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Abstract

Protein-Protein interaction networks are one of the most well-explored and doc-
umented parts of the interactome, as such, they have had a variety of databases
and analyses developed for them, in order to harness this highly useful abstrac-
tion of very complex systems. Community detection is a popular analysis for
many datasets which can be abstracted onto graphs and otherwise is a con-
cept still performed on non-graph-based datasets through clustering methods.
Community detection can also be performed at varying scales through the in-
troduction of artificial time parameters, which in this case is a result of the
use of a measure called Markov Stability. Markov Stability is also used as a
measure to define a good graph partition but optimizing by having it be the
objective function of the Louvain algorithm. In this study, we implement a
framework for multiscale community detection governed by Markov stability,
which has been previously used in other studies and apply this framework to
an example protein-protein network of the proteins related to the 20 most fre-
quently mutated human cancer genes from the STRING database. The results
of this application are then explored and we show that due to the underlying
properties of the example, robust partitions are obtained across varying Markov
times.
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1.0 Introduction

Proteins are known to be the main proponents of biological function through
their interactions with proteins and other molecules, such as RNA and DNA.
These interactions result in the meditation of metabolic and signalling path-
ways, cellular processes and organismal systems. Since proteins play such a
pivotal role in biological function, there has been increased research dedicated
to better understanding their relation to the treatment of diseases [1]. All
possible molecular interactions that can occur within an organism are defined
by its interactome and as such many subsections of specific interactions be-
tween two molecule groups exist as their own fields of research [2]. Of these,
protein-protein interactions are the most well-documented and explored. These
interactions are recorded through a variety of methods, which make use of both
experimental identification and computation prediction. Experimental identifi-
cation methods include biophysical methods, whereby interactions are captured
through methods such as spectroscopy, x-ray crystallography and fluorescence,
as well as high-throughput methods, whereby direct methods such as the Yeast
two-hybrid model can be used to fuse two proteins to a transcription bind-
ing domain so that their interactions may be examined or indirect methods
such as examining co-expression of genes which are assumed to have inter-
acting proteins due to their co-expression. Computational predictions include
those based on empirical evidence, such as network properties, co-expression
and examination of the relative frequency of interacting domains, and those
based on theory, such that as interactions happen in the same organism and
the evolution of interacting proteins are linked to preserving function [3].

In order to achieve abstract and computational interactions with the protein-
protein interactome, protein-protein interactions are often represented as
graphs from the mathematical discipline of graph theory, a graph here being a
set of vertices that define each protein with an associated set of edges which
encompass the interaction between each protein. A set in this case refers to an
unordered collection of elements of some kind, where no element is repeated.
These graphs are often referred to as protein-protein interaction networks.
However, one key aspect of a graph of this variety is that they are not random
and so adhere to principles which govern their structure and evolution. As
a result of this protein-protein interaction networks display characteristics
which are not expected of a usual graph. The degree distribution of these
graphs is unusual as they contain a usually rare feature, hubs, being vertices
that have many more connected vertices than the average vertex within
the graph. The graphs also display the small world property, as there are
relatively short paths, an edge sequence between two vertices, and between
protein vertices. Motifs and modules are also features of these graphs, motifs
being groups of vertices taken from the original graph that appear more or
less frequently than expected and modules being highly interlinked sets of
vertices which cause most graphs to display high degrees of clustering. Finally,
protein-protein interaction networks display a tendency to include vertices
with a high betweenness centrality, being vertices that have a high number of



shortest paths between vertices passing through them. These characteristics
add a series of challenges to the application of graph theory-based methods
to protein-protein interaction networks [4]. This paper, [4], also explored the
context of human disease and how network-based approaches could fit into a
better understanding of human diseases, based on the underlying hypotheses
and structure of disease networks. These Disease networks are large, highly
connected and also have interaction data available from more than just one
interactome, making them great resources for testing methods that would try
and bridge community detection across multiple networks. Of the hypotheses
summarised, I will outline those which are particularly important in the protein
interactome. A common hypothesis is that Protein hubs are associated with
essential genes, which don’t as often interact with disease-related genes, since
they generally appear at the fringes of protein functional networks. Another
accepted belief is that any interacting Proteins which share a common disease
network are likely to interact with each other. Similarly, Proteins related to
certain diseases or cell types are very likely to have high interconnectivity
as they are present in the same/similar networks. And finally, the shortest
molecular path between disease-associated interactome information is expected
to align with causal pathways.

Due to how pivotal protein-protein interaction networks are to research based
upon further understanding molecular biology, several open-source data repos-
itories have been created to make these networks publicly available. One popu-
lar source is IntACt, a molecular interaction database, which allows for a wide
variety of visualisation and analysis of molecular interaction networks across
multiple species [5]. Another critical database, which focuses on protein-protein
associations specifically is STRING, which integrates various publicly available
protein-protein interaction sources and also scores these interactions based on
the evidence related to the interactions [6]. This functionality of being able to
assign a score to each interaction can be very useful for graph-based analysis,
which can take into account an associated weight for each edge.

Given that there are large quantities of interaction data publicly available it
has been of interest to analyse these networks with various techniques [7-11]. A
common practice when working with graph-based objects is to understand how
the vertices within a graph can be grouped based on the underlying structure
of the graph. An algorithm which performs this task is often referred to as a
community detection algorithm.

Although graph-based methods will be used within this it is worth noting that
another popular form of sorting data into groups is hierarchical clustering.

The data to which hierarchical clustering is usually applied will be a dataset
which captures the relationship between at least two dimensions. When a data
set is defined by higher dimensions the first aim of hierarchical clustering anal-
ysis is to reduce the dimensionality of the data set through methods such as a
Principal component analysis [12] These datasets are also represented in such
a manner that any two data points be measured, leading to many intercon-
nected data points. Once the dataset is represented in such a manner that its



underlying structure can be assessed hierarchical clustering can be performed.
A choice of algorithm and objective function must be made as well as the num-
ber of clusters to obtain. When considering algorithms and their objective
functions hierarchical clustering falls into two approaches. One initialises the
algorithm by assigning each representative data point its own cluster and then
taking successive hierarchy steps by which two existing clusters are merged
based on the best available measurement of the chosen objective function. The
algorithm will stop merging clusters once the desired number of clusters is
reached and so this results in a very greedy method, which only values the
measured objective function at each hierarchy step. This approach is known as
Agglomerative or “bottom-up” hierarchical clustering. The other is a Divisive
or “top-down” hierarchical clustering whereby instead each representative data
point is initially assigned to the same cluster and at each hierarchy step an
existing cluster is split into two, based on the algorithm and objective function
chosen. Again, this method also stops when it obtains a given number of ex-
pected clusters. These methods then result in an expected number of clusters
which does not necessarily inform upon the underlying structure of the dataset;
however, the constructed hierarchy does allow for investigation of how the fi-
nal clusters were obtained and so important structural features may be found.
Often the algorithm chosen will have to be carefully considered as most require
the fine-tuning of some parameter as well as the number of desired clusters

[[13], [14], [15]].

Graph-based community detection algorithms follow a similar process by which
to construct an analysis. If the data is not already in a form by which it is
represented as a set of vertices connected by edges, then certain methods can
be applied to obtain this. These methods aim to take the underlying data set
and connect data points which would now represent vertices within a graph
usually based on a measure of proximity between data points. Two kinds of
methods should be considered here, as one method is unlikely to capture both
local and global features. Neighbourhood-based methods construct a graph by
connecting vertices to their neighbouring data points, if they are considered to
be local neighbours by their pairwise distance, such as K nearest neighbours
and e-ball graphs. These methods lead to a good representation of the local
features of a graph but are unlikely to capture global properties. Minimum
spanning tree based methods seek to find the global connectivity for a dataset,
such that the overall distance of all created edges is minimum. As they seek to
capture global connectivity, minimum spanning trees are great at representing
the global features of a graph but are unlikely to retain much local informa-
tion about highly connected data points. The best method to apply depends
heavily on the underlying data, however, it has been found that Neighbour-
hood based approaches often yield better representations of underlying data
[16]. Once the dataset of interest is abstracted into a graph object, community
detection algorithms and their objective functions can be applied. Unlike hi-
erarchical clustering which usually measures distances between representative
data points, community detection methods make use only the graph topology
to decide which community a given vertex belongs to, such as which vertices it



is connected to, the weight associated with those edges and the connectivity of
the entire graph for a suggested community assignment. This allows commu-
nity detection methods to generate communities based more on the structural
significance of a given vertex, however, this does result in only the final partition
being a reliable representation of the underlying graph structure. This is due to
the steps within community detection algorithms consisting of considering each
vertex once, with a random initialisation as to the order of consideration. This
results in requiring multiple unused calculations creating large computation
times [17]. As protein-protein interaction networks are the focus of this study
no transformation is required, instead we perform the abstraction mentioned
earlier.

Given a dataset represented as a graph, a community detection analysis now
requires an algorithm to use and that algorithm requires an objective function
to optimise for. Within graph theory, a set of communities which together
contain all vertices of a graph G but do not share any vertices is defined as a
partition of G.

In this study we have made use of a modified version of the Louvain algorithm,
the modification being its objective function. The unaltered Louvain algorithm
makes use of a measure called modularity to assess which vertices to assign to
which nodes. Modularity as a measure evaluates the density of edges within the
proposed communities of a partition compared to the density of edges between
the proposed communities [18]. The steps to performing the Louvain algorithm
will be discussed in the methods section.

For our objective function, we will consider a measure named Markov Stability,
which will be further explored in the methods section. A key aspect of Markov
stability is that it introduces a dynamical Markov process onto the graph and
so this methodology introduces an artificial time parameter. Markov Stability
measures whether a given partition has a higher probability than just by mere
chance to have random walkers start and end in the same community at a
given Markov time. Due to the introduction of the Markov time parameter,
the modified Louvain algorithm can be applied at different Markov times to ob-
tain multiple partitions of the same graph, revealing varying resolutions of the
local and global features of the graph. This leads to a framework that can be
used to perform multiscale community detection, which can have its generated
partitions evaluated over periods of the artificial time component. This allows
us to obtain a method which makes use of the strengths of both graph based
community detection methods and hierarchy based methods, as we obtained
an evolution of reliable underlying structure which results in a number of com-
munities based upon the graph itself and not what we believe the number may
be. This method has been successfully applied to various problems, including
protein structure organisation [19], and uncovering pathways in enzymes [20].

The Protein structure organisation study, [19], made use of a multiscale com-
munity detection as well in order to obtain their self-defined robust partitions
at varying values of the time parameter. The implementation is very similar
to the one we will propose, as this study is one of the ones which forms our



implementation. The context to which they chose to apply it was a network
of physico-chemical atomistic interactions which describes the structure of the
interaction protein of the myosin tail. The 3D structure data is larger and more
structurally significant than Protein-Protein Interaction Networks as they are
a much similar abstraction. This study highlights the structural significance
these methods can help explore as they obtained multiple structures across
Markov time and were even able to build up a structural picture of how the
functional domains are constructed down to the helical turns, amino acids,
peptide bonds and bonds and chemical groups. This study then very aptly
highlighted how many of the structures which were captured by different com-
munities each have had different research papers allude to such structures, as
well as a potentially influential residue, A809, for the binding of MyoA, which
had not had a prior experimental investigation. This paper shows that com-
munity detection methods can capture global and local features of datasets as
well as lead to novel results when known influential molecules are assigned to
communities with similar unexplored molecules.

In this study, we will seek to apply this framework to protein-protein interac-
tion networks and aim to evaluate whether relevant partitions are constructed
for protein-protein interaction networks. As part of this study, we will also ex-
plore how hubs behave as partitions merge through varying scales and seek to
understand whether partitions at later time points are consistent with earlier
time points.

The remainder of this thesis shall thus cover the following. The methods used,
state the underlying mathematics which governs Markov stability, the steps
needed to perform the Louvain algorithm, the framework which enables mul-
tiscale community detection and the validation of any results obtained. Then
how these methods were implemented within the R programming language
shall be covered, followed by the results obtained and their discussion.



2.0 Methods
2.1 Markov stability

The following methods seek to outline the definitions required to define Markov
stability and are based on a review of the following studies [16,19-23].

We define a graph G as a combination of three sets. The first set is the vertex
set V', which captures the set of vertices present in the graph. If two vertices
are to be connected to one another, this is represented by an edge. All edges
within the graph are captured by the second set, the edge set E. Edges may
have a varying value associated with a graph, which is captured by the weight
of the edge. FE, therefore, comes with a corresponding weight set W, which
defines the weight of each edge present within E. G is therefore a weighted,
undirected graph representing V and FE.

Let a specific entry within an object be denoted as O,, where O is the object
of interest and e is the specific entry within O.

Consider a graph G defined as above, with vertex set V', edge set F and weights
set W. Let V be comprised of n vertices and let £ be comprised of m Edges
with their associated weights in W. From this definition, we can now derive
further properties and representations of G.

G can be represented by the n by n adjacency matrix A, where A;; is the weight
of the edge between vertex V; and vertex V;. If no edge exists between V; and
Vj, A;j is zero.

A can be used to define the n-sized weighted degree vector d, as d; = 37 A;;

d can be used to define the n by n diagonal weighted degree matrix D, as
D;; = d; and 0 otherwise.

A can be used again to define the total number of edges m within G, as m =
1/2378 375 Ay

Given G we can define a random walk on G as a process governed by a time
step parameter t. This random walk will start on a vertex within V' and at

each time step t will move to a vertex connected to the vertex the process is
currently on.

A key property of this Random walk is its n by n probability matrix M, where
M;; is the probability of moving from V; to V; in one time step. Since G is a
weighted graph, one should note that the probability of moving to a connected
vertex will be proportional to the weight of the edge between connected vertices.

This random walk can also be considered as a discrete-time Markov process, as
the probability of moving to another vertex is only governed by which vertex
the random walk is currently on and so no other previous step information is
required. A key property associated with a Markov process is its transition
matrix which defines the probabilities associated with moving each time step
within the Markov process. From that definition, it is clear to see that M
would fulfil the role of the transition matrix.
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Considering what M represents and the note that each probability will be
proportional to the weight of the edge connecting two vertices, it is clear that
the components of M will include the adjacency matrix, as it describes G and
its edge weights, and a term which captures the proportional weights related
to each vertex. The latter term can be obtained by taking the inverse of the
earlier defined diagonal degree matrix D. Therefore M can be defined as the
product of these two terms and results in the probability matrix

M=D"1A

Note M is a right probability matrix, as each row within the matrix sums to
1.

Now that we have defined the probability matrix associated with this process,
we can define the probability distribution for each time step t. Let the n-sized
vector p(t) encodes these probability distributions, where p(t); would corre-
spond to the probability of being on vertex V; at time ¢ for this process. Clearly,
p(t) would have M as one of its components, as it captures the proportional
probabilities present for a random walk on G and also contains a component
which considers the previous steps within the random walk. However as was
already discussed, only the previous step is of interest when considering the
next. We can therefore define the next step p(¢t + 1) as

p(t+1) = p(t)M

An important property of p(t + 1) is its stationary distribution, which is the
probability distribution 7 such that 7 = wM. The stationary distribution for
this random walk would therefore be

7 =d"/2m

Let the n by ¢ matrix H denote a partition of the graph G, such that H;; is
equal to 1 if vertex 7 is within community 7 and 0 otherwise.

When considering the Markov process defined above, this can instead be con-
sidered as a random variable X, with an associated autocovariance matrix
cov(Xy, Xiyr) = E[ X Xiyr] — E[X]?, where E denotes the expected value and
7 denotes a lag in time [21]. The autocovariance allows for a quantification
of phenomena whereby it is expected that over a given time span the state of
the Markov process considered as a random variable is more likely to remain
within the starting community, as compared to random chance.

Consider that the vertices of G can be put into ¢ non-overlapping communities.
Given a partition as defined by H the clustered autocovariance matrix of the
random walk at time step ¢ is given by

r(H), = H'[OM"' — n"7|H

a matrix which describes the t-dependent probabilities of transferring between
different communities, as each element (r(H),);; denotes the probability of

11



starting in the community ¢ and then after ¢ time steps being in community
J, minus that two independent random walkers are in communities ¢ and j
when evaluated by the stationary distribution. It is important to note the
expected behaviour for a good partition H. A good partition would persist
over a timespan t and would also yield high values along the trace of r(H ),
as the probability of leaving a community and re-entering it later is low. As a
result of this the discrete-time Markov stability can be defined as

b(t, H) = trace(H [IM" — 77 n]|H)

and so be used as an objective function to find good partitions of a graph over
all ¢ when maximised

b(t) =" b(t, H)

We will now consider a continuous-time Markov process associated with our
random walk. One way to arrive at a continuous-time process is to assign a
continuous Poisson process at each vertex of G. We will assume that for all
nodes the Poisson process is evenly distributed. We thus obtain the following
diffusion dynamics related to our continuous-time Markov process:

dp _

L — —pl1 = D7 A] = —plT - M

resulting in the following probability matrix for this process p(t) = e "M,
as this is the solution to the differential, excluding a potential constant. Note
that e is the matrix exponential as $ -t[I-M] $ is a matrix.

Note that the stationary distribution of this process is the same as that of the
Random walk, thus the clustered autocovariance matrix for the time-continuous
process is:

rcontinuous(H)t = HT[He_t[I_M] — 7TT7T]

As with the discrete-time Markov process, this then results in the definition of
continuous-time Markov stability as

bcontinuous (t, H) = t’I“CLCG(HT [HeitUiM] - 7TT7T]H)

With associated objective function
bcontinuous(t> - m[—(}xbcontinuous@a H)

2.2 Louvain algorithm

Now that we have defined an objective function, we will need to make use
of an algorithm to apply the objective function to a graph. For simplicity, a
popular and rather simple-to-implement algorithm was chosen and modified,
the Louvain algorithm [18].

12



The Louvain algorithm consists of two phases to obtain optimised partitions.

The first phase consists of the flowing steps:

1. Given a Graph G, as defined previously, assign each vertex within the
graph to its own unique community

2. Complete a pass of the vertices, where a pass consists of:

o Select a vertex at random, calculate the modularity of G when that vertex
is part of its current community, as well as each of the communities of
the vertices connected to the selected one

o Assign the selected vertex to the community which yielded the highest
modularity for the graph

e Repeat the steps of the previous two tasks for each vertex not already
selected

3. If the resulting partition is equivalent to the partition obtained before
the pass of the vertices, proceed to Phase 2, otherwise apply steps 2.-3.
to the resulting partition

The Second phase consists of the following steps:

1. Given the partition obtained from phase 1, collapse each of the vertices
with the same community into a single vertex, which has an edge set
consisting of one edge starting and ending at the single vertex for each
vertex collapsed and all edges belonging to the collapsed vertices that
didn’t start and end within the same community

2. Apply Phase 1 to this collapsed graph

3. If the resulting partition has the same number of communities as there are
vertices, construct a partition by assigning the communities obtained to
the vertices of G which made up the collapsed vertices and end, otherwise
repeat steps 1. and 2.

The modification step is that of the objective function, as the Louvain algorithm
optimises for communities which maximise the modularity of a graph, for which
we instead maximise Markov stability.

13



2.3 The Markov stability framework

The time parameter defined within the Markov process will from now be re-
ferred to as Markov time. Markov time is the critical component which enables
community detection at multiple scales by acting as a resolution parameter.
This resolution is in practice characterised by the number of communities de-
tected as t varies. When t is small, more communities are detected leading to
the identification of a graph’s local features, since as ¢ increases the autocovari-
ance for weaker communities degrades, meaning at high ¢, fewer communities
are present, revealing the global landscape of the graph.

Hence important parameters of this methodology are the number of iterations
for which to vary ¢ for, n; and how much to vary ¢ by for each step, tgp. In order
to ensure a maximised partition is obtained at each t, we will also be apply-
ing the modified Louvain algorithm multiple times and choosing the resulting
partition with the highest Markov stability, introducing another parameter ny,
the number of times to optimise for Markov stability at each t.

In order to assess the outputs of this method, we will apply a dissimilarity
metric to the ny resulting partitions obtained within each ¢ and also apply a
dissimilarity metric to the resulting partitions between each ¢. The dissimilarity
metric of choice in both cases will be the variation of information between
two partitions VI(Hy, Hs) [24], which was not implemented in this study, an
implementation from an open-source software package was used. As a measure,
the variation of information will be zero when two given partitions are the
same and otherwise small if they are similar, where small is relative to the
range that the variation of information can take. As a metric the variation
of information measures how assigning the two different partitions results in
a change of information and its value is bounded as such 0 < VI(Hy, Hy) <

log(n).
Within this methodology, the resulting metric for with ¢ variation will therefore
be

nyp np

> > VIH(8), Hy (1))

sls’l

ijithin (t) -

1—TLL

where H}(t) is a maximal partition obtained at optimisation step s. As a result
of this, an associated average variation of information across nj, for each t is
calculated. Note that a result of 0 for a given ¢ indicates that all n; partitions
were the same.

The resulting metric for between ¢ variation will therefore be

Vletween(t,1) = VI(H" (¢), H*())
where H* is a maximal partition and the resulting VI(¢,t') is ¢ by ¢ matrix

where each entry ¢, j contains the variation of information between the maximal
partition obtained at Markov time ¢ and j.

14



The methods described above can now be summarised to describe a framework
by which multiscale community detection can take place. Given a graph G a
modified version of the Louvain algorithm as described above can be applied
to G in order to obtain a partition optimised for time-continuous Markov sta-
bility. This process of application will also have a sequence of Markov time
t recorded, the first instance of which being t;,:1;s; and thereafter will be var-
ied by tsp until ¢ = t,,,4,. This application will be applied ny, times in order
to ensure the randomly initiated Louvain algorithm has a better chance of
finding an actual maximum solution. Of these nj partitions, the V I pin(t)
will be recorded and the partition with the highest Markov stability will be
kept as the maximal partition for that Markov time t;,isia1. Next tiniriaqr Will
then be varied by 4., and the process will repeat itself, resulting in an av-
erage variation of information measure for the n; partitions and a maximal
partition associated with the current Markov time step. Once n; applications
have been made, the V Iyeppeen(t,t’) will be calculated for all obtained maxi-
mal partitions, resulting in a matrix structure with entries ¢ and j such that
V Dyetween (tinitial + 1 (Estep)s tinitiat + J (tstep)). This framework will therefore result
in a matrix of between ¢ variation and a dataset consisting of a maximal par-
tition with an average variation of information for each associated time step
t.

When considering the results of the framework described above, a variety of
methods will be used to evaluate the quality of the partitions established at
certain timescales. A high quality partition will be defined as robust if a par-
tition occurred with either few or no differences in community structure when
comparing the ny partitions obtained and when comparing the maximal par-
titions with the same number of communities obtained. The quantification of
how much difference in community structure exists will be done through the
use of V itnin(t) and V lpeppeen(t, ). The flow of communities assigned as t
varies will be assessed by visualising how vertices are assigned to communities
across the varying ¢, with the intent of finding that local communities are strong
enough so as not to split into different more global community structures. In
order to assess the presence of Hubs within a given G, we will make use of a
simple topological measure proposed in the study [25]. The measure described
is a connectivity of the induced subgraphs of G, being subgraphs where only
a certain set of vertices and their associated edges start and end within those
vertices are captured and so is a measure of relative subgraph connectivity.
These subgraphs of GG are constructed by sorting all of the vertices present in
G in descending order by their degree, the number of edges that are incident
to a vertex. The first x vertices of this order then make up the subgraph G,.
For a given induced subgraph G, this connectivity measure is defined as

f=Cr/VI(G:)

where C7'** is the number of nodes for the largest component in G, |V (G,)| is
the total number of vertices in GG,. This results in a measure that is expectant
to identify hubs of a graph G when for a given increase in x, the resultant
connectivity is much closer to 1 than previously.
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3.0 Implementation

To implement the methods described above we require the use of a program-
ming language, as to ensure reuse of the methods and to allow access to exist-
ing open-source tools. The methods described above were applied to a specific
altered example from the STRING database, which can be obtained in the
following way:.

Within STRING an interface for examples can be navigated to, “Example 2”
being the one which forms the basis of the dataset used within this study. “Ex-
ample 2” consists of the 20 most frequently mutated human cancer genes, which
have related proteins: APC, BRAF, CTNNB1, DNMT3A, ERBB3, FLTS3,
NCORI1, NF1, NARS, PIK3CA, PTEN, SMAD4, TP53, SF3B1, FBXW7 and
LPHN2. Once this example has been selected within STRING an interface will
appear visualising the proteins related to those 20 genes and a button which
says “more” is visible with an associated plus sign. This button was used to
expand the network until 96 vertices were present in the network. This network
results in only one protein not having an interaction, LPHN2, and so since no
interactions take place it is excluded from the protein annotations file. On the
Analysis page of the interface, the “All enrichment terms” file was downloaded
and on the “Exports” page the protein annotations file was downloaded. The
exact String network used is available at [26] if it cannot be constructed as
described.

The protein annotation file was used to construct a graph object of this network,
by making use of its “x.nodel” and “node2” columns to construct an edge list, a
matrix in this case where the first column indicates a starting node for an edge
and the second column indicates an ending node for an edge. This edge list was
converted into a graph object using a graph constructions function within one
of the packages described below and then the “assigned score” associated with
each interaction was used to assign weights to the edges of the graph object.
The enrichment file is made use of within the discussion to explore highly
enriched categories for given proteins. The calculation for the assigned score
is derived from the combination of all evidence scores associated with a given
interaction. These evidence scores related to the interacting proteins consist
of scores that quantify their connected proteins, gene fusions, co-expression,
database imports, large-scale experiments and literature co-occurrence. A given
interaction will not always receive a score for each of these. These scores
are combined by assigning Bayesian probability priors to each of the scores,
removing the prior distributions from each channel, combining the scores and
then finally the prior is added back only once.

This graph object was formatted as seen in figure 1 and will form the basis
for all other network plots seen later. The layout of this graph is constructed
using an implementation of the Fruchterman Reingold algorithm [27] with an
area value of 5n? and a repulse.rad value of n?5.
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Figure 1: Our example protein-protein interaction network, with vertices sized
to degree of the vertex
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The framework for multiscale community detection was then applied to this
graph network and the results are given in the Results section.

In this study, we have made use of the R coding language [28], as it is a popular
choice for performing analysis in the field of biology and it is also equipped with
a variety of useful tools to help explore the results obtained. Other than base
R and its associated base packages, we also made use of the following packages.
The most instrumental package used was igraph [29], which forms the basis for
all definitions of objects used within this implementation and provided many
other useful functionalities, such as the plotting and formatting of network
graphs, graph object creation and editing and implementation for calculating
the variation of information between two partitions. The packages tidyverse
[30] and dplyr [31] were used for data transformation operations applied to
R data objects. The package expm [32] was used in order to calculate the
exponential of a matrix and the package knitr [33-35] was used for formatting
this pdf output derived from a markdown script.

Graphing packages used include ggplot2 [36] which was used for plotting a
heatmap and dual axes plots, netwrokD3 [37] which was used for the creation
of a Sankey graph and lastly qgraph [38] which was used to create the layout
of vertices used for the network plots.
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4.0 Results and Discussion
4.1 Inital Framework results

For the application of the framework described above, we will be using the
following parameters: t;,ii0 = 1 (as this is hard-coded into implementation),
tstep = 0.5, tingz = 49, ng, = 20. This will result in a Markov time span starting
at 1, increasing by 0.5 each step for 49 steps. This will result in a Markov time
span of 1 to 25. The Louvain optimisation for Markov Stability will be run for
20 iterations at each time step.

Having applied the proposed framework our example from STRING, with the
above-specified parameters, we obtain table 1 which shows the expected trend
of having Markov stability decrease as Markov time increases due to degrada-
tion of the autocovariance matrix. We also plot Markov time against Markov
stability in figure 2 to visually confirm the expected decreasing trend of Markov
Stability and communities as Markov time increases.

Table 1: Framework application results

markov__time communities_ count maximal__stab within_ t_ variation
1.0 7 0.6116352 0.0000000
1.5 6 0.5789904 0.1190966
2.0 5 0.5579874 0.1530839
2.5 4 0.5426200 0.2187274
3.0 4 0.5206031 0.2376802
3.5 4 0.5026493 0.2064303
4.0 4 0.4878835 0.3027109
4.5 4 0.4751222 0.3516538
5.0 4 0.4621922 0.2816973
5.5 4 0.4501387 0.3563733
6.0 3 0.4552679 0.3922370
6.5 3 0.4463691 0.4415684
7.0 3 0.4378755 0.3879952
7.5 3 0.4300084 0.4894167
8.0 3 0.4223729 0.4370096
8.5 2 0.4371279 0.3877788
9.0 2 0.4339345 0.5224536
9.5 2 0.4307683 0.5292873
10.0 2 0.4276287 0.4079856
10.5 2 0.4245153 0.3714550
11.0 2 0.4214275 0.4509322
11.5 2 0.4183649 0.3006463
12.0 2 0.4153271 0.2262549
12.5 2 0.4123137 0.3315315
13.0 2 0.4093244 0.2771651
13.5 2 0.4063587 0.2333254
14.0 2 0.4034164 0.2356822
14.5 2 0.4004971 0.1979731
15.0 2 0.3976005 0.2356822
15.5 2 0.3947264 0.2356822
16.0 2 0.3918743 0.0000000
16.5 2 0.3890442 0.0000000
17.0 2 0.3862357 0.0000000
17.5 2 0.3834485 0.0000000
18.0 2 0.3806825 0.0000000
18.5 2 0.3779373 0.0000000
19.0 2 0.3752129 0.0000000
19.5 2 0.3725088 0.0000000
20.0 2 0.3698251 0.0000000
20.5 2 0.3671613 0.0000000
21.0 2 0.3645174 0.0000000
21.5 2 0.3618931 0.0000000
22.0 2 0.3592883 0.0000000
22.5 2 0.3567028 0.0000000
23.0 2 0.3541364 0.0000000
23.5 2 0.3515888 0.0000000
24.0 2 0.3490601 0.0000000
24.5 2 0.3465499 0.0000000
25.0 2 0.3440581 0.0000000
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Figure 2: Markov stability and communities obtained, over Markov time

4.2 Evaluating partitions based on the variation of information

In order to better understand which Markov times are associated with inter-
esting and robust partitions of our example, figure 3 plots Markov time against
the variation of information within ¢ and figure 4 plots the variation of infor-
mation between ¢ as a heatmap. Note that for our example 0 < VI(Hy, Hy) <
4.5538769. As such Variation of information will be considered low enough,
when values fall bellow the 20th percentile of the values VI(H;, Hy) can take,
being 0.9107754. The choice of the 20th percentile and not a lower value is
due to the nature of our example dataset containing many vertices which edges
which connect to very high degree vertices, meaning they are likely to change
community assignment based on which of these high degree neighbours is con-
sidered first in the Louvain optimisation.
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Interesting partitions to further investigate will be those which exist with a
community count that persist for multiple Markov time points and yields the
lowest V Iinin(t) for their community count. A selection of three interesting
partitions has been made to further explore these results, being those with
associated Markov times 3.5, 7 and 16. Markov time 3.5 and 7 were both
chosen as they yield the lowest V Lnin(t) from the partitions they share a
community count with and a community count of 4 and 3 both persist for
multiple Markov time points.

The results displayed in figures 3 and 4 can be used to determine whether robust
partitions of GG were obtained. From figure 4 we are interested in large sections
of 0 or low variation, as this indicates across that section of Markov time
the variations between partitions were low. This would support that a robust
partition was obtained as it continuously resulted in a partition with either
few or no differences in community structure as Markov time varied for that
community count. Interestingly our example does not seem to behave too well,
as the only large section of near zero variation of information occurs towards the
later Markov time span, as the autocovariance matrix likely degrades to point
a of convergence. There are however sections of low variation of information
between t present when looking at the Markov time span for which 3 and 4
communities are consistently obtained.

Considering now the within ¢ variation displayed in figure 3, it is clear to see
that the Louvain method optimised for Markov stability results in quite a few
variations depending on the random initialisation. Based on this measure alone
it would seem as though there is no support for robust partitions present, other
than those obtained towards the end of our Markov time span, resulting in
identical partitions at Markov time 16 with 2 communities. When considering
figures 3 and 4 together, it is evident that interesting partitions do exist for a
reasonable Markov time span, being when 4, and 3 communities are identified
through Markov time spans 2.5-5.5 (the red area in figure 3) and 6-8 (the green
area in figure 3) respectively.

We now plot the area of Figure 4, where with Markov time spans when only 4
communities are present and introduce labels to the value of each sector.
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Figure 5: Variation of information between Markov time points for 4 commu-
nities

In the case of when 4 communities are identified, although the Markov time
span 2.5-5.5 is not long it does persist and the between t variation for consists
of low variation of information block, especially for Markov time 3.5. Inter-
estingly the within ¢ variation lends more support for the robustness of this
partition as its values are lower than the between t values for the partitions
with the same community count. It is worth noting however that ideally our
variation of information values for both within and between ¢ would ideally be
nearer to zero than the 20th percentile. This suggests that although the max-
imal partitions obtained for our example are likely capturing the underlying
structure, the Louvain algorithm optimised for Markov stability may require
more iterations to achieve a near zero V I ;nin(t). The maximal partition ob-
tained at Markov time 3.5 does however still meet our definition of robustness
as all variation measures related to the time point and its community count
are below 0.9107754.

We now plot the area of Figure 4, where with Markov time spans when only 3
communities are present and introduce labels to the value of each sector.
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Figure 6: Variation of information between Markov time points for 3 commu-
nities

When 3 communities are obtained, they can persist for a greater amount of
Markov time than the partitions of 4 communities and have the inverse when
considering which variation measures lend their support to the robustness of a
partition, as the between ¢ variation block holds values lower than the within
t variation. The maximal partition obtained at Markov time 7 does however
still meet our definition of robustness as all variation measures related to the
time point and its community count are below 0.9107754.

Finally, we consider when only 2 communities are obtained and again make use
of figures 3 and 4 to determine whether the chosen partition obtained at Markov
time 16 is robust. We obtain partitions with 2 communities in the Markov
time range 8.5-25 (the blue area in figure 3), giving us the most persistent
community count. From figure 3 we can see that although for about half of the
Markov time span there is variation between the within ¢ partitions obtained,
however, this quickly decreases when the autocovariance matrix degrades to
point of convergence, resulting in no variation within ¢. However, from figure
4, we can see that the maximal partition obtained across the entire time span
always results in the same partition due to the block of zero between t variation.
This time span has much clearer support for defining an important feature of
the underlying structure of our example and definitely meets our definition of
robustness.
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As such the partitions obtained at time points 3.5, 7 and 16 do all have evidence
to support that they describe important underlying structural features of our
example.

The partitions obtained for these Markov time points are shown in figures 7,
8 and 9, again with vertices sized to the degree of the vertex. Communities of
these resulting partitions are marked by colouring vertices the same if they fall
within the same community. Edges are then highlighted red if they start and
end in different communities and are otherwise black.
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Figure 7: Our example network with the partition obtained at Markov time
3.5
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4.3 Evaluating partitions based on the flow of communities across
Markov time

To assess the flow of our community detection cross Markov time figure 10
shows a Sankey diagram depicting the flow of proteins being assigned their

communities across t. Table 2 shows the underlying data used to create figure
10.

Time 3.5 Group 1 Time 7 Group 2

. Time 3.5 Group 4 Time 16 Group 1

Time 7 Group 3
Time 3.5 Group 3

I Time 3.5 Group 2 Time 7 Group 1 Time 16 Group 2

Figure 10: Flow of community construction over Markov time

Table 2: Flow of community construction over Markov

time
source target value IDsource IDtarget
Time 3.5 Group 2 Time 7 Group 1 23 0 6
Time 3.5 Group 1 Time 7 Group 2 25 1 4
Time 3.5 Group 4 Time 7 Group 2 1 2 4
Time 3.5 Group 1 Time 7 Group 3 4 1 5
Time 3.5 Group 3 Time 7 Group 3 28 3 5)
Time 3.5 Group 4 Time 7 Group 3 14 2 5t
Time 7 Group 2 Time 16 Group 1 26 4 7
Time 7 Group 3 Time 16 Group 1 46 5 7
Time 7 Group 1 Time 16 Group 2 23 6 8

Given these specific Markov times explored above, we can now consider the
Sankey diagram constructed in figure 10 and its corresponding table 2. Con-
sidering the flow of protein community assignment from left to right, it is
clear to see that there is quite a consistent community assignment between
the partitions obtained at Markov times 3.5 and 7, as only 5 proteins do not
follow their original community members in merging into larger communities.
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A large majority of proteins stay within their previous community members,
indicating that the flow is good between Markov time points 3.5 and 7. For
the Markov times 7 and 16, no proteins disconnect from their previous com-
munities” members signifying that both partitions obtained at Markov times 7
and 16 are consistent in their community assignment. Having quite consistent
community assignment between our varying Markov time points signifies that
the partitions obtained are reflective of the underlying structure of our exam-
ple. Considering the whole flow, it is clear that the community which defines
group 2 at Markov time 16 is intrinsic to the structure of our example, as no
proteins leave that community nor does the community merge to create any
new ones over the whole Markov time flow. As such it is likely that at least
one protein hub exists within that group and it is keeping all of its connected
proteins together. Since there was also little shift between communities at any
given time it is likely that at least one hub also exists within groups 2 and 3 at
Markov time 7.

Now considering the proteins which broke away from their previous community
members at least once, it is of interest to consider the degree and weighted
degree of these proteins. The non-weighted and weighted degree distribution
of these proteins is in table 3.

Table 3: Weighted and non-weighted degree distribution
of the escaped proteins

proteins weighted.degree degree
APC escaped proteins 3.907 4
AXIN2  escaped proteins 4.893 5
AXIN1  escaped proteins 4.871 5
TCFT7TL1 escaped proteins 2.857 3
NF1 escaped proteins 3.839 4

Table 4 provides the weighted and non-weighted degree distribution of our
example network.

Table 4: Weighted and non-weighted degree distribution
of our network

Weighted.degree degree

Min. 0.97900  1.00000
Ist Qu. 3.91400  4.00000
Median 7.81600  8.00000
Mean 10.24389 10.42105
3rd Qu. 16.10150  16.50000
Max. 28.30300 29.00000

Comparing table 3 and table 4, we see all of the escaping proteins have a low
degree and weighted degree when compared to the other proteins present in the
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network. It, therefore, makes sense that they are more likely to shift between
communities as Markov time increases since they contribute very little to the
local structure they are a part of and so aren’t strongly associated with any
particular community around them.

4.4 Identified protein hubs and their behaviour

To evaluate the presence of hubs figure 11 plots the relative subgraph connectiv-
ity for our protein-protein interaction network and table 5 gives the associated
data table for the first 25 vertices added.

1.0 -

0.6 — =

measured connectivity

0.4 — -

T T T T T T
0 20 40 60 80

vertices in subgraph

Figure 11: Relative subgraph connectivity of our network
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Table 5: Relative subgraph connectivity of our network
of the first 25 vertices

vertices added count connectivity components count vertices added

1 1.0000000 1 TP53

2 0.5000000 2 CTNNB1

3 0.3333333 3 SNIP1

4 0.5000000 3 SNRPD3

) 0.6000000 3 PHF5A

6 0.6666667 3 SF3A2

7 0.7142857 3 SNRPB2

8 0.7500000 3 SNRPA1

9 0.7777778 3 SNRPD1
10 0.8000000 3 SNRPG
11 0.8181818 3 SNRPF
12 0.8333333 3 SF3B4
13 0.8461538 3 SF3B1
14 0.8571429 3 SF3A1
15 0.8666667 3 LSM7
16 1.0000000 1 EP300
17 1.0000000 1 LSMS8
18 1.0000000 1 PRPF6
19 1.0000000 1 LSM3
20 1.0000000 1 BUDI13
21 1.0000000 1 MFAP1
22 1.0000000 1 PIK3CA
23 1.0000000 1 TXNL4A
24 1.0000000 1 SNRPA
25 1.0000000 1 KRAS

Based on the findings of the flow of proteins across Markov time, we will now
consider the measure of relative subgraph connectivity to investigate protein
hubs within our example which are shown in figure 11 and table 5. As EP300 is
added to the subgraph, the subgraph returns to becoming one connected com-
ponent as the measured connectivity of the subgraph has returned to 1. This
indicates that any hubs that may be identified by this method were introduced
to the graph before the 16th vertex was added. Looking toward the start of the
process we can see that clearly TP53, CTNNB1 and SNIP1 are important to
the structure of our example since every added protein after those three does
not result in a fourth component being created. However considering figure 1,
SNIP1 doesn’t seem to have a much higher degree than its interacting proteins
as they all interact with each other. Due to this only TP53 and CTNNB1
can be considered as protein hubs, since SNIP1 and its interactions are just
very heavily interconnected and so form an integral part of the structure of our
example. Considering the community in which SNIP1 is in, it is of interest to
examine the weighted and non-weighted degree distribution of this community.
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The non-weighted and weighted degree distributions of this community is as
follows,

Table 6: Weighted and non-weighted degree distribution
of the constant community

Weighted.degree degree

Min. 12.82500 13.00000
Ist Qu. 18.76150 19.00000
Median 20.84300 21.00000
Mean 19.93013 20.13043
3rd Qu. 21.92450 22.00000
Max. 22.49800  23.00000

Comparing table 6 to table 4, we see that range of degrees within this commu-
nity is much higher than that of the average of the network. This highly con-
nected community is likely a result of the construction of our example within
STRING, as many interactions of SF3B1 were introduced and the majority
were also interactions with one another.

When considering enrichment information for this community, we obtain the
following results when we only look for enrichment where our false discovery
rate (FDR) is less than 0.05, the strength, associated with the enrichment term
annotation is greater than or equal to 1.5 and at least 12 of the 23 proteins are
associated with the enrichment term.

Table 7: Enrichment terms of community Time 16 Group 2 of strength >= 1.5, FDR <=
0.05 and with at least 12 matched proteins

enrichment enrichment term matched
category ID enrichment term proteins
COMPARTMENTS GOCC:0005681 Spliceosomal complex 23
COMPARTMENTS GOCC:0005684 U2-type spliceosomal complex 21
COMPARTMENTS GOCC:0071005 U2-type precatalytic spliceosome 19
COMPARTMENTS GOCC:0071013 Catalytic step 2 spliceosome 12
COMPARTMENTS GOCC:0097525 Spliceosomal snrnp complex 18
GO Component G0O:0005684 U2-type spliceosomal complex 21
GO Component GO:0071005 U2-type precatalytic spliceosome 19
GO Component GO0:0071013 Catalytic step 2 spliceosome 13
GO Component GO:0097525 Spliceosomal snrnp complex 17
KEGG hsa03040 Spliceosome 20
STRING clusters CL:1688 U2-type spliceosomal complex, and mRNA cis splicing, via 22
spliceosome

STRING clusters CL:1690 U2-type precatalytic spliceosome, and Ul snRNP 21
STRING clusters CL:1692 U2-type precatalytic spliceosome 19
UniProt KW-0747 Spliceosome 22
Keywords

The strength is a measure of the enrichment effect of the annotation, as it is
the 10g10(Gezpected/ Qobserved) WheETe Gegpectea is the number of proteins within the
network that are annotated with the given term and aopserveq i the expected
of proteins to have that annotation in a random network for the same size.
From the enrichment table 7 it is clear to see why this is such a strong com-
munity since all of the proteins within the community are associated with the
spliceosomal complex and otherwise more than half of the community has a
more accurately annotated role with the complex.
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We will now examine the flow which our hubs undertook as communities were
merged between Markov time scales compared to the flow shown in figure 10.
The flow of those two protein hubs is captured in table 8.

Table 8: Community flow of CTNNBI1 and TP53

proteins  group markov_ time
CTNNB1 Time 3.5 Group 1 3.5
CTNNB1 Time 7 Group 2 7.0
CTNNB1 Time 16 Group 1 16.0
TP53 Time 3.5 Group 3 3.5
TP53 Time 7 Group 3 7.0
TP53 Time 16 Group 1 16.0

When comparing table 8 to figure 10, it is clear to see that although CTNNB1
and TP53 did merge into a single community, they did manage to create their
separate communities at Markov time points 3.5 and 7. CTNNBI is part of
community Time 3.5 Group 1 and Time 7 Group 2 and TP53 is part of com-
munity Time 3.5 Group 3 and Time 7 Group 3. Interestingly this then shows
that hubs underpin the expected structure, for our example, when transitioning
across Markov times, except for community Time 3.5 Group 4 and persisting
community related to SNIP1 which has already been discussed. The highest
degree vertex within community Time 3.5 Group 4 is potentially also a hub
and so it is of interest to understand the degree distribution of this community.

Table 9: Weighted and non-weighted degree distribution
of the community Time 3.5 Group 4

Weighted.degree degree

Min. 1.9980  2.000000
1st Qu. 4.3430  4.500000
Median 4.9660  5.000000
Mean 6.3876  6.533333
3rd Qu. 8.7380  9.000000
Max. 12.8990 13.000000

Comparing table 9 the table 5, we see that NEDDS, SKP2 and RBX1 have the
highest degrees within that community and so due to their interaction with
each other it is likely they exert enough influence on each other and their other
interaction proteins to create their community, however, none of them is likely
a hub.

The fact that protein hubs have shaped our example’s results based on topo-
logical structure highlights how difficult it is for analysis methods to lead to
novel results and in this case we only have 3 out of the total 95 nodes as hubs.
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From the earlier discussed research [4], it is clear that the effect Hubs have on
the topology of a graph makes it difficult to have these methods result in novelty
as it relates to disease markers since they generally avoid hubs. Considering the
generally accepted hypotheses discussed, it is not a surprise that this network
converges to 2 communities fairly quickly and as all of these Proteins already
share a common association with Cancer and the constant communities have a
high overlap of tissue. The previously conducted research also further supports
that a likely disease-varied network would be of use to investigate with these
methods. However, since pathways are expected to mimic molecular pathways
for those in disease-related interactomes, studying one larger disease network
which focuses on just one or a few connected diseases could lead to actionable
molecular pathways. The inability of the multiscale community detection frame-
work to result in consistent communities for the Proteins on the fringes of our
network, suggest that this method may not be useful when trying to explore
novel disease pathways, as hubs influence the topology of any Protein-Protein
interaction network greatly.

From the earlier discussed research, [19], the value of trying to understand how
a method applies to a certain interactome dataset lies in large datasets which
have previously been studied so that the empirical evidence of others can be
used to assess whether the communities obtained are of significance. However
similar to this paper in this context we have been able to see both local features
and global features of the dataset, although the range from which structural
features exist between feature states, a larger set will likely yield grander build-
ups from building blocks.
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5.0 Conclusion

We have applied an implementation of multiscale community detection to an
example protein-protein interaction network to assess whether we can obtain
robust partitions across scales. This research serves as comparison to those
preforming similar research around the application of methods which make use
of the graph based representations of Protein-Protein interaction networks in
order to investigate if the underlying graph structure can be used to gleam non-
obvious protein relations through the interactions of the proteins they share
communities with. We showed that multiscale community detection is a valid
avenue for this kind of research as we were able to see how the underlying
structure of the network evolved at different scales and how the intrinsic prop-
erties of Protein-Protein interaction networks can undermine efforts to gleam
novel structural insights. Considering here epecially the impact that the three
protein hubs identified have on the overall structure of the graph, the parti-
tions obtained clearly have their community assignment influenced, as distinct
hubs avoided merging into common communities during the increasing Markov
time and we still managed to have separate hubs in the final 2 communities.
This research also supports Markov stability as a sensible objective function
which allows methods to introduce a resolution parameter to a graph parti-
tioning problem, especially given its capability to converge within a reasonable
amount of steps. This study would likely have benefited from investigating
more examples of similar interactomes to allow for a comparison of these find-
ings. As for future avenues of research, a example Protein-Protein interaction
network where a known distinction between the proteins exist, so that it may
be assessed how these methods preform at correctly assigning communities to
the know labels. Other research may also want to investigate the use of other
partitioning algorithms which do not rely upon as heavily on a random initial-
isation step, in order to remove the need of multiple unused partitions being
computed as well as introduce a hopefully more powerful measure related to
the algorithm to assess robustness at each ¢, rather than the average within ¢
variation. This research has shown Multiscale community detection through
the use of Markov Stability can generate interesting results when applied to
Protein-Protein interaction networks and so this forms a basis which could be
used for further avenues of research in either the same or different interactomes,
which would hopefully reveal an actionable pattern.
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