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Abstract

The overarching theme of this thesis is the study of Stein’s method on manifolds.

We detail an adaptation of the density method on intervals in R to the unit circle

S1 and give examples of bounds between circular probability distributions. We also

use a recently proposed framework to bound the Wasserstein distance between a

number of probability measures on Riemannian manifolds with both positive and

negative curvature. Particularly, a finite parameter bound on the Wasserstein

metric is given between the Riemannian-Gaussian distribution and heat kernel

on H3, which gives a finite sample bound of the Varadhan asymptotic relation

in this instance. We then develop a new framework to extend Stein’s method to

probability measures on manifolds with a boundary. This is done by the addition

of a local time term in the diffusion. We find that many results carry over, with

appropriate modifications, from the boundary-less case.
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Chapter 1

Introduction

1.1 Stein’s Method

It was in 1972 that Charles Stein first published [Ste72], the foundations to the

method that would later bear his name. He originally used this method as a tool

for providing an alternative proof for the central limit theorem for sums of random

variables. This work was later refined and formalised in [Ste86] which can also be

recognised as the real starting point for Stein’s method.

The main objective of Stein’s method is to find a way to bound an integral

probability metric between two random variables X, Y

dH(X, Y ) = sup
h∈H
|E[h(X)]− E[h(Y )]| (1.1)

where H is some space of test functions.

Stein’s idea, in principle, is simple. He found a characterization of the normal

distribution in terms of a differential operator. With that differential operator in

hand, it was possible for him to bound integral probability metrics, specifically

the Kolmogorov metric, and show convergence in distribution between the normal

distribution and sums of non-independent random variables.

The characterization can be expressed within the eponymous lemma:
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1.1. Stein’s Method

Lemma 1.1.1 (Stein’s Lemma). Suppose Z ∼ N(µ, σ2) and let g ∈ C1(R) be a

function such that (Id− µ)g ∈ L1(Z) and g′ ∈ L1(Z), then

E[(Z − µ)g(Z)] = σ2E[g′(Z)].

The operator Af(x) = σ2f ′(x)− (x− µ)f(x) is known as the canonical Stein

operator for the normal distribution, and Stein’s lemma can be rewritten in terms

of the operator so that E[Af(Z)] = 0.

The ingenuity of the method is presented to us via the Stein equation. Stein

decided to formulate an auxiliary function by equating the Stein operator and a

function that resembles the formulation of the metric;

σ2f ′h(x)− (x− µ)fh(x) = h(x)− E[h(Z)]. (1.2)

The function fh is known as the solution to the Stein equation. It is clear that

when we take expectations under Z on the right hand side, we obtain 0. The left

hand side also agrees with this outcome by recognising Stein’s lemma.

The metric can be obtained by taking expectations with respect to another

random variable X,

dH(X,Z) = sup
h∈H
|E[h(X)]− E[h(Z)]| = sup

h∈H
|E[σ2f ′h(X)− (X − µ)fh(X)]|. (1.3)

This single equation permits us to reduce the original problem of calculating (1.1),

a rather difficult one involving two random variables, into a more manageable

problem involving a single random variable. By bounding the right hand side of

(1.3), we can bound the metric without having to compute any expectations with

respect to Z. To do this, we typically need bounds on the solution to the Stein

equation fh. The Stein equation can be explicitly solved, in the case of a standard
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1.1. Stein’s Method

normal distribution. It takes the form

fh(x) = ex
2/2

∫ x

−∞
(h(u)− E[h(Z)])e−u

2/2du. (1.4)

We previously mentioned that H was some set of test functions, but we did not

elaborate about what kind of test functions are typically taken. There are three

different metrics which are primarily used when comparing distributions (each

metric is associated with a unique class of test functions), which are the following:

1. The Kolmogorov Metric dK — here we take H = {I{·≤z} : z ∈ R} which

describes the maximum distance between CDFs.

2. The Total Variation Metric dTV — here H = {I{·∈A} : A ∈ B(Rn)}, a

generalization of the Kolmogorov metric.

3. The Wasserstein metric dW — here we take H = {h : |h(x) − h(y)| ≤

|x− y|, x, y ∈ Rn}, which is also known as the earth moving distance, is the

metric that is central to optimal transport.

Depending on what set of test functions one takes the supremum over, the

behaviour of the solution (1.4) will change. For example, in both Kolmogorov and

Total Variation cases, every test function is not differentiable (in fact not even

continuous) and so we are restricted with how many derivatives we can take of fh.

This work will be primarily concerned with the bounding of the Wasserstein

metric and not of any other. There are two reasons for this: First, calculations

for the framework that we will introduce in Section 1.1.3 require test functions

to be differentiable. Second, convergence in the Wasserstein metric implies weak

convergence. More concretely, suppose X is a random variable and {Xn}n∈I are a

sequence of random variables. If limn→∞ dW (Xn, X) = 0, then Xn
P→ X as n→∞

where
P→ is convergence in probability.

Cumulative distribution functions do not make sense to have on a manifold,

and so the Kolmogorov metric does not exist. Bounds on the total variation metric

7



1.1. Stein’s Method

have been calculated on
√
nSn (the n-sphere of radius

√
n) in [Mec09] and [DF87],

but both use mainly geometric approaches.

To bound the solution, one can utilise properties of the CDF of the normal

distribution. Below is a standard result within Stein’s method on the properties

of (1.4) [CGS10]:

Lemma 1.1.2. For a given function h : R→ R, let fh be the solution (1.4) to the

Stein equation (1.2). If h is bounded, then

‖fh‖∞ ≤
√
π

2
‖h− E[h(Z)]‖∞ and ‖f ′h‖∞ ≤ 2 ‖h− E[h(Z)]‖∞ .

If h is absolutely continuous, then

‖fh‖∞ = ‖f ′′h‖∞ = 2 ‖h′‖∞ , and ‖f ′h‖∞ ≤
√

2

π
‖h′‖∞ .

Here, the notation ‖·‖∞ is the infinity norm of a function, i.e. ‖f‖∞ =

supx∈Rn |f(x)|. The first half of this lemma is used to bound the Kolmogorov

metric, since hz(x) = Ix≤z is not continuous at x = z. The latter half is used for

bounding the Wasserstein metric, since it is the set of functions with Lipschitz

constant 1, so these inequalities simplify on applying ‖h′‖∞ = 1.

With the solution and its derivatives bounded we may use any tools in the

literature to bound E[Afh(X)] given the above lemma. This includes, but is not

limited to: sums of random variables, exchangeable pairs, a-stein pairs, size-bias

and zero-bias coupling — see [Ros11] for a brief overview of all of these topics.

The choice one makes to use one of the above is usually based upon the context

of the problem at hand.

Not only is a Stein method readily available for the normal distribution, but

also for many popular univariate distributions such as: Gamma [Luk94], Beta

[Döb15], Exponential [CFR11] and Laplace [PR12] distributions. This is not re-

stricted to just continuous distributions, but to also discrete ones such as: Pois-

son [Che75], Geometric [Pek96] Binomial [LRS17b], Negative Binomial [BP99],
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1.1. Stein’s Method

Multinomial [Loh92] distributions. Our focus, however, shall be on absolutely

continuous distributions as the methods to construct Stein operators and the Stein

equation are able to encapsulate a useful subset of the space of probability mea-

sures.

Applications of Stein’s method are now very abundant and stretch from prov-

ing central limit theorems to applying methods in machine learning algorithms,

some of which are discussed below. One particularly popular use of Stein’s method

is known as the Kernel Stein Discrepancy (KSD) which is a modification of the

original objective discrepancy (1.3) which extends it to more test spaces and dis-

tributions;

S(p, q,G) = sup
g∈G
|Eq[Apg(Y )]|

where X ∼ p, Y ∼ q and Ap is a kernelized Stein operator for X. As an example, a

well used test space is the unit ball H = {g ∈ G : ‖g‖ = 1}. Though the KSD may

not generate a metric space, it does capture important qualities of distributional

convergence [GM15]. The KSD was introduced simultaneously in [LLJ16] and

[CSG16] (both appearing in ICML 2016) to be used as a tool in goodness-of-fit

testing. The concept is to construct a reproducing kernel Hilbert space H out of G

so that a general function f ∈ H may be written as f(x) = 〈f, k(·, x)〉H for some

kernel k by the reproducing property.

The KSD is a robust framework that has been utilised in many areas of com-

putational statistics. Applications include: measuring sample quality of Monte

Carlo variates [GM15]; a modification of the gradient descent known as Stein vari-

ational gradient descent [LW16]; optimally thinning an MCMC output [RCC+20];

numerically approximating integrals via Monte Carlo methods [BOPG18].

Though it is clear the research into statistical uses of Stein’s method has been

fruitful, probabilistic theory has also made strides. Nourdin and Peccatti es-

tablished a connection between Stein’s method and Malliavin calculus in [NP09]

which later led on to multivariate normal approximations [NPR10]. See [NP12]

for a general overview on the matter. The Malliavin calculus approach is regarded
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1.1. Stein’s Method

as the third approach to Stein’s method; the other two, the classical density and

diffusion approaches, are the main topics of focus within this work.

Before going into detail, we briefly present the density and diffusion approaches

for a general absolutely continuous distribution with density function p(x) in the

multidimensional setting. We then finalize the introductory part of Stein’s method

with a short study on the extension to manifold.

1.1.1 Density Approach

Suppose X is a probability distribution with density function p(x) on any open or

closed variant of the interval [a, b], a < b. We first want to find a Stein operator,

and to do that we look back on the form of the canonical Stein operator in Lemma

1.1.1 and make the ansatz that the operator A is a first order differential operator

Af(x) = f ′(x) + Ap(x)f(x),

where A is some functional acting on p. To find what A looks like, we calculate

E[f ′(X)]. By integration by parts,

E[f ′(X)] =

∫ b

a

f ′(x)p(x)dx,

= f(x)p(x)

∣∣∣∣b
a

−
∫ b

a

f(x)p′(x)dx.

Assuming that f(x)p(x)|ba = 0, we are left with

E[f ′(X)] +

∫ b

a

f(x)p′(x)dx = 0

This expression is 0, and since the expectation of the Stein operator must be 0

under p, the integral on the right hand side must relate to A somehow. We can

make the integral an expectation by writing

∫ b

a

f(x)p′(x)dx =

∫ b

a

f(x)
p′(x)

p(x)
p(x)dx = E[f(X)(log p)′(X)].
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1.1. Stein’s Method

We therefore have the more general form of the Stein lemma:

Lemma 1.1.3. Suppose X is a probability distribution with density p on an in-

terval −∞ ≤ a < b ≤ ∞ which satisfies p′ ∈ L1(dx). Moreover, let F(X) be some

class of functions, depending on X, satisfying f ′ ∈ L1(X) and f(a+)p(a+) =

f(b−)p(b−). Then

E
[
f ′(X) + f(X)

p′(X)

p(X)

]
= 0.

We may also write the Stein operator in the more compact form

Apf =
(fp)′

p
.

Remark. We note that there is no one definitive Stein operator. In fact there are

infinitely many Stein operators one could choose, for example in the normal case,

we could either choose from

A1f(x) = σ2f ′(x)− (x− µ)f(x)

directly from the Stein lemma 1.1.1, or

A2f(x) = f ′(x)− (x− µ)

σ2
f(x)

or even

A3f(x) = σ2f ′′(x)− (x− µ)f ′(x)

by using the lemma for general densities above. All three will give E[Aif(X)] = 0

meaning that either are valid Stein operators.

Henceforth, after obtaining a way to generate a Stein operator for a given den-

sity p, the procedure detailed at the start of this chapter is followed: constructing

the Stein equation, and bounding the solution and its derivatives. For a detailed

exposition of the general density method for densities on R, we refer the reader

to [LRS17b].
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1.1. Stein’s Method

A multidimensional extension of this general density method is presented in

[MRS18] in which one can also choose the type of derivative in the Stein operator.

For example, one can use the gradient function to define a vectorised Stein operator

Tpf =
∇(fp)

p

where f : Rn → R, or a divergence type operator

Tpf =
∇ · (fp)

p

where f : Rn → Rn is vectorised. The procedure of standardization of the Stein

operator is detailed in [MRS18, Section 3]. Briefly, these are groups of operators

that can be transformed interchangeably despite having different supports. For

example, the operators A1f(x) = f ′(x) − xf(x) and A2g(x) = g′′(x) − xg′(x)

for the standard normal distribution are essentially the same operator. General

solutions to the multidimensional version of the Stein equation are not readily

available for general densities p. In an effort to move towards generality, we now

detail a different approach to Stein’s method.

1.1.2 Diffusion Approach

Barbour was the first to notice [Bar90] that the infinitesimal generator of the

Ornstein-Uhlenbeck (OU) process can be used as a Stein operator for the normal

distribution. It is also true that the normal distribution is the stationary distri-

bution of the OU process, and therefore its invariant distribution. The Ornstein-

Uhlenbeck process is the solution to the Stochastic Differential Equation (SDE)

dXt = dBt −
1

2
Xtdt

where {Bt}t∈R+ is a standard Brownian motion on R. Define the semigroup of

{Xt}t∈R, Ptf(x) = E[f(Xt)|X0 = x]. Then the infinitesimal generator of the

12



1.1. Stein’s Method

Ornstein-Uhlenbeck process is

Af(x) := lim
t→0

Ptf(x)− f(x)

t
=

1

2
f ′′(x)− 1

2
xf ′(x)

which, after making the substitution f ′(x) = g(x), equals the Stein operator in

Lemma 1.1.1.

With this new operator in hand, we can rewrite the Stein equation,

1

2
f ′′(x)− 1

2
xf ′(x) = h(x)− E[h(X)].

Despite the Stein operators of the diffusion and density approaches being similar,

the solution (when put in the context of the diffusion approach) is vastly different

when compared with the solution (1.4);

fh(x) =

∫ ∞
0

E[h(X)]− Pth(x)dt. (1.5)

It is straightforward to generalise this approach for distributions with densities

p on support Rn by borrowing the notion of the over-damped Langevin diffusion

from statistical physics. This is an extension of the OU process that is the solution

to the SDE

dXt = dBt −
1

2
∇(log p)(Xt)dt (1.6)

where {Bt}t∈R+ is now a standard Brownian motion on Rn. The infinitesimal

generator is

Af(x) =
1

2
∆f(x) +

1

2
〈∇ log p(x),∇f(x)〉,

for a function f ∈ C2(Rn) and where 〈·, ·〉 is the inner product on Rn. To simplify,

we assume that the form of p is p ∝ e−φ where φ ∈ C2(R) is non-negative, giving

Af(x) =
1

2
∆f(x)− 1

2
〈∇φ(x),∇f(x)〉. (1.7)
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1.1. Stein’s Method

The Stein equation is now a partial differential equation (PDE)

1

2
∆fh(x)− 1

2
〈∇φ(x),∇fh(x)〉 = h(x)− E[h(X)] (1.8)

and unsurprisingly, its solution is identical to the solution in the normal case on

R (1.5)

fh(x) =

∫ ∞
0

E[h(X)]− Pth(x)dt. (1.9)

Remark. The PDE (1.8) is known as the Poisson equation (or weighted Poisson

equation to some) in the PDE theory, more commonly written as Lf = h̄ where

L is a second order elliptic differential operator and E[h̄] = 0. The probabilistic

representation of the solution (1.9) pre-dates Barbour’s paper on the diffusion

approach. See [Fre16] for the original derivation.

Bounds on the solution (1.9) are presented in [MG16] and can be used in

conjunction with the Stein equation to bound the Wasserstein metric. To obtain

these, an important assumption on the behaviour of the density p is required,

namely, p is strongly log concave.

Definition 1.1.4. A function f ∈ C2(Rn) is κ-strongly concave if

Hessf (v, v)(x) ≤ −κ|v|2

for κ > 0 for all x, v ∈ Rn.

The notation Hessf (v, v)(x) = vᵀHess(f(x))v is useful to have when one wants

to extend notions to manifold.

If one assumes the particular form p ∝ e−φ of p for some function φ, the strong

log concave assumption on p simplifies to

Hessφ(v, v)(x) ≥ κ|v|2.

We then have the following theorem [MG16]:
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1.1. Stein’s Method

Theorem 1.1.5. Suppose that log p ∈ C4(Rn) is κ-strongly concave with C2(log p) ≤

L2 and C3(log p) ≤ L3, L2, L3 > 0. For each x ∈ Rn, let {Xt}t∈R+ represent the

overdamped Langevin diffusion with infinitesimal generator (1.7) and initial posi-

tion X0 = x. Then, for each Lipschitz h ∈ C3(Rn), the solution (1.9) solves the

Stein equation (1.8) and satisfies

C0(fh) ≤
2

κ
C0(h), C1(fh) ≤

2L2

κ2
C0(h) +

1

κ
C1(h),

C2(fh) ≤
(

6L2
2

κ3
+
L3

κ2

)
C0(h) +

3L2

κ2
C1(h) +

2

3κ
C2(h).

Here we have labelled Ci(f) to be the Lipschitz constant of the ith derivative

of the function f .

1.1.3 Extension to Manifold

The final generalization we make in this introduction will be to extend the notion

of the diffusion approach on Rn for general density p to the manifold setting. The

majority of this thesis shall be based upon the foundations laid in this subsection.

We refer to the preliminaries in Chapter 2 for definitions relating to Riemannian

manifolds.

Let M be a Riemannian manifold with metric g. We extend the OU process

(1.6) by generalizing the terms in the SDE to the manifold setting: ∇ is now

the gradient on M ; and the driving process dBt is now a Brownian motion on

M , denoted by dBM
t . Other components of (1.5), such as the inner product and

Laplacian must also be changed to accommodate the potentially non-flat geometry.

In [MG16], Mackey and Gorham employed the principle of diffusion coupling

to bound the solution to the Stein equation and its derivatives. The idea is to

construct a second diffusion, say Yt, following the same dynamics as Xt; with the

distance between Xt and Yt going to 0 as time goes on. This is a key principle

that was used in the extension to manifold in [LLBF22] which shall be detailed in

this subsection. Let µφ denote the measure on M with Radon-Nikodym derivative
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1.1. Stein’s Method

dµφ ∝ e−φdvol where dvol is the volume form on M . Similarly to the situation in

Rn, φ is a non-negative function in C2(M).

Let {Xt}t∈R+ be the M -valued diffusion

dXt = dBM
t −

1

2
∇φ(Xt)dt, X0 = x.

The infinitesimal generator of such a diffusion is

Af =
1

2
∆Mf −

1

2
g(∇φ,∇f)

where ∆M is the Laplace-Beltrami operator on M . This is indeed a Stein operator,

and one can show via integration by parts that Eµφ [Af ] = 0. The Stein equation

can then be formulated, and its solution is exactly that of (1.9).

The coupling that was used in [LLBF22] is similar to the Kendall coupling

in [Ken86] with the difference being that we do not reflect the direction of the

vector field after the parallel transport. The original driving process Xt, dB
M
t , is

transported in parallel across a geodesic on M in some direction Vt:

dYt = ΠXt,VtdB
M
t −

1

2
∇φ(Yt)dt, Y0 = y. (1.10)

The notation Πx,vu indicates that the vector field u has been transported in parallel

from a point x in the direction v.

The dynamics of this new diffusion are identical to that of Xt — the infinitesi-

mal generators are the same as well as the invariant distributions. This is because

one may rewrite the SDE for Yt as

dYt = dB
′M
t −

1

2
∇φ(Yt)dt

where dB
′M
t is a Brownian motion on the manifold. The identicalness of the

generators follows immediately.

A condition reminiscent of the κ-strongly concave condition in Rn is needed to
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1.1. Stein’s Method

ensure that the distance between Xt and Yt goes to 0. This condition is reformu-

lated on the manifold by taking into account the geometry of M and is summarised

in the following theorem [LLBF22].

Theorem 1.1.6. Let φ ∈ C2(M) be non-negative. Moreover, assume that φ

satisfies

Ric + Hessφ ≥ 2κg. (1.11)

Then, the Riemannian distance ρ between Xt and Yt satisfies

ρ(Xt, Yt) ≤ ρ(x, y)e−κt.

The notation Ric + Hessφ ≥ 2κg means that for any vector field X on TM ,

Ric(X,X) + Hessφ(X,X) ≥ 2κg(X,X). The condition ensures that the tensor on

the left hand side of this inequality is positive definite.

Remark. One can recover the original log-concave condition in [MG16] by simply

setting M = Rn. Rn is a flat manifold, and so the sufficient condition becomes

Hessφ(v, v) ≥ 2κ〈v, v〉. More recently, Gorham et. al. [GDVM19], have refined

their argument to allow for the inclusion heavier tailed distributions (distantly

dissipative distributions). This is achieved by bounding the Wasserstein metric

above by the diffusion Stein discrepancy. As it stands, the Bakry-Èmery-Ricci

criterion (1.11) is required (even on compact manifolds) for this method to work.

This powerful result aids one in bounding the solution to the Stein equation

and its derivatives, such as:

‖fh‖∞ ≤
1

κ
sup
x∈M

E[ρ(x,X)], ‖dfh‖∞ ≤
C0(h)

κ
,

∥∥Hessfh
∥∥

op
≤ C1(h)

2κ
+
C0(h)

2κ2
C0((Ric + Hessφ)#).

By using these bounds on the solution, we can obtain an upper bound on the

Wasserstein metric:
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1.1. Stein’s Method

Theorem 1.1.7. Let X and Y be two distributions on M with respective densities

µφ and µψ. Assume that both densities satisfy the condition (1.11). Then the

Wasserstein distance between X and Y is bounded above:

dW (X, Y ) ≤ 1

2κ
E[|∇(φ− ψ)|(X)].

Remark. A different formulation for Stein’s method on manifolds was indepen-

dently developed by Thompson in [Tho20] which instead uses the theory of mar-

tingales to obtain properties of the solution to the Stein equation. The coupling

detailed above is absent and instead Thompson calculates bounds on the deriva-

tives of the solution to the Stein equation directly, using damped stochastic parallel

translation — see Section 5.5. One of the main difference in results is with the

second derivative. Their bound on the second derivative is

∥∥Hessfh
∥∥

op
≤ c1C0(h).

Their bound is only dependent on the first derivative of h, C0(h) whereas the

bound in [LLBF22] depends on both C0(h) and C1(h). It is unclear, however, how

c1 can be obtained in terms of the assumptions of the Bakry-Èmery-Ricci criterion

(1.11).

Remark. Literature on the formulation, solution and bounding of the solution of

the Poisson equation on manifold

1

2
∆Muh −

1

2
g(∇φ,∇uh) = h̄

using PDE theory is quite sparse; [Aub12] provides existence of the solution and

bounds to Greens functions inside the solution for compact manifolds [Aub12,

Theorem 4.7], and [MSW19] presents existence and Greens function estimates for

complete manifolds, however their restrictions on φ are more demanding than those

in [LLBF22], see [MSW19, Theorem 1.9] which, for example, require the Bakry-
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1.2. Structure of the Thesis

Èmery-Ricci tensor to be bounded from below, oscillation of φ to be bounded in

a unit ball and the spectral gap of the operator A to be positive.

1.2 Structure of the Thesis

The remainder of the thesis is structured as follows:

Chapter 2 shall outline important concepts and definitions that are required

for this work. We briefly overview the necessary aspects of Riemannian geometry,

stochastic differential equations and Brownian motion on manifolds.

When looking at the work of [LLBF22], the framework of Chapter 4, it be-

came clear that many distributions on S1 could not be used in the context of the

diffusion approach. Chapter 3 concerns the extension of Stein’s method to the

unit circle S1, with emphasis on the von-Mises distribution. The method used is

an adaptation of the previously developed density method, where the Stein kernel

and operators have been redefined to reflect the geometry of S1. An upper bound

on the Wasserstein metric is presented in Theorem 3.3.2 and examples follow.

Chapter 4 builds upon the work in [LLBF22] by applying it to several examples.

More concretely, it is devoted to constructing explicit analytic bounds on the

Wasserstein metric between two probability measures on a number of Riemannian

manifolds using the approach detailed in Section 1.1.3. We shall use Theorem

4.0.1 to achieve such. We explore the spaces Sn, H3, SO(n), and Pn (the space of

n × n symmetric positive definite matrices) and try to provide interpretations of

results and their consequences when possible; this is particularly the case on H3

where a finite parameter proof of the Varadhan asymptotic relation is presented.

Chapter 5 is the main technical part of the work where we extend the frame-

work for Stein’s method on Riemannian manifolds developed in [LLBF22] and

built upon in Chapter 4 to the case where the manifold has a boundary. The

general idea is the same as the base manifold case, however a local time term is

inserted into the Stochastic Differential Equation to act as a reflecting component.
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1.2. Structure of the Thesis

The addition of this reflecting component presents new challenges for extending

the framework, particularly in defining the notion of an invariant measure and in

bounding the Lipschitz constant of the second derivative of the solution to the

Stein equation. We find that some results from the base manifold case are the

same when the local time term is also present, and that results obtained in the

manifold without boundary case can be retained by setting ∂M = ∅.

We conclude the work in Chapter 6 by reiterating our main contributions and

findings, along with a discussion of future directions of research.

There are 4 appendices in total, A through D, which give some extra back-

ground that isn’t particularly needed to understand the general theory we discuss.

They do, however, give more detail on certain concepts that are not discussed

enough to warrant their own section in the preliminaries.
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Chapter 2

Preliminaries

We devote this chapter to reviewing known results and definitions that will be

required throughout this work. We first begin with a brief introduction to Rie-

mannian geometry, curvature and the exponential map. We then move over to the

stochastic side by defining stochastic differential equations in general, the semi-

group and end the chapter with a construction of Brownian motion on manifolds.

2.1 Riemannian Geometry

This section is primarily made up of definitions and results from the following ref-

erences: Cheeger & Ebin [CE08]; Jöst [Jos08]; Gallot, Hulin, Lafontaine [GHL90];

and Hsu [Hsu02].

Definition 2.1.1. An n-dimensional topological manifold M is a Hausdorff, sec-

ond countable, topological space such that every open neighbourhood in M is

homeomorphic to a subset of Rn.

The final statement has some physical intuition; we say that locally, a topolog-

ical manifold looks like Rn. That is, when zoomed in close enough, the geometry

of M begins to mimic the geometry of Rn.

By definition, a manifold with this description has no boundary. Manifolds

with a boundary shall be the centrepiece of Chapter 5.
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2.1. Riemannian Geometry

Definition 2.1.2. An n-dimensional topological manifold M is called a differ-

entiable (or smooth) manifold if given an atlas {Uα, φα}α∈I on M , the transition

map φβ ◦φ−1
α : φα(Uα∩Uβ)→ φβ(Uα∩Uβ) is C∞ with C∞ inverse, for all α, β ∈ I.

For instance; Sn, the n-sphere requires a minimum of 2 coordinate charts to

fully describe the manifold. The n-dimensional Hyperbolic space Hn only requires

1 chart. In this case we say that there is a global chart that describes the manifold.

A Ck-differentiable manifold can be defined similarly where the transition maps

are instead Ck differentiable and not C∞ differentiable. All manifolds that are

discussed in this work will be smooth manifolds. Charts allow us to define lo-

cal coordinates φ−1
α in a coordinate chart (open set) Uα. Local coordinates are

frequently used in the examples in Chapter 4.

Definition 2.1.3. The tangent space to a differentiable manifold M at a point

x ∈ M is denoted by TxM and is defined as the vector space over Rn that is

spanned by the partial derivative operators ∂
∂x1
, ..., ∂

∂xn
.

We may extend this definition to provide a global tangent space, known as the

tangent bundle, which contains information about the point and its tangent space.

Definition 2.1.4. The tangent bundle (M,TM, π) is expressed as the disjoint

union

TM :=
⊔
x∈M

TxM,

of all tangent spaces of M . The canonical projection π : TM →M is π(x, v) = x

for (x, v) ∈ TM .

We denote by Γ(TM) the smooth sections of the tangent bundle, by this we

mean the smooth map sx : M → TxM such that π ◦ s = Id.

Definition 2.1.5. Let f, g ∈ C∞(M). Let X : C∞(M) → C∞(M) be a linear

map that satisfies the Leibniz property X(fg) = fX(g)+gX(f). Then v is called

a vector field.
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2.1. Riemannian Geometry

There are three equivalent definitions of vector fields however we take this one

for simplicity.

Since the tangent space is a vector space, it is clear that calculus with the

partial derivative operators {∂i} is much easier to perform that doing calculus

directly on the manifold. Such a task will require the use of charts, and keeping

track of derivatives of overlapping coordinate charts is an arduous task.

Definition 2.1.6. A Riemannian metric g : TM×TM → R on M is a symmetric,

strictly positive bilinear form on M .

Definition 2.1.7. A smooth manifold equipped with a Riemannian metric is

called a Riemannian manifold.

Riemannian manifolds will be the spaces of interest throughout this thesis.

We shall always equip a manifold with a metric g. By definition, a Riemannian

manifold is the couple (M, g), however since M being Riemannian is implied here,

we shall simply write that M is a Riemannian manifold and define the metric g

when necessary.

Definition 2.1.8. The Levi-Civita connection D, is a unique connection on M

which is compatible with the metric,

DZg(X, Y ) = g(DZX, Y ) + g(X,DZY ),

and is torsion free,

T (X, Y ) := DXY −DYX − [X, Y ] = 0,

for X, Y, Z ∈ Γ(TM).

Definition 2.1.9. The Riemannian distance ρ(x, y) between x, y ∈M is defined

as

ρ(x, y) := inf
γ

∫ 1

0

|γ̇(t)|dt,
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2.1. Riemannian Geometry

where the infimum is taken over all piecewise smooth curves γ : [0, 1] → M with

γ(0) = x and γ(1) = y.

The notation γ̇ above is the vector field generated by the curve γ, γ̇(t) = dγ(t)
dt

Definition 2.1.10. The curve or curves which minimize the distance between x

and y are named geodesics and they satisfy the equation Dγ̇ γ̇ = 0.

Definition 2.1.11. The parallel transport Πγx,y : TxM → TyM translates a vector

X ∈ TxM to TyM along the geodesic γ connecting x and y in such a way that

g(X, γ̇(0)) = g(Πγx,yX, γ̇(1)).

In other words, the angle between X and γ̇ is conserved along the whole of γ. Any

such vector field X satisfies the equation Dγ̇X = 0.

Parallel transport is a significant tool that is used in the construction of the

coupling for the Stein’s method in [LLBF22], see Equation (1.10). Such use is also

found in Section 5.3 for the same task.

Definition 2.1.12. The cotangent space T ∗xM = (TxM)∗ at a point x ∈M is the

dual space of the tangent space TxM . It is the space of linear functions on TxM

and elements take the form ω = ωidx
i.

The cotangent bundle is defined in a similar way to the tangent bundle. It is

the disjoint union

T ∗M :=
⊔
x∈M

T ∗xM

with base space M and canonical projection π.

A section ω ∈ Γ(T ∗M) of the cotangent bundle is called a 1-form on M . The

contraction of a 1-form by a vector field yields a scalar; symbolically, θ : TM → R.

For example, if ω = dx1 and X = ∂1, then the contraction ω(X) = dx1∂1 = 1. A

more general result is that the contraction dxi∂j = δij, the Kronecker delta tensor.
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2.1. Riemannian Geometry

Remark. Here we have used the Einstein index notation to write out the form by

dropping the sum. The contraction of the index i in ωidx
i means that summation

over index i is implied.

One can combine notions of vector fields and 1-forms to create a more general

object called a tensor.

Definition 2.1.13. The bundle of (r, s)-tensors is the disjoint union

T r,sM =
⊔
x∈M

(TxM)⊗r ⊗R (T ∗xM)⊗s.

An element of the section Γ(T r,sM) is called an (r, s)-tensor and some examples

include the Riemannian metric g is a (0,2)-tensor and the Kronecker delta is a

(1,1)-tensor. If {Xi} is an orthonormal frame of TM , then an orthonormal frame

in T ∗M is denoted {dxi}. Elements of a section of T r,sM are uniquely written as

θ = θi1...irj1...js
Xi1 ⊗ ...⊗Xir ⊗ dxi1 ⊗ ...⊗ dxis .

In the special case of r = 0, the space of p-forms generates an algebra Λp(Rn)

along with the antisymmetric wedge product ∧.

Definition 2.1.14. The exterior derivative d is an operator which increases the

degree of a differential form by 1, d : Λp → Λp+1 with the special property that

d2 = 0.

Definition 2.1.15. The interior product ι is an operator which decreases the

degree of a differential form by 1, ιX : Λp → Λp−1 in which X ∈ Γ(TM).

The interior product is essentially the contraction ω(X). Similarly to the

exterior derivative, it is the case that ιV ◦ ιW = 0, V,W ∈ Γ(TM).

Remark. When writing out forms, we shall be dropping the tensor product or

wedge product and assume that it is there without explicitly writing it.
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2.1. Riemannian Geometry

The exterior derivative and 1-forms make an crucial appearance in Section 5.5

when we bound the second derivative of the solution to the Stein equation.

The gradient operator on a function ∇f is the dual of the 1-form df . It is the

unique vector field defined by the relation

g(∇f,X) = df(X), X ∈ Γ(TM).

The divergence operator ∇· is the contraction of the (1,1)-tensor ∇X. By defin-

ing the gradient and divergence operators on M , the manifold equivalent to the

Laplace operator can also be found. The operator ∆M = ∇ · ∇ is known as the

Laplace-Beltrami operator.

The Hessian is the (0,2)-tensor of second order derivatives. For a function

f ∈ C∞(M),

Hessf := D2f = Ddf.

It is also true that ∆Mf = TrHessf =
∑n

i=1D
2f(Xi, Xi) for an orthonormal basis

{Xi} on TxM . The Hessian can be alternatively defined using curves as

Hessf (X,X) =
d2

dt2
f(γ(t))

∣∣∣∣
t=0

, (2.1)

for which γ(0) = x and γ̇(0) = X ∈ TxM .

Due to its appearance in the Bakry-Èmery-Ricci criterion 1.11, we shall be

frequently calculating the Hessian of many different functions on a number of

different spaces in Chapter 4.

The volume form is an n-form (matching the dimension of the manifold) de-

fined as

dvol :=
√

det(g)dx1 ∧ dx2 ∧ ... ∧ dxn.

We have written det(g) as the determinant of the metric when viewed in the matrix

form gij. The volume form allows us to integrate on M . The form dx1∧...∧dxn can

be regarded as the Lebesgue measure on Rn, meaning that the volume form is a
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2.1. Riemannian Geometry

measure, specifically a normalized Hausdorff measure. The volume form is thought

of as the uniform measure on M . Further probability measures are constructed

by using a Radon-Nikodym derivative. For example, one repeatedly used measure

in this work is a measure µφ which has Radon-Nikodym derivative

dµφ =
1

Cφ
e−φdvol.

The constant Cφ ensures µφ is a probability measure.

With integration clearly defined on our manifolds, L2 spaces can be constructed

and operators and their duals can be defined in a more concrete sense. The

Laplace-Beltrami operator, like its Euclidean counterpart, is a self-adjoint operator

on L2(M,dvol). It is a particularly important operator in the construction of

Brownian motion on M .

The integration by parts formula (or Green’s formula) on M with ∂M = ∅ is

∫
M

g(∇f,X)dvol = −
∫
M

f∇ ·Xdvol.

When X = ∇h for some function h ∈ C∞(M), this becomes

∫
M

f∆Mh+ g(∇f,∇h)dvol = 0.

2.1.1 Curvature

Curvature is a defining quality which distinguishes manifolds from each other. As

is usual, let M be an n-dimensional, complete, connected Riemannian manifold

with metric g and Levi-Civita connection D.

Definition 2.1.16. Let X, Y, Z ∈ Γ(TM), the Riemannian curvature tensor is

defined as

R(X, Y )Z := (DXDY −DYDX −D[X,Y ])Z.

The final term involving the Lie bracket is identically 0 if X and Y are inde-
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pendent vector fields and so the Riemannian curvature is sometimes written in

the form

R(X, Y )Z = [DX , DY ]Z.

The sectional curvature is related to the Riemannian curvature by

K(X, Y ) := g(R(X, Y )Y,X).

Geometric analysis on manifolds is typically categorised into three sections, man-

ifolds with positive, non-positive, and non-negative sectional curvature which is

why sectional curvature is a key characteristic of a manifold.

Definition 2.1.17. The Ricci curvature tensor, or just Ricci curvature for short,

is a contraction of the Riemannian curvature, defined as

Ric(X, Y ) :=
n∑
i=1

g(R(X,Xi)Xi, Y ),

where {Xi}ni=1 is an orthonormal basis π(X) = π(Y ).

We may alternatively rewrite this in terms of the sectional curvature,

Ric(X,X) =
n∑
i=1

K(X,Xi).

The last curvature quantity we define is the scalar curvature, a contraction of the

Ricci tensor,

S :=
n∑
i=1

Ric(Xi, Xi),

which is a scalar quantity and cannot be further contracted with the metric.

The Ricci curvature is a contributor to the Bakry-Èmery-Ricci criterion (1.11)

and is pivotal in determining whether the diffusion approach in [LLBF22] can be

used.

Einstein manifolds are manifolds whose Ricci curvature is proportional to the

metric. Explicitly, Ric = λg for some λ ∈ R. If a manifold has constant sectional
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curvature, i.e. K(X, Y ) = K then it is an Einstein manifold with λ = K(n − 1).

For example,

• For M = Sn, K = 1 and Ric = (n− 1)g,

• For M = Rn, K = 0 and obviously Ric = 0,

• for M = Hn, K = −1 and Ric = −(n− 1)g.

In these special cases, it is unnecessary to calculate the Ricci curvature in local

coordinates and we frequently use these facts in Section 4.1 for Sn and Section 4.2

for Hn when verifying the Bakry-Èmery-Ricci criterion.

2.1.2 Exponential Map

In Definition 2.1.10 it was described that geodesics may not always be unique.

For example, when taking M = Sn, and x = N , y = S, the north and south poles

respectively, there is more than one geodesic connecting x and y — in fact there

are infinitely many. We define the cut locus of a point x ∈M as

cutx = {y ∈M : there is no unique minimizing geodesic connecting x and y}.

For an example of such a set, take M = S1, if we set x to be the north pole, then

cutx is the south pole. A subset of the cut locus, the conjugate points, are the set

of points such that there are infinitely many geodesics emanating from x to y. For

example, any antipodal point of a point in Sn, n > 1 is a conjugate point.

Questions about injectivity of geodesics give rise to the exponential map.

Definition 2.1.18. Let M be a Riemannian manifold, x ∈ M , v ∈ TxM , and

γ : [0, 1]→M a geodesic with γ(0) = x. Define

Vx := {v ∈ TxM : γ̇(0) = v and γ(1) /∈ cutx}.
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2.2. Stochastic Differential Equations on Rn

Then the mapping expx : Vx → M , v 7→ γ(1) is called the exponential map of M

at x.

Explicitly, for a geodesic with γ(0) = x and γ̇(0) = v, expx(v) = γ(1) assuming

that v is unique. The injectivity radius is then defined as

inj(M) = min
x

sup{|v| : x ∈M, v ∈ TxM, expx(v) is injective}.

Note that the minimum is taken over the whole manifold so that regardless of the

point we take, we never enter the cut locus.

Definition 2.1.19. We say y = γ(1) is conjugate to x = γ(0) along γ if d expx |γ̇(0)

is not full rank.

We can similarly define the inverse of the exponential map which instead maps

a neighbourhood of p to the tangent space at x, exp−1
p : U → TxM . This def-

inition of exponential inverse allows us to show that the exponential map is a

local diffeomorphism. The exponential mapping expx maps a neighbourhood of

0 ∈ TxM diffeomorphically onto a neighbourhood of x ∈ M . For manifolds with

non-positive sectional curvature, this mapping is diffeomorphic globally on the

manifold by the well known Cartan-Hadamard theorem. Moreover, the theorem

also tells us that the exponential map is a covering map for the manifold. Locally,

one may think of the tangent space around 0 as Euclidean space, and so the or-

dered pair (U, exp−1
x ) is infact a chart to Rn. It is also true that for manifolds of

non-positive sectional curvature, no point has a corresponding conjugate point.

2.2 Stochastic Differential Equations on Rn

Owing to the name ‘diffusion approach’ for Stein’s method, stochastic differential

equations (SDEs) are central to the framework of the approach. The underlying

mathematics that allows Chapter 4 to work relies on the use of SDEs. In Chapter

5, SDEs are also used, albeit with a twist in the form of a reflection term.
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For this section, we have consistently referred to: Rogers and Williams volumes

1 & 2, [RW94, RW00]; Ikeda & Watanabe [IW14]; Øksendal [Øks13]; and Hsu

[Hsu02].

In this section, {Xt}t∈R+ is a stochastic process on filtered probability space

(Ω,F , {Ft}t∈R+ , P ) which takes values in Rn (and later a Riemannian manifold).

Definition 2.2.1. A process {Xt}t∈R+ is called a Markov process if it satisfies the

Markov property

Ex[f(Xt+s)|Xs] = EXs [f(Xt)], a.s., X0 = x

for any bounded, measurable function f : Rn → R.

We denote by Pt the transition functional acting on bounded measurable func-

tions

Ptf(x) = (Ptf)(x) :=

∫
Rn
f(y)Pt(x, dy),

where Pt(x, y) is the transition kernel. This gives rise to the Chapman-Kolmogorov

equation

PsPt = Ps+t, s, t ≥ 0.

The transition functional Pt is more commonly known as the semigroup due to

the Chapman–Kolmogorov equation. The differential Pt(x, dy) is named the tran-

sition density function and is written Pt(x, dy) = p(t, x, y)dy, assuming that the

Lebesgue measure and transition density are absolutely continuous — we can write

it as a Radon-Nikodym derivative. The heat kernel is the name of the distribu-

tion that has probability density function equal to that of the transition density

function of a Brownian motion for a fixed initial point. The heat kernel of H3 is

one of the two distributions that we compare in Section 4.2.

Definition 2.2.2. A Feller-Dynkin (FD), or sometimes just Feller, semigroup is a

strongly continuous, contraction, Markov semigroup {Pt}t∈R+ of linear operators

on C0(Rn) (the space of continuous functions on Rn that vanish at infinity).
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2.2. Stochastic Differential Equations on Rn

In other words,

i) Pt : C0(Rn)→ C0(Rn),

ii) ∀f ∈ C0(Rn), ‖Ptf − f‖∞ → 0 as t→ 0+

iii) ∀f ∈ C0(Rn), 0 ≤ f ≤ 1 =⇒ 0 ≤ Ptf ≤ 1,

iv) PsPt = Ps+t ∀s, t ≥ 0, P0 = Id,

Definition 2.2.3. A Feller process is a Markov process with Feller semigroup.

The semigroup property and strong continuity of the Feller semigroup suggests

that we should have (in some manner)

d

dt
Pt = lim

s→0

Pt+s − Pt
s

= Pt lim
s→0

Ps − Id

s
= PtA = APt

in which Id is the identity operator Id ◦ f = f and

A := lim
s→0

Ps − Id

s
.

The quantity A is the infinitesimal generator of the Markov process Xt.

Definition 2.2.4. An Itô diffusion on Rn is a process {Xt}t∈R+ that satisfies the

SDE

dXt = σ(Xt)dBt + b(Xt)dt,

where {Bt}t∈R+ is an Rn-valued Brownian motion, b : Rn → Rn and σ : Rn →

Rn×n.

The SDE of the Itô diffusion Xt has a unique, strong solution if we have globally

Lipschitz coefficients;

|b(x)− b(y)|+ ‖σ(x)− σ(y)‖ ≤ C|x− y|

for some constant C > 0 for all x, y ∈ Rn. Itô diffusions have many useful

properties. They satisfy the Markov property, and even further, have a Feller
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semigroup. Because of this, the infinitesimal generator exists and can be used

to characterise each individual Itô diffusion. For example, Let Xt = Bt, an Rn

Brownian motion. Then the infinitesimal generator Af(x) = 1
2
∆f . For a general

SDE with drift b and diffusion matrix σ, the infinitesimal generator is

Af(x) = 〈b(x),∇f(x)〉+
1

2
Tr(σᵀ(x)∇2f(x)σ(x)).

Definition 2.2.5. A Borel measure µ(dx) on Rn is called an invariant measure

of an Itô diffusion with semigroup Pt if

∫
Rn
Ptf(x)µ(dx) =

∫
Rn
f(x)µ(dx), ∀f ∈ C2

0(M).

If a random variable X ∼ µ, we may rewrite this condition in terms of the

infinitesimal generator as Eµ[Af(X)] = 0. An invariant measure is called a sta-

tionary distribution if Eµ[1] = 1. The definition of the invariant measure in terms

of the infinitesimal generator will be the principal way that we shall find a Stein

operator for a given probability measure.

The Itô integral is constructed by taking the left end point of the integrand in

the Riemann-Stieltjes integral, and then taking the limit in the L2 sense;

∫ t

0

f(s)dBs = lim
mesh(P )→0

n∑
i=1

fti−1
(Bti −Bti−1

), in L2.

The resulting Itô integral has many desirable properties, particularly the martin-

gale property. However, if we were instead to take the midpoint, we arrive at the

Stratonovich integral. We differentiate between Itô and Stratonovich integrals by

using ◦, e.g.

∫ t

0

f(s) ◦ dBs = lim
mesh(P )→0

n∑
i=1

fti + fti−1

2
(Bti −Bti−1

), in L2.

The Stratonovich integral is much more familiar in the sense that it obeys the

classical rules of calculus such as the chain rule. We later see in the subsequent
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section, Section 2.3, that the Stratonovich integral is a more natural framework

to construct a Brownian motion on manifold than it is to use the Itô integral.

Lemma 2.2.6 (Itô Lemma). Let Xt be the Itô diffusion that is the solution to the

SDE dXt = b(Xt)dt+ σ(Xt)dBt. Then for f ∈ C2(Rn),

df(Xt) = 〈∇f(Xt), dXt〉+
1

2
dXᵀt∇2f(Xt)dXt.

One can convert from Itô to Stratonovich form and vice versa by using the

following conversion formula:

∫ t

0

σ(Xs) ◦ dBs =

∫ t

0

σ(Xs)dBs +
1

2

∫ t

0

∇σjσi(Xs)d〈Bi, Bj〉s,

where we have used the notation that σi is the i-th row of σ and ∇σjσi is the

directional derivative of σi in the direction of σj.

2.3 Brownian Motion on Riemannian manifolds

We now discuss the intrinsic construction of Brownian motion on manifolds. For

this section, we have primarily used the excellent exposition in Hsu [Hsu02]. Ap-

pendix C has been written to provide an introduction to the orthonormal frame

bundle.

To be able to extend Brownian motion to manifolds it makes sense to map our

Brownian motion on Rn onto the manifold. However, maps straight from Rn to

M are difficult to obtain in general and some charts, for example S2, mappings to

Rn will only be true for a subset of the whole space. Another reason as to why a

direct method will not work is as follows: An M -valued Brownian motion should

have the general form

dXt = Vα(Xt) ◦ dBα
t

for some set of vector fields Vi, i = 1, ..., n on TM . This process has the following
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infinitesimal generator;

A =
1

2

n∑
i=1

V 2
i .

However, there is no way that we can globally write the generator A as a sum of

squared non-vanishing vector fields for general M . For example, on Sn, we have

the Hairy Ball Theorem, which tells us precisely this.

An intrinsic formulation for Brownian motion on M is known as the Eells-

Elworthy-Malliavin construction and is described in the following procedure. We

must first find a space on which we can write the Laplacian as a sum of squared

vector fields. The precise bundle with which this is achieved is the horizontal

bundle H. Let O(M) be the orthonormal frame bundle and define Böchner’s

horizontal Laplacian

∆O(M) =
n∑
i=1

H2
i , (2.2)

where Hi are the fundamental horizontal vector fields (shortened from Hei). The

relation of Bochner’s horizontal Laplacian to the Laplace-Beltrami operator is

established in the following lemma:

Lemma 2.3.1. Let f ∈ C∞(M) and define f̃ = f ◦ π the lift from M to O(M).

Then for any u ∈ O(M),

∆Mf(x) = ∆O(M)f̃(u),

with x = πu.

This key link gives us the necessary tools to construct a Brownian motion on

O(M) and then map down to M , giving rise to an M -valued Brownian motion.

Consider the following Stratonovich SDE

dUt = H(Ut)α ◦ dBα
t , U0 = u = π−1(x),

where H is the horizontal lift of (Ute)
∗ and Bt is an n-dimensional Brownian

motion. Then Ut is a Brownian motion on O(M). Recognise that the infinitesimal

35



2.3. Brownian Motion on Riemannian manifolds

generator of this Stratonovich process is 1
2

∑n
α=1H

2
α, or in other words, 1

2
∆O(M).

Since we confirm that Ut is a Brownian motion, it must obey the Itô formula

F (Ut) = F (U0) +
n∑

α=1

∫ t

0

HαF (Us)dB
α
s +

1

2

∫ t

0

∆O(M)F (Us)ds,

for some smooth function F on O(M). If we now take F = f ◦ π, for another

smooth f on M and defining Xt = πUt, we have that

f(Xt) = f(X0) +
n∑

α=1

∫ t

0

Hαf(Xs)dB
α
s +

1

2

∫ t

0

∆Mf(Xs)ds

using Lemma 2.3.1. We can now infer that Xt has infinitesimal generator 1
2
∆M ,

and hence, Xt is a Brownian motion on M .

If one does possess local coordinates on M , then it is possible to find an explicit

form for the SDE of the Brownian motion on M . The form of the horizontal lift

in local coordinates, as calculated in [Hsu02], is Ξ(x) = g−1/2(x), where g−1/2 is

denoted as the square root of the inverse of the metric tensor g. In terms of an

Itô diffusion this is

dX i
t = σijdB

j
t +

1

2
bidt

where σij = g
−1/2
ij and bi = gjkΓijk. Then

Af =
1

2
gij∂ijf −

1

2
gjkΓijk∂if,

=
1

2
∆Mf,

showing that Xt is indeed a Brownian motion on M .

Example 2.3.2. Let M = Hn and (x1, x2, ..., xn) be the standard local (global)

coordinates for the Poincaré half plane model. The horizontal lift on Hn is cal-

culated intrinsically, Ξ(x) = xnIn where In is the n × n identity matrix. Then a
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standard Brownian motion on H2 is constructed via the following Itô SDE:

dX i
t = Xn

t dB
i
t, i = 1, ..., n,

where Bi
t is a Brownian motion on R. One may also check that the infinitesimal

generator of this diffusion coincides with the Laplacian on Hn.

An important question is to ask whether it is possible for the Brownian motion

to exit (explode) the manifold in finite time. An example of this happening on R

is taking the process dXt = 1
Xt
dBt, X0 6= 0. Then the process hits 0, exploding

in finite time and leaves M = R. Techniques such as adding coffin states to

manifolds is a workaround to this problem, but then the manifold may no longer

connected. This gives rise to the concept of stochastic completeness. We say that

a manifold M is stochastically complete if for every x ∈M , Px(e =∞) = 1 where

e is the explosion time (the time to leaving the manifold) and Px represents the

Brownian motion starting at the point x. Checks for stochastic completeness are

well developed (see [Hsu02, Chapter 4]) and it has been shown that a control on

the lower bound of the Ricci curvature is vital to ensure that the Brownian motion

does not escape.

Like with SDEs on Rn, we introduce a drift term with the addition of a finite

variation process in t:

dXt = dBM
t −

1

2
∇φ(Xt)dt,

where {BM
t }t∈R+ is a Brownian motion on M and φ ∈ C2(M). This process is

Feller and has infinitesimal generator

A =
1

2
∆M −

1

2
g(∇φ,∇).

Such a process does not leave M in finite time [Bak86] provided that there exists

a constant κ > 0 such that

Ric + Hessφ ≥ −κg, ∀x ∈M.
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Chapter 3

Stein’s Method for Probability

Measures on S1.

This chapter concerns the formulation of a Stein’s method for the S1, the unit

circle.

The main object of study in this chapter is what is known as the Stein kernel

— not to be confused with the kernels of the Stein kernel discrepancy. This

object was first studied by Stein in [Ste86] and has now been extensively studied

in both univariate (for example in [LRS17b]) and multivariate [MRS18] cases on

Euclidean space. Its use to bound the Wasserstein metric has been established

in [LRS17a] along with an application in Bayesian statistics. This theory has

yet to be extended to S1. The problem yet lies in obtaining analytic bounds on

the Wasserstein metric using this approach. The two notable approaches to this

problem are the diffusion approach, and the classical approach — by classical, we

mean in the same spirit as Stein in [Ste86]. For the sake of completeness, we shall

give a brief analysis of both in the context when M = S1 to select a method.

As described in the Introduction, a recent development within the area of

Stein’s method [LLBF22] enables us to extend the diffusion method originally

presented in [MG16] to general manifolds. We shall begin this chapter by verifying

that the diffusion approach is inapplicable in the case for most popular circular
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3.0. Stein’s Method for Probability Measures on S1.

distributions. Suppose, for example, it was desirable to construct a Stein’s method

for the von-Mises distribution. The probability density function (pdf) of the von-

Mises distribution, VM(µ, κ), has the form

pVM(x|κ, µ) =
eκ cos(x−µ)

2πI0(κ)
, x ∈ S1, κ > 0, µ ∈ S1 (3.1)

where In(x) is the modified Bessel function of the first kind defined as In(κ) :=

1
π

∫ π
0
eκ cos θ cos(nθ)dθ. Here we have identified S1 with the interval (−π, π]. In the

discussion paper [Ken75], Kent proposed the following SDE that has the von-Mises

distribution as its stationary distribution,

dXt = −κ
2

sin(Xt − µ)dt+ dBt, (3.2)

the solution to which is aptly named the von-Mises process. The infinitesimal

generator of (3.2) is

Af(x) =
1

2
f ′′(x)− κ

2
sin(x− µ)f ′(x). (3.3)

Using the generator (3.3) one can show — by application of integration by parts

— that the invariant measure of the von-Mises process is indeed the von-Mises

distribution.

As discussed in Section 1.1.3, for the diffusion approach to be applicable, we

impose the sufficient condition on the density function and geometry

Ric + Hessφ ≥ 2kg, (3.4)

for some k > 0 and where the density function is written in the form p(x) ∝ e−φ(x).

On S1, this condition is simplified to the 2k-strongly log-concave assumption

Hessφ ≥ 2kg due to the flat geometry of the circle.

However, this is clearly not satisfied for the von-Mises distribution on S1. For

φ = −κ cos(x − µ), Hessφ(x) = κ cos(x − µ) is not strictly positive on S1 and
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3.0. Stein’s Method for Probability Measures on S1.

so the sufficient condition fails to be satisfied in this case for any x, µ, or κ. In

summary, we require φ to be a convex function, which for many classical circular

distributions such as the Bingham uniform, cardioid or wrapped distributions is

not true. This motivates the need to use classical methods in order to construct

a Stein method for distributions on S1.

It now seems reasonable to apply the density method discussed in Section

1.1.1 on an interval [a, b] and identify this as the circle. However, it must be

appreciated that in order to equate the circle with an interval it is neccessary to

assign a wrapping at the endpoints of the interval. This means one can not simply

employ general density methods discussed in, for example, [CGS10]. Boundary

conditions on fh and p must be obtained for these methods to be applicable —

particularly, limx→a+ f(x)p(x) = limx→b− f(x)p(x). The von-Mises, Bingham and

uniform distributions do not satisfy this boundary condition unless one restricts

the function space for which the operator is defined on. Instead, we will modify

the density approach to accommodate the geometry of S1, and we shall see that

by the definition of continuous functions on S1, this condition is always satisfied

for absolutely continuous f and p. Instead of identifying the circle as a wrapping

of an interval of arbitrary length, for the purpose of this chapter, we shall identify

it with an interval of length 2π.

The Stein kernel, which shall be defined later, has been shown [LRS17a,GL18]

to provide an alternative way to construct analytic bounds on the Wasserstein

metric between two known distributions. For this reason, we shall be utilising

the Stein kernel to bound the Wasserstein metric. This avoids the need to bound

the solution to the Stein equation, which can sometimes yield loose bounds. For

example, when looking at the von-Mises distribution X ∼ VM(0, κ), one will find

that the solution to the Stein equation has the form

fh(x) = e−κ cos(x)

∫ x

−π
(h(u)− E[h(X)])eκ cos(u)du.

This cannot be bounded via conventional means, i.e. using properties of the CDF,
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3.0. Stein’s Method for Probability Measures on S1.

due to the oscillatory nature of the cosine function in the exponent. Bounding it

directly using the Lipschitz continuity of h will result in very large upper bounds.

For example, one way to bound it is

fh(x) = e−κ cos(x)

∫ x

−π
(h(x)− E[h(X)])eκ cos(x)dx

≤ ‖h′‖∞ e
−κ cos(x)

∫ x

−π
E[ρ(u,X)]eκ cos(u)du

which can be bounded above by 2e2κπ2 ‖h′‖∞. This is a rather loose bound that

is not very good in practice.

In addition to this, one usually relies upon applying one or more of: exchange-

able pairs, size-biasing, sum of variables and zero-biasing in order to bound the

Wasserstein metric. This will not be needed when working with the kernel as our

method, reminiscent of [LRS17a], will directly compare the operators of our two

distributions to obtain an upper bound.

The chapter is laid out in the following way: Section 3.1 sets the foundation for

the Stein operator and its inverse, translating their definitions and properties from

R to S1. The Stein kernel as described by Stein in [Ste86] will also be introduced.

In addition, we shall discuss why this kernel is not suitable for common and widely

used distributions on S1 when performing analysis. This motivates the need to

construct a new kernel. In Section 3.2, we shall construct a new kernel, the

circular Stein kernel, that one can explicitly calculate for many common circular

distributions, e.g. von-Mises and Bingham. This kernel will also satisfy properties

akin to those of the classical Stein kernel. With the circular Stein kernel, Section

3.3 discusses a way in which one can use it to bound the Wasserstein distance.

Examples of this bound shall also be presented, in particular, we shall exhibit an

application in Bayesian statistics and a numerical approximation for the bound

between the von-Mises and wrapped normal distributions.

Notation and conventions. Throughout the chapter we shall be using the

following notation: P is a probability measure on S1 with continuous Lebesgue
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density p. L1(P ) denotes the space of absolutely integrable functions on S1 under

P . We use this abbreviation for L1(S1, P ) unless explicitly stated otherwise. For

simplicity, we shall assume that the support of P is a connected subset of S1.

Any reference to standard coordinates of S1 means that we associate S1 with the

interval (−π, π] alongside the equivalence relation x ∼ y; meaning that if x ∼ y,

then x − y mod 2π = 0. We prescribe S1 with its canonical Riemannian metric

g = dx2.

3.1 The Circular Stein Operator

This initial section is dedicated to establishing the framework necessary to formu-

late the Stein equation on S1. We begin by defining the canonical Stein operator for

S1 and further define its inverse operator. In lieu of a diffusion approach, we shall

pursue a modified density approach which draws inspiration from Döbler [Döb15].

We first recall two definitions from analysis:

Definition 3.1.1. A function f is absolutely continuous on (a, b] if f has derivative

f ′ almost everywhere, f ′ ∈ L1((a, b], dx) and one can write

f(x) = f(a) +

∫ x

a

f ′(y)dy, a < x ≤ b.

Definition 3.1.2. Let g ∈ C∞((a, b]) with g(a) = g(b) = 0 be a given function.

We say a function φ ∈ L1((a, b], dx) has weak derivative φ′ if

∫ b

a

φ(x)g′(x)dx = −
∫ b

a

φ′(x)g(x)dx.

3.1.1 The Density Operator

To begin, we start with constructing the foundations of Stein’s method for general

univariate distributions on S1:
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Definition 3.1.3. Let P be a probability measure on S1 with Lebesgue density p

with the assumption that p′ ∈ L1(dx). Define I = {x ∈ S1 : p(x) > 0}. The Stein

class F(P ) of P is the collection of functions f : S1 → R such that

i) f is differentiable everywhere on I,

ii) f ′ ∈ L1(dx),

iii)
∫
I(fp)

′dx = 0.

Since we assume p is absolutely continuous, it is immediate that for any f ∈

F(P ) the product fp is absolutely continuous on I since f is also absolutely

continuous by items i) and ii). Because of the Lebesgue integrability assumption

on p′, constant functions are always in F(P ), and hence F(P ) is always non-empty.

Definition 3.1.4. The Stein operator Tp of a probability measure P on S1 is the

mapping

Tp : F(P )→ L1(P )

given by

Tpf(x) =


(fp)′

p
(x) x ∈ I,

f(x) x /∈ I.
(3.5)

Note that we will not be characterising P with the Stein class and Stein oper-

ator, this requires one to show that EQ[TPf(X)] = 0 =⇒ Q = P , we only need

the fact that expectation under P is 0 for the framework to hold.

By comparing these definitions with their Euclidean counterparts (for example

in [LRS17b]), we see immediate differences. Instead of requiring fp to be abso-

lutely continuous, we may instead restrict f ′ ∈ L1(dx) so that fp is absolutely

continuous. In other words, we need not demand absolute continuity in fp since

it is a consequence of Definition 3.1.4. Stating that f ′ is differentiable everywhere

allows us to write down, explicitly, the Stein operator as a differential operator

in terms of f — see below. The key difference is that for the definition of the

Stein class on R, the third condition
∫
R(fp)′dx = 0 is required (cf. [LRS17b]) for
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p ∈ L1(R, dx). In the case of the circle, if supp(P ) = S1, this condition is auto-

matically satisfied: if we are to identify S1 with the interval [−π, π) alongside the

equivalence relation defined earlier, then f(−π)p(−π) = f(π)p(π) and so

∫
S1

(fp)′dx = (fp)

∣∣∣∣π
−π

= f(π)p(π)− f(−π)p(−π) = 0.

Lemma 3.1.5. Let P be a probability measure on S1 with Lebesgue density p and

Stein class (F(P ), Tp). For all f ∈ F(P ), EP [Tpf ] = 0.

Proof. This statement is evident by Definition 3.1.3. For f ∈ F(P ) and I = {x ∈

S1 : p(x) > 0},

EP [Tpf ] =

∫
I

(fp)′

p
p dx+

∫
Ic
fp dx = 0.

Example 3.1.6. We now give some examples of Stein operators for circular dis-

tributions, with f ∈ F(P ) throughout;

a) Uniform measure U(S1) with p(x) = (2π)−1:

Tpf(x) = f ′(x). (3.6)

In this particular instance, the Stein class can be explicitly written down using

Definition 3.1.3;

F(P ) = {f ∈ C(S1) : f ′ ∈ L1(dx)}

here f ′ is the derivative in weak sense.

b) von-Mises VM(µ, κ) with p(x) = (2πI0(κ))−1exp(κ cos(x− µ)),

Tpf(x) = f ′(x)− κ sin(x− µ)f(x).

c) Bingham Bing(µ, κ) with p(x) = (2πI0(κ/2)exp(κ/2))−1exp(κ cos2(x− µ));

Tpf(x) = f ′(x)− κ sin(2(x− µ))f(x).
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d) Cardiod C(µ, ρ) with p(x) = (2π)−1(1 + 2ρ cos(x− µ)) and |ρ| ≤ 1
2
;

Tpf(x) = f ′(x)− 2ρ sin(x− µ)

2ρ cos(x− µ) + 1
f(x).

We shall now go about describing a standardized coordinate system for the

purposes of integration.

Definition 3.1.7. Let X ∼ P be a circular random variable. The mean angle

µ is defined as µ := Arg(EP [eiX ]) for i2 = −1 and Arg is the complex argument

(principal value) function.

Note that this definition of moment exists on S1, and more importantly, is

unique.

Remark. The parameter µ in the above examples b), c), and d) are all the mean

angle of their respective distributions.

This particular quantity’s origin is from the first circular moment EP [eiX ] which

is decomposed into φ1 = ρeiµ in what we shall call the standard coordinate system

of S1. That is, when S1 is viewed as the wrapping of the interval [−π, π). In φ1, ρ

is the mean resultant length and µ is known as the mean direction [MJ09]. Before

calculating µ, it is key to determine what coordinate system one is working with.

The first moment, φ1, is not necessarily invariant to choice of coordinate system

and Arg is only defined to have support in the standard coordinates of S1. One will

have to convert to standard coordinates before proceeding to calculate µ. Under

the standard coordinates, one particular property µ has is that EP [sin(X−µ)] = 0.

This fact will be important in the section following.

We shall be using the parameter µ as a foundation from which we shall con-

struct a coordinate system on S1 for the purpose of integration. It will allow us

to define and compute integrals in an interval whose midpoint is not necessarily

0. This procedure is as follows: For any x ∈ S1 which is not µ+ π, the antipodal

point to µ, there is a unique tangent vector Vx ∈ TµS1 ∼= R with
√
g(Vx, Vx) < π
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such that expµ(Vx) = x. Therefore, the map x 7→ Vx determines a local coordinate

system covering S1\{µ+π}. Furthermore, the mapping identifies S1\{µ+π} with

[−π, π) ⊂ R. Under this new coordinate system, µ is identified with the origin of

R and x − µ is simply Vx. Then, by mapping µ + π to π, we in effect identify

S1 with (−π, π] ⊂ R with the understanding that the two endpoints are wrapped

together; −π is identified with π. In the case where µ is not unique, for example

with the uniform measure on S1, we take (any) one of the valid values for µ and

form the corresponding identification as described above. Hence our chosen coor-

dinate system of S1 depends on P . Any reference to the µ coordinate system will

directly refer to this construction. Under the µ coordinate system, since we have

identified µ with 0, EP [sin(X)] = 0 for a random variable X on S1. Moreover, p is

now centred at µ. For example, if P is the von-Mises, P ∼ VM(µ, κ) in standard

coordinates, P in the µ coordinate system changes to P ∼ VM(0, κ).

3.1.2 The Inverse Operator

The next objective is to define the inverse of the Stein operator (3.5) so that we can

define the Stein kernel. Under the µ coordinate system, since we have identified µ

with 0, EP [sin(X)] = 0 for a random variable X on S1.

Definition 3.1.8. Let F0(P ) = {h ∈ L1(P ) : EP [h] = 0} and define the operator

T −1
p : F0(P )→ F(P ) by

T −1
p h(x) :=


1

p(x)

∫ x
−π h(y)p(y)dy +

h(−π)p(−π)

p(x)
if p(x) 6= 0,

h(x) if p(x) = 0,

(3.7)

where parameters of p are defined in terms of the µ coordinate system

We also have the following equality

T −1
p h(x) = − 1

p(x)

∫ π

x

h(y)p(y)dy +
h(π)p(π)

p(x)
p(x) 6= 0,
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which is due to the fact that, for h ∈ F0(P ),

EP [h] =

∫ x

−π
h(y)p(y)dy +

∫ π

x

h(y)p(y)dy = 0.

In this construction, the integration is performed under the µ coordinate system.

Remark. Typically, when working with distributions on R with support I = [a, b],

one does not see the second term on the right of (3.7). This is due to the fact that

one chooses p such that at the end points of the support, p(a) = p(b) = 0 and so

the extra constant disappears.

Proposition 3.1.9. T −1
p is the inverse of Tp.

Proof. There are two sections to this proof: the first being the case where p(x) >

0 ∀x ∈ S1 and the second being the case where p(x) ≥ 0, p(x) = 0 for some x ∈ S1.

We begin with the first case. First, let us check that for a function h ∈ F0(P ), we

have TpT −1
p h = h:

T (T −1
p h)(x) =

((T −1
p h(x))p(x))′

p(x)

=
1

p(x)

∂

∂x

(∫ x

−π
h(y)p(y)dy + h(−π)p(−π)

)
=

1

p(x)
h(x)p(x)

= h(x).

Now to show the other way, let h ∈ F(P ). Since EP [Tph] = 0 by Lemma 3.1.5, it

is clear that Tph ∈ F0(P ). Then,

T −1
p (Tph)(x) =

1

p(x)

∫ x

−π
Tph(y)p(y)dy +

h(−π)p(µ− π)

p(x)

=
1

p(x)

∫ x

−π

((h(y)p(y))′

p(y)
p(y)dy +

h(−π)p(−π)

p(x)

=
1

p(x)

∫ x

−π
(h(y)p(y))′dy +

h(−π)p(−π)

p(x)

=
1

p(x)

(
h(x)p(x)− h(−π)p(−π) + h(−π)p(−π)

)
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= h(x).

For the second case define I = {x ∈ S1 : p(x) > 0} and let h ∈ F0(P ). For x ∈ Ic,

Tp(T −1
p h)(x) = Tph(x) = h(x).

For the other way, since p(x) = 0 it is clear that EP [IIcTph] = 0 and hence

Tph ∈ F0(P ) on Ic, therefore

T −1
p (Tph)(x) = T −1

p h(x) = h(x).

The primary role of the constant h(−π)p(−π) is to preserve the value h(−π)

and also to ensure that T −1
p is injective. If we do not include it, then T −1

p (Tph)(−π) =

0 and T −1
p (Tph)(π) = 0 which is not necessarily true. It is now clear that this extra

term plays a pivotal role in ensuring that T −1
p is the inverse of Tp. However, owing

to the definition of the Stein operator, we also have the following result:

Corollary 3.1.10. Fix any C ∈ R. For g(x) = T −1
p h(x) +C/p(x) for x such that

p(x) 6= 0 and g(x) = h(x) if p(x) = 0,

Tpg(x) = Tp(T −1
p h)(x).

A special quantity is obtained when we select h(x) = ν − x in (3.7) where

ν =
∫ π
−π xp(x)dx. Applying the inverse operator to this particular h we generate

an object known as the classical Stein kernel: for p(x) 6= 0

τ(x) : = T −1
p (ν − Id)(x)

=
1

p(x)

∫ x

−π
(ν − y)p(y)dy +

(ν + π)p(−π)

p(x)
(3.8)

= − 1

p(x)

∫ π

x

(ν − y)p(y) +
(ν + π)p(π)

p(x)
.

48



3.1. The Circular Stein Operator

Again, we must define τ(x) = ν − x when p(x) = 0. However, this does follow

from Definition 3.1.8.

Example 3.1.11. Let X ∼ U(S1), the uniform measure on S1. Then ν =∫ π
−π x/2πdx = 0 and choose µ = 0. The Stein kernel of this distribution is

τ(x) = 2π

∫ x

−π
− y

2π
dy + π

= −y
2

2

∣∣∣∣x
−π

+ π

=
π2 − x2

2
+ π. (3.9)

Definition 3.1.12. Let P be a probability distribution on S1 with ν =
∫ π
−π xp(x)dx,

and X ∼ P . A Stein kernel of P is the random variable τ(X) such that

E[τ(X)φ′(X)] = E[(X − ν)φ(X)] (3.10)

for all differentiable φ for which the expectations exist.

From this definition, we can see that the Stein kernel previously defined in

Equation (3.8) obeys (3.10): Let φ ∈ C1(S1), then

E[τ(X)φ′(X)] =

∫
S1

1

p(x)

(∫ x

−π
(ν − y)p(y)dy + (ν + π)p(µ+ π)

)
φ′(x)p(x)dx

=

∫
S1
φ′(x)

(∫ x

−π
(ν − y)p(y)dy + (ν + π)p(π)

)
dx

= φ(x)

(∫ x

−π
(ν − y)p(y)dy + (ν + π)p(π)

)∣∣∣∣π
−π

+

∫
S1
φ(x)(x− ν)p(x)dx

= E[(X − ν)φ(X)],

since
∫ π
−π(ν − y)p(y)dy = 0 and φ(−π) = φ(π).

Other such examples of closed form expressions for the kernel can be seen

in [LRS17b, Example 4.9] where Ley et. al. formulate a Stein kernel for the

family of Pearson distributions on R.

One of the main uses of the Stein kernel is to be able to construct bounds on
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3.2. The Circular Stein Kernel

the Wasserstein distance between distributions on R (see [LRS17a, Theorem 3.1]).

If we wish to adapt this theorem onto S1 for a circular distribution, say a von-

Mises distribution, we will have to compute the Stein kernel. So far we have only

looked at examples with the uniform measure on S1 due to its simple Lebesgue

density. However, for the von-Mises distribution in particular, one will quickly

find that obtaining a closed form solution of the kernel is not straightforward, and

in some cases impossible (when κ 6= 0). For simplicity, let X ∼ VM(0, κ); then

τ(x) = Tp(E[X]− Id)(x) = e−κ cos(x)

∫ x

−π
(ν − y)eκ cos(y)dy +

C

p(x)
.

There are two problems with this: The first is that the integral is intractable. We

can obtain bounds on τ(x), but these bounds do not particularly aid in bounding

the Wasserstein metric as they will be large — this is akin to bounding the solu-

tion to the Stein equation which is what we wanted to avoid. The second is the

definition of ν. In Example 3.1.11 we used ν =
∫ π
−π xp(x)dx, but for directional

data analysis this is not used as a parameter of location since the standard mean

is not well defined on S1.

A different approach is to redefine µ to be the intrinsic mean of S1: E[eiX ]. This

does, however, require us to completely redefine the kernel to ensure that τ(π) = 0.

This is precisely the route that we shall take in the next section except we shall

not use the full extrinsic mean, rather the mean angle as defined in Definition

3.1.7. We shall see that this particular choice of parameter works well with the

von-Mises and other common directional distributions.

3.2 The Circular Stein Kernel

The end of the previous section lead us to motivate the need to redefine the Stein

kernel for certain circular distributions. We dedicate this section to constructing

this new kernel as well as computing it for a handful of distributions. Similarly

to the classical Stein kernel, we shall utilise the inverse Stein operator to initially
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3.2. The Circular Stein Kernel

define it.

Definition 3.2.1. Let X be a circular random variable with distribution P , mean

angle µ = Arg(E[eiX ]) and µ-centred Lebesgue density p; then sin(x) ∈ F0(P ) on

the µ coordinate system. The circular Stein kernel τ c of P is defined as

τ c(x) := T −1 sin(−Id)(x)

= − 1

p(x)

∫ x

−π
sin(y)p(y)dy

=
1

p(x)

∫ π

x

sin(y)p(y)dy.

By a µ-centred density of a circular random variable X ∼ P with density

p(x;µ), we mean p(x; 0). In Example 3.2.2, we shall see that this µ-centred density

is precisely the density of the random variable X − µ mod2π.

We are distinguishing the circular Stein kernel from the classical Stein kernel

(3.8) with superscript c.

Example 3.2.2. Let X ∼ VM(µ, κ) with Lebesgue density given by p(x) =

(2πI0(κ))−1exp(κ cos(x−µ)) with µ ∈ S1 and κ > 0. To calculate the mean angle,

we recall the special function I1(κ) = 1
2π

∫ 2π

0
cos(x)eκ cos(x)dx. It turns out that

discounting the moment by eiµ aids in its calculation:

E[ei(X−µ)] =
1

2πI0(κ)

∫
S1
ei(x−µ)eκ cos(x−µ)dx

=
1

I0(κ)

(
1

2π

∫
S1

cos(x− µ)eκ cos(x−µ)dx

+
i

2π

∫
S1

sin(x− µ)eκ cos(x−µ)dx

)
=
I1(κ)

I0(κ)
,

since sin(x)eκ cos(x) is antisymmetric about the origin. Therefore, because Arg(E[ei(X−µ)]) =

0, it must be that µ = Arg(E[eiX ]). We then calculate the circular Stein kernel by
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3.2. The Circular Stein Kernel

switching to µ coordinates,

τ c(x) = exp(−κ cos(x))

∫ x

−π
− sin(y)exp(κ cos(y))dy

=
exp(−κ cos(x))

κ

(
exp(κ cos(x))− exp(κ cos(−π))

)
=

1

κ
− 1

κ
exp
(
− κ(1 + cos(x))

)
.

Notably, we have the following bounds on τ c:

0 ≤ τ c(x) ≤ 1

κ
(1− e−2κ) ≤ 1

κ
(3.11)

where the minimum τ c(x) = 0 is achieved at x = ±π and the maximum τ c(x) =

1
κ
(1 − e−2κ) is achieved at x = 0. This particular bound on τ c for the von-Mises

distribution will be of use to us later on.

Example 3.2.3. Let X be a one-dimensional Bingham random variable, with

Lebesgue density

p(x) =
1

2πeκ/2I0(κ
2
)
exp
(
κ cos2(x− µ)

)
, x ∈ S1.

One can deduce that the mean angle is µ due to the fact that p is symmetric about

µ, and so in standard coordinates E[sin(X − µ)] = 0. To calculate the circular

Stein kernel of this random variable, we must first compute the integral

−
∫ x

−π
sin(y)exp

(
κ cos2(y)

)
dy =

∫ √κ cos(x)

−
√
κ

ez
2

√
κ
dz

=

√
π

2
√
κ

(
erfi(
√
κ cos(x))− erfi(−

√
κ)
)

=

√
π

2
√
κ

(
erfi(
√
κ cos(x)) + erfi(

√
κ)
)
,

where, erfi(x) is the imaginary error function,

erfi(x) =
2√
π

∫ x

0

et
2

dt,
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3.2. The Circular Stein Kernel

and relates to the error function erf(x) = ierfi(ix) with i2 = −1. Therefore, the

circular Stein kernel is

τ c(x) =

√
π

2

e−κ cos2(x)

√
κ

(
erfi(
√
κ cos(x)) + erfi(

√
κ)
)
.

Example 3.2.4. Let X ∼ U(S1) be the uniform measure on S1 with Lebesgue

density p(x) = 1
2π

, x ∈ S1, and choose µ = 0 as is done in Example 3.1.11. Then

the circular Stein kernel is

τ c(x) = 2π

∫ x

−π
−sin(y)

2π
dy = cos(x) + 1.

One can also obtain this kernel by taking the limit as κ → 0 in Example 3.2.2

with the von-Mises distribution for µ = 0;

lim
κ→0

1− eκ(−1−cosx)

κ

L’hôp
= lim

κ→0
(1 + cos x)eκ(−1−cosx)

= 1 + cosx.

This is possible due to the fact that the Lebesgue density for the von-Mises dis-

tribution is continuous in κ, and its limit is the Lebesgue density for the uniform

measure.

Example 3.2.5. Let X ∼ C(µ, ρ), the cardioid distribution. This particular

distribution is a slight perturbation of the uniform distribution on S1. It has

Lebesgue density

p(x) =
1

2π
(1 + 2ρ cos(x− µ)), x ∈ S1,

where µ ∈ S1, |ρ| ≤ 1
2
. Then E[eiX ] = ρeiµ and so the mean angle is µ. Then its

circular Stein kernel is

τ c(x) = − 1

1 + 2ρ cos(x)

∫ x

−π
sin(y)(1 + 2ρ cos(y))dy

53



3.3. The Circular Stein Kernel

= − 1

1 + 2ρ cos(x)

∫ x

−π
sin(y) + ρ sin(2y)dy

=
1

1 + 2ρ cos(x)

(
cos(y) +

ρ

2
cos(2y)

∣∣∣∣x
−π

)
=

1

1 + 2ρ cos(x)

(
ρ

2
cos(2x) + cos(x) + 1− ρ

2

)
=

1 + cos(x)− ρ sin2(x)

1 + 2ρ cos(x)
.

One interesting observation is that the Lebesgue density for a cardioid distribution

is in fact a scaled-normalised version of the circular Stein kernel for the uniform

distribution.

Similarly to the classical Stein kernel, the circular Stein kernel also satisfies

the following integration by parts property.

Lemma 3.2.6. Define X to be a random variable on S1 with corresponding cir-

cular Stein kernel τ c and mean angle µ, and let φ be absolutely continuous with

weak derivative φ′. We have that

E[sin(X)φ(X)] = E[τ c(X)φ′(X)].

Proof. Let X have Lebesgue density p on S1, then

E[τ c(X)φ′(X)] = −
∫
S1

∫ x

−π
sin(y)p(y)dyφ′(x)dx.

Using integration by parts with u =
∫ x
−π sin(y)p(y)dy and v′ = φ′(x) we obtain

E[τ c(X)φ′(X)] = −φ(x)

∫ x

−π
sin(y)p(y)dy

∣∣∣∣π
x=−π

+

∫
S1

sin(x)φ(x)p(x)dx

= E[sin(X)φ(X)].

In the second equality we have used the continuity of φ and the fact that EP [sin(X)] =

0 in the µ coordinate system.
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3.3. Bounding of the Wasserstein Distance

3.3 Bounding of the Wasserstein Distance

Let W = {h : ‖h′‖∞ ≤ 1} be the set of Lipschitz continuous functions with

Lipschitz constant less than or equal to 1. The Wasserstein distance between two

probability measures P1 and P2 on measurable space (Ω,F) is defined as

dW (P1, P2) = sup
h∈W
|EP1 [h]− EP2 [h]|.

Using the Stein operator, we can construct the Stein equation for X ∼ p as

Tpfh(x) = h(x)− E[h(X)], (3.12)

with Tp defined in Definition 3.1.4. Clearly, E[Tpfh(X)] = 0 since E[h(X)−h(X)] =

0. More concretely, we can say that h − E[h(X)] ∈ F0(P ). It is now evident

that we can apply the inverse Stein operator to both sides of the Stein equation

(3.12) in order to find its solution. However, by Corollary 3.1.10 we may choose

C = −p(−π)(h(−π)− E[h(X)]) so that we can define the solution

fh(x) :=
1

p(x)

∫ x

−π
(h(y)− E[h(X)])p(y)dy. (3.13)

3.3.1 Main Theorem

We next turn our attention to the use of the Stein kernel to bound the Wasserstein

distance for distributions on S1. We shall take a similar approach to that of

[LRS17a] with modifications of the kernel that are discussed in [Döb15] since this

does not involve bounding the solution to the Stein equation directly.

Lemma 3.3.1. Let τ c be the circular Stein kernel of a circular random variable

X with Lebesgue density p and mean angle µ. Define the solution to the Stein

equation fh by (3.13) and further define gh = fh/τ
c. Then, we have for any
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3.3. Bounding of the Wasserstein Distance

Lipschitz continuous test function h : S1 → R

|gh(x)| ≤ ‖h′‖∞

∫ x
µ−π(E[X]− y)p(y)dy∣∣∣ ∫ xµ−π sin(µ− y)p(y)dy

∣∣∣ .
Remark. This result was formulated by Döbler in [Döb15, Proposition 3.13 a)].

Particularly in Döbler’s work, he looked at a general kernel on an interval of R

with closure (a, b). This kernel took the form

η(x) =
1

p(x)

∫ x

a

γ(t)p(t)dt

where γ is a function so that η(b) = 0. In the proposition, Döbler imposed

conditions on the γ that can be used; in particular, γ is decreasing on (a, b).

However, this condition is not necessary for part a) of the relevant proposition

and instead relies upon properties of h and the CDF of p. Therefore this lemma

is easily translated from an interval onto the circle.

Remark. Under the µ coordinate system we choose E[X] = 0 and
∫ x
µ−π yp(y)dy

is viewed purely as an integral and not as an expectation.

Theorem 3.3.2. Let X and Y be circular random variables with Lebesgue den-

sities p1, p2 respectively and supp(X) = supp(Y ) = S1, define π0(x) = p2(x)
p1(x)

.

Furthermore, let µ be the mean angle of X and τ c be the circular Stein kernel of

X. Assume that p1, p2 and π0 are differentiable everywhere on S1. Then we have

the following bounds on the Wasserstein distance between X and Y :

|E[τ c(X)π′0(X)]| ≤ dW (Y,X) ≤ E[|α(X)π′0(X)τ c(X)|],

where

α(x) =

∫ x
µ−π(E[X]− y)p1(y)dy∫ x
µ−π sin(µ− y)p1(y)dy

.

Proof. We begin by proving the lower bound.

First, note that since the sine function is Lipschitz continuous with a Lipschitz
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3.3. Bounding of the Wasserstein Distance

constant of 1,

|E[sin(Y )]− E[sin(X)]| ≤ dW (Y,X).

Moreover, since µ is the mean angle of X, the second expectation on the left hand

side is 0. For the first expectation,

E[sin(Y )] =

∫
S1

sin(x)p2(x)dx

=

∫
S1

sin(x)
p2(x)

p1(x)
p1(x)dx

= E[sin(X)π0(X)].

Then by applying Lemma 3.2.6 with φ = π0, we obtain the lower bound.

For the upper bound, let (F1, T1) and (F2, T2) be the Stein pairs of X and Y

respectively. Then by the definition of the Stein equation, one clearly sees that

fh := T −1
1 (h − E[h(X)]) ∈ F1 since h − E[h(X)] ∈ F0

1 . We need to verify that

fh ∈ F2: First f ′ ∈ L1(dx) and fh is differentiable everywhere on S1 already,

because fh ∈ F1. Furthermore
∫
S1(fhp2)′dx = fhp2|π−π = 0 by continuity. Whence,

we can conclude that fh ∈ F2 and, more importantly, fh ∈ F1∩F2. Using this fact,

we wish to relate the Stein operators of X and Y ; T2(fh)(x) = f ′h(x) +
p′2(x)

p2(x)
fh(x)

and T1(fh)(x) = f ′h(x) +
p′1(x)

p1(x)
fh(x). One can see that both operators share a

common term of f ′h(x), and so

T2(fh)− T2(fh) = (log π0)′fh. (3.14)

Now, by definition of the Stein equation (3.13),

E[h(Y )]− E[h(X)] = E[T1(fh)(Y )]

= E[T1(fh)(Y )]− E[T2(fh)(Y )]

= −E[fh(Y )(log π0)′(Y ))]

= −E
[
τ c(Y )

fh(Y )

τ c(Y )
(log π0)′(Y )

]
. (3.15)
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The second equality is due to the fact that E[T2(fh)(Y )] = 0, since fh ∈ F1 ∩ F2,

and in the third equality we have used Equation (3.14). Define the quantity

gh = fh/τ
c.

Now, using Lemma 3.3.1,

|gh(x)| ≤ ‖h′‖∞ |α(x)|. (3.16)

Combining (3.15) and (3.16) together we obtain the upper bound

dW (Y,X) ≤ sup
h:‖h′‖∞≤1

‖h′‖∞ E[|τ c(Y )α(Y )(log π0)′(Y )|]

= E[|τ(Y )α(Y )(log π0)′(Y )|].

Remark. For probability densities on R, p1 and p2 must obey the following re-

quirements of [LRS17a, Theorem 3.1]:

(
π0(x)

∫ x

−π
(h(y)− E[h(X1)])p1(y)dy

)′
∈ L1(P2)

and

lim
x→π

π0(x)

∫ x

−π
(h(y)− E[h(X1)])p1(y)dy = 0.

These two assumptions are not essential when looking at S1. This is due to the

compactness of the circle and the continuity of functions at −π and π.

It is worth mentioning that α(x) is not a bounded function — it has singular-

ities at x = ±π. To tackle this problem, we will be multiplying it by an auxiliary

function that comes about as a result of (log p)′. For example, in both von-Mises

and Bingham cases, (log p)′ will contain a sine function to assist in removing the

singularity.

Lemma 3.3.3. Let X be a random variable on S1 with Lebesgue density p such

that p(x) 6= 0 on S1. Suppose, without loss of generality, that E[X] = 0 in the
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3.3. Bounding of the Wasserstein Distance

Euclidean sense after making use of an appropriate chart. Then the function

| sin(x)α(x)| ≤ 2π and attains this maximum at x = ±2π.

Proof. We begin by bounding the function from above.

lim
x→−π

α(x) sin(x) = lim
x→−π

sin(x)
∫ x
−π−yp(y)dy∫ x

−π− sin(y)p(y)dy

= lim
x→−π

cos(x)
∫ x
−π−yp(y)dy − x sin(x)p(x)

− sin(x)p(x)
.

When looking at the absolute value of the function,

lim
x→−π

|α(x) sin(x)| = lim
x→−π

| cos(x)
∫ x
−π−yp(y)dy − x sin(x)p(x)|
| sin(x)p(x)|

≤ lim
x→−π

| cos(x)
∫ x
−π−yp(y)dy|

| sin(x)p(x)|
+ π

= lim
x→−π

− cos(x)

p(x)
lim
x→−π

|
∫ x
−π−yp(y)dy|
| sin(x)|

+ π

= lim
x→−π

xp(x)

cos(x)
lim
x→−π

1

p(x)
+ π

= 2π.

To show that this is indeed a maximum, first note that the function α(x) sin(x) sat-

isfies α(0) sin(0) = 0. Denotem(x) =
∫ x
−π−yp(y)dy and s(x) =

∫ x
−π− sin(y)p(y)dy,

then

(α(x) sin(x))′ =
1

s(x)

(
x sin(x)p(x)− m(x)

s(x)
sin(x)p(x) +

m(x)

s(x)
cos(x)

)

which is 0 if and only if

s(x)x sin(x)p(x)−m(x) sin(x)p(x) + cos(x)m(x) = 0.

This only occurs at the point x = ±π, and because α(−π) sin(−π) > 0, it attains

a maximum.

Note that the assumption of E[X] = 0 is satisfied if we transformed to µ-
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coordinates, since the function f(x) = x is anti-symmetric about the origin.

3.3.2 Applications of Theorem 3.3.2

To end the chapter, we present a handful of examples of using Theorem 3.3.2 to

bound the Wasserstein metric and show convergence in distribution.

In the first example, we shall compare two Bayesian posterior densities with

the same likelihood, but different priors. This is an analogous to the example

in [LRS17a, Section 4.2] which discusses the influence of priors on a normal model

of data. In contrast, we explore the effect a von-Mises prior has on a von-Mises

model and compare it to a model with uninformative prior. Inference of this type

was first performed in [MEA76] which looked at the von-Mises Fisher distribution

and classes of priors that can be applied to give analytic results. More recently,

a more relevant inference has been performed in [DW99] which specifically uses

a von-Mises model (on S1) with von-Mises prior. This type of inference has been

used in finding the location of an airplane locator transmitters [GL88]. This

example will be have a base von-Mises model, and we wish to compare a uniform

prior with a von-Mises prior.

Example 3.3.4. Let X1, ..., Xn be iid samples from a VM(µ, κ) distribution. For

the purposes of this example, we shall keep κ fixed and will be performing inference

on the mean angle µ. The likelihood of µ is calculated to be

L(µ;x) ∝
n∏
i=1

exp(κ cos(xi − µ))

= exp
(
κR cos(µ− ψ)

)
, (3.17)

with

R2 = n2(C̄2 + S̄2), tanψ =
S̄

C̄
,

where

C̄ =
1

n

n∑
i=1

cos(xi), S̄ =
1

n

n∑
i=1

sin(xi).
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Note that the form of the likelihood (3.17) is that of a von-Mises with location

and precision parameters ψ and κR respectively.

With the likelihood set up, we will select two priors on µ. The first prior will

be the uniform prior on S1; π1(µ) = 1
2π

. The other shall be an independent (of the

data) von-Mises random variable; µ ∼ VM(0, κ∗). We shall name these models,

Model 1 and Model 2 respectively.

For Model 1, the posterior density is µ|X1, ..., Xn ∼ VM(ψ, κR). For Model

2, the posterior density will change. Similarly to the derivation of the likelihood

above, one can check that the posterior of µ under Model 2 is

π2(µ|x) ∝ exp
(
κR cos(µ− ψ)

)
exp
(
κ∗ cosµ

)
= exp

(
R′ cos(µ− ψ′)

)
,

with

R′2 = κ2R2 + (κ∗)2 + 2κκ∗R cosψ, tanψ′ =
κR sinψ

κR cosψ + κ∗
.

In other words, µ|X1, ..., Xn ∼ VM(ψ′, R′) under Model 2.

Now we can apply Theorem 3.3.2 with X ∼ VM(ψ, κR) and Y ∼ VM(ψ′, R′).

The Radon-Nikodym derivative between these two measures both exists and is

differentiable everywhere on S1; and π0(x) = p2(x)
p1(x)

∝ exp(κ∗ cosµ). Using inequal-

ity (3.11) we know that, in our case, τ c(x) ≤ 1/(κR). Then using the fact that

supx∈S1 |α(x) sin(x)| = 2π, the bound on the Wasserstein metric is

I1(R′)

I0(R′)
sin(ψ − ψ′) ≤ dW (X, Y ) ≤ 2κ∗π

κn
√
C̄2 + S̄2

.

This shows a convergence rate of O(n−1) for the Wasserstein metric between model

1 and model 2 since
√
C̄2 + S̄2 is O(1) in probability. In other words, the effect

of the prior becomes negligible as n increases to infinity, verifying the Bernstein-

von-Mises theorem.

A brief note for the lower bound; as n→∞ then tan′ ψ → tanψ meaning that
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3.3. Bounding of the Wasserstein Distance

sin(ψ − ψ′)→ 0 also.

As previously mentioned, this example is reminiscent of [LRS17a, Section 4.2]

where Ley et. al. discuss comparing Bayesian posteriors for normal models. Simi-

larly to above, they compare a posterior with uninformative uniform prior against

a posterior with normal conjugate prior. In their results they obtain the following

bound: for P1 the model with uninformative prior and P2 the model with the

conjugate prior,

σ2

nδ2 + σ2
|x̄− µ| ≤ dW (P1, P2) ≤ σ2

nδ2 + σ2
|x̄− µ|+

√
2

π

σ3

nδ
√
δ2n+ σ2

where µ and σ2 are the mean and variance of the normal data respectively and δ2 is

the variance of the conjugate prior. Their results show a convergence of O(n−3/2)

compared to ours of O(n−1). The discrepancy in orders is most likely due to the

fact that we are not calculating the expectation E[|α(X)π′0(X)τ c(X)|] and are

instead bounding it above by some enveloping function; thus, giving us a less op-

timal order bound. If it were possible to explicitly calculate E[|α(X)π′0(X)τ c(X)|]

or the α function, then a tighter bound is guaranteed and perhaps an upper bound

of O(n−3/2) will be the result of this.

Example 3.3.5. As in the previous example, let X1, ..., Xn be iid samples from

a VM(µ, κ) distribution. Again, suppose we wish to compare two Bayesian poste-

riors: one with a von-Mises prior µ ∼ VM(0, κ∗), and the other with a Bingham

prior µ ∼ Bing(0, ζ).

Like before, for Model 1, the posterior density is µ|X1, ..., Xn ∼ VM(ψ′, R′).

For Model 2 now, we have the posterior density π(µ|x) ∝ exp(κR cos(µ − ψ) +

ζ cos2 µ). In this case, π0(x) ∝ exp(ζ cos2 µ− κ∗ cosµ). Therefore, using Theorem

3.3.2 and Lemma 3.3.3 with τ c(x) ≤ 1/R′, we have the upper bound on the

Wasserstein metric,

dW (X, Y ) ≤ 2π

R′
(κ∗ + 2ζ).

Our next example concerns the distance between two ‘wrapped’ distributions.

62



3.3. Bounding of the Wasserstein Distance

A wrapping of a distribution of R is a wrapping of the density onto S1. Suppose

U is a distribution on R, then the wrapping of U is V = U mod 2π. In terms of

density functions, they are described using the following equivalences [MJ09]: Let

U have Lebesgue density pU , the Lebesgue density of the wrapping of U , V , is

pV (θ) =
∞∑

k=−∞

pU(θ + 2πk), θ ∈ [−π, π).

For example, if U ∼ N(0, σ2) then the wrapped normal distribution V has density

pV (θ) =
1√

2πσ2

∞∑
k=−∞

exp

(
− (θ + 2πk)2

2σ2

)
. (3.18)

We say V is distributed according to a wrapped normal distribution by V ∼

WN(θ, σ2).

Example 3.3.6. Let Z ∼ WN(0, σ2) and X ∼ WC(0, γ) a wrapped Cauchy

distribution that has probability density function

pWC(θ) =
1

2π

sinh γ

cosh γ − cos θ
, θ ∈ S1, γ > 0,

which can be obtained by applying the geometric series formula on to the pdf

when written in terms of the characteristic function.

We may alternatively write the pdf of the wrapped normal distribution (3.18)

using the Jacobi theta function (see [MJ09, p. 50]),

pWN(θ) =
1

2π
ϑ3(θ, e−σ

2/2)

which in turn, can be rewritten with the Jacobi triple product

pWN(θ) =
1

2π

∞∏
n=1

(1− e−σ2n)(1 + e−σ
2(n−1/2)eiθ)(1 + e−σ

2(n−1/2)e−iθ)

=
1

2π

∞∏
n=1

(1− e−σ2n)(1 + e−2σ2(n−1/2) + e−σ
2(n−1/2)(eiθ + e−iθ))
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3.3. Bounding of the Wasserstein Distance

=
1

2π

∞∏
n=1

(1− e−σ2n)(1 + e−2σ2(n−1/2) + 2 cos θe−σ
2(n−1/2)).

This form is more amenable to taking logarithms, since we can write it as a sum

outside of the logarithm,

log pWN(θ) = − log 2π+
∞∑
n=1

log(1−e−σ2n)+log(1+e−2σ2(n−1/2)+2 cos θe−σ
2(n−1/2)).

The derivative (log pWN)′(θ) is now

(log pWN)′(θ) =
∞∑
n=1

−2 sin θe−σ
2(n−1/2)

1 + e−2σ2(n−1/2) + 2 cos θe−σ2(n−1/2)

=
∞∑
n=1

− sin θ

cosh(σ2(n− 1
2
)) + cos θ

. (3.19)

We shall be using the wrapped Cauchy as our basis for the comparison; it has

circular Stein kernel equal to

τ c(θ) = (cosh γ − cos θ) log

(
cosh γ − cos θ

cosh γ + 1

)

and its log derivative is

(log pWC)′(θ) = − sin θ

cosh γ − cos θ
. (3.20)

Since this derivative contains a sine function, we may apply Theorem 3.3.2 and

Lemma 3.3.3 together with the log derivatives (3.19) and (3.20) to obtain a bound

on the Wasserstein metric

dW (Z,X) ≤ 2π E
[∣∣∣∣(cosh γ − cosX) log

(
cosh γ + 1

cosh γ − cosX

)
×
(

1

cosh γ − cosX
+
∞∑
n=1

1

cosh(σ2(n− 1
2
)) + cosX

)∣∣∣∣].
This expectation is intractable due to the contribution of the wrapped normal
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3.3. Bounding of the Wasserstein Distance

term, however it is possible to bound this sum from above:

sup
θ∈S1

∞∑
n=1

1

cosh(σ2(n− 1
2
)) + cos(θ)

=
∞∑
n=1

1

cosh(σ
2

2
(2n− 1))− 1

=
∑

n∈N\2N

1

cosh(σ
2

2
n)− 1

≤
∑

n∈N\2N

1
1
2
(σ

2

2
n)2

=
8

σ4

∑
n∈N\2N

1

n2

=
π2

σ4
,

where in the final equality we have used the zeta function for odd indices. Applying

this bound, as well as bounding 1
cosh γ−cosx

above by 1
cosh γ−1

, the Wasserstein metric

is bounded above by the following expectation

dW (Z,X) ≤ 2πE
[
(cosh γ − cosX) log

(
cosh γ + 1

cosh γ − cosX

)](
1

cosh γ − 1
+
π2

σ4

)
,

in which the expectation can be further evaluated, giving

dW (Z,X) ≤ 4π sinh γ log(1 + e−γ)

(
1

cosh γ − 1
+
π2

σ4

)
. (3.21)

By setting γ = σ and letting γ →∞, dW converges to 0 with at least leading

order O(γ−1).

Despite using Theorem 3.3.2 as a tool to construct analytic bounds on the

Wasserstein metric, we may also estimate this upper bound numerically. In cer-

tain cases, like the ones we shall present shortly, numerically integrating the ex-

pectation will provide a much more powerful and meaningful bound with which

one can use to show that a distribution is sufficiently close to another.

Take for example a comparison between the von-Mises and Bingham distribu-

tions. If we were to näıvely apply the methods as above for this comparison, one

will eventually end up with a bound
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Figure 3.1: A log-log plot of the upper bound on dW in the case of κ = ζ in black
and a plot of the function κ−3/2 in red.

Suppose X ∼ VM(0, κ) and Y ∼ Bing(0, ζ) the Bingham distribution dis-

cussed in Example 3.2.3. The Radon-Nikodym derivative between these two dis-

tributions is π0 = exp(ζ cos2 x − κ cosx) and its derivative is easily computed

(log π0)′ = − sin(x)(2ζ cos(x)− κ) and so using Theorem 3.3.2 and Lemma 3.3.3

dW (X, Y ) ≤ 1

κ
E[|α(X) sin(X)(2ζ cos(X)− κ)]

≤ 4π
ζ

κ
E[| cos(X)|] + 2π

This is clearly an extremely uninformative bound on dW . Convergence of the

bound does not go to 0, but to 6π by setting κ = ζ and letting κ → ∞. This

tells us that ‘nice’ analytic bounds are only available in some very specific cases.

Implementing a numerical integration scheme for the von-Mises and Bingham

comparison can be performed quite simply, using Theorem 3.3.2 we approach this

as a double integral. Below show the results for the von-Mises and Bingham

comparison:
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3.3. Bounding of the Wasserstein Distance

Figure 3.1 shows, approximately, that the leading order of convergence for

the von-Mises and Bingham distributions is κ−3/2 as κ increases. As we might

expect, the distributions converge to each other as their respective parameters

tend to infinity. The value at which the distance is bounded above by 0.1 occurs

approximately when κ = ζ = 5. Co-incidence of the distributions at κ = ζ = 0 is

also adhered to.

The upper bound on the Wasserstein metric can be written as

dW (X, Y ) ≤ C

κ3/2
+

c

κ2

for large κ where C and c are constants and where X ∼ VM(0, κ), Y ∼ Bing(0, κ).

The constant C can be numerically approximated with C = 0.83 such that all

values of the integral calculated are less than 0.83κ−3/2 for each κ > 25. Thus, for

large κ, it is sensible to suggest that

dW (X, Y ) ≤ 0.83

κ3/2
+

c

κ2
. (3.22)

An example central to directional statistics is the comparison between the

von-Mises and Wrapped Normal distributions. It is known (cf. [MJ09, p.38]) that

pVM(θ;µ, κ)− pWN(θ;µ,A(κ)) = O(κ−1/2), κ→∞

where A(κ) = I1(κ)
I0(κ)

. Likewise with the von-Mises and Bingham comparison, we

shall apply a numerical integration scheme in order to calculate the upper bound

to the Wasserstein metric.

Figure 3.2 suggests an order of convergence of O(κ−1/2) for σ2 = A(κ), but

also for σ2 = κ. In fact, for smaller κ, our bound on the Wasserstein metric is also

lower by using σ2 = κ.

A similar bound to (3.22) can also be numerically approximated and we con-
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Figure 3.2: A log-log plot of the upper bound on dW in the case of σ2 = I1(κ)
I0(κ)

in

black and σ2 = κ in blue, and a plot of the function κ−1/2 in red.

jecture that

dW (X,Z) ≤ 0.87

κ1/2
+

c

κ2

for κ > 50, where Z ∼WN(0, I1(κ)
I0(κ)

) and c is a constant.

Surprisingly, and perhaps coincidentally, for κ > 100, in both the von-Mises

and Wrapped normal and von-Mises and Bingham comparisons, the constant C

coincided at 0.804.

3.4 Conclusion

To conclude the chapter, we summarise our findings and present some potential

topics that require further research.

The essence of this chapter has been modifying the existing framework of the

density approach for Stein’s method to cater for the geometry of the circle. This

was motivated by the fact that the Bakry-Èmery-Ricci criterion was not satisfied
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3.4. Conclusion

for many popular distributions in directional statistics. As such we could not use

the diffusion approach detailed in [LLBF22] and we instead pursued a density

approach.

It was found that a handful of conditions could be relaxed when transfer-

ring from intervals of R to S1. Particularly, the fact that for f, p ∈ C0(S1),

f(−π)p(−π) = f(π)p(π). Moreover, we could relax the restriction of fp being

absolutely continuous to being in L1(S1).

For the purposes of integration, a standard chart on the circle had to be se-

lected. This led us to defining the mean angle µ in Definition 3.1.7 which we used

as our ‘zero point’ around which we centred all our probability distributions.

The Stein operator and its inverse were defined in Definitions 3.1.4 and 3.1.8

respectively, and we noted the difference the inverse operator had with the typical

inverse operator for intervals on R. With these in hand, it was necessary to redefine

the Stein kernel in Definition 3.2.1, which included the newly defined mean angle

µ. With these tools in hand, Theorem 3.3.2 was formulated which gave us a

bound on the Wasserstein metric between distributions on S1. When compared to

its Euclidean counterpart from [LRS17a, Theorem 3.1] it was found that further

assumptions were automatically satisfied by taking into account the geometry of

the circle.

The chapter culminated in Section 3.3.2 where multiple examples were ex-

plored. Two of which were the comparison between two Bayesian models and an-

other between a wrapped normal distribution and a wrapped Cauchy distribution.

We also numerically approximated the upper bound to the Wasserstein metric in

two cases. The most important being the comparison between the wrapped nor-

mal and the von-Mises distribution. We found that the upper bound had a leading

order of κ−1/2 which verified previous asymptotic results.

One observation that was noted, however, was the fact that if we wanted an

analytic, closed form, bound on the Wasserstein metric, then it was imperative

that our quotient π0(x) contained a sin(x) so that we could apply Lemma 3.3.3.
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3.4. Conclusion

This is a key weakness of the upper bound of Theorem 3.3.2.

With regards to the numerical approximation of the upper bound in Theorem

3.3.2, it would be interesting to explore the comparison the approximation of the

upper bound of the Wasserstein metric and the approximation of the Wasserstein

metric using computational optimal transport, to determine how good the upper

bound in Theorem 3.3.2 is — if such a method can indeed be implemented.

In the next chapter, we shall be departing with the density approach in favour

of the diffusion approach to construct brand new bounds on the Wasserstein metric

on more interesting manifolds like Hn and SO(n).
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Chapter 4

Wasserstein Bounds on Manifolds

This chapter will be dedicated to constructing analytical bounds of the Wasser-

stein metric for random variables X and Z with prescribed distributions on specific

manifolds — abuses of notation shall happen often such as X ∼ p meaning that X

is distributed with density function p. The manifolds in question are all complete,

simply connected Riemannian manifolds. We shall be looking at: comparisons

between the uniform and von-Mises-Fisher distributions on Sn, a comparison be-

tween the Hyperbolic heat kernel and Riemannian-Gaussian distributions on H3,

comparisons between Matrix von-Mises-Fisher distributions on SO(n), and finally

a comparison on the space of symmetric positive definite matrices Pn. The mani-

folds we examine are popular for data analysis, particularly the von-Mises Fisher

distribution on Sn. As discussed in Section 1.1.3, the general procedure of con-

structing a bound on the Wasserstein metric between two probability measures

dµφ ∝ e−φdvol and dµψ ∝ e−ψdvol via the diffusion approach requires that each

distribution satisfies the Bakry-Émery-Ricci criterion

Ric + Hessφ ≥ 2κg (4.1)

for some κ > 0.

We restate Theorem 1.1.7 as it will be our primary tool for each comparison

we make.
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4.0. Wasserstein Bounds on Manifolds

Theorem 4.0.1 ( [LLBF22]). Suppose X ∼ µφ and Z ∼ µψ are two probability

distributions on a manifold M . If two such distributions satisfy the Bakry-Émery-

Ricci criterion (4.1) for the same κ > 0, an upper bound on the Wassestein metric

is

dW (X,Z) ≤ 1

2κ
E[|∇(ψ − φ)(X)|]. (4.2)

Proof. Given that each distribution satisfies the Bakry-Émery-Ricci criterion, we

use the diffusion approach to construct a Stein method individually for each dis-

tribution. Let A1 =
1

2
∆M−

1

2
g(∇φ,∇) and A2 =

1

2
∆M−

1

2
g(∇ψ,∇) be the Stein

operators for X and Z respectively.

We can subtract A2 from A1 to obtain a new operator

L := A1 −A2 =
1

2
g(∇(ψ − φ),∇).

We draw attention to the fact that under X, Eµφ [Lf(X)] = −Eµφ [A2f(X)] since

A1 is a Stein operator of µφ. Now, writing the Stein equation out and taking

expectations with respect to µψ we have

Eµφ [h(X)]− Eµψ [h(Z)] = Eµφ [A2fh(X)]

= −Eµφ [Lfh(X)].

Taking norms and supremum over the space of functions with Lipschitz constant

less than or equal to 1 gives the results.

In order to show that distributions on Sn and Hn satisfy the Bakry-Émery-

Ricci criterion (4.1), we require some additional results on the Hessian of radially

symmetric manifolds.

Suppose that M is an n-dimensional spherically symmetric Riemannian man-

ifold (sometimes called a manifold with pole). That is, the manifold is prescribed

with a metric of the form g = dρ2 + G(ρ)2dθ2 in which ρ is the geodesic distance

from a fixed point o ∈ M called the pole, dθ2 is the canonical metric of Sn−1 and
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4.1. Comparison on Sn

G : R+ → R is a continuous function such that G(0) = 0 and G′(0) = 1.

For Sn, defining the function G(ρ) = sin(ρ) yields the canonical metric g =

dρ2 + sin2(ρ)dθ2 on Sn. For Hn, defining the function G(ρ) = sinh(ρ) yields the

canonical metric g = dρ2 + sinh2(ρ)dθ2 on the Hyperboloid model of Hn.

When the metric of a Riemannian manifold takes this form, the Hessian of the

distance function ρ has an explicit form (cf. [GW06, Proposition 2.20]);

Hessρ =
G′(ρ)

G(ρ)
(g − dρ⊗ dρ). (4.3)

Additionally, for any function f ∈ C2(R+),

Hessf(ρ) = D2f(ρ),

= f ′′(ρ)dρ⊗ dρ+ f ′(ρ)D2ρ,

= f ′′(ρ)dρ⊗ dρ+ f ′(ρ)Hessρ. (4.4)

These two features of the Hessian of spherically symmetric manifolds shall

be used extensively in this chapter to determine whether the Bakry-Émery-Ricci

criterion is satisfied.

4.1 Comparison on Sn

The first manifold we shall explore in this chapter will be the n-sphere Sn in Rn+1.

We endow the sphere with its canonical Riemannian metric g = dρ2 + sin2 ρ dθ2

where dθ2 is the metric of Sn−1. It is clear that the sphere can be regarded as a

spherically symmetric manifold and the function G in this case is G(ρ) = sin ρ.

By Equation (4.3), the Hessian of the geodesic distance is

Hessρ =
cos ρ

sin ρ
(g − dρ⊗ dρ). (4.5)
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We frequently use the fact that any point o ∈ Sn can be regarded as a pole. The

volume form on Sn is dvol = sinn−1 ρ dρdθ.

We shall investigate comparisons between three types of distributions on Sn:

the uniform, the von-Mises Fisher, and the Fisher Watson. The von-Mises Fisher

distribution is the n-dimensional analogue of the von-Mises distribution on S1

investigated in Chapter 3. In terms of the intrinsic coordinates on Sn, the prob-

ability density function (with respect to the volume measure) of the von-Mises

Fisher distribution is

pVMF (θ) =
λ(n−1)/2

(2π)(n+1)/2I(n−1)/2(λ)
eλ cos ρ(θ), θ ∈ Sn, λ > 0, (4.6)

where ρ(θ) = ρ(θ, o) is the geodesic distance from a point θ on Sn to a fixed point

o. For brevity, we write that the argument of the pdf is ρ := ρ(θ) since Sn and p

are spherically symmetric about o. For a random variable that is distributed with

pdf (4.6), we write X ∼ VMF(µ, λ).

A more commonly used representation is to embed the sphere into Rn+1 and

use extrinsic coordinates,

pVMF (x) =
λ(n−1)/2

(2π)(n+1)/2I(n−1)/2(λ)
eλ〈x,µ〉, |x| = |µ| = 1, κ > 0 (4.7)

where 〈·, ·〉 is the inner product (dot product) in Rn and where µ is the location

parameter equivalent to o in the intrinsic form. We typically abuse this notation

and end up writing µ and x for both intrinsic and extrinsic forms. When n = 1

we obtain the pdf von-Mises distribution defined earlier in Equation (3.1).

Proposition 4.1.1. The function φ = −λ cos ρ satisfies the Bakry-Émery-Ricci

criterion (4.1) on M = Sn for 0 < λ < n− 1.

Proof. We shall apply (4.4) to the function φ(ρ) = −λ cos ρ,

Hessφ = λ cos ρ dρ⊗ dρ+ λ sin ρHessρ
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= λ cos ρ dρ⊗ dρ+ λ sin ρ
cos ρ

sin ρ
(g − dρ⊗ dρ)

= λ cos ρ g

≥ −λg.

The sphere is an Einstein manifold, and hence the Ricci curvature of Sn is simply

a multiple of g; Ric = (n − 1)g. Therefore, the von-Mises Fisher distribution

satisfies the Bakry-Émery-Ricci criterion if and only if (n− 1)− λ > 0 and so we

demand that 0 < λ < n− 1.

Note it is imperative that n > 1 for the Bakry-Émery-Ricci criterion to ever

be satisfied. Therefore going ahead, we restrict n > 1 in all cases.

Remark. The parameter κ is chosen such that the Bakry-Èmery-Ricci criterion

is satisfied. In the case of Proposition 4.1.1, we choose κ = 1
2
(n − 1 − λ). Then

under the assumption that n− 1 > λ > 0,

0 < 2
1

2
(n− 1− λ)g ≤ Ric + Hessφ.

We could always choose κ to be smaller as well. For example, if n = 5 and

λ = 2, Ric + Hessφ ≥ 2g ≥ g and so κ = 1
2

is sufficient in this case. Although,

because of the effect of κ in 4.0.1, we would always want to maximize κ so that

the Bakry-Èmery-Ricci criterion is satisfied.

Define Z to be the uniform measure on Sn, we write Z ∼ U(Sn) for brevity. By

this we mean, for Z ∼ µ, dµ = 1
Cn
dvol where Cn =

∫
Sn dvol = vol(Sn). A formula

for the volume of the n-sphere is presented later on.

The first comparison we present is between the von-Mises Fisher distribution

and uniform measure. It is obvious that the uniform measure on Sn satisfies the

Bakry-Émery-Ricci criterion since the Ricci curvature is positive everywhere, and

so we are able to apply Theorem 4.0.1.
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Proposition 4.1.2. Let X ∼ VMF(o, λ) and Z ∼ U(Sn). Then we have the

following upper bound on the Wasserstein metric between X and Z:

dW (Z,X) ≤ λ

2κ

Γ
(
n+1

2

)2

Γ
(
n+2

2

)
Γ
(
n
2

) .
Proof. Define φ = 0 and ψ = λ cos ρ for the uniform and von-Mises Fisher mea-

sures respectively. We obtain via differentiation in ρ alone that ∇(φ − ψ) =

λ sin ρ ∂ρ and hence |∇(φ − ψ)| = λ sin ρ since |∂ρ| = 1. The expectation in the

upper bound of the Wasserstein metric (4.2) is now

λEµ[sin ρ(Z)] =
λ

Cn

∫
Sn

sinn ρ dρdθ

= λ

(∫ π

0

sinn−1 ρ dρ

∫
Sn−1

dθ

)−1 ∫ π

0

sinn ρ dρ

∫
Sn−1

dθ

= λ

∫ π

0

sinn ρ dρ

(∫ π

0

sinn−1 ρ dρ

)−1

= λ
In
In−1

,

where the integral In =
∫ π

0
sinn x dx can be computed and has the closed form

In =
√
π

Γ
(
n+1

2

)
Γ
(
n+2

2

) . (4.8)

Therefore by using (4.8), the ratio In/In−1 is simplified to

In
In−1

=
Γ
(
n+1

2

)2

Γ
(
n+2

2

)
Γ
(
n
2

) .
The application of Theorem 4.0.1 delivers to us the following bound on the Wasser-

stein metric:

dW (Z,X) ≤ λ

2κ

Γ
(
n+1

2

)2

Γ
(
n+2

2

)
Γ
(
n
2

)
for some κ > 0 when λ < n− 1.

In the limit as n → ∞, the ratio In
In−1

will tend to 1, limn→∞ dW (Z,X) ≤ λ
2κ

which one can show via Stirling’s approximation. A further verification that this
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upper bound makes sense arises from looking at the limit as λ → 0. In this

case, the probability density of the von-Mises Fisher distribution converges to the

uniform density on Sn. When we apply the limit in the bound of the Wasserstein

metric it is clear that limλ→0 dW (Z,X) = 0 (for small enough λ we can choose

κ = 1
2
).

The next example demonstrates comparisons between two von-Mises Fisher

distributions. Let X ∼ VMF(o1, λ1) and Y ∼ VMF(o2, λ2), then the probabil-

ity densities for both X and Y satisfy the Bakry-Émery-Ricci criterion (4.1) by

Proposition 4.1.1.

With X and Y defined above, φ(x) = λ1 cos ρ(o1, x) and ψ(x) = λ2 cos ρ(o2, x)

respectively. In order to combine these two expressions to obtain |∇(φ − ψ)|, we

rely upon the extrinsic coordinate form of the density function (4.7). We then

write

−φ(x) + ψ(x) = λ1 cos ρ(o1, x)− λ2 cos ρ(o1, x)

= λ1〈o1, x〉 − λ2〈o2, x〉

= 〈λ1o1 − λ2o2, x〉

= |λ1o1 − λ2o2|
〈
λ1o1 − λ2o2

|λ1o1 − λ2o2|
, x

〉
= λ∗〈o∗, x〉

= λ∗ cos ρ(o∗, x)

where λ∗ = |λ1o1 − λ2o2| to ensure that o∗ ∈ Sn. We can then immediately write

down the gradient

|∇(φ− ψ)(x)| = λ∗|∇ cos ρ(o∗, x)| = λ∗ sin ρ(o∗, x).

Whence, by Theorem 4.0.1, an upper bound on the Wasserstein metric is

dW (X, Y ) ≤ 1

2κ
λ∗EX [sin ρ(o∗, X)]
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4.1. Comparison on Sn

under the assumption that 0 < λ1, λ2 < n − 1. For general o1 and o2 this ex-

pectation is intractable and one will have to rely upon Monte Carlo simulations

to evaluate it. However, we can obtain an analytic bound in the case where

o1 = o2 = o.

Proposition 4.1.3. Let X ∼ VMF(o, λ1) and Y ∼ VMF(o, λ2) be von-Mises

Fisher random variables on Sn with 0 < λ1, λ2 < n− 1. Define the function

sn(λ) =

√
1

λ

In
2
(λ)

In−1
2

(λ)
.

Then the Wasserstein distance between X and Y has an upper bound

dW (Y,X) ≤ |λ1 − λ2|√
2κ

Γ
(
n+1

2

)
Γ
(
n
2

) sn(λ1) ∧ sn(λ2).

Proof. We begin by defining φ = −λ1 cos ρ and ψ = −λ2 cos ρ. Then, similar to

the last example, |∇(φ − ψ)| = |λ1 − λ2| sin ρ. To compute the expectation in

Theorem 4.0.1 we must now evaluate the following integral:

∫
Sn

sin ρeλ1 cos ρ dvol = vol(Sn−1)

∫ π

0

sinn ρeλ1 cos ρdρ.

We see that this new integral is in fact related to the normalizing constant of

the von-Mises Fisher distribution on Sn+1. If we denote cn to be the normalizing

constant on Sn, then it is known that

cn(λ) =
(2π)(n+1)/2I(n−1)/2(λ)

λ(n−1)/2
.

We now evaluate the following integral using cn;

∫ π

0

sinn−1 ρeλ1 cos ρ dρ =
cn(λ1)

vol(Sn−1)
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4.1. Comparison on Sn

for any n ∈ N \ {1}. At this point, it is possible to evaluate the expectation:

EX [|λ1 − λ2| sin ρ] = |λ1 − λ2|
∫
Sn

sin ρ
eλ1 cos ρ

cn(λ1)
dvol

= |λ1 − λ2|
vol(Sn−1)

cn(λ1)

∫ π

0

sinn ρeλ1 cos ρ dρ

= |λ1 − λ2|
vol(Sn−1)

cn(λ1)

cn+1(λ1)

vol(Sn)
.

The volume of the (n− 1)-sphere is known to be

vol(Sn−1) =
2πn/2

Γ
(
n
2

) .
Simplifying the expression for the expectation gives us

vol(Sn−1)

cn(λ)

cn+1(λ)

vol(Sn)
=

2πn/2

Γ
(
n
2

) Γ
(
n+1

2

)
2π(n+1)/2

(2π)(n+2)/2In
2
(λ)

λn/2
λ(n−1)/2

(2π)(n+1)/2In−1
2

(λ)

=

√
2

λ

In
2
(λ)

In−1
2

(λ)

Γ
(
n+1

2

)
Γ
(
n
2

) .

Whence, the expectation required is

EX [|λ1 − λ2| sin ρ] = |λ1 − λ2|
√

2

λ1

In
2
(λ1)

In−1
2

(λ1)

Γ
(
n+1

2

)
Γ
(
n
2

) .

We can then apply the same approach, but to instead calculate the expectation

with respect to Y . This will instead give

EY [|λ1 − λ2| sin ρ] = |λ1 − λ2|
√

2

λ2

In
2
(λ2)

In−1
2

(λ2)

Γ
(
n+1

2

)
Γ
(
n
2

) .

Therefore, we may apply Theorem 4.0.1 and the minimum between the two ex-

pectations, either taken over X or Y .

As n → ∞, sn(λ)
Γ
(
n+1
2

)
Γ
(
n
2

) → 0 independently of λ. The comparison between

the two distributions is dominated by quantity λ1−λ2, κ can be chosen to be 1/2

again so long as either λ1 or λ2 aren’t too big.
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4.1. Comparison on Sn

We stress that both λ1 and λ2 must satisfy the Bakry-Èmery-Ricci criterion

for the diffusion approach and Theorem 4.0.1 to be applicable.

The final distribution that we introduce in this section is the Fisher–Watson

distribution on Sn. This is a distribution which has a density function of the form

pFW (θ) ∝ exp
(
λ1 cos2 ρ(θ, o1) + λ2 cos ρ(θ, o2)

)
, θ, o1, o2 ∈ Sn, λ1, λ2 ≥ 0

and we have the constraint that ρ(o1, o2) = π
2
. We denote by FW(o1, λ1, o2, λ2) the

density function above. A useful way to re-express this density function is to use

an extrinsic coordinate system on Sn when viewed in the ambient space of Rn+1

like we did with the von-Mises Fisher distribution;

pFW (x) ∝ exp
(
λ1〈x, x1〉2 + λ2〈x, x2〉

)
, x ∈ Rn+1, (4.9)

where x1 and x2 are the extrinsic versions of o1 and o2 respectively and satisfy

〈x1, x2〉 = 0. Like with all other distributions we have looked at, if we wish to

compare this distribution to another, we must verify that it satisfies the Bakry-

Émery-Ricci criterion (4.1).

Proposition 4.1.4. Let φ = −λ〈µ, x〉2. Then the Hessian of φ has the following

bound

Hessφ ≥ −4λg.

Proof. Consider the following path γ : [0, 2π]→ Sn as γ(t) = x cos t+v sin t where

〈x, v〉 = 0 are points on Sn and v is unit speed, then γ is a geodesic on Sn. Recall

that the definition of Hessφ in terms of curves is

Hessφ =
d2φ(γ(t))

dt2

∣∣∣∣
t=0

.

We first begin by simplifying φ(γ(t)) before differentiating:

φ(γ(t)) = −λ〈µ, x cos t+ v sin t〉2
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4.1. Comparison on Sn

= −λ cos2 t 〈µ, x〉2 − λ sin2 t 〈µ, v〉 − 2λ sin t cos t 〈µ, x〉〈µ, v〉.

Then the first and second derivatives are

dφ(γ(t))

dt
= −λ(− sin 2t 〈µ, x〉2 + sin 2t 〈µ, v〉2 + 2 cos 2t 〈µ, x〉〈µ, v〉),

d2φ(γ(t))

dt2
= −λ(−2 cos 2t 〈µ, x〉2 + 2 cos 2t 〈µ, v〉2 − 4 sin 2t 〈µ, x〉〈µ, v〉).

Finally, setting t = 0 yields the value of the Hessian and a lower bound

Hessφ = 2λ(〈µ, x〉2 − 〈µ, v〉2) ≥ −4λ

since µ, x and v are all on Sn.

We now combine Proposition 4.1.1 with Proposition 4.1.4 so that densities of

the form (4.9) satisfy the Bakry-Émery-Ricci criterion for 0 < 4λ1 + λ2 < n− 1.

For the analytical simplicity and tractability, we shall be looking at the case

where λ2 = 0.

Proposition 4.1.5. Let X ∼ FW(x1, λ, x2, 0) and Z ∼ U(Sn) on Sn. Assume

that 0 < λ < n−1
4

. Then the Wasserstein distance between X and Z is bounded

above;

dW (X,Z) ≤ 1

κ
√
π

Γ(n+1
2

)

Γ(n
2
)

1

1F1(1
2
, n+1

2
, λ)

eλλ−
1
2

(n−1)γ
(n+ 1

2
, λ
)
.

Here, γ is the lower incomplete Gamma function;

γ(n, y) =

∫ y

0

xn−1e−xdx,

and 1F1 is the Kummer confluent hypergeometric function defined by

1F1(a, b, z) =
∞∑
n=0

(a)nz
n

(b)nn!

81



4.1. Comparison on Sn

where (a)0 = 1 and (a)n = a(a+ 1)(a+ 2)...(a+ n− 1) for n > 0.

Proof. Before we begin, the normalizing constant for a Fisher–Watson density

with λ2 = 0 is

∫
Sn
eλ cos2 ρdvol = vol(Sn−1)

∫ π

0

sinn−1 ρeλ cos2 ρ dρ

=
√
π

Γ(n
2
)

Γ(n+1
2

)
1F1

(
1

2
,
n+ 1

2
, λ

)
vol(Sn−1).

For brevity, we shall ignore the normalising constant in the forthcoming calcula-

tions and factor it on at the end. We now apply Theorem 4.0.1 with φ = −λ cos2 ρ

and ψ = 1:

EX [|∇(φ− ψ)|] = 2λEX [sin ρ | cos ρ|]

∝ 2λvol(Sn−1)

∫ π

0

sinn ρ | cos ρ| eλ cos2 ρ dρ

= 2λvol(Sn−1)

(∫ π
2

0

sinn ρ cos ρ eλ cos2 ρ dρ−
∫ π

π
2

sinn ρ cos ρ eλ cos2 ρ dρ

)
.

By the anti-symmetry of cosine and symmetry of sine around π
2
, these integrals

are negatives of each other and so

EX [|∇(φ− ψ)|] ∝ 4λvol(Sn−1)

∫ π
2

0

sinn ρ cos ρ eλ cos2 ρ dρ.

We can simplify this integral by way of the substitution u = λ sin2 ρ, then we have

∫ π
2

0

sinn ρ cos ρ eλ cos2 ρ dρ =
1

2
eλλ−

1
2

(n+1)γ
(n+ 1

2
, λ
)
.

Finally, applying Theorem 4.0.1 and accounting for the normalizing constant yields

the desired result.

We may use this result in order to construct an upper bound on the Wasserstein

distance between the von-Mises Fisher and Fisher Watson distributions. The idea

is that we shall use the fact that dW is the metric distance of a metric space on
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4.2. Comparison on H3

probability measures and we shall apply the triangle inequality, with the uniform

measure as an auxiliary measure between the two.

4.2 Comparison on H3

The next manifold that we shall pursue is the 3-dimensional Hyperbolic space H3.

In particular, we shall be studying hyperbolic space using the hyperboloid model,

which is an embedding inside of 4-Minowski space together with the Riemannian

metric

g = dρ2 + sinh2 ρ dθ2.

Similarly to how it was defined in Section 4.1, ρ denotes the geodesic distance

from a fixed point o ∈ H3 to x ∈ H3, and dθ2 is the canonical metric of S2. The

volume form of this particular model is dvol = sinh2 ρ dρdθ. Since H3 has negative

sectional curvature, the cut-locus at every point in H3 is empty.

The main aim of this section is to compare the two following probability distri-

butions situated on H3: the probability heat kernel, and the Riemannian-Gaussian

distribution. We first introduce the probability heat kernel on H3. Let (Xt)t∈R+ be

a Brownian motion on H3. The process has corresponding infinitesimal generator

A = 1
2
∆M , with ∆M being the Laplace-Beltrami operator on H3. From Section

2.2, the infinitesimal generator and semigroup satisfy

∂

∂t
Ptf = APtf = PtAf, (4.10)

then Ptf = e
1
2

∆Mf. In terms of an integral, the semigroup can alternatively be

defined as Ptf(x) := E[f(Xt)|X0 = x], or more explicitly,

Ptf(x) =


∫
H3 p(t, x, y)f(y)dy t > 0,

f(x) t = 0.

Since this form of Pt must also satisfy Equation (4.10), by the backward Kol-
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4.2. Comparison on H3

mogorov equation,

∂

∂t
p(t, x, y) =

1

2
∆Mp(t, x, y), (4.11)

where the Laplace-Beltrami operator ∆M acts upon the variable x. For simplicity,

we shall fix y = o ∈ H3 and instead rewrite the heat kernel as p(t, x).

For a general manifold M , one cannot obtain a closed form solution of (4.11).

However for H3 (and in fact for H2n+1 for n ∈ N), a closed form solution to the

PDE (4.11) exists [GN98]: Let ρ := ρ(o, x), then

pHK(t, ρ) =
1

(4π)
3
2

ρ

sinh ρ
e−t−

ρ2

4t , t > 0.

For further simplicity, we shall make a time change k = 1
4t

, and drop the depen-

dence on k in the density function so as to treat it like a distributional parameter;

pHK(ρ) =

(
k

π

) 3
2

e−
1
4k

ρ

sinh ρ
e−kρ

2

, k > 0. (4.12)

The distribution with which we shall compare to the probability heat kernel to

is the Riemannian-Gaussian distribution. The name of this distribution is derived

from the form of the density function. For ρ(o, x), the geodesic distance from

points o to x, the Riemannian-Gaussian distribution on a general manifold M has

the probability density function

pRG(ρ) =
1

C
e−cρ

2

, c > 0 (4.13)

where C is the normalizing constant. This is essentially a näıve extension of

the normal distribution on Rn to general manifold. On Rn it is the case that

ρ(x, y) = |x − y| and, moreover, the heat kernel of a Brownian motion on Rn is

described by the pdf (4.13), but this is not necessarily true for general Riemannian

manifolds.
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4.2. Comparison on H3

In the case of M = H3, the normalizing constant C is calculated as

C =

∫
H3

e−cρ
2

dvol

=

∫
H3

e−cρ
2

sinh2 ρ dρdθ

= vol(S2)

∫ ∞
0

e−cρ
2

sinh2 ρ dρ

=
π

3
2 (e

1
c − 1)√
c

.

A short time asymptotic result of Varadhan in stochastic analysis [Hsu02] tells us

that if pM is the density of the heat kernel on a complete manifold M , then for

x ∈M and y /∈ Cut(x),

lim
t→0

t log pM(t, x, y) = −1

2
ρ(x, y)2. (4.14)

Because of this relation, we should expect that as t→ 0, our Wasserstein distance

between the two distributions under (4.12) and (4.13) also goes to 0.

Consider the random variables X ∼ pHK and Y ∼ pRG. To use Theorem 4.0.1,

both φ := − log pHK and ψ := − log pRG must satisfy the Bakry-Émery-Ricci

criterion (4.1). The explicit forms of φ and ψ are

φ = −3

2
log k +

3

2
π +

1

4k
− log ρ+ log sinh ρ+ kρ2, (4.15)

ψ = cρ2 − logC. (4.16)

Proposition 4.2.1. Both φ and ψ in (4.15) and (4.16) satisfy the Bakry-Émery-

Ricci criterion (4.1) for k > 1 and c > 1 respectively.

Proof. For M = H3, our function G in equation (4.3) is G(ρ) = sinh(ρ), and so

we can write the Hessian of ρ as

Hessρ = coth ρ (g − dρ⊗ dρ). (4.17)
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4.2. Comparison on H3

Now using the relation in (4.4) with f(ρ) = ρ2 together with equation (4.17), we

obtain the Hessian of the squared distance:

Hessρ
2

= 2 dρ⊗ dρ+ 2ρ coth ρ (g − dρ⊗ dρ). (4.18)

We start by first proving that ψ satisfies the Bakry-Émery-Ricci criterion for c > 1:

For ψ, we have, using equation (4.18)

Hessψ = 2c dρ⊗ dρ+ 2cρ coth ρ (g − dρ⊗ dρ).

Now, consider two cases: The first case, let U ∈ TxH3 with g(∇ρ, U) = 0. Then,

Hessψ(U,U) = 2cρ coth ρ g(U,U).

Noting that the function x cothx ≥ 1 for all x ≥ 0, we obtain the upper bound

Hessψ(U,U) ≥ 2cg(U,U). (4.19)

On the other hand, when g(∇ρ, U) 6= 0, by the Cauchy-Schwarz inequality, one

sees that g(∇ρ, U)2 ≤ g(∇ρ,∇ρ)g(U,U) = g(∂ρ, ∂ρ)g(U,U) = g(U,U). Whence,

g(U,U) − g(∇ρ, U)2 ≥ 0. Therefore, together with the fact that x cothx ≥ 1 we

have that

Hessψ(U,U) ≥ 2cg(∇ρ, U)2 + 2c(g(U,U)− g(∇ρ, U)2) = 2cg(U,U).

Remark. In fact, we have just shown that

Hessρ
2 ≥ 2g (4.20)

which shall serve us again later on in the proof for computing a lower bound for

Hessφ.
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4.2. Comparison on H3

Since we have obtained a lower bound on the Hessian, we can go on to verify

for what values of c the Bakry-Émery-Ricci criterion (4.1) is valid. For H3, it is

well known that Ric = −2g, and so

Ric + Hessψ ≥ 2cg − 2g = 2(c− 1)g

which is greater than 0 if and only if c > 1.

Now, for φ, its first derivative is

∇φ = k∇ρ2 +

(
− 1

ρ
+ coth ρ

)
∇ρ

and therefore the second derivative is

Hessφ = kHessρ
2

+

(
− 1

ρ
+ coth ρ

)
Hessρ +

(
1

ρ2
− cosech2ρ

)
dρ⊗ dρ.

Since we already have a lower bound on Hessρ
2

we shall forget about this term

momentarily and concentrate on the latter two terms. Denote

T =

(
− 1

ρ
+ coth ρ

)
Hessρ +

(
1

ρ2
− cosech2ρ

)
dρ⊗ dρ.

Using the same technique as we did with ψ above, we split our tangent space TxH3

into two cases: When U ∈ TxH3 with g(∇ρ, U) = 0, using (4.17)

T (U,U) =

(
− 1

ρ
+ coth ρ

)
coth ρg(U,U).

Then, noting that the function coth2 x−x−1 cothx ≥ 0 for all x ≥ 0, T (U,U) ≥ 0.

When g(∇ρ, U) 6= 0,

T (U,U) =

(
− 1

ρ
+ coth ρ

)
coth ρ

(
g(U,U)− g(∇ρ, U)2

)
+

(
1

ρ2
− cosech2ρ

)
g(∇ρ, U)2
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The first term we bound above by 0 using the fact that g(U,U)− g(∇ρ, U)2 ≥ 0

and coth2 x− x−1 cothx ≥ 0. The second term we also bound above by 0 because

x−2 − cosech2x ≥ 0 for all x ≥ 0.

To culminate the proof, we have the bound

Hessφ ≥ kHessρ
2

.

But by equation (4.18),

Hessφ ≥ 2kg

and, so noting again that Ric = −2g,

Ric + Hessφ ≥ 2(k − 1)g

which is greater than 0 if and only if k > 1.

It is now possible to use Theorem 4.0.1 to formulate a bound between the two

distributions.

Proposition 4.2.2. Let X ∼ pHK and Y ∼ pRG be as described above with respec-

tive densities e−φ and e−ψ see (4.15) and (4.16). Then we have the following bound

on the Wasserstein metric, for a chosen κ > 0 that ensures the Bakry-Émery-Ricci

criterion is satisfied,

dW (X, Y ) ≤ 1

κ

e−
1
4k

√
kπ

(k + |c− k|) +
2

κ

(
|c− k|(2k + 1)

4k
+

1

4
− k

2

)
erf

(
1

2
√
k

)
.

Proof. We shall utilise Theorem 4.0.1 in order to formulate this bound.

First, we shall go about calculating the quantity |∇(ψ − φ)|;

|∇(ψ − φ)| =
∣∣∣∣(2(c− k)ρ+

1

ρ
− coth ρ

)
∇ρ
∣∣∣∣

≤
(

2|c− k|ρ+ coth ρ− 1

ρ

)
|∇ρ|

≤ 2|c− k|ρ+ coth ρ− 1

ρ
,
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due to the fact that x−1 − cothx ≤ 0 for x ≥ 0 and the fact that g(∇ρ,∇ρ) =

g(γ̇(0), γ̇(0)) = 1. The next step is to calculate the expectation:

E[|∇(ψ − φ)(X)|] =

∫
H3

(
2|c− k|ρ+ coth ρ− 1

ρ

)
dµφ,

=

(
k

π

) 3
2

e−
1
4k

∫
H3

(
2|c− k|ρ+ coth ρ− 1

ρ

)
ρ

sinh ρ
sinh2 ρ e−kρ

2

dρdθ,

= 4π

(
k

π

) 3
2

e−
1
4k

∫ ∞
0

(
2|c− k|ρ+ coth ρ− 1

ρ

)
ρ sinh ρ e−kρ

2

dρ,

= 4k

√
k

π
e−

1
4k

∫ ∞
0

2|c− k|ρ2 sinh ρ e−kρ
2

+ ρ cosh ρ e−kρ
2 − sinh ρ e−kρ

2

dρ

to which we split this integral into its three base parts;

∫ ∞
0

ρ2 sinh ρ e−kρ
2

dρ =
1

4k2
+

√
π

k

2k + 1

8k2
e

1
4k erf

(
1

2
√
k

)
,∫ ∞

0

ρ cosh ρ e−kρ
2

dρ =
1

2k
+

1

4k

√
π

k
e

1
4k erf

(
1

2
√
k

)
,∫ ∞

0

sinh ρ e−kρ
2

dρ =
1

2

√
π

k
e

1
4k erf

(
1

2
√
k

)
.

The next step is to combine the integrals whilst we ignore the normalising constant,

∫ ∞
0

(
2|c− k|ρ+ coth ρ− 1

ρ

)
ρ sinh ρ e−kρ

2

dρ

=
|c− k|

2k2
+
|c− k|(2k + 1)

4k2

√
π

k
e

1
4k erf

(
1

2
√
k

)
+

1

2k

+
1

4k

√
π

k
e

1
4k erf

(
1

2
√
k

)
− 1

2

√
π

k
e

1
4k erf

(
1

2
√
k

)
=
k + |c− k|

2k2
+ e

1
4k

√
π

k

(
|c− k|(2k + 1)

4k2
+

1

4k
− 1

2

)
erf

(
1

2
√
k

)
.

Then multiplying by the normalising constant,

E[|∇(ψ−φ)(X)|] =
2√
kπ
e−

1
4k (k+|c−k|)+4

(
|c− k|(2k + 1)

4k
+

1

4
− k

2

)
erf

(
1

2
√
k

)
.

And finally, multiplying by 1
2κ

yields the bound on the Wasserstein metric.

An interesting consequence of this result comes when enforcing c = k > 1.
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Figure 4.1: Plot of the upper bound on dW in Proposition 4.2.2 in the case of
c = k, in terms of t = 1/4k.

With this, the bound on the Wasserstein metric reduces to

dW (X, Y ) ≤ 1

κ

√
k

π
e−

1
4k +

2

κ

(
1

4
− k

2

)
erf

(
1

2
√
k

)
.

Then, one may take the limit

lim
k→∞

dW (X, Y ) ≤ lim
k→∞

1

κ

√
k

π
e−

1
4k +

2

κ

(
1

4
− k

2

)
erf

(
1

2
√
k

)
= 0,

If one back-transforms to t = 1
4k

, then this is akin to letting t tend to 0 see Figure

4.2. In other words, we can infer a short-time asymptotics result limt→0 dW (Y,X) =

0. This result coincides with that of Varadhan’s asymptotic relation (4.14) and in

fact strengthens it for H3. For finite t < 1
4
;

dW (X, Y ) ≤ 1

2κ

√
1

πt
e−t +

2

κ

(
1

4
− 1

8t

)
erf(
√
t).
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4.3 Comparison on SO(n)

The penultimate space we shall look at is SO(n) = {S ∈ Rn×n : SᵀS = SSᵀ = In},

the special orthogonal group of dimension n. The Lie algebra of SO(n), so(n) =

{A ∈ Rn×n : Aᵀ = −A}, is the vector space of n × n skew-symmetric matrices.

The tangent space at the identity TISO(n) = so(n). At the point S which is not

necessarily the identity, TSSO(n) = {S}×so(n), and we can pushforward a vector

A from TSSO(n) to so(n) by S−1A. We associate SO(n) with the bi-invariant

metric g(E1, E2) = −1
2
Tr(E1E2) for E1, E2 ∈ so(n). The Ricci curvature of SO(n)

has the form

Ric(E,E) = −1

4
B(E,E)

where B(E,E) = Tr(ad(E) ◦ ad(E)) is the Killing form. For SO(n) it is well

known that B(E,E) = (n− 2)Tr(E2) and so the Ricci curvature is expressed as

Ric(E,E) =
n− 2

2
g(E,E)I . (4.21)

It is worth briefly mentioning that since SO(n) is a closed and compact manifold,

two points in SO(n) have two or more geodesics that connect them. For example,

on SO(3), we may take one path γ(t) = eπtK for some K ∈ so(3). Then the

endpoints γ(1) coincide for K and Kᵀ.

For more information on the geometrical theory behind Lie groups, see Ap-

pendix B.

One of the most well known distributions on SO(n) is the matrix von-Mises-

Fisher distribution, the extension of the von-Mises distribution on S1 to SO(n).

It has density proportional to

pMVM(S) ∝ exp
(
cTr(S0S)

)
, c > 0, S0, S ∈ SO(n)

and so we set φ = −cTr(S0S). The parameter S0 acts as a location-type parameter,

whereas c acts as a scaling or precision parameter. When S0 = I and n = 2, we
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4.3. Comparison on SO(n)

retain the von-Mises distribution on S1 with κ = 2c. This density is absolutely

continuous with respect to the volume measure on SO(n) and since we are working

with a Lie group, this is the Haar measure. It is a measure defined in such a way

that it is invariant to left and right translation on the entire Lie group.

In order to make use of Theorem 4.0.1 for SO(n), we have two requirements; the

Bakry-Émery-Ricci criterion is satisfied as well as a formula for ∇φ. In particular,

we require the existence of ∇φ in order to construct a diffusion whose invariant

density is pMVM .

Set S0 = I to begin with and by define a curve γ on SO(n) which has the

properties that γ(0) = S and γ̇(0) = SE for any S ∈ SO(n) and E ∈ so(n).

We parametrise the curve via the exponential mapping γ(t) = SetE. For any

S ∈ SO(n), the exterior derivative of φ is defined as

dφS(SE) =
d

dt
φ(γ(t))

∣∣∣∣
t=0

= lim
t→0

φ(SetE)− φ(S)

t

= lim
t→0

−cTr(SetE − S)

t

= −cTr

(
S lim
t→0

etE − I
t

)
,

since Tr is a linear operator. Whence,

dφS(SE) = −cTr(SE).

An interesting observation that one finds is that for S = I, dφI(E) = 0 by

definition of E and so we would expect that ∇φ(I) = 0. Now, in order to

find ∇φ, we use the relation dφS(SE) = g(∇φ(S), SE)S = g(S−1∇φ(S), E)I =

−1
2
Tr(S−1∇φ(S)E). However, if we were to näıvely write 1

2
S−1∇φ(S) = cS, it im-

plies that ∇φ(S) = 2cS2. This is clearly not correct since S2 is not necessarily in

the Lie algebra and moreover, ∇φ(I) 6= 0. To ensure that S−1∇φ(S) lies in the Lie

algebra, we add in the skew symmetric constraint (S−1∇φ(S))ᵀ = −S−1∇φ(S).
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The solution to this constrained problem is then

∇φ(S) = cS(S − Sᵀ),

and it is clear that S−1∇φ(S) ∈ so(n).

One may verify this claim by substituting it back into the inner product

dφS(SE) = g(∇φ(S), SE)S,

= g(S−1∇φ(s), E)I ,

=
c

2
Tr((Sᵀ − S)E),

= −cTr(SE).

If one were interested in the case where S0 is not the identity, then this result can

be re-obtained by applying the left action of S0 onto S in S−1∇φ(S), yielding

∇φ(S) = cS(S0S − (S0S)ᵀ). (4.22)

Proposition 4.3.1. For φ = −cTr(S0S), we have the following lower bound on

the Hessian:

Hessφ ≥ −2cg.

Proof. Without loss of generality, we set S0 = I.

To first calculate the Hessian, we define γ(t) = SetE so that γ(0) = S and

γ̇(0) = SE. The Hessian is then defined as

Hessφ(SE, SE) =
d2

dt2
φ(γ(t))

∣∣∣∣
t=0

=
d

dt
− cTr(SEetE)

∣∣∣∣
t=0

= −cTr(SE2etE)

∣∣∣∣
t=0

= −cTr(SE2).
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For i, j = 1, ..., n, write Ẽij for the n × n matrix whose (i, j)th entry is 1,

zero otherwise. Then, for i < j, ẼijẼij = 0 and ẼijẼji = Ẽii. We define the

skew-symmetric matrix E with entries Eij = Ẽij − Ẽji for i, j = 1, ..., n. Because

our analysis on the Hessian strictly involves the trace, we shall set our focus on

the diagonal entries of SE2. If Sij is the (i, j)th entry of S, (SE2)kk = SkiEijEjk.

Expanding E2 in terms of Ẽ,

EijEjk = (Ẽij − Ẽji)(Ẽjk − Ẽkj)

= ẼijẼjk − ẼijẼkj − ẼjiẼjk + ẼjiẼkj.

However, by definition of Ẽ,

ẼijẼkl =


Ẽil j = k,

0 otherwise.

and therefore, EijEjk = Ẽik. The Hessian can now be reformulated as

Hessφ(SE, SE) = −cTr(SE2) = −cSkiẼik ≥ cẼik = cTr(E2)

since |Sij| ≤ 1 by the restriction that SᵀS = I for any rotation matrix. In terms

of the inner product,

Hessφ(SE, SE) ≥ cTr(E2) = −2cg(E,E)I . (4.23)

Note that this result is invariant to the choice of S0, since SO(n) is closed

under left multiplication.

We are now able to find what values of c satisfy the Bakry-Émery-Ricci crite-
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rion. Combining Proposition 4.3.1 together with (4.23) we obtain

Ric(SE, SE) + Hessφ(SE, SE) ≥
(
n− 2

2
− 2c

)
g(SE, SE)S

and so the right hand side is positive if and only if n−2
2
> 2c, i.e. c < n−2

4
. In the

previous chapter, we discussed and constructed a Stein method for the von-Mises

distribution, although this did not involve any sort of diffusions nor infinitesimal

generators. In the case when n = 2, SO(2) ∼= S1 and pMVM(S) ∝ e2c cos(θ) which

is exactly the von-Mises density. Furthermore, the failure to satisfy the Bakry-

Émery-Ricci criterion coincides with the violation of the criterion when M = S1

and φ = −k cos(x − µ). This is because Ric(E,E) = 0 and so we would need

a negative value for c which violates the requirement on c > 0. Moreover, the

computation for the Hessian is also consistent since we parametrised k = 2c for

the von-Mises distribution.

The first comparison that shall be examined will be between two matrix von-

Mises Fisher distributions with equal location parameters, but different scale pa-

rameters.

Proposition 4.3.2. Let X ∼ MVM(S0, c1) and Y ∼ MVM(S0, c2) be matrix

von-Mises Fisher distributions on SO(n). Assuming that 0 < c1, c2 <
n−2

4
,

dW (Y,X) ≤ |c2 − c1|
2κ

EX [
√
n− Tr((S0X)2)].

Proof. With an abuse of notation, define the random variables X ∼ p1 and Y ∼

p2 where p1(S) ∝ exp(c1Tr(S0S)) and p2(S) ∝ exp(c2Tr(S0S)). Further define

φ := − log p1 = −c1Tr(S0S) + C1 and ψ := − log p2 = −c2Tr(S0S) + C2 where C1

and C2 are constants — we need not worry about what the constants are since

we are going to be applying the gradient operator to φ and ψ. Then by applying

the result in Equation (4.22) we have that ∇φ(S) = −c1S(S0S − (S0S)ᵀ) and
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∇ψ(S) = −c2S(S0S − (S0S)ᵀ). We next calculate the norm of ∇φ−∇ψ;

|∇φ(S)−∇ψ(S)|2 =
(c2 − c1)2

2
Tr
(
(S0S − (S0S)ᵀ)ᵀ(S0S − (S0S)ᵀ)

)
=

(c2 − c1)2

2
Tr
(
((S0S)ᵀ − S0S)(S0S − (S0S)ᵀ)

)
=

(c2 − c1)2

2
Tr(2I − (S0S)2 − ((S0S)ᵀ)2)

=
(c2 − c1)2

2

(
2n− 2Tr((S0S)2)

)
.

The expectation of the square root of this quantity is simply

EX [|∇φ(S)−∇ψ(S)|] =
|c2 − c1|√

2
EX [

√
2n− 2Tr((S0X)2)].

Therefore, using Theorem 4.0.1, an upper bound on the Wasserstein metric is

dW (Y,X) ≤ |c2 − c1|
2κ

EX [
√
n− Tr((S0X)2)]

for c1, c2 <
n−2

4
.

If c1 = c2 then clearly dW (Y,X) = 0. Since all of the eigenvalues of special

orthogonal matrices lie on the unit circle in C, all real parts lie between -1 and 1

and therefore, the absolute value of the trace will be no greater than n. Hence, a

less sharp bound is

dW (Y,X) ≤ |c2 − c1|
2κ

√
2n.

One can also use the above result to generate an upper bound between a matrix

von-Mises Fisher distributions and the Haar (uniform) measure on SO(n). Since

the Haar measure Z on SO(n) is such that S0Z is also distributed as a Haar

measure for any S0 ∈ SO(n), the subsequent corollary follows from Proposition

4.3.2 when one of c1, c2 is 0.
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Figure 4.2: A plot of the expected value in Equation (4.24) against the dimension
n. The circles are the data points for the value of the expectation and the line is
an interpolation between each point.

Corollary 4.3.3. Let X follow a matrix von-Mises distribution on SO(n) and Z

the Haar measure on SO(n). Then we have the following bound on the Wasserstein

distance:

dW (Y, Z) ≤ c

2κ
EZ [
√
n− Tr(Z2)]. (4.24)

Figure 4.2 displays simulation results for computing EZ [
√
n− Tr(Z2)] in Equa-

tion (4.24). A basic Monte Carlo integration method was employed with 100,000

variates of the Haar measure on SO(n) drawn for each n.

4.4 Comparison on Pn

We now end the chapter with a brief construction and analysis of Pn, the space of

symmetric positive definite n× n matrices. Pn is a homogeneous space of GL(n);

identified with the quotient GL(n)/O(n). The tangent space at a point P ∈ Pn

is identified as {P} × Sym(n) =: TPPn where Sym(n) is the space of symmetric
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n× n matrices. For brevity, we shall just associate TPPn with Sym(n) alone.

The manifold Pn is of particular interest to statistics. Covariance matrices of

multivariate distributions are symmetric positive definite matrices and so models

that involve the comparison of covariance matrices could use this framework.

We shall attach the affine-invariant metric to Pn, which will give it a Rieman-

nian structure. For A,B ∈ TPPn, the affine-invariant metric is

g(A,B) =
1

2
Tr(P−1AP−1B).

With this particular choice of metric, the manifold Pn has negative sectional cur-

vature. The scalar curvature has also been explicitly computed in [And03] as

S = −1

8
n(n− 1)(n+ 2).

The sectional curvature, however, is not constant. This makes computing a lower

bound for the Ricci curvature more challenging. Explicitly computed quantities for

the Christoffel symbols and metric tensor in dimension 3 can be found in [MZ11].

The affine-invariant metric, as opposed to the Euclidean metric, gives Pn neg-

ative curvature. The most important distinction, however, is that the Euclidean

metric makes Pn a closed manifold, i.e. with a boundary. Therefore we may not

apply the framework of [LLBF22] in this case. Moreover, the exponential map

and geodesic paths are readily available with the affine-invariant metric.

The Ricci curvature tensor has been previously found in [DP18, Proposition

2.4] to satisfy

RicP (X,Z) =
1

4
Tr(P−1X)Tr(P−1Z)− n

4
gPn(X,Z),

for P ∈ Pn and X,Z ∈ TPPn. For our purposes, it is sufficient to perform analysis

in the case that X = Z — the proof requiring the Bakry-Èmery-Ricci criterion

only needs the two arguments X,Z to be equal. Thus:
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Lemma 4.4.1. Let gPn and RicPn denote the metric and Ricci curvature tensors

of Pn respectively, then

RicPn(X,X) ≥ −n
4
gPn(X,X)

for X ∈ TM .

We now focus our attention to the Riemannian-Gaussian distribution on Pn.

This distribution was introduced for H3 in Equation (4.13). In contrast with the

work in Section 4.2, we shall not regard Pn as a spherically symmetric manifold,

and so we will rewrite the density (4.13) in a more explicit form;

pRG(P ) =
1

C
exp
(
− cρ2(P, P0)

)
, c > 0, P0 ∈ Pn (4.25)

where C is the normalizing constant C =
∫
Pn e

−cρ2(P,P0)dvol

We now need to find two things in order to apply Theorem 4.0.1: a form for

∇ρ2(P, P0) and a lower bound on Hessρ
2

.

We first begin with ∇ρ2. Define the path γ : [0, 1] → Pn as the geodesic

connecting two points γ(0) = P and γ(1) = P0. The geodesic distance ρ connecting

P and P0 is then minimized in the direction of γ̇(0) — the negative curvature

ensures this is unique. Because the gradient operator ∇ points in the direction

of maximization, it is the case that ∇ρ(P, P0) = −γ̇(0). Moreover, it is also the

case that γ̇(0) = exp−1
P (P0) since there is no cut locus. Therefore, we have the

following equation for the gradient

∇ρ2(P, P0) = −2 exp−1
P (P0). (4.26)

One can go further on to explicitly calculate the geodesic path as

P (t) = P 1/2exp
(
tLog(P−1/2P0P

−1/2)
)
P−1/2
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and hence

exp−1
P (P0) = P 1/2Log(P−1/2P0P

−1/2)P 1/2,

where Log is the matrix logarithm — see [MZ11].

We now move on to finding a bound for the Hessian. Since Pn has negative sec-

tional curvature, the Cartan-Hadamard theorem states that the exponential map

is everywhere injective. Consequently, the distance function is a convex function

and hence Hessρ
2 ≥ 0. Using this fact, we pursue use the Hessian comparison the-

orem to find a lower bound on the Hessian. Our manifold of comparison shall be

the Hyperbolic space Hn(n+1)/2(−1). We endow Hn(n+1)/2(−1) with the canonical

metric as described in Section 4.2. We scale the metric gPn in such a way that the

sectional curvatures −KP of Pn satisfy −KP < −1.

We are now at a point where an application of the Hessian comparison theorem

is possible.

Theorem 4.4.2 (Hessian Comparison Theorem). Let (M, g), (N, h) be Rieman-

nian manifolds. Let γ : [0, 1] → M and γ̃ : [0, 1] → N denote geodesics on M

and N respectively. Denote by K(t) and K̃(t) the sectional curvature of M and

N restricted to the geodesic at time t. Suppose that K̃(t) ≤ K(t) holds for all

t ∈ [0, 1]. Suppose further that for vector fields Xp ∈ TpM and Yq ∈ TqM for

p = γ(a) and q = γ̃(a) a ∈ [0, 1],

g(Xp, γ̇(a)) = g(Yq, ˙̃γ(a)),

and |Xp| = |Yq|. Then

Hessρ
2

(Xp, Xp) ≤ Hessρ̃
2

(Yq, Yq).
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By the Hessian comparison theorem, for vectors X ∈ TPPn, Y ∈ TyHn(n+1)/2,

Hessρ
2

H (Y, Y ) ≤ Hessρ
2

P (X,X)

such that gPn(X,X) = gH(Y, Y ). Therefore, on applying the Hessian comparison

theorem with the lower bound on Hessρ
2

H , we obtain

Hessρ
2

Pn(X,X) ≥ Hessρ
2

H (Y, Y ),

≥ 2gH(Y, Y ) = 2gPn(X,X)

ultimately giving

Hesscρ
2 ≥ 2cg. (4.27)

On combining Lemma 4.4.1 and Equation 4.27 we have the following result:

Lemma 4.4.3. For φ = cρ2(P, P0), the sufficient condition is satisfied for values

of c such that c > n
8
.

Remark. Since the Ricci curvature is bounded from below and the Hessian is

positive semi-definite, the diffusion process

dXt = Ξt(Xt) ◦ dBt −
1

2
∇ρ2(Xt)dt, X0 = x ∈ Pn, (4.28)

dΞt = HΞdXt

never exits Pn — the Bakry-Émery-Ricci tensor is bounded from below. Therefore,

in theory, one could use the SDE (4.28) with a suitable numerical scheme to sample

from the density (4.25) by allowing the diffusion to go on long enough. Sampling

from the density (4.25) has already been explored in [SBBM17] in which they

employ a rejection sampling algorithm to do so.

With Lemma 4.4.3, we can utilise Theorem 4.0.1 to bound the Wasserstein

metric above for two different Riemannian Gaussian distributions. Let X ∼ pφ

and Y ∼ pψ where φ(P ) = c1ρ
2(P, P1) and ψ(P ) = c2ρ

2(P, P2) are the exponents
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in the pdf (4.25). Using Equation (4.26)

∇(φ− ψ)(P ) = −2(c1exp−1
P (P1)− c2exp−1

P (P2))

and so

dW (X, Y ) ≤ 1

2κ
EX
[∣∣∣√Tr(X−1(c1exp−1

X (P1)− c2exp−1
X (P2)X−1(exp−1

X (P1)− exp−1
X (P2))

∣∣∣]
=

1

2κ
EX
[∣∣∣√Tr

(
(X−1/2(c1exp−1

X (P1)− c2exp−1
X (P2))X−1/2)2

)∣∣∣]

for some κ > 0. In the special case when P1 = P2, we may further simplify the

right hand side:

∇(φ− ψ) = (c1 − c2)∇ρ2(P, P1) = 2(c1 − c2)γ̇(0)

where γ is the intervening geodesic connecting P and P1. Therefore we have the

following simplification for the upper bound of the Wasserstein metric,

dW (X, Y ) ≤ |c1 − c2|
2κ

EX [|2γ̇(0)|],

=
|c1 − c2|

κ
EX [ρ(X,P1)].

4.5 Conclusion

To conclude, we briefly summarise the key techniques and findings of this chapter.

For calculating bounds on the Wasserstein metric by following the method

presented in [LLBF22], the main hurdle that one encounters is showing that the

Bakry-Émery-Ricci criterion is satisfied. The majority of the work in this chapter

was showing this for each of the distributions we wished to compare. Particularly,

calculating bounds on the Hessian was the most challenging aspect. We used

a selection of methods overcome this: using properties of spherically symmetric

manifolds and exact expressions of the Hessian of the distance function; calculating
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the Hessian from its definition in terms of geodesics, as is in Equation (2.1);

applying the Hessian comparison theorem. Together with 4.0.1, we were able

to generate completely new and unseen bounds between a number of probability

measures on a variety of spaces.

It is also possible to show the Bakry-Émery-Ricci criterion is satisfied directly

by using local coordinates and brute-force calculating all necessary quantities like

the Christoffel symbols and Ricci curvature, however this is a very tedious and

time consuming task that is a lot less elegant. Loss of generality for dimension will

also occur, since one will have to select a coordinate chart on a fixed dimensional

manifold to work in. Although it could be reasonable to do in a low dimensional

manifold setting, for example H2 where the number of Christoffel symbols is low

and a global coordinate chart exists.

Like with previous research in distributional convergence, diffusion approach

[LLBF22] can be used to assist in the generation of random variables whose vari-

ates are typically hard to draw from. For example, if we wanted to draw variates

from a matrix von-Mises distribution with small scaling parameter c, we could

instead draw a Haar variate and conclude that this is a good approximation by

Equation (4.24).

One direction that could lead to fruitful application would be to modify the

framework of [LLBF22] so that it is possible to compare a continuous distribu-

tion to a discrete distribution on the manifold, the key motivation being that an

empirical distribution of data on a manifold is discrete. One idea is to generate

a Markov chain whose invariant distribution is the empirical distribution and to

find the Stein operator that way. However, care is needed when discretising the

manifold itself.

In the next chapter, we will be extending the underlying framework of the

method used in this chapter to the case where a boundary is present.
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Chapter 5

Stein’s Method on Manifolds

with Boundary

The Stein’s method presented in Le et. al. [LLBF22] provided a strong foundation

on which one can construct a Stein’s method for a general Riemannian manifold.

However, for practical data applications, one may decide to only use a closed

subset of a manifold as the sample space instead of the full space. A brief example

would be taking the positional data of thrown darts at a dart board. The entirety

of R2 isn’t needed and so one may instead model the data on the closed ball

{x ∈ R2 : |x|2 ≤ 1}, with the data having both radial and angular components.

The underlying assumption that the manifold does not contain a boundary is then

violated and thus, the method is inapplicable. To overcome such a problem, we

introduce a local time process into the unreflected Feller diffusion on an open

manifold. This allows one to construct a process which is Feller in the interior

of a manifold with boundary and does not leave said manifold. This inclusion

of a local time term, however, also presents a multitude of additional problems

one must work through if one wants to pursue a construction similar to that

in [LLBF22].

Our strategy for this chapter is to extend the theory from the boundary-less

case in a careful manner so that we may adapt the results from this case to the
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boundary case. We decompose this chapter into 6 sections with 3 subsections.

We first begin with setting up the necessary definitions and assumptions required

for the chapter. In Section 5.2, we then go through the process of identifying the

correct Stein operator for our target measure. Following this, we introduce the

coupling theory presented in [LLBF22] and extends it with the inclusion of local

time terms in Section 5.3. After that, in Section 5.4, we construct the Stein equa-

tion, and prove the particular form of the solution as well as bound the solution

and its first derivative. The next section, we break up into three more digestible

subsections with the overall aim of Section 5.5 to bound the second derivative of

the solution to the Stein equation. We briefly introduce the Weitzenböck formula

in Subsection 5.5.1 as a necessary tool to prove a Bismut-Elworthy-Li formula in

the subsequent subsection. We use Subsection 5.5.2 as a means to arrive at this

result by using Damped Stochastic Parallel Displacement. This is a flow similar

to that of the derivative flow that leads us to the desired result. In Section 5.5.3

we use this Bismit-Elworthy-Li formula and Damped Stochastic Parallel Transla-

tion to bound the second derivative. To conclude the chapter, Section 5.6 goes

through bounding the Wasserstein metric, and an example is given with the von-

Mises Fisher distribution on the small cap of Sn.

5.1 Preliminary Foundations

Let M be an n-dimensional Riemannian manifold with C∞ boundary with metric

g and we shall equip (M, g) with the Levi-Civita connection D. Denote by M̊

the interior and by ∂M the boundary of M . We use Πx,v to represent the parallel

transport of a vector field over a geodesic from a point x propagated in the direction

of v. If a value y ∈ M is within the radius of injectivity of x ∈ M , i.e. expx(tv)

is a geodesic for t ∈ [0, 1], and y = expx(v) then we denote this mapping as

Πx,v : TxM → TyM . We assume that M and its boundary ∂M are connected.

We review some important definitions from [Kro79] on convex manifolds:
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Definition 5.1.1. Given a Riemannian manifold N and a set C ⊂ N , C is said

to be convex if, for any point p ∈ C̄, there is a number e(p) with 0 < e(p) < r(p)

such that C ∩Be(p)(p) has the property that between any two points in C there is

a unique minimal geodesic in N completely contained in C ∩Be(p)(p) which joins

these points. Here, r(p) is known as the radius of convexity of N at p and we

denote Br(p) as the geodesic ball of radius r centred at p in N . This is taken to

be the smallest number such that C ∩Br(p)(p) contains non-unique geodesics.

Example 5.1.2. Suppose N = Sn, then the spherical cap Mc = {(ρ, θ) ∈ N :

ρ ∈ [0, c]} (Sn is coordinatised as ρ ∈ [0, π], θ ∈ Sn−1 ), where c ∈ [0, π/2], is a

submanifold with boundary of N that has radius of convexity π/2 — we inherit

the canonical metric of N . If we restrict c to be less than π/2 then the submanifold

with boundary has no cut points and every geodesic in Mc is unique.

This definition shows that C can be regarded as an embedded topological

manifold of N with smooth, totally geodesic interior C̊ and (possibly non-smooth)

boundary ∂C. If ∂C is indeed smooth, then C is a smooth submanifold with

boundary of N . The boundary of such a set is called a convex curve.

It is clear that any geodesic ball with small enough radius will be geodesically

convex. For example, taking r < 1
2
inj(N), Bp(r) for p ∈ N contains unique

geodesics only and with boundary equal to {x ∈ N : ρ(x, p) = r}.

Due to the fact that we have embedded M within N , it is a consequence that

we shall be inheriting the metric structure and geometry of N for M . Going

forward, we shall assume that there exists a manifold N such that M is a convex

submanifold with boundary of M . A useful fact for identifying such manifolds is

that a compact Riemannian manifold with boundary ∂M is convex if and only if

the second fundamental form II of the outward normal vector field in the normal

bundle along ∂M is positive semidefinite [Kro79].

As before in the general manifold case [LLBF22], our interests lie in being able
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to construct a Stein method for a probability measure of the form

dµφ =
1

Cφ
e−φdvol, (5.1)

where Cφ =
∫
M
e−φdvol < ∞ and the measure has support over the entire space

M . We assume that φ ∈ C3(M) and that ∇φ is Lipschitz. For the remainder, we

shall write that the random variable X ∼ µφ if X has probability measure given

by (5.1). We note that the measure of the boundary is 0, µφ(∂M) = 0, since ∂M

is codimension 1 with respect to M .

We define the Feller diffusion process {Xt}t∈R+ as the solution to the reflected

stochastic differential equation

dXt = dBM
t −

1

2
∇φ(Xt) + ν(Xt)dLt, X0 = x ∈M. (5.2)

Here, the process {BM
t }t∈R+ denotes an M -valued Brownian motion, ν(x) is the

inward pointing normal vector field at x, and {Lt}t∈R+ is the so called local time of

the process {Xt}t∈R+ . See Figure 5.1 for a pictorial representation of the diffusion.

This is a continuous, non-decreasing process that satisfies

∫ t

0

IM̊(Xs)dLs = 0.

In other words, Lt increases only on the boundary. Consequently, the process Xt

behaves as an overdamped Langevin diffusion in the interior. Moreover, {Lt}t∈R+

is a bounded variation process and therefore dL2
t = dBM

t dLt = dLtdt = 0

Remark. It is possible to extend Paul Lévy’s notion of “mesure du voisinage”

(cf. [GH80] or [Xia98, pp. 386]) from general Borel sets of Rd to manifold with

boundary by considering an ε-tubular neighbourhood around the boundary. By

shrinking the diameter ε of the tubular neighbourhood, a quotient between the

occupation time of the process and the induced volume measure of the boundary

can be produced, yielding a local time process.
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∂Mν

Xt

Figure 5.1: Diagram of a reflected diffusion Xt in M , reflecting about the normal
vector ν.

This particular type of SDE has been previously used to describe reflected

Brownian motions with drift [Wan94]. Note that this diffusion does not leave M

a.s. because the local time term ν(Xt)dLt reflects the process inward once it hits

the boundary.

The inclusion of the local time term is a key step for our extension from mani-

fold to manifold with boundary. In the interior M̊ , the diffusion (5.2) is Feller and

has the usual infinitesimal generator which we require to be the Stein operator.

We induce a uniform measure on the ∂M from M by the following proce-

dure: Let F1 = (ue1, ue2, ..., uen−1, ν) be an oriented orthonormal frame in TxN

where ν is the inward normal vector of M — ν ∈ Nx(M). Then since M ⊂ N ,

F2 = (ue1, ue2, ..., uen−1) is an oriented orthonormal frame in TxM . Since F1 is

orthonormal, it is the case that dvol(F1) = 1 (cf. [Lee18, pp. 432]). We now see

that by the interior product

ινdvol(F2) = dvol(F1) = 1

is also a volume form, but instead, over the boundary ∂M . We then define

dvol(∂M)(x) = dvol(ν) = ινdvol for the unit normal vector ν ∈ Nx(M), the

normal tangent space. The interior product ιν acting on a p-form ω maps to the

space of (p− 1)-forms.
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Since M is embedded within N , if we assume for the time being that φ ∈ C3(N)

(instead of just C3(M)), we can construct an unreflected process which exists on

N by eliminating the reflection term in (5.2). The infinitesimal generator for such

a diffusion takes the form

A =
1

2
∆N −

1

2
g(∇φ,∇) (5.3)

which acts on a suitable family of functions so that |E[Af ]| is finite. This operator

then generates the Itô diffusion

dUt = dBN
t −

1

2
∇φ(Ut)dt, U0 = u ∈ N. (5.4)

Remark. The reason we require the reflection component in the SDE (5.2) is

because we eventually want to show that the stationary/invariant distribution of

{Ut}t∈R+ is the measure µφ. Since the measure is only defined on M , we must

restrict the SDE to M to avoid problems of convergence in its ergodic limit.

For example, suppose we were interested in finding a process whose invariant

distribution is exponential with rate λ on R. A potential candidate that we might

choose is a Brownian motion with drift, dUt = dBt−λdt because the infinitesimal

generator of such a process generates mean zero functions under the exponential

distribution. The problem, however, lies in the fact that a Brownian motion with

drift and diverges to −∞ a.s. Therefore, the stationary distribution doesn’t exist

and so we must restrict the process to R+ via a reflection at 0.

We shall assume that the unreflected process (5.4) is stochastically complete

on N . By this we mean the process does not exit N in finite time. An equivalent

condition for stochastic completeness to hold is to show that [Bak86], for some

κ > 0,

Ric + Hessφ ≥ −κg. (5.5)

Now, because Ut does not leave N , it is clear that Xt does not leave M by virtue
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of the reflection term in (5.2).

In order to construct a Stein method on M , we must demand a condition

stronger than (5.5) to properly develop the framework. This new assumption is

not too disimilar to the inequality (5.5), but instead of requiring the Bakry-Émery-

Ricci tensor to be bounded from below, we demand that it is positive-definite:

Ric + Hessφ ≥ 2κg (5.6)

for some κ > 0.

If we take M to be a convex subset of Rn with flat metric, then the sufficient

condition reduces to Hessφ ≥ 2κg. Or in other words, for a vector u ∈ {v ∈

Rn : |v| = 1}, uᵀHessφu ≥ 2κ. This condition, unsurprisingly, is equivalent to the

requirement on φ in [MG16]. In the terminology of Mackey and Gorham [MG16],

φ is strongly 2κ-concave.

The Brownian motion BM
t of Xt in (5.2) is constructed via horizontal lift. That

is to say, for an n-dimensional Brownian motion {Bt}t∈R+

dXt = Ξt(Xt) ◦ dBt −
1

2
∇φ(Xt)dt+ ν(Xt)dLt, X0 = x ∈M, (5.7)

dΞt = HΞ ◦ dXt, Ξ0 = ξ ∈ O(M),

where Ξ is a lift of Xt to the orthonormal frame bundle O(M) and HΞ is the

horizontal lift. We have also rewritten Ξt = Ξt(Xt) for brevity. It is known that

(cf. [Wan14, Chapter 3]) if the drift function is C1, then the process (5.7) has

a unique solution up to explosion time. Since φ is C3 and our manifold with

boundary is stochastically complete, we need not ponder about such problems.

For later use, we define the following Lipschitz constants: For a function g ∈

Ck(M),

Ci(g) =

∥∥Dig(x)− Πγx,y(D
ig(y))

∥∥
op

ρ(x, y)
, i = 0, .., k, (5.8)

where Di is the covariant derivative applied i times. In this, ‖·‖op denotes the
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operator norm, γx,y denotes any possible geodesic from y to x and therefore, Πγx,y

is notation for the parallel transport of a vector from TyM to TxM along γx,y.

We also define D0 := Id and we note that the operator norm of a function is

the infinity norm ‖·‖∞. We will find that the two quantities C0(g) = ‖dg‖op

and C1(g) = ‖Hessg‖op will be of great importance to us later on in the chapter,

specifically in relation to bounding the solution to the Stein equation.

5.2 The Stein Operator

As with all constructions of Stein’s method, the first step in the general procedure

will be to find an operator L on M such that Eµφ [Lf ] = 0 for some space of

functions f . For the diffusion approach, L is the infinitesimal generator of the

stochastic process whose invariant distribution is µφ. Compared to ordinary dif-

fusions, it is not as easy to find the infinitesimal generator, and then further show

that µφ is the invariant distributions.

In the non-reflected case, an alternative way to formulate the problem is to

instead find an operator A such that

f(Xt)−
∫ t

0

Af(Xs)ds

is a martingale. A problem of this type is classified as the martingale problem.

The above formula is a direct consequence of an application of the Itô formula

onto f , and so A is the infinitesimal generator of Xt. In contrast, when dealing

with a reflected diffusion, we instead have what is known as the submartingale

problem, where the aim is to find an operator L such that

f(Xt)−
∫ t

0

Lf(Xs)ds

is a submartingale — see, for example, [KR14].

To find some notion of a generator for the process in (5.7) we shall apply the
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Itô formula for some f ∈ C2(M),

df(Xt) = g(∇f(Xt), dXt) +
1

2
Hessf (dXt, dXt),

= g(∇f(Xt),Ξ(Xt)dBt)−
1

2
g(∇φ(Xt),∇f(Xt))dt

+ g(ν(Xt),∇f(Xt))dLt +
1

2

n∑
i=1

Ξ2
t (ei)f(Xt)dt,

where e1, ..., en is a basis in Rn. The final term in this equation is none other

than Bochner’s horizontal Laplacian, (2.2). Applying Lemma 2.3.1 allows us to

simplify the right most term, yielding the more familiar form

df(Xt) = g(∇f(Xt),Ξ(Xt)dBt)−
1

2
g(∇φ(Xt),∇f(Xt))dt

+ g(ν(Xt),∇f(Xt))dLt +
1

2
∆Mf(Xt)dt.

Further simplification of the right hand side can be achieved by noting that

1
2
∆Mf(x) − 1

2
g(∇φ(Xt),∇f(Xt)) is the infinitesimal generator of the unreflected

process (5.4).

Applying the usual integral rules and taking expectation of both sides with

respect to the law of Xt given that we start X0 = 0, then

Ptf(x) = f(x) +

∫ t

0

E[Af(Xs)]ds+ E
[ ∫ t

0

g(ν(Xs),∇f(Xs))dLs

]
.

The main complication that arises from this formulation of the semigroup is

the local time term. One typical way to bypass this term is to impose a further

condition on f ; we can re-write g(ν,∇f) = ∂f
∂ν

= df(ν) , the directional derivative

of f in the normal direction ν. We now impose the condition df(ν)|∂M = 0 to

eliminate the local time integral, since L only increases on ∂M . Under this newly

restricted function space D := {f ∈ C2
0(M) : df(ν)|∂M = 0}, the semigroup

simplifies to

Ptf(x) = f(x) +

∫ t

0

E[Af(Xs)]ds.
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At this point, we derive the ‘infinitesimal generator’ of the reflected process,

d

dt
Ptf(x)

∣∣∣∣
t=0

= Af(x).

To conclude, we say that the infinitesimal generator of the reflected process is

equivalent to the infinitesimal generator of the unreflected process (5.3) when

restricted to the function space D. Now that we have obtained an operator, the

next step is to verify that Eµφ [Af ] = 0. This is equivalent to showing that µφ is

an invariant measure for the unreflected process (5.4).

Remark. For a general class of functions, it is difficult to find the infinitesimal

generator, let alone the invariant distribution. In [KR14], Kang and Ramanan

redefine the notion of stationarity for the submartingale problem. They define

that a probability measure π on closed space Ḡ is a stationary measure if

∫ t

0

Lf(x)π(dx) ≤ 0

for measures π such that π(∂G) = 0. We differ in our approach, however, since

we restrict the support of the operator L further. Moreover, they do not assume

that the boundary is C∞, which is an important assumption that we rely upon.

Using Green’s identity on manifold [GHL90],

Eµφ [∆Mf ] =

∫
M

∆Mfdµφ,

=
1

Cφ

∫
M

e−φ∆Mfdvol,

= − 1

Cφ

∫
M

g(∇e−φ,∇f)dvol +
1

Cφ

∫
∂M

e−φdf(ν)ινdvol,

in which ινdvol is the induced volume form on ∂M . Then, because f ∈ D, df(ν) =

0 and so the right hand most integral vanishes,; leaving us with

Eµφ [∆Mf ] = − 1

Cφ

∫
M

g(∇e−φ,∇f)dvol,
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=

∫
M

g(∇φ,∇f)
e−φ

Cφ
dvol,

= Eµφ [g(∇φ,∇f)].

Whence, we have confirmed that Eµφ [Af ] = 0 for all functions f ∈ D.

We summarise what we have established in the following theorem:

Theorem 5.2.1. In the set f ∈ D := {f ∈ C2(M) : df(ν)(x) = 0, ∀x ∈ ∂M},

the infinitesimal generator of the process (5.7) coincides with that of the ordinary

process (5.4). Moreover, the invariant distribution of (5.7) is µφ given by (5.1).

5.3 Coupled Diffusions

The next major step in our framework is to construct a coupled diffusion. This

idea is paramount to proving that the Stein method we present is correct and

provides finite bounds on the derivatives of our solution to the Stein equation.

The coupling constructed is similar to, but not quite, a Kendall coupling, as we

shall preserve the vector field after the parallel transport and not mirror it.

The coupling that we shall use will be as follows: We initiate the coupling at

the point (x, y) ∈M×M and define the tangent vector v0 to be the vector on TxM

such that γ̇(0) = v0 in which γ is the unique geodesic connecting x and y; by this

we mean γ(0) = x and γ(ρ(x, y)) = y with ρ(x, y) = |v0| =
√
g(v0, v0). A more

concrete way to define v0 is via the exponential mapping from x to y, y = expx(v0).

If one assumes that y is not a cut point of x, v0 is unique, hence exp is an injection.

This implies that the exponential map is invertible, v0 = exp−1
x (y) and moreover,

the mapping (x, v0) 7→ (x, expx(v0)) is a local diffeomorphism. We may extend

this notion to determine a process on the tangent bundle with which we can use

the exponential map to propagate our original process Xt in the direction of some

Vt to Yt. Explicitly, we define the pair (Xt, Vt) ∈ TM and Yt = expXt(Vt). The
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coupling process is governed by the following set of SDEs:

dXt = Ξ(Xt) ◦ dBt −
1

2
∇φ(Xt)dt+ ν(Xt)dL

X
t , X0 = x,

dYt = Υ(Yt) ◦ dB′t −
1

2
∇φ(Yt)dt+ ν(Yt)dL

Y
t , Y0 = y,

dΞt = HΞ ◦ dXt, Ξ0 = ξ, (5.9)

dΥt = HΥ ◦ dYt, Υ0 = η,

dB′t =
(
Υ−1
t ΠXt,VtΞt

)
dBt.

In the coupling above, as with Ξ and ξ for Xt, Υ and η are the lift of Yt to O(M).

The new B′t process is another Brownian motion on Rn, however, this is dependent

upon the original Brownian motion Bt. In essence, we are parallel translating the

Brownian motion Ξt ◦ dBt along the geodesic connecting Xt and Yt to create the

new Brownian motion Υt ◦ dB′t. One may write (with an abuse of notation) that

ΥtdB
′
t = ΠXt,VtΞtdBt which makes this fact more evident.

We write ρ(Xt, Yt) for the length of the intervening unit-speed geodesic γt be-

tweenXt and Yt = expXt(Vt). Therefore γt(s) = expXt(s
Vt
|Vt|) so that γt(ρ(Xt, Yt)) =

Yt. For convex manifolds, Vt will always be unique since the cut locus at every

point in M is empty.

Let u1, u2, ..., un be an orthonormal basis in Rn such that Ξtu1 = γ̇t(0) =

Vt/|Vt|, and further define a new basis vi = (Υ−1
t ΠXt,VtΞt)ui for i = 1, ..., n. We

observe that Υtv1 = ΠXt,Vt γ̇t(0) = γ̇t(ρ(Xt, Yt)). For notational convenience, we

write ∇xρ(x, y) as the gradient of ρ with respect to the first n arguments, and

∇y with respect to the final n arguments. We remind the reader of the canonical

projection π : O(M) → M and denote by ρ̃(ξ, η), for any ξ, η ∈ O(M), the

projected distance ρ(πξ, πη) to O(M). Then, the Itô formula for ρ(Xt, Yt) is

dρ(Xt, Yt) =
n∑
i=1

(Ξtui)ρ̃(Xt, Yt)g(ui, dBt) + (Υtvi)ρ̃(Xt, Yt)g(vi, dB
′
t)

− 1

2

(
g(∇xρ(Xt, Yt),∇φ(Xt)) + g(∇yρ(Xt, Yt),∇φ(Yt))

)
dt
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Y0

X0

Xt

Yt

γ

Vt

ΠγXt,Yt
Vt

Figure 5.2: Paths of the diffusions Xt and Yt alongside the parallel transport of
Vt.

+ g(∇xρ(Xt, Yt), ν(Xt))dL
X(t) + g(∇yρ(Xt), ν(Yt))dL

Y
t

+
1

2

n∑
i=1

(Ξtui + Υtvi)
2ρ̃(Xt, Yt)dt,

which is derived from Theorem 3 of [Ken86] with orthonormal basis {(u1, 0), (u2, 0), ..., (un, 0),

(0, v1), (0, v2), ..., (0, vn)} on Rn⊕Rn. The drift and local time terms are extensions

from Rn. Note that there are no further terms involving local time since LX and

LY are both finite variation processes. We then draw attention to our carefully

chosen bases {ui} and {vi}, where the choice is made in such a way that ρ only

changes in the u1 and v1 directions for the x and y variables respectively. We

make the simplification

n∑
i=1

(Ξtui)ρ̃(Xt, Yt)g(ui, dBt) + (Υtvi)ρ̃(Xt, Yt)g(vi, dB
′
t)

= γ̇t(0)ρ(Xt, Yt)g(u1, dBt) + γ̇t(ρ(Xt, Yt))ρ(Xt, Yt)g(v1, dB
′
t),

= γ̇t(0)ρ(Xt, Yt)g(γ̇t(0),ΞtdBt) + γ̇t(ρ(Xt, Yt))ρ(Xt, Yt)g(γ̇t(ρ(Xt, Yt)),ΥtdB
′
t),
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= γ̇t(ρ(Xt, Yt))ρ(Xt, Yt)(−g(γ̇t(0),ΞtdBt) + g(γ̇t(ρ(Xt, Yt)),ΥtdB
′
t),

since the horizontal lift toO(M) is an isometry and γ̇t(0)ρ(Xt, Yt) = −γ̇t(ρ(Xt, Yt))ρ(Xt, Yt).

The latter can be seen by utilising ∇xρ(Xt, Yt) = −γ̇t(0) and ∇yρ(Xt, Yt) =

γ̇t(ρ(Xt, Yt)). Whence, the differential of ρ is now written as

dρ(Xt, Yt) = γ̇t(ρ(Xt, Yt))ρ(Xt, Yt)(−g(γ̇t(0),ΞtdBt) + g(γ̇t(ρ(Xt, Yt)),ΥtdB
′
t)

− 1

2

(
g(∇xρ(Xt, Yt),∇φ(Xt)) + g(∇yρ(Xt, Yt),∇φ(Yt))

)
dt

+ g(∇xρ(Xt, Yt), ν(Xt))dL
X(t) + g(∇yρ(Xt), ν(Yt))dL

Y
t

+
1

2

n∑
i=1

(Ξtui + Υtvi)
2ρ̃(Xt, Yt)dt. (5.10)

We begin by simplifying the first bracketed term:

−g(γ̇t(0),ΞtdBt) + g(γ̇t(ρ(Xt, Yt)),ΥtdB
′
t)

= −g(γ̇t(0),ΞtdBt) + g(ΠXt,Vt γ̇t(0),ΠXt,VtΞtdBt),

= −g(γ̇t(0),ΞtdBt) + g(γ̇t(0),Π−1
Xt,Vt

ΠXt,VtΞtdBt),

= 0. (5.11)

For the dLt terms, we again exploit ∇xρ(Xt, Yt) = −γ̇t(0). Fix Yt at any

given point on the manifold. Then, γ̇(0) is always pointing outward from the

manifold. Since the boundary ∂M is convex, then it is always the case that

g(ν(Xt),−γ̇t(0)) ≤ 0 (see Figure 5.3) with equality when the geodesic between Xt

and Yt lies on ∂M . Therefore, we have the upper bound

g(∇xρ(Xt, Yt), ν(Xt))dL
X
t + g(∇yρ(Xt), ν(Yt))dL

Y
t ≤ 0. (5.12)

For the drift term arising from φ, we note that

∂

∂s
g(∇φ(γt(s)), γ̇t(s)) = g(Dγ̇t(s)∇φ(γt(s)), γ̇t(s)) + g(∇(γt(s)), Dγ̇t(s)γ̇t(s)),
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∂M

−ν

−γ̇

γ

Yt

Xt

Figure 5.3: Diagram of Xt, Yt ∈M with normal vector ν(Xt) and outward vector
∇xρ = −γ̇t(0).

= g(Dγ̇t(s)∇φ(γt(s)), γ̇t(s)),

= Hessφ(γ̇t(s), γ̇t(s)).

It is then evident that, by integrating the above,

∫ ρ(Xt,Yt)

0

Hessφ(γ̇t(s), γ̇t(s))ds = g(∇φ(Yt), γ̇t(ρ(Xt, Yt)))− g(∇φ(Xt), γ̇t(0)),

(5.13)

which is precisely twice the negative of the first two dt terms in (5.10).

For the final term in (5.10), we apply similar reasoning as in the proof of The-

orem 4 in [Ken86]. Denote by J the Jacobi vector field along the geodesic γt with

components J it , whose boundary values satisfy J it (0) = Ξtui and J it (ρ(Xt, Yt)) =

Υtvi for i = 1, ..., n. For more information on Jacobi vector fields, refer to Ap-

pendix A. Also denote γt,ε as a variation of γt with similar fixed boundary condi-

tions γt,ε(0) = Xt and γt,ε(ρ(Xt, Yt)) = Yt for some suitable ε in an interval (−a, b)

containing 0. We represent the length of the variation γt,ε by ρ(ε). When ε = 0
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we recover the geodesic γt. Then, by the second variation formula (A.2)

n∑
i=1

(Ξui + Υvi)
2ρ̃(Xt, Yt) =

∂2

∂ε2
ρ(ε)

∣∣∣∣
ε=0

= I(Jt, Jt)

=

∫ ρ(Xt,Yt)

0

|Dγ̇t(s)Jt(s)|2 − g(R(Jt(s), γ̇t(s))γ̇t(s), Jt(s))ds

=

∫ ρ(Xt,Yt)

0

n∑
i=1

|Dγ̇t(s)J
i
t (s)|2 − g(R(J it (s), γ̇t(s))γ̇t(s), J

i
t (s))ds,

due to the linearity of the covariant derivative. By definition, Jacobi vector fields

minimize the index form under the conditions that for any U i ∈ TM , U i(0) =

Ξtui and U i(ρ(Xt, Yt)) = Υtvi — see Lemma 1.21 of [CE08]. From this we shall

bound the index form I(J it , J
i
t ) above by I(V i

t , V
i
t ) where V i

t (s) := (ΠXt,sVt/|Vt|Ξt)ui.

Therefore, we have the bound

n∑
i=1

(Ξui+Υvi)
2ρ(Xt, Yt) ≤

∫ ρ(Xt,Yt)

0

n∑
i=1

|Dγ̇t(s)V
i
t (s)|2−g(R(V i

t (s), γ̇t(s))γ̇t(s), V
i
t (s))ds.

Since V i
t (s) was defined to be transported in parallel from Xt to Yt, the first

term involving Dγ̇tV
i
t vanishes, leaving us with Riemannian curvature. Moreover,

because V i
t (s) produces an orthonormal basis on Tγt(s)M , the Riemannian curva-

ture tensor can be contracted. This leaves us with an integral involving the Ricci

curvature

n∑
i=1

(Ξui + Υvi)
2ρ̃(Xt, Yt) ≤ −

∫ ρ(Xt,Yt)

0

Ric(γ̇t(s), γ̇t(s))ds. (5.14)

Combining the bounds and equalities in (5.11), (5.12), (5.13), and (5.14) into

the Itô formula for the distance function (5.10) we obtain the following, crucial

bound on the distance function,

dρ(Xt, Yt) ≤ −
1

2

∫ ρ(Xt,Yt)

0

Ric(γ̇t(s), γ̇t(s)) + Hessφ(γ̇t(s), γ̇t(s))dsdt. (5.15)

With the upper bound (5.15), we have the following theorem which is paramount

119



5.3. Coupled Diffusions

to our construction of the Stein method on manifolds with boundary.

Theorem 5.3.1. Let M be a convex manifold with boundary. Let (Xt, Yt) be the

coupled diffusions as defined in (5.9) which is initiated at the point (x, y). Assume

that the Bakry-Émery Ricci curvature is bounded below as in (5.6) for some κ > 0.

Then, for any q ≥ 1,

ρ(Xt, Yt)
q ≤ ρ(x, y)qe−qκt.

Proof. For q = 1, we may immediately apply the sufficient condition (5.6) onto

(5.15) to obtain

dρ(Xt, Yt) ≤ −κ
∫ ρ(Xt,Yt)

0

g(γ̇t(s), γ̇t(s))dsdt

= −κ
∫ ρ(Xt,Yt)

0

dsdt

= −κρ(Xt, Yt)dt. (5.16)

Then integrating and using the initial condition ρ(X0, Y0) = ρ(x, y) we obtain the

desired result,

ρ(Xt, Yt) ≤ ρ(x, y)e−κt.

For q > 1, we apply the Itô formula to the function f(ρ) = ρq,

dρ(Xt, Yt)
q = qρ(Xt, Yt)

q−1dρ(Xt, Yt) +
q(q − 1)

2
ρ(Xt, Yt)d[ρ(X, Y )]t

= qρ(Xt, Yt)
q−1dρ(Xt, Yt)

≤ −κqρ(Xt, Yt)
qdt

and applying integration again with the required initial condition yields the result.

This theorem tells us that Xt and Yt will eventually meet at the same point,

say X, almost surely. Moreover, from the previous section, we have shown that

this X is distributed according to the measure (5.1) and so we can conclude that
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5.4. The Stein Equation

Yt’s invariant distribution is also X. If Xt and Yt meet before infinity, then the

coupling terminates and {Yt} becomes an identical copy of Xt.

5.4 The Stein Equation

The remainder of the chapter will now concern itself with the study of the Stein

equation and solution. In this section, we shall derive the solution and formulate

bounds on the solution and its first derivative.

The Stein equation is a second order PDE of the form

Afh(x) = h(x)− E[h(X)] (5.17)

in which A is as in Theorem 5.2.1 and X is the invariant distribution — X ∼ µφ.

Lemma 5.4.1. Define the space of test functions H = {h : M → R : C0(h) <∞}.

Define {Xt}t∈R+ to be the diffusion according to the SDE (5.7) with generator A

and invariant distribution X ∼ µφ. Moreover, we assume that E[ρ(x,X)] < ∞

for any point x ∈M . Then, the solution to the Stein equation (5.17) is

fh(x) =

∫ ∞
0

E[h(X)]− Ex[h(Xt)]dt.

Furthermore, fh is well defined and has Lipschitz constant C0(fh) ≤ C0(h)/κ.

Proof. Define {(Xt, Yt)}t∈R+ to be the coupled diffusions as constructed in (5.9).

First, we show that fh is well defined:

|fh(x)| =
∣∣∣∣ ∫ ∞

0

E[h(X)]− Ex[h(Xt)]dt

∣∣∣∣
=

∣∣∣∣ ∫ ∞
0

∫
M

Ey[h(Yt)]− Ex[h(Xt)]dµφ(y)dt

∣∣∣∣
≤ C0(h)

∫ ∞
0

∫
M

Ex,y[ρ(Xt, Yt)]dµφ(y)dt

≤ C0(h)

∫ ∞
0

∫
M

ρ(x, y)e−κtµφ(y)dt
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5.4. The Stein Equation

= C0(h)E[ρ(x,X)]

∫ ∞
0

e−κtdt

=
C0(h)

κ
E[ρ(x,X)] <∞.

Here, the second equality is due to the fact that X is the invariant measure of Yt,

the first inequality is due to the definition of Lipschitz continuity of h, and the

second inequality is the application of Theorem 5.3.1.

To prove the condition on the Lipschitz constant of fh, we note that

|fh(x)− fh(y)| =
∣∣∣∣ ∫ ∞

0

Ey[h(Yt)]− Ex[h(Xt)]dt

∣∣∣∣,
≤ C0(h)

∫ ∞
0

Ex,y[ρ(Xt, Yt)]dt,

≤ C0(h)

∫ ∞
0

ρ(x, y)e−κtdt,

=
C0(h)

κ
ρ(x, y),

which implies that C0(fh) ≤ C0(h)/κ. This also shows that dfh(x)(u) is bounded

in some general direction u ∈ TxM .

Lastly, we prove that fh is indeed the solution to the Stein equation: in order

to show this, we must prove that

fh(x) =

∫ ∞
0

E[h(X)]− Ex[h(Xt)]dt

satisfies the differential equation

h(x)− E[h(X)] = Afh(x).

First, assuming that fh satisfies the condition dfh(x)(ν) = 0 for all (x, ν) ∈

N(∂M), define Pth(x) = Ex[h(Xt)] as the semigroup of {Xt}t∈R+ . Then A is

the infinitesimal generator of Xt and d
dt
Pt|t=0 = A. Then, by Proposition 1.5
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5.4. The Stein Equation

of [EK09],

h(x)− Pth(x) = −A
∫ t

0

Psh(x)ds

= A
∫ t

0

E[h(X)]− Psh(x)ds, (5.18)

since E[h(X)] is a constant. On examination of the left hand side of (5.18), we

note

|h(x)− E[h(X)]− (h(x)− Pth(x))| = |Pth(x)− E[h(X)]|

=

∣∣∣∣ ∫
M

Ex[h(Xt)]− Ey[h(Yt)]dµφ(y)

∣∣∣∣
≤ C0(h)

∫
M

Ex,y[ρ(Xt, Yt)]dµφ(y)

≤ C0(h)

∫
M

ρ(x, y)e−κtdµφ(y)

= C0(h)E[ρ(x,X)]e−κt <∞,

due to X being the invariant measure of {Yt}t∈R+ . We then conclude that, point-

wise,

lim
t→∞

h(x)− Pth(x) = h(x)− E[h(X)].

For the right hand side of (5.18), since fh is well defined, as shown above, and

A is closed by [EK09, Corollary 1.6], we may apply the dominated convergence

theorem:

lim
t→∞
A
∫ t

0

E[h(X)]− Psh(x)ds = A
∫ ∞

0

E[h(X)]− Ex[h(Xt)]dt.

To conclude, fh is the solution to the Stein equation.

Since the encompassing manifold N can be embedded within some higher di-

mensional Euclidean space via Whitney’s Embedding Theorem, so can the mani-

fold with boundary M . As a consequence, we can make use of stochastic analysis

on smooth domains embedded within Rn. Particularly, [And11, Corollary 2.9]
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5.5. Bounding the Second Derivative

tells us that the Neumann condition on the semigroup dPth(x)(ν) = 0 is automat-

ically satisfied along the boundary. The main use of this result is to show that

the form of fh satisfies the Neumann boundary condition that we require for the

infinitesimal generator:

dfh(x)(ν) =

∫ ∞
0

dPth(x)(ν)dt = 0

since h ∈ H ⊂ C(M).

Since A is a second order differential operator, it is imperative to also check

that ∆Mfh is well defined. To do this, we shall verify that ‖D2fh‖op < ∞. This,

however, is not an easy task, and requires the use of damped stochastic parallel

translation.

5.5 Bounding the Second Derivative

5.5.1 Weitzenböck Formula

We dedicate this subsection to the introduction of the adjoint operator of d, the

Hodge–de Rahm Laplacian, and the Weitzenböck formula.

Let α and β be two differential forms of the same degree q with compact

support. We define the L2 inner product between α and β as

(α, β) =

∫
M

〈α, β〉xdvol(x), (5.19)

where 〈·, ·〉 is the induced inner product on (T ∗M)q = T ∗M ⊗ ...⊗ T ∗M q times.

Let δ : Γ(ΛpM) → Γ(Λp−1M) be defined as the formal adjoint of d with respect

to the inner product (5.19). The existence and uniqueness of δ is guaranteed by

the Riesz representation theorem. Explicitly, for ω ∈ Λq(M) and τ ∈ Λq−1(M)

(dτ, ω) = (τ, δω).
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5.5. Bounding the Second Derivative

The adjoint δ lowers the degree of the form by 1, in contrast with the exterior

derivative d which increases it by 1. As with the the exterior derivative, it is the

case that δ2 = 0. δ is sometimes called the divergence operator. For a function

f ∈ C1(M), δf = 0. See [Jos08, Section 3.3] for a more rigorous treatment.

We now define the Hodge-de Rahm Laplacian,

�M = −(dδ + δd).

One major difference between ∆M and �M that gives �M a more geometrical

significance is that it commutes with d,

�Md = −(dδ + δd)d = −dδd = d�M .

The Hodge-de Rahm Laplacian can also be written as the operator �M = TrD2,

where D is the connection on TM . Therefore on functions, �M and ∆M coincide.

On forms, however, they differ by a linear transformation on Γ(Λ•M) controlled

by the curvature tensor. This well known formula is known as the Weitzenböck

formula (see [Hsu02]).

Lemma 5.5.1. Let f be a function on M and df on T ∗M , then

�Mdf = d∆Mf + (df)(Ric#).

The # notation in the Ricci tensor is known as the sharp musical isomorphism,

the role of which transforms the 2-form to a tensor of type (1,1) — Ric# : T ∗M →

T ∗M or Ric# : TM → TM . In Einstein summation notation, this is written

as (Ric#)ji = gjkRicik. With the inner product, for vector fields U, V ∈ TxM ,

g(Ric#(U), V ) = Ric(U, V ).

For use in analysis, we also require the following result [Tho20]:

Lemma 5.5.2. For any vector fields X and Z and function f , the following is
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5.5. Bounding the Second Derivative

true

d(Z(f))(X) = (DZdf)(X) + df(DXZ).

5.5.2 Damped Stochastic Parallel Translation

We first define the process {Wt}t∈R+ , Wt : TX0M → TXtM , the damped stochastic

parallel translation of the process {Xt}t∈R+ . It is the solution of the Stochastic

Covariant Differential Equation (SCDE) given by

DWt = −1

2
(Ric + Hessφ)#(Wt)dt+Dν(Wt)dLt, W0 = Id. (5.20)

Damped stochastic parallel translations have been primarily used to generate

Bismut–Elworthy–Li type formulae for the semigroup Pt in which one can ex-

change d and Pt in a careful manner. This has been done with drift and no local

time in [Tho20] and local time and no drift in [AL17].

Theorem 5.5.3. Suppose the sufficient condition (5.6) is satisfied for the pair M

and φ. Let Wt be the solution of the CSDE (5.20). Then the process dPth(Wt) is

a martingale and therefore

dPth(u) = E[(dh)(Wt(u))].

Proof. We begin by applying the Itô formula for 1-forms (see [Li92, Equation

(1.4)]) to the function dPt−sh(Ws) = g(∇Pt−sh,Ws):

d(g(∇Pt−sh,Ws)) = ∇dPt−sh(Ξs(Xs)dBs,Ws) +∇dPt−sh(ν(Xs),Ws)dLs

+

(
∂s +

1

2
TrD2 − 1

2
D∇φ

)
dPt−sh(Ws)ds+ dPt−sh(DWs).

(5.21)
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5.5. Bounding the Second Derivative

The final term can be written out in full using (5.20)

dPt−sh(DWs) = −1

2
g(∇Pt−sh, (Ric + Hessφ)#(Ws))ds+ g(∇Pt−sh,Dν(Ws))dLs.

(5.22)

Using Lemma 5.5.2 we have the relation d(∇φ(f))−dh(Hessφ) = D∇φdf , which

can then be substituted into (5.21) alongside (5.22) to give

d(g(∇Pt−sh,Ws)) = ∇dPt−sh(Ξs(Xs)dBs,Ws) +∇dPt−sh(ν(Xs),Ws)dLs

+

(
∂s +

1

2
TrD2

)
dPt−sh(Ws)ds

− 1

2

(
d(∇φ(Pt−sh))− dPt−sh(Hessφ)

)
(Ws)dt

− 1

2
dPt−sh(Ric + Hessφ)#(Ws)ds+ g(∇Pt−sh,DWsν(Xs))dLs.

By noting that

dPt−sh(Hessφ)#(Ws) = g(∇Pt−sh, (Hessφ)#(Ws)),

= Hessφ(∇Pt−sh,Ws) = dPt−sh(Hessφ)(Ws),

we can simplify the above equation further:

d(g(∇Pt−sh,Ws)) = ∇dPt−sh(Ξs(Xs)dBs,Ws) +∇dPt−sh(ν(Xs),Ws)dLs

+

(
∂s +

1

2
�M

)
dPt−sh(Ws)ds−

1

2
d(∇φ)(Pt−sh)(Ws)ds

− 1

2
dPt−sh(Ric#)(Ws)ds+ g(∇Pt−sh,DWsν(Xs))dLs.

Using the fact that ∂t and �M commute with d,

d(g(∇Pt−sh,Ws)) = ∇dPt−sh(Ξs(Xs)dBs,Ws) +∇dPt−sh(ν(Xs),Ws)dLs

+ d

(
∂s +

1

2
�M −

1

2
g(∇φ,∇)

)
Pt−sh(Ws)ds

− 1

2
dPt−sh(Ric#)(Ws)dt+ g(∇Pt−sh,DWsν(Xs))dLs.
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Applying the Weitzenböck formula in Lemma 5.5.1 cancels any remaining Ric#

terms as well as producing the infinitesimal generator in the drift term:

d(g(∇Pt−sh,Ws)) = ∇dPt−sh(Ξs(Xs)dBs,Ws)

+ d

(
∂s +

1

2
∆M −

1

2
g(∇φ,∇)

)
Pt−sh(Ws)ds

+∇dPt−sh(ν(Xs),Ws)dLs + g(∇Pt−sh,DWsν(Xs))dLs.

The drift term will vanish since Pt−sh is a solution of the backward Kolmogorov

equation (
∂s +

1

2
∆M −

1

2
g(∇φ,∇)

)
f = 0,

leaving three final terms

d(g(∇Pt−sh,Ws)) = ∇dPt−sh(Ξs(Xs)dBs,Ws)

+∇dPt−sh(ν(Xs),Ws)dLs + g(∇Pt−sh,DWsν(Xs))dLs.

(5.23)

Since ν ∈ kerdPth, DdPth(ν) = 0, or in a more useful form Dg(∇Pth, ν) = 0,

DWsg(∇Pt−sh, ν) = g(DWsdPt−sh, ν) + g(∇Pt−sh,DWsν)

= ∇dPt−sh(ν,Ws) + g(∇Pt−sh,DWsν)

= 0.

Therefore, the final two terms in (5.23) vanish and we are left with a single Itô

integral

d(g(∇Pt−sh,Ws)) = ∇dPt−sh(Ξs(Xs)dBs,Ws), (5.24)

which indicates that g(∇Pt−sh,Ws) is a local martingale.

Since Ric+Hessφ ≥ 2κg, it follows that g(∇Pth,Wt) is bounded and is therefore
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a martingale on the interval [0, t]. Integrating (5.24) yields

dP0h(Wt) = dPth(u) +

∫ t

0

∇dPt−sh(Ξs(Xs)dBs,Ws).

The desired result then follows by applying expectation to both sides.

Remark. It is not completely necessary that Ric + Hessφ is bounded from below

by a positive constant, only that Ric+Hessφ ≥ −κg so that the process {Xt} does

not leave M .

5.5.3 Bound on C1(fh)

We use (5.8) to define the Lipschitz constant of the derivative of fh as

C1(fh) = sup
x,y∈M

|(dfh(x)− Πγx,ydfh(y))(u)|
ρ(x, y)

, (5.25)

where u ∈ TxM has norm 1. The exterior derivative d can be brought inside the

integral of fh via the Leibniz integral rule resulting in

dfh(x) = −
∫ ∞

0

dPth(x)dt.

Using Theorem 5.5.3, we may take the exterior derivative inside of the semigroup,

so

dPth(x)(u) = E[dh(Xt)(Wt)],

where Wt is the solution to the SCDE (5.20). We now write the numerator of

(5.25) as

|(dfh(x)− Πx,vdfh(y))(u)| = |(dfh(x)(u)− dfh(y)(Π−1
x,vu)|

=

∣∣∣∣ ∫ ∞
0

dEx[h(Xt)](u)− dEy[h(Yt)](Π
−1
Xt,Vt

u)dt

∣∣∣∣
≤
∫ ∞

0

E[|dh(Xt)(Wt(u))− dh(Yt)(W
′
t(w))|]dt, (5.26)
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where Wt is the stochastic damped parallel translation for Xt, and W ′
t is the

stochastic damped parallel translation for Yt, with W0(u) = u and W ′
0(w) = w :=

Π−1
x,vu. We compress the notation here and make the initial propagating vector

fields u and w implied for Wt and W ′
t respectively. We shall now split this integral

up by adding 0,

∫ ∞
0

E[|dh(Xt)(Wt)−dh(Yt)(W
′
t)|]dt

=

∣∣∣∣ ∫ ∞
0

E[(dh(Xt)− ΠXt,Vtdh(Yt))(Wt)]

+ E[dh(Yt)(Π
−1
Xt,Vt

Wt)− dh(Yt)(W
′
t)]dt

∣∣∣∣
≤
∫ ∞

0

E[|(dh(Xt)− ΠXt,Vtdh(Yt))(Wt)|]dt

+

∫ ∞
0

E[|dh(Yt)(Π
−1
Xt,Vt

Wt)− dh(Yt)(W
′
t)|]dt. (5.27)

We begin by tackling the first integral of (5.27). To start, we construct an

upper bound on the integrand. For numbers p, q ≥ 1 such that 1
p

+ 1
q

= 1,

E[|(dh(Xt)− ΠXt,Vtdh(Yt))(Wt)|] ≤ C1(h)E[ρ(Xt, Yt)|Wt|],

≤ C1(h)E[ρ(Xt, Yt)
p]1/pE[|Wt|q]1/q,

≤ C1(h)ρ(x, y)e−κtE[|Wt|q]1/q, (5.28)

wherein we have applied Hölder’s inequality in the second line and Theorem 5.3.1

in the third.

Our primary objective is to now bound E[|Wt|q] above. We can achieve this

by applying the Itô lemma onto the norm |Wt|2 = g(Wt,Wt); therefore

d|Wt|2 = dg(Wt,Wt) = 2g(Wt, DWt)

= 2g

(
Wt,−

1

2
(Ric + Hessφ)#(Wt)dt+Dν(Wt)dLt

)
= −(Ric + Hessφ)(Wt,Wt)dt+ 2g(Wt, Dν(Wt))dLt.
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To obtain higher powers of |Wt|, we reapply the Itô formula for the function

f(x) = xq/2 in terms of the process |Wt|2:

d|Wt|q = dg(Wt,Wt)
q/2

=
∂(|Wt|2)q/2

∂|Wt|2
d|Wt|2 +

1

2

∂2(|Wt|2)q/2

∂(|Wt|2)2
(d|Wt|2)2

=
q

2
(|Wt|2)q/2−1

(
− (Ric + Hessφ)(Wt,Wt)dt+ 2g(Wt, Dν(Wt))dLt

)
,

(5.29)

since both t and Lt are of finite variation.

Theorem 5.5.4. Suppose that M is a convex submanifold of N . Then we have

the following bound on the norm of the damped stochastic parallel translation

E[|Wt|q] ≤ |u|qe−κqt.

Proof. We begin by attempting to bound the right hand side of Equation (5.29).

We recognise that the sufficient condition may be immediately applied to find an

upper bound on the drift term:

d|Wt|q ≤ −κq|Wt|qdt+ q|Wt|q−2g(Wt, Dν(Wt))dLt.

We may simplify further by recognising that −g(w,Dν(w)) = II(w,w), the second

fundamental form. Then since M is a convex submanifold, the second fundamental

form is positive semidefinite all along ∂M , and hence we obtain the much simpler

bound

d|Wt|q ≤ −κq|Wt|qdt.

By applying the Gronwall inequality, we arrive at the desired result after applying

expectation

E[|Wt|q] ≤ |u|qe−κqt. (5.30)
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We now apply Theorem 5.5.4 to the integral of (5.28) and substitute in our

new bound for E[|Wt|q]:

∫ ∞
0

E[|(dh(Xt)− ΠγXt,Yt
dh(Yt))(Wt)|]dt ≤ C1(h)ρ(x, y)

∫ ∞
0

e−κtE[|Wt|q]1/qdt,

≤ C1(h)ρ(x, y)

∫ ∞
0

|u|e−2κtdt,

=
C1(h)

2κ
ρ(x, y). (5.31)

For the second integral in Inequality (5.27),

∫ ∞
0

E[|dh(Yt)(Π
−1
Xt,Vt

Wt)− dh(Yt)(W
′
t)|]dt ≤ C0(h)

∫ ∞
0

E[|Π−1
Xt,Vt

Wt −W ′
t |]dt.

(5.32)

For a bound on the latter integrand, we again rely upon applying the Itô lemma.

Define as the difference in vector fields Zt := Π−1
Xt,Vt

Wt−W ′
t ∈ TYtM . Then by Itô

lemma, d|Zt|2 = 2g(Zt, DZt), in which the differential

DZt = DΠ−1
Xt,Vt

Wt −DW ′
t = Π−1

Xt,Vt
DWt −DW ′

t ,

= Π−1
Xt,Vt

(
− 1

2
(Ric + Hessφ)#

Xt
(Wt)dt+DνXt(Wt)dL

X
t

)
+

1

2
(Ric + Hessφ)#

Yt
(W ′

t)dt−DνYt(W ′
t)dL

Y
t .

To help, we have labelled at which point the tensor (Ric+Hessφ)# lies, so that we

may keep track of where in the tangent space the contraction happens. Progressing

forward,

d|Zt|2 = −g(Zt,Π
−1
Xt,Vt

(
(Ric + Hessφ)#

Xt
(Wt)

)
− (Ric + Hessφ)#

Yt
(W ′

t))dt

+ 2g(Zt,Π
−1
Xt,Vt

(DνXt(Wt))dL
X
t −DνYt(W ′

t)dL
Y
t ).

The inclusion of two different local time terms makes manipulation problematic.

To continue, we apply the following approximation to the local time from [AL17].

Let Xa
t be an approximation of our original reflected diffusion Xt. We replace the
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5.5. Bounding the Second Derivative

local time term with another finite variation term with integrator in t. We write

that

dXa
t = Ξt(X

a
t ) ◦ dBt −

1

2
∇φ(Xa

t )dt+ A(Xa
t )dt, X0 = x, (5.33)

where A is a function of the closest distance from the point Xa
t to the boundary

∂M . The function A works by providing an ever increasing drift in the inward

normal direction as our process Xa
t approaches the boundary, until the drift be-

comes almost infinite — the process never touches the boundary. The approximat-

ing process Xa
t converges in the topology of uniform convergence in probability

(UCP)(see [AL17, Theorem 3.3]) as a → 0. The additional drift term (which

we shall now be denoting Aa := A(Xa
t ) for conciseness) and its derivative |DAa|

are uniformly bounded from above outside some tubular neighbourhood on the

boundary. In the interior, as a→ 0, it vanishes. By shrinking the tubular neigh-

bourhood, together with the limit a → 0, it approximates our local time terms.

On the boundary, the approximation Aadt goes to ν(Xt)dLt.

The damped stochastic parallel translation of the approximation Xa
t is a trivial

computation; since we only have drift terms, it takes the form

DW a
t = −1

2
(Ric + Hessφ)#(W a

t )dt+DAa(W a
t )dt, W a

0 = Id.

Importantly, there is also convergence in damped stochastic parallel translations

when contracted with one forms — see [AL17, Corollary 5.7].

We now apply approximations for both processes Xt and Yt as described in

(5.33) and label them Xa
t and Y a

t respectively. Denote by W a
t and W

′a
t the ap-

proximations of the damped stochastic parallel translations Wt and W ′
t respec-

tively. Since we have convergence in W a
t and W

′a
t , it is also the case that we have

convergence for Zt and Za
t := Π−1

Xa
t ,V

a
t
W a
t −W

′a
t . Therefore, approximating d|Zt|2

we have

d|Za
t |2 = −g(Za

t ,Π
−1
Xa
t ,V

a
t

(
(Ric + Hessφ)#

Xa
t
(W a

t )
)
− (Ric + Hessφ)#

Y at
(W

′a
t ))dt
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+ 2g(Za
t ,Π

−1
Xa
t ,V

a
t
DAa(W a

t )−DA′a(W ′a
t ))dt, (5.34)

where A
′a is the approximation for Yt.

For the first inner product in (5.34), we use the trick of adding 0, so

−g(Za
t ,Π

−1
Xa
t ,V

a
t

(
(Ric + Hessφ)#

Xa
t
(Wt)

)
− (Ric + Hessφ)#

Y at
(W

′a
t ))

= g(Za
t , (Ric + Hessφ)#

Y at
(W

′a
t )− (Ric + Hessφ)#

Y at
(Π−1

Xa
t ,V

a
t
W a
t ))

+ g

(
Za
t , (Ric + Hessφ)#

Y at
(Π−1

Xa
t ,V

a
t
W a
t )− Π−1

Xa
t ,V

a
t

(
(Ric + Hessφ)#

Xa
t
(W a

t )
))

≤ −g(Za
t , (Ric + Hessφ)#

Y at
(Za

t ))

+ |Za
t ||(Ric + Hessφ)#

Xa
t
(W a

t )− ΠXa
t ,V

a
t

(
(Ric + Hessφ)#

Y at

)
(W a

t )|

≤ −2κ|Za
t |2 + |Za

t ||W a
t |C0((Ric + Hessφ)#)ρ(Xa

t , Y
a
t ). (5.35)

We have labelled C0((Ric + Hessφ)#) as the Lipschitz constant of the tensor

(Ric + Hessφ)# which is defined in a manner similar to the function case. We

assume that C0((Ric + Hessφ)#) < ∞. We have also used the fact that (Ric +

Hessφ)#
Yt

(Π−1
Xt,Vt

Wt) = ΠXt,Vt

(
(Ric + Hessφ)#

Yt

)
(Wt).

For the second quantity in (5.34) which involves the approximation of local

time, we use the same trick:

2g(Za
t ,Π

−1
Xa
t ,V

a
t

(DAa(W a
t ))−DA′a(W ′a

t ))

= 2g(Za
t , DA

′a(Π−1
Xa
t ,V

a
t
W a
t )−DA′a(W ′a

t ))

+ 2g(Za
t ,Π

−1
Xa
t ,V

a
t

(DAa(W a
t ))−DA′a(Π−1

Xa
t ,V

a
t
W a
t ))

≤ 2 ‖DAa‖op |Z
a
t |2 + 2|Za

t ||W a
t ||DAa − ΠXa

t ,V
a
t
DA

′a|

≤ 2 ‖DAa‖op |Z
a
t |2 + 2|Za

t ||W a
t |C0(DAa)ρ(Xa

t , Y
a
t ), (5.36)

where again C0(DAa) is the Lipschitz constant of the tensor DA. We remind

the reader that ‖DAa‖ is finite in the complement of the tubular neighbourhood

around ∂M , see [AL17, p.13].

134



5.5. Bounding the Second Derivative

On combining of (5.35) and (5.36) we have

d|Za
t |2 ≤ −2(κ− ‖DAa‖op)|Za

t |2dt

+ |Za
t ||W a

t |ρ(Xa
t , Y

a
t )
(
C0((Ric + Hessφ)#) + C0(DAa)

)
dt.

By applying the Itô lemma — considering |Za
t |q as a function of |Za

t |2 — we find

that the differential of |Za
t |q is

d|Za
t |q =

q

2
|Za

t |q−2d|Za
t |2,

≤ −q(κ− ‖DAa‖op)|Za
t |qdt

+
q

2
(C0((Ric + Hessφ)#) + C0(DAa))|Zt|q−1ρ(Xa

t , Y
a
t )|W a

t |dt.

In the case q = 1, we have

d|Za
t | ≤ −(κ− ‖DAa‖)|Za

t |dt

+
1

2
(C0((Ric + Hessφ)#) + C0(DAa))ρ(Xa

t , Y
a
t )|W a

t |dt.

It follows that, by considering the integral form and applying expectations,

dE[|Za
t |] ≤ −(κ− ‖DAa‖op)E[|Za

t |]dt

+
1

2
(C0((Ric + Hessφ)#) + C0(DAa))E[ρ(Xa

t , Y
a
t )|W a

t |]dt.

Now, by taking the limit a→ 0 and shrinking the tubular neighbourhood to length

0, we arrive on a bound for the real process |Zt|:

dE[|Zt|] ≤ −(κ− ‖Dν‖op)E[|Zt|]dt

+
1

2
(C0((Ric + Hessφ)#) + C0(Dν))E[ρ(Xt, Yt)|Wt|]dt.

135



5.5. Bounding the Second Derivative

Applying both Theorem 5.3.1 and 5.5.4 yields

dE[|Zt|] ≤ −(κ−‖Dν‖op)E[|Zt|]dt+
1

2
(C0((Ric+Hessφ)#)+C0(Dν))e−2κtρ(x, y)dt.

Here we have subtly used the fact that the initial propagation vector u = W0(u)

has norm 1. By applying the Itô formula on e(κ−‖Dν‖op)tE[|Zt|], E[|Zt|] can be

directly bounded

d(e(κ−‖Dν‖op)tE[|Zt|]) = e(κ−‖Dν‖op)tdE[|Zt|] + (κ− ‖Dν‖op)e(κ−‖Dν‖op)tE[|Zt|]dt

≤ 1

2
(C0((Ric + Hessφ)#) + C0(Dν))e−(κ+‖Dν‖op)tρ(x, y)dt.

Integrating both sides with the initial condition that Z0 = Π−1
x,vW0(u)−W ′

0(w) =

w − w = 0 yields

E[|Zt|] ≤
1

2
(C0((Ric + Hessφ)#) + C0(Dν))ρ(x, y)

e(κ−‖Dν‖op)t − e−2κt

κ− ‖Dν‖op

.

Hence, recalling that Zt = ΠXt,VtWt−W ′
t and the original objective to bound the

integral (5.32), by assuming that κ > ‖Dν‖op, we find that

∫ ∞
0

E[|Zt|]dt ≤
1

2
(C0((Ric + Hessφ)#) + C0(Dν))ρ(x, y)

(
1

κ2 − ‖Dν‖2
op

− 1

2κ(κ+ ‖Dν‖op)

)
≤ 1

4
(C0((Ric + Hessφ)#) + C0(Dν))ρ(x, y)

1

κ(κ− ‖Dν‖op)
.

Therefore,

∫ ∞
0

E[|dh(Yt)(Π
−1
Xt,Vt

Wt)− dh(Yt)(W
′
t)|]dt

≤ C0(h)

4κ(κ− ‖Dν‖op)
(C0((Ric + Hessφ)#) + C0(Dν))ρ(x, y). (5.37)

On combining (5.31) and (5.32), we obtain an upper bound on the Lipschitz
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constant of ‖D2fh‖:

|(dfh(x)− Πx,V dfh(y))(u)| ≤
∫ ∞

0

E[|(dh(Xt)− ΠXt,Vtdh(Yt))(Wt)|]dt

+

∫ ∞
0

E[|dh(Yt)(Π
−1
Xt,Vt

Wt)− dh(Yt)(W
′
t)|]dt,

≤ C1(h)

2κ
ρ(x, y)

+
C0(h)

4κ(κ− ‖Dν‖op)
(C0((Ric + Hessφ)#) + C0(Dν))ρ(x, y).

We have established the following result:

Theorem 5.5.5. Assume that κ > ‖Dν‖op and C0((Ric+Hessφ)#)+C0(Dν) <∞.

Then

C1(fh) ≤
C1(h)

2κ
+

C0(h)

4κ(κ− ‖Dν‖op)
(C0((Ric + Hessφ)#) + C0(Dν)).

Example 5.5.6. For the very special case that we are working on a half plane,

M = Rn
+ = Rn−1 × R+, many terms previously accounted for vanish. Most

importantly, the compact manifold assumption can be dropped. We are now

working on a Ricci flat space, Ric = 0, and moreover, ν = (0, 0, ..., 0, 1) remains

constant along the boundary, ∂M = Rn−1×{0} giving Dν = 0 everywhere on ∂M .

Since g is just the flat metric, the musical isomorphism of the Ricci-Bakry-Emery

tensor — now just the Hessian — is invariant; (Hessφ)# = Hessφ. Consequently,

the damped stochastic parallel translation is written

DWt = −1

2
Hessφ(Wt)dt, W0 = Id. (5.38)

A keen eye will observe that this is just the stochastic damped parallel translation

of an unreflected diffusion on Rn. With the local time term eliminated, bounds on

E[|Wt|q] and C1(fh) are significantly less complicated to calculate. Moreover, with

no random part present, the stochastic covariant differential equation that governs

the dynamics of the damped stochastic parallel translation is deterministic. In
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5.6. Bounding the Wasserstein Metric

other words, we have the ordinary differential equation

dWt

dt
= −1

2
Hessφ(Wt).

Corollary 5.5.7. Let M = Rn−1 × R+ and fh the solution to the Stein equation

(5.17). Assume that φ is 2κ-strongly log-concave and C2(φ) <∞, then

C1(fh) ≤
C1(h)

2κ
+
C0(h)

4κ2
C2(φ).

We note here that, where we originally had C0((Hessφ)#) = C0(Hessφ), we may

simplify by seeing that

C0(Hessφ) = sup
x,y,|u|=1

∣∣∣∣Hessφ(x)(u)− Hessφ(y)(u)

ρ(x, y)

∣∣∣∣ = C2(φ).

5.6 Bounding the Wasserstein Metric

We are now at the point where we are able to bound the metric. We define a new

set W = {h ∈ C1(M) : C0(h) ≤ 1, C1(h) ≤ 1} as a subset of the Wasserstein

set W = {h ∈ C(M) : C0(h) ≤ 1}. The additional smoothing requirement is

to ensure that C1(fh) is bounded. We can now confirm that for functions in W ,

the Stein operator is bounded above, and moreover, the pseudo-metric associated

with W is also finite. Recall the bounds on fh:

sup
h∈W
|Afh| = sup

h∈W

∣∣∣∆Mfh −
1

2
g(∇φ,∇fh)

∣∣∣
≤ sup

h∈W
|∆Mfh|+

1

2

√
|∇φ|

√
|∇fh|,

≤ sup
h∈W

C1(fh) +

√
C0(φ)

2

√
C0(fh)

≤ 1

4κ(κ− ‖Dν‖op)
(C0((Ric + Hessφ)#) + C0(Dν))

+
1

2κ
+

√
C0(φ)

2
√
κ

<∞,
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so long as ∇φ has finite norm. This, however, is already satisfied by the Lipschitz

continuity assumption of the drift function.

Though we will have an upper bound for the metric dW , this is not ideal since

we can not infer weak convergence (convergence in distribution) of two probability

measures if dW → 0. Instead it would be more beneficial if we could somehow

forget about C1(fh) so that we could instead bound dW . This can be in fact

achieved by comparing two Stein operators in order to admit an upper bound on

the Wasserstein metric.

The idea behind this method is as follows: Suppose we have two measures

X ∼ µ and Y ∼ λ on M with respective densities dµ ∝ e−φdvol and dλ ∝ e−ψdvol.

We assume that both φ and ψ satisfy the sufficient condition (5.6) for the same

value κ. Then for each measure we can follow through with the theory presented

in this chapter to obtain a Stein operator, Stein equation and solution to said

equation; X and Y will have respective Stein operators

A1f =
1

2
∆Mf −

1

2
g(∇φ,∇f),

A2f =
1

2
∆Mf −

1

2
g(∇ψ,∇f).

Now we draw attention to the fact that both A1 and A2 both contain the Laplace-

Beltrami operator. This means that we can subtract one from the other to give

us a new first order operator

Lf := (A2 −A1)f =
1

2
g(∇(φ− ψ),∇f).

We now define fh to be the solution to the Stein equation A2fh = h − Eλ[h(Y )].

Then since fh and its derivatives are bounded above, Eµ[|A1fh|] < ∞ and, more

importantly, Eµ[A1fh] = 0. As a result of this, we have the following from the

Stein equation:

Eµ[h(X)]− Eλ[h(Y )] = Eµ[A2fh]
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= Eµ[A2fh]− Eµ[A1fh]

= Eµ[Lfh]. (5.39)

Whence, our problem with bounding the metric has reduced to bounding a first

order operator as opposed to a second order operator. Consequently, we do not

require a bound on the second derivative C1(fh) and can therefore use the Wasser-

stein set W as opposed to its smoother subset W . We now apply absolute value

to both sides and take the supremum in W in Equation (5.39) to obtain the

Wasserstein metric

dW (X, Y ) = sup
h∈W
|Eµ[Lfh]|.

We may now apply Lemma 5.4.1 in order to bound this from above:

dW (X, Y ) ≤ 1

2κ
Eµ[|∇(φ− ψ)(X)|].

Theorem 5.6.1. Suppose two probability distributions X and Y on M with den-

sity functions proportional to e−φ and e−ψ respectively satisfy the sufficient condi-

tion (3.4) for the same value κ. Then we have the following upper bound on the

Wasserstein metric:

dW (X, Y ) ≤ 1

2κ
E[|∇(φ− ψ)(X)|].

In the following example we demonstrate a use for this upper bound for hemi-

spherical data.

Example 5.6.2. In order to work with distributions on the hemisphere, we must

make a modification to our manifold. Let M be a spherical cap of N = Sn with

the restriction that ρ ∈ [0, π/2 − ε] for some ε > 0. The reason that we modify

the hemisphere is so that no point in M is antipodal to any other point. This

means that no conjugate points exist if we are to inherit the geometry from Sn.

In practice, one should choose ε to be small as possible so that M is sufficiently
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close to the hemisphere in order to minimize the loss of information from this

approximation.

}ǫ

Figure 5.4: Diagram of the small cap in which we take an ε length off of the
hemisphere.

Suppose we wish to compare a hemisphere von-Mises Fisher distribution to

the uniform probability measure on M . Let φ = −λ cos ρ and ψ = 0 be the log

densities for the hemisphere VMF and uniform measure respectively. In Section

4.1 we found that for the VMF, Hessφ = λ cos ρg. Since ρ is restricted to be in

[0, π/2− ε], the lower bound on the Hessian is 0: Hessφ > 0. In contrast the VMF

on Sn, the hemisphere VMF distribution satisfies the sufficient condition (3.4) for

all λ > 0. Moreover, this also satisfies the assumptions of Theorem 5.5.5 since

ν = ∂ρ, |ν| = 1, ‖Dν‖op = 1 and so one must have the sufficient condition satisfied

for κ > 1. This, however, is automatically satisfied since Ric + Hessφ > 2g. The

sufficient condition for the uniform measure on M is also satisfied since Hessψ = 0.

For the normalizing constant of the uniform measure, we must calculate the

integral
∫ π/2−ε

0
sinn−1 ρ dρ. We find that

∫ π/2−ε

0

sinn ρ dρ =

√
π

2

Γ

(
n+ 1

2

)
Γ

(
n+ 2

2

) − 2F1

(
1

2
,
1− n

2
,
3

2
, sin2 ε

)
sin ε, (5.40)
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where 2F1 is the hypergeometric function defined by

2F1(a, b, c, z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!

where (a)0 = 1 and (a)n = a(a+ 1)...(a+ n− 1) for n > 0.

We now apply Theorem 5.6.1 to obtain an upper bound on the Wasserstein

metric,

dW (X, Y ) ≤ 1

2κ
λ

√
π

2

Γ
(
n+1

2

)
Γ
(
n+2

2

) − 2F1

(
1

2
,
1− n

2
,
3

2
, sin2 ε

)
sin ε

√
π

2

Γ
(
n
2

)
Γ
(
n+1

2

) − 2F1

(
1

2
,
2− n

2
,
3

2
, sin2 ε

)
sin ε

for some κ > 0.

We expect that

lim
ε→0

∫ π/2−ε

0

sinn ρ dρ =

√
π

2

Γ

(
n+ 1

2

)
Γ

(
n+ 2

2

)

since sine is symmetric about π/2 and so we can clearly halve the result in Equation

(4.8). To show this holds approximately, we show that the second expression on

the right hand side of (5.40) is O(ε). It follows from the definition of 2F1 that the

derivative of 2F1 satisfies

∂

∂x
2F1(a, b, a+ 1, x) =

a((1− x)−b − 2F1(a, b, a+ 1, x))

x
.

Denoting 2F1

(
1

2
,
1− n

2
,
3

2
, sin2 ε

)
simply as 2F1(sin2(ε)), we differentiate the right

most expression in (5.40) to give

∂

∂ε
2F1(sin2 ε) sin ε = 2F1(sin2 ε) cos ε

+
1

2
((1− sin2 ε)(n−1)/2 − 2F1(sin2 ε)) sin ε

sin 2ε

sin2 ε

= 2F1(sin2 ε) cos ε+ (cosn−1 ε− 2F1(sin2 ε)) cos ε
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= cosn ε = 1−O(ε2n)

Hence, the derivative is approximately 1 for small ε. Moreover, 2F1(sin2 ε)) sin ε =

O(ε) for small ε. Therefore, assuming continuity of the upper bound in ε, taking

the limit as ε → 0 we conjecture an upper bound on the Wasserstein metric

between the uniform measure and VMF distribution on the hemisphere:

dW (X, Y ) ≤ λ

2κ

Γ
(
n+1

2

)2

Γ
(
n+2

2

)
Γ
(
n
2

)
for some κ > 0.

5.7 Conclusion

In this chapter, we have extended the Stein’s method framework in [LLBF22] to

the allow for distributional comparison on manifolds with a boundary.

The idea was to follow the steps taken in [LLBF22] where we include a local

time term into our main SDE (5.7). The inclusion of the local time term led to a

handful of complications that had to be resolved.

We found that the infinitesimal generator of the SDE with the normal reflection

term (5.7) had the same infinitesimal generator as the unreflected process (5.4)

under the restriction that the derivatives of functions on the boundary must vanish

in the normal direction. This is akin to a Neumann boundary condition on the

function space.

The coupled set of diffusions (Xt, Yt) was formulated in such a way that the

distance ρ(Xt, Yt) decreased exponentially with time. We then used this idea of

coupling in the same way as in [LLBF22] to construct and solve the Stein equation.

The process of solving the Stein equation and bounding its first derivative

C0(fh) ran along the same lines as the boundaryless case. However when it came to

the second derivative C1(fh), differences with the inclusion of the normal reflection

became more pronounced. The damped stochastic parallel translation now also
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had a reflection term present and so it was necessary to prove a Bismut—Elworth—

Li formula for taking the exterior derivative inside the semigroup.

With this achieved, we moved on to bounding C1(fh), however troubles with

the local time term made it unavoidable to use the local time approximation

in [AL17]. This aided in the formulation of 5.5.5 by making the dLt term into a

dt term that had infinite push when approaching the boundary.

On comparing the bound on the second derivative C1(fh) from the boundary-

less case in [LLBF22] to the boundary case in Theorem 5.5.5 we find an improve-

ment: We have in the boundaryless case,

C1(fh) ≤
C1(h)

2κ
+
C0(h)

2κ2
C0((Ric + Hessφ)#),

and in the boundary case,

C1(fh) ≤
C1(h)

2κ
+

C0(h)

4κ(κ− ‖Dν‖op)
(C0((Ric + Hessφ)#) + C0(Dν)).

On setting ∂M = 0, ‖Dν‖op = 0, we have

C1(fh) ≤
C1(h)

2κ
+
C0(h)

4κ2
C0((Ric + Hessφ)#),

an improvement in the second term by 1/2. Moreover, this also improves the

second derivative result in [MG16] when setting M = Rn, Ric = 0.

Finally, it is possible to imply weak convergence without using the Wasser-

stein metric on M . By [BOPG18, Corollary 1], taking w
(n)
n = 1 and the rest of the

weights to be 0, if we can show that the kernel Stein discrepancy supf∈H EPn [|Af |]→

0 as n→∞ where H is the unit ball of a reproducing kernel Hilbert space, then

we can imply weak convergence. However, since we haven’t shown that the expec-

tation of the operator of a kernel converges to 0 in this work, this result could be

used instead if stronger assumptions on the smoothness of our test functions were

required.
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Chapter 6

Conclusion and Future Work

6.1 Summary

This thesis has been a thorough showcase for Stein’s method on manifold. We

have been rather comprehensive in our discussion, applying both the density and

diffusion approaches to different problems.

In Chapter 3, we proposed a density approach for comparing distributions on

S1. This was motivated by the fact that a wrapping was needed when defining S1

in terms of an interval. We introduced the Stein operator and its inverse, necessary

for assembling the Stein equation. We found it was necessary to redefine the Stein

kernel due to the fact that E[X] is not uniquely defined on S1. We did this by

introducing the circular Stein kernel τ c. With these tools in hand, Theorem 3.3.2

was formulated, giving us an upper and lower bound on the Wasserstein metric for

distributions on S1. Analytic examples of distributional comparisons were given

in Section 3.3.2, two Bayesian model comparison, and a comparison between the

wrapped normal and wrapped Cauchy distributions. It was noted that the formula

for the bound on the Wasserstein metric does not provide us with robust, sharp

analytic bound for all distributions, for example between the von-Mises and the

Bingham distributions. Instead, we relied upon numerical integration schemes to

approximate the upper bound of the Wasserstein metric. This was done for the
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wrapped normal and von-Mises distribution, and the resulting approximation was

compared to an asymptotic result of Kent.

In Chapter 4, we used the upper bound on the Wasserstein metric from [LLBF22],

Theorem 4.0.1, to compare numerous distributions on a variety of manifolds. We

looked at three comparisons on Sn: between the uniform and von-Mises; between

the von-Mises and von-Mises; and between the uniform and Fisher–Watson distri-

butions. Particularly, we expressed the comparison between two von-Mises Fisher

distributions VMF(µ1, λ1) and VMF(µ2, λ2) in terms of an expectation. Through

this, we could then more easily look at the case when µ1 = µ2. In Section 4.2,

our objective was to compare the heat kernel of H3 and the Riemannian-Gaussian

distribution. We were able to obtain a bound on the Wasserstein metric for t < 1
4
,

and relate this to Varadhan’s asymptotic relation. Effectively, this is a special

case where we have proved Varadhan’s asymptotic relation for finite t. We next

moved on to SO(n) in Section 4.3, comparing the uniform measure and the matrix

von-Mises distributions and two matrix von-Mises distributions. We were able to

obtain a bound in terms of an expectation in both cases, but for the uniform it

was possible to numerically approximate this by sampling from the Haar measure

on SO(n). We finished the chapter with Pn which took some more geometric

work in order to prove that the Bakry-Èmery-Ricci criterion was satisfied for the

Riemannian-Gaussian distribution. We then finished the chapter by comparing

two Riemannian-Gaussian distributions with different distributional parameters.

The last chapter, Chapter 5, provided a framework for Stein’s method on

manifolds with a boundary. The work of [LLBF22] assumed that ∂M = ∅, and so

this was an obvious direction to head towards next. We did this by extending the

framework of [LLBF22], adding in a reflecting local time term to the stochastic

differential equation. We noted that adding a local time correction in the SDE

of the diffusion was required to account for the boundary. We began in Section

5.2 by trying to determine what the invariant distribution is and working out

what the infinitesimal generator of said diffusion was. We found that to formulate
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the infinitesimal generator was only possible in the case where we restricted the

support of the generator to be {f ∈ C2(M) : df(ν) = 0}. In this case, we

obtained the correct invariant distribution and were able to use the infinitesimal

generator as a Stein operator. We then moved on to the construction of the

coupled diffusions in Section 5.3. We showed that even with the inclusion of the

local time term, we still retained the coupling result from the boundary-less case.

With the Stein operator and coupling in hand, we formulated the Stein equation

and found its solution fh in Section 5.4. We were also able to bound C0(fh) and

‖fh‖∞. To bound C1(fh) in Section 5.5.3 required a Bismut–Elworthy–Li formula

to exchange the exterior derivative and expectation. We therefore needed the

Weitzenböck formula and the notion of damped stochastic parallel displacement

to prove this. With a Bismut–Elworthy–Li formula in hand, it was then possible

to bound C1(fh), and then in Section 5.6, the Wasserstein metric. We finished

with an example in which we compared the uniform measure and the von-Mises

Fisher distribution when restricted to the small cap on Sn.

6.2 Future Work

Since Stein’s method has been shown to be increasingly more applicable in statis-

tics, it is obvious that a possible future research topic is to look at the statistical

applications of the framework for manifolds with boundary. Barp et. al. [BOPG18]

had previously done this for numerical approximation of integrals, but their ap-

proaches and assumptions diverge from ours. With their assumption that the

density p vanishes on the boundary, the space of test functions is easy to work

with. With our new approach, we have instead restricted the space of test func-

tions, therefore we may not be able to infer distributional convergence from the

kernel Stein discrepancy (mentioned in the Introduction). Exploring whether we

may still be able to infer this is an interesting question. If so, a wider range of

probability measures may be applicable for comparison.
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The positive orthant of Sn a is space of interest for statisticians and it may

be possible to use this manifold with boundary under our framework. Despite

the boundary being non-differentiable at a finite number of points, since ∂M is

codimension 1 with M , a diffusion will not hit these sharp points with probability

1. The consequence of this observation is that it might be possible to use our

framework for the positive orthant, or even a general manifold with differentiable

boundary everywhere apart from a measure-zero set of points.

Higher order bounds on the solution to the Stein equation rapidly increase the

difficulty of calculation. But for the half plane case, many calculations simplify

with the absence of the local time term. Generalizations and improvements to

the results of [MG16] are possible by utilising the damped stochastic parallel

translation. For C2(fh), doubly damped stochastic parallel translations [Li16] are

required to tackle this. These are derivatives of the original damped stochastic

parallel translation in a different direction. Bismut–Elworthy–Li formulae exist

[Tho20] for the second derivative, and with Ric = 0, have nice forms.

Properties of the kernel Stein discrepancy have allowed the weakening of as-

sumptions of probability measures and classes of test functions whilst also bound-

ing integral probability metrics like the Wasserstein metric, [BOPG18,GDVM19].

It is clear the kernel Stein discrepancy is an exceptionally strong tool that war-

rants further research. Particularly, it would be of interest to look at the diffusion

Stein kernel and see if it is possible to bound the Wasserstein metric using it, with

the hope that assumptions like the Bakry-Èmery-Ricci criterion can be relaxed.
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Appendix A

Variations and Jacobi Fields

Suppose we have a geodesic γ : [0, 1] → M connecting two points x and y on

M , then we can construct a two-parameter family of curves which connect these

two points. If we define f : [0, 1] × (−ε, ε) → M for ε > 0 such that f(0, s) = x,

f(1, s) = y, ∀s ∈ (−ε, ε) and f(t, 0) = γ(t), ∀t ∈ [0, 1]. These are called variations

of the geodesic.

On some manifolds these variations manifest as geodesics. If we take M = Sn,

x ∈ Sn and let y be anti-podal to x. Then y is the conjugate point of x and

there are infinitely many geodesics connecting the two. If we are to fix one γ and

define the variations as γ rotated by the angle φ then these curves are clearly also

geodesics.

Suppose we now have two orthogonal vector fields at f(t, s) defined by T =

∂tf(t, s) and V = ∂sf(t, s). By the torsion-free property of the Levi-Civita con-

nection, DTV = DV T ([T, V ] = 0 due to orthogonality) and so we may write that

DTDTV = DTDV T . Evaluating this at s = 0, we can further simplify by noting

that T |s=0 = γ̇ and hence

Dγ̇Dγ̇V = Dγ̇DV γ̇ = Dγ̇DV γ̇ −DVDγ̇ γ̇ = R(γ̇, V )γ̇.
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By labelling Dγ̇ = Dt we obtain the Jacobi equation

V̈ = R(γ̇, V )γ̇. (A.1)

Taking a step back to where we defined f , we noted that by fixing s = 0 one

can generate γ̇ by taking derivative in t. We can also look at the case where we

take the derivative in s instead. This vector field generated by this two parameter

family in s is called the Jacobi field along γ, i.e.

J =
∂

∂s
f(t, s)

∣∣∣∣
s=0

.

In fact, this vector field solves the Jacobi equation (A.1);

J̈ = DtDt∂sf |s=0

= DtDs∂tf |s=0

= R(γ̇, J)γ̇ +DsDtγ̇

= R(γ̇, J)γ̇,

where we have labelled Ds = D∂s.

Jacobi fields are useful in many ways, for example Killing vector fields are

Jacobi fields when restricted to geodesics. One important use of Jacobi fields is

what is known as the second variation of length formula.

Theorem A.0.1 (The Second Variation Formula). Let L(fs) denote the length of

the curve f(t, s) for a fixed s. Let J be the Jacobi field associated with f . Then,

∂2L(fs)

∂s2

∣∣∣∣
s=0

=

∫ 1

0

g(DtJ,DtJ)− g(R(J, γ̇)γ̇, J)dt. (A.2)

The integral on the right hand side is more commonly known as the index form

and is represented as I : Γ(TM)× Γ(TM)→ R.



Appendix B

Lie Groups

Definition B.0.1. A Lie group G is a set G with identity element I and the

following:

i) a multiplication mapping; µ : G×G→ G, µ(gh) = gh ∈ G ∀g, h ∈ G.

ii) an inverse mapping; σ : G→ G, σ(g) = g−1 ∈ G, gg−1 = g−1g = I ∀g ∈ G.

iii) G has the structure of a smooth manifold. Moreover, µ and σ are both smooth

functions on G.

Definition B.0.2. Let M be a manifold and G be a Lie group. A left action of

G on M is a map λ : G×M →M such that

λ(λ(g, h), x) = λ(g, λ(h, x))

and

λ(I, x) = x

for all g, h ∈ G and x ∈M .

Definition B.0.3. The exponential map of an element S of a Lie group G is

defined as

exp(S) :=
∞∑
n=0

Sn

n!

where we define S0 := I.
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Example B.0.4. Define the matrix A as

A =

 0 1

−1 0

 .

Then A provides a basis in the space of antisymmetric 2×2 matrices with 0 trace.

To calculate its exponential, it is very useful to note that A2 = −I from which we

can infer that A3 = −A, A4 = I and A5 = A and so on. We then compute the

following, using the fact that we can separate cases when n is odd or even;

exp(tA) =
∞∑
n=0

(tA)n

n!

=
∞∑
n=0

(tA)2n+1

(2n+ 1)!
+
∞∑
n=0

(tA)2n

(2n)!

= A
∞∑
n=0

(−1)ntn

(2n+ 1)!
+ I

∞∑
n=0

(−1)ntn

(2n)!

= A sin(t) + I cos(t).

In matrix form this is

etA =

 cos(t) sin(t)

− sin(t) cos(t)

 .

A few more interesting properties of the matrix exponential are:

• If D is diagonal then clearly eD will also be diagonal with exponentiated

entries,

• If P is an idempotent matrix, i.e. P 2 = P , then eP = I + (e− 1)P,

• If A is diagonalizable, i.e. A = QDQ−1 for some diagonal matrix D and the

columns of Q are an orthonormal basis of eigenvectors, then eA = QeDQ−1.

Unlike the typical exponential function on R, for matrices A and B, it is not

necessarily the case that eAeB = eA+B. This is generally only true when A and B

commute, i.e. AB = BA. For general, possibly non-commuting A,B, one must

make use of the famous Baker-Campbell-Hausdorff formula.
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Definition B.0.5. A Lie algebra is a vector space g together with a binary oper-

ation [·, ·] : g× g→ g called the Lie bracket satisfying the following:

i) Bilinearity; [ax+ by, z] = a[x, z] + b[y, z], [z, ax+ by] = a[z, x] + b[z, y],

ii) Alternativity; [x, x] = 0.,

iii) Jacobi identity; [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.,

iv) Anticommutativity; [x, y] = −[y, x].

For all x, y, z ∈ g, a, b ∈ R.

Lie algebra are directly related to Lie groups by the following characterization:

If g is a Lie algebra of a Lie group G, then for all A ∈ g, etA ∈ G, ∀t ∈ R. This

particular mapping will generate the whole group G from g. The elements of g are

sometimes called the infinitesimal generators of G. In addition to this, g is isomor-

phic to TIG, the tangent space at identity. In Example B.0.4, without knowing,

we showed that the Lie algebra of SO(n,R) (the space of orthogonal matrices with

determinant 1) is the space of skew symmetric 2× 2 matrices with 0 trace. This

particular characterization can be extended to SO(n,R). We abbreviate SO(n,R)

to SO(n) as we shall not be using any field other than R.

Example B.0.6. First, let us show that the Lie algebra of SO(n) generates the

whole group. Denote the lie algebra of SO(n), the set of n × n skew symmetric

matrices with 0 trace by skew(n). Let A ∈ skew(n), then

eA
(
eA
)ᵀ

= eAeA
ᵀ
.

Now since Aᵀ = −A, [A,Aᵀ] = 0, and hence the product of the exponentials is the

exponential of the sum;

eAeA
ᵀ

= eA+Aᵀ
= e0 = I.

Hence, eA ∈ SO(n).
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To show the converse, assume that an element of SO(n) can be written in the

form etM for some matrix M and t ∈ R. Then by definition of SO(n), etM
(
etM
)ᵀ

=

I. Taking derivatives at 0 yields on both sides the following:

0 = MetM
(
etM
)ᵀ

+ etM
(
etM
)ᵀ
Mᵀ

∣∣∣∣
t=0

= M +Mᵀ,

which characterizes skew(n). Hence M ∈ skew(n). Thus, we have showed that

the Lie algebra of SO(n) is skew(n).

Definition B.0.7. Let g ∈ G. The adjoint action Adg : g→ g is defined as

Adg(A) = gAg−1

It turns out that not only is the adjoint action an interesting quantity, but also

its derivative dAdg is too.

By definition of the Lie algebra of G, we may write g = etC for some C ∈ g,

hence AdetC (A) = etCAe−tC . Then we can easily compute the differential at

identity;

∂

∂t
AdetC (A)

∣∣∣∣
t=0

=
∂

∂t
etCAe−tC

∣∣∣∣
t=0

= CetCAe−tC − etCAC−tC
∣∣∣∣
t=0

= CA− AC = [C,A].

Thus, we have shown that the differential at identity of the adjoint action is

precisely the Lie bracket on g. This special quantity is widely known as the

adjoint representation of g.

Definition B.0.8. Let X ∈ g. The adjoint representation adX : g → g is the

differential at identity of AdetX and is equal to the Lie bracket on g.

Definition B.0.9. Let g ∈ G. Then the map Lg : G → G (Rg : G → G) that is
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defined by

Lg(h) = gh,
(
Rg(h) = hg

)
, h ∈ G

are called left (right) translations.

Definition B.0.10. A vector field X ∈ TG is called left invariant if for any g ∈ G

(DLg)X = X ◦ Lg.

In other words, (
DhLg

)
X(h) = X(gh).

Here, Dh is the directional derivative of L; DhLg : ThG→ TghG.

In order to calculate left invariant vector fields (LIVF’s for short), the following

formula can be applied. A LIVF U of a corresponding element of the Lie algebra

A ∈ g acts on smooth functions f by

Uf(S) =
d

dt
f(SetA)

∣∣∣∣
t=0

for S ∈ G. Note that every element in the Lie algebra is, by construction, left

invariant. This can be seen by applying the above formula f = Id and setting

S = I. Furthermore, using this definition, we are able to map from to any tangent

space from the tangent space at identity. Let S ∈ G and A ∈ g, then SA ∈ TSG.

In addition, the path on G, SetA characterizes a geodesic on G. Similarly to the

Riemannian manifolds we have discussed previously, points on a Lie group may

have cut points. That is, the exponential map is not injective everywhere. For

example, take G = SO(3) with the bi-invariant metric g(A,B)I =
1

2
Tr(BᵀA) for

A,B ∈ so(3) . By the Rodrigues rotation formula, for E ∈ so(3), we can express

any element S of SO(3) via

S = I + sin(t)E + (1− cos(t))E2
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for t ∈ R. This formula is direct consequence of an application of the exponential

map after noting that characteristic polynomial of E is pE(λ) = −λ3 − λ. Using

this we define two geodesics on SO(3) connecting S and I; γ1(t) = SeπtE1 and

γ2(t) = SeπtE2 t ∈ [0, 1] with the relation that E2 = −E1 = Eᵀ1 . Then via the

Rodrigues formula, both γ1(1) = γ2(1) = 1 +E2
1 = S and the distances of the two

paths dγi(I, S) =
√
g(γ̇i(0), γ̇i(0)), i = 1, 2 are also the same,

dγ1(I, S) =
1√
2

√
Tr(Eᵀ1E1),

dγ2(I, S) =
1√
2

√
Tr(Eᵀ2E2) =

1√
2

√
Tr(Eᵀ1E1).

Definition B.0.11. A metric g(·, ·) on a Lie group G is called left (right) invariant

iff

g(X, Y )h = g
(
(DhLg)X, (DhLg)Y

)
gh(

g(X, Y )h = g
(
(DhRg)X, (DhRg)Y

)
hg

)
for all h, g ∈ G and X, Y ∈ ThG.

Definition B.0.12. A metric is called bi-invariant if it is both left and right

invariant.

Lemma B.0.13. For an Lie group G equipped with a bi-invariant metric, the

following properties hold:

i) DXY =
1

2
[X, Y ], X, Y ∈ gL,

ii) R(U, V ) =
1

4
ad[U,V ], U, V ∈ g, or

R(U, V )W =
1

4
[[U, V ],W ], U, V,W ∈ g,

iii) K(U, V ) =
1

4
g([U, V ], [U, V ]) for all orthonormal vectors U, V ∈ g,

iv) Ric(U, V ) = −1

4
B(U, V ), U, V ∈ g

where B is the killing form defined by B(U, V ) = Tr(adU ◦ adV ).



Appendix C

Orthonormal Frame Bundle

Definition C.0.1. Let E, B and F be smooth manifolds and π : E → B be a

smooth projection mapping. The triple (π,E,B) is a fibre bundle with fibre F ,

base B, and total space E if:

i) the map π is surjective,

ii) there exists an open covering {Ui}i∈I of B, and diffeomorphisms

hi : π−1(Ui)→ Ui × F

such that hi ◦ π−1(x) = {x} × F for x ∈ Ui.

The fibre at a point x can be generated by taking the mapping π−1(x) = F .

Example C.0.2. Take B = M , a Riemannian manifold, E = TM its tangent

bundle with canonical projection π : (x, v) 7→ x. Then, as the name might suggest,

(π,M, TM) is a fibre bundle with fibres at x equal to TxM . We can take Ui = M

and h(x, v) = (x, π−1(x)), then h satisfies part ii).

Definition C.0.3. Let M and P be manifolds, let G be a Lie group and let

π : P → M be a smooth map. We call (P, π,M,G) a principle bundle over M

with structure group G if the following three conditions are satisfied:

165
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i) G acts freely on P on the right, i.e. there is a right action

P ×G→ P

(p, g) 7→ Rg(p) = pg

with the property that there are no fixed points of R other than the identity

on G; Rg(p) = p for some p ∈ P iff g = I,

ii) For p1, p2 ∈ P , there exists some g ∈ G with p2 = Rg(p1) iff π(p1) = π(p2),

iii) The diffeomorphisms hi in part ii) of Definition C.0.1 are isomorphisms with

action of G.

To lead onto the construction of a Brownian motion process on a manifold, we

introduce the orthonormal frame bundle.

Definition C.0.4. A frame at a point x ∈ M is an R-linear isomorphism ux :

Rd → TxM . Explicitly, u(ei+ej) = u(ei)+u(ej) for ei, ej ∈ Rd and u is a bijection.

The notation F (M)x denotes the space of all frames at the point x. The frame

bundle is then defined as

F (M) =
⊔
x∈M

F (M)x.

Alongside the frame bundle, we introduce the canonical projection π : F (M) →

M by π(u) = x. The culmination of F and M alongside π generate a Fibre bundle

with fibres Fx = π−1(x) = F (M)x. Elements of GL(n) act as an isomorphism on

frames via composition on the right,

ug : Rn g→ Rn u→ TxM.

The action of GL(n) preserves the frames and also acts transitively on the fibres,

i.e. for every u, v ∈ F (M)x, there exists a G ∈ GL(n) s.t. ug = v. By using
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charts, can also give F (M) the structure of a manifold such that item iii) of

Definition C.0.3 is satisfied. The result allows us to treat (F (M), π,M,GL(n))

as a principle bundle. One may draw a relation between TM and F (M) by the

action of GL(n);

TM = F (M)×GL(n) Rn, (u, e) 7→ ue.

One consequence of using elements of GL(n) as a right action to elements of

Rn is that the resulting frames are not orthonormal. To generate said orthonormal

frames, we instead construct a principle bundle with the orthogonal group O(n).

By applying the same procedure shown above by replacing GL(n) with O(n),

we obtain what is known as the orthonormal frame bundle. Moreover, choosing

G = O(n) as opposed to GL(n), elements of O(n) act as linear isometries from

TxM to Rn. That is,

g(ua, ub) = 〈a, b〉Rd

for a, b ∈ Rn. If for example, {ui} was an orthonormal basis of Rn, generated by

right action of O(n), then the resulting frames {uei} are also an orthonormal basis

of TxM . For the orthonormal frame bundle, we write

O(M) =
⊔
x∈M

O(M)x

where O(M)x is the set of orthonormal frames at x.

Again, one can show that the 4-tuple (O(M), π,M,O(n)) is a principle bundle.

Example C.0.5. Recall that the canonical metric on S2 is gS2 = dθ2 +sin2(θ)dφ2.

By definition, our frame is a mapping u : R2 → T(θ,φ)S2 \ {S} such that the

resulting vector is normalised and our components are orthogonal to each other.

This means that we require

g(ue1, ue1) = 1,

g(ue1, ue2) = 0,
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g(ue2, ue2) = 1.

And so, we choose

u =

{
∂θ,

1

sin(θ)
∂φ

}
to make the mapped basis orthonormal.

With the orthonormal frame bundle constructed, we may move on to looking

at its geometrical properties. With the inclusion of the Levi-Civita connection on

TM , it generates an Ehresmann connection on O(M). This means that we can

split the tangent bundle of O(M) into two distrinct bundles. The first bundle

we look at is the vertical bundle; the set of vertical vector fields defined as the

following kernel V = ker(dπ : TO(M) → TM). Intuitively, the name vertical

means that we are looking at vector fields that are orthogonal to the tangent

space, and thus, in view on the tangent space, take the value of 0. The other half,

the horizontal bundle, is simply the compliment of the vertical bundle. We can

then write the tangent bundle of O(M) as a direct sum decomposition

TO(M) = H ⊕ V

where H is the horizontal bundle and V is the vertical bundle.

We elucidate the meaning of horizontal in the following definition:

Definition C.0.6. A curve {ut} on F (M) is called horizontal if for each e ∈ Rd,

the vector field {ute} is parallel along {πut}; Duteπut = 0. The vector field

generated by {ute} is called a horizontal vector field.

The curve {ut} is just a smooth choice of frames at each point along the curve

{πut} on M .

This new tangent space of F (M) can be decomposed into two distinct parts,

a horizontal and a vertical part. Let HuF (M) and VuF (M) be the space of
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horizontal and vertical vectors at u; then we have the following decomposition

TuF (M) = VuF (M)⊕HuF (M).

Since the canonical projection π : F (M) → M induces an isomorphism on

the horizontal tangent space π∗ : HuF (M) → TπuM there is always a unique

horizontal vector field for every vector field on TM . For any vector v ∈ Tπ(x)M ,

there exists a unique horizontal vector v∗x ∈ Hx such that dπ(v∗x) = v

For each e ∈ Rn, the associated horizontal vector field He on TO(M) defined

at u ∈ O(M) is defined by

He(u) = (ue)∗.

This is known as the horizontal lift of the vector ue. Using the relation above,

dπ(He) = ue with ue ∈ TπuM . When {ei} are an orthonormal basis of Rn,

the resulting horizontal vector fields are called the fundamental horizontal vector

fields; Hei = (uei)
∗. Furthermore, these vector fields span the horizontal tangent

space Hu at u.



Appendix D

Brownian Motion on Lie Groups

In this section, let G be a Lie group with Lie algebra g of dimension d.

Definition D.0.1. A Process {X}t∈R+ with values in G is called a left-invariant

Brownian motion on G if:

i) {X}t∈R+ is continuous,

ii) for each s ≥ 0, the process {X−1
s Xs+t : t ≥ 0} is independent of the process

{Xr : r ≤ s},

iii) for each s ≥ 0 the processes {X−1
s Xs+t : t ≥ 0} and {Xt : t ≥ 0} are identical

in law.

Each left-invariant Brownian motion on G is a Feller-Dynkin diffusion. Its

transition function is specified by the action of its generator L on C∞c (G),

L =
1

2

d∑
i=1

U2
i + V

where Ui, (i = 1, ...d) and V are both LIVF’s.

Given A ∈ g is an orthonormal basis element of g, the associated vector field

U is a first order operator on smooth functions f on G defined by

U(f(X)) =
d

dt
f(GetA)

∣∣∣∣
t=0
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Suppose we have the generator L of a diffusion on G, {X}t∈R+ . Let Ai and C

be the LIVF’s in g associated with the vector fields Ui and V in the generator L

respectively. Let {Bt}t∈R+ be a standard Brownian motion on Rd and let

At = Bq
tAq + tC.

Then {At}t∈R+ is a (left) Brownian motion on g. Using the Brownian motion on

g, we may construct a Brownian motion on the Lie group G. Let X ∈ G and

define {Xt}t∈R+ be the solution to the SDE

dXt = Xt ◦ dAt, X0 = X.

Then Xt ∈ G and is also a (left) Brownian motion on G with generator L.

Example D.0.2. Let G = SO(3) and so g = so(3) = skew(3). Define

A = A(x) =
1√
2


0 −x3 x2

x3 0 −x1

−x2 x1 0


for x = (x1, x2, x3) ∈ R3. Then if {Bt}t∈R+ is a Brownian motion in R3 with

independent components B1, B2, B3, {A(B)t}t∈R+ is a canonical Brownian motion

on so(3). We can verify this by checking that the quadratic variation process is

simply Idt; since we have that

dAt =
1√
2


0 −dB3

t dB2
t

dB3
t 0 −dB1

t

−dB2
t dB1

t 0


an exercise in matrix algebra yields d[A]t = dAtdA

ᵀ
t = Idt. Now, let S ∈ SO(3).

Then the process {St}t∈R+ is a Brownian motion on SO(3) which solves the
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Stratonovich SDE

dSt = St ◦ dAt.

Via the Itô-Stratonovich conversion formula, we can transform to Itô form, result-

ing in

dSt = StdAt +
1

2
dStdAt

= (St +
1

2
dSt)dAt.

In order to isolate dSt on the left hand side, we require some further manipulation;

dSt

(
I − 1

2
dAt

)
= StdAt,

dSt = StdAt

(
I − 1

2
dAt

)−1

.

Note that I − 1
2
dAt is non-singular and so the matrix inverse does exist. The next

step we take is to explicitly calculate this inverse term;

(
I − 1

2
dAt

)−1

=
1

8 + 3dt


8 + dt −2

√
2dB3

t 2
√

2dB2
t

2
√

2dB3
t 8 + dt −2

√
2dB1

t

−2
√

2dB2
t 2

√
2dB1

t 8 + dt

 .

Now since |3
8
dt| � 1 we may apply the geometric series formula whilst ignoring

all 2nd order and higher terms so that

1

8 + 3dt
=

1

8
− 3

64
dt.

Therefore we reduce the inverse down to a much simpler form,

(
I − 1

2
dAt

)−1

=
1

8


8 + dt −2

√
2dB3

t 2
√

2dB2
t

2
√

2dB3
t 8 + dt −2

√
2dB1

t

−2
√

2dB2
t 2

√
2dB1

t 8 + dt

− 3

8
Idt.
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And finally, some further matrix algebra allows us to show that

dAt

(
I − 1

2
dAt

)−1

=


−1

2
dt − 1√

2
dB3

t
1√
2
dB2

t

1√
2
dB3

t −1
2
dt − 1√

2
dB1

t

− 1√
2
dB2

t
1√
2
dB1

t
1
2
dt


which we can express more neatly as

dAt

(
I − 1

2
dAt

)−1

= dAt −
1

2
Idt.

Whence, our Brownian motion on SO(3) obeys the following SDE:

dSt = StdAt −
1

2
Stdt.

It is now possible to verify two things: First, that St is indeed in SO(3), and

secondly, the quadratic variation is Idt. To check the first, we examine the process

d(StS
ᵀ
t ), where dSᵀt = dAᵀtS

ᵀ
t − 1

2
Sᵀt dt. First, we note dStdS

ᵀ
t = StdAtdA

ᵀ
tS
ᵀ
t =

StS
ᵀ
t dt , then

d(StS
ᵀ
t ) = dStS

ᵀ
t + StdS

ᵀ
t + dStdS

ᵀ
t

= StdAtS
ᵀ
t −

1

2
StS

ᵀ
t dt+ StdA

ᵀ
tS
ᵀ
t −

1

2
StS

ᵀ
t dt+ dStdS

ᵀ
t

= −StSᵀt dt+ StS
ᵀ
t dt

= 0.

Therefore, since S0 = S ∈ SO(3), integration yields StS
ᵀ
t = SSᵀ = I. Moreover,

we can go back to the variation formula and conclude that dStdS
ᵀ
t = Idt.
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