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Abstract

Camera based methods for optical coordinate metrology are growing in

popularity due to their non-contact probing technique, fast data acquisi-

tion time, high point density and high surface coverage. However, these

optical approaches are often highly user dependent, have high dependence

on accurate system characterisation, and can be slow in processing the raw

data acquired during measurement. Machine learning approaches have the

potential to remedy the shortcomings of such optical coordinate measure-

ment systems. The aim of this thesis is to remove dependence on

the user entirely by enabling full automation and optimisation of

optical coordinate measurements for the first time. A novel soft-

ware pipeline is proposed, built, and evaluated which will enable automated

and optimised measurements to be conducted. No such automated and op-

timised system for performing optical coordinate measurements currently

exists. The pipeline can be roughly summarised as follows:

intelligent characterisation → view planning → object pose estimation →

automated data acquisition → optimised reconstruction.

Several novel methods were developed in order to enable the embodiment

of this pipeline. Chapter 4 presents an intelligent camera characterisation

(the process of determining a mathematical model of the optical system) is

performed using a hybrid approach wherein an EfficientNet convolutional

neural network provides sub-pixel corrections to feature locations provided
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by the popular OpenCV library. The proposed characterisation scheme is

shown to robustly refine the characterisation result as quantified by a 50 %

reduction in the mean residual magnitude. The camera characterisation is

performed before measurements are performed and the results are fed as

an input to the pipeline. Chapter 5 presents a novel genetic optimisation

approach is presented to create an imaging strategy, ie. the positions from

which data should be captured relative to part’s specific geometry. This

approach exploits the computer aided design (CAD) data of a given part,

ensuring any measurement is optimal given a specific target geometry. This

view planning approach is shown to give reconstructions with closer agree-

ment to tactile coordinate measurement machine (CMM) results from 18

images compared to unoptimised measurements using 60 images. This view

planning algorithm assumes the part is perfectly placed in the centre of the

measurement volume so is first adjusted for an arbitrary placement of the

part before being used for data acquistion. Chapter 6 presents a generative

model for the creation of surface texture data is presented, allowing the

generation of synthetic butt realistic datasets for the training of statistical

models. The surface texture generated by the proposed model is shown

to be quantitatively representative of real focus variation microscope mea-

surements. The model developed in this chapter is used to produce large

synthetic but realistic datasets for the training of further statistical mod-

els. Chapter 7 presents an autonomous background removal approach is

proposed which removes superfluous data from images captured during a

measurement. Using images processed by this algorithm to reconstruct a

3D measurement of an object is shown to be effective in reducing data

processing times and improving measurement results. Use the proposed

background removal on images before reconstruction are shown to benefit

from up to a 41 % reduction in data processing times, a reduction in su-

perfluous background points of up to 98 %, an increase in point density on
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the object surface of up to 10 %, and an improved agreement with CMM

as measured by both a reduction in outliers and reduction in the standard

deviation of point to mesh distances of up to 51 µm. The background re-

moval algorithm is used to both improve the final reconstruction and within

stereo pose estimation. Finally, in Chapter 8, two methods (one monocular

and one stereo) for establishing the initial pose of the part to be measured

relative to the measurement volume are presented. This is an important

step to enabling automation as it allows the user to place the object at an

arbitrary location in the measurement volume and for the pipeline to adjust

the imaging strategy to account for this placement, enabling the optimised

view plan to be carried out without the need for special part fixturing. It is

shown that the monocular method can locate a part to within an average

of 13 mm and the stereo method can locate apart to within an average of

0.44 mm as evaluated on 240 test images. Pose estimation is used to pro-

vide a correction to the view plan for an arbitrary part placement without

the need for specialised fixturing or fiducial marking.

This pipeline enables an inexperienced user to place a part anywhere in

the measurement volume of a system and, from the part’s associated CAD

data, the system will perform an optimal measurement without the need

for any user input. Each new method which was developed as part of this

pipeline has been validated against real experimental data from current

measurement systems and shown to be effective.

In future work given in Section 9.1, a possible hardware integration of the

methods developed in this thesis is presented. Although the creation of

this hardware is beyond the scope of this thesis.
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1.1. COORDINATE METROLOGY

Current approaches to optical coordinate metrology are highly depen-

dant on a human operator and can be slow in both data acquisition and

data processing. Inexperienced operators often capture too much data

which further delays both data acquisition and data processing and they

often capture these data from sub-optimal positions, harming the mea-

surement outcome. It is the aim of this thesis to develop a software

pipeline to enable, for the first time, a fully automated coordinate

measurement system which conducts measurements in an opti-

mised manner. The thesis will consider all parts of the measurement

pipeline including developing an accurate model of the imaging system,

planning the measurement and capturing and processing the measurement

data. Automation is desirable to remove any operator dependence, allow-

ing inexperienced users to achieve good measurement results. Optimisation

in this case refers to the desire to reconstruct high quality and complete

measurement data of an object while minimising time, computational cost

and unwanted background information. Both automation and optimisation

are achieved by exploiting a priori information, particularly through the

use of machine learning (ML).

In this Chapter, a brief introduction to coordinate metrology is given and

current issues with optical approaches are summarised. The proposed

pipeline to enabling full automation of an optical measurement system is

then presented along with a summary of the novel contributions developed

in this thesis which enable this pipeline to be realised.

1.1 Coordinate metrology

According to the international vocabulary of metrology, metrology is ”the

science of measurement and its application” [6]. Coordinate metrology is
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1.1. COORDINATE METROLOGY

a branch of dimensional metrology which aims to construct a set of three-

dimensional (3D) points representing the surface of some object of interest.

When a surface is measured it can be thought of in two components; form

and texture, which together make the surface topography. Form is the un-

derlying shape of a part or fit to a measured surface [7]. Texture comprises

the geometrical irregularities at the surface which do not contribute to the

form of the surface [8]. The output of a form measurement is typically

a 3D point cloud, an unordered data structure which is a list of (x, y, z)

coordinates paired with additional data such as colour and local surface

normals. In contrast, the output of a texture measurement is a 2.5D height

map, a regular grid of (x, y) locations with height data (z) at each location.

In a coordinate measurement, it is normally the form that is captured by

a measurement, although some coordinate measurement systems (CMSs)

can also be used to extract large scale texture as is demonstrated in Sec-

tion 7.3.1. Traditionally form is measured using tactile probing systems, so

called co-ordinate measurement machines (CMMs). Figure 1.1 shows the

touch trigger probe used in Renishaw plc CMMs [9].

Figure 1.1: Renishaw CMM probe design.

CMMs can be calibrated to provide metrologically traceable measure-

ment results, meaning that measurements provided by a CMM can be

related to a reference through an unbroken chain of calibration, each con-
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1.1. COORDINATE METROLOGY

tributing to the uncertainty [6]. However, a contact probe such as that

shown in Figure 1.1 has many disadvantages [10]: due to the need to

record many points which must all be individually contacted it takes a

large amount of time to complete a measurement, the physical contact of

the probe can cause the measurement itself to influence the result, some

complex geometries may be unreachable by the probe, and any surface tex-

ture detail which has feature sizes smaller than the diameter of the probing

tip will be smoothed out as shown in Figure 1.2.

Figure 1.2: Smoothing caused by CMM probe-tip diameter.

The advent of additive manufacturing (AM) [11] has enabled huge de-

sign freedom in modern parts [12] - the kinds of complex freeform surfaces

enabled by AM are often unsuitable for contact measurement. For this

reason, non-contact optical CMSs are growing in popularity within this

sector. In particular, camera based triangulation methods can offer high

point density and surface coverage with low data acquisition times. These

methods have the added benefit of having inexpensive ”off-the-shelf” hard-

ware requirements. Arguably the biggest drawback of using optical camera

based coordinate measurements is that they cannot be calibrated and thus

their measurements cannot be paired with a statement of uncertainty. Al-

though calibration of optical CMSs is an active area of research [13], it falls

outside the purview of this thesis.

The most popular camera based triangulation methods are close range
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photogrammetry (from hereon referred to as photogrammetry), and digi-

tal fringe projection (DFP). The details of photogrammetry and DFP are

covered in Section 2.1.1 and Section 2.1.2 respectively but, at a high level,

both operate by triangulating 3D points from extracted 2D image features

between a minimum of two imaging positions using a projective camera

model. Photogrammetry approaches coordinate measurement in a passive

way through extracting, matching and triangulating features present in a

set of overlapping raw images around a part. DFP, in contrast, uses an ac-

tive sensing approach where a projector is used to project a known pattern

onto the surface of a part, a camera records the deformation of the known

pattern caused by the surface form and depth information is extracted from

this deformation.

1.2 Problem statement

As stated previously, photogrammetry and DFP suffer from a high depen-

dence on the operator, and humans are prone to error and sub-optimal

operation. For example, a requirement for producing useful measurement

results is the development of a mathematical model of any cameras and

projectors in the system. The generation of these models is referred to

as characterisation, as is covered in Section 2.1.3. Characterisation of the

camera and projector models is a manual process wherein the operator

must capture images of a target artefact at a range of positions and orien-

tations within the field of view (FOV) of the imaging system. The choice of

characterisation locations can cause poor measurement results if conducted

sub-optimally as the mathematical model of the optical systems may not

accurately represent the real system. This issue can be addressed in two

ways, removing the user entirely and automating the characterisation pro-
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cedure or by making the characterisation algorithms more robust to poor

imaging conditions caused by the inclusion of suboptimal imaging locations

in the characterisation dataset.

Additionally, the measurement result is highly sensitive to the imaging

strategy (ie. how many images to capture and from which positions to

capture them). For example, complex parts may cause self occlusions from

some viewing angles leading to data loss. This issue is often addressed

Naïvely by simply capturing data from a very high number of positions,

minimising the probability of self occlusion and poor surface coverage.

However, this leads to huge inefficiencies in data processing. In DFP point

clouds are reconstructed individually from each view and stiched together

to create the overall form of the part, in creasing the number of point

clouds and therefore stitching operations which must be computed leads

to large computational costs. In the case of photogrammetry, features de-

tected in each image are matched putatively putatively (ie. each feature

in every image is a potential match with all features in every other image)

which leads to a combinatorial explosion with each additional image in the

dataset. The desirable approach would be to remove the user from both

planning the imaging strategy and performing the data capture. Instead,

the imaging locations would be optimised based on the specific geometry

of the object in such a way that maximises surface coverage and recon-

struction quality while minimising the number of imaging positions. This

optimised plan would then be conducted autonomously in a computer nu-

merical control (CNC) measurement system.

A further inefficiency is caused because there is often a large amount of

background data captured within the system’s FOV. These background

pixels are not distinguished from the pixels that contain information about

the object of interest and are reconstructed alongside the object. Not only

does this lead to computational cost spent reconstructing 3D points which
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1.3. DESCRIPTION OF WORK

must be manually removed at a later stage but can also impact the qual-

ity of the final measurement outcome. The measurement outcome can be

impacted for a few reasons, first the background is often beyond the focal

plane of the imaging system leading to blurred data which can cause er-

roneous matches to be triangulated. Furthermore, it is common practice

to automate data collection by placing the object on a rotation stage so

that it can be rotated relative to the camera and images captured around

the part. The use of a rotation stage means that between images the

part moves but the background remains static. Any matches detected in

the background therefore have a conflicting spatial relationship to those

detected on the part’s surface. In seeking to minimise the overall triangu-

lation error, these static matches can lead to the triangulation algorithms

incorrectly localising the object points in an attempt to account for the

conflicting information provided by the static matches.

In this thesis, a software pipeline is developed for the first time which can

enable full automation to remove user dependence completely, with the

long term goal of integrating the proposed solutions into a hybrid pho-

togrammetry/DFP multi-view system. Optimisations are built in to the

pipeline to directly address the inefficiencies outlined above. Many novel

contributions to science were required to achieve this goal and these are

outlined in the following section.

1.3 Description of work

This thesis considers the entire measurement procedure from camera char-

acterisation, through view planning, to image capture and processing. An

information rich metrology (IRM) approach is taken where a priori infor-

mation about both the measurement system and the object to be measured
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is exploited. Of particular value to the aims of this thesis is the ubiquity of

computer aided design (CAD) data which almost all manufactured parts

will have associated with them. Although any manufactured part will de-

viate from its design data to some extent due to manufacturing errors and

tolerances the CAD should represent the overall form and shape of the part

well enough to inform the measurement strategy.

The main contribution of this thesis is the pipeline shown in Figure 1.3

which will enable automation and optimisation to be realised. Each novel

development required to deploy this pipeline in software is highlighted with

a red superscript number which refers to the chapter which details that con-

tribution.

In summary, known information about the object, characterisation tar-

get and measurement system (from their respective CAD and data-sheets)

are combined with an initial data acquisition. An optimal view plan is

generated in the form of a list of imaging positions. The object pose in the

measurement volume is estimated and the measurement plan adjusted to

account for this alignment without the need for specialist fixturing or user

input. The cameras are characterised using a new procedure which can

account for adverse imaging conditions. The measurement data can then

be autonomously collected with a CNC measurement system. Background

data are removed autonomously before reconstruction which leads to the

final measurement outcome.

1.3.1 Aims and objectives

The aims of this project can be simply summarised into three main objec-

tives:
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Figure 1.3: Proposed software pipeline indicating where each novel contri-
bution fits in the overall scheme.

1. To create a software pipeline which will enable the creation of a fully

automated measurement system.

2. To develop algorithms as part of this pipeline to perform measure-

ments in a way which maximises surface coverage and reconstruction

quality while minimising computational expense and time.

3. To allow for arbitrary placement of the measurement object within

the measurement volume, ie. no fixturing or fiducial marking re-

quired.

The work performed to achieve these goals is summarised in the following
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section.

1.3.2 Thesis outline

Each results chapter constitutes a self contained part of the pipeline which

is, in itself, a novel and valuable contribution to the field. It is made clear

in each case where the given chapter fits into the overall pipeline and how

it contributes to overall goals of automation and optimisation.

Chapter 2 provides all necessary background theory needed to understand

the methods presented in this thesis. This includes photogrammetry, DFP

and camera characterisation. Also presented is the ML theory required to

implement the solutions to automation and optimisation of optical CMSs

proposed later in the thesis. This chapter then presents the current state

of the art in machine learning for optical coordinate metrology with par-

ticular focus on gaps in the literature which this thesis aims to fill.

Chapter 3 presents the any common methods used across the results chap-

ters. This includes descriptions of all experimental setups, reconstruction

methods, measurement artefacts, characterisation artefacts, and software

used.

Chapter 4 presents a new approach for intelligent camera characterisation

with the aim of improving overall performance while being more robust to

unoptimal imaging conditions such as those caused by specular reflection.

Specifically, a new approach to refining the localisation of characterisation

targets within an image. A convolutional neural network (CNN) based on

the EfficientNet-B5 architecture is trained to produce sub-pixel corrections

to the location of target features. It is shown that using this model pro-

vides a large quantitative improvement to the characterisation result as

measured by the reprojection error. Further, it is shown that the proposed
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model is more robust to adverse imaging conditions such as noise and spec-

ular reflections than a competing refinement method based on traditional

image processing.

Chapter 5 focuses on the optimisation of the imaging strategy. First, an

improved method for evaluating which surface points are visible from a

given viewing position is proposed. This visible point analysis method is

used in a genetic optimisation to find the minimum number of imaging po-

sitions which can produce a high quality measurement result as assessed by

a custom global objective function. This proposed procedure is conducted

on a range of test artefacts and shown to produce high quality scans from

a very low number of images as assessed through comparison to other pho-

togrammetry measurements, commercial DFP measurements, and tactile

CMM measurements.

Chapter 6 proposes a solution for autonomous removal of background data

from the images comprising a photogrammetric scan. This is shown to have

numerous benefits including reduced processing time, improved memory us-

age, decreased numbers of background points reconstructed, and increased

object point density. It is also shown that the measurement result is im-

proved quantitatively through greater agreement to CMM and improved

reconstruction of surface features.

Chapter 7 presents a method for producing synthetic surface texture

data. A progressively growing generative adversarial network (PG-GAN)

is trained to produce a wide range of surface types which are shown to

be representative, but distinct, from real measurement data. This model

was developed to enable photo-realistic renders of manufactured parts from

their CAD data, an approach to using the surface generation model in a

material shader is presented. These simulated images are used to produce

synthetic photogrammetry data used to train models in Chapter 8.

Chapter 8 Finally, two approaches to object pose estimation are presented.
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A monocular method, which relies on simulated data to train a CNN to

directly regress the six degrees-of-freedom (DoF) pose of the object relative

to a single camera. A stereo method, which uses binary masks generated

by the algorithm presented in Chapter 6 alongside predicted masks gener-

ated by raycasting the CAD data through a characterised camera model

to minimise a loss function defined between the real image masks and the

predicted masks. It is shown that both of these methods can be used on

real photographic data, with the stereo method making the lowest error

predictions on average. Either of these techniques, depending on the sys-

tem requirements, can then be used to establish the spatial relationship

between the camera system and the object. This spatial relationship is

then used to perform an automated measurement based on the optimised

view plan, to be conducted without specialised fixturing or fiducial mark-

ing.

1.3.3 Limitations and scope

To keep the scope of this project feasible, the following limitations are

placed upon it:

• It is assumed that all parts which would be conceivably measured in a

manufacturing metrology setting will have associated CAD data that

is freely available to the measurement system. Given the particular

focus taken to AM where CAD data is an implicit requirement, this

assumption seems reasonable.

• The project will focus on applications to photogrammetry specifically,

but applications to DFP will be highlighted when relevant.

• This thesis will feed into a separate project to embody the proposed
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pipeline in a physical measurement system, but will not itself contain

any hardware development or integration. The proposed hardware

solution is summarised in future work Section 9.1.

1.4 Summary of novelty

The novel contributions made in this thesis are:

1. A first of its kind software pipeline, allowing fully automated and

optimised coordinate measurement of generic geometry 3D parts for

the first time. Presented in Figure 1.3 and shown again at the start

of each results chapter to contextualise that chapter’s place in the

overall scope of the project.

2. A new hybrid ML approach to characterisation with a specific goal

of increasing robustness to adverse imaging conditions, thus reduc-

ing the impact of poor choice of target locations and allowing a

greater range of target positions to be included in the characteri-

sation dataset. Compared to the current standard characterisation

software the approach is shown to robustly offer improvements of 50

% as measured by the mean magnitude residual. Additionally the

approach is shown to outperform a state of the art characterisation

refinement approach in uncooperative imaging scenarios leading to

more accurate camera modelling.

3. An improved method for analysing visible surfaces of a given object

from a given view using CAD data is presented in Chapter 5. This

is used during view planning to select optimal imaging locations.

The proposed method combines the best qualities of two pre-existing
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methods and is shown to reduce the number of misclassified visible

points by up to 57% as compared to the previous state of the art

while maintaining fast operation.

4. A procedure for the global optimisation of the imaging strategy for a

given geometry is also presented in Chapter 5 and is shown to provide

good quality reconstruction results from very few images. Optimised

reconstructions using as few as 18 images are shown to have greater

agreement to CMM measurement than unoptimised reconstructions

(using current standard industrial practice) with 60 images, while

also having much lower data processing times.

5. A generative ML model for the generation and categorisation of syn-

thetic surface texture data is presented in Chapter 7 which can be

used to produce realistic renderings of a manufactured part from its

CAD data. A completely novel approach to surface generation, being

much less expensive than physics based models and more represen-

tative than pure mathematical representations. The model is used

to create large datasets to train further ML models more robustly.

The generative results are shown to be quantitatively representative

of real measured surface data, securing this model as a highly useful

tool.

6. A method to autonomously segment background pixels from object

pixels within an image and to remove the background pixels is pre-

sented in Chapter 6. This is used to during both reconstruction and

for object pose estimation to enable fixture-less measurements. Us-

ing masked images directly in reconstruction is shown to improve the

measurement result agreement with CMM, reduce the number of re-

constructed background points by up to 98 %, and lead to reduced

reconstruction times by up to 41 %. The proposed method is more
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robust than the previous state of the art due to the exploitation of

known properties of the imaging system.

7. A monocular method for the 6 DoF pose estimation of CAD data from

a single image is presented in Chapter 8. . This pose is then used to

adjust the measurement plan to account for an arbitrary placement

of a given part. Both the model architecture and datset generation

method are novel contributions. The model is shown to generalise

well onto real image data, accurately localising the object to within an

average of 13 mm with a low rotational residual error. Previous state

of the art was restricted to predicting bounding boxes or cuboids,

often with performance evaluated on benchmark datasets which may

not be representative of true objects and imaging conditions.

8. Also presented in Chapter 8 is a stereo approach to pose estimation

which uses the image background removal algorithm presented in

Chapter 6 to iteratively refine an initial estimation. The stereo model

is shown to locate artefacts to within an average of 0.44 mm when

evaluated on a set of 240 test photographic images. This approach

does not require any pre-training, a large advantage over the previ-

ous state of the art. The stereo model also benefits from improved

certainty in prediction due to consensus across multiple views.
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Chapter 2

Background theory and state

of the art

Some parts of this chapter have been previously published as the author’s

contributions to an Institute of Physics book chapter and a topical review

paper:

Eastwood J, Sims-Waterhouse D, Piano S 2020 Machine Learning Approaches in Leach

R K Advances in Optical Form and Coordinate Metrology (Bristol: IoP Publishing).

Catalucci S, Thompson A, Eastwood J, Zhang Z M, Piano S, Branson D T, Leach R K

2022 Smart optical coordinate and surface metrology Meas. Sci. Technol. 34 012001.
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2.1. OPTICAL COORDINATE METROLOGY

This chapter is comprised of three sections: the background theory

needed to understand camera-based optical coordinate metrology, the back-

ground theory required to understand the machine learning methods used

to address the shortcomings of these measurement methods, and a state of

the art review of the current literature regarding applications of machine

learning approaches to optical coordinate metrology.

2.1 Optical coordinate metrology

As was discussed in Section 1.1, optical methods of coordinate measurement

are growing in popularity. Initial optical CMSs were based on time of flight

methods such as light detection and ranging (LiDAR) [7]. In the case of

LiDAR, a laser is directed at a surface of interest, the light is reflected from

the surface and detected when it returns to a sensor located near the laser

emitter. As the speed of light is a known universal constant (c ≈ 3 · 108

ms−1), the distance to the surface point can be calculated from d = ct
2

where t is the time of the round trip from emitter to detector. However, to

measure a height change of 1 mm requires the time of flight to be resolved

on the order of picoseconds. While some optical CMSs directly use the

time of flight [14] often, for improved precision, depth is instead calculated

from the phase change in the returning signal compared to the reference

signal S(t) [15],

S(t) = A(t) · ei·φs , (2.1)

where A(t) is the amplitude and φs is the phase. The depth d can be

calculated from the phase difference,

d =
c

4πfm
· (φr − φs), (2.2)
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where fm is the frequency modulation and φr is the reflected phase. Figure

2.1 shows how this phase difference is detected at the time of flight sensor.

Figure 2.1: Phase difference between the source signal and reflected signal
detected by a sensor in a phase difference time of flight system.

Despite this phase difference approach, time of flight CMSs are still

limited by spatial and depth resolutions when compared to triangulation

based methods. Furthermore, they still require the laser point to scan a

rasterised path across the surface which can take a relatively long time. In

comparison, camera based triangulation methods can acquire data covering

the entire visible surface very quickly.

2.1.1 Close range photogrammetry

From Luhman et al. [16], ”close range photogrammetry ... uses accurate

imaging techniques to analyse the three-dimensional shape of a wide range

of manufactured and natural objects.” . Close range photogrammetry is

a triangulation based optical coordinate measurement method which ex-

tracts features from a set of photographic images, matches corresponding

features between images, and triangulates these features to reconstruct the

object. After triangulation, a coarse point cloud representing the object’s

surface will have been produced, these coarse measurements are then often

densified to capture more surface detail. Figure 2.2 summarises the main
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2.1. OPTICAL COORDINATE METROLOGY

stages in a photogrammetric measurement.

Figure 2.2: Close range photogrammetry measurement pipeline.

2.1.1.1 Camera model

to implement the pipeline shown in Figure 2.2 a mathematical model of a

camera is required. This model transforms 3D world coordinate points to

2D pixel coordinates and can be defined using two transformation matri-

ces referred to as the camera’s intrinsic and extrinsic matrices [17]. The

extrinsic matrix defines a coordinate transform from the world reference

frame [X,Y, Z] to the camera’s reference frame [x, y, z]. The camera refer-

ence frame is shown in Figure 2.3, the z-axis is co-linear to the camera’s

principal axis and the x, y plane is parallel with the imaging plane.

Figure 2.3: Camera coordinate system [x, y, z] within the global coordinate
system [X,Y, Z].

The world-to-camera coordinate transform can therefore be defined as,
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x

y

z

1


= [R,T](4×4) ·



X

Y

Z

1


, (2.3)

where T is a translation vector and R is a rotation matrix which together

form the extrinsic matrix E as,

E = [R,T] (2.4)

where,

R =


cos(κ) −sin(κ) 0

sin(κ) cos(κ) 0

0 0 1

 ·


cos(φ) 0 sin(φ)

0 1 0

−sin(φ) 0 cos(φ)

 ·

1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)

 ,
(2.5)

where θ, φ, κ are the Euler angle rotations about the x, y, z axes respec-

tively; and,

T =



tx

ty

tz

1


, (2.6)

where tx, ty, tz are the x, y, z translation components. Once the 3D

coordinates have been transformed from world space to camera space they

can be projected onto the 2D imaging plane. To enable a camera-to-image

transformation the parameters which define the intrinsic matrix must be

known which are visualised in Figure 2.4. The intrinsic parameters include;

the focal length f which is the distance of the imaging plane from the

camera principal point (the point on the image plane which the perspective

center is projected onto), the principle point offset parameters cx and cy

21



2.1. OPTICAL COORDINATE METROLOGY

which define the offset of the principal point relative to the origin of the

image coordinate system [u, v], the pixel pitch pu, pv defined in meters, and

the skewness parameter s which is defined as,

s =
−f
pu

· cot(γ), (2.7)

where γ is the skew angle; the parameter s is often assumed to be zero.

Figure 2.4: Parameters required to define the intrinsic orientation of a
camera.

The intrinsic matrix (K) can be constructed from the intrinsic param-

eters in the form,

K =


f
pu

s cx 0

0 f
pv

cy 0

0 0 1 0

 . (2.8)

The intrinsic matrix describes the coordinate transform from the camera

coordinate system to image coordinates i.e. the camera-to-image transform.

Composing the world-to-camera transform given in Equation 2.3 with this

camera-to-image transform results in the final world-to-image transforma-
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tion given by,

s


u

v

1

 =


f
pu

s cx 0

0 f
pv

cy 0

0 0 1 0

 ·
[
R T

]
·



X

Y

Z

1


, (2.9)

where s is an arbitary scalar and the combination of the intrinsic and

extrinsic matrices is referred to as the projection matrix A. The linear

camera model given in Equation 2.9 is enough to describe an idealised pin-

hole camera. However, in order for the camera model to generalise to real

cameras the model must be extended further to consider non-linear lens

distortion. Lens distortion is typically modelled by considering two distor-

tion components, radial and tangential. Figure 2.5 shows an exaggerated

representation of these two distortion components independently and then,

in Figure 2.5d, combined in the full distortion model.

The distortions shown in Figure 2.5 are modelled using the popular

Brown-Conrady model [18]. The Brown-Conrady model parameterises lens

distortion with five coefficients,

dist = [k1, k2, k3, p1, p2], (2.10)

where kn are radial parameters, and pn are tangential parameters. The

radial distortion component can then be corrected for using,

x′ = x(1 + k1r
2 + k2r

4 + k3r
6), (2.11)

y′ = y(1 + k1r
2 + k2r

4 + k3r
6), (2.12)
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(a) Radial ”barreling”. (b) Radial ”pincushioning”.

(c) Tangential. (d) Full model.

Figure 2.5: Non-linear lens distortion model.

where (x′, y′) are the corrected coordinates, (x, y) are the imaged coordi-

nates before correction, and r =
√
x2 + y2 is the radial distance relative

to the distortion centre (assumed to be in the center of the image). The

tangential distortion can also be corrected for using,

x′ = x+ 2p1xy + p2(r
2 + 2x2), (2.13)

x′ = x+ p1(r
2 + 2y2) + 2p2xy, (2.14)

The determination of the intrinsic and extrinsic matrices, alongside any

distortion parameters, is the process of camera characterisation (referred

to often in the literature as camera calibration) [19] which is described in

Section 2.1.3. Accurate characterisation of the camera parameters is key to

producing accurate measurement results. The stages of the photogrammet-
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ric pipeline, described in the following sections, assume that all cameras in

the network have been accurately characterised.

2.1.1.2 Feature extraction

The first stage of the photogrammetric pipeline is to extract features from

the image data collected. There are many possible approaches for feature

extraction, early work often used the Movarec operator [20] or the Förstner

operator [21]. It is important that any extracted features are invariant to

scale, rotation, translation and affine transformations. Furthermore, it is

desirable that features be minimally variant under illuminations changes,

noise and small distortions. These invariances are important to a robust

feature matching step. The most commonly used approach for both feature

extraction and matching is the scale invariant feature transform (SIFT) al-

gorithm [22]. SIFT features are extracted using a difference of Gaussians

(DoG) approach. In DoG an image pyramid is formed by convolving Gaus-

sian kernels of different scales over the image as is shown in Figure 2.6.

Figure 2.6: Set of filtered images separated by scale and their respective
feature maps produced from the difference between each layer.
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A Gaussian kernel with a standard deviation of σ =
√
2 is applied to the

captured image to create a smoothed image A, the same kernel is convolved

with A to produce an image B which has been incrementally smoothed by a

further factor of σ =
√
2 giving a total smoothing compared to the original

image of σ = 2. When the smoothing has doubled the resolution of the

image can be downsampled by a factor of 2, this creates the second octave of

Gaussians shown in Figure 2.6. The DoG pyramid is then created by taking

the difference between each smoothed image. SIFT features are detected

as the local extrema over both scale and space. Each pixel intensity is

compared to its neighbours, at the current scale - if it is a local maxima

or minima it is a feature candidate. The pixel is then compared to its

equivalent neighbouring pixels at the next lowest layer of the pyramid, if

the pixel is still a maxima or minima this process is repeated for each layer

of the pyramid. This process is efficient as most pixels will be discounted

as potential features with few comparisons.

To improve stability, each SIFT feature location is paired with a rotation

histogram calculated from local gradient variations in the image. Image

gradients and gradient directions can efficiently be calculated from an image

I using the Sobel operator [23],

Gx =


−1 0 1

−2 0 2

−1 0 1

 ∗ I and Gy =


1 2 1

0 0 0

−1 −2 −1

 ∗ I (2.15)

where Gx and Gy are the x and y components of the local image gradient.

From this the gradient magnitude G and direction of the local gradient Θ
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can be simply calculated as,

G =
√

Gx +Gy, (2.16)

Θ = atan2(Gy,Gx). (2.17)

It has been shown that these features fit the invariances that are desired,

the original paper tests the robustness of the feature localisation under a

large set of transforms and distortions with favourable results.

2.1.1.3 Feature matching

Once a set of features has been successfully extracted from a set of images

correspondences between these features must be found to enable match-

ing points in different images to be triangulated. Each detected feature is

paired with a description vector which is constructed from the 16 pixel ×

16 pixel region surrounding the feature. This region is split into (4 × 4)

square pixel sub-regions and the local gradient direction is calculated for

each sub-region and stored in an eight-bin histogram. The sub-region rota-

tions are given relative to the rotation of the feature, which was calculated

previously, to maintain rotational independence. Appending the eight-bin

rotation histograms for each sub region creates the 128 value description

vector for each SIFT feature. Feature matching is conducted by calcu-

lating the Euclidian distance between the description vectors of features

in different images. Description vectors with sufficiently small distances

from each other are taken to be potential corresponding features. The

probability that a potential correspondence is correct is calculated by tak-

ing the ratio between the distance between the closest and second closest

neighbouring description vectors. In Lowe’s original implementation [22]

any correspondences with a distance ratio greater than 80% were rejected.
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Correspondences are further refined through Hough transform voting [24],

here clusters of corresponding features which agree on a consistent overall

pose of the scene are interpreted as having a higher probability of being

a true correspondence. A least squares linear regression is performed over

these clusters to minimise the error in the affine transform between the 3D

points and image points, this allows outlying correspondences to be dis-

carded.

A further useful tool for correspondence analysis is epipolar geometry which

requires the exterior orientation of the camera network to have been deter-

mined. Determining the exterior parameters of the camera network can be

acheived using the SIFT detected points through space resectioning [17].

Figure 2.7 shows how epipolar geometry can be used to both, find matching

image features and localise the corresponding 3D point.

Figure 2.7: Epipolar geometry. The epipolar line (shown in red) is used to
match features (shown as crosses) P 1 and P 2 which are then triangulated
to localise 3D point P xyz.

In a pair of stereo images there may be many candidate point correspon-

dences which lie on the same epipole, this introduces ambiguity in which
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point is the true match. In the case of a multi-view close range photogram-

metric measurement where many imaging positions are used this ambiguity

is much reduced, and the same correspondence refinement procedures as

were described above can also be employed to increase confidence in the

detected correspondences.

Correspondences found using the techniques described above can be back-

projected into 3D space through the camera model given in Equation 2.9

and triangulated to produce both a sparse reconstruction of the scene and

to provide estimates of the extrinsic parameters of the camera network.

2.1.1.4 Bundle adjustment

Bundle adjustment is the process of globally refining the entire recon-

structed scene, which includes: the triangulated surface points, the camera

network as defined by the cameras’ extrinsic parameters and, optionally,

the cameras’ intrinsic matrices along with any distortion parameters. The

refinement of camera parameters along with surface point coordinates is

conducted simultaneously in a global minimisation problem which aims to

minimise the reprojection error of the scene. The reprojection error is the

difference between the pixel coordinates of extracted image features and

the pixel coordinates of triangulated 3D object points ’reprojected’ from

3D space, through the camera model, back onto the imaging plane.

If the scene contains n object points and k cameras and xij is the image

coordinate of point i as projected onto image j where camera j is parame-

terised by cj and point i exists at 3D vector pi, then the bundle adjustment

minimisation problem can be formulated as,

mincj ,pi

n∑
i=1

k∑
j=1

[
visij · d

(
Q(cj,pi),xij

)2]
, (2.18)
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where visij = 1 when point i is visible from view j and visij = 0 other-

wise, d(x,y) is the Euclidean distance between two vectors, and Q(cj,pi)

is the reprojected coordinate of point pi through camera model cj. This

minimisation can be achieved using a variety of non-linear least-squares

algorithms, of which sparse Levenberg-Marquardt has become the most

successful due to its fast convergence which is robust to poor initial scene

estimations, and efficient computation due to the sparse interaction matrix

between parameters [25].

If robust camera characterisation has been performed prior to measure-

ment, bundle adjustment can be simplified by fixing the camera models cj

and only adjusting the location of surface points pi. Alternately the bun-

dle adjustment optimisation of interior and distortion parameters can be

utilised to ensure reconstruction results can be obtained despite poor cam-

era characterisation - this process is referred to as self-characterisation [26].

2.1.1.5 Dense reconstruction

The output of bundle adjustment is an optimised, but sparse, scene. For

surface measurement applications, where point spacing on the order of tens

of microns is required, the sparse scene must be densified. Densification

often raises the number of points from the order of thousands to the order

of millions or tens-of-millions of points depending on scene complexity, re-

construction quality parameters, and number of cameras in the network.

A popular approach for densification is patch-based multi-view stereop-

sis (PMVS) [27–29]. PMVS takes the refined, sparse scene as input and

outputs a dense set of small rectangular patches of points covering the vis-

ible surfaces contained in the image set. PMVS segments the surface into

patches where each patch contains a list of all images in which it is visible,
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each patch is then projected onto the imaging plane of each image which

views it. Images are segmented into cells (2×2 pixels in the original PMVS

paper [27]) where each image cell contains a list of which patches are pro-

jected within that cell’s bounds. PMVS iteratively matches, expands, and

filters the patches, starting with the initial sparse points, with the goal re-

constructing at least one patch within every cell. Each patch is expanded

into its neighbouring cells unless there is a large depth discrepancy (i.e.

due to a step height change) or the cell already contains a patch which

neighbours the current patch. Figure 2.8 shows a comparison between a

refined sparse scene and a densified scene.

(a) Sparse scene, showing imaging locations.

(b) Sparse point cloud. (c) Dense point cloud.

Figure 2.8: Example reconstruction results.

The example reconstruction in Figure 2.8 is a measurement of a metal

AM part, the scan data consists of 120 images taken by a stereo imaging

head at 60 equally spaced radial positions around the object, this is typical

of 3D form measurement applications. The sparse point cloud shown in
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Figure 2.8b consists of 75766 points which was densified to a point cloud

containing 4518146 points shown in Figure 2.8c. To give a sense of the

time scales and processing power required for reconstructions of this kind,

sparse reconstruction and camera alignment took approximately 5 min-

utes while densification took approximately 25 minutes. Reconstruction

was performed using the commercial software Agisoft Metashape [30] on a

Windows 10 PC with an Intel(R) Xeon(R) W-2123 CPU @ 3.60GHz CPU,

32.0 GB of RAM, and a Nvidia Quadro P400 GPU.

2.1.2 Digital fringe projection

DFP is an alternative to close-range photogrammetry [31]. In addition to a

camera, DFP uses a digital projector to project a sequence of known sinu-

soidal patterns onto an object, the deformation of the projected pattern as

detected by a camera encodes information about the surface profile of the

object. Specifically the depth information is encoded in the phase of the

received patterns. DFP has some advantages over photogrammetry; ”one

shot” measurements are made possible which can be very useful for ap-

plications such as powder bed monitoring in AM, the reconstruction speed

compared to photogrammetry is often much lower while still producing high

density point clouds which could have applications for real time monitor-

ing, and DFP can be used on relatively featureless surfaces which could not

be measured by photogrammetric means. However, DFP requires at least

one projector which can be expensive, projectors also introduce complex

non-linearities which must be accounted for. Photogrammetry is naturally

multi-view which can lead to higher surface coverage without the need for

data fusion. Furthermore, the process of phase-unwrapping (described be-

low) can introduce 2kπ phase ambiguities in any step height changes.
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Figure 2.9: Diagram of an example DFP system.

Figure 2.9 shows a typical DFP system. For n projected fringe patterns,

the pixel intensity values of the ith image can be represented by,

Ii(u, v) = Ia(u, v) + Ib(u, v) · cos[φ(u, v)− δi], (2.19)

where Ia(u, v) is the illumination component arising from background light,

Ib(u, v) is the intensity modulation from the projected fringe pattern, δi is

the projected phase shift given by (2πi/n) and φ(u, v) is the received phase.

The phase can be calculated from the detected image as,

φ(x, y) = tan−1

(∑n−1
i Ii(u, v)sin(2πi/n)∑n−1
i Ii(u, v)cos(2πi/n)

)
. (2.20)

This phase information is wrapped between [−π,π] and must be unwrapped

to obtain the true phase. The true phase is given by,

ψ(u, v) = φ(u, v) + 2kπ, (2.21)

where k is the fringe number which is an index between zero and the total
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number of fringes projected. The phase unwrapping process for a single

sinusoid projected unto a flat plane is shown in Figure 2.10 where Figure

2.10b shows the wrapped phase (φ) and 2.10c shows the unwrapped phase

(ψ).

(a) Intensity image. (b) φ(x, y).

(c) ψ(x, y).

Figure 2.10: 2D phase unwrapping; showing the received image, the
wrapped phase, and the unwrapped phase.

Phase unwrapping is a difficult problem and many possible solutions

exist which can be roughly separated into two categories; spatial phase

unwrapping and temporal phase unwrapping. Spatial phase unwrapping

attempts to unwrap the phase from a single phase map whereas temporal

unwrapping projects a sequence of patterns used to acquire the absolute

fringe order. The various approaches to phase unwrapping are summarised

well in Shaheen [32]. Multi-frequency phase unwrapping is a popular tem-

poral phase unwrapping approach wherein a series of phase maps are col-

lected from projected patterns at a range of spatial frequencies. Beginning
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with a reference fringe pattern with a wavelength large enough to produce

no phase discontinuities the spatial frequency is increased in each subse-

quent projected pattern. The true phase (ψ) of the nth projected pattern

is related to the previous phase by,

ψn(u, v) =
λn−1

λn
· ψn−1(u, v) (2.22)

where λ is the fringe wavelength. Because the reference pattern has a

wavelength large enough to cause no ambiguities this implies φ0(u, v) =

ψ0(u, v). This allows the fringe number to be calculated for the second

phase pattern from,

k1(u, v) = round
(λ0 · (ψ0 − φ1)

λ1 · 2π

)
. (2.23)

And thus the phase can be unwrapped using Equation 2.21. This process

can be repeated at each spatial frequency until the phase for the shortest

spatial wavelength has been unwrapped. The simplest and fastest multi-

frequency implementations use only two patterns but for precision appli-

cations it is much more common to use n > 5 patterns.

Depth can then be calculated from the unwrapped phase through compar-

ison to the phase map of a reference plane (φr). As can be seen in Figure

2.9, the projected phase on object point P is equal to that which would

be projected onto reference plane point C (i.e. φP = φr
C). Similarly, the

camera detects the phase from object point P in the same pixel in which it

detects point D in the reference measurement (i.e φr
D → φP ) Subtracting

the reference phase map from the measured object phase map yields the

phase difference at this specific pixel,

∆φPC = φP − φr
C = φr

C − φr
D = ∆φr

CD. (2.24)
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The triangles ∆OPOCP and ∆CPD are similar, thus the height of point

P can be given in terms of the distance CD as,

Z(u, v) =
CD · Lc

dcp + CD
, (2.25)

where Lc is the distance from the reference plane to the camera optical

center, and dcp is the stereo baseline between the camera and projector

optical centres - both values are shown in Figure 2.9. Finally, the distance

CD can be replaced with the phase difference φr
CD. Assuming dcp is much

larger than CD,

Z(x, y) =
Lc

2πfmdcp
·∆φr

CD ≈ c0∆φ
r
CD, (2.26)

where fm is the spatial frequency of the projected patterns and c0 is a con-

stant determined through system characterisation. A simple approach to

determining c0 is to simply determine the phase difference of a known step

height and to determine the value of c0 which maps this phase difference to

the known height value. For metrology applications, as with photogramme-

try, more accurate camera and projector characterisation is required which

is outlined in the following section.

2.1.3 Camera characterisation

Any method of coordinate measurement which is based on cameras requires

the interior orientation matrix (as was defined in Equation 2.8) and distor-

tion parameters of all cameras in the network to be determined. In the case

of DFP, any projectors must also be characterised. A projector is optically

identical to a camera, with one sensor and one lens, so can be characterised

using identical methods. Errors in the intrinsic and distortion parameters
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can lead to poor measurement results in both photogrammetry and DFP

so this stage of the measurement pipeline is essential to metrological appli-

cations.

Camera characterisation uses the detection of standard targets across a set

of images to determine the camera parameter values, Figure 2.11 shows

typical characterisation targets used.

(a) Checkerboard (b) Circular pattern.

Figure 2.11: Common camera characterisation targets.

In the case of the checkerboard, it is the corners of each square which

are localised and used to characterise the camera. In the case of the cir-

cular pattern it is the centre of each circle that is localised and used in

the characterisation process. The checkerboard design is commonly used

in photogrammetry applications where only cameras are used. DFP more

commonly uses the circular pattern design as it is easier to localise the

circle centres for the characterisation of projectors, this is due to lack of

contrast across the dark squares of a checkerboard when projecting fringe

patterns.
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2.1.3.1 Determination of linear parameters.

The linear camera model given in Equation 2.8 can be rewritten in terms

of the projection matrix A as,

s ·


u

v

1

 =


A1,1 A1,2 A1,3 A1,4

A2,1 A2,2 A2,3 A2,4

A3,1 A3,2 A3,3 A3,4

 ·



x

y

z

1


, (2.27)

where s is a scale factor which must also be determined. Equation 2.27 can

be rearranged to give the collinearity equations,

u =
A1,1x+ A1,2y + A1,3z + A1,4

A3,1x+ A3,2y + A3,3z + A3,4

, (2.28)

v =
A2,1x+ A2,2y + A2,3z + A2,4

A3,1x+ A3,2y + A3,3z + A3,4

. (2.29)

Because the s term cancels out, the world-to-image coordinate transform

can be established in terms only of the camera parameters and 3D point

coordinates. This relationship can be given in terms of vector matrix A′

as,

QA′ = 0 (2.30)
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where,

Q =



x1 0 ... ... xn 0

y1 0 ... ... yn 0

z1 0 ... ... zn 0

1 0 ... ... 1 0

0 x1 ... ... 0 xn

0 y1 ... ... 0 yn

0 z1 ... ... 0 zn

1 0 ... ... 1 0

−u1x1 −v1x1 .. .. −unxn −vnxn

−u1y1 −v1y1 .. .. −unyn −vnyn

−u1z1 −v1z1 .. .. −unzn −vnzn

u1 v1 ... ... un vn



T

, (2.31)

A′ =



A1,1

A1,2

A1,3

A1,4

A2,1

A2,2

A2,3

A2,4

A3,1

A3,2

A3,3

A3,4



, (2.32)

and n is the number of points. A minimum number of six corresponding

features are required to compute all the unknowns in Equation 2.32. How-

ever, as can be seen in Figure 2.11 characterisation targets contain many
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more target features than six, this leads to an over-determined system of

equations which can be solved using a least-squares regression. A typical

characterisation contains around 150 target features imaged from no less

than 25 locations giving 150× 25× 2 = 7500 degrees of freedom in the re-

gression. Solving for the eigenvector of QTQ provides an efficient method

of solving this system of equations for A′. To provide good quality char-

acterisation it is important to perform the characterisation over a series of

images containing the target in range of unique poses covering the entire

measurement volume, otherwise the camera model will overfit to minimise

reprojection error over a subset of the measurement volume.

2.1.3.2 Determination of non-linear parameters.

If a more complicated camera model is used which includes non-linear dis-

tortion modelling the collinearity equations (given in Equation 2.28 and

Equation 2.29) must be adapted to include the distortion parameters. The

non-linear characterisation problem can be formulated as a minimisation

problem as,

minx̃

n∑
i=1

|xi − f(c,pi)|2. (2.33)

where f(c,pi) is the reprojection of 3D point pi through camera model

c and xi is the corresponding image feature. The minimisation problem

formulated in Equation 2.33 is often computed using the non-linear least-

squares Levenberg-Marquadt algorithm [33].

Alternatively, as was discussed in Section 2.1.1.4, camera parameters can

be optimised as part of bundle adjustment, i.e. simultaneously with the

reconstruction of the scene, this is called camera self-characterisation. It

can be seen that the bundle adjustment minimisation problem, as given in

Equation 2.18 is only a small adjustment to the minimisation formulation
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given in Equation 2.33. Using bundle adjustment to determine camera

parameters requires no a-priori knowledge about the geometry of the scene,

this makes the approach hard to validate and is therefore rarely used for

metrological applications.

2.2 Machine learning

Machine learning (ML) approaches are well suited to solving highly com-

plex non-linear problems where the relationship between the input and

output is poorly understood. There are many such problems in optical

metrology implying ML has the potential to be a valuable tool in the field.

Particularly the problems of camera characterisation, view planning, phase

unwrapping and stereo matching involve complex non-linear, high dimen-

sional problems which ML is well suited to tackle. Further, the analysis of

the resultant point clouds is a complex process which has had a wealth of

scientific literature published which suggest ML solutions. Although the

work in this thesis is only concerned with autonomously generating an op-

timal point cloud, and not the analysis of this cloud, Section 2.3 reviews

the state of the art in all these areas including point cloud analysis for

completeness.

In general, ML models can be thought of as a system which is not specif-

ically programmed to solve a problem; it is instead told what problem to

solve, given a set of training data, and then learns how best to solve the

given problem on its own. More formally [34, 35], for an input space X

and an output space Y the goal of ML is to learn a mapping function

h : X → Y , referred to as a hypothesis, from a dataset of labelled ex-

amples. The training dataset has entries [x,y] where x ∈ X are referred

to as features and f(x) = y ∈ Y are referred to as labels. Training an
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ML model is the process of refining the hypothesis h(x) = ŷ, such that ŷ

best approximates y and, thus, h(x) approximates the unknown function

f(x). Once a hypothesis has been developed, this hypothesis can be used

to make predictions on unseen data (x ∈ X ) that were not present in the

initial dataset (h(x′) = ŷ′). The accuracy of predictions on unseen data

is referred to as the ability of the hypothesis to generalise, and the error

between the set of all predictions and the corresponding ground-truth val-

ues (h(x)f(x)∀x) is called the generalisation error. For large or continuous

input spaces it is practically impossible to compute the full generalisation

error as ML models can only be evaluated over a set of finite input samples,

instead the generalisation error is estimated over a finite test dataset with

elements [x′,y′]. It is the aim of training ML models to minimise the gen-

eralisation error. This process is called supervised learning and contrasts

with unsupervised learning where the initial dataset contains only features

and no labels [36].

There are two main tasks completed by ML algorithms: classification and

regression [37]. Classification involves assigning each input datum to a

discrete class, whereas regression produces a continuous value (or set of

continuous values) for a given input. An example of classification is the

detection of the presence of some object part within an image; this could

be a binary classification (yes there is an object, no there is not an object)

or a multi-class classification (which object, of a set of possible objects,

is present in the image). An example of a regression task is the pose es-

timation of an object within an image, where the ML model is regressing

continuous coordinate values which together define a translation vector and

rotation matrix relative to the camera coordinates.
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2.2.1 Artificial neural networks

A artificial neural network (ANN) attempts to approximate the unknown

function f(x) by through a highly dense, interconnected system of non-

linear functions. Each individual branch (or neuron) in the system is sim-

ple, and through the large inter-connection of these simple components

complex functions can be approximated. A basic ANN will look something

like Figure 2.12, albeit with a much larger number of nodes per layer.

Figure 2.12: Basic ANN architecture. Input nodes shown in green, hidden
nodes shown in black (with bias nodes shown in grey) and output node
shown in red.

The input nodes take the set of features, either from the training dataset

(x) or some unseen data (x). In an ANN, the features take the form of a

tensor (n-dimensional vector) of numerical values. These data are passed

to the hidden layers via a fully connected set of weighted connections (ex-

cluding the bias node in each hidden layer, shown in Figure 2.12 as hn,b).

Each node in the hidden layers passes the weighted sum of these inputs

through a non-linear activation function which determines the activation

of that node. Each node in the next hidden layer takes the activations of the

previous layer as input to the same process, producing complexity through
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linear combinations of non-linear activations. This is repeated through all

the hidden layers in the given model until the final output nodes’ activa-

tions are determined by the weighted sum of the activations in the final

hidden layer. Figure 2.13 shows a detailed view of one of the neurons from

the network shown in Figure 2.12.

Figure 2.13: Detail of an ANN neuron (specifically h1,2 from Figure 2.12).
Here wl

i,j, is the weight of a connection, l, j and k are indices representing
the layer, input node and output node respectively, and a(z) is a non-linear
activation function which must be differentiable at all z.

In order for the model to approximate complex functions, the activation

function a(z) must be non-linear. As a composition of linear functions can

be described by a single linear function (i.e.(f1 ◦ f2)(z) = g(z) where g is

a linear function for all f1, f2 which are linear), if a(z) were linear this

would allow the hidden layers in an ANN to be collapsed into a single

hidden layer with a linear activation function, removing the ability of the

network to capture complex functions. There are many possible candidate

functions for a(z); the most common are the rectified linear unit (ReLU)

and the sigmoid (or logistic) function [38]. The ReLU is described by,

a(z) =

{
z, z > 0

0, z ≤ 0
. (2.34)

In practice, the ReLU function is often approximated by other functions

to allow it to be differentiable at zero, otherwise a value of zero or one can
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be chosen arbitrarily. A common choice is the SoftPlus function given by,

a(z) = ln(1 + ez). (2.35)

For negative numbers the SoftPlus function approximates ez which con-

verges to zero, and for positive numbers approximates z + e−z which con-

verges to z. The SoftPlus is convenient also as its derivative is the logistic

function, which its self is a popular choice of activation function, thus mak-

ing the SoftPlus twice differentiable at all points. The logistic function is

defined by,

a(z) =
ez

1 + ez
=

1

1 + e−z
(2.36)

By adjustment of the weights that connect together the nodes of an ANN,

learning occurs. The adjustment of connection weights is done through a

process of gradient descent and back propagation [39]. Once the ANN has

been designed (number of hidden layers, nodes per layer, activation function

all selected), then the weights of each connection are initiated randomly.

The first feature list from the training dataset is input to the network, fed

forward through the layers, and then an output is generated. This output is

then compared to the given label for that feature set through a loss function.

The most common loss function for regression is the mean squared error

(MSE), while for classification, binary cross-entropy is commonly used and

there are many other options [40] such as mean absolute error (MAE),

mean absolute percentage error (MAPE) and Huber loss [41] for regression

and categorical cross-entropy for classification. In this thesis, categorical

cross-entropy is used for categorisation tasks and is given by,

Losscat = −
N∑
i=1

yi · log(ŷ), (2.37)

where N is the number of samples the function is evaluated over (ie. the
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batch size).The LogCosh loss function is used in this thesis for regression

tasks and is given by,

Lossreg =
N∑
i=1

log
(
cosh(|ŷi − yi|)

)
. (2.38)

The LogCosh loss function is selected as it behaves linearly at high pre-

diction errors (|ŷi − yi|) and quadratically at low prediction errors. These

properties are desirable as outliers do not dominate the value of the loss

function and the gradient of the function approaches zero as the prediction

error shrinks leading to smaller steps taken by the optimiser. The gradient

of the selected loss function is calculated with respect to the node weights,

which can then be adjusted in the direction which is expected to reduce the

loss. This process is repeated until convergence is achieved. The weights

are updated according to

∆wl
j,k = η · ∂E

∂al,j
· ∂al,j
∂wl

j,k

(2.39)

where w is the weight of a connection, l, j, k are indices representing the

layer, input node and output node, respectively, E is the loss function, a

is the activation function and η is a dimensionless coefficient called the

learning rate, typically set around η = 0.001. The learning rate is used

to control the step size taken during back propagation; many optimisation

schemes (including the popular Adam optimiser [42]) use a variable learn-

ing rate which shrinks as training continues—forcing the optimisation to

take smaller steps as convergence to the true value is approached. The

Adam optimiser is used exclusively for training models in this thesis.
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2.2.2 Convolutional neural networks

Convolutional neural networks (CNNs) differs from an ANN by making

use of convolutional layers [43] and have been shown to be particularly

effective on image processing tasks, though can be generalised to act upon

many data structures. These convolutional layers perform a process of

sliding window kernel convolution, a process whereby a grid of values (or

kernel) is convolved over the input to produce a set of output feature maps.

This convolution is applied over all dimensions (channels) in the input.

Depending on the size of the kernel and the step size taken across the pixel

grid during convolution (called the stride), kernel convolution can also be

used for spatial down-sampling of the input. It is common to use multiple

layers of kernel convolution to produce more specific feature maps. This

process is illustrated in Figure 2.14.

Figure 2.14: Kernel convolution on an n-dimensional tensor.

As with the weights in the fully connected layers, the values within the

kernel are learned through back propagation. A typical CNN will have a

series of convolutional layers; each layer has a number of different kernel

filters operating in parallel. The outputs of these filters are commonly

then fed into a fully connected section (as in an ANN) before producing

the final prediction, though a fully convolutional neural network (FCNN)
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foregos the fully connected layers and consists entirely of convolutional

layers [44]. Convolutional layers are often packaged together with batch-

normalisation layers, which normalise the incoming data from the previous

hidden layer, called pooling layers. Max-pooling takes a sliding window of

inputs and outputs the maximum value, average-pooling does the same but

outputs the mean value (pooling is often used for spatial down-sampling)

and activation layers apply the previously discussed activation functions,

such as ReLU, to the feature map. The work in this thesis makes heavy use

of CNNs due to their efficient operation in image processing tasks, kernel

convolution naturally lends its self to operation on two dimensional image

data. The advanced architectures used in this thesis and in the state of the

art are summarised in the following section.

2.2.2.1 Advanced CNN architectures

Using the blocks described in the previous section, numerous architectures

have been developed. Briefly summarised below are some architectures of

particular relevance to the work in this thesis, although many more have

been developed.

2.2.2.1.1 ResNet

The residual neural network (ResNet) was an early but impactful variation

on a standard CNN [45]. The main contribution of the residual neural

network (ResNet) is the skip connection, which is shown in red in Figure

2.15. The purpose of the skip connection is twofold, first to allow an al-

ternate path for gradient flow during back propagation, mitigating against

the effect of vanishing gradients in deep networks caused by repeated mul-
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tiplication. The second benefit of a skip connection is allowing more direct

influence from early feature maps during inference.

Figure 2.15: Residual block from a residual neural network (ResNet) based
architecture - skip connection highlighted in red.

In Chapter 8, a model for detecting the pose of a part within a mea-

surement system is built which is based on the ResNet architecture. The

ResNet was selected as a base for the pose estimation model due to im-

proved preservation of spatial information provided by the skip connections.

2.2.2.1.2 EfficientNets

The original EfficientNet publication (Tan and Le [46]) claims “state-of-

the-art performance while being 8.4× smaller and 6.1× faster during infer-

ence than the best existing [CNN]”. The building block of an EfficientNet

is the MBConv layer which is based on the MobileNet family of models.

MBConv blocks can be summarised as inverted residual linear bottleneck

blocks with depthwise separable convolution and squeeze-excite blocks, Fig-

ure 2.16 shows the layers in an MBConv block.

First, the number of channels in the input is increased through a point-

wise convolution. A depthwise-separable convolution is applied which con-
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Figure 2.16: EfficientNet MBConv block.

sists of a combination of a depthwise convolution followed by a pointwise

convolution. Depthwise separable convolution requires far fewer param-

eters, and thus fewer computations during inference, than a simple 2D

convolutional layer. A squeeze-excite block is inserted in the middle of the

depthwise separable convolution which essentially learns a weighting to ap-

ply to each channel of the feature map before the pointwise convolution is

applied. The squeeze-excite block was first presented by Hu et al. [47] and

shown to be beneficial. Finally, the output of the convolution is combined

with the output of the previous block in a skip connection as was defined in

the previous section. Chapter 4 makes use of an EfficientNet modified for

robust camera characterisation, the EfficientNet was selected in this case

due to its high performance for a relatively low number of parameters as

discussed above.
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2.2.2.1.3 Generative adversarial networks

A generative adversarial network (GAN) is a system of two sub-networks

trained in a zero-sum-game (first proposed in 2014 by Goodfellow et al.

[48]). Given some set of input data, the task is to generate some new data

that cannot be distinguished from the original dataset, while capturing the

variation present within the original data. To achieve this task, a sub-

network, called the generator (G(z) → i) takes an input vector z randomly

sampled from some high dimensional space. This seed value is passed

forward through the generator model to produce data i of the same type

and shape as the input (for example, an image). Initially, the generator

output is pseudo-random over the input. The second sub-network, called

the discriminator (D(i → p), uses data i sampled from G(z), or taken from

the initial dataset, and produces a prediction p as to whether i is ’real’

(from the dataset) or ‘fake’ (from the generator). A generic convolutional

GAN architecture is shown in Figure 2.17.

Figure 2.17: A generic generative adversarial network (GAN) showing the
generator model, the discriminator model and the zero-sum optimisation
through which they are trained. A variety of loss functions are available
for calculating the real and fake losses but it is common to use the binary
cross-entropy.

The models are trained in a zero-sum-game such that the generator loss

function is low when the discriminator loss function is high, i.e., when the

generator successfully tricks the discriminator into believing some gener-

ated data is real. Once trained, the generator can be deployed to produce
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large quantities of new data representative, but distinct, from the data cap-

tured in the training set. The output from the generator varies smoothly

over the input space. In the original publication [48], both G and D were

differentiable functions represented by multi-layer perceptrons; however,

it is now more common to use convolutional layers particularly for image

processing. Popular convolutional generative adversarial network (GAN)

architectures include the progressively growing generative adversarial net-

work (GAN) [49], styleGAN [50], and cycleGAN [51]. Chapter 7 utilises

a modified GAN which is trained to produce large datasets of surface tex-

ture data which can be used for many tasks useful to metrology, such as

for training further ML models such as in Chapter 8.

2.2.2.1.4 Transformer networks

Transformer networks are the current state-of-the-art in processing sequen-

tial data such as for natural language processing, control and computer vi-

sion tasks [52]. At a high level, the inputs to the model are transformed into

a string of tokens (a proccess called tekenisation), the model is trained to

produce the next token in the sequence. A recent example of a transformer

model is Gato which is designed by DeepMind to be a generalist agent [53],

meaning the model can perform many different tasks in different domains

without being retrained. Gato has been seen as a step towards artificial

general intelligence, it can caption images, respond to text prompts, play

a slough of Atari games, control a robotic arm and more, all with the same

model weights. From the context of the input tokens given, the model

infers what kind of output tokens to produce. An optional fixed prompt

can be provided describing the scene, a sequence of observation tokens are

then parsed by the model and a sequence of action tokens produced. The
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model has access to all previous input and output tokens in a rolling buffer

of 1024 tokens, multi-view attention [54] is used by the model to decide

what previous information is relevant to the current inference. Figure 2.18

shows how this model can be used for closed loop control of a robot arm.

Figure 2.18: Gato for control. A sequence of tokensised observations, sepa-
rators and previous actions are consumed to predict the next action token
in an autoregressive manner. The action is applied, new observations taken,
and the process repeats.

Transformer models were not used in this work as they are generally

extremely large and require huge computational reasources to train, they

are included here as the current best performing models in a range of tasks

for the sake of completeness.

2.2.3 Support vector machines

While neural networks are popular, there are competing and complimentary

approaches to machine learning (ML) that also see widespread application.

A SVM is perhaps the most common alternative approach. Simply, SVMs

map training data to a higher dimensional space where the categories are

separated by a clear linear gap. Predictions can then be made on new

data by mapping the unseen examples to the same space and determining

which side of the gap they are mapped to. Neural networks are parametric

approaches where, once the model is trained, the training dataset may
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be discarded, and predictions are made solely on the basis of the learned

weights; in contrast, SVMs are memory-based. In this context, memory-

based implies that the predictions are made on the basis of the data within

the training set. SVMs are a type of kernel method which takes a set of

data in an input space that are not linearly separable and maps them into a

higher-dimensional space. These kernels are different to the kernels used in

sliding window convolution and are simply mapping functions of the input

space into a new higher-dimensional space given by,

k(x, x′) = φ(x)T · φ(x′) (2.40)

where k is the kernel and φ is a feature map. SVMs employ the ‘ker-

nel trick’ [55] which allows the kernel to be computed as a simple func-

tion in the input space without explicit knowledge of φ. As an example,

k(x, x′) = x · x+ |x|2 · |x′|2 is a function that is equivalent to applying the

feature map φ = (x, y, x2 + y2), this can be easily verified by substitution

into Equation 2.40. While this is only a three-dimensional example it is

clear that the transformation can be completed without ever calculating an

explicit representation of φ. This allows efficient computation of transforms

into extremely high, sometimes infinite, dimensional spaces. Gaussian ker-

nels are one of the most common kernel types and are an example of kernels

that map the input space to an infinitely dimensional space (this can be

seen through Taylor expansion of the Gaussian function, which leads to an

infinite sum of inner products). When the data have been mapped to a

space in which they are separable, a max-margin criterion is used to cal-

culate the optimum hyper-plane to define the class boundary [56]. Figure

2.19 shows two examples of how the same data can be separated.
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(a) Margin. (b) Max-margin.

Figure 2.19: The same data separated by different hyper-planes (shown as
a solid line). Support vectors highlighted in red in (b).

While Figure 2.19a effectively separates the data and Figure 2.19b uses

the max-margin criteria to ensure the closest data point to the hyper-plane

from either class is a maximum distance (Mmax). The max-margin criteria

decrease the probability of misclassification when the SVM is applied to

unseen data. The highlighted points (shown in Figure 2.19b circled in

green) are designated support vectors and are used to fully define the hyper-

plane, therefore, when the SVM is deployed all other training data can be

discarded and the support vectors alone are used to determine which class

the new data belong to. The SVM can also be reformulated to perform

regression, by instead finding and selecting support vectors to minimally

describe the best fitting hyperplane - this is called support vector regression

(SVR). SVMs are not used in this thesis as CNNs are better suited to the

image processing based tasks relevant to this project. However, they have

been used in many of the works presented in Section 2.3 so are presented

here for clarity.
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2.2.4 Genetic algorithms

A distinct category of algorithms to the ML models discussed thus far are

so called genetic algorithms (GAs) [57]. GAs are inspired by the mecha-

nism of natural selection, where the best candidates from a population of

possible solutions are selected for further crossover and mutation to obtain

new successors [58, 59]. The process of generating new populations from

descendants is repeated until the new population of successors converge.

In a GA, some model (which may be represented by some ML model such

as an ANN, or by any other parameterised model) is designed to represent

the possible solution space to a given problem. A population of models is

then generated who’s parameters are intialised randomly across some dis-

tribution covering the possible parameter space. The initialised parameters

are stored in a minimal representation which can be considered analogous

to biological genes, often a binary string. Performance of each model is

evaluated on a dataset with respect to some objective function, it is the

aim of the genetic algorithm to minimise the given objective function. The

key operations in a GA as mentioned above are selection, crossover and

mutation. Selection is the process of selecting the best performing mod-

els in the current population as evaluated by the given objective function,

analogous to natural selection. Crossover is analogous to biological mat-

ing, where two parent models combine their parameters (genes) to produce

an offspring model with parameters set by random contribution from each

parent model. Mutation, then, is the application of random perturbations

to the offspring parameters as set by the mutation rate. GA mutation

represents the random mutations observed in biological genetics and is in-

cluded to assist in avoiding conversion on local minima and to keep child

populations diverse. Figure 2.20 shows the process of two parent models

producing a child for a simple model consisting of two parameters each
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represented by four-bit binary strings.

(a) Selection.

(b) Crossover.
(c) Mutation.

Figure 2.20: The process of two selected parent models producing a child for
a simple model consisting of two parameters each represented by four binary
”genes”. The red dotted line in (b) represents the random crossover point
determining how each parent contributes to the resultant offspring. The
red value in (c) represents a mutated gene, the mutation rate is normally
set such that mutation occurs at a relatively low rate.

Mutation rate, crossover point, population size, conversion criterion

and objective function are all hyper-parameters of the GA which should be

tuned for the given application.

Since their introduction, GAs and their variants have been used in many

areas and shown to be effective for non-linear, complex global optimisation

problems (for examples, see the reviews [60,61]). GAs are especially useful

in poorly understood scenarios where there is no direct relationship between

the input arguments and output target values, and for problems with large

search spaces. Due to the complex search space when dealing with multiple

cameras, GAs are promising candidates for camera position optimisation

[62] and as such are exploited for this purpose in Chapter 5.
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2.3 State of the art in machine learning for

optical coordinate metrology

With the emergence of high-powered central processing units, the im-

mense parallel computing power of the compute unified device architecture

(CUDA) accelerated graphics cards and more access to fully labelled train-

ing datasets through the advent of big data [63–65], many of the approaches

developed through research can now be implemented commercially. Partic-

ular effort is being channelled into the areas of computer vision and image

analysis [66, 67]. While machine vision tasks have different requirements

and often much less strict constraints when compared to measurement ap-

plications, there are many similarities to traditional form and coordinate

metrology approaches— stereo vision analysis and scene segmentation in

particular are active areas of research due to the advent of self-driving

vehicles [64]. Machine learning techniques have already found success in

different areas of metrology [68–70], particularly for the measurement of

very small parts such as semiconductors [71, 72].

What follows is a state of the art review into currently developed appli-

cations of the ML techniques discussed previously to optical coordinate

metrology.

2.3.1 Machine learning for stereo matching

A key stage in photogrammetric reconstruction, as discussed in Section

2.1.1.3, is feature detection and feature matching between pairs of images,

referred to here as ‘stereo matching’. While the approaches discussed in

Section 2.1.1.3 can be highly effective, there has been recent effort to use

ML to augment the stereo matching process [73–82] or to replace the tra-
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ditional approaches entirely [1, 83–87]. A common approach is to use ML

to inform the computation of the stereo matching cost between detected

features or local image patches. The multi-view stereo matching prob-

lem can be reformulated as a multi-class classification problem, where each

class represents all possible views of a given feature [88]; this is shown to

reduce the rate of matching errors. Competing approaches instead formu-

late the problem as a binary classification problem, where pairs of features

are fed as inputs and the outputs represent the predicted probability that

two features are matched. Early research in this area [81] takes as input

two image patches which have been suggested as stereo matches by tradi-

tional methods. The two image patches are fed into a single CNN which

has two output nodes predicting the probability that the suggested match

is a correct match. An example of this type of CNN is shown in Figure 2.21.

Figure 2.21: CNN to predict the ‘confidence’ that two stereo image patches
are correctly matched. The convolutional layers (conv) consist of kernel
convolution with the shown kernel size, batch normalisation and ReLU
activation.

The CNN prediction is then directly used to adjust the semi-global

stereo cost during reconstruction; this approach has been shown to appre-

ciably improve depth estimation. More recently, it has become common

in stereo vision applications to utilise twin networks [79, 82, 89] that feed

the paired input images into two separate copies of the same architecture,

which are then compared to produce an output—this is illustrated in Fig-
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ure 2.22.

Figure 2.22: Example of a twin CNN for learned stereo matching. In
contrast to Figure 2.21, here the stereo pair are input to parallel copies of
the same network with shared weights.

A twin network approach was implemented by Feng et al. [79], who used

the predicted matching probability alone as the stereo matching cost. They

showed that the CNN matching approach could outperform traditional ap-

proaches in some settings but did not produce accurate results for low-level

texture and occluded surfaces. Therefore, they augment the purely ML

approach with traditional algorithms, such as semi-global matching, inter-

polation, sub-pixel enhancement, median filtering and bilateral filtering.

2.3.1.1 Learned stereo machines

Rather than augmenting traditional methods, some ML approaches seek

to replace traditional algorithms entirely in a so called learned stereo ma-

chine (LSM). Replacing the entire data pipeline with a single ML model

is referred to as using end-to-end learning. Learning stereography in this

way is not a new idea — an early work [83] described how a neural network

could be trained to discover depth from a pair of random dot stereograms

of a curved surface—at the time this approach was limited to very simple

images and surfaces, but with modern computing power can be expanded
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to more general applications. Work more recently [86] has begun to extend

LSMs to create high-resolution depth maps from rectified image pairs, gen-

erating sub-pixel accuracy without the need for post-processing. Kar et

al. [1] extend this idea from stereo pairs to multiview systems. They pro-

pose a multi-view LSM which uses a recurrent neural network (RNN) based

approach. A RNN is a neural network which operates on temporal data,

preserving some memory of past activations (see [90]). In this case, the

RNN is trained to give two outputs, a 3D voxel occupancy grid and per-

view depth maps created through reprojection of the voxel data. A set of

images of an object are passed to a feature detection CNN, these features

are then un-projected into individual 3D spaces, an RNN is used to match

the features and fuse the individual spaces into a single 3D world-space

and a 3D CNN is then applied to this world-space to produce the final 3D

prediction. This network architecture is shown in Figure 2.24.

Figure 2.23: Overview of a LSM, based on Kar et al. [1]

Using the approach shown in Figure 2.24, reconstructions can be pro-

duced to a higher quality with fewer images than compared to traditional
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methods, however, the current implementation has a coarse voxel grid that

makes it more suited to machine vision tasks than surface measurement. A

more recent approach [84] uses a structured SVM to produce disparity maps

from a stereo image pair. They show that an SVM based approach may

produce significantly better performance than other learning-based meth-

ods when applied to the Middlebury-2005 dataset of stereo images [91].

2.3.2 Machine learning for phase unwrapping

ML can be used to address the problem of phase unwrapping in fringe pro-

jection optical coordinate measuring systems. Early work in this area used

simple ANNs to perform phase unwrapping [92], where they showed the

potential for ML to recover fringe order at high speed with little knowledge

of the camera characterisation or the details of the measurement device.

However, this early work was prone to errors due to noise and variations in

the surface characteristics between the training data and the measurement

data. Recent work expands this ANN approach [93] by encoding different

fringe patterns in the red, green and blue channels of a colour projector,

which allows the camera to detect three individually phase-shifted pat-

terns in a single-shot measurement. Corresponding pixels from the three

wrapped phase maps are fed into the ANN, shown in Figure 2.24, which

can produce phase-unwrapped depth maps at 25.6 times a second, with a

relative accuracy of 0.012%.

Rather than feed individual pixels through an ANN, there are many

studies which use CNNs to address phase unwrapping [65, 75, 94–98]. Ad-

ditionally, as coherence scanning interferometry (CSI) [99, 100]) measure-
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Figure 2.24: ANN for per-pixel phase unwrapping (Nguyen et al 2019), cor-
responding pixels from the three wrapped phase maps are passed through
the network which produces a single output depth prediction.

ments contain the same phase unwrapping problem (albeit on a different

scale), some techniques used in the context of CSI can also be applied to

fringe projection [101–103].

Recent research uses an FCNN for phase unwrapping and some works [101]

treat the problem as a multi-class classification problem, where each class

represents a fringe order, while alternative approaches [98] directly regress

depth values. The FCNN approach has the advantage that it can take

images of different sizes without modification. In the multi-class approach

[101], an additional FCNN is implanted to preprocess noisy wrapped phase

maps to remove or reduce the noise. Alternatively, an SVM with a radial

basis function kernel can be used to classify each pixel in the wrapped phase

map by its fringe order [104], also formulating the problem as a multi-class

classification task. As this approach is per pixel, it avoids error propa-

gation in spatial unwrapping and only a single projected fringe pattern is

required, compared to the many projected fringe patterns used in tradi-

tional temporal phase unwrapping. It has been shown that using an SVM

for phase unwrapping can produce depth maps of a comparable quality to

traditional methods in a much shorter time. As with the CNN based meth-

ods, there is a competing SVR approach which formulates the problem as

direct regression of depth, rather than a classification problem [103]. Using

SVR to directly predict depth values can produce measurement errors of
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under 1%.

2.3.3 Machine learning for view planning

Both photogrammetry and multi-view fringe projection require images to

be captured from a range of positions to reconstruct a complete part. The

decision of where to capture images from and how many to capture is often

an arbitrary process. An alternative approach is to leverage ML to produce

an optimised measurement plan which considered the geometry of the cur-

rent part being measured. One approach is to perform this optimisation in

real time using a next best view (NBV) method [105,106], which iteratively

finds the next camera position based on previously collected data. An ap-

proach presented by Arce et al. [107] employed structure from motion to

create an initial point cloud, from which the next position was iteratively

generated using an unsupervised model. This approach was specifically

designed for situations where the CAD model is unavailable, an unlikely

scenario in production engineering. If the CAD model of the object is

known, the NBV positions can be precomputed. Mendoza et al. [108] took

a supervised approach to NBV by using a traditional view-planning method

based on ray tracing; the latter was used to calculate labels and generate a

dataset of 15,000 training point clouds. A 3D CNN was then used to pre-

dict the NBV position directly. Comparing their machine learning based

approach to traditional methods, Mendoza et al. showed that machine

learning methods appeared to be consistently faster, often by many orders

of magnitude. Furthermore, they showed that machine learning approaches

were particularly effective at finding early camera locations but performed

worse when calculating later positions; consequently, they suggested a fused

approach employing machine learning to initially find a small number of
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camera positions and then using a traditional algorithm to compute the

following positions.

2.3.4 Machine learning for camera characterisation

Although there has been some research to recreate depth from uncharac-

terised cameras [109], characterisation of cameras remains a key part of

camera based coordinate measurements as was discussed in Section 2.1.3.

Early works used a genetic algorithm to globally optimise the camera pa-

rameters, but this method was shown to have little benefit over tradi-

tional approaches [110]. More recently, some researchers have attempted

to replace the entire characterisation process with an end-to-end machine

learned model [111]. Mohamed et al. [112] explicitly obtain the camera pro-

jection matrix through a support vector machine and show this approach

to be more robust to noise and more computationally efficient than tra-

ditional techniques. He et al. [113] use a K-singular value decomposition

sparse dictionary learning approach to perform a non-linear optimisation

of the camera parameters, they claim that, once trained, this approach

can enable single image characterisation. Other studies, instead, imple-

ment a hybrid pipeline which fuses machine learning techniques with the

traditional characterisation pipeline proposed by Zhang [17]. Character-

isation target detection and localisation specifically is a good candidate

for improvement through machine learning as traditional methods can be

highly influenced by factors such as noise [114, 115]. It has been shown

that CNNs can be more effective than conventional algorithms at locat-

ing characterisation targets and features within photographic images [114].

For example, the machine learning for adaptive characterisation template

detection (MATE) model proposed by Donné et al. [116] is a CNN trained
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to be robust to noisy inputs and high lens distortion. A model developed

by Chen et al. [117] has been designed specifically to be robust to views in

which some portion of the characterisation target cannot be seen. A new

approach to characterising the non-linear distortion parameters is to use

an SVM [118], this approach was shown to accurately capture distortion

parameters with a height accuracy of 3 �m. Due to the requirement for mul-

tiple images at different angles, traditional characterisation methods can

be highly affected by low-accuracy components, such as rotation stages.

There is potential to use deep CNNs to characterise a camera’s intrinsic

parameters from a single image [119], rather than the many images required

for conventional approaches. An alternate approach presented by Li and

Liu [120] uses a micro-mirror device and a laser to stimulate single camera

pixels and a deep CNN was then trained on this single pixel illumination

data to characterise the camera. Although this process may not save much

time over the traditional methods, it can be automated to remove the de-

pendence on the user. The single pixel illumination ML approach has high

accuracy while requiring fewer computations than traditional characterisa-

tion algorithms, producing an MSE of 0.0072 mm, which is an improvement

of 60% over the traditional method.

Approaches for characterising the extrinsic parameters include the use of

a CNN for real time estimation [121]. A CNN was trained to predict az-

imuthal and elevation angles from shadows cast by a single point source

on a specific artefact. The CNN comprised five convolutional layers and a

final fully connected layer. It was shown that there was an average ±10◦

error in the azimuthal and elevation angles estimated which resulted in a

±1 mm misalignment in the measured point cloud when compared to man-

ually re-characterised extrinsic parameters.
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2.3.4.1 Implications for measurement uncertainty

As the optical metrology industry moves towards a traceable calibration

pipeline for measurement [122], it becomes necessary to be able to quan-

tify uncertainties related to any predictive ML models in the measurement

pipeline [123]. Due to the complex nature of ML models, it is difficult to

apply methodologies directly from the original Guide to the Expression of

Uncertainty in Measurement [124]; rather a Monte-Carlo simulation ap-

proach must be taken [125, 126]. Early work in this area showed how un-

certainty can be propagated through simple linear regression models [127].

Work by Cheung and Braun [128] extended uncertainty analysis to more

general model types and suggested that any analysis involving ML models

should consider uncertainty contributions from:

• Model output: uncertainty relating to the difference between the

model prediction and the ground-truth value.

• Calibration data: uncertainty in the data which make up the model

training dataset.

• Input measurement: uncertainty in the input data to a model.

• Output measurement: output uncertainties outside the calibration of

a dataset.

The study by Cheung and Braun demonstrates that increasing the size

of the training dataset can reduce the uncertainty contribution from the

calibration data but has no effect on the other contributions whose uncer-

tainties are either from the derivation of the model, or inherent to the data

themselves.

An example where ML has started to be applied is in the characterisation
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of a galvanometric laser scanner [129]. In this study, the laser is controlled

through a galvanometric positioned mirror, the mirror deflects the beam to

scan over the surface being measured and the laser dot is then triangulated

via a camera to a known position relative to the mirror. In characteris-

ing this system, Wissel et al.showed that ML approaches can outperform

model-based approaches and perform similarly to look-up table characteri-

sation, providing coordinate root MSEs as low as 0.029 mm and plane root

MSEs of 0.433 mm for a calibration plane size of (100×100) mm. They also

show that using ‘off-the shelf’ ANN architectures can lead to large general-

isation errors and that reducing the problem using a specifically designed

SVM can significantly reduce this error.

2.3.5 Machine learning for point cloud analysis

Point cloud analysis is an important stage of any surface measurement

pipeline as it is the stage at which information is extracted from the mea-

surement data. Although the pipeline presented in this thesis is concerned

only with generating the measurement point cloud and not performing fur-

ther analysis upon it, ML approaches to data analysis are included in this

review for the sake of completeness. Many ML-based approaches require

the measured data to be regularised into a voxel grid because a voxel rep-

resentation has a known size and known order. In contrast, point clouds

do not have a regular ordered grid of points and the total number of points

can vary from measurement to measurement. However, depending on the

voxel grid resolution, transforming data into voxel form can either incur

loss of detail or make the data size much larger. In order for an ML model

to effectively operate directly on point clouds, it must fulfil the following

criteria [2]:
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• For a point cloud of N 3D points, the model must be invariant under

the N ! permutations of the order of the point cloud.

• The model must be able to capture local structure and interaction

between neighbouring points.

• The model must be invariant under certain geometric transforms of

the entire point cloud. For example, rotating the entire point cloud

should not change the analysis result.

A simple approach to deal with inputs of an unknown size would be to use

an RNN which iterates over each element in the input, however, it has been

shown that the order of the RNN operating on the input directly effects

the output, thus this approach does not satisfy the first requirement for

operation on point clouds [130]. A better example using point clouds is

given by PointNet [2], which is a neural network approach for point cloud

segmentation discussed in the following section.

2.3.5.1 Point cloud segmentation

Segmentation of a point cloud is a widely researched area (see the reviews

by Garcia-Garcia et al. [64], Grilli et al. [131] and Nguyen and Le [132])

and, while most segmentation research is not explicitly conducted for use

in measurement applications, there are many situations where it could ap-

ply, for example separating the measured object from the background, lo-

cating manufacturing defects and measuring multiple objects at the same

time. Often the points are segmented into distinct semantic classes (such

as background and object) in a process referred to as semantic segmenta-

tion. Semantic segmentation is distinct from instance segmentation, where
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semantic segmentation would simply label a point as either object or back-

ground, while instance segmentation also assigns a specific instance with

each label, as shown in Figure 2.25.

(a) Input scene.

(b) Semantic segmentation. (c) Instance segmentation.

Figure 2.25: Types of scene segmentation. Can be applied to both many
data types including images and point clouds.

An approach to segmentation is binary or multi-class classification on

a per point basis. If the application can afford the sacrifices associated

with using voxel representations, then 3D CNNs are well suited to this

task [133,134]. For example, a point cloud can be transformed into a voxel

representation by dividing the space into a grid and determining whether

a voxel is occupied (contains at least one point) or is not occupied [133].

Figure 2.26 shows the network used to perform the multi-class classification

problem. In their example, there were eight possible classes representing

seven given categories and one class representing the case where the voxel

grid belongs to no category (i.e. when it is not occupied).
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Figure 2.26: Multi-class voxel grid segmentation using a 3D CNN.

As discussed, segmentation can also be applied directly to point clouds

[2, 64,135]. PointNet [2] is essentially a series of ANNs connected together

and notably has no convolutional layers. The architecture consists of two

branches: the first classifies the entire cloud into one of k possible semantic

classes. The global semantic classification is fed backwards into the second

branch which classifies each point into one of m possible sub-classes. By

concatenating the global classification result with the local feature maps,

the local classification can be informed by both the local features and the

global semantic class, satisfying the requirement that a model operating

on point clouds can observe local structure. To satisfy the requirement for

invariance over the order of the point cloud, a general function acting on

the point cloud F ({x1...xn}) is approximated by,

F ({x1...xn}) ≈ g(h(x1)...h(xn)), (2.41)

where f : 2nR → R, h : Rn → Rk and g : {Rk
1 ...R

k
n} → R, where g is a

symmetric function. An ANN used to approximate h and g is represented

by a single variable function applied after pooling the values returned by

h. By collecting multiple h, the properties of multiple functions f can be

captured, and because g is symmetric the application of this approxima-

tion is invariant to input permutation. Figure 2.27 shows the architecture

of PointNet where these features can be seen.
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Figure 2.27: PointNet architecture [2]. The classification network takes n
input points, applies the learned input and feature transforms, pools the
results and provides the global classification. The segmentation network
takes the global result and local feature maps to perform per-point classi-
fication.

To satisfy the final requirement that the model be invariant to geomet-

ric transformations on the entire point cloud, there are two small networks

included in the model which both predict an affine transformation matrix.

The first is applied to the entire input and the second is applied to the fea-

ture space (labelled input transform and feature transform, respectively, in

Figure 2.27).

PointNet has become an extremely popular approach due to its robust

handling of pointsets, many of the upcoming examples use PointNet at

some point in their model pipeline. To improve the performance of Point-

Net, specifically to capture local structure in the input point cloud, Qi et

al. [136] introduced a modification of PointNet called PointNet++. Point-

Net++ applies PointNet recursively on nested partitions of the input point

cloud at a range of scales. This allows the learning of features to be robust

to sampling density in the point cloud and has shown to be an improvement

on the standard PointNet implementation on a set of benchmarks.
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Segmentation is particularly useful for the detection and classification of

surface defects [66, 137] and, if made fast enough, can be deployed for in

situ monitoring [138]. This is an active area of research and also provides

the motivation for much of the efficiency increases sought in both phase

unwrapping [4] and stereo matching [139].

2.3.5.2 Point cloud registration

The registration of CAD data to a measured cloud or of two clouds together

has many applications. A recent review by Zhang et al [140] shows that nu-

merous ML models have been proposed to replace many of the traditional

approaches to point cloud registration. These models can be considered in

two categories, models which aim to improve a single part of the registra-

tion pipeline (such as feature extraction), and models which seek to replace

the entire pipeline with an end-to-end learning approach. An example of

an approach which seeks to integrate into the traditional pipeline is the

LORAX algorithm. The LORAX algorithm [141] uses a deep ANN for

dimensionality reduction, to attempt to simplify the registration problem.

Essentially, the algorithm detects features in the point clouds, compares

them for semantic similarity, matches features between the clouds (hence,

coarsely aligning the two clouds) and finally refines the alignment with the

iterative closest point (ICP) algorithm. Comparing features can be com-

putationally expensive if the dimensionality of the feature space is large,

therefore, an ANN is used to create a compact representation of each fea-

ture and these representations are compared for similarity. The ANN is set

up as an auto-encoder, which is shown in Figure 2.28.

The encoder ANN takes the input and outputs a compact vector. The
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Figure 2.28: Auto-encoder architecture. Training is conducted such that
the output can be decoded from the compact representation with minimum
difference when compared to the input, therefore, ensuring the compact
representation captures the input as fully as possible.

decoder takes this vector and attempts to recreate the input. By comparing

the decoded input with the actual input, a model loss can be derived which

determines how well the compact representation captures the input. This

allows unsupervised training to be conducted, resulting in a network that

can take large features and produce a vector which represents that feature

in a much more compact manner, allowing for more efficient matching.

Related research, called deep closest point [142], has also shown that using

learned features to provide initial alignment between two point clouds can

greatly facilitate accurate alignment via ICP, and can make ICP far more

robust to failure when dealing with point clouds with poor initial alignment.

As stated earlier, other approaches, such as DeepVCP [143], attempt to

fully replace approaches such as random sample consensus (RANSAC) and

ICP with an end-to-end learned model. An example of a fully ML based

approach to registration for form measurement is research by Gojcic et

al. [3], which focuses on combining multi-view point clouds into a completed

single point cloud.
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Figure 2.29: ML approach for multi-view point cloud registration [3].
Features are extracted from the input point clouds and then iteratively
matched to find the best alignment.

Figure 2.29 shows the approach to multi-view point cloud registration

which is outlined here—for each input point cloud, a neural network ex-

tracts a set of features. These features are fed into a further set of network

blocks that compute stochastic correspondences between each combina-

tion of pairs of point clouds. Using these correspondences, a further block

(labelled Reg. init. in Figure 2.29) computes initial transformation param-

eters and residuals, which are refined by the next block (Reg. iter.) from

which the registration graph is built. The final two blocks are iterated four

times to produce the complete registration. This approach is evaluated on a

set of benchmark datasets and shown to outperform competing approaches

on the same datasets by 25% in terms of mean rotational error. Further-

more, the approach is shown to be thirteen times faster than RANSAC

when registering a set of 60 point clouds and copes well with unseen scenes

and objects.

In the conclusion of their review, Zhang et al. [140] make the following

points: ML models show clear dominance when used as a module within a

traditional pipeline, such as for feature extraction, and end-to-end learned

systems are growing in popularity and have the potential to become more

effective than traditional methods. They also note that some failings of cur-

rent ML models include the existence of a clear gap between performance on
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synthetic datasets and performance on real world data. A further area for

improvement is that many systems use feature extraction networks which

were designed for other applications, such as PointNet and PointNet++,

there is likely to be a performance gain by designing a bespoke approach

for registration.

2.3.5.3 Point cloud completion

Often a measurement will result in an incomplete point cloud due to oc-

cluded surfaces, either due to insufficient views or surface complexity. It

can, therefore, be useful to attempt to predict the missing data, not for

extending the measurement data, but for increasing the performance of

registration algorithms such as ICP. It is common to use an auto-encoder

type network and RNNs as part of the pipeline for point cloud comple-

tion [4, 144–146]. Figure 2.30 shows an example approach for point cloud

completion [4].

Figure 2.30: Point cloud completion network Liu et al. [4]. This approach to
point cloud completion uses an encoder to create a compact representation
of the input, this is then combined with a random 2D set of points to
predict a mapping of those points onto unknown 3D surfaces, a set of these
predicted surface are combined to create a coarse completion estimation.
This estimation is then further densified through fedforward information
from the input and ResNet layers.

The approach shown in Figure 2.30 yielded successful results, and the
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point sampling approach used ensures that any known structures from the

incomplete point cloud are preserved. It is not clear if this method will gen-

eralise well onto unseen objects of different semantic classes to those con-

tained within the training dataset and the supervised learning approach

also requires a large labelled training dataset. A similar approach uses

PointNet, which was described in Figure 2.27, as the layers in its en-

coder [144], this has similar trade-offs as using PointNet for point cloud

registration as was described in the previous section.

Another approach to point cloud completion is to use a GAN [147, 148].

The discriminator is trained on a combined dataset of real complete and

generated point clouds, and is trained to predict whether a given input is

real or generated. The GAN sequences these two networks and the dis-

criminator output is used as the loss of the generator. Thus the generator

is trained to produce point clouds that the discriminator cannot distin-

guish from real data. GANs can be used directly on input point clouds,

do not require labelled training data and allow more general application of

the network to make predictions on unseen data from unknown semantic

classes [148]. An extra learning step can be inserted into the GAN pipeline

(called RL-GAN-Net [147]) which learns how controlling the input vector

affects the output point cloud. This can, therefore, be trained to provide

an input which is likely to produce an output cloud which is most similar

to the missing data. RL-GAN-Net can generate completed point clouds in

approximately 1 ms, allowing it to be deployed in real time situations and

produce completed point clouds from input data with up to 70% missing

points.
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2.3.6 Full automation of the measurement pipeline

What proceeded this section was a review of optimisations of individual

sections of the measurement procedure. As was stated in Chapter ?? the

aim of this thesis is not just to optimise individual parts of a measurement,

but to thread these algorithms together in a way which enables fully au-

tonomous data capture. Some attempts to achieve these goals have been

made by previous researchers [149–153] but all fall short of fully realising

a system which is automated, optimised and general across the geometry

of parts measurable by the system.

Abd-Raheem et al.presented a system which automates data capture and

processing through use of a system consisting of a camera and a rotation

stage [149]. Data is captured equally spaced around a part from a fixed

location every thirty degrees of rotation leading to a dataset of 24 images.

While this approach is general over all objects which can be contained in

the FOV of the imaging system it has several drawbacks. Firstly the char-

acterisation of the system is not addressed at all. Secondly, the camera

position is fixed in a scan at a position which may not be optimal for all

parts. The imaging strategy is also not adjusted for complex parts which

may require a greater number of images from a range of different locations

to achieve high quality, complete reconstructions.

A system produced by Martins et al. [150] allows for automated surface

measurement of parts through optical range sensors and a view plan devel-

oped form the object’s CAD data. Their view planning approach optimises

for surface coverage and scanning costs and defines collision free, efficient

scanning paths. This approach, however, uses optical depth sensors aligned

in the vertical direction which can move in the horizontal plane and ver-

tically while the part is fixed. The three free degrees of freedom means

that the reconstructions generated represent height maps relative to the
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vertical direction, missing surface information on occluded surfaces. This

approach may be valid for some parts where only one functional surface

must be measured, but is far from generalisable over all 3D objects with-

out the need for multiple point clouds to be stitched together, a costly and

often manual process.

Fan et al.present a DFP system which computes a imaging strategy during

data acquisition from an initial scene exploration [151]. Multiple objects

can be placed within the measurement volume, the imaging system will

find a rough geometry of the scene, compute an optimal set of sensor loca-

tions to perform a detailed measurement, then perform the measurement.

This approach has some advantages, the ability to measure multiple ob-

jects at once and generality across object geometries. However, due to the

view planning occurring during the data acquisition and the need for initial

scene exploration, the approach is relatively slow, with the paper reporting

average per-object measurement times of between eight minutes and twelve

minutes. Furthermore, the system has only three free degrees of freedom

so the number of available imaging positions is limited.

Other approaches to automated measurements are designed for specialised

measurement scenarios such as the measurement of turbine blades [153],

cities [154], carbon fibre morphology [155] and the detection of specialised

photogrammetric targets [152]. Further methods require the generation of

fixtures to guarantee the position of measured parts within the measure-

ment volume [156]. Specialised approaches to automation are not consid-

ered here due to the desire for generality across 3D geometries,

As can be seen from the above review, there is no such implementation

in the current literature which addresses both automation while maintain-

ing generality, surface coverage, fast operation and per-part optimisation.

And, to the author’s knowledge, no complete pipeline for automation and

optimisation of the entire measurement pipeline has been presented beyond
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that presented by this thesis in Figure 1.3.

2.4 Summary

In this chapter all background theory required to understand the two mea-

surement methods which this thesis concerns itself with has been given.

The choice of these measurement methods has been justified.

Further relevant background theory pertaining to ML methods has been

summarised. Particular focus was given to advanced model architectures

which will be employed in the following chapters.

Finally, a review of the current state of the art in applications of ML to opti-

cal coordiante metrology was given. From this review it was clear that while

ML remains a developing field, there are many areas where ML models can

be usefully applied to optical form and coordinate metrology. Considering

this review of the state of the art, the areas of camera characterisation,

measurement automation and optimisation, point-cloud registration and

data generation will all be addressed by work in this thesis directly. While

each of these areas has seen some research interest it is very clear they are

subjects which are far from solved problems.

Further, it is clear from Section 2.3.6 that there currently exists no sat-

isfactory, optimal solution to full automation of coordinate measurement

of generic three dimensional objects. Particularly the combination of au-

tomated and optimised data capture is lacking. Many systems lack the

degrees-of-freedom required to achieve high surface coverage. There is also

a tendency to design systems specialised to measuring particular classes of

objects as known properties of these objects can be exploited to aid with au-

tomation. There is also a lack of literature pertaining to an overall schema

for how individual parts of the pipeline should be optimally threaded to-
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gether to complete a full measurement from start to finish. Therefore, this

review validates the pipeline in Figure 1.3, and its constituent algorithms,

as a valuable contribution of this thesis to the field.
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Methods
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This chapter summarises the experimental and commercial measurement

setups used to test and validate the approaches proposed in Chapters 4 to

8. Also summarised are the reconstruction methods used to produce 3D

point clouds, system characterisation methods, computational methods,

and finally the collection of test artefacts used to evaluate performance of

the proposed approaches.

3.1 Measurement systems

This section presents two photogrammetry systems which were used to

test the methods proposed in Chapters 5-8, a DFP system used to test

the camera characterisation methods presented in Chapter 4, an optical

surface texture instrument used to collect training data for Chapter 7, a

commercial CMS used to compare the proposed approaches against a cur-

rent commercial solution, and a tactile CMM to allow comparison to a

calibrated measurement.

As discussed in the introduction, the application is to measurements con-

ducted at ”close-range”. This typically refers to measuring objects which

are sized in the order of centimeters with desired point spacing on the order

of tens of micrometers. As such, the optical CMSs presented in this section

all have measurement volumes on the order of 30 square centimeters and

are equipped with high resolution sensors.
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3.1.1 Photogrammetry

3.1.1.1 MMT system

The initial photogrammetry data in this thesis were collected using the

system shown in Figure 3.1, referred to as the Manufacturing Metrology

Team (MMT) system.

(a) Schematic.

(b) System.

Figure 3.1: The MMT system, used to collect initial photogrammetry data.

As can be seen, the system has two DoFs, which can be controlled com-

putationally. As the camera’s optical axis and the linear stage are aligned

with the centre of the rotation stage, the motion stages can control a radius

and rotation relative to the centre of the rotation stage. The camera used

is a Nikkon D3500 camera with (4496 × 3000) pixel resolution, equipped

with an AF-P DX NIKKOR 18− 55 mm f/3.5− 5.6G lens.

The control software for the system was written in MATLAB with more

details given in Sims-Waterhouse [157]. Unless otherwise stated, a mea-

surement on this system is reconstructed from a series of 60 images equally

spaced on a ring around the object being measured. An additional image

is taken by moving the camera a set distance along the linear motion stage,

this distance is then used to scale the resultant point-cloud.
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3.1.1.2 Taraz system

A large amount of photogrammetry data was also collected using the Taraz

Metrology P2 system which is shown in Figure 3.2, henceforth referred to

as the Taraz system.

(a) Schematic. (b) System.

Figure 3.2: The Taraz system, a Taraz Metrology P2 system.

The Taraz system was selected as it overcomes some limitations of the

MMT system. First, it is a five DoF system which enables many more

imaging positions which is critical for executing the view plan as developed

in Chapter 5. High resolution machine vision cameras are used in a stereo

pair, the baseline distance between these cameras can then be used to apply

scale to any measurements taken with this setup. To ensure the scale is

applied as accurately as possible, the baseline distance was characterised

using the process highlighted in Appendix C. It was determined that the

baseline distance is 264.00 mm ± 0.40 mm (full results tables are presented

in Appendix C.1. This approach to determining scale is much more stable

and less likely to introduce scale errors than the approach used by the MMT

system which relies heavily on the positional accuracy of the linear motion

stage. Finally, higher quality motion stages were used with much higher

positional accuracy, greatly improving the positioning of the measurement

head. As can be seen in Figure 3.2b the measurement head also contained

a projector for performing fringe projection measurements, this capability
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was not used in this thesis.

The Taraz system utilises a pair of Basler acA5472-17um cameras with

Kowa LM12C 12.55 mm f/1.4− 16 lenses.

3.1.2 Fringe projection

3.1.2.1 DFP system

A fringe projection system is required to validate the system characterisa-

tion approach developed in Chapter 4. The system used, called the DFP

system, is shown in Figure 3.3.

(a) Schematic.
(b) System.

Figure 3.3: The DFP system, used to validated system characterisation
methods. Dotted red line indicates that the height of the target platform
can be adjusted prior to, but not controlled during, a measurement.

This system was used as it is the simplest embodiment of a DFP system,

with a single camera and projector. An adjustable platform was used to al-

low images to be taken with characterisation targets in a range of locations

across the focal ranges of the camera and projector. The imaging system

is comprised of a Prosilica GT1520 machine vision camera with a Soligor

35 mm f/2.8 lens. The projector is a Texas Instruments 4500 lightcrafter
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with a (912× 1140) pixel resolution and a focal length of 20 mm.

3.1.2.2 GOM system

To compare the proposed methods to current optical CMSs, comparisons

are made to measurement results obtained by popular commercial solu-

tions. Specifically, a GOM ATOS Core 300 DFP system is used which can

be seen in Figure 3.4 and is henceforth refered to as the GOM system.

(a) Schematic.
(b) System.

Figure 3.4: The GOM system, a GOM ATOS core 300. Used for compari-
son to commercial optical CMS. Red line shows controllable motion, dotted
red line shows adjustable position prior to measurement.

There are obvious similarities to the Taraz system in terms of phys-

ical design embodiment making comparisons between these two systems

particularly interesting. GOM provides acceptance testing/performance

verification of this product according to the VDI/VDE 2634 part 3 stan-

dard [158], the results of this acceptance testing are presented in Appendix

A.

3.1.3 Texture measurement

Although the focus of this thesis pertains to form measurement, a small

amount of texture measurement is conducted, particularly in Chapter 7.
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This texture measurement is important to accurately simulating micro-

scale surface detail when creating synthetic images to train models used in

photogrammetry, such as the monocular pose estimation approach detailed

in Section 8.2.

3.1.4 MMT-LS system

For large scale texture, such as that seen on surfaces treated with industrial

coatings, the MMT system which was shown in Figure 3.1 was modified

with a laser speckle projector to operate in a texture measurement mode,

this is shown in Figure 3.5. Hereon this system is referred to as the MMT

laser speckle (MMT-LS) system.

Figure 3.5: The MMT-LS system, including laser speckle projector for large
scale surface texture measurement.

As can be seen in Figure 3.5, the laser speckle projector is affixed to the

rotation stage to remove any relative motion between the part and the light

source. This projector consists simply of a laser source projected through

a ground glass lens resulting in a complex pseudo-random texture on the

surface. The resultant artificial texture projected onto the surface makes it

possible to measure relatively featureless and smooth surfaces. The projec-

tor is comprised of a laser diode (532 nm, 4.5 mW), focusing lens (50 mm,

biconvex) and glass diffuser (600 grit polished). A green laser was chosen
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due to the higher number of green pixels on the Bayer filter of a typical

complementary metal-oxide semiconductor (CMOS) sensor [159].

3.1.5 FV system

For smaller scale texture measurement, a focus variation (FV) microscope

was utilised. The operating principle of this microscope is to create an

image stack over a range of focal plane distances, the depth of each pixel is

determined as the focus plane distance for which that pixel has a maximum

contrast to the surrounding pixels. Figure 3.6 shows the main components

of a focus variation microscope and Figure 3.7 shows how depth informa-

tion can be inferred from the image stack.

Figure 3.6: Focus variation schematic.

Specifically, an Alicona Infinite Focus G5 was used and is referred to as

the FV system for the remainder of this thesis with the following instrument

settings: 20× objective lens, numerical aperture 0.4, field of view (0.81 ×

0.81) mm, lateral resolution 3.51 µm, vertical resolution: 12 nm, ring light

illumination, measured area (3× 3) mm.
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Figure 3.7: Focus variation operating principle.

3.1.6 Tactile measurement

As was noted in Section 1.1, tactile measurements on a CMM can be con-

sidered a reliable tool due to their traceable measurement results. To assess

the measurement quality of an optical system, it is therefore informative

to compare the optical CMS result to a measurement from a CMM. In this

case a Mitutoyo Crysta Apex S7106 CMM was used with a 1 mm ruby

sphere probe tip, referred to hereon as the CMM. The calibration method,

results and certification for the CMM are presented in Appendix B.

3.2 Measurement data analysis

Point cloud analysis was completed using the open source software Cloud-

Compare [160]. CloudCompare was used to perform point cloud registra-

tions, calculation of surface normals, and point cloud comparisons such as

calculating point-to-mesh and point-to-point distances of clouds registered

to each other or to CAD data. Point cloud registration was completed

using the popular iterative closest point (ICP) algorithm [161]. Figure 3.8

shows the basic flow of the algorithm.
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Figure 3.8: ICP algorithm.

ICP requires an initial coarse alignment between the two entities to

produce robust results. This is given by the user manually selecting three

pairs of roughly corresponding points on the two entities being aligned.

Once a measurement result is registered to either CAD data or another

measurement result, comparisons between the two registered entities are

simple to compute.

Surface texture analysis, performed in Chapter 7, was performed using the

software MountainMaps [162]. This software allows easy filtering of data

and has built-in ability to compute surface parameters such as those given

in ISO 225178 [163].

3.3 Computational methods

All large scale compute tasks such as training deep neural networks, render-

ing large quantities of training data etc. were completed on the University

of Nottingham Augusta high performance cluster (HPC), hereon referred

to as the HPC. The HPC [164] is equipped with high core count central

processing unit (CPU) nodes, useful for running many smaller models in

parallel; and a set of graphics processing unit (GPU) nodes, useful for large
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scale models which benefit greatly from hardware acceleration.

3.3.1 Data acquisition

The CMM, FV and GOM systems are all commercial products and as such

are packaged with their own data acquisition software. Both the MMT

system and the DFP system are controlled via MATLAB code developed

by colleagues within MMT. The Taraz system is controlled via Python code

developed at Taraz Metrology Ltd. In the case of both the MMT system

and Taraz system, imaging positions are provided as list of [x, y, z] loca-

tions given relative to the centre of the measurement volume. These global

coordinates must be transformed into G-code [165] machine positions to

enable automated data acquisition. Appendix D presents how the machine

coordinate system is aligned with the global coordinate system to enable

this automated data collection.

3.3.2 Photogrammetric reconstruction

Two methods are used for the reconstruction of 3D data from a dataset

of images, both methods are agnostic to which system was used to collect

the data. First is the open multi-view geometry (OpenMVG) structure

from motion (SFM) library [166]. OpenMVG was used as it has conve-

nient Python bindings allowing pipelines to be easily built and integrated

with stages beyond reconstruction, such as characterisation and data aqui-

sition. However the output of OpenMVG is a sparse scene rather than a

densified point cloud. A separate library such as open multi-view stereo

(OpenMVS) [167], which consumes a OpenMVG scene to create a dense

reconstruction, must be used if a dense reconstruction is required.
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Agisoft Metashape [30] is used to produce dense reconstructions. Metashape

is a commercial software for performing reconstruction and represents the

current state-of-the-art, making it a useful tool for validating the proposed

approaches in this thesis.

3.3.3 Machine learning methods

Each model used is described in its corresponding chapter. All ML models

described in this thesis were built, trained, and deployed using Tensor-

Flow [168] and Keras [169]. Keras is a high level application programming

interface (API) built on top of TensorFlow for machine learning. Tensor-

Flow its self has a relatively lower level front-end API for performing tensor

operations and other useful computations such as automatic differentiation.

TensorFlow also has a back-end which acts similar to a compiler providing

optimisation and allowing TensorFlow models to make use of acceleration

through compute unified device architecture (CUDA) and accelerated lin-

ear algebra (XLA).

The only exception to this is the genetic algorithm (GA) described in Chap-

ter 5 which was implemented using the GA toolbox in MATLAB [170].

3.3.4 Rendering methods

All rendering tasks described in later chapters were performed using Blender

[171], an open source 3D modelling software packaged with a powerful ren-

dering engine called Cycles. In this thesis Blender was built as a python

library allowing automation of many of the processes described in later

chapters. Blender can implement the non-linear camera model as was de-

scribed in Section 2.1.1.1 allowing accurate simulation of properly charac-
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terised systems.

3.4 Artefacts

A range of artefacts were required to test the measurement solutions pro-

posed. These artefacts were designed to be produced with AM processes

due to the current industrial interest in these manufacturing methods. Ad-

ditionally described is the characterisation target used for testing the pro-

posed camera characterisation method in Chapter 4.

3.4.1 Characterisation target

The characterisation target used is a dot grid comprised of 184 black cir-

cular features on a white plate. This target is shown in Figure 3.9.

Figure 3.9: Characterisation target used to validate the proposed charac-
terisation approach.

The feature size is 3.5 mm with 11 mm diagonal spacing. The feature

locations were adjusted using a measurement of the characterisation target
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using an optical CMS with a maximum permissible error given by MPEL =

(2.5 + L
1000

)µm.

3.4.2 Measurement artefacts

A set of measurement artefacts were designed and fabricated to be used

in validating the methods presented within this thesis. Each was manu-

factured with an AM process for two reasons, first many of the industrial

applications of optical coordinate measurement are to AM parts, second

AM parts contain many surface features which are conducive to producing

good quality reconstructions in photogrammetry.

3.4.2.1 Simple artefacts

Figure 3.10 shows a set of ’simple’ artefacts which were designed to assess

coordinate measurements. Having artefacts with relatively simple features

was important to allow comparison to CMM.

Each artefact shown in Figure 3.10 has a 50mm × 50mm square base

and are referred to as the pyramid, pillars, sphere and recess artefact re-

spectively. These artefacts were fabricated in grey polymer using fusion

deposition modelling (FDM), white polymer using laser powder bed fusion

(PBF) and Ti-6Al-4V (Ti64) using electron beam powder bed fusion (EB-

PBF).

3.4.2.2 Tomas artefact

Figure 3.11 shows the Tomas artefacts (named for its designer) which was

designed to include many features to assess the accuracy of form recon-
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(a) Pyramid. (b) Pillars.

(c) Sphere. (d) Recess.

Figure 3.10: CAD data for the four simple artefacts.

struction, e.g. plane-plane distances, sphere-sphere distances, cylindricity,

flatness, hole diameter etc.

Figure 3.11: CAD for Tomas artefact.

The Tomas artefact was manufactured with EB-PBF from Ti64 and

also had a square base of (50× 50) mm.
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3.4.2.3 Bracelet artefact

The bracelet artefact, shown in Figure 3.12 was designed to investigate the

effect of face angle relative to the powder bed on surface texture in PBF

processes.

Figure 3.12: CAD for bracelet.

The bracelet was designed with an outer diameter of 91 mm with flat

faces at 10◦ increments. Again, this was manufactured from Ti64 using

EB-PBF.
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Chapter 4

Improving camera and

projector characterisation

The work in this chapter was completed in collaboration with George Gay-

ton who gathered the datasets used herein. Findings from this study were

presented at a meeting of the American Society for Precision Engineering

at Oak Ridge, TN and published as a journal article in:

Eastwood J, Gayton G, Leach R K, Piano S 2022 Improving the localisation of features

for the calibration of cameras using EfficientNets Opt. Express 31 7966-7982.
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Figure 4.1 indicates how the camera characterisation method presented in

this chapter fits within the overall pipeline. As can be seen, the camera

parameters calculated during characterisation are used as input to many

processes later in the pipeline making characterisation an important pro-

cess in the overall measurement procedure.

Figure 4.1: Camera characterisation shown within the overall proposed
measurement pipeline.

The aim of this chapter is to improve robustness to adverse imaging

conditions caused by inexperienced operation. Improving performance in

adverse imaging conditions also enables a greater range of the imaging FOV

to be covered during characterisation allowing greater performance of the
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measurement system by creating a more representative camera model.

As was discussed in Section 2.3.4, some literature has investigated both

end-to-end learned solutions as well as hybrid solutions where ML mod-

els are used within an otherwise traditional characterisation pipeline. In

this chapter a new hybrid approach is proposed where ML is used only

to refine the characterisation target feature locations within each image in

the characterisation dataset. It is shown that the proposed approach can

reduce the mean reprojection error as measured by the residual magnitude

by 50%, even in adverse imaging conditions which causes competing tradi-

tional refinement methods to fail completely.

4.1 Introduction to camera characterisation

In this chapter, a hybrid ML approach (referred to hereon as the ML

method) to the problem of camera characterisation is adopted. In this ap-

proach an initial estimate of the feature locations is provided by traditional

methods, then refined through a learned model, before these locations are

used in a characterisation procedure as was presented in Section 2.1.3. The

characterisation target, which was introduced in Section 3.4.1, is comprised

of black dot features on a white background and can be seen in Figure 4.2,

this is chosen as it provides a large amount of phase information when

characterising fringe projection systems. Although this target is chosen

for improved performance on DFP systems it is still generally applicable

to characterising any camera-based system. Our proposed approach first

takes an initial estimate of the location of each dot feature as given by

OpenCV OpenCV . A set of new images is then created from a (101×101)

pixel bounding box around each feature, such that each sub-image contains

a single dot with the OpenCV centre location of that feature at the centre
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pixel of the new cropped image. Figure 4.2 demonstrates this process.

Figure 4.2: An example image of the characterisation target used in this
paper. In blue, a zoomed section of the target is shown with OpenCV
feature locations shown in red. In green, an example of the cropped sub-
images formed around each detected feature is shown.

Each sub-image is passed to a ML model based on the EfficientNet archi-

tecture [46] which was introduced in Section 2.2.2.1. The model is trained

to predict a sub-pixel correction to the OpenCV centre location. The Ef-

ficientNet is trained on synthetic data in which the ground truth centre is

known implicitly, the generation of this training data is presented in Section

4.2. Once trained, the EfficientNet model is inserted into the characterisa-

tion pipeline, the proposed characterisation pipeline can then be evaluated

against real data. First , the ML method is compared against using purely

OpenCV (OCV method) and shown to provide large reductions in the re-

projection error across a range of imaging conditions. Secondly, the ML

method is compared to an alternate refinement approach using traditional

image processing based on the line-spread function (LSF method), which is

described in Section 4.3. It is shown that the ML method performs compa-

rably to the LSF method in ideal conditions, but the ML method is much

more robust to adverse imaging conditions such as noise and the presence

of speckles caused by specular reflection. This improved robustness allows

the characterisation image set to contain a wider range of views across the

measurement volume when the hybrid pipeline is used and, as such, allows
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improved characterisation results over the LSF method.

4.2 Dataset creation

As was shown in Figure 4.2, when the model is deployed it will operate on

sub-images of a single feature, rather than the full characterisation image.

Therefore a labelled training dataset of these sub-images is required, this

dataset is built by generating a large set of synthetic ellipse images. Each

virtual ellipse feature used in the training data is created using a set of

parameters, given by:

1. Ellipse position X

2. Ellipse position Y

3. Ellipse semi-major axis A

4. Ellipse semi-major axis B

5. Ellipse rotation θ

6. Internal pixel distribution

7. External pixel distribution

8. Blurring kernel width

9. Specular size

10. Specular extent

The ellipse parameters (X,Y,A,B, θ) explicitly define the feature shape

itself, these parameters are visualised in Figure 4.3.
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Figure 4.3: Ellipse geometry parameters.

The internal distribution defines the distribution of intensity values in-

side the feature, while the external distribution defines the distribution of

intensity values outside the feature. Both the internal and external pixel

distribution are taken to be log-normal distributions [172]. The blurring

kernel defines the blur of the image of the feature. Finally, the specular size

and specular extent determine the internal pixel values that do not typi-

cally conform to the internal pixel distribution because of non-Lambertian

reflections within the ellipse. Specular size represents the size of each spec-

ular feature in pixels, while specular extent represents the percentage of

internal pixels which do not constitute specular artefacts. Figure 4.4 shows

the effect of the specular parameters on an example simulated image.

A range of images of real target features and measurements of the ellipse

parameters were conducted and the distributions of these parameter values

estimated via kernel density estimation (KDE). These probability density

functions (PDFs) were then randomly sampled to generate each image in

the simulated dataset. The PDFs used to generate some key parameters

(ellipse centre and specular parameters) were set manually to exceed the

values determined by KDE such that the model was trained to handle

outliers. Table 4.1 summarises how each parameter distribution was set.
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Figure 4.4: Effect of changing the specular parameters on randomly sam-
pled ellipses with all other parameters set to be constant.

Table 4.1: Parameter distributions used when creating the simulated char-
acterisation dataset.

The creation of an ellipse is shown in Figure 4.5. First, in 4.5a, the

parameters (X,Y,A,B, θ) are used to generate a rasterised ellipse com-

prised of pixel values between 0 and 1. The ellipse is then renormalised to

the correct contrast and offset. Then, in 4.5b, sub-optimal reflections are

added to the ellipse as a series of random white pixel blobs and in 4.5c,

the ellipse is blurred. Finally, in 4.5d, ellipse-specific noise is added to the

internal and external portions of the ellipse, with any pixels exceeding the

maximum 10-bit value (1023) of the camera being reset to 1023.
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(a) Rasterised ellipse. (b) Speckles added.

(c) Blurring. (d) Noise added.

Figure 4.5: Feature sub-image simulation method.

Figure 4.6 shows a comparison between some real and some synthetic

sub-images of features. It can be seen that the synthetic images are quali-

tatively similar to the real data. It is verified that the synthetic data must

be a good representation of the real data in Section 4.5.2 when the Effi-

cientNet, trained on the synthetic data, is shown to perform well on real

images and produces improved characterisation results.

Using the approach described above, a training set of 10000 synthetic

characterisation features was created and a further 1000 were saved for

testing. Manually measuring this number of samples would have been been

infeasible simply due to the large number and variation required between

samples. Furthermore, manually measuring and verifying the ground truth
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Figure 4.6: Comparison of real and simulated feature sub-images.

centre of this many real features would have made the endeavour practically

impossible and it is not clear what the best approach to generate this

ground truth data would be. For these reasons simulation was the only

viable solution to the creation of a large, varied and labelled dataset.

4.3 Line-spread function approach

A common method to find ellipse centres is to fit an ellipse to edge points

estimated from the largest gradients in the image. For robustness, this

can be done along interpolated 1D lines from an estimated centre, where

each line is called a line-spread function. This is therefore called the LSF

method. First, a gradient image of the region containing the ellipse, shown

in Figure 4.7a, is found by convolving the region with a Sobel kernel [23].

A series of line-spread functions are taken of the gradient image that ex-

pand radially from the estimated centre of the ellipse - it is assumed that

the initial ellipse centre estimation is within ± 1 pixel. The line-spread

function is interpolated from the gradient image, using a bilinear interpo-

lation, shown in Figure 4.7b. In Figure 4.7b, a Gaussian function is fit to

all line-spread functions to estimate the centre of the peak that corresponds

to the ellipse boundary. Erroneous peak estimations are filtered out using
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a random sample consensus (RANSAC) algorithm and the result is shown

in Figure 4.7c.

(a) Cast lines.
(b) Fit Gaussian.

(c) RANSAC.

Figure 4.7: LSF approach to ellipse centre localisation refinement.

In Figure 4.7c there are some over-exposed regions of the image – the

boundary estimations here do not correspond well with the real ellipse

boundary. These erroneous boundary estimation points can have a signif-

icant effect on the ellipse fitting result and, in cases when there are many

over-exposed regions lying on the ellipse boundary, can cause the ellipse

fitting to fail entirely. The EfficientNet based approach given in Section 4

is designed to be much more robust to both noise and specular regions.

Once the dot centres have been localised and refined, an extended version

of the characterisation procedure presented by Zhang [17] is used. The

characterisation results in a final camera model parameterised by intrinsic
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parameters [fx, fy, u0, v0, s], where (fx, fy) are the focal lengths, (u0, v0) are

the principle point offsets and s is the skewness; and distortion parameters

[k1, k2, k3, p1, p2, udc, vdc] where (k1, k2, k3) are the radial distortion coeffi-

cients, (p1, p2) are the tangential distortion coefficients, and (udc, vdc) are

the distortion centre coordinates.

4.4 Machine learning approach

The ML architecture used in this chapter is based on the EfficientNet family

of models which was presented in Section 2.2.2.1. This architecture was

chosen due to EfficientNet based models performing very well (ranked top

three at the time of writing) on the benchmark ImageNet dataset [173] while

having vastly fewer trainable parameters than other architectures [174].

Based on this architecture, two families of networks were preseneted by

Tan and Le called EfficientNets [174] and EfficientNetsV2 [46] respectively.

This family of models is created by stacking varying numbers of MBConv

blocks together. In the case of EfficientNetV2, the early layers of the model

eschew depthwise convolution for traditional convolution as it was shown

to be more computationally efficient despite the increase in parameters

compared to using depthwise separable convolution in the entire model.

From these two model families (of EfficientNets, and EfficientNetV2s), nine

models were selected for evaluation against the ellipse dataset as shown in

Table 4.2.

These models, which were originally designed for classification, were

modified with two linear output nodes used to regress the sub-pixel cor-

rection. which is appleid to the OpenCV estimation. No transfer learning

was employed and each model was initialised with randomised parameter
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Table 4.2: EfficientNet models evaluated.

values. Each model was optimised using the Adam optimiser [42] and a

LogCosh loss function was used for improved robustness against outliers.

The dataset was split into training and validation sets with 5% of the

data selected for validation. Training was conducted for 100 hours or 1000

Epochs, which ever occurred first. After training the model weights were

restored to the epoch of the lowest mean absolute error as evaluated on the

validation dataset. Training was conducted in parallel on the HPC CPU

nodes with each task assigned 16 CPU cores and 128GB of RAM. Training

time varied on model complexity with the smallest B0 model taking an

average of 632 ms per 64 image batch, and the largest V2L model taking

6 s per batch. Once trained, the model can be used to refine the centre

predictions given by OpenCV and these centre locations are then used in

the same characterisation procedure that was outlined at the end of Section

4.3.

4.5 Characterisation results

4.5.1 Model training results

Table 4.3 shows the performance of each model evaluated against the vali-

dation set once the best performing parameter values have been restored.
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Table 4.3: Validation results for each model, best performing model shown
in bold.

As is clear from Table 2, the EfficientNetB5 architecture was the best

performing model in this test with a mean absolute error of 0.018 pixels

which translates to a mean percentage error of 5.2%. As both the smaller

B4 model and the larger B6 model had higher test mean absolute error

(MAE), B5 was taken to be the optimal EfficientNet model size for this

application. Figure 4.8 shows how the model metrics evolved over the

training period for the EfficientNetB5 model.

(a) LogCosh loss. (b) MAE.

(c) Prediction refinement.

Figure 4.8: EfficientNetB5 metric evolution during the training period.
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As can be seen in Figure 4.8a, the training result converged relatively

quickly and stably. The minimum validation mean absolute error was

0.0183 pixels and occurred at epoch 992, therefore the model weights were

restored to this point before the model was deployed into the characteri-

sation pipeline. The full architecture of the model as implemented for this

application is given in Appendix E.

4.5.2 Results on real characterisation data

The performance of both the LSF and ML method are compared by us-

ing their corresponding dot locations to characterise the camera in the

DFP system, as was presented in Section 3.1.2.1. The two dot localisation

methods are also compared against the OCV method – using the function

cv2::findCirclesGrid from OpenCV 4.5.5 only [175]. The difference be-

tween the feature location as predicted by the given method (LSF, OCV or

ML) and the same feature location when reprojected through the camera

model back to the imaging plane is called the residual and this residual

is minimised during the calibration using the Levenberg-Marquardt algo-

rithm [33] as was discussed in Section 2.1.3. The final residual value is

derived from the combination of errors in the dot grid artefact, errors in

the dot locations and possible differences in local vs global minima [176] in

the characterisation. Assuming the errors caused by the manufacture of the

dot grid artefact to be constant, and assuming the Levenberg-Marquardt

algorithm has converged to the global minimum, the final residual value

can be considered a direct evaluation of the accuracy of the feature lo-

calisation method. The residual of the ith point in the characterisation is

given by (∆xi,∆yi), where the characterisation uses N points, the feature

localisation accuracy of each method are compared using the mean residual
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magnitude (R),

R =
1

N

N∑
i=1

√
∆x2i +∆y2i . (4.1)

The LSF, ML and OCV methods are all be tested using two distinct charac-

terisation datasets: a cooperative dataset and an uncooperative dataset. In

the cooperative dataset, the characterisation data has been taken by min-

imising specular reflection components – completed by providing feedback

to the operator during characterisation when there was excessive satura-

tion of pixels. Pixel saturation was identified using an image of the dot

grid under a projected image comprised of only pixel value 255. Pixels

in the camera image that were at maximum pixel value were classified as

saturated. In the uncooperative dataset, there is no limit on the position

and orientation of the dot grid, and so some positions will be outside the

nominal operating ranges of the LSF method. The cooperative dataset

contains images of the calibration target from 18 positions while the unco-

operative dataset contains images from 22 positions. The characterisation

target contains 184 circular features leading to dataset sizes of 3312 ellipse

images for the cooperative datasets and 4048 ellipse images in the unco-

operative dataset. Figure 4.9 and Figure 4.10 show a number of examples

from the cooperative and uncooperative datasets respectively.

Figure 4.11 shows the internal pixel distributions in each dataset as

quantified by the distance from a “normal” value as determined using

Otsu’s method [5].

As can be seen in Figure 4.11 the uncooperative dataset contains many

more outlying pixels which represents an increased rate of specular arte-

facts. These specular artefacts are mainly caused when imaging at high

angles relative to the imaging plane which were excluded from the coop-

erative dataset due to the limiting of imaging positions which produce
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Figure 4.9: Example characterisation target images included in the coop-
erative dataset.

Figure 4.10: Example characterisation target images included in the unco-
operative dataset.

saturated pixels as described previously.

Figure 4.12 shows the residual values for each method and dataset and

the mean magnitude residuals are given in Table 4.4.

Using the values provided in Table 4.4, the benefit of using the two re-
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Figure 4.11: Pixel distributions internal to each ellipse from the cooperative
and uncooperative datasets as a distance from a threshold determined by
Otsu’s method [5].

Table 4.4: Mean residual magnitude.

finement methods can be quantified. In the case of the cooperative dataset

it is clear that both the LSF method and ML method provide a consid-

erable reduction in reprojection error. The percentage reduction in the

mean residual magnitude is 49% in the case of the LSF method and 51% in

the case of the ML method. However, when the dataset is uncooperative

the LSF method in fact degrades the performance of the characterisation

and the mean magnitude residual increases by 34%. In contrast, the ML

method can still provide a reduction In the mean residual magnitude of

50%. Table 4.5 summarises the effect on parameter estimation of each

method on each dataset.

It is hard to draw any direct conclusions from the estimated parameters
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Figure 4.12: Distribution of residual errors in the reprojection of features
for each characterisation method for each data set

Table 4.5: Estimated parameters from each dataset.

shown in Table 4.5. due to the lack of any ground truth camera parameters

and as such they are included here only for completeness. However, the

greater performance of the ML estimated parameters as shown in Table
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4.4 implies that the ML estimated parameters are likely to be closer to the

true values than the LSF and OCV estimations.

4.6 Discussion of characterisation results

In this chapter, the sub-images were sampled from the captured calibration

images at a scale of 101 × 101 pixels. This size was chosen as all imaging

positions useful for the characterisation task produced features which fit

within this size. If a different choice of characterisation target or camera

were made then this size may need to be adjusted.

As was summarised in Table 4.4, the ML method can improve the feature

localisation in both cooperative and uncooperative datasets. In compari-

son, the LSF method can reduce the localisation accuracy as evaluated by

the mean residual magnitude by 34%. The decrease in localisation accuracy

is, in part, due to the fact that the LSF method was unable to make rea-

sonable estimations of all the features in the uncooperative dataset. Figure

4.13 shows some example failure cases of the LSF method.

The complete failure of the LSF method to fit an ellipse to the boundary

can be seen in Figure 4.13a and Figure 4.13b: there has been no good esti-

mation of the boundary points and RANSAC filtering becomes ineffective.

However, the LSF method does not always fail in these conditions – Figure

4.13c and Figure 4.13d show reasonable approximations under similar con-

ditions. This shows the LSF method to be unreliable under measurement

conditions similar to those exhibited in Figure 4.13.

In comparison, as was shown, the ML method produced a characterisation

result of similar quality to that of the cooperative dataset showing that the

desired improvements to robustness have been achieved. This improvement
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(a) (b)

(c) (d)

Figure 4.13: Showing some features from the uncooperative dataset, where
blue dots have been discarded by the RANSAC algorithm and red dots
have been kept as estimated boundary points. (a) and (b) show cases
where ellipse fitting failed to produce a good outcome and (c) and (d)
show cases where ellipse fitting was successful despite some outliers.

in robustness is visually evident in Figure 4.12, where the residual distribu-

tion of the ML method is shown to be similar under both characterisation

conditions. It can also be seen in Figure 4.12 that the ML method clearly

outperforms the pure OpenCV localisation in both cases with a reduction

in the mean residual of approximately 50%.

The LSF method can be a good approach and provides high quality char-

acterisation results but is highly dependent on a cooperative characterisa-

tion dataset. This is not always possible particularly in industrial setting

where instruments need to be characterised in-situ by operators who may
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not be experts. The requirement for a cooperative dataset also limits the

number of feasible views which can be acquired as part of the characterisa-

tion dataset, high-quality characterisations require a high number of views

across the measurement volumes at a range of angles relative to the imaging

plane. This is evident when considering the impact on parameter estima-

tion given in Table 4.5.

Improving robustness allows a greater range of views to be captured and

can therefore improve the characterisation result which will, in turn, im-

prove any measurement results captured by the system. It may be possible

to improve the LSF method to handle a greater range of measurement

conditions by fine-tuning hyper-parameters and using alternative filtering

methods – the complexity would outweigh the benefit.

As was discussed in Section 2, steps were taken to make the training data

representative of the real data, particularly by basing parameter distribu-

tions on those observed in the real datasets. These parameter distributions

were extracted before splitting the real data into cooperative and uncoop-

erative sets to ensure the full range of likely parameters were considered.

The improvements gained when using the ML localisation refinement on

real data, as shown in Figure 4.12, imply that the training data did indeed

cover enough useful samples to successfully train the EfficientNet model to

conduct the given task well enough to improve the estimation of camera

parameters. Further statistical analysis into just how well the training data

represents the real data could be conducted, and if the data could be made

more representative it is likely that greater performance could be gained,

although the magnitude of these further gains may be marginal.
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4.7 Characterisation conclusions

Two methods for refining the localisation of characterisation targets were

presented, one based on the line-spread function of the local image gradi-

ent (LSF method), and one based on an EfficientNet CNN (ML method).

The two methods were compared to unrefined feature localisation (OCV

method) by using two characterisation scenarios – a cooperative scenario

with minimal over-exposures to produce clean ellipses for feature estimate,

and an uncooperative scenario with high levels of specular reflection and

over-exposure. It is shown that both refinement approaches lead to a re-

duction in the mean residual reprojection error magnitude over the OCV

method of approximately 50%, with the ML method outperforming the

LSF method by 2%. However, in the uncooperative scenario, use of the

LSF method increases the mean residual magnitude by 34%. In contrast,

the ML method maintains the 50% reduction in mean residual magnitude.

This shows the EfficientNet has learned to provide localisation refinements

which are robust to the adverse conditions present in the uncooperative

characterisation image dataset. This improved robustness allows the char-

acterisation dataset to include a larger range of imaging positions across

the measurement volume, leading to improved parameter estimation and

therefore higher quality measurement outcomes.

The contributions to science given by the work in this chapter can be sum-

marised as: a novel application of a modified state of the art ML model

to assist in camera characterisation which is shown to provide improved

camera modelling over industry standard characterisation and improved

robustness over state of the art characterisation refinement based on tra-

ditional image processing methods.

This approach represents a solution to the problem of intelligent camera

characterisation which is more robust than the previous state of the art and
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leads to higher quality camera models. This algorithm can now be inserted

into the proposed fully automated and optimised measurement pipeline.

The next chapter details how the now characterised camera parameters

can be used to pre-plan optimised imaging locations based on the known

geometry of the part to be measured.
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Chapter 5

Automated and optimised

view planning from CAD

This work was completed in collaboration with Hui Zhang who gathered

the datasets and conducted the data processing presented herein; alongside

Danny Sims-Waterhouse and Mohammed Isa who consulted on the journal

article which was published as:

Zhang H, Eastwood J, Isa M A, Sims-Waterhouse D, Piano S, Leach R K 2020 Opti-

misation of camera positions for optical coordinate measurement based on visible point

analysis Precis. Eng. 67 178-188.
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Figure 5.1 shows where the generation of the imaging strategy, referred

to here as view planning, fits within the overall measurement pipeline.

Figure 5.1: View planning shown within the overall proposed measurement
pipeline.

In this chapter, a method for pre-optimising the view plan based on the

geometry of a given part is described, along with an improved method for

analysing visible points on a CAD surface from a given viewing location. In

this case an optimal view plan minimises the number of imaging locations

while maintaining reconstruction accuracy.
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5.1 Introduction to view planning

Although optical coordinate measurement has taken a market share in

industrial inspection, the approach lacks an established and automated

method for inspection planning; something that is common for tactile

CMMs [177, 178]. Camera positioning is one of the most significant is-

sues that makes the use of optical CMSs restricted to experienced oper-

ators [179]. Optimal camera positioning is critical because the selected

positions affect not only the image acquisition time and post processing

of the data, but also the coverage of the object surfaces and the accuracy

of the measurement. Published solutions to camera positioning in optical

CMSs [179–183] are often application specific and the number of cameras

is given in advance.

In this chapter, a novel technique is proposed for determining optimal cam-

era positions based on a visible point analysis approach. A genetic algo-

rithm (GA) is adopted to find the optimal combination of camera positions

that results in high surface coverage of an object and maintains reconstruc-

tion quality while minimising the total number of cameras required.

5.2 Proposed view planning approach

For a given manufactured part, it is a complex task to directly identify how

many images are necessary to fully cover the surface of the part, and the

positions from which those images should be taken. A large number of im-

ages takes more time to acquire and is more computationally expensive to

analyse. Furthermore, if the cameras are at unsuitable positions, accurate

reconstruction of the object will not be possible. The optimisation of cam-

era positions is greatly affected by the total number of camera positions
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required. Hence, for accurate and fast 3D measurement by a multi-view

optical CMS, it is necessary to first determine the number and positions of

the images required to form an efficient network of camera viewpoints.

(a) Outline of the method.
(b) Camera pose parameterisation.

Figure 5.2: Outline of the view planning method and camera pose param-
eterisation .

The proposed method for camera positioning is illustrated in Figure

5.2a. Points on the surfaces of the CAD data for a given artefact are

sampled to approximately 10000 points, the ‘sample points’ function in the

open source software CloudCompare [160] was used to achieve this. A tech-

nique for analysing which of these discretised surface points are visible from

a given camera position has been developed; this technique is used in the

optimisation procedure as follows. An initial local optimisation determines

the single camera position which provides the highest surface coverage. Fol-

lowing this, the locally optimised position is used as a seed location for a

global optimisation of n camera positions. The global optimisation uses a

GA (GAs were introduced in Section 2.2.4) to maximise an objective func-

tion which considers the surface coverage, image overlap and inter-camera

angles. Next, the process of global optimisation is repeated with increasing
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values of n until a threshold objective function value is achieved. These op-

timisation procedures are described in detail in Section 5.2.2. The method

is validated using the MMT system which was presented in Figure 3.1 and

is validated on the four simple artefacts which were shown in Figure 3.10.

To determine the potential camera poses, the working area is parameterised

as shown in Figure 5.2b. Two variable parameters are used to represent the

camera pose in 3D: the azimuth angle (0◦ ≤ α < 360◦) in the x, y plane,

and the elevation angle (0◦ ≤ θ < 180◦) with respect to the z axis. The

principal axes of the cameras are set to be convergent at the object centre.

A third parameter, the radius from the object centre R, must also be set.

R is fixed such that the cameras are all placed sufficiently far from the

object centre such that increasing the value of R has a negligible impact

on the number of visible points. R is restricted to this point so that the

angles produced by the optimisation do not depend on the field of view or

resolution of the specific camera used. In the case of the example artefacts,

the minimum radius at which the maximum number of surface points can

be seen was found at R = 500 mm, therefore, R is fixed to this value for

the rest of this chapter.

5.2.1 Visible points analysis

There are several techniques to find which points on an object’s surface are

visible, given the camera’s viewpoint relative to that object. These tech-

niques can be classified as surface triangulation-based techniques, voxel-

based techniques and point-based techniques [184]. Surface point based

approaches are highly efficient but have been shown to have poor perfor-

mance at areas of high local curvature, such as sharp edges [185]. Therefore,
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first any surface points near sharp edges are classified; this allows the use of

a more accurate but less efficient triangulation approach on the near-edge

points, while using the more efficient point-based technique on the remain-

ing surface points.

5.2.1.1 Triangulation-based technique

In the triangulation-based technique, the surfaces of the object are dis-

cretised into a set of tessellated triangles. The camera-to-object surface

distance is computed by calculating the minimum distance from the cam-

era centre Oc to the point Pi on the surface. For triangle vertices V0, V1,

V2, the ray-triangle intersection formulation is given by [186],


Pix V0x − V1x V0x − V2x

Piy V0y − V1y V0y − V2y

Piz V0z − V1z V0z − V2z



Di

u

v

 =


V0x −Ocx

V0y −Ocy

V0z −Ocz

 (5.1)

where Di is the camera-to-object distance and (u, v) are the barycentric co-

ordinates of the intersection point. Within a given triangle, the point with

the smallest distance Di is classified as visible while all other points are

classified as not-visible. The triangulation intersection approach is effec-

tive but results in high computational costs, as the intersections need to be

evaluated on all the points over all the triangles. The triangulation-based

approach is, therefore, not efficient as the order of growth of the algorithm

is O(Np ·N∆), where Np is the number of points and N∆ is the number of

triangles.
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5.2.1.2 Point-based technique

A point-based technique, referred to as hidden point removal (HPR) [187,

188], is widely used in the areas of computer vision and graphics. HPR

is composed of two steps: point inversion and convex hull computation.

Point inversion reflects all points inside a bounding sphere to the outside

of that sphere. The coordinate system which defines this inversion has its

origin at the camera origin. The inversion can be defined mathematically

as,

p̂i = F (pi) = pi + 2 · (Rs − ||Pi||) ·
pi

||pi||
(5.2)

where Rs is the sphere radius [187] and p̂i is the inverted coordinate cor-

responding to pi. Points which are visible from a camera position, when

transformed, now lie on the convex hull of the inverted point cloud. The

convex hull calculation constructs a non-ambiguous representation of the

convex hull of the inverted point cloud, thus allowing the visible points

to be categorised. The order of growth of the convex hull calculation is

O(Np · log(Np)) which is a much slower rate of growth than that of the tri-

angulation approach and could be further improved through parallel com-

puting.

Due to its higher efficiency when compared to the triangulation approach,

the HPR technique is suitable for denser point clouds. However, disadvan-

tages of the HPR technique are that it is sensitive to noise in the point

cloud [188] and misclassification errors are expected to occur around re-

gions of high local curvature [185]. To reduce the misclassification around

the edges, an enhanced visible points analysis technique is proposed which

combines the triangulation and HPR techniques and is described in the

following section.
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5.2.1.3 Enhanced visible point analysis technique

Since HPR misclassifies points around high-curvature areas, such as sharp

edges, it is preferable that the points are first classified into two sets: the

set of near-edge points Pe or the set of points remote from an edge Po,

which can be expressed by,

Pe = {pi | D(pi) < Dth}, pi ∈ P, (5.3)

Po = {pi | pi /∈ Pe}, pi ∈ P, (5.4)

where P is the set of all surface points, Dth is a distance threshold and

D(pi) is the minimum distance from the point pi to an edge. In standard

tesselation language (STL) models, the CAD model is represented by a

set of triangular faces. Edges can, therefore, be classified along triangular

boundaries where the neighbouring triangular faces have large differences

in the directions of their surface normals. Once the edges are located, all

the surface points can be filtered by their Euclidean distance to the nearest

edge and, therefore, categorised into either Pe or Po according to Equation

5.3. Points are then evaluated for visibility using either HPR if they are

in Pe or by the triangulation-based intersection technique if they are in Po.

This enhanced visible point analysis pipeline is shown in Figure 5.3.

As the distance threshold Dth increases, the proportion of points clas-

sified as near-edge increases. To decide at what value to set the distance

threshold, Dth is varied from 0.01 mm to 5 mm. Figure 5.4 shows how

changing Dth changes the resulting classification of surface points.

It can be seen that there is some variation between the curves gener-
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Figure 5.3: Enhanced visible points analysis technique.

Figure 5.4: Near-edge point classification based on different threshold val-
ues for four objects.

ated for the four objects. This variation between the four objects is due

to the differing amounts and distributions of edges present in each object.

However, the overall contours of the curves for each object is similar, with

a clear change in gradient at 0.1 mm. As a result of this clear change in

gradient, a distance threshold value of Dth = 0.1i mm is chosen. In the

case of the four test artefacts, when using Dth = 0.1 mm, around 5% of the
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surface points are considered near-edge points, i.e. classified into the set

Pe. In the case of a purely freeform object with no sharp edges, this ap-

proach would not be required. However, as the relative edge density of the

part increases, selecting the threshold value through a convergence criteria

on the gradient of the slope as shown in Figure 5.4 will provide a suitable

value of Dth.

Using this combined, enhanced technique of visible point analysis proffers

an improved divide-and-conquer solution to determining the set of surface

points which are visible. Compared to pure HPR analysis, the enhanced

technique results in a reduction of misclassified points from 3% of the to-

tal points to 1% of the total points. Misclassification by pure HPR could

be due to both visible points being incorrectly classified as not-visible, and

not-visible points being misclassified as visible. Figure 5.5 shows the points

which are misclassified when using pure HPR but are correctly classified

when using enhanced visible point analysis as proposed.

Figure 5.5: Misclassified points when using HPR which are correctly clas-
sified when using the proposed enhanced visible point analysis. Visible
points classified as invisible are shown in blue, and invisible points classi-
fied as visible are shown in orange. Scale is in millimetres.
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Table 5.1: Performance comparison of three visible point analysis meth-
ods: triangulation-based, HPR and enhanced HPR. Including reduction in
misclassified points when using enhanced HPR.

Table 5.1 compares the performance of the three possible approaches. It

is clear that HPR is the most efficient and the triangulation-based method

the least efficient. This makes sense as the order of growth of the trian-

gulation based approach is quadratic which is a much faster growth than

for HPR, as was discussed in Section 5.2.1.2. It can further be seen in

Table 5.1 that the enhanced approach, while taking more time than pure

HPR, is an order of magnitude faster than the triangulation approach. The

enhanced HPR offers between 2% to 57% reduction in misclassified points

over HPR; this creates a reasonable trade off between algorithmic efficiency

and performance.

5.2.2 Optimisation scheme

Utilising the visible point analysis technique described above, an optimisa-

tion scheme for determining optimal camera positions has been developed.

Former work in this area has assumed a fixed number of camera views [60]

whereas in the proposed scheme the number of views can also be varied

and optimised. Firstly, an initial camera position is found through a local

optimisation process. Additional cameras are then added to a global op-
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timisation process until an objective function threshold is achieved. The

basic outline of this procedure is shown in Figure 5.6.

Figure 5.6: View optimisation scheme.

5.2.2.1 Local optimisation

In a first step, the optimum position of a single camera based on surface

coverage alone is determined. The locally optimised position will then be

used as a seed location from which to perform the global optimisation.

To determine this camera location the following objective function is max-

imised,

Fbinary =
N∑
k=1

[vis(pk)], (5.5)

where N is the total number of surface points, pk is the kth surface point,

and vis(pk) returns one if the point is visible and zero otherwise (using

the previously described analysis). While a GA could be employed here, a
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simple search algorithm can be used as the search space for a single camera

is well constrained. The results of the local optimisation process for the

four simple artefacts are shown in Figure 5.7.

(a) Pyramid. (b) Pillars.

(c) Sphere. (d) Recess.

Figure 5.7: Camera positions from which the maximum number of surface
points are visible for each artefact.

As can be seen in Figure 5.7b, the pillars artefact has two equally op-

timal camera positions due to its two-fold rotational symmetry, while the

remaining artefacts have four equally optimal positions due to their four-

fold symmetry. In the case where multiple positions are equally optimal,

one of these positions can be chosen arbitrarily. Excluding the pillars arte-

fact, the optimum camera positions in each case are aligned with the four

corners of that artefact. Furthermore, it can be inferred that the optimum
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camera elevation angle depends to the relative height of the object, at 12◦

for the shallow recess artefact and 18◦ for the more prominent pyramid

object.

5.2.2.2 Global optimisation

After the seed camera location is found through local optimisation, a global

optimisation procedure is conducted from this location. The global opti-

misation process aims to optimise for two criteria: that each surface point

is seen by a minimum of four cameras and an inter-camera convergence

angle of 90◦ for all cameras, at all surface points. Attempting to view

each surface point from four camera locations maximises surface coverage

while promoting overlap between images. Additionally, promoting a cam-

era convergence angle of 90◦ has been shown in previous work to provide

the highest reconstruction accuracies [179]. In contrast to the local opti-

misation procedure, now multiple camera images are considered at once.

The global objective function is given by,

Fglobal =
1

4N

(
ω

n∑
i=1

N∑
k=1

[cos(γik)]+
ω − 1

2(n− 1)

n∑
i=1

n∑
j=i+1

N∑
k=1

[sin(βijk)]
)
, (5.6)

where ω is a weighting coefficient, n is the total number of camera images,

γik the angle at the intersection between a ray cast from camera ci and

the surface normal at surface point pk and βijk is the triangulation angle

between the ray-lines projected from the pair of cameras ci and cj which

intersect at surface point pk. In the case where there are more than four

cameras in the optimisation, the value of
∑N

k=1[cos(γik)] may exceed four

– it is, however, capped at this value. Capping this value ensures that it is

more optimal for every point to be seen by a few cameras, than for a single
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point to be seen by many cameras. Capping this value at four implies the

optimal score is given when every surface point is viewed from at least four

camera positions. The first half of the objective function (which considers

γik) is similar to Fbinary but has been adapted to loop over all surface points

for all camera positions. It also now considers not just if a point is visible

but the cosine of γik for all visible surface points from a given view. This

gives a higher weighting to views which are orthoganal to surface faces,

which is desirable for high quality reconstructions.

The global optimisation procedure is conducted as follows. The objective

function is maximised for four cameras by a GA, these four cameras are

initialised using the seed position found in the local optimisation proce-

dure. When this optimisation is complete, if the objective function has not

reached a 95% threshold value, then an additional two cameras are inserted

and the optimisation is reapplied. A convergence threshold of 95% was se-

lected as it provides similar reconstruction results to a higher threshold

value at a much smaller computational cost. As the number of cameras n

in the optimisation increases, the number of inter-camera angles βijk scales

with 1
2
(n2−n). To prevent the inter-camera component dominating Fglobal,

the value of the weighting coefficient is, therefore, set by,

ω

1− ω
=
n− 1

2
. (5.7)

In this implementation, as was noted in Section 3.3.3, the default MATLAB

GA [170] was used with the following modifications: a population size of

500, a cross-over rate of 80% and a 5% elite population classification rate.

To ease the computational load, the algorithm uses flexible parameters

that allow for a small population with broad tolerances at low numbers of

camera positions and larger populations with narrower tolerances at high

numbers of camera positions. Figure 5.8 shows the optimisation results for
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the four artefacts.

Figure 5.8: Global optimisation for the four test artefacts showing the
number of camera views required to pass the objective function threshold.

Convergence to the threshold criteria is achieved with a different num-

ber of cameras for each object, the pyramid and sphere require fourteen

images, the recess only twelve images and the pillars require twenty-two

images. The differing minimum number of camera viewpoints required

corresponds to the relative complexity of each artefact and the number of

occlusions due to that artefact’s features. The time to run the GA varies

with the number of cameras in the simulation, the computer hardware, and

the specific implementation details of the algorithm. In this case using a

Lenovo PC (Lenovo PC Think Center M910s i3-7100 3.9 GHz, 8G RAM,

1T HDD) for twelve camera positions, the GA took around two hours for

optimisation, while for twenty camera positions, the GA took around seven

hours for optimisation. These times are likely to be significantly reduced

through a parallel implementation and faster hardware.
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5.3 View planning results

Using the MMT system shown in Section 3.1.1.1, images at optimised po-

sitions were captured, then reconstructed using Agisoft Metashape [30] to

create dense point clouds. The point clouds were registered to their refer-

ence models using ICP [160]. Lastly, the deviations of the points from the

reference models were analysed to assess the quality of the reconstructions.

To acquire reference models of the artefacts, the GOM system introduced

in Section 3.1.1.2 was used as an industrial comparison and the CMM intro-

duced in Section 3.1.6 was employed to create ground truth measurements.

These measured reference models of the manufactured artefacts, rather

than CAD models, are used for comparison because the manufacturing

process of the artefacts can contribute significant shape changes relative to

the intended design model. As such, when comparing against a CAD model

it would be impossible to tell if a deviation was due to measurement error

or manufacturing error. The measurents using the GOM system are ac-

quired from eight different positions with field of view 300 mm × 200 mm,

probing size error 0.006 mm, and sphere spacing error 0.020 mm (as quoted

by the manufacturer [189]). For the CMM results in Section 5.3.3, the con-

tact probe calibration results are given in Appendix B.

5.3.1 Photogrammetry using optimised camera posi-

tions

The optimisation process proposed in Section 5.2.2 was implemented. Two

measurements were taken of each artefact, one set with twelve optimised

camera images and one set with eighteen images. These numbers were

chosen as they lie on the objective function threshold as shown in Figure
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5.8. Images captured at the optimised positions were used to reconstruct

textured dense point clouds of the artefacts through the photogrammetric

pipeline of Metashape. Figure 5.9a shows the dense and textured point

cloud of the pyramid artefact using twelve images. A qualitative improve-

ment in the point cloud can be observed when the number of images was

increased to eighteen, as shown in Figure 5.9b. These reconstruction re-

sults align well with the high value of the objective function for the artefacts

when using eighteen camera positions, as shown in Figure 5.8.

(a) Twelve images. (b) Eighteen images.

Figure 5.9: Dense colourised reconstructions for the pyramid artefact using
the proposed optimised camera positions.

Further to the qualitative analysis, the difference in reconstruction ac-

curacies for the twelve and eighteen image reconstructions are given in

Figure 5.10. Reconstructed points using twelve and eighteen optimised

images were compared with the reference triangular-mesh model obtained

from the commercial GOM system.

To remove possible outliers, only point to mesh (PTM) distances within

four standard deviations of the mean are shown. For the reconstruction

using twelve images, shown in Figure 5.10a, significant discrepancies are

observed over the corners, some upper surfaces and the vertical walls of

the pyramid. However, when using eighteen optimised images, as shown
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(a) Twelve images.
(b) Eighteen images.

Figure 5.10: Deviations in measurement results from the reference mea-
surement given by the GOM system.

in Figure 5.10b, the discrepancies are much diminished around the corners

and are barely observed on most flat surfaces of the object. In addition,

the root mean squared (RMS) value of the PTM distances is 0.101 mm for

twelve camera positions compared to 0.052 mm for eighteen camera posi-

tions. The loss in quality when using twelve optimised images rather than

eighteen images as suggests that the optimisation theshold set in Figure 5.8

as at an appropriate level as using fewer camera positions than suggested

does, in fact, lead to a decrease in photogrammetric reconstruction quality.

5.3.2 Comparison of equally spaced and optimised

camera positions

To assess the effectiveness of the proposed camera positioning technique,

reconstructions using the optimised camera positions were compared with

reconstructions using an equal number of camera images, positioned evenly

around the artefact. The use of camera positions equally spaced on a circle

surrounding an object is a common practice in small-scale photogramme-

try [190–193]. To enable this comparison, throughout Sections 5.3.2 and
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5.3.3 the elevation angle is fixed at 35° and only the azimuth angles are

varied.

Reference measurements obtained by the GOM system are used to evaluate

the deviation of the point clouds for the pyramid and pillar artefacts. The

standard deviations of the PTM distances of the reconstructions are shown

in Figure 5.11 over a range of ten to thirty total camera positions. The

evaluation of the deviations is repeated on five sets of measurement data,

the variations in the standard deviation of the repeated measurements are

shown by error bars. Generally, the standard deviations of the pillar arte-

fact are higher than the pyramid artefact, likely because of the greater

self-occlusion caused by pillars. When the number of camera positions is

less than twenty, the proposed technique performs with clearly lower devia-

tion than the equally distributed camera positions. Additionally, the error

bars are, on average, wider for the equally spaced camera positions, indi-

cating improved stability with the proposed technique. When the number

of camera positions is more than twenty-two, the two techniques perform

comparably. The similarity in performance above twenty-two camera loca-

tions is because a high number of camera positions allows most regions on

the artefact’s surface to be sufficiently covered without optimisation.

As can be seen in Figure 5.11b, the reconstruction with sixteen opti-

mised image positions performs similarly to a reconstruction using twenty-

two un-optimised image positions. Table 5.2 shows a comparison in the

performance of the reconstruction algorithm for the reconstructions shown

in Figure 5.11b.

As can be seen, reconstruction using sixteen optimised image positions

takes much less time to generate both depth maps and the dense point
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(a) Pyramid. (b) Pillars.

Figure 5.11: Comparison of the standard deviation in PTM distances for
both optimised and equally spaced camera imaging positions.

Table 5.2: Comparison of reconstruction performance for equally spaced
and optimised camera locations. Shown in bold are the values for sixteen
optimised image positions and twenty-two un-optimised image positions
which were shown to perform similarly in Figure 5.11b

cloud, while producing 200000 more points, than using twenty-two un-

optimised image positions. The proposed method takes consistently less

time to produce depth maps than the un-optimised approach and produces

point clouds with consistently many more points.

To visually compare the analysis of the measured point clouds, the devia-

tions of point clouds of the pyramid and pillar artefacts obtained from the

two sets of camera positions are juxtaposed in Figure 5.12. Two sets of

fourteen camera positions, one equally spaced and the other optimised, are

used for reconstruction in this case.
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(a) Pyramid - equally spaced.
(b) Pyramid - optimised.

(c) Pillars - equally spaced..

(d) Pillars - optimised.

Figure 5.12: Comparison of the PTM deviations of the pyramid and pillar
point clouds from GOM results.

It can be seen from Figure 5.12 that the deviations are lower in the

optimised cases, especially in the vertical faces. Furthermore, the coverage

of the surfaces is far more complete when using the optimised positions;

this is seen optimised on the vertical walls of the pyramid and in the inset

images at the base of the pillars. Ultimately, using the optimised cam-

era positions results in more accurate, complete and stable reconstruction

when compared to using the same number of equally spaced images; and

furthermore, requires fewer total images to achieve accurate reconstruction.
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5.3.3 Comparison with CMM data

The 3D point clouds of the pyramid artefact are further compared with

measurements carried out using the CMM. Comparison to the CMM mea-

surement is carried out for reconstructions resulting from both the opti-

mised and the equally spaced camera positions. In Figure 5.13, a point

cloud generated by the CMM is compared with meshes obtained from

Metashape photogrammetric reconstruction using eighteen camera posi-

tions. A probe tip diameter of 1 mm was used in scanning mode to measure

contours on the surface of the pyramid artefact. Points were sampled at

10 µm along each contour and the spacing between the contours was 200

µm. The gaps seen in the two measurements are due to regions that were

omitted by the CMM path program to avoid potential collision of the part

with the stem of the stylus.

(a) Equally spaced positions. (b) Optimised positions.

Figure 5.13: PTM distances for a CMM comparison of the reconstructions
of the pyramid artefact.

The distributions of the PTM distances are observed to be consistent

with the PTM distances from the GOM system. Points omitted on the

vertical walls of the pyramid in Figure 5.13a have distances that exceed

the range on the colour scale. In addition, the RMS PTM distances reduce

from 0.145 mm to 0.095 mm when using the optimised camera positions
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rather than the equally spaced positions.

In general, using both contact and non-contact reference measurement tech-

niques, the point clouds reconstructed from images captured at the opti-

mised camera positions are shown to be more accurate and complete. This

work shows that using an initial CAD model of an object, the combina-

tions of camera positions can be optimised to improve optical 3D coordinate

measurements.

5.4 View planning conclusions

A technique for the optimisation of camera positions for optical coordinate

measurement is presented in this chapter. Camera positions used in opti-

cal coordinate measurements are determined based on visible point analysis

and global optimisation. From an object’s computer aided design model,

the surfaces are discretised into points. An enhanced visible point analysis

technique is derived, and used to determine which of these surface points

are visible from a given camera position. The enhanced visible point anal-

ysis technique adopts a combination of the use of a hidden point removal

algorithm for the majority of the surface points, and a triangulation-based

intersection algorithm for the near-edge points. The enhanced approach is

used to decrease the misclassification of visible points. The optimisation

technique determines not only the optimal camera positions for a given

number of total camera positions, but also the minimum number of total

camera positions required to meet a threshold criterion. Iterating the op-

timisation for increasing numbers of camera positions allows the minimum

required number of camera positions to be determined for a given object,

allowing more efficient computation during reconstruction.

A proposed objective function which considers the visible points, as well as
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image overlap and intercamera angles, is presented. A genetic algorithm is

employed for global optimisation of the camera positions with respect to

this objective function.

Comparisons of results acquired using the proposed technique with results

from equally spaced camera positions are conducted. The quality of these

reconstructions is analysed by comparison with an industrial optical fringe

projection instrument and a tactile coordinate measurement machine. It is

shown that using the optimised positions improves the coverage of an ob-

ject’s surface and produces point clouds with lower point-to-mesh distances

when compared to the reference measurements. Furthermore, it is demon-

strated that a measurement using a lower number of optimised camera

positions performs as well as, or in some cases better than, a measurement

using a higher number of un-optimised camera positions. By enabling the

use of fewer images while maintaining reconstruction quality, measurement

time and data processing time can both be reduced using the optimised

camera positions. Although the proposed technique is shown to be bene-

ficial, there are still some issues that require further investigation; among

them, improving the time for conducting the optimisation and investigat-

ing the effects of non-uniform lighting on visibility.

The contributions to science given by the work in this chapter can be sum-

marised as: a new method for evaluating visible points on a surface from a

given view which improves on the state of the art by operating faster than

triangle intersection methods while misclassifying fewer points than HPR.

Also, a novel approach to view planning which improves on the state of the

art by being general across object geometries and creating higher quality

reconstructions at fewer imaging positions than current industry practice.

In the next chapter an alternate approach to optimising the measurement

processing time and measurement result is proposed. In Chapter 7 and

Chapter 8 a method is developed for establishing the initial location of
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the part in the measurement volume enabling the use of these optimised

positions in an autoamated data acquisition without any prior knowledge

of the part location, eg. from specialised fixturing.
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Chapter 6

Automated background

removal

Findings from this work were presented at a meeting of the European So-

ciety for Precision Engineering and Nanotechnology at CERN, Switzerland

and published as a journal article in:

Eastwood J, Leach R K, Piano S 2022 Autonomous image background removal for ac-

curate and efficient close-range photogrammetry Measurement Science and Technology

34 035404..
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As can be seen in Figure 6.1, removal of background pixels from images

is required at two stages of the proposed pipeline: first, to help establish

the initial relative pose of the object and the camera system; second, to

improve the efficiency and measurement result of the final reconstruction.

Figure 6.1: Background removal shown within the overall proposed mea-
surement pipeline.

In this chapter, a method for autonomously removing the background

from an image is given. Existing methods for background removal can pro-

duce inconsistent results, by exploiting known properties of a specific sys-

tem the method proposed here perform much more reliably while remaining

autonomous. The method relies on the assumption that the background
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data contains no closed contours, this is true in the case of both photogram-

metry systems presented in Section 3.1.1 and the proposed automated sys-

tem in future work (Section 9.1 will be designed with this assumption in

mind. Consequently, the effect of using images with the background re-

moved directly in the reconstruction pipeline is investigated and shown to

be highly beneficial in terms of both processing time and measurement re-

sult.

6.1 Introduction to background removal

In manufacturing metrology applications, we are only concerned with mea-

suring points on a given part, so any background points reconstructed are

not useful to the measurement task and must be removed. In this chapter,

a method for improving the efficiency of photogrammetric reconstructions

by removing superfluous background pixels from the captured images used

in reconstruction is proposed. It is shown not only that this improves the

speed of reconstruction by up to 41 % and reduces the number of back-

ground points by up to 98 %, but also improves the measurement result’s

agreement with measurement data taken on the CMM.

6.1.1 Previous work

The previous chapter proposed a view-planning optimisation approach to

minimise the number of imaging positions while maintaining reconstruc-

tion quality. However, reducing the number of images in the measurement

data will eventually impact the measurement result and so can only be

taken so far. For example, computer vision tasks often only use two images

to reconstruct a scene at high speeds, but the accuracy requirements of
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computer vision applications are often much lower than those of metrology

applications [194, 195]. Therefore, it is also desirable to increase the per-

image processing efficiency.

Removing the background from images has the potential to improve compu-

tational time as it reduces the number of features present in the image which

will be extracted and then matched. Most current approaches to back-

ground removal rely on manual masking of images by the user [196, 197].

If the background is static relative to the camera, such as in measurement

systems which use a rotation stage, the stationary pixels can be exploited

to remove the background in an automated way (see [198]). Furthermore,

as static background feature matches can cause the reconstruction algo-

rithms to fail, the removal of these features has the additional benefit of

making reconstruction more stable. Because of these benefits, both of the

reconstruction software introduced in Section 3.3.2 can accept masks as

part of their reconstruction algorithms. In the case of OpenMVG [166],

the library can use binary masks to determine which features are included

in the reconstruction. However, generating these masks is left entirely up

to the user. In the case of Metashape [30], the program can generate image

masks but requires the user to manually outline the object in a sub-set of

the images used for reconstruction.

Here is presented a method for automated masking of the object from the

background of the measurement system. It is shown that the algorithm

performs well across a range of object geometries and materials. Passing

these masked images to the photogrammetric reconstruction algorithms

directly is shown to decrease processing time, memory usage, and num-

ber of reconstructed background points. Further, it is shown that when

background masking is applied the number of object surface points recon-

structed increases and that the measurement result agrees more closely

with a measurement from the CMM over repeated measurement of two
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example artefacts.

6.2 Background removal technique

For the background removal algorithm to be general across any object which

can be placed in the measurement volume, one major assumption about

the measurement system is made; the proposed approach assumes that the

background of the scene never contains any closed contours regardless of

the measurement head position. While designing a system, this assumption

is a relatively simple design constraint to work within. Figure 6.2 shows

how the Taraz system meets this requirement.

(a) Image. (b) Image contours highlighted.

Figure 6.2: Example image and image contours, open contours shown in
red, maximum closed contour shown in green.

As can be seen in Figure 6.2, all the background contours are open and

thus the largest closed contour in the image must represent the boundary

of the object. As such, the problem of background masking can be reduced
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to the extraction of the largest closed contour in the image.

6.2.1 Algorithm detail

Python bindings for the OpenCV image processing library [175] was used

to perform all image processing operations and file input/output (IO) in

the implementation presented here. The steps used to robustly extract

the largest closed contour from an image can be split into three stages;

preprocessing, edge extraction, and contour selection. The details of each

stage of the background removal pipeline are summarised in the diagram

shown in Figure 6.3.

Figure 6.3: The proposed background removal algorithmic pipeline.

First, the image is converted to grayscale as the required contours can

be extracted from image intensity information alone. Next, the average

pixel intensity is calculated across the entire image, individual pixel values

are then scaled linearly so that the average intensity across the image is

equal to 52. This is to correct any changes due to material differences be-

tween different objects, 52 was used as it was the average intensity recorded

across a range of artefact measurements.

During edge detection, high spatial frequency information such as the rough

surface texture of an AM part can negatively impact edge detection and

contour extraction from the image. To prevent this effect, a denoising

scheme is applied to the image. Recent publications have suggested mul-

tiple approaches for image noise reduction. Popular approaches include

wavelet transforms [199–201], non-local methods [202, 203], and ML tech-
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niques [204]. Due to the for simplicity, computational efficiency, generalisa-

tion and robustness an edge preserving smoothing filter was selected as the

best approach. To this end, a bilateral filter is applied to the image [205].,

the bilateral filter was chosen as it can smooth out high spatial frequency

information while preserving edges. A bilateral filter is composed of two

Gaussian convolutions, one spatial and one intensity filter (referred to as

the range filter). The spatial filter f acts as a standard Gaussian blur

parameterised by the bilateral kernel size k and the spatial standard devi-

ation σs. The range filter g acts over the space of pixel intensities and is

parameterised by k and the intensity standard deviation σr. The result of

a bilateral filter on image I is calculated by,

I′ = I ∗ (f(k, σs)× g(k, σr)), (6.1)

where ∗ is the convolution operator. This results in, for small values of σr,

pixels which are spatially close to the current pixel but remote in intensity

contributing little to the final smoothing. Therefore, pixels which lie on

opposite sides of a boundary do not contribute highly to the smoothing op-

eration compared to pixels on the same side of this boundary. As σr → 255

for 8-bit images, the bilateral filter acts just like a Gaussian blur. In this

case, through experimentation, the filter values were set to k = 25 pixels,

σr = 25, σs = 150. This results in large Gaussian blurring on faces but

strong edge preservation. Figure 6.4 shows the effect of this filter on an

example image and the impact on the performance of Canny edge detec-

tion [206].

Once the image has been filtered, Canny edge detection is applied [206].

In brief, image gradients are extracted, areas of high gradient are taken to
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(a) Raw image. (b) Detected edges. (c) Filtered image. (d) Detected edges.

Figure 6.4: Impact of bilateral filtering on Canny edge detection.

be edges, these edges are then thinned using non-maximum suppression

in the direction of the gradient at that location, finally edges are further

refined using a hysteresis pruning algorithm. Image gradients can be found

efficiently by decomposing the Sobel operator [23] into four 1D convolutions

given by,

Gx =


1

2

1

 ∗ (
[
1 0 −1

]
∗ I), (6.2)

Gy =


1

0

−1

 ∗ (
[
1 2 1

]
∗ I), (6.3)

where Gx and Gy represent the horizontal and vertical components of the

gradient respectively. From these components, the gradient magnitude G

and direction Θ can be calculated from,

G =
√

G2
x +G2

y, (6.4)

and,

Θ = atan2(Gy,Gx). (6.5)
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Each pixel is set to the value of the local image gradient at that image

coordinate. Then, every pixel is compared to its two neighbours in the

direction of the local image gradient. If the pixel is not a maximum com-

pared to these neighbours, it is set to zero. This process can be iterated

until only thin edges remain. Finally, hysteresis pruning is applied to the

remaining gradient values to produce the final detected edges. Two thresh-

old gradient values are set, one high and one low. If the image gradient

at a given pixel is larger than the high threshold, it is considered an edge

pixel and is left untouched. If the image gradient at a given pixel is lower

than the low threshold, it is not considered an edge pixel and is set to zero.

If an image pixel lies between the two thresholds, it is considered an edge

pixel only if at least one of its eight neighbours is also considered an edge

pixel. Setting the low and high thresholds is normally done by the user –

in this case, because of the desire for automation as well as the need for

the algorithm to work on any object - a slightly modified version of the

Canny edge detector is used called AutoCanny [207]. Here the high and

low thresholds are set based on the median image intensity Ĩ as,

thigh = min([255, (1 + 0.33) · Ĩ]), (6.6)

tlow = max([0, (1 + 0.33) · Ĩ]). (6.7)

AutoCanny was found to perform well over a set of artefacts of many shapes

and materials. The detected edges are dilated with a 25 square pixel kernel

and then blurred. This helps connect any discontinuities in the extracted

edges, which can then be eroded to re-thin the now connected edges. The

final edge image is passed to cv2::findContours which implements a pixel

following algorithm to extract continuous contours from the detected edges.

Finally, the contours are sorted by the area they inscribe, and the contour

of maximum area is selected. This boundary is then used to mask the
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background from the image by setting each pixel outside its area to zero,

and each pixel within its area equal to its value in the original colour image.

Figure 6.5 summarises each stage of the background removal pipeline and

Figure 6.6 shows the results of applying this method on a range of artefacts.

(a) Raw image. (b) Filtered image. (c) Edges.

(d) Contours. (e) Max-contour. (f) Masked image.

Figure 6.5: Background removal pipeline.

Figure 6.6: Example results of background removal across a range of arte-
facts.
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6.2.2 Experimental procedure

In each experimental test, images were collected using the Taraz system

introduced in Section 3.1.1.2. Every scan was comprised of 60 pairs of stereo

images captured in two equally spaced rings of 30 positions. Figure 6.7

shows an example reconstructed scene showing the 120 individual imaging

positions.

Figure 6.7: Imaging positions used for every scan.

Using the imaging strategy shown in Figure 6.7, the Taraz system was

used to measure the pyramid and Tomas artefacts presented in Section

3.4.2. The pyramid artefact shown in Figure 3.10a was measured once,

while the measurement of the Tomas artefact, shown in Figure 3.11, was

repeated three times to assess the variance and repeatability of the method.

During each reconstruction time and memory utilisation were recorded.

Finally, each reconstruction was compared to a set of CMM measurements.

6.3 Background removal results

Reconstruction was performed using Metashape using ‘high’ camera align-

ment settings and ‘medium’ dense reconstruction settings [30]. Every mea-
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sured point cloud was then scaled using the stereo baseline distance be-

tween the optical centres of the cameras in the measurement head. Any

background points were then manually removed to assess the ratio of object

to background points in the scene

6.3.1 Impact on reconstruction efficiency and point

density

Figure 6.8 shows the reconstructed dense point clouds of the pyramid arte-

fact both with and without image masking applied.

(a) Without masks. (b) With masks.

Figure 6.8: Comparison of dense reconstruction of the pyramid artefact.

It is clear that a large number of background points, shown in black

were produced in Figure 6.8a but that this number was vastly reduced when

masking was applied in Figure 6.8b. Table 6.1 summarises the impact of

applying these masks on the reconstruction performance.

Table 6.1: Impact of applying background masks on dense reconstruction.

As can be seen in Table 6.1, applying the background masks reduced

overall processing time by approximately eight minutes. The reason for
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this speed up is clear as when the masks are applied around 4 million fewer

overall points are reconstructed. Of these 4 million missing points, the vast

majority are from the background which would be removed in further data

analysis steps anyway. The number of points on the surface of the pyramid

object itself has increased by almost a million points.

Figure 6.9 shows the results of applying masking to the reconstruction of

the Tomas artefact.

(a) Without masks. (b) With masks.

Figure 6.9: Comparison of dense reconstruction of the tomas artefact.

Again, Figure 6.9a shows a large number of superfluous background

points were reconstructed compared to when masking was applied in Figure

6.9b. Tables 6.2 to 6.4 show a detailed breakdown of the processing time,

memory usage, and points reconstructed, averaged over the three repeated

measurements of the Tomas artefact.

Table 6.2: Comparison of time expended at each reconstruction step, av-
eraged across three reconstructions of the Tomas artefact.

The results on the Tomas artefact agree with what was shown for the

pyramid. That the overall processing time is reduced, the number of back-

ground points reconstructed are reduced, the memory usage is reduced, but
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Table 6.3: Comparison of memory usage at each reconstruction step, aver-
aged across three reconstructions of the Tomas artefact.

Table 6.4: Comparison of points reconstructed, averaged across three re-
constructions of the Tomas artefact.

the number of points reconstructed on the object surface is increased.

6.3.2 Comparison to CMM

The reconstructed dense point clouds were then triangulated into a mesh.

When the background points had been removed ICP was employed to reg-

ister the meshes to data taken from the CMM. The PTM distances could

then be calculated between the CMM and photogrammetry data. The re-

sults for the pyramid are shown in Figure 6.10.

(a) Without masks. (b) With masks.

Figure 6.10: Comparison of PTM distances for the pyramid artefact.

As can be seen in Figure 6.10a, the unmasked reconstruction contains a
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higher number of outlying points compared to Figure 6.10b, shown in red.

Figure 6.11 shows a comparison between the histograms of PTM distances

across the two measurement comparisons using 400 bins.

(a) Without masks. (b) With masks.

Figure 6.11: Comparison of the distribution of PTM distances for the pyra-
mid artefact.

As can be seen in Figure 10, when background masking is applied the

PTM distance spread is reduced. Fitting a Gaussian to the distribution in

Figure 6.11a yields a standard deviation of 85 µm, while fitting a Gaussian

to the distribution in Figure 6.11b yields a standard deviation of 70 µm. In

addition to the lower deviation in the PTM distances, there are also many

fewer outliers when masking is applied, this can be seen in the spike on the

far left of the distribution in Figure 6.11a which represents PTM distances

larger than 500 µm.

Figure 6.12 shows one of the three repeat measurements of the Tomas

artefact. Figure 6.13 shows the combined histograms over all three repeat

measurements for both masked and unmasked reconstructions.

In Figure 6.13a the combined standard deviation of the PTM distances

over three repeat measurements was 93 µm. When background masking

was applied to the measurement data in Figure 6.13b the standard devia-

tion reduced to 70 µm with masking, representing a decrease of 23 µm. Ad-

ditionally, the number of outlying points with PTM distances greater than

500 µm also, was again, reduced by applying background masking. Fig-
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(a) Without masks. (b) With masks.

Figure 6.12: Comparison of PTM distances for the Tomas artefact.

(a) Without masks. (b) With masks.

Figure 6.13: Comparison of the distribution of PTM distances for the
Tomas artefact.

ure 6.12a shows that many of the outlying points are concentrated around

the more complex features such as the cylinders, spheres and recesses which

were reconstructed more faithfully in Figure 6.12b as shown by the reduced

number of red points.

6.4 Background removal discussion

As can be seen in Figures 6.10 to 6.12 the agreement with CMM is im-

proved when background masking is applied. This is likely mainly due to

the removal of the static background from the image. As was discussed in

Section 6.1.1 the static portion of the background, present due to the use

of a rotation stage, creates a set of points which are static relative to the

camera while the rest of the points have undergone some relative motion.
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This means that when the bundle adjustment algorithm attempts to glob-

ally optimise the camera positions and point locations, the triangulation

of the object points can be degraded. Figure 6.14 shows a comparison of

the cylindrical features on the Tomas artefact, it can be seen that the re-

construction quality of these features improves when background masking

is used. Because these cylinders are prominent features and intersect with

static portion of the background in many views, this reinforces the idea

that it is the removal of the static background that leads to improved mea-

surement results.

(a) Without masks. (b) With masks.

Figure 6.14: Comparison of the dense reconstruction of cylindrical features.

A further possible contributing factor could be the patch-based den-

sification as was discussed in Section 2.1.1.5. The dense reconstruction

algorithms operate by growing and refining rectangular patches of points.

In the case of the masked data these patches can only be produced on

the object surface, whereas in the unmasked case many are created in the

background data.

The histograms in Figures 6.11 and 6.13 show the distribution of all the

PTM distance data has some skew. This is likely due to a small error in

the scale applied to the photogrammetric portion of the data. This scale

is based on the stereo baseline, the distance between the optical centres
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of the stereo cameras. This is difficult to measure directly so was estab-

lished through reconstructing a ball bar of known size. However, the tighter

spread of the data when background masking was applied, as shown by the

lower standard deviations, is still strong evidence of greater agreement with

CMM despite this potential scaling error.

Although the background removal approach is quite robust to a range of

objects, as was shown in Figure 6.6, it is not perfect and there are oc-

casional viewing angles which cause the masking process to erroneously

remove some of the object data. Figure 7.13 shows an example of this from

the data used to reconstruct the pyramid artefact.

Figure 6.15: Example failure case of the background removal, masking
contour shown in red.

The erroneous masking shown in Figure 7.13 occurs when the bottom

edge of the object is in shadow due to the lighting conditions present within

the measurement system. The shadow effectively blurs the boundary of the

object and causes the edge detection part of the pipeline to fail. However,

because this only occurs from very few viewing angles, enough of the sur-

rounding views detect and triangulate points in the area of missing data

that the result on the final measurement result is minimal. These erroneous

cases could be prevented entirely by changing the lighting conditions in the
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measurement volume to be as diffuse and even as possible.

It is worth noting that the exact time taken to mask each image (approxi-

mately 1.5 s per image) is likely largely dependent on the implementation

of the presented algorithm. It is likely that an optimised and compiled

version of the algorithm could operate much faster than the Python imple-

mentation used here, especially with the many file IO operations required.

There is also an obvious hardware dependence, in this case all image pro-

cessing and reconstruction operations were performed on the same PC with

an Intel Xeon W 2123 CPU, 32G GB of RAM.

Recent research has explored the use of ML methods for both edge ex-

traction (see review [208]), and end-to-end background removal (see re-

view [209]). However, many of these methods as they are currently imple-

mented are either inaccurate such as extracting only bounding boxes [210]

or are developed for specific applications and as such would not generalise

well across any possible measurement artefact [211]. Furthermore, as this

method has been shown to be effective with only traditional methods it

avoids the computational overhead required to train a ML model. Where

ML and related methods are unavoidable to complete the tasks required in

other chapters, avoiding “black box” style neural networks here also makes

these results simple to interpret and understand.

6.5 Future work on background removal

Some tests were conducted on using the background removal strategy pro-

posed here with the optimised imaging positions proposed in Chapter 5.

However, at such few numbers of images in the scan it became evident that

the background features were key to accurately reconstructing the scheme

and not a hinderance in this case. As such, some future research in com-
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bining the two approaches and adjusting the global objective function to

account for this would be valuable.

6.6 Background removal conclusions

In this chapter, an image processing technique for the removal of back-

ground pixels from images taken within a photogrammetric measurement

system has been proposed. This pipeline is dependent on there being no

closed contours in the background portion any images taken in the scan

and uses this assumption to reduce the background masking problem to

the extraction of the closed contour of largest area within the image. This

work contributes to the state of the art by showing that exploiting known

properties of the system allows background removal to be performed re-

liably on a large selection of geometries while avoiding the overhead of

training large ML models leading to computational savings and improved

measurement outcomes.

To test the impact of using masked images directly within photogramme-

try measurements, two test artefacts were reconstructed both with and

without background masking applied to the input images. It was shown

in both cases that applying imaging masking reduced reconstruction times

and memory usage, increased the number and density of surface points

reconstructed, and dramatically reduced the number of superfluous back-

ground points reconstructed.

The impact on the measurement result was investigated by comparing to

measurement data gathered through repeat tactile measurement using a

CMM. It was found that applying background masking reduced the num-

ber of outlying points reconstructed and reduces the standard deviation in

the PTM distances when the photogrammetry and CMM data are regis-
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tered together. This improvement in measurement agreement with CMM

is likely due to the static background degrading the triangulation quality

of the points when background masking is not applied.

The contributions to science given by the work in this chapter can be sum-

marised as: a method for autonomously removing background pixels from

images taken by a given imaging system. This improves on the state of

the art by exploiting known properties of the imaging system to improve

robustness while avoiding the overhead of training a large model. Further,

it is shown that the use of this algorithm improves standard reconstruc-

tions by reducing processing time, increasing reconstruction quality, and

reducing the reconstruction of unwanted points.

In Chapter 8 a method for using the image masks produced by this method

is proposed to solve the relative pose between the camera system and the

part, allowing for integration of the view plan proposed in Chapter 5 within

the overall pipeline shown in Figure 1.3.
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Chapter 7

Generating surface texture

data

This work was completed in collaboration with Lewis Newton who gathered

the datasets used herein, was presented to the scientific technical commit-

tee for surfaces of the International Academy of Production Engineering

(CIRP) and was published as a journal article in:

Eastwood J, Newton L, Leach R K, Piano S 2021 Generation and categorisation of sur-

face texture data using a modified progressively growing adversarial networks Precis.

Eng 74 1-11.

168



To use the view planning strategy presented in Chapter 5 without the

need for special fixturing, the initial spatial relationship between the object

to be measured and the camera system must be established. Before a pose-

estimation approach can be developed, as can be seen in Figure 7.1, a

method for applying surface texture data to create realistic renderings of a

given part from its CAD data is required.

Figure 7.1: Surface texture generation shown within the overall proposed
measurement pipeline.

In this chapter, a method for generating large quantities of surface

data which is shown to be representative of real data. It is shown that

the presented model can learn to represent a range of surface types and a

method of categorising this data autonomously is also presented. Finally,
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a material shader is developed which transforms the output of the surface

generator model into a seamless and infinitely repeating texture which can

be applied to CAD to produce realistic data which is then used to train a

pose estimation technique presented in Chapter 8. This can then be used to

generate large datasets of realistic simulated images for the training of ML

models such as the monocular model presented in the following chapter.

7.1 Introduction to texture generation

The ability to generate synthetic surface texture data which convincingly

represents the result of a real measurement has many applications [212,213].

For example, often large quantities of data are required to train statistical

models that would be difficult if not infeasible to collect manually [212].

Furthermore, representative synthetic textures are useful for other applica-

tions such as for use within virtual instruments [213], or for accurate image

rendering.

Previous approaches for simulating surface data have been computationally

intensive at runtime, limited to the representation of a single manufactur-

ing process, or requiring an analytic representation of the surface [214–219].

Earlier work, presented in Section 8.2.1.1, used a synthetic surface texture

of an AM part to produce photorealistic renders. These renders were then

used to train a CNN for object pose estimation. The synthetic texture was

simulated by analysing the real surface data of a part made with the same

AM process, extracting the dominant spatial frequencies and amplitudes,

and layering various pseudo-random noise functions at these frequencies

and amplitudes. While this approach produces a good estimation of the

surface parameters, it does not capture properties related to the surface fea-

tures, such as feature shape and surface anisotropy. Software developed by
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Todhunter et al [214] defined the surface to be simulated as a sum of cosine

waves; the surface complexity can be increased further with the addition

of pseudo-random noise in the form of multi-scale Fourier space Gaussian

blur. This Fourier approach has some advantages as the generated surface

parameters can be known explicitly, but the ‘realism’ of the generated sur-

face is user-dependant. Another study used an analytic representation to

generate surface form combined with smaller scale noise to simulate tex-

ture, resulting in a full synthetic topography [215]. The synthetic surface

data was then used in the creation of synthetic interferometry data by

phase-wrapping the simulated surface.

An alternate approach to realise synthetic surface data is to produce a

full physics-based simulation of the manufacturing process of interest using

numerical methods [216–219]. For example, Zhou et al. [219] focused specif-

ically on the melt-pool of an arc-welding AM process. Using a combination

of a volume of fluid model and continuum surface force model to simulate

both heat and mass transfer in the powder bed, they were able to pre-

dict the final surface profiles, which compare favourably with experimental

data. This physics-based approach is wholly reliant on the accuracy of the

physical simulation and is computationally expensive. Physical simulation

models have the further disadvantage of being specific to a single manu-

facturing process; if surfaces are required to be simulated across a range

of processes and materials, a large amount of development time would be

required to develop new physical models.

The method proposed in this chapter overcomes many of the shortcomings

of these previous approaches. Firstly, the model can simulate any process

and measurement method that can be represented as a depth map. Fur-

thermore, the model can be trained to represent a range of surface types

simultaneously (i.e. without the need for retraining) so long as the desired

variation is represented within the training data. Moreover, it is shown
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that the generated surfaces are representative of real data without the

need for manual analysis of the desired surface features. These benefits are

achieved through adapting an approach initially developed for generating

high resolution synthetic images: a progressively growing generative ad-

versarial network (PG-GAN) [49]. By encoding training measurements as

high-resolution images with height data represented by the pixel values, a

dataset is created to train the PG-GAN. Once the model is trained, it will

generate images with the same encoding, which can then be decoded back

into height data. By front loading the computational expense to training

time, once deployed, the model can quickly generate large quantities of

new surface data. Further, it is shown that a single model can simulate

a variety of surface types simultaneously and then extend the PG-GAN

model to automatically categorise the generated surfaces into predefined

surface types. The performance of the proposed method is validated on

two very different datasets: a collection of industrial coatings measured

using the MMT-LS system and an AM part measured using the FV sys-

tem which where introduced in Section 3.1.4 and Section 3.1.5 respectively.

The surface generation model is then extended to perform a categorisation

of the generated surface types creating a model that can produce surfaces

with predictable properties. Finally, a quantitative comparison of the cat-

egorised generated surfaces with their real counterparts is undertaken and

shows that the model provides a sound representation of the surface types.

7.2 Description of the surface generation model

A GAN is a system of two sub-networks trained in a zero-sum-game (first

proposed in 2014 by Goodfellow et al. [48]) and was introduced in Section
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2.2.2.1. A PG-GAN is an extension of the traditional GAN architecture

that was originally proposed by NVIDIA [49]. A PG-GAN improves vari-

ability and stability when operating on high resolution images by beginning

with a highly down-sampled version of the training data, in this case (4×4)

pixels. After a predefined number of training periods (epochs), an addi-

tional transpose convolution layer is appended to the generator model and a

conventional convolution layer is prepended to the discriminator, doubling

the resolution of the generated image. The resolution doubling is repeated

until the final resolution is achieved (in this case (512× 512) pixels). The

additional layers are faded-in to the model smoothly over a period of epochs

to avoid any jerk to the network and encourage stability; this is shown in

Figure 7.2.

Figure 7.2: The process of doubling the resolution smoothly in a PGGAN
using the α parameter

This smooth fading is achieved by adding a 2× up-sampling layer to the
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generator and a 2× down-sampling layer to the discriminator. The output

of the new convolutional layers is combined in a weighted sum with the

up-sampling/down-sampling output, where the relative weighting of each

contribution is controlled by a parameter α. Over a predefined number of

epochs (where this number is a hyper-parameter of the PGGAN model)

the weighting parameter linearly increases until the up-sampling/down-

sampling layers no longer contribute to the model and can be removed.

The input vectors to the generator are sampled from a ‘latent space’; in

this case the space is the unit hypersphere S99 which is defined by,

S99 = {x ∈ R100
∣∣ ||x|| = 1 } (7.1)

In the case of the PG-GAN, the discriminator, rather than classifying

the input as either real or fake, assigns a continuous ‘realness’ value to the

input. Using a continuous realness value rather than discrete classification

supplies a smoother gradient and leads to more stable training [220]. In

turn, these realness prediction values are fed into a loss function based on

the Wasserstein distance, a measure of the minimum amount of work re-

quired to turn one distribution into another [221]; in the case of a GAN, this

is the distribution of the critic predictions compared to the real distribu-

tion of real/fake images. A Wasserstein based loss prevents vanishing and

exploding gradients when compared to cross-entropy approaches (which is

the popular alternative).

Once the PG-GAN is trained and the discriminator is discarded, the gen-

erator can be used to generate new images that have been shown to be

indistinguishable from the real dataset discriminator. For this application,

the generator is extended by piping the output of the generator into the

input of a CNN to classify the type of surface produced. This process
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allows one to make meaningful comparisons of statistical surface texture

parameters to ensure that the synthetic surfaces are representative of the

full space of real measured surfaces. Full details of the CNN extension are

given in Section 7.4.1.

7.3 Creating training datasets

Two datasets were developed to train, validate and test the model: indus-

trial coatings and AM surfaces. To show that the approach is applicable to a

range of measurement techniques and surface types, the datasets described

below use different measurement techniques on different surface types. In

both cases, the same procedure was used to convert the measured data into

the final set of (1024 × 1024) pixel images. The measured data were first

converted into depth maps before a polynomial form removal was applied.

The height data were then encoded as a set of grayscale images. A process

of dataset augmentation was used to expand the datasets. This process in-

volved rotating, mirroring and cropping the images to a size of (512× 512)

pixels.

7.3.1 Industrial coating dataset

A set of sample surfaces created from a variety of industrial coatings were

produced which were then measured using the MMT-LS system as was

introduced in Section 3.1.4. The procedure for data treatment described

above was applied; in this case each encoded image represents a (20× 20)

mm area and depth values are encoded as a linear mapping to grayscale
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values in the range (0 to 1) from depth values in the range (-50 to 50) µm.

A sample of the final treated data is shown in Figure 7.3. The industrial

coating surfaces were considered a suitable case study because there are var-

ious combinations of process parameters that can create a large range of

resultant surfaces, however, there is a fundamental limitation on how many

surfaces could be economically produced – making the ability to simulate

the potential “design-space” of all possible surfaces a valuable endeavour.

Figure 7.3: Twelve example encoded images taken from the industrial coat-
ings dataset, showing the range of different surface types present in the
training data.

7.3.2 AM surface dataset

Another dataset was constructed from FV measurements of a metal AM

part [222]. The braclet artefact consists of a series of thirty-six plane faces

at 10° increments with minimal supports produced by EB-PBF [223]. This

artefact was chosen as it will give a range of surface types dependent on

the relative orientation of the face to the powder bed. The CAD of this

part is shown in Figure 7.4a.

Figure 7.4c shows the part manufactured from Ti64 using an Arcam

A2X EBPBF process. The data processing steps outlined previously were
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(a) CAD model. (b) Support structures.

(c) Manufactured artefact.

Figure 7.4: Bracelet artefact used to create the AM dataset.

applied, this time mapping depth values of (-70 to 70) µm to grayscale (0 to

1) and the image size representing (1× 1) mm. Figure 7.5 shows a sample

of the measured data with the post processing steps applied.

Figure 7.5: Twelve example encoded images taken from the AM dataset
showing the large variation present between surfaces included the dataset.

It is clear that there is a large variation in the types of surfaces mea-
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sured from the part. This variation is dependent on the relative angle of

the measured face to the powder bed [222]. For example, the large-scale

features that can be seen in Figure 7.5 are the remnants of the support

structures shown in Figure 7.4b, which were required for the printing pro-

cess and then removed post-process. These support structures only occur

on the down-skin surfaces. Additionally, the smooth, straight weld tracks

only occur on the top face, which is parallel to the powder bed. As the

surface angle increases relative to the build plane, the presence of parti-

cles agglomerated to the surfaces increases, eventually occluding the weld

tracks entirely. Figure 7.6 shows these surface types, their location on the

artefact, and an example from the final dataset of each type. Section 7.4.2

discusses these surface types in more detail and how the generator can be

extended to produce surfaces of a known type.

Figure 7.6: Surface types and their locations on the bracelet artefact with
examples taken from the AM surface dataset.

7.4 Surface generation results

For both datasets, the PG-GAN took five days to complete training on a

HPC GPU node [164]. The length of the training time is in agreement with
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the original PG-GAN paper for producing images of a similar resolution

and once trained the model can produce new surface texture data in less

than a second. Once training had concluded, the trained generator model

was deployed to create 1000 images of both the coated surfaces and the AM

surfaces. Figure 7.7 shows a comparison of the real and synthetic images

for the industrially coated dataset.

The examples shown in Figure 7.7a were selected to show the range of

possible surface data contained within the training dataset. It can be seen

in Figure 7.7b that this variation is captured by the generator with consid-

erably different features visibly present across the output data. Figure 7.8

shows a similar comparison for the AM dataset.

The model outputs still need to be decoded from grayscale images into

true height data. To do this, the reverse of the encoding process described

previously is applied to the 1000 generated images. Figure 7.9 shows ex-

ample decoded surfaces compared with real surfaces of the same type from

the training data.

As can be seen in the scale of Figure 7.9, the heights generated and scales

of features generated match closely with those in the training data. Figure

7.9d shows the model has learned to represent defects in the weld tracks

which indicates this method could be useful for training defect detection

models - a common issue within the field (see review by Meng et al. [71]).

Simulated surfaces that possess features found in the real surface case could

also allow for more training data for the development of improved feature-

based characterisation approaches.
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(a) Real encoded depth data from the industrial coating dataset.

(b) Synthetic encoded depth data created by the trained PG-GAN generator.

Figure 7.7: A comparison between a random sample of twenty-eight coating
surface images, both real and generated.

7.4.1 Surface categorisation results

The trained model generates surfaces by randomly sampling a point from

S99 and passing the input coordinate through the generator, producing a

randomly sampled surface from the possible output-space. As discussed

in Section 7.4, in the case of the AM dataset specifically it is clear that

there are distinct types of surfaces encapsulated by the dataset, which were
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(a) Real encoded depth data from the AM dataset.

(b) Synthetic encoded depth data created by the trained PGGAN generator.

Figure 7.8: A comparison between a random sample of twenty-eight AM
surface images, both real and generated.

shown in Figure 7.6. Top surfaces are characterised by distinct weld tracks

and the absence of agglomerated particles, top surfaces are produced when

the face is parallel with the powder bed. In up-skin surfaces, the weld tracks

can still be seen but, as the angle relative to the powder bed approaches

90°, particle agglomeration begins to dominate. Finally, down-skin surfaces

are fully dominated by agglomerated particles due to the increased inter-
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Figure 7.9: Surface topography height maps of real measurement data from
the AM surface dataset compared to decoded fake data from the generator.

action with the powder bed and the remnants of support structures (from

those shown in Figure 7.4b) can sometimes be seen.

Given these categories, the model would be more useful if it could be used

to generate surfaces of a known type rather than a random surface. To this

end, the generator model is extended by piping the output directly into the

input of a secondary CNN that predicts the generated surface type. The

categorisation CNN architecture is shown in Figure 7.10.

Moreover, the same AM surface training set can be used for the PG-

GAN to train the categorisation model. During the measurement, the angle

of the face being measured was recorded and stored in the meta-data associ-

ated with the measurement data. It is a straightforward process, therefore,

to propagate this metadata through the data augmentation process to sup-

ply ground-truth labels. Measurement data originating from the 0° face

were labelled as top, data from faces in the 10° to 90° interval were labeled

as up-skin, and 100° to 180° as down-skin. There is some ambiguity as to

whether the 90° face should be categorised as up-skin or down-skin and,

because the physical characteristics transition smoothly between these two
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Figure 7.10: Categorisation CNN, which takes an input image, extracts
features through a sliding window kernel convolution, flattens the feature
maps, feeds through a fully connected layer and produces a predicted class
label (T: top,U: up-skin, D: down-skin).

categories, there is likely to be some misclassification of surfaces near the

boundary. For other datasets it may be optimal to set the boundaries at

different angles, due to the effect of gravity during processing for example,

however it was found that the classification in this case was most accurate

when using the boundaries detailed above.

A softmax function (a normalised exponential function which can be thought

of as a generalisation of the logistic function to n-dimensions [224]) was used

as the activation function in the output layer of the model. The Adam op-

timiser [42] with a learning rate of 0.0001 with a categorical cross-entropy

loss function were used in the training of the CNN. Due to the relative sim-

plicity of the categorisation model when compared to the PG-GAN model,

a HPC compute node was used for training, which was completed within

twelve hours. Figure 7.11 shows a plot of the training history. The loss

values shown are the values of the cross-entropy over that image batch;

the accuracy is calculated by simply taking the argmax (the index of the

output tensor containing the maximum value) of the values of the output

nodes.
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Figure 7.11: Categorisation CNN training history. To prevent overfitting,
ten percent of the dataset was used for cross validation and model weights
restored to the maximum validation accuracy.

As can be seen in Figure 7.11, the validation loss reached a minimum at

around 1000 training steps (batches of sixty-four images) after which over-

fitting began to occur. To prevent overfitting, two mitigation strategies

were employed. The first strategy was to use an early stopping criterion

which monitored validation accuracy and ceased the training procedure if

no improvement was observed within ten epochs. The second strategy was

to use a model checkpointing system which, once training is finished, re-

stores the model weights to the point at which validation accuracy was a

maximum. In this case, the maximum validation accuracy achieved was

96%.

When deployed, rather than simply taking the argmax of the output nodes

to perform the categorisation, a ‘certainty threshold’ was set at 80%. That

is to say, the input was only assigned to the predicted class if the value of

the corresponding output node was larger than 80%; if this condition was

not met, the image was instead categorised as ‘uncertain’.

The categorisation operation can be performed on the 1000 generated sur-
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faces (a sub-sample of which is shown in Figure 7.8b). Of these 1000 images,

4.6% were classified as uncertain. This level of uncertainty is an indication

that the generated data does in fact accurately capture the input space

as the rate of uncertainty correlates with the misclassification rate of the

model during validation. When inspecting which surfaces are misclassified,

the majority bear similarities to the surfaces around the 90° angle relative

to the powder bed, as was expected. An example of this is shown in Figure

7.12.

Forty-three of the forty-six ‘uncertain’ images fell into the category shown

Figure 7.12: Comparison of encoded depth data for an example of a com-
mon misclassified surface with real surfaces around the borderline of the
up-skin/down-skin categories

in Figure 7.12; the remaining three images had a different failure mode.

These generated surfaces are classed as uncertain because they are not rep-

resentative of the surfaces contained in the training data. Specifically in

this case, they are all surfaces that have the distinctive weld track features

of the top surfaces but also the large amount of particle agglomeration of

the other surface types. Figure 7.13 shows an example of this surface.

As the unrepresentative images, such as the example shown in Figure 13,

occur at such a low rate (0.3% in this test) and the model has been trained

to sort them from the generated images which are representative of the real
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Figure 7.13: An unrepresentative image showing encoded depth data pro-
duced by the generator showing clear weld tracks and noise from agglom-
erated particles.

data, these surfaces are discarded and only the successfully categorised sur-

faces are used in analysis.

7.4.2 Quantitative comparison to real surface data

A benefit of the extended model is that surface statistics can be comapred

between the surface categories independently rather than averaged statis-

tics for the complete dataset. As these surfaces have such different features,

this method will provide a much more robust analysis than without this ex-

tension. First, parameters based on the surface height distribution relative

to the mean plane are considered: Sq is defined as the root-mean-square

height deviation and Sz is simply the maximum height [163,225]. The dis-

tributions of these two parameters are shown in Figure 7.14 for real and

simulated surfaces across each surface category.

As can be seen, the distributions produced by the generator show good

agreement with the training data. While the comparison of height param-
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(a) Sq. (b) Sz.

Figure 7.14: Comparison of the mean and 95% confidence intervals of ISO
height parameters for real and generated AM surfaces.

eters is useful to begin to show good representation, it is not the full pic-

ture, for example, two very different surfaces could have similar Sz values.

Considering spatial parameters in addition to amplitude parameters can

provide a more complete comparison. Spatial parameters describe proper-

ties related to the distributions of the shape and size of the features that

make up the surface texture. In this case, three parameters are evaluated:

Sal, amplitude of the dominant spatial wavelength and dominant spatial

wavelength. Sal is the fastest decay autocorrelation length, which is a mea-

sure of the distance from given point on the surface to a point which has

minimal correlation with the starting point [163,225]. The distributions of

these three parameters are given in Figure 7.15.

In both Figures 7.14 and 7.15 the synthetic and real surface param-

eter distributions overlap in most cases or are different by small absolute

amounts. For example, Figure 7.15a shows the mean autocorrelation length

of top surfaces differs by only two microns despite the distributions not

overlapping. It makes sense that the top surfaces are less well represented

than the other surface categories as they make up a relatively smaller pro-

portion of the dataset (only 5% of the input data were top surfaces com-
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(a) Sal. (b) Maximum spatial amplitude.

(c) Dominant spatial wavelength.

Figure 7.15: Comparison of the mean and 95% confidence intervals of ISO
spatial parameters for real and generated AM surfaces.

pared to 48.2% for the remaining categories), this is simply because there

were fewer top surfaces to measure on the ring artefact. This is evidence

that the synthetic surfaces are not only qualitatively similar to the real

data but quantitatively similar, and that any differences are small. This

similarity shows that the output space of the model is at least partially

representative of the input surfaces. It is interesting to note that, particu-

larly for the spatial parameters, the distributions of the generated surfaces

are much tighter than the distributions present in the training data. This

tighter spread is likely due to the generator learning to represent a subset

of the input space - this is discussed in Section 7.5.
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7.5 Discussion of surface texture generation

The PG-GAN model was selected over other generative methods for two

main reasons. Firstly, it has been developed specifically to encourage sta-

bility and variation in the generator outputs at high resolution. This means

that the model is likely to learn to represent a larger portion of the input

space than competing methods at the resolution of data within the example

datasets. Secondly, recent variations of the PG-GAN have been developed

for more specific applications, such as style transfer (see StyleGAN [226]

and Cycle-GAN [51]), whereas the original PG-GAN implementation can

be applied generically to any input image dataset.

As was noted at the end of Section 7.4.2, the distributions of areal surface

texture parameters show good agreement between the real and generated

surface but do not match exactly. Firstly, the variance in the generated

data is, in general, smaller than the variance among the training data. It is

a known shortcoming of GANs that commonly only a subset of the possible

variation is represented by the trained model [227]. This is intuitive, as it

is simpler for the model to learn to represent a subset of the input space

to a high enough quality to trick the discriminator than to learn to rep-

resent the entire space. As stated previously, many of the features of the

PG-GAN are specifically designed to increase variation in the output (this

is discussed at length in the original PG-GAN paper [49]) but, at least for

this application, there is still some work to do in this area.

A feature of using a ML approach is that the model will learn to represent

patterns that are present within the training data. This means that any

measurement errors present in the training data will be replicated in the

synthetic surfaces. Replicating measurement errors could be disadvanta-

geous to some applications where it is desirable to produce simulations of

true surface topographies, however, it is an advantage if the application
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calls for simulated measurement data from a real instrument. This method

has been shown to be effective at generating both photogrammetry and

FV measurement data, however, it is general to any technique where the

data can be represented by a height map. Photogrammetric surface mea-

surement operates at larger scales than most optical texture instruments

and focus variation has relatively low resolution when compared to a tech-

nique such as coherence scanning interferometry, and these characteristics

are replicated in the generated data. If the proposed approach was applied

to another measurement technique, one would expect limitations inherent

to that technique to be reproduced by the trained model.

Encoding the training data as a grayscale image does not effect the spatial

resolution of the training data as each measured surface point is repre-

sented by a unique pixel value and the data is stored in a lossless format to

ensure no compression artefacts are introduced. However, one shortcoming

of the method is that the vertical resolution of the model is limited to 255

discrete pixel values. In the case of the AM dataset this introduces an

uncertainty of ± 0.25 µm when encoding the input data. This is close to

the 0.1 µm spacing between stacked focus variation images so unlikely to

have a large effect on the data quality. Replacing the input encoded image

with a floating point array would effectively eliminate these errors.

7.6 Example application - producing renders

of AM parts

An application of the surface generator of particular use for this thesis

is to produce realistic surface texture which can be applied to CAD data
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for the visualisation of AM parts, enabling photorealistic rendering of AM

parts before they are produced. However, because the model generates

only 1 mm square height maps as an output it is necessary to convert

these height-maps into an infinitely and seamlessly repeating texture. The

approach shown here was developed by Poliigon [228], a 3D art asset repos-

itory, which they refer to as UberMapping. The UberMapping approach

uses a mosaic texture with random rotation to turn a non-repeating image

texture into an infinitely repeating image texture which is visually seam-

less. The effect of applying this UberMapping node to an example texture

produced by the generator is shown in Figure 7.16.

This UberMapping node is incorporated into a material shader for the

Blender Cycles rendering engine [171], this shader can then be applied to

any CAD data, allowing Cycles to accurately visualise how the part will

appear once produced.

7.6.1 AM material shader

The infinitely repeating textures generated by the trained generator model

and UberMapping node can be integrated into a complete material shader

in Blender [171]. Figure 7.17 shows an outline of the shader model devel-

oped within Blender’s material shader node editor, the full shader model is

also included in Appendix F. Each of the major components of the shader

are described below.

The shader is comprised of four main blocks which can be seen in Figure

7.17. The top block mixes a set of metalic principled bi-directional scatter-
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(a) Height map. (b) Height map tiled.

(c) Height map with UberMapping.

Figure 7.16: Visualisation of how the Poliigon UberMapping node can be
used to create an infinite and visually seamless image texture. (b) and (c)
shown at 10:1 scale compared to (a).

ing distribution function (BSDF) shaders to produce the colour variation

seen on Ti64 surfaces. The second block creates the weld lines often gen-

erated at sharp corners of a PBF part. The third block uses the face

surface normals of the CAD file to create the layers visible on vertical faces

of AM parts. The final block generates the underlying texture from the

generated height maps, the surface normal is used to decide which surface

category to take from the generator model (top, upskin or downskin). The

UberMapped surface textures are then blended together using a further
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Figure 7.17: Material shader overview, full shader model included in Ap-
pendix F.

Polligon node, physically based rendering (PBR) mxing to create a smooth

transition between textures from the generator.

Figure 7.18 shows the final material shader applied to a flat surface at a

variety of scales, Figure 7.19 shows the shader applied to an example part.

7.7 Surface texture generation conclusions

A novel approach to the generation of synthetic surface data has been pro-

posed through exploiting an approach initially designed for the synthesis

of high-resolution images. It has been shown that by encoding the surface

height data into the grayscale channel of an image, a PG-GAN model can

be trained to produce new data that represents a training set of images.

By applying a process of dataset augmentation, the model is made robust

to some transformations, such as rotation, and allow the initial measured

dataset to be relatively small (fewer than 100 measurements). A further
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(a) Large scale. (b) Medium scale.

(c) Small scale.

Figure 7.18: Material shader applied to flat plane at a range of scales.

CNN can be used to categorise the surfaces produced into categories that

are known in the initial dataset. This categorisation allows the model to

produce surfaces of a desired type, rather than a random sample from the

space of all possible surfaces that the model can represent. Furthermore,

this categorisation allows for specific comparisons between the distribution

of areal surface texture parameters over the categories of surfaces, rather

than the full datasets.

Two case study datasets, one derived from photogrammetric measurements

of industrially coated surfaces and the other from focus variation measure-

ments of metal AM surfaces. It is shown, in both cases, that the generated
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Figure 7.19: Material shader applied to complex 3D model.

surfaces are visually similar to those in the original dataset. In the case

of the AM surfaces, it is shown that the approach successfully classifies

96% of the unseen data. The 4% of the data classified as ‘uncertain’ was

due to fuzzy boundaries between the up-skin and down-skin categories and

a small number of generated images that poorly represented the training

data (0.3%). Finally, a quantitative analysis of both amplitude and spatial

areal surface texture parameters was conducted. The distributions of these

parameters for the synthetic data shows relatively good agreement with

the distributions of the real data. There is an indication, due to the tighter

distributions in the synthetic data, that only a subset of the possible real

surfaces have been represented by the generator model. This lack of varia-

tion is a known shortcoming of the GAN and although the PG-GAN takes

steps to increase variation in the generator, in the case of the AM surface

data at least, this is an open issue.

As the surfaces used have been shown to be quantifiably representative of

those within the training data, large quantities of synthetic surface data
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can be produced extremely quickly to go on to be used in a variety of pos-

sible applications including, but not limited to, training statistical models,

virtual instruments, and accurate surface simulation and rendering.

Finally, an example use of the surface generator was shown. A material

shader was developed to take output surfaces from the generator and mix

then into a visually seamless infinitely scaling texture which can be applied

to CAD models in renders. This shader can be integrated into the overall

measurement pipeline to generate training data for the monocular pose es-

timation technique presented in Chapter 8.

The contributions to science given by the work in this chapter can be

summarised as: a novel approach to the generation of simulated surface

texture data which improves on the state of the art by being less compu-

tationally intensive than physics based simulation but more representative

than a pure mathematical representation of a surface, and is able to pro-

duce near-unlimited new data.

It was intended to use this model to generate texture in the training set

of the monocular pose estimation model in Chapter 8) and in the future

hardware integration of this pipeline this model would indeed be used for

this purpose. However, a simpler model was used instead based on statis-

tical surface parameters as the monocular model was completed before the

PG-GAN had been developed and trained.

7.7.1 Future work on surface generation

A simple further next step in analysis of this work would be to consider

hybrid parameters such as Sdr (a measure of total developed area of all

tessellations) and Sdq (mean quadratic slope) which could provide further

insight into the synthetic surfaces.
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Taking the model further will include the use of principal component anal-

ysis (PCA) on the early activation layers of the generator model to map

the latent space. An implementation of PCA on similar models has been

presented recently (called GANSpace [229]) and has been shown to allow

the development of semantic control over the generator output. For the

application to surface texture, this could allow the generation of surfaces

with prescribed properties. An area of particular interest is to generate in-

terpretable controls for creating synthetic surfaces representative of those

which would be produced through a specific combination of process pa-

rameters. Additionally, further work refining the model architecture to be

more performant specifically on datasets of the form presented here could

yield generator models with greater stability and variation.
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Chapter 8

Pose estimation

Early work towards the findings presented in this chapter has been pre-

sented in a series of conference papers:

Eastwood J, Sims-Waterhouse D, Piano S, Weir R, Leach R K 2019 Autonomous close-

range photogrammetry using machine learning International Symposium on Measure-

ment Technology and Intelligent Instruments.

Eastwood J, Zhang H, Isa M A, Sims-Waterhouse D, Leach R K, Piano S 2020 Smart

photogrammetry for three-dimensional shape measurement Proc. SPIE 11352 43-52.

Eastwood J, Sims-Waterhouse D, Piano S, Leach R K 2020 Pose estimation from a

monocular image for automated photogrammetry 20th International euspen Conference.
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The final novel development required to complete the software pipeline,

as was shown in Figure 1.3, is the ability to establish the initial location

and rotation of the object within the measurement volume relative to the

camera system. Doing so in an autonomous way removes the need for accu-

rate manual placement of the object or specialised fixturing, allowign the

part to placed anywhere within the measurement volume. Furthermore,

this initial pose can be used as an initial alignment estimation to fully au-

tomate CAD registration via ICP during data analysis. Figure 8.1 shows

how this pose estimation fits within the pipeline.

Figure 8.1: Pose estimation shown within the overall proposed measure-
ment pipeline.
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In this chapter, two possible solutions to the problem of pose estima-

tion are presented. The first relies on the textured CAD data as can be

produced by the work in Chapter 7, the second relies on the background

masks produced by the work in Chapter 6. Both approaches are evaluated

and their respective pros and cons discussed. In summary, the first method

can make a prediction from a single image but requires pretraining on a

given part. The second method is more general, does not require pretrain-

ing but requires a-priori knowledge of the relative orientation between a

minimum of two images. Therefore, the first method is more suitable to

automated measurement of a single part, for example as a verification step

in an assembly line, whereas the second method can be used for more ad-

hoc measurement needs.

8.1 Introduction to pose estimation

The estimation of the initial pose of an object within the measurement vol-

ume is critical to enabling the automation of optical coordinate measure-

ment. The view-planning approach presented in Chapter 5 provides a list of

imaging positions relative to the CAD file’s coordinate system. Therefore,

to directly use these imaging locations the object must be perfectly aligned

with the coordinate system. Achieving this accurate positioning of the part

would likely require custom fixturing to be developed on a per part basis

and it would fall to the measurement operator to ensure this alignment

is conducted precisely [230]. An alternate approach is to allow the CAD

and measurement volume coordinate systems to be arbitrarily misaligned,

calculate a prediction of this misalignment and correct the view plan ac-

cordingly. This approach of adjusting the view plan to account for any

offset in the part’s position within the measurement volume then allows
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the optimised measurement to be conducted autonomously with no input

required from the operator.

Previous methods of object pose estimation commonly only define the

bounding box of a given object [231, 232]. For some geometries, the as-

pect ratio of the bounding box uniquely defines a pose . However, in the

majority of cases this is not the case and there is not a singular solu-

tion meaning some further processing would be required to define the full

six DoF pose [233]. Current ML approaches are often incredibly domain

specific, for example there is a wealth of work covering human pose esti-

mation [234, 235] and human hand pose estimation [236]. ML approaches

to general object detection often require some depth information to have

already been calculated in the form of depth images which requires an ad-

ditional computationally expensive data processing step [237,238]. Recent

developments allow for single image pose estimation, but are limited by

requiring the object to be from a known class [239]. It is also common to

rely on fiducials [240] to perform photogrammetric triangulation. For the

application of automated measurement it is highly desirable to avoid the

need for fiducials because, as with fixturing, this is a source of user reliance.

This chapter presents two methods for estimating the relative pose of an

object. The first, referred to as the monocular method, takes a single im-

age of the measurement volume and a CNN trained to recognise a set of

artifacts detects which artefact is currently being measured and its relative

pose in the scene. The second, referred to as the stereo method, takes a set

of two or more input images with known relative pose between the imaging

locations. The background removal algorithm presented in Chapter 6 is

used to create a binary mask from each position, the centroids of these

masks are then triangulated to give an initial rough alignment. A set of

predicted masks are rendered from each imaging position and a global min-

imisation is conducted, refining the pose to minimise the difference between
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the real and predicted binary masks.

Both of the pose estimation methods are tested against synthetic data but

also are shown to generalise well onto real photogrammetric input data.

Each method has its own advantages and disadvantages over the other

method. The monocular method works from a single image, makes predic-

tions at high speeds, and can be trained to operate on a range of objects

but requires further training if a new object is required to be measured

and the data generation and training times are relatively high. The stereo

method does not require any pre training or dataset, it can be used on

any part that fits in the field of view of the measurement system, but is

slower to make predictions and requires a characterised multi-view system.

A more in depth discussion of how the two methods compare is given in

Section 8.6.

8.2 Monocular method

To estimate pose information from a single image, a custom CNN archi-

tecture is developed. A multi-task learning (MTL) approach is adopted

wherein a model is trained to perform two or more tasks in parallel, in this

case object categorisation and pose regression, where knowledge gained

from performing the secondary task (object categorisation) improves per-

formance on the primary task (pose estimation) due to a shared architec-

ture. To train the model, a simulated version of the MMT system is devel-

oped from the system’s CAD data. This simulation is used to create a large

amount of labelled synthetic images on which to train the model, this pro-

cess is described fully in Section 8.2.1. In this case the model is trained to

recognise the four simple artefacts introduced in Section 3.4.2.1. To make

the rendered images as photorealistic as possible, a material shader is de-

202



8.2. MONOCULAR METHOD

veloped which is applied to the object CAD when rendering each training

sample, which is outlined in Section 8.2.1.1. Finally, the model is tested on

real photogrammetric measurements of each artefact. By registering the

CAD data to the measurement data, the predicted pose can be compared

to the value given by ICP which is assumed to be close to the ground truth.

8.2.1 Generation of training data

To train a CNN with minimum generalisation error requires a large, la-

belled and representative dataset. It would be highly impractical, if not

impossible, to generate manually, so instead a synthetic dataset was cre-

ated from a simulation of the MMT system, an extracted material texture

and the CAD data of the object. Figure 8.2 shows a comparison between

the real and simulated photogrammetric instruments – the simulation was

created within Blender and all synthetic images were generated using the

Cycles render engine [171].

(a) Experimental. (b) Simulated.

Figure 8.2: Real and simulated versions of the MMT system.

As stated, it is important for the dataset to be as representative as

possible of the set of all valid input images. This requires a large spread

of object and camera positions, and as photo-realistic render as possible.

The former requirement is satisfied by generating 10,000 images, each with
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a random possible camera and object configuration; the size of this dataset

should ensure a good coverage of possible configurations. Photorealism

is achieved by using a render engine, representative lighting conditions,

known characterised intrinsic camera parameters, and a realistic material

shader applied to the CAD data.

8.2.1.1 Material shader

Because the results in this section were gathered before the development of

the work shown in Chapter 7, an intermediate shader was developed which

was similarly drawn from the real physical properties of the surface. This

intermediate shader was developed using the node editor within Blender us-

ing the glossy bi-directional scattering distribution function (BSDF) node,

the full shader is shown below in Figure 8.3.

Figure 8.3: Intermediate material shader.

The parameters for the shader were determined by taking a photogram-

metric scan of an object produced from the same material and process as

the object of interest (in this case Ti-64 and metal PBF respectively). The

Fourier power spectrum [241] of this surface was then used to find the
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most prominent spatial frequencies. A bump map was then generated us-

ing this spatial frequency distribution, capturing both the surface waviness

and high-frequency texture due to individual particles. This was combined

with a colour ramp at edges, simulating weld-lines present at sharp edges

on PBF parts, Figure 8.4 shows the formation of one such of these weld-line

features present on the Pyramid artefact.

(a) Image of Ti64 artefact. (b) Weld-line detail.

Figure 8.4: Example of weld-line artefact visible at sharp corners on PBF
parts.

Using this shader, the CAD models of each artefact can be rendered

within the simulated measurement setup shown in Figure 8.2b. Figure 8.5

shows an example render of the Pyramid artefact and how it compares to

a real image.

As can be seen in Figure 8.5 the rendered images are qualitatively very

similar to real images captured on the MMT system. Although the inter-

mediate shader considers some physically measured attributes, and qualita-

tively looks representative of the real texture, the generator based material

shader presented in Section 7.6 has been shown quantitatively to accurately

represent real surfaces and as such will be used in any future work.

As this dataset is rendered through simulation, the ground-truth labels are
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Figure 8.5: Comparison of real and synthetic image of the pyramid mea-
surement artefact. The dashed connection allows information flow during
the forward pass only, not during back propagation.

known implicitly and are saved for use during training. A total of 5000

images of each artefact were generated at random combinations of object

rotations and translations on the stage, stage rotations and camera loca-

tions. These data were then converted to grayscale and down sampled to a

size of (409×300) pixels for dimensionality reduction. The pixel values and

labels were then scaled to the interval {0, 1} to promote numerical stability.

8.2.2 Model

A custom CNN architecture was developed to perform two operations -

first, to categorise which of a set of known CAD files is the one currently

being imaged; and second, to regress the six DoF relative pose of that part.

Although the categorisation task is not necessarily required to perform the
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pose estimation, it has been shown that MTL can improve performance

on the primary task and was found to be beneficial in this case in some

initial prototyping. The monocular pose estimation architecture developed

is shown in Figure 8.6.

Figure 8.6: Monocular pose estimation CNN. The dashed connection allows
information flow during inference only, not during back propagation.

The architecture makes use of residual blocks as was introduced in Sec-

tion 2.2.2.1 and shown in Figure 2.15. From a shared backbone for high

level feature extraction useful to both tasks, the model splits into a twin

architecture with separate weights. One arm leading to a cross-entropy

classification of the current artefact, the second arm leading to a LogCosh

regression of the pose. The pose is parameterised by the translation vector

T which is regressed directly, and the rotation matrix R which is regressed

as an axis-angle representation. The axis-angle representation of rotation

is given by a three parameter vector a such that the corresponding unit
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vector â = a
|a| represents the axis of rotation and the vector magnitude

|a| represents the angle of rotation about that axis. The two loss function

values for each arm are combined into a global loss which is then back-

propagated to update the model weights. Additionally, the final layer from

the categorisation branch is concatenated with the final layer of the regres-

sion branch. This allows the regression task to be informed by the result

of the categorisation task. During back propagation gradient is not per-

mitted to flow through this concatenation so that the categorisation arm

is not influenced by the results of the pose estimation arm. The Adam

optimiser [42] was used with an initial learning rate of 0.0001. An early

stopping criterion was used to cease training and restore the model weights

to the best performing state if the validation loss did not increase for ten

epochs.

8.3 Stereo method

If the measurement system has a binocular camera system, the stereo base-

line between the cameras can be exploited to provide additional informa-

tion. In this proposed pose estimation method, first an initial pair of images

is captured, then the method presented in Chapter 6 is used to create binary

masks of the object. The centroids of the two masks can be triangulated

using the stereo baseline and characterised camera parameters providing

an initial location estimation. Using the CAD of the object, a new binary

mask can be rendered from the initial prediction. By defining a loss func-

tion between the estimated binary masks and the real binary masks an

optimisation can be performed to minimise the difference between the real

and estimated masks by updating the predicted pose. What results is an

estimation of the pose of the object which provides a minimum difference
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between the real and estimated object masks.

8.3.1 Calculating initial alignment

Figure 8.7 shows the overall procedure for establishing the initial alignment.

(a) Camera alignment. (b) Raycasting. (c) CAD placement.

Figure 8.7: Initial alignment of CAD data using stereo binary image masks.

First, the extrinsic matrix [R|T] of camera 1 relative to camera 2 must

be determined. This is achieved using the baseline characterisation pro-

ceedure outlined in Appendix C. Using the characterised extrinsic matrix,

both cameras can be placed in the same coordinate system as shown in

Figure 8.7a. Rearranging the camera model given in Equation 2.9, a ray

can be cast from the camera principle point through a pixel location using,

[X,Y, Z, 1]T = (K · [R|T])+ · [x, y, 1]T , (8.1)

where A+ is the pseudo-inverse of the matrix A given by,

A+ = (AT ·A)−1 ·AT . (8.2)

Using the method proposed in Chapter 6, an image captured from each

image can be converted into a binary mask of the object, where pixels on
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the object’s surface are labelled one and all other pixels labelled zero. The

centroids of the binary mask pair are then calculated by finding the average

position of all the non-zero pixels. An example of these binary masks is

given in Figure 8.8 with the calculated centroid locations shown in Figure

8.8d.

(a) Stereo image.

(b) Background removal.

(c) Binary mask.

(d) Centroid shown in red.

Figure 8.8: Stereo image pair taken by the Taraz system.

Using Equation 8.1 rays can be cast from the camera principle point
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through a given pixel coordinate. A ray is defined by a direction unit

vector and a origin point. A ray is cast from each camera origin through

each centroid location as shown in Figure8.7b. The point at which the two

cast rays meet is taken as an initial estimate of the location of the object

relative to the imaging system. Dependent on the part geometry, it is

unlikely that the two cast rays will actually intersect each other. Instead,

the point at which the two rays are closest to intersecting is calculated,

using the function given in Appendix G.2, by finding the mid point of the

line which is perpendicular to both rays. The CAD data representing the

part being measured is then placed at this location with a random rotation

as is shown in Figure 8.7c, this pose is taken as the initial alignment.

Figure 8.9 shows an example alignment using the stereo image pair which

was shown in Figure 8.8a.

Figure 8.9: Example initial alignment result. Predicted alignment shown
in yellow wireframe overlaid over each image.

It can be seen that the translation of the CAD is close to the true

location however the rotation is considerably less accurate. This is logical

as so far only translation information has been inferred while the rotation

has been randomised.

8.3.2 Pose optimisation

Using the Blender API and the characterised camera parameters, a pre-

dicted binary mask is rendered from each camera based on the initial
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alignment of the CAD data given by the method presented in the previous

section. Assuming the cameras have been characterised correctly, the only

variables controlling the predicted binary mask are parameterised by the

six DoF pose of the CAD data. The six DoF is given by a translation vector

TCAD = [x, y, z]T and a rotation given as an axis-angle representation. A

loss function representing the pose error can be formulated as the sum of

the magnitude of the pixel difference between the real and predicted binary

masks,

Loss(TCAD, a) =

∑U
u=0

∑V
v=0 ||real(u, v)− predicted(u, v,TCAD, a)||

2UV
,

(8.3)

where (U, V ) is the resolution of the binary masks, real(u, v) is the pixel

value of the real binary mask at pixel coordinate (u, v), and predicted(u, v,TCAD, a)

is the pixel value of the predicted binary mask (rendered with pose TCAD, a)

at coordinate (u, v). Figure 8.10 shows the magnitude pixel difference be-

tween the real mask shown in Figure 8.8c and the mask rendered from the

initial alignment prediction shown in Figure 8.9.

Figure 8.10: Loss function visualised on the initial pose prediction given by
the rough alignment procedure. Correctly classified pixels shown in green,
misclassified background pixels shown in blue, misclassified object pixels
shown in red.

The CAD pose can now be optimised to minimise the loss function given

in Equation 8.3. Two approaches were explored, direct search via Powell’s

method [242] and a gradient descent method via the Broyden–Fletcher–Gold-
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farb–Shanno (BFGS) algorithm [243]. Both optimisation schemes are im-

plemented using sp.optimize.minimize from the SciPy library [244].

8.3.2.1 Powell’s method

The main advantage of Powell’s method is that it does not require the

calculation of the loss function gradient. Here instead, the algorithm begins

with a set of N search vectors {s1, ..., sN} where N is equal to the open

DoFs in the loss function (in this case N = 6) and each vector sn is a

normal vector aligned with each parameter. A golden-section bi direction

search [245] is then performed to find the loss function minima over each

search vector. These minima can be formulated as sums over each search

vector as,

{x0 + α1 · s1,x0 +
2∑

i=1

αi · si, ...,x0 +
N∑
i=1

αi · si}, (8.4)

where x0 is the initial estimate and αi is the scalar determined in the bi-

directional search. From these minima, a new estimation is made as the

linear combination of the minima along each search vector,

x1 = x0 +
N∑
i=0

αi · si. (8.5)

The search vector with the largest αi is removed from the list of search

vectors and is replaced with the direction of the new estimation from the

previous estimation ie. xn+1 − xn. This process is repeated until the dis-

tance |xn+1 − xn| converges to a small value, in this case 10−6 was found

to provide a good comprise between precision and speed.
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8.3.2.2 BFGS algorithm

BFGS is a gradient based minimisation approach which approximates the

Hessian matrix H of second-order partial derivatives to precondition the

gradient. In brief, from an initial guess x0 a direction vector s1 is deter-

mined from,

s1 = −B0 · JLoss(x0), (8.6)

where B is an approximation to H−1 and Jf is the Jacobian matrix for first-

order partial derivatives of some function f . As with Powell’s method, a

line search is performed to find the step size α1 in the previously calculated

direction s1 which minimises the loss function. A new estimation x1 is then

calculated from x1 = x0 + α1 · s1. Finally, the estimation of the inverse

Hessian is updated from the gradient change ∆J1 = JLoss(x1)−JLoss(x0) by,

B1 = B0+
(sT1∆J1 +∆JT

1B1∆J1) · (s1sT1 )
(sT1∆J1)2

− B1∆J1s
T
1 + s1∆JT

1B1

sT1∆J1

. (8.7)

On the first iteration the identity matrix is used as as the first estimate of

the inverse Hessian, ie. B0 = I such that the first iteration is equivalent to

an unconditioned gradient descent - as the optimisation progresses, itera-

tive application of Equation 8.7 refines this estimation.

In this application, the loss function gradient cannot be calculated either

analytically or through automatic differentiation [246]. This is due to the

loss function implementation calling an external function to perform the

rendering of the predicted binary mask. Instead, the Jacobian matrix is es-

timated numerically using a finite forward differencing scheme [247]. This

requires an additional six frames to be rendered per gradient calculation

but may lead to faster convergence. The step-size taken during finite differ-

encing is reduced over the course of the optimisation as the pose prediction
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converges.

Figure 8.11a shows the refined pose estimation overlaid on the input images

while Figure 8.11b shows the minimised loss function.

(a) Refined pose overlaid on inputs.

(b) Loss function visualisation.

Figure 8.11: Example result of refined pose estimation.

8.4 Monocular pose estimation results

First the training results are given, including validation results on unseen

synthetic images. Then, a 60 image scan of each artefact was taken. After

reconstruction, ICP can be used to determine the location of the CAD

within the measurement volume. The pose of the registered CAD data

can then be used to recreate approximations of the ground truth pose

data relative to each input image in the scan. The trained model is then

tested on all 60 images of each scan and compared to against the previously

calculated ground truth pose.
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8.4.1 Monocular model training results

The model and validation losses from each output were recorded after each

epoch of training. Fig. 8.12 shows the overall training and validation losses

over the training period. It can be seen that the early-stopping criterion

was met and the simulation terminated after fifty-five epochs.

Figure 8.12: Training and validation losses of the initial network at each
training epoch.

The relatively large gap shown in Figure 8.12 indicates that there is

some generalisation error as performance on unseen data is worse than

the performance on the training set. Splitting the combined loss into its

individual components, Figure 8.13 shows the individual validation losses

for each output. The results for the regression of the rotation of the part

are shown here as Euler angles. In the results from the regression task in

Figure 8.13a it can be seen that the loss in each (x, y, z) dimension is

very low, with values less than 0.01. Comparing the translation losses to

the rotational losses, it is clear that the model has more difficulty when

predicting rotations. The generalisation error (a measure of prediction

error on unseen data) of the model can be estimated by the final difference

between the validation loss and the training loss, which in this case is

approximately 0.04.
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(a) Regression. (b) Categorisation.

Figure 8.13: Separated loss contributions.

The categorisation loss, as shown in Figure 8.13b, can be used to de-

termine the categorisation accuracy Acat – the percentage of correct cate-

gorisations compared to the total number of categorisations given by,

Acat =
1

N
·

N∑
p=0

[
argmax

(
Q(i)

)
== argmax

(
P (i)

)]
p
, (8.8)

where N is the number of input images and p is an index referring to the

current image. In this case, the categorisation accuracy is found to be 97%.

Figure 8.14 is a visualisation of some example predictions; the predictions

are shown as a wireframe overlaying the original image.

Figure 8.14: Example pose estimations for each artefact.

It can be seen qualitatively in these images that the estimations are

relatively close to the true pose, with most of the error made in the estima-

tion of part rotation. This conclusion is backed up quantitatively in Figure

8.13. The trained model can now be deployed to make predictions on real

photographic inputs.
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8.4.2 Results on real data

As described previously, sixty images were captured around each artefact

using the MMT system and used to generate a dense point cloud – the ICP

algorithm, with an initial estimation input by the user, was used to produce

the ground-truth values with which to compare the predictions from the

CNN. Figure 8.15 shows an example prediction made on an image of the

Pyramid artefact.

Figure 8.15: Example result on real image.

It can be seen in Figure 8.15 that the predicted pose is qualitatively

similar to the quality of the pose predictions shown on the synthetic data

in Figure 8.14. This is a good initial indication that the model generalises

well onto real data and that the simulation presented in Section8.2.1 pro-

duces data representative of the real system.

The model was used to make a prediction on each of the 60 images of each of

the simple artefacts introduced in Section 3.4.2.1. The translational resid-

ual can be calculated simply as the mean absolute distance error. Defining

a rotational error is not simple, in this case the residual Euclidean distance

between the real and predicted axis-angle vectors are used to quantify this

error given by,

Rresidual =
1

N

N∑
i=0

|âi − ai|, (8.9)
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where N is the total number of predictions, â is the predicted axis-angle

vector, and a is the true axis-angle vector. The data shown in Table 8.1

shows the mean translation and rotational residual magnitude for each

artefact.

Table 8.1: Error in position and translation estimate on real images.

As can be seen in Table 8.1, the network was tested on 240 real images

of four different artefacts. The mean magnitude residual across all four

artefacts was 17 mm in translation and 0.44 in rotation. It should be noted

that although the residual magnitude in the rotation has units of radians,

it does not directly represent the rotational error and so should not be

interpreted this way. It is instead the Euclidean distance between the axis

angle vector representations. It is given here just for future comparison

with the stereo method.

8.5 Stereo pose estimation results

To test the binocular pose estimation a synthetic test was developed. In

this test a CAD file is placed with a random pose relative to the camera

and a ground truth mask is rendered with accompanying ground truth pose

information. The pose estimation approach is then used on the synthetic

mask image and the predicted pose can be compared to the ground truth
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pose. This process can be automated, and as such can be tested on a

large number of synthetic examples - in this case 250 sample pose estima-

tions were performed. To test against real data, the same approach was

taken that was used to test the monocular model. A scan of each artefact

was conducted on the Taraz system, the CAD data was registered to the

measured pointcloud allowing the pose relative to each stereo pair to be

determined. The pose estimation was then tested on each stereo image pair

in the scan.

8.5.1 Results on synthetic data

To generate the synthetic test set, the Blender ”Suzanne” mesh was used

which is shown in Figure 8.16.

Figure 8.16: Suzanne mesh.

This mesh was chosen as the features are relatively complex while hav-

ing a relatively low number of vertices to preserve computational load when

building the dataset. A set of 250 binary masks were simulated using the

same approach used to create the predicted masks during optimisation.

The mesh was placed at a random location and rotation within the field

of view of each camera and the ground truth pose relative to the camera

system was recorded. Finally the pose estimation procedure was run on

each synthetic mask pair and the refined pose estimation was compared to
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the real pose.

This process was used to evaluate the two optimisation approaches pro-

posed; Powell’s direct search method, and the BFGS gradient descent

method. Table 8.2 shows the mean loss and residuals over the synthetic

dataset for both methods.

Table 8.2: Pose optimisation results on the synthetic dataset using both
minimisation methods.

As can be seen in Table 8.2, both optimisation methods achieve similar

rotational prediction accuracy. However, there is a clear trade-off between

translational accuracy and processing time. Powell’s method achieved a

mean translational residual magnitude of 0.18 mm comapred to 2.75 mm

when using BFGS, a reduction of 98 %. This is likely due to the finite for-

ward differencing scheme creating errors in the estimated Jacobian matrix.

This improved location accuracy comes at the cost of processing time, with

Powel”s method takign an average of 90 s more than BFGS to compute,

this is due to the gradient method quickly converging on a minima. For

the improved localisation of the object, Powell’s method is selected as the

optimisation method going forward. Figure 8.17 shows a visualisation of

the distribution of the translational residuals of the estimations given by

Powell’s method on the synthetic dataset.

Figure 8.17 shows a very dense grouping around the point of zero resid-

ual error, with a small number of outliers. It can be seen that the outlying

residuals in the z direction (which is aligned with the primary camera’s
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(a) Pose estimation residuals in the x, y
plane.

(b) Pose estimation residuals in the x, z
plane

Figure 8.17: Pose predictions for each artefact, each prediction shown is
overlaid in yellow wireframe on the input stereo image pair.

axis) can be much larger than is seen in the x, y plane. This is likely

because the loss function is much less sensitive to changes in the z axis.

Similarly, the smaller bias in the x direction, seen most clearly in Figure

8.17a, may be because the secondary camera’s principle axis is close to this

direction.

8.5.2 Results on real data

From the testing on synthetic data it was determined that Powell’s method

provided more consistent pose predictions. As with the monocular method,

a photogrammetric scan of each artefact was conducted comprised of 60

imaging positions each, again leading to 240 total images. A pose estima-

tion prediction was made using the stereo method on each pair of images.

As with the monocular method, ICP registration to the measured point-

cloud was used to find the ground-truth pose of each artefact. Figure 8.18

shows an example pose prediction for each artefact made on real photo-

graphic data from each dataset.

As can be seen, these results appear to lie close to the true pose of each
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(a) Pyramid.

(b) Tomas.

Figure 8.18: Pose predictions for each artefact, each prediction shown is
overlaid in yellow wireframe on the input stereo image pair.

artefact. To quantify how close, the Euclidean distance in the translational

prediction and the axis angle rotation representation, alongside the loss

function from each view, were calculated relative to the pose as given by

ICP. The results for both artefacts are given in Table 8.3.

Table 8.3: Results of the stereo pose estimation method on both artefacts
over 120 images of each artefact.

As can be seen in Table 8.3, the stereo method can pose residuals on

the real data are relatively close to the results on synthetic data which was

shown in Table 8.2. The increased error is likely due to errors in creating the

binary mask from the real images, this is discussed further in Section 8.6.
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The mean magnitude translation residual across all 120 images was found

to be 0.38 mm in the case of the Pyramid artefact and 0.44 mm in the case

of the Tomas artefact. Interestingly, the performance degradation in the z

and x directions does not appear in the real data. When considering the

rotational magnitude residual, it can be seen in Table 8.3 that the pyramid

has a much lower residual that the Tomas artefact. From observing the

results, it is clear that this is due to the Tomas artefact being prone to

becoming stuck in local minima. Figure 8.19 shows an example where the

optimisation got stuck in a local minima, and the effect on the rotation

estimation this has.

Figure 8.19: Local minima optmisation result on the Tomas artefact. The
local z axis rotation can be seen to be 180◦ incorrect while the translation
is still relatively accurate.

8.6 Discussion of both pose estimation ap-

proaches

To compare the monocular and stereo methods directly, the results on the

Pyramid artefact given in Tables 8.1 and 8.3 respectively are used as both

models were evaluated on this artefact. As can be seen, the mean transla-
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tional error is much lower when the stereo method is used, reduced from

22.8 mm to 0.38 mm, a reduction of 98 %. This is likely due to the stereo

baseline providing much more reliable depth information than the CNN is

able to extract from a single image. In contrast, the monocular method is

much better at predicting the rotation with the residual reduced by 69 %

compared to the stereo method. This is likely because the CNN is better

able to extract this information directly from the image, and the depth

information provided by the stereo baseline is less critical for this task.

As mentioned in Section 8.1, there are inherent advantages and disadvan-

tages of the monocular and stereo method. The monocular method can be

deployed on single view systems, such as the MMT system while the stereo

method requires a system with a minimum of two cameras with a static rel-

ative pose which can be accurately characterised, such as the stereo camera

pair in the Taraz system.

the monocular approach can only make predictions on object for which it

has been explicitly trained on the CAD data while the stereo method can

be used on any object with CAD data available. In manufacturing metrol-

ogy, there are many applications where a single object, or small group of

objects, must be repeatedly measured, for example for part verification on

assembly lines. Additionally, the training time of the model, around 24

hours, is less than the manufacture time of many AM parts. Therefore the

training of the model can be done in parallel with the manufacture of the

part which can then be verified straight off the printer. For these reasons,

the requirement for pretraining does not prevent the monocular method

from being a useful approach.

The monocular model, once deployed, can make pose predictions in a frac-

tion of a second. As can be seen in Table 8.3, the stereo method takes much

longer - on the order of two - three minutes. It is highly likely that this

is mainly an implementation detail. Currently the Blender API contains
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a bug where pixels from the currently rendered frame cannot be directly

accessed, this means to access the pixel information for the currently ren-

dered mask it must first be saved and reloaded from the hard-drive. These

unnecessary IO operations waste a large amount of time, if deployed com-

mercially a custom ray casting algorithm written as a graphics shader could

compute the masks and loss functions much faster [248]. Additionally, if

the ray casting algorithm could be written entirely in a framework such

as JAX [249], an automatic differentiation approach could be used to ef-

ficiently calculate the Jacobian in a much more reliable manner than the

finite differencing scheme presented. This could enable use of the BFGS or

similar algorithm. This could lead to much faster optimisations again as

the gradient descent method was shown to be much faster than Powell’s

method, but the current approach to gradient estimation was too inaccu-

rate to make this a viable approach.

Figure 8.20 shows a comparison between the stereo loss function evolution

of an example from the real dataset, and the synthetic dataset.

As can be seen in Figure 8.20, the optimisation on the synthetic data can

reduce the loss function very close to zero, where there is still a reasonable

amount of misclassified pixels even in a well performing sample from the real

dataset (in this case 1 % misclassification). The reason for this is twofold;

first, the virtual camera system used to render the synthetic samples is

identical to the one used to render the prediction masks, while this camera

model is based on characterised parameters from the real camera there may

be some modelling errors causing lower performance on real image data.

Secondly and perhaps most importantly, the synthetic examples are perfect

masks of the input data because they are rendered directly from CAD data.

In contrast, the real optimisation is conducted against masks made using

the method which was presented in Section 6. In general, this method was
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(a) Rough alignment, real image.

(b) Optimised alignment, real image.

(c) Rough alignment, synthetic image.

(d) Optimised alignment, synthetic image.

Figure 8.20: Loss function visualisation for the rough and optimised
alignments of high performing samples taken from the real and synthetic
datasets.

designed to oversize the masks produced to minimise any missing data from

the surface of the object. This oversizing of the real masks gives rise to the

imperfect matching which can be seen clearly in Figure 8.20b.
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Another error which can be caused by the masking process occurs when the

masking is imperfect, as was shown in Figure 7.13. Figure 8.21 shows how

imperfect masking effects the pose estimation result in the stereo method.

(a) Imperfect mask. (b) Resulting pose estimation.

Figure 8.21: Effect of an imperfect mask on the optimised pose prediction.

As can be seen in Figure 8.21a, the bottom face of the Pyramid is not

masked correctly as, due to the lighting conditions in the Taraz system,

it falls in shadow causing it to blend with the rotation stage. In Figure

8.21b, it can be seen that this leads to the optimisation attempting to fit

the pyramid in an erroneous area, causing the error in the local z axis to

be high. There are a few ways to address this problem, first improving

lighting conditions in the measurement volume to ensure high contrast at

all edges of the part. Secondly, adapting the loss function to perform an

edge matching operation rather than a pixel matching operation. Alternate

loss function were considered during development of this model, however

many proved too computationally expensive to be calculated at each opti-

misation step efficiently. This ease of computation is the biggest advantage

of the current loss function, in the future more optimised solutions may be

developed and deployed.

The monocular approach bares similarities to neural network based ap-

proaches in the literature [250–254]. The proposed approach is differenti-
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ated through the novel architecture, which has lower parameter count than

many of the models in the literature leading to fast inference and training.

The largest differentiating factor, however, is the dataset that the model is

trained upon. All the models referenced previously are trained on the same

benchmark datasets [255,256]. While this makes comparison of model per-

formance simple between these models (and difficult to compare directly

to the models presented here) these datasets are not representative of the

data used in manufacturing metrology applications. The development of

the novel dataset from simulation and surface texture generation makes the

proposed approach well fit to a specific measurement system and manufac-

ture process.

In contrast the stereo method is, to the author’s knowledge, a totally unique

approach. The greatest benefit this method provides over state of the art

ML models is the lack of pre-training required. Any part should be able to

be located in the measurement volume so long as its associated CAD data

is available. Further, the use of a stereo sensor array leads to increased cer-

tainty due to some pose ambiguities being removed by consensus between

the two cameras. For even greater certainty a larger array of cameras could

be utilised in a multi-view system, the algorithm can be used unchanged

with an arbitrary number of cameras so long as the relative pose between

the cameras is known ant the cost of greater computational expense.

8.7 Pose estimation conclusions

Two methods of estimating the pose from an initial image capture were

presented; one monocular method based on a single image, and one based

on a stereo pair of images with a known baseline distance between the two

cameras. The monocular method trained a custom CNN architecture on a
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series of synthetic images rendered from CAD. A material model was devel-

oped and a characterised camera model was employed to make the rendered

images as representative of real input data as possible. The stereo method

relies on generating binary masks of the input stereo pair using the proce-

dure given in Chapter 6. The centers of these masks are triangulated to

give an initial pose estimation which is the refined using Powell’s method of

direct search. Powell’s method was selected over a gradient based method

due to higher positional accuracies at the cost of longer data processing

times, a different choice may be made depending on the specific appli-

cation and implementation. The loss function which is minimised in the

optimisation procedure is derived from raycasting a predicted binary mask

from the current pose prediction and calculating the misclassified pixels

compared to the input mask.

After verification on synthetic data, both methods were validated on real

data, with the stereo method more accurately predicting the translational

position of the artefact (22 mm residual compared to 0.39 mm) and the

monocular method more accurately extracting the rotation by 69 % as

measured by the mean magnitude residual in the rotation prediction.

Each method has a range of advantages and disadvantages over the other

which are discussed in detail in Section 8.6. In summary, the monocular

method is preferred if fast prediction times, single image input, and re-

peated measurement of the same set of artefacts are required. The stereo

method is preferred if many objects will be measured on the system, and

lack of training overhead and accurate positional pose predictions are re-

quired.

Future work should involve a thorough investigation of alternate loss func-

tions, improvements to the lighting conditions of the system to promote

correct masking of the object, and a generalisation of the stereo method

onto multi-view systems with more than two cameras. It is likely that a
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wide range of views around the part will help reduce rotational ambiguities.

These monocular method contributes to the state of the art due to its novel

architecture and novel dataset generation method making it well suited to

manufacturing metrology tasks specifically. The stereo method contributes

an entirely new approach which eschews the need for any pre-training and

gains confidence via consensus across multiple views.

Using the methods presented in this chapter in the overall pipeline, the view

plan generated by the method in Chapter 5 can be adjusted autonomously

based on the arbitrary pose of the part in the measurement volume. This

adjustment is shown for an example measurement of the pyramid artefact

in Figure 8.22

Figure 8.22: Top view showing the optimised camera positions. (a) About
the centre of the instrument; (b) corrected for the placement of the artefact
using the CNN pose prediction

With this contribution, all the developments required to enable the

pipeline as was presented in Figure 1.3 have been made.
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Chapter 9

Conclusions and future work
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From Chapter 1: It is the aim of this thesis to develop a software

pipeline to enable, for the first time, a fully automated coordi-

nate measurement system which conducts measurements in an

optimised manner. In this thesis, a novel fully automated and opti-

mised pipeline for conducting optical coordinate measurements was indeed

proposed and each part of the pipeline has been developed and tested in-

dividually including validation against competing commercial and tactile

solutions. First presented in Figure 1.3, the outline of this pipeline is re-

peated here for convenience.

Figure 9.1: The now complete automated and optimised software pipeline.

As can be seen in Figure 9.1, each chapter in this thesis represents a

necessary and novel part of this pipeline which, together, provide a fully
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automated and optimised solution for conducting optical coordinate mea-

surements. This pipeline is enabled through the exploitation of known

properties of both the object being measured and the measurement sys-

tems themselves assisted by recent rapid advanced in the field of machine

learning and intelligent data processing.

A review of this thesis’ novel contributions to the field can be briefly sum-

marised as:

1. A software pipeline enabling automated and optimised optical coor-

dinate measurement for the first time.

2. A new hybrid ML approach to characterisation which is more robust

and with lower residual errors than the current state of the art.

3. An improved method for analysing visible surfaces of a given object

from a given view combining the benefits of two state of the art

approaches by operating at lwoer cost than triangle intersection with

fewer misclassified points than HPR.

4. A procedure for the global optimisation of the imaging strategy show-

ing improved reconstruction results over standard industry practice

while operating at much faster speeds due to dramatically decreased

dataset size.

5. A generative ML model for the generation and categorisation of syn-

thetic surface texture data for the creation of large realistic datasets.

A novel approach to surface simulation which is much less intensive

at run time than physics based simulation and more representative

than pure mathematical surface representations.

6. A method to autonomously segment background pixels from object

pixels within an image. More reliable than current approaches by
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exploiting known properties of the system while not requiring the

overhead of ML methods. Also shown to lead to improved recon-

struction quality with a large reduction in unwanted points in the

final cloud.

7. A monocular ML model for the 6 DoF pose estimation of an object.

Novelty here lies in both the model architecture and the dataset which

was created through photo-realistic rendering with a novel surface

texture material model. The trained model is shown to perform well

on a set of test artefacts.

8. A stereo raycasting method for the 6 DoF pose estimation of an

object. A completely novel approach to the pose estimation problem

which achieves high quality part localisation on both synthetic and

real datasets of a range of objects.

A brief summary of the content and conclusions of each chapter is given

below: Chapter 2 first presents the required background theory to un-

derstand the measurement techniques used in this thesis and the machine

learning techniques necessary to provide full automation and optimisation.

This background theory was followed by the first comprehensive review of

machine learning for optical coordinate metrology, the current state of the

art prior to the developments made in this thesis.

Chapter 3 introduced all measurement systems used to gather data for

the results presented later in the thesis, alongside summaries of computa-

tional methods used through out and a summary of all test artefacts used.

Chapter 4 proposes a hybrid ML approach to camera characterisation

which outperforms the popular OpenCV method by approximately 50 %

as measured by the mean magnitude residual. It was also shown that the

proposed ML method is more robust to adverse imaging conditions than

235



a competing refinement method based on a line-spread function approach.

This should enable a greater range of imaging positions to be included

in the characterisation dataset, leading to improved characterisation out-

comes. The camera parameters given by this process are used in many other

processes in the proposed measurement pipeline, including view planning

and pose estimation.

Chapter 5 provided a method for optimising the imaging strategy of a

optical coordinate measurement on a per-part basis. First, an improved

method for evaluating which surface points are visible from a given viewing

position from the object’s CAD is proposed. It is shown that the proposed

solution strikes a good balance between accuracy and speed of calculation.

This visible point analysis method is used in a genetic optimisation to find

the minimum number of imaging positions which can produce a high qual-

ity measurement result as assessed by a custom global objective function.

View optimisation is then conducted on a range of test artefacts and shown

to produce high quality scans from a very low number of images as assessed

through comparison to other photogrammetry measurements, commercial

DFP measurements, and tactile CMM measurements. This view plan is

then used later in the pipeline, once adjusted for the pose of the object, to

conduct an optimised measurement.

Chapter 6 proposes a solution for autonomous removal of background

data from the images comprising a photogrammetric scan. A method for

autonomous background masking is presented based on image process-

ing techniques assuming there are no closed contours in the background

pixel information. Testing the proposed approach on the data in pho-

togrammetric measurements is shown to have numerous benefits including

reduced processing time, improved memory usage, decreased numbers of

background points reconstructed, and increased object point density. It is

also shown that the measurement result is improved quantitatively through
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greater agreement to CMM and improved reconstruction of surface features.

This background removal technique is also used to generate binary masks

used in pose estimation later in the measurement pipeline.

Chapter 7 presents a method for producing synthetic surface texture

data. A progressively growing generative adversarial network (PG-GAN)

is trained to produce a wide range of surface types which are shown to be

representative, but distinct, from real measurement data. The model is

also trained to categorise what type of surface it is producing, top, upskin,

or downskin when generating AM data. This model was developed to en-

able photo-realistic renders of manufactured parts from their CAD data,

an approach to using the surface generation model in a material shader

is presented. These simulated images are used to produce synthetic pho-

togrammetry data used to train models for pose estimation.

Chapter 8 Finally, two approaches to object pose estimation are pre-

sented. One which relies on the simulated data from Chapter 7 to train

a CNN to directly regress the 6 degrees-of-freedom (DoF) pose of the ob-

ject relative to a single camera. The second uses binary masks generated

by the algorithm presented in Chapter 6 alongside predicted masks gener-

ated by raycasting the CAD data through a characterised camera model

to minimise a loss function defined between the real image mask and the

predicted mask. Both models are shown to produce good results on real

photographic data, with the monocular method producing better rotational

prediction and the stereo method producing better positional predictions.

Each method is suitable for different applications; in summary, the monoc-

ular method is preferred if fast prediction times, single image input, and

repeated measurement of the same set of artefacts are required. The stereo

method is preferred if many objects will be measured on the system, and

lack of training overhead and accurate positional pose predictions are re-

quired.
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9.1. FUTURE WORK

The aims and objectives of this thesis were summarised in Section 1.3.1

as:

1. To create a software pipeline which will enable the creation of a fully

automated measurement system.

2. To develop algorithms as part of this pipeline to perform measure-

ments in a way which maximises surface coverage and reconstruction

quality while minimising computational expense and time.

3. To allow for arbitrary placement of the measurement object within

the measurement volume, ie. no fixturing or fiducial marking re-

quired.

The pipeline has been presented. The algorithms have been developed,

presented and compared to the current state of the art and common indus-

trial practice. Arbitrary object placement is enabled through use of either

of the pose estimation algorithms presented in Chapter 8 in concert with

the view planning algorithm proposed in Chapter 5. It is clear that these

aims are now achieved.

9.1 Future Work

Future work which could be conducted to continue the research presented

within this thesis includes testing the monocular method while using the

generator based material shader presented in Section 7.6, testing the back-

ground removal method from Chapter 6 under more favourable lighting

conditions and integrating the background removal with the view planning

algorithm from Chapter 5. Perhaps most of all, to deploy the entire auto-

mated pipeline into a physical system.
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9.1. FUTURE WORK

While hardware design and deployment was not feasible in the scope of this

project, the Midlands Centre for Data Driven Metrology (MCDDM) at the

University of Nottingham is directly working on taking the ideas proposed

in this thesis and integrating them into a hardware demonstration. Along

with fully automated multi-sensor photogrammetry and fringe projection

as enabled by the methods outlined within this thesis, the demonstrator

will also feature integrated surface texture measurement, data fusion, and

advanced data analysis. Figure 9.2 shows the proposed CAD design of

this system. The system consists of four projectors, four pairs of stereo

Figure 9.2: MCDDM demonstrator CAD.

machine vision cameras, a hexapod for part positioning, and numerous

motion stages for the repositioning of each sensor. In addition, an optical

surface texture instrument is placed on a robotic arm. Figure 9.3 shows

the proposed data flow in the demonstrator software. Due to the modular

design of the software developed in this thesis, the separate methods should

be easily transferable into the new system. Some of the methods may re-

quire adaptation to best fit the MCDDM demonstrator. For example, the

view planning algorithm is optimised for photogrammetry rather than DFP
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9.1. FUTURE WORK

(a) Proposed measurement pipeline

(b) Detailed data flow

Figure 9.3: MCDDM demonstrator data flow.

and the range of motion of the cameras relative to the part must be ac-

curately considered. Other methods, such as the camera characterisation

approach and object pose estimation, should be ”plug-and-play”. This is a

perfect system to investigate using multi-view stereo for the stereo method

pose estimation, as was discussed in Section 8.7, as there are four separate

imaging locations. This is likely to lead to an improvement on the pose

prediction accuracy as pose ambiguities due to occluded features will be

reduced.

I am excited to see how my ideas are integrated into this product.
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9.2. SUMMARY

9.2 Summary

This thesis has achieved its aim of developing a software solution to enable

autonomous and optimised optical coordinate metrology, a goal driven by

the large influence of the operator on the quality of measurement results

drawn from current optical CMSs. A selection of novel algorithms were

developed and tested individually. From camera characterisation, through

measurement planning to final data acquisition and processing; these al-

gorithms are valuable in their own right and are shown to have a range of

benefits over the previous state of the art and industry standard practice,

as summarised above. Beyond their individual value, they are part of a

greater whole. A software pipeline, shown in Figure 9.1, threads together

the algorithms presented herein to perform all operations required to per-

form an optimal measurement of an object via a CNC optical CMS for the

first time.
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Abbreviations

3D three-dimensional.
AM additive manufacturing.
ANN artificial neural network.
API application programming interface.
BFGS Broyden–Fletcher–Goldfarb–Shanno.
BSDF bi-directional scattering distribution

function.
CAD computer aided design.
CMM coordinate measurement machine.
CMOS complementary metal-oxide semi-

conductor.
CMS coordinate measurement system.
CNC computer numerical control.
CNN convolutional neural network.
CPU central processing unit.
CSI coherence scanning interferometry.
CUDA compute unified device architec-

ture.
DFP digital fringe projection.
DoF degrees-of-freedom.
DoG difference of Gaussians.
EB-PBF electron beam powder bed fu-

sion.
FCNN fully convolutional neural network.
FDM fusion deposition modelling.
FOV field of view.
FV focus variation.
GA genetic algorithm.
GAN generative adversarial network.
GPU graphics processing unit.
HPC high performance cluster.
HPR hidden point removal.
ICP iterative closest point.
IO input/output.
IRM information rich metrology.
KDE kernel density estimation.
LiDAR light detection and ranging.
LSF line-spread function.
LSM learned stereo machine.

MAE mean absolute error.
MAPE mean absolute percentage error.
MCDDM Midlands Centre for Data Driven

Metrology.
ML machine learning.
MMT Manufacturing Metrology Team.
MMT-LS MMT laser speckle.
MSE mean squared error.
MTL multi-task learning.
NBV next best view.
OpenCV open computer vision.
OpenMVG open multi-view geometry.
OpenMVS open multi-view stereo.
PBF powder bed fusion.
PBR physically based rendering.
PCA principal component analysis.
PDF probability density function.
PG-GAN progressively growing genera-

tive adversarial network.
PMVS patch-based multi-view stereopsis.
PTM point to mesh.
RANSAC random sample consensus.
ReLU rectified linear unit.
ResNet residual neural network.
RMS root mean squared.
RNN recurrent neural network.
SFM structure from motion.
SIFT scale invariant feature transform.
STL standard tesselation language.
SVM support vector machine.
SVR support vector regression.
Ti64 Ti-6Al-4V.
XLA accelerated linear algebra.
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Nomenclature

Coordinate systems

(U, V ) Image resolution

[α, θ, r] 3D polar coordinates

[θ, φ, κ] Local rotation

[u, v] Image coordinates

[X,Y, Z] Global coordinate system

[x, y, z] Local coordinate system

a axis-angle representation

Di camera-to-object distance

P n A 3D point

t Time

Phase unwrapping

δi Phase shift

λ Fringe wavelength

I(u, v) Intensity image

φ(u, v) Wrapped phase

ψ(u, v) Unwrapped phase

k Fringe number

Z Height

Camera modelling

[cx, cy] Principal point offset

[pu, pv] Pixel pitch

γ Skew angle

A Projection matrix

E Extrinsic matrix

K Intrinsic matrix

R Rotation matrix

T Translation vector

f Focal length

kn Radial distortion parameters

pn Tangential distortion param-

eters

Q Reprojection function

r Radial distance

s Scale factor
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Machine learning

η Learning rate

x′ Unseen features

x ∈ X Features

y ∈ Y Labels

z Intermediate weighted sum

φ(x) Feature map

a(z) Non-linear activation

A Categorisation accuracy

D Discriminator model

E Loss function

f(x) Target function

G Generator model

h(x) Hypothesis

hn Hidden node

In Input node

k(x,x′) Kernel function

On Output node

wn
i,j Weight

Image processing

Θ Gradient direction

G Gradient magnitude

I Image matrix

σr Range smoothing factor

σs Spatial smoothing factor

High/low pixel thresholds

Surface texture

Sal Autocorrelation length

Sdq Root mean square gradient

Sdr Developed interfacial area ra-

tio

Sq Root-mean-square height de-

viation

Sz Maximum height deviation

Other symbols

B Approximate Hessian matrix

H Hessian matrix

J Jacobian matrix

ω Weighting coefficient

φr Reflected phase

φs Reference phase

σ Standard deviation
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A(t) Amplitude

c The speed of light

d Depth

fm Frequency modulation

S(t) Reference signal

Sn n-dimensional unit sphere
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Appendix A

GOM system performance

verification
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Appendix B

CMM calibration results.
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B.1 Calibration certificate
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B.2 Method of calibration
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B.3 Length error graphs
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Appendix C

Stereo baseline

characterisation

The procedure adopted for characterising the baseline of the Taraz system

is as follows.

A CMM measurement of the four spherical features on the Tomas artefact,

shown in Figure 3.11, was conducted. The spheres are arranged as is shown

in Figure C.1 which define a set of 6 sphere-to-sphere distances which are

also labelled in Figure C.1.

Figure C.1: Sphere arrangement for the characterisation of the stereo base-
line distance.

The six sphere-to-sphere distances are extracted from the CMM, the

CMM measurement was repeated three times. Then, a 120 image scan
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of the artefact was completed using the Taraz system, the output point

cloud has an arbitrary unknown scale factor applied to it. This scale factor

is given by the term s in Equation 2.9. As there are six known sphere-

to-sphere distances across three repeat CMM measurements and a single

unknown value s, a least squares approach can be adopted to determine

the optimal value of s.

Finally the baseline stereo distance b can be determined from a given pair

of cameras c0 and c1 as,

b = s · |T1 −T0|, (C.1)

where T is the camera translation vector from the extrinsic matrix. Again,

because there are 60 stereo image pairs in the scan the value of b can be

optimised using a least squares solution. The results of this procedure are

given in the following section.

C.1 Baseline characterisation results

Table C.1 shows the results of sphere fitting to the three sets of CMM data.

The nominal dimensions of the artefact were 5 mm spheres spaced at the

corners of a 50 mm square.

Table C.1: Sphere fitting to CMM data results.

Table C.2 shows the distances shown in Figure C.1 as extracted from

each CMM measurement along with the range and standard deviation

across the repeat measurements.
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Table C.2: Sphere-to-sphere distances extracted from repeated CMM mea-
surements.

Table C.3 shows the sphere fitting applied to a 120 image photogram-

metric scan from the Taraz system with an unknown arbitrary scale factor.

Table C.3: Sphere fitting results to a photogrammetric measurement per-
formed by the Taraz system.

Table C.4 shows the determination of the scale factor s. This is first

determined individually for each sphere-to-sphere distance, then the mean

and standard deviation of the individual scale factors are calculated. The

mean scale factor s = 43.332 is taken to be the ’true’ scale factor for this

point cloud.

Table C.4: Sphere-to-sphere distances compared and used to calculate the
scale factor between the photogrammetric point cloud and the CMM data.

Finally, Table C.5 shows the translation vectors for the stereo camera

pair at each imaging position, the unscaled baseline distance is calculated
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and then the previously determined scale factor is applied. From the data

given in Table C.5 the baseline distance can be determined to be 264.00

mm with a standard deviation of 0.40 mm. In the body of this thesis a

baseline distance of b = 264.00 mm is therefore used to scale all pointclouds

produced by the Taraz system.
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Table C.5: Determination of the baseline distance for each stereo pair.
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Appendix D

Motion characterisation

The purpose of the motion characterisation procedure is to establish a co-

ordinate transformation from global coordinates to machine coordinates.

Using this transformation, a list of imaging positions given relative to the

centre of the measurement volume can be transformed into motion stage

positions and converted to G-code [165]. This G-code can then be executed

to conduct the measurement. The process outlined below shows the motion

characterisation procedure used for the Taraz system which has five DoFs,

but the same procedure can also be used with the MMT system which has

only two DoFs.

A checkerboard characterisation target is placed within the measurement

volume. The target is imaged at 60 equally spaced positions along the full

range of each DoF in the system, wile keeping each other DoF constant -

in the five DoF Taraz system this lead to 300 images. The OpenCV func-

tion cv2::findChessboardCorners() is used to detect the characterisation

target features, the characterised camera parameters are then used along-

side the function cv2::solve_pnp() to give the camera extrinsics relative

to the characterisation target [175]. For each image it is now known at
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what machine coordinates it was imaged from (Mx,My,Mz,Mθz,Mθy) and

the camera’s pose relative to the target (Tx, Ty, Tz). However, the target

coordinate system is misaligned with the global coordinate system, to align

these two the procedure shown in Figure D.1 is conducted.

(a) Initial misalignment. (b) Plane fitting.

(c) Plane parallel to (x, y) plane. (d) Align origin in-plane.

(e) z offset. (f) Rotational alignment.

Figure D.1: Global axis alignment for the Taraz system. Each circle indi-
cates an imaging position in the dataset.
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Staring with the initial misaligned coordinate systems as shown in Fig-

ure D.1a, a plane is fit to the camera positions captured by varying the

rotation stage (Mθz) as shown in Figure D.1b. The coordinate system is

transformed to make the fit plane parallel with the global x, y plane as

shown in Figure D.1c. The centre of rotation is calculated by finding the

mean camera location on the fit plane, Figure D.1d shows that the coor-

dinate system is transformed such that the centre of rotation aligns with

the global z axis. The coordinate system is then translated such that the

origin of the target reference frame is coplanar with the global x, y plane

as shown in Figure D.1e. Finally, the coordinate system is rotated such

that the mean vector given by camera positions imaged when varying the

machine Mx positions is parallel with the global x axis, as shown in Figure

D.1f.

As can be seen in Figure D.1f, the relationship between the global coor-

dinate system and the machine coordinate system can now be derived. It

can also be seen that, although the mean machine axes are aligned, due

to errors in the motion stages the camera positions do not fall exactly on

these axes. If very high precision positioning is required, these errors can

be individually characterised and accounted for when calculating machine

coordinates from a desired global imaging location. In the case of the Taraz

system, it was found that the reconstruction results were not sensitive to

small errors in the imaging position so only simple linear corrections were

applied.
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Appendix E

EfficientNet-B5 architecture

Figure E.1 shows the common building blocks of all of the EfficientNet

architectures as originally published [174].

(a) Depthwise convolution.

(b) Attention.

Figure E.1: Building blocks of the EfficientNet model.

Figure E.2 shows the full architecture of the EfficientNet-B5 model as

adapted for use in the characterisation procedure outlined in Chapter 4.

As the model is very large, for the sake of brevity the sections highlighted

in red in Figure E.2 are repeated in series the number of times indicated.
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Figure E.2: Full EfficientNetB5 model
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Appendix F

GAN based AM material

shader.

Shown in this Appendix is the full Blender material shader developed in

chapter 7 in Section 7.6. All the nodes used are standard to the Blender

shader node editor with the exception of the UberMapping and PBR mix-

ing nodes from Poliigon [228], and the PG-GAN generator nodes. The

PG-GAN custom nodes generate a new texture tile from the trained gener-

ator model from the appropriate surface type as determined by the surface

normal.
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Appendix G

Functions

Collected below are a set of useful functions written in Python used within

this thesis.

G.1 The closest point between two rays
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G.2 Custom ’improvement’ metric
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