Machine learning for the automation and optimisation of optical coordinate measurementTools Eastwood, Joe (2023) Machine learning for the automation and optimisation of optical coordinate measurement. PhD thesis, University of Nottingham.
AbstractCamera based methods for optical coordinate metrology are growing in popularity due to their non-contact probing technique, fast data acquisition time, high point density and high surface coverage. However, these optical approaches are often highly user dependent, have high dependence on accurate system characterisation, and can be slow in processing the raw data acquired during measurement. Machine learning approaches have the potential to remedy the shortcomings of such optical coordinate measurement systems. The aim of this thesis is to remove dependence on the user entirely by enabling full automation and optimisation of optical coordinate measurements for the first time. A novel software pipeline is proposed, built, and evaluated which will enable automated and optimised measurements to be conducted. No such automated and optimised system for performing optical coordinate measurements currently exists. The pipeline can be roughly summarised as follows:
Actions (Archive Staff Only)
|