 

density-based denoising that replaces the WT-based denoising of the original ESOINN. 

The last change is the use of a new distance metric, namely mean Euclidean distance 

(mEd) that replaces the use of Euclidean distance as the distance metric to find the 

distances between data. Figure 4.1 illustrates the flowchart of the proposed DB-SOINN 

algorithm, and Algorithm 4 in Appendix 1 shows the pseudocode for the DB-SOINN. 
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Figure 4.1: Flowchart of the DB-SOINN Algorithm 
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In ESOINN, the 𝜉  is added to 𝒩  if the distance to N1 exceeds 𝑇𝑁1
 or the 

distance to N2 exceeds 𝑇𝑁2
 (lines 7-8 of Algorithm 3). So, if the 𝜉 has a distance to N1 

shorter than 𝑇𝑁1
 and a distance to N2 larger than 𝑇𝑁2

, it will still be inserted as a new 

node. But for such situations, the 𝜉 should be related or similar to N1 since it is within 

the 𝑇𝑁1
. Hence, a new condition for node insertion is added in DB-SOINN-R where the 

𝜉 is still appended as a new node but also connects the newly inserted node with N1 if 

the distance to N1 is lower than 𝑇𝑁1
 and the distance to N2 exceeds 𝑇𝑁2

 (lines 8-12 of 

Algorithm 4). If the distance to N1 exceeds 𝑇𝑁1
 and the distance to N2 exceeds 𝑇𝑁2

, the 

𝜉 is inserted as a new node without any edge connection (lines 13-16 of Algorithm 4). 

The update subclass process (line 18 of Algorithm 3) is removed in DB-SOINN 

as separation of classes at high density overlapped regions is only useful for clustering 

and not concerned for prediction. Two new variables are introduced for every node and 

are used in new density-based denoising in the DB-SOINN. The first variable is the 

lifetime of the node (LT). The LT measures the longevity of the node since it is first 

added to the model. The node should only be eligible for removal if the node has existed 

in the model for iterations higher than λ. This prevents a recently added node to be 

removed as soon as the next training iteration. The LT of the node is initialized to 0 for 

new nodes (lines 11 and 16 of Algorithm 4) and is incremented by one in every training 

iteration (line 27 of Algorithm 4).  

The second new variable is the density of node (d). A node with non-zero WT 

means it has merged with one or more input data, so it should be treated as a group of 

data instead of a single point, thus the d is used to record the density of this group of 

data. Instead of using the discrete value of WT, the d is introduced to record the 

distances to the input data that merged with N1. A new node is initialized with d = 0 

(lines 10 and 15 of Algorithm 4), indicating it has not been merged with any data. When 

the N1 is merged with 𝜉, the d of N1 (𝑑𝑁1
) is updated (line 22 of Algorithm 4) with the 

distance between the 𝜉 and N1 as shown in equation (11). The higher the d, the lower 

the density of the node that represents a group of data merged into a single node. The d 

is used in the new density-based denoising. 

𝑑𝑁1
= (𝑑𝑁1

+ ‖𝜉 − 𝑁1‖)/2 (11) 
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As discussed earlier in the introduction of this chapter, the WT-based denoising 

of the original ESOINN has a problem which may incorrectly remove important nodes 

when the data has uneven density distribution. To solve this issue, the WT-based 

denoising is replaced with a new density-based denoising that compares the local 

density of node (D) of the concerning node with the average D of its kdenoise neighbor 

nodes. The kdenoise is a new parameter introduced by the new density-based denoising 

to replace the parameters C1 and C2 used by the original WT-based denoising of the 

ESOINN. 

The kdenoise determines the number of nearest neighbor nodes considered in the 

calculation of D, as shown in equation (12). The calculation of D differs depending on 

the d of the node. If the d is non-zero, it means the node has been merged with 𝜉 before 

and should be treated as a group of data with a density of d. If the d is zero, it means 

the node is not merged with 𝜉 and should be treated as a single node.   

 𝐷𝑖 = {

1

𝑘𝑑𝑒𝑛𝑜𝑖𝑠𝑒
∑ ‖𝑁𝑖 − 𝑁𝑗‖

𝑘𝑑𝑒𝑛𝑜𝑖𝑠𝑒
1 , (𝑗 ∈ 𝒦𝑖), 𝑑𝑖 = 0

1

𝑘𝑑𝑒𝑛𝑜𝑖𝑠𝑒+1
((∑ ‖𝑁𝑖 − 𝑁𝑗‖

𝑘𝑑𝑒𝑛𝑜𝑖𝑠𝑒
𝑖 ) + 𝑑𝑖) , (𝑗 ∈ 𝒦𝑖), 𝑑𝑖 > 0

 (12) 

The calculation of kdenoise uses the number of neighbor nodes instead of radius 

because there might be no nodes in the radius and thus failed to calculate the density of 

the node or needs to be configured as extremely big or infinite. Hence, a number of 

nodes are selected to calculate the neighbor nodes. The kdenoise is recommended to be 

within the range of 2 – 5. A high number of kdenoise, less similar nodes may be treated 

as part of the group of similar nodes and reduces the accuracy of denoising, where a 

similar concept can be found in kNN [106].  

In the density-based denoising (lines 28-36 of Algorithm 4), only nodes with 

𝓅 ≤ 2 are concerned. This is because nodes with two or more connections should have 

merged with at least two input data and are well established as part of a cluster of similar 

nodes, while nodes with one or fewer connections may be noise nodes that have less 

occurrence in the dataset. For nodes with 𝓅 = 0, they are removed if LT is higher than 

λ (line 30 of Algorithm 4). For nodes with 𝓅 = 1 ∧ 2, they need to meet two criteria to 

be removed. The first criterion is the node’s LT is higher than λ. This is to ensure the 

node does not get removed when it is a new node that is inserted into the model recently. 

The second criterion is the node’s D is higher than the average of D of its kdenoise 

neighbor nodes (line 34 of Algorithm 4). The D of the concerning nodes (Da at line 32 
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of Algorithm 4) and D of each kdenoise nearest nodes of the concerning nodes (Db at line 

33 of Algorithm 4) need to be calculated. The purpose is to remove nodes that have a 

different density than other nodes. As previously mentioned, the density of node (d) is 

introduced to record the distances to the input data that merged with N1. Hence, the 

higher the d, the lower the density. If the node has a higher D than the average of 

neighbor nodes, the node has a lower density than its neighbor nodes. Thus, it is 

recognized as a noise node and is removed.   

As above-mentioned, the second problem of ESOINN is the inappropriate use 

of Euclidean distance (Ed) when the dimension of each input type is different. However, 

this is common for training data to incorporate time-series data with discrete data, such 

as day type, time of the day, and day of the week. These discrete input variables are 

usually one dimensional, while the historical time-series data has more than one 

dimension. For example, each training set consists of one dimension for the minute of 

the day and twelve dimensions for the historical time-series load demand, forming a 

ratio of 1:12 in terms of the number of dimensions per variable type. This imbalance in 

dimension may cause the predicted output to lag the actual profile. To tackle this 

problem, the proposed DB-SOINN uses a new distance metric named mean Euclidean 

distance (mEd) instead of Ed to find the distance between nodes and data. To find the 

mEd, an Ed for each variable type is first calculated, then the Ed of each variable type 

is divided by their respective dimension. Then, the mEd is the sum of the divided Ed, 

which is shown in equation (13). Since the Ed per variable type is divided by their 

respective dimension, each variable type is now treated as one dimension regardless of 

its original number of dimensions, thus all variable types will have equal impacts at the 

resultant distance.  

 ‖𝜉 − 𝑁‖ = 𝑚𝐸𝑑(𝜉, 𝑁) = ∑
1

𝑛𝑖
√∑ (𝜉𝑗 − 𝑁𝑗)2𝑛

𝑗=1
𝑚
𝑖=1  (13) 

where n and m are the data dimension per variable type and number of variable types, 

respectively.  

4.2.2  K-nearest Neighbour Inverse Distance Weighting Regression (kNN-IDW) 

Since SOINN based models, including the DB-SOINN, are unsupervised learning 

algorithms, they do not need a dedicated target set for model learning. For prediction, 

the desired output or target data is combined with the input data, forming the training 

data. Without kNN-IDW, the prediction output will be the target data associated with 
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the nearest node. This would cause two issues as illustrated in the two scenarios in 

Figure 4.2. Table 4.1 provides the expected predicted outputs for three inputs in Figure 

4.2. 

 

Figure 4.2: Two possible scenarios of using ESOINN for prediction 

 

Table 4.1: Expected predicted outputs for the three inputs in Figure 4.2 

Input Predicted Output without kNN-

IDW 

Predicted Output with kNN-IDW 

(kidw = 2) 

IN1 Target data associated with Na A unique output calculated using 

equation (13) with the nearest nodes: 

Na and Nc 

IN2 Target data associated with Na A unique output calculated using 

equation (13) with the nearest nodes: 

Na and Nb 

IN3 Target data associated with Nd A unique output calculated using 

equation (13) with the nearest nodes: 

Nd and Ne 

In scenario 1, the two different inputs (IN1 and IN2) have the same predicted 

output (target data associated with Na) since both inputs have the Na as the nearest node. 

In scenario 2, the predicted output for IN3 is the target data associated with Nd as it is 

the nearest node to IN3, despite the high distance between IN3 and Nd (distance between 

IN3 and Nd is significantly higher than the distance between IN1 and Na and the distance 

between IN2 and Na). The high distance means IN3 has a low similarity with Nd. The Nd 

is selected because no node is closer than Nd. To tackle these problems, the kNN-IDW 

regression is added to the DB-SOINN, forming the DB-SOINN-R. In this chapter, 
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models that incorporate kNN-IDW regression will have ‘-R’ added to the end of the 

models’ name. 

The kNN-IDW regression is not part of the DB-SOINN algorithm but is used 

for prediction to obtain unique outputs. The kNN-IDW adds weights that are inversely 

proportional to the distance. The higher the distance, the smaller the contribution to the 

output. The number of nodes used in the kNN-IDW regression is based on the user-

defined parameter, kidw. Equation (14) shows the equation to find the predicted output 

(Ppredicted). 
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where Tj is the target data associated with j-th nearest node and distj is the distance (Ed 

for ESOINN and mEd for DB-SOINN) between input and the j-th nearest node. 

4.3  Simulation Setup 

Since each building or site has its unique characteristics, prediction models should be 

trained with the data collected from the site. To emulate the lack of historical data at 

the time of implementation, the models are first trained with a small amount of data 

from their respective datasets before testing on the remaining data. The first two months 

of data are used for the initial model training, and the remaining months of data are 

used for testing. There will be four months and ten months of testing data for Dataset 

A and Dataset B, respectively.  

Since the aim of the research work is to develop an MD reduction controller that 

requires minimal historical data to begin operations, the load prediction model needs to 

be implementable with a small amount of historical data. Hence, two different scenarios 

are performed, with Scenario A to obtain the baseline results and Scenario B to obtain 

the results with incremental learning. The purposes of the two scenarios are to compare 

and study the effect of incremental learning on both conventional and proposed models 

in terms of accuracy and computational resources. Since the models are trained with 

only two months of data, they can also be used to study the effect of small training data 

on prediction accuracy.  
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Models in Scenario A performs prediction conventionally where the model is 

constructed using a set of train data and tested on a different set of test data, while 

models in Scenario B are updated at the end of each day using the data collected on the 

day throughout the testing period. For models that do not have native incremental 

learning, which includes the FFNN, LSTM, and SVR, their models are retrained daily 

with all data collected up to the day, including the data used to train the previous model. 

The proposed DB-SOINN-R is compared with five models: FFNN, LSTM, SVR, kNN-

R, and ESOINN. For all day-ahead and one-hour-ahead models, the parameters are 

grid-searched and are always shown first in the result sections. To ensure the models 

are tested on unseen data, the first two months data of pre-training data are used for 

grid-search [107], [108], with the last two weeks of the two months used for validation.  

Although the models are evaluated on two datasets: Dataset A and Dataset B, 

the detailed analysis is performed on Dataset A since more knowledge of the 

characteristics of the load profile and buildings. The proposed model is then tested on 

Dataset B to verify that it not only works on a specific dataset but also performs 

similarly well on a different dataset that is publicly available online. 

4.3.1  Data Preparation 

This chapter evaluates the prediction models on two lead times: day-ahead and one-

hour-ahead. Figure 4.3 shows the block diagrams for the day-ahead and one-hour-ahead 

models. The day-ahead model is to predict the next day load profile, and the one-hour-

ahead model is to predict the one-hour-ahead load demand. The day-ahead load 

prediction predicts the next day profile once per day, while the one-hour-ahead 

prediction predicts the one hour ahead demand every 5-min. With a data interval of 5-

mins, the day-ahead model has 288 inputs and 288 outputs, whereas the one-hour-ahead 

model has 13 inputs and 1 output.  

Both day-ahead and one-hour-ahead models use historical time-series load 

profiles, and only load profiles on working days are concerned, as most energy 

optimization tasks are necessary only with high and fluctuating demands. Most studies 

focus on load prediction improvement with the inclusive of complex inputs, such as 

weather information and building internal temperatures. But different sensors need to 

be installed and processed for the prediction, in which the processes are complex. The 

difficulty of implementing sensors for existing buildings has been studied in [74].  
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Moreover, the correlations between different types of variables are not necessarily the 

same for all buildings or sites. It is time-consuming to develop a specialized prediction 

model for each building. Both training and testing data are normalized using min-max 

normalization with the same min and max values of 0 and 60, respectively. 

 

Figure 4.3: Block diagrams for the day-ahead and one-hour-ahead prediction models 

4.3.2  Model Configuration 

This proposed DB-SOINN-R is compared with five models: FFNN, LSTM, SVR, kNN-

R, and ESOINN. The FFNN is using the scaled conjugate gradient as the training 

function with its number of hidden layers and its number of hidden neurons per layers 

grid searched. The LSTM has the LSTM layers, which are connected to a fully 

connected layer, and then connected to a regression layer (output layer). The LSTM is 

using the ‘ADAM’ optimizer, a learning rate of 0.005, an epoch of 250, and mean-

squared-error as the loss function. The number of LSTM layers and the number of 

hidden units per LSTM layer are grid-searched. The SVR models use the Gaussian 

kernel with hyperparameters optimized using the built-in function in MATLAB [109]. 

For the SVR day-ahead model, one SVR model is trained for each of the 288 outputs 

for the day-ahead load prediction because ordinary SVR algorithms can only have one 

output per model. The kNN-R has its only parameter, k grid-searched. For ESOINN 

and DB-SOINN-R, its agemax is initialized to be infinite for long-term dependency, 

while the λ is defined based on the nature of the data. A short λ may cause frequent 

denoising and incorrect removal of data. For example, day-ahead models with λ = 5 

mean the model is denoised every 5 days, while one-hour-ahead models with λ = 1440 

mean the model is denoised every 5 days (288 data per day with a time interval of 5-

min). 

4.3.3  Performance Metrics 

This chapter evaluates the models based on their prediction accuracy and execution 

time. Five commonly used metrics for prediction accuracy are selected, including mean 

absolute percentage error (MAPE), root mean square error (RMSE), coefficient of 
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variation of root mean square error (CVRMSE), mean absolute error (MAE), and 

coefficient of determination (R2). RMSE and MAE measure the errors in kW, MAPE 

and CVRMSE are in percentage, and R2 is unitless. The percentage unit of MAPE and 

CVRMSE ease cross-studies comparison. R2 is used to evaluate the model’s robustness 

[67]. 
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where yt, ŷt, and ȳ represents actual power, predicted power, and mean of actual power, 

respectively. To evaluate the execution time, the times spent at model training and 

prediction are measured, which include the initial training time, average prediction time, 

average incremental learning time, total prediction time, and total incremental learning 

time. Initial training time measures the time taken to pre-train the model with the first 

two months of data. The average prediction time is the average time spent on obtaining 

the output per interval. The average incremental learning time is the average time spent 

per day on the daily incremental learning or daily model retraining. The total prediction 

time and total incremental learning time are the total time spent on prediction and the 

total time spent on incremental learning, respectively. The data processing time is 

excluded since they are done before training and prediction. All executions are bounded 

to CPU only as not all algorithms are coded to support GPU acceleration. All models 

are coded in MATLAB 2019b and performed on a laptop with an Intel i7-6700HQ 

quad-core CPU and 16GB RAM. 

4.4  Results and Discussion for Dataset A 

This section presents the results and discussion of six models: FFNN, LSTM, SVR, 

kNN-R, ESOINN, and the proposed DB-SOINN-R on Dataset A. The grid-searched 
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parameters of these models are provided in Section 4.4.1. Section 4.4.2 and 4.4.3 

discuss the prediction accuracies of the day-ahead and one-hour-ahead models for 

Dataset A, respectively. The execution times of the day-ahead and one-hour ahead 

models are shown in Section 4.4.4. 

4.4.1  Grid-searched Parameters 

The grid-searched parameters for the day-ahead and one-hour-ahead models in this 

section are given in Table 4.2 and Table 4.3, respectively.   

Table 4.2: Grid-searched parameters for day-ahead models on Dataset A 

Models Grid-searched parameters 

FFNN Number of hidden layers = 6, Number of hidden neurons per 

layer = 72 

LSTM Number of LSTM layers = 1, Number of LSTM per layer = 24 

SVR Parameters for all 288 models are optimized using built-in 

optimizer. 

kNN-R kidw=6 

ESOINN, λ=20 C1=0, C2=0 

DB-SOINN-R, 

λ=20 

kidw=6, kdenoise=2 

 

Table 4.3: Grid-searched parameters for one-hour-ahead models on Dataset A 

Models Grid-searched parameters 

FFNN Number of hidden layers = 5, Number of neurons per layer 

= 6 

LSTM Number of LSTM layers = 3, Number of LSTM per layer 

= 9 

SVR Epsilon = 0.000744, KernelScale=0.262891, 

Lambda=0.0000339 

kNN-R kidw=34 

ESOINN, λ=2880 C1=1, C2=1 

DB-SOINN-R, λ=2880 kidw=12, kdenoise=10 

4.4.2  Day-ahead Load Prediction Accuracy 

Table 4.4 shows the prediction accuracy of the day-ahead models in Scenario A and 

Scenario B. In Scenario A where the models are only trained with the first two months 

of data and does not incremental learn daily, the best performer in MAPE, CVRMSE, 

R2 are kNN-R, DB-SOINN-R, and LSTM models, respectively. With incremental 

learning in Scenario B, the proposed DB-SOINN-R model performs the best in all 
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metrics. All models in Scenario B show better accuracy than their counterparts in 

Scenario A that has no incremental learning or retraining. This shows the 

implementation of daily incremental learning or retraining results in better prediction 

accuracy. 
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Table 4.4: Prediction accuracy of day-ahead models in Scenario A and Scenario B on Dataset A 

Models Scenario A (without incremental learning) Scenario B (with incremental learning) 

MAPE 

(%) 

RMSE 

(kW) 

CVRMSE 

(%) 

MAE 

(kW) 

R2 MAPE 

(%) 

RMSE 

(kW) 

CVRMSE 

(%) 

MAE 

(kW) 

R2 

FFNN 10.281 5.064 15.314 3.756 0.913 9.329 4.299 13.001 3.223 0.907 

LSTM 9.976 4.99 15.116 3.685 0.920 9.054 4.386 13.265 3.195 0.911 

SVR 9.912 4.817 14.569 3.565 0.906 7.533 3.592 10.865 2.610 0.926 

kNN-R 9.188 4.489 13.575 3.278 0.915 7.203 3.171 9.500 2.378 0.928 

ESOINN, 

λ=20 

10.161 4.700 14.216 3.500 0.883 8.369 3.591 10.860 2.728 0.903 

DB-SOINN-

R, λ=20 

9.250 4.468 13.514 3.275 0.916 6.986 2.995 9.058 2.286 0.936 
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Figure 4.4 presents the monthly MAPE and CVRMSE for the six day-ahead 

models: FFNN, LSTM, SVR, KNN-R, ESOINN (λ=20), and DB-SOINN-R (λ=20). In 

September, all models have similar MAPE and CVRMSE in both scenarios, with less 

than 0.5% and 1% differences in MAPE and CVRMSE, respectively. This is because 

the September data is similar to August data that is used to train the models. Hence, 

updating the model in Scenario B does not show much difference for September. The 

models have a similar MAPE of around 8%, except the ESOINN that has the highest 

MAPE of 9.2% and 8.7% in Scenario A and Scenario B, respectively. All models also 

have similar CVRMSE of around 10% - 11% in September, except the LSTM model 

that has the highest CVRMSE of 12.09% in Scenario B. The LSTM is the only model 

that has worse prediction accuracy in Scenario B than in Scenario A in September. 

In October, all models except FFNN show significant differences in MAPE and 

CVRMSE between the two scenarios. The FFNN has 0.3% and 1.5% differences in 

MAPE and CVRMSE, respectively. It is insignificant compared to other models, such 

as LSTM has 1.8% and 3.3% differences in MAPE and CVRMSE, respectively, and 

DB-SOINN-R has 3% and 5.17% differences in MAPE and CVRMSE, respectively. 

This shows the accomplishable improvement in prediction accuracy with incremental 

learning. 

In November, all models show significant differences in MAPE and CVRMSE 

between the two scenarios. However, the FFNN and LSTM have smaller differences 

compared to other models. In December, the differences in MAPE and CVRMSE 

between the two scenarios are smaller compared to October and November. The LSTM 

has the smallest differences in MAPE and CVRMSE, which are 0.4% and 2.2%, 

respectively. 

Compared to other models, both FFNN and LSTM have smaller improvements 

in prediction accuracy with incremental learning, and they also have worse accuracy 

(in Scenario B) than other models across all months. The LSTM has worse accuracy in 

Scenario B in September, despite Table 4.4 shows LSTM has better overall accuracy in 

Scenario B than in Scenario A. The SVR, kNN-R, ESOINN, and DB-SOINN-R models 

have significantly better prediction accuracy in Scenario B than Scenario A. This 

indicates the incremental can improve the prediction accuracy for the appropriate 

models. The proposed DB-SOINN-R has the best prediction accuracy among all models 
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in all months. In contrast, the original ESOINN has the highest MAPE and CVRMSE 

in Scenario B among the SVR, kNN-R, ESOINN, and DB-SOINN-R for all months. 

This shows the effectiveness of the proposed changes in the DB-SOINN-R for day-

ahead load prediction.  
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Figure 4.4: Monthly MAPE and CVRMSE for day-ahead models on Dataset A 
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Figure 4.5 provides the data for the daily MAPE for the six day-ahead models: 

FFNN, LSTM, SVR, KNN-R, ESOINN (λ=20), and DB-SOINN-R (λ=20). All models 

have similar MAPE between the two scenarios in September, which has been observed 

in Figure 4.4. From the end of September onwards, all models have their MAPE begin 

to increase for Scenario A. With incremental learning in Scenario B, the SVR, kNN-R, 

ESOINN, and DB-SOINN-R achieved a lower MAPE than in Scenario A. For these 

four models, their daily MAPE values in Scenario B are within the range of 5% - 10%, 

which is smaller than the range of 5% - 15% in Scenario A. In terms of 25th percentile 

(Q1), 75th percentile (Q3), and interquartile range (IQR) for the MAPE, the incremental 

learning did help to reduce these values. For example, the proposed DB-SOINN-R has 

Q1 of 7.586%, Q3 of 10.698%, and IQR of 3.113% in Scenario A. With incremental 

learning in Scenario B, the Q1, Q3, and IQR are reduced to 5.534%, 8.232%, and 

2.697%, respectively. This shows a reduction of 2.054%, 2.466%, and 0.416% in Q1, 

Q3, and IQR, respectively. The lower Q1 and Q3 indicates higher prediction accuracy, 

whereas the smaller IQR indicates a more consistent prediction accuracy.  

The FFNN and LSTM behave differently compared to the other four models. In 

September and October, the FFNN model has similar daily MAPE in both scenarios, 

and the daily MAPE in Scenario B begins to be lower than in Scenario A from 

November onwards. The LSTM model has its daily MAPE fluctuates between 5.7% 

and 15.8% between days 34 and 53 in Scenario B. This shows the LSTM model is 

unstable with incremental learning or daily retraining. Hence, retraining the FFNN and 

LSTM daily to achieve incremental learning is inappropriate.  
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Figure 4.5: Daily MAPE for day-ahead models on Dataset A 

4.4.3  One-hour-ahead Load Prediction Accuracy 

Table 4.5 shows the prediction accuracy of the one-hour-ahead models in Scenario A 

and Scenario B. In Scenario A, the FFNN model performs the best among the six 

models, while the DB-SOINN-R model performs the best in Scenario B. Both FFNN 

and LSTM models have their accuracy metrics in Scenario B worse than Scenario A. 

For the SVR, kNN-R, ESOINN, and DB-SOINN-R models, they all have their 

prediction accuracy improved with incremental learning applied in Scenario B. 
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Table 4.5: Prediction accuracy of one-hour-ahead models in Scenario A and Scenario B on Dataset A 

Models Scenario A (without incremental learning) Scenario B (with incremental learning) 

MAPE 

(%) 

RMSE 

(kW) 

CVRMSE 

(%) 

MAE 

(kW) 

R2 MAPE 

(%) 

RMSE 

(kW) 

CVRMSE 

(%) 

MAE 

(kW) 

R2 

FFNN 9.355 4.573 13.829 3.316 0.878 8.281 3.972 12.014 2.777 0.889 

LSTM 8.710 4.309 13.031 3.095 0.913 9.658 4.203 12.711 2.990 0.867 

SVR 7.478 4.551 13.765 2.812 0.873 5.665 2.851 8.623 1.939 0.941 

kNN-R 7.715 3.997 12.087 2.665 0.911 5.515 2.758 8.341 1.881 0.945 

ESOINN, 

λ=2880 

7.956 4.139 12.517 2.846 0.883 6.703 3.301 9.984 2.266 0.918 

DB-SOINN-R, 

λ=2880 

6.60 3.510 10.615 2.398 0.937 5.049 2.379 7.194 1.691 0.959 
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The monthly MAPE and CVRMSE for the six one-hour-ahead models: FFNN, 

LSTM, SVR, kNN-R, ESOINN (λ=2880), and DB-SOINN-R (λ=2880) are provided in 

Figure 4.6. The SVR, kNN-R, ESOINN, and DB-SOINN-R one-hour-ahead models 

show a similar monthly trend their day-ahead models. In September, the differences in 

MAPE and CVRMSE between scenarios are less than 0.2% and 0.4%, respectively. In 

October, November, and December, they show significant differences in MAPE and 

CVRMSE between the two scenarios. The DB-SOINN-R model has the best accuracy, 

whereas the ESOINN model has the worst accuracy among the four models. This shows 

the effectiveness of the proposed changes in the DB-SOINN-R for one-hour-ahead load 

prediction. 

The FFNN and LSTM models show significantly worse accuracy than other 

models in all four months, even with incremental learning in Scenario B. Although the 

FFNN model has a lower MAPE and CVRMSE with incremental learning in Scenario 

B than in Scenario A, they are still higher compared to SVR, kNN-R, EOSINN, and 

DB-SOINN-R models. The LSTM model shows worse monthly MAPE in Scenario B 

than in Scenario A for September, October, and November. In December, LSTM 

models show a negligible 0.1% lower MAPE and 1.59% lower CVRMSE in Scenario 

B than in Scenario A. Although LSTM has higher CVRMSE in Scenario B than in 

Scenario A for October, November, and December, it still insufficient to justify the 

implementation of incremental learning for LSTM one-hour-ahead load prediction. 

Hence, the LSTM one-hour-ahead model is not appropriate for incremental learning or 

retraining. 

Figure 4.7 shows the daily MAPE for the six one-hour-ahead models: FFNN, 

LSTM, SVR, kNN-R, ESOINN (λ=2880), and DB-SOINN-R (λ=2880). The FFNN 

model shows slightly lower MAPE in Scenario B than in Scenario A, but it fluctuates 

between days 31 and 39. The LSTM model has its daily MAPE in Scenario B 

consistently worse than in Scenario A, which has observed in Figure 4.6.  Moreover, it 

has daily MAPE fluctuation between days 1 and 40. The LSTM day-ahead model has 

a similar issue, as shown in Figure 4.5. The LSTM has an unstable model after 

incremental learning is implemented in both day-ahead and one-hour-ahead load 

predictions.  
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For the SVR, kNN-R, ESOINN, and DB-SOINN-R models, their daily MAPE 

values in Scenario B are lower than in Scenario A from October onwards. This 

demonstrates a better prediction accuracy is achievable with incremental learning or 

retraining. These four models have most of their daily MAPE values in Scenario 

A within the range of 5% - 13%. The range is reduced to 4% - 8% in Scenario B. For 

example, the DB-SOINN-R in Scenario A has its daily MAPE values within the range 

of 4.2% - 10.1%. The range reduced to 3.3% - 7.9% in Scenario B, with most MAPE 

at around 5% consistently. In terms of Q1, Q3, and IQR for the MAPE, the proposed 

DB-SOINN-R has Q1, Q3, and IQR values of 5.427%, 7.767%, and 2.340%, 

respectively, in Scenario A. With incremental learning in Scenario B, the Q1, Q3, and 

IQR reduced to 4.404%, 5.373%, and 0.969%, respectively. This shows differences of 

1.023%, 2.394%, and 1.371% in Q1, Q3, and IQR, respectively. The lower Q1 and Q3 

means the prediction accuracy is better, whereas the smaller IQR indicates a more 

consistent prediction accuracy with incremental learning, which is also observed in day-

ahead load prediction. 

The poor performance of the FFNN and LSTM one-hour-ahead models in 

Scenario B should be due to the inappropriate configuration to handle the larger number 

of training data for the one-hour-ahead load prediction than the day-ahead load 

prediction. Two days of load profile are processed to one training set for day-ahead 

models, but 576 training sets for one-hour-ahead models. As the number of training 

data increases, the existing network configuration of the FFNN and LSTM may be 

inappropriate to map the relationship, since the network structure and hyperparameters 

are unchanged during the daily retraining. Optimizing the network structure and 

hyperparameters daily during the retraining process may improve the performance, but 

it would take a longer time. 

Another possibility of the poor performance of the FFNN and LSTM models is 

the lack of different types of variables such as weather data and building-related data. 

Other studies that use FFNN and LSTM models in load prediction are often paired with 

different types of data. However, this research work does not consider these data due 

to the absence of data. Also, other studies usually use more than one year of data. 

Including more data may improve the accuracy of the FFNN and LSTM models, but a 

large amount of historical data is not always available. In conclusion, the re-training 
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approach for FFNN and LSTM one-hour-ahead models to achieve incremental learning 

is inappropriate. 
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Figure 4.6: Monthly MAPE and CVRMSE for one-hour-ahead models on Dataset A 
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Figure 4.7: Daily MAPE for one-hour-ahead models on Dataset A 

4.4.4  Execution Times 

Table 4.6 and Table 4.7 show the execution times recorded in Scenario B for the day-

ahead models and one-hour-ahead models, respectively. Among the day-ahead models, 

the SVR has the longest time as expected because 288 SVR models need to be trained 

and retrained daily throughout the testing period. For the kNN-R, it has no training time 

as no learning process is involved. For the ESOINN and DB-SOINN-R models, their 

unsupervised learning makes them notably faster than other day-ahead supervised 

models (FFNN, LSTM, and SVR) at both training and prediction.  
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Despite the fast execution times of the unsupervised day-ahead models, both 

FFNN and SVR models completed their initial training up to 11 times faster than the 

unsupervised ESOINN and DB-SOINN-R models, showing that the training times of 

the FFNN and SVR models are not affected by the number of training sets. However, 

the lack of incremental learning capability makes them slower in completing the daily 

re-training since the ESOINN and DB-SOINN-R models only need to update their 

model with the data collected on the day, while others need to retrain a new model with 

all collected data that includes data used to train the model in the previous day. The 

SVR one-hour-ahead model has a very fast total prediction time that is a mere 1.4571s 

slower than the original ESOINN model and 13.9047s faster than the DB-SOINN-R 

model. Although the FFNN one-hour model are retraining a new model daily while the 

DB-SOINN-R is updating its model, the retraining time of FFNN one-hour-ahead 

model is only 9.0403s slower than the second-fastest DB-SOINN-R model. The one-

hour-ahead LSTM model has a much longer execution time than the day-ahead LSTM 

model. This shows that the training time is highly impacted by the number of training 

data. The DB-SOINN-R models do have a longer execution time than the original 

ESOINN model but are still faster than the three supervised models (FFNN, LSTM, 

and SVR).  

Additionally, the three supervised models (FFNN, LSTM, and SVR) are trained 

using the built-in MATLAB function, which are compiled code while, the ESOINN 

and DB-SOINN-R are written in m-files that are interpreted. The m-files code should 

perform slower than the compiled built-in MATLAB function. With code optimization 

for speed, the execution speed of the ESOINN and DB-SOINN-R may be improved. 

For reference, the DB-SOINN-R has an average CPU usage of around 30%, while the 

SVR has an average CPU usage of around 70%, running at a quad-core CPU. 
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Table 4.6: Execution time for day-ahead models in Scenario B on Dataset A 

Models Initial Train 

Time (s) 

Average Daily 

Prediction Time 

(s) 

Average Daily 

Training Time 

(s) 

Total Daily 

Prediction Time 

(s) 

Total Training 

Time (s) 

Total Time (s) 

FFNN 4.519 0.0213 2.3789 1.407 156.997 162.923 

LSTM 8.891 0.0047 7.475 0.313 493.371 502.575 

SVR 108.893 0.200 148.436 13.226 9796.8 9918.919 

kNN-R - 0.000325 - 0.0215 - 0.0215 

ESOINN, λ=20 0.143 0.000406 0.0018 0.0268 0.116 0.286 

DB-SOINN-R, λ=20 0.207 0.000869 0.0024 0.0573 0.160 0.424 

 

Table 4.7: Execution times for one-hour-ahead models in Scenario B on Dataset A 

Models Initial Train 

Time (s) 

Average Daily 

Prediction Time 

(s) 

Average Daily 

Training Time 

(s) 

Total Daily 

Prediction Time 

(s) 

Total Training 

Time (s) 

Total Time (s) 

FFNN 4.995 0.0109 2.376 206.339 156.783 368.116 

LSTM 303.330 0.0035 982.976 66.806 64876 65246.14 

SVR 4.484 0.000279 6.543 5.309 431.856 441.649 

kNN-R - 0.0025 - 48.026 - 48.026 

ESOINN, λ=2880 19.946 0.000203 0.472 3.852 31.123 54.9201 

DB-SOINN-R, λ=2880 49.714 0.0010 2.239 19.214 147.742 216.67 
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4.5  Detailed Analysis of the DB-SOINN-R model on Dataset A 

As previously mentioned in Section 4.2, the proposed DB-SOINN-R model consists of 

three modifications to the original ESOINN: density-based denoising, mean Euclidean 

distance (mEd), and kNN-IDW regression. This section demonstrates the improvement 

in accuracy achieved by each proposed modification of the DB-SOINN-R model. The 

improvements by the changes at day-ahead load prediction are provided in Section 4.5.2. 

The mean Euclidean distance (mEd) is not tested in the day-ahead load prediction as 

there is only one type of data in the training set, which is the historical time-series load 

profile. The effect of the denoising interval λ on the prediction accuracy is also 

presented. For day-ahead models, their tested λ are 0, 5, and 20, which translates to no 

denoise, denoise every 5 days, and denoise every 20 days, respectively. Section 4.5.3 

presents the improvements made by the changes at one-hour-ahead load prediction. For 

one-hour-ahead models, their tested λ are 0, 1440, and 2880, which translate to no 

denoise, denoise every 5 days, and denoise every 10 days, respectively. All models are 

only performed in Scenario B, in which the models are updated daily. 

4.5.1  Grid-searched Parameters 

Table 4.8 and Table 4.9 show the grid-searched parameters for the day-ahead and one-

hour-ahead models in this section, respectively. There are different models that 

incorporate one or more of the three proposed changes to the original ESOINN, and the 

abbreviations for these models are shown below: 

• ESOINN → Original ESOINN 

• ESOINN-R → Original ESOINN with kNN-IDW regression 

• EOSINN-mEd → Original ESOINN with mEd as the distance metric 

• ESOINN-mEd-R → ESOINN-mEd with kNN-IDW regression. 

• DB-SOINN-R → Proposed DB-SOINN that uses mEd as the distance metric, 

the new density-based denoising, and kNN-IDW regression. 
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Table 4.8: Grid-searched parameters for day-ahead models on Dataset A 

Models Grid-searched parameters 

FFNN Number of hidden layers = 6, Number of hidden neurons per 

layer = 72 

LSTM Number of LSTM layers = 1, Number of LSTM per layer = 24 

SVR Parameters for all 288 models are optimized using built-in 

optimizer. 

kNN-R kidw=6 

ESOINN, λ=0 - 

ESOINN, λ=5 C1=0, C2=0 

ESOINN, λ=20 C1=0, C2=0 

ESOINN-R, λ=0 kidw=6 

ESOINN-R, λ=5 C1=0, C2=0, kidw=6 

ESOINN-R, λ=20 C1=0, C2=0, kidw=6 

DB-SOINN-R, 

λ=0 

kidw=6 

DB-SOINN-R, 

λ=5 

kidw=6, kdenoise=2 

DB-SOINN-R, 

λ=20 

kidw=6, kdenoise=2 

 

  



77 

 

Table 4.9: Grid-searched parameters for one-hour-ahead models on Dataset A 

Models Grid-searched parameters 

FFNN Number of hidden layers = 5, Number of neurons per layer 

= 6 

LSTM Number of LSTM layers = 3, Number of LSTM per layer 

= 9 

SVR Epsilon = 0.000744, KernelScale=0.262891, 

Lambda=0.0000339 

kNN-R kidw=34 

ESOINN, λ=0 - 

ESOINN, λ=1440 C1=1, C2=0.5 

ESOINN, λ=2880 C1=1, C2=1 

ESOINN-R, λ=0 kidw=28 

ESOINN-R, λ=1440 C1=0.3, C2=0.3, kidw=28 

ESOINN-R, λ=2880 C1=0.7, C2=0.5, kidw=20 

ESOINN-mEd, λ=0 - 

ESOINN-mEd, λ=1440 C1=0.7, C2=0.7 

ESOINN-mEd, λ=2880 C1=0.7, C2=0.7 

ESOINN-mEd-R, λ=0 kidw=12 

ESOINN-mEd-R, 

λ=1440 

C1=0.5, C2=1, kidw=12 

ESOINN-mEd-R, 

λ=2880 

C1=0.5, C2=1, kidw=12 

DB-SOINN-R, λ=0 kidw=12 

DB-SOINN-R, λ=1440 kidw=12, kdenoise=10 

DB-SOINN-R, λ=2880 kidw=12, kdenoise=10 
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4.5.2  Day-ahead Load Prediction 

Table 4.10 shows the prediction accuracy of different variations of ESOINN day-ahead 

models, including original ESOINN and the proposed DB-SOINN-R models. It is seen 

from Table 4.10 that the original ESOINN model has the worst accuracy among all 

models, despite the better accuracy with λ=20. With the kNN-IDW regression added to 

the original ESOINN (ESOINN-R), it shows significant improvement in all metrics. 

However, the ESOINN-R with λ=5 shows 0.6% and 1.5% higher MAPE and CVRMSE, 

respectively, than the ESOINN-R with λ=0 (no denoise). This shows using the original 

denoising in the ESOINN may decrease the prediction accuracy. With the new density-

based denoising, the DB-SOINN-R model with λ=5 and 20, has better accuracy than 

the DB-SOINN-R model with λ=0. Unlike the original denoising in ESOINN that may 

poses worse accuracy, enabling the new density-based denoising in the DB-SOINN-R 

models brings improvement to the prediction accuracy, which is the expected behavior 

by an appropriate denoising process.  

Table 4.10: Prediction accuracy of different ESOINN day-ahead models in Scenario B 

on Dataset A 

Models MAPE 

(%) 

RMSE 

(kW) 

CVRMSE 

(%) 

MAE (kW) R2 

ESOINN, λ=0 8.519 3.639 11.007 2.776 0.900 

ESOINN, λ=5 8.503 3.813 11.533 2.833 0.896 

ESOINN, λ=20 8.369 3.591 10.860 2.728 0.903 

ESOINN-R, λ=0 7.140 3.075 9.299 2.344 0.934 

ESOINN-R, λ=5 7.739 3.574 10.808 2.633 0.923 

ESOINN-R, λ=20 7.164 3.107 9.397 2.356 0.935 

DB-SOINN-R, 

λ=0 

7.120 3.077 9.305 2.347 0.934 

DB-SOINN-R, 

λ=5 

7.072 2.963 8.961 2.285 0.936 

DB-SOINN-R, 

λ=20 

6.986 2.995 9.058 2.286 0.936 
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4.5.3  One-hour-ahead Load Prediction 

Table 4.11 provides the data for the prediction accuracy of different variations of 

ESOINN one-hour-ahead models, including original ESOINN and the proposed DB-

SOINN-R models. As given in Table 4.11, the inclusion of kNN-IDW regression to the 

one-hour-ahead ESOINN models (ESOINN-R) brings significant improvement to the 

prediction accuracy in all metrics. Then, the use of the mEd (ESOINN-mEd-R) further 

improves the accuracy in all metrics. Figure 4.8 depicts the effect of mEd on the selected 

nodes for kNN-IDW regression.  

As seen in Figure 4.8(a), the predicted profile of ESOINN-R model tends to lag 

the actual profile. This is because the ESOINN selected inappropriate nodes that 

represents data of different minute for kNN-IDW. Referring to the example given in 

Figure 4.8(b), the ESOINN-R uses nodes with a minute of the day from as far as 505th 

minute when predicting the one-hour-ahead demand at 575th minute. There is 70 

minutes difference. With the implementation of mEd in DB-SOINN-R, it selected 

nodes with a minute of day difference of 5 or 10 minutes for kNN-IDW, eliminating 

the behavior of predicted profile lags actual profile, thus improving the prediction 

accuracy. 

For the ESOINN-mEd-R with λ=1440, the prediction accuracy is less than the 

ESOINN-mEd-R with λ=0 in all metrics. This shows the original denoising in the 

ESOINN may cause a poor prediction accuracy after the implementation of kNN-IDW 

regression. With the new density-based denoising, the DB-SOINN-R with λ=1440 and 

2880 show better prediction accuracy than the DB-SOINN-R with λ=0 (no denoise), 

which is the expected outcome of appropriate denoising.  
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Table 4.11: Prediction accuracy of different one-hour-ahead models in Scenario B on 

Dataset A 

Models MAPE 

(%) 

RMSE 

(kW) 

CVRMSE 

(%) 

MAE 

(kW) 

R2 

ESOINN, λ=0 7.138 3.506 10.603 2.413 0.908 

ESOINN, λ=1440 6.813 3.357 10.153 2.309 0.915 

ESOINN, λ=2880 6.703 3.301 9.984 2.266 0.918 

ESOINN-R, λ=0 5.654 2.843 8.600 1.933 0.942 

ESOINN-R, λ=1440 5.672 2.846 8.608 1.940 0.942 

ESOINN-R, λ=2880 5.663 2.814 8.511 1.930 0.942 

ESOINN-mEd-R, 

λ=0 

5.147 2.442 7.386 1.731 0.958 

ESOINN-mEd-R, 

λ=1440 

5.376 2.477 7.491 1.793 0.957 

ESOINN-mEd-R, 

λ=2880 

5.155 2.414 7.300 1.726 0.959 

DB-SOINN-R, λ=0 5.167 2.417 7.311 1.731 0.958 

DB-SOINN-R, 

λ=1440 

5.041 2.381 7.200 1.693 0.959 

DB-SOINN-R, 

λ=2880 

5.049 2.379 7.194 1.691 0.959 
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Figure 4.8: Investigation on the effect of mean Euclidean distance 
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4.6  Results and Discussion for Dataset B 

This section presents the results and discussion of six models: FFNN, LSTM, SVR, 

kNN-R, ESOINN, and DB-SOINN-R for Dataset B. New parameters are grid-searched 

for Dataset B and are provided in Section 4.6.1. Section 4.6.2 and 4.6.3 discuss the 

prediction accuracies of the day-ahead and one-hour-ahead models for Dataset B, 

respectively.  

4.6.1  Grid-searched Parameters 

Table 4.12 and Table 4.13 show the grid-searched parameters for the day-ahead and 

one-hour-ahead models, respectively. 

Table 4.12: Grid-searched parameters for day-ahead models on Dataset B 

Models Grid-searched parameters 

FFNN Number of hidden layers = 7, Number of hidden neurons per 

layer = 256 

LSTM Number of LSTM layers = 2, Number of LSTM per layer = 208 

SVR Parameters for all 288 models are optimized using built-in 

optimizer. 

kNN-R kidw=4 

ESOINN, λ=20 C1=0.3, C2=1 

DB-SOINN-R, 

λ=20 

kidw=4, kdenoise=8 

 

Table 4.13: Grid-searched parameters for one-hour-ahead models on Dataset B 

Models Grid-searched parameters 

FFNN Number of hidden layers = 4, Number of neurons per layer 

= 15 

LSTM Number of LSTM layers = 2, Number of LSTM per layer 

= 24 

SVR Epsilon = 0.0050513, KernelScale=2.2315, 

Lambda=0.0000272 

kNN-R kidw=2 

ESOINN, λ=2880 C1=0.5, C2=0.5 

DB-SOINN-R, λ=2880 kidw=8, kdenoise=40 
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4.6.2  Day-ahead Load Prediction Accuracy 

Table 4.14 presents the prediction accuracy of the day-ahead models obtained using the 

public Dataset B. In Scenario A, both SVR and DB-SOINN-R perform similarly well 

and have better accuracy than other models. The SVR has 0.23% lower MAPE and 

0.063kW lower MAE than the DB-SOINN-R, whereas the DB-SOINN-R has 0.012kW 

lower RMSE, 0.11% lower CVRMSE, and 0.002 higher R2 than the SVR. Hence, they 

are considered comparable in Scenario A. 

With incremental learning in Scenario B, all models have better prediction 

accuracy in all metrics, except LSTM. The LSTM shows 0.841% lower CVRMSE and 

0.17kW lower MAE, but 0.086% higher MAPE in Scenario B than in Scenario A. 

Hence, no significant differences for LSTM. Other models have significant 

improvements, such as the DB-SOINN-R has 1.351% lower MAPE and 1.207% lower 

CVRMSE in Scenario B than in Scenario A. With incremental learning in Scenario B, 

the DB-SOINN-R achieved the best prediction accuracy among all models. The DB-

SOINN-R also shows better accuracy than ESOINN in all metrics, especially in 

Scenario B, demonstrating the consequence of proposed changes in DB-SOINN-R.
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Table 4.14: Prediction accuracy of day-ahead models in Scenario A and Scenario B on Dataset B 

Models Scenario A (without incremental learning) Scenario B (with incremental learning) 

MAPE 

(%) 

RMSE 

(kW) 

CVRMSE 

(%) 

MAE 

(kW) 

R2 MAPE 

(%) 

RMSE 

(kW) 

CVRMSE 

(%) 

MAE 

(kW) 

R2 

FFNN 7.222 4.090 8.656 3.298 0.962 4.309 2.532 5.359 1.888 0.973 

LSTM 5.172 3.303 6.991 2.508 0.974 5.258 2.906 6.150 2.338 0.973 

SVR 3.991 2.427 5.136 1.818 0.978 2.989 1.994 4.220 1.372 0.983 

kNN-R 4.333 2.388 5.054 1.930 0.980 2.954 1.818 3.849 1.340 0.986 

ESOINN, 

λ=20 

4.233 2.392 5.063 1.862 0.979 3.324 2.029 4.294 1.495 0.983 

DB-SOINN-

R, λ=20 

4.221 2.376 5.029 1.881 0.980 2.870 1.806 3.822 1.309 0.986 
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4.6.3  One-hour-ahead Load Prediction Accuracy 

The prediction accuracy of the one-hour-ahead models obtained using the public 

Dataset B are given in Table 4.15. Similar to the results for Dataset A in section 4.4.3, 

the FFNN and LSTM one-hour-ahead models have considerably worse accuracy 

compared to other models. The FFNN has the lowest accuracy in Scenario A, while the 

LSTM has the worst accuracy in Scenario B. The LSTM also has a lower accuracy in 

Scenario B than in Scenario A. This again indicates that the FFNN and LSTM are not 

suitable to achieve incremental learning through retraining daily. 

In Scenario A, the DB-SOINN-R has the best prediction accuracy among all 

models. Although the kNN-R has a mere 0.026% lower MAPE than the DB-SOINN-R, 

DB-SOINN-R performs better in other metrics. All models have better prediction 

accuracy in Scenario B than in Scenario A, except LSTM. In Scenario B, the proposed 

DB-SOINN-R performs the best among all models in all metrics. The proposed changes 

in DB-SOINN-R have led to a better accuracy than the ESOINN in both scenarios.
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Table 4.15: Prediction accuracy of one-hour-ahead models in Scenario A and Scenario B on Dataset B 

Models Scenario A (without incremental learning) Scenario B (with incremental learning) 

MAPE 

(%) 

RMSE 

(kW) 

CVRMSE 

(%) 

MAE 

(kW) 

R2 MAPE 

(%) 

RMSE 

(kW) 

CVRMSE 

(%) 

MAE 

(kW) 

R2 

FFNN 4.030 2.339 4.950 1.812 0.977 2.912 1.816 3.843 1.328 0.986 

LSTM 3.440 1.890 4.001 1.495 0.990 4.001 2.396 5.072 1.639 0.976 

SVR 2.219 1.343 2.842 0.999 0.993 1.767 1.169 2.475 0.821 0.994 

kNN-R 2.171 1.438 3.045 1.023 0.992 1.448 1.001 2.118 0.680 0.996 

ESOINN, 

λ=2880 

2.448 1.535 3.248 1.109 0.990 1.851 1.327 2.809 0.887 0.993 

DB-SOINN-

R, λ=2880 

2.197 1.327 2.808 1.005 0.993 1.438 0.979 2.071 0.667 0.996 
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4.7  Summary 

This chapter evaluates the effect of incremental learning on six models: FFNN, LSTM, 

SVR, kNN-R, ESOINN, and the proposed DB-SOINN-R, on both day-ahead and one-

hour-ahead load predictions. This chapter proposes a new DB-SOINN-R model that 

incorporates a new density-based denoising, a new mean Euclidean distance as the 

distance metric, and kNN-IDW regression. To evaluate the effect of incremental 

learning, the models were trained with the first two months of data and tested on the 

remaining data, with the models updated or retrained daily throughout the testing period. 

Results are obtained using two different datasets, Dataset A and Dataset B. Dataset A 

is a load profile from an educational building, and Dataset B is a public load profile of 

the city of Johor in Malaysia. Results show that all models could achieve better 

prediction accuracy from incremental learning, except FFNN and LSTM models. The 

DB-SOINN-R outperforms the original ESOINN in the two datasets. Without the 

proposed changes in the DB-SOINN-R, the ESOINN model would not be considered 

as a viable model since other models such as SVR often have better accuracy at both 

day-ahead and one-hour-ahead load predictions. The DB-SOINN-R incremental model 

has the highest prediction accuracy among all models for both day-ahead and one-hour-

ahead load predictions in both Dataset A and Dataset B. This shows the proposed model 

has good generalization. The execution times of the DB-SOINN-R day-ahead and one-

hour-ahead models are also faster than the supervised FFNN, LSTM, and SVR models. 

Therefore, the DB-SOINN-R is considered as a viable incremental model for day-ahead 

and one-hour-ahead time-series load predictions.  
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Chapter 5 – Two-stage Maximum Demand Reduction 

Controller 

5.1  Overview 

Conventional threshold controllers that use load prediction have their peak shaving 

performance easily affected by the prediction accuracy of the load prediction models. 

Since they use predicted profiles to optimize the threshold demand (PTh), an inaccurate 

load profile may lead to inappropriate PTh, causing low or no MD reduction. To alleviate 

this issue, a new incremental prediction model was proposed in Chapter 4. It is 

interesting to note that the model specifically works with small historical data. Although 

the results demonstrated that the model has better prediction accuracy in comparison 

with other models, it does not eliminate prediction error. One day of predicted load 

profile with poor accuracy can cause peak demand reduction failure that may abolish 

the effort of peak reduction for the month. Therefore, this chapter proposes a novel 

dynamic two-stage MD reduction controller. Compared to other controllers, the novel 

controller is better at handling various prediction errors and preventing peak demand 

reduction failure for achieving a higher MD reduction. The proposed controller is 

designed to be adaptive, so it requires minimal amount of historical data to begin 

operation while achieving a reliable MD reduction performance.  

In this chapter, the proposed two-stage controller is compared with three 

controllers, named fixed threshold [32], single-stage [35], and fuzzy controller [36]. All 

controllers, except fixed threshold controller, require a prediction model to perform the 

load prediction. The prediction model proposed in Chapter 4 is selected as the 

prediction model in this chapter. Since the evaluation of the DB-SOINN-R has been 

completed and presented in Chapter 4, this chapter focuses on evaluating the capability 

of the proposed controller at MD reduction and peak demand reduction failure 

prevention capability. To demonstrate its adaptiveness, the proposed two-stage 

controller has only 30 working days of historical data before MD reduction operations 

of up to ten months and are tested on the two datasets. 

The structure of the proposed controller is first presented, following is the 

elaboration of the simulation setup used for evaluating the proposed controller, with 

results and discussion provided subsequently. The findings of this chapter are 

summarized in the last section.  



89 

 

5.2 Structure of the Two-stage Maximum Demand Reduction Controller 

To tackle the problem of reliance on the accuracy of load prediction, some state-of-the-

art controllers use different rigid parameters to reduce unnecessary BESS outputs 

caused by prediction error, thus prolonging the operational peak reduction period. The 

use of rigid parameters causes them incapable to adaptive to future variations. 

Additionally, a large amount of historical data to predetermine the optimal rigid 

parameters of the controller since they are responsible for preventing peak reduction 

failure. It is impractical to stagnant the implementation of the controller until the 

collection of sufficient historical data and validation of the parameters. This may cause 

a decline in users’ interest and reduces the demand response participation rate. Thus, 

rendering these controllers infeasible for sites with no or little historical data. 

To tackle the above-mentioned problem, a novel dynamic two-stage controller 

is proposed in this chapter. The proposed two-stage controller has three parts: prediction 

models, two-stage control strategy, and reserve BESS capacity. Unlike conventional 

controllers that use day-ahead load profiles, the two-stage controller uses two load 

predictions with lead times of day-ahead and one-hour-ahead. The two-stage controller 

adjusts the PTh every 5-min. The first stage determines the threshold based on the 

predicted day-ahead load profile to achieve the highest possible peak reduction with the 

remaining BESS energy. The second stage refines the threshold based on the predicted 

one-hour-ahead load profile to prevent peak demand reduction failure if necessary. To 

handle unexpected energy usage due to unusual profiles, a small BESS is reserved. 

Open literature reveals that no research is using load prediction with lead time 

shorter than day-ahead for peak demand reduction of buildings. Although the one-hour-

ahead load prediction is applicable for other energy management tasks such as load 

smoothing [100], it is not used for daily peak demand reduction. With the shorter lead 

time of the one-hour-ahead load prediction than the day-ahead load prediction, it should 

be more accurate than the day-ahead load prediction. Moreover, the one-hour-ahead 

load prediction is constantly predicting the one hour ahead load demand every 5-min, 

the inclusive of latest load inputs from the predicting day allows a more consistent 

accuracy where there is a smaller chance of high prediction error that persists 

throughout the whole day.  
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The addition of one-hour-ahead load prediction in the two-stage controller 

enables it to prevent peak demand reduction failure dynamically with real-time data. It 

does not need to pre-determine rigid parameters that can significantly affect the 

probability of peak reduction failure if not selected appropriately. Thus, it needs no 

long-term historical data for analysis at the time of implementation. Due to its dynamic 

nature, the controller can adapt to load pattern variations automatically and can be 

easily implemented for different buildings with limited historical data at the time of 

implementation. This easy-to-implement controller can potentially boost consumers’ 

DR participation.  

5.2.1  Prediction Model 

Figure 5.1(a) and (b) show the inputs/outputs of the day-ahead and one-hour-ahead 

prediction models, respectively. The inputs to the day-ahead load profile prediction 

model are the load profile of today (P00:00 to P23:55 of Day d), while the outputs are the 

predicted load profile of the next day (P00:00 to P23:55 of Day d+1). The inputs to the 

one-hour-ahead prediction model are the minute of the day and previous hour historical 

load demands (Pt-55 to Pt), while the output is the one-hour-ahead load demand (Pt+60). 

The day-ahead load prediction model predicts the next day load profile once at the 

beginning of each day, whereas the one-hour-ahead load prediction model predicts the 

one-hour-ahead demand every 5-min. Both prediction models are developed using an 

incremental model named DB-SOINN-R that has been evaluated and presented in 

Chapter 4. The DB-SOINN-R has a better prediction accuracy than conventional 

models such as DNN and SVR, and its one-hour-ahead model has better accuracy than 

its day-ahead model due to its shorter lead time. Despite that, the prediction model may 

produce high prediction errors for certain extreme conditions that are undesirable for 

the controller. The incremental learning of DB-SOINN-R allows it to update its model 

daily with collected data. Combined with the dynamic two-stage control strategy, the 

proposed dynamic two-stage controller can be implemented with a small amount of 

historical data.  
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Figure 5.1: (a) Day-ahead load prediction model; (b) One-hour-ahead load 

prediction model 

5.2.2  Interpolated One-hour-ahead Load Profile 

The output of the one-hour-ahead prediction model has only one output as seen in 

Figure 5.1 (b), which is the predicted one-hour-ahead demand. There are two methods 

to get the next hour load profile. The first method (Method A) uses the predicted outputs 

from previous timesteps. For example, the current t is 09:00, and the current output of 

the one-hour-ahead model is the demand for t+60 (10:00). The demands for 09:05 to 

09:55 have already been predicted in previous timesteps when t is 08:05 to 08:55. The 

second method (Method B) is linear interpolating the demands between the latest load 

demand (Pt) and the predicted Pt+60. Figure 5.2(a) and Figure 5.2(b) depict the 

prediction error for one-hour-ahead predicted profile (Method A) and interpolated one-

hour-ahead predicted profile (Method B), respectively. The amount of prediction error 

is represented by the shared green area. Method B has a significantly smaller prediction 

error or green shared area when compared to Method A. Method B has significantly less 

prediction error (green shaded area) than Method A. Hence, Method B is used in the 

two-stage control strategy to obtain the next hour predicted load profile. 
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Figure 5.2: (a) Prediction errors for one-hour-ahead predicted profile (Method A) 

and (b) interpolated one-hour-ahead predicted profile (Method B) 

5.2.3  Two-stage Control Strategy 

Figure 5.3 shows the flowchart of the proposed two-stage control strategy. Table 5.1 

shows the definitions of the variables used for the two-stage controller. Conventional 

single-stage controllers use the first stage only to find the PTh. They do not have the 

BESS sufficiency checking and second stage threshold adjustment that use the 

interpolated next hour load profile. To use the short one-hour-ahead lead time for peak 

reduction, it utilizes the BESS discharge rate to estimate the energy usage beyond the 

one-hour lead time.  
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Figure 5.3: Flowchart of the two-stage control strategy 

 

Table 5.1: Definition of variables used for the two-stage control 

Variable Definition 

PTh Demand threshold 

SOC State-of-charge of ESS 

ESSsize Size of ESS  

Eused SOC energy used in demand reduction 

Eprojected Projected energy usage for the next hour 

tend Projected demand reduction end time (in minutes) 

SOCprojected Projected SOC of ESS at the tend 

Eprojected Projected energy usage of the next hour 

DisRateprojected Projected discharge rate of the ESS 

𝑦𝑝
𝑖  The i-th point of the interpolated one hour-ahead predicted 

profile (yp) 

MDrecorded The current MD of the day 
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Figure 5.4 shows an example of the operation of the two-stage controller at time 

t. The BESS sufficiency checking is done by checking the projected SOC of BESS at 

the projected peak demand reduction end time (SOCprojected). To get the SOCprojected, it 

first needs to find the BESS energy that has been used (Eused) and the projected energy 

usage of the next hour (Eprojected) using equations (20) and (21), respectively.  

( )= − used size sizeE BESS BESS SOC  (20) 

( )
12

,

1

5

60=

= − 
 
 
 

projected p i Th

i

E Py  (21) 

Figure 5.4 shows the Eused (blue area) that represents the used BESS energy up 

to the time t and the Eprojected (orange area) represents the energy between the 

interpolated next hour load profile and the PTh from the first stage. The Eused and Eprojected 

are then used to calculate the projected discharge rate (DisRateprojected) of the BESS 

using equation (22).  

( )
5

12
60

+
=

+ 

projected

projected

usedE E
DisRate

k

 (22) 

where k is the number of intervals between the first demand reduction of the day and 

the current time t, as shown in Figure 5.4. For example, if the first demand reduction 

occurs at 09:00, and the current time is 11:00, the k is 24, for the 5-min data. Then, the 

DisRateprojected is used to calculate the SOCprojected using equation (23) with tend referring 

to the projected demand reduction end time. The tend is the time when the BESS is 

discharged completely based on the day-ahead predicted load profile with the initial 

PTh, as indicated in Figure 5.4. The tend is obtained using the day-ahead load profile 

since the one-hour-ahead lead time is too short. Since the two-stage controller only 

adjust the PTh to remain the same or increase, the tend may become earlier every 5-min 

if tend is recalculated using the latest Pth. If the day-ahead prediction is inaccurate, an 

earlier tend may cause a bigger error with the actual tend that may result in peak demand 

reduction failure. Therefore, the maximum tend is used to consider the worst-case 

scenario. The maximum tend is calculated using the initial PTh from the first stage (green 

line) that is found at the beginning of the day.  
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If the SOCprojected is negative, it indicates that the current PTh may not be 

achievable with the remaining BESS energy, thus peak demand reduction failure may 

occur. As shown in the example in Figure 5.4, the original projected SOC (brown line) 

based on the PTh from the first stage shows a negative SOCprojected, which indicates more 

BESS energy may be required to successfully reduce the peak demand to PTh. To 

prevent the potential peak demand reduction failure, the controller enters the second 

stage to find a new PTh that can achieve a SOCprojected of 0% (light blue line) with the 

next hour load profile. Increasing the PTh lowers the Eprojected and DisRateprojected, thus 

closer to the desired SOCprojected, which is 0%. 

The PTh from the second stage is then checked to prevent non-beneficial demand 

reduction by restricting the PTh from being lower than the MDrecorded. The MDrecorded is 

the highest recorded 30-minute interval demand up to the current time of the day. For 

example, if the current time is 14:00, and the highest 30-minute interval demand of the 

day thus far is 40kW from 11:30 – 12:00, the MDrecorded at 14:00 is 40kW. Any peak 

demands lower than 40kW will not contribute to lowering the MD charge.  

 

Figure 5.4: An example of the operation of the two-stage controller at time t 
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5.2.4 Reserved Battery Capacity 

Since the tend is obtained from the day-ahead predicted load profile, it can be incorrect 

if the day-ahead predicted profile is inaccurate. The error in tend may cause BESS 

deficiency for demand reductions since the controller is adjusting the PTh to have the 

BESS emptied before or at tend. The example in Figure 5.4 shows the day-ahead 

predicted load profile (black line) leads the load power (red line). If the BESS empties 

at tend, there will be no energy to reduce power demands that are higher than PTh after 

tend. To tackle this issue, the proposed two-stage controller reserves an extra BESS that 

is only used when the SOC is below 10% and remains idle if the SOC is higher than 

10%. The error of tend should be small unless abnormal profiles that have unusual event 

occurring after the typical peak period. Hence, reserving a small BESS should suffice 

the extra energy required by the error in tend. The size of the reserved BESS is referred 

to as BESSreserved in the remaining part of this thesis. 

 

5.3  Simulation Setup 

The performance of the proposed controller is evaluated using MATLAB simulation 

and the results are presented in this chapter. The real-world evaluation of the developed 

controller will be provided in the next chapter to check if the controller is workable in 

real-time. 

Conventionally, Simulink is used instead of MATLAB scripts. Simulink has ready-

to-use models such as batteries and can construct electrical circuits to simulate the 

converter more realistically. However, incorporating everything into Simulink resulted 

in a very slow simulation time due to the lack of a high-performance computer. It takes 

more time to simulate than running it in real-world for the same period of data. Hence, 

accuracy is sacrificed for speed. Below shows the trade-offs of not using Simulink 

models or any realistic models: 

1. It does not consider the characteristics of the system, such as the electrical 

noises, output fluctuation, and response time. 

2. It does not consider the characteristics of the battery, such as response time and 

battery temperature. 
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There are articles that show manageable differences between simulation and real-

world implementation, such as in [33]. A few assumptions are made for the simulation 

in this research work: 

1. The power remains constant within the data interval.  

The data used has an interval of 1-min. Thus, the power is assumed to remain 

constant within the 1-min interval. For example, the power readings between 

09:00:00 – 09:00:59 are the same at 40kW. In real-world, the readings may 

fluctuate slightly due to electrical noise and sensor resolution.  

2. The response time of the converter is instantaneous.  

The response time of the converter is typically quick (in the range of 

milliseconds), so it does not necessarily need to be accounted for the daily peak 

reduction and monthly maximum demand reduction.  

3. The optimizations are completed instantaneously.  

The prediction and optimization used in this research work are completed in 

seconds, so it is not expected to cause significant differences in the output. Since 

the control re-optimizes the PTh every 5-mins, the peak reduction operations are 

not halted when it is predicting or optimizing, but it will just use the PTh from 

the previous interval. The adjustment PTh in real-world may be a few seconds 

slower, but not necessarily need to be concerned for the daily peak demand 

reduction.  

4. The battery response time is assumed to be instantaneous, and its capacity 

has no degradation regardless of the discharge current.  

Batteries are usually listed based on their nominal capacity for a specific C-rate. 

The higher the C-rate, the smaller the actual capacity, and vice versa. However, 

the discharge current is not expected to be constant throughout the whole 

discharge cycle. Hence, it should be safe to assume the average capacity 

throughout the whole discharge cycle is very similar to the nominal capacity.  

The simulation in this chapter considers the efficiency of converters. Figure 5.5 

shows the power flow between the converter and BESS to the AC bus. With 𝜂𝑃 be the 

efficiency of the converter at P power, and PBESS be the available power of the BESS, 

the discharging power at the AC side can be obtained using equation (24), and the 

charging power at the DC side can be obtained using equation (25). Since the efficiency 

varies depending on power, it is always referring to the input power. Thus, it is referring 
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to the power from DC side when it is discharging and is referring to the power from 

AC side when it is charging. Since the controller would try to maintain the demand at 

PTh, the BESS needs to discharge more power and less energy is charged into BESS. 

,, ,= 
D DCPD AC D DCP P  (24) 

,, ,= 
C ACPC DC C ACP P  (25) 

 

Figure 5.5: Power Flow between converter and BESS 

 

Figure 5.6: (a) Available power of the BESS, and (b) efficiency of the converter 

The efficiency of converters that varies with power and maximum available 

power of BESS that varies with SOC, with the approach referred to [33]. It used a 

lookup table approach where the available output/input power of BESS and efficiency 

of the converter have their own curve. Figure 5.6 depicts the available power and 

efficiency curves used in the simulation. The available charging and discharging power 

of the BESS are limited by the SOC of the BESS. The peak charging and discharging 

powers of the BESS are assumed to be 15kW, which is 25% of the Dataset A and 20% 

of Dataset B. The 15kW is selected to not excessively oversizing the inverter rating and 

not restricting the operation of two-stage controller at the same time. If the discharge 
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or charge power is frequently restricted by the power rating, it may indicate the 

selection of inverter rating is inappropriate. Since peak demand reduction failure is 

avoided by PTh increment, which means reduced inverter output, it is possible to avoid 

peak demand reduction failure by having the output power reduced according to the 

inverter rating. But if a peak demand reduction failure is avoided by the reduced output 

power by the power rating, but not by the PTh adjustment of the controller, the capability 

of the controller may not be assessed properly. In simulations, the power rating is 

mostly to restrict the charging power of the battery. Otherwise, the charging power of 

the BESS during off-peak hours may look unusual high.  

As indicated in Figure 5.6(a), the available discharge and charging powers 

decline when the SOC is lower than 15% and higher than 85%, respectively. This drop 

in BESS power restricts the discharging and charging power. However, they only occur 

near the end of the SOC and are not used typically. Moreover, the usable SOC can be 

limited so it would not limit output power when SOC is low. For example, a lead-acid 

battery is often restricted to no discharge below 50% since discharging below 50% can 

decrease the lifespan of lead-acid battery significantly [4], [35].  

5.3.1 BESS sizing 

Two methods are explored to find the BESSsize. The first method (Method A) suggests 

finding a BESS size that can perform peak shaving on each day of the collected 

historical load profiles [45]. The second method (Method B) suggests finding a BESSsize 

with a generic load profile that is obtained by averaging the collected historical load 

profiles [35]. Both methods require a desired peak reduction percentage, which is 

selected to be 12% by referencing the average MDRP of the two months of peak 

reduction without PV in [4]. The calculated required BESSsize using the two methods 

are provided in Table 5.2. 

Table 5.2: Calculated required BESSsize using the two methods 

Dataset Required BESSsize (kWh) 

Method A Method B 

Dataset A 28.262 30.466 

Dataset B 49.763 46.557 

As seen in Table 5.2, Dataset A has a higher BESSsize with Method B than with 

Method A, while Dataset B shows a higher BESSsize with Method A than with Method 
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B. Hence, instead of selecting which method to use, the higher BESSsize is used. Dataset 

A uses 30.466kWh found using Method B, while Dataset B uses 49.763kWh found 

using Method A. Then, a margin is added to the calculated BESSsize to cater for 

unforeseen additions and losses in the system [110]. A margin of 5% is selected in this 

research work. After the 5% margin and rounding up, the final BESSsize is selected to 

be 32kWh and 53kWh for Dataset A and Dataset B, respectively. 

As proposed in Section 5.2.4, the two-stage controller reserves an extra BESS 

to handle the underestimation of tend. The BESSreserved is determined to be 10% of 

BESSsize, thus the BESSreserved is 3.2kWh for Dataset A and 5.3kWh for Dataset B. All 

controllers use the same BESS configuration for each dataset, thus the 

“32kWh+3.2kWh” and “53kWh+5.3kWh” configurations for Dataset A and Dataset B, 

respectively. 

5.3.2  Preparation of controllers 

The proposed two-stage controller is compared with two conventional controllers: fixed 

threshold controller [32] and single-stage controller [35]. To enhance the creditability 

of the proposed two-stage controller, it is also compared with a state-of-the-art 

controller, which is selected to be a fuzzy controller developed in [36]. This fuzzy 

controller is selected because it is developed for Malaysia load profiles and contains 

sufficient information to duplicate its work for comparison purposes in this research 

work. All controllers need to be prepared based on a certain amount of collected 

historical data at the time of implementation.  

The fixed threshold controller needs to use the historical data to determine a 

desired fixed PTh that is constant throughout the whole peak reduction period. The 

conventional single-stage, fuzzy, and proposed two-stage controllers need to train their 

prediction models using historical data. Like other conventional single-stage controllers,  

the fuzzy controller also requires day-ahead load profiles to optimize its output at a 

fixed interval throughout the day. To emulate limited historical data at the time of 

implementation, they only use the first 30 working days of historical data to find the 

fixed PTh and train the models. This simulation considers working days only because 

peak reduction is not necessary for the low peak demands on holidays and weekends 

that do not contribute to the MD of the month. 
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Based on the desired peak reduction percentage of 12% and BESSsize found in 

section 5.3.1, the fixed threshold controller determines a fixed PTh of 43kW and 67kW 

for Dataset A and Dataset B, respectively. Figure 5.7 shows the flowchart of the MD 

reduction experiment for the proposed two-stage controller. The peak demand 

reduction operations begin from day 31 onwards after the prediction models are trained 

with the first 30 days of historical data only. At the end of each day, the prediction 

models are updated with the collected data of the day. The BESS always recharges to 

its full capacity during off-peak periods to prepare for the next day’s operations. The 

conventional single-stage controller has a similar experiment flowchart to the two-stage 

controller, except that it uses the day-ahead load prediction model only. 

 

Figure 5.7: Flowchart of the MD reduction experiment for the proposed two-stage 

controller 
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As previously mentioned, the fuzzy controller developed in [36] is duplicated 

for comparison purposes in this research work. Figure 5.8 illustrates the flowchart of 

the fuzzy controller. The fuzzy controller has adopted Mamdani’s fuzzy inference 

method as it is the most common fuzzy methodology. Unlike other controllers that 

optimize the demand threshold (PTh) at every interval, the output of the fuzzy controller 

is the discharge power of BESS (PD) for the next 5-min.  The input to the fuzzy 

controller is the SOC of the BESS and the time of operation (top). The output of the 

fuzzy controller is the discharge power of the BESS. The definition of the fuzzy sets of 

the input and output of the fuzzy controller is provided in Table 5.3. 

 

Figure 5.8: Flowchart of the Fuzzy Controller 
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Table 5.3: Definition of the fuzzy sets of the input and output of the fuzzy controller 

SOC top PD of BESS 

EL – Extremely Low EE – Extremely Early VL – Very Low 

VL – Very Low VE – Very Early L – Low 

L – Low E – Early M – Middle 

M – Middle M – Middle H – High 

H – High L – Late VH – Very High 

VH – Very High VL – Very Late  

EH – Extremely High EL – Extremely Late  

 

Before implementation, the fuzzy controller specifically defines the 

membership functions based on the characteristics of each building’s load profile [36]. 

Figure 5.9 and Figure 5.10 illustrate the membership functions used for Dataset A and 

Dataset B, respectively. As depicted in Figure 5.8, the fuzzy controller uses the 

predicted day-ahead load profile to optimize its fuzzy rule at the beginning of each day. 

Table 5.4 presents an example of fuzzy rules used by Dataset A.   

Since the fuzzy controller determines the discharge power only, it needs to 

predetermine a charging demand threshold to charge the BESS during off-peak hours. 

When the load power is below the charging demand threshold, the differences in power 

are recouped into the BESS. After studying the datasets, the charging demand threshold 

is determined to be 35kW and 40kW for Dataset A and Dataset B, respectively.  

Despite the optimization of fuzzy rules, the membership functions are rigid and 

do not change throughout the MD reduction operations, thus cannot provide the 

adaptiveness required in this research work. Moreover, the determination of the 

membership functions and charging demand threshold need to be specifically designed 

for each profile, increasing the complexity of the implementation of the controller.  
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Figure 5.9: Membership functions for Dataset A 
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Figure 5.10: Membership function for Dataset B 

Table 5.4: An example of fuzzy rules adopted by Dataset A 

top 
SOC 

EL VL L M H VH EH 

EE VL VL L L L M M 

VE VL VL L L M M M 

E VL L L L M M H 

M VL L L M M H H 

L VL L M M H H VH 

VL VL L M H VH VH VH 

EL L H VH VH VH VH VH 
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5.3.3 Performance Metrics 

This chapter evaluates the performance of the controllers with three metrics: maximum 

demand reduction percentage (MDRP), daily peak demand reduction percentage 

(PDRP), and peak demand reduction failure rate (PDRFR). The accuracy of the day-

ahead and one-hour-ahead predicted profiles are evaluated using mean absolute 

percentage error (MAPE). The MDRP evaluates monthly MD reduction performance, 

where a higher MDRP indicates higher MD and MD charge reductions. The MDRP is 

calculated using equation (26):  

100%
original reduced

original

MD MD
MDRP

MD

 −
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 
 

 
(26) 

where MDoriginal denotes the monthly MD before reduction and MDreduced denotes the 

monthly MD after reduction. Differs from the monthly MDRP, the PDRP calculates the 

daily peak demand reduction performance by using the highest energy consumption of 

any consecutive 30-minute interval of the day, instead of the month. To measure the 

occurrence of peak demand reduction failure, peak reduction failure rate (PDRFR) is 

used. It is the ratio of the number of days with peak demand reduction failure to the 

total number of working days of the month. If the day has its BESS emptied before 

successfully reducing all anticipated peak demands, and has a PDRP of lower than 5%, 

the day is considered as peak demand reduction failure. If the day has a negligible PDRP 

of lower than 1%, it is also considered as peak demand reduction failure. This mostly 

occurs when the fixed threshold controller has its fixed PTh higher or close to the peak 

demand of the day. Equation (27) is used to calculate the MD reduction saving cost. 

𝑀𝐷𝑐𝑜𝑠𝑡 = 𝑀𝐷𝑟𝑎𝑡𝑒 × 𝑀𝐷 
 

(27) 

where MDcost is the MD charge of the month in RM, MDrate is the MD charge rate in 

RM/kW, and MD is the maximum demand of the month in kW. In this chapter, the MD 

charge rate is assumed to be RM45.10/kW, which is rates for Tariff C2 set by TNB 

Malaysia. To evaluate the prediction accuracy of day-ahead and one hour-ahead load 

predictions, MAPE shown in equation (28) is used.  
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where yt, ŷt, ȳ, and n represent actual demand, predicted demand, mean of actual 

demand, and the number of data points in yt, respectively. 

5.4  Results and Discussion for Dataset A 

Table 5.5 presents the monthly day-ahead MAPE, one-hour-ahead MAPE, MDRP, and 

PDRFR for the three controllers on Dataset A. The one-hour-ahead load prediction has 

its MAPE lower than the day-ahead load prediction in all five months. This shows that 

the one-hour-ahead load prediction is more accurate than the day-ahead load prediction. 

Despite the relatively good average MAPE of 6.922% for day-ahead load prediction, 

Figure 5.14(c) shows there are seven days of under-forecasted load profiles with MAPE 

higher than 10%. Regardless of the seven days of under-forecasted load profile, the 

proposed two-stage controller has the highest average MDRP among the four 

controllers and 0% PDRFR, showing its effectiveness at preventing peak demand 

reduction failure caused by BESS energy deficiency when the day-ahead load profile is 

under-forecasted. 
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Table 5.5: Day-ahead MAPE, one-hour-ahead MAPE, MDRP and PDRFR per month on Dataset A 

Month 

Day-

ahead 

MAPE 

(%) 

One-

hour-

ahead 

MAPE 

(%) 

Max 

MAPE 

(%) 

MDRP (%) PDRFR (%) 

Fixed 

threshold 

Single-

stage  Fuzzy 

Two-

stage  

Fixed 

threshold 

Single-

stage  Fuzzy 

Two-

stage  

Aug 6.757 5.293 10.726 13.752 1.666 6.904 9.413 7.143 35.714 0 0 

Sep 7.666 5.348 11.140 7.323 2.385 8.255 9.242 0 44.444 0 0 

Oct 7.422 5.540 11.292 1.773 1.822 6.707 8.428 68.421 47.368 0 0 

Nov 6.062 4.556 10.161 3.586 3.995 5.315 7.601 40 10 0 0 

Dec 6.706 4.643 7.042 1.148 1.150 7.309 10.433 50 50 0 0 

Average 6.922 5.076 10.072 5.516 2.204 6.898 9.024 32.911 35.443 0 0 
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The fixed threshold controller has the highest MDRP in August compared to the 

four controllers because the original MD of August is similar to July data that is used 

to find the fixed PTh of 43kW. In September, the fixed threshold controller has 1.919% 

lower MDRP than the proposed two-stage controller but 4.938% higher than the single-

stage controller. For the remaining months, the fixed threshold controller has the lowest 

MDRP and the highest PDRFR among the four controllers. As indicated in Table 3.2,  

Dataset A has its MD in October increased 9.56% compared to the MD in September, 

and the high MD maintained for the remaining two months. The fixed PTh is too low 

for the high MD in October, resulting in frequent peak demand reduction failure caused 

by insufficient BESS energy. The single-stage controller has the lowest average MDRP 

and the highest PDRFR among the four controllers. The underperforming of the single-

stage controller is due to its inappropriate PTh adjustment for compensating the under-

forecasted day-ahead load profiles. The fuzzy controller has 0% PDRFR, but its MDRP 

is lower than the proposed two-stage controller in all months. The proposed two-stage 

controller has the highest average MDRP among the three controllers and 0% PDRFR, 

showing its effectiveness at preventing peak demand reduction failure caused by BESS 

energy deficiency when the day-ahead load profile is under-forecasted. 

Figure 5.11 and Figure 5.12 show the performance of the four controllers on 

days 39 and 40, respectively. Both fixed threshold and single-stage controllers have 

peak demand reduction failure on these two days. Although the single-stage controller 

consistently increases the PTh, the increment is insufficient to compensate for the high 

under-forecast day-ahead error. The day-ahead MAPE on days 39 and 40 is 11.29% 

and 11.26%, respectively. The proposed two-stage controller has a PDRP of 11.79% on 

day 39 and a PDRP of 9.069% on day 40, which are significantly higher than the low 

PDRP of between 0.501% and 4.351% for fixed threshold and single-stage controllers. 

Same as the proposed two-stage controller, the fuzzy controller has no peak reduction 

failure on days 39 and 40 with a PDRP of 7.4% and 5.764%, respectively. The PDRP 

of the fuzzy controller on these two days are higher than the conventional fixed 

threshold and single-stage controllers but are lower than the proposed two-stage 

controller. 
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Figure 5.11: Performance of (a) fixed threshold, (b) single-stage, (c) fuzzy, and (d) two-stage controllers on day 39 for Dataset A 

 

Figure 5.12: Performance of (a) fixed threshold, (b) single-stage, (c) fuzzy, and (d) two-stage controllers on day 40 of Dataset A 



111 

 

The conventional single-stage controller can have a higher PDRP than the 

proposed two-stage controller, such as on day 12 in Figure 5.13. Day 12 has a relatively 

accurate day-ahead load profile with a MAPE of 6.8%. Despite that, it fails to predict 

the high demands between 11:00 to 12:30. The conventional single-stage controller 

only has a small PTh increment to compensate for the unpredicted peak demand and has 

no peak demand reduction failure. This is because the day-ahead load profile is over-

forecasted at 12:30 – 14:20, which effectively counterbalance the excessive energy 

usage by the under-forecast.  

The proposed two-stage controller overreacted to the unpredicted high demand 

by having a high PTh adjustment. As a result, the two-stage controller has a PDRP of 

10.55% that is lower than the PDRP of 18.33% for the conventional single-stage 

controller. However, the overreaction of the two-stage controller is expected. Since the 

controller would never know the exact period of the unpredicted high demand at that 

time, the overreaction can help prevent peak demand reduction failure when the worst-

case scenario occurs, such as if the unpredicted high demand has a longer period.  

The overreaction behavior of the proposed two-stage controller can help to 

achieve a higher PDRP, as shown on day 13. The single-stage controller has its BESS 

emptied and fails to reduce the peak demands at 17:00 – 18:00, resulting in a PDRP of 

9.308% that is lower than the PDRP of 16.96% for the proposed two-stage controller. 

The proposed two-stage controller has adjusted its PTh at 12:00 and needs no adjustment 

for the later unpredicted peak demands at 14:20 – 15:30, thus the higher PDRP. Despite 

the higher PDRP of the single-stage controller than the proposed two-stage controller 

on day 12, its MDRP for that month (August) is very low at 1.9% due to its high PDRFR 

of 35.714%. In comparison, the two-stage controller has an MDRP of 10.135% and 

PDRFR of 0% in August. This shows the importance of peak demand reduction 

prevention for the monthly MD reduction.  

Figure 5.14 shows that the two-stage controller has its lowest PDRP of 3.919% 

on day 63, which is not considered as peak demand reduction failure because its BESS 

is not exhausted. Due to the over-forecasted day-ahead load profile, the controller found 

a PTh that is higher than the actual peak demand of the day. The actual peak demand of 

the day is usually low at 46.6kW. This is acceptable as significantly over-forecasted 
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day-ahead load profiles usually have low peak demands that do not contribute to the 

MD of the month.  

Although the proposed two-stage controller has a lower MDRP than the fixed 

threshold controller in August, it has significantly higher MDRP for the remaining 

months. The proposed two-stage controller outperforms other controllers in total MD 

charge saving. Assuming the MD charges have a fixed rate of RM45.10/kW, the 

proposed two-stage controller shows a total MD charge saving of RM1091.62, which 

is 40% higher than the total saving of RM833.31 for the fuzzy controller, 69.61% higher 

than the total saving of RM643.59 for the fixed threshold controller, and 306.23% 

higher than the total saving of RM268.72 for the single-stage controller.  

 

Figure 5.13: Performance of (a) single-stage and (b) two-stage controllers on days 12 

and 13 of Dataset A 
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Figure 5.14: Daily performance for the controllers on Dataset A 



114 

 

 

Figure 5.14(Continued): Daily performance for the controllers on Dataset A 
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Figure 5.15 depicts the boxplot of daily PDRP for the four controllers on 

Dataset A. The purpose of the boxplot is to evaluate the performance of the controller 

in terms of daily PDRP and to study its relationship with monthly MD reduction. In 

terms of median, the proposed two-stage controller has the highest median at 9.18%. 

The conventional single-stage controller has a slightly lower median than the proposed 

two-stage controller at 8.84%. The fixed threshold controller has a median of 7.30% 

and the fuzzy controller has the lowest median at 6.345%.  

Both the conventional single-stage and fixed threshold controllers have their 

lowest PDRP at 0%, which indicates there are days with peak demand reduction failure. 

On the other hand, the fuzzy and proposed two-stage controllers have 0% PDRFR, which 

means no days with peak reduction failure. They always trying to achieve a certain 

amount of peak reduction, instead of outright failure that results in no peak reduction. 

The proposed two-stage controller has the highest minimum PDRP of 3.92%, while the 

fuzzy controller has a minimum PDRP of 1.232%.  

As seen in the boxplots in Figure 5.15, the proposed two-stage controller has a 

narrower IQR of 2.64 (8.19% - 10.84%), compared to 6.76 (4% - 10.76%) for single-

stage controller and 10.6 (1.79% - 12.39%) for fixed threshold controller. Other than 

the IQR, the proposed two-stage controller also has higher Q1 and Q3 values than the 

other controllers. This indicates the proposed two-stage controller can achieve a more 

consistent peak demand reduction and higher PDRP when compared to the other two 

conventional controllers with the same predicted day-ahead load profiles. Although the 

fuzzy controller has 0% PDRFR and a slightly narrower IQR of 2.38 (5.16% - 7.53%) 

than the proposed two-stage controller, its Q1 and Q3 are significantly lower. The Q3 

of the fuzzy controller is lower than the Q1 of the proposed two-stage controller. The 

fuzzy controller is not a suitable candidate for daily peak reduction for Dataset A.  

It is understood from the above analysis that a good overall daily PDRP 

performance does not mean good MDRP and vice versa. The fuzzy controller has the 

worse median in daily PDRP despite its average MDRP being higher than the two 

conventional fixed threshold and single-stage controllers. The single-stage controller 

might have the lowest average MDRP, its median in daily PDRP is very close to the 

best performing two-stage controller. This is because MDRP requires consistent instead 

of average PDRP performance. The proposed two-stage controller has the highest 
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minimum PDPR, the highest Q1 and Q3, and the highest median among the four 

controllers. As a result, it has the highest MDRP.   

 

 

Figure 5.15: Boxplot of daily PDRP for the four controllers on Dataset A 

5.4.1  Example of the activation of the additional reserved BESS 

There is an additional reserved BESS implemented for all controllers. The additional 

reserved BESS is to tackle the potential scenario of inaccurate tend for the proposed two-

stage controller. Figure 5.16 presents an example of the activation of the additional 

reserved BESS for the two-stage controller on day 25. When the SOC is below 10%, 

the reserved BESS activates, which is indicated by the small increment in SOC as 

shown in the green dotted box. It helps to prevent the potential peak demand reduction 

failure caused by the underestimation of tend. The day-ahead load profile (black line) is 

under-forecasted, and it is leading the load power (red line) at around 18:00. With the 

additional BESS energy, the controller reduces all demands successfully with a 

remaining SOC of 0.59% and a PDRP of 14.86%. Without the additional reserved 

BESS, peak demand reduction failure may have occurred.  

Two-stage 

Median: 9.18% 

IQR: 2.64 (8.19% - 

10.84%) 

Fixed Threshold 

Median: 7.30% 

IQR: 10.6 (1.79% - 12.39%) 

Single-stage 

Median: 8.84% 

IQR: 6.76 (4% - 

10.76%) 

Fuzzy 

Median: 6.345% 

IQR: 2.376 (5.16% - 7.53%) 
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Figure 5.16: An example of the activation of the additional reserved ESS 

5.4.2  MD reduction with doubled the BESSsize 

To demonstrate the adaptability of the proposed two-stage controller, this section 

presents the results for Dataset A with the BESSsize doubled from 32kWh to 64kWh, 

and the 10% reserved capacity  doubled from 3.2kWh to 6.4kWh. The result is provided 

in Table 5.6. With the BESSsize doubled, the single-stage controller has a lower MDRP 

and lower PDRFR than with the smaller 32kWh+3.2kWh BESS configuration. This may 

be due to the larger BESS has a higher tolerance to prediction errors. Both the fuzzy 

and proposed two-stage controllers do have higher MDRP with the larger BESSsize. The 

proposed two-stage controller still has the highest MDRP compared to other controllers 

on Dataset A. Assuming an MD charge of RM45.10/kW, the proposed two-stage 

controller shows a total MD charge saving of RM1791.05 on Dataset A, which is 35.17% 

higher than the total saving of RM1325 for the fuzzy controller and 222.6% higher than 

the total saving of RM555.12 of the single-stage controller.  
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Table 5.6: MDRP and PDRFR per month on Dataset A with 64kWh + 6.4kWh BESS 

configuration 

Month 

MDRP (%) PDRFR (%) 

Single-

stage  Fuzzy 

Two-

stage  

Single-

stage  Fuzzy 

Two-

stage  

Aug 3.565 11.328 15.674 7.143 0 0 

Sep 3.575 12.384 15.238 11.111 0 0 

Oct 2.050 10.212 13.915 21.053 0 0 

Nov 7.214 10.439 13.207 5 0 0 

Dec 6.357 10.440 16.000 0 0 0 

Average 4.552 10.960 14.807 8.861 0 0 

 

5.5  Results and Discussion for Dataset B 

Table 5.7 presents the monthly day-ahead MAPE, one-hour-ahead MAPE, Max MAPE, 

MDRP, and PDRFR for the four controllers on Dataset B. Compared to Dataset A, the 

day-ahead MAPE is significantly lower in Dataset B. With better accuracy, the single-

stage controller has a 0.849% higher average MDRP than the fixed threshold controller 

but still has low MDRP for some months due to the non-zero PDRFR. The MDRP of the 

fuzzy controller is comparable to the proposed two-stage controller and has also 

achieved 0% PDRFR. This shows that the single-stage and fuzzy controllers need 

accurate day-ahead load profiles for better performance. Despite the better performing 

single-stage and fuzzy controllers on Dataset B than on Dataset A, the proposed two-

stage controller still has the highest MDRP among all controllers on Dataset B.  
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Table 5.7: Day-ahead MAPE, one-hour-ahead MAPE, MDRP and PDRFR per month on Dataset B 

Month 

Day-

ahead 

MAPE 

(%) 

One-

hour-

ahead 

MAPE 

(%) 

Max 

MAPE 

(%) 

MDRP (%) PDRFR (%) 

Fixed 

threshold 

Single-

stage  Fuzzy 

Two-

stage  

Fixed 

threshold 

Single-

stage  Fuzzy 

Two-

stage  

Mar 4.122 1.680 7.723 10.307 1.187 8.441 10.528 19.048 38.095 0 0 

Apr 3.271 1.580 7.204 9.532 0.459 7.256 7.911 0 19.048 0 0 

May 2.574 1.228 5.458 4.956 10.016 9.843 9.259 20 0 0 0 

Jun 2.563 1.344 5.587 9.269 11.349 10.976 11.484 33.333 0 0 0 

Jul 3.033 1.448 9.643 4.270 5.594 10.296 10.538 82.609 0 0 0 

Aug 2.873 1.449 6.822 2.942 3.022 8.818 9.790 60 15 0 0 

Sep 3.577 1.957 7.872 3.139 8.860 8.455 9.381 65 0 0 0 

Oct 2.269 1.341 5.599 3.682 3.676 8.357 9.651 50 4.546 0 0 

Nov 2.463 1.345 5.137 1.174 9.831 8.627 9.437 90 0 0 0 

Dec 1.968 1.026 3.950 0.825 4.599 8.620 9.931 100 4.762 0 0 

Average 2.871 1.440 6.500 5.010 5.859 8.969 9.791 52.153 8.134 0 0 
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The fixed threshold controller records very high PDRFR and very low MDRP 

from July onwards, because the fixed PTh of 67kW that determined from the first 30 

days of data, is higher than the daily peak demands of less than 70kW from July 

onwards as shown in Figure 5.20(a). The fixed threshold controller has 0% PDRP on 

day 99 as indicated in Figure 5.17(a), which is caused by day 99 having a peak demand 

68kW that is lower than the fixed PTh of 67kW. In contrast, both the single-stage and 

two-stage controllers have the same PDPR of 8.738% on day 99. Day 99 has an over-

forecasted day-ahead load profile with the highest MAPE of 8.716%. With the over-

forecasted day-ahead profile, the two-stage controller does not need to trigger the 

second stage for further PTh adjustment and thus has the same PDRP as the single-stage 

controller. The fuzzy controller proposed in [36] requires an upper limit that is 

determined using the day-ahead load profile to restrict excessive discharge. Since the 

day-ahead profile is over-forecasted, the upper limit is high and thus the low PDRP. 

As presented in Figure 5.18(a), the fixed threshold controller is having a PDRP 

of 9.269% on day 65, while the single-stage controller and two-stage controller have 

PDRP of 16.21% and 13.89%, respectively. Similar to day 12 on Dataset A in Figure 

5.13. the proposed two-stage controller overreacted to the unpredicted peak demand, 

resulting in a lower PDRP than the conventional single-stage controller.  

However, the overreaction of the proposed two-stage controller does help to 

prevent peak demand reduction failure on day 164 as shown in Figure 5.19. On day 164, 

both the fuzzy and the proposed two-stage controllers adjusted their PTh in response to 

the unpredicted high demand at 10:14. Although the time is close to the end of peak 

reduction and there should be sufficient remaining energy in BESS , the fuzzy controller 

has a much higher PTh adjustment compared to the proposed two-stage controller. This 

resulted in a PDRP of 8.34% for the fuzzy controller on day 164. The proposed two-

stage controller estimates the peak reduction end time (tend) in its PTh optimization. 

Since the unpredicted peak demand at 10:14 is near the expected tend, the proposed two-

stage controller made a very small PTh adjustment only. As a result, the proposed two-

stage controller has the highest PDRP of 10.11% compared to other controllers.  

On day 164, the single-stage controller has its BESS emptied at 11:45, resulting 

in a low PDRP of 3.676%. It is also the only day with peak demand reduction failure 

that the single-stage controller has in October. Thus, the single-stage controller has the 
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lowest MDRP in October among all controllers as seen in Table 5.7. There are similar 

observations in August and December, where the MDRP of the single-stage controller 

can be improved significantly if the PDRP of one or two days is improved. This shows 

the importance of preventing peak demand reduction failure for the monthly MD 

reduction.  

Figure 5.20 provides the data for daily performance for the controllers on 

Dataset B that includes peak demand per day, PDRP per day , MAPE per day and 

indication of under-forecast or over-forecast for the day-ahead predicted load profile. 

It is clearly seen from Figure 5.20(b) that the proposed two-stage controller has a more 

consistent PDRP with no PDPR lower than 5%. Although the fuzzy controller shows 

comparable performance to the proposed two-stage controller in this Dataset B due to 

the better day-ahead accuracies, the proposed two-stage controller has a higher average 

MDRP and total MD charge saving. Assuming the MD charges have a fixed rate of 

RM45.10/kW, the total MD charge saving for the two-stage controller is RM3119.78, 

which is 9.2% higher than the total saving of RM2857.1 of the fuzzy controller, 68.2% 

higher than the total saving of RM1854.78 for the single-stage controller and 91.08% 

higher than the total saving of RM1632.70 for the fixed threshold controller. 
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Figure 5.17: Performance of (a) fixed threshold, (b) single-stage, (c) fuzzy, and (d) two-stage controllers on day 99 of Dataset B 

 

Figure 5.18: Performance of (a) fixed threshold, (b) single-stage, (c) fuzzy, and (d) two-stage controllers on day 65 of Dataset B 
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Figure 5.19: Performance of (a) fixed threshold, (b) single-stage, (c) fuzzy, and (d) two-stage controllers on day 164 of Dataset B 



124 

 

 

Figure 5.20: Daily performance for the controllers on Dataset B 
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Figure 5.20 (Continued): Daily performance for the controllers on Dataset B 
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Figure 5.21 shows the boxplot of daily PDRP for the four controllers to evaluate 

their daily PDRP performance and to study the relationship between daily PDRP and 

monthly MD reduction. As seen from Figure 5.21, the performance of the fixed 

threshold controller is significantly weaker than others. Its highest PDRP is 10.3% only, 

which is only around the median of other controllers. The median of daily PDRP for 

the fixed-threshold, single-stage, fuzzy, and the proposed two-stage controllers are 

0.82%, 10.68%, 10.3%, and 10.18%, respectively. Although the proposed two-stage 

has the lowest median among the three controllers, the difference is small. 

As indicated in Figure 5.21, the conventional single-stage controller has an IQR 

of 2.08 (9.52% - 11.60%), which is narrower, higher Q1, and higher Q3 in Dataset B 

than in Dataset A. This is contributed by the lower overall MAPE of the day-ahead load 

prediction in Dataset B than in Dataset A. This shows the conventional single-stage 

controller can have good daily peak demand reduction performance with accurate day-

ahead load profiles. The conventional single-stage controller does have a higher Q1 and 

Q3 than the proposed two-stage controller, but it has a high PDRFR and a significantly 

higher number of days with PDRP lower than 6%, as indicated by the high number of 

outliers (red +) in Figure 5.21. The PDRP for the single-stage controller can be as low 

as 0.46%, while the lowest PDRP for the proposed two-stage controller is 6.31%. This 

is important for monthly MD reduction because the MDRP can be easily impacted by 

just one or two days of peak demand reduction failure. Therefore, the conventional 

single-stage controller has lower overall MDRP and total MD charge saving than the 

proposed two-stage controller.  

The proposed two-stage controller has an IQR range of 1.28 (9.58% - 10.86%), 

while the fuzzy controller has an IQR of 2.00 (9.02% - 11.02%). The fuzzy controller 

and the proposed two-stage controller do have a similar median with only a 0.12% 

difference, but the proposed two-stage controller has a narrower IQR and higher Q1. 

Moreover, the minimum daily PDRP for the fuzzy controller is 5.54%, which is 0.77% 

lower than the 6.31% for the proposed two-stage controller. The higher minimum and 

more consistent daily PDRP allows the proposed two-stage controller to have a slightly 

higher overall MDRP and total MD charge saving than the fuzzy controller.  
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Figure 5.21: Boxplot of daily PDRP for the controllers on Dataset B 

5.6 Summary 

This chapter covered the monthly MD reduction performance of four controllers: 

conventional fixed threshold, conventional single-stage, fuzzy, and the proposed two-

stage controllers. The conventional fixed threshold controller has a good MD reduction 

performance when the load profile is very similar to the historical profiles that are used 

to find the fixed threshold. Although the proposed two-stage controller has the highest 

MDRP in Dataset B, the results show that the conventional single-stage and fuzzy 

controllers can have better peak demand reduction performances with more accurate 

day-ahead load profiles. The single-stage controller has a higher average MDRP and a 

lower PDRFR on Dataset B than on Dataset A. The fuzzy controller does have 

comparable performance to the proposed two-stage controller on Dataset B due to the 

more accurate day-ahead load prediction, but the proposed two-stage controller has 2.13% 

higher average MDRP and 40% higher total MD charge savings on Dataset A. 

It is noteworthy that the proposed two-stage controller performs equally well on 

both datasets with no peak demand reduction failure (0% PDRFR) and is not severely 

affected by the load prediction accuracy. The proposed two-stage controller has the 

highest MDRP and the highest total MD charge saving among the four tested controllers 

on both datasets, even with the doubled BESSsize on Dataset A. The consistent 

performance of the proposed two-stage controller has demonstrated the peak demand 

reduction prevention capability of the proposed controller works on different datasets, 

even with different BESS configurations.  

Fixed Threshold 

Median: 0.82% 

IQR: 3.34 (0% - 3.34%) 

Two-stage 

Median: 10.18% 

IQR: 1.28 (9.58% – 

10.86%) 

Fuzzy 

Median: 10.3% 

IQR: 2.00 (9.02% - 11.02%) 

Single-stage 

Median: 10.68% 

IQR: 2.08 (9.52% - 

11.60%) 
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The advantages of the dynamic two-stage controller are its capability to provide 

consistent MD reduction for different profiles, ease of implementation, and requires 

only a small amount of historical data for preparation before implementation. The 

proposed controller does not use rigid parameters that need to be pre-determined from 

long-term historical data analysis at the time of implementation. It automatically finds 

and adjusts the PTh in real-time based on available BESS energy. The proposed 

controller uses only 30 days of historical data for preparation. Then, the controller can 

be implemented and continuously improve itself to adapt to future load profiles 

automatically.  

The implementation of the proposed two-stage controller is comparably 

straightforward. The same configuration is used for both Dataset A and Dataset B, 

except where the prediction models are trained using their respective data. Despite that, 

the proposed DB-SOINN-R is also implementable with 30 days of historical data. Since 

the proposed two-stage controller uses only simple data, it should be implementable for 

other industries or sectors.  

 The downside of the proposed controller is that it may have a slightly lower 

MDRP than other controllers in some months due to an excessive increase of the 

demand threshold to prevent peak demand reduction failure. However, this behaviour 

is expected by the proposed algorithm because a lower MDRP is better than no MD 

reduction due to BESS exhaustion. As a result, the proposed two-stage controller 

achieved a higher average MDRP and higher total MD charge savings than other 

controllers in both datasets.  
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Chapter 6 – Experimental Testing and Evaluation 

6.1  Overview 

The load predictions and MD reduction controller were presented and analysed in 

Chapter 4 and Chapter 5 focusing on simulation. This chapter is dedicated to check the 

viability of the proposed controller in an actual environment. A scaled down experiment 

setup is used. The setup is scaled down to a single-phase 240VAC setup  with peak 

power of 1.8kW.  

6.2  Experiment Setup 

Figure 6.1 shows the experiment setup that resembles the block diagram shown in 

Figure 3.1. There are three sides, which are the load, grid, and BESS side. The grid side 

is a 240VAC network that supplies power to the loads. The load side is the Chroma 

63800 programmable AC load that is used to simulate the load profile of Block D at the 

University of Nottingham Malaysia (Dataset A). The BESS side is the batteries that 

store and discharge energy to achieve peak shaving. The experiment in this chapter uses 

two different two converters with one responsible for charging and another one for 

discharging. A programmable AC-DC power supply Chroma 62024P-80-60 is used to 

charge the batteries from the AC grid, while a DC-AC grid-tied inverter SUN-

2000GTIL2 is used to discharge the battery power to the AC grid.  

Different sensing instruments are used to measure the different readings at 

different parts of the circuit connections. All the sensing devices are controlled by a 

node.js local server run in a low-power processing unit, which is a raspberry pi 4 4GB. 

The raspberry pi 4 is the central of all data that handles all the sensors readings such as 

process, logging and, transmitting to different scripts for other purposes, such as load 

predictions and the two-stage control strategy. More details on the data interfacing and 

controlling are discussed in sections 6.2.3 and 6.2.7, respectively. 
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Figure 6.1: Experiment setup 
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6.2.1  Equipment 

The experiment in this chapter uses four different equipment. Table 6.1 summarizes the 

purpose, control interface, and rating of the four different equipment. The datasheets of 

these equipment are provided in Appendix 1. 

Table 6.1: Purpose, interface, and rating of the equipment 

Equipment Purpose Interface 

(protocol) 

Rating (Range) 

Chroma 63800 

Programmable AC 

Load 

 

To simulate the 

load profile of a 

building. 

RS232 port 

(Serial 

command) 

Voltage (50 ~ 350Vrms) 

Current (0 ~ 18Arms) 

Power (0 ~ 1.8kW) 

Frequency (45 ~ 440Hz) 

Chroma 62024P-

80-60 

Programmable DC 

Power Supply 

 

To charge the 

batteries from the 

grid. 

RS232 port 

(Serial 

command) 

Voltage (0 ~ 80VDC) 

Current (0 ~ 60ADC) 

Power (0 ~ 2.4kW) 

Efficiency (85% at 2.4kW) 

DC-AC Grid-tied 

inverter SUN-

2000GTIL2 

To discharge the 

power from 

batteries to the 

grid for peak 

reduction.  

Digital 

signal 

Output Voltage 

(185~265Vrms) 

Input Voltage (45 ~ 

90VDC) 

Power (0 ~ 2kW) 

Power (Peak 2kW, 

Continuous 1.8kW) 

Efficiency (up to 92%) 

Valve regulated 

maintenance-free 

lead-acid batteries 

 

The BESS for 

peak reduction. 

Four 12V blocks 

in series forming 

48V battery bank. 

N/A For each block: 

Voltage 12V 

Nominal temperature 

25°C 

Max discharge current 

1800A (5sec) 

Max charging current 75A 

250Ah at 10C-rate 

Internal R= 2.6mΩ 

100% capacity at 25°C 

Operating temperature 

range: -15°C ~ 40°C 

 

 



132 

 

The output power of DC-AC Grid-tied inverter SUN-2000GTIL2 is adjustable 

via its LCD panel or using an external limiter device that connects to the external limiter 

port of the inverter. The output power cannot be adjusted easily through programming. 

The original purpose of the adjustable output power of the inverter is to prevent exports 

to grid. This is because some old power meters do not consider power flow direction 

and count power exports as power imports. Thus, the user is paying for generated 

powers instead of getting paid for the exported power. For the experiment in this chapter, 

this function is modified to achieve real-time output power control for the inverter.   

The output signal of a limiter has been interpreted in [111]. The external limiter 

port of the inverter consists of two wires only, with one wire carrying digital HIGH or 

LOW signals, and another wire is the ground wire. The inverter will ramp up or down 

when the signal is high (3.3V/5V) or low (0V), respectively. Hence, an ESP32 is used 

to produce the signal to the inverter. More details are discussed in section 6.2.7. 
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6.2.2  Sensing Instruments 

Instead of using sensors that output analog signals that require further processing, such 

as analog-to-digital converter (ADC), this experiment uses different sensing 

instruments that measure the readings in real-time and, the readings can be fetched via 

different communication protocols. This simplifies the sensing processes and provides 

more accurate readings. Table 6.2 shows the purpose, interface, and measurement range 

of the four sensing instruments used in the experiment.  

Table 6.2: Purpose, interface, and measurement range of the sensing instruments 

Instruments Purpose Interface 

(protocol) 

Measurement Range 

PZEM-004T  

- Using PZCT-02 

100A current 

transformer for 

stepping down and 

indirect AC 

current sensing. 

AC 

Sensing 

TTL 

(Modbus) 

AC RMS Voltage (80V ~ 

260V) 

AC RMS Current (0A ~ 

100A) 

Active power (0kW ~ 23kW) 

Power Factor (0.00 ~ 1.00) 

Frequency (45Hz ~ 65Hz) 

Active Energy (0kWh ~ 

9999.99kWh) 

CircuitSetup ATM9E32  

- Has two channels 

and both channels 

can measure the 

direction of AC 

current/power 

flow 

- Using SCT013 

100A CT per 

channel. 

AC 

Sensing 

TTL  

(SPI) 

AC RMS Voltage (0V ~ 

655.35V) 

AC Current (0A ~ 100A) 

Power Factor (-1.000 ~ 

1.000) 

Frequency (45Hz ~ 65Hz) 

Schneider Conext battery 

monitor 

- Capable of 

measuring bi-

directional current 

flow. 

Battery 

monitoring 

RS485 

(Modbus) 

DC Voltage (0V ~ 70V) 

DC Current (0 ~ 200A) 

Remaining Ah (0Ah – 

9990Ah) 

SOC of battery (0% ~ 100%) 

Temperature (-20°C – 50°C) 
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Table 6.3 summarizes the parameters measured per sensing instrument or sensor. 

These sensing instruments can also measure frequency and power factors, which can 

be used to verify the effect on the grid stability and check for any unexpected impact 

on the grid. Both the PZEM-004T and ATM9E32 are for AC sensing. The PZEM-004T 

is capable of measuring unidirectional current flow only, while the ATM9E32 has two 

channels with each capable of measuring bidirectional current flow. Therefore, the 

PZEM-004T is used for measuring the AC parameters of the load side, as the load draws 

power only and never supplies power. The ATM9E32 is used to measure the grid and 

BESS sides that has bidirectional power flows. As shown in Figure 6.1, only one CT is 

used to measure the current (IBESS,AC) from the AC-DC charger and DC-AC grid-tied 

inverter. This is because both devices should not switch on at the same time. Hence, the 

CT is measuring the current flowing through the inverter when the BESS is discharging 

and is measuring the current through the charger when charging the BESS. If both 

converters are switched ON at the same time, both converters will work normally, but 

the CT will be capturing the resultant power.  

The Conext battery monitor can measure bidirectional DC current flow, so it is 

used to measure the discharge and charging DC powers of the battery. The meter does 

not have power readings but can be obtained easily by multiplying the DC voltage and 

DC current. The Conext battery monitor is also used to retrieve battery readings such 

as remaining Ah and SOC. The remaining energy in the battery is necessary for the 

two-stage controller for PTh adjustment. Typically, SOC is used to calculate the 

remaining energy using the nominal capacity. The Conext battery monitoring system 

measures both the SOC and remaining Ah with a resolution of 1% and 1Ah, 

respectively. However, 1% of 250Ah means 2.5Ah, which means it has a lower 

resolution than the remaining Ah reading. Hence, this experiment uses the remaining 

Ah reading to calculate the SOC and remaining energy instead of using the SOC reading 

directly. 
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Table 6.3: Instruments or sensors per parameter 

Sensing Instruments Parameter Abbreviation 

PZEM-004T  

+ PZCT-02  100A CT 

Load Voltage Vload 

Load Current Iload 

Load Power Pload 

Load Frequency Fload 

Load Power Factor PFload 

CircuitSetup ATM9E32 

(common) 

 

Grid/BESS Voltage  Vgrid 

Grid/BESS Frequency Fgrid 

CircuitSetup ATM9E32 

(Channel 1 with  

SCT013 100A CT) 

 

Grid Current Igrid 

Grid Power Pgrid 

Grid Power Factor PFgrid 

CircuitSetup ATM9E32 

(Channel 2 with SCT013 

100A CT) 

 

BESS AC Current IBESS,AC 

BESS AC Power PBESS,AC 

BESS AC Power Factor PFBESS,AC 

Schneider Conext battery 

monitor 

 

BESS DC Voltage VBESS,DC 

BESS DC Current IBESS,DC 

Remaining Ah Ah 

 

6.2.3 Data interfacing 

Figure 6.2 shows the data flow between different programs. This experiment uses a 

raspberry pi 4 4GB model and an ESP32 microcontroller. The raspberry pi 4 is also 

known as a single-board computer, so it is more capable than a microcontroller and can 

handle multiple tasks at once with its four CPU cores. The raspberry pi 4 has a Node.js 

local server, an MQTT broker, and four python scripts running at the same time. The 

Node.js local server is hosted as the central of all data. It receives data from the different 

sensors every 5s. Then, it processes the data to 1-min data by considering data loss. All 

data are logged into file for future reference and analysis. It also transmits necessary 

readings to other blocks, such as sending the load data and battery readings to the 

Python (A) block. An MQTT broker is installed in the raspberry pi to handle MQTT 

transmissions.  
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Figure 6.2: Data exchange block diagram 

There are four python scripts running simultaneously in the raspberry pi 4. 

Python (A) runs the two-stage control that includes the day-ahead and one-hour-ahead 

DB-SOINN-R load predictions. Python (B) retrieves the Conext battery monitor 

readings via USB-RS485 adapter. Python (C) interfaces with the Chroma 62024P-80-

60 programmable DC power supply for charging the 48V battery bank. Python (D) 

controls the Chroma 63800 programmable AC load to simulate the load profile via a 

USB-RS232 adaptor. Table 6.4 summarizes the interface, protocol, and coding 

language used per sensing instrument and equipment.  
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Table 6.4: Interface, protocol, and coding language used per sensing instrument and 

equipment 

Instrument/Equipment Interface Protocol Coding 

Language 

Block 

Conext battery monitor USB-RS485 Modbus Python Python 

(B) 

Chroma 62024P-80-60 USB-RS232 Serial Python Python 

(C) 

Chroma 63800 USB-RS232 Serial Python Python 

(D) 

ATM9E32 TTL SPI Arduino IDE Part (A) 

PZEM-004T TTL Modbus Arduino IDE Part (B) 

SUN-2000GTIL2 TTL - Arduino IDE Part (C) 

 

MQTT is selected as the communication protocol between scripts and between 

raspberry pi 4 and ESP32. MQTT is a lightweight protocol that is designed for low 

overhead and small data transmission. Although HTTP is simpler for requests that 

require responses, preliminary testing shows that HTTP tends to have more response 

timeout compared to MQTT. Hence, MQTT is used for most of the communication, 

while HTTP is used for intermediate requests or requests that can tolerate request failure.  

Python (A) is the python code for the two-stage control and DB-SOINN-R load 

predictions, which are translated from the MATLAB code for the DB-SOINN-R and 

two-stage control used in Chapter 4 and Chapter 5. Python is more RAM-efficient, 

which is good for implementation on a low-power device such as the raspberry pi 4. 

The outputs of the code have been verified and performed identically to the MATLAB 

code.  

Python (B) retrieves data from the Conext battery monitor when receiving a 

request message from the local server. Python (C) performs charging based on received 

PTh,Charge message from the local server. Python (D) sets the AC load to change its power 

load every 1-min based on Dataset A, with more detailed discussion is covered in 

section 6.2.5. 

Unlike raspberry pi 4 that can run multiple programs simultaneously, the ESP32 

can only run one program. The ESP32 program has three parts:  1) interface with the 

CircuitSetup ATM9E32 power meter board via SPI, 2) interface with the PZEM-004T 
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via Modbus TTL, and 3) control the SUN2000GTIL2 inverter via digital pin. The 

library codes for ATM9E32 and PZEM-004T are referenced from [112] and [113], 

respectively. Since the PZEM-004T is designed to work with 5V, it is modified to be 

3.3V compatible by adding a resistor [114]. One digital pin of the ESP32 is used to 

control the inverter. The communication between raspberry pi 4 and ESP32 is done 

wirelessly through a local network, thus low latency and allowing more flexible device 

placement.  

To enable remote monitoring, the data needs to be accessible over the internet. 

Hence, the local server updates the latest data to Firebase, which is an online database 

by Google. Then, a separate Node.js server is hosted in a free hosting platform named 

Heroku to serve different web pages for displaying data and errors. The website is 

available at https://peak-shaving.herokuapp.com. The website is protected by login 

credentials to prevent unauthorized access.  

6.2.4 Data processing 

The local server polls the readings at a rate of 5-second. It is then processed into data 

of two different intervals: 1) 1 minute, and 2) 5 minutes. Figure 6.3 shows the flowchart 

of the three main loops for processing the sensor data. Due to the asynchronous nature 

of Node.js, these three loops are executed simultaneously, but they are triggered at 

different timing due to the different intervals. All the 5s data, 1-min data, and 5-min 

data are logged into csv files and saved in the SD card of the raspberry pi 4. 

Loop A requests readings from all sensing instruments every 5 seconds. The 5s 

data are stored temporarily for processing at Loop B. Conventionally, the sensing 

instrument may send data to the local server automatically at a predefined sampling 

interval. However, this may result in different timestamps for the readings when there 

are multiple sensing instruments. Therefore, the scripts for sensing instruments are 

coded to wait for request messages from the local server before retrieving readings from 

sensors and send back to the local server. This ensures minimal time difference between 

readings from the different sensing instruments. It also allows easy detection of sensor 

failure, which is when the sensor does not reply to the request message. 

Loop B triggers every 1-min to average the collected 5s data. Assuming there 

is no data loss, there will be 12 sets of 5s readings every time Loop B triggers. Since 

Python (D) sets the AC load to change its power load every 1-min, the measured 5s 

https://peak-shaving.herokuapp.com/
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readings within the minute should be very similar. Averaging the readings suppresses 

weird outliers and helps to handle response timeout failures from the sensing 

instruments. With 5 seconds sampling interval, it allows up to 11 response timeout 

failures with a minimum of one success read. Loop C triggers every 5-min to average 

the 1-min data into 5-min data and is then sent to the Python (A) for load predictions 

and two-stage control.  

 

Figure 6.3: Loops for processing sensor data 

6.2.5 Load profile 

Unlike the simulations done in Chapter 3 and Chapter 4 that used up to 10 months of 

data, the purpose of this experiment is to validate the real-world performance of the 

proposed two-stage controller and to observe the differences with simulation results. 

This experiment only performs peak reductions for four days of the load profile of 

Block D at the University of Nottingham Malaysia (Dataset A), which are from 13th 

August 2019 (Tuesday) – 16th August 2019 (Friday). If there are negligible differences 

in these four days, the difference is assumed to be negligible for other days.  

As shown in Table 6.1, the programmable AC load has a peak power of 1.8kW 

only. To maximize the usable range, an offset is deducted from the original Dataset A 

profile to remove the constant power drawing throughout the four days. For the first 

four days of data, the minimum and maximum powers are 20.1333kW and 50kW, 

respectively. Hence, the power in kW is converted to the range of 0-1.8kW using 

equation (29). For example, with the original power of 50kW, the scaled power for the 

AC load is 1800W.  

𝑠𝑐𝑎𝑙𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 𝑖𝑛 𝑊 = ((𝑝𝑜𝑤𝑒𝑟 𝑖𝑛 𝑘𝑊) − 20) × 60 (29) 
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The prediction models are pre-trained with the same 30 days of working day 

data that are used in the MATLAB simulation as discussed in section 5.3. Then, it starts 

the peak shaving operations for the next four days. To reduce unnecessary waiting time 

for day 1, the data between 00:00 and 08:30 of day 1 are preloaded in Python (A) and 

the AC load starts to output the power at 08:30 of day 1 instead of the power at 00:00.  

6.2.6 Battery sizing 

As discussed in section 5.3.1, Dataset A uses a BESS configuration of “32kWh + 

3.2kWh”. Since the load profile is scaled down to 1.8kW, the required BESS size is 

also scaled down to 40Ah for the 48V battery. As shown in Figure 6.1, the battery bank 

has a capacity of 250Ah. Hence, the usable Ah range is limited to 181Ah – 225Ah to 

form a “40Ah + 4Ah” configuration.  

6.2.7  Inverter and charger control 

Although only one threshold (PTh) is mentioned in Section 3.2 and Chapter 5, Figure 

6.1 shows two different thresholds (PTh,Charge and PTh,Discharge). The PTh,Charge and 

PTh,Discharge have the same value in Chapter 5. They are separated in this chapter to 

differentiate the threshold values send to the Python (D) and ESP32 Part (C) for 

controlling the AC-DC charger (PTh, Charge) and DC-AC Grid-tied inverter (PTh, Charge 

and PTh, Discharge), respectively.  

Every 5-min, Python (A) is triggered and responds with the PTh for the next 5-

min. In the simulation, the PTh is compared directly with Pload and the converter will 

discharge or change accordingly. In actual implementation, the Pload measurement is 

not as stable as in simulation where the measurement fluctuates with differences of not 

more than 5W. The difference is small but may still cause constant switching between 

charging and discharging if Pload is very close to PTh, causing both converters to turn on 

at the same time. Hence, a hysteresis area of 5W is added when performing the 

comparison as shown in lines 1 and 4 of Algorithm 1.  

A negative value is sent to disable either the charger or inverter as stated in lines 

3 and 5 of Algorithm 1. As shown in lines 2 and 5 of Algorithm 1, 10W is deducted 

from the PTh before sending to the charger or inverter. This is because the power control 

of the equipment is not ideal and may cause the Pgrid to exceed the desired PTh, which 

is particularly apparent for the inverter. Since the inverter is not designed for accurate 
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output power control, its output tends to have a power difference of less than 10W 

around the PTh.  

Algorithm 1: Inverter and charger control 

1: if Pload > (PTh + 5) then 

2:  PTh,Discharge = PTh – 10W 

3:  PTh,Charge = -10W  // negative value will disable the charger. 

4 elseif Pload < (PTh - 5) then 

5:  PTh,Discharge = -10W  // negative value will disable the inverter. 

6:  PTh,Charge = PTh – 10W 

For power controls of the charger and inverter, they need Pgrid with an interval 

shorter than the 5s. Hence, the ESP32 reads the Pgrid from the ATM9E32 constantly at 

every ~1ms and is then published via MQTT so the Python (C) can use this real-time 

Pgrid for charger control. This real-time Pgrid reading is not accessed or logged by the 

local server but is only used by the charger and inverter for power control. The power 

control of the charger is done using K-controller to maintain the Pgrid at the desired 

PTh,Charge. The inverter achieves power control by comparing the real-time Pgrid with the 

PTh,Charge. If Pgrid is higher than PTh,Charge, it outputs 3.3V or HIGH. If Pgrid is lower than 

PTh,Charge, it outputs 0V or LOW.  

A hysteresis setting is added to prevent triggering battery charging in the early 

morning before any peak reduction operations for the day. The battery is often fully 

charged as soon as possible without exceeding the PTh. However, the inverter draws a 

small 0.1A or 5W of power from the battery during idle. This caused a slow discharge 

overnight and may trigger battery charging again. To prevent this, Algorithm 2 is used 

to check its fully charged status. The battery will always charge up to 226Ah and raise 

a fully_charged_flag. Due to the small 5W discharge, it will quickly drop to 225Ah, 

and the remaining capacity needs to drop to 224Ah to trigger charging again. The 

maximum DC charging power is limited to 500W in this experiment to prevent 

overheating of the batteries. The ambient temperature is relatively high at around 30°C 

due to the enormous amount of heat generated by the programmable AC load.  
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Algorithm 2: Inverter and charger control 

1: if fully_charged_flag  == 0 and Ah > 225 then 

2:  fully_charged_flag = 1   

3:  Stop charging. 

4 if fully_charged_flag  == 1 and Ah < 225 then 

5:  fully_charged_flag = 0 

6:  Start charging with Pgrid <= PTh,Charge 

 

6.3 Results and Discussion 

Figure 6.4 shows the experiment and simulation results on four days of Dataset A. It is 

to check if there is any abnormal behaviour in the peak demand reduction operations 

and the relationship between different parameters in both experiment and simulation. 

The differences in each parameter between the experiment and simulation results will 

be discussed later in Section 6.3.1. Both have different scales as the experiment scaled 

down to a peak power of 1.8kW. Overall, the Pload, Pgrid, predicted day-ahead, and one-

hour-ahead load profiles are very similar in both experiment and simulation results. 

Despite the high similarity, there are three significant differences between them.  

First, the charging power after all peak reduction operations is reduced in the 

experiment. As mentioned in section 6.2.7, the maximum DC charging power is limited 

to 500W in this experiment. Since it only affects the charging after all peak reduction 

operations, it does not affect the PDRP.  
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Figure 6.4: (a) Experiment and (b) Simulation results on four days of Dataset A 

Second, the experiment results in Figure 6.4(a) has no power until 11:00 on 15th 

Dec 2021 because the experiment starts at 08:30 of Dataset A and has pre-load the 13th 

Aug 2019 00:00 – 08:30 load profile of Dataset A into Python (A). As shown in Figure 

6.5(a), the battery is not fully charged at the beginning of the day. It needs to be fully 

charged before starting to ensure the battery is always fully charged before the next day 

in simulation. Hence, the battery is charged at 20ADC from 220Ah to 225Ah between 

10:49 – 11:00, as shown in Figure 6.5(b). During this charging period, the PBESS,AC and 

PBESS,DC measures at 1217W and 1060.2W, respectively. This results in an efficiency of 

87% at around 1kW output for the DC charger. As mentioned in Table 6.1, the AC-DC 

charger has an efficiency of 85% at 2.4kW. Since a typical efficiency curve of a 

converter is not flat but concave with peak efficiency at around 50% load, this slightly 

higher efficiency is expected. After the battery is fully charged, all systems are shut 

down at 11:02 and start at 11:10, which is when the 08:30 of day 1 of Dataset A begins. 
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Figure 6.5: (a) Day 1 of Experiment result; (b) Enlarged view of Box 1 in (a); (c) 

Enlarged view of Box 2 in (a) 

Third, the SOC curves are slightly different, especially the minimum SOC. The 

following factors might have played a role on the SOC curve: 1) the efficiency of the 

converters is lower than expected, 2) the 10W reduction in PTh and, 3) the high 30W 

idle power of the AC-DC charger. As shown in Figure 5.6(b), the peak efficiency of the 

converter in simulation is assumed to be 90% and it stays constant until 30% of the 

converter’s rated output power. As shown in Figure 6.4(a), the typical discharge and 

charge powers are within the range of 0-500W. However, both the SUN-2000GTIL2 

inverter and Chroma 62024P-80-60 charger used in this experiment have relatively low 

efficiency at this range. Table 6.5 shows the SUN-2000GTLI2 has an efficiency range 

of 80% - 88% for an output power range of 100 – 500W. Table 6.6 shows the Chroma 

62024P-80-60 has an efficiency range of 45% - 82% for an output power range of 50 – 
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500W. For a modern commercial hybrid inverter/charger that can perform discharge 

and charge, its efficiency is typically higher at higher than 90%. For example, 

MultiPlus-II by Victron Energy stated up to 96% efficiency in its datasheet [115]. 

Table 6.5: SUN-2000GTIL2 Inverter Efficiency Evaluation (without charger turned 

OFF) 

Output Power (W) Input Power (W) Efficiency (%) 

99.016 123.367 80.262 

198.817 233.000 85.329 

300.199 345.560 86.873 

499.227 566.650 88.101 

 

Table 6.6: Chroma 62024P-80-60 Programmable DC Power Supply Efficiency 

Evaluation 

Output Power (W) Input Power (W) Efficiency (%) 

50 109.786 45.543 

100 162.522 61.530 

200 265.204 75.414 

300 384.380 78.048 

400 495.381 80.746 

500 604.319 82.738 

Another thing to concern is the idle power of the equipment. As shown in Figure 

6.5(c), the Pgrid is slightly higher than Pload when both the inverter and charger are idling. 

Figure 6.6(a) shows the captured idling power readings at 5s intervals. The Pgrid 

measures a 0.14W positive offset at no load. This may be due to the poor calibration 

for the CT measuring the Pgrid. Since the offset is negligibly small, it is ignored.  

As illustrated in Figure 6.6(b), the programmable AC load turns on at 09:33:00, 

and both the Pgrid and Pload measures a draw of 1.2A. At 09:33:15, the inverter turns on 

and the PBESS,AC measures a small power of ~0.84A. However, the total idle power draw 

measured at Pgrid is around 1.46A only, where it should be around 2A. This may be due 

to the CT being unable to capture small currents accurately. However, the idle powers 

of the programmable AC load and inverter are low, thus not concerned. 

At 09:34:20, the AC-DC charger turned on, and both the Pgrid and PBESS,AC 

measure a power draw of around 30W. This 30W idle power of the charger is 
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significantly higher than other equipment. This causes the inverter needs to output an 

extra 30W to compensate for this idle power during peak reductions, thus more BESS 

energy is required than in simulation.   

 

Figure 6.6: (a) Idle power of equipment; (b) Enlarged view of Box 1 in (a) 

6.3.1 Validation of experiment and simulation results 

The experiment and simulation results are validated through comparison. Both the 

experiment and simulation results should have negligible difference if correct. For 

direct comparison between experiment and simulation that has different power scales, 

the experiment readings are scaled back to kW using equation (29). Figure 6.7 shows 

the power curve between Pload, predicted dayahead load profile, predicted one-hour-

ahead load profile, and Pgrid. R
2 is used to quantify the similarity between experiment 

and simulation, with results shown in Table 6.7. 

Table 6.7 shows the Pload, predicted dayahead load profile, and predicted one-

hour-ahead load profile have almost negligible differences with very high R2 values of 



147 

 

greater than 0.99. The Pgrid has an R2 value at 0.91, which is relatively low when 

compared to the other three measurements. The lower R2 might be due to the difference 

in battery charging after peak reduction operations since this experiment has 

implemented a 500W DC charging power limit.  

 

Figure 6.7: Experiment vs Simulation for (a) Pload, (b) predicted dayahead load 

profile, (c) predicted one-hour-ahead load profile, and (d) Pgrid 
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Table 6.7: R2 for measuring similarity between Experiment and Simulation 

Measurements R2 

Load Power 0.9999 

Predicted Dayahead Load Profile 0.9993 

Predicted One-hour-ahead Load Profile 0.9956 

Grid Power 0.9082 

Table 6.8 presents the differences in peak Pgrid and peak Pload between 

experiment and simulation. For direct comparison between experiment and simulation 

that has different power scales, the experiment readings are scaled back to kW using 

equation (29). The differences are very small at less than 0.5kW. The highest difference 

is on day 3 where both the Pgrid and Pload
 have differences of greater than 0.3kW. 

The differences in PDRP and minimum SOC are given in Table 6.9. Although 

the experiment results show a higher PDRP than in simulation in 3 days, the differences 

in PDRP for all four days are negligible small at less than 0.5%. The minimum SOC 

has more apparent differences, especially for day 2 that has a difference of 10%. This 

may be due to the three factors discussed in Section 6.3. Nonetheless, there is no peak 

reduction failure and is acceptable.  

Table 6.10 provides the differences in day-ahead MAPE and one-hour-ahead 

MAPE between experiment and simulation results. Since the experiment has no 

measured Pload or Pgrid for load profile before 08:30 of day 1 of Dataset A. Both the 

MAPE of the experiment and simulation on day 1 are calculated using the profile from 

08:30 – 11:59 only. The differences are negligible small with no differences higher than 

0.5% MAPE.  

As indicated in Table 6.8, Table 6.9, and Table 6.10, the differences between 

experiment and simulation are small and negligible. The only notable difference is in 

the minimum SOC. However, it is due to the worse than expected efficiency and 

unexpectedly high idle power of the converters. Using a better converter may be able 

to reduce the minimum SOC. Nonetheless, it has demonstrated the developed two-stage 

controllers not only work in simulation but also work similarly well in real-world 

applications.  
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Table 6.8: Differences in peak Pgrid and peak Pload between experiment and simulation  

Day 

Peak Pgrid (kW) Peak Pload (kW) 

Experiment Simulation Difference Experiment Simulation Difference 

1 42.957 42.876 0.081 47.227 46.970 0.257 

2 38.290 38.482 -0.192 42.339 42.355 -0.016 

3 40.152 39.707 0.445 44.059 43.727 0.332 

4 37.018 37.111 -0.093 43.612 43.651 -0.039 

Table 6.9: Differences in PDRP and minimum SOC between experiment and simulation 

Day 

PDRP (%) Minimum SOC (%) 

Experiment Simulation Difference Experiment Simulation Difference 

1 9.041 8.716 0.325 37.5 42.665 -5.165 

2 9.564 9.144 0.419 25 35.084 -10.084 

3 8.868 9.193 -0.326 22.5 16.154 6.346 

4 15.120 14.982 0.137 10 8.949 1.051 

Table 6.10: Differences in day-ahead MAPE and one-hour-ahead MAPE between experiment and simulation 

Day 

Day-ahead MAPE (%) One-hour-ahead MAPE (%) 

Experiment Simulation Difference Experiment Simulation Difference 

1 7.959 7.804 0.155 5.967 5.754 0.213 

2 7.827 7.913 -0.086 5.873 6.178 -0.305 

3 6.643 6.574 0.069 3.694 3.867 -0.173 

4 6.467 5.996 0.471 4.767 4.385 0.382 
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6.3.2  Impact on the grid 

Figure 6.8 depicts the PFgrid, PFload, and Vgrid recorded in this experiment. The purpose 

of this section is to demonstrate the impact on the grid after the implementation of the 

peak reduction system with the proposed two-stage controller . Figure 6.8(b) shows the 

PFload has a constant PF of 1, which is in line with the configuration of the AC load. 

The PFgrid is always higher than 0.94 during peak reduction operations. After the BESS 

is fully charged, the PFgrid drops slightly when the inverter and charger are idling, such 

as between 15th Dec 2021 23:30 and 16th Dec 2021 08:31. However, the PFgrid is always 

higher than 0.8 throughout the low demand periods. The PFgrid drops to the range of 

0.3 - 0.8 when the Pgrid is between 100W - 200W between 16th Dec 08:31 and 16th Dec 

10:30. This significant decrease in PF is normal with lower demand. As seen in Figure 

6.8(c), the Vgrid is between 230V - 240V throughout the experiment, which is also within 

the reasonable range for a 240VAC network. Hence, the peak reduction using BESS 

has not caused any abnormal behaviour.  
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Figure 6.8: Vgrid and Power Factors recorded in the experiment 
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6.4  Summary 

The results obtained from the experiment in this chapter demonstrated maximum 

differences of 0.419%, 0.471%, and 10.084% in PDRP, MAPE, and minimum SOC, 

respectively. Therefore, it is concluded that there are negligible differences in the PDRP 

and MAPE between simulation and experiment results, except for the minimum SOC. 

The high difference in the minimum SOC may be due to the poor efficiency of the 

charger and inverter used in the experiment in this chapter. Nonetheless, the difference 

could be reduced further by using a more efficient converter. Apart from this, there are 

negligible differences in the predicted day-ahead and one-hour-ahead load profiles, 

with a very high R2 of higher than 0.99. These results show that there is a high similarity 

between the experiment and simulation results. The PDRP and MAPE for the four days 

show a difference of less than 0.5% between experiment and simulation results for the 

load profile of Block D at the University of Nottingham Malaysia (Dataset A). 

Therefore, this shows the simulation results are good enough to resemblance real-world 

condition and has shown the developed two-stage controllers not only works in 

simulation but also works similarly well in real-world applications.  
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Chapter 7 – Conclusion 

7.1  Overview 

To accomplish the research aims, this research work proposed one novel incremental 

load prediction model named DB-SOINN-R and one novel two-stage MD reduction 

controller. Both are required to achieve an adaptive MD reduction controller that is easy 

to implement and requires a small amount of historical data at the time of 

implementation. The proposed DB-SOINN-R prediction model and two-stage 

controller are first tested in simulation. They are tested on two different datasets to show 

their performance on various profiles. Then, their real-world performances were 

validated in a scaled-down experiment setup. 

7.2  Conclusion 

The simulation results demonstrate the proposed DB-SOINN-R outperforms FFNN, 

LSTM, SVR, kNN-R, and ESOINN on both day-ahead and one-hour-ahead load 

predictions on two datasets. The execution times of the day-ahead and one-hour-ahead 

DB-SOINN-R models are also faster than supervised FFNN, LSTM, and SVR models. 

Hence, the DB-SOINN-R is an efficient incremental model for day-ahead and one-

hour-ahead time-series load predictions. With its unsupervised learning and 

incremental learning capability, it uses less computing resource and can adapt to new 

profile automatically as time progress. 

The proposed DB-SOINN-R is then used as the prediction model for evaluating 

the performance of four controllers: fixed threshold, conventional single-stage, fuzzy, 

and the proposed two-stage controllers. Same as the evaluation of prediction models, 

the controllers are evaluated on two datasets. To demonstrate the adaptiveness of the 

controller, results that uses a larger BESS size on Dataset B are collected. The 

simulation results show the proposed-two stage controller has the highest MDRP and 

the highest total MD charge saving among the four tested controllers on both datasets, 

even with the doubled BESSsize on Dataset A. The proposed two-stage controller has 

significantly better performance in all scenarios with up to 306.23% on Dataset A and 

68.2% higher total MD charge saving on Dataset B. The proposed two-stage controller 

has a higher and more consistent MD reduction performances in all scenarios.  
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Finally, the completed proposed two-stage controller with the DB-SOINN-R as 

the prediction model is implemented in a scaled-down experiment setup to validate its 

real-world performance. Four days of experiment results are collected and compared 

with simulation results. The experiment results show negligible small differences of not 

more than 0.5% in daily PDRP and daily MAPE. The only significant difference 

observed is the experiment shows 10.084% lower minimum SOC on Day 2. The 

difference should be due to the poor efficiency of the converters used in the experiment, 

and the negative offset that is applied to the PTh found by the two-stage controller to 

overcome the inaccurate power adjustment of the inverter. Overall, the experiment and 

simulation results are very similar. Thus, the developed two-stage controller should 

work similarly well in real-world applications. The day-ahead DB-SOINN-R prediction 

model, the one-hour-ahead DB-SOINN-R prediction model, and the two-stage control 

strategy are successfully implemented on a low-power processing unit, which is a 

Raspberry Pi 4.  
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7.3 Future Works 

The research work demonstrated the capability of the proposed DB-SOINN-R 

incremental prediction model and the proposed dynamic two-stage controller in terms 

of ease-of-implementation and adaptability at different scenarios. However, further 

enhancements can be done to improve the performance of the proposed control strategy 

and minimize the complexity of the overall system in the future. 

To validate its long-term real-world performance, the proposed controller can 

be implemented in an actual building using state-of-the-art converters that has a better 

efficiency with accuracy output power control. Although the proposed DB-SOINN-R 

shows a shorter training and prediction time than other supervised models, it can be 

further improved by adding parallel computing to utilize the multi-core CPU 

architecture of modern computing devices. The Raspberry pi 4 has a quad-core CPU, 

but the DB-SOINN-R only uses one core. Thus, adding parallel computing should be 

able to further reduce the learning time.  

Since the applications of PV panels are gaining popularity, the application of 

the proposed two-stage controller can also be tested on a micro-grid system with PV to 

check its compatibility and perform modifications to the algorithm if needed. As PV 

panels have intermittent output power, it introduces more variations to the final load 

profile pattern seen by the grid operator. The proposed incremental DB-SOINN-R and 

dynamic two-stage controller should be useful at adapting to the latest load patterns 

automatically.  

 The drawback of the proposed MD reduction implementation is the initial cost 

of the BESS. Users may be reluctant to install BESS-based demand reduction systems 

due to the high initial cost and uncertainty in actual savings. Therefore, a business 

model can be applied where the demand reduction solution provider will install the 

complete systems, including inverters and BESS, for free. Then, the solution provider 

will get part of the monthly electricity bill savings as returns. This method allows users 

to enjoy savings without high upfront costs and risk but also expresses the confidence 

of solution providers in their system as it determines their profit margin and payback 

period.  
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Appendix 1 – Algorithm Pseudocode  

Algorithm 3: ESOINN 

1: Initialize 𝒩 with two nodes {i, j} selected from the training data. 

2: Initialize 𝑇𝑎 = ‖𝑖 − 𝑗‖, (∀𝑎 ∈ 𝒩) 

3: Initialize 𝑊𝑇𝑎 = 0, (∀𝑎 ∈ 𝒩) 

4: for each new training set (𝜉) do 

5:  𝑁1 = min 𝑎∈𝒩‖𝜉 − 𝑁𝑎‖   // find 1st winner 

6:  𝑁2 = min 𝑎∈𝒩\{𝑁1}‖𝜉 − 𝑁𝑎‖   // find 2nd winner 

7:  if ‖𝜉 − 𝑁1‖ > 𝑇𝑁1
 or ‖𝜉 − 𝑁2‖ > 𝑇𝑁2

 then 

8:   𝒩 =  𝒩 ∪ 𝜉    // 𝜉 inserted as new node 

9:  else 

10:   𝑁1 = 𝑁1 +
1

𝑊𝑇𝑁1

(𝜉 − 𝑁1) 

11:   𝑁𝑖 = 𝑁𝑖 +
1

(100)𝑊𝑇𝑁1

(𝜉 − 𝑁𝑖), (∀𝑁𝑖 ∈ 𝒫𝑁1
) 

12:   𝑊𝑇𝑁1
= 𝑊𝑇𝑁1

+ 1 

13:   Connect N1 and N2 with edge. If edge exists, reset age of the 

edge. 

14:   Increase age of all edges associated to N1. 

15:   Remove edge if age of edge > agemax 

16:  end if 

17:  Update 𝑇𝑁1
 and 𝑇𝑁2

 using equations (6) and (7), respectively. 

18:  if the number of trained data is a multiple of λ then 

19:   Update subclass. 

20:   Remove node a if 𝓅𝑎 = 0, (∀𝑎 ∈ 𝒩) 

21:   𝑊𝑇𝑚𝑒𝑎𝑛 =
1

|𝒩|
∑ 𝑊𝑇𝑖

|𝒩|
𝑖  

22:   Remove node b if 𝓅𝑏 = 1 and 𝑊𝑇𝑏 < 𝐶1 × 𝑊𝑇𝑚𝑒𝑎𝑛, (∀𝑏 ∈ 𝒩) 

23:   Remove node c if 𝓅𝑐 = 2 and 𝑊𝑇𝑐 < 𝐶2 × 𝑊𝑇𝑚𝑒𝑎𝑛, (∀𝑐 ∈ 𝒩) 

23:  end if 

24: end for 
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Algorithm 4: Proposed DB-SOINN 

1: Initialize 𝒩 with two training sets {i, j} selected from the training data sets. 

2: Initialize 𝑇𝑎 = ‖𝑖 − 𝑗‖, (∀𝑎 ∈ 𝒩) 

3: Initialize 𝑊𝑇𝑎 = 0, (∀𝑎 ∈ 𝒩) 

4 Initialize 𝐿𝑇𝑎 = 1, (∀𝑎 ∈ 𝒩) 

5: for each new training set (𝜉) do 

6:  𝑁1 = min 𝑎∈𝒩‖𝜉 − 𝑁𝑎‖  // find 1st winner 

7:  𝑁2 = min 𝑎∈𝒩\{𝑁1}‖𝜉 − 𝑁𝑎‖  // find 2nd winner 

8:  if ‖𝜉 − 𝑁1‖ ≤ 𝑇𝑁1
 and ‖𝜉 − 𝑁2‖ > 𝑇𝑁2

 then 

9:   𝒩 =  𝒩 ∪ 𝜉   // 𝜉 inserted as new node 

10:   𝑑𝜉 = 0    // initialize d to 0 for new node 

11:   𝐿𝑇𝜉 = 0   // initialize LT to 0 for new node 

12:   Connect N1 and 𝜉 with edge. 

13:  elseif ‖𝜉 − 𝑁1‖ > 𝑇𝑁1
 or ‖𝜉 − 𝑁2‖ > 𝑇𝑁2

 then 

14:   𝒩 =  𝒩 ∪ 𝜉   // 𝜉 inserted as new node 

15:   𝑑𝜉 = 0    // initialize d to 0 for new node 

16:   𝐿𝑇𝜉 = 0   // initialize LT to 0 for new node 

17:  elseif ‖𝜉 − 𝑁1‖ < 𝑇𝑁1
 and ‖𝜉 − 𝑁2‖ < 𝑇𝑁2

 then 

18:   𝑁1 = 𝑁1 +
1

𝑊𝑇𝑁1

(𝜉 − 𝑁1) 

19:   𝑁𝑖 = 𝑁𝑖 +
1

(100)𝑊𝑇𝑁1

(𝜉 − 𝑁𝑖), (∀𝑁𝑖 ∈ 𝒫𝑁1
) 

20:   𝑊𝑇𝑁1
= 𝑊𝑇𝑁1

+ 1 

21:   Connect N1 and N2 with edge. If edge exists, reset age of the 

edge. 

22:   Update 𝑑𝑁1
 with equation (11)        // update node density of N1 

23:   Increase age of all edges associated to N1. 

24:   Removes edge if age of edge > agemax 

25:  end if 

26:  Update 𝑇𝑁1
 and 𝑇𝑁2

 using equations (6) and (7), respectively. 

27:  𝐿𝑇𝑎 = 𝐿𝑇𝑎 + 1, (∀𝑎 ∈ 𝒩)          // increase the lifetime of all nodes. 

28:  if the number of trained data is the multiple of λ then 

29:   for ∀𝑎 ∈ 𝒩 then 

30:    Removes node a if 𝓅𝑎 = 0 and 𝐿𝑇𝑎 > 𝜆 

31:    for node a with 𝓅𝑎 ≤ 2 and 𝐿𝑇𝑎 > 𝜆 then 

32:     Calculate Da using equation (12). 

33:     Calculate 𝐷𝑏 , (∀𝑏 ∈ 𝒦𝑎) using equation (12). 

34:     Remove node a if Da > average(Db) 

35:    end for 

36:   end for 

37:  end if 

38: end for 
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Appendix 2 – Datasheets 

SUN-2000GTIL2
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POWERBATT 12V 250Ah Rechargeable VRLA Sealed Lead Acid AGM Battery 
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Chroma 63800 Programmable AC Load 
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Chroma 62024P-80-60 Programmable DC Power Supply 

 



182 

 

 

 


