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Abstract

Object parts, also known as landmarks, convey information about an object’s shape

and spatial configuration in 3D space, especially for deformable objects. The goal of

landmark detection is to have a model that, for a particular object instance, can estimate

the locations of its parts. Research in this field is mainly driven by supervised approaches,

where a sufficient amount of human-annotated data is available. As annotating landmarks

for all objects is impractical, this thesis focuses on learning landmark detectors without

supervision. Despite good performance on limited scenarios (objects showcasing minor

rigid deformation), unsupervised landmark discovery mostly remains an open problem.

Existing work fails to capture semantic landmarks, i.e. points similar to the ones assigned

by human annotators and may not generalise well to highly articulated objects like the

human body, complicated backgrounds or large viewpoint variations.

In this thesis, we propose a novel self-training framework for the discovery of unsu-

pervised landmarks. Contrary to existing methods that build on auxiliary tasks such as

image generation or equivariance, we depart from generic keypoints and train a landmark

detector and descriptor to improve itself, tuning the keypoints into distinctive landmarks.

We propose an iterative algorithm that alternates between producing new pseudo-labels

through feature clustering and learning distinctive features for each pseudo-class through

contrastive learning. Our detector can discover highly semantic landmarks, that are more

flexible in terms of capturing large viewpoint changes and out-of-plane rotations (3D

rotations). New state-of-the-art performance is achieved in multiple challenging datasets.
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Chapter 1

Introduction

1.1 Introduction

Understanding the pose of arbitrary objects is an integral part of visual perception. Physical

objects can be highly deformable, able to articulate into complicated part configurations.

Accurate estimation of their structure constitutes a long-standing Computer Vision problem.

Pose estimation requires a deeper understanding of an object’s intrinsic properties as well

as accidental factors like viewpoint or illumination.

Given the significance of the task, various models for representing the pose of physical

objects have been proposed. Notable examples are earlier part-based models like Pictorial

Structures [51] and Deformable Part Models [49] where an object is represented as a

collection of parts, hierarchical bone representations [156] and more recently dense pose

representations [60] where each pixel of the object is mapped to a dense template grid.

The most widely used pose model though, is the skeleton-based model. The skeleton-based

model is a simple and flexible representation, where pose is expressed as a collection of K

point coordinates tracking particular semantic locations on the object of interest. We will

refer to these locations as object landmarks and the task of detecting them as landmark

detection (or localisation). A visual example of object landmarks detected on facial images

1
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Figure 1.1: Object pose captured as a set of K coordinates or object landmarks. Landmarks
are detected through our unsupervised landmark detection approach that will be introduced
in this thesis.

can be seen in Fig. 1.1.

Landmark detection is a computer vision task on which there is extensive literature.

Earlier landmark detectors where based on Active Appearance Models [36] or Cascaded

Regression [43]. More recently, deep learning based approaches have achieved impressive

performance in challenging, in-the-wild datasets like COCO [105]. Deep landmark detectors

are commonly trained in a supervised manner on large datasets of manually annotated

images. For example, the COCO dataset includes approximately 250, 000 person instances

manually labelled for 17 object landmarks. Under this supervised setting, recent deep

models like Hourglass [122] or HRNet [155] are able to push the envelope on landmark

detection performance significantly.

This rapid progress has led to a wide range of applications for landmark localisation

technology, particularly around the human-sensing domain, i.e. problems related to

the extraction of information regarding people present in an environment. Human Pose

Estimation (HPE ) find several use cases ranging from surveillance to action recognition,

autonomous driving, gaming and animation. Alignment of the human face (i.e. facial point

localisation) is a fundamental step in most facial analysis systems. Typical applications

include security, for example, face recognition for authentication, healthcare (emotion

recognition, pain assessment, e.t.c) and, more recently, face animation and reenactment.

Estimating the shape of the human hand is essential for gesture recognition and control or

sign language understanding.

Compared to the success achieved in human sensing, development of deep landmark
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detectors for arbitrary object categories has attracted far less attention. Animal Monitoring,

for example, is a domain where such technology could facilitate industrial progress.

Animal pose estimation is required for the automation of various tasks, from behaviour

recognition to locomotion, lameness or oestrus detection. Pose information has been used

in pain assessment [67] and monitoring of the farrowing process for pigs [126]. Regardless

of the apparent potential, only a few animal landmark detectors have been recently

proposed [79, 191, 101] compared to the vast literature on human pose estimation and

face alignment. Overall, vision technologies are rarely used in industrial farms. Instead,

information about the animal’s state is commonly recovered through various technologies

like neck mounted collars and other identification devices.

This thesis identifies that the ability to estimate the pose of arbitrary objects can lead

to a broad and diverse range of applications. Further to the aforementioned case of animal

monitoring, some innovative use-cases explored in recent literature include arbitrary object

animation [150], object control for Reinforcement Learning in [91] and class-dependent

video prediction [82]. So why isn’t there increasing effort towards the development of

deep landmark detectors for more object categories? Training of such models requires

large amounts of annotated data. Large scale manual annotations are expensive and

time-consuming to collect, constraining most existing work around the human sensing

domain where annotated datasets are already available.

Thus, this thesis formulates the following research question. "Can we develop robust

landmark detectors for arbitrary object categories with minimum requirement for expensive

manual annotations". As we will discuss later in this Chapter (Subsection 1.5), we address

this problem statement by solving the following: (a) we learn a landmark detector directly

from raw images without manual supervision, (b) a robust method is developed, able to

account for object deformations and out-of-plane rotations. (c) we detect landmarks with

high semantic value (points that track object locations similar to the ones assigned by

human annotators).
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1.2 Motivation

The most significant limiting factor for training deep landmark detectors on arbitrary

object categories is the requirement for large annotated datasets. Characteristically the

COCO dataset required approximately 70k work hours [105] to develop. Fine-grained an-

notations like keypoint annotations or segmentation masks are particularly time-consuming

(compared to class labels), with the average annotator requiring several mins per image.

The amount of data one needs for learning a deep neural network varies with different tasks.

However, even the smaller benchmarks (for human pose estimation or face alignment)

commonly include at least 10, 000 annotated images. Such large data collections are

currently only available in the human sensing domain (see Fig. 1.2), thus introducing an

important barrier for landmark detection on novel object categories (where annotated

data are scarce).

Figure 1.2: Number of manually annotated images in popular landmark detection datasets
for various object categories. Notice that larger datasets mostly capture object categories
related to human sensing, whereas for diverse categories only very few annotated images
are publicly available.
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The cost of data annotation is not the only limitation of supervised learning. Deep

Neural Networks (DNNs) trained on labelled datasets have been shown to generalise

poorly under domain drift [52, 172] or be sensitive to adversarial examples [161] due to

reliance on spurious correlations [171, 107]. These correlations are informative patterns

for predicting training samples but do not hold in general. In a supervised setting, certain

spurious features correlate with the manual labels, a phenomenon that has also been

referred to as dataset bias [35] or group shift [140]. Recent work suggests that this issue

can be mitigated in alternative learning paradigms that do not utilise manual supervision

[31]. Moreover, human annotators usually recruited through crowdsourcing platforms like

Amazon Mechanical Turk (MTurk) are prone to errors or introduction of their own biases

to the annotation process [47, 46] raising the need for carefully designed pipelines to ensure

annotation quality.

Overall, even though supervised learning has facilitated tremendous advancements in

the field of AI in recent years, it also introduces a bottleneck due to the requirement for

massive amounts of annotated data. In contrast, human cognition allows learning new skills

without immediate supervision for every task. The ability of biological intelligence to learn

new concepts through observation and association with previously acquired background

knowledge has mostly eluded AI systems. A research direction that attempts to alleviate

these limitations is self-supervised learning (SSL). In a recent blog post1, Turing Award

winner Yann LeCun referred to SSL as:

One of the most promising ways to build background knowledge and approximate

a form of common sense in AI systems.

With self-supervised learning, models can train on orders of magnitude more data,

enabling the modelling of more subtle and less frequent patterns. Recently, SSL powered

methods have achieved remarkable performance across AI fields. Particularly impressive is

the performance of self-supervised Natural Language Models like GTP-3[11] and BERT [41]

1https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/

https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
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whereas progress has also been demonstrated on image classification [56, 54] and speech

recognition [146]. The central premise of self-supervised learning is that supervisory signals

are obtained from the data itself by learning to solve a particular pretext task. Common

pretext tasks used in the literature include inferring unobserved or hidden parts of the

data, predicting clustering assignments or future frames and learning from augmented

views of the same underlying image.

Motivated by the potential of SSL-based methods on various tasks, this thesis will

explore self-supervised learning for training a deep landmark detector directly from raw

images without manual supervision. We will refer to this task as unsupervised landmark

discovery2.

1.3 Main Challenges

From a first glance, unsupervised landmark discovery seems like an impossible task. A

human annotator has understanding of the notion of objects and their parts, viewpoint

invariance, occlusion and self-occlusion, and examples of which landmarks to annotate

at their disposal. Hence, it is completely unclear what pretext task should be chosen for

unsupervised landmark discovery with neural networks. Recent methods have focused on

two principles/tasks: equivariance [164, 163, 162] and image generation [200, 72, 144].

Equivariance based methods train a landmark detector to be consistent under known

synthetic transformations (on augmented views of the same image). Methods based on

image generation or reconstruction commonly condition a generation task on the underlying

shape of a source object (expressed as object landmarks).

Even though good performance has been shown, especially for less deformable objects

(human and animal faces, shoes, e.t.c), recent methods still suffer from two major limita-

2Even though self-supervised landmark discovery is a more appropriate term, we will refer to our primary
task as unsupervised landmark discovery for consistency with recent methods. The term unsupervised
can be misleading since it suggests the lack of supervision. Self-supervised learning does use supervisory
signals that originate from the data itself.
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tions. (1) Object landmarks are not learned explicitly (through regression or heatmap

estimation as it’s usually the case with supervised methods). Instead, they are automati-

cally discovered, for example, as an intermediate step of image generation or by invariance

to geometric transformations. It is unlikely that by optimising such a proxy objective, one

could learn object landmarks with a clear semantic meaning (i.e. landmarks similar to

those annotated by humans). (2) Landmark detection on raw images is enabled through

synthesised image pairs since local correspondences for unpaired images are not known in

the unsupervised case. Commonly a known transformation is applied to a single image

in order to create a different view of the same object. The trained network learns to

either be consistent under the known transformation [164, 163], or generate the target

view from the source view [196, 72, 144]. Learning from synthetic image pairs results in

representation with limited robustness to intraclass variation that may not generalise well

well to highly articulated objects like the human body, complicated backgrounds or large

viewpoint changes (i.e. 3D rotations).

1.4 Contributions

This thesis addresses both these limitations by introducing two novel perspectives for un-

supervised landmark discovery. These are self-training on generic keypoints and clustering

correspondence.

Self-training on generic keypoints: Self-training refers to a particular flavor of

self-supervised learning where the training model’s own inference is used as a training

signal. We introduce a novel self-training method for unsupervised landmark detection

that uses generic keypoints as initialisation. Generic keypoints do not require manual

effort to collect and can enforce a strong prior on the semantic meaning of detected

landmarks. Consider that for many object categories, manually annotated landmarks are

mostly located on edges/corners of an object’s surface. Hence, they could be detected

by a generic keypoint detector with good repeatability. In that sense, we can think of
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Figure 1.3: Comparison between the landmarks discovered by our approach and those by
previous methods. Our approach provides landmarks that can better capture correspon-
dence across large viewpoint changes. For example, there are visible landmarks detected
in profile views that are matched with their corresponding points in the frontal view.
Moreover, there are detected landmarks that are geometrically consistent in all 3 views.
The method of [200] moves the point cloud altogether to fit the face region and hence
loses correspondence (e.g. see red or orange point). Also, the method of [72] cannot cope
well for such large changes in pose.

the generic keypoints as a noisy mixture containing unsupervised object landmarks along

with points in the background and non-corresponding points on the objects of interest.

Starting from these generic keypoints, we propose a self-training approach that learns

a landmark detector that progressively improves itself by filtering out noisy points and

recovering stable object landmarks. Landmark locations are regressed directly through

heatmap estimation (not learned as the outcome of a proxy task). Our approach can

discover object landmarks similar to those detected from supervised methods for various

object categories.

Clustering Correspondence: We propose a novel approach to train an unsuper-

vised landmark detector that is not based on synthetic views of the same object but learns

directly from unpaired images. Our method is based on deep clustering of local features.

We alternate between recovering landmark correspondence through deep clustering and
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landmark feature learning without labels using the recovered correspondences. Since

correspondences are recovered iteratively through self-training, we can directly use pairs

of different images to learn better features. This formulation results in robust learning of

landmark representation with stronger invariance to appearance or viewpoint variations.

We demonstrate that learning from pairs of different images can enable better localisation

performance compared to the use of synthetic transformations.

We combine these novel ideas in an effective framework for unsupervised landmark

discovery from raw unlabelled images that do not require any manual supervision and can

be applied to arbitrary object categories.

In summary, our main contributions are:

• We are the first to explore self-training from generic keypoints for unsupervised

landmark discovery (Chapter 4).

• We study for the first time, learning under extreme label noise for fine-grained

localisation and propose several techniques to mitigate the effect of noisy annotations

(Chapter 4).

• We propose, for the first time, an unsupervised landmark detection method that

can learn correspondences from unpaired images via deep clustering. Our approach

results in robust landmark representation with stronger invariance to appearance or

viewpoint variations (Chapter 5).

• We propose a method that detects highly semantic object landmarks (compared to

related work) similar to the ones assigned by human annotators for various object

categories (Chapter 4, 5, 6).

• We combine self-training on generic keypoints and clustering correspondence into a

simple and effective framework for unsupervised landmark discovery (Chapter 6).

• We are the first to enable flipping augmentation for the training of unsupervised

landmark detection models. This augmentation is not utilised for the unsupervised
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case since landmark correspondence after flipping is unknown. We propose a strategy

that recovers flipping correspondence via deep clustering (Chapter 6).

• We are the first to develop an unsupervised landmark detector that can capture

large changes in 3D viewpoint. Our method provides superior results on a variety of

difficult facial and human pose datasets (LS3D [13], BBCPose [24], Human3.6M [69],

PennAction [198]), notably without utilizing temporal supervision (Chapter 5, 6).

1.5 Publications

The research presented in this thesis has been partially published in the following confer-

ences and journals, sorted by date:

[114] Mallis Dimitrios, Enrique Sanchez, Matt Bell and Georgios Tzimiropoulos.

Unsupervised Learning of Object Landmarks via Self-Training Correspondence.

Neural Information Processing Systems (NeurIPS), 2020

[115] Mallis Dimitrios, Enrique Sanchez, Matt Bell and Georgios Tzimiropoulos.

From Keypoints to Object Landmarks via Self-Training Correspondence: A novel

approach to Unsupervised Landmark Discovery.

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023.



Chapter 2

Background

This Chapter will first define the landmark detection task. We will outline the standard

training pipelines and mention popular network architectures for landmark detection.

We will then extend our discussion to the unsupervised case that is the main focus of

this thesis and provide a first introduction to the connection between landmarks and

generic keypoints. Finally, the standard evaluation frameworks for both supervised and

unsupervised landmark detection will be described, along with the various benchmark

datasets that will be used for experimentation in later Chapters.

2.1 The Landmark Detection task.

We will define landmark detection as the Computer Vision task of localising a set of K

coordinates on monocular images of a specific object category (human face, body, hand,

e.t.c). This pose representation is often referred to in the literature as the skeleton-based

model [203] and the detected points as object landmarks. Object landmarks are manually

selected during the dataset development stage to capture semantic or highly deformable

object locations. For example, body joints (legs, wrists, ankles, e.t.c) for human pose

estimation or facial landmarks (corners of the eyes, nose, mouth ) for face alignment. More

11
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formally a landmark detector aims to extract a shape vector y = (yT1 , . . . ,y
T
K) ∈ R2K

where i ∈ {1, 2, . . . , K} and yi = (xi, yi) ∈ R2 are the x and y coordinates of the ith object

landmark in absolute image coordinates. Without loss of generality, we will assume that

the input image x is normalised w.r.t a bounding box b such as all training samples have

approximately the same centre and scale.

2.2 Supervised Landmark Detection.

To estimate the shape vector y one can learn a function Ψ : X → Y where X = {x ∈

RW×H×3} is the image domain. The function Ψ will be a Deep Neural Network (DNN )

with parameters θ. We will refer to Ψ as the landmark detection network or simply

landmark detector. Depending on the form of Y we can identify 2 main variants of pose

estimation approaches, that is regression-based methods and more recently heatmap-based

methods. For regression-based methods, Y has the form Y ∈ R2K and pose estimation is

formulated as a end-to-end regression problem where the values of the shape vector are

directly estimated. For heatmap-based methods, Y ∈ RW×H×K and the goal is to estimate

a set of K heatmaps {H1, . . . ,Hk} where Hi ∈ RW×H and the value on Hi(x, y) indicates

the probability that the ith landmark lies in the coordinates (x, y). The shape vector y

can get directly infered from the heatmap-based representation simply as the heatmap

coordinate with the highest probability or more formally y∗i = argmax
(xi,yi)

Hi.

The function Ψ can be learned from a training set of manually annotated images.

A common learning objective is to minimise the Mean-Squared-Error (MSE ) between

predicted and ground-truth shape vectors. For regression-based methods, the MSE loss

takes the form:

LMSE = ||y −Ψ(x, θ)||2 (2.1)



2.3. Model Architectures for Landmark Detection. 13

In heatmap-based approaches,

LMSE =
K∑
i=1

∑
x,y

||H′i −Ψi(x, θ)||2 (2.2)

where H′i is the groundtruth heatmap formed by placing a small 2D gaussian of

constant variance on the (xi, yi) groundtruth point.

Even though there is extended literature on regression-based methods [170, 130,

21, 156, 113, 124, 195], these approaches have shown to be less accurate. They suffer

from various shortcoming [168] like the unnecessary learning complexity of mapping the

RGB image input to an XY coordinate space or the fact that they cannot be naturally

extended to allow for multiple occurrences per object landmark (required in multiperson

human pose estimation). Heatmap-based landmark detection has recently attracted more

attention [134, 168, 186, 122, 155, 32] due to its superior performance. It will be the

approach we will follow in this thesis for the unsupervised detection of object landmarks.

2.3 Model Architectures for Landmark Detection.

Convolutional Neural Networks (CNNs) have been shown to produce state-of-the-art results

for most Computer Vision tasks. Given their impressive performance, they constitute a

natural building block for landmark detection networks. Many popular CNN architectures

have been explored, commonly for human pose estimation or face alignment. This section

will briefly introduce the reader to some popular CNN architectures for landmark detection.

A good starting point is the AlexNet [89] architecture, introduced in 2012 and

considered a seminal work in Computer Vision. AlexNet has 62.4 million parameters

in total and consists of 5 convolutional layers followed by max-pooling and three fully

connected layers at the end of the network. Some of the novelties of this work also include

the use of the ReLU function instead of Tanh, a normalisation layer, as well as overlapping
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pooling and dropout. Variations of this architecture were used for landmark localisation

[170, 28, 169], most notably the cascaded regression network deemed DeepPose in [170].

With deep networks receiving increased attention following the introduction of AlexNet,

even deeper architectures quickly emerged. VGG [151] pushed network depth to 19 layers

by reducing the size of the convolutional filters to (3× 3) and the stride to (1× 1). This

reduction led to fewer parameters per layer and allowed for the efficient training of deeper

models. VGG is used as the backbone of the popular OpenPose [17] detector, as well as

[72, 92, 50] for both human pose estimation and face alignment. GoogleNet [160] was

another breakthrough architecture. It comprise a 22 layer deep neural network that is

wider in the sense that each layer has multiple parallel convolutions. Its basic block is the

inception block that comprises multiple filters of different sizes ( 1× 1, 3× 3, 5× 5) that

operate on the same resolution, followed by a 1× 1 filter for dimensionality reduction. A

GoogleNet based landmark detector was proposed in [21] for human pose estimation.

The residual neural network or ResNet was introduced in [63] and constitutes yet

an another seminal work. It allows the training of much deeper models and has been

shown to produce state-of-the-art results for various Computer Vision tasks. The most

significant novelty of [63] is the introduction of a residual block where the input is directly

connected to the output, and the network only learns a residual mapping. More formally,

if H(x) is the underlying mapping, a residual block would fit an alternative mapping

F (x) = H(x)− x, and the original mapping is recast to F (x) + x (see Fig. 2.1). When an

identity mapping is optimal, it is easier to push the residual to zero than to fit an identity

mapping through non-linear layers. The ResNet architecture enabled the efficient training

of networks up to 152 layers deep (compared, for example, to 22 layers for GoogleNet)

since it allowed for better gradient flow and helped overcome the gradient vanishing and

explosion problems.

Naturally, following its wide adaptation in various Computer Vision tasks, the ResNet

architecture and the residual block where extensively used in landmark detection. A

particular ResNet-based model that attracted attention due to its strong performance is
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Figure 2.1: Residual block of [63]. Figure reproduced based on [63].

the Hourglass [122]. The Hourglass comprises an efficient encoder-decoder architecture

that consolidates features across different scales using a single pipeline. Features are

processed down to a very low resolution through max-pooling layers and then sequentially

upsampled with nearest neighbours upsampling. They are also combined across scales

with skip layer feature concatenation. Multiple hourglass modules can be stacked together

for increased performance (referred to as Stacked Hourglass), and intermediate supervision

can also be applied. An illustration of the hourglass architecture is shown in Fig. 2.2.

Variants of the Hourglass architecture have also emerged. In [34], authors added a side

branch of filters to the residual unit leading to a larger receptive field. In [186] the residual

unit is replaced by a multi-branch Pyramid Residual Module. PoseNet in [29] contains

an hourglass-based generator and two discriminators to distinguish between reasonable

and unreasonable poses. In [12], authors propose a lightweight binarised Hourglass block

that yields a performance improvement while maintaining the same number of parameters.

The Stacked Hourglass architecture was used for face alignment in [13]. This work will

also utilise the Hourglass as a backbone for the unsupervised landmark detection as it was

a state-of-the-art model during the development of this thesis.

Recently though, even stronger models have emerged and are briefly mentioned

here. CPN [30] addresses hard to localise landmarks explicitly through a dual-module

architecture that includes a GlobalNet and a RefineNet. The GlobalNet is trained to

localise the simpler landmarks. RefineNet handles harder keypoints by considering the

feature representation of GlobalNet on different scales. It is also explicitly trained on
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Figure 2.2: Hourglass Architecture. Each box corresponds to the residual module of [63].
Figure is reproduced based on [122].

hard keypoints through an online hard keypoint mining loss. In [180], the authors propose

the Simple Baseline architecture for heatmap-based landmark detection. This Simple

Baseline uses a ResNet backbone and only adds a few deconvolutional layers to generate

the output heatmaps without combining features with skip layers. Despite its simplicity,

this architecture results in excellent performance for both human pose estimation and

tracking.

Contrary to previous encoder-decoder architectures, authors of the HRNet [155] model

propose to maintain the high-resolution representation throughout the network. This

is achieved through multiple connected convolutions streams that operate on different

resolutions and perform input processing in parallel. HRNet and its variants [32, 66, 194,

190] show state-of-art performance, not limited to landmark detection but in a wide range

of localisation tasks including semantic segmentation and object detection.

2.4 Unsupervised Landmark Detection.

The main focus of this thesis is the unsupervised detection of object landmarks. As a

Computer Vision task, it was introduced relatively recently, in 2017 by Thewlis et al. [164].

Similar to its supervised counterpart, the main objective is the detection of a shape vector
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Figure 2.3: Qualitative comparison of supervised and unsupervised object locations on a
facial image. Supervised object landmarks are manually selected to track specific target
points on the object’s surface. Here the common 68-point facial landmark configuration
is shown. Unsupervised Landmark detection aims to both discover semantic landmark
locations and consistently track them across instances of the same category. In this
example, unsupervised landmarks are detected by our proposed approach.

y = (yT1 , . . . ,y
T
K) ∈ R2K comprising of K object landmarks on instances of a specific

object category. In contrast to the supervised setting, the landmark detector is learned

directly from unlabelled images without manual supervision.

The objective of an unsupervised landmarks detector is to both discover and consis-

tently detect a set of landmarks over different instances of the same object (see Fig 2.3).

In that sense, unsupervised landmark detection can be considered an ill-defined problem

since the target landmarks need to be both defined and consistently detected. We will

refer to the set of object locations captured by an unsupervised landmark detector as

unsupervised object landmarks. This is in contrast to manual object landmarks detected by

supervised landmark detectors. Note that manual object landmarks are selected at the

dataset development stage to capture particular object locations that are informative for

downstream applications (deformable parts like the human hands and legs for human pose

estimation or corners of mouth and eyes for face alignment).

Different sets of unsupervised landmarks might vary in their semantic value. For

example, a set that tracks several locations on the human body but does not capture the

legs or elbows would be less informative for a downstream application. In this work, our

objective is to detect unsupervised landmarks with high semantic meaning similar to the
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ones assigned by human annotators for various object categories.

2.5 From Keypoints to Landmarks

Exploring the connection between generic keypoints and object landmarks is among the

main ideas investigated in this thesis. This subsection will first introduce the reader to their

various similarities, which will be further explored in later Chapters. Keypoint (or interest

point) detection is the extraction of salient 2D coordinates on the image domain that can be

detected consistently, with invariance to geometric or photometric transformations. Even

though multiple definitions for what constitutes a generic keypoint have been proposed [76],

generally keypoints can include junctions [179], corners [61], blobs [106], saliency features,

locations with significant texture variations or simply points where “something occurs".

Similar to unsupervised landmark discovery, detection of generic keypoints can also be

considered an ill-defined problem, in the sense that there is no apriori definition of what

visual structures should be detected as generic keypoints. To overcome this, interest points

are commonly conditioned to have properties that are desirable for downstream applications

like sparsity, invariance to viewpoint [40] or illumination changes [175], discriminativeness

and repeatability [135].

This work draws an analogy between generic keypoints and unsupervised object

landmarks. We identify that the aforementioned properties of generic keypoints, also make

them strong candidates for unsupervised landmark locations. We find that for multiple

object categories, keypoints show some consistency and will systematically overlap with

object landmarks.

Lets we demonstrate the extent of this phenomenon on facial images, by measuring

the precision1 of generic keypoint detectors w.r.t actual ground-truth landmark locations.

Results for various popular keypoint detectors are shown in in Fig 2.4 (Table). For

recent methods R2D2 [135] and SuperPoint [40], we observe that landmark locations

1As true positives, we consider keypoints within 10px of a landmark location (image resolution 256×256)
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Precision (%) w.r.t 68 facial landmarks (d = 10px)

Keypoint Detector Precision
SIFT [112] 35.2
ORB [139] 43.7
R2D2 [135] 50.7
SuperPoint [40] 51.8

Figure 2.4: (Figure): Comparison of generic keypoints and object landmarks on facial
images. Generic keypoints capture several object landmark locations (red keypoints) as well
as non-corresponding background points (blue keypoints). (Table): Precision of various
generic keypoint detectors w.r.t 68-groundtruth landmark locations (on CelebA). SIFT and
ORB that tend to detect spatially clustered points are also combined with the adaptive
non-maximal suppression method of [8] to ensure a homogeneous spatial distribution of
keypoints.

are consistently captured with high precision values over 50%. Visual examples of this

overlap are shown in Fig. 2.4 (Figure), where generic keypoints "fire" on various manually

annotated landmark locations (marked with red). Based on this observation, our goal is

to convert a series of keypoints automatically detected for a given object category into

semantically coherent landmarks that describe the object parts, filtering and refining

during the training process also the corresponding landmark locations. We will show in

later Chapters how this can be achieved through self-training and correspondence recovery

via clustering.
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2.6 Evaluation Metrics for Landmark Detection

Traditionally, the performance of supervised landmark detectors is quantified through the

normalised point-to-point Euclidean distance between the detected landmarks ypr ∈ R2K

and the provided ground-truth points ygt ∈ R2K on a separate test set. We will refer to

this metric as Normalized Mean Error :

NME =
1

M

M∑
m=1

||ygt − ypr||2
d

(2.3)

where d is a normalisation constant computed for every sample. Depending on

the dataset, different normalisations can be used (interocular distance for profile faces,

bounding box size for datasets with large 3D rotations e.t.c).

For unsupervised landmark detection, the predicted unsupervised landmarks are the

outcome of the learning process. As a result, manually annotated ground-truth that

overlaps with unsupervised landmark locations is generally not available (even though in

later Chapters we will see that our proposed approach will be able to discover supervised

landmark locations). To overcome this limitation, quantitative evaluation of unsupervised

landmark detectors is often assessed by quantifying the degree of correlation between

manually annotated landmarks and those detected by the proposed approach. This is

accomplished through a simple linear layer that maps the discovered landmark coordinates

to those manually annotated, using a variable number of images in the training set.

More specifically, this evaluation framework first seen in [164] learns a linear regressor

(a fully connected layer with parameters WF and not bias terms) that takes as input the

2K unsupervised landmark coordinates ypr,uns ∈ R2K and maps them to the M manually

annotated landmarks ypr,sup ∈ R2M as ypr,sup = WF ypr,uns. This evaluation framework

requires N annotated images from the training set for learning the WF parameter of the

linear layer, with results commonly reported for various values of N . Note that there

is no backpropagation to the weights of the unsupervised landmark detector through
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Figure 2.5: Illustration of Forward and Backward NME metrics. Blue landmarks are dis-
covered by an unsupervised landmark detector and red landmarks are manually annotated
groundtruth. Froward-NME maps the predicted unsupervised landmarks to the manually
annotated points. For Backward-NME, we perform the inverse mapping from the manually
annotated groundtruth to the unsupervised landmark locations discovered by the learning
process. A robust landmark detector should achieve good performance for both metrics.

this training process. Originally, training augmentations were also used [164] to enhance

the performance of the linear layer but were later removed [196] to minimise training

complexity. Hereon, we will refer to this evaluation metric as Forward-NME and will be

used to qualify the degree of correlation between unsupervised and manually annotated

landmarks.

NMEForward =
1

M

M∑
m=1

||ygt − ypr,sup||2
d

(2.4)

As noted in [144], Forward-NME only measures to which extent the discovered

landmarks correlate with annotated landmarks and might dismiss the effect whereby a

method can learn a few landmarks with a strong correlation with the object’s geometry and

keep some extra loose landmarks that are randomly placed in an image. The Forward-

NME would not be able to show if such an effect is occurring. However, if a network has

been learned to produce a set of landmarks describing the geometry of a particular object,

we want all the detected points to contribute to describing the object’s geometry, and have

a proper method to automatically detect which learned landmarks do not correlate with it.
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To measure such effect, [144] introduced an evaluation method consisting of learning

a linear regressor in a backward manner, i.e. one that maps the manual annotations into

the discovered landmarks or ygt,uns = WB ygt where WB are the learned parameters of the

linear layer. This measure, known as Backward-NME will be defined as :

NMEBackward =
1

K

M∑
k=1

||ygt,uns − ypr,uns||2
d

(2.5)

Backward-NME helps identify unstable landmarks. If the network contains a

landmark that is randomly located, the regressor from the ground-truth points to the

detected points will fail to estimate it, thus leading to large error values for the backward

mapping. A visualisation of the mappings performed by the two metrics is shown in Fig.

2.5.

Moreover, we note that such a global metric does not help assess the performance of

individual landmarks. It is likely that poor performance of only a subset of the detected

unsupervised landmarks will bias the overall error. There are several reasons this might

occur. It can be that only some landmarks are unstable, track background points or

happen to be uncorrelated to the manually annotated landmarks (for example, a landmark

on the ears will result in high error even if detected consistently since it is not included

in the 68-facial landmark format). To address this limitation of global error metrics, we

will follow standard evaluation practices of supervised landmark detection [13] and also

present CED (Cumulative Error Distribution) curves.

2.7 Datasets

To evaluate the performance of the learned models, this thesis will present results in a

wide range of datasets capturing multiple object categories. The datasets that will be

examined in this work are:



2.7. Datasets 23

CelebA-MAFL: CelebA [109] dataset of about 200K facial images annotated for

5 facial landmarks. Following standard practise, we evaluate our method on the MAFL

subset, which is excluded from the training split.

AFLW: AFLW [87] contains 10, 112 training images and 2, 991 test images annotated

for 21 landmarks annotated based on visibility.

LS3D: LS3D [13] is a dataset of large pose facial images constructed by annotating

the images from 300W-LP [205], AFLW [87], 300VW [147], 300W [141] and FDDB [71]

in a consistent manner with 68 points using the automatic method of [13]. Note that

LS3D dataset is annotated with 3D points. Evaluation is performed on the LS3D-W

Balanced test set that comprises 7200 including an equal number of images for yaw angles

of [0o − 30o], [30o − 60o], [60o − 90o].

BBCPose: BBCPose [24] is a dataset of 20 sign language videos (10 for training, 5

for validation and 5 for testing) annotated with 7 human pose landmarks (head, wrists,

elbows, and shoulders). We form the training set by selecting 1 of every 10 frames leading

to a set of 60885 images. Evaluation is performed on the standard test set (1000 images).

Human3.6M: Human3.6M [69] is an activity dataset with a constant background

containing videos of actors in multiple poses under different viewpoints. We follow the

evaluation protocol of [200] and use all 7 subjects of the training set (6 subjects were

used for training and 1 for testing) on six activities (direction, discussion, posing, waiting,

greeting, walking). We form our training set by extracting 1 every 50 (48240 training

images) and 1 every 100 frames for testing (2760 images). Contrary to [200] we do not

perform background subtraction to simplify landmark detection.

PennAction: PennAction [198] is a dataset of 2326 videos of humans participating

in sports activities. For this experiment, we use the same 6 categories as in [110] (tennis

serve, tennis forehand, baseball pitch, baseball swing, jumping jacks, golf swing). We do

not use the provided 50%− 50% train-test split to ensure sufficient training data. We opt

for using the 5 first videos for each category to form a separate test set. The result is a
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training set of 51661 images and a test set of 1776 images.

DeepFashion. DeepFashion [108] is a large dataset of clothes images annotated for

8 fashion landmarks. Since the dataset is only annotated for fashion landmarks, we infer

14 human pose landmarks using [18] and select only the subset of images depicting a full

human body. This results in a train set of 12,416 images, with 500 images being kept for

testing.

Cat Heads: This is a dataset of 9k images of cat heads annotated with 9 landmarks

[197]. We use the test-train split of [200] with 7747 training and 1257 testing images.

CUB-200-2011: We also present qualitative results in this dataset of 11778 bird

images from 200 different species [176]. We follow the same setting as [110] and remove

seabird species while similarly aligning parity using eye visibility information.

When the normalised error is reported for facial datasets, similar to other methods,

normalisation is performed using standard interocular distance (CelebA, AFLW, CatHeads).

For human pose dataset (BBCPose and Human3.6), normalisation is performed using

shoulder distance. For LS3D and PennAction we normalise with bounding box size
√
wbbox ∗ hbbox since interocular/shoulder distance can be very small. When calculation of

the forward and backward error curves is performed w.r.t. 68 standard facial landmarks

for CelebA and AFLW, these are recovered using the highly accurate method of [13] since

they are not provided.
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Literature Review

This Chapter will provide a comprehensive review of the most relevant literature to this

thesis. The main topic of this work is the discovery of an object’s shape from 2D images

without manual supervision. To that end, we will first discuss related unsupervised

landmark detection methods, trained with either the equivariance constraint or through

image generation. We will also mention methods that do not detect object landmarks

explicitly but discover alternative shape representations without using manual supervision.

The second part of this Chapter will focus on recent advancements in self-supervised

learning and self-training, which are the main learning approaches explored in this work.

Since our proposed approach utilises generic keypoints as a weak initialisation for landmark

discovery, a short discussion of popular keypoint detectors will also be provided.

3.1 Landmark Discovery via Equivariance

As defined in the previous Chapter (subsection 2.4), unsupervised landmark detection

refers to the computer vision task of estimating a landmark vector y = (yT1 , . . . ,y
T
K) ∈ R2K

from unlabelled images without using any form of manual supervision. In this form, the

task was first introduced in 2017 by Thewlis et al. [164]. This initial work proposed

25



26 Chapter 3. Literature Review

Figure 3.1: Unsupervised landmarks on facial images discovered thought equivariance.
Visual results taken from [164]. Detector trained to detect 30 object landmarks.

learning a landmarks detector through equivariance to geometric transformations of an

input image x. Equivariance states that a mapping function Φ : X → RC is equivariant

with a transformation g when:

∀x ∈ X : Φ(g(x)) = g(Φ(x)) (3.1)

This equivariance constraint can learn shape representations from unlabelled data

and had been already introduced in [98] for training a generic keypoint detector. Authors

in [164] extended it for unsupervised landmark discovery through the process of viewpoint

factorisation we will discuss next. Some visual examples of unsupervised landmarks

discovered from unlabelled images via equivariance are shown in Fig. 3.1.

3.1.1 Viewpoint Factorisation

Learning a landmark detector from unlabelled images with equivariance can be achieved

through viewpoint factorisation as proposed in [164] . Authors model the objects intrinsic

viewpoint-independent structure as a 3D surface S, with S ⊂ R3. Their approach is to

learns a function ΦS, to maps object points p ∈ S to pixel q on the image surface such

as q = ΦS(p,x). Since correspondence between object points and image pixel locations

is unknown, authors propose to learning approach based on factorized viewpoints. To

that end, they consider images x and x′ as particular viewpoints of the same underlying

surface S, and g : R2 −→ R2 as the warp that induced the viewpoints chance between the

images such as x′ ≈ x o g (occlusion not withstanding). The main idea is to factorise the
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Figure 3.2: Viewpoint factorisation process. Function Φ maps the point r of a 3D surface
to the corresponding pixel q of image x. Φ is learned to be consistent with changes in
viewpoint caused by the warp g. Figure is reproduced based on [164].

wrap g as first finding the intrinsic object point p for each pixel on image x through the

inverse mapping p = Φ−1S (q,x) and then finding the corresponding pixel q′ in image x′ as

q′ = ΦS(p,x′) or more formally:

g = ΦS(.;x′) oΦ−1S (.;x) (3.2)

Equation 3.2 can also be expressed as :

∀p ∈ S : ΦS(p, g(x)) = g(ΦS(p,x)) (3.3)

Equation 3.3 is equivalent to the equivariance constraint and simply states that each

point on the object surface should be detected with consistency to the viewpoint induced

wrap between images. Authors further extend this equivariance constraint to account for

object deformations by introducing a common reference space S0 called the object frame

which ties together the possible shape variations wS of S, where w : R3 −→ R3 is the

isomorphism that deforms S. Given a common object frame the equivariance constraint

can be rewritten as :
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∀p ∈ S0 : Φ(p, g(x)) = g(Φ(p,x)) (3.4)

where Φ learns a mapping from each pixel on the image domain to the corresponding

point on the object frame. The whole process is also illustrated in Fig 3.2.

3.1.2 Learning a landmark detector via equivariance

Having arrived at the equivariance constraint through the factorisation of two views of the

same object, we will next describe how this criterion can be used to train an unsupervised

landmark detector. The approach followed in [164] is to sample the function Φ as a set of

K discrete location on the object frame S0:

Φ(x) = [Φ(r1,x),Φ(r2,x), . . . ,Φ(rk,x)] (3.5)

Since the object frame is common for different views, mapping the same object frame

location to the corresponding pixel location on each image could be thought as detecting

the pi object landmark since pi = Φ(ri,x) with i ∈ (1, 2, . . . , K).

The mapping function Φ can be implemented as a deep neural network. Authors

in [164] form their networks output Ψ as a set of K probability maps Ψi ∈ RW×H with

i ∈ (1, 2, . . . , K). The coordinates for each landmark can be extracted from the probability

maps in a differentiatable manner using the spatial soft argmax operation (σarg):

Φi(x) = σarg[Ψi(x)] =

∑
u ue

Ψiu(x)∑
u e

Ψiu(x)
(3.6)

with Φi(x) ∈ R2 being the XY coordinates of the ith object landmark. The soft

argmax operation that was first introduced in [188] essentially computes the spatial expected

value of the probability map and, as we will discuss later in this Chapter, is regularly used
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to derive fully differentiable architectures for unsupervised shape discovery.

Given the structure of Φ described above, one can learn a set of object landmarks from

pairs of images x and x′ = g(x) of the same object through the equivariance constraint

3.4 with can be expressed as a loss term as :

Lequiv =
1

K

K∑
i

||Φi(g(x))− g(Φi(x))||2 (3.7)

The equivariance loss of equation 3.7 leads to a Siamese [85] configuration where two

separate subnetworks with shared weights, process images x and x′ respectively.

3.1.3 Generating image pairs for the equivariance constraint

Learning with an Lequiv of equation 3.7 requires a training set of triplets (x,x′, g). In

practise, even if two views of the same object are available, the viewpoint transformation

g is often unknown. Instead, training triplets can be synthesized by applying a known

transformation g to generate x′ from x. Even though x′ can be a simple affine transfor-

mation of x as in [144], a common practise is to use random Thin-Plane-Splines (TPS)

[10] wraps.

TPS applies both global and local transformations. Globally, an affine wrap (rotation,

translation, scaling) is applied to the whole image and locally, a set of control points on a

predefined uniform grid are spatially perturbed. In [164], authors sample 2 random TPS

transformations g1, g2 and given an image I, they form image pairs as x = g1(I) and

x′ = g2(x). The same approach is also used in other related work [163, 72]. Authors in

[196] use the discovered object landmarks as an alternative set of control points. During

training, they alternate between the predefined grid of controlled points and the set of

discovered landmarks. On the contrary, our proposed approach will enable learning from

unaligned pairs of different images through clustering correspondence.
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Figure 3.3: Synthetic pair generation using random TPS wraps. Image samples taken
from [72] with the permission of the author.

Performance can be further enhanced on video data, by sampling image pairs from

nearby frames. Correspondence can be recovered in this scenario through optical flow

calculation. Specifically, authors in [196] define the transformation g as the dense optical

flow at 5-frame intervals, calculated using the Farneback method of OpenCV and used to

form the image x′ in addition to random TPS wraps. In [72] authors propose a method

that can learn from nearby frames without requiring optical flow estimation. Incorporating

this type of temporal supervision into the learning process can generally lead to more

robust performance on video dataset, especially for more deformable object categories

like the human body. Some visual examples of image pairs formed with either synthetic

wraps or sampling of nearby frames (for optical flow correspondence) are shown in Fig.

3.3. Even though our proposed method shows robust performance without the use of

temporal information, we will also present results with sparse optical flow supervision on

video datasets.

3.1.4 Learning dense correspondence via equivariance

Motivated by [164], where the learning function Φ is formed by sampling K discrete

locations on the object frame (can be thought of as object landmarks), authors in [163]

propose to use the same formulation for dense image labelling. In [163], every image

location is mapped to the common object frame S0 (compared to just K discrete points

for [164]) by the mapping function Φ. The network’s output is not a set of points but
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a dense map Φ ∈ RW×H×3 (one 3d feature for each pixel of the input image). In our

work, we also learn a dense map but opt for local features of much higher dimensionality

(256d). These 3d features only capture the object-specific coordinate vector (corresponding

location on to S0) for each image location. In contrast, larger features(256d) have sufficient

representational capacity to be used for landmark matching across different instances

(through clustering) in our correspondence recovery framework.

3.1.5 Limitations of Equivariance

Even though equivariant detectors [164, 163] can show good performance (especially for less

deformable object categories like human or animal faces), they also demonstrate various

drawbacks. One noticeable limitation is that the equivariance constraint is insufficient to

learn a landmark detector since training can degrade to a trivial solution where all image

pixels are always mapped to a constant point on the reference frame. In [164], authors

avoid degenerate solution through the following diversity loss :

Ldiv =
1

K2

K∑
r=1

K∑
r′=1

∑
u

p(u|x, r)p(u|x, r′) (3.8)

This term is lower when the support of the probability maps for different landmarks is

disjoint or has minimum overlap. We note that this loss assumes that different landmarks

mostly appear on different locations on the image domain. Even though this assumption

might hold for some object categories (for example, frontal facial images), it might degrade

performance for objects that appear under large 3D rotations or more deformable objects

where different landmark locations can regularly overlap (for example, facial landmarks

tend to appear in very close proximity on profile facial images). For dense image labelling,

trivial solutions can be avoided by learning labels that are not only equivariant with

geometric transformation but are also distinctive in the sense that for each pixel pair
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(u, u′):

Φ(x, u) = Φ(gx, u′) ⇐⇒ gu = u′ (3.9)

Equation 3.9 can be encoded on distinctiveness loss that similarly to the diversity loss

mentioned previously is used along equivariance to learn a robust shape representation.

Another weakness of equivariant detectors is that consistency across different samples

is not explicitly enforced. As mentioned, the detector learns a mapping to common

object frame S0 with equivariance to geometric transformations of the same image. The

constraint does not explicitly guarantee that S0 will remain consistent for different samples

(for example, faces with different identities). This means that the same location on the

object frame can potentially correspond to the eye in one facial image and the mouth

corner in another. In practice, authors of [164] find that inter-class consistency occurs to

some degree due to the generalisation of the learned algorithm.

One work that tries to address this limitation is [162]. The authors discuss the

relationship between landmarks and local descriptors. Landmark locations can be through

as tiny 2D descriptors with enough representational capacity to express the landmark’s

index. On the other hand, high dimensional embedding vectors can represent instance-

specific details for each object location. The proposed method learns local high-dimensional

embeddings that are invariant to intra-class variations (like change in the identity of the

object instance), thus leading to semantic consistency across different instances. This

is achieved through a technique that is deemed Descriptor Vector Exchange, where the

embeddings extracted from an image x are learned to be exchangeable with the ones

extracted from a separate auxiliary image of a different instance xa. Our proposed

framework also learns local embedding that are invariant to intra-class variations. Features

are not exchanged between the source and auxiliary images like in [162], but invariance is

achieved by learning them to be close in feature space through a contrastive loss.
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Finally, landmarks discovered through equivariance are simply the outcome of the

learning process and are not explicitly biased to capture object locations with semantic

meaning. In the next section, we will discuss how later work attempts to enhance the

semantic meaning of the discovered landmarks by combining unsupervised landmark detec-

tion with image generation or reconstruction. In contrast, the framework proposed in this

thesis achieves the discovery of highly semantic object landmarks through bootstrapping

from generic keypoints.

3.1.6 Equivariance vs Invariance

So far, we have discussed various ways under which shape can be learned without manual

supervision using a criterion based on equivariance to geometric transformations. Interest-

ingly, authors in [33] suggest that invariance to geometric transformations can be sufficient

to learn object landmark representations as well. Given the definition of equivariance

Φ(g(x)) = g(Φ(x)), invariance can be considered a special case of equivariance where

g is the identity mapping or Φ(g(x)) = Φ(x). As we will discuss later in this Chap-

ter (Subsection 3.4), a mapping function Φ can be trained to be invariant to geometric

transformations through self-supervised learning and particularly contrastive learning.

Contrastive learning aims to learn representations that are further apart in embedding

space for different samples but similar for augmented views of the same object, thus

encoding invariance to geometric and photometric transformations.

Early layers in DNNs tend to learn representations that are equivariant to trans-

formations, with invariance only gradually emerging as we ascend the layers. This is

a well-known phenomenon observed in various works [97, 192, 1]. Motivated by this

observation, authors in [33] propose to export a shape representation from the intermediate

layers of a ResNet trained with the MOCO framework [63] (discussed in Subsection 3.4),

since these layers would offer the best trade-off between equivariance and invariance. This

representation is formed as a hypercolumn that first interpolates features from intermediate

layers and concatenates them to produce a dense representation that can be mapped to
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object landmark locations using only a few annotated samples.

3.2 Landmark Discovery via Generative Modeling

To address the lack of semantic meaning of object landmarks discovered via equivariance,

a more recent line of work [196, 72, 144] attempts to combine unsupervised landmark

detection with image generation or reconstruction. The main idea explored by these

methods is that landmark locations that are informative for image generation would also

have increased semantic meaning. Commonly, a fully differentiable framework is proposed

where the object’s shape is first distilled to object landmark coordinates/heatmaps that are

subsequently used to condition a reconstruction/generation task. The learning algorithm

then discovers the object locations that achieve the strongest reconstruction/generation

result.

3.2.1 Landmark Discovery via Reconstruction

One of the first methods that explored this learning approach was Zhang et al. in

[196]. The proposed architecture comprises two parallel encoders to export feature and

shape representations and a decoder to reconstruct the original image. More specifically

the encoder includes a feature extractor F (x; θF ) ∈ RW×H×d and a landmark detector

L(x; θL) ∈ R2K where θF , θL are the model parameters. The landmark detection stream

first extracts a set of K + 1 detection score maps (one channel represents the background).

These maps are transformed to probability estimates through a softmax layer, and the

coordinates (x, y) of the maximum response for each map are estimated using the soft

argmax operation operation as described in equation 3.6 resulting in

[x1, y1, . . . , xk, yK ]T = L(x; θL) (3.10)
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Figure 3.4: Unsupervised landmark detection framework of [196]. A landmark detection
stream extracts K+1 raw score maps that are transformed into confidence maps by placing
a gaussian on the estimated maximum response (x, y) coordinate. The confidence maps
are used to sample a set of feature vectors f on the corresponding landmark locations that
are fed into a decoder stream to reconstruct the input image. Figure is from [196] with
the permission of the author.

Then a descriptor is sampled for each landmark location through max pooling weighted

by a soft mask centered on the corresponding landmark location (xi, yi) of the ith landmark.

The features for the K object landmarks (plus a background feature) are concatenated

to a feature vector f = [f 1,f 2, . . . ,fK ,fK+1] that is the input of a decoder module that

reconstructs the image. An illustration of the proposed pipeline is shown in Fig. 3.5.

To encode desirable properties to the discovered object landmark location, multiple

soft constraints are enforced. These are a concentration constraint to concatenate the

response of the detection maps to a local region, a separation constraint to encourage

uniform distribution of discovered landmarks on the object’s surface as well as the stan-

dard equivariance constraint (that is necessary for robust performance as found in [72]).

Landmarks detected by [196] follow a rather grid-like layout, mainly due to the use of the

separation constraint (as it can be seen in Fig. 1.3 of the introduction Chapter). Moreover,

we find that contrary to our work, this approach does not scale well to complex object

deformations and out-of-plane rotations (also noted in [111]).
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Figure 3.5: Unsupervised landmark detection framework of [72]. A landmark detection
subnetwork distills the shape of object in image x′ as a set of K heatmaps with 2D
gaussians centered on the landamark coordinates. These heatmaps are stacked along with
appearance features from image x to generate x′. Figure is from [72] with the permission
of the author.

3.2.2 Landmark Discovery via Generation

A related framework that attracted much attention due to its simplicity and improved

performance is the landmark detection approach of Jakab et al. in [72]. Instead of

auto-encoding the input image as in [196], authors generate an image that combines the

appearance of an object as depicted in x and the shape of the object as depicted in x′.

More specifically, the authors aim to learn a function Φ that extracts the shape of an

object in an unsupervised manner in the form of K probability maps. To that end, they

consider two images x and x′ of the same object under a different shape configuration.

These can be synthetically generated using TPS or sampled as nearby frames on video

data. The learning algorithm aims to generate x′ as x̄′ = Ψ(x,Φ(x′)). To avoid trivial

solutions where Φ is learned to be the identity mapping Φ(x′) = x′, authors enforce a tight

bottleneck to the output of Φ where raw output heatmaps are transformed to probability

maps similar to [196] as described in the previous subsection. Both Φ,Ψ are learned jointly

using a perceptual loss. The loss is defined as :

Lpercept =
∑
l

al||Γl(x′)− Γl(x̄
′)||2 (3.11)
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where Γl is the output of an off-the-shelf pre-trained network at layer l and al are

weights for different layers. An illustration of the overall framework can be seen in Fig. 3.4.

This approach is simpler than [196] since extra constraints (including equivariance) are not

required for good performance. Moreover, this method can learn directly from video data

since they are a natural source of images with the same appearance and varying object

geometry without need for external components (optical flow estimation algorithms).

The framework of Jakab et al. [72] influenced subsequent works. In [91] it is modified to

learn shape representations that are informative for reinforcement learning and control, in

[150] is used for the task of animation of object categories where landmark annotations are

not available, and in [148] for video interpolation and prediction. In [144], authors propose

to extend [72] for learning object landmarks through unsupervised domain adaptation.

The main idea of this work (as also shown in Fig. 3.6) is to alter the structure of the Φ

module that now comprises a pre-trained landmark detector with weights that remain

frozen during training and a projection matrix to adapt into new object categories. More

specifically, an hourglass Φ(; θ) is first trained with standard heatmap regression for an

object category where manual annotations are available. Then, the weights of of the Lth

convolutional layer of Φ are re-parametrized as θ′ = φ(W L, θL) where W L is a projection

matrix and φ a linear function. During training, only the projection matrix W L is learned

while the weights θ remain frozen, leading to a more constraint optimisation problem with

fewer learnable parameters (reduction by a factor of 9). The method of [144] is orthogonal

to our approach since it can be applied as a drop-in replacement to our learning framework,

although it was not examined for the work presented in this thesis.

Another recent extension of the landmark detection framework of Jakab et al. [72] is

[103]. Authors in [103] highlight the limitation of learning from augmented pairs of the

same underlying image. They extend the framework of [72] through a two-path training

framework that aims to improve intra-subject consistency through the fusion of auxiliary

representations from unpaired images. Our proposed method also learns from unpaired

images through deep clustering for correspondence recovery.
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Figure 3.6: Unsupervised landmark discovery thought domain adaptation as proposed in
[144]. Knowledge learned from supervised training on a separate object category can be
transferred to a novel by keeping the pretrained network frozen and training only a small
number of parameters. Figure is from [144] with the permission of the author.

3.3 Discovery of Alternative Shape Representations

Even though this thesis focuses on the unsupervised discovery of 2D object landmarks

on the image domain, alternative shape representations are also regularly explored in

recent literature. One such example we have already discussed is dense image labelling

(see Subsection 3.1.4), where a 3D label is recovered for every pixel of the input image. In

this section, we will mention recent unsupervised methods that, contrary to ours, do not

extract object landmarks but related shape representations.

3.3.1 Learning object symmetries via equivariance

In [165], authors follow the same framework used for dense image labelling in [163] to model

object symmetries. Authors consider object categories with bilateral symmetry and learn

a mapping to a dense object frame S0 that is now able to capture the symmetry of natural

objects. This can be achieved with minimal extension to the learning formulation of [163],

simply by randomly applying the reflection operation on both the image and the embedding

space. In this thesis, we follow a related approach. However, in contrast to [165] that aims

to learn dense object symmetries, our method recovers landmark correspondences under

image reflection (through deep clustering). This allows us to include flipping augmentation

during training (commonly not utilised for unsupervised landmark detection since landmark
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correspondence is unknown) and learn a more robust landmark detector.

3.3.2 Unsupervised Discovery of 3D Keypoints

Related to 2D landmarks detection is also the objective of [159], where 3-dimensional

landmarks (2D points with depth) are learned without manual supervision. To enforce

the discovery of semantically useful object locations, an end-to-end framework is proposed

where optimisation is performed with respect to two downstream tasks. These are the

recovery of relative pose between 2 views and consistency across 3D object transformations.

Contrary to our approach, where landmarks are learned from raw images, this work requires

paired multiview images that are rendered from ShapeNet [23], a large database of 3D

models of various objects.

3.3.3 Unsupervised Disentanglement of Shape and Appearance

So far, we have discussed various approaches for discovering object landmarks through

generative modelling [72, 196]. Related to this research direction is also a set of methods

that learn shape representations through the disentanglement of shape and appearance.

In [149] authors propose Deforming Autoencoders, a framework that distils a separate

latent embedding for shape and appearance and then combines them to reconstruct the

original image. Shape is represented through deformation modelling comprising both global

and local components. The global component is implemented as a Spatial Transformer

layer [70] that synthesises deformation fields as an expansion on a fixed basis and local

components are the spatial gradients of local warping fields (displacement of subsequent

pixels). The aforementioned shape representation can be informative of object landmark

locations but can also be used for manipulating the pose of an input image.

Similarly, in [111] shape and appearance are also disentangled. This work extracts

a part based shape representation where the ith part is formed as a part activation map
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σi(x) ∈ RW×H . The whole framework is learned from augmented pairs of the same by

integrating both invariance and equivariance constraints into an image reconstruction task.

Authors present comparisons with landmark detection methods by using the part mean as

their landmark location estimate.

3.3.4 Learning Object Landmarks from Unaligned Data

A different perspective for object landmark detection is explored in [73] where authors

address the problem from the perspective of Image Translation. The proposed method

(that is later extended in [74]) uses the CycleGAN [204] to translate the input image into a

skeleton image through a skeleton bottleneck, implemented as an analytical differentiable

renderer that removes appearance leakage. The model is trained end-to-end for image

generation (similar to [72]), as well as through an adversarial loss, where a discriminator

aligns the distributions of generated skeletons to genuine skeletons. Contrary to our

method, this approach requires prior information in the form of unaligned pose data (which

can be provided from mocap datasets) that are only available for limited object categories.

3.4 Self-supervised Learning

Our proposed framework for unsupervised landmark detection exploits recent advancements

in Self-Supervised Learning (SSL), and this section will provide a brief introduction to

this emerging learning approach. For a more detailed description, the reader can refer to

recent surveys [77, 107].

3.4.1 Motivation of Self-supervised Learning

SSL has recently attracted significant attention, given its potential for alleviating the need

for expensive manual annotations as well as addressing other limitations of supervised
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learning like generalisation error [52, 172], spurious correlations [171, 107] and lack of

robustness to adversarial examples [161]. The main idea of SSL is that supervision is

obtained by the data itself through a specially designed pretext task. This task can be

based on a semi-automatic process or the prediction of part of the data from other parts.

Following [107], mainstream SSL can be summarised into three main categories.

Generative: Input x is first mapped to a representation z by an encoder and a decoder

reconstructs x from z (or parts of z). Common pretext tasks that follow this approach

are image reconstruction [42, 83] for Computer Vision, word prediction (next word pre-

diction [131], next sentence prediction [41], sentence order prediction [93]) for Natural

Launguage Processing or link prediction [59, 84] for graph learning.

Adversarial: An encoder is trained to generate samples, and a discriminator is trained

to distinguish between real and fake samples. Here, input representation z is modelled

implicitly, and learning is facilitated through a distribution divergence loss like Wasserstein

Distance or JS-divergence. The most prominent example of this approach are GANs [118]

and related variants [44, 45], but it is also utilised for the development of various popular

pretext tasks like image colorization [94], inpainting [128], super-resolution [95] and others.

Contrastive: Input x is mapped to a representation z by an encoder. The representation

is learned to be informative for comparing with other representations by predicting a

learning target. The learning target can be defined as a data representation learned by

the network itself and varies on-the-fly during training.

In this thesis, we will learn landmark representations through Contrastive SSL. A more

detailed discussion of recent contrastive methods is provided in the following subsection.

3.4.2 Contrastive Self-supervised Learning

Contrastive SSL can be divided into context-instance and instance-instance contrast [107].

Context-Instance contrast learns by associating representations between local and global
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features of the input sample. Popular examples are methods that explore the spatial

relationships between image patches, for example, the solving of jigsaw puzzles [81, 119]

or geometric transformation like image rotation [53]. Other methods aim to maximise the

Mutual Information between local and global context. Examples are Deep InfoMax [64]

for visual feature learning, Contrastive Predictive Coding [173] for speech recognition and

InfoWord [86] for sentence representation.

Intuitively, one drawback of context-instance contrast is that the pretext task used

to learn representations (for example, arranging the patches of the jigsaw puzzle) is

very different compared to commonly used downstream tasks (classification, localisation,

e.t.c). As a result, a large part of the learned network has to tune into the pretext

task’s particular details. As an alternative, instance-instance contrast learns through the

relationships of different inputs on the instance level by grouping similar samples closer

in feature space and pushing diverse samples further apart. One way to form a instance-

instance pretext task so it resembles supervised learning is through cluster discrimination

[185, 104, 181, 19, 125, 102, 207, 184, 75, 6, 20]. Commonly, these approaches group

the samples into different clusters based on the learned representations and a CNN is

trained either to recognize samples belonging to the same cluster [102], by using the cluster

assignments as pseudo-labels [125, 19] or by casting clustering-assignment to an instance

of the optimal transport problem [6, 20].

Recently, an even stronger performance has been achieved by instance discrimination

methods like MoCo [62] and SimCLR [25]. These approaches achieve state-of-the-art

performance by forming positive pairs as different augmentations of the same underlying

image and discriminating between positive and negative pairs (views from different images).

Performance increase for these kinds of methods was enabled through several technical

advancements. The number of negative samples was increased substantially either through

momentum contrast [62], larger batch sizes[25] or the use of memory banks [178]. The

importance of hard positive mining is also explored. In SimCLR, authors use strong data

augmentations to form positive pairs. In InfoMin [167], positive pairs are formed as views
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with minimum mutual information between them. Finally, even more recently, a line

of work [58, 27] discarding negative samples altogether, for example, through learning a

representation target that is the exponential moving average of the learned encoder. In

this work, motivated by cluster and instance discrimination to develop a novel pretext

task for learning landmark correspondence. To our knowledge, this is a novel perspective

proposed for the first time in this work.

3.4.3 Self-Training

Another powerful learning approach that will be used in this thesis for utilising unlabelled

data is Self-training. Self-training or pseudo-labelling refers to a set of methods where a

model’s own predictions are used for model training. It can be applied as either a semi-

supervised or self-supervised learning approach. In a semi-supervised learning context, a

model is first trained on a small labelled dataset and subsequently applied to unlabelled

data. For self-supervised learning, labelled data are not available. A notable example of

self-training as a flavour of self-supervision is cluster discrimination (subsection 3.4.2),

where pseudo-labels are formed as clustering assignments that are used to train a new

model iteratively.

Commonly in self-training, predictions are converted to pseudo-labels when detected

with high confidence [96, 153, 182] but can also formed through model [123] or trans-

formation ensembles [132], selected by applying curriculum learning principles [22] or

retained only when model uncertainly is low [136]. Strong regularisation during training

[182] is also used to limit overfitting of noisy pseudo-labels. Recently, [183] demonstrated

very strong performance for ImageNet classification following an iterative self-training

paradigm where a teacher network produces pseudo-labels to train student network that

is noised in the form of dropout, randaugment [38] and stochastic depth [65]. Evidence

suggests [208] that the improvements from self-supervised pretraining are orthogonal to

semi-supervised self-training. Authors in [26] combine the two and manage to surpass

supervised performance for Imagenet classification using only 1% or 10% percent of labels.
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Most self-training approaches focus on the task of image classification. More similar to

our approach are methods for unsupervised segmentation [39, 80], foreground-background

segmentation [48, 154] and salience object detection [193]. In this work, we propose an

iterative self-training framework for landmark detection bootstrapped by generic keypoints.

To our knowledge, there is no other framework based on self-training for unsupervised

object landmark detection.

3.5 Detection of generic keypoints

Keypoint detection is a critical step for any sparse image matching algorithm, for example,

Structure-from-Motion [2], Simultaneous Localisation and Mapping (SLAM) [14], 3D

reconstruction, Photogrammetry and others. To our knowledge, exploring generic keypoints

as a weak initialisation for landmark discovery is a novel perspective first explored in

this work. Given the significance of the task, there is long and extensive literature on

interest point detectors. Some popular approaches will be mentioned here, but for a

comprehensive review, the reader can refer to [76]. Before deep learning based solutions

became the norm for most computer vision tasks, a wide range of handcrafted keypoint

detectors was developed. Harris [61] method, proposed in 1988, detected keypoints based

on first-order intensity variations and became widely popular. Following Harris, researchers

explored various criteria for keypoint detection like self-dissimilarity [152], curvature-based

methods [120] and blob detection in multi-scale space [106]. One of the most influential

works in the subject is the scale-invariant feature transform or SIFT [112] based on

second-order intensity variations. SIFT was proposed in 2004 and was followed by several

variants [9, 3, 116, 100, 117, 4, 143]. Moreover, machine learning based keypoint detectors

also emerged, most notably the FAST [138] detector that was later refined by subsequent

works like ORB [139] and BRISK [99].

More recently, deep learning-based keypoint detection approaches have resulted in a

very strong performance. Authors of LIFT [188] trained a DNN for keypoint detection using
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Figure 3.7: Visual examples of generic keypoints detected by SuperPoint [40] on facial
images.

image patches under different ambient conditions. In [199], authors use features produced

by the handcrafted method TILDE [175] as pseudo-labels to train a deep keypoint detector,

and in [98] generic keypoints are learned through a covariance constraint. Quad-networks

in [145] propose a training framework based on ranking keypoint robustness under affine

transformation. Recently, authors in [40] proposed to train a keypoint detection through

self-training and synthetic pretraining. In this approach, deemed SuperPoint, a detector

is first pre-trained on 2D geometrical shapes (quadrilaterals, triangles, lines and ellipses)

that are automatically rendered and labelled for keypoints, on junctions, ellipse-centres

and end-of-line segments. This pre-trained detector is used to bootstrap an iterative

self-training framework on MS-COCO unlabelled images. Performance is further improved

through a training augmentation where random homographies are applied on wrapped

copies of the input image, a technique the authors refer to as Homographic Adaptation.

SuperPoint is suitable for a large number of multiple-view geometry problems and will

be the primary keypoint detector used in this work to bootstrap our landmark detection

framework. Some visual examples of generic keypoints detected by SuperPoint on facial

images can be seen in Fig. 3.7.



Chapter 4

From Generic Keypoints to Object

Landmarks via Self-Training.

This work explores two novel perspectives for the Unsupervised Discovery of Object

Landmarks, (1) Self-Training on Generic Keypoints and (2) Clustering Correspondence.

To introduce our investigation of these two novel ideas, we will first focus on the former.

To that end, a novel approach for unsupervised discovery of landmarks via iterative self-

training on generic keypoints will be introduced. At this stage, correspondence will not

be recovered via deep clustering. Instead, a separate step will be used where detected

landmarks are aligned to a single point template. Even though this approach will be less

flexible compared to the work presented later in this thesis, we will see that it can result

in good performance and the detection of semantically meaningful landmarks in various

datasets. The ideas of this Chapter would be the foundation of the methodology developed

throughout the rest of this thesis.

46
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Figure 4.1: Across various object categories, object landmarks can be captured as generic
keypoints. Generic “SIFT-like” keypoints can be considered a noisy mixture of object
landmark locations (red points) along with several points in the background and non-
corresponding points on the objects of interest (blue points). Our proposed self-training
framework can progressively filters out noisy keypoints and converge to semantic landmark
detection.

4.1 Motivation

As noted previously (Section 2.5), generic keypoints share several similar properties to

object landmarks, like sparsity, invariance to viewpoint [40] or illumination changes [175],

discriminativeness and repeatability [135] to just name a few. For many object categories,

manually annotated landmarks are mostly located on edges or corners on an object’s

surface, and as such, they can be detected by a generic keypoint detector. Our assumption

is that detectors showing good repeatability will be able to capture the same landmarks

on several different training images depicting objects with similar appearance and pose

(see also Subsection 2.5). In a sense, we think of detected keypoints as a noisy mixture

containing object landmarks as well as points in the background and non-corresponding

points on the objects of interest (Fig. 4.1).

Given the large percentage of noisy points it contains, attempting to learn through

such a mixture could be considered impractical. Classification literature would suggest

that high levels of label noise would have severely degrading effects on accuracy [206].

Recently though, it has been shown that Deep Neural Networks (DNNs) can generalise
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well even when trained with extreme label noise (given that the nature of the noise is

random). Authors in [5] note that despite their ability to memorise random noise, deep

networks tend to learn easier (non-random) patterns in early training stages. Moreover,

contrary to traditional thinking, models with higher capacity can fit noisy examples in a

way that does not interfere with learning from clean data, and explicit regularisation can

decrease noise overfitting without hindering the ability to learn.

The ability of a DNN to filter our noisy points can also be enhanced given appropriate

hyperparameter settings like the use of lower learning rates and larger batch sizes. [137]

showed that, for the task of classification, using larger batch sizes and lower learning rates

can significantly increase DNN’s robustness to label noise. Authors speculate that noise

levels are shown to reduce the effective batch size as random influences on gradient updates

can be thought to cancel out. Also, reduced learning rates result in smaller, more stable

steps towards an inherently noisy gradient direction. In this Chapter, motivated by recent

advances in learning under label noise, we will explore relevant techniques and appropriate

hyperparameter settings (early stopping, smaller learning rates, larger batch sizes and

explicit regularisation) to train robust landmark detectors through a noisy initialisation.

Our proposed self-training landmark detection framework does not require manual

supervision and is bootstrapped by generic keypoints. The SuperPoint detector [40] (see

Subsection 2.5) is initially applied on the training set to produce a pseudo-groundtruth. We

use this pseudo-groundtruth to train a deep landmark detector. Once the network is trained,

it is iteratively applied to the training set to produce, on each iterative round, an “improved”

pseudo-ground-truth. We show that with appropriate setting of hyperparameters like batch

size, learning rate, explicit regularisation and early stopping, after a few iterations of our

iterative self-training framework, our detector is able to filter out background keypoints

and converge to semantic object landmark locations.

Our detector is initially trained to only detect the landmark locations (similar to

SuperPoint) without point correspondences between different instances of the same category.

In a subsequent step, we will recover correspondence for the improved pseudo-groundtruth
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by aligning the detected landmark locations with a single point template and using it to

train our final model for landmark detection. Since noisy mixture of generic keypoints also

includes manual object landmark locations, our approach will be able to recover highly

semantic landmarks while maintaining similar accuracy to recent unsupervised landmark

detectors. In the next Chapter, we will present a more flexible approach for performing

correspondence recovery alongside self-training that will result in a more robust landmark

detection framework.

In summary, the contributions of this Chapter are:

• We propose an unsupervised landmark detector that can identify semantic object

landmarks. We are able to detect 13 of the 68 landmarks detected by supervised

facial landmark detectors and 7 of the 16 landmarks detected by supervised human

pose estimation networks.

• We explore a number of techniques for landmark localisation in the presence of

extreme noise and show that with appropriate setting of hyper-parameters like

regularisation, batch size, learning rate, and early stopping, our detector, after a few

iterations of the iterative self-training framework, is able to filter out background

keypoints and converge to meaningful landmarks.

4.2 Method

4.2.1 Problem statement

We will start by defining the problem of unsupervised landmark detection, bootstrapped

by generic keypoints. Let X = {x ∈ RW×H×3} be a set of N images corresponding to a

specific object category (e.g. faces, human bodies etc.). After running a generic keypoint

detector on X , our training set X becomes {xj, {pji}
Nj

i=1}, where pji ∈ R2 is a keypoint and

Nj the number of detected keypoints in image xj. The original keypoints pj for the j-th
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image are not ordered or in any correspondence with object landmarks. Also, multiple

object landmarks will not be included in pj. Finally, some keypoints will be outliers

corresponding to irrelevant background.

Using only X , our goal is to train a neural network Ψ : X → Y , where Y ∈ RHo×Wo×K

is the space of output heatmaps representing confidence maps for each of the K object

landmarks we wish to discover. Note that the structure of Y implies that both order and

landmark correspondence is recovered. Also, note that K is the underlying number of

“discoverable” object landmarks which our method discovers. Here K will be the number of

points on the single template that will be used for correspondence recovery (see Subsection

4.2.4).

4.2.2 Iterative training framework.

An illustration of our proposed iterative training framework can be seen in Fig. 4.2.

For the first stage of our approach, generic keypoints produced by a deep keypoint

detector (SuperPoint [40]) are exploited as pseudo labels for landmark localisation. A new

network is trained over every iterative round using pseudo labels inferred initially from

SuperPoint and then onwards from the detector trained in the previous round (Section

4.2.2). Throughout training, we utilise appropriate setting of training hyperparameters to

leverage the generalisation abilities of deep neural networks when trained with noisy data

(Section 4.2.3). In Section 4.2.4 we demonstrate how correspondence can be recovered

through alignment with a single point template and used to train a deep landmark detector

iteratively.

A deep neural network learns the mapping Ψθ : X → Y, where X ∈ RH×W×3 is the

space of RGB images and Y ∈ RHo×Wo×1 is the space of single-channel confidence maps.

At every training round t, our method learns a new model Ψt
θ from scratch using pseudo-

groundtruth detected by Ψt−1
θ (learned at the previous training round). Initially, for t = 0,

pseudo-ground truth is detected by SuperPoint, the deep generic keypoint detector of [40]
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Figure 4.2: Using the output of Superpoint as initial pseudo labels, we iteratively train a
network for landmark localisation whose output progressively produces improved pseudo-
labels for the next round. Landmark correspondence is recovered by alignment with a
single template and used to train a multichannel landmark detector iteratively.

that is also trained without manual supervision. Note that a set of output heatmaps is

produced under the typical supervised setting, one for each landmark. Because we start

from a generic keypoint detector, namely SuperPoint, there is no landmark correspondence

in the provided pseudo-groundtruth, and hence our method outputs initially only a single

heatmap that learns to infer multiple keypoints.

During training, a heatmap H ∈ Y is produced for each image j in the training set,

and multiple landmark locations are extracted through thresholding and Non-Maximum

Suppression (NMS) as in [40]. NMS is applied to suppress all the keypoints that are close

to the maximum keypoint in a local neighbourhood. Specifically, the [x̂, ŷ] coordinates of

the ith keypoint is extracted from H, by identifying the pixel with the maximum detection

confidence within a window of size σ × σ. We can express this operation as :

[x̂, ŷ] = argmax
x,y

{H(x,y) | 0 ≤ x, y < σ} st. H(x̂, ŷ) > t (4.1)

where t is a minimum detection threshold. At this stage of our algorithm, NMS

operates a filtering mechanism that discards low-confident, spatially clustered keypoints

from pj.
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Algorithm 1: Proposed Self-Training Framework
Require : Image set X
Require :Keypoint detector SuperPointNet
Require :Point template T

1 pseudoAnnot = SuperPointNet(X );
2 for round← 0 to N do
3 Net = Model(Channels = 1);
4 Train(Net,X , pseudoAnnot);
5 pseudoAnnot = NMS(Net(X ));
6 end
7 pseudoAnnotcorrespdnce = Align(NMS(Net(X ), T );
8 for round← 0 to M do
9 Net = Model(Channels = len(T ));

10 Train(Net,X , pseudoAnnotcorrespdnce);
11 pseudoAnnotcorrespdnce = Net(X );
12 end

With initial pseudo annotations being very noisy, the model trained at the first

rounds should only be able to detect landmarks with low confidence; however, as the

model improves, this confidence becomes larger in subsequent rounds. To create the

pseudo-ground truth for the next round, a heatmap is created where a small gaussian is

placed on each detected landmark. An algorithmic summary of our approach can be found

in Algorithm 1.

4.2.3 Training with noisy labels.

A key feature of our approach is to systematically study training under label noise for

fine-grained localisation tasks. As identified in [5, 137] deep neural networks can be robust

to noisy class labels when trained with the appropriate setting of hyperparameters. To our

knowledge, a similar study of training dynamics has not been performed from previous

self-training methods that also utilise noisy labels for localisation tasks (like [39, 80] for

object segmentation or [193] for saliency detection). We have employed the following

strategies:

Explicit Regularisation. Normally, DNNs for landmark localisation are trained
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with RMSProp without regularisation [122]. We used regularisation in the form of weight

decay equal to 5 · 10−5. The use of weight decay can limit the speed of memorisation of

noise data without significant impact on learning [5].

Larger batch sizes and lower learning rates. We found that large batch sizes

(e.g. 128 or more) and a smaller learning rate (10−5) work much better not only for

classification tasks [137] but also for fine-grained localisation problems. The rationale

behind this is that large batch sizes give better gradient estimates as gradients from

random landmarks cancel out. This strategy is in stark contrast to the common tactic of

increasing the learning rate linearly with the batch size [88, 55] that has performed well

for supervised landmark localisation [122].

Early stopping. Over-parameterized DNNs have enough learning capacity to fully

memorise the Superpoint pseudo-labels given sufficient training time. As noted in [5], a

DNN would first learn the real underlying patterns and then overfits noise to reduce the

training error further. Since our pseudo-labels are similarly a mixture of real landmark

locations and noisy background keypoints, our detector would tend to learn the real

patterns first (landmark locations). We used early stopping in our training framework by

training for only 1500 iterations per iterative round to take advantage of this phenomenon.

Data distillation. Our method also uses data distillation [133], i.e. applies multiple

image transformations (crops, rotations and flip) and aggregates the produced heatmaps

into a single one before extracting landmarks with NMS. This mechanism can help filter

out irrelevant background keypoints as it is unlikely that these can be detected under all

possible geometric transformations. We found that data distillation is more effective if

applied after the 5-th iteration when the detected landmarks are detected with higher

confidence.

Group-Norm vs Batch-Norm. Even though batch-norm is commonly the most

effective normalisation method when combined with large batch sizes[68], we find through

experimentation that group-norm [177] performs better. A rationale can be that, due
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to extreme label noise in every mini-batch, low-quality statistics could be calculated for

batch norm despite the large batch size. Hence, a method like group-norm, which does

not normalise along the batch dimension, can achieve better performance for training with

noisy labels.

Augmentation. We found that strong data augmentation also contributes to regu-

larisation by hindering the memorisation of random labels. Specifically, we applied random

flipping, color jittering, scale (0.7− 1.3)× and rotation (−30◦ - 30◦).

4.2.4 Learning correspondence.

Up to this point, the detected landmarks among different images are not in correspondence.

Our approach to learning a model (i.e. correspondence) is to specify the desired landmarks

we wish to detect by selecting without special effort a single image from the training set

to be used as a template and align to it the points detected for the rest of the images in

the training set (Fig. 4.2). The alignment can be solved as a set registration problem that

allows for a different number of template and detected keypoints. We use the Coherent

Point Drift algorithm [121] to align the 2 point clouds and find the correspondence between

them by solving the linear sum assignment problem for a cost matrix C where C[i, j] is

the Euclidean distance from template point i to keypoint j. Missing landmarks are dealt

with by substituting them with the corresponding template points.

Images for which a sufficient number of valid correspondences are found can be used

to learn a landmark detection network Ψθ : X → Y, where Y now has dimensionality

Ho×Wo×K with K the number of object landmarks. The new landmark correspondences

can still be noisy due to incorrect alignments. Hence, we again use the same iterative

training framework for three more rounds with the same hyperparameter setting but 15000

training iterations as we found that a multichannel detector requires a larger training time.

In the following Chapters, we will substitute this approach for correspondence recovery

through deep clustering.
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4.3 Implementation Details

Over each iterative round t, we train a new detector Ψθ : X → Y , where X ∈ R256×256×3

and Y ∈ R64×64×1. For Ψθ, we used the HourGlass(HG) [122] architecture with a single

network (i.e. no network stacking) and the residual block of [12]. Models are trained

with RMSProp and hyperparamters are set as batch size of 128, learning rate of 10−5,

weight decay 10−5 and 1500 training iterations per iterative round (see Subsection 4.4 for

discussion on hyperparameter settings).

For faces, correspondence was recovered using a single template of 13 landmarks (2

on each eye, 2 on the nose and 3 on the mouth), and for human bodies, a template of 7

landmarks (2 on the waist, 1 on each leg and 1 on the head). A template of 5 landmarks (2

around the eyes and 1 on the nose) was used for cat heads. Similarly to [164, 196, 72], our

landmark detector is fine-tuned on AFLW by applying self-training for three more rounds.

4.4 Ablation Study

In this section, we evaluate the effect of the proposed hyperparameter settings on the first

step of our approach. Several models were trained to detect keypoint locations on the

facial dataset CelebA [109] with different settings for regularisation, batch size, learning

rate and number of training iterations. To evaluate the first step of our approach, we

measure precision and recall in Fig. 4.3 with respect to the 13 ground-truth facial landmark

locations our detectors consistency infers (visual example in Fig. 4.6) for facial datasets.

Note that correspondence is going to be recovered in the following step, and at this stage,

we only evaluate the accuracy 1 of keypoint locations collected through NMS from the

single output heatmap.

Round 0 in the depicted figures corresponds to precision and recall values for pseudo-

1As a true positive, we consider a keypoint detected within distance d = 8px from one of the 13
supervised groundtruths for an image resolution of 256.
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Figure 4.3: Precision curves (top) and recall curves (bottom) per iterative round with
respect to 13 groundtruth facial landmark locations. We present results over different
hyperparameter settings for learing rate, batch size, number of training iterations and
weight decay regularization. The hyper parameters that are not evaluated in each individual
experiment are fixed to a good value (learning rate of 10−5, batch size of 128, 1500 training
iterations and weight decay of 10−5).

labels detected by the SuperPoint detector. Our assumption that a generic keypoint

detector can detect object landmarks with some consistency over images of the same

category is reasonably justified with precision and recall values close to 0.4. Moreover,

after seven training rounds, both metrics more than double with our iterative training

framework. In Fig. 4.3 we see that large learning rates that are commonly used for

landmark localisation would result in minimal recall values as the network manages to fit

the pseudo-labels very quickly. Similar is the effect of more training iterations per round

or very small minibatch sizes that lead to noisy gradient estimates. At the same time, the

use of weight decay regularisation also improves performance.

The caveat here is that taking our approach to the extreme with very small learning

rates, very large batch sizes or minimum number of training iterations would result in very

strong filtering of keypoints with only the most stable being detected by our approach.

This is exhibited in Fig. 4.3 with higher precision for a learning rate of 10−6 and a batch

size of 512 but also small recall as only 8 out of the 13 facial landmarks are recovered.

For human faces, these 8 landmarks would be points around the eyes, mouth and nose



4.5. Comparison with state-of-the art 57

Figure 4.4: Cumulative error curves on various datasets, for both forward and backward
NME. For facial datasets we use 68 and for human pose 17 annotated points. Regressor is
trained with N = 200 training set samples.

since we are not able to detect eyebrows that might be more commonly occluded. We find

that the optimal settings are a batch size of 128 with a learning rate of 10−5, with weight

decay and 1500 training iterations per iterative round. These settings are used for all our

models evaluated in Section 4.5 with no fine-tuning for different datasets.

4.5 Comparison with state-of-the art

The bulk of our results is shown in Fig. 4.4 2. Performance for our multichannel

landmark detector (Stage 2 of our proposed pipeline) is measured in terms of forward and

backward NME (see Subsection 2.6). Our approach offers competitive performance on the

forward mapping while mostly surpassing other methods in terms of backward mapping,

demonstrating that detected landmarks are highly stable.

2Where possible, we used pre-trained models for comparison with other methods. Otherwise, we
re-trained these methods using the publicly available code.
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Method MAFL AFLW

Supervised Methods
Cascaded CNN[157] 9.73 8.97
TCDCN[202] 7.95 7.65
RAR[158] - 7.23
MTCNN[201] 5.39 6.90

Unsupervised/ self-supervised Methods
Thewlis et al. [164] (K=30) 7.17 -
Thewlis et al. [164] 5.83 8.80
Shu[149] 5.45 -
Jakab et al.[72] (K=10) 3.19 6.86
Zhang et al.[196] (K=10) 3.46 7.01
Sanchez [144] (K=10) 3.99 6.69
Sahasrabudhe [142] 6.01 -

Ours (K=10) 4.44 7.76
Ours (K=13) 4.18 7.42

Table 4.1: Forward-NME on MAFL and AFLW (normalized by inter-ocular distance)
evaluated over 5 groundtruth landmarks. The regression is trained with max N to be
consistent with previous work.

Figure 4.5: Precision measured for unsupervised landmarks with respect to their maximally
corresponding supervised ones over a varying distance threshold (image resolution is 256).

Figure 4.6: Comparison between the landmarks detected by our method and those of [196]
and [72] for faces and human poses. Contrary to other approaches, our method is able to
discover landmarks with clear semantic meaning.
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We compare with approaches that detect both high and low number of landmarks.

As mentioned in [164], methods that detect a higher number of landmarks can produce

better Forward-NME values as they are more likely to find some unsupervised landmarks

that are strongly correlated to the supervised ones. On DeepFashion, we outperform, in

terms of the accuracy of the forward mapping, both [72, 196] even though we use a smaller

number of unsupervised landmarks.

Note that on MAFL we are even able to match the forward-NME of [72] when we

consider up to 52 best-regressed ground-truth landmarks, but then the accuracy of our

method degrades faster than other methods. This is because our approach does not detect

any landmarks on the border of the face and, as a result, can poorly regress the manually

annotated landmarks on the face boundary.

We also report average NME over all 5 always visible landmarks in Table 4.1 for

MAFL and AFLW. We measure the performance of our approach using the 10 most stable

out of 13 unsupervised landmarks (selected by backward-NME per landmark ) for a fair

comparison with other methods detecting a smaller number of landmarks. Our approach

demonstrates competitive performance for this metric with only a small performance gap

(below 1%) with current state-of-the-art methods.

Since our main objective is to discover semantic landmarks, we also assess how well

the unsupervised landmarks track semantic landmark locations directly without the need

for any mapping function. To this end, we find which ground-truth landmark maximally

corresponds to each unsupervised landmark by solving the bipartite linear assignment

problem with mean distance as a cost, similarly to [72]. We then measure precision as the

percentage of unsupervised landmarks that have been detected within a distance threshold

from their maximally corresponding ground-truth on average (Fig. 4.5). We show a

precision of over 80% for a distance threshold of 7 pixels on MAFL, showing that our

unsupervised landmark detector can be directly used for face alignment with high accuracy

without the need for any linear mapping to semantic locations. A visual comparison of the

unsupervised landmarks detected by our method compared to other approaches is shown
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in Fig. 4.6. Overall our unsupervised landmark detector shows higher precision values in

all examined datasets.

4.6 Chapter Conclusions

In this Chapter, we train an object landmark from a generic keypoint without manual

supervision. Key features of our method are an iterative training procedure and techniques

for training neural nets under extreme label noise. The proposed approach can detect

stable landmarks that capture semantic object locations. In the next Chapter we will

extend this self-training approach through clustering correspondence to produce a robust

framework for unsupervised landmark discovery.

Figure 4.7: Qualitative results for our approach on CelebA.
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Figure 4.8: Qualitative results for our approach on AFLW.
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Figure 4.9: Qualitative results for our approach on DeepFashion.



Chapter 5

Unsupervised Learning of Object

Landmarks via Self-Training

Correspondence.

In the previous Chapter, we trained a landmark detector without manual supervision

through self-training on generic keypoints. Noisy background points were filtered out

over iterative self-training, and several techniques for landmark localisation under extreme

label noise were explored. Discovered landmarks tracked highly semantic object locations

that fire as generic keypoints, and robust performance was demonstrated for various

object categories. In this Chapter, we extend the proposed framework through Clustering

Correspondence. We identify correspondence as a key objective for unsupervised landmark

discovery and propose an optimisation scheme which alternates between recovering object

landmark correspondence across different images via clustering and learning object land-

mark representations through the recovered correspondences without labels. Compared to

related work, our approach can learn more flexible landmarks in terms of capturing large

changes in viewpoint. We show the favourable properties of our method on a variety of

challenging datasets.

63
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Figure 5.1: Visual comparison between landmarks discovered by our approach and those
of [72, 196] on LS3D facial images. Our method is able to both discover highly semantic
object landmarks and capture variation in 3D viewpoint across the whole spectrum of
facial poses.

The contributions of this Chapter have been published at NeurIPS, 2020 in [114]. Code

and models are available at https://github.com/malldimi1/UnsupervisedLandmarks.

5.1 Motivation

Intuitively, one of the most important properties of a landmark detector is to achieve

landmark correspondence across different images of the same category. In the unsupervised

case that is the main focus of this thesis, we do not have examples of manually annotated

correspondences in our disposal. A landmark detection framework has to discover point

correspondences automatically given only raw images from the same object category. As

discussed in Subsection 3.1.3 a common approach for correspondence discovery without

manual supervision is through synthesised image pairs formed by applying multiple known

transformations on a single underlying image. We argue that learning point correspondence

through synthetic pairs (generated from the same image) results in landmark representa-

tions with limited robustness and poor generalisation ability. For example, image-level

transformations like colour jittering only weakly simulate the appearance variation of

natural objects and viewpoint/shape variations produced from synthetic local wraps (like

https://github.com/malldimi1/UnsupervisedLandmarks
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the commonly used TPS wrap) cannot capture realistic object deformations.

In the previous Chapter, correspondence between different object instances was

recovered through alignment with a single point template. Even though this strategy

learns landmark correspondence from unpaired data, it has its own limitations. Highly

deformable objects or instances captured under large out-of-plane rotations would result

in poor alignment with the single point template leading to noisy training correspondences.

Moreover, selecting a point template requires some manual user input (we choose a template

without special effort). Even though we can achieve better performance through multiple

point templates, this approach increases method complexity.

Recently, clustering-based proxy tasks have demonstrated great potential for self-

supervised learning (see Subsection 3.4). Methods like DeepCluster [19] learn strong

image-level representation through iterative self-training where clustering assignments are

utilised as pseudo-labels. Motivated by this, we introduce a novel perspective for self-

supervised correspondence discovery through deep clustering of landmark representations.

To our knowledge, this is the first time that clustering correspondence is applied to the

problem of unsupervised landmark discovery.

Our proposed model includes a landmark detector head that extracts landmark

coordinates (as in the previous Chapter) and a dense feature extractor that learns local

landmark representations. We propose an optimisation scheme which alternates between

correspondence recovery via clustering and learning of better correspondence through

self-training. Through this clustering approach, we can directly train on unpaired images,

in contrast to related methods that can only synthesise correspondences from augmented

views of the same underlying image. The proposed formulation results in the discovery of

robust landmark representation with stronger invariance to appearance or viewpoint/shape

variations.

Compared to previous works, our approach can learn more flexible landmarks in terms

of capturing changes in 3D viewpoint. See for example Fig. 5.1. We demonstrate some of the
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favourable properties of our method on a variety of difficult datasets, including LS3D [13],

BBCPose [24] and Human3.6M [69], notably without utilising temporal information.

5.2 Method

In this section, we will describe the methodology of the proposed approach. We follow

the same problem formulation described in the previous Chapter (Subsection 4.2.1) where

our initial training set X is formed as {xj, {pji}
Nj

i=1} (where pji ∈ R2 is a keypoint and

is Nj the number of detected keypoints in image xj) and our goal is to train a neural

network Ψ : X → Y , where Y ∈ RHo×Wo×K is the space of output heatmaps representing

confidence maps for each of K object landmarks. We will break down our problem into

two sub-problems/stages. The first stage aims to establish landmark correspondence,

recover missing object landmarks and filter out irrelevant background keypoints. Then,

pseudo-labels formed from the first stage will be used to train a strong landmark detector.

5.2.1 Stage 1: Recovering correspondence

We will firstly learn a neural network Φ with a shared backbone Φb and two heads

Φh,i, i = 1, 2 performing the following tasks:

1. A detector head Φh,1 : X → Z, where Z ∈ RHo×Wo×1 is the space of single-

channel confidence maps, which learns to detect all object landmarks with no order

or correspondence, i.e. without distinguishing one from another (hence one output

confidence map is used). The main purpose of Φh,1 is to recover the originally missed

object landmarks. This detector head was also the output of our model in the

previous Chapter.

2. A feature extractor head Φh,2 : X → D, where D ∈ RHo×Wo×d for recovering

correspondence. For each landmark pji , Φh,2 computes a d-dimensional feature
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descriptor f ji . This descriptor is used to cluster the landmarks into M clusters each

meant to represent an object landmark or different views/appearances of the same

landmark.

The detector is trained to improve itself without labels through self-training. At

every training round t, our method learns Φh,1 using the generated pseudo-ground truth

landmarks at previous training rounds t−1 and t−2. The pseudo-ground truth landmarks

are simply the model outputs after discarding those that are not close to a cluster centroid

(see below). The detector is trained using an MSE loss:

Ld = ‖H(xj)− Φh,1(xj)‖2 (5.1)

where all landmarks {pji}
Nj

i=1 for image xj are represented by a single heatmap H with

Gaussians placed at the corresponding landmark locations.

To recover correspondence, we compute the M cluster centroids as well as cluster

assignments (using K-means) for the descriptors {f ji }
Nj

i=1 collected across all images xj in

X . We also require that for a specific image no more than one keypoint can be assigned

to the same cluster (i.e. object landmark). Hence, a modified K-means problem can be

formulated:

min
C∈Rd×M

1

N

N∑
i=1

Nj∑
j=1

min
yj
i∈{0,1}M

‖f ji − Cyji‖22 s.t. 1TMyji = 1 and ‖
∑
j

yji‖0 = Nj, (5.2)

In practice, we solve the above problem (approximately) very fast by running the original

K-means to find the cluster centroids and then using the Hungarian algorithm [90] to solve

the linear assignment problem between the keypoints for an image and the cluster centroids,

ensuring each keypoint is assigned only to a single centroid 1. Furthermore, keypoints

that are not close to any cluster centroid are filtered out. This mechanism enables explicit

filtering of noisy keypoints and makes our approach less sensitive to hyperparameter tuning
1Clustering followed by the Hungarian algorithm are performed at the end of each training round and

are not part of the training the network.
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Figure 5.2: Illustration Stage 1 of our proposed landmark detection approach. Our
framework is bootstrapped by generic keypoints. During training we alternate between
self-training on the pseudolabels of the previous round and forming new pseudo-labels via
clustering correspondence.

compared to the work of the previous Chapter.

Under this formulation, K-means would recover M clusters. Note that is crucial to

use a sufficiently large M value. This enables our method to recover several different

clusters per landmark which is necessary as viewpoint changes introduce large appearance

changes. This differentiates our approach from prior works, which do not account for large

out-of-plane rotations. In a later stage of the algorithm (subsec 5.2.2), we will see how

multiple clusters (tracking the same underlying landmark) would be progressively merged,

thus enabling the detection of only K underlying object landmarks where K << M .

After recovering the keypoint-to-cluster assignments yji , we can directly train Φh,2

on unpaired images. We want the features extracted at pji to be close to those extracted

at pj
′

i′ if and only if yji = yj
′

i′ , and far otherwise, i.e. we want f ji ≈ f j
′

i′ ⇐⇒ yji = yj
′

i′ . We

formulate this objective in terms of a contrastive loss as:

Lc(i, i
′, j, j′) = 1

[yji=y
j′
i′ ]
‖f ji − f j

′

i′ ‖
2 + 1

[yji 6=y
j′
i′ ]

max(0,m− ‖f ji − f j
′

i′ ‖
2), (5.3)

where 1[s] is the indicator function, and m is the margin. We form pairs from different
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images j, j′ as well as by letting j′ be a different augmentation of image j. The overall

training procedure for Φh,1 and Φh,2 is based on an alternating optimization and a self-

training approach: clustering is performed at the end of each training round, and a new

set of pseudo-ground truth locations is added to the training images. An illustration of

the first stage of our proposed approach can be seen in Fig. 5.2.

5.2.2 Stage 2: Learning an object landmark detector

Given the pseudo-ground truth landmarks and their cluster assignments {xj, {pji , y
j
i }
Nj

i=1}

for all images in X provided by the method of Section 5.2.1, our final goal, in this section,

is to train the landmark detector Ψ (originally defined in Section 4.2.1). To this end, we

simply train Ψ to regress, for each training image xj , M heatmaps Hm with m = 1, . . . ,M

where the mth heatmap is gaussian placed at the pseudo-ground truth landmark location

pji with keypoint-to-cluster assignment yji . For a given image, the model is trained with

an MSE loss over all output channels for which there is a landmark-to-cluster assignment

for that image:

Ld =
∑
m

‖H(xm)−Ψ(xm)‖2 (5.4)

We do not apply the MSE loss for clusters with no landmark assignments. Also, as

mentioned in Section 5.2.1, many of the clusters capture the same landmark. Hence, during

this step, we also perform progressive cluster merging. To this end, we take advantage of

the structure of Ψ (an hourglass network [122]) to set up a simple algorithm which takes

into account both appearance and location-related information.

By construction Ψ can be decomposed into a shared backbone Ψb, producing a feature

tensor F ∈ RHo×Wo×d, and M detectors wm ∈ Rd×1 (implemented as 1× 1 convolutions).

If, say, two detectors fire at the same location (k, l) (e.g. for a landmark that might

have two close but different descriptors) then, they are both tuned to the same feature
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Figure 5.3: Illustration Stage 2 of our proposed landmark detection approach. The
landmark detector is trained with standard heatmap regression on the pseudo-labels
produced from Stage 1. Progressive cluster merging is applied to group different clusters
tracking the same underlying landmark.

Fk,l ∈ Rd×1 at that location.

Hence, detectors firing consistently at nearby locations (for the majority of training

images) detect features of similar appearance and can be replaced by a single detector. We

used this as the criterion for progressively merging different clusters, followed by training.

At the end of this step, the number of detectors will be reduced from M to K, where K

is the number of landmarks that is automatically discovered by our method. A visual

illustration of the second stage of our approach is shown in Fig. 5.3.

5.2.3 Limitations

Thanks to SuperPoint initialisation, our method appears to discover more semantically

meaningful landmarks compared to previous methods. However, by no means this guar-

antees a full semantic meaning for all discovered landmarks. Furthermore, although

our approach provides landmarks that can better capture correspondence across large

viewpoint changes, in many cases, the discovered landmarks are neither reliably detected
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nor able to provide full invariance to large 3D rotations.

Moreover, it is important to remark that the performance of our method greatly

depends on the initial keypoint population (see also Section 5.4). On one hand, SuperPoint

provides a strong initialisation for our method. On the other, SuperPoint is prone to

discovering salient points only, while other semantically meaningful landmarks lying on

flat surfaces might be left unpicked. We note though that most object landmark detectors

mostly aim to detect salient points (e.g. mouth/eye corners, knee joints). Low texture

points are difficult even for the supervised case.

5.3 Implementation Details

5.3.1 Network

We use the Hourglass architecture of [122] with the residual block of [12] for both Ψ and

Φ. The image resolution is set to 256×256. For network Φ, the localisation head produces

a single heatmap with resolution 64 × 64, and the descriptor head produces a volume

of 64 × 64 × 256, i.e. a volume with the same spatial resolution containing the 256-d

descriptors. The network Ψ produces a set of K heatmaps, each 64× 64, with the number

of heatmaps being reduced throughout the training as described in Section 6.1.

5.3.2 Training

Keypoints and descriptors are initially populated by SuperPoint [40]. To increase the

number of initial landmarks, we applied SuperPoint in 3 scales (1, 1.3 ,1.6). We applied

K-means to SuperPoint descriptors to obtain the initial clusters and assignments. For

K-means, we used the Faiss library [78]. We also applied an outlier removal step using

the same Faiss library (this is not used later in the algorithm). Finally, bounding box

information is used to discard the initial keypoints that are detected outside the object of
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Figure 5.4: Qualitative results of the proposed approach both facial and human pose
datasets and cat faces.

interest (this is not used later in the algorithm).

For stage 1, for warm-up, we firstly trained both the detector and the descriptor

for 20,000 iterations using as ground-truth the SuperPoint keypoints and their cluster

assignments. Then, we trained the model as detailed in Section 5.2.1, applying clustering

and updating the pseudo-ground truth every 10,000 iterations. We set M = 100 and

M = 250 clusters for facial and body landmarks, respectively. We found that no more

than 300,000 iterations are necessary for the algorithm to converge for all datasets. Due to

K-means sensitivity to centroid initialisation, we do not initialise the centroids randomly

but use the centroids of the previous training round. During correspondence recovery (and

since we always have a larger number of clusters than detected landmarks), to avoid poor
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Figure 5.5: Visual comparison between features detected from SuperPoint and our frame-
work with t-SNE [174]

assignments, we discard the assignment of a landmark to a cluster (and the landmark)

when its distance to the cluster centroid is much larger compared to the average distance

to that centroid.

For stage 2, we initialised the model from the weights of the model of stage 1, except

for the weights of the last layer that are trained from scratch. We merged two clusters

when 70% of the number of points of the smaller cluster overlap with the points of the

biggest cluster (the method does not seem to be so sensitive to this value). Overlap is

defined as located within a 1-pixel distance at resolution 64× 64. To train the models, we

used RMSprop [57], with learning rate equal to 5 · 10−4, weight decay 10−5 and batch-size

16 for stage 1 and 64 for stage 2. All models were implemented in PyTorch [127].

5.4 Ablation Study

5.4.1 Feature representation

We first evaluate the capacity of our method to learn distinctive features corresponding to

different landmark locations by computing the t-SNE [174] of the feature representations.

Fig. 5.5 shows the t-SNE for the initial SuperPoint features, next to the features returned

by our method after self-training. We observe that at the end of training, the descriptors

are distinctive of the corresponding classes, making the correspondence recovery effective.
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Figure 5.6: Detector and descriptor performance for training with varying mixtures of
ground-truth and random keypoints.

5.4.2 Robustness to noise

To study the impact of the quality of the initial keypoints, we replace the generic keypoints

(provided by SuperPoint) with a mixture of (1) a varying number of ground-truth points

randomly sampled from a set of 15 ground-truth landmarks (3 on the nose and mouth, 2

on each eye and eyebrow and 1 on the jaw) and (2) a set of noise points sampled from the

image domain (random 2D locations inside the facial bounding box). The initial number

of points per image is randomly chosen to be between 12 and 24, so as to simulate the

number of keypoints that are usually returned by SuperPoint. The ground-truth points

are also randomly distorted within a 3 pixels radius.

To assess the quality of the pseudo-annotations produced by the first step of our

approach, our model’s detector and descriptor head are evaluated separately. Since the

real ground-truth keypoints are sampled from a specific subset of landmarks, an ideal

detector would detect these 15 points in every image and filter out all noise. To evaluate

how close our detector is from the ideal one, we measure precision and recall 2 combined

with F-measure.

To evaluate the descriptor part of the network, we assess the information shared

2As a true positive, we consider a keypoint detected within distance d = 10px to a manually annotated
point for an image resolution of 256.
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between the clustering assignments produced by our framework and the ground-truth

landmark label for each detected keypoint. For a particular keypoint, the landmark

label is that of the ground-truth to which it is maximally assigned, and the clustering

label is assigned by the clustering of the corresponding descriptors. We measure the

Normalized Mutual Information (NMI) between the landmark and clustering assignments.

This measure, which is independent of the number of clusters, can quantify the degree to

which one assignment is predictable of the other.

The results shown in Fig. 5.6. We observe that when the initial keypoints include

more than 20% of ground-truth locations, our method is capable of recovering the right

correspondence.

5.4.3 Impact of number of clusters

In addition to the above, we report, in Fig. 5.7, the NMI score for the detector w.r.t. a

varying number of clusters. Even though keypoints are sampled from 15 groundtruth land-

marks, we see that the best performance is attained for M = 30. This over-segmentation

of feature space is required for optimal clustering assignment, as it allows for multiple

clusters that capture different appearance variations of the same landmark.
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Figure 5.7: Descriptor accuracy by varying the number of clusters. Percentage of real
points is 40%.
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CelebAAFLW
R2D2 [135] 4.57 8.87

Superpoint [40] 4.12 7.37

CelebAAFLW
Correspondence from
Augmented Pairs 0.290 0.352

Clustering for
Correspondence 0.620 0.635

Figure 5.8: (left) Forward error for models trained with different keypoint initialization
methods. (right) NMI for features learned via clustering vs. equivariance.

5.4.4 Keypoint initialization

We evaluate the influence of the initial generic keypoints in our proposed algorithm. To this

end, we assess the performance of our method when initialised with the SuperPoint [40],

as well as with the recent R2D2 [135], by means of total forward error, evaluated on both

CelebA and AFLW. Fig. 5.8 (left) shows the results of the forward evaluation of the generic

keypoints provided by both methods. We observe that while both yield competitive results,

SuperPoint is a better method for initialisation.

5.4.5 Clustering vs. equivariance

We also evaluate the importance of recovering correspondence through clustering of local

descriptors. We compare with a model trained without clustering but using image pairs

produced by different affine transformations to compute the contrastive loss, i.e. the model

was trained with equivariance. In Fig. 5.8 (right), we see that our approach outperforms

the previous model by a large margin.

5.5 Comparison with state-of-the art

Herein, we compare our method with [72, 200] trained to discover both 10 and 30 landmarks.
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Figure 5.9: Evaluation on facial datasets: Our method discovers 49 landmarks on CelebA,
41 on AFLW and 44 on LS3D. CED curves for forward and backward errors. A set of 300
training images is used to train the regressors. Error is measured w.r.t. the 68-landmark
configuration typically used in face alignment.

5.5.1 Evaluation on facial datasets

The bulk of our results on facial images is shown in Fig. 5.9. From our results on all

datasets, we can see that our method overall provides the best results in meeting both

requirements. Notably, our method delivers state-of-the-art results for the challenging

LS3D dataset, which is a dataset with frontal-to-profile pose variations. Table 5.1 shows

Forward-NME of our proposed approach compared to various other methods w.r.t 5 facial

landmarks where we maintain competitive performance.

Similarly to the previous Chapter, we again find that our approach performs better

when evaluation is performed w.r.t the 68-facial landmark configuration compared to 5

facial landmarks. The 5-landmark configuration includes points in uniform areas and

not repeatable edges or corners (centre of the eye, centre of the nose), that as discussed

in subsection 5.2.3 are not commonly tracked by generic keypoint detectors. Moreover,
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Method MAFL AFLW

Lorenz [110] (K=10) 3.24 -
Shu [149] 5.45 -
Jakab et al.[72] (K=10) 3.19 6.86
Zhang et al. [200] (K=10) 3.46 7.01
Sanchez [144] (K=10) 3.99 6.69
Sahasrabudhe [142] 6.01 -
Ours † (K=13) 4.18 7.42

Ours 4.12 7.37

Table 5.1: Comparison on MAFL and AFLW, in terms of forward error. The results of
other methods are taken directly from the papers (for the case where all training images
are used to train the regressor and the error is measured w.r.t. to 5 annotated points.
†Our approach of the previous Chapter.

qualitative examples on various datasets are shown in Fig. 5.4.

5.5.2 Evaluation on human pose datasets

Performance of our method on the BBCPose and Human3.6M datasets is shown in Fig.

5.10. Our approach demonstrates significantly better accuracy in terms of forward and

backward errors for both datasets. As it can be seen from the forward error in Human3.6M,

all three methods experience a sharp error increase when more than 22 landmarks are

considered. This is due to the fact that all methods did not capture the hands of the

subject leading to very high error for the corresponding ground-truth points.

We also note that due to the large degree of pose variation for human bodies, a

simple linear layer does not suffice to learn a strong mapping between unsupervised and

BBCPose Accuracy (%) Human3.6M Accuracy (%)

Head Shldrs Elbws Hands Avg Head Shldrs ElbwsWaist Knees Legs Avg

Zhang [200] 95.36 32.36 15.02 28.02 42.69 20.90 53.05 50.95 43.70 85.60 1.95 42.69
Jakab [72] 48.29 18.55 19.10 32.11 26.83 00.50 52.15 32.35 26.05 3.70 24.6 23.22

Ours 83.65 62.93 63.13 35.00 61.18 95.1 59.15 58.60 67.59 69.35 73.30 70.35

Table 5.2: Accuracy of raw discovered landmarks that correspond maximally to each
ground-truth point measured as %-age of points within d = 12px from the ground-truth [72]
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Figure 5.10: Evaluation on human pose datasets: Our method discovers 101 landmarks
on BBCPose, and 75 on Human3.6M. CED curves for the forward and backward errors,
computed for a regressor trained with 800 samples.

Figure 5.11: Visual demonstration of discovered landmarks (crosses) that maximally
correspond to ground-truth keypoints (empty circles).

supervised landmarks. Hence, the forward errors are very high for all methods. To address

this, we follow [72] and measure the accuracy of unsupervised landmarks that are found to

maximally correspond to the provided ground-truth points (Table 5.2). We can observe

that our approach is able to discover clusters that robustly track all parts of the human
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body (except the hands for Human3.6M) and show much higher accuracy values compared

to the other methods (see Fig. 5.10 for qualitative comparison with other methods).

5.6 Chapter Conclusion

In the Chapter, we presented a novel path for unsupervised discovery of object landmarks

based on self-training and recovering correspondence. The former helps our system

improve by using its own predictions and constitutes a natural fit for training an object

landmark detector starting from generic, noisy keypoints. The latter, although being a key

property of object landmarks detectors, it has not been previously used for unsupervised

object landmark discovery. Compared to recent methods, our approach can learn view-

based landmarks that are more flexible in terms of capturing changes in 3D viewpoint,

providing superior results on a variety of challenging facial and human pose datasets.

The contributions of this Chapter were also presented at the prestigious NeurIPS2020

conference.

Figure 5.12: Qualitative results for our approach on AFLW.
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Figure 5.13: Qualitative results for our approach on LS3D.

Figure 5.14: Qualitative results for our approach on CatHeads.

Figure 5.15: Qualitative results for our approach on Human3.6.



Chapter 6

Towards Effective Unsupervised

Landmark Discovery.

Previously, we discussed a novel framework for unsupervised landmark discovery. Based

on the similarities and differences between keypoints and landmarks, we converted a

series of keypoints into semantically coherent landmarks that describe the object parts,

filtering and refining during the training process also the corresponding landmark locations.

Our approach demonstrated large performance improvement in challenging datasets

(LS3D, Human3.6) and impressive robustness to object deformations and large out-of-

plane rotations. The proposed framework based on self-training and correspondence via

clustering differs significantly from related unsupervised landmark discovery methods that

use reconstruction/generation learning objectives. Given that our approach is the first to

explore these ideas for unsupervised landmark discovery, we identify that the proposed

pipeline can be further refined and potentially simplified. In this Chapter, we rethink

various components of our previous work (as presented in the Chapter 5) and discuss how

our method can be enhanced through several technical innovations.

This Chapter extends our framework into an effective self-training approach for

unsupervised landmark discovery. Our method achieves improved model performance

through a simpler training pipeline. We extends our prior work both methodologically

82
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and experimentally. In particular, we introduce the following modifications:

• As presented previously, our method automatically discovered K object landmarks

(whereK was a result of our algorithm) through the progressive merging ofM clusters

(see Subsection 5.2.2). This is less flexible compared to other recent unsupervised

landmark detectors [164, 196, 72, 144] where K is set apriory (as a hyperparameter).

Moreover, we found that the final number of detected landmarks can be sensitive

to hyperparameter settings. In this Chapter, we significantly simplify our proposed

framework by removing the progressive merging step of our previous work and

training our detector to regress K object landmarks directly similarly to prior art.

• We propose a negative pair selection strategy, particularly for contrastive learning of

object landmark representations. Our approach considers the uniqueness of land-

marks, i.e. the fact they can only appear at most once in an image. We experimentally

validate that such negative mining enhances learned landmark representations and

improves model performance.

• Rather than populating our training set with the descriptors from the pre-trained

keypoint detector, we include a warm-up stage to learn the initial features. Such

strategy makes the method dependent only on the initial keypoints, regardless of

the descriptors.

• We extend our framework to enable flipping augmentation. This augmentation is

not utilised for the unsupervised case since landmark correspondence after flipping

is unknown. We propose a strategy that recovers flipping correspondence via deep

clustering.

Further to the technical innovations described above, this Chapter also contributes a

lengthy ablation study that thoroughly analyses our proposed method’s different compo-

nents. We also extend our experimental section and include results for the challenging

human pose database PennAction [198] as well as CatFaces [197] and Caltech-UCSD Birds

[176].
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The contributions of this Chapter have been published at IEEE Transactions on

Pattern Analysis and Machine Intelligence(TPAMI), 2023 in [115]. Code and models can

be found at https://github.com/dimitrismallis/KeypointsToLandmarks.

6.1 Method

This section will describe our efficient landmark detection framework, focusing on the

multiple technical improvements introduced in this Chapter.

6.1.1 Prerequisites

For ease of understanding, we will briefly reiterate the components of our proposed

architecture that remain unchanged. As already discussed, Stage 1 of our method learns a

neural network Φ with a shared backbone Φb and two heads Φh,i, i = 1, 2.

1. A detector head Φ1 will produce, for image xj , a single-channel spatial confidence

map Hj = Φ1(Φb(xj)) ∈ RHo×Wo×1 representing the presence/absence of an object

landmark at a given location, without regard to any order or correspondence. We

use non-maximum suppression (NMS) to extract from Hj the landmark locations pji .

The main purpose of Φ1 is to recover the originally missed object landmarks.

2. A feature extractor head Φ2 will produce for image xj a dense feature map

Fj = Φ2(Φb(xj)) ∈ RHo×Wo×d that will be used for recovering correspondence.

At each landmark position pji activated by the detector head, we will extract a

d-dimensional feature descriptor f ji from F. We use local features for recovering the

correspondence of each individual keypoint through clustering.

Recall that after applying Φ on the training set, X becomes {xj, {pji , f
j
i }

Nj

i=1} and

correspondence is recovered for each individual keypoint pji through the clustering as-

signment of the corresponding feature f ji . We refer to this operation as correspondence

https://github.com/dimitrismallis/KeypointsToLandmarks
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recovery, since it allows to identify correspondence of object parts across different images.

To assign to each detected keypoint a pseudo-label we follow DeepClustering [19] and

perform K-means clustering on the collection of features f .

However, different from [19] where the clusters are used just to make similar images

have similar descriptors in an unsupervised way, our cluster assignment is indeed assigning

a meaning label to a given keypoint. For this reason, it is important not to assign two

different keypoints on a given image to the same cluster. We also observe that in order to

capture landmark descriptors with the same semantic meaning but with possibly different

viewpoint-dependent features, it is essential to cluster over a sufficiently large number of

clusters M . Thus we formulated the modified K-means problem:

min
C∈Rd×M

1

N

N∑
i=1

Nj∑
j=1

min
yj
i∈{0,1}M

‖f ji − Cyji‖22 s.t. 1TMyji = 1 and ‖
∑
j

yji‖0 = Nj, (6.1)

where M is the number of clusters, yij is the clustering assignment for landmark pij

and C is the d×M centroid matrix. Denoting by θb, θd and θf the parameters of Φb, Φd

and Φf , respectively, the full training procedure for Stage 1 is summarised in Algorithm 2.

Algorithm 2: Training of Stage 1

Data: X0 = {xj, {pji}
Nj

i=1}
1 Compute yji using Eqn. 6.1
2 Set X0 = {xj, {pji ,y

j
i}
Nj

i=1}
3 for t = 1 : T do
4 for n = 1 : Niters do
5 Sample batch
6 (θb, θd)← (θb, θd)−∇θb,θdLd
7 (θb, θf )← (θb, θf )−∇θb,θfLc
8 end
9 Update F and pj using frozen Φ

10 Compute yji using Eqn. 6.1
11 Update Xt = {xj, {pji ,y

j
i}
Nj

i=1}
12

13 end
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Figure 6.1: Recovering correspondence and ensuring the detection of at most K keypoints
per image (illustrated through t-SNE[174] visualisation of algorithm steps). Modified
K-means is executed twice. The first time we cluster to K clusters to filter out duplicate
cluster occurrences in a single image ( we mark with 5’s the keypoints that get filtered
out). The second time we cluster the reduced set to M clusters to enable our method to
recover multiple clusters per object landmark.

6.1.2 A simpler implementation of Modified K-means

The modified Kmeans problem was approximately solved by running the original K-means

to find the cluster centroids and then using the Hungarian algorithm [90] to computer the

linear assignments between the keypoints for a particular image and the cluster centroids.

This ensured the constraint ‖
∑

j yji‖0 = Nj is satisfied with each keypoint optimally

assigned to the most representative centroid.

In this Chapter, we identify that given the self-training nature of our proposed method,

multiple detected keypoints can be noisy, especially in early training. A straightforward

filtering approach is to simply drop duplicate occurrences of the same cluster for a single

image (and not assign them to the next more representative centroid as previously). Given

that a keypoint with a more representative feature has already been found for a cluster k

in a particular image, it is likely that the second occurrence would be a noisy point. To

that end, we satisfy the ‖
∑

j yji‖0 = Nj constraint and find {yji}, {f
j
i } by simply removing

duplicate occurrences of the same cluster k on a single image (only keep the feature f ji

that is further closest to the centroid).
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6.1.3 Detection of at most K keypoints per image

An intuitive way of constraining the detector to at most K keypoints per image would be

to use M = K clusters directly. Since the modified K-means drops duplicate occurrences

of the same cluster, this filtering mechanism would progressively constrain the detector

head into discovering K keypoints per image. As we have discussed though, it is crucial

to use M � K. The resulting over-segmentation of the feature space enabled our method

to recover several different clusters per landmark, which is necessary as viewpoint changes

introduce large appearance changes.

We can enable our method to both detect K landmarks per image and over segment

the feature space to M clusters with M � K by simply executing modified K-means

twice. The first time we cluster to K clusters to filter out duplicate occurrences of the

same cluster in a single image (constraining out training set to at most K points per

image). Note that the detection of fewer than K keypoints is allowed due to factors

like occlusion. The second time we cluster the reduced set of features to M clusters to

over-segment the feature space and enable our method to recover multiple clusters per

object landmark. These M clustering assignments will be used for correspondence learning

during the following iterative round. The whole process is illustrated in Fig. 6.1. Note

that even though clustering is performed twice, using an accelerated similarity search

method [78] this step can be executed very fast.

6.1.4 Negative pair Selection

Recall that following correspondence recovery at round t, Xt becomes {xj, {pji ,y
j
i}
Nj

i=1},

These clustering correspondences are going to be used to train Φh,2 on the subsequent

training iteration t+ 1 using a contrastive loss. As is common in unsupervised learning

methods that build on contrastive learning, the choice of positive and negative pairs

plays an important role in the learning process. Landmarks assigned to the same cluster

constitute natural positive pairs and as a result we want features f ji extracted at pji to be
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Figure 6.2: Comparison of negative selection strategies. In the previous Chapter, negative
pairs were sampled on keypoint locations with different clustering assignments. Since
multiple clusters can track the same landmark, this can lead to inaccurate negative pairs
(red line). Sampling negatives from the same image guarantees accurate pairs, given that,
by definition, each landmark can only appear once per image.

close to f j
′

i′ extracted at pj
′

i′ if and only if yji = yj
′

i′ .

On the other side, negative pairs can be chosen in many different ways. In our previous

work, negative pairs where selected as features f ji ,f
j′

i′ with yji 6= yj
′

i′ (assigned to different

clusters). This led to a contrastive loss formulation:

Lc(i, i
′, j, j′) = 1

[yji=y
j′
i′ ]
‖f ji − f j

′

i′ ‖
2 + 1

[yji 6=y
j′
i′ ]

max(0,m− ‖f ji − f j
′

i′ ‖
2), (6.2)

where 1[s] is the indicator function, andm is the margin (as also discussed in Subsection

5.2.1).

Here we improve our landmark representation performance through a novel strategy

for negative pairs selection based on the structure of the landmark detection task. Our

approach is to select negative pairs from the same image only. Given the over-segmentation

of the underlying landmarks to M clusters where M � K, a single landmark is guaranteed

to be captured by multiple clusters tracking various appearance/pose variations. The

result is that when yji 6= yj
′

i′ features f ji , f j
′

i′ can be either of different underlying landmarks

or of a different cluster tracking the same underlying landmark. Due to this uncertainty,

features from different images are not good candidates for negative pairs.

On the other hand, given the structure of the landmark detection task, each object
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landmark can only appear once per image. Features f ji , f ji′ are always guaranteed to be

from different underlying landmarks and can be informative negative pairs. This can be

formulated as:

Lc(i, i
′, j, j′) = 1

[yji=y
j′
i′ ]
‖f ji − f j

′

i′ ‖
2 + 1[yji 6=y

j

i′ ]
max(0,m− ‖f ji − f ji′‖

2), (6.3)

where the only difference compared to equation 6.2 are the indices for the negative

samples. Similarly to the previous Chapter, we form pairs from different images j, j′

as well as by letting j′ be a different augmentation of image j. In practice, to increase

the number of negative pairs, we also include negative pairs with features at random

background locations. An illustration of our negative pair mining strategy is shown in Fig.

6.2.

6.1.5 Warm up

Initially, at round t = 0 our training set X0 only includes {xj, {pji}
Nj

i=1} without point

correspondences f ji needed for the contrastive loss as described in the previous section. In

our previous work, point correspondences were initially recovered using features produced

by a generic keypoint descriptor like SuperPoint [40]. This work includes a bootstrapping

stage where we train the feature extractor form pairs of images j, j′ where j′ be a different

augmentation of image j. We form known point correspondences between the versions

of the same image through synthetic augmentations that can be used as initial positive

pairs. Essentially, we first warm-up our method using equivariance training and then

further improve our feature extractor through learning from unpaired data (with clustering

correspondence). This bootstrapping stage limits our method’s initialisation requirements

to just generic keypoint locations without the need for the corresponding descriptors.
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6.1.6 Learning K clusters

Given the pseudo-ground truth landmarks and their cluster assignments for all images in

X , our final goal in this section is to train the landmark detector Ψ (initially defined in

Section 4.2.1). In our previous work [114], cluster assignments where w.r.tM clusters (with

M >> K) and a progressive merging step was required to combine clusters tracking the

same underlying landmark. In this work, even though not explicitly enforced, we find that

through self-training learned features automatically form K well-separated clusters, thus

lifting the need for a progressive cluster merging step. This is due to (1) constraining the

detector on at most K keypoints per image and (2) the use of our negative pair sampling

strategy. Since at most K keypoints are detected per image that are all encouraged to

have well-separated features (only features from the same image are used as negative

pairs), K clusters emerge automatically over the whole dataset. An illustration of the

complete framework for Stage 1 of our proposed approach can be seenn in Fig. 6.3. During

training, features are clustered to M clusters with M >> K, whereas after self-training is

completed, the learned representations are well separated to K clusters.

6.1.7 Training a landmark detector

For Stage 2 of our approach, we simply use the pseudo-groundtruth of Stage 1. To finally

populate our training set with K clusters only, we perform a last K-means clustering with

K clusters. We train Ψ to regress, for each training image xj , K heatmapsHi, k = 1, . . . , K

each of which is a Gaussian placed at the pseudo-ground truth landmark location for

that image. Since keypoints are directly clustered to K clusters, progressive cluster

merging is not required. For a given image, the model is trained with an MSE loss over

all output channels for which there is landmark-to-cluster assignment for that image:

Ld =
∑

k ‖H(xk)−Ψ(xk)‖2. We do not apply the MSE loss for clusters with no landmark

assignments.
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Figure 6.3: Stage 1 of our Efficient Landmark Detection approach. Novel framework
components are highlighted. We improve upon our previous work by (1) bootstrapping
through equivariant training (Subsection 6.1.5), (2) constraining our model to detect at
most K keypoints per image (Subsection 6.1.3), (3) a novel negative selection strategy
(Subsection 6.1.4). Our framework progressively learns K well separated clusters that can
be used to train a full landmark detector without the need for progressive cluster merging.

6.1.8 Flipping augmentation

Flipping is a common augmentation strategy when training a landmark detector. In the

supervised case, one can flip an image and mirror the ground-truth landmarks, given the

naturally known correspondence between landmarks and their mirrored counterparts. In

the unsupervised learning case, such correspondence is not known. In methods based on

generative modelling or equivariance, one can only resort to flipping both the original

and the synthetically generated image. We propose to recover symmetric landmark

correspondence using deep clustering. At the correspondence recovery step (subsection

6.1.1), for each detected keypoint, features are sampled on both the original image and

the flipped version of an image (on the corresponding keypoint location). We treat these

features independently and produce two clustering assignments for each keypoint (one

for the original and one for the flipped image). During training of Stage1, the clustering

assignments of the flipped feature is used when an image is randomly flipped. For Stage2,
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we find cluster symmetries by measuring maximal correspondence between clusters in the

original and flipped images over the whole dataset. Note that in Stage2, flipping can be

used both in training and test time as usually done with supervised landmark detectors.

6.2 Implementation Details

6.2.1 Training

Keypoints and descriptors are initially populated by SuperPoint [40]. For K-means, we

used the Faiss library [78]. We also applied an outlier removal step using the same Faiss

library (this is not used later in the algorithm). We perform warm-up for 30,000 iterations

as described in 6.1.5. Then, we apply clustering and update the pseudo-ground truth

every 5,000 iterations. The number of clusters M is set to 100 for all examined datasets.

Contrary to our previous work, we do not use a larger number M for human pose datasets.

We found that no more than 200,000 iterations are necessary for the algorithm to converge

for all datasets. For Stage 2, we initialised the model from the weights of the model of

Stage 1, except for the weights of the last layer that are trained from scratch. To train the

models, we used RMSprop [57], with learning rate equal to 2 · 10−4, weight decay 10−5

and batch-size 16. All models were implemented in PyTorch [127].

Similarly to other recent methods [72, 200] we also train models with additional

temporal supervision (optical flow for short-term self-supervision as in [200]) for experiments

on video datasets. Note that our approach achieves good performance without temporal

supervision, and optical flow is used only when explicitly stated.

6.2.2 Evaluation

Our landmark detector (after Stage 2) directly regress K object landmarks, and evaluation

is performed following the standard metrics described in Subsection 2.6. Further to present
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Figure 6.4: T-SNE[174] visualisation of local features. Comparison with features produced
by SuperPoint[40] as well as the pipeline discussed in the previous Chapter.

evaluation for the object landmark detector learned from the Stage2 of our approach

(Subsection 6.1.6), we also conduct experiments where keypoints and correspondences

learned from Stage1 are evaluated directly (Section 6.3 Ablations) without learning a full

landmark detector. Since each cluster does not appear in every image under our first

stage formulation, we have to train a regressor to predict ground-truth annotations from

a varying number of visible landmarks. We opt for completing the missing values in the

training set with the Singular Value Thresholding method for Matrix Completion [15]

(leaving the detected points unchanged). For a given test image, we fill the missing values

by the average landmark for that position, calculated from the training partition.

6.3 Ablation Study

This Subsection included an extended ablation study on our efficient landmark detection

framework.

6.3.1 Feature representation:

As in the previous Chapter (Subsection 5.4.1), we start by qualitatively evaluating the

capacity of our method to learn distinctive features by computing the t-SNE [174] of the
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feature representations. Here we compare in Fig. 6.4 with the t-SNE for generic SuperPoint

features, as well as features returned by the framework of the previous Chapter after

self-training. We observe that our efficient landmark detection framework learns more

distinctive descriptors. This allows the removal of the progressive merging step since

features can be directly clustered to K clusters.

6.3.2 Robustness to noise

Even though generic keypoints capture several object landmark locations on images of

a specific object category, they also include a large number of noisy non-corresponding

points. The proposed landmark detection framework of the previous Chapter has already

demonstrated strong robustness to initialisation noise (Subsection 5.4.2). To evaluate the

effect of this noise on our effective landmark detection approach, we repeat the synthetic

experiment of Subsection 5.4.2 where instead of keypoints, we bootstrap our method by

a mixture of actual ground-truth landmark locations along with noisy points randomly

sampled from the image domain. We follow the same setup (Subsection 5.4.2) where

keypoint initialisation for each image is a set of 15 points that are sampled either from the

ground-truth locations of 15 facial landmarks (eyes, eyebrows, nose, mouth, chin) or as

a random image location. Our model is trained to detect 15 object landmarks, and we

conduct experiments with varying mixture ratios to evaluate the effect of different noise

levels.

In Subsection 5.4.2, the detector and feature extractor were evaluated separately by

F-measure and NMI where NMI allowed for an evaluation that was independent to the

number of clusters (recall that in our previous work, keypoints were separated into M

clusters that get progressively merged over Stage 2). Since we can now constrain our model

in detecting K = 15 (equal to the number of ground-truth landmarks used in this synthetic

experiment), we opt for a simpler evaluation process where performance is measured in

terms of total forward error. Results of this experiment are shown in Fig. 6.5. Similarly

to 5.4.2, we find that even with as much as only 20% of real object landmarks in the
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Figure 6.5: Forward-NME (shown for the first 10 iterative rounds) of training the first stage
of our method with varying ratios of real and random points. Experiment is performed on
CelebA [109]. Real points are sampled from 15 facial landmarks and further perturbed
spatially by a small offset sampled from [−3px,+3px].

# of clusters Forward-NME Backward-NME

M = 30 10.26 9.41
M = 50 7.99 6.99
M = 100 7.95 6.55
M = 250 8.58 6.26
M = 500 9.53 6.19

Table 6.1: Evaluation of landmarks learned from the first stage of our approach on
LS3D [13] under various number of training clusters. M . All models are trained for
K = 30. We see that M >> K results in better performance as it allows appearance and
viewpoint variations of the same landmark to be captured by several clusters

keypoint initialisation, our method is still able to recover to some extent. Increases in the

percentage of real points over 40% only result in minor performance gains.

6.3.3 Impact of number of clusters

We report, in Table. 6.1, performance for a detector trained with varying number of

clusters. As in the previous experiment, we again report forward/backward error instead

of NMI and F-measure. We verify the findings of the previous Chapter since, even though

our model is trained to detect K = 30 object landmarks, we see that the best performance

is attained for a larger number of training clusters. This over-segmentation of feature
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space is required for optimal clustering assignment as it allows for multiple clusters that

capture different appearance variations of the same landmark, enabling the discovery of

more stable landmarks (as demonstrated by smaller values of the backward error in Table

6.1).

Here we also observe that on the other extreme, for very big M values, the same

underlying landmark is tracked by several clusters, each containing only very similar

features. This hinders the ability of our method to learn representations that are robust to

viewpoint or appearance variations, and more diverse landmarks get filtered out (leading

to an increase in Forward-NME). Note that, in the extreme case where M is equal to the

number of detected keypoints (each cluster contains a only single feature), our method

essentially equates to equivariance training. Even though we could potentially optimise

the cluster number of different datasets, we opt for consistently using 100 clusters for all

experiments.

6.3.4 Keypoint initialisation

In this work, we use SuperPoint [40] to provide keypoint initialisation for our method, but

other keypoint detectors can also be used. In the previous Chapter (Subsection 5.4.4) we

contrasted SuperPoint [40] to the recent R2D2 [135] method. Here we expand our analysis

to also include as popular SIFT [112] and ORB [139] detectors. Note that SIFT and ORB

tend to detect large numbers of spatially clustered points, thus providing a suboptimal

initialisation of landmark detection. Moreover, since we perform modified K-means across

keypoint features collected over the whole dataset (see Section 6.1.1), a large number of

spatially clustered keypoints per image can increase computational requirements. Even

though similarity search methods like Faiss [78] can scale to very large datasets (through

lossy compression based on product quantizers), here we opt for simply combining SIFT

and ORB with the adaptive non-maximal suppression method of [8], thus ensuring a

homogeneous spatial distribution and constraining the number of detecting keypoints.
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Keypoint Detector Forward Backward
SIFT [112] + ANMS [8] 4.07 7.79
ORB [139] + ANMS [8] 3.85 7.70
R2D2 [135] 3.71 7.97
SuperPoint [40] 3.25 6.65

Table 6.2: Evaluation of landmarks learned on the first stage of our framework on CelebA
under different keypoint initialisation methods. Models are trained to for K = 30.

Table. 6.2 shows the results of the forward evaluation of the generic keypoints provided

by the examined methods. While all methods yield competitive results, SuperPoint is a

better method for initialisation. Note that handcrafted methods were not included in the

similar analysis of the previous Chapter (Subsection 5.4.4) as it was observed that they did

not provide a sufficiently strong initialisation. More specifically, generic features provided

by handcrafted methods could not capture any invariance to appearance or viewpoint

variations of the same landmark and resulted in poor initial correspondence recovery. Due

to the warm-up stage introduced in this Chapter, we no longer require generic features

to bootstrap our method, and handcrafted keypoint detectors can also used to provide

initialisation that leads to competitive performance (even thought SuperPoint remains the

strongest initialisation method).

6.3.5 Negative-Pair Selection

We conduct an ablation study on the proposed negative pair selection strategy (referred

to as same image only). We compared to the approach described in the previous Chapter

(referred to as different cluster) where negative pairs were selected as keypoints with

different clustering assignments. Results in Table 6.3 are given with both correspondence

recovery through clustering and equivariance training. Note that the experiments that

use equivariance still utilise deep clustering (constraint the detector in detecting at most

K landmarks and filtering out noisy keypoints), but for training through the contrastive

loss we only use augmented views of the same image.

We observe that our improved negative pair selection strategy is the best performing
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# Negative-Pairs Correspondence NME

1 different clusters Clustering 11.15
2 same image only Equivariance 10.02
3 different clusters Equivariance 9.56
4 same image only Clustering 7.95

Table 6.3: Ablation study of the proposed negative pair selection strategy (compared to the
strategy of [114]), combined with either clustering or equivariance training. Experiment
performed in the challenging LS3D [13] dataset. We report forward-NME error values.

Dataset p.p.e NME(%)
Stage1 Stage2 Stage1 Stage2

CelebA (K = 30) 25.8 30 3.3 3.2
AFLW (K = 30) 23.4 30 8.1 7.4
LS3D (K = 30) 23.5 30 7.9 5.2

Table 6.4: Comparison of the first and second stages of our framework in terms of Forward-
NME. We also report average number of points detected per image (p.p.e) on each stage.
The full landmark detector on the second stage detects one landmark per K channels so
p.p.e is 30.

method when correspondence is recovered via clustering (line 4 ). The different cluster

strategy separates features into M clusters (line 1 ) and results in poor performance when

it is not combined with an additional merging step (as in the previous Chapter). Also,

our negative pair selection strategy is only beneficial when correspondence is recovered

through clustering (not with equivariance). This is expected since, with equivariance

training, point correspondences are known, and inaccurate negative pairs (similar to the

ones shown in Fig. 6.2) do not emerge. As a result negative pairs from different cluster

are more informative and result in better performance (experiment in line 3 performs

better than experiment in line 2 ).

6.3.6 Stage 1 vs Stage 2

For the first stage of our method, a set of points are detected per image for which

correspondence is recovered through clustering. In the second stage, these points and

correspondences are used to train a landmark detector with K output channels. The
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Dataset Flip(Train) Flip(Test)1 Stage1 Stage2

CelebA
5 5 3.88 3.42
3 5 3.32 3.40
3 3 3.32 3.25

LS3D
5 5 8.69 5.81
3 5 7.95 5.45
3 3 7.95 5.26

Table 6.5: Experiments on the effect of flipping as a training augmentation and at test
time. Results are given for both stages of our approach in terms of Forward-NME.

LS3D-Test CelebA-Test
TrainSet [0◦, 30◦] [30◦, 60◦] [60◦, 90◦] total total

CelebA 5.86 6.21 9.20 6.95 3.25
LS3D 4.42 5.07 6.51 5.26 3.33

Table 6.6: Cross-Dataset evaluation. We report the forward-NME on the test partitions of
CelebA and LS3D. For LS3D-Test (LS3D-Balanced), error is shown across poses (measured
in buckets of different yaw angles).

number of detected points per image in the first stage is ≤ K since there is no guarantee

that each would appear in each image. On the contrary, our full landmark detector (output

of the second stage) learns K unsupervised landmarks (one per output heatmap). In Table

6.4 we compare the performance of the first vs second stage in terms of forward NME

while also report the average number of points detected per image. We observe that the

full landmark detector recovers the missing clusters in the second stage, which results

in lower error values. Performance increase is most notable on LS3D, where occlusion is

extended due to large jaw angles.

6.3.7 Generalisation

To further analyse the robustness of our proposed approach to in-plane rotations as well

as to domain shift, we conduct a cross-dataset evaluation (Table 6.6). In particular, for

K = 30, we evaluate models trained on CelebA and LS3D on the corresponding test

partitions (LS3D-Balanced and MAFL). In Table 6.6, we break down the results for

LS3D-Balanced in different yaw angle ranges (to allow for a better comparison between the
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same-dataset results shown in Table 6.4 and those given by this cross-dataset evaluation).

We can observe that due to the lack of in-plane rotations on CelebA, the model tends

to produce high error values for larger poses in LS3D-Test. On the contrary, the model

trained on LS3D can maintain its robustness on the CelebA-Test partition, given that

it is composed of mostly frontal faces. We can also observe that the improvement of

the LS3D model compared to that trained on CelebA, is quite significant on the most

difficult partition of the LS3D-Test, illustrating the need of having a diverse set of images

describing the geometry of the target object.

6.3.8 Flipping

Finally, we conduct an ablation study on the proposed flipping augmentation strategy.

Results for both CelebA and the more challenging LS3D database are given in Table 6.5.

We observe that both flipping as a training augmentation and flipping at test time result

in consistent performance improvement.

6.4 Comparison with state-of-the art

This Section presents the experiments carried out to validate the proposed approach. Some

qualitative results on various datasets are shown in Fig. 6.6.

6.4.1 Evaluation on facial datasets

We present results for our method trained for both 10 and 30 landmarks. Results

in Table. 6.7 show the commonly reported forward error w.r.t 5 ground-truth facial

landmarks. Even though methods that detect a higher number of landmarks can result in

better Forward-NME values (as also mentioned in [164]), our effective landmark detection

framework with K = 10 improves performance on this evaluation compared to our previous
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Figure 6.6: Qualitative results of our proposed approach on various object categories

Method MAFL AFLW

Lorenz [110] (K=10) 3.24 -
Shu [149] 5.45 -
Jakab et al.[72] (K=10) 3.19 6.86
Zhang et al. [200] (K=10) 3.46 7.01
Sanchez [144] (K=10) 3.99 6.69
Sahasrabudhe [142] 6.01 -
Ours† (K = 13) 4.18 7.42
Ours‡ (K = 49) [114] 4.12 7.37

Ours (K=10) 3.83 7.18

Table 6.7: Forward-NME on MAFL and AFLW (normalized by inter-ocular distance)
evaluated over 5 groundtruth landmarks. The regression is trained with max N to be
consistent with previous work. † Our approach as introduced in Chapter 4. ‡ Our approach
as discussed in Chapter 5.
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work (our approach detected 13 unsupervised landmarks as described in Chapter 4 and

49 unsupervised landmarks as described in Chapter 5). For cumulative curves, the error

is calculated w.r.t 68-standard facial landmarks. From our results on all facial datasets

(Fig. 6.7), we can see that our method provides the best overall performance (considering

both forward and backward errors). Moreover, we outperform our previous method (as

described in Chapter 5.2.2) in all comparison (see Fig. 5.9 of the previous Chapter, curves

were not included here for clarity of visualisation).
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Figure 6.7: CED curves for forward and backward errors. We compare our method
with [72, 200] (for K = 10, 30). Where possible, we used pre-trained models. Otherwise,
we re-trained these methods using the publicly available code. A set of 300 training images
is used to train the regressors. Error is measured w.r.t. the 68-landmark configuration
typically used in face alignment.

As also observed in the previous Chapter, our approach surpasses other methods when

evaluation is performed w.r.t to all 68-facial landmarks (compared to standard 5 landmark

evaluation on MAFL and AFLW presented on Table 6.7 where we maintain competitive

performance). The 5 facial landmark configuration includes points in uniform areas and not
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Figure 6.8: Evaluation of the ability of raw unsupervised landmarks to capture supervised
landmark locations on CelebA. Each unsupervised landmark are mapped to the best
corresponding supervised landmark using the Hungarian Algorithm. Then accuracy is
calculated for a distance threshold of d = 10px. Accuracy is shown for each of the 68-facial
landmarks sorted by ascending order of index. Different landmark areas are highlighted
with different colours (1-17 are facial contour landmarks, 18-27 are landmarks tracking
the eyebrows, e.t.c.)

CatHeads Forward-NME (%)

Thewlis[164] Zhang[200] Lorenz[110] Ours
26.94 14.84 9.30 9.31

Table 6.8: Performance on the CatHeads dataset [197]. All methods detect K = 20
unsupervised landmarks. Results for other methods are taken directly from the papers.
Same as other methods, we regress 7 of the 9 annotated landmarks for this experiment
(excluding landmarks on the ears).

repeatable edges or corners (centre of the eye, centre of the nose) that are not commonly

tracked by generic keypoint detectors. On the contrary, our method is better suited to

track the 68 commonly used facial landmarks. To further demonstrate this, we evaluate

how accurately raw unsupervised landmarks track supervised landmark locations in Fig.

6.8. Each one of the 68-facial landmarks is matched to the best corresponding unsupervised

landmarks (K = 30 is used for all methods) through the Hungarian algorithm. We observe

that most of our detected unsupervised landmarks track actual semantic object locations

with high accuracy. In contrast, landmarks detected by [72, 200] are mostly uniformly

speared over the objects’ surface (to ensure stronger image generation/reconstruction)

and do not tend to track manually annotated landmark locations. Evaluation in terms of

Forward-NME for the CatsHead dataset is shown in Table. 6.8. Our method reaches a

similar error value as the best performing method of [110].
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Figure 6.9: Evaluation on BBCPose and Human3.6 datasets. CED curves for the forward
and backward errors, computed for a regressor trained with 800 samples. We compare
our method with [72, 200] (re-trained using the publicly available code). All methods are
trained to discover 30 landmarks.

6.4.2 Evaluation on human pose datasets

Performance of our method on the BBCPose and Human3.6M datasets is shown in Fig.

6.9. Note that in this experiment, all methods are trained without temporal supervision.

For both datasets, our approach demonstrates significantly better performance. As also

observed in the previous Chapter, the forward error in Human3.6M sharply increases for

all methods when more than 22 landmarks are considered because the hands of the subject

are not captured by any method.

In Table 6.9 we measure the accuracy of regressed landmarks on the BBCPose
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BBCPose Regressed Landmark Accuracy (%)

Method Head Shldrs Elbws Hands Avg

Supervised
Yang [187] 63.40 53.70 49.20 46.10 51.63
Pfister [130] 74.90 53.05 46.00 71.40 59.40
Chen [28] 65.90 47.90 66.50 76.80 64.10
Charles [24] 95.40 72.95 68.70 90.30 79.90
Pfister [129] 98.00 88.45 77.10 93.50 88.01

Unsupervised
Jakab [72](selfsup) 81.01 49.05 53.05 70.10 60.79
Jakab [72] 76.10 56.50 70.70 74.30 68.44
Lorenz [110] - - - - 74.50

Ours 97.89 49.65 71.26 84.90 75.93

Table 6.9: Accuracy of regressed landmarks on BBCPose measured as %-age of points
within d = 6px from the ground-truth for an image resolution of 128px. Results for other
methods taken directly from the papers. All unsupervised methods in this experiment
utilise temporal information.

PennAction Raw Landmark Accuracy (%)

Method Head Shldrs Elbws Hands Waist Knees Legs

Jakab [72] 6.36 9.23 7.85 0.59 22.27 17.85 6.48
Ours 74.27 57.91 33.00 8.36 64.81 69.54 75.84

Table 6.10: Accuracy of raw discovered landmarks that correspond maximally (calculated
through the Hungarian algorithm) to each ground-truth point measured as %-age of
points within d = 6px from the ground-truth [72] (image resolution of 128px). For this
experiment, examined methods do not utilise temporal information. † Our method as
described in Chapter 5.

database. For this experiment, temporal supervision is available for all unsupervised

methods. Even though this enables other approaches to achieve stronger performance, our

model outperforms all other methods. Some visual examples of unsupervised landmarks

that maximally correspond to ground-truth points are given in Fig. 6.10.

Figure 6.10: Examples on Human3.6 and BBCPose databases. We show the unsupervised
landmarks that maximally corresponding to the provided groundtruth (selected through
the Hungarian Algorithm).
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Human3.6 Raw Landmark Evaluation

Accuracy(%)

Method Head Shldrs Elbws Waist Knees Legs Avg

Zhang [200] 20.9 53.1 51.0 43.7 85.6 2.0 42.7
Jakab [72] 0.5 52.2 32.4 26.1 3.7 24.6 23.2

Ours 81.1 89.8 39.7 94.2 93.6 64.4 77.1

PCK(%)

Method Head Shldrs Elbws Waist Knees Legs Avg

Zhang [200] 11.1 34.8 44.6 20.9 69.3 0.50 30.2
Jakab [72] 0.20 39.8 19.3 15.2 2.15 14.1 15.1

Ours 51.7 86.3 43.0 92.2 83.9 63.5 70.1

Average Precision and Recall (over OKS)

Method AP AP0.5 AP0.4 AR AR0.5 AR0.4

Zhang [200] 0.02 0.17 0.67 0.06 0.41 0.82
Jakab [72] 0.0 0.0 0.07 0.0 0.01 0.25

Ours 0.22 0.84 0.95 0.30 0.91 0.97

Table 6.11: Evaluation of raw discovered landmarks that correspond maximally to each
ground-truth point. We report accuracy as %-age of points within d = 6px from the
ground-truth (image resolution of 128px), the Percentage of Correct Keypoints (PCK)
calculated over a threshold of 0.3 of torso length, as well as Average Precision (AP) and
Recall (AR) (commonly used to evaluate supervised human pose estimation methods, for
example [32]). We also calculate AP and AR with a relaxed OKS threshold of 0.4.

We also measure the accuracy of unsupervised landmarks that are found to maximally

correspond to the provided ground-truth points (calculated through the Hungarian Algo-

rithm) for Human3.6 and PennAction databases (Tables 6.11, 6.10). We observe that our

approach is able to discover unsupervised landmarks that robustly track several parts of

the human body (except the hands for both Human3.6M and PennAction) and show much

higher accuracy values compared to the other methods (including our previous work as

described in Chapter 5). For Human3.6 (Table 6.11) we can see that our method surpasses

state-of-the-art methods in all reported metrics. For the challenging PennAction database

that includes large pose variation and complicated backgrounds, we demonstrate higher

accuracy (Table 6.10), whereas [72] completely underperforms in this setting. Note that

we do not use temporal supervision to train examined methods. Some qualitative results

of our approach for various object categories are shown in the following figures.
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6.5 Chapter Conclusion

This Chapter extends our method through several technical innovations. Most notably, we

remove the progressive clustering stage of our previous work, introduce a novel negative pair

selection strategy and enabling flipping augmentation for unsupervised landmark detection.

The proposed effective landmark detection framework achieves improved performance

compared to our previous work through a simpler training pipeline. We extend our

experimental analysis to challenging datasets like PennAction where other recent methods

underperform when trained without additional temporal supervision.

Figure 6.11: Qualitative results for our approach on PennAction.

Figure 6.12: Qualitative results for our approach on LS3D.
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Figure 6.13: Qualitative results for our approach on BBCPose.

Figure 6.14: Qualitative results for our approach on CUB-200-2011.
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Figure 6.15: Qualitative results for our approach on Human3.6.

Figure 6.16: Qualitative results for our approach on CatHeads.



Chapter 7

Conclusions

The aim of this thesis was the development of landmark detectors for arbitrary object cat-

egories in an unsupervised manner, without requirement for expensive manual annotations.

Mainly, we address two important challenges of unsupervised landmark detection. (a) The

discovery of highly semantic landmarks. This work identifies the various analogies between

keypoints and object landmarks. Through self-training on generic keypoints, our proposed

landmark detection framework detects landmarks similar to the ones assigned from human

annotators for multiple object categories (human and cat faces, human body, e.t.c). (b)

Developing detectors that are robust to large changes in viewpoint, out-of-plane rotations

and object deformations. Through clustering correspondence, landmark representations

are learned directly from unpaired images leading to strong invariance to appearance or

shape variations. Our models can fit faces even in very large poses (in the −90 to 90 range

for the LS3D database) and account for object deformation (like those demonstrated by

the human body in Human3.6 and PennAction databases).

Strong performance is demonstrated on highly deformable object categories, even

without temporal supervision (that is necessary for related methods). We also con-

tribute a study of training neural nets under extreme label noise for fine-grained lo-

calisation tasks and enable flipping augmentation for unsupervised landmark discovery

through deep clustering. Throughout this thesis, we demonstrate state-of-the-art land-

110
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mark detection performance on multiple challenging datasets capturing diverse object

categories (LS3D, Human3.6, PennAction, BBCPose). The contributions of this the-

sis have also led into two a prestigious publications [114, 115] at the NeurIPS confer-

ence in 2020 and IEEE’s Transactions on Pattern Analysis and Machine Intelligence

(TPAMI) in 2023. Code and pretrained models have been made publicly available on

https://github.com/malldimi1/UnsupervisedLandmarks and https://github.com/

malldimi1/KeypointsToLandmarks under an MIT licence.

7.1 Discussion

So far we demonstrated that the proposed approach is able to consistently discover highly

semantic landmarks for various object types. However, we also note that it might not be

appropriate for every possible object category. We identify and discuss various properties of

object datasets that might affect the performance of our unsupervised landmark detector.

(1) Datasets with extreme interclass variation: Clustering correspondence requires

some consistency in visual appearance, to produce meaningful clusters. We found that our

method underperforms for object categories demonstrating extreme interclass appearance

variation. An interesting example is the Shoes dataset (from UT Zappos50k [189])

commonly referenced in the unsupervised landmark discovery literature. Related methods

based on image generation/reconstruction tend to perform well, since objects are depicted

over a white background under uniform orientation (minimum 3D rotations), leading

to strong reconstruction performance. Our approach in contrast, struggles to discover

consistent clusters due to the extreme appearance variation between keypoints on different

shoe types. Consider that a keypoint on the heel of a high-heel shoe has a completely

different visual appearance compared to a keypoint on the back of a flip-flop, even though

both points refer to the same underlying landmark location. Note that even in this case,

our method would be able to discover shoe-type specific clusters but would struggle to

group clusters corresponding to the same semantic landmark. A similar effect was observed

https://github.com/malldimi1/UnsupervisedLandmarks
https://github.com/malldimi1/KeypointsToLandmarks
https://github.com/malldimi1/KeypointsToLandmarks
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on animal datasets capturing multiple animal species with a uniform keypoint configuration

like [191, 16]. Note that extreme appearance variation in animal pose estimation constitutes

a challenge even for supervised methods.

(2) Object categories with landmarks on low texture areas. A basic assumption

of the proposed approach is that generic keypoints would tend to overlap with object

landmarks across multiple instances of the same object. Thus, the proposed approach might

underperform for object categories where semantic landmarks are mostly located on flat

surfaces. The SuperPoint [40] keypoint detector would not capture meaningful landmarks

located on flat surfaces. It is discussed in Chapter 4, that our method underperforms

when evaluated w.r.t the 5-point configuration on CelebA, comprising mostly of facial

landmarks located on uniform areas of the face. In contrast, methods based on an image

generation/reconstruction objective, tend to discover a large number of unsupervised

landmarks in low-texture areas.

(3) Objects under full 3D rotation. We have demonstrated that our approach is able

to provide invariance to large out-of-plane rotations much better compared to other recent

methods. In many cases though, discovered landmarks can either be unreliable or unable

to provide full invariance to large 3D rotations. In Human3.6M, many images display a

full 3D rotation for humans, including poses that leave the camera behind. The visual

appearance of the frontal and back view of the human body is similar and discovered

landmarks cannot distinguish the left and right sides, thus full invariance to 3D rotation

is not provided. To our knowledge, unsupervised landmark discovery methods are not yet

able to provide complete 3D rotation invariance for human pose estimation datasets.

(4) Datasets with artefacts or repeatable background points. Since our method is boot-

strapped by generic keypoints, artefacts on training images (that might fire as keypoints) or

recurring patterns in the background might cause performance degradation. An example is

the SimplifiedHumans, that is, the Human3.6M [69] database with the background removed

through the off-the-shelf unsupervised background subtraction method (provided in the

dataset). Even though related methods perform much better given a simplified background
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(the reconstruction task is simplified), artefacts created by background subtraction result

in a large number of noisy keypoints that might deteriorate the performance of our method.

Our method, would also tend to capture repeatable keypoints as object landmarks, even

when they are located in the background. This was manifested in Human3.6M database,

an indoor human pose dataset captured in a single room. Multiple elements of the room

(edges on doors, floor, etc) were captured as keypoints and were repeated across multiple

images, leading to the discovery of unreliable background object landmarks.

Finally, even though the framework proposed in this thesis was applied to various

challenging object types (faces, bodies, birds, animal faces, etc), multiple object domains

and potential applications remain unexplored. We leave the adaptation of our proposed

approach for unsupervised landmark discovery on novel object categories as interesting

future work. Some exciting applications can be keypoint detection for medical imaging,

unsupervised pose estimation for 3D objects, keypoint detection for object animation (as

in [150]) or even keypoint detection for plant or root health classification (for example [7]).

7.2 Future work

The main focus of this work is the discovery of unsupervised landmarks on various object

categories without manual supervision. Even though significant progress is demonstrated

through this thesis, the task of unsupervised landmark discovery remains an open problem

with significant room for improvement. We identify multiple interesting directions for

future work.

Dependency to SuperPoint

Our proposed framework is bootstrapped by generic keypoints. We find that SuperPoint [40]

provides the strongest initialisation for our method. Currently, SuperPoint is used as an

off-the-shelf external component. However, a more elegant solution could be to perform
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keypoint detection inside our proposed framework directly. One possible approach could

be to infer possible keypoint locations by exploiting the information within our feature

extractor as in [166]. This could simplify our proposed framework and further increase the

semantic value of detected landmarks.

Domain Adaptation

The main focus of this thesis is the development of robust landmark detectors for arbitrary

object categories. An interesting future direction could be following a domain adaptation

paradigm. We assume that a pre-trained landmark detector, trained in a fully supervised

manner for a source object category, is available. As in [144], we can adapt the pre-trained

detector on the target object category simply by learning two projection matrices, from

the core pretrained network (that remains frozen during training) to our detector and

feature extractor heads (see subsection 5.2). This architecture could significantly reduce

the number of learned parameters and potentially enhance performance since strong

invariance to viewpoint variations and natural object deformations are already encoded to

the pre-trained network.

Single Stage Pipeline

Our self-training framework for unsupervised landmark discovery comprises of two stages

(Chapters 5,6). The first stage aims to establish landmark correspondence and recover

object landmark locations. Then, pseudo labels formed from the first stage are used to

train a landmark detector. An interesting future direction could be to modify our proposed

framework into a single-stage pipeline. This could be achieved by including an third output

head Φh,3 (see subsection 5.2) with X → E , where E ∈ RHo×Wo×K that is trained to with

standard heatmap regression to detect K object landmarks. Pseudolabels can be formed

during iterative self-training of stage 1 by applying K-means directly with K clusters (as

in subsection 5.2.2). Special care needs to be taken to account for varying cluster order
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for subsequent K-mean rounds. One solution could be to train the last Conv layer of Φh,3

from scratch on each self-training round.

Advancements in SSL

This thesis proposes an SSL-based approach to discover correspondences through deep

clustering of landmark representations. Given the rapid progress of self-supervised learning,

several new techniques are recently proposed that claim enhanced representation learning

performance. Possible directions to capitalise on recent progress could be to increase the

number of negative pairs for contrastive learning (through momentum contrast [62], larger

batch sizes[25] or memory banks [178]), form informative, positive pairs by applying strong

augmentation strategies (for example, RandAugment [37]), or discarding negative pairs as

in [58].
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