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Abstract

The methods studied in this thesis are motivated by problems in the field

of computer experiments, which involves the statistical analysis of com-

puter codes (or computer simulators) implementing mathematical models

that represent an underlying real-world process. Examples of complex real-

world applications considered in this thesis are from epidemiology, hydrol-

ogy, aerodynamics, and petroleum engineering.

Gaussian Processes (GPs) are flexible probabilistic models used in a va-

riety of settings, such as regression, classification, and optimization. We

have focused on their application in computer experiments, where they are

mostly used as an emulator (or surrogate model) to approximate and even-

tually replace complex and expensive simulators.

The power of GPs comes from their ability to excell in small data and

low-dimensional regime, being able to return accurate approximations of

the simulator, together with calibrated predictive uncertainties. However,

for simulators with high-dimensional inputs, they suffer from the curse of

dimensionality, i.e., an exponential number of samples (with respect to the

input dimensionality) is needed for accurate emulation. Fortunately, many

simulators used in practice exhibit a low-dimensional structure that can be

exploited by dimension reduction methods.

This thesis is concerned with how to best find and exploit this low di-

mensional structure when building GP emulators. We have focused on the

(widespread) case where there exists a linear subspace, and tried to find the

optimal projection onto this space. Many methods exist for finding the op-

timal projection, including Principal Component Analysis (PCA), Sufficient

Dimension Reduction (SDR), and Active Subspaces (AS). We present a thor-

ough comparison between all these methods in the context of GP emulation,

as well as providing links between them and advice on which methods are
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likely to work well in each situation. We have considered a variety of real-

world simulators, from areas such such as aerodynamics and epidemiology.

Furthermore, we have also focused on GP emulation and dimension re-

duction for Bayesian inverse problems. For inverse problems, i.e., finding x

that solves y = f (x) + ϵnoise, where y is a collection of noisy measurements

(observations) and f is our simulator function, we do not need to approx-

imate f globally, but only in some regions. Two successful algorithms for

Bayesian inversion (i.e, finding p(x|y) for some prior p(x)) are Randomized

Maximum Likelihood (RML) and Ensemble Kalman Inversion (EKI).

RML consists of optimizing a number of highly correlated objective func-

tions that depend on the same simulator function. In this regard, we de-

velop a high-dimensional Bayesian optimization (HD-BO) approach to solve

the RML problem based on GPs with dimension reduction via random em-

beddings. By sharing data between the different objective functions (i.e.,

using the common simulator evaluations {xi, f (xi)}Ntrain
i=1 shared by the GP

training sets for all the objectives), we are able to implement RML at a

greatly reduced computational cost compared to existing methods, allow-

ing us to efficiently sample from the posterior distribution p(x|y) of the

Bayesian inverse problem. We demonstrate the benefits of this approach in

comparison to alternative optimization methods on a variety of real-world

problems, including medical and fluid dynamics applications.

EKI are a family of (particle-based) methods which try to recover the

unknown parameter in the classical inverse problem sense (i.e., x which

generated the observations via y = f (x) + ϵnoise), although they are mo-

tivated from a Bayesian perspective as an iterative update from the prior

distribution p(x) towards the posterior p(x|y). Firstly, we have investigated

a new parametrization for the initial particles sampled from the prior dis-

tribution, which was not previously considered for EKI. Secondly, we have

proposed a potential improvement regarding the selection of (GP) training

points {xi, f (xi)}Ntrain
i=1 for GP emulation within EKI. We demonstrate the

benefits of our methodology on a groundwater modelling inverse problem.
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1
I N T R O D U C T I O N

The methods studied in this thesis are motivated by problems in the field

of computer experiments [139], which involves the statistical analysis of

computer codes implementing mathematical models that represent an un-

derlying real-world process. Examples of complex real-world applications

considered in this thesis are from epidemiology [44, 105], hydrology [68],

aerodynamics [107], and petroleum engineering [46]. Many of these appli-

cations use partial differential equations (PDEs) as mathematical models;

see [48] for a theoretical introduction, and [97] for an introduction to com-

putational methods and their implementation.

1.1 inverse problems

Our main area is on inverse problems, where the goal is to recover some

unknown parameters linked to a collection of observed measurements; the

book [162] contains a comprehensive introduction, with both theoretical re-

sults and numerical methods. Usually, the measurements are a collection of

real values, which we denote by D ∈ Rm, such as spatio-temporal observa-

tions of water flow rates in a geological field [68]. The unknown parameters

are usually denoted by x ∈ RD, and can correspond to the unknown spatial

permeability values at D locations in the aforementioned geological field.

7



1.2 bayesian inverse problems 8

Typically, the link between x and D is represented via a Gaussian genera-

tive model (or a Gaussian likelihood)

D|x ∼ Nm( f (x), Σobs),

where f (x) : RD → Rm is called the simulator or the computer code; as dis-

cussed in the previous paragraph, f (x) is often the computational model

for the deterministic solution to a PDE modelling an underlying real-world

process (e.g., the physical law between permeabilities and water flow val-

ues). The covariance matrix Σobs describes the modelling and observational

errors, which are commonly assumed to be uncorrelated and homoscedas-

tic (Σobs = σ2 Im). The inverse problems monograph for petroleum engi-

neering [125] states that the observational errors are usually larger than the

modelling errors in practical applications, although in other areas such as

climate modelling [138] or cosmology [176], the modelling errors might be

especially problematic.

1.2 bayesian inverse problems

We focus on Bayesian inverse problems (also known as Bayesian calibration),

where the goal is to sample from the posterior distribution

p(x|D) =
p(D|x)p(x)

p(D)
(Bayes’ rule)

of the unknown parameters x ∈ RD given the observed data D ∈ Rm. The

work [162] contains a comprehensive survey from a theoretical perspective,

and gives references to various practical applications. Note that the parame-

ter space can be potentially infinite dimensional, e.g., a function of location

x : [0, 1]2 → R in case of a 2D geostatistical application [86], but Bayes’ rule

(or Bayes’ theorem) can be adapted to functional spaces [41].

The distribution p(D) is known as the marginal likelihood or the model

evidence, and it is never computed in this work. The prior distribution

p(x) is a probabilistic representation of our prior uncertainty about the un-

known parameters, and is often approximated as a Uniform or Gaussian
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distribution. While this might seem like a restrictive assumption, note that

even if both the prior and the likelihood p(D|x) are Gaussian, the posterior

is non-Gaussian unless the simulator function f (x) is linear; the proof for

this result is standard, and it can be found for example in the collection of

lecture notes [140]. We only consider non-linear simulators in this work,

although linear Bayesian inverse problems is also an active area of research

(see [51] for a theoretical monograph, and [165] for a recent gravimetrical

application).

Going back to our goal of sampling from the posterior distribution, we

outline three families of methods that are used throughout the thesis. Firstly,

Markov Chain Monte Carlo (MCMC) methods, where a Markov chain is

simulated such that the samples generated are asymptotically exact draws

from the posterior distribution; see [137] for a comprehensive introduction

on computational methods, and [114] for a standard book on theoretical

foundations.

Secondly, the Randomized Maximum Likelihood (RML) algorithm, which

was introduced by [124] as an approximate posterior sampling methodol-

ogy. The procedure is usually formulated for the case when both the prior

and the likelihood are Gaussian; RML proceeds by first perturbing the data

Dn ∼ Nm(D, Σobs) and the prior mean µn ∼ ND(µ, Σ), followed by maxi-

mizing the resulting un-normalized log-posterior density

On(x) := logNm( f (x)|Dn, Σobs) + logND(x|µn, Σ) (1)

with respect to these perturbations. The resulting solution x⋆n = arg maxx On(x)

is an approximate sample from the posterior distribution; the sample is an

exact draw from the posterior only when the simulator f (x) is linear, as

discussed in the seminal paper [124]. Nonetheless, the RML samples have

shown good practical performance in petroleum engineering applications

with various non-linear simulators [55, 104, 161]. For recent methodological

advances that improve the accuracy of the RML samples with respect to the

true posterior for highly nonlinear simulators, see [10, 123, 7].
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Finally, we mention the particle-based Ensemble Kalman Inversion (EKI)

algorithms. While these methods try to recover the unknown parameter

in the classical inverse problem sense (i.e., xtrue which generated the obser-

vations via D ∼ Nm( f (xtrue), Σobs)), they are motivated from a Bayesian

perspective as an iterative Kalman filter type update from the prior distribu-

tion towards the posterior [87, 82]. See [140] for an introduction to Kalman

filter methods and for a vanilla version of the EKI algorithm, [82] for a re-

cent survey of new EKI versions, and [87] for a recent application in material

sciences. An alternative line of work targets the full posterior distribution

p(x|D) in a methodology known as the Ensemble Kalman Sampler (EKS)

[57], together with its alternative version [60] and the recent improvements

presented in [136].

1.3 computational challenges

To successfully apply these methods, often requires a large amount of com-

putation. As exemplified in the methods comparison paper for posterior

sampling in petroleum engineering [46], the number of simulator evalua-

tions f (x) required is as follows: ∝ 106 in case of MCMC, ∝ 104 is case of

RML, and ∝ 103 in case of EKI, respectively. These numbers can be pro-

hibitively large in practical applications such as climate models, where a

standard computer can take several days to produce a single simulator eval-

uation f (x) [81]. Nonetheless, the smaller number of simulations required

in comparison with MCMC and RML makes EKI a very popular choice in

practice. Apart from the areas of application mentioned already, EKI has

been successfully used in medical imaging [82] and petroleum engineering

[83].

One way in which MCMC and RML can potentially be accelerated is by

using gradient evaluations of the simulator. One popular gradient-based

MCMC method is Hamiltonian Monte Carlo (HMC), where the Markov

chain evolves according to Hamiltonian dynamics. This method is often
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employed when the dimensionality of x ∈ RD is high; see [14] for an intro-

duction, and [89] for a recent application in Machine Learning, where pos-

terior sampling of the parameter space in very high-dimensional Bayesian

(Artificial) Neural Network models was achieved. RML can benefit from the

famous gradient-descent optimization algorithm, or the Limited-Memory

BFGS (L-BFGS) algorithm [102], which is a quasi-Newton method that uses

estimates of the inverse Hessian (second derivative). L-BFGS was used for

RML in the petroleum engineering experiments from [76]. However, gradi-

ent information is often unavailable for many simulators used in practice;

although automatic differentiation methods are being developed [183, 110],

many institutions may lack resources to re-write complex computer codes.

As a result, we focus on gradient-free methods throughout this thesis.

1.4 gaussian process (gp) emulation

Another way in which we can accelerate MCMC, RML and EKI is to replace

the simulator (or in certain cases, the likelihood or the log-likelihood [93])

by a computationally inexpensive approximation known as an emulator,

surrogate model, or meta-model; we will use the term ‘emulator’ for the

rest of the thesis. The emulators will be simple enough to enable them to

be queried ∝ 106 times in reasonable computational time, as often required

for certain MCMC approaches.

While models that explicitly encode knowledge about the mathematical

model of the simulator f (x) when building an emulator are increasingly

popular (e.g. the physics-informed (artificial) neural networks [133]), we

have chosen a standard black-box approach, i.e. we only require access to

N simulator evaluations {xi, f (xi)}N
i=1 in order to build our emulator, and

we do not (explicitly) exploit the intrinsic structure of f (x).

Most of the thesis is devoted to the study of Gaussian Process (GPs) em-

ulation models; for the seminal work on using GP emulators for computer

simulators, see [94]. Occasionally, we will also discuss (artificial) neural net-
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work (NN) models; see [191] for the use of NN emulators in a geological

application. Our main motivation is that GPs have been successfully used

to accelerate MCMC [35], RML [78], and EKI [91]. Apart from these three

inversion methods considered in the thesis, both GPs and NNs have been

successfully used in various alternative procedures for solving Bayesian in-

verse problems (see [174, 138] for GPs, and [5, 73, 149] for NNs).

The goal of GP emulators is to provide a good probabilistic prediction

for the unknown value f (x∗) given a new input x∗, which lays outside the

set {xi, f (xi)}N
i=1 that was used to build the emulator (also known as the

training set). The probabilistic prediction is in the form of a Gaussian dis-

tribution Nm( fGP(x∗), σ2
GP(x∗)), where fGP(x∗) is our prediction for f (x∗),

and σ2
GP(x∗) represents the predictive uncertainty (in other words, the un-

certainty about our approximation fGP(x∗) ≈ f (x∗)). The textbook [135]

contains a comprehensive introduction, which also includes the use of GP

approximations in Machine Learning applications. Note that the output

dimensionality m ( f (x) ∈ Rm) can raise additional challenges for GP emu-

lators, as the correlation between different outputs can be difficult to model;

see [17] for a standard multi-output GP approach, and [138, 190] for re-

cent methodologies designed for high-dimensional outputs. In this work,

we avoid these considerations by either looking at simulators with a one-

dimensional output ( f (x) ∈ R), emulating the log-likelihood instead of

the simulator (logNm( f (x)|D, Σobs) ∈ R), or by simply treating all out-

puts as independent (and thus building m standard GP emulators with a

one-dimensional output).

The training points {xi, f (xi)}N
i=1 are usually selected via a random de-

sign (i.e. the inputs xi ∼ p(x) are sampled independently at random from

the prior), or by using a space-filling design such as a Latin hypercube [139];

both of these are examples of fixed design methods. A different approach is

to use a goal-oriented design for solving Bayesian inverse problems. In this

context, the selection of training points is guided towards the high-posterior

density regions, as we want out emulator to be particularly accurate in those
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regions. Indeed, the work [160] shows that a goal-oriented design that tar-

gets simulator queries {xi, f (xi)}N
i=1 from the high-posterior density regions

leads to a more accurate approximation of the log-likelihood compared with

a Latin hypercube design. Alternative goal-oriented designs for Bayesian

inverse problems can be found in [93, 170, 3]. We will use both fixed and

goal-oriented designs throughout the thesis.

1.5 high-dimensional gp emulators and dimension reduction

GP emulators belong to the family of nonparametric regression methods,

where an approximation fGP(x) ≈ f (x) built from {xi, f (xi)}N
i=1 is desired,

without assuming a parametric form for fGP(x); see [172] for a standard

textbook on nonparametric statistical methods. GPs depend on a collection

of hyperparameters; these can be fixed to some arbitrary values, but are

usually estimated using the training data.

From a theoretical perspective, GPs (as any other nonparametric regres-

sion method) are known to suffer from the so called ‘curse of dimension-

ality’. This typically means that the number of training points required

for an accurate approximation of the simulator function f : RD → Rm

increases exponentially with the input dimension D [158]. Note that in

practice the situation is even more difficult; typically, we estimate the GP

hyperparameters via a high-dimensional non-convex optimization problem.

As demonstrated in [56, 151], the landscape of the optimization problem can

also be multi-modal. This can potentially lead to selecting unsatisfactory hy-

perparameter values; indeed, [96] shows that the predictive uncertainty is

underestimated in various numerical experiments. There are certain cases

in which the curse of dimensionality can be theoretically alleviated. For ex-

ample, when the input distribution p(x) lies close to or exactly on a lower

dimensional manifold, as discussed in [182, 77, 66]; these GP models will

not be considered in the thesis.
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Fortunately, as [31] pointed out, many simulators (or log-likelihoods)

used in Bayesian inverse problems have a latent low-dimensional linear

structure, i.e.

f (x) ≈ g(ATx) (2)

for some low-dimensional link function g : Rd → Rm with d ≪ D, and

A ∈ RD×d is a semi-orthogonal matrix (i.e., AT A = Id) which gives the

linear low-dimensional structure. There are various ways in which such a

structure can be discovered, using the family of methods known as likeli-

hood informed subspaces (see [38] for a recent survey). In this work, we

will outline one particular method known as active subspaces (AS), which

was introduced together with a GP emulation approach ( f (x) ≈ fGP(ATx))

in [30]. Since then, active subspaces have been successfully used as a di-

mension reduction tool for GP emulation in many applications such as geo-

physics [108], engineering [134], COVID-19 models [181], and Ebola spread

modelling [127].

The standard approach for constructing the active subspace is to use gra-

dient evaluations of the simulator [30]. As mentioned in Section 1.3, we

focus on gradient-free methods in this work, and thus we often consider the

GP emulation performance with the active subspace method as a ‘gold stan-

dard’, which is used to benchmark the performance of alternative (gradient-

free) dimension reduction methods; this approach was also pursued in [103].

We will consider various gradient-free methods which can be used to esti-

mate the latent low-dimensional linear structure in (2), such as Sufficient Di-

mension Reduction (SDR); see [103] for a comparison between different SDR

methods for GP emulation, which include the classical Sliced Inverse Regres-

sion (SIR) algorithm [101] and the modern gradient kernel dimension reduc-

tion (gKDR) algorithm [54]. Another approach considered is the family of

embedding learning methods, which try to estimate the low-dimensional

linear structure A together with the rest of GP hyperparameters during

training, in order to achieve f (x) ≈ fGP(ATx) [169, 62, 166, 144, 134, 63].
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The methods presented above are supervised dimension reduction approaches,

in the sense that they require simulator evaluations { f (xi)}N
i=1, or gradients

of the simulator {∇ f (xi)}M
i=1 in the case of active subspaces. We will also

consider an alternative family of methods known as unsupervised dimension

reduction; these methods do not require access to the simulator in order

to perform dimension reduction, and thus are particularly desirable for ex-

pensive simulators. The most popular unsupervised dimension reduction

method is Principal Component Analysis (PCA), which only uses the prior

covariance Cov[X ∼ p(x)] and is discussed at length in the dimension reduc-

tion monograph [18]. In the case of a Gaussian prior p(x) ∼ ND(µ, Σ), given

that the eigenvalues of Σ decay sufficiently fast and that f (x) is Lipschitz

continuous, [184] proves that the matrix A ∈ RD×d selected by PCA satisfies

the property (2), for some low-dimensional link function g : Rd → R with

d ≪ D. Another unsupervised option is to use random low-dimensional lin-

ear projections of the inputs; [43] shows that one such method can be useful

for GP emulation when the direct approach of using a high-dimensional GP

emulator fails.

1.6 our contribution

In Chapter 2, we will formally introduce GP emulators, together with the

dimension reduction methods PCA and AS. Also, we will present a case

study based on an Elliptic PDE simulator, which was used to demonstrate

the clear benefits of AS methods for GP emulation when an active subspace

exists and can be found [30], as well as the potential advantages of PCA

in comparison with the baseline high-dimensional GP emulator (with no di-

mension reduction) [103]. In addition to the existing results, we will present

a collection of new experiments, where we discover a new direction of study

on the advantages of PCA for GP emulation versus the high-dimensional

baseline.
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In Chapter 3, we will introduce the additional supervised and unsuper-

vised dimension reduction methods considered in this thesis, such as suffi-

cient dimension reduction (SDR) and various random projections. While we

include some theoretical properties, the main goal of this chapter is to study

the performance of these methods on a variety of synthetic and real-world

simulators, from areas such such as aerodynamics [107] and epidemiology

[105].

In Chapter 4, we will formally introduce Bayesian inverse problems, while

focusing on the emulation based solution of replacing the log-likelihood

with a GP emulator. We provide an embedding learning approach of ex-

ploiting the active subspace structure for log-likelihoods, coupled with an

MCMC procedure for solving the resulting Bayesian inverse problems; this

procedure is adapted from [31]. We present very promising results on a

quadratic toy model, as well as on a more challenging high-dimensional

Elliptic PDE.

In Chapter 5, we develop a high-dimensional Bayesian optimization (HD-

BO) approach for approximate posterior sampling via Randomized Maxi-

mum Likelihood (RML). We will include a thorough introduction for both

HD-BO and RML. By sharing data between the different objective functions

(1), we are able to implement RML at a greatly reduced computational

cost compared to existing methods. We demonstrate the benefits of this

approach in comparison to alternative (gradient-free) optimization meth-

ods on a variety of synthetic and real-world problems, including medical

[44, 105] and fluid dynamics applications [71]. Furthermore, we show that

the samples produced by our method cover well the high-posterior density

regions in all of the experiments.

In Chapter 6, we will introduce the Ensemble Kalman Inversion frame-

work (EKI). We have developed an EKI approach based on a (Bayesian)

Neural Network parametrization of Gaussian random field priors for spa-

tial maps of parameters x : [0, 1]2 → R [143]. For this parametrization, we

present results on a two-phase (oil-water) Darcy flow simulator regarding
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permeability inversion in petroleum engineering [46, 83]. Furthermore, we

have investigated the performance of GP emulators within EKI by adapting

a new goal-oriented design from History Matching [59], which is another

area of inverse problems methods [175, 168]. In a groundwater modelling

application, we show that our approach provides significant improvements

over the existing methodology [91], which is based on a random design.

Finally, in Chapter 7, we present the final conclusions for every chapter,

together with various directions for future work.
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G A U S S I A N P R O C E S S E S A N D D I M E N S I O N R E D U C T I O N -

I N T R O D U C T I O N A N D N E W R E S U LT S O N A N E L L I P T I C

P D E C A S E S T U D Y

The purpose of this chapter is twofold. Firstly, it contains an introduction

to Gaussian Processes (GPs), Principal Component Analysis (PCA), and Ac-

tive Subspaces (AS); these notions are central for the remaining chapters of

the thesis. Secondly, we present a case study, which was used to investi-

gate these methods in the existing literature [30, 103]. We complement the

existing results with our new findings.

2.1 gaussian processes

As discussed in Chapter 1, Gaussian Processes (GPs) are used through-

out the thesis in the context of Bayesian inverse problems, where they re-

place a potentially expensive computer simulator f : RD → Rm or the

log-likelihood L(x) := log p(D|x) = logNm(D| f (x), Σobs) ∈ R.

Definition 2.1 ([135], Definition 2.1) A Gaussian Process fGP(x) is a collection

of random variables such that for any finite number N and any inputs {xn}N
n=1, the

random variables { fGP(xn)}N
n=1 have a joint Gaussian distribution. The process is

completely specified by its mean function m(x) := E[ fGP(x)] and its covariance

function k(x, x′) := Cov[ fGP(x), fGP(x′)], and is usually written as fGP(x) ∼

GP(m(x), k(x, x′)).

18
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For each output [ f (x)]j of the simulator f (x) := ([ f (x)]1, . . . , [ f (x)]m)T,

where [ f (x)]j : RD → R, we assign a Gaussian Process prior

[ fGP(x)]j ∼ GP(mj(x), k j(x, x′)) (3)

to encode our prior beliefs about the regularity of [ f (x)]j. Ideally, samples

g(x) ∼ [ fGP(x)]j (g(x) : RD → R) from this GP prior will have similar

properties to [ f (x)]j; examples of such regularity proprieties are continuity,

smoothness, and periodicity. See Algorithm 1 in [92] for a concrete algo-

rithm for producing GP prior samples. Conditioned on the training data

Xj := {xi, [ f (xi)]j}N
i=1, the posterior [ fGP(x)]j|Xj is still a Gaussian Process,

which represents our posterior beliefs about the simulator [ f (x)]j across the

entire input domain RD. According to Theorem 3.3 in [92]:

[ fGP(x)]j|Xj ∼ GP(m̄j(x), k̄ j(x, x′)),

with the posterior mean m̄j(x) and covariance function k̄ j(x, x′) given by

m̄j(x) = m(x) + kxXk−1
XX(Yj − mX),

k̄ j(x, x′) = k(x, x′)− kxXk−1
XXkXx′ ,

where Yj := ([ f (x1)]j, . . . , [ f (xN)]j)
T denotes the training outputs and mX :=

(mj(x1), . . . , mj(xN))
T is the prior mean evaluated at the training inputs;

kXX is an N × N matrix with elements (k(xi, xj))
N
i=1,j=1, which represents

the (symmetric) covariance function evaluated at the training inputs X :=

{xi}N
i=1, whereas kxX = kT

Xx := (k(x, x1), . . . , k(x, xN))
T is the covariance

function evaluated at any input x and the training inputs X.

Given a new location x⋆ outside the training set, the GP posterior distri-

bution N (m̄j(x⋆), k̄ j(x⋆, x⋆)) can be quickly computed and represents our

fast probabilistic prediction for the expensive simulator evaluation [ f (x⋆)]j.

Namely, the predictive mean m̄j(x⋆) is our approximation for [ f (x⋆)]j, whereas

the predictive standard deviation
√

k̄ j(x⋆, x⋆) quantifies the uncertainty as-

sociated with this approximation. By performing this prediction, we avoid

the computational burden of evaluating [ f (x⋆)]j. Note that for large training
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sets N ≥ 104 (not considered in this thesis), efficient methods for approxi-

mating m̄j(x⋆) [177, 178] and k̄ j(x⋆, x⋆) [131] have been recently developed.

Throughout the thesis, the prior mean function m(x) will always have a

simple structure such as linear m(x) = Ax + b or constant m(x) = C. The

covariance function (also known as the kernel function) will always be the

standard squared-exponential (or the Radial Basis Function (RBF) kernel)

k j(x, x′) : = Cov[[ fGP(x)]j, [ fGP(x′)]j]

= σ2 exp
(
− ||x − x′||22

2l2

)
, (4)

where ||x − x′||22 :=
D
∑

i=1
(xi − x′i)

2, the hyperparameter σ2 is the signal vari-

ance, and l > 0 is the lengthscale hyperparameter. Note that the correlation

between points only depends on the distance ||x − x′||2/l. Roughly speak-

ing, the lengthscale l models how fast [ f (x)]j varies with x, with σ2 mod-

elling the amplitude of these variations; if l is small, we expect a potentially

large difference in the corresponding outputs [ f (x)]j and [ f (x′)]j for nearby

points x and x′, whereas a large value of l corresponds to a slow variation

between [ f (x)]j and [ f (x′)]j for two distant points x and x′. The covariance

function (4) also encodes an infinitely differentiable smoothness assumption

for [ f (x)]j, i.e. the samples g(x) ∼ [ fGP(x)]j are infinitely differentiable.

It is important to mention that we make these choices for
(
m(x), k j(x, x′)

)
for the ease of exposition and comparison. Nonetheless, the methods pre-

sented in this thesis are not specific to these choices, and we could easily

use other kernels and mean functions. See Chapter 4 in [135] for alternative

covariance functions such as the Matérn family (which encode various de-

grees of smoothness), non-stationary covariance functions (e.g. where the

lengthscale hyperparameter varies with x), or periodic covariance functions

(which can be combined with non-periodic covariance functions in order to

capture different trends in [ f (x)]j). Regarding the prior mean, a quadratic

function was preferred in various works [30, 174].
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In this work, the hyperparameters θC := {C, σ, l} (for a constant prior

mean m(x) = C) or θA,b := {A, b, σ, l} (for a linear prior mean m(x) =

Ax + b) are selected by maximizing the marginal likelihood

p(Yj|θ) ∼ N (Yj|mX, kXX), (5)

which is the probability density function (PDF) of the Gaussian distribu-

tion N (mX, kXX) evaluated at the observed outputs Yj := {[ f (xi)]j}N
i=1. As

defined previously, X := {xi}N
i=1 are the training locations, mX is the prior

mean evaluated at X, and kXX is the prior covariance matrix (k(xi, xj))
N
i=1,j=1.

This approach is known as type II maximum likelihood (ML-II); we will dis-

cuss alternative methods for selecting the hyperparameters towards the end

of this section. For simplicity, we write θ to represent both θC and θA,b,

while later in the thesis we will specify separately the prior mean structure

considered. To expand on (5), we need to maximize

log p(Yj|θ) = −1
2
(Yj − mX)

TK−1
XX(Yj − mX)−

1
2

log det(KXX)−
n
2

log 2π

(6)

with respect to θ, where the log marginal likelihood is preferred for numer-

ical optimization. As discussed in Chapter 1, the optimization landscape (6)

is a non-convex function of θ, and thus we need to resort to local optimiza-

tion methods in order to find an approximate maximizer θMLE. The most

common solution is to use gradient-based optimization methods such as

the standard gradient descent algorithm, or the Limited-Memory BFGS (L-

BFGS) algorithm [102], which is a quasi-Newton method that uses estimates

of the inverse Hessian (second derivative) of (6); both of these algorithms

will be employed throughout the thesis. The gradients of (6) with respect

to the kernel hyperparameters σ and l can be found in the equation (5.9) of

[135]:

∂ log p(Yj|θ)
∂θi

=
1
2
(Yj − mX)

TK−1
XX

∂KXX

∂θi
K−1

XX(Yj − mX)−
1
2

tr(K−1
XX

∂KXX

∂θi
)

(7)

=
1
2

tr
(
(ααT − K−1

XX)
∂KXX

∂θi

)
,
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where θi ∈ {σ, l}, α := K−1
XXYj, tr(·) is the trace of a square matrix (i.e. the

sum of the elements on the main diagonal, which is from the upper left to

the lower right), and ∂KXX
∂θi

is the matrix of elementwise derivatives. In or-

der to derive (7) from (6), the matrix identities ∂K−1
XX

∂θi
= −K−1

XX
∂KXX

∂θi
K−1

XX and
∂

∂θi
log det(KXX) = tr(K−1

XX
∂KXX

∂θi
) for the (invertible) positive definite symm-

metric matrix KXX were used (see Appendix A.3.1 of [135]).

The unknown hyperparameters θ can also be treated as latent random

variables, by assigning a (prior) probability distribution θ ∼ p(θ). Given

the posterior distribution p(θ|Yj) according to the marginal likelihood (5),

the latent variables can be integrated out, in order to obtain the predictive

distribution for some unknown value [ f (x⋆)]j. This predictive distribution

is different from the standard GP posterior N (m̄j(x⋆), k̄ j(x⋆, x⋆)) obtained

using the fixed set of hyperparameters θMLE which (approximately) maxi-

mize the log marginal likelihood. Indeed, the predictive distribution in the

latent variable case is non-Gaussian, unless we fix θMAP to be the maximum

a posteriori (MAP) estimate θMAP = arg maxθ p(θ|Yj). The full posterior

distribution p(θ|Yj) cannot be analytically computed, although there exists

conjugate priors for the prior mean and signal variance hyperparameters

[122]. We thus need to resort to sampling methods [56, 58, 151], or alter-

native methods such as variational inference. In the latter case, p(θ|Yj) is

replaced by its best approximation from a parametric family of distributions

(e.g. Gaussian [96]), or the non-parametric approximation provided by the

Stein variational gradient descent (SVGD) method [129]. While computa-

tionally more demanding, latent variable approaches have shown improved

performance compared with the ML-II procedure in various numerical ex-

periments [58, 96, 151], particularly with regard to better calibrated predic-

tive uncertainties.

Another alternative for selecting the GP hyperparameters θ is via cross-

validation; see Chapter 5 in [135] for a thorough introduction. In the case of

leave-one-out cross-validation (LOO-CV), we write X−i
j := Xj\{xi, [ f (xi)]j}
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for the training set obtained by removing the observation {xi, [ f (xi)]j}. The

goal is to maximize the average predictive log probability

1
N

N

∑
i=1

logN ([ f (xi)]j|m̄−i
j (xi), k̄−i

j (xi, xi)) (8)

with respect to θ, where N (m̄−i
j (xi), k̄−i

j (xi, xi)) is the predictive distribution

for [ f (xi)]j corresponding to the GP posterior [ fGP(x)]j|X−i
j . The objective

function (8) is also known as the log-pseudo likelihood. The work [9] shows

that LOO-CV outperforms ML-II in various numerical experiments, where

the prior assumptions encoded by the covariance function k j(x, x′) are mis-

specified for [ f (x)]j. For a recent consideration of multiple-fold cross vali-

dation, in which multiple observations are removed form the training set,

see [69].

2.2 principal component analysis (pca)

Principal Component Analysis (PCA) is a dimension reduction method

which dates back to the beginning of the 20th century [128], and since then

it has been employed in numerous statistical and engineering applications.

For examples where PCA has been used to reduce the input dimensionality

in case of GP emulation, see [15, 103, 163].

Let us consider a high dimensional random vector x ∼ pD(x), with the co-

variance matrix written as Cov[x] ∈ RD×D. Since Cov[x] is symmetric posi-

tive semidefinite, we can write its eigendecomposition as Cov[x] := UΛUT,

where all its eigenvalues λ1 ≥ · · · ≥ λD ≥ 0 are non-negative real numbers,

and the corresponding eigenvectors U := [u1, . . . , uD] are orthonormal. In

order to reduce dimensionality from D to any d ≤ D, PCA extracts the d

eigenvectors of Cov[x] corresponding to the largest d eigenvalues. We write

UPCA := [u1, . . . , ud] ∈ RD×d for the resulting dimension reduction matrix,

whose columns are the eigenvectors mentioned above. In some cases, the

covariance matrix is not available analytically, and we only have access to

samples {xi}N
i=1 ∼ pD(x). In this context, PCA uses the empirical covari-
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ance matrix in the same way, i.e. by extracting the d dominant eigenvectors.

We can write the emprical covariance matrix as 1
N ZZT (or 1

(N−1)ZZT for an

unbiased estimate of the covariance), where Z := [z1, . . . , zN] ∈ RD×N and

zi = xi − 1
N ∑N

i=1 xi for i ∈ {1, . . . , N}. In case of a Gaussian distribution

x ∼ ND(µ, Σ), we can arrange the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λD ≥ 0 of

the covariance matrix Σ in non-increasing order, and define the amount of

variance that is captured by the first j eigenvalues using the corresponding

cumulative ratio, namely Ej := ∑
j
i=1 λi

∑D
i=1 λi

. Consequently, one popular choice for

the low dimensionality d is the lowest value d ≤ D such that Ed ≥ δ, where

δ is a user-defined threshold [15, 28]. In other words, the first d eigenvalues

explain at least 100δ percent of the prior variance. Indeed, using the eigen-

decomposition Σ = UΛUT, the total prior variance is ∑D
i=1 λi, according to

the covariance matrix of UTx ∼ ND(UTµ, diag(λ1, . . . , λD)); consequently,

the variance explained by PCA is ∑d
i=1 λi, according to the covariance matrix

of UT
PCAx ∼ Nd(UT

PCAµ, diag(λ1, . . . , λd)). The work [15] selects a threshold

δ = 0.98 for a GP emulation experiment, where the high-dimensionality

D = 312 was reduced to d = 12 in a petroleum engineering application.

While we focus on Gaussian prior distributions x ∼ ND(µ, Σ) in this work,

the same principle applies for any empirical sample {xi}N
i=1 ∼ pD(x) from

a potentially non-Gaussian distribution pD(x); indeed, we can apply the

same arguments to the eigendecomposition 1
N ZZT = Ûdiag(λ̂1, . . . , λ̂D)ÛT

of the empirical covariance matrix.

The main advantages of PCA can be summarized by the following re-

sults, which are discussed in great detail in [18]. Firstly, PCA extracts the d

directions in which the projected data UT
PCAx has maximum variance; it also

produces uncorrelated new variables z = UT
PCAx ∈ Rd. Secondly, PCA is

useful not only in terms of dimension reduction, but also in terms of recon-

structing x from UT
PCAx. Indeed, in the empirical case where only samples

{xi}N
i=1 ∼ pD(x) are available, UPCA provides the optimal reconstruction er-

ror x̃i := UPCAUT
PCA(xi − µ̃) + µ̃ ≈ xi (µ̃ := 1

N ∑N
i=1 xi) in terms of minimum

squared error ∑N
i=1 ||x̃i − xi||2 over d−dimensional linear maps, according
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to the Eckart–Young-Mirsky theorem. Finally, in case of a Gaussian distri-

bution x ∼ ND(µ, Σ), UPCA maximizes the mutual information between x

and z = UT
PCAx over the space of d−dimensional orthogonal projections; the

mutual information is the same as the differential entropy for this Gaussian

case, and it can be written as H(y) = 1
2 log2(e(2π)d) + 1

2 log2 det(Cov[y]),

where y := UT
PCA(x − µ).

PCA will also be useful when we encounter prior distributions p(x) in

the form of Gaussian Random Fields (GRFs), whose samples x ∼ p(x) will

be a function of location in two-dimensions, e.g. x(s) : [0, 1]2 → R. We can

express x(s) in terms of standard independent Gaussian random variables

zi ∼ N (0, 1) via

x(s) = µ +
∞

∑
i=1

√
λiui(s)zi, (9)

where µ, {λi}∞
i=1, and {ui(s)}∞

i=1 are the mean, eigenvalues, and eigenfunc-

tions, respectively, of the GRF. The eigenvalues and eigenfunctions are de-

fined according to the covariance function of the GRF:∫
Cov[x(s), x(t)]ui(s)ds = λiui(s).

According to the Mercer’s theorem, we can write the covariance function as

the infinite sum Cov[x(s), x(t)] = ∑∞
i=1 λiui(s)ui(t).

The representation (9) is known as the Karhunen-Loève decomposition;

in our computer experiments, we will use a finite-dimensional (truncated)

version of the Karhunen-Loève decomposition for GRFs, together with a

D−dimensional discretization of [0, 1]2 (x ∈ RD):

x = µ +
Q

∑
i=1

√
λiuizi, (10)

which corresponds to a Gaussian prior distribution p(x) ∼ ND(µ, Σ). The

prior covariance Σ can be decomposed as UΛUT, where U := [u1, . . . , uQ] ∈

RD×Q is the matrix of eigenvectors and Λ := diag(λ1, . . . , λQ) ∈ RQ×Q is

the diagonal matrix of corresponding eigenvalues λ1 ≥ · · · ≥ λQ ≥ 0.
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Using the decomposition (10), we can simply extract UPCA = [u1, ..., ud] ∈

RD×d and write the PCA reconstruction x̃ := UPCAUT
PCA(x − µ) + µ ≈ x

corresponding to the dimension reduction UT
PCAx as:

x̃ = µ +
d

∑
i=1

√
λiuizi. (11)

The resulting covariance matrix of x̃ ∼ ND(µ, Σd) is Σd := UPCAΛPCAUT
PCA,

with ΛPCA := diag(λ1, . . . , λd) ∈ Rd×d. According to the Eckart–Young-

Mirsky theorem, Σd is the best rank d approximation of the full covariance

matrix Σ in the Frobenius distance ||Σ−Σd||F :=
√

∑D
i=1 ∑D

j=1 |(Σ)ij − (Σd)ij|2,

or the 2-norm distance, which can be written in terms of the largest eigen-

value as

||Σ − Σd||2 :=
√

λmax((Σ − Σd)T(Σ − Σd)).

As mentioned in Section 1.5, our goal is to use PCA for GP emulation,

in order to break the curse of dimensionality that might occur when us-

ing the high-dimensional emulator with no dimension reduction (3), i.e.

[gGP(x)]j : RD → R for every output [ f (x)]j of the simulator f (x) :=

([ f (x)]1, . . . , [ f (x)]m)T. One option is to use UPCA ∈ RD×d to build the

d−dimensional Gaussian Process emulator

[gGP(UT
PCAx)]j ∼ GP(mj(UT

PCAx), k j(UT
PCAx, UT

PCAx′)). (12)

Another option is provided by the decomposition (11), where we can use

z := (z1, . . . , zd)
T ∈ Rd as inputs for our GP:

[gGP(z)]j ∼ GP(mj(z), k j(z, z′)); (13)

we can write the training sets as {UT
PCAxi, [ f (xi)]j}N

i=1 in the former case (12),

and {zi, [ f (x̃i)]j}N
i=1 in the latter case (13), where x̃i := µ + ∑d

k=1
√

λkuk(zi)k

are the reconstructions from (11). One advantage of the former construction

is that given a collection of test inputs {x⋆i }
Ntest
i=1 , we can return our fast prob-

abilistic approximations for the expensive simulator via [gGP(UT
PCAx⋆i )]j ≈

[ f (x⋆i )]j. However, one advantage of the latter construction is that due to
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the lower-dimensionality zi ∈ Rd compared with xi ∈ RD, it might be

easier to construct the training set, for example via a maximin latin hyper-

cube design [163]. Indeed, we are mostly interested in using GP emula-

tors [gGP(z)]j for Bayesian inverse problems, where we can easily use x̃ :=

µ + ∑d
k=1

√
λkuk(z)k to transform posterior samples z := [(z)1, . . . , (z)d]

T ∼

p(z|D) into high-dimensional posterior samples p(x̃|D). Note, however,

that this approach can lead to problems in various inversion applications,

as outlined for PCA applied to the output space f (x) ∈ Rm in [138].

We expect that the performance of the GP emulator will depend on the

rate of decay of the eigenvalues of Cov[x]. Indeed, given that [ f (x)]j is

Lipschitz continuous (i.e. there exists L ≥ 0 such that |[ f (x)]j − [ f (y)]j| ≤

L||x − y||2 for all x, y ∈ RD), [184] proves that if the eigenvalues of Cov[x]

decay sufficiently fast (see Equation 3.3 in [184]), then there exists a function

g : Rd → R such that [ f (x)]j ≈ g(UT
PCAx) with arbitrary accuracy ϵ, for

d = d(ϵ) ≪ D as a monotone decreasing function of ϵ.

2.3 active subspaces

As discussed in Section 1.5, Active Subspaces (AS) are a popular dimension

reduction method for GP emulation. We will first introduce the standard

gradient-based approach for constructing an active subspace, followed by a

discussion about various gradient-free attempts which do not need access

to the gradient ∇ f (x) of the simulator function.

For every simulator output [ f (x)]j, we consider the expected outer prod-

uct of the gradient ∇[ f (x)]j with respect to the prior distribution p(x):

W =
∫

∇[ f (x)]j∇[ f (x)]Tj p(x)dx. (14)

To outline some limitations of using W, for Bayesian inverse problems

we can modify (14) by replacing the prior distribution p(x) with an ap-

proximation p̃(x|D) of the posterior distribution p(x|D), in a methodology

known as likelihood informed subspaces [37]. Although not considered in
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our work, this approach can lead to better results in various Bayesian in-

verse problems applications [185]. Furthermore, we could also treat all the

outputs f (x) = ([ f (x)]1, . . . , [ f (x)]m)T jointly by using the recently devel-

oped multi-output active subspace methodology [184].

The AS method constructs the dimension reduction matrix WAS := [w1, . . . , wd] ∈

RD×d by extracting the (orthonormal) eigenvectors w1, . . . , wd correspond-

ing to the largest d eigenvalues λ1 ≥ · · · ≥ λd ≥ 0 of the symmetric positive

semidefinite matrix W (14). This approach is motivated by the existence

of a low-dimensional approximation [ f (x)]j ≈ g(WT
ASx), which satisfies the

following error bound (Theorem 3.1, [30]):( ∫ (
[ f (x)]j − g(WT

ASx)
)2p(x)dx

)1/2
≤ C(λd+1 + · · ·+ λD)

1/2, (15)

where λd+1 ≥ · · · ≥ λD are the trailing eigenvalues of W (λd+1 ≤ λd), and

C is a constant that depends on p(x); in particular, C = 1 if p(x) ∼ ND(0, I),

as it can be seen from the proof of Theorem 3.1 in [30] and Corollary 3.2 in

[23]. Note that if λd+1 = · · · = λD = 0, then the approximation becomes

exact, as [ f (x)]j = g(WT
ASx) (almost surely with respect to p(x)).

In practice, the integral (14) is usually analytically intractable, and thus

we need to replace it by the Monte Carlo approximation

Ŵ =
1
M

M

∑
m=1

∇[ f (xm)]j∇[ f (xm)]
T
j (16)

for independent samples xm ∼ p(x) (see [28] for a discussion about the

practical choice M = αd log(D) for 2 ≤ α ≤ 10 (Equation 4.1 [28]), which is

motivated by the log(D) term in the upper bound for ||W − Ŵ||2 (Corollary

3.6 [28])). In this case, the AS matrix becomes ŴAS := [ŵ1, . . . , ŵd], again

obtained by extracting the d eigenvectors corresponding to the largest eigen-

values λ̂1 ≥ · · · ≥ λ̂d ≥ 0 of Ŵ. Theorem 3.6 in [30] shows that we can find

a different low-dimensional function ĝ : Rd → R with the following error

bound on the approximation [ f (x)]j ≈ ĝ(ŴT
ASx):∫

([ f (x)]j − ĝ(ŴT
ASx))2p(x)dx≤ C

(
1 +

1
M

)(
ϵ
( d

∑
i=1

λi
)1/2

+
( D

∑
i=d+1

λi
)1/2

)2
,

(17)
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where ϵ := ||WASWT
AS − ŴASŴT

AS||2 is the estimated subspace error in the

matrix 2-norm distance. The estimated subspace error ϵ is an important

factor for choosing the low-dimensionality d in active subspace applications;

indeed, Corollary 3.7 in [28] shows that for a standard choice of M (e.g.

M ∝ log(D), as discussed above),

ϵ ≤ 4λ1 min(1, (λd − λd+1)/(5λ1))

λd − λd+1
(18)

with high probability, which indicates that ϵ is small when there is a large

gap λd − λd+1 between the dth largest eigenvalue of W and the next smaller

one. As a result, we choose d to be the smallest positive integer d ≤ D for

which there is a large gap λ̂d − λ̂d+1 between the corresponding eigenvalues

of Ŵ (e.g. λ̂d is at least one order of magnitude larger than λ̂d+1), under

the constraint that the trailing eigenvalues (∑D
i=d+1 λ̂i)

1/2 are small, so that

a low-dimensional approximation ĝ(ŴT
ASx) : Rd → R of [ f (x)]j exists ac-

cording to (17). See Corollary 3.3 in [28] for theoretical guarantees on the

quality of the approximation {λ̂i}D
i=1 for {λi}D

i=1.

The approximation ĝ(ŴT
ASx) uses the simulator function [ f (x)]j and thus

it will not be considered in this work; instead, we will use GP emulators

as low-dimensional approximations, built from training sets of the form

{ŴT
ASxi, [ f (xi)]j}N

i=1. However, we note that a much smaller number of simu-

lator evaluations were needed to perform Bayesian inversion with ĝ instead

of [ f (x)]j in the Markov Chain Monte Carlo (MCMC) procedure from [31].

We will also consider this setting in Chapter 4, but through the perspective

of GP emulators.

The first use of ŴT
ASx ∈ Rd as dimension reduction for GP emulators

[gGP(ŴT
ASx)]j ∼ GP(mj(ŴT

ASx), k j(ŴT
ASx, ŴT

ASx′)) (19)

with training sets of the form {ŴT
ASxi, [ f (xi)]j}N

i=1 appears in the seminal

work [30], where it was shown that this procedure can provide a better ap-

proximation for [ f (x)]j compared to the standard GP baseline (3) with high-

dimensional training inputs {xi}N
i=1 and same training outputs {[ f (xi)]j}N

i=1.
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The computer experiment that involves an Elliptic Partial Differential Equa-

tion (PDE) simulator was also considered in [103], and will be revisited later

in this chapter. Given that gradients of the simulator ∇[ f (x)]j might be un-

available in practice, the work [166] uses the GP training set {xi, [ f (xi)]j}N
i=1

and replaces ŴAS with the embedding ŴGP ∈ RD×d that approximately

maximizes the marginal likelihood (5) for

[gGP(WT
GPx)]j ∼ GP(mj(WT

GPx), k j(WT
GPx, WT

GPx′)) (20)

with respect to WGP, i.e. by treating the dimension reduction matrix WGP as

an additional GP hyperparameter.

This approach has a long history in the Gaussian Process literature, which

precedes the introduction of AS; the theoretical connection with AS was re-

cently established by [181], and will be discussed shortly. The first attempt

to treat the dimension reduction matrix WGP as an additional GP hyperpa-

rameter is due to [169], where the embedding ŴGP is also learned together

with the rest of GP hyperparameters by maximizing the marginal likelihood

(5) for the GP (20). This approach has been extended to sparse GPs [154],

sparse GPs with latent (probabilistic) hyperameters [164], and learning the

embedding via active learning [62]. In the latter method, the training set

{xi, [ f (xi)]j}N
i=1 is constructed iteratively, such that every xn is selected ac-

cording to some criterion for improving the accuracy of the current estimate

Ŵ(n)
GP . Sparse GPs are methods designed for training sets with a large num-

ber of observations and are not considered in this thesis, since we focus on

applications of small or medium size. Note that all GPs of the form (20) that

treat the dimension reduction matrix WGP as an additional GP hyperparam-

eter use {xi, [ f (xi)]j}N
i=1 as training sets.

The novelty in [166] compared with the traditional approach from [169]

comes from the additional orthonormality constraint ŴT
GPŴGP = Id. In

other words, the maximization of the marginal likelihood (5) for the GP (20)

with respect to WGP is performed over the space of semi-orthogonal matri-

ces {B ∈ RD×d : BTB = Id} known as the Stiefel manifold; this mimics
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the orthonormal nature of the eigenvectors that form the (gradient-based)

active subspace matrix ŴAS (ŴT
ASŴAS = Id). The resulting embedding ŴGP

proved to be a good match for the gradient-based ŴAS in a series of com-

puter experiments, while the predictive uncertainty of the resulting GP was

further improved by a latent variable treatment of the semi-orthogonal em-

bedding WGP, coupled with an orthogonal-MCMC method that samples

from the posterior distribution p(WGP|{xi, [ f (xi)]j}N
i=1) over the Stiefel man-

ifold [63]. Alternatively, [134] suggests optimizing WGP over the set of

d−dimensional subspaces of RD (also known as the Grassman manifold);

in this way, we preserve the orthonormality constraint, while preventing

the search over different orthonormal bases for the same subspace.

However, none of these works pointed out a theoretical connection be-

tween the gradient-based active subspace ŴAS and the orthonormal embed-

dings ŴGP that approximately maximize the marginal likelihood. In this

regard, [181] shown that under the assumption that the simulator [ f (x)]j

is a sample from the GP prior (20), the Monte Carlo estimator Ŵ from (16)

is a method-of-moments estimator for σ2

l2 WGPWT
GP, regardless of whether

WGP is an orthonormal embedding [166, 134] or a traditional unstructured

embedding [169]; recall from (4) that σ2 is the signal variance and l is the

lengthscale hyperparameter of the squared-exponential GP covariance func-

tion k j(WT
GPx, WT

GPx′). Indeed, Corollary 1 in [181] shows that

EGP

[ 1
M

M

∑
m=1

∇[gGP(WT
GPxm)]j∇[gGP(WT

GPxm)]
T
j

]
=

σ2

l2 WGPWT
GP

for any sample {xm}M
m=1. Note that Ŵ = 1

M ∑M
m=1 ∇[ f (xm)]j∇[ f (xm)]Tj for

[ f (x)]j ∼ GP is simply a one-sample estimator for this expectation. In con-

clusion, by maximizing the marginal likelihood, we might be able to recover

a good approximation to the gradient-based active subspace estimator ŴAS

(i.e. the dominant d eigenvectors of Ŵ) regardless of the constraints used

for WGP, such as orthonormality or unstructured (no constraints).

We mention two additional orthonormal parmetrizations for WGP in (20).

Firstly, sufficient dimension reduction (SDR) methods [103], which have
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been originally proposed for recovering A ∈ RD×d in the case where there

exists this exact low-dimensional linear structure f (x) = g(ATx) [72]. SDR

methods will be discussed in detail in Chapter 3. Secondly, the Gaussian

ridge functions methodology [144], where ŴGP minimizes a GP predic-

tion error over the Stiefel manifold on a separate test set {x⋆n}
Ntest
n=1 , rather

than maximizing the marginal likelihood on the training set. This method

showed improved predictive performance compared with some alternative

SDR methods on a real-world turbomachinery experiment [144]. While this

approach is very interesting, in some applications we might not have ac-

cess to enough budget to split the data {xn, [ f (xn)]j}
Nbudget
n=1 in order to learn

both the embedding ŴGP (test data) and the rest of the GP hyperparameters

(training data).

Finally, we mention [181], which shows that the active subspace can be

estimated directly from a high-dimensional GP (3). While this result is

important from both theoretical and practical point of view, it has been

shown that this method can fall short in practice when the high-dimensional

GP cannot accurately approximate the simulator function [ f (x)]j, and it was

outperformed by various GP approaches with dimension reduction (20) and

orthonormal paramterizations [63, 134].

2.4 elliptic partial differential equation (pde) case study

Following the computer experiments from [30, 103], we investigated the

comparison between the predictive performance of GP emulators with PCA

dimension reduction (12), active subspace (AS) dimension reduction (19),

and the high-dimensional GP baseline with no dimension reduction (4), re-

spectively. The computer experiments involve GP emulation of an elliptic

Partial Differential Equation (PDE) solver as the simulator f (x), which is a

standard problem in geostatistical applications such as groundwater mod-

elling [36] and petroleum engineering [78].
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In this work, we treat the elliptic PDE simulator f (x) : RD → R and its

gradient ∇ f (x) : RD → RD from [30, 103] as black-box functions, since

we will only focus on the prior distribution p(x), simulator evaluations

{xi, f (xi)}N
i=1, and gradient evaluations {xi,∇ f (xi)}M

i=1 for xi ∼ p(x). The

evaluations f (x) and ∇ f (x) are performed using the implementation from

[27]. For the precise mathematical formulation of f (x) and ∇ f (x), includ-

ing details about the computational implementation, see Section 5.1 from

[30]. Nonetheless, we mention that x ∈ RD is the input of the simulator.

From x, we generate the PDE (log-)coefficients log ax via (21). The PDE so-

lution corresponding to these coefficients is the function vx(s) : [0, 1]2 → R

that satisfies

−∇s · (ax∇svx) = 1, s ∈ [0, 1]2,

together with homogeneous Dirichlet boundary conditions (i.e, vx(s) ≡ 0)

on the left, top, and bottom of the spatial domain [0, 1]2; the right side of

the spatial domain has a homogeneous Neumann boundary condition (i.e,

∇svx(s) ≡ 0). The resulting simulator output f (x) ∈ R is an approximation

of the average PDE solution 1
|Γ2|

∫
Γ2

vx(s)ds over the right boundary Γ2 of the

domain [0, 1]2, obtained using a numerical PDE solution v̂x(s) : [0, 1]2 → R

with a standard linear finite element method.

The PDE coefficients ax(s) : [0, 1]2 → R usually represent a physical quan-

tity (e.g., permeability in a 2D field encoded as [0, 1]2), which is linked to

the PDE solution vx(s) : [0, 1]2 → R (that represents another physical quan-

tity, e.g., water volume is the 2D field); the PDE models the underlying

physical law. To generate (physically) plausible PDE coefficients ax(s), we

use the parametrization x (which also serves as input for our computer

simulator). The prior distribution p(x) is a standard multivariate Gaussian

x = [x1, . . . , xD]
T ∼ ND(0, I) with D = 100. The PDE coefficients ax on a

discretization B of [0, 1]2 of size |B| (ax ∈ R|B|) are obtained from the stan-
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dard Gaussian random variables xi ∼ N (0, 1) through a finite-dimensional

Karhunen-Loève decomposition, which was introduced in Section 2.2:

log ax =
D

∑
i=1

√
λiuixi. (21)

We will shortly describe the eigenpairs {λi, ui}D
i=1. In this section, we fix

|B| = D × D = 104, according to the implementation [27]. Since the simu-

lator f (x) depends on the eigenpairs {λi, ui}D
i=1, we explicitly include them

as fλ,u(x). The eigenvectors ui ∈ R|B| are the evaluations ui(b) : B → R of

the eigenfunctions ui(s) : [0, 1]2 → R for the infinite-dimensional Karhunen-

Loève decomposition for the Gaussian random field log ax(s) : [0, 1]2 → R:

log ax(s) =
∞

∑
i=1

√
λiui(s)xi, (22)

which is constructed through the extension {λi, ui(s), xi}∞
i=D+1. Following

[30, 103], the eigenpairs {λi, ui(s)}∞
i=1 are chosen so that

Cov[log ax(s), log ax(t)] = exp(−l−1||s − t||1); (23)

this is known as an exponential covariance function with lengthscale l (the

1-norm distance for s, t ∈ R2 is defined as ||s − t||1 := |s1 − t1| + |s2 −

t2|). One analytic construction for {λi, ui(t)}∞
i=1 corresponding to this co-

variance function can be found in Example 1 from [19]. The intuition

for the effect of the lengthscale l has been discussed in Section 2.1 for

squared exponential covariance functions (4) of Gaussian Process priors for

GP emulators; the same intuition applies here. However, samples g(s) :

[0, 1]2 → R corresponding to the covariance function (23) are no longer in-

finitely differentiable (in fact, they are not differentiable). Note that both a

short lengthscale experiment (l = 0.01) and a long lengthscale experiment

(l = 1) are considered in [30, 103]. We write ({λS
i , uS

i }D
i=1, fλS,uS(x)) and

({λL
i , uL

i }D
i=1, fλL,uL(x)) for the eigenpairs and the corresponding simulator

used in the short lengthscale case and the long lengthscale case, respectively.

Recall that one goal was to perform dimension reduction from D to

d ≤ D via AS and PCA; these methods were discussed in Section 2.3
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and 2.2, respectively. Regarding active subspaces, we need to extract the

d eigenvectors corresponding to the largest d eigenvalues of the AS ma-

trix Ŵ = 1
M ∑M

m=1 ∇ fλ,u(xm)∇ fλ,u(xm)T from independent prior samples

xm ∼ ND(0, I). For PCA, we need to extract the d eigenvectors {ui}d
i=1 cor-

responding to the largest eigenvalues {λi}d
i=1. For the same set of inputs

{xi}N
i=1, the GP training sets will be of the form {ŴT

ASxi, f (xi)λ,u}N
i=1 for the

AS method with GP prior (19), and {UT
PCA log axi , f (xi)λ,u}N

i=1 for the PCA

method with GP prior (12). Note that both training sets are generated from

the same collection of independent prior samples {xi}N
i=1 ∼ p(x) and cor-

responding simulator outputs { f (xi)λ,u}N
i=1. DN := {xi, f (xi)λ,u}N

i=1 will be

the training set for the high-dimensional GP baseline with no dimension

reduction (4); we will use the notation NO-DR for this method. We con-

sider a collection of M = 300 Monte Carlo samples to estimate the active

subspace, N = 300 GP training points, and a further N⋆ = 300 test points

as independent prior samples {x⋆i }
N⋆
i=1, which are used to assess the GP per-

formance for approximating fλ,u(x) using the three methods AS, PCA, and

NO-DR. The criterion for method comparison is the normalized predictive

root mean squared error (N-RMSE), which we define using the different GP

posteriors as √√√√ 1
N⋆

N⋆

∑
i=1

(m̄(ŴT
ASx⋆i )− f (x⋆i )λ,u)2/F (AS), (24)

√√√√ 1
N⋆

N⋆

∑
i=1

(m̄(UT
PCA log ax⋆i

)− f (x⋆i )λ,u)2/F (PCA), (25)

√√√√ 1
N⋆

N⋆

∑
i=1

(m̄(x⋆i )− f (x⋆i )λ,u)2/F (NO-DR), (26)

where F := maxi≤N⋆ f (x⋆i )λ,u − mini≤N⋆ f (x⋆i )λ,u is the normalizing factor.

The experimental setup is in line with [103], except that we use a linear

GP prior mean m(x) = Ax + b only in the NO-DR case; for simplicity, we

use a constant prior mean m(UT
PCA log ax) = C1 and m(ŴT

ASx) = C2 for
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PCA and AS, respectively. As discussed in Section 2.1, we optimize the

GP hyperparameters by maximizing the marginal likelihood (5) using the

LBFGS algorithm (NO-DR) or the gradient descent algorithm (AS, PCA).

The conclusions from [30, 103] can be summarized as follows; note that

both AS and PCA use d ≤ 5. The (gradient-based) AS method outperforms

PCA and NO-DR on both cases considered, i.e. short lengthscale fλS,uS(x)

and long lengthscale fλL,uL(x). PCA outperforms NO-DR for fλL,uL(x), whereas

NO-DR significantly outperforms PCA for fλS,uS(x). The poor performance

of PCA on fλS,uS(x) is indicated by the very slow decay of the eigenvalues

(λS
1 ≈ λS

2 ≈ · · · ≈ λS
5 , Table 5.1, [30]), as the first five eigenvalues {λS

i }5
i=1

corresponding to (21) explain only ≈ 6% of the prior variance; we need to

select d = 90 ≈ 100 = D to account for ≈ 92% of the prior variance. The

situation is very different for fλL,uL(x), as the first eigenvalue λL
1 is one order

of mangnitude larger than λL
2 (fast decay), and the five eigenvalues {λL

i }5
i=1

(Table 5.1, [30]) explain ≈ 92% of the prior variance. Note that the eigen-

values {λ̂i}D
i=1 for the active subspace method Ŵ decay very fast for both

fλS,uS(x) and fλL,uL(x), as there is a large gap λ̂1 − λ̂2 for Ŵ in both cases (λ̂1

is at least two orders of magnitude larger than λ̂2), with the trailing eigen-

values {λ̂i}D
i=2 being small (Table 5.1, [30]). Therefore, the choice d = 1 for

AS is in line with the criterion discussed in Section 2.3, whereas the choice

d ≤ 5 for PCA in the long lengthscale experiment fλL,uL(x) is in line with

the criterion from Section 2.2. The superior performance of AS compared to

PCA as a dimension reduction method has also been observed outside the

GP emulation literature; for computer experiments involving elliptic PDE

simulators, see [184] for low-dimensional approximations for multi-output

simulators, and [185] for a Bayesian inverse problem application. Proposi-

tion 3.1 in [184] includes an approximation theoretical result, which shows

that the upper bound for the approximation error (15) achieved by AS in

case of a Gaussian prior distribution p(x) ∼ ND(µ, Σ) is always smaller

than the upper bound achieved by an analogue PCA approximation.
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In this work, we investigate the effect of the magnitude of the eigenvalues

{λi}D
i=1 in (21) with respect to the GP emulation performance for PCA, AS,

and NO-DR. As discussed in Section 2.2, the rate of decay of these eigen-

values or the percentage of variance explained by the first d eigenvalues

{λi}d
i=1 has been considered previously in the literature [15, 184]. Here, we

take a different approach; we keep the rate of decay fixed, while multiplying

the eigenvalues by a constant factor {Kλi}D
i=1.

We motivate our approach through the following experiment. In Table

1, we present the long lengthscale setting from [30, 103]. In the first row,

we use the original eigenpairs {λL
i , uL

i }D
i=1; the results are in line with [103],

as expected. However, if we change the eigenpairs to {1/10 · λL
i , uL

i }D
i=1,

i.e. multiply each eigenvalue by a factor of 1/10, while keeping the rate

of decay and the eigenvectors fixed, NO-DR outperforms PCA (second row,

Table 1). Note that AS is the best performing method at both magnitudes.

Table 1: GP emulation performance via N-RMSE criterion for AS (24), PCA

(25), and NO-DR (26). Both PCA and AS use low-dimensionality

d = 1. Best performing method is shown in bold; second best

performing method is shown in italic.

Eigenpairs (21) AS PCA NO-DR

{λL
i , uL

i }D
i=1 0.01 0.05 0.08

{0.1 · λL
i , uL

i }D
i=1 0.01 0.06 0.04

We validate our observation using an additional set of eigenvalues λF
i :=

100 · i−3 for i ∈ {1, . . . , 100}, which has a faster rate of decay compared

with the original long lengthscale eigenvalues λL (see Figure 1). While we

expect that this will benefit PCA, the benefits for NO-DR are more diffi-

cult to predict. We couple λF with both sets of eigenvectors uS (from the

short lengthscale case) and uL (from the long lengthscale case), and present

the predictive performance in Table 2 and 3, respectively. The conclusions
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Figure 1: Original eigenvalues from the long lengthscale case (λL, blue stars)

versus our proposed faster decay eigenvalues (λF, orange stars).

are in line with the experiment in Table 1; NO-DR outperforms PCA at

smaller magnitudes λF, whereas PCA outperforms NO-DR at the larger

magnitudes 100 · λF. AS is the best performing method in all cases, al-

though it is matched by NO-DR in the smaller magnitudes experiments.

Table 2: GP emulation performance via N-RMSE criterion for AS (24), PCA

(25), and NO-DR (26). Both PCA and AS use low-dimensionality

d = 1. Best performing method is shown in bold; second best

performing method is shown in italic.

Eigenpairs (21) AS PCA NO-DR

{λF
i , uS

i }D
i=1 0.01 0.03 0.01

{100 · λF
i , uS

i }D
i=1 0.02 0.05 0.07

For completeness, we present the (GP) lengthscales resulting from GP em-

ulation (for AS and NO-DR) in Tabs. 4-6. We note that the GP lengthscale is

constant for NO-DR throughout all the experiments; this is because without

dimension reduction, only the hyperparameters corresponding to the linear

GP prior mean are successfully optimized. Instead, with dimension reduc-

tion (i.e., AS), we can also successfully optimize the hyperparameters of the
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Table 3: GP emulation performance via N-RMSE criterion for AS (24), PCA

(25), and NO-DR (26). Both PCA and AS use low-dimensionality

d = 1. Best performing method is shown in bold; second best

performing method is shown in italic.

Eigenpairs (21) AS PCA NO-DR

{λF
i , uL

i }D
i=1 0.01 0.03 0.01

{100 · λF
i , uL

i }D
i=1 0.01 0.05 0.06

covariance function, and thus predict almost perfectly on all the test sets (N-

RMSE close to zero for all the experiments). A large magnitude (≫ 1) for the

GP lengthscale often indicates an unimportant direction; however, the GP

lengthscales resulting from AS do not fall into this category. Furthermore,

the GP lengthscales themselves are not identifiable (only the ratio between

GP lengthscales and outputscales, as seen in Theorem 3 from [188]); in our

AS experiments, the GP outputscale can have a particularly low value (as

low as 10−4), due to the small variance and scale of the outputs.

Table 4: (GP) lengthscales of GP emulation for AS (24) and NO-DR (26).

Eigenpairs (21) AS NO-DR

{λL
i , uL

i }D
i=1 2.808 0.693

{0.1 · λL
i , uL

i }D
i=1 7.186 0.693

To summarize, we have shown that the magnitude of the eigenvalues (21)

is crucial for method comparison, as for a fixed rate of decay, the high-

dimensional GP baseline NO-DR can outperform PCA at smaller magni-

tudes, while the opposite is true at larger magnitudes. We have demon-

strated this for the original long lengthscale experiment {λL
i , uL

i }D
i=1, as well
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Table 5: (GP) lengthscales of GP emulation for AS (24) and NO-DR (26).

Eigenpairs (21) AS NO-DR

{λF
i , uS

i }D
i=1 4.667 0.693

{100 · λF
i , uS

i }D
i=1 4.750 0.693

Table 6: (GP) lengthscales of GP emulation for AS (24) and NO-DR (26).

Eigenpairs (21) AS NO-DR

{λF
i , uL

i }D
i=1 5.053 0.693

{100 · λF
i , uL

i }D
i=1 2.087 0.693

as for a faster decaying set of eigenvalues {λF
i }D

i=1 for both sets of eigen-

vectors {uL
i }D

i=1 and {uS
i }D

i=1 from [30, 103]. While some works only point

out the percentage of the prior variance explained by the first d coefficients

{λi}d
i=1 when using PCA for GP emulation [15], our work outlines the ad-

ditional importance of the magnitude of KL coefficients when considering

PCA as an alternative option to the high-dimensional GP baseline. Finally,

we associate the difficulties of NO-DR at larger magnitudes {Kλi}D
i=1 for

K ∈ {10, 100} with the significantly larger variance in the simulator outputs

fKλ,u(x) due to the larger variance in the PDE coefficients log ax (21).



3
D I M E N S I O N R E D U C T I O N - M E T H O D S C O M PA R I S O N

F O R G A U S S I A N P R O C E S S E M U L AT I O N

While various dimension reduction techniques for Gaussian Process (GP)

emulation have been proposed in the literature, their strengths and weak-

nesses are not yet well understood. Although we will provide some motiva-

tion and introductory theoretical properties, our focus will be on analysing

the performance of these methods on a variety of synthetic and real-world

simulators. Among the families of methods considered are principal com-

ponent analysis (PCA) and sufficient dimension reduction (SDR).

Note that all the simulators considered in this chapter have a one-dimensional

output f (x) : RD → R, and thus we do not need to separately consider each

simulator output [ f (x)]j of f (x) : RD → Rm (j ∈ {1, . . . , m}), as we did in

Chapter 2.

3.1 supervised dimension reduction

As discussed in Section 1.5, supervised dimension reduction methods re-

quire access to simulator evaluations { f (xi)}N
i=1 (gradient-free methods) or

gradient evaluations {∇ f (xi)}M
i=1 (gradient-based methods). Section 2.3 dis-

cusses both families of methods, and provides a detailed introduction of the

gradient-based active subspace method for the GP (19), and the gradient-

free approach of maximizing the marginal likelihood for the GP (20) with

respect to the dimension reduction matrix WGP ∈ RD×d.

41
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3.1.1 Sufficient Dimension Reduction (SDR)

In this section, we will introduce the gradient-free family of methods known

as Sufficient Dimension Reduction (SDR), which is another widely used way

of performing supervised dimension reduction. Chapter 3 in [98] presents a

variety of SDR methods, together with a collection of computer experiments.

SDR has been used for GP emulation in applications such as tsunami mod-

elling [103] and wind turbine modelling [192].

SDR methods involve searching for d−dimensional linear subspaces A ∈

RD×d that manage to explain all the variance in the outputs y = f (x) that

is caused by the inputs x, i.e. y is independent of x given ATx:

y ⊥⊥ x|ATx. (27)

In line with the introduction from [70], if A satisfies (27) we call SDRS :=

colspan(A) a dimension reduction subspace. The central subspace is the

unique subspace of minimum dimensionality (denoted by Sy|x) which is

contained in all other dimension reduction subspaces SDRS:

Sy|x ⊆ SDRS. (28)

Finding the central subspace is the goal of all the SDR algorithms. As

discussed in [65], the central subspace is also known as the effective dimen-

sion reduction space (EDR) space [101], or the effective subspace [53]. SDR

methods have been extensively studied from different points of view. On

one hand, there are a variety of theoretical considerations, such as the con-

ditions that guarantee the existence of the central subspace (Lemma 1 and 2,

[32]) to the theoretical equivalence between sufficient dimension reduction

and ridge recovery (Theorem 2, [72]). Ridge functions are the class of func-

tions f : RD → R for which there exists a low-dimensional link function

g : Rd → R such that y = f (x) = g(ATx) with A ∈ RD×d; ridge recovery

involves recovering the low-dimensional subspace A using f (x). See [109]

for a comprehensive theoretical survey of SDR methods, [130] for a mono-
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graph on ridge functions, and [29] for an application of active subspaces for

ridge functions in the context of fluid dynamics.

On the other hand, SDR methods have been applied in various practi-

cal applications outside GP emulation, which are discussed in the textbook

[100]; we outline magnetohydrodynamics for a simulator f (x) that was also

used in active subspace computer experiments [70], and image classification

for hand-written digits [54]. The latter application outlines another feature

of SDR methods; while we focus here on the setting where data is generated

using a simulator function {xi, yi = f (xi)}N
i=1 for independent (and usually

Gaussian) prior samples xi ∼ p(x), SDR methods are generally applicable

for problems of the form (27) with y = g( f (x), ϵ), i.e. for datasets of the

form {xi, yi = g( f (xi), ϵi)}N
i=1 arising from different prior distributions p(x)

(e.g. samples xi ∼ p(x) belong to the space of natural images), regression

functions f (x), and noise models g(·, ϵ) such as the standard additive noise

model y = g( f (x), ϵ) = f (x) + ϵ for ϵ ∼ N (0, σ2
n).

Sliced Inverse Regression (SIR)

Sliced Inverse Regression (SIR) [101] is one of the oldest and most popular

sufficient dimension reduction algorithms. Adopting the introduction from

[70], we describe SIR by first looking at the D × D inverse regression matrix,

which is the covariance of the RD−valued random vector E[x|y]:

CIR = Cov[E[x|y]]. (29)

Under certain conditions, it is known that colspan(CIR) ⊆ Sy|x, i.e. the in-

verse regression subspace is contained in the central subspace. One such

condition under which the inclusion holds is when p(x) ∼ ND(µ, Σ) (see

Theorem 3.1 in [101]); this is indeed the case in many applications consid-

ered in this thesis.

SIR involves partitioning the output space {yi = f (xi)}N
i=1 as

ymin = ỹ0 < ỹ1 < · · · < ỹR−1 < ỹR = ymax (30)
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for ymin = min1≤i≤N yi and ymax = max1≤i≤N yi. We then map each ob-

served output yi to its corresponding partition [ỹr−1, ỹr] via h(yi) = r. In

this way, we arrive at the sliced inverse regression population matrix

CSIR = Cov[E[x|h(y)]]. (31)

Under the same conditions that are required for colspan(CIR) ⊆ Sy|x to hold,

we have that colspan(CSIR) ⊆ Sh(y)|x also holds. This leads to colspan(CSIR) ⊆

Sh(y)|x ⊆ Sy|x, since for any transformation g(y) : R → R, the resulting cen-

tral subspace is contained in the original one Sg(y)|x ⊆ Sy|x, with equality

holding when g(y) is strictly monotonic [33]. In other words, colspan(CSIR)

is also contained in the central subspace.

After fixing the partitioning (30), the SIR algorithm proceeds by construct-

ing the sample version ĈSIR of the population matrix (31), using the sliced

observations {xi, h(yi)}N
i=1. The sample covariance is usually written as

ĈSIR =
1
N

R

∑
r=1

Nrµ̂rµ̂T
r ,

where Nr is the number of predictors {x(r)i }Nr
i=1 for which the corresponding

outputs y(r)i := f (x(r)i ) belong to the same partition h(y(r)i ) = r, and µ̂r :=
1

Nr
∑Nr

i=1 x(r)i is the sample mean of these predictors. As discussed in [70],

the performance of SIR in practice is relatively insensitive to the number of

slices R; one suggestion for choosing the partitioning (30) is to ensure that

each slice contains approximately the same number of samples, according

to the computer experiments from the original source [101].

The dimension reduction matrix ŴSIR := [ŵ(1)
SIR, . . . , ŵ(d)

SIR] ∈ RD×d is

constructed by selecting the eigenvectors {ŵ(1)
SIR, . . . , ŵ(d)

SIR} corresponding

to the largest eigenvalues λ̂
(1)
SIR ≥ · · · ≥ λ̂

(d)
SIR ≥ 0 of the sample covari-

ance matrix ĈSIR. To motivate this choice, recall that we search for the

central subspace Sy|x. We can write the population covariance matrix CSIR

as CSIR := Wdiag(λ1, . . . , λD)WT, for decreasing eigenvalues λ1 ≥ · · · ≥

λD ≥ 0 and the corresponding orthogonal matrix of eigenvectors W :=



3.1 supervised dimension reduction 45

[w(1)
SIR, . . . , w(D)

SIR] ∈ RD×D. The eigenvectors of CSIR corresponding to non-

zero eigenvalues provide a basis for colspan(CSIR) ⊆ Sy|x. As a result,

if the tail eigenvalues λd+1 ≥ · · · ≥ λD ≥ 0 of CSIR are small, then

Wd := [w(1)
SIR, . . . , w(d)

SIR] ∈ RD×d approximates a basis for colspan(CSIR).

Therefore, SIR selects the d eigenvectors ŴSIR := [ŵ(1)
SIR, . . . , ŵ(d)

SIR] ∈ RD×d

corresponding to the largest d eigenvalues of ĈSIR, based on the following

chain of approximations:

colspan(ŴSIR) ≈ colspan(Wd) ≈ colspan(CSIR) ⊆ Sy|x, (32)

In support of using the trailing eigenvalues λ̂
(d+1)
SIR ≥ · · · ≥ λ̂

(D)
SIR of ĈSIR

to detect when the corresponding eigenvalues λd+1 ≥ · · · ≥ λD of CSIR are

small, Theorem 3.2 in [70] shows that for all e ∈ {1, . . . , D}:

E[(λ̂
(e)
SIR − λe)

2] → 0

as N → ∞ with a fast rate of convergence N−1
rmin

, where Nrmin := min1≤r≤R Nr

denotes the minimum number of samples per slice over all the R slices. The

rate of convergence also supports choosing approximately the same number

of samples in each slice (e.g. Section 6, [101]), as this maximizes Nrmin .

In addition to checking that the trailing eigenvalues {λ̂
(i)
SIR}D

i=d+1 are small,

we can use the gap λ̂
(d)
SIR − λ̂

(d+1)
SIR between consecutive eigenvalues of ĈSIR

to guide the selection of the low-dimensionality d, as Theorem 3.3 in [70]

shows that for sufficiently large N,

||ŴSIRŴT
SIR − WdWT

d ||2 =
1

λd − λd+1
O(N−1/2

rmin
)

with high probability. Note that a similar result was obtained in the context

of active subspaces (18). In conclusion, choosing d such that the gap λ̂
(d)
SIR −

λ̂
(d+1)
SIR is large and the trailing eigenvalues λ̂

(d+1)
SIR ≥ · · · ≥ λ̂

(D)
SIR are small is

likely to be beneficial for small approximation errors in (32).

The first use of ŴT
SIRx ∈ Rd as dimension reduction for GP emulators

gGP(ŴT
SIRx) ∼ GP(m(ŴT

SIRx), k(ŴT
SIRx, ŴT

SIRx′)) (33)
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with training sets of the form {ŴT
SIRxi, f (xi)}N

i=1 appears in [103], for the El-

liptic PDE experiment described in Section 2.4. This approach was shown to

outperform the high-dimensional GP baseline with no dimension reduction

(4) and the GP emulators with PCA dimension reduction (12) on both set-

tings considered (i.e. GRF prior for the PDE coefficients (23) with short and

long lengthscale, respectively). Note that the performance of the SIR-GP (33)

was close to the gradient-based active subspace GP (19). Another recent ap-

plication is on Bayesian Optimization, where a SIR-GP emulator was used to

efficiently maximize the simulator (i.e. using a small number of simulator

evaluations {ŴT
SIRxi, f (xi)}N

i=1 selected by a suitable goal-oriented design)

in computer experiments with input dimensionality up to D ≤ 20000 [189].

We will revisit and formally introduce Bayesian Optimization in Chapter 5.

From a theoretical perspective, classical SDR methods such as SIR may

struggle with non-Gaussian inputs or symmetric simulator functions. In-

deed, a simple example from [18] shows that if x := [x1, . . . , xD] ∈ RD and

x ∼ ND(0, I), then for A := [1, 0, . . . , 0] ∈ RD×1 and a symmetric simulator

y = f (x) := (ATx) = x2
1, we have that E[x1|y] = 0 and thus E[x|y] = 0D, i.e.

SIR is not able to recover the dimension reduction matrix A. More recently,

Kernel Sufficient Dimension Reduction methods (KDR) were introduced to

overcome these limitations; see [53] for the seminal work on this topic.

Gradient Kernel Dimension Reduction (gKDR)

We consider gradient Kernel Dimension Reduction (gKDR) [54] as a state-of-

the-art KDR method, achieving good practical performance, together with

theoretical guarantees. Note that our presentation of gKDR is based on [54]

and [103]; for a fully rigorous mathematical presentation, please consult the

original sources.

To introduce gKDR, we need to start with a very short introduction to

kernel methods; recall that ‘kernel function’ is another term for the covari-

ance functions that are used for GPs, such as the squared-exponential kernel

function (4).



3.1 supervised dimension reduction 47

Definition 3.1 ([92], Definition 2.3) A symmetric function k : RD × RD → R is

called a positive definite kernel (over RD) if for any integer n ≥ 1, (c1, . . . , cn) ⊂ R

and (x1, . . . , xn) ⊂ RD,

n

∑
i=1

n

∑
j=1

cicjk(xi, xj) ≥ 0.

Definition 3.2 ([92], Definition 2.1) Let k be a positive definite kernel on RD.

A Hilbert space Hk of real-valued functions on RD equipped with an inner prod-

uct ⟨·, ·⟩Hk is called a reproducing kernel Hilbert Space (RKHS) with reproducing

kernel k, if the following two conditions are satisfied:

• For every x ∈ RD, we have k(·, x) ∈ Hk;

• For every x ∈ RD and for all f ∈ Hk, we have f (x) = ⟨ f , k(·, x)⟩Hk (the

reproducing property).

According to the Moore-Aronszajn theorem [6], for any positive definite

kernel k(·, ·) : RD × RD → R, there exists a unique associated RKHS Hk.

The function Φ(x) : RD → Hk such that Φ(x) := k(·, x) is known as the

(canonical) feature map. Note that the feature space Hk is often infinite-

dimensional and constructing the feature map can be computationally in-

tractable (e.g. for the squared-exponential kernel function (4) [64]). How-

ever, for kernel methods algorithms (e.g. the classical Support Vector Ma-

chines (SVM) for classification and regression [157]), we are only interested

in the computationally tractable inner product k(x, y) = ⟨k(·, y), k(·, x)⟩Hk ,

which is known as the kernel trick. The inner product ⟨k(·, y), k(·, x)⟩Hk is

often used as a measure of similarity between features of x and y (see Re-

mark 4 in [64]). For a comprehensive introduction to kernel methods, see

the textbooks [141, 147, 157]. These methods have been extensively used in

many areas of Machine Learning and Statistics, such as image classification

[145] and hypothesis testing [74]. The relationship between kernel methods

and Gaussian Processes is studied in the recent work [92].
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Let (x, y) ∈ RD ×R be our random variables that generate the input/output

data {xi, yi = f (xi)}N
i=1 and which further satisfy the SDR condition (27):

y ⊥⊥ x|ATx

for some A ∈ RD×d. Further, let kX and kY be two kernels defined on the

input and output space, respectively, and let HX and HY be their corre-

sponding RKHS. For the purpose of this work, and in line with the gKDR

implementation from the Python package mogp_emulator [1] that we use,

both kernels are the standard RBF kernel (or the squared-exponential co-

variance function) (4) with signal variance σ2 = 1 and lengthscale l > 0.

Note that the lengthscale can be different between the two kernels kX and

kY .

Similar to the definition of the usual covariance matrix between two ran-

dom vectors taking values in Rm, but now with two random vectors kX (·, x) ∈

HX and kY (·, y) ∈ HY taking values in HX and HY , respectively, we can

define the cross-covariance operator Cyx : HX → HY such that

⟨h2, Cyxh1⟩HY = Eyx[h2(y)h1(x)]

holds for any h1 ∈ HX , h2 ∈ HY . The covariance operator Cxx : HX → HX

is defined similarly. While not necessarily the most intuitive, we use this

definition as it is the most useful for our exposition. See Section 3.2 in [117]

for alternative definitions, together with a discussion about cross-covariance

operators on RKHSs.

Theorem 2 and Corollary 3 in [53] show that for g ∈ HY ,

CxxE[g(y)|X = ·] = Cxyg

and

E[g(y)|X = ·] = C−1
xx Cxyg,

respectively. Note that these results require E[g(y)|X = ·] ∈ HX , together

with the injectivity of Cxx (which guarantees the existence of the inverse op-

erator C−1
xx Cxx f = CxxC−1

xx f = f for all f ∈ HX ); while the latter condition
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is satisfied under mild assumptions on p(x) and k(·, x) [54] (including the

squared-exponential kernel considered), the former condition is very diffi-

cult to check, as discussed in the theoretical monograph [95]. Nonetheless,

using the general kernel property that

∂ f
∂x

= ⟨ f ,
∂

∂x
k(·, x)⟩HX

holds for any f ∈ HX (Lemma 4.34, [157]), we have that

∂

∂x
E[g(y)|X = x] = ⟨C−1

xx Cxyg,
∂

∂x
k(·, x)⟩HX = ⟨g, CyxC−1

xx
∂kX (·, x)

∂x
⟩HY ,

(34)

using the self-adjoint property ⟨C−1
xx f , h⟩HX = ⟨ f , C−1

xx h⟩HX (for all f , h ∈

HX ) of the inverse covariance operator C−1
xx , and the adjoint property ⟨Cxyg, f ⟩HX =

⟨g, Cyx f ⟩HY (for all f ∈ HX and g ∈ HY ) of the cross-covariance operator

Cyx (see Section 3.2 in [117]).

Let us define Ψ(x) for x ∈ RD such that Ψ(x) = E[kY (·, y)|X = x] =∫
kY (·, y)p(y|x)dy. This is an example of a kernel mean embedding [12, 153],

as Ψ(x) ∈ HY for the squared-exponential (RBF) kernel kY (·, y) considered

here (Ψ(x) =
∫

kY (·, y)p(y|x)dy). If we plug g = kY (·, y′) ∈ HY into (34)

for any y′ ∈ R, we have that

∂Ψ(x)
∂x

(y′) = ⟨k(·, y′), CyxC−1
xx

∂kX (·, x)
∂x

⟩HY = CyxC−1
xx

∂kX (·, x)
∂x

(y′), (35)

using the reproducing kernel property h(y′) = ⟨kY (·, y′), h⟩HY for all h ∈

HY . From now on, we will simply write (35) as ∂Ψ(x)
∂x = CyxC−1

xx
∂kX (·,x)

∂x .

Note that we can use the SDR condition (27) to write

Ψ(x) =
∫

kY (·, y)p(y|x)dy =
∫

kY (·, y)p(y|ATx)dy.

By exchanging the order of differentiation and integration, we have that

∂Ψ(x)
∂x

=
∫

kY (·, y)
∂p(y|ATx)

∂x
dy = A

∫
kY (·, y)

∂p(y|z)
∂z

∣∣∣∣
z=AT x

dy. (36)
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From (35) and (36) with
∫

kY (·, y) ∂p(y|z)
∂z

∣∣∣∣
z=AT x

dy := Ξ(x) : RD → HY and

by taking the inner product ⟨·, ·⟩HY in both equations, we have that

AT⟨Ξ(x), Ξ(x)⟩HY A =

〈
CyxC−1

xx
∂kX (·, x)

∂x
, CyxC−1

xx
∂kX (·, x)

∂x

〉
HY

=

〈
∂kX (·, x)

∂x
, C−1

xx CxyCyxC−1
xx

∂kX (·, x)
∂x

〉
HX

:= M(x),

(37)

using again the adjoint property of the covariance operators discussed in

the context of (34). Therefore, the d eigenvectors corresponding to non-zero

eigenvalues of the symmetric matrix M(x) ∈ RD×D are contained in the

SDR subspace colspan(A) corresponding to A ∈ RD×d.

Our goal is now to estimate M(x) and its eigenspace using the obser-

vations {xi, yi = f (xi)}N
i=1. For this, we need to define the sample-based

covariance operators. According to Equation 3 in [54], for every f ∈ HX :

Ĉ(N)
yx f =

1
N

N

∑
i=1

kY (·, yi)⟨kX (·, xi), f ⟩HX =
1
N

N

∑
i=1

f (xi)kY (·, yi),

and similarly for Ĉ(N)
xx and Ĉ(N)

xy . These estimators are
√

N−consistent for

the corresponding population-based covariance operators, according to The-

orem 10 and Theorem 11 in [75]. Using these empirical covariance operators,

we arrive at the following regularized version of the sample-based estimator

M̂N(x) for M(x) in (37):

M̂N(x) =
〈

∂kX (·, x)
∂x

, (Ĉ(N)
xx + ϵN I)−1Ĉ(N)

xy Ĉ(N)
yx (Ĉ(N)

xx + ϵN I)−1 ∂kX (·, x)
∂x

〉
HX

= ∇kX(x)T(GX + NϵN I)−1GY(GX + NϵN I)−1∇kX(x),

where GX and GY are the kernel matrices (GX)ij = kX (xi, xj) and (GY )ij =

kY (yi, yj), respectively, and ∇kX(x) =
( ∂kX (x1,x)

∂x , . . . , ∂kX (xN ,x)
∂x

)
. The regular-

ization parameter ϵN accounts for a potentially ill-conditioned kernel matrix

GX (e.g. when two columns are close to each other in case of nearby points

xi and xj). Note that ϵN needs to converge to zero as N → ∞ at a specific

rate such that the convergence in probability ||M̂N(x) − M(x)||F → 0 as
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N → ∞ is achieved at a rate between N−1/4 and N−1/3 (Theorem 2, [54]).

In practice, ϵN can be tuned by the user. As an example, ϵN = 10−8 is the

default setting from the mogp_emulator package.

Finally, recall from (37) that the eigenvectors of M(x) corresponding to

non-zero eigenvalues are contained in the SDR subspace colspan(A) for

any x ∈ RD. Therefore, [54] suggests taking the average of M(xi) over all

data points xi, in order to arrive at the final gKDR estimator:

M̃N =
1
N

N

∑
i=1

M̂N(xi)

=
1
N

N

∑
i=1

∇kX(xi)
T(GX + nϵN I)−1GY(GX + NϵN I)−1∇kX(xi),

which also shares similar theoretical guarantees with M̂N(x) in terms of the

convergence in probability ||M̃N − E[M(x)]||F → 0 as N → ∞ (Theorem 2,

[54]). Similar to PCA (Section 2.2), AS (Section 2.3), and SIR (the other SDR

method considered in this section), we consider the eigendecomposition of

the positive semidefinite matrix M̃N = W̃diag(λ̃1, . . . , λ̃D)W̃T. The columns

of the gKDR dimension reduction matrix W̃gKDR := [w̃1, . . . , w̃d] ∈ RD×d are

the eigenvectors corresponding to the largest eigenvalues λ̃1 ≥ . . . λ̃d ≥ 0.

If we write WgKDR ∈ RD×d for the matrix whose columns are the dom-

inant d eigenvectors of M(x) := Wdiag(λ1, . . . , λD)WT, Proposition 1 in

[103] shows that there exists a low-dimensional approximation g(WT
gKDRx) ≈

f (x); the upper bound of this approximation C(∑D
i=d+1 biλ

2
i )

1/2 is similar to

the corresponding active subspace approximation (15), although the depen-

dency on the trailing eigenvalues is more complicated due to the unknown

weights bi. In addition, Proposition 2 in [103] shows that the gKDR di-

mension reduction W̃gKDR also satisfies the low-dimensional approximation

property g̃(W̃T
gKDRx) ≈ f (x) for some g̃ : Rd → R; the upper bound

4
λd − λd+1

N−1/3( d

∑
i=1

biλ
2
i
)1/2

+
( D

∑
i=d+1

biλ
2
i
)1/2

resembles some similarities with the active subspace analogue (17) and (18).

However, due to the unknown dependency on bi, the work [103] does not
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use the eigengap λd − λd+1 to choose the low dimensionality d, and prefers

for example a cross-validation approach (see Section 2.1), where d is chosen

to maximize predictive performance of the resulting GP emulator:

gGP(W̃T
gKDRx) ∼ GP(m(W̃T

gKDRx), k(W̃T
gKDRx, W̃T

gKDRx′)), (38)

which is constructed using the training set {W̃T
gKDRxi, f (xi)}N

i=1. As men-

tioned in the introduction of this section, the GP (38) has been used in

applications such as tsunami modelling [103] and wind turbine modelling

[192].

3.2 unsupervised dimension reduction

As mentioned in Section 1.5, unsupervised dimension reduction methods

do not require access to simulator evaluations; this is particularly desir-

able in the small training data scenarios, where the supervised dimension

reduction methods might not have enough data to accurately estimate a

potentially existing low-dimensional structure (e.g. A ∈ RD×d such that

f (x) = g(ATx) for some g : Rd → R). Section 2.2 contains a detailed

introduction to PCA, which is probably the most popular unsupervised lin-

ear dimension reduction method; one famous non-linear extension of PCA

is known as kernel PCA [142], which is related to the brief introduction

on kernel methods from Section 3.1. Given x ∼ pD(x), Kernel PCA in-

volves performing standard PCA in the infinite dimensional feature space

k(·, x) ∈ Hk; see [142] for an application on feature extraction for natural

images, [115] for an application in image denoising, and [146] for theoreti-

cal guarantees of kernel PCA in the empirical setting, where only samples

{xi}M
i=1 are available. In this work, we will only focus on linear dimension

reduction methods; as mentioned in Section 1.5, we are interested in com-

puter simulators which have a latent low-dimensional linear structure (2).

We will now present a collection of additional unsupervised linear dimen-

sion reduction methods, which will be used in our computer experiments.
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3.2.1 Johnson-Lindenstrauss (JL)

The Johnson-Lindenstrauss (JL) embedding WJL ∈ RD×d was introduced

in [90] as a classical dimension reduction method that tries to preserve the

pairwise distances between a collection of high-dimensional points {xi}N
i=1

in the low dimensional space {WT
JLxi}N

i=1. We will present a formal result,

which will also be of interest for another dimension reduction method con-

sidered in Section 3.2.2.

Theorem 3.1 ([40], Theorem 2.1) For any 0 < ϵ < 1 and positive integer N,

let d ≥ 4(ϵ2/2 − ϵ3/3)−1 log N and M ∈ RD×d be a random matrix with inde-

pendent standard Gaussian entries Mij ∼ N (0, 1). For this setting, the random

matrix WJL := 1√
d

M is a Johnson-Lindenstrauss transform, i.e. for any subset

V ⊂ RD with N elements (|V| = N), the following approximation

(1 − ϵ)||x − x′||22 ≤ ||WT
JL(x − x′)||22 ≤ (1 + ϵ)||(x − x′)||22 (39)

holds for every x, x′ ∈ V with high probability.

In other words, given sufficiently large d (d ∝ log N), JL succeeds in pre-

serving the pairwise ||.||2−distances between any collection of high-dimensional

points {xi}N
i=1 in the low dimensional space {WT

JLxi}N
i=1. Note that the co-

variance function of the low-dimensional GP

gGP(WT
JLx) ∼ GP(m(WT

JLx), k(WT
JLx, WT

JLx′)) (40)

is expressed as k(WT
JLx, WT

JLx′) = σ2 exp
(−||WT

JL(x−x′)||22
2l2

)
. Therefore, it only

depends on the distances between points, and hence it might be able to

accurately model the relationship between f (x) and f (x′), while hopefully

requiring less training data {xi, f (xi)}N
i=1 compared to the high-dimensional

GP with no dimension reduction (3). JL methods have been successfully

applied in dimension reduction for kernel methods; see [26] for theoretical

guarantees on the approximation

k(WT
JLx, WT

JLx′) = (WT
JLx)TWT

JLx′
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of a (high-dimensional) dot-product kernel k(x, x′) = xTx′, together with

various computer experiments with natural images {xi}N
i=1 as inputs.

3.2.2 Count Sketch (CS)

Count Sketch (CS) is another unsupervised dimension reduction method

based on random embeddings, which was recently introduced in the context

of Gaussian Processes in [118]. The dimension reduction matrix WCS ∈

RD×d is a sparse matrix with only one non-zero element in each row; the

non-zero element is sampled at random from {−1,+1}. As presented in

[118] for D = 5 and d = 3, one example of WT
CSx = z is


0 0 1 −1 0

−1 0 0 0 0

0 1 0 0 1





x1

x2

x3

x4

x5


=


x3 − x4

−x1

x2 + x5

 = z.

We see that each element of x appears exactly once in z, with the sign deter-

mined by the {−1,+1} element from the projection matrix.

Similar to the SDR assumption (27), CS was introduced in GPs for the

case where there exists a low-dimensional link function f (x) = g(ATx) for

some A ∈ RD×de with de ≪ D. Theorem 2 in [118] shows that if the random

embedding WCS ∈ RD×d satisfies the following version of (39):

(1 − ϵ)||Ay||22 ≤ ||WT
CS Ay||22 ≤ (1 + ϵ)||Ay||22

for all y ∈ Rd (i.e. WCS is an ϵ−subspace embedding for A), the resulting

CS-GP emulator

gGP(WT
CSx) ∼ GP(m(WT

CSx), k(WT
CSx, WT

CSx′)) (41)

is a good approximation for the (optimal) low-dimensional GP emulator

gGP(ATx) ∼ GP(m(ATx), k(ATx, ATx′)).
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Note that we require a low-dimensionality d = O(d2
e /ϵ2) for WCS to be an

ϵ−subspace embedding for the true de-dimensional subspace A, according

to Theorem 3 in [120] (upper bound) and Theorem 16 in [119] (lower bound).

Since our goal is GP emulation gGP(WT
CSx) ≈ f (x), the training set for the

GP (41) consists, as usual, of pairs of the form {WT
CSxi, f (xi)}N

i=1. The work

[118] instead focused on Bayesian Optimization (BO), which involves max-

imizing the simulator function f (WCSWT
CSx) over the d−dimensional ran-

dom subspace WCS using the GP (41) and training sets {WT
CSxi, f (WCSWT

CSxi)}N
i=1.

That is, an additional lift WCS : Rd → RD was applied to the inputs WT
CSxi

in order to generate the outputs. Nonetheless, we will check whether the

remarkable practical performance of this method in BO applications such

as parameter optimization for a D = 100-dimensional neural network [118]

translates to our GP emulation experiments.

3.2.3 Randomly Projected Additive GPs (RPA-GP)

So far, we have only considered gGP(WTx) using a single random embed-

ding W ∈ RD×d. We end this section by considering a more flexible ap-

proach called ‘Randomly Projected Additive GPs’ (RPA-GP [43]), which

uses an additive composition of J low-dimensional Gaussian random em-

beddings Wj ∈ RD×d with independent entries (Wj)ik ∼ N (0, 1/d) for

i ∈ {1, . . . , D} and k ∈ {1, . . . , d}. We write the resulting covariance function

as:

k(x, x′) =
J

∑
j=1

k j(WT
j x, WT

j x′), (42)

where each kernel function k j is the standard squared exponential covari-

ance function (4). Note that this is a direct generalization of the Johnson-

Lindenstrauss GP (40). It is shown in [43] that the kernel (42) converges to

the high-dimensional inverse multiquadratic (IMQ) kernel

kIMQ(x, x′) : =
1√

1 + ||x − x′||2
(43)
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as J → ∞ at a rate of J−1/2. Furthermore, RPA-GP with a constant mean

function m(x) = C and covariance function (42) is able to match the predic-

tive performance of the high-dimensional IMQ-GP (43) with only relatively

few projections J of very low dimensionality d on a variety of real-world

simulators. Note that in a couple of small training data experiments, RPA-

GP outperformed the high-dimensional (no dimension reduction) IMQ-GP.

Finally, [43] also presents an extension of RPA-GP named ‘Diverse Pro-

jected Additive GPs’ (DP-GP), which uses an additional optimization algo-

rithm that encourages the projections to be more diverse by trying to maxi-

mize the distance between them. The resulting DP-GP covariance function

is written as:

k(x, x′) =
J

∑
j=1

k j(UT
j x, UT

j x′), (44)

where {U1, . . . , UJ} are the deterministic projections obtained via the Di-

verse Projections (DP) optimization algorithm (Equation 7, [43]). Note that

while these projections are deterministic, they are still part of the unsuper-

vised dimension reduction framework, as no simulator evaluations are used

to construct them. The resulting DPA-GP with a constant mean function

m(x) = C and covariance function (44) was shown to significantly outper-

form the original RPA-GP (42) in various computer experiments [43].

3.3 computer experiments

We will look at a series of synthetic and real-data simulators y = f (x), most

of which were considered in [63]. In all of these experiments, we know that

f (x) ≈ g(ŴT
ASx) for some low-dimensional function g : Rd → R, where the

matrix ŴAS ∈ RD×d has been extracted as in (16) using the gradient-based

active subspace method.

We perform a method comparison between the predictive performance

of the GP emulators resulting from all the supervised and unsupervised
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dimension reduction methods discussed in this chapter, including the meth-

ods introduced in Chapter 2. From this perspective, our work complements

[103], which focused on sufficient dimension reduction (SDR) methods. The

work [63] only covers gradient-free supervised dimension reduction meth-

ods that are motivated from an active subspace perspective; these methods

were discussed in Section 2.3.

The synthetic experiments are based on a quadratic function of the form

z = ATx (45)

f (x) = zTVz + bz + c + ϵ. (46)

As mentioned, the true low-dimensional embedding A ∈ RD×d is recov-

ered by the AS method (ŴAS ≈ A). To construct the quadratic coefficients

V ∈ Rd×d, b ∈ Rd and c ∈ R, we independently sample all their entries

from the standard Normal distribution N (0, 1). Also, we fix the noise level

ϵ ∼ N (0, 25 · 10−4), which accounts for the variation of f (x) in the inac-

tive directions z⊥ ∈ RD−d. We consider eight scenarios, based on the input

dimensionality D and the true low dimensionality d, i.e.

(D, d) ∈ {(10, 1), (10, 2), (25, 1), (25, 2), (50, 1), (50, 2), (100, 1), (100, 2)}.

(47)

In terms of the real-data simulators, four examples are considered:

• ONERA M6 aerodynamics simulator [107], where y = f (x) the lift

coefficient for a wing model; D = 50, d = 1 (i.e. x ∈ R50, ŴAS ∈ R50×1)

• HIV long-term model [105], where y = f (x) is the cell count at time

t = 3400; D = 27, d = 1

• Elliptic-PDE [30], which is the simulator fλL,uL(x) considered in Sec-

tion 2.4 for a Gaussian random field (GRF) prior with long lengthscale

(23) for the PDE coefficients; D = 100, d = 1

• Hydrological flow PDE model (with initially saturated soil) [68], where

y = f (x) is the water (runoff) volume. The inputs x ∼ N (0, ID) gener-
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ate a GRF prior of short lengthscale (21) for the PDE coefficients that

describe the subsurface permeability; D = 100, d = 1.

All the synthetic and real-data simulator settings are identical to [63],

except for the additional hydrological flow experiment. We will perform a

comparative study in order to verify the ability of the GPs using various

dimension reduction methods to approximate the different simulators f (x).

We expect that the gradient-based active subspace method gGP(ŴT
ASx) (19)

will perform best for all the simulators f (x), since the existence of a low-

dimensional approximation f (x) ≈ g(ŴT
ASx) was proved in the existing

literature. The Github page [27] provides access to all the active subspaces

ŴAS ∈ RD×d considered in this work. Furthermore, we will also include

the high-dimensional (no dimension reduction) gGP(x) (3) as a standard

baseline in all the experiments.

Note that in all the experiments, the GP hyperparameters θ which we

introduced in Section 2.1 are initialized by their default values in GPy-

Torch [61]; for simplicity, we choose a constant GP prior mean function.

As discussed in Section 2.1, they are further optimized by maximizing

the marginal likelihood (5) using the LBFGS algorithm or the gradient de-

scent algorithm. When introducing the different dimension reduction meth-

ods W ∈ RD×d, we have presented various criteria for choosing the low-

dimensionality d; we have tried these values, together with various alter-

natives (e.g. W ∈ RD×2d, W ∈ RD×5d, or W ∈ RD×10d). However, we

have found that the performance was relatively insensitive to this choice,

and thus we have not included all of these results. For simplicity, one com-

mon feature for all the dimension reduction methods is the use of the low-

dimensionality d which corresponds to the dimensionality chosen by the

gradient-based AS method ŴAS ∈ RD×d. The remaining experimental de-

tails can be summarized as follows:



3.3 computer experiments 59

• Sliced Inverse Regression (SIR): number of slices R = 10 as default in

the Python package sliced [2]; each slice contains approximately the

same number of samples, as motivated in Section 3.1.1.

• Gradient Kernel Dimension Reduction (gKDR): lengthscale parame-

ters σx = Mx, σy = My for the kernels kX (·, x) and kY (·, y), respec-

tively, where Mx and My are the median values of pairwise distances

of the training inputs {xi}N
i=1 and outputs {yi = f (xi)}N

i=1, respectively.

This is the default choice in the Python package mogp_emulator [1].

• Randomly Projected Additive GPs (RPA-GP): As seen in the experi-

ments from [43], we have chosen J = 20 one-dimensional projections

(Wj ∈ RD×1, Uj ∈ RD×1)J
j=1 for both versions RPA-GP (42) and DPA-

GP (44), respectively.

• Principal Component Analysis (PCA): Since for all the experiments we

only have access to the datasets {xi, f (xi)}N
i=1 of simulator evaluations,

and not to the underlying distribution that generated the indepen-

dent samples xi ∼ p(x), we use the empirical covariance matrix of

{xi}N
i=1 ∼ p(x) to perform PCA.

For the GP (20), we use the term ‘embedding learning’ for the procedure

of maximizing the marginal likelihood (5) with respect to (the embedding)

WGP ∈ RD×d. The resulting solution ŴGP ∈ RD×d that (approximately)

maximizes the marginal likelihood (5) is obtained using the gradient descent

algorithm. We consider two approaches for embedding learning, as follows:

• Type II maximum likelihood embedding learning with the embed-

ding initialized at random (ML-II-LE): For the GP (20), the embedding

WGP ∈ RD×d is implemented as a single-layer (linear) neural network

as part of the Deep Kernel Learning [179] routine in GPyTorch [61],

with its corresponding default random initialization.

• Type II maximum likelihood embedding learning with the embedding

initialized via gradient Kernel Dimension Reduction (gKDR-LE): The
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embedding WGP ∈ RD×d in (20) is initialized with the solution W̃gKDR

of the gKDR method. Note that for a high-dimensional input space

D = 100, due to the RAM memory limitations provided by the gKDR

implementation from the Python package mogp_emulator [1], we re-

place gKDR-LE with SIR-LE, i.e. the embedding WGP ∈ RD×d is ini-

tialized with the solution ŴSIR of the SIR method.

We trained the resulting GP emulators over five trials, where each trial

consists of five training sets {xi, yi = f (xi)}Ntrain
i=1 of various sizes Ntrain. Ac-

cording to [63], we have chosen the training set sizes ranging from one

to five times the input dimensionality, i.e Ntrain ∈ {D, 2D, 3D, 4D, 5D}.

The performance of each GP was tested on a separate test set {x⋆i , y⋆i =

f (x⋆i )}
Ntest
i=1 . We compare the performance in terms of predictive accuracy

via the test root mean squared error (RMSE), which we define as

RMSE :=

√√√√ 1
N⋆

N⋆

∑
i=1

(m̄(WTx⋆i )− y⋆i )
2

for any dimension reduction matrix W ∈ RD×d, or

RMSE :=

√√√√ 1
N⋆

N⋆

∑
i=1

(m̄(x⋆i )− y⋆i )
2

for the high-dimensional (NO-DR) GP baseline (3). In addition to the pre-

dictive accuracy, we also consider the predictive uncertainty quantification

via the test negative predictive log-density (NPLD), which we define as

NPLD := −
N⋆

∑
i=1

logN (y⋆i |m̄(WTx⋆i ), k̄(WTx⋆i , WTx⋆i ))

for any dimension reduction matrix W ∈ RD×d, or

NPLD := −
N⋆

∑
i=1

logN (y⋆i |m̄(x⋆i ), k̄(x⋆i , x⋆i ))

for the high-dimensional GP baseline.
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For any supervised dimension reduction method W ∈ RD×d, we also

present the First Subspace Angle (FSA) as a measure of discrepancy be-

tween the subspace spanned by the columns of W and gradient-based ac-

tive subspace matrix ŴAS. FSA was used in [63] to check that W gets

closer to ŴAS as the training size N increases. For two semi-orthogonal

matrices M1 ∈ RD×d and M2 ∈ RD×d, let M := (M2, M⊥
2 ) ∈ RD×D

(MT M = MMT = ID). We can compute the FSA between the column

spaces of M1 and M2 as

FSA(M1, M2) = ||MT
1 M⊥

2 ||F,

where || · ||F is the Frobenius norm defined in Section 2.2.

For each pair (D, d) from (47), the corresponding quadratic function ex-

periment (46) can be described as follows. Out of a total of N = 1000 points

{xi, yi = f (xi)}N
i=1 from [63], we have selected at random five trials, where

each trial consists of five training sets of size Ntrain = {D, 2D, 3D, 4D, 5D},

and used the remaining points Ntest = {N −D, N − 2D, N − 3D, N − 4D, N −

5D} for testing. We plot the resulting test RMSE, test NPLD, and first sub-

space angle (FSA) versus the training set size for all the dimension reduc-

tion methods considered (lower values are better); the results are averaged

over the five trials. Note that the plots use ‘RP’ and ‘DP-ARD’ to denote

RPA-GP and DPA-GP, respectively; the FSA plots use ‘true A’ to denote the

gradient-based active subspace ŴAS, whereas RMSE and NPLD plots use

‘true embedding low dim GP’ to denote gGP(ŴT
ASx) (19). These plots are

presented in Figs. 2-25.

Our conclusions are summarized as follows:

• The unsupervised dimension reduction methods Count Sketch (CS),

Johnson-Lindenstrauss (JL), and Principal Component Analysis (PCA),

return virtually identical performance on all benchmarks. Note that

although we do not have access to the distribution {xi}N
i=1 ∼ p(x), we

suspect that xi ∼ ND(0, I), which would explain the poor performance

of PCA.
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• The other two unsupervised dimension reduction methods consid-

ered, i.e. Randomly Projected Additive GPs (RPA-GP, 42) and Diverse

Projected Additive GPs (DPA-GP, 44) showed very unstable perfor-

mance, failing to match the performance of the high-dimensional GP

baseline (NO-DR) in almost all cases.

• For both d = {1, 2}, the performance gap between the gradient-based

active subspace method gGP(ŴT
ASx) and the high-dimensional baseline

gGP(x) increased with D, which further motivates the use of dimen-

sion reduction methods. Note that for D = 100, the high-dimensional

baseline gGP(x) performs identically to the unsupervised dimension

reduction methods CS, JL, and PCA.

• As a difference between the two different cases d = 1 and d = 2, the

sufficient dimension reduction methods SIR and gKDR significantly

outperformed the unsupervised ones (PCA, CS, JL) for d = 2, whereas

for d = 1 the performance gap disappeared, as the methods performed

relatively similarly.

• Gradient Kernel Dimension Reduction (gKDR) performed better than

Sliced Inverse Regression (SIR) in terms of the First Subspace Angle

(FSA) criterion for agreeing with the gradient-based AS embedding

ŴAS. In terms of predictive performance, gKDR outperformed SIR for

larger training data regime Ntrain = 5D and (D, d) ∈ {(10, 1), (10, 2), (25, 1)},

cases where we can also notice a large advantage in terms of FSA. Re-

garding the small training regime Ntrain = D, SIR performs better, as

gKDR tends to underestimate predictive uncertainty (i.e. large NPLD).

• Type II maximum likelihood embedding learning provided unstable

performance in each experiment. In the small/medium training regime

Ntrain ≤ 3D, both ML-II-LE with random initialization and gKDR-

LE/SIR-LE with gKDR or SIR initialization severely underestimate

predictive uncertainty (high NPLD), which is probably an artefact of
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using maximum likelihood with small datasets in high dimensions for

WGP ∈ RD×d in (20). This is especially worrying if we want to use

this embedding learning method for uncertainty based goal-oriented

designs such as Bayesian Optimization (BO), which usually operates

in the small data regime. Note that this problem can potentially be

alleviated by treating WGP ∈ RD×d in (20) as a latent variable, since

[63] shows that predictive uncertainties can be better calibrated in this

way.

• Note that for (D, d) ∈ {(10, 1), (10, 2), (25, 1)} and Ntrain = 5D, where

W̃gKDR approximates ŴAS with reasonable accuracy according to the

FSA criterion, gKDR-LE managed to stabilize training (i.e. all five

training trials shown good predictive performance), and furthermore

gKDR-LE performed almost on par with the gradient-based gGP(ŴT
ASx)

on all five trials. In general, gKDR-LE (or SIR-LE for D = 100) per-

formed better than the randomly initialized ML-II-LE method, although

training was not fully stabilized, i.e. there were still training sets

among the five trials which lead to poor predictive performance.

• Nonetheless, gKDR-LE was the best performing dimension reduction

method for

(D, d) ∈ {(10, 1), (10, 2), (25, 1), (50, 1), (50, 2)}

and Ntrain = 5D, significantly outperforming the high-dimensional

GP baseline, as well as both gGP(W̃T
gKDRx) with the fixed embedding

W̃gKDR and gGP(ŴT
GPx) with the embedding ŴGP obtained via max-

imum likelihood with random initialization. Therefore, we can con-

clude that when we have enough data {(xi, yi)}Ntrain
i=1 → W̃gKDR for

gKDR to provide a reasonable approximation for ŴAS, initializing

the maximum likelihood embedding learning procedure with W̃gKDR

seems to be beneficial.
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• It is important to point out that the embedding learning method with

random initialization ML-II-LE uses a single starting point W(0)
GP . If

we restart training multiple times (up to 1000), the best solution ŴGP

outperforms the gKDR intialized solution gKDR-LE, at the cost of a

much larger training time.

• Finally, note that the embedding learning procedure returns an un-

structured matrix ŴGP ∈ RD×d, as we use (unconstrained) gradient

descent optimization to maximize the marginal likelihood for (20) with

respect to WGP. As discussed in Section 2.3, there are various works

that use an orthogonality constraint WT
GPWGP = Id for maximum like-

lihood optimization, such as the Stiefel manifold constraint [166] or

the Grassmann manifold constraint [134]. We have considered these

approaches, and the results (not shown) are in line with the (unstruc-

tured) embedding learning approaches presented here.

Regarding the real-world simulators, the experimental setup is identical

to the quadratic function, i.e. out of a total of N points {xi, yi = f (xi)}N
i=1

from [63] (or from [27] in case of the hydological experiment), we have

selected at random five trials, where each trial consists of five training sets

of size Ntrain = {D, 2D, 3D, 4D, 5D}, and used the remaining points Ntest =

{N − D, N − 2D, N − 3D, N − 4D, N − 5D} for testing. We plot the resulting

test RMSE, test NPLD, and first subspace angle (FSA) versus the training set

size for all the dimension reduction methods considered (lower values are

better); the results are averaged over the five trials. Note that the plots

use ‘RP’ and ‘DP-ARD’ to denote RPA-GP and DPA-GP, respectively; the

FSA plots use ‘true A’ to denote the gradient-based active subspace ŴAS,

whereas RMSE and NPLD plots use ‘true embedding low dim GP’ to denote

gGP(ŴT
ASx) (19). These plots are presented in Figs. 26-37.

We present our conclusions for each experiment as follows:

• (ONERA M6 aerodynamics simulator, D = 50, d = 1)
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For this experiment, we see that the sufficient dimension reduction

methods SIR and gKDR worked very well, performing better than the

unsupervised dimension reduction methods and the high-dimensional

GP baseline. Also, we note that SIR outperformed gKDR on all bench-

marks (RMSE, NPLD, FSA) for Ntrain ≥ 100, whereas gKDR per-

formed better in the small data regime (Ntrain = 50). Maximum

likelihood embedding learning with random initialization (ML-II-LE)

provided stable performance and was the best performing dimension

reduction method; gKDR initialization (gKDR-LE) did not bring any

additional improvements. In particular, we note that for Ntrain ≥ 100,

ML-II-LE managed to outperform the gradient-based gGP(ŴT
ASx).

• (HIV long-term model, D = 27, d = 1)

As in the previous ONERA M6 simulator example, we see that the

sufficient dimension reduction methods SIR and gKDR worked very

well, performing better than the unsupervised dimension reduction

methods and on par with the high-dimensional GP baseline. We

also note that SIR slightly outperformed gKDR on all benchmarks

(RMSE, NPLD, FSA) for Ntrain ≥ 90, whereas gKDR performed better

in the small data regime (Ntrain = 30). Randomly Projected Additive

GPs (42) improve the high-dimensional baseline in terms of predictive

uncertainty (NPLD), but falls short in terms of predictive accuracy

(RMSE). Finally, we note that gKDR initialization stabilizes training

for maximum likelihood embedding learning, as gKDR-LE achieves

best performance, except for the gradient-based gGP(ŴT
ASx), on all

benchmarks for Ntrain ≥ 90. In particular, we notice the significant

improvement in performance with respect to the randomly initialized

training routine ML-II-LE for Ntrain < 5D.

• (Elliptic-PDE, D = 100, d = 1)

Firstly, we note that the high-dimensional GP baseline performed on

par with PCA and the random embedding methods JL, CS. Secondly,
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we see that the sufficient dimension reduction method SIR worked

very well, performing much better than the high-dimensional GP base-

line. This was also noticed in the experiment performed in [103]. Max-

imum likelihood embedding learning (ML-II-LE) provided stable per-

formance with random initialization and was the best performing di-

mension reduction method for Ntrain ≥ 200; SIR initialization (SIR-LE)

did not bring any additional improvements. In particular, we note that

for Ntrain ≥ 200, ML-II-LE managed to perform close to the gradient-

based gGP(ŴT
ASx). Finally, the Randomly Projected Additive GPs (RP,

(42)) performed on par with the high-dimensional baseline, whereas

the Diverse Projected version (DPA-GP, (44)) provided a significant

improvement in performance for this example, and was the best di-

mension reduction method in the small data regime Ntrain = 100.

• (Hydrological flow model, D = 100, d = 1)

We did not test the Randomly Projected Additive GPs (RP, (42)) and

the Diverse Projected version (DPA-GP, (44)) on this example due to

the slow training time. Furthermore, in terms of unsupervised di-

mension reduction, we only present results for the random embed-

ding Johnson-Lindenstrauss (JL), as Count Sketch (CS) and Principal

Component Analysis (PCA) provided similar performance. Some con-

clusions are somewhat similar to the Elliptic PDE experiment con-

sidered above: the high-dimensional GP baseline performed on par

with the random embedding JL, and the sufficient dimension reduc-

tion method SIR worked very well, performing much better than the

high-dimensional GP baseline. However, maximum likelihood embed-

ding learning with random initialization (ML-II-LE) provided unstable

performance among different training trials, and we see that SIR per-

formed better on average over all three benchmarks (RMSE, NPLD,

FSA). SIR initialization (SIR-LE) improved some training runs, but on

average SIR-LE was still inferior to SIR. We note that by restarting
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the unsuccessful training runs several times, we were able to stabi-

lize ML-II-LE predictive performance, although without a significant

improvement over standard SIR.

• Overall, the same conclusions from the quadratic function experiments

hold here regarding multiple restarts (i.e. the best solution ŴGP out-

performs the gKDR intialized solution gKDR-LE, at the cost of a much

larger training time), as well as the conclusions regrading orthogonally-

constrained maximum likelihood optimization alternatives [166, 134]

(i.e. the results (not shown) are in line with the (unstructured) embed-

ding learning approaches presented here).

• We finish with a comment on the performance of PCA for all real-

world simulators. Firstly, for the ONERA M6 simulator and the HIV

long-term model, we suspect that the training inputs are uniformly

distributed xi ∼ UD([−1, 1]D), which would explain the poor perfor-

mance of PCA. For the Elliptic PDE simulator, we saw in Section 2.4

and in [103] that PCA performs very well for this experiment. How-

ever, since we use the datasets from [63] that only provide {xi, f (xi)}N
i=1,

in the results presented here we suspect that we perform PCA for the

coefficients xi ∼ ND(0, ID) instead of the corresponding PDE coeffi-

cients log axi from (21). The same is true for the hydrological flow

model, where the dataset is provided by [27]; nonetheless, this experi-

ment uses a Gaussian random field with short lengthscale for the PDE

coefficients. Recall from Section 2.4 that [103] outlined the poor per-

formance of PCA in this setting, although for a different simulator.

• Another important point of discussion that was omitted from our ex-

periments is the case N < D; this case is common for simulators which

run on supercomputers. Nonetheless, the case N = D (presented in all

the experiments) helps us draw conclusions about the (worse) predic-

tive performance for smaller training sets N < D. Unfortunately, all

the supervised dimension reduction methods (i.e., ML-II-LE, SIR, and
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gKDR) return a poor performance for N = D (and thus for N < D)

for all experiments. The unsupervised dimension reduction methods

also perform poorly at N ≤ D for all experiments, with the caveat

that PCA can perform better under more suitable prior distributions

(as discussed above); the high-dimensional GP baseline NO-DR also

performs poorly. The only method that approximates well f (x) in all

the experiments for N = D is AS (with the caveat that it requires ac-

cess to gradient evaluations ∇ f (x), which might be unavailable for

simulators running on supercomputers); in some further tests with

N < D, we have noticed that AS still performs very well. Finally,

it is worth mentioning that the dimensionality in our experiments is

not very high (since D <= 100 for all the experiments), and so in

further work we will consider simulators with much higher dimen-

sionality (e.g., D ≥ 104). It is interesting to see if those further tests

will also require N ≥ 2D, or whether a smaller, but significant (e.g.

N = D/10) number of training points would suffice; in any case, it is

important to reduce the dimensionality of the problem as much as pos-

sible prior to performing GP emulation (e.g., for a PDE simulator, in-

stead of using the high-dimensional discretization log ax(s) : RD → R

of the PDE coefficients as inputs for your emulator, use instead the

lower-dimensional parametrization x arising from a Karhunen-Loève

decomposition of log ax(s), as in Section 2.4).

3.3.1 Conclusion

Our take home message is that supervised dimension reduction methods

are beneficial when we have enough data. Furthermore, maximum likeli-

hood embedding learning seems to be the best performing gradient-free

method in the medium-large training data regime, with the caveat that it

can actually be the worst performing method in the very small data regime.

Our proposed sufficient dimension reduction initialization for embedding
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Figure 2: (Best viewed in colour) RMSE for quadratic function (46) with D =

10, d = 1

Figure 3: (Best viewed in colour) NPLD for quadratic function (46) with

D = 10, d = 1

learning proved beneficial in many training instances, although it was out-

performed by (a potentially large number of) multiple restarts with random

initialization. Overall, the gradient-based active subspace is the best per-

forming method, although gradients of the simulator are often unavailable

in practical applications such as climate models [81]. For future work, we

would like to investigate different prior distributions p(x) for the inputs

{xi}N
i=1 ∼ p(x), so that the unsupervised dimension reduction methods

may exhibit a more diverse and (potentially) better performance. Also, we

will consider simulators with high-dimensional outputs, see e.g. [138, 190].

Following the observation that many computer simulators used in Un-

certainty Quantification admit a low-dimensional linear structure, various

dimension reduction methods have been proposed. We provide a review of
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Figure 4: (Best viewed in colour) FSA for quadratic function (46) with D =

10, d = 1

Figure 5: (Best viewed in colour) RMSE for quadratic function (46) with D =

10, d = 2

Figure 6: (Best viewed in colour) NPLD for quadratic function (46) with

D = 10, d = 2
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Figure 7: (Best viewed in colour) FSA for quadratic function (46) with D =

10, d = 2

Figure 8: (Best viewed in colour) RMSE for quadratic function (46) with D =

25, d = 1

Figure 9: (Best viewed in colour) NPLD for quadratic function (46) with

D = 25, d = 1
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Figure 10: (Best viewed in colour) FSA for quadratic function (46) with D =

25, d = 1

Figure 11: (Best viewed in colour) RMSE for quadratic function (46) with

D = 25, d = 2

Figure 12: (Best viewed in colour) NPLD for quadratic function (46) with

D = 25, d = 2
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Figure 13: (Best viewed in colour) FSA for quadratic function (46) with D =

25, d = 2

Figure 14: (Best viewed in colour) RMSE for quadratic function (46) with

D = 50, d = 1

Figure 15: (Best viewed in colour) NPLD for quadratic function (46) with

D = 50, d = 1
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Figure 16: (Best viewed in colour) FSA for quadratic function (46) with D =

50, d = 1

Figure 17: (Best viewed in colour) RMSE for quadratic function (46) with

D = 50, d = 2

Figure 18: (Best viewed in colour) NPLD for quadratic function (46) with

D = 50, d = 2
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Figure 19: (Best viewed in colour) FSA for quadratic function (46) with D =

50, d = 2

Figure 20: (Best viewed in colour) RMSE for quadratic function (46) with

D = 100, d = 1

Figure 21: (Best viewed in colour) NPLD for quadratic function (46) with

D = 100, d = 1
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Figure 22: (Best viewed in colour) FSA for quadratic function (46) with D =

100, d = 1

Figure 23: (Best viewed in colour) RMSE for quadratic function (46) with

D = 100, d = 2
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Figure 24: (Best viewed in colour) NPLD for quadratic function (46) with

D = 100, d = 2

Figure 25: (Best viewed in colour) FSA for quadratic function (46) with D =

100, d = 2
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Figure 26: (Best viewed in colour) RMSE for the ONERA M6 simulator with

D = 50, d = 1

Figure 27: (Best viewed in colour) NPLD for the ONERA M6 simulator with

D = 50, d = 1
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Figure 28: (Best viewed in colour) FSA for the ONERA M6 simulator with

D = 50, d = 1

Figure 29: (Best viewed in colour) RMSE for the HIV long term model with

D = 27, d = 1
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Figure 30: (Best viewed in colour) NPLD for the HIV long term model with

D = 27, d = 1

Figure 31: (Best viewed in colour) FSA for the HIV long term model with

D = 27, d = 1

Figure 32: (Best viewed in colour) RMSE for the Elliptic PDE model with

D = 100, d = 1
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Figure 33: (Best viewed in colour) NPLD for the Elliptic PDE model with

D = 100, d = 1

Figure 34: (Best viewed in colour) FSA for the Elliptic PDE model with D =

100, d = 1
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Figure 35: (Best viewed in colour) RMSE for the hydrological flow model

with D = 100, d = 1

Figure 36: (Best viewed in colour) NPLD for the hydrological flow model

with D = 100, d = 1
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Figure 37: (Best viewed in colour) FSA for the hydrological flow model with

D = 100, d = 1

these methods in the context of Gaussian Process (GP) emulation; among

the methods considered are Sufficient Dimension Reduction (SDR), Prin-

cipal Component Analysis (PCA), Active Subspaces (AS), random embed-

dings, and embedding learning. While we provide an introduction and

some theoretical properties for each family of methods, our focus is to per-

form a method comparison between all these approaches. We complement

the existing results with our new findings. For various synthetic and real-

world simulators, we show that the most straightforward embedding learn-

ing methods (i.e., without orthogonality constraints) tend to outperform the

SDR methods for GP emulation.



4
G P E M U L AT I O N F O R L O G - L I K E L I H O O D S W I T H A

L O W- D I M E N S I O N A L A C T I V E S U B S PA C E

We will introduce the setting of Bayesian Inverse Problems, in particular

via the emulation based solution of replacing the underlying simulator (e.g.

physics-based model) or the log-likelihood with a GP emulator. We provide

a new approach of exploiting the low-dimensionality of the log-likelihood in

some of these problems, and present very promising results on a quadratic

toy model, as well as on a more challenging high-dimensional Elliptic PDE.

4.1 introduction

As dicussed in Section 1.2, we consider a Bayesian inverse problem, where

the goal is to obtain the posterior distribution

p(x|D) =
p(D|x)p(x)

p(D)

over the unknown parameters x ∈ RD given the observed data D ∈ Rm.

Typically, the likelihood follows a Gaussian distribution

D|x ∼ Nm( f (x), Σ),

where f (x) : RD → Rm is the simulator function, usually modelling an

underlying physical process through a partial differential equation (PDE).

The covariance matrix Σ contains the modelling and observational errors

and is typically diagonal, as the errors are assumed to be uncorrelated.

84
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This assumption is clearly violated in applications where the data D is a

collection of (potentiallly spatially-correlated) time series, e.g., subsurface

measurments from a ground-penetrating radar [67]. Nonetheless, due to

extremely tight budget under which some inverse problems communities

operate (e.g., limited to at most ≈ 103 − 104 simulator evaluations for a

wind-turbine application [192]), the estimation of the covariance matrix Σ

is deliberately ignored, as we do in this work (we follow the rule-of-thumb

Σii := (ρ/100)2|Di|2 for i ∈ [m], i.e., the estimated standard deviation for the

errors is ρ−percent of the observed data |Di|, where ρ is usually selected by

trial-and-error, e.g., ρ ∈ [0.1, 5]). In our setting where a GP emulator is used

for f (x), a more principled approach would be to assign a GP prior to both

the modelling errors and the observations errors (see equation (S3) and (S2),

respectively, in [138]); note that the History Matching (HM) methods for in-

verse problems relax the independence assumption between modelling and

observational errors to merely uncorrelation [138]. Furthrmore, Approxi-

mate Bayesian Computation (ABC) methods can also be potentially used to

estimate Σ (e.g., Algorithm 2 from [167]).

As discussed so far in the thesis, the simulator function f is quite of-

ten expensive to evaluate, and we only have access to a limited budget of

N simulations {xi, f (xi)}N
i=1, or equivalently N log-likelihood evaluations

{xi, log p(D|xi)}N
i=1, where p(D|xi) := Nm(D| f (xi), Σ) is the Gaussian den-

sity with mean f (xi) and covariance Σ, evaluated at D. Furthermore, there

might be no gradient information available for the simulator.

One standard approach in this case is to build a GP emulator gGP(x)

(3) for f (x) or log p(D|x), using an i.i.d. sample of size N from the prior

distribution {xi}N
i=1 ∼ p(x), along with the corresponding training sets

{xi, f (xi)}N
i=1 [15] or {xi, log p(D|xi)}N

i=1 [127]. The former work [15] shows

a petroleum engineering application, whereas the latter work [127] presents

an epidemiological application. With a large enough N, both approaches

lead to a global emulator over the whole prior support p(x).
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GP emulators are known to deal very well with small training budgets N,

but may struggle with high input dimensionality D, as discussed in Section

1.5. Here, we adopt the key assumption from [31], where the log-likelihood

log p(D|x) ∝ L(x) := −||D − f (x)||2Σobs
(48)

has a low-dimensional active subspace. As in Section 2.3, we can write L(x)

as L(x) ≈ ĝ(ŴT
ASx) (17), where ĝ : Rd → R with d ≪ D, and ŴAS ∈ RD×d

is the matrix whose columns are the d dominant eigenvectors of Ŵ (16).

4.2 learned embedding active subspace mcmc (le-as-mcmc)

The seminal work [31] introduces a methodology for exploiting this ac-

tive subspace structure (without emulators) in order to efficiently solve

the Bayesian inverse problem. In other words, using a simulator-based

low-dimensional approximation ĝ(ŴT
ASx), a much smaller number of sim-

ulator evaluations were needed to perform Bayesian inversion, compared

with using the high-dimensional log-likelihood L(x) directly. Note that by

‘simulator-based’, we mean that every evaluation ĝ(ŴT
ASx) requires (at least)

one simulator query f (x). This methodology was applied in a groundwater

modelling application [126], and was extended by replacing the simulator-

based approximation ĝ(ŴT
ASx) with GP emulators gGP(ŴT

ASx) (19) [127].

Another extension is to replace the active subspace approximation ĝ(ŴT
ASx)

with an alternative (simulator-based) low-dimensional approximation ĝ(ŴT
LISx),

from the family of likelihood informed subspaces ŴLIS ∈ RD×d [185].

In this work, our approach is similar to [127], but instead of using the

gradient-based GP emulator gGP(ŴT
ASx), we will use the gradient-free ap-

proach gGP(ŴT
GPx), where ŴGP is obtained by maximizing the marginal

likelihood (5) for gGP(WT
GPx) (20) with respect to WGP. Our hope is that the

resulting approximation gGP(ŴT
GPx) ≈ L(x) is satisfactory for the posterior

sampling procedure proposed in [31], which we will describe next.
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Firstly, note that the low-dimensional approximation ĝ(ŴT
ASx) ≈ L(x)

leads to an approximate posterior p̃(x|D) ∝ exp(−ĝ(ŴT
ASx))p(x). The

Hellinger distance between p(x|D) and p̃(x|D) is defined as

H2(p, p̃) :=
1
2

∫
RD

(√
p(x|D)−

√
p̃(x|D)

)2
dx, (49)

and can be bounded from above according to Equation (3.13) in [31], which

is derived from the upper bound on the approximation ĝ(ŴT
ASx) ≈ L(x)

(17). In this chapter, we assume that the prior is a standard multivariate

Gaussian distribution, i.e. x ∼ ND(0, ID). Note that any x ∈ RD can be de-

composed as x = W1WT
1 x +W2WT

2 x, where W1 := ŴAS and W2 ∈ RD×(D−d)

is the orthogonal complement of W1 (i.e. the columns of W1 are orthogonal

to the columns of W2, and WT
2 W2 = ID−d). Let us write y := WT

1 x ∈ Rd and

z := WT
2 x ∈ RD−d. This is particularly useful, since we can factorize the

prior distribution as p(x) = p(y)p(z), since y ∼ Nd(0, WT
1 W1) = Nd(0, Id)

and z ∼ ND−d(0, WT
2 W2) = ND−d(0, ID−d). Using this factorization, we can

write the approximate posterior p̃(x|D) as

p̃(x|D) ∝ exp(−ĝ(y))p(y)p(z). (50)

The decomposition (50) is key for obtaining computational advantages com-

pared with the high-dimensional posterior p(x|D) ∝ exp(−L(x))p(x). Namely,

in order to obtain approximate posterior samples x ∼ p̃(x|D), it is enough

to obtain samples from the low-dimensional y ∼ p̃(y|D) ∝ exp(−ĝ(y))p(y)

and from the prior distribution z ∼ p(z) = Nd(0, ID−d), followed by x =

W1y + W2z. Samples z ∼ p(z) can be obtained cheaply without simulator

evaluations, and we can apply various efficient sampling methods for the

low-dimensional problem y ∼ p̃(y|D). The work [31] uses the Metropolis-

Hastings Markov Chain Monte Carlo (MH-MCMC) algorithm, which is ar-

guably the most popular method and is presented in Step 1 to 5 of Algo-

rithm 1. In order to sample from the approximate posterior distribution

p̃(y|D), MH-MCMC simulates a Markov Chain {yk}∞
k=1 whose stationary

distribution is p̃(y|D). Theorem 2.1 in [113] shows that MH-MCMC is guar-

anteed to eventually produce approximate posterior samples {yk}∞
k=n ∼
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p̃(y|D) for large enough n, as long as the ratio between the target density

p̃(y|D) and the proposal density q(y) is bounded (q(y) := Nd(y, σ2
prop Id)

from Step 1 of Algorithm 1 is a standard choice). Note that the variance

σ2
prop of the proposal density is a tuning parameter which controls the ac-

ceptance rate of the Markov Chain (Step 4 in Algorithm 1 is known as the

acceptance step). As discussed in [148], a very small σprop often leads to very

high acceptance rates, which is an indication that the chain moves slowly in

Rd and the exploration of the target density is likely to be inefficient. On

the other hand, a very large σprop often leads to very low acceptance rates,

which suggests that exploration is again inefficient as the chain rarely moves.

The computer experiments from [31] result in acceptance rates between 10%

and 80%.

The whole procedure from Algorithm 1 is known as active subspace

MCMC (AS-MCMC). It was shown that AS-MCMC is much more efficient

in exploring the posterior landscape than performing MCMC in the high-

dimensional space RD for p(x|D), as it produces uncorrelated samples in

a much smaller number of iterations (see Table 5.1 in [31]) and it does not

sacrifice accuracy. Indeed, in two computer experiments that will be revis-

ited in this chapter, various tests were performed to compare the accuracy

of the AS-MCMC approximate posterior samples with respect to the ‘true’

posterior samples obtained from performing high-dimensional MCMC for

p(x|D). One example of such test performed by [31] is a comparison be-

tween the resulting mean and variance of the samples produced by the two

procedures. As observed in [31], a small Hellinger distance (49) between two

distributions indeed leads to a small difference between the corresponding

means and variances, according to Lemma 6.37 in [159].

Note that the original AS-MCMC procedure requires access to the gradient-

based embedding ŴAS, as well as a relatively large number of log-likelihood

evaluations for {ĝ(yi)}
Nlarge
i=1 . Instead, we will use our learned (gradient-free)

low-dimensional subspace ŴGP, together with the computationally fast ap-

proximation {gGP(yi)}
Nlarge
i=1 obtained from the GP prior (20) and training set
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Algorithm 1 Active Subspace MCMC (AS-MCMC), Algorithm 1 from [31]

W1 ∈ RD×d : the gradient-based active subspace ŴAS

W2 ∈ RD×(D−d) : orthogonal complement of W1

ĝ(y) : Rd → R : low-dimensional (simulator-based) approximation for

the log-likelihood

Pick an initial value y1 ∈ Rd and compute ĝ(y1). Set k = 1.

1. Draw y′ ∼ Nd(yk, σ2
prop Id) from the proposal density centred at yk

2. Compute the acceptance ratio

γ(yk, y′) = min
(

1,
exp ĝ(y′)p(y′)
exp ĝ(yk)p(yk)

)
,

where p(y) ∼ N (0, Id)

3. Draw t uniformly from [0, 1].

4. If γ(yk, y′) ≥ t, set yk+1 = y′. Otherwise, set yk+1 = yk.

5. Increment k and repeat.

For each sample yk ∈ Rd, construct M (correlated) samples xk,m ∈ RD:

xk,m = W1yk + W2zk,m,

where zk,m ∼ p(z) = N (0, ID−d) are i.i.d. samples. For large enough k,

xk,m ∼ p̃(x|D).
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{xi, L(xi)}N
i=1 of medium size N. We summarize our procedure in Algo-

rithm 2, which is a simple modification of Algorithm 1. Note that we only

use the predictive mean m̄(y) to approximate the log-likelihood. Incorpo-

rating the predictive uncertainty k̄(y, y) is an interesting avenue for future

work. Note, however, that the predictive uncertainty can be well-calibrated,

as we demonstrate through k̄(yi, yi) for i.i.d. samples yi = ŴT
GPxi in the right

plot of Figure 38 for the Elliptic-PDE simulator described in the next section.

Algorithm 2 Learned Embedding Active Subspace MCMC (LE-AS-MCMC)

W1 ∈ RD×d : orthogonal basis for the learned subspace ŴGP

W2 ∈ RD×(D−d) : orthogonal complement of W1

m̄(y) : Rd → R : the predictive mean of the GP posterior N (m̄(y), k̄(y, y))

for the GP prior gGP(y = ŴT
GPx) (20) and training set {xi, L(xi)}N

i=1

Pick an initial value y1 ∈ Rd and compute m̄(y1). Set k = 1.

1. Draw y′ ∼ N (yk, σ2
prop) from the proposal density centred at yk.

2. Compute the acceptance ratio

γ(yk, y′) = min
(

1,
exp m̄(y′)p(y′)
exp m̄(yk)p(yk)

)
,

where p(y) ∼ N (0, Id)

3. Draw t uniformly from [0, 1].

4. If γ(yk, y′) ≥ t, set yk+1 = y′. Otherwise, set yk+1 = yk.

5. Increment k and repeat.

For each sample yk ∈ Rd, construct M (correlated) samples xk,m ∈ RD:

xk,m = W1yk + W2zk,m,

where zk,m ∼ p(z) = N (0, ID−d) are i.i.d. samples. For large enough k,

xk,m ∼ p̃GP(x|D).
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(a) {yi = ŴT
GPxi, L(xi)} (b) m̄(yi) (c)

√
k̄(yi, yi)

Figure 38: For the Elliptic-PDE simulator f (x) described in Section 4.3,

we project 1000 i.i.d. prior samples xj ∼ N100(0, I) onto the

2D learned subspace ŴGP (from Algorithm 2). We plot the

corresponding log-likelihood L(xj) versus the projected inputs

yj = ŴT
GPxj (left), the GP predictive mean m̄(yj) (center), and the

GP predictive standard deviation
√

k̄(yj, yj) (right). We see that

m̄(yj) approximates well f (xj), and the predictive uncertainties

k̄(yj, yj) are well-calibrated (note that the uncertainty grows as

we move towards the tails of the prior p(x) and thus away from

the training set, as the training set consists of samples from p(x)).

4.3 computer experiments

As in the original source [31] for addressing log-likelihoods with a low-

dimensional active subspace, we consider the following two experiments:

• Synthetic quadratic simulator f : R2 → R, with f (x) = 1
2 xT Ax and

standard Gaussian prior p(x) ∼ N2(0, I). The observed data is D =

0.9, and the noise level follows σ2 = 0.1. For A = Q

1 0

0 0.01

 QT and

Q = 1
2

 √
2

√
2

−
√

2
√

2

 which we use here, the log-likelihood (48) has a

one-dimensional active subspace, L(x) ≈ g(ŴT
ASx) with g : R → R.

• Elliptic-PDE simulator f : R100 → R7, where y = f (x) is the solution

of the PDE described in Section 2.4, evaluated at seven points on the



4.3 computer experiments 92

right boundary of the domain [0, 1]2. The inputs follow a standard

multivariate Gaussian prior x ∼ N100(0, I), which is used via (21) to

generate a Gaussian random field (GRF) prior of short lengthscale (23)

for the PDE coefficients. We sample xtrue from p(x), which is used to

generate the observations D = f (xtrue) + ϵ. The noise level Σobs :=

σ2
n I7 is considered to be σ2

n = 10−4|| f (xtrue)||22, i.e. approximately 1%

of the noise-free data f (xtrue). Finally, the resulting log-likelihood (48)

has been shown to have a two-dimensional active subspace, L(x) ≈

g(ŴT
ASx) with g : R2 → R [31].

As usual, we consider a constant GP prior mean m(WT
GPx) = C for (20);

the performance of the GP emulators was not improved by a linear or a

quadratic GP prior mean. We have used the LBFGS routine for maximizing

the marginal likelihood (5) with respect to the GP hyperparameters θ =

(C, σ, l) and the embedding WGP ∈ RD×d, with learning rate 0.1 for 15

iterations. If computational time permits, we suggest restarting the training

process several times, and select the configuration {θ̂, ŴGP} which leads to

the best approximation of the log-likelihood L(x) via cross-validation (see

Section 2.1), or by trial-and-error on a separate validation (test) set of small

size {x⋆i , L(x⋆i )}
Nsmall
i=1 .

In Table 7, we look at the performance of our procedure in terms of

approximating the gradient-based active subspace ŴAS and solving the

Bayesian inverse problem. Namely, we use the first subspace angle (FSA)

criterion introduced in Section 3.3 as a measure of discrepancy between the

subspace spanned by the columns of our learned embedding ŴGP and the

columns of ŴAS. Furthermore, we look at the KL divergence (for simplicity)

DKL(p|| p̃GP) :=
∫

RD
log

( p(x|D)

p̃GP(x|D)

)
p(x|D)dx (51)

between the true posterior p(x|D) ∝ exp L(x)p(x) and our GP approximate

posterior p̃GP(x|D) ∝ exp m̄(ŴT
GPx)p(x), obtained using the GP predictive

mean.
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In particular, we note the success of the gradient-free learned embedding

ŴGP in approximating the gradient-based active subspace ŴAS in both cases.

Note that the KL divergence is computed using numerical integration over

the high-dimensional space RD, and thus we cannot use it for the D =

100 Elliptic PDE. Instead, we perform a qualitative comparison between

the samples of p̃GP(x|D) produced by our procedure LE-AS-MCMC and

the posterior samples p(x|D) obtained via a high-dimensional MH-MCMC

procedure in [31].

Table 7: Performance of our GP emulator gGP(ŴT
GPx) for the synthetic

quadratic simulator with training size N = 100, and the elliptic

PDE simulator with training size N = 5000.

quadratic elliptic PDE

FSA 0.000 0.133

KL 0.005 -

4.3.1 Synthetic quadratic function

For the synthetic quadratic function, we have used a proposal density with

σprop =
√

0.5 as in [31], and a Markov chain of length K = 5 · 106, which

leads to M · K = 10 · 5 · 106 samples xm,k according to Algorithm 2. We

discarded the first 20% samples of the chain as burn-in, and used the rest

of the samples xm,k ∼ p̃GP(x|D) for qualitative analysis.

We present in Figure 39a the last 5 · 103 samples xk,m ∼ p̃GP(x|D), and

in Figure 39b the last 104 samples yk, both figures obtained using LE-AS-

MCMC (Algorithm 2). As a comparison, we present in Figure 39c and 39d,

respectively, the analogue figures (trace plots) from [27] obtained using AS-

MCMC (Algorithm 1) for a Markov chain of length K = 105. The source [27]

is the Github page associated with the paper [31]. We note that the results
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are very similar (i.e. we observe fast exploration (mixing) within the the two

posterior modes of yk ∼ p̃GP(y|D) and yk ∼ p̃(y|D), respectively), which

demonstrate that LE-AS-MCMC also benefits from the very good mixing

performance of AS-MCMC. In Figure 39e and 39f we compare the kernel

density estimates obtained from the LE-AS-MCMC samples yk ∼ p̃GP(y|D)

and the AS-MCMC samples yk ∼ p̃(y|D) from [27], respectively.
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(a) LE-AS-MCMC samples xk,m ∈ R2 (b) LE-AS-MCMC samples yk ∈ R

(c) AS-MCMC samples xk,m ∈ R2 [27] (d) AS-MCMC samples yk ∈ R [27]

(e) p̃GP(y|D) (LE-AS-MCMC) (f) p̃(y|D) (AS-MCMC) [27]

Figure 39: MCMC performance for LE-AS-MCMC versus AS-MCMC
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Finally, in Figure 40a, 40b, and 40c, we compare the (approximate) poste-

rior distributions obtained from the LE-AS-MCMC samples xk,m ∼ p̃GP(x|D),

the AS-MCMC samples xk,m ∼ p̃(x|D) from [27], and the vanilla MH-

MCMC over the high-dimensional space xk,m ∼ p(x|D) from [27], respec-

tively. Note that on all the benchmarks, we successfully match the impres-

sive performance of the original AS-MCMC procedure.

(a) p̃GP(x|D) (b) p̃(x|D) [27] (c) p(x|D) [27]

Figure 40: (Approximate) posterior density from LE-AS-MCMC samples

versus AS-MCMC and (vanilla) MH-MCMC; recall the small KL

divergence between p(x|D) and p̃GP(x|D) (Table 7)

4.3.2 Elliptic PDE

For the elliptic PDE, we have used a proposal density with σprop = 0.1 as in

[31], and a Markov chain of length K = 105, which lead to M · K = 10 · 105

samples xm,k according to Algorithm 2. We discarded the first 20% samples

of the chain as burn-in, and used the rest of the samples xm,k ∼ p̃GP(x|D)

for qualitative analysis.

As a first check (see e.g. [15]), we look at whether the approximate pos-

terior samples xm,k are in line with the observations D by comparing the

corresponding simulator responses f (xm,k) with both the observed measure-

ments D and the noise-free simulator response f (xtrue) in Figure 41. As we
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Figure 41: Simulator responses for the LE-AS-MCMC samples xk,m match

the observed data D

can see, the LE-AS-MCMC samples produce responses in line with the noise

level in the observed data.

Note that since we use a different observed data D for our Bayesian in-

verse problem compared with [31], we also have a different active subspace

ŴAS. Nonetheless, some characteristics of the posterior distribution p(x|D)

should remain the same, as shown in the new set of experiments from [27].

Therefore, we proceed in comparing our LE-AS-MCMC performance with

the analogue results for AS-MCMC and high-dimensional (vanilla) MH-

MCMC from [31].

We present in Figure 42a and 42b two dimensions (10 and 90) out of D =

100 of the last 2000 samples xk,m, and the last 2000 samples yk, respectively,

both figures obtained using LE-AS-MCMC (Algorithm 2). As a comparison,

we present in Figure 42c and 42d, respectively, the analogue figures from

[27] obtained using AS-MCMC (Algorithm 1), for a Markov chain of length

K = 104. We note that the results are very similar, as in the case of the
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synthetic quadratic simulator, which again demonstrates that the efficiency

(fast mixing) of AS-MCMC translates to LE-AS-MCMC.

(a) LE-AS-MCMC samples xk,m ∈ R100 (b) LE-AS-MCMC samples yk ∈ R2

(c) AS-MCMC samples xk,m ∈ R100 [27] (d) AS-MCMC samples yk ∈ R2 [27]

Figure 42: MCMC performance for LE-AS-MCMC versus AS-MCMC

See [31] for a thorough comparison between AS-MCMC and the high-

dimensional vanilla MH-MCMC for this experiment, including autocorre-

lation plots (Fig 5.8, [31]), comparison between the resulting means and

variances (Fig 5.9, [31]), and effective sample sizes (Table 5.1, [31]). Note

that the aforementioned comparison between means and variances is chal-
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lenging due to the high autocorrelation and low effective sample size for

the high-dimensional vanilla MH-MCMC.

Similar to [31], we project the LE-AS-MCMC samples xk,m onto the active

subspace ŴT
ASxk,m and the inactive subspace (Ŵ⊥

AS)
Txk,m ∈ RD−d, respec-

tively. In [31], ‘true’ posterior samples xm,k ∼ p(x|D) from MH-MCMC

were used in order to show that the true posterior only gets updated in the

(log-likelihood) active directions, whereas in the inactive D − d directions

it stays close to the N (0, 1) uncorrelated prior. Here, we want to demon-

strate that the LE-AS-MCMC approximate posterior p̃GP(x|D) also follows

the same property.

We present the contours of the marginals posterior distributions using

high-dimensional MH-MCMC for p(x|D) in Figure 43 (MCMC chain length

K = 105); this figure is borrowed from [31]. The figure considers the active

directions ŴT
ASx, denoted by (y1, y2), and the first two inactive directions

(i.e. the first two elements of (Ŵ⊥
AS)

Tx), denoted by (y3, y4). We can see

the joint marginal posterior in the two active directions (1 and 2), the joint

marginal posterior in one active direction (1 or 2) and one inactive direction

(3 or 4), and finally, the joint marginal posterior in two inactive directions (3

and 4). We can see that the posterior differs significantly from the N (0, 1)

uncorrelated prior only in the active directions, as mentioned in [31].

We show the analogue contours arising from the projected LE-AS-MCMC

samples (ŴT
ASxm,k, (Ŵ⊥

AS)
Txm,k) in Figure 44, together with our correspond-

ing data generating coefficients (ŴT
ASxtrue, (Ŵ⊥

AS)
Txtrue) as a red dot. It

seems that the LE-AS-MCMC contours are concentrated in accordance to

the characteristics of the vanilla MH-MCMC contours from [31], and they

manage to capture the true coefficients (ŴT
ASxtrue, (Ŵ⊥

AS)
Txtrue). As dis-

cussed above, we conclude that the approximate posterior p̃GP(x|D) also

satisfies the same property as the true posterior p(x|D), i.e. it only gets

updated in the active directions, whereas in the inactive directions it stays

close to the N (0, 1) uncorrelated prior.
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Figure 43: Figure from [31]; marginal posterior distributions for the active

directions (y1, y2) and the first two inactive directions (y3, y4),

using vanilla high-dimensional MH-MCMC for xm,k ∼ p(x|D)
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Figure 44: Marginal posterior distributions for the active directions (y1, y2)

and the first two inactive directions (y3, y4) using LE-AS-MCMC

samples xm,k, together with our data generating coefficients

(ŴT
ASxtrue, (Ŵ⊥

AS)
Txtrue) as a red dot
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4.3.3 Conclusion

In conclusion, following the observation that many log-likelihoods used in

Baysian inverse problems possess an active subspace [31], we have shown

that our gradient-free procedure LE-AS-MCMC can efficiently exploit the

(latent) low-dimensional active subspace structure for posterior sampling.

For the synthetic quadratic simulator (Subsection 4.3.1), we have demon-

strated fast mixing (in line with the AS-MCMC procedure, Figure 39), as

well as accurate posterior approximation (Table 7 and Figure 40). For the

Elliptic PDE simulator (Subsection 4.3.2), we have also demonstrated fast

mixing (in line with the AS-MCMC procedure, Figure 42), as well as a good

match f (xm,k) for the observed data D (xm,k ≈ p̃GP(x|D), Figure 41), and

a good recovery of the unknown xtrue (according to the active subspace

representation, Figure 44). Using the active subspace representation of the

approximate posterior samples xm,k ∼ p̃GP(x|D) (Figure 44), we have seen

that p̃GP(x|D) only gets updated from p(x) in the active subspace directions

(property satisfied by the true posterior p(x|D)), and that the posterior con-

tours of p̃GP(x|D) resemble the characteristics of the true posterior contours

p(x|D) from [31]. Recall that posterior contours p(x|D) should have similar

characteristics for different pairs (D, xtrue), as shown in [31] and [27]; we

did not produce posterior contours p(x|D) for our D and xtrue, due to the

large computational time.

4.4 neural network comparison

For the high-dimensional log-likelihood L(x) : R100 → R with a 2-dimensional

active subspace corresponding to the Elliptic PDE simulator considered in

the previous section, we perform a quick comparison between the perfor-

mance of GP emulators and (artificial) neural network emulators.
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Let us consider a one hidden layer neural network

gNN(x) = WT
2 ϕ(WT

1 x + b1) + b2

with standard (element-wise) ReLU activation function ϕ(u) := max(u, 0).

The matrices W1 ∈ RD×h1 and W2 ∈ Rh1×1 are known as weights, where

h1 is size of the hidden layer; b1 ∈ Rh1 and b2 ∈ R are known as biases.

Our approach is motivated by the theoretical result from [8], which shows

that when the target function has a low-dimensional linear structure, i.e.

L(x) = g(ATx) for some A ∈ RD×d with d ≪ D, shallow (one-hidden

layer) neural networks with ReLU activation function are able to break the

curse of dimensionality by automatically adapting to the low intrinsic di-

mension d. This result was further discussed and extended in [66], where a

theoretical comparison with kernel methods was included, as well as prac-

tical experiments from image classification with deep (i.e. multiple hidden

layers) and convolutional neural networks; see [187] for an introduction to

modern neural network models.

For our Elliptic PDE log-likelihood L(x) : R100 → R, we have used a neu-

ral network gNN(x) = WT
2 ϕ(WT

1 x + b1) + b2 with one hidden layer of size

h1 = 20 and ReLU activation function ϕ. We have tried changing the hidden

size h1, as well as adding multiple layers, but the predictive performance of

the neural network was relatively insensitive to these changes. The neural

network parameters (Ŵ1, b̂1, Ŵ2, b̂2) are selected by minimizing the standard

training loss
1
N

N

∑
i=1

(L(xi)− gNN(xi))
2

with respect to (W1, b1, W2, b2) via gradient descent optimization. The train-

ing inputs {xi}N
i=1 are sampled independently from the prior distribution

x ∼ N (0, I100), whereas a separate test set {x⋆i }
Ntest
i=1 of independent prior

samples was used to test the performance of the resulting neural network
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ĝNN(x) = ŴT
2 ϕ(ŴT

1 x + b̂1) + b̂2 via the root mean squared error (RMSE)

criterion: √√√√ 1
N

Ntest

∑
i=1

(L(x⋆i )− ĝNN(x⋆i ))
2.

We have compared ĝNN with the following GP emulators:

• high-dimensional GP baseline (NO-DR) gGP(x) : R100 → R (3)

• gradient-based active subspace gGP(ŴT
ASx) : R2 → R (19)

• (gradient-free) learned embedding gGP(ŴT
GPx) : R2 → R, which is

used in the previous section for our LE-AS-MCMC procedure.

In Figure 45a, we present the RMSE comparison between the neural net-

work predictions ĝNN(x⋆i ) and the GP predictions obtained via the posterior

means m̄(x⋆i ) (high-dimensional GP), m̄(ŴT
ASx⋆i ) (active subspace GP), and

m̄(ŴT
GPx⋆i ) (learned embedding GP). In Figure 45b, we plot the first sub-

space angle (FSA) between the subspace spanned by the columns of the

learned embedding ŴGP and the columns of ŴAS. Note that the FSA plot

uses ‘true A’ to denote the gradient-based active subspace ŴAS, whereas the

RMSE plot uses ‘true embedding low dim GP’ to denote gGP(ŴT
ASx).

(a) NN vs GP emulators (first N = 100) (b) FSA between ŴGP and ŴAS

Figure 45: (Best viewed in colour) Neural network (NN) vs GP emulators
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Our conclusions can be summarized as follows. First, note that the high-

dimensional GP suffers from the curse of dimensionality. This result is

perhaps surprising, as we know from [103] that the high-dimensional GP

can work very well for the related simulator fλS,uS(x) from Section 2.4 based

on the same elliptic PDE, and with the same short lengthscale GRF prior

for the PDE coefficients. The neural network adapts faster to the intrinsic

low-dimensionality compared with the learned embedding gGP(ŴT
GPx), as

we can see a large performance gap for training size N ∈ {500, 1000}. As

the FSA between ŴGP and ŴAS decreases significantly (N ∈ {2500, 5000}),

the gap between the neural network and gGP(ŴT
GPx) closes down, although

the neural network maintains a slight advantage. At the largest training

budget N = 5000, the neural network performs close to the gradient-based

gGP(ŴT
ASx). Nonetheless, it is important to mention that due to its high-

dimensional input, the neural network emulator ĝNN(x) ≈ L(x) cannot be

easily adapted for efficient low-dimensional posterior sampling, as opposed

to the GP emulators gGP(y = ŴT
ASx) (AS-MCMC) or gGP(y = ŴT

GPx) (LE-

AS-MCMC).



5
R A N D O M I Z E D M A X I M U M L I K E L I H O O D V I A

H I G H - D I M E N S I O N A L B AY E S I A N O P T I M I Z AT I O N

As discussed in Section 1.5 and Chapter 4, posterior sampling for high-

dimensional Bayesian inverse problems where the log-likelihood L(x) has a

low-dimensional active subspace structure is a problem commonly faced in

real-world applications. Existing approaches assume that the computational

budget is sufficient to estimate the active subspace, either via gradient eval-

uations {xi,∇L(xi)}M
i=1, or gradient-free methods {xi, L(xi)}N

i=1 for large

enough N. Here, we tackle the more challenging (and practically relevant)

case where we do not have sufficient computational budget to satisfactorily

estimate the active subspace. In this regard, we develop a high-dimensional

Bayesian optimization (HD-BO) approach to solve the Randomized Maxi-

mum Likelihood (RML) problem. Both HD-BO and RML will be introduced

in detail throughout this chapter; here we present a quick summary of our

contribution.

RML is an approximate posterior sampling methodology based on multi-

objective optimization, first developed for petroleum engineering applica-

tions in [124]. By sharing data between the different objective functions,

we are able to implement RML at a greatly reduced computational cost

compared to existing methods, allowing us to efficiently sample from the

posterior distribution of the inverse problem. We demonstrate the benefits

of this approach in comparison to alternative optimization methods on a

variety of synthetic and real-world problems, including medical and fluid

106
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dynamics applications. Furthermore, we show that the samples produced

by our method cover well the high-posterior density regions in all of the

experiments.

5.1 introduction

As in Chapter 4, we consider Bayesian inverse problems, where the goal is

to sample from the posterior distribution

p(x|D) =
p(D|x)p(x)

p(D)

of the unknown parameters x ∈ RD given the observed data D ∈ Rm.

Randomized Maximum Likelihood (RML) was introduced by [124], as an

approximate posterior sampling methodology. RML is formulated for the

situation where the observations are subject to Gaussian distributed errors

(i.e., a Gaussian likelihood) and where the prior distribution is also Gaus-

sian: x ∼ ND(µ, Σ). The algorithm proceeds by first perturbing the data

and the prior mean, and then optimizing the unnormalised log-posterior

using these perturbed values. See Algorithm 3.

Algorithm 3 Randomized Maximum Likelihood (RML)

nRML : number of samples required

for n ∈ [nRML] do

1. Sample Dn ∼ Nm(D, Σobs) from the Gaussian likelihood

2. Sample µn ∼ ND(µ, Σ) from the Gaussian prior

3. Construct log p(D|x)p(x) w.r.t. the randomizations (Dn, µn)

On(x) := logNm( f (x)|Dn, Σobs) + logND(x|µn, Σ) (52)

4. Obtain x⋆n as the maximizer x⋆n = arg maxx On(x).

end for

Here, we use the notation [nRML] = {1, 2, . . . , nRML}. Thus, RML solves

nRML optimization problems, each with a different objective function, On(x).
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The resulting solutions {x⋆n}
nRML
n=1 are regarded as approximate samples from

the posterior distribution p(x|D); the samples are only exact draws from the

posterior when the simulator f (x) is linear, as we will demonstrate next. For

the original proof, see [124].

Indeed, in case of a linear simulator f (x) := Hx, Gaussian prior dis-

tribution x ∼ N (µ, Σ), and Gaussian likelihood D|x ∼ N (Hx, Σobs), the

posterior distribution p(x|D) is also Gaussian: x|D ∼ N (m, V), where

V := (Σ−1 + H⊤Σ−1
obsH)−1 and m := V(Σ−1µ + H⊤Σ−1

obsD). To see why

randomized maximum likelihood (RML) from Algorithm 3 produces exact

samples from the posterior distribution in this case, we first recall the RML

objective functions from (52):

On(x) := logNm(Hx|Dn, Σobs) + logND(x|µn, Σ),

where µn := µ + ϵn and Dn := D + ηn, with ϵn ∼ N (0, Σ) and ηn ∼

N (0, Σobs). The maxima {x⋆n}
nRML
n=1 of these (log-concave) objective functions

are the critical points ∇On(x⋆n) = 0. We thus differentiate with respect to x,

which gives

∇On(x) = 2Σ−1x − 2Σ−1µn + 2H⊤Σ−1
obsHx − 2H⊤Σ−1

obsDn

and setting this equal to zero and rearranging gives

x = (Σ−1 + H⊤Σ−1
obsH)−1(Σ−1µn + H⊤Σ−1

obsDn)

= m + V(Σ−1ϵn + H⊤Σ−1
obsηn).

The distribution of x can then easily be seen to be

x ∼ N (m, V(Σ−1ΣΣ−1 + H⊤Σ−1
obsΣobsΣ−1

obsH)V⊤)

= N (m, V),

i.e., x is a sample from the true posterior distribution.

Some of the practical success in a variety of petroleum engineering ap-

plications [55, 46] can be associated with the “weakly nonlinear" nature of

the simulators used [152, 49]. Additional care needs to be taken in more
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challenging scenarios, such as multi-modal posteriors with highly nonlinear

simulators, and there is a series of works which addresses these challenges

both theoretically and empirically [10, 123, 7]. Nonetheless, good practi-

cal performance has been observed for nonlinear (deep) neural network

parametrized simulators in a series of more recent petroleum engineering

publications [104, 161].

Instead of focusing on the accuracy of the approximate samples {x⋆n}
nRML
n=1

with respect to the true posterior, we address solving the optimization prob-

lems (52) efficiently in the challenging case of a high-dimensional input

space RD. We focus on the specific scenario from Chapter 4, where the

log-likelihood (48)

log p(D|x) ∝ L(x) := −||D − f (x)||2Σobs

has a low-dimensional active subspace. Although a gradient-based active

subspace ŴAS (16) exists, we assume that we do not have access to ŴAS,

and moreover, we do not have sufficient budget to estimate it from likeli-

hood evaluations {xi, L(xi)}N
i=1, as we did in Chapter 4. Furthermore, even

though the log-likelihood has a low-dimensional active subspace, an addi-

tional difficulty comes from the fact that the prior might not have such a

structure, for example when x ∼ N (0, ID). Indeed, we saw in the previous

chapters that x ∼ N (0, ID) is a common prior in applied problems, as it

can be used to generate a Gaussian random field (GRF) prior (21) for the

coefficients log ax of a PDE simulator f (x). Note that sometimes the goal

of the Bayesian inverse problem is to use the samples x ∼ p(x|D) to obtain

posterior samples for the PDE coefficients log ax via (21). One such example

comes from geological applications, where ax can represent a permeability

field to be recovered from the observed measurements D [86].

If we ignore the prior and the multi-objective nature of our problem for

now, the task of maximizing an objective O(x) ≈ ĝ(ŴT
ASx) (in this case,

the log-likelihood) under the tight budget assumption mentioned above is
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common in the high-dimensional Bayesian Optimization (HD-BO) literature,

which is key to our work.

Bayesian Optimization (BO, i.e. finding arg maxx O(x) using a Gaus-

sian process approximation gGP(x) ≈ O(x) (3)) is based on a standard

exploration-exploitation principle. Namely, an acquisition function based

on gGP(x) is used such that in the exploration phase, the target function

O(x) is explored globally, whereas in the exploitation phase, points x̃ that

are likely to satisfy x̃ = arg maxx O(x) are sampled until the maximum is

eventually found. We will introduce the acquisition function used in our

computer experiments later in the chapter. See [52] for a comprehensive

introduction to BO, and [180] for a discussion on the various choices of

acquisition functions available and their use in complex BO settings. The

high-dimensional Bayesian Optimization (HD-BO) literature mostly deals

with the prevalent case where the approximation gGP(x) ≈ O(x) is unsat-

isfactory, as a result of the curse of dimensionality (Section 1.5). In our

setting where an active subspace exists but is unknown, the most common

solution is the use of random embeddings, R ∈ RD×de , instead of the true

low-dimensional embedding ŴAS ∈ RD×d; see [171] for the seminal work

on this topic. Here we abuse notation, and use R to denote both the random

subspace and the D × de projection matrix from RD into that space.

Algorithm 4 presents a generic HD-BO algorithm with random embed-

dings. The random embedding, R, transforms the original high-dimensional

BO problem O(x) ≈ gGP(x) for x ∈ RD into a low-dimensional BO problem

O(Ry) ≈ g̃GP(y) for y ∈ Rde . In other words, instead of trying to maximize

O(x), we try to maximize O(Ry), which is the objective function on the

subspace R.
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Algorithm 4 Generic HD-BO with random embeddings

M : number of evaluations of O(·) possible given the computational bud-

get;

de : chosen dimensionality of the embedding R;

R ∈ RD×de : random embedding;

m0 : initial training points {yi, O(Ryi)}m0
i=1, with yi ∈ Rde

for m ∈ {m0 + 1, . . . , M} do

1. Construct a GP approximation O(Ry) ≈ g̃GP(y) using the available

objective function evaluations {yi, O(Ryi)}m−1
i=1

2. Select ym = arg maxy am(y) as the maximizer of a BO acquisition

function for the GP approximation O(Ry) ≈ g̃GP(y)

3. Update the training data to {yi, O(Ryi)}m
i=1.

end for

Obtain x⋆ = Rym⋆ as the maximizer

m⋆ = arg max
m

O(Rym), m ≤ M.

In practice, we can use multiple random projections giving maximizers

x1
⋆, . . . , xK

⋆ , and select the quantity x⋆ := arg maxxk
⋆

O(xk
⋆) that gives the

largest objective function value [171].

To summarize our contributions, in this work we

• propose a new methodology for posterior sampling via HD-BO (Algo-

rithm 5);

• propose a natural way to exploit the shared simulator f (x) that is

present in all of the objective functions (52), as well as an adjustment

needed to incorporate a prior distribution without a low-dimensional

structure;

• show that in the limited budget setting, our methodology usually out-

performs alternative gradient-free optimization methods, demonstrat-

ing this in a series of synthetic and real-world experiments;
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• visualize the posterior distribution in the active subspace [31], together

with the samples produced by our methodology; we show that the

samples are indeed close to ‘true’ RML samples (collected via an un-

limited computational budget), while also covering well the high pos-

terior density regions.

Although there is an extensive literature for HD-BO with random embed-

dings, which offers theoretical guarantees and good practical performance

(see, e.g., [171, 118, 99], the last including a recent survey on the topic), there

is no methodology designed for posterior sampling. Yet RML is a natural

way to use HD-BO for high-dimensional posterior sampling.

The closest related work to ours is [78], where BO is compared with alter-

native gradient-free optimization methods for maximizing the log-likelihood

in a variety of low-dimensional experiments related to petroleum engineer-

ing. We extend their work by considering the multi-objective setting (nRML

randomized log-likelihoods) in order to do posterior sampling, as well as

considering the challenging high-dimensional case and incorporating high-

dimensional priors.

Another methodology related to RML for simulators with stochastic out-

puts is reverse sampling [50] and Optimization Monte Carlo (OMC) [112].

In particular, in Algorithm 3 in the Robust OMC algorithm of [88], a GP

model is used for a collection of randomized objectives Rj(x) maximized

with Bayesian Optimization. The GP approximations are used as a sam-

pling tool at every iteration. It would be interesting to see if these ideas can

be applied in the deterministic simulator setting considered here.

5.2 methodology

Firstly, we consider the simpler setting of a uniform prior, x ∼ U[ai, bi]
D
i=1,

where [ai, bi]
D
i=1 := [a1, b1] × · · · × [aD, bD]. In this case, the posterior dis-
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tribution is proportional to the likelihood, and using our active subspace

assumption the RML objective functions (52) become

On(x) = Ln(x) := logNm( f (x)|Dn, Σobs) ≈ ĝn((Ŵ
(n)
AS )

Tx), (53)

where the objective functions now need to be maximized over the prior

support [ai, bi]
D
i=1.

A naive strategy would be to perform HD-BO (see Algorithm 4) indepen-

dently for each objective function (53), i.e., train GP approximations

g(n)GP(y) ≈ On(Ry), for n ∈ [nRML]. (54)

Assuming that each HD-BO procedure is run over T iterations, this strategy

will result in a collection of TnRML simulations {(yn
t , f (Ryn

t ))} for t ∈ [T]

and n ∈ [nRML]. Note that the limited budget, N, constrains us to T ≤

N/nRML iterations for each objective. However, note that every data point

{(yn
t , f (Ryn

t ))} can be shared by all the objectives (53). Since all the objective

functions On(x) have similar structure and are based on the same underly-

ing simulator f (x), we expect that the exploration stage can be performed at

once for all objective functions, which can potentially lead to faster HD-BO

convergence. For example, we could run HD-BO for O1(x) (T1 iterations

say), and then reuse the training data {(y1
t , f (Ry1

t ))} to warm-start/speed-

up convergence for O2(x) (where hopefully a much smaller number of itera-

tions T2 ≪ T1 will be required). Whilst this is an attractive strategy, it poses

the difficulty of having to choose a stopping time Tn for every objective.

To circumvent the challenges mentioned above, we propose our proce-

dure in Algorithm 5, and a schematic representation of the first two itera-

tions is shown in Figure 46. As suggested by [171], we use a collection of K

interleaved random embeddings instead of a single random embedding for

the entire procedure. Indeed, during our computer experiments, we notice

that some embeddings get stuck in the exploitation phase and thus select

samples from the same very small region of the posterior space for all the

RML objectives.
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Algorithm 5 HD-BO-RML (additional steps for Gaussian priors are shown

in brackets)

N : max possible number of evaluations of f (·);

de : choice of embedding dimensionality;

R1, . . . , RK ∈ RD×de : collection of random embeddings (see Section 5.3);

n0 × K initial points: {yk
i , f (Rkyk

i )}
n0
i=1, with yk

i ∈ Rde , k ∈ [K];

for k ∈ {1, . . . , K} do

for n ∈ {n0 + 1, . . . , ⌊N/K⌋} (n ∈ {n0 + 1, . . . , ⌊N/2K⌋} in case of a

Gaussian prior) do

1. Let n′ := n mod nRML

2. Construct a GP approximation to Ln′(Rky) using simulations

{yk
i , f (Rkyk

i )}
n−1
i=1

3. Select yk
n = arg maxy ak

n(y) as the maximizer of a BO acquisition

function using the GP approximation

4. Perform f (Rkyk
n) and update the shared simulation ensemble to

{yk
i , f (Rkyk

i )}n
i=1

(Gaussian prior) 5G. Perform local optimization in RD around x0 =

Rkyk
n with respect to the prior pn′(x) (see Step 1G. below)

end for

end for

for n ∈ {1, . . . , nRML} do

(Uniform prior) 1U. Obtain x⋆n = Rk⋆yk⋆
m⋆ as the maximizer

k⋆, m⋆ = arg max
k,m

On(Rkyk
m), k ∈ [K], m ≤ ⌊N/K⌋

(Gaussian prior) 1G. Writing zk
m for the local maxima from step 5G.

above, obtain x⋆n = zk⋆
m⋆ via

k⋆, m⋆ = arg max
k,m

On(zk
m), k ∈ [K], m ≤ ⌊N/2K⌋

end for

The algorithm is based on a cyclic pass through all the objective func-

tions (53), where for every random embedding k ∈ [K], the simulations
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1 . . . n n + 1



O1(y) y1, O1(y1)
... yn, O1(yn) yn+1

O2(y) y1, O2(y1)
... yn, O2(yn)

...
...

...
...

OM(y) y1, OM(y1)
... yn, OM(yn)

→

1 . . . n n + 1



y1, O1(y1)
... yn, O1(yn) yn+1, O1(yn+1)

y1, O2(y1)
... yn, O2(yn) yn+1, O2(yn+1)

...
...

...
...

y1, OM(y1)
... yn, OM(yn) yn+1, OM(yn+1)

1 . . . n + 1 n + 2



y1, O1(y1)
... yn+1, O1(yn+1)

y1, O2(y1)
... yn+1, O2(yn+1) yn+2

...
...

...

y1, OM(y1)
... yn+1, OM(yn+1)

→

1 . . . n + 1 n + 2



y1, O1(y1)
... yn+1, O1(yn+1) yn+2, O1(yn+2)

y1, O2(y1)
... yn+1, O2(yn+1) yn+2, O2(yn+2)

...
...

...
...

y1, OM(y1)
... yn+1, OM(yn+1) yn+2, OM(yn+2)

Figure 46: To condense notation, we write n := n0 for the initial points and

M := nRML for the RML objectives. Also, we suppress the super-

script k corresponding to the random embedding Rk, i.e., yp := yk
p

and Om(y) := Om(Rky) for p ∈ [n] and m ∈ [M]. From top to

bottom, according to the arrows: first HD-BO iteration to collect

yn+1 := yk
n+1 = arg maxy ak

n+1(y) from the GP approximation

of O1(y), then perform f (Rkyk
n+1) which generates data points

yn+1, Om(yn+1) := yk
n+1, Om(Rkyk

n+1) for all m ∈ [M]; second HD-

BO iteration to collect yn+2 := yk
n+2 = arg maxy ak

n+2(y) from

the GP approximation of O2(y), then perform f (Rkyk
n+2) which

generates data points yn+2, Om(yn+2) := yk
n+2, Om(Rkyk

n+2) for all

m ∈ [M].
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{(yk
m, f (Rkyk

m))}n
m=1 collected up to some iteration n will serve as the basis

for the training set used in the next iteration, where the objective function

O(n+1)′(x) is considered, with (n + 1)′ := n + 1 mod nRML.

As discussed above, we expect that the exploration stage will be per-

formed simultaneously for all objective functions, as opposed to nRML times

in the naive strategy discussed in the context of (54). When reaching the ex-

ploitation phase for On′(x), it is likely that O(n+1)′(x) will also benefit from

the shared basis for the training data {(yk
m, f (Rkyk

m))}n−1
m=1 with On′(x) and

enter the exploitation phase. Also, due to the cyclic pass through all the

objectives, we sidestep the difficulty of having to choose a stopping time

Tn for every objective. Finally, we select the HD-BO-RML samples x⋆n for

n ∈ [nRML] to be the maximizers of the nRML objective functions (53) out of

all the points selected by our procedure.

We now address the case of a Gaussian prior distribution, x ∼ ND(µ, Σ).

Using again the active subspace assumption, the objective functions (52)

become:

On(x) = Ln(x) + log pn(x) ≈ ĝn((Ŵ
(n)
AS )

Tx) + logND(x|µn, Σ).

Due to the potential lack of a low-dimensional linear structure in the prior,

as for example if x ∼ N (0, ID), running HD-BO by directly modelling the

objective function on a random linear subspace On(Ry) as a GP might be

unsatisfactory, and hence we cannot simply use the algorithm from the uni-

form prior case. Nonetheless, if we try to ignore the prior and use Algo-

rithm 5 for the log-likelihood alone (i.e. without step 5G), we can still in-

corporate the prior in the final step: k⋆, m⋆ = arg maxk,m On(Rkyk
m), k ∈

[K], m ≤ ⌊N/K⌋. This can lead to two obvious problems: we select ei-

ther points of high-likelihood but low-prior (from the exploitation stage),

or points of low-likelihood but reasonably high-prior (from the exploration

stage). In our practical experiments, we encountered the second problem.

Steps 5G and 1G in Algorithm 5 propose an ad-hoc fix to the issue men-

tioned above. While we keep performing HD-BO with respect to the log-
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likelihood as in the uniform prior case, we try to increase the prior value for

the selected points of potentially high-likelihood x0 = Rkyk
n by performing

local optimization in the high-dimensional space RD, starting from x0; dur-

ing the exploitation stage, the resulting solutions zk
n try to achieve a trade-off

between high-likelihood and high-prior. Note that the local maximization

of pn′(x) ∼ ND(µn′ , ID) (n′ := n mod nRML) does not require simulator

evaluations and can be performed efficiently by using fast gradient-based

optimization methods. For the experiments presented here, we have re-

stricted the number of steps performed by the global optimization routine

CMA-ES [80], which is a gradient-free evolution strategy algorithm.

As mentioned above, the CMA-ES algorithm starts at the point selected

by maximizing the HD-BO acquisition function x0 = Rkyk
n; we have cho-

sen a standard deviation (step-size) of 0.1 for CMA-ES. Note that in our

experiments x ∼ N (0, ID), so the CMA-ES standard deviation for the local

maximization of pn′(x) ∼ ND(µn′ , ID) around x0 is 10 times smaller than

the prior standard deviation. We have also restricted the number of func-

tion evaluations {xi, pn′(xi)}Nmax
i=1 performed by CMA-ES to a maximum of

Nmax = 500, in order to prevent the points being too far away from x0, which

would lead to a severe decrease in the log-likelihood during the exploitation

phase.

5.3 experimental setup

We now give empirical results showing that the proposed algorithms per-

form well in comparison with competing methods in a variety of synthetic

and real-world Bayesian inverse problems. All the experiments use simu-

lators that can be found on the Active Subspaces github page [27]. Unless

otherwise stated, we use a uniform prior distribution p(x) for all parame-

ters, xtrue is sampled from p(x), and the measurements D = f (xtrue) + ϵ

include additive noise with standard deviation that is 5% of the signal

(σ = 5% · || f (xtrue)||2). For some of the experiments, parameters sampled



5.3 experimental setup 118

from the prior xtrue ∼ p(x) lead to uninformative data, i.e., the posterior

p(x|D) is very similar to the uniform prior p(x), and in this case the opti-

mization landscape for RML is uninteresting. To avoid this, we selected xtrue

samples that led to a significant difference between the prior and posterior.

We present results for four simulators:

• Elliptic-PDE simulator f : R100 → R7 with measurements noise level

of 1% and standard Gaussian prior x ∼ N100(0, I) [31]. This simulator

was also considered in Chapter 4.

• Ebola: f : R8 → R, an 8-parameter dynamical system model for the

geographic spread of Ebola in Liberia [44].

• MHD: f : R5 → R, a 5-parameter magnetohydrodynamics power gen-

eration model [71].

• HIV long-term model: f : R27 → R is the cell count at time t =

24 [105]; the log likelihood has a one-dimensional active subspace,

L(x) ≈ ĝ(ŴT
ASx) with g : R → R. This simulator was also considered

in Chapter 3.

In each case (except for the HIV long-term model), the resulting log-likelihood

has been shown to have a two-dimensional active subspace, L(x) ≈ ĝ(ŴT
ASx)

with g : R2 → R. Note that we do not assume knowledge of ŴAS.

For each experiment, we use RML to sample from the posterior distri-

bution, comparing our high dimensional Bayesian optimization (HD-BO)

approach from Algorithm 5 against the following alternative gradient-free

optimization methods: BOBYQA [132] (which is a trust-region optimization

algorithm, used for method comparison versus HD-BO in [47]), CMA-ES

[80] (which is used for method comparison versus HD-BO in [47, 99]), and

random design [171] (which is often used as a standard baseline for method

comparison in the BO literature). We measure performance of the different

optimization methods by comparing the mean return, i.e., the method with
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the highest mean return can be considered to have performed best, where

the mean return is defined as

1
nRML

nRML

∑
n=1

On(x⋆n), (55)

where x⋆n is the approximate maximizer of On(x) as selected by the different

methods considered.

All the experiments use the Gaussian Process Upper Confidence Bound

(GP-UCB) acquisition function [155], i.e., ak
n(y) = m̄k

n(y)+ β
√

k̄k
n(y, y), where

m̄k
n(y) is the GP predictive mean which tries to approximate the log-likelihood

Ln′(Rky) (n′ := n mod nRML), and
√

k̄k
n(y, y) is the GP posterior standard

deviation (i.e. the GP predictive uncertainty). This acquisition function has

been studied in the HD-BO literature with random embeddings [171], and

it was the first acquisition function for which theoretical guarantees were

proven in the BO literature [155]. We choose β = 3 for all experiments

as a heuristic to facilitate a more exploratory behaviour, as the objective

functions change iteratively from On′(y) to O(n+1)′(y), but more principled

approaches for choosing β from BO literature could also be used [156]. As it

is the case throughout the thesis, we use a standard squared-exponential co-

variance function, i.e. Cov(O(Ry1), O(Ry2)) := σ2 exp(− ||y1−y2||22
2l2 ) for each

GP model, together with a constant GP prior mean m(y) = C. The GP hy-

perparameters are trained at every iteration via type II maximum likelihood

optimization (5) with a standard LBFGS algorithm, performed for 5 steps

with learning rate 0.1.

For the random embeddings Rk, each row is sampled independently from

the uniform distribution on the unit hypersphere Sde−1, as suggested in

[16, 99] (if r ∼ N (0, Ide), then r/||r|| is uniformly distributed on Sde−1). In

the case of a uniform prior x ∼ U[ai, bi]
D
i=1, we constrain the maximization

of the acquisition function to make sure that Rky projects back to the correct

prior box via the transformation [ai, bi]
D
i=1 → [−1, 1]D, followed by

max
y∈Rde

ak
n(y) subject to − 1 ≤ (Rky)d ≤ 1 for all d ∈ [D], (56)
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as suggested in [99]; this constrained optimization is performed by SciPy’s

gradient-free COBYLA routine. In the experiments performed in [99], the

unit hypershpere random embedding Rk lead to higher probability of con-

taining the maximum x⋆ := arg maxx O(x) of a generic objective function

O(x) (i.e., x⋆ = Rky⋆ for y⋆ := arg maxy O(Rky)); this comparison was

performed versus other random embeddings such as i.i.d. Gaussian (i.e.,

(Rk)ij ∼ N (0, 1) [171]) or the Count Sketch (CS) random embedding [118]

discussed in Section 3.2.2. As presented in S4 of [99], the projection ma-

trix as a hypersphere sample rounds out the vertices of the polytope (56)

and expands the space to capture the optima of O(x) (compared with the

i.i.d. Gaussian (Rk)ij ∼ N (0, 1)). More about the uniform distribution over

hyperspheres can be found in e.g., [106].

We have used the unconstrained CMA-ES optimization algorithm to max-

imize the acquisition function in the case of a Gaussian prior. More con-

cretely, we start at 0de and set up a standard deviation of
√

de for the CMA-

ES optimization search, motivated by the heuristic that y ∈ [−
√

de,
√

de]de

is likely to project back to Rky ∈ [−1, 1]D, and our prior x ∼ N(0, ID) has

standard deviation 1. This heuristic was introduced by [171] for random

embeddings R with independent N (0, 1) entries, but our unit hypersphere

random embeddings Rk can be obtained by normalizing the rows of R, as

described in the previous paragraph.

5.4 experimental results

Table 8 gives the mean return (55) and its standard deviation over 5 opti-

mization trials, and Figure 47 shows the (negative) mean returns for various

budgets, averaged over the same 5 trials. Note that each experiment has a

fixed set of measurements D and thus a fixed set of RML objectives (52);

the variance over the 5 trials comes from different optimization runs (e.g.

different starting points for BOBYQA, different random embeddings used

for HD-BO-RML). Each trial has a budget of N = 1000 simulations in order
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Table 8: Mean return (55), together with the standard deviation over 5 trials.

In bold, we outline the best competing method, together with the

methods that outperform the best method in at least one trial. The

oracle results are obtained with an unlimited computational bud-

get (i.e., unlimited number of simulations) and are not part of the

competing methods.

PDE Ebola MHD HIV

Random -173.9 ± 1.0 −1.0 · 10−3 ± 5.5 · 10−4 −4.0 · 10−3 ± 3.8 · 10−3 −1.6 · 10−5 ± 3.9 · 10−6

BOBYQA -169.3 ± 8.2 −3.1 · 10−6 ± 2.8 · 10−6 −2.6 · 10−7 ± 2.7 · 10−7 −4.5 · 10−2 ± 7.3 · 10−2

CMA-ES -167.8 ± 5.0 −9.7 · 10−5 ± 5.2 · 10−5 −3.3 · 10−4 ± 3.1 · 10−4 −6.7 · 10−6 ± 2.8 · 10−6

HD-BO-RML -132.2 ± 0.9 −6.3 · 10−5 ± 6.8 · 10−5 −1.4 · 10−5 ± 1.9 · 10−5 −1.4 · 10−5 ± 1.3 · 10−5

Maximum (Oracle) -99.73 −3.3 · 10−15
0.0 −4.6 · 10−14

to find nRML = 20 samples. As nRML grows, HD-BO-RML has an increasing

advantage over the other methods, and so we have chosen a deliberately

small number of samples, towards the lower end of what might be consid-

ered a useful number of posterior samples, in order to demonstrate that

even in simple problems there is an advantage in using our approach.
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(a) Elliptic PDE (b) Ebola

(c) MHD (d) HIV

Figure 47: (Best viewed in colour) Averaged over the 5 trials presented in

Table 8, we plot negative mean returns (55) (lower values are

better). We do not plot the standard errors over the 5 trials, as

they are not particularly insightful.

The random design samples N points from p(x), and returns the points

of largest mean return (55). We use the libraries Py-BOBYQA [20] and py-

cma [80] for BOBYQA and CMA-ES, respectively, with default settings. In-

deed, for the uniform prior experiments, we use the prior box constraints

[ai, bi]
D
i=1 → [−1, 1]D for CMA-ES and BOBYQA optimization. We use the

center 0D of the (transformed) box [−1, 1]D as the starting point for CMA-ES,

together with a standard deviation of 1/3 such that 3 standard deviations

cover the entire box. For BOBYQA, we use a starting point sampled at ran-

dom from [−1, 1]D. For the Gaussian prior experiment with x ∼ N (0, ID),

we use the mean 0D as the starting point for CMA-ES, together with a stan-

dard deviation of 1. For BOBYQA, we use a starting point sampled at

random from a N (0, ID) distribution.

Since BOBYQA and CMA-ES cannot share data between different objec-

tives Oi(x) and Oj(x), unlike HD-BO-RML which shares data through the

common simulator via the GP training sets, we employ BOBYQA and CMA-
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ES independently for each objective On(x) for n ∈ [nRML], using 50 simula-

tor evaluations per objective to stay within budget. Similar to HD-BO-RML,

we select the RML samples for BOBYQA and CMA-ES, respectively, to be

the points of largest mean return (55) out of the N = 1000 simulator evalu-

ations.

For HD-BO-RML (Algorithm 5) we use K = 10 random embeddings, sam-

pled as described in the Section 5.3. We decided to choose a relatively large

number of embeddings in order to encourage a good coverage of the high

posterior density regions, as some random embeddings might get stuck in

the exploitation phase and select samples from the same (small) region for

all the RML objectives, as discussed in Section 5.2.

We choose de = d = 2 for the Gaussian prior (Elliptic-PDE) experiment,

i.e., the dimension of the random embedding is the same as for the true

active subspace, and de = d + 1 for all the other experiments, i.e., the di-

mension of the random embedding is slightly larger than the true active

subspace. These choices are common in the HD-BO literature.

In the uniform prior experiments for HD-BO-RML, we select n0 = 5 ini-

tial points y ∈ Rde from [−1, 1]de , using rejection sampling to ensure that

they project back to the (transformed) prior box [ai, bi]
D
i=1 → [−1, 1]D (i.e.

−1 ≤ (Rky)d ≤ 1 for all d ∈ [D]), as suggested in [99]. For the Gaussian

prior experiment with x ∼ N (0, ID), we select n0 = 5 initial points y ∈ Rde ,

sampled at random from a N (0, Ide) distribution. As discussed in Section

5.3, using rejection sampling from [−
√

de,
√

de]de (uniform prior) or sam-

pling from N (0, (
√

de)2 Ide) (Gaussian prior) is generally more appropriate,

as y ∈ [−
√

de,
√

de]de is likely to project back to Rky ∈ [−1, 1]D. Nonetheless,

in the experiments considered here de ∈ {2, 3} (thus
√

de is close to 1), and

so the difference should not be too significant (in the worst case scenario,

our initial points for HD-BO-RML cover less of the prior space than the

generally more appropriate design).

Our conclusions can be summarized as follows:
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• Elliptic-PDE simulator. For this challenging high-dimensional ex-

periment with a Gaussian prior, HD-BO-RML is the best performing

method across the full range of computational budgets.

• Ebola. HD-BO-RML works best in the low budget regime N ≤ 500,

but BOBYQA has better performance for N ≥ 900, although it is out-

performed by HD-BO-RML in one of the trials.

• MHD. HD-BO-RML works best in the low budget regime N ≤ 400,

but BOBYQA is the best method at full budget, although it is outper-

formed by HD-BO-RML in one of the trials.

• HIV. All methods perform similarly, with a slight advantage for CMA-

ES at full budget (although it was outperformed by HD-BO-RML in

three trials and by the random design in one trial). BOBYQA often

fails due to small budget with respect to the input dimensionality in

this problem.

Note that there is a significant performance gap between the compet-

ing methods (which all have budget constraints) and the oracle results

obtained by numerical optimization without constraints on the number

of simulations available; we refer to the oracle results as the ‘true’ opti-

mal mean returns. This gap can be potentially tightened by HD-BO-RML

with a more involved GP design and training [99], or by a multi-output

GP g̃GP : Rde → RnRML which takes into account the correlation between

all the objective functions O(Ry) := (O1(Ry), ..., OnRML(Ry)) ≈ g̃GP(y) [39].

With a fixed budget, the performance gap for HD-BO-RML should remain

relatively constant as the number nRML of RML samples required increases

(since exploration/exploitation will still be performed jointly); the perfor-

mance gap for CMA-ES and BOBYQA will significantly increase due to less

iterations and no data sharing between objectives.
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5.5 visualization of posterior samples

As in [31], we can visualize each posterior landscape p(x|D) in the active

subspace. Figures 48a, 48d, 48g, and 48j show 104 independent prior sam-

ples xi ∼ p(x) projected into the true two-dimensional (for Figs. 48a, 48d,

48g) and one-dimensional (Figure 48j) active subspace, coloured by their

unnormalized log-posterior density, i.e., {ŴT
ASxi, log p(D|xi) + log p(xi)}104

i=1.

Indeed, points that have similar posterior densities are close in the active

subspace representation. We expect that the nRML = 20 RML samples will

be situated in the high posterior density regions. We use our oracle opti-

mizer with access to an unlimited amount of simulator evaluations to obtain

‘true’ RML samples. The resulting samples (projected into the true active

subspace) are shown in Figures 48b, 48e, 48h, and 48k. We see that samples

cover well the high posterior density regions in all the experiments, accord-

ing to the active subspace representation. While RML has been mostly used

in synthetic experiments and petroleum engineering applications, this ob-

servation attests to its usefulness in a variety of real-world problems.
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(a) PDE (b) RML oracle (c) HDBO-RML

(d) Ebola (e) RML oracle (f) HDBO-RML

(g) MHD (h) RML oracle (i) HDBO-RML

(j) HIV posterior (k) RML oracle (l) HDBO-RML

Figure 48: (Best viewed in colour) Posterior landscape in the active subspace

(left), oracle RML samples (middle), and RML samples obtained

by our procedure (right). The RML samples are shown in orange,

with prior samples given in blue. For better visualization in the

HIV experiment with a 1D active subspace, the RML samples

from the x-axis are shifted towards the middle of the HIV plots.

In Figures 48c, 48f, 48i, and 48l, we show the analogue samples obtained

from using HD-BO-RML instead of the oracle optimizer, averaged over the
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5 trials presented in Table 8. While we note a slight difference with the ‘true’

RML samples, as suggested by the mean return gap from Table 8, we see

that the HD-BO-RML samples are nonetheless relatively close to the oracle

samples in the active subspace representation, and still cover the high pos-

terior density regions well. For the HIV experiment with a one-dimensional

active subspsace, the HD-BO-RML samples seem to correspond exactly to

the ‘true’ RML samples, according to the active subspace representation. Fi-

nally, whilst there is some variance between samples from different trials

due to the different random embeddings used, the HD-BO-RML samples

belong to the high posterior density regions in all the trials (Figure 49).

5.6 conclusion and future work

We propose HD-BO-RML, in which we use the HD-BO machinery to tackle

the multi-objective RML methodology for posterior sampling. To the best

of our knowledge, this is the first GP based approach for high-dimensional

posterior sampling in the widespread setting of log-likelihoods with an ac-

tive subspace, dealing with the challenging case where we do not have

access to the active subspace nor have enough computational budget to

estimate it. As demonstrated in the experiments arising from various do-

mains, the methodology can outperform alternative gradient-free optimiza-

tion methods and has potential to be used in many real-world applications.

To demonstrate the potential of HD-BO-RML, we presented a vanilla ver-

sion using default choices of embeddings, GP approximations, and acquisi-

tion function etc. By specializing these aspects, further performance gains

can be made. In addition to the suggestions in the main text, which mostly

refer to developing a more accurate HD-BO procedure, we could also look

at removing the active subspace assumption by replacing the random em-

beddings with an alternative HD-BO methodology that does not require this

assumption, such as trust region BO (TuRBO) [47], which uses local GP mod-

els in high-dimensions. In this regard, a newly introduced multi-objective
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HD-BO methodology can be found in [42], although the experiments only

consider at most 4 objective functions. Moreover, the procedure from Algo-

rithm 5 for combining BO with local optimization when using non-uniform

priors could be replaced by the more principled approach from [111]. Fi-

nally, it would be interesting to extend the findings of [39] regarding multi-

objective BO with multi-output GPs to our methodology and to the HD-BO

setting in general.
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(a) PDE (b) Ebola (c) MHD (d) HIV

(e) PDE oracle (f) Ebola oracle (g) MHD oracle (h) HIV oracle

(i) PDE trial 1 (j) Ebola trial 1 (k) MHD trial 1 (l) HIV trial 1

(m) PDE trial 2 (n) Ebola trial 2 (o) MHD trial 2 (p) HIV trial 2

(q) PDE trial 3 (r) Ebola trial 3 (s) MHD trial 3 (t) HIV trial 3

(u) PDE trial 4 (v) Ebola trial 4 (w) MHD trial 4 (x) HIV trial 4

(y) PDE trial 5 (z) Ebola trial 5 () MHD trial 5 () HIV trial 5

Figure 49: (Best viewed in colour) Each column gives results for one simu-

lator. The rows are: the approximate posterior landscape in the

true active subspace (first row); the oracle samples obtained via

RML with unlimited computational budget (second row); sam-

ples from HD-BO-RML for the 5 trials presented in Table 8 (third

to seventh row). The oracle RML and HD-BO-RML samples are

shown in orange, with prior samples given in blue.
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P R O B A B I L I S T I C M A C H I N E L E A R N I N G W I T H I N

E N S E M B L E K A L M A N I N V E R S I O N M E T H O D S

So far, we have considered MCMC and RML as tools for solving Bayesian

inverse problems. In this chapter, we will introduce the Ensemble Kalman

Inversion framework (EKI). As discussed in Section 1.2, EKI are a fam-

ily of methods which try to recover the unknown parameter in the clas-

sical inverse problem sense (i.e., xtrue which generated the observations via

D ∼ Nm( f (xtrue), Σobs)), although they are motivated from a Bayesian per-

spective as an iterative update from the prior distribution towards the pos-

terior [87, 82].

In Section 6.1, we have developed a new EKI framework based on a

(Bayesian) Neural Network (BNN) parametrization of Gaussian random

field priors p(x) for inverse problems D = f (x) + ϵ [143]; this is an alterna-

tive for the classical Karhunen-Loève decomposition (9). For a recent work

that analyzes various EKI parameterizations for Gaussian random field pri-

ors, see [22]. In Subsection 6.1.3, we present promising results on a two-

phase (oil-water) Darcy flow simulator regarding permeability inversion.

This is a standard inverse problem in petroleum engineering [46, 83]; the

Darcy flow simulator is another example of an Elliptic PDE, in addition to

the one considered thus far in the thesis (see e.g. Section 2.4).

In Section 6.2, we have investigated the performance of Gaussian Process

emulators as computationally fast replacements for the expensive forward

simulator within EKI. We complement the original work for GP emulators

130



6.1 neural network prior for ensemble kalman inversion (eki) 131

within EKI [91] with the state-of-the art EKI algorithm EKI-DMC [82], which

we briefly introduce in Subsection 6.2.1. Furthermore, we propose one po-

tential improvement for the selection of GP training points within EKI in

Subsection 6.2.2, where we adapt a new experimental design [59] from the

family of inverse problems methods known as History Matching [168, 175].

We demonstrate the benefits of our methodology on a steady-state ground-

water modelling inverse problem in Subsection 6.2.3.

6.1 neural network prior for ensemble kalman inversion (eki)

This section is organized as follows. In Subsection 6.1.1, we will intro-

duce the (Bayesian) Neural Network parametrization of Gaussian random

field priors from [143]. In subsection 6.1.2, we will introduce the Ensemble

Kalman Inversion algorithm known as ensemble smoother with multiple

data assimilation (ES-MDA [45]). Finally, in Subsection 6.1.3, we will com-

bine these methods in a collection of computer experiments for a two-phase

(oil-water) Darcy flow simulator regarding permeability inversion.

6.1.1 Bayesian neural networks (BNN)

In the Elliptic PDE experiments from the previous chapters, we have con-

sidered a Gaussian random field (GRF) prior for the 2D PDE coefficients

log ax : [0, 1]2 → R through the Karhunen-Loève decomposition (22), which

leads to a Gaussian prior measure on the space of square-integrable func-

tions L2([0, 1]2, R). In this subsection, we will consider an alternative Gaus-

sian prior measure on L2([0, 1]2, R), which is based on Bayesian (deep) neu-

ral networks (BNN) and was recently introduced in [143]. The original

work [143] shows that this new BNN construction leads to a valid prior

for a Bayesian inverse problem with a 2D Elliptic PDE simulator regarding

groundwater flow modelling [13].
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Recall from Section 4.4 that we can write a deep neural network model

gNN(y) : [0, 1]2 → R with L hidden layers as:

gNN(y) = ϕ(WT
L+1ϕ . . . ϕ(WT

2 ϕ(WT
1 y + b1) + b2)) + bL+1. (57)

We write Wl ∈ RNl−1×Nl and bl ∈ RNl for l ∈ {1, . . . , L+ 1}, i.e. Nl is the size

of the lth hidden layer (N0 = 2, NL+1 = 1). Recall that ϕ is the (element-wise)

activation function (ϕ := tanh was used in [143]). According to [143], we

transform gNN into a Bayesian neural network (BNN) by assigning Gaussian

priors to the weights and biases, as follows. For a fixed constant β > 1:

(W1)ij ∼ N
(

0,
σ2

w1

iβ

)
for i ∈ [N2], j ∈ [N1]; (58)

(Wl)ij ∼ N
(

0,
σ2

wl

(ij)β

)
for i ∈ [Nl], j ∈ [Nl−1], l ∈ {2, . . . , L + 1}; (59)

(bl)i ∼ N
(

0,
σ2

bl

iβ

)
for i ∈ [Nl], l ∈ [L + 1]. (60)

For a PDE problem with (log-)coefficients log ax ∈ RD×D for some D × D

discretization of [0, 1]2, we can sample the log-coefficients from this BNN

prior as follows: every coordinate (yij)
D,D
i=1,j=1 of the discretization is prop-

agated through the network, i.e. log ax = (gNN(yij))
D,D
i=1,j=1, for a set of

weights (Wl)
L+1
l=1 and biases (bl)

L+1
l=1 sampled from their Gaussian priors (58),

(59), and (60). Theorem 1 in [143] shows that as size of the hidden layers

Nl → ∞, samples gNN(y) : [0, 1]2 → R correspond to a Gaussian prior mea-

sure on L2([0, 1]2, R). While not exploited in our work, this result is impor-

tant as it allows for the application of dimension-independent MCMC meth-

ods (e.g. preconditioned Crank-Nicolson MCMC [34]) for p((Wl)ij, (bl)i|D)

given some observed data D (e.g. outputs of a PDE simulator). The key

property of these methods is that the Metropolis-Hastings acceptance rate

is independent of the size of the (finite) truncation Nl. This property was

also empirically demonstrated for the BNN prior (58), (59), and (60) in the

computer experiments from Section 5.2, [143].
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Note that the prior variance of the weights (Wl)ij and biases (bl)i de-

creases as i ∈ [Nl] moves from i = 1 towards the tail node i = Nl; this

is indeed required for Theorem 1 in [143] to hold. This approach is differ-

ent from the existing BNN literature, where the Gaussian prior within each

hidden layer usually has a constant variance (σ2
wl

, σ2
bl
) [173]. For this more

popular scenario, the resulting prior distribution of gNN(y) : [0, 1]2 → R for

hidden layers of finite size (Nl)
L+1
l=1 < ∞ has been characterized in [121, 186],

where it was shown that deeper models (i.e. large L) lead to heavier-tail pri-

ors for gNN(y).

6.1.2 Ensemble smoother with multiple data assimilation (ES-MDA)

Let D = f (log ax) + ϵ be an inverse problem, where the goal is to recover

the (log-)coefficients log ax⋆ corresponding to a PDE simulator f (e.g. the

Elliptic PDE considered in Section 2.4) and a collection of observations D.

As usual, ϵ ∼ N (0, Σobs) describes the modelling and observational errors.

Let p(log ax) be the prior distribution which encodes our prior beliefs about

the unknown log ax⋆ . As discussed in Section 1.2 and 1.3, one family of

methods that can be used to efficiently tackle this problem are the Ensemble

Kalman Inversion (EKI) algorithms. In this subsection, we present the EKI

algorithm known as ensemble smoother with multiple data assimilation (ES-

MDA [45]); a different EKI algorithm will be discussed in Section 6.2.

We describe the procedure in Algorithm 6. As demonstrated in Theorem

2.1 from [85], for any EKI algorithm, the particles log a(n)xm belong to the span

of the initial ensemble {log a(0)xm }M
m=1 for every iteration n. In this regard, it

is interesting to see how sampling the initial particles from the BNN prior

(58), (59), and (60) affects the EKI performance.

The regularization parameters {αn}Niter
n=1 control the movement of parti-

cles from the prior distribution towards the posterior p(log ax|D) [87, 82],
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since at every iteration, {log a(n)xm }M
m=1 approximates a Gaussian distribution,

which in turn approximates an intermediate (tempering) measure

pn(log ax|D) ∝ exp
[
− 1

2
||(αnΣobs)

−1/2(D − f (log ax))||22
]

pn−1(log ax|D),

(61)

with p0(log ax|D) = p(log ax) and pNiter(log ax|D) = p(log ax|D), given that

∑Niter
n=1 α−1

n = 1 (see Appendix A from [82]).

Algorithm 6 Ensemble smoother with multiple data assimilation ([45])

M : number of particles

{log a(0)xm }M
m=1 : initial ensemble of particles, sampled from the prior

Niter = 10 : number of iterations

{αn}Niter
n=1 : regularization parameters (62) that satisfy ∑Niter

n=1 α−1
n = 1

for n ∈ {0, . . . , Niter − 1} do

1. Update each particle m ∈ {1, . . . , M}

log a(n+1)
xm = log a(n)xm + Ĉx f

n (Ĉ f f
n + αn+1Σobs)

−1(D+
√

αn+1zn − f (log a(n)xm )
)
,

where zn ∼ N (0, Σobs) is a perturbation of the data, and Ĉx f
n , Ĉ f f

n are

the empirical covariance matrices

Ĉx f
n :=

1
M − 1

M

∑
m=1

(
log a(n)xm − log a(n)x

)(
f (log a(n)xm )− f̄n

)T,

Ĉ f f
n :=

1
M − 1

M

∑
m=1

(
f (log a(n)xm )− f̄n

)(
f (log a(n)xm )− f̄n

)T,

with log a(n)x := 1
M ∑M

m=1 log a(n)xm and f̄n := 1
M ∑M

m=1 f (log a(n)xm ).

end for

return log ax̃ = 1
M ∑M

m=1 log a(Niter)
xm : the final ensemble mean, which is

our estimate for the (true) log-permeability log ax⋆

ES-MDA fixes Niter = 10 and the regularization parameters {αn}10
n=1 to:

α1 = 57.017, α2 = 35, α3 = 25, α4 = 20, α5 = 18, α6 = 15, α7 = 12, α8 = 8, α9 = 5, α10 = 3.

(62)
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An adaptive selection of Niter and {αn}Niter
n=1 is preferred in more recent EKI

algorithms [84, 87, 82], where various strategies for selecting {αn}Niter
n=1 and

stopping criteria for Niter were introduced; see [82] for a recent review of

these methods. The work [84] demonstrates the benefits of choosing a large

regularization parameter at the beginning of the procedure, followed by

gradually decreasing αn at further iterations in a more principled approach,

based on the observation that EKI can be viewed as a derivative-free ap-

proximation of the regularizing Levenberg-Marquardt (LM) scheme [79] for

solving inverse problems. If we use the final ensemble mean log ax̃ :=
1
M ∑M

m=1 log a(Niter)
xm as our estimate for the (true) log-coefficients log ax⋆ , choos-

ing a constant regularization value αn = 1/Niter can lead to a good data

approximation f (log ax̃) ≈ D, but a poor recovery log ax̃ ̸≈ log ax⋆ [84].

6.1.3 Computer experiments

The 2D Elliptic PDE considered in this section consists of a two-phase (oil-

water) Darcy flow simulator. Various versions of this simulator were used

in petroleum engineering and groundwater modeling applications [25, 46,

83, 84, 4]. The work [46] is also the source of our numerical simulator; for

a mathematical description, see Equations 79-80 in [83]. We use a 31 × 31

discretization of [0, 1]2 for a reservoir model, with one injection well I1 at

location (3, 3) and two producing wells P1 and P2 at location (15, 29) and

(27, 7), respectively (see Figure 50). The inverse problem D = f (log ax) + ϵ

consists of recovering the PDE log-coefficients log ax⋆ ∈ R31×31 according

to this discretization, which corresponds to recovering the log-permeability

field of the reservoir. In this regard, we use a collection of observations

D := (D1, . . . ,D36) ∈ R36, where at T0 := 12 time points we observe the

bottomhole presure at the injector well I1 (D1, . . . ,D12), and oil extraction

rates at P1 (D13, . . . ,D24) and P2 (D25, . . . ,D36), respectively. The noise

level ϵ ∼ N36(0, σ2
n I36) is considered to be σ2

n = 25 · 10−4|| f (log ax⋆)||22, i.e.

approximately 5% of the noise-free data f (log ax⋆).
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Figure 50: The reservoir model considered in this section, with one injec-

tion well I1 at location (3, 3) and two producing wells P1 and

P2 at location (15, 29) and (27, 7), respectively. We plot one con-

figuration for PDE coefficients log ax ∈ R31×31 (i.e. one possible

log-permeability field for the reservoir), sampled from a generic

GRF prior which is not used in this work.

We employ the BNN prior from Subsection 6.1.1. As discussed in [121],

the BNN parameter β from (58), (59), and (60) controls the complexity of

the prior samples log ax = (gNN(yij))
31,31
i=1,j=1, whereas (σ2

wl
, σ2

bl
)L+1

l=1 controls

the variance of these samples. Smaller values of β (i.e. β ≈ 1) lead to

more complex samples (see Figure 3 in [121]); indeed, we use β = 1.0001 in

this work. We consider two cases, i.e. a shallow (one hidden layer) neural

network (L = 1), and a deep neural network (L = 3), respectively. In these

cases, we have chosen the variance parameters (σ2
wl

, σ2
bl
) by trial-and-error,

such that the resulting prior samples log ax have an interesting structure.

In Figure 51, we show three prior samples from the BNN prior with one

hidden layer, whereas in Figure 52 we show three prior samples from the

deep BNN prior with three hidden layers.

The true log-permeability log ax⋆ ∈ R31×31 (Figure 53) is sampled using a

Karhunen-Loève decomposition (22) of a squared-exponential GRF of long

lengthscale:

Cov[log ax(s), log ax(t)] = exp(−l−2||s − t||22), (63)
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Figure 51: (Best viewed in colour) Samples from the BNN prior with one

hidden layer.

Figure 52: (Best viewed in colour) Samples from the deep BNN prior with

three hidden layers.

where l = 10. We use a GRF with a long lengthscale, since we have noticed

that the BNN prior samples do not look similar to samples produced via a

Karhunen-Loève decomposition of GRFs of short lengthscale.

Since we use the Darcy flow simulator from [46], we also use the same

EKI algorithm ES-MDA (Algorithm 6), with a fairly low number of parti-

cles M = 100. In Figure 54, we plot the true log-permeability field log ax⋆ ,

together with the final EKI ensemble mean log ax̃ = 1
M ∑M

m=1 log a(Niter)
xm from

Figure 53: (Best viewed in colour) True log-permeability log ax⋆ ∈ R31×31
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the three different prior distributions, and thus three different ensembles

of initial particles {log a(0)xm }M
m=1. The prior distributions are as follows: the

one-hidden layer BNN with samples from Figure 51 (‘NN prior’ in Figure

54), the three hidden layer BNN with samples from Figure 52 (‘Deep NN

prior’), and finally, the same prior which generated log ax⋆ (‘GRF prior’).

While the well-specified GRF prior leads to the best approximation of

log ax⋆ , we see that the two misspecified BNN priors also lead to a good

recovery of the main features of log ax⋆ . The single hidden layer BNN (‘NN

prior’ in Figure 54) seems to better recover the smoothness of log ax⋆ com-

pared to its three layer counterpart (‘Deep NN prior’). This is better demon-

strated in Figure 55 and 56, where for the single hidden layer BNN and

the three layer BNN, respectively, we plot various samples log a(Niter)
xm from

the final ensemble of particles, which we regard as approximate samples

from the posterior distribution p(log ax|D). For completeness, we present

the corresponding EKI samples obtained from the GRF prior (63) in Figure

57, which seem to best capture the smoothness of log ax⋆ (Figure 53), as

expected.

We conclude with a standard computer experiment in petroleum engi-

neering [46], where the simulator outputs corresponding to samples from

the final EKI iteration { f (log a(Niter)
xm )}M

m=1 are compared with the true simu-

lator response f (log ax⋆). As discussed, the observations D are collected at

T0 = 12 time points. We will extend the simulator to T := T0 + t = 17 time

points, i.e. we include 5 additional (future) time points. We would like to

check how well { f (log a(Niter)
xm )}M

m=1 compare with f (log ax⋆) at those future

time points. Furthermore, we have only assimilated bottomhole pressure

values at the injector well (I1 in Figure 50), and oil extraction rates at the

two producers P1 and P2 (Figure 50); we will additionally extend the sim-

ulator to include the water production rates (at producer P1) for the same

T = T0 + t = 17 time points. In this way, we assess the performance of the

final EKI ensemble in terms of prediction for new physical measurements.
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Figure 54: (Best viewed in colour) The true log-permeability field log ax⋆ ,

together with estimates log ax̃ from the final EKI iteration for var-

ious prior distributions for the initial particles {log a(0)xm }M
m=1. The

axes of all the plots represent the 31 × 31 discretization of [0, 1]2

Figure 55: (Best viewed in colour) Samples from the last EKI iteration for

the BNN prior with one hidden layer
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Figure 56: (Best viewed in colour) Samples from the last EKI iteration for

the deep BNN prior with three hidden layers

Figure 57: (Best viewed in colour) Samples from the last EKI iteration for

the GRF prior (63)

We present the results for the EKI procedure using as initial particles the

classical (Karhunen-Loève) GRF prior samples (Figure 58), the one hidden

layer BNN prior samples (Figure 59), and the three hidden layer deep BNN

prior samples (Figure 60), respectively. We see that { f (log a(Niter)
xm )}M

m=1 is

able to match the observed data D for all the priors, although some of the

EKI samples with the deep BNN prior are significantly outside the noise

level σn (e.g. Figure 60 for bottomhole pressure at the injector well). In

terms of prediction at the additional 5 time points (i.e. t ∈ {13, . . . , 17}),

and for the new physical measurements (i.e. water production rates), we

observe that the EKI samples obtained from the one hidden layer BNN prior

(Figure 59) return similar predictions to the EKI samples with the classical

GRF prior (Figure 58); recall that the true log-permeability field log ax⋆ was

sampled from this classical GRF prior. Finally, the predictions provided by

the EKI samples with the deep BNN prior (Figure 60) have a significantly

larger variance, with many of the samples far away from f (log ax⋆).
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Figure 58: Simulator responses for the last EKI iteration for the GRF prior

(63)
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Figure 59: Simulator responses for the last EKI iteration for the one hidden

layer BNN prior
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Figure 60: Simulator responses for the last EKI iteration for the three hidden

layer BNN prior
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Figure 61: Discontinuous true log-permeability log ax⋆ ∈ R31×31

Therefore, one conclusion is that the BNN parametrization (with one hid-

den layer) exhibits similar ES-MDA inversion performance with the GRF

prior (63) that was used to generate the true log-permeability field (Figure

53). We will now demonstrate that for a discontinuous log-permeability

field log ax⋆ (Figure 61), the BNN parametrization can significantly outper-

form the GRF prior (63). Channelized log-permeability fields similar to

Figure 61 have been extensively considered in the inverse problems litera-

ture, due to their application in petroleum engineering and groundwater

modelling [86, 21].

In Figure 62, we plot the true discontinuous log-permeability field log ax⋆ ,

together with the final ES-MDA ensemble mean log ax̃ = 1
M ∑M

m=1 log a(Niter)
xm

from the two different prior distributions, and thus two different ensem-

bles of initial particles {log a(0)xm }M
m=1. The prior distributions are as follows:

the one-hidden layer BNN discussed so far (‘NN prior’ in Figure 62), and

the GRF prior (63) (‘GRF prior’). We see that the one-hidden layer BNN

parametrization captures the features of log ax⋆ , since it correctly recovers

the three discontinuous regions (channels) of different permeability values;

the classical GRF prior is unable to capture these features. For completeness,

we present Figure 63 and 64, where for the single hidden layer BNN and the

classical GRF prior, respectively, we plot various samples log a(Niter)
xm from the

final ensemble of particles, which we regard as approximate samples from



6.1 neural network prior for ensemble kalman inversion (eki) 145

Figure 62: (Best viewed in colour) The true discontinuous log-permeability

field log ax⋆ , together with estimates log ax̃ from the final EKI

iteration for various prior distributions, and hence various initial

particles {log a(0)xm }M
m=1

Figure 63: (Best viewed in colour) Samples from the last EKI iteration for

the BNN prior with one hidden layer

the posterior distribution p(log ax|D). The same conclusion drawn from

Figure 62 applies to these samples, i.e. the BNN parametrization recovers

the features of log ax⋆ , as opposed to the classical GRF prior.

Finally, regarding the simulator responses of the final EKI iteration sam-

ples for different physical measurements, we present analogue results for

Figure 59 and Figure 58, in Figure 65 and Figure 66, respectively, for the the

one hidden layer BNN parametrization and the classical GRF prior. Note

that for this discontinuous true log-permeability case, the water production

rates are zero for all t ∈ {1, . . . , 17}. The EKI samples corresponding to the

BNN parametrization return far fewer non-zero water production rates (Fig-

ure 65) compared with the classical GRF prior (Figure 66); recall that water

production rates were not included (assimilated) in our observed measure-
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Figure 64: (Best viewed in colour) Samples from the last EKI iteration for

the GRF prior (63)

ments D. Regarding bottomhole pressure and oil extraction rates, the two

priors lead to similar performance.

In conclusion, we have shown that the BNN parametrization for GRF pri-

ors that was recently introduced in [143] can potentially be useful for solv-

ing inverse problems with Darcy flow simulators via EKI. One interesting

question is what happens if instead of using a fixed set of BNN parame-

ters (α, σ2
wl

, σ2
bl
)L+1

l=1 , we use M samples {(α(m), (σ2
wl
)(m), (σ2

bl
)(m))L+1

l=1 }
M
m=1 as

our initial particles for EKI (e.g. sampled from a Uniform of Gaussian hi-

erarchical prior distribution). The existing work [22] showed that hierar-

chical EKI parametrizations can significantly outperform the standard EKI

parametrization for initial particles {log a(0)xm }M
m=1. Unfortunately, while try-

ing these experiments, we did not see any benefits from using this hier-

archical BNN parametrization for EKI, nor from using multiple layers or

convolutional neural networks (CNN) (e.g. very deep and relatively wide

networks with the alternative BNN prior variances suggested by [121], or

the convolutional architecture used for the recently introduced deep Gaus-

sian Markov random fields [150]).

6.2 gaussian process emulation within eki

The work [91] proposed using a GP emulator within an EKI algorithm

known as the Iterative Ensemble Smoother (IES) [25, 24], so that the com-
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Figure 65: Simulator responses for the last EKI iteration for the one hidden

layer BNN prior (discontinuous true log-permeability field from

Figure 61); for the water rates, the blue line overlaps with 0
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Figure 66: Simulator responses for the last EKI iteration for the GRF prior

(63) (discontinuous true log-permeability field from Figure 61);

for the water rates, the blue line overlaps with 0
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putational burden of applying the forward simulator for each of the M par-

ticles at every EKI iteration (see e.g. Algorithm 6) will be alleviated by re-

placing the simulator with a fast GP emulator for some of the particles. Our

goal is to look at this procedure within the novel EKI method EKI-DMC

[82], and to propose one potential improvement regarding the GP training

set design.

This section is organized as follows. In Subsection 6.2.1, we will briefly

introduce EKI-DMC. In Subsection 6.2.2, we propose a potential improve-

ment for the original procedure from [91]; our contribution involves a new

approach for selecting the GP training points, based on the strategy pro-

posed by [59] for a different family of inverse problem methods known

as History Matching (HM) [175, 168]. We demonstrate the benefits of our

proposed procedure for a groundwater modelling inverse problem in Sub-

section 6.2.3.

6.2.1 EKI with data misfit controller (EKI-DMC)

Let D = f (log ax) + ϵ be the inverse problem setting from Subsection 6.1.2.

Compared with ES-MDA (Algorithm 6) from the previous section, EKI-

DMC (Algorithm 3 from [82]) is an adaptive EKI algorithm, i.e. the number

of iterations Niter and the regularization parameters {αn}Niter
n=1 are not fixed a-

priori. At every iteration, αn is chosen (see Step 2. in Algorithm 7) such that

the Jeffrey’s divergence between the intermediate (tempering) measures (61)

DKL,2(pn+1, pn) : = DKL(pn+1||pn) + DKL(pn||pn+1),

is bounded by θ, where θ is selected according to the classical Morozov’s

discrepancy principle [116], applied for the inverse (sub-)problem D =

f (log ax) +
√

αnϵ, with prior distribution pn(log ax|D) and posterior distri-

bution pn+1(log ax|D) (see Remark 1 in [82]); recall that the KL divergence

DKL was defined in (51). EKI-DMC is the first EKI algorithm which does

not require any tuning hyperparameters (in the original version with no
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emulators [82]; the emulator setting presented here does require few hy-

perparameters, as discussed in Section 6.2.2), and its advantages compared

with the existing EKI methods in terms of speed (i.e. low Niter) and accu-

racy (e.g. log ax̃ ≈ log ax⋆ , where log ax̃ := 1
M ∑M

m=1 log a(Niter)
xm is the final

ensemble mean) have been shown in the computer experiments of [82].

6.2.2 Gaussian Process emulation within EKI-DMC

Let D = f (x) + ϵ be a classical inverse problem with forward simulator

f : RD → Rq. As usual, ϵ ∼ Nq(0, σ2
n Iq) describes the modelling and

observational errors. The original idea from [91] is very simple and straight-

forward to implement within any EKI algorithm. Namely, for each output

f j(x) (j ∈ [q]), the forward simulator is replaced by a GP emulator [ fGP(x)]j

(3), while taking into account the GP predictive uncertainty; we will shortly

discuss the selection of training points and thus the construction of the GP

emulator. For any input x, the GP predictive uncertainty k̄ j(x, x) is added

to the original noise of the inverse problem, which results in the following

modified likelihood: pGP(Dj|x) = N (Dj|m̄j(x), σ2
n + k̄ j(x, x)), where m̄j(x)

is the GP predictive mean which tries to approximate f j(x).

We present a generic algorithmic version of GP emulation within EKI-

DMC in Algorithm 7. The GP training set, and thus the GP emulator

is updated at every EKI iteration. The initial particles {x(0)m }M
m=1 provide

Nbase < M training points {x(0)mk0
, f (x(0)mk0

)}Nbase
k0=1; the resulting GP emulator

fGP(x) := ([ fGP(x)]1, . . . , [ fGP(x)]q)T is used as a fast computational re-

placement of the expensive simulator for the remaining M − Nbase particles.

At every further iteration n, we augment the training set with additional

Nadd < Nbase points {x(n)mkn
, f (x(n)mkn

)}Nadd
kn=1.
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Algorithm 7 GP emulation within EKI-DMC

M : number of particles

n = 0 : first iteration

{x(0)m }M
m=1 : initial ensemble of particles, sampled from the prior p(x)

tn = 0 : initial regularization

{x(0)mk0
, f (x(0)mk0

)}Nbase
k0=1: initial GP training points, selected from the initial

ensemble of particles (Nbase < M)

Nadd < Nbase : no. of additional GP training points at every EKI iteration

while tn < 1 do

1. Train the GP emulator using the current training set; the resulting

GP posterior N ([ fGP(x)]j|m̄j(x), k̄ j(x, x)) will replace f j(x) for j ∈ [q]

2. Compute the regularization parameter αn+1 via

α−1
n+1 := min

{
max

{ q
2E[δ2]

,
√

q
2Var[δ2]

}
, 1 − tn

}
,

where E[δ2] and Var[δ2] are the empirical mean and variance, respec-

tively, of the data misfits δ2(x(n)m ) := 1/2||(Σobs + k̄(x(n)m , x(n)m ))−1/2(D−

m̄(x(n)m ))||22 for m ∈ [M] (we write m̄(x) := (m̄1(x), . . . , m̄q(x))T and

k̄(x, x) := diag(k̄1(x, x), . . . , k̄q(x, x)) ∈ Rq×q using our GP emulator)

3. Update each particle m ∈ {1, . . . , M} according to Step 1. in Algo-

rithm 6 (we point to Algorithm 6 in order to keep the notation here com-

pressed), where the likelihood p(Dj|x) = N (Dj| f j(x), σ2
n) is replaced by

pGP(Dj|x) = N (Dj|m̄j(x), σ2
n + k̄ j(x, x)) for every output j ∈ [q]

4. n := n + 1

5. tn := tn + α−1
n

6. From the updated set of particles {x(n)m }M
m=1, add {x(n)mkn

, f (x(n)mkn
)}Nadd

k=1

to the GP training set

end while

return Niter := n (the total number of iterations) and x̃ = 1
M ∑M

m=1 x(Niter)
m

This iterative strategy for constructing the training set proved to be more

effective than using a training set of equivalent size Nbase + Niter × Nadd, but
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with inputs sampled from the prior distribution p(x) before performing

EKI (see Figure 4 in [91]). Intuitively, this makes sense, as we want our

GP emulator to be more accurate in the high posterior density regions of

p(x|D), where the EKI-DMC particles are likely to eventually end up.

In the original work [91], the additional Nadd training points {x(n)mkn
, f (x(n)mkn

)}Nadd
k=1

(Step 6. in Algorithm 7) are sampled at random from the particles {x(n)m }M
m=1

present at every iteration n. Our contribution is to adapt a maxi-min exper-

imental design recently introduced in [59], in order to select Nadd training

points that will hopefully improve the quality of emulation and uncertainty

quantification. Namely, all particles at the current iteration are ranked ac-

cording to their GP predictive uncertainty (assuming it is well-calibrated,

e.g., via cross-validation) {∑
q
j=1 k̄ j(x(n)m , x(n)m )}M

m=1. Out of the most uncer-

tain Nunc particles {x̃(n)m }Nunc
m=1, we add Nadd points {x̃(n)mk , f (x̃(n)mk )}

Nadd
k=1 to the

GP training set according to Algorithm 8.

Algorithm 8 The addition of Nadd GP training points at EKI iteration n

Dn: GP training set of size Nbase + (n − 1)× Nadd before EKI iteration n

Nunc ≤ M: threshold hyperparameter

{x̃(n)m }Nunc
m=1: particles of highest GP predictive uncertainty from {x(n)m }M

m=1

x̃(n)m1 : most uncertain point
(
x̃(n)m1 := arg maxm≤Nunc ∑

q
j=1 k̄ j(x̃(n)m , x̃(n)m )

)
x̃(n)m2 : next furthest point (x̃(n)m2 := arg max

x′∈{x̃(n)m }Nunc
m=1

||x̃(n)m1 − x′||2)

: include both (x̃(n)m1 , f (x̃(n)m1 )) and (x̃(n)m2 , f (x̃(n)m2 )) in the GP training set Dn

for p ∈ {3, . . . , Nadd} do

1. Let x̃(n)mp be the point from {x̃(n)m }Nunc
m=1 which is furthest away to the

GP training set Dn, using the distance maxx′∈Dn ||x̃
(n)
mp − x′||2

2. Include (x̃(n)mp , f (x̃(n)mp )) in the GP training set Dn

end for

This design was proposed for the inverse problems procedure known

as History Matching (HM); see [168] for an introduction to HM and one

application in cosmology, and [175] for an application in climate modelling.

In HM, every iteration returns (smaller and smaller) plausible regions for
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the unknown parameter xtrue, starting from the prior distribution p(x) at the

first iteration. The maxi-min design from Algorithm 8 was introduced by

[59] as a way to use these plausible regions in order to improve the quality

of a GP emulator for the simulator within the HM procedure. We share

a similar goal in this work, although we use the particles returned by EKI

instead of the regions returned by HM.

6.2.3 Computer experiments

In this subsection, we consider an inverse problem based on an Elliptic-

PDE simulator f : RD → R400, evaluated at 400 points of the domain [0, 1]2.

The Elliptic-PDE simulator is still a Darcy flow model, but this time we

consider a groundwater single-phase steady-state simulator, whose math-

ematical description can be found in Equations 11-14 of [84]. The inputs

follow a standard multivariate Gaussian prior x ∼ ND(0, I), which gen-

erate the squared-exponential Gaussian random field (GRF) prior of long

lengthscale (63) for the PDE coefficients, using the Karhunen-Loève decom-

position (21). We sample xtrue from N (0, I100), which is used to generate

the observations D = f (xtrue) + ϵ. The noise level ϵ ∼ N400(0, σ2
n I400) is

set to σ2
n = 10−4|| f (xtrue)||22, i.e. approximately 1% of the noise-free data

f (xtrue). To simplify notation, we write Σobs := σ2
n I400. We use D = 12 for

our inverse problem, since we have noticed that the ratio between the (cum-

mulative) Karhunen-Loève eigenvalues is ∑12
i=1 λi/ ∑100

i=1 λi ≈ 0.95, i.e. the

first 12 Karhunen-Loève coefficients capture 95% of the variance explained

by the first 100 Karhunen-Loève coefficients, which were used to sample

xtrue.

We use independent GP emulators for each output {[ fGP(x)]1, . . . , [ fGP(x)]400},

as a standard multi-output GP implementation where the correlation be-

tween outputs is taken into account [17] lead to under-confident predic-

tions (i.e. too large predictive uncertainties). We compare the two GP train-

ing designs for Step 6. of Algorithm 7, i.e. adding Nadd training points
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{x(n)mkn
, f (x(n)mkn

)}Nadd
kn=1 at random from the particles {x(n)m }M

m=1 at every itera-

tion n [91], versus the design proposed in Algorithm 8.

We will assess the performance of Algorithm 7 in terms of the total num-

ber of iterations Niter and the final data misfit δ2 := ||(Σobs + k̄(x̃, x̃))−1/2(D−

m̄(x̃))||22, where x̃ := 1
M ∑M

m=1 x(Niter)
m is the ensemble mean at the final EKI

iteration, m̄(x̃) := (m̄1(x̃), . . . , m̄400(x̃))T is the GP predictive mean, and

k̄(x̃, x̃) := diag(k̄1(x̃, x̃), . . . , k̄400(x̃, x̃)) ∈ R400×400 is the GP predictive un-

certainty; the GP posterior (m̄, k̄) is the GP emulator from the final EKI

iteration. Under the assumption D ∼ N400(m̄(x̃), Σobs + k̄(x̃, x̃)), we see

that δ2 follows a Chi-squared distribution with 400 degrees of freedom, and

thus E[δ2/400] = 1, V[δ2/400] = 2/400 = 0.005. As a result, we consider

δ2/400 ≈ 1 to be indicative of a successful GP emulation procedure within

EKI-DMC. We have used a standard number of particles M = 300, with

Nbase = 50 and Nadd = 10 for training the GP emulator. We have used

the uncertainty threshold Nunc = 50 in Algorithm 8, as a larger threshold

Nunc = 100 or Nunc = 200 did not improve the EKI performance.

Table 9: Performance of GP emulation within EKI-DMC (mean and stan-

dard deviation over 10 EKI-DMC trials). Best performing method

is shown in bold (i.e. better data misfit δ2/400 ≈ 1, smaller number

of iterations Niter and simulator calls (evaluations)).

random design [91] proposed (Algorithm 8)

Niter 8.1 ± 1.51 5.6 ± 1.28

Simulator calls 131 ± 15 106 ± 13

δ2/400 1.64 ± 0.95 1.11 ± 0.16

We present the results in Table 9. They are very encouraging, as the

results show a clear advantage both in terms of speed of EKI-DMC conver-

gence (smaller Niter) and data misfit (δ2/400 ≈ 1) for the proposed GP train-

ing design. We have additionally performed several EKI-DMC trials using
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the original simulator instead of the GP emulator; this resulted in a slightly

smaller number of EKI-DMC iterations compared with the GP emulator ap-

proaches from Table 9, as also observed in the similar experiment from [91].

Therefore, the low number of iterations achieved by our proposed design is

not unreasonable. Note that each EKI-DMC iteration with the original sim-

ulator requires M = 300 forward simulator evaluations, whereas our GP

emulation based procedure runs for at most 10 EKI-DMC iterations, and

hence it uses at most Nbase + 10 × Nadd = 50 + 10 × 10 = 150 simulator

evaluations (calls) in total.

As shown for one of the 10 trials in Figure 67 (random design [91]) and

Figure 68 (proposed design (Algorithm 8)), both GP training designs result

in a relatively good visual approximation for the final EKI-DMC ensemble

mean log ax̃ := 1
M ∑M

m=1 log a(Niter)
xm with regard to the true log-conductivity

field log axtrue (as usual, we write log ax for the Elliptic PDE log-coefficients

corresponding to the Karhunen-Loève coefficients x (21)). Note that the

same conclusion applies to all the trials, and that the visual approximation

is in line with using EKI-DMC with the original simulator (i.e. with no GP

emulation).

We will further investigate these results in future work; one observation

is that the proposed design shortens the gap between the GP predictive

uncertainties. In other words, using the random design from [91], there is

a larger GP uncertainty gap between the high uncertainty particles and the

low uncertainty particles, during most EKI-DMC iterations of Algorithm 7.

One interesting question is whether we can find better GP training designs

for EKI; one popular sequential design known as Mutual Information for

Computer Experiments (MICE) [11] did not improve the EKI performance,

and it was much slower than the proposed design (Algorithm 8), as for

every particle x(n)m for m ∈ [M], MICE needs to employ M× 400 separate GP

models. The work [176] presents an alternative design for History Matching,

which we will consider in future work.
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Figure 67: (Best viewed in colour) True log-conductivity log axtrue (left) and

the final EKI ensemble mean log ax̃ for the GP emulation proce-

dure with the random design [91] (right)

Figure 68: (Best viewed in colour) True log-conductivity log axtrue (left) and

the final EKI ensemble mean log ax̃ for the GP emulation proce-

dure with the proposed design (Algorithm 8) (right)



7
C O N C L U S I O N S A N D F U T U R E W O R K

To recap, the methods studied in this thesis are motivated by problems

in the field of Computational Statistics. We have focused on two types

of methods, i.e. Gaussian Process (GP) emulators and Bayesian Inverse

Problems. From the GP emulators perspective, we have thoroughly studied

various dimension reduction methods such as Active Subspaces (AS), Prin-

cipal Component Analysis (PCA), Sufficient Dimension Reduction (SDR),

embedding learning methods, and random embedding methods. From the

Bayesian Inverse Problems perspective, we have shown the applicability of

our GP contributions through various inverse problems methods such as

Markov Chain Monte Carlo (MCMC), Randomized Maximum Likelihood

(RML), and Ensemble Kalman Inversion (EKI). We have demonstrated the

versatility of our methods in a variety of real-world applications, such as

epidemiology [44, 105], hydrology [68], aerodynamics [107], groundwater

modelling [84], and petroleum engineering [46]. We now proceed by de-

scribing our contribution from each chapter.

In Chapter 2, we have shown that the magnitude of the Karhunen-Loéve

eigenvalues (21) is crucial for method comparison, as for a fixed rate of

decay for the eigenvalues, the high-dimensional GP baseline (with no di-

mension reduction) can outperform Principal Component Analysis (PCA) at

smaller magnitudes, while the opposite is true at larger magnitudes. While

some works only point out the percentage of the prior variance explained by

the first d coefficients {λi}d
i=1 when using PCA for GP emulation [15], our

157
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work is the first one to outline the additional importance of the magnitude

of KL coefficients when considering PCA as an alternative option to the

high-dimensional GP baseline. For future work, we would like to attempt a

new theoretical result based on this observation, as well as to consider other

simulators apart from the Elliptic PDE from Section 2.4.

In Chapter 3, we have presented a variety of computer experiments in or-

der to showcase the performance of various supervised and unsupervised

dimension reduction methods. One conclusion is that all the unsupervised

dimension reduction methods achieved a similar performance, and that su-

pervised dimension reduction methods are beneficial when we have enough

training data. The gradient-based active subspace is the best performing

method, although gradients of the simulator are often unavailable in prac-

tice, as discussed in Section 1.3. Regarding gradient-free methods, maxi-

mum likelihood embedding learning seems to perform best in the medium-

large training data regime, with the caveat that it can actually be the worst

performing method in the very small data regime. For future work, we

would like to investigate different prior distributions for the input space,

so that the unsupervised dimension reduction methods may exhibit a more

diverse and (potentially) better performance.

In Chapter 4, we have presented a (gradient-free) version of the (gradient-

based) AS-MCMC procedure [31], which we call learned embedding AS-

MCMC (LE-AS-MCMC). We have demonstrated that LE-AS-MCMC can ex-

ploit the low-dimensional active subspace structure of log-likelihoods in

various Bayesian inverse problems, and can achieve successful and efficient

posterior sampling. In addition, we have shown that a neural network em-

ulator can adapt faster than the learned embedding GP (20) to the intrinsic

low-dimensionality corresponding to the active subspace (i.e. the NN re-

quires a smaller number of training points), although the neural network

cannot be easily adapted for efficient low-dimensional posterior sampling

due to its high-dimensional input. For future work, we would like to inves-
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tigate the theoretical properties of our procedure LE-AS-MCMC, starting

from the theoretical guarantees offered by AS-MCMC in [31].

In Chapter 5, we propose HD-BO-RML, in which the high-dimensional

Bayesian Optimization (HD-BO) machinery is used to tackle the Random-

ized Maximum Likelihood (RML) methodology for posterior sampling, in

case of log-likelihoods with an active subspace structure. From a poste-

rior sampling perspective, we are not aware of any existing methodology

that tackles this challenging case of high-dimensional priors without a low-

dimensional structure, coupled with high-dimensional log-likelihoods with

an active subspace, where the tight computational budget does not allow

for a good estimation of the active subspace. From a Bayesian optimiza-

tion perspective, we are not aware of any previous work on multi-objective

HD-BO with random embeddings, for a relatively large number of objective

functions (nRML = 20). As demonstrated in the experiments arising from

various domains, the methodology can outperform alternative gradient-free

optimization methods and has potential to be used in many real-world ap-

plications. For future work, as discussed in Section 5.6, we would like to

consider a larger class of Bayesian inverse problems by removing the active

subspace assumption, via an alternative multi-objective HD-BO methodol-

ogy that does not require this assumption. One such example is MORBO

[42], which uses local GP models in high-dimensions. It would be inter-

esting to see if MORBO can be extended to a larger number of objective

functions (e.g. 20), in order to obtain a significant number of approximate

posterior samples via RML.

Finally, in Chapter 6, we have shown that the Bayesian neural network

(BNN) parametrization for Gaussian random field (GRF) priors that was re-

cently introduced in [143] can potentially be useful for solving inverse prob-

lems with Darcy flow simulators via Ensemble Kalman Inversion (EKI). For

future work, we would like to find a useful hierarchical EKI parametriza-

tion based on the BNN parameters {((σ2
wl
), (σ2

bl
))L+1

l=1 } (57), although our

attempts so far were not particularly encouraging. Furthermore, we have
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demonstrated that for the GP emulation approach within EKI, the random

design strategy for selecting the training points of the original work [91]

can be significantly improved by the experimental design from Algorithm

8, which is adapted from the History Matching (HM) work [59]. For future

work, we would like to investigate whether this observation translates to

other Bayesian inverse problems, apart from the groundwater application

considered here. We will also consider other GP training designs within

EKI, such as the alternative strategy [176] from HM.
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