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Abstract

The mathematical modelling of neural activity is a hugely complex and

prominent area of exploration that has been the focus of many researchers

since the mid 1900s. Although many advancements and scientific

breakthroughs have been made, there is still a great deal that is not yet

understood about the brain.

There have been a considerable amount of studies in mathematical

neuroscience that consider the brain as a simple one-dimensional or

two-dimensional domain; however, this is not biologically realistic and is

primarily selected as the domain of choice to aid analytical progress. The

primary aim of this thesis is to develop and provide a novel suite of codes

to facilitate the computationally efficient numerical solution of large-scale

delay differential equations, and utilise this to explore both neural mass

and neural field models with space-dependent delays. Through this, we

seek to widen the scope of models of neural activity by posing them on

realistic cortical domains and incorporating real brain data to describe

non-local cortical connections. The suite is validated using a selection

of examples that compare numerical and analytical results, along with

recreating existing results from the literature. The relationship between

structural connectivity and functional connectivity is then analysed as

we use an eigenmode fitting approach to inform the desired stability

regimes of a selection of neural mass models with delays. Here, we

explore a next-generation neural mass model developed by Coombes and

Byrne [36], and compare results to the more traditional Wilson-Cowan

formulation [180, 181]. Finally, we examine a variety of solutions to three

different neural field models that incorporate real structural connectivity,

path length, and geometric surface data, using our NFESOLVE library

to efficiently compute the numerical solutions. We demonstrate how the
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field version of the next-generation model can yield intricate and detailed

solutions which push us closer to recreating observed brain dynamics.
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1
I N T R O D U C T I O N

“There are billions of neurons in our brains, but what are neurons?

Just cells. The brain has no knowledge until connections are made

between neurons. All that we know, all that we are, comes from the

way our neurons are connected."

- Tim Berners-Lee

The brain is one of the most complex natural structures that has ever

existed. Scientific advancements in studying cognition and brain function

have developed phenomenally over the last century; however, there is

still so much that is not yet understood. There is an enormous ethical

quandary around performing experiments on living organisms, leading

to the question of whether the brain can truly ever be understood via

non-invasive and morally responsible methods. This is where the area of

mathematical neuroscience was born. If brain phenomena can be modelled

and accurately recreated using mathematics, the potential applications

are endless. From curing brain-related diseases to artificially creating

cognitive reasoning, there are numerous domains which could benefit from

understanding how the brain works.

This thesis gives an overview of some of the mathematical neuroscience

techniques and applications that have been studied by researchers to date,

along with discussing how models of neural activity are constructed, and

the numerical methods required to compute solutions for them. The

1
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primary aim of this thesis is to provide a suite of numerical differential

equation solvers to evolve large-scale models of neural activity, posed on

realistic cortical domains, with the inclusion of space-dependent delays. We

explore multiple different settings for these models and demonstrate how

modern computing technology can be used to efficiently simulate cortical

dynamics at the macroscopic level. Incorporating real brain data in the form

of structural connectivity, path length, and cortical mesh data, we simulate

both neural mass and neural field models, and demonstrate how our suite

of solvers can be utilised to yield interesting and novel results in these areas.

Chapter 2 begins by setting the scene and introducing the relevant

biological background knowledge required to understand how the brain

works at the cellular level. We explore several key models of various neural

phenomena which have paved the way for the modern formulations that

we consider later on in this work. This includes explanations of how axonal

delays can be included to give a more biologically realistic interpretation of

neuronal interactions. Next, we give a description of the medical imaging

techniques used to collect and process the brain data that we incorporate

into models of neural activity with the aim of pushing simulations closer

to recreating observed brain function. Finally, we introduce numerical

quadrature methods for approximating integrals, with a specific focus on

Gauss-Legendre quadrature, to pave the way for exploring the numerical

schemes required to solve neural field models.

Following on from this, Chapter 3 discusses an array of analytical and

numerical techniques used in the world of neural modelling. We start by

detailing the construction of an arbitrary non-linear network, along with

linear stability analysis for the network around a homogeneous steady

state, in order to yield general results which can be applied to the neural

mass models that we explore later in Chapter 6. The next section of this

chapter explores the numerical methods required to spatially discretise

neural field models in order to construct a system of ODEs that can then
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be evolved temporally using numerical differential equation solution

algorithms. This begins by illustrating how a discrete spatial mesh is

constructed from a continuum domain, before moving on to showing

how numerical integration techniques can be applied to approximate the

integral term found in neural field models. Combining these two processes,

we then demonstrate the complete spatial discretisation of the standard

neural field equation. Lastly, we perform an error convergence analysis

to show that the discretisation methods yield results that conform to

theoretical expectations.

After presenting the main analytical and numerical techniques that we

make use of across this thesis, we move on to Chapter 4. Here, we

showcase the design of the NFESOLVE library: a suite of codes designed

to efficiently and effectively solve large-scale models of neural activity with

multiple delays. We begin by detailing the choices made for the tools used

to build the library, before breaking down each section of the code and

a giving a detailed explanation of the implementation. First, we give a

description of the mesh handler module. This contains everything to do

with storing and manipulating the properties of a geometric mesh, along

with a quadrature library for performing numerical integration across any

given mesh. Following this, we break down the design of the differential

equation solver sub-packages, beginning with the ODE solution suite and

subsequently moving on to the DDE solution suite. This then brings us to

the main area of our code that improves upon existing solvers: the sparse

DDE solver module. Here, we detail how our sparse solvers remove the

unnecessary computational burden created by performing calculations that

are never actually required in the solution process. Finally, we outline

how the code can be parallelised to improve efficiency when dealing with

systems containing a large number of delays.

An important part of any sort of software development is validating that the

code performs to the desired expectations. Chapter 5 takes the NFESOLVE

library and puts it through its paces to validate that each of the solvers
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conform to their expected rates of convergence, along with confirming

that the library can be used to efficiently and correctly solve equations

in the form of the delayed neural field models that we are interested in

exploring. For the latter, we begin by exploring how the standard neural

field model behaves when the spatial domain of choice is a sphere. This

paves the way for the work seen later in Chapter 7, as a spherical domain

can be viewed as being a step in between a traditional two-dimensional

domain and the complex folded geometry of a cortical surface. There

also exist several key analytical results that make a sphere an appropriate

domain for validating numerical solutions against theoretical expectations.

Following this, we look at how introducing a single constant delay into

the standard one-dimensional neural field model affects the dynamics and

stability of the solutions, before moving on to exploring several examples

that incorporate the full space-dependent delay structure we wish to utilise

in our later chapters. Comparing our results to those of existing authors

allows us to validate that the solvers in the NFESOLVE library perform as

expected.

Chapter 6 moves on to the world of neural mass models, with a focus on

exploring the relationship between structural and functional connectivity

in models of neural activity. Here, we aim to use an eigenmode fitting

approach, based on work by Tewarie et al. [164] and Forrester et al. [65], to

determine the eigenmodes of a real structural connectivity data set that best

reflect the corresponding functional connectivity patterns associated with

that data set. We attempt to recreate these functional connectivity patterns

by generating solutions to a selection of different neural mass models, with

the stability of the solutions informed by the eigenmode fitting process. We

make use of the techniques seen in Chapter 3 to determine the stability of

the network and locate parameter regimes which push specific eigenmodes

unstable, and we employ the NFESOLVE library to generate numerical

solutions to each model. After considering the traditional Wilson-Cowan

model [180, 181], we end the chapter by introducing and exploring a
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next-generation neural mass model, developed by Coombes and Byrne

[36].

Finally, Chapter 7 explores the solution of neural field models posed on a

cortical domain, with the incorporation of space-dependent delays based

on real path length data. We utilise the full capabilities of the NFESOLVE

library to efficiently solve a variety of models, starting with the standard

neural field equation, and present a selection of example solutions on the

cortex. After considering the standard neural field model, we look at the

solutions yielded by introducing linear adaptation into the model. Here, we

are able to visualise some interesting dynamic patterns which arise as the

result of a Hopf bifurcation. To close this chapter, we build up to exploring

the more intricate next-generation neural field model, adapted from the

next-generation neural mass model seen in Chapter 6. This work showcases

what is possible in the world of neural modelling today, displaying a

variety of interesting and complex patterns on a realistic cortical domain.

Chapter 8 ends this thesis by recapitulating the work covered in each

chapter, before briefly discussing the directions in which the work could be

taken in the future to yield even more interesting and exciting results.



2
B A C K G R O U N D

2.1 neurons , synapses and action potentials

Neurons are the fundamental processing units in the brain, receiving sen-

sory information from the external world and relaying signals throughout

the body. It is estimated that the human brain contains around 100 billion

neurons [81]. Each neuron (as illustrated in Figure 1) is made up of a cell

body (or soma), an axon, and dendrites. Axons are branching structures

Figure 1: Illustration of a neuron

showing dendrites, cell

body (soma), and axon.

that transmit signals to other neu-

rons. The dendrites around the cell

body receive the signals coming in

from the axons of other neurons via

junctions called synapses. There

are two types of synapses: chemical

and electrical. Chemical synapses

are the workhorses of neuronal in-

formation transfer [166]. They con-

sist of a presynaptic extension to an

axon called the axon terminal and a postsynaptic receiving site in the den-

drites. When a signal is transmitted and the action potential (a wave of elec-

trochemical excitation) reaches the axon terminal, this triggers the release

of neurotransmitters. These are received by the neurotransmitter receptors

in the dendrites, where an electrical response is initiated. A cell’s mem-

6
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brane potential is defined as the difference between the electric potential

inside the cell and the electric potential outside the cell. The postsynap-

tic response may be excitatory (increases membrane potential) or inhibitory

(decreases membrane potential) depending on the type of neurotransmit-

ters. This change in membrane potential in the receiving cell can then trig-

ger the generation of an action potential, this is referred to as a ‘spike’ [98].

Unlike chemical synapses, electrical synapses form a direct physical connec-

tion between the presynaptic and postsynaptic neurons. This connection is

facilitated by channels known as ‘gap junctions’.

Electrical synapses are less common than chemical synapses and are some-

what simpler in their nature. They allow the flow of a current between cells

via the gap junctions. These synapses transmit signals much faster than

chemical synapses and allow for synchronised activity in populations of

neurons due to the rapid transfer of signals from cell to cell. However, they

are limited in the effects that they can have on the postsynaptic neuron, i.e.,

an excitatory (inhibitory) signal in the presynaptic neuron cannot induce an

inhibitory (excitatory) signal in the postsynpatic neuron [160]. If the axon of

a neuron synapses onto a dendrite of the same neuron, then the connection

is referred to as an autapse.

2.2 individual neuron modelling

Although there is a vast amount about the brain that is still not yet un-

derstood, there have been considerable efforts made to comprehend and

recreate observed phenomena. The mathematical modelling of brain dy-

namics has been a key area of interest since the mid 1900s. There have been

a wide variety of models developed by numerous authors [58] and it is still

a widely researched area to this day. We begin this section by exploring

several existing models of individual neuron behaviour, starting with what

is considered one of the most prolific and revolutionary models of its kind:

the Hodgkin-Huxley model [84].
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2.2.1 Hodgkin-Huxley

In 1952, Alan Hodgkin and Andrew Huxley studied the initiation and

propagation of action potentials in the giant axon of the Atlantic squid

[86, 85, 87, 84]. Through this work, they formulated what is commonly

referred to today as the Hodgkin-Huxley model, which describes the

behaviour of action potentials generated by neurons, via the flow of ions in

and out of the cell. This was a cornerstone for the development of more

detailed biophysical neuronal models and led to them receiving the Nobel

Prize in Physiology or Medicine in 1963.

The model begins by describing the dynamics of the cell membrane

potential, denoted V, by the ordinary differential equation

I = C
dV
dt

+ Ii. (1)

Here, I is the total membrane current, C is the membrane capacitance, and

Ii is the current induced by the movement of ions across the membrane.

Hodgkin and Huxley considered these ionic currents principally as the flow

of potassium ions (K+) and sodium ions (Na+). The effects of all other

ionic currents are considered as part of a general leak current, denoted Il.

Therefore, they write Ii as the sum

Ii = IK + INa + Il, (2)

where IK and INa are the ionic currents for the potassium and sodium ions,

respectively. Each of these currents follow a simple Ohmic model, such

that they can be written in terms of conductance (inverse of resistance) and

voltage, i.e.,

IK = gK(V − VK), (3)

INa = gNa(V − VNa), (4)

Il = gl(V − Vl), (5)
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where ga is the conductance of the ion and Va is the reversal potential of the

ion, for a ∈ {K, Na, l}. The reversal potential for each ion is defined as the

membrane potential at which there is no net flow of that ion across the mem-

brane. These ionic conductances were then further modelled by Hodgkin

and Huxley. They postulated that as well as being time-dependent, the

conductances were also dependent on the voltage, V. Fitting to experimen-

tal data, they found that the conductance for the potassium ions could be

modelled as

gK = gKn4, (6)

where gK is the maximum value of the conductance, and n is some dimen-

sionless quantity that varies between 0 and 1, acting as a gating variable. A

gating variable is a quantity that represents the probability of an ion channel

being open at any given time. The dynamics of n are given by

dn
dt

= αn (V) (1 − n)− βn (V) n, (7)

where αn (V) and βn (V) are rate constants depending on the voltage, V, but

not on time. They used the experimental data to determine the following

expressions for these rate constants:

αn (V) =
0.01 (V + 10)

exp
(

V+10
10

)
− 1

, (8)

βn (V) = 0.125 exp
(

V
80

)
. (9)

In a similar fashion, they constructed an equation for the conductance of

the sodium ions as

gNa = gNam3h, (10)

where, similarly to n, the variables m and h both vary in [0, 1] and can be

thought of as activating and inactivating gating variable, respectively. The

quantity gNa is the maximum value of the conductance of the sodium ions.

The equations for m and h take the same form as the equation for n, i.e.,

dm
dt

= αm (V) (1 − m)− βm (V)m, (11)

dh
dt

= αh (V) (1 − h)− βh (V) h, (12)
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where, once again, αm,h (V) and βm,h (V) are rate constants. Through fit-

ting to experimental data, they yielded expressions for these rate constants,

given by

αm (V) =
0.1 (V + 25)

exp
(V+35

10

)
− 1

, αh (V) = 0.07 exp
(

V
20

)
, (13)

βm (V) = 4 exp
(

V
18

)
, βh (V) =

1
exp

(V+30
10

)
+ 1

. (14)

The leak conductance is treated as constant, i.e., gl = gl, and does

not take into consideration any gating variables. Thus, the complete

four-dimensional model can be written as

C
dV
dt

= −gKn4(V − VK)− gNam3h(V − VNa)− gl(V − Vl) + I, (15)

along with Eqs. (7), (11) and (12).

This description forms the basis of many other models of individual

neuron dynamics, with authors extending it to consider other phenomena

such as different ionic currents [108] and stochasticity [68], to name just a

few.

2.2.2 Morris-Lecar

Following on from the work of Hodgkin and Huxley, in 1981 Catherine Mor-

ris and Harold Lecar formulated a model to describe the electrical dynamics

of the barnacle muscle fibre [127]. Although this model wasn’t originally in-

tended to be perceived in a neural context, the electrophysiology of muscle

cells has a striking resemblance to that seen in neurons, leading the neuro-

science community to take interest in what is now commonly referred to

as the Morris-Lecar model [156, 167]. The model is often considered to be

a simplified version of the Hodgkin-Huxley model, as it is similar in form,

but notably two-dimensional as opposed to four-dimensional. Following an

analogous approach to Hodgkin and Huxley, the same equation (Eq. (1)) is
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used to describe the membrane potential. The ions of interest, however, are

potassium (K+) and calcium (Ca+) ions. The total ionic current term, Ii, is

given by the sum of individual currents

Ii = IK + ICa + Il, (16)

where, once again, Il is a leak current that accounts for all other ionic cur-

rents. These currents are described in terms of conductance and voltage

via an Ohmic relationship, with the specific ionic currents being modelled

dynamically, yielding

IK = gKN(V − VK), (17)

ICa = gCaM(V − VCa), (18)

Il = gl(V − Vl), (19)

where ga is the ionic conductance and Va is the reversal potential of the ion,

for a ∈ {K, Ca, l}. The recovery variables, N and M, are analogous to the

gating variables, n and m, in the Hodgkin-Huxley model. Although the

model originally introduced in [127] considers both N and M as dynamic,

the model that is most often referred to today as the Morris-Lecar model is

actually a reduction presented later on in the paper in which they consider

the Ca+ system to be so much faster than the K+ system that M is taken to

be equal to its steady state value at all times. This leads to the full model

taking the form

C
dV
dt

= −gKN(V − VK)− gCaM∞ (V) (V − VCa)− gl(V − Vl) + I, (20)

dN
dt

= αN (V) (N∞ (V)− N) , (21)

where the quantities M∞, N∞ and αN are given the forms

M∞ (V) =
1
2

(
1 + tanh

(
V − V1

V2

))
, (22)

N∞ (V) =
1
2

(
1 + tanh

(
V − V3

V4

))
, (23)

αN (V) = α0 cosh
(

V − V3

2V4

)
, (24)
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as described by Lecar et al. several years earlier in [114, 53].

This model has been used extensively to describe the dynamics of fast-

spiking neurons. It can yield a variety of solution behaviours, depending on

parameter values, which is illustrated by the fact that the nullclines of the

model are instinctively non-linear and can therefore interact in a multitude

of ways. A key characteristic it possesses is the ability to generate sharp

changes in membrane potential if a specific voltage threshold is reached.

The negative feedback mechanism governed by Eq. (21) then works to bring

the excitable neuron back down to resting-state potential. Although this

model is simpler than the Hodgkin-Huxley model, it can still yield solu-

tions that are just as reflective of observed neuronal dynamics.

2.2.3 QIF/Theta Neuron

Taking a different approach from the models discussed above, the quadratic

integrate-and-fire (QIF) model is a purely phenomenological model which

naturally yields solutions of a spiking nature. It is constructed as

dV
dt

= V2 + I, (25)

where V represents voltage and I represents some external current. With I

a positive constant, solutions to this differential equation all take the form

of the tangent function. Asymptotically, when the solution reaches positive

infinity it undergoes a reset back to negative infinity, thus yielding a spike.

Numerically, we say that when the solution reaches a threshold value, Vth,

at a given time, T, it undergoes a reset back down to a value, VR. Denoting

each spike time with a subscript index, i = 0, 1, . . ., this reset rule can be

written into the model as

d
dt

V (t) = V2 (t) + I, (26)

V
(
T−

i
)
= Vth, (27)

V
(
T+

i
)
= VR, (28)
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where T±
i = limϵ→0 (Ti ± ϵ).

In 1986, Ermentrout and Kopell [57] published the Ermentrout-Kopell

canonical model, or theta neuron model as it is otherwise known. This

model is posed on a unit circle and is used to simulate the spikes of a

neuron. Consider a point on the circle with angular coordinate θ, for

θ ∈ [0, 2π) radians. The model is treated in such a way that it is said that

whenever θ = π an action potential (or spike) is generated. It takes the

form
dθ

dt
= 1 − cos (θ) + I (1 + cos (θ)) , (29)

where I is an external input. It can be shown that the QIF model, under the

change of variables V = tan (θ/2), is mathematically equivalent to the theta

neuron model

This model has since been studied in a variety of settings. One

such study is by Ermentrout et al. [55], where they explore the emergence

of travelling wave solutions in a network of theta neurons, with a focus

on the conditions of existence for such classes of solutions. More recently,

it has been employed by Coombes and Byrne [36] as a basis for the

development of their next-generation neural mass model, which we explore

in detail in Chapter 6. It even been used in such applications as artificial

intelligence, where it has been used to develop a multilayer neural network

with a learning rule based on intrinsic neural dynamics [122].

2.3 modelling at the macroscopic level

The models discussed thus far have only considered the dynamics of single

neurons. Although this work is useful for describing neural dynamics at the

microscopic level, it becomes implausible to consider the dynamics of each

individual neuron when looking at how the brain behaves at the macro-

scopic level, due to the brain containing such a large number of neurons. In
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this section, we introduce and discuss several models which aim to describe

how populations of neurons behave across the cortex, thereby constructed

as being dependent not only on time, but having a spatial component too.

The neural field models presented here are pertinent to the rest of the work

in this thesis, and the principles discussed here are used to construct the

next-generation neural field model that we explore in Chapter 7.

2.3.1 Wilson-Cowan Model

One of the most well known models of neuronal activity for populations of

neurons is the Wilson-Cowan model, developed by Hugh Wilson and Jack

Cowan in 1972 [180, 181]. They considered the interaction between a pop-

ulation of excitatory neurons, E, and a population of inhibitory neurons,

I, coupled together. Excitatory (inhibitory) neurons increase (decrease) the

likelihood that their neighbouring neurons will become active, with the ac-

tivation being governed by a nonlinear function, FE,I . This is typically taken

to be sigmoidal in shape. Although the model was originally conceived for

a network of neurons, the continuum form of the model is given by

τE
∂

∂t
E (x, t) = −E (x, t) + (1 − rE (x, t)) FE (wEE ⊗ E − wEI ⊗ I + QE (x, t)) ,

(30)

τI
∂

∂t
I (x, t) = −I (x, t) + (1 − rI (x, t)) FI (wIE ⊗ E − wI I ⊗ I + QI (x, t)) .

(31)

Here wab is a connectivity kernel representing connections from population

a to population b, where a, b ∈ {E, I}, and ⊗ represents the spatial convolu-

tion

[wab ⊗ A] (x, t) =
∫

Ω
wab

(∣∣x − x′
∣∣) A

(
x′, t

)
dx′. (32)

This convolution structure is built on the assumption that interactions only

depend on distance. The terms QE,I are external inputs, and τE,I are tem-

poral scaling parameters. The system also incorporates the refractory dy-
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namics of both populations with the terms (1 − rA (x, t)), A ∈ {E, I}. This,

however, is often omitted from newer considerations of the model.

Figure 2: Schematic of the Wilson-Cowan model showing the excitatory and

inhibitory populations and the inputs they receive.

We explore this model later in Chapter 6, building upon work by Tewarie

et al. [164] and Forrester et al. [65, 66], who use the model to explore the

relationship between structural and functional connectivity in the brain (see

Section 2.4 for an introduction to these connectivity measures). For more

details on the construction and applications of the Wilson-Cowan model see

[35].

2.3.2 Neural Field Models

Neural field equations (NFEs) model the spatiotemporal evolution of synap-

tic or firing rate activity in populations of neurons at the tissue level. In 1977,

Amari [2] formulated a single population voltage-based model for activity,

u = u (x, t), posed on a continuous domain, Ω ⊆ Rd. The domain, Ω ⊆ Rd,
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is typically considered only for d = 1, 2, 3 as it would not make physical

sense to consider a higher dimensional domain. The model takes the form

∂

∂t
u (x, t) = −u (x, t) +

∫
Ω

w
(
x, x′

)
f
(
u
(
x′, t − τ

(
x, x′

)))
dx′ + I (x, t)︸ ︷︷ ︸

ϱ

.

(33)

We shall briefly explain the formulation of this model. With no input

(ϱ = 0), activity decays exponentially. The kernel, w, represents the con-

nectivity of points on the domain, Ω, such that for any two points, x and

x′, the strength of the connection between them is w (x, x′). For simplicity,

this is often chosen to be a function of distance between the two points, i.e.,

w (x, x′) = w (∥x − x′∥). From a neuroscience perspective, this kernel can be

a connectome (a comprehensive map of the macroscopic connections as esti-

mated by diffusion MRI [103]). If the values are positive then they represent

excitatory connections and if they are negative they represent inhibitory

connections. Typically, kernels which have short range excitatory connec-

tions and long range inhibitory connections are referred to as ‘Mexican hat’

or ‘wizard hat’ connectivity kernels [35] (see Figure 3a). The firing rate (or

activation function) is represented by f , which is usually chosen to have a

sigmoidal shape [180, 38] (see Figure 3b) and a range of [0, 1]. For steep

sigmoids, this acts as a switch that “turns on" the contribution of points in

the network when the activity at those points crosses a threshold. The con-

nectivity kernel and firing rate are multiplied together and then summated

across the whole domain (i.e., we integrate over x′) to give the basic neural

field model. The term, I (x, t), represents an external stimulus.
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(a) Connectivity kernel w (z). (b) Firing rate f (u).

Figure 3: Examples of a wizard hat connectivity kernel, w(z) =

(1 − |z|) e−|z|, and sigmoidal firing rate given by Eq. (34), with

µ = 20, θ = 0.5.

A common choice of firing rate [35] is

f (u) =
1

1 + e−µ(u−θ)
, (34)

which we will use throughout this work. The parameter, µ, controls the

steepness of the sigmoid and the parameter, θ, controls the threshold at

which the neurons become active. In order to make analytical progress,

sigmoidal firing rates with large µ are approximated by the Heaviside step

function defined by

H(u − θ) =

1, if u ≥ θ,

0, if u < θ,
(35)

which is obtained from Eq. (34) in the limit as µ → ∞. Amari’s work [2]

focussed heavily on the dynamical behaviour of the system with the use

of a Heaviside activation function, showing the existence and stability of a

class of solutions known as ‘bump’ solutions, as well as travelling bump

solutions. These types of solutions, as the name suggests, take the form of

spatially localised bumps, similar in appearance to Mexican hat kernels.

Although the original development of the Amari model did not in-

clude axonal delays, they have become an increasingly studied addition to
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the model. Axonal delays are prevalent in the brain due to the propagation

of signals not being instantaneous. When an action potential is generated,

it travels along the axon of the neuron it is generated from to reach the

dendrites of another neuron. The velocity of action potentials along axons

can vary from 1m s−1 to over 100m s−1 [51], although typically velocities

average at around 10m s−1 in the cortex. For simplification, many models

assume that these propagation speeds are infinite. However, this is not

as physically representative. Axonal delays in NFEs have been studied at

length by a number of authors, such as in [105, 91, 92, 34, 61, 142, 111, 90].

The physical relevance of delays means that they are commonly selected

such that τ (x, x′) = ∥x − x′∥/v, hence making them spatially dependent.

Here, ∥x − x′∥ is some measure of distance between two spatial points,

and v is a propagation speed. Physically, this construction represents the

observed transmission delay of signals propagating along axons, with the

time taken being directly proportional to the length of the axon. Although v

is assumed constant here, in practice the degree of myelination on different

axonal fibers could affect the propagation speed. The myelin sheath is

a fatty substance (yellow blobs in Figure 1) that insulates axons to help

increase the speed at which signals travel. Atay and Hutt [6] have studied

the incorporation of statistically distributed propagation speeds into

models of large-scale brain activity, along with non-local delayed feedback

loops. Some studies (e.g. [174, 164]) also include a constant delay term that

applies equally to all signals. This results in the delay expression taking the

form τ (x, x′) = τc + ∥x − x′∥/v, where τc is the fixed delay. The role that fixed

delays play in neural modelling is discussed in detail by Montbrio and

Roxin in [125]. They attribute it to a synaptic/dendritic processing delay;

however, as evident from the wide range of studies listed above that do

not include this constant delay term, it is not clear whether this is actually

physically relevant. A non-physical reason why it can be incorporated into

firing rate models is that it can allow for dynamics similar to those seen in

simulations of large-scale spiking networks [142]. Throughout this thesis
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we include the constant delay term in our presentations of delay models,

on the understanding that for a purely physical representation this would

ideally be set to zero.

Incidentally, delays also allow for significantly more interesting dynamics

to be prevalent in solutions, bringing them closer to the observed naturally

occurring brain dynamics that we wish to model. It was shown by Nunez

in 1974 [129] that for certain choices of the delays, τ, and connectivity

kernel, w, the model can be reduced to a form of the wave equation, known

as the brain wave equation. Therefore, travelling wave solutions can also

occur more naturally with the presence of axonal delays.

2.3.3 Neural Field With Linear Adaptation

The Amari equation Eq. (33) can be extended to incorporate an intrinsic

negative feedback mechanism, known as spike-frequency adaptation, that

neural populations possess which brings them back to rest levels after pe-

riods of high activity [135]. This model is based on work by Hansel and

Sompolinsky [79], where they consider a network in which the excitatory

cells are endowed with spike-frequency adaptation. This was then further

extended by several authors such as [42, 110, 135, 37] to yield the following

model.

τ
∂

∂t
u (x, t) = −u (x, t)− ga (x, t) +

∫
Ω

w
(
x, x′

)
f
(
u
(
x′, t
))

dx′, (36)

1
α

∂

∂t
a (x, t) = u (x, t)− a (x, t) . (37)

The parameter, g, is the coupling strength of the feedback, and α is the rate

at which adaptation occurs. If g is set to 0 then the system is equivalent

to the standard Amari neural field equation Eq. (33). The parameters, τ

and α−1, are timescales. In [56], Ermentrout, Folias, and Kilpatrick study

the spatiotemporal pattern formations for this model, providing analyses

for both periodic and infinite domains in one and two dimensions. They

showed that there exists multiple dynamic solution patterns, such as travel-
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ling waves, ‘breathers’ and ‘sloshers’. Breather solutions consist of spatially

localised oscillations such that a bump solution appears to expand and con-

tract, while slosher solutions are bumps that move or ’slosh’ from side to

side. Other pattern formation and bifurcation analyses have also been un-

dertaken in such works as [39], where the authors develop a linear stability

analysis for the interface dynamics between areas of high and low activity

in a planar neural field model; and [64], in which the dynamics of ‘breather’

solutions in an excitatory neural network are explored.

2.3.4 PDE Formulations of Neural Fields

Although neural fields are typically studied in the integro-differential form

Eq. (33), for suitable choices of connectivity kernel w it is possible to trans-

form the model into a partial differential equation (PDE); see, for example,

[113]. The non-delay neural field in one spatial dimension can be written as(
∂

∂t
+ 1
)

u (x, t) =
∫ ∞

−∞
w (x − y) f (u (y, t))dy. (38)

The Fourier transform is defined for a function u = u (x, t) as

F[u (x, t)] (k, t) =
∫ ∞

−∞
eikxu (x, t)dx, (39)

where k is the transform variable. Using the convolution theorem, the

Fourier transform can be applied to both sides of Eq. (38) to remove the

spatial component. This gives(
∂

∂t
+ 1
)

F [u] (k, t) = F [w] (k)× F [ f (u)] (k, t) , (40)

where × represents standard multiplication. Suppose that the Fourier trans-

form of w is a rational function of k2, i.e.

F [w] (k) =
P
(
k2)

Q (k2)
, (41)

where P and Q are polynomials. Multiplying Eq. (40) by Q
(
k2) gives(

∂

∂t
+ 1
)

Q
(

k2
)

F [u] (k, t) = P
(

k2
)

F [ f (u)] (k, t) . (42)
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Recalling that, under the assumption of vanishing initial data, the Fourier

transform of the second and fourth spatial derivatives of a function u (x, t)

are −k2F [u] (k, t) and k4F [u] (k, t) respectively, taking the inverse Fourier

transform of Eq. (42) gives(
∂

∂t
+ 1
)

D1u (x, t) = D2 f (u (x, t)) , (43)

where D1 and D2 are linear differential operators in space that are of even

order, associated with Q and P, respectively [112].

To give an example, say we have the wizard hat function w (x) =

(1 − |x|) e−|x|, depicted in Figure 3. This has Fourier transform 4k2/(1 + k2)2,

allowing us to write the NFE as a PDE of the form(
1 +

∂

∂t

)(
1 − ∂2

∂x2

)2

u (x, t) = −4
∂2

∂x2 f (u (x, t)) . (44)

This technique can also be applied to the full delay problem, as seen in

[104] where the equation was first derived. Coombes et al. study the PDE

formulation of the full space-dependent delay problem for a two dimen-

sional domain in [40]. Doing so, they obtain a damped inhomogeneous

wave equation.

When solving NFEs numerically, the PDE formulation can be less compu-

tationally challenging to work with than the integral formulation, making

it appealing. Typically a finite difference scheme [94] would be applied to

the spatial derivatives. When the equations are then fully discretised the

resulting system involves fairly sparse matrices as opposed to the dense

matrices that the connectivity kernel in the integral formulation generates.

This allows for optimised matrix-vector operations that remove unnecessary

computations due to the large number of zeros the matrices contain.

2.4 measuring macroscopic brain connections

One of the objectives of this thesis is to develop, simulate, and analyse neu-

ral field models posed on a two dimensional cortical domain embedded
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in R3. A fundamental aspect of these models is the choice of a connectiv-

ity kernel. There is a vast amount of work already done in the analysis

of these problems where the kernel is chosen to be a specified function

[33, 63, 64, 140]. A more realistic approach that we are taking in this project

is to utilise proxies of brain connectivity available from Magnetic Resonance

Imaging (MRI). MRI data collected on real human subjects can provide esti-

mates of brain connections in a number of ways [103, 159] and little devel-

opment with incorporating such information into neural field models has

been done thus far. In particular, the Human Connectome Project [172, 173]

(https://www.humanconnectome.org) has spent many years studying and

gathering data from a range of subjects, with the aim of effectively mapping

macroscopic brain connections and their variability across healthy adults

[158] and making all the data publicly available. With advances in MRI

technology, the acquisition of imaging data in a non-invasive way has be-

come a fundamental component for providing insight into brain function

and the changes that occur with development, aging, and disease [116].

2.4.1 Diffusion MRI

An important technique used to measure structural connectivity patterns

in the brain is diffusion MRI (dMRI), as opposed to functional MRI (fMRI)

which is used for measuring brain activity. Although structure can be in-

ferred from function by addressing statistical dependencies in the activity

between regions, the anatomical routes the physical axonal connections take

remain unknown. Diffusion MRI works by detecting the random thermal

motion of water molecules [103, 159]. In organised structure, such as white

matter, the diffision of water molecules is anisotropic. This means that it

they are less hindered when moving parallel to axonal fibres than when

moving perpendicular to them. Measuring the orientational dependence

of the water diffusion allows for the estimation of the axonal orientations,

which are then used by post-processing algorithms known as tractography

https://www.humanconnectome.org
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[158] to infer long range connections. Tractography works by tracking the

flow of the diffusion through areas of the white matter domain, known as

voxels, until a boundary or specified termination point is reached. Repeat-

ing the tractography for many locations in the brain allows for the con-

struction of a structural connectome (a comprehensive map of the physi-

cal connections between regions of the brain). Although dMRI cannot di-

rectly quantify strength of connections, it does allow for estimation of edge

weights that can reflect desired properties, such as axonal density, myelina-

tion, etc. A common edge weighting quantification is to look at the size

of axonal fibre bundles inferred from the tractography [159]. This data can

then be represented in the form of a structural connectivity matrix, an ex-

ample of which is shown in Figure 4. Along each axis are the locations

for which the tractography is repeated at. The coloured pixels denote the

strength of the connections between each location (red is strongly connected,

blue weakly connected). Note the symmetry about the main diagonal of this

matrix; this is due to the nature of measuring diffusion MRI, as the signal

is antipodally symmetric (diffusion along x and −x induces the same MR

signal) and therefore estimated connections are not directional.
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Figure 4: Example of a dense connectome matrix computed using proba-

bilistic tractography on diffusion MRI data from 50 Human Con-

nectome Project subjects [72, 173]. The colour represents the mag-

nitude of the edge weights assigned to each connection. Areas

coloured in red represent strong structural connections and areas

coloured in blue depict weak or non-existent structural connec-

tions. The connection strengths have been normalised to the range

[0, 1].

It is also largely unknown as to when erroneous connections in the trac-

tography occur. As there can be hundreds of thousands of axons, the map-

ping from diffusion to axonal directions is often ill-posed. This results in the

tractography algorithms producing false positive and negative connections

due to taking ‘wrong turns’. We refer to [171] and [159] for discussions on

the challenges faced with employing dMRI.
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2.4.2 Functional MRI

Functional MRI (fMRI) is a process used frequently by both physicians and

researchers to gather data on brain activity patterns. Although similar to

standard MRI, the major difference is that fMRI is specifically used to mea-

sure the changes in blood flow in the brain. When neuronal activity in spe-

cific areas starts to increase, there is a higher demand for oxygen in those

regions, thereby requiring an increase in blood flow to deliver it. Oxygen

is carried in the red blood cells by the protein named haemoglobin. When

it reaches the required destination, the oxygenated haemoglobin replaces

the deoxygenated haeomglobin. It is the difference in magnetic properties

between these molecules that allows for blood flow to be measured using

fMRI. The oxygenated haemoglobin is diamagnetic, meaning it is far less

sensitive to a magnetic field than the deoxygenated haemoglobin, which is

paramagnetic. This contrast is known as the blood-oxygen-level dependent

(BOLD) signal [74, 169]. As the neurons fire, the changes in blood flow are

detected by the MRI machine, leading to a visualisation of the areas of the

brain that are concurrently active, thereby indicating a functional connec-

tion between those regions. Additionally, the temporal correlation between

these signals may be analysed via correlations measures, such as Pearson’s

correlation coefficient [134] or the Jaccard similarity [99], to construct a func-

tional connectome [67, 75]. This is often represented in a similar fashion to

structural connectivity data, in the form of a matrix.

2.5 numerical integration methods

As introduced above in Section 2.3, macroscopic models of neural activity

typically contain an integral term to facilitate the summation of neural con-

nections across the cortex as a continuum. This poses a challenge when

solving these models numerically, and as such, specialist numerical meth-
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ods are required to numerically approximate these integral terms. Although

we shall illustrate later in Section 3.3 how a neural field may be fully dis-

cretised and numerically solved, this section gives an introduction to the

numerical integration methods which will be utilised.

2.5.1 Quadrature

A quadrature rule is a form of approximation for a definite integral of a

function. Quadrature rules work by taking a weighted sum of function

points evaluated at a specific set of abscissas (points) across the domain of

integration [54]. Conventionally, the domain of integration for a rule, in

one dimension, is specified as the interval [−1, 1]. For a function, g (x), a

quadrature rule to approximate the integral of that function takes the form∫ 1

−1
g(x)dx ≈

N

∑
i=1

wig(xi). (45)

In order to numerically compute integrals on a general domain, a mapping

can be employed to map from the general domain onto the reference do-

main.

2.5.2 Gauss-Legendre Quadrature

There are many quadrature rules which require different classes of or-

thogonal polynomials, such as Gauss-Jacobi quadrature, Chebyshev-Gauss

quadrature and Newton-Cotes quadrature [138]. One of the most widely

used quadrature rules is Gauss-Legendre quadrature. Developed by

Gauss [70] in the early 19th century, it was then noted by Jacobi [101, 102]

twelve years later that the quadrature points are the roots of the Legendre

polynomials [115].

The Legendre polynomials are a set of functions that are orthogonal

on the interval (−1, 1). They have several different definitions resulting in
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the same equations; however, one way of generating them is by using the

following recursive formula:

L0(x) = 1,

L1(x) = x,

Ln+1(x) =
2n + 1
n + 1

xLn(x)− n
n + 1

Ln−1(x), n ≥ 1.

(46)

The quadrature points (abscissas), xi, i = 1, . . . , n, for a Gauss-Legendre

quadrature rule of order n, are given by the roots of the nth order Legendre

polynomial Ln(x), i.e., the solution to Ln(x) = 0. To calculate these roots nu-

merically using a root-finding algorithm, the Chebyshev nodes [32], given

by the formula

xi = − cos
(

2i − 1
2n

π

)
, (47)

where i = 1, . . . , n, can be used as an initial guess as they sit close to the

Legendre nodes.

The weights, wi, i = 1, . . . , n, corresponding to the points of the quadrature

rule, are defined by

wi =
2

(1 − x2
i )[L

′
n(xi)]2

, (48)

where L′
n (x) is the derivative of the nth order Legendre polynomial. These

derivatives can also be generated using a recursive formula:

L′
0(x) = 0,

L′
1(x) = 1,

L′
n+1(x) =

2n + 1
n

xL′
n(x)− n + 1

n
L′

n−1(x), n ≥ 1.

(49)

Using these points and weights in Eq. (45), this rule can yield an exact

solution to definite integrals for which the integrand is a polynomial of

degree 2n − 1.

This introduction to Gauss-Legendre quadrature is for an interval

domain; however, a detailed explanation of the formulation of the

Gauss-Legendre quadrature rule on polygons in higher dimensions, such

as triangles and quadrilaterals, can be found in [49].



3
A N A LY T I C A L A N D N U M E R I C A L T E C H N I Q U E S F O R

N E U R A L M O D E L L I N G

3.1 introduction

There are many methodologies that researchers employ when working

with mathematical models of real-world phenomena. These range from

analytical techniques, such as linear stability analysis, that are used to gain

an insight into how a system may behave under certain conditions, to the

numerical schemes implemented to approximate solutions computationally.

Before exploring specific models of neural activity, it is important to

consider the key analytical and numerical approaches used in neural

modelling.

To start, we introduce an arbitrary network of nodes whose dynam-

ics are governed by generic non-linear functions. Many neural mass models

follow this structure, as we will see later in Chapter 6. We carry out a

linear stability analysis of the general model and show how the linearised

equations can be broken down with respect to the eigenvalues of the global

coupling matrix present in the system. Following on from this, we discuss

how the presence of delays impacts on the system and its stability.

The next section of this chapter then introduces the numerical techniques

required to solve continuum models of neural activity. These models

typically contain integral terms to facilitate long-range connections, thereby

28
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not only necessitating a spatial discretisation of the continuum, but also

requiring a quadrature rule to numerically approximate the integral. We

study a general quadrature rule, applicable to all spatial domains, along

with defining a specific Gauss quadrature rule on interval domains. We

then illustrate its use by spatially discretising a standard NFE and turning

it into a system of purely time-dependent coupled equations. Finally,

a convergence analysis of the discussed methods is presented, showing

how the NFE performs under different discretisations and quadrature

accuracies.

3.2 analysis of arbitrary non-linear networks

In Chapter 6, we consider a selection of neural mass models used to describe

the dynamics of large-scale brain networks. A desired component of this

work is to generate model solutions of an oscillatory nature. In order to

facilitate locating these solutions, we present here the construction of an

arbitrary network of nodes in a generalised form, and use linear stability

analysis techniques to derive the system’s spectral equation of eigenvalues

in terms of the decomposed non-local connectivity matrix that governs the

connections between the nodes in the network. This linear stability analysis

is important as it is utilised to locate parameter regimes for which a chosen

system undergoes a Hopf bifurcation, thereby resulting in the emergence of

oscillatory dynamics. Although the techniques presented here are included

primarily for the application detailed in Chapter 6, the general nature of

the construction allows this analysis to be applied to other applications in

neural modelling where linear stability analysis is required. This section is

based on the supplementary material of [164].
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3.2.1 Construction of an Arbitrary Non-Linear Network

Consider a set of neural populations x(t) =
(
x1 (t) , . . . , xm (t)

)
∈ Rm, t ≥ 0,

whose dynamics are governed locally by the equation

d
dt

x = F (x) + G
(

wlocx
)

, (50)

where F, G : Rm 7→ Rm, and wlocx ∈ Rm×m determines the strength of the

local interactions between populations. Using this, a network of N inter-

connected nodes each comprising m populations can be constructed, with

equations

d
dt

xi = F (xi) + G
(

wlocxi + si

)
, si =

N

∑
j=1

wijH
(
xj
)

, (51)

where xi =
(
x1

i , . . . , xm
i
)
, i = 1, . . . , N, wij are the entries of a connectivity

matrix that describes the strength of connections between individual nodes,

and H : Rm 7→ Rm is a linear mapping that governs which populations have

a cross-nodal effect on entire network.

3.2.2 Linear Stability Analysis

The steady state of the network is given by

0 = F (xi) + G
(

wlocxi + si

)
, si =

N

∑
j=1

wijH
(
xj
)

, (52)

where xi =
(

x1
i , . . . , xm

i

)
, which represent the steady states of each popula-

tion at node i. Assuming a small perturbation of the form xi (t) = xi + ui eλt,

where ui ∈ Rm, and λ ∈ C, the steady state can be linearised around to give

λui =
[

DF (xi) + DG
(

wlocxi + si

)
wloc

]
ui

+
N

∑
j=1

DG
(

wlocxi + si

)
DH

(
xj
)

wijuj, (53)
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where DF, DG, DH ∈ Rm×m are Jacobian matrices. For convenience, this

can be written in the shortened form

λui = DF̃iui +
N

∑
j=1

DG̃iwijuj, (54)

where DF̃i

DG̃i

 =

DF (xi) + DG
(
wlocxi + si

)
wloc

DG
(
wlocxi + si

)
DH

(
xj
)

 . (55)

It must be noted here that DH
(
xj
)

is independent of the label j due to the

fact that H is linear. Hence, the entire equation can be written succinctly as

λU =


DF̃1 0

. . .

0 DF̃N

U +


DG̃1 0

. . .

0 DG̃N

 (w ⊗ Im)U, (56)

where U =
(
u1

1, . . . , um
1 , . . . , u1

N, . . . , um
N
)T, the operator ⊗ is the Kronecker

product, and Im is the m × m identity matrix. In this form, this is as far

as we are able to reasonably progress with the linear stability analysis of

a generalised network without making simplifications and assumptions.

Depending on the specific model under consideration, numerically

computing the eigenvalues of the system at this stage may be implausible.

Factors that could contribute to this are the size of the system and the

heterogeneity of the steady state.

In order to take this analysis further, we make the assumption that

the rows of w are normalised such that ∑j wij = 1 for all i = 1, . . . , N. This

step allows for the guaranteed existence of a homogeneous steady state

xi = x for all i = 1, . . . , N, thereby removing the dependence on i in DF̃i

and DG̃i. Diagonalising w, it decomposes into the form w = PΛP−1, where

P is the matrix of normalised eigenvectors of w and Λ is the diagonal

matrix of eigenvalues µ1, . . . , µN. Employing the change of variables

V = (P ⊗ Im)
−1 U, and manipulating the expression using the properties
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of the Kronecker product (see [164] for the full derivation), the system can

be written in terms of the eigenvalues of w as

λV =


DF̃ 0

. . .

0 DF̃

V +


µ1DG̃ 0

. . .

0 µNDG̃

V. (57)

The block diagonal form of the system means that it can be split into N

independent equations of the form

λVp =
[

DF̃ + µpDG̃
]

Vp, p = 1, . . . , N, (58)

where Vp ∈ Cm. The eigenvalue spectrum for the whole network can be

generated by finding solutions to

E (λ; p) :=
∣∣∣λIm − DF̃ − µpDG̃

∣∣∣ = 0, p = 1, . . . , N. (59)

3.2.3 Incorporation of Delays

When delays are present in the network, equation Eq. (51) becomes

d
dt

xi = F (xi) + G
(

wlocxi + si

)
, si =

N

∑
j=1

wijH
(
xj
(
t − τij

))
. (60)

Here, τij represents the delay value between node i and node j. The steady

state of the system remains the same; however, the linearised equation be-

comes

λui = DF̃ui + DG̃
N

∑
j=1

w̃ij (λ) uj, (61)

where w̃ (λ)ij = wij e−λτij . We further assume that w̃ij (λ) can be decom-

posed into the form

w̃ij (λ) =
N

∑
p=1

µp (λ) γ
p
j ζ

p
i , (62)

where γp and ζ p are normalised left and right eigenvectors of w, respec-

tively, such that they form a dual basis of the eigenspace of w. By projection,

the coefficients µp (λ) can be generated as

µp (λ) =
N

∑
i=1

N

∑
j=1

w̃ij (λ) γ
p
i ζ

p
j . (63)
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Under the replacement µp → µp (λ) in Eq. (59), the eigenvalue spectrum of

the delayed network is given by solutions to

E (λ; p) := |λIm − DF̃ − µp (λ) DG̃| = 0, p = 1, . . . , N. (64)

The incorporation of delays into the system turns the eigenvalue problem,

E (λ; p), into a transcendental equation. To solve this, a numerical root-

finding algorithm is required.

3.3 numerical discretisation of continuum models

In the continuum limit of models of neural activity (see Section 2.3), the

summation of long-range connections becomes an integral. This turns the

models into a system of integro-differential equations. Typically, these equa-

tions are posed on domains in Rd, d = 1, 2, 3. In this thesis, we primarily

consider intervals in R1, areas in R2, and surfaces in R3.

3.3.1 Finite Element Mesh

The first step in the numerical solution of continuum models is partitioning

the domain into a finite element mesh. Let Ω denote the continuum domain,

and let Th denote a finite element mesh. This mesh is made up of a finite

number of subsets, κ, such that

(i) Ω =
⋃

κ∈Th

κ,

(ii) For each distinct κ ∈ Th, it is assumed that the intersection of the

interiors of each subset is equal to the empty set ∅.

These subsets, κ, are called the elements of the mesh. In R1, intervals are

the main element type. When considering areas in R2 and surfaces in R3,

meshes are made up of simple polygons, most commonly triangles and

quadrilaterals. Typically, the elements that make up the mesh are all of the

same type; however, hybrid meshes can also be used if required.



3.3 numerical discretisation of continuum models 34

3.3.2 Quadrature Methods

In order to solve the integro-differential equations that arise in continuum

models, a numerical quadrature rule is required to evaluate the integral.

As introduced in Section 2.5, it is convenient to define these rules on a

local reference element, which we define as κ̂, and then use a mapping to

perform the quadrature on any global element, similarly named κ ∈ Th.

For a reference element κ̂, the integral of a function, g, on that element is

approximated by ∫
κ̂

g (ξ)dξ ≈
Nq

∑
q=1

g
(
ξq
)

ρq, (65)

where ξ is the local coordinate system spanning κ̂, {ξq}
Nq
q=1 is a set of Nq

quadrature points on κ̂ and {ρq}
Nq
q=1 is a corresponding set of weights. Ex-

ploiting a mapping φκ : κ̂ 7→ κ, this rule is written for a general element κ

as ∫
κ

g (x)dx =
∫

κ̂
g (φκ (ξ)) |Jκ (ξ)|dξ ≈

Nq

∑
q=1

g
(

φκ

(
ξq
)) ∣∣Jκ

(
ξq
)∣∣ ρq, (66)

where x is the global coordinate system and |Jκ (ξ)| is the Jacobian of the

mapping φκ. To approximate the integral across the whole domain we take

the sum of the integral approximations across all elements, giving∫
Ω

g (x)dx = ∑
κ∈Th

∫
κ

g (x)dx ≈ ∑
κ∈Th

Nq

∑
q=1

g
(

φκ

(
ξq
)) ∣∣Jκ

(
ξq
)∣∣ ρq. (67)

This is a generic rule for all element types. As an example, consider a trian-

gulated domain in R2. A common local reference element for triangular el-

ements is the triangle defined by T̂ = {ξ ∈ R2 : 0 < ξ1, ξ2 and ξ1 + ξ2 <

1}. It can be shown that the Jacobian of the mapping between this reference

element and any global traingle is equal to two times the area of the global

triangle [8, 49]. Therefore, a rule can be written for a domain in R2, made

up of triangular elements, as∫
Ω

g (x)dx ≈ ∑
κ∈Th

(
2Aκ

Nq

∑
q=1

g
(

φκ

(
ξq
))

ρq

)
, (68)
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where Aκ denotes the area of the global element κ. This rule follows analo-

gously for triangulated surfaces in R3.

3.3.3 Gauss Quadrature on Intervals

For the standard quadrature interval, [−1, 1], the quadrature rule is given

by ∫ 1

−1
g(ξ)dx ≈

N

∑
i=1

wig(ξi). (69)

When extending this to a general interval [a, b], we must employ a mapping

to go between local and global elements. With local coordinates, ξ ∈ [−1, ],

and global coordinates, x ∈ [a, b], this mapping is defined as

x = a +
b − a

2
(ξ + 1). (70)

Finally, in order to change the variable of integration we require the Jacobian

of the mapping, defined by Jij =
∂xi
∂ξ j

, which in this case is

J(ξ) =
(

b − a
2

)
. (71)

Now, we have∫ b

a
g(x)dx =

∫ 1

−1
g (x(ξ)) |J(ξ)| dξ =

b − a
2

∫ 1

−1
g
(

a +
b − a

2
(ξ + 1)

)
dξ.

(72)

Therefore, we can write∫ b

a
g(x)dx ≈ b − a

2

N

∑
i=1

wig
(

a +
b − a

2
(ξi + 1)

)
. (73)

Using the points and weights introduced in Section 2.5.2, this is the Gauss-

Legendre quadrature rule for a general interval [a, b]. It yields an exact

result for polynomials of degree 2N − 1.

3.3.4 Spatial Discretisation of the Neural Field Equation

The numerical solution of neural field equations is one of the primary

focuses of this thesis. Here, we show how the techniques presented thus
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far are used to spatially discretise a standard NFE (Eq. (33)) and turn it into

a system of time-dependent ODEs, ready to be numerically solved.

Assume the domain, Ω, has been partitioned into a finite element

mesh, Th. Define a set of nodes {φκ

(
ξq
)

, κ ∈ Th, q = 1, . . . , Nq} and let us

collectively refer to these nodes as {x1, . . . , xn}. Note that n ≤ Nκ Nq, where

Nκ is the total number of elements in the mesh, due to the possibility of

quadrature nodes being shared by elements. Introducing uh (x, t) to denote

the solution to the discretised problem, we approximate Eq. (33) by first

applying a generic quadrature rule (Eq. (67)) to the integral term, giving

∂

∂t
uh (x, t) = −uh (x, t)

+ ∑
κ∈Th

Nq

∑
q=1

w
(
x, φκ

(
ξq
))

f
(
uh
(

φκ

(
ξq
)

, t
)) ∣∣Jκ

(
ξq
)∣∣ ρq + I (x, t)

= −uh (x, t) +
n

∑
j=1

w
(
x, xj

)
f
(
u
(
xj, t

))
σj + I (x, t) , (74)

where

σj = ∑
{κ,q : φκ(ξq)=xj}

∣∣Jκ

(
ξq
)∣∣ ρq. (75)

Demanding that Eq. (74) be satisfied at the quadrature nodes {x1, . . . , xn},

this gives the system of ordinary differential equations (ODEs)

d
dt

uh (xi, t) = −uh (xi, t) +
n

∑
j=1

w
(
xi, xj

)
f
(
uh
(
xj, t

))
σj + I (xi, t) , (76)

for i = 1, . . . , n, or in vector form

u̇ (t) = −u (t) + W · f (u (t)) + I (t) , (77)

where ˙ represents the derivative with respect to time, u = (u1, . . . , un),

f = ( f1, . . . , fn), I = (I1, . . . , In), ui (t) = uh (xi, t), Wij = w
(
xi, xj

)
σj,

fi (u) = f (ui), and Ii = I (xi, t).

This type of spatial discretisation for integral equations is called the
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Nyström method [130, 8, 117]. We employ it throughout this thesis to

discretise all the contintuum models of neural activity that we explore. A

one dimensional example of a mesh discretisation that can be applied in

this way is shown in Figure 5. Here, we divide the domain Ω = [−3, 3] into

a set of interval elements of uniform width h = 2 and subsequently apply

a Nq = 3 point Gauss quadrature rule to each element. The blue points

represent the uniform grid points that make up each element and the red

points represent the Gauss points on each element.

Figure 5: Example one dimensional mesh discretisation on Ω = [−3, 3], di-

vided into interval elements of width h = 2 (blue dots), and a

Nq = 3 point Gauss quadrature rule applied to each element (red

dots).

The system of equations Eq. (77) can be solved using a timestepper in

order to achieve a full spatio-temporal approximation to Eq. (33). For this

approach, computation time is heavily dependent on the sparsity of W due

to the matrix-vector multiplication step in Eq. (77).

3.3.5 Error Analysis

In this section we discuss the order of convergence of the numerical

methods presented in Section 3.3.4 and undertake a series of convergence

tests to verify that the results of the simulated discretised neural field

equation conform to theoretical expectations.
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Let u (x, t) be a solution to Eq. (33), and let uh (x, t) be a solution to

the discretised problem Eq. (77), where ui(t) = uh(xi, t). To measure the

error between the discrete solution uh (x, t) and the true solution u (x, t), we

compute ∥u − uh∥, where ∥·∥ is a norm of our choosing. For this section,

we consider cases where the true solution u (x, t) is available in closed form.

Several examples can be found in [117] for addressing error in both the

spatial and temporal discretisations. The timestepper used in this section

is MATLAB’s ode45 solver [153], which is a sufficiently accurate temporal

solver that the spatial error should dominate in the solution enough to

observe the convergence. For the one dimensional case, we use an example

posed on a domain Ω = [−L, L] ⊂ R. It can be shown that for a firing rate

as seen in Eq. (34), a connectivity kernel

w
(
x, x′

)
= w

(
x − x′

)
= e−(x−x′)2

, (78)

and external input

I (x, t) = θ −
(

γ exp
(
γt + x2)

µ (exp (γt + x2)− G)

)
− 1

µ
log

(
exp

(
γt + x2)
G

− 1

)

−1
2

√
π

2
G exp

(
−γt − x2

2

)(
erf
(

2L − x√
2

)
+ erf

(
2L + x√

2

))
,

(79)

where 0 < G < 1 and γ > 0 are positive real constants, that the analytical

solution is given by

u (x, t) = θ − 1
µ

log

(
exp

(
γt + x2)
G

− 1

)
. (80)

This solution is derived by forcing the integral term of the NFE to have an

analytical solution by carefully selecting the integrand, and then working

backwards to yield the closed-form solution, u, and external input term, I.

For the one dimensional Nyström discretisation, as explained in Sec-

tion 3.3.4, uniform interval elements of width h are used in conjunction

with an Nq point Gauss quadrature rule. In order to produce error plots

to illustrate the convergence of the method, we select the infinity norm of

u − uh as the chosen error measure. This is defined by

∥u − uh∥∞ ≈ max
{xi, i=1,...,n}

max
{ts, s=0,...,m}

|u (xi, ts)− uh (xi, ts)| , (81)
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where ts, s = 1, . . . , m, denotes the temporal discretisation points.

In [117], it is determined that for sufficiently smooth u, w, and f ,

the quadrature method should converge with order O
(
h2Nq

)
. Evidence of

this can be seen in the error plot depicted in Figure 6. The error for the

Nq = 2 rule (red) is clearly of order O
(
h4), as h tends to zero. For the

Nq = 3 rule (black), there are several points which fit with the O
(
h6) line

before the timestepper error dominates, and for the error in the Nq = 4 rule

(blue), the timestepper error dominates before any points can fit the O
(
h8)

line. The pre-asymptotic region, where h is comparatively large, appears to

show convergence at a faster rate.

Figure 6: Error plotted against uniform step size h for varying Nq point

Gauss quadrature rules posed on the domain Ω = [−4, 4]. Ini-

tial condition specified as the analytic solution given by Eq. (80) at

u (x, 0).
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In Figure 7, the error plot for a two dimensional example taken from

[117] is shown. This is posed on the domain Ω = [−L, L]2 ⊂ R2 and uses

the firing rate f (u) = tanh (u), connectivity kernel

w
(
x, x′

)
= w

(
x1, x2, x′1, x′2

)
= exp

(
−
(
x1 − x′1

)2 −
(
x2 − x′2

)2
)

, (82)

and external input I (x, t) = I (x1, x2, t), where

I (x1, x2, t) = 1 + t − π

4
tanh (t) (erf (1 − x1)

+ erf (1 + x1)) (erf (1 − x2) + erf (1 + x2)) . (83)

The analytical solution is u (x, t) = t. This example is selected due to the

timestepper being able to solve it exactly in time, therefore only the error in

the spatial discretisation is present.

Figure 7: Error analysis example from [117] posed on the domain Ω =

[−1, 1]2, for the case where there is no temporal discretisation er-

ror. Initial condition specified as u (x, 0) = 0.

For this example, it is clear that the quadrature error is of order O
(
h2Nq

)
,

as expected. The tailing phenomenon seen in the blue dots when they reach

≈ 10−16 is due to machine tolerance error taking over and polluting the
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solution. This is due to computers only storing floating point numbers to a

specific level of precision.

In [11], this error analysis example is reproduced in both one and two di-

mensions with a variety of Nyström discretisations.

3.4 summary

This chapter has outlined some of the analytical and numerical techniques

most commonly employed to aid in the study of models of neural activity.

We began by demonstrating how an arbitrary non-linear network of neu-

rons can be constructed. This work, along with the corresponding linear

stability analysis of the network model, is important as a prerequisite to

the work undertaken in Chapter 6. Following on from this, we discussed

the process of spatially discretising continuum models of neural activity so

that they may subsequently be evolved temporally via numerical differen-

tial equation solution algorithms, which we will employ in Chapters 5 and 7.

This included introducing the quadrature methods required to approximate

the spatial integral term of neural field models, and specifically defining a

Gauss quadrature rule for interval domains. Finally, an error analysis was

undertaken to verify that the discretisation and quadrature schemes yield

results that conform to the theoretical expectations.



4
N F E S O LV E : A N O B J E C T- O R I E N T E D D I F F E R E N T I A L

E Q U AT I O N S O LV E R

4.1 introduction

One of the main objectives of this thesis is to provide an enhanced suite

of numerical differential equation solvers to brain modelling researchers.

The primary motivation behind the development of this suite is to aid

in the solution of non-local and nonlinear neural field equations with

multiple delays. Although there are several pre-existing solvers written in

a variety of languages, we found that when using these solvers for solving

equations on a large-scale mesh with many delays, the computation time

and memory requirements were extremely high, often requiring a powerful

server to be run on. This posed the question as to whether a new, more

efficient solver could be developed that specifically caters for the needs of

large-scale delayed neural field models.

Others have taken a variety of different approaches, such as Hutt et

al. [91] who use their own scheme to discretise the NFE and diagonalise

the delay history, making it easy to access the specific history state when

needed. They then use a forward Euler time-stepper to generate the solu-

tion. Venkov [175] builds upon this work and further improves the scheme

by using a differing set up of the diagonalised history array and changing

the integration rule. They also employ the use of MATLAB’s dde23 solver

42
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and state that their scheme achieves a speed up of approximately one third

faster than that of Hutt et al. [91]. However, the scheme used is very rigid

in its restrictions on the spatial and temporal step sizes in order to ensure

that the required delay states at each step coincide perfectly with the

already computed solution states. There is no scope for adaptive stepping

and a lot of preprocessing is required on the format of the problem. Faye

and Faugeras [61] present both functional and numerical analysis results

for the convergence of their own discretisation scheme; however, they too

make use of MATLAB’s dde23 routine for the time-stepping. Visser et

al. [176, 177] have developed their own scheme which makes use of cubic

Hermite splines to interpolate between history states. They formulate the

discretised problem into a large matrix-vector system using basis matrices

to store all the interpolatory coefficients. Once again, a forward Euler

time-stepper is employed due to the rigidity of the step size restrictions

not allowing for methods, such as Runge-Kutta, that require intermediary

calculations at fractional values of the time-step. We aim to eliminate the

need for restrictive conditions and allow the user to flexibly solve neural

field models in an efficient and timely manner.

Perhaps the closest existing entity to what we wish to achieve is The

Virtual Brain project [148]. This contains a wide selection of tools, written

in Python [170], specifically for the simulation of network dynamics

and the visualisation of brain data. Evidently, this codebase has been

in production for a number of years and has had a variety of different

contributors, therefore the full range of features available is far more

extensive than what we are proposing the initial release of our library to

contain. However, this library focus heavily on the solution to stochastic

differential equations (SDEs), with a particular application to neural mass

models, whereas the suite we propose casts more of a spotlight on delay

differential equations (DDEs) and their relationship to neural field models.

Although The Virtual Brain does contain some DDE solvers, the algorithms

behind them are limited in their flexibility; for example, the step size must
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remain fixed throughout. The choice of programming language is also

important. Python is a powerful programming language used in a plethora

of applications; however, as it is a dynamically typed interpreted language

it does not always perform to the same standard as a statically typed

compiled language, such as C++ [162] or Java [5].

In this chapter, we detail the design choices made in the develop-

ment of this software package, along with a description of the components

that it consists of and the differences and similarities to other more

conventional solvers. Outlined first are the preliminary measures that were

considered before development began. Following this, explanations of the

classes that make up the software are provided, split into four main groups:

mesh handler, ODE solvers, DDE solvers and sparse DDE solvers.

4.2 preliminaries

Performance is one of the primary elements that we wish to champion

in this suite of codes, hence the need for careful consideration of the

underlying mechanisms that the code is built upon. Here, ‘performance’

refers to both acheiving low computation times and reducing hardware

requirements, such as RAM. The first step in the development of this

package was to choose an appropriate coding language to develop in. As

discussed in the previous section, the choice of programming language is

one of the most important elements when developing code. After some

consideration of the languages available, we determined that C++ met all

of the requirements that were needed by the package. C++ is a mid-level

programming language that allows for very fast computations and the use

of object-oriented design principles. It is widely regarded as one of the

most powerful languages and is used in many applications, from game

development to operating systems to intense numerical simulations. The

chosen standard selected here is C++11 [96].
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Once a programming language was selected, the next task was to

determine an appropriate library of optimised data structures, such as

vectors and matrices, to utilise in development. This was a very important

consideration as the default array system in C++ does not have any

operations defined and is very difficult to work with in a numerical setting.

The Armadillo library [145, 146, 147] is a high quality linear algebra library

that provides efficient vector and matrix classes with a MATLAB-like

syntax, along with sophisticated numerical algorithms and operations. It

uses BLAS (Basic Linear Algebra Subprograms) [19] and LAPACK (Linear

Algebra Package) [3] to provide the linear algebra routines, and also has

the capabilities to automatically use OpenMP [43] parallelisation to speed

up intensive computations. Additionally, sparse matrix structures are

supported and have greatly optimised operations, decompositions and

matrix algebra solvers. Armadillo is currently used across a number of

existing codebases, with a wide range of applications. This makes it a

very strong choice for the development of this package. Here, we employ

the OpenBLAS [183] implementation for the back-end as it is a highly

optimised version of BLAS, providing much faster matrix algebra routines.

The entire suite of code, along with a selection of example problems,

is stored on a GitHub repository and is available to download at

https://github.com/UoN-Math-Neuro/NFESOLVE.

4.3 mesh handler design

As part of the NFESOLVE package, a mesh handler toolkit is included. This

provides a base class to store details of a geometric mesh, along with sub-

classes for specific mesh types, and a quadrature library to generate the

weights and points associated with various quadrature rules depending on

the element type and dimension of the geometry. Although these classes can

https://github.com/UoN-Math-Neuro/NFESOLVE
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be applied in many different settings and to a wide selection of problems,

the main motivation behind developing them as part of the NFESOLVE li-

brary was to manage the spatial integrals that are typically part of neural

field models.

4.3.1 Mesh Class and Subclasses

The Mesh class is a base class designed to store the coordinates and element

data that make up a finite element mesh. Thus far, it is built to handle

non-hybrid polygonal meshes in any given dimension. The majority of

the methods in this class are ‘getter’ methods to return the attributes

that the class holds. These include custom methods for returning specific

individual element connectivity arrays and grid point coordinates. If the

user at any point wants to change the grid points or connectivity data

without instantiating a new object, the class provides ‘setter’ methods to

do so. Finally, there is an output method that allows the mesh data to be

written to a file so that, if the user requires, the mesh can be utilised outside

of the scope of the NFESOLVE library. We have designed our own custom

data file structure to facilitate the writing out of this data.

Mesh Data File Format
DIMENSION OF MESH (int)
NUMBER OF GRID POINTS (int)
NUMBER OF ELEMENT VERTICES (int)
NUMBER OF ELEMENTS (int)

LIST OF GRID POINT COORDINATES (double)

LIST OF ELEMENT CONNECTIVITY ARRAYS (int)

This data file is a file of type .dat. The first two entries dictate the number

of columns and rows of the grid point coordinates matrix, respectively,

and the following two entries give the number of columns and rows of the

element connectivity arrays matrix, respectively. This mesh file format is

also required by the MeshFromFile subclass in order to read in meshes from

external sources. Users are expected to formulate their mesh data into a
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data file before hand, assuring that it is structured in this specific format.

For basic meshes in lower dimensions, the user may not have a data

file readily available and would be required to generate this file before

they could proceed. In order to provide a good user experience, we have

supplied a selection of other subclasses to the Mesh class which can be used

to automatically generate standard meshes for simple domains, such as

intervals and rectangles, which are the shapes of choice for many idealised

studies.

The first of these, namely Regular1DGrid, has two possible constructors.

The first generates a linearly spaced 1D grid in a similar way to the

linspace() function found in languages such as MATLAB and Python.

Users supply a start and end point along with the number of points they

would like the grid to have. The grid points and element connectivity

data are then generated automatically. Alternatively, the user can supply a

pre-constructed vector of grid points (without regard to whether they are

uniformly spaced) and the constructor will build the element connectivity

array for those given grid points.

Two other standard classes that are provided are Regular2DTriGrid and

Regular2DQuadGrid. These provide discretisations of rectangular domains,

using triangular and quadrilateral elements respectively. They each have

three possible constructors but these have the same arguments for both

element types. Similarly to the Regular1DGrid class, the first two of these

allows the user to specify the start and end points for both vertical and

horizontal directions. There is then the option to input either one or two

values dictating the number of grid points in each direction. If only one

value is entered then there will be the same number of grid points in

each direction. Using these inputs, a rectangular lattice of grid points

is formulated and the element connectivity array is generated based on

which element type is required. The third type of constructor takes in an

array of pre-defined grid points for each direction and then builds the
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rectangular lattice and element connectivity array from the supplied points.

For the quadrilateral grid, each grid point is connected to its neighbouring

grid points, thereby creating rectangular elements. The triangulated grid

is similar to the quadrilateral grid; however, each rectangle is divided

diagonally in half from bottom right to top left, thus generating triangular

elements.

Figure 8: Diagram illustrating the inheritance-based structure of the mesh

classes.

The inheritance tree of the mesh classes is shown above in Figure 8.

4.3.2 QuadratureLibrary Namespace

Another key part of the NFESOLVE library, that goes hand in hand with

the mesh classes (Section 7.2.1), is a suite of quadrature rules that allow for

numerical integration to be performed over a mesh. This is particularly rel-

evant to neural field models due to the spatial integral term that is typically

present. This is designed in the form of a namespace instead of a class. A

namespace in C++ is the equivalent of a class with static methods. These are

methods that do not require an object of the class to be instantiated before

being used.

Thus far, the QuadratureLibrary namespace contains methods for generat-
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ing the quadrature weights associated with interval, triangular and regular

quadrilateral element types. These methods all take in an object of type

Mesh, which contains the relevant information about the element type and

dimension, allowing for the appropriate rule to be applied. The simplest of

the rules in the suite are those that only utilise the vertices of the elements.

These rules do not require any additional quadrature nodes to be gener-

ated, and for higher dimensional meshes correspond to the trapezoidal rule

in one dimension. They can therefore be applied directly to the original

meshes and can be very useful in providing an efficient approximation to

an integral where integrand values are only known at the supplied mesh

points, such as when using real-world data. For interval domains, a method

to generate the weights for Simpsons’s rule has also been implemented. As

detailed in Section 8.2, future considerations include developing a vertex

rule for irregular quadrilateral elements and adding functions for more ac-

curate methods, such as Gauss quadrature schemes, on all element types.

4.4 ode solver design

Included in the codebase are a series of classes that are designed to facili-

tate the numerical solution of ODEs. In order to keep the code as flexible

as possible, a polymorphic design structure is used. This relies on a base

interface class, named ODEInterface, which provides a structure for defining

a specific problem to be solved. This is an important design decision as it

allows for the solver classes to accept any ODE problem that is built from

this interface. The first consideration when building the solvers was that, al-

though numerical ODE solvers are mostly distinct in their properties when

compared to other types of differential equation solvers, there are still sev-

eral aspects which are shared commonly, e.g. a state vector. We make use

of an abstract class, named AbstractDESolver, to handle the core qualities

that all types of differential equations share. Deriving from this, we em-

ploy a AbstractODESolver class to act as a base for different numerical ODE
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solvers. This contains the properties that are unique to just ODE solvers.

At the time of writing, the specific solution algorithms that have been im-

plemented as part of the NFESOLVE library include both a 3rd and 4th or-

der fixed-step Runge-Kutta scheme, along with an adaptive-step 3(2) order

Runge-Kutta scheme (see Appendix A.1.3 for details on embedded Runge-

Kutta schemes). The framework that these are built upon allows for other

solvers to be easily implemented in the future if they are required, such as

higher or lower order Runge-Kutta methods and stiff equation solvers.

4.4.1 ODEInterface Class

In order to solve a given ODE, a solver class needs to be able to accept an

object that contains all the relevant information pertaining to the desired

problem. However, every ODE is different and every user’s requirements to

set up their specific problem will likely be unique to the problem they are

trying to solve. We choose to combat this by formulating a base interface

class, named ODEInterface, which contains common attributes that all ODE

problems share, such as a ‘right-hand-side’ (or ‘F’). As this is an interface,

it will never be directly instantiated, but it does allow for a solver class

to expect an object that follows a certain contract and for it to call any

relevant methods consistently across all problems. Users are able to add

in any additional information or processing steps that they see fit into

their derived class, meaning key components such as model parameters

or extra function evaluations can be incorporated, the only requirement is

that they implement any pure virtual methods defined in the ODEInterface

class. A pure virtual method is a method that has no defined implemen-

tation and must be overridden by any derived class that is itself not abstract.
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To illustrate the design of this interface, we use the typical form of

an ODE, given by

y′(t) = F(t, y(t)), y(t0) = y0. (84)

For simplicity, we refer to the variable t as representing ‘time’. The ODEIn-

terface class contains a pure virtual method for computing the right-hand-

side, named ComputeF(), which is built to take in a time, t, and a state vector,

y, as input arguments. This is pure virtual as there is no generic implemen-

tation; it must always be defined in a derived class pertaining to the specific

problem. There also exists a virtual method for computing the analytic so-

lution at a given time point, if the analytic solution is known. This typically

will not be used, hence why it is just a virtual method and not a pure vir-

tual method; however, it is included so that it can be used if required. An

example where this method would be useful is for processes such as numer-

ical error analyses. It is especially important for the user to make sure that

the contract for these methods always remains consistent across all derived

classes that they create, as the solvers which utilise the interface are only

aware of the methods and variables that are defined in the interface, not

any other methods or variables which the user may implement within their

child classes.

4.4.2 AbstractDESolver Class

Similarly to the ODEInterface design, we wish to employ an inheritance-

based architecture for the suite of differential equation solvers. Before

moving directly to discussing the ODE solvers, it is pertinent to discuss

the commonalities that arise across numerical solvers for all forms

of differential equation (ODEs, DDEs, etc.). Although the numerical

algorithms for each type of differential equation can vary in a multitude

of ways specific to the type of problem that is being solved, there are a

number of common properties that are shared amongst all types of solvers
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which can be abstracted out into a parent class that acts as a base for all

types of numerical differential equation solver.

Firstly, no matter which type of equation is under scrutiny, there

will also be an initial and final time point that the solver is instructed to

compute the solution between. Another key aspect that is shared across all

numerical differential equation solvers is the current step size with which

to integrate forward. Whether this has a fixed value or it adapts according

to the solution, it is not distinct to any type of problem and can therefore be

defined outside of any specific solver classes. Most importantly, the main

piece of information that is required by any numerical solver is the current

solution state of the system. Following the design principles outlined thus

far, we supply the parent class, AbstractDESolver, to hold these attributes.

In addition to the properties described above, we also opt to include a

number of variables for facilitating the output of the current solution state

so that the user can access it externally to the application. These include

the name of the output file that the solution will be saved to, an array

containing the indices of the solution state that are to be saved (in case

the user does not wish to unnecessarily store data that is not of interest to

them), a ‘save gap’ variable which determines how frequently the stepped

solution will be saved to the output file, and a ‘print gap’ variable to specify

the frequency at which the solution should be printed to the console (if the

user wishes to visualise the numerical data in real time).

In terms of the methods that are available in this abstract class, the

main one of interest is a pure virtual method named Solve(). In all of the

derived solver classes, this is where the specific solution algorithms will

be implemented. We choose to declare this method in this parent class to

keep the method name reserved for implementation. As is standard, ‘setter’

and ‘getter’ methods are provided for all the variables listed, allowing for

multiple different simulations to be run back-to-back from the same solver
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object. Additionally, this parent class contains two non-virtual methods

which format and then print a given solution state to the console or save

it to a data file, while respecting the previously discussed ‘print gap’ and

‘save gap’ variables. Finally, a general method to print an elapsed time

frame to the console is also included. This can, for example, be used within

the child solver classes to display the time taken for the Solve() method to

complete.

4.4.3 AbstractODESolver Class

Although the AbstractDESolver class handles the key properties that are

shared across all numerical differential equation solvers, it does not account

for anything specific to ODEs. Following a similar approach to the Abstract-

DESolver design, a new abstract class that inherits from this parent class is

provided to cater for ODE problems. This class is called AbstractODESolver.

As it inherits from AbstractDESolver, all the variables and methods discussed

in Section 4.4.2 are available to access. The main distinguishing feature that

gears this class specifically towards ODE problems is that it stores a pointer

of type ODEInterface that will be used in a polymorphic way to access the

specific ODE problem that is being solved. If the user wishes at any point to

change the ODE which is being pointed to but maintain the solver param-

eters defined within a solver object, a setter method has been provided as

part of this class. Any classes which derive from AbstractODESolver are now

fully equipped with access to everything they need to implement a numer-

ical ODE solution algorithm. This design structure means that new solvers

can be added in to the NFESOLVE library at any point without breaking

existing code and while maintaining uniformity across all solver structures.
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4.4.4 RungeKuttaSolver Classes

One of the most widely used algorithms for numerically solving differential

equations is the Runge-Kutta scheme [109]. Provided with the NFESOLVE

package are a selection of Runge-Kutta solvers for ODEs. As explained

in Appendix A.1, the Runge-Kutta scheme is generalised to have s stages

which are defined by the Butcher tableau coefficients aij, bi, and ci, for

i = 1, 2, . . . , s and j = 1, 2, . . . , i − 1 in the case of explicit methods. These

coefficients dictate the order of accuracy at which the method performs. In

order to facilitate generating Runge-Kutta classes of any specific order, a

key design choice is to implement a base class, named RungeKuttaSolver,

which derives from AbstractODESolver and contains methods for both

the non-adaptive and adaptive Runge-Kutta algorithms. These methods

take in the Butcher tableu coefficients as input arguments, allowing for

any Runge-Kutta scheme to be utilised. Before the actual implementation

of the algorithm, the methods begin by printing a header to the console

which details all the information about the chosen solver and the chosen

parameters. A clock is started to monitor the elapsed wall time (real-world

time taken to complete a task) for the duration of the stepping process.

At the end of each computed step, a check is made to determine if the

step count is divisible by either the print gap or save gap variable. If

the check returns true then the corresponding output method (defined

in AbstractDESolver) is called. The stepping algorithm proceeds to the

next step and this process is repeated until the time variable reaches the

final time that was specified by the user. Finally, the total elapsed wall

time is printed to the screen. As these algorithms are only implemented

once, instead of repeatedly for each individual Runge-Kutta solver, this

allows for any future changes or bug fixes to apply globally to all specific

Runge-Kutta solvers. To implement a specific Runge-Kutta method, we

simply create a new class that derives from the RungeKuttaSolver class and

override the pure virtual Solve() method (defined in AbstractDESolver) to
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call either the non-adaptive or adaptive Runge-Kutta algorithm with the

desired coefficients.

Thus far, there are two fixed-step explicit Runge-Kutta solvers and

one adaptive-step explicit Runge-Kutta solver that have been developed

and tested. The first of the three implemented solvers is a 3rd order

method, known as Kutta’s method. This is defined in a class named

RungeKutta3Solver. Internally, pre-defined private variables contain the rele-

vant coefficients for this method. When an object of type RungeKutta3Solver

is instantiated, the constructor requires the user to supply a reference to

a child object of ODEInterface, an initial condition, the initial and final

times that the solution is required between, the step size they wish to be

used, a name for an output file, a ‘save gap’, and a ‘print gap’. Optionally,

the user may also supply a vector containing a list of indices of the state

variables they wish to be outputted. If this is not specified, the default

implementation is to output every element of the state vector. To begin

the stepping process, the user simply calls the Solve() method, which as

explained above, calls the Runge-Kutta implementation method with the

defined coefficients.

The second of the fixed-step solvers included in the NFESOLVE library is

a 4th order method, defined by the classical Runge-Kutta formula [109].

This class is named RungeKutta4Solver and is implemented analogously

to the RungeKutta3Solver class, with the appropriate adjustments to the

privately-defined coefficients.

The third and final ODE solver that has been implemented to date is an

adaptive-step scheme that uses the 3rd order Runge-Kutta method detailed

above for the main algorithm. The step size adaptation is determined by

using this approximation in conjunction with an embedded 2nd order

Runge-Kutta method whose coefficients are computed based on the 3rd

order coefficients. The process behind the scheme embedding and step

size adaptation is detailed in Appendices A.1.3 and A.1.4. This approach
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is very similar to that used in MATLAB’s ode23 solver [20]. We name this

adaptive solver class RungeKutta32Solver as it is a 3(2) scheme. Instead of

the constructor requiring the user to pass in a step size as an argument,

they instead input their choice of the absolute and relative tolerances that

comprise the adaptation error condition.

Figure 9: Diagram illustrating the inheritance-based structure of the ODE

solver classes.

The diagram above depicts the structure that we have just described,

showing the inheritance tree of the ODE solver classes.

As the code was designed in this modular way, there is scope for

different solvers to easily be integrated into the package in the future. For

the purposes of this project, only a selection of solvers that meet the needs

of the neural field problems being solved have been implemented thus

far. This is in order to balance computational efficiency and intensity with

acceptable error margins.
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4.5 dde solver design

The construction and implementation of a suite of classes to solve DDEs

follows on from the ODE solution package by building upon and expand-

ing the modular framework used. Developed alongside the standard DDE

solvers are a set of solvers that make use of a sparse data structure to

allow for certain DDE problems to be solved in a noticeably more efficient

manner. To facilitate the development of these solvers, three additional

classes are required. The first two of these provide a storage buffer for the

solution history as it is stepped forward. One of these is static (size is fixed)

and is utilised by the fixed-step solvers, while the other is dynamic (size

can adapt) and is employed by the adaptive-step solvers. For the sparse

solvers, a custom class named SparseDelayMatrix implements a sparse

matrix structure, based on the compressed sparse column (CSS) storage

format (see Appendix A.3.1), to efficiently store the matrix of delay states

that is computed at each stage of the underlying Runge-Kutta algorithm.

Although there does exist methods for solving DDEs with time-dependent

or state-dependent delays, considering the principal intended use of the

software, we have opted to only implement algorithms for the solution of

DDEs with constant delays, thus far.

4.5.1 DDEInterface Class

Analogously to the ODE section of the NFESOLVE library, in order to solve

a particular DDE, an interface is required to provide a base for all DDE

problems to derive from. This interface is then used by the solver classes so

that they may accept any DDE problem and consistently call specifically

reserved methods. The class is named DDEInterface and it mirrors the

design aspects of the ODEInterface class.
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As shown in Appendix A.2.1, for a series of m distinct delays,

τ = {τ1, . . . , τm}, the general form of a constant delay DDE is given

by

y′ (t) = F (t, y (t) , y (t − τ1) , . . . , y (t − τm)) , t ≥ t0, (85)

y (t) = φ (t) , t ≤ t0, (86)

where φ is a history function that defines the solution prior to the initial

time, t0. Instead of writing the right-hand-side as being a function of many

delay states, it can be written succinctly as F (t, y (t) , Z (t)), where Z (t)

is a matrix such that Z (t) = [y (t − τ1) , . . . , y (t − τm)]. This allows for

a much simpler formulation of the pure virtual method contract that is

reserved to compute the right-hand-side of the problem, once again named

ComputeF(), as only one method argument is required to encompass all the

delay states. On top of the ComputeF() method, a new pure virtual method

named ComputeHistory() is also required to evaluate the history function,

φ (t), when solution states that fall prior to t0 are required. As all DDEs

require a history, this method must be overridden in all child classes. Lastly,

in conformity with the ODEInterface class, there is also a virtual method

included to compute the analytic solution of the equation if it is known.

This is very unlikely to be used, however, as it is a rare occurrence that

DDEs present analytically solvable solutions.

4.5.2 AbstractDDESolver Class

Building upon the framework previously outlined, in order to begin the im-

plementation of specific DDE solvers, it makes sense to define an abstract

class that contains the common properties which all DDE solvers share. This

class is called AbstractDDESolver and it derives from the general differential

equation solver abstract class, AbstractDESolver. It is very similar to the

AbstractODESolver class in many respects, except that instead of storing a
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pointer to an object of type ODEInterface, it now contains storage for an

object of type DDEInterface. There are also two new additions to the set of

privately stored variables that are required in order to accommodate the de-

lays. The first of these is a vector that stores all of the delay values present

in the system. This is important as the solver will need to cycle through all

the delays at each time-step and compute the relevant delay state vectors so

that it can populate the Z matrix. Secondly, a simple integer dictating the

number of equations in the system which actually require delay states to

be computed is also included. An important design choice made here was

to request that the user order their system by placing the equations which

require delay states to be computed at the top of the state vector. This con-

sideration was made to prevent unnecessary delay states being computed

that would never be needed, therefore saving memory and computation

time. Most pre-existing solvers do not take this into account and force delay

states to be computed for the entire system, even if some of the equations

in the system never actually use these delay states.

4.5.3 HistoryBuffer Classes

So as not to waste memory unnecessarily, the implementation of the ODE

solver suite in the NFESOLVE library only stores the current state of the

system as it is evolved. As the solution is outputted to a file (depending

on the the ‘save gap’ the user has set), there is no need to store all the past

solution states in memory, allowing resources to be reserved purely for

the computation process. However, when it comes to DDEs, in order to

progress the solution at any given time point, a solver must have access

to the history of the solution so that it is able to compute the necessary

delay states. If the stepper has not progressed past t0 + τmin, where τmin

is the smallest delay value in the system, then all delay states are easily

computed from the history function φ (t). Once the stepper has moved

beyond this value it will need access to the previously computed solution
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states in order compute the delay states needed.

Although there exist algorithms, such as the ‘Natural Runge-Kutta method

for DDEs’ (detailed in Appendix A.2.2), which are designed to allow the

required delay states to coincide perfectly with the known solution states, in

practice these schemes are typically non-viable due to the rigid restrictions

imposed on the delays and solver step size. The aim of the NFESOLVE

library is to remove as many restrictions as possible so that it may be used

to efficiently solve all manner of models. One way of doing this is to make

use of a 3rd order Hermite interpolant to compute delay states that fall in

between the past solution states. The algorithms behind this interpolation

method are explained in Appendices A.1.2 and A.2.3. The considerable

upside to using an interpolant is that it allows for both non-adaptive and

adaptive stepping, as opposed to rigidly fixing the step size such that

all delay times fall perfectly on previously computed states. The chosen

Hermite interpolant [151, 77] also only requires two neighbouring solution

states for it to yield a 3rd order accurate approximation of the solution.

To utilise the interpolation scheme, solution states and their deriva-

tives will need to be stored in memory instead of being forgotten about

once the stepping algorithm moves on. However, storing every single

computed solution is not necessary and would quickly saturate the

available memory. All that is required by the solver is to have a history of

solution states stored from the current time, tn, back to tn − τmax (similarly

to τmin, the largest delay value present in the system is represented by

τmax). To manage this, we formulate two new classes: one for the fixed-step

solvers and one for the adaptive-step solvers. The first of these is named

StaticHistoryBuffer and, as the name suggests, does not change in size. The

second is named DynamicHistoryBuffer and has the ability to adapt its size

depending on how many entries are needed. Both of these classes follow

the same structure, with the only difference being the ability to change in

size.
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A custom data structure is used to manage the storage of the solution states.

This is made up of four components. The main three of these are: a vector

which holds the time values for which each solution state corresponds

to; a matrix which holds the solution states; and a matrix that holds their

respective derivatives (computed simply by evaluating the right-hand-side

of the DDE). The initial length of each of these is predetermined by the

chosen step size and the maximum delay value present in the system,

i.e., how much buffer storage would be required to store states back in

time up to and including tn − τmax. For the dynamic buffer, this initial

length is estimated using a step size of 0.01, as this is the initial step size

that is chosen by the adaptive-step solvers to start their stepping. If and

when more storage is required, the buffer expands itself automatically by

inserting in extra columns. When the buffer is full and the span covers

a greater range than is needed (from tn back to tn − τmax), then instead

of adding more storage to the buffer, the earliest state is removed and

replaced by the new computed state. This is where the fourth component

is utilised. Instead of shifting all the states in the buffer to the left so that

the earliest is always at the beginning, it is much more computationally

efficient to include a single integer variable that stores the index at which

the earliest state is stored, thus creating a cyclic storage system. This index

is updated as and when the earliest states get overwritten. Any state can be

accessed simply by using modular arithmetic with a modulus of the buffer

length.

To prevent the numerous passings of states between classes, the

buffer classes are designed to also contain the interpolation method

required to compute a delay state for a given time point that falls within

the range of values in the time buffer. This works by first finding the index

in the time buffer of the nearest value to the desired delay time. Checks

are made to determine whether the stored value is larger or smaller than

the delay time value, thus allowing for the indices of the two neighbouring
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states to be found. Due to the cyclic design of the buffer, it is important

to remember that neighbouring states may not be directly adjacent to each

other in the buffer matrix. Once the pair of column indices are determined,

the Hermite interpolation algorithm, given by Eq. (249) in Appendix A.1.2,

is employed to compute and return the state at the required time point.

If the interpolation method is called with an argument of just the delay

time value then it will compute the whole delay state for every variable.

There is also an overloaded method that allows for an extra argument to

be included to specify distinct indices of the solution vector for which the

interpolated solution is required. This is used by the sparse solvers to only

compute the delay state values that are required, instead of the entire state.

On top of the methods already detailed, the classes also contain a

Boolean check to determine if the buffer is full, along with ‘getters’ for each

individual buffer and the index of the earliest state. The constructors for

both classes take in the size of the system and the initial buffer length, with

the dynamic buffer also requiring the maximum delay value so that it can

adapt the size of the buffer when more storage is required.

4.5.4 DelayRungeKuttaSolver Classes

Building upon the RungeKuttaSolver class for solving ODEs, we introduce

a new class, named DelayRungeKuttaSolver, that implements the fixed-step

and adaptive-step Runge-Kutta algorithms for solving DDEs. The main

stepping algorithm works analogously to its ODE counterpart. Where the

delay version differs is the added computation of the delay state matrix, Z,

in order to then compute the right-hand-side of the problem in question.

The Z matrix is populated by looping through the delays and calling either

the ComputeHistory() method from the given DDE problem (deriving

from DDEInterface) or the interpolation algorithm in the history buffer,

depending on whether the delay state falls before the initial time, t0. The
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Z matrix has to be generated for every single stage of the Runge-Kutta

algorithm, thereby adding a huge amount of computational workload to

the time-stepping process, especially when there are a large number of

distinct delays in the system.

Thus far, these are the only two delay solvers that have been imple-

mented as part of this package. Similarly to the ODE solvers, the included

solvers are DelayRungeKutta3Solver and DelayRungeKutta32Solver, where

the former is a fixed-step 3rd order scheme and the latter is a 3rd order

adaptive-step scheme with an embedded 2nd order method for adapting

the step size. Due to the Hermite interpolation scheme being of 3rd order,

employing a Runge-Kutta stepper of any order higher than this will always

result in an overall method of 3rd order [133]. There is potential for lower

order methods to be included; however, the computational hardware

requirements of such methods will still remain on the same order no matter

what the overall order of the scheme. This means that the main trade-off

will be between method accuracy and computation time. The 3rd order

methods that are provided strike a healthy balance between these factors,

while effectively meeting the needs of the intended use. An important

point to note is that due to the interpolation algorithm requiring a known

solution state either side of each delay time that a solution is required for,

this presents the constraint that the step size of the time-stepper may not

at any point be larger than the smallest delay in the system. If this were

to happen, the latter stages of each Runge-Kutta step could cause some

delay times to fall after the most recently computed state, thereby resulting

in no known solution state being present ahead of the delay times. This

constraint means that for systems with small delays, the step size remains

restricted to a small value, thus the system could take a long time to evolve

temporally.
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Figure 10: Diagram illustrating the inheritance-based structure of the DDE

solver classes.

Above, in Figure 10, we illustrate the class structure of the delay solver

classes.

4.6 sparse dde solver design

The DDE algorithms detailed thus far are similar to those offered by other

DDE solver suites. However, for certain problems, there are computational

savings that can be made to greatly reduce the number of operations

carried out, thus reducing the time of computation for the solution. These

savings were first noted when considering the solution of the delayed

neural field equation. For this problem, the delays are space-dependent,

meaning that the delays between each node in the system are typically

dependent on some physical measure of the distance between them. The

result of this particular set-up is that when the ComputeF() method is

called by the solver, not every entry in the Z matrix is used. This raises

the question of whether the computation of these unused entries in the Z

matrix can be omitted completely.

As an example, let us assume that the delays in a system are de-

fined as τi,j = ϕ
(∥∥xi − xj

∥∥), where xi and xj are two spatial points
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corresponding to the ith and jth equation in the system, and ϕ is some

function of the distance between them (i.e., Euclidean, geodesic, etc.).

The algorithm in the standard DDE classes would populate the Z matrix

column for a given delay by computing the delayed state of every single

state variable at time t − τi,j. However, if the right-hand-side for the ith

equation in the system is only dependent on the delayed state of the jth

variable at time t − τi,j, then the Z matrix column would only need to be

populated with the jth entry instead of every single entry. In a NFE, the

‘information’ passing between two nodes is not dependent on the delay

between any nodes other than those two. This allows for any computations

of unused values in the Z matrix to be completely ignored.

4.6.1 SparseDelayMatrix class

To most efficiently reduce the memory and number of computations

required, a sparse matrix data structure can be used to store the Z

matrix values. The difference to conventional sparse matrices, however,

is that in this case the word ‘sparse’ does not mean containing few

non-zero elements; it instead means containing few ‘used’ elements.

Armadillo has a built in sparse matrix structure, but as it is sparse in the

conventional sense it does not allow for zero elements to be stored as values.

As it is the columns of the Z matrix that are looped over when com-

puting the delay states, it makes sense that Z be stored in Compressed

Sparse Column (CSC) format as opposed to Compressed Sparse Row (CSR)

format, due to the way the elements are stored. More detail on how this

storage format works is detailed in Appendix A.3.1.

The constructor for this class takes in a 2 × m matrix containing the index

locations, in column-major ordering, of the ‘used’ delay state matrix values.

This can be thought of as the sparsity pattern of the matrix. Here m is

the total number of ‘used’ values. It also takes in an array of length m
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containing the values to store in the correspondingly indexed locations, as

well as the total number of rows and columns the delay matrix contains. A

future consideration, as detailed in the ‘Future work’ section of this thesis

(Section 8.2), would be to determine the sparsity pattern automatically

based on an initial ‘dry’ run of the ComputeF() method of the DDE in

question that would indicate which entries of the matrix are being used.

The class also includes an overloaded parentheses operator, (), to access

the entries of matrix under conventional matrix index notation, along with

methods to return the values from specific individual columns and the

corresponding row indices of each of the entries in a column.

4.6.2 Remaining Sparse Classes

The remaining sparse classes follow on from analogously their DDE

counterparts. Firstly, an interface for all DDE problems backed with the

sparse implementation is supplied, under the name SparseDDEInterface.

This class contains pure virtual methods to compute the right-hand-side

and history function of the DDE, utilising the sparse delay matrix structure

for Z instead of a standard Armadillo matrix for passing in the delay states

to the ComputeF() method. Similarly to the previously discussed DDE code,

an abstract class to hold all the common properties of DDE solvers which

uses the sparse implementation of the delay state matrix is also included.

Named AbstractSparseDDESolver, this class derives from AbstractDESolver

and stores a pointer to an object of type SparseDDEInterface for computa-

tions on the derived specific DDE problem, along with the 2 × m locations

matrix used for constructing the sparse delay matrix, Z.

Finally, there is the suite of delay Runge-Kutta solvers that utilise

the sparse implementation. A base class, deriving from AbstractSparseDDE-

Solver, is included to implement the non-adaptive and adaptive generalised

Runge-Kutta algorithms. This class is named DelaySparseRungeKuttaSolver.
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Within the Runge-Kutta implementation methods, the sparse delay matrix,

Z, is instantiated using the locations matrix that the user will provide. At

each Runge-Kutta step, when the delay times are looped over to populate

the columns of Z, the methods in the SparseDelayMatrix class are used

to return the row indices for the ‘used’ elements in each column. These

row indices are then passed into the ComputeDelayState() method of the

history buffer to allow it to compute only the relevant entries instead of the

entire delay state, thereby greatly reducing the number of computations

required.

Deriving further from this class are two specific solver classes. Similarly to

the standard DDE solvers, there is a fixed-step 3rd order solver class, named

DelaySparseRungeKutta3Solver, and an adaptive-step 3rd order solver class

which uses an embedded 2nd order scheme for the step size adaptation,

named DelaySparseRungeKutta32Solver. These are implemented analogously

to the standard DDE versions, except the constructors additionally take

in the 2 × m locations matrix dictating the sparsity pattern of delay state

matrix, Z. These simple adjustments in implementation, compared to other

existing DDE solver libraries, have a considerable effect on the performance

of the code, allowing for extremely large delayed systems to be solved on

lower specification machines with increased efficiency.
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Figure 11: Diagram illustrating the inheritance-based structure of the sparse

DDE solver classes.

Figure 11 depicts a class diagram showing the structure that we have just

described for the sparse DDE solver classes.

4.7 parallelisation

As mentioned previously, Armadillo has built-in capabilities to handle

parallel computations if a relevant opportunity arises, such as computa-

tionally expensive element-wise operations. It does this with the use of

the OpenMP API specification for parallel programming [43]. The DDE

solvers that have been developed thus far (both standard and sparse) all

have sections where there is scope to divide up work across multiple

processors in order to maximise computational efficiency. As OpenMP is

already utilised by Armadillo, it naturally made sense to extend its use to

the NFESOLVE library, instead of considering more complicated options

such as Message Passing Interface (MPI) [178, 165, 179]. It is also extremely

intuitive and easy to implement with existing code.
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The main area where speed-up is possible is within the population

of the delay state matrix, Z. As this is done column by column, and all the

computations are independent of one another, the work can be split up into

chunks and distributed amongst the available processors. This is handled

automatically by using an OpenMP ‘for’ loop with shared access to Z.

When the library is compiled, it generates both a sequential and a parallel

version of the code. The user then simply has to link to the parallel version

and compile with the -fopenmp compilation flag if they wish to use the

parallel capabilities of the code. Depending on the specific equation being

solved, there may also be scope for the user to parallelise their overridden

ComputeF() method. This is particularly relevant for neural field models

as the matrix-vector product of the discretised convolution term can be

parallelised. Naturally, it must be noted that when there are only a small

number of equations or delays in the system, the overheads generated by

parallelising the code may be greater than that of a standard sequential

loop, leading to an inefficient execution time.

4.8 list of user requirements

Now that we have outlined all the classes that make up the NFESOLVE

library, we will summarise a list of items that the user must provide in order

to utilise the library. The README file from the GitHub repository, which

details the installation steps for NFESOLVE, can be found in Appendix B.1.

1. The main thing that the user will need to supply to the solver is a

class containing the differential equation that they wish to solve in

its discretised form. This class will inherit from either ODEInterface,

DDEInterface, or SparseDDEInterface, depending on the problem, and

will override the pure virtual ComputeF() method found in all of these

interface classes in order to specify the discretised right-hand-side of
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the equation in question. The user may customise this class however

they wish, including adding any additional methods they require. The

only requirement is that it inherits from one of the Interface classes and

overrides the ComputeF() method.

2. If the user wishes to make use of the mesh handler toolkit to import

a geometric mesh, they may do so by supplying a .dat file containing

the mesh details in the form illustrated in Section 4.3.1.

3. To make use of the quadrature library to return a set of integration

points and weights, the user must supply a mesh via one of the

subclasses of Mesh. If they wish to use these to solve an integro-

differential equation, they must apply them manually inside the class

from step 1 containing their discretised differential equation.

A selection of example codes illustrating these steps can be found in the

GitHub repository.

4.9 summary

This chapter gives a full overview into the design, structure, and implemen-

tation of a new and bespoke suite of numerical differential equation solvers.

We began by discussing the motivation behind why this library is needed

and the gaps that are present in existing codebases and solver functions,

particularly when it comes to the solution of large-scale delayed systems

such as neural field models. The NFESOLVE library aims to eliminate these

gaps where possible and make it simple for the user to evolve a variety of

differential equations in an efficient and timely manner.

In Section 4.2, we presented the considerations made prior to the

commencement of any implementation, detailing the reasoning behind

important decisions such as the choice of programming language that

the library is built in. The sections that follow this are split into the
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individual sub-packages that make up the NFESOLVE library. The first

of these sections discusses the design choices and implementation of a

mesh handler sub-package to facilitate the storage and manipulation of a

geometric mesh. Included as part of this is a quadrature library that allows

the user to generate quadrature points and weights on a given mesh. This

component is designed particularly with respect to neural field models,

which require quadrature rules to numerically approximate the spatial

integral terms that are typically present. The next section focuses on the

classes that make up the ODE solution suite. Here, we break down the

inheritance-based structure that allows the code to be built in a flexible and

modular way. This is important as it is applied analogously to the DDE

solvers that are discussed in the following two sections. Following the

structural design, we detail the Runge-Kutta solvers that are implemented

based on the algorithms explained in Appendix A.1. Section 4.5 then

explores the standard DDE solver design, which follows an algorithmic

methodology which most other DDE solvers that are currently used in

practice also follow, such as MATLAB’s dde23 solver. The design of the

DDE solver suite is structured very similarly to the ODE sub-package

of the NFESOLVE library. After the discussion of the standard DDE

solvers, we then proceed to discuss the classes that make up the sparse

DDE solver implementation. This begins by introducing a new custom

data structure that is built to store the matrix of delay states computed

at each Runge-Kutta stage. Rather than a dense matrix (as used in the

standard DDE implementation), this class is analogous to a sparse matrix

structure, based on the commonly used CSC format. Using this data

structure allows for a great reduction in both the number of computations

and the amount of storage required to facilitate the temporal evolution of

a DDE. The remaining sparse classes that make up the sparse DDE solver

sub-package are then introduced. These follow the same inheritance-based

design structure that both the ODE and standard DDE implementations

follow. Finally, we discuss the opportunity for the parallelisation of the
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code and the technologies that are used to accomplish this, along with a

summary of the requirements that a user must provide in order to utilise

the NFESOLVE library.

The following chapter (Chapter 5) explores several examples and ap-

plications used to validate that the code performs as expected. This is

discussed from both a numerical convergence analysis perspective, and

from a replication of pre-existing neural modelling results perspective.

Following on from this, the full capabilities of the NFESOLVE library are

employed in Chapters 6 and 7 to evolve models of neural activity in both a

discrete neural mass setting and a continuum neural field setting, with the

incorporation of real brain data. The NFESOLVE codebase is available to

download in full at https://github.com/UoN-Math-Neuro/NFESOLVE.

https://github.com/UoN-Math-Neuro/NFESOLVE


5
VA L I D AT I O N O F C O D E

5.1 introduction

The NFESOLVE library, discussed in Chapter 4, is an innovative and

newly developed suite of codes. As with all novel products, it is extremely

important that rigorous testing is undertaken to validate that it performs

to the quoted specifications. The main intended use of the library is to

solve delay differential equations, specifically with a bias towards solving

large-scale models of neural dynamics. To show that the code performs

as expected, this chapter presents a number of validation methods and

examples in a variety of settings.

Firstly, and most importantly, the convergence rates of the schemes

are tested to indicate that they behave as expected when the step size or

tolerances are decreased. This is done by numerically solving arbitrary

problems for which analytic solutions exist, and then comparing the results

to the exact solution by means of an error measure. Following on from

this, we explore several settings of the neural field equation (NFE), with

and without delays, for which exact analytical results are known. This is

especially relevant as it confirms if the code yields the expected output

when different parameters of the NFE are varied to give different solutions.

73
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5.2 error analysis

To show that the developed solvers converge with the rates depicted in their

respective names (as introduced in Chapter 4), this section features error

analyses for a variety of different problems, both with and without delays.

5.2.1 ODE Solvers

To start, we consider the solvers implemented in the ODE module

of the library. As described in Section 4.4, the non-adaptive solvers

developed thus far are the 3rd and 4th order Runge-Kutta solvers, named

RungeKutta3Solver and RungeKutta4Solver, respectively. For the adaptive

solvers, currently there is only the 3rd order adaptive Runge-Kutta solver,

named RungeKutta32Solver, implemented in the library. In order to test the

convergence properties of each solver, we use the ODE problem

y′1 (t) = y3 (t) , y1 (0) = 1,

y′2 (t) = −y3 (t) , y2 (0) = −1, (87)

y′3 (t) =
1
2
(y2 (t)− y1 (t)) , y3 (0) = 0.

This is an arbitrarily selected ODE for which the analytic solution is known.

For the specified initial conditions, this has the trigonometric solutions

y1 (t) = cos (t) ,

y2 (t) = − cos (t) ,

y3 (t) = − sin (t) .

(88)

Denoting the true solution in vector form by y, and the numerical approx-

imation of the solution by ŷ, we use the superscript index s to denote the

solution at the sth temporal point, i.e., ys = y (ts). Taking an error measure

of the infinity norm, defined by

∥y − ŷ∥∞ ≈ max
i=1,...,m

max
s=1,...,n

|ys
i − ŷs

i | , (89)
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where m is the number of equations in the system and n is the total number

of temporal points from the initial time up to a specific final time, we repeat

a number of simulations with different step sizes and tolerances in order to

assess the rate of convergence of a given solver. Figure 12 depicts the conver-

gence rates of each ODE solver in the NFESOLVE library, for the problem

defined above by Eq. (87). For the non-adaptive solvers (Figure 12a), the

error is plotted against the fixed time step, ∆t. As the adaptive solver (Fig-

ure 12b) is controlled by varying the absolute and relative error tolerances

that make up the adaptation condition, to quantitatively show the conver-

gence we plot the error against the total number of steps the method takes

to reach the final time, tn. For this example, a final time of tn = 20 was

chosen.

(a) Non-adaptive ODE solvers. (b) Adaptive ODE solver.

Figure 12: Convergence plots depicting the rate at which the numerical solu-

tion of Eq. (87) converges to the true solution Eq. (88), using both

non-adaptive and adaptive ODE solvers from the NFESOLVE

package.

To illustrate the order of convergence for each solver, arbitrary 3rd and 4th

order lines are plotted alongside the error. Note that the convergence plots

tail off when the error reaches ≈ 10−11, as this is where machine precision

errors pollute any computed values. It is clear that the solvers perform to
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their expected order. This is a key result in the validation of the code as it

indicates that the ODE suite is implemented correctly.

5.2.2 DDE Solvers

Similarly to the ODE solvers, we perform a convergence analysis in an

analogous way for the DDE solver suite. As the sparse DDE solvers

use the exact same time-stepping and interpolation algorithms as the

standard DDE solvers, we present this analysis for just the standard solvers,

namely DelayRungeKutta3Solver and DelayRungeKutta32Solver. The sparse

solvers contribute towards improving computation speed and memory

requirements, which is particularly relevant only when considering larger

systems. As discussed in Appendix A.2.3 and Section 4.5.4, the overall

order of a DDE solver is defined by the minimum of the order of the

time-stepping scheme and the order of the interpolation method, therefore,

it is expected that both the non-adaptive and adaptive solvers will be 3rd

order convergent [133].

Consider the DDE problem

y′1 (t) = −y1

(
t − π

2

)
,

y′2 (t) = y3 (t) , (90)

y′3 (t) = (y1 (t − π))2 − y1

(
t − π

4

)
− y2 (t) .

with the history function for y1 given by φ1 (t) = cos (t) + sin (t), for t < 0,

and the initial conditions y2(0) = y3(0) = 0. Although it is rare to find
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analytic solutions to DDEs, this problem was specifically engineered such

that it gives the solution

y1 (t) = cos (t) + sin (t) ,

y2 (t) = 1 +

(√
2

2
t − 1

)
cos (t) +

(
2
3
−

√
2

2

)
sin (t)− 1

3
sin (2t) ,

y3 (t) =
2
3
(cos (t)− cos (2t)) +

(
1 −

√
2

2
t

)
sin (t) .

(91)

Using the same error norm as in the previous section, defined by Eq. (89),

we repeat simulations for a variety of step sizes and error tolerances to

construct the convergence plots depicted in Figure 13. Once again, the error

of the adaptive solver is plotted against the total number of steps taken to

reach the final time, tn, which in this case is taken to be tn = 20.

(a) Non-adaptive DDE solver. (b) Adaptive DDE solver.

Figure 13: Convergence plots depicting the rate at which the numerical solu-

tion of Eq. (90) converges to the true solution Eq. (91), using both

non-adaptive and adaptive DDE solvers from the NFESOLVE li-

brary.

Likewise to Figure 12, both plots in Figure 13 also contain arbitrary 3rd

and 4th order lines to clearly demonstrate the rate at which the solver error

decreases. Evidently, both the non-adaptive and adaptive DDE solvers per-
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form to 3rd order as expected, thereby validating that the implementation

of the DDE suite is correct.

5.3 neural field equation on a sphere

There has been a vast amount of research undertaken with NFEs posed on

one and two dimensional domains ([38, 64, 117, 59] to name just a few);

however, when it comes to applying them to surfaces in three dimensions

considerably less exploration has been done to date. Ideally, a realistic cor-

tical mesh will be the domain of choice when solving NFEs due to the

primary reasoning behind them being to model real-life brain dynamics. A

very naive ‘brain’ can be modelled by using a spherical geometry. This also

allows for some interesting analysis to be undertaken, as where analytic

solutions exist, they can be broken down into linear combinations of basis

functions known as spherical harmonics. In this section, we look at some

results and pattern formations for a neural field posed on a spherical do-

main, based on work by Visser et al. [177]. Following this, we consider the

dynamics of the NFE when a Heaviside firing rate is employed and a solu-

tion in the shape of a spherical cap is enforced. This is useful in validating

the code in the NFESOLVE library as there are theoretical results that the

numerical solutions can be compared against.

5.3.1 Spherical Harmonics

Before discussing the model and its dynamics, it is important to first intro-

duce the spherical harmonics as they are an integral part to the analysis

undertaken. The spherical harmonics are a set of complex-valued functions

that form an orthonormal basis on sphere; analogous to Fourier series on a

circle. They were first introduced in 1782 by Laplace (see [118] for a history

of spherical harmonics) and are formulated from the angular portion of the
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solution to the Laplace equation posed on a sphere. We use the notation

Ym
n (r) to detail an nth degree, mth order spherical harmonic, where n ≥ 0

and |m| ≤ n, with r = (r, θ, ϕ) being a point on a sphere with radius, r, polar

angle, θ = [0, π, ], azimuthal angle, ϕ = [0, 2π). One such representation on

the unit sphere (r = 1) is defined by the functions

Ym
n (θ, ϕ) = (−1)m

√
2n + 1

4π

(n − m)!
(n + m)!

Pm
n (cos θ) eimϕ, −n ≤ m ≤ n, (92)

where Pm
n is the associated Legendre function [4] given by

Pm
n (x) =

(
1 − x2)m/2

2nn!
dn+m

dxn+m

(
x2 − 1

)n
. (93)

An important result is that the harmonics satisfy the equation

Y−m
n (θ, ϕ) = (−1)m Ym

n (θ, ϕ), (94)

where represents complex conjugation. They also obey the orthogonality

condition ∫ 2π

0

∫ π

0
Ym

n (θ, ϕ)Ym′
n′ (θ, ϕ) sin θ dθ dϕ = δn,n′δm,m′ . (95)

A selection of example spherical harmonics are depicted below in Figure 14.

Figure 14: Examples of the real part of four different spherical harmonics

for (n, m) pairs: (1, 0) , (2, 0) , (4,−2) , (7, 5) . Each has been nor-

malised to the domain [−1, 1] for visualisation purposes.

As the spherical harmonics are complex functions, for illustration pur-

poses we have plotted just the real part for each (n, m) pair, and normalised

each solution to the domain [−1, 1].
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5.3.2 The Model

Let us consider a scalar neural field equation of the form

∂

∂t
u (r, t) = −u (r, t) +

∫
Ω

w
(
r, r′
)

f
(
u
(
r′, t
))

dr′, (96)

where the domain Ω := S2 is the surface of the unit sphere in R3, w is

a connectivity kernel facilitating the non-local connections, f is the firing

rate function, and the state variable, u, represents activity.. Here, r = (θ, ϕ)

is a point on the sphere with polar angle, θ = [0, π, ], azimuthal angle,

ϕ = [0, 2π) and radius 1. On a sphere, the geodesic distance between any

two points is the distance along the great circle that the points share. For

the unit sphere, this is equal to the angular separation of the points, given

by the inverse cosine of the dot product of the two points. Hence, we select

the connectivity kernel, w, such that it is a function of the dot product of

the two points, i.e., w (r, r′) = w (r · r′).

5.3.3 Linear Stability Analysis

Firstly, we make note of some key functional analysis results, presented by

Visser et al. [177], that we use in this section. Given a function, w, posed on

[−1, 1], the surface integral, I =
∫

Ω w (r · r′)dr′, can be transformed via the

change of variables, s = cos (θ) = r · r′, into an integral of a single variable,

I = 2π
∫ 1
−1 w (s)ds. Secondly, the function, w, can be written as an infinite

sum of the spherical harmonics, i.e.

w (s) = w
(
r · r′

)
=

∞

∑
n=0

wn

n

∑
m=−n

Ym
n (r)Ym

n (r′), (97)

where the coefficients wn are given by

wn = 2π
∫ 1

−1
w (s) Pn (s)ds, (98)

where Pn is the Legendre polynomial of degree n. Furthermore, we say that

w is balanced if

w0 = 2π
∫ 1

−1
w (s)ds = 0. (99)
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It will become clear where these results are used to aid in the linear stability

analysis of the model.

For this section, we consider the homogeneous steady states of the

system given by

û = f (û)w0. (100)

If the connectivity kernel is balanced (i.e. Eq. (99) is satisfied), then the only

homogeneous steady state of the system that satisfies Eq. (100) is the zero

state, û = 0. Assuming a solution of the form u (r, t) = û + v (r, t), where

v is some small perturbation of the form v (r, t) = eλtq (r), for λ ∈ C, we

substitute this into equation Eq. (96) and linearise to give the equation

(λ + 1) q (r) = f ′ (û)
∫

Ω
w
(
r · r′

)
q
(
r′
)

dr′. (101)

From here on, let us use the substitution, γ = f ′ (û), for readability. Con-

sidering solutions of the form q (r) = Ym′
n′ (r) and expanding w as a sum

of spherical harmonics (making use of Eq. (97)), the linearised equation,

Eq. (101), can be written as

(λ + 1)Ym′
n′ (r) = γ

∞

∑
n=0

wn

n

∑
m=−n

Ym
n (r)

∫
Ω

Ym′
n′
(
r′
)

Ym
n (r′)dr′ (102)

= γ
∞

∑
n=0

wn

n

∑
m=−n

Ym
n (r) δn,n′δm,m′ , (103)

where wn are as given in Eq. (98). There only exists non-trivial solutions to

this equation in the case that n = n′ and m = m′, hence we formulate the

eigenvalue equation

E (λ) := λ + 1 − γwn = 0, n ≥ 0. (104)

There exist 2n+ 1 eigenfunctions of the system, following the form v (r, t) =

eλtYm
n (r), for m = −n, . . . , n.
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5.3.4 Choice of Kernel

A common choice of kernel is the sum of exponentials given by the function

w (s) = J1 exp
(
−cos−1 (s)

σ1

)
+ J2 exp

(
−cos−1 (s)

σ2

)
, (105)

where J1 J2 < 0 and σ2 > σ1 > 0. To give the kernel Mexican hat shape, we

also enforce the condition J1 + J2 > 0. In order to determine the stability of

the system with this kernel, it is necessary to compute the coeffecients, wn.

Visser et al. [177] show that for an integral of the form

In (a) =
∫ 1

−1
exp

(
a cos−1 (s)

)
Pn (s)ds, (106)

where a ∈ C and Pn is the Legendre polynomial of degree n ≥ 0, the

recursive relation:

In (a) In+1 (a) =
a2 (1 − e2aπ

)
(a2 + n2)

(
a2 + (n + 1)2

) (
a2 + (n + 2)2

) ,

I0 (a) =
1 + eaπ

a2 + 1
,

(107)

is satisfied. This also yields the two-term recursive relation:

In+2 (a) = In (a)
a2 + n2

a2 + (n + 3)2 . (108)

Using this, the coefficients wn are easily constructed, allowing the solutions

to the eigenvalue equation (Eq. (104)) to be generated.

For ease, we fix the parameters J2 = −1 and σ2 = 1 in Eq. (105).

Using the balance condition, Eq. (99), an expression for the parameter J1

can be formulated in terms of σ1 to always enforce a balanced kernel:

J1 =
e−π (1 + eπ)

(
1 + σ2

1
)

2
(

1 + e−
π
σ1

)
σ2

1

. (109)

Taking all of this into account, the kernel has now been reduced from be-

ing in terms of four parameters down to only a single parameter σ = σ1.
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Figure 15 shows an example of this reduced connectivity kernel with a pa-

rameter value of σ = 0.4.

Figure 15: Balanced connectivity kernel with σ = 0.4.

Using the recursion formulae (Eq. (107)) detailed above, the coefficients

wn of the kernel are calculated as

wn = 2π

e−π (1 + eπ)
(
1 + σ2)

2
(

1 + e−
π
σ

)
σ2

In

(
−1
σ

)
− In (−1)

 . (110)

This expression allows for the eigenvalue spectra to be computed for all

n ≥ 0.

5.3.5 Modal Instabilities

As the eigenvalue equation given by Eq. (104) only supports real solutions,

for each mode we expect only stationary patterned solution states to arise

from instabilities of the homogeneous steady state. Let us first consider the

sigmoidal firing rate function

f (u) =
1

1 + e−µ(u−ϑ)
, (111)

where the parameter µ controls the steepness of the sigmoid and ϑ is the

threshold parameter. Starting from the zero steady state, û = 0, if all n
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eigenvalues of the system are negative then the state remains stable and

does not change. To illustrate the modal instabilities present in the system,

we look in turn at the instabilities that arise when only the nth eigenvalue is

pushed to be unstable but all others remain in the stable region. To simplify

the search for a parameter regime for which the different individual modes

become unstable, we fix the firing rate steepness parameter, µ, to have a

value of µ = 30. This leaves two parameters: the firing rate threshold, ϑ,

and the connectivity kernel parameter , σ. Adjusting these to allow only

one eigenvalue to go unstable at a time, the eigenvalue spectra depicted in

Figure 16 show example instabilities for n = 1, . . . , 6. The specific values of

the parameters for which the depicted instabilities occur can be seen below

in Table 1.

(a) (b) (c)

(d) (e) (f)

Figure 16: Eigenvalue spectra showing modal instabilities for n = 1, . . . , 6

(corresponding to (a)-(f)). Here, the red dots represent the unsta-

ble modes and the blue dots show the stable modes. The specific

parameter values for each plot can be found in Table 1.
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n σ ϑ

1 0.5 0.1

2 0.2 0.133

3 0.065 0.1476

4 0.0355 0.15

5 0.02 0.15118

6 0.0135 0.15158

Table 1: Parameter values used for the modal instabilities depicted in Fig-

ure 16 and Figure 17.

As n increases, the spherical harmonics that make up the eigenfunc-

tions become more complicated. This is reflected in the numerical solu-

tions shown in Figure 17, which show the instabilities corresponding to the

spectra and parameter values above in Figure 16 and Table 1. Due to the

Runge-Kutta algorithm behind the non-adaptive and adaptive solvers being

the same, all numerical solutions in this section were computed using the

adaptive-step RungeKutta32Solver ODE solver from the NFESOLVE library

in order to minimise computation time.
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(a) (b) (c)

(d) (e) (f)

Figure 17: Instabilities of the zero state, u (r) = 0, on a triangulated mesh

of the unit sphere made up of 10242 nodes, computed using the

NFESOLVE library’s RungeKutta32Solver ODE solver. Figures (a)-

(f) show the instabilities of the nth mode for n = 1, . . . , 6. The

yellow areas represent high ‘activity’ and dark blue represents

low ‘activity’, with each plot being normalised to the domain

[−1, 1] for visualisation purposes.

The solution states start off as a simple gradiented pattern from one hemi-

sphere to the other, before gradually becoming more complicated and form-

ing more intricate patterns. If certain groups of modes are pushed unsta-

ble at the same time then the patterns that arise are linearly combined to

achieve intricate solutions. In the presence of delays, as shown in Visser et

al. [177], Hopf bifurcations naturally occur, thereby giving rise to oscillat-

ing and travelling wave solutions across the surface of the sphere. As this
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validation example was undertaken during the development phase of the

DDE code, this section only considers the non-delay version of the model.

It is clear that the NFESOLVE library performs to expectations and yields

solutions to the model predicted by the theory.

5.3.6 Spherical Cap

Let us now consider the model in a similar setting but with a Heaviside

firing rate function instead of a sigmoid, i.e.

f (u) = H (u − ϑ) =

1, u ≥ ϑ,

0, u < ϑ.
(112)

For this validation example, we wish to look for solutions in the form of

a ‘cap’ on the unit sphere. In spherical coordinates, this will be defined in

terms of the polar angle, θ ∈ [0, π]. Under the assumption that the solution

is azimuthally homogeneous, i.e., u (r, t) → q (θ), the steady state solution

will be such that

q (θc) = ϑ,

q (θ) > ϑ, for θ < θc,

q (θ) < ϑ, for θ > θc,

(113)

for some θc ∈ [0, π]. The radius ∆ of the cap is given by ∆ = sin θc. The

steady state analysis of Eq. (96) leads to the solution

q (θ) =
∫ 2π

0

∫ θc

0
w
(
r · r′

)
sin θ′ dθ′ dϕ′. (114)

In spherical coordinates, r = (x, y, z) = (sin θ cos ϕ, sin θ sin ϕ, cos θ), hence,

the dot product r · r′ can be written as

r · r′ = sin θ cos ϕ sin θ′ cos ϕ′ + sin θ sin ϕ sin θ′ sin ϕ′ + cos θ cos θ′ (115)

= sin θ sin θ′ cos
(
ϕ′ − ϕ

)
+ cos θ cos θ′. (116)
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Shifting ϕ′ → ϕ′ − ϕ and using the invariance of the integral with respect to

ϕ′ over [0, 2π], we reach the expression

q (θ) =
∫ 2π

0

∫ θc

0
w
(
sin θ sin θ′ cos ϕ′ + cos θ cos θ′

)
sin θ′ dθ′ dϕ′. (117)

This gives an implicit equation for θc in the form

q (θc) = ϑ, (118)

which can be used to numerically solve the equation for a chosen value of θc,

thereby determining the threshold value, ϑ, necessary to give a cap solution

of radius ∆ = sin θc.

Figure 18: Numerically computed plots of the firing rate threshold, ϑ,

against θc ∈ [0, π] (left), and for ϑ against the cap radius, ∆ (right).

The chosen connectivity kernel, w, is that depicted in Figure 15

(with parameter σ = 0.4).

Let us consider an example problem that assumes the balanced connec-

tivity kernel shown in Figure 15 (with parameter σ = 0.4). Numerically

solving Eq. (118) for the full range of θc allows for the construction of the

plots, shown in Figure 18, of ϑ vs. θc and ϑ vs. ∆. Figure 19 shows the

spherical cap solutions for two different values of θc. Initial data was cho-

sen pertaining to the condition given in Eq. (113) and the simulations were

run until a steady state solution was reached.
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Figure 19: Spherical cap solution on a 2562 node triangulated unit sphere

mesh, for θc = 1.2 (left) and θc = 0.6 (right), therefore producing

a cap of radius ∆ ≈ 0.932 and ∆ ≈ 0.565, respectively. The corre-

sponding firing rate threshold values used for these simulations

are ϑ ≈ 0.177 and ϑ ≈ 0.409. The numerical boundary of the caps

are illustrated with the magenta and red circles, and the theoret-

ical boundary (computed using Eq. (118)) are illustrated by blue

circles.

As expected, the cap solution q (θ) is equal to ϑ (illustrated with magenta

and red circles) at the points illustrated with blue circles, which show the

theoretical cap boundary.

Both the examples in this section clearly show that the NFESOLVE

library can be confidently used to compute numerical solutions to NFEs.

This is illustrated by the fact that the numerical solutions conform to the

expected theoretical results for the problems considered.
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5.4 neural field equation with a single constant delay

Although the full spatially-dependent delay NFE introduced is more phys-

ically relevant for describing cortical activity, we first wish to explore the

dynamics of the NFE with just a single constant delay that applies to the

whole network. In [142, 143, 125], Roxin et al. discuss the significance of

fixed delays in neuronal rate models. It was found that just the presence

of a fixed delay was enough to introduce waves and oscillations into a sys-

tem which would not otherwise support such solutions. These dynamic

solutions typically arise via instabilities of steady states; however, their ex-

istence depends heavily on the connectivity kernel and firing rate function

chosen within the model. The one-dimensional NFE with a single constant

delay is given by

∂

∂t
u (x, t) = −u (x, t) +

∫
R

w (x, y) f (u (y, t − τ))dy, (119)

where x ∈ R. Once again, the firing rate function, f , is the taken to be the

sigmoidal function given by Eq. (111), with parameters µ and θ dictating

the steepness and threshold of the sigmoid, respectively. We also impose

the condition that the connectivity kernel, w, is defined such that w (x, y) =

w (x − y) = w (|x − y|), i.e., that it is translationally invariant.

5.4.1 Linear Stability Analysis

Firstly, by exploiting the translational invariance of the kernel, the integral

term in Eq. (119) can be re-written to give

∂

∂t
u (x, t) = −u (x, t) +

∫
R

w (y) f (u (x − y, t − τ))dy. (120)

The steady state of this equation is given by the solution to

ū (x) =
∫

R
w (y) f (u (x − y))dy. (121)
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Considering only homogeneous steady states, i.e., u (x) = u for all x, this

allows the steady state equation to be written as

u = f (u)
∫

R
w (y)dy. (122)

A key technique that can be used in the stability analysis of equations in

this form is the Fourier transform. The one-dimensional Fourier transform

of w, as introduced and defined in Section 2.3.4, is given by

w̃ (k) =
∫ ∞

−∞
w(y) eiky dy. (123)

Employing this, the steady state equation for homogeneous steady states

can be written succinctly as

u = f (u) w̃ (0) . (124)

Let u (x, t) = u + v (x, t) for some small perturbation of the form v (x, t) =

eλt eikx, where λ ∈ C and k ∈ R. We substitute this into Eq. (119) and

linearise to yield the transcendental eigenvalue equation

E (λ, k) := λ + 1 − γw̃ (k) e−λτ = 0, (125)

where γ = f ′ (u). Depending on the values of λ and k, there are four

different types of instabilities that are possible. For Re (λ) > 0:

• Steady: Im (λ) = 0 and k = 0. This leads to a global uniform change

in activity.

• Turing: Im (λ) ̸= 0 and k = 0. This leads to the formation of an

inhomogeneous stationary state.

• Hopf: Im (λ) = 0 and k ̸= 0. This leads to global spatially periodic

oscillations of a uniform state.

• Turing-Hopf: Im (λ) ̸= 0 and k ̸= 0. This leads to travelling wave

solutions.

Let λ = ν + iω, where ν, ω ∈ R. Splitting Eq. (125) into its real and imagi-

nary parts yields the two equations

Re: ν + 1 − γw̃ (k) e−ντ cos (ωτ) = 0, (126)

Im: ω + γw̃ (k) e−ντ sin (ωτ) = 0. (127)
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By dividing these two equations, we deduce that

tan (ωτ) = − ω

1 + ν
. (128)

Considering the point of bifurcation (ν = 0), we see that a Hopf or Turing-

Hopf bifurcation arises for the non-zero solution to the transcendental equa-

tion tan (ωτ) = −ω. It is clear from Figure 20 that the first non-zero solu-

tion lies in the range π/2τ < ω < π/τ. As the period of oscillation, T, of the

resulting bifurcation is given by T = 2π/ω, this means that 2τ < T < 4τ.

Figure 20: Plot of tan (ωτ) (blue) and −ω (red), for τ = 1, to show first

non-zero intersection point (black). Dotted grey lines illustrate

ω = π/2τ and ω = π/τ.

Rearranging Eq. (126) yields

cos (ωτ) =
1

γw̃ (k)
, (129)

and this is only satisfied when γw̃ (k) < −1, as cos (ωτ) is negative for

π/2τ < ω < π/τ. As the firing rate function, f , is taken to be an increasing

sigmoid, the derivative of it at any point is always positive, hence w̃ (k)



5.4 neural field equation with a single constant delay 93

must be less than 0 for a Hopf or Turing-Hopf bifurcation to exist. Taking

Eq. (125), this may be rearrange to yield

(λ + 1) eλτ = γw̃ (k) . (130)

Multiplying both sides by τ eτ, the equation becomes

τ (λ + 1) eτ(λ+1) = γw̃ (k) τ eτ, (131)

which we can then write in terms of the Lambert W function as

τ (λ + 1) = W (γw̃ (k) τ eτ) . (132)

The Lambert W function [41] (also known as the product logarithm) is de-

fined as the multivalued function that satisfies z = W (z) eW(z), for any

complex number, z. In this case, we use the extension that for the equation,

z = xax, the solution is given by the identity, x = W (z ln a)/ln a. Rearranging

for λ, we reach the final solution

λ (k) = −1 +
1
τ

Wn (γw̃ (k) τ eτ) , (133)

for n ∈ Z, where Wn is the nth branch of the Lambert W function. In

the absence of delay, i.e., taking the limit as τ → 0+, the solution to the

eigenvalue problem is λ (k) = −1 + γw̃ (k), as expected.

5.4.2 Simulation Results

Let us consider the inverted Mexican hat kernel, w (x) = (−1 + |x|) e−|x|.

This type of connectivity kernel depicts local inhibition and lateral excita-

tion, which when looking at large-scale brain dynamics is a natural choice

of kernel [34]. The Fourier transform of w (x) is

w̃ (k) =
∫ ∞

−∞
(−1 + |y|) e−|y| eiky dy = − 4k2

(1 + k2)
2 , (134)

which is less than or equal to zero for all k.
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Figure 21: Plot of the inverted Mexican hat kerne,l w (x) = (−1 + |x|) e−|x|,

(left) and its Fourier transform, w̃ (k) = − 4k2/(1 + k2)2, (right).

This has local minima at k = ±1 with a value of −1, hence kc = ±1

are the emergent wave numbers when excited from below. As the kernel

is balanced (w̃ (0) = 0), the steady state we look to excite is the zero state

u = 0. The eigenvalue equation Eq. (125) for k = 0 gives λ = −1 and

therefore a Hopf instability cannot occur. However, as w̃ (kc) is negative,

it satisfies the condition Eq. (129) for a Turing-Hopf bifurcation to exist.

From the condition γw̃ (kc) < −1, we see that γ must therefore be greater

than 1. For fixed values of τ, we numerically solve tan (ωτ) = −ω for the

first non-zero value of ω. For each of these, we may then compute γ via

Eq. (129), yielding γ = − 1/cos (ωτ). This allows for the construction of a

two-parameter bifurcation diagram of the parameters γ and τ (Figure 22).

Depicted are the stability regions separated by the Turing-Hopf bifurcation.

In region I, the homogeneous steady state remains stable; however, in region

II, perturbations to the steady state yield dynamic periodic travelling wave

solutions.
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Figure 22: Two-parameter bifurcation diagram for γ against τ. The homoge-

neous steady state u is stable in I. The blue line depicts a Turing-

Hopf bifurcation (TH). In II, the steady state is subject to a Turing-

Hopf instability and gives rise to a periodic travelling wave.

It is evident that as τ tends to zero from above, the first non-zero

solution to tan (ωτ) = −ω tends to the lower solution bound (illustrated

in Figure 20) of π/2τ, hence γ tends to infinity at the point of bifurcation.

However, for the case where there is explicitly no delay present in the

system (i.e., τ = 0), the solution to Eq. (125) requires γ to equal −1 for

the eigenvalue to cross the imaginary axis. This is not possible, due to

γ being strictly positive for the chosen firing rate function. Hence, the

homogeneous steady state remains stable at all times in the absence of

delays, under the current model assumptions.

Although it is simple here to consider the gradient of the firing rate

function as a parameter itself, γ is actually dependent on the firing rate

steepness parameter, µ, and threshold parameter, θ.
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Figure 23: Two views of a three-parameter bifurcation diagram for µ, θ and

τ. The regions, I and II, are synonymous with that of Figure 22,

and TH illustrates a Turing-Hopf bifurcation.

As these are the parameters required for simulation, it makes sense to

further break down the bifurcation condition in terms of these parameters

instead of just a single gradient parameter. Numerically solving the eigen-
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value problem for a range of µ and θ, we may construct a three-parameter

bifurcation diagram for µ, θ, and τ. This is illustrated in Figure 23. The sta-

bility regions depicted in this diagram are analogous to the stability regions

shown in the two-parameter diagram, with the Turing-Hopf bifurcation now

represented by the contours that make up a surface. An example solution,

with parameters located in regime II, can be seen below in Figure 24. This

solution was computed using the adaptive-step DelayRungeKutta32Solver

solver from the NFESOLVE library. As there is only a single delay present in

the system, it does not make sense to use NFESOLVE’s sparse delay solvers,

which only yield a computational efficiency boost when working with larger

systems with multiple delays. The chosen parameters for this simulation are

µ = 20, θ = 0.13 and τ = 4, which do not fall too far from the bifurcation

point. As expected, a Turing-Hopf instability arises, with periodic waves

travelling towards the centre of the domain from either side. At the point of

bifurcation, the period, T, between the waves can be computed as T = 2π/ω.
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Figure 24: Example periodic travelling wave solution with period, T ≈ 9.733,

emerging from a Turing-Hopf instability. Period was computed

by taking the average of the differences between consecutive

peaks of the solution. The parameters chosen fall in regime II

of Figure 23, with values µ = 20, θ = 0.13, and τ = 4.

For this example, ω ≈ 0.644, thereby leading to an expected period of

T ≈ 9.753. This respects the prediction that 2τ < T < 4τ. The period of

the numerically computed solution, computed by taking the average of the

differences between consecutive peaks of the solution, is approximately

equal to 9.733, which conforms closely to the theoretical expectation. As

the solution yielded meets the anticipated results, this gives confidence that

the NFESOLVE library’s delay solvers perform accurately to the expected

standard.

For steeper firing rate functions (larger µ), other dynamics such as

stationary bumps and global oscillatory patterns can be observed. This is

discussed in more detail in [142, 143, 125].
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5.5 neural field equation with space-dependent delays

Following on from the single constant delay NFE presented in the previ-

ous section, we now explore some results for NFEs with multiple space-

dependent delays. This work fully utilises the NFESOLVE suite’s capabili-

ties to solve large-scale delay equations, and allows for existing theoretical

and numerical results from the literature to be employed in validating that

the solvers yield the expected results. As the model contains a large number

of delays, for which not all elements of the delay state vectors are required,

it makes sense to employ the sparse delay solvers that are provided by the

NFESOLVE library. Explanations of how the sparse delay solvers work can

be found in Section 4.6. Before exploring any solutions, it is important to

first understand how the sparse delay solvers can be set up to maximise

computational efficiency. This section then considers bump solutions with

transient oscillations, based on work by Faye and Faugeras [61], and subse-

quently looks at travelling front solutions, based on work by Coombes et al.

[37, 35]. Both of these solution types arise due to the presence of axonal de-

lays. This validation step is particularly important as the models considered

in Chapters 6 and 7 all incorporate axonal delays.

5.5.1 Sparse Solver Setup

Depending on the problem under consideration, using a standard DDE

solver can result in a lot unnecessary computations that are ultimately never

actually used in any further calculations. This can lead to much higher

computation times and memory utilisation. As detailed in Section 4.6, the

sparse solvers in the NFESOLVE library are designed to mitigate these con-

sequences by computing only the delay states that are actually required for

evaluating the right-hand-side of the DDE. Due to the specific structure of

NFEs with space-dependent delays, there are factors that can be exploited
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to optimise the set up and sparsity pattern of the delay state matrix, Z, that

the sparse solvers require. To illustrate this, we consider the discretised

form of the delay NFE [117]. For a full description of this discretisation, see

Section 3.3.4.

u̇i(t) = −ui(t) +
n

∑
j

wij f
(
uj
(
t − τij

))
σj, i = 1, . . . , n. (135)

As explained in Section 2.3.2, the delay terms, τij, are typically chosen

to take the form τij = τc +
∥∥xi − xj

∥∥/v, for i, j = 1, . . . , n, where τc is some

constant delay term that applies to all connections. At first glance, for

τc non-zero, this system contains n2 delay values as there is a separate

delay for each ij pair. However, due the fact that the delays are symmetric

(τij = τji for i, j = 1, . . . , n) and also that there is no spatial component to the

delay when j = i (τii = τc for i = 1, . . . , n), this allows for the total number

of distinct delays to be dramatically cut down from n2 to n (n − 1)/2 + 1.

The DDE solvers in the NFESOLVE library require a vector of de-

lays to be passed in when instantiating a solver object. Although the delays

do not require a specific ordering, it makes sense to order them in such a

way that the ij indices can effortlessly be mapped to the index at which the

delay sits in this vector. Firstly, consider the delays in matrix form, where

the rows and columns of the matrix are labelled by i and j, respectively, i.e.,

j

i


τ11 τ12 · · · τ1n

τ21 τ22 · · · ...
...

... . . . ...

τn1 · · · · · · τnn

 .
(136)

As the delays are symmetric, it is only necessary to store the delays with

indices j ≥ i, yielding an upper triangular matrix. On top of this, as the

main diagonal entries are all equal, it is only necessary to store the first
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entry, τ11. This leaves an upper triangular matrix with a single entry on the

main diagonal. 

τ11 τ12 τ13 · · · τ1n

τ23 · · · ...
. . . ...

0 τn−1,n


(137)

Flattening this matrix out row by row, a vector of delays is produced. Denot-

ing the indices of this vector by k, where k = 1, . . . , n (n − 1)/2 + 1, a mapping

between the ij indices and the vector index is given by

k =

1, i = j,

n (i − 1)− i(i+1)
2 + j + 1, i < j.

(138)

When looping through to evaluate the right-hand-side of Eq. (135), if a

delay is required for indices j < i, then the indices may simply be flipped

to access the correct delay.

At each stage of the time-stepping process, the delay state matrix, Z,

is computed. Each column of this matrix holds the state vector for

each delay time. This matrix is of size n × (n (n − 1)/2 + 1), and therefore

contains n
(
n2 − n + 2

)
/2 entries. However, due to the form of the discretised

delay NFE (Eq. (135)), only n2 of the entries in the Z matrix are actually

required by the solver. This is because for a given delay state, ua (t − τbc),

for a, b, c = 1, . . . , n, the delay state will only actually be used in the

computation of the right-hand-side of Eq. (135) when c = a. Therefore,

savings can be made by only computing the entries that are needed, rather
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than computing the whole delay state. We illustrate this for the case when

n = 4. The Z matrix will have the form

τ11 τ12 τ13 τ14 τ23 τ24 τ34

u1

u2

u3

u4


F1 F2 F3 F4

F2 F1 F3 F4

F3 F1 F2 F4,

F4 F1 F2 F3


, (139)

where Fi, i = 1, . . . , 4, represents a computation required in the evaluation of

the right hand side of Eq. (135) for the ith equation. For the first delay, every

state is required as this is the case when j = i. However, for every other

delay value, only two states are required. It is clear from this example that,

due to the exploitation of the delay symmetry, for a given delay, τij, where

i < j, the only states required for that delay are those corresponding to each

index, i.e., ui and uj. In the case where there is no constant delay, i.e., τc = 0,

the first column of the delay state matrix may simply be removed. The total

number of delay state values in the Z matrix that are used for computations

then becomes n(n − 1), and the mapping between the ij indices and the

delay vector index, k, is given by

k = n (i − 1)− i (i + 1)
2

+ j. (140)

For either case, it is simple to construct the sparsity pattern required by the

sparse delay solvers.

This setup is the most computationally efficient way we have found

to utilise the sparse delay solvers in the NFESOLVE library to solve delay

NFEs with space-dependent delays. It drastically cuts down the number

of computations required to populate the Z matrix at each stage of the

Runge-Kutta algorithm from n
(
n2 − n + 2

)
/2 to n2, in the case of τc ̸= 0, which

is a considerable difference when working with large systems as this is

a whole order of magnitude smaller. We utilise this setup for solving all

space-dependent delay NFEs in this thesis.
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5.5.2 Bump Solutions

In [61], Faye and Faugeras consider a network of neurons that mimics the

architecture of a cortical hypercolumn in the primary visual cortex. Instead

of thinking of the neurons as having a spatial component x, they instead

treat the neurons as being labelled by an angle, θ, which ranges from − π/2

to π/2, for orientation preference in visual processing. This model was orig-

inally conceived by Ben-Yishai et al. [18]. The mean activity response, u, in

the network (with space-dependent delays) is given by the equation

τ
∂

∂t
u (θ, t) =− u (θ, t) +

∫ π
2

−π
2

w
(
θ − θ′

)
f
(

u
(

θ′, t − |θ − θ′|
v

))
dθ′

π

+ ϵI (θ − θ0)− θth.

(141)

Here, the connectivity kernel, w, is selected to be sinusoidal function,

w (θ) = w0 + w1 cos (2θ), and the nonlinearity, f , is the sigmoidal function,

f (u) = (1 + e−µu)
−1 − 1/2. Also included in the model is an external

input term, I, chosen to take the form I (θ) = 1 − β + β cos (2θ). This is

incorporated along with a scaling parameter, ϵ. Other parameters in this

model are the temporal scaling parameter, τ, the orientation for which the

external input is maximal, θ0, and the neuronal threshold, θth. Although the

model is describing a slightly different phenomenon than seen in previous

examples, it is fundamentally in the same form as the delay NFEs that we

wish to explore in the upcoming chapters.

We have recreated the results of Faye and Faugeras in order to vali-

date that the NFESOLVE solvers generate the same results presented in [61].

Typical parameters values used in [18], that we fix across all simulations,

are β = 0.1, w0 = −73, w1 = 110, ϵ = 1.45, τ = 10, θ0 = 0 and θth = 1.

Faye and Faugeras state that they were unable to locate in the literature a

suitable biological value for the axonal delay speed, v, and therefore select

it have a value of v = 0.2rad s−1.
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(a) Solution of Eq. (141) for µ = 3. (b) Solution of Eq. (141) for µ = 13.

(c) Solution of Eq. (141) for µ = 100. (d) Solution of Eq. (141) with no delays.

Figure 25: Solutions of Eq. (141) with varying sigmoid slopes. Parameter

values used in all simulations are: β = 0.1, w0 = −73, w1 = 110,

ϵ = 1.45, τ = 10, θ0 = 0 and θth = 1.

Figure 25 depicts the difference in solution for varying values of the

sigmoid steepness parameter, µ. Using the sparsity pattern detailed in

Section 5.5.1, we employ the adaptive-step SparseDelayRungeKutta32Solver

solver from the NFESOLVE library to generate each solution. An initial

condition close to u (x, 0) = 0 is used for all of these simulations. As µ in-

creases, it is evident that the transient oscillations appear to last for longer

before settling down into a ‘bump’ solution. For comparison, the solution

to the non-delay problem is also included. These results conform to the

expected output seen in Faye and Faugeras’ work, thereby validating that

the sparse delay solver implementation is correct. Their paper proceeds to
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discuss results for two populations of neurons in one dimension, and also a

selection of results in two dimensions. We do not consider these results here,

however, as this work is purely a validation exercise based on the standard

delayed neural field model.

5.5.3 Travelling Front Solutions

Coombes et al. present an analysis of the one-dimensional delayed NFE in

[37, 35], where they also derive the Evans function for the stability of wave

solutions. We aim to employ some of the results from their paper in order

to generate travelling front solutions for which the theoretical front speed

is known. This may then be used to compare against the travelling front

speed of the numerical solution to verify that the selected solver yields

expected results.

In the case of travelling wave solutions, it is common to shift to the

comoving frame by using the change of variables ξ = x − ct. We wish

to seek functions, u (x, t) = q (ξ), which satisfy the NFE (Eq. (96)) with

space-dependent delays. This results in the travelling front equation for

q (ξ):

−c
d

dξ
q (ξ) = −q (ξ) +

∫ ∞

−∞
w (y) f

(
q
(

ξ − y +
c |y|

v

))
dy. (142)

Considering the firing rate function, f , to be the Heaviside function, de-

noted by f (u) = H (u − θ), we look for front solutions such that q (ξ) > θ

for ξ < 0, and q (ξ) < θ for ξ > 0. Note that it physically does not make

sense for the wave speed, c, to be greater than the axonal delay speed, v,

and so we enforce the restriction that c < v. The integral part of Eq. (142)

becomes ∫ ∞

−∞
w (y) H

(
q
(

ξ − y +
c |y|

v

)
− θ

)
dy := ψ (ξ) . (143)

For the assumed form of q, this integral can be simplified to remove the

Heaviside term. When q (ξ − y + c |y|/v) is greater than θ, the evaluated
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Heaviside function is equal to 1, otherwise it is 0. Therefore, the follow-

ing condition arises for the integrand to remain non-zero:

ξ − y +
c |y|

v
< 0. (144)

It follows from this that there are two cases to consider: i) that for ξ ≥ 0,

and ii) that for ξ < 0. For the first of these cases, Eq. (144) is valid for

y > ξ/(1 − c/v). For case ii), Eq. (144) is valid for y > ξ/(1 + c/v). Hence, the

integral can be rewritten as

ψ (ξ) =


∫ ∞

ξ
1−c/v

w (y)dy, ξ ≥ 0,∫ ∞
ξ

1+c/v

w (y)dy, ξ < 0.
(145)

We may then solve

−c
d

dξ
q (ξ) = −q (ξ) + ψ (ξ) , (146)

using an integrating factor, giving

d
dξ

[
q (ξ) e− ξ/c

]
= −1

c
ψ (ξ) e− ξ/c. (147)

Fixing an origin with the choice q (0) = θ allows Eq. (147) to be integrated

as ∫ ξ

0

d
dξ ′

[
q
(
ξ ′
)

e− ξ ′/c
]

dξ ′ = −
∫ ξ

0

1
c

ψ
(
ξ ′
)

e− ξ ′/c dξ ′. (148)

This then simplifies to give

q (ξ) = eξ/c

[
θ − 1

c

∫ ξ

0
ψ
(
ξ ′
)

e− ξ ′/c dξ ′
]

. (149)

For q (ξ) to be bounded as ξ → ∞, we require the term in square brackets to

vanish. This yields an implicit equation for the wave speed, c, in the form

θ =
1
c

∫ ∞

0

(∫ ∞

ξ′
1−c/v

w (y)dy

)
e− ξ ′/c dξ ′. (150)

For the purpose of this example, we select the connectivity kernel to be the

function w (x) = e−|x|/2. This allows Eq. (150) to be evaluated to give

θ =
1
2

v − c
c (v − 1) + v

. (151)
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Rearranging for c, the speed of the travelling front solution is determined

explicitly by the equation

c =
v (2θ − 1)

2θ − 1 − 2θv
. (152)

Starting from an initial condition of u (x, 0) = H (−x), we numerically solve

Eq. (96) in the presence of axonal delays using the NFESOLVE library’s

SparseDelayRungeKutta32Solver solver, with the delay set up following the

approach outlined in Section 5.5.1. From the numerical solution, the ob-

served wave speed at which the front propagates may be calculated in order

to compare it to the theoretical result given by Eq. (152).

(a) Example travelling front solution. (b) Front speeds plotted against v.

Figure 26: Figure (a) depicts a travelling front solution to Eq. (96) on the

domain [−10, 10], with threshold θ = 0.2 and axonal delay speed

v = 0.4. Figure (b) shows the theoretical and observed travelling

front speeds c plotted against the axonal delay speed v.

As the axonal delay speed, v, is increased, the speed at which the front

propagates also increases. Asymptotically, for small values of v, the wave

speed follows c ∼ v. As v gets increasingly large, however, the wave speed

conforms towards c ∼ (1 − 2θ)/2θ. Figure 26a shows an example solution,

along with the theoretical front propagation gradient, for a firing rate thresh-

old value of θ = 0.2 and an axonal delay speed of v = 0.4. As depicted in

Figure 26b, a numerical analysis of the propagation speed of the front was

undertaken to confirm whether the observed propagation speed matches
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the theoretical wave speed given by Eq. (152). It is clear from Figure 26b

that the theoretical and observed front speeds are extremely close together.

The difference between the two lines is on the order of 10−3. This gives con-

fidence that the sparse delay solver suite of the NFESOLVE library yields

numerical results that conform to the theory.

5.6 summary

The results presented in this chapter allow us to say with a high degree

of confidence that the NFESOLVE library performs as expected and that

there should be no problems when it is employed to solve more advanced

models of neuronal activity. The convergence analyses undertaken clearly

depict that the non-adaptive and adaptive solvers, for both ODEs and DDEs,

all function as their named orders state. Users who wish to employ these

schemes to solve differential equations in settings other than mathematical

neuroscience should not face any issues when it comes to the library accu-

rately solving their problems numerically. When it comes to the area of neu-

ral modelling, we have illustrated a number of examples, both theoretically

and numerically, that are based on known results in mathematical neuro-

science. From spherical geometries to NFEs with full-scale space-dependent

delays, these results are important as it validates that the NFESOLVE library

is capable of handling the models that typically form the basis of other

more advanced models, some of which will be presented and explored later

in this thesis, with a heavy emphasis on non-standard geometries and the

incorporation of axonal delays.



6
N E U R A L M A S S N E T W O R K S

6.1 introduction

Neural mass models are typically low dimensional models of neuronal

activity that are employed to describe the dynamics of large populations

of neurons. These are often extended to a network setting, where each

node of the network represents a ‘region’ of the brain. The local dynamics

are mediated by the neural mass model itself, while the node-to-node

connections are described by means of a connectivity weight matrix. These

weights stem naturally from the physical structure of the brain, i.e., regions

that are strongly connected have more direct physical paths between them.

The output of the models, often referred to as representing brain activity,

can be post-processed to explore the functional relationship between

signals. For example, if the signals emanating from two regions behave in

a similar fashion, then they are said to be strongly functionally connected.

With the extremely large amount of connectome data that is now available,

one of the foci within the neural modelling community is incorporating

real structural brain data into models of neuronal activity and comparing

the output of the models with functional data.

In this chapter, we aim to explore the relationship between struc-

tural and functional connectivity, by means of neural mass modelling. This

is based on work by Tewarie et al. [164] and Forrester et al. [65, 66]. To

109
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start, we introduce the specific brain data that will be incorporated into the

models. This includes structural and functional connectivity data, along

with distance data for the white matter tracts that physically connect brain

regions. Following this, we discuss how the analysis from Section 3.2

can be employed to engineer the output of a network model in order

to best reflect the functional connectivity patterns observed in the data.

Two models of neural activity are then presented, starting with the more

traditional Wilson-Cowan model, and moving on to the next-generation

neural mass model developed by Coombes and Byrne [36]. The benefits

and limitations of these two models are explored, and finally, the results of

each are compared to real functional connectivity data. This allows for an

insight into how models of neuronal activity can be utilised to describe the

observed relationships between structure and function.

6.2 using structure to predict function

A key metric in understanding brain dynamics and patterns is functional

connectivity (FC). As explained in Chapter 2 (Section 2.4), FC is based on

the correlation of activity signals between different regions of the cortex.

This is also discussed in more detail later in Section 6.2.1. There is a vast

amount of data available, depicting not only the correlation of signals dur-

ing resting state, but also during specific tasks that are designed to activate

certain areas of the brain. One of the biggest challenges in the world of large-

scale neural modelling is to accurately recreate empirical FC data through

simulation. Although this can be attempted using an inverse modelling

approach, such as regression modelling [161, 184], where the empirical FC

data is analysed and utilised to inform an underlying model, this chapter

seeks to explore a forward modelling approach via the incorporation of real

brain data into existing models of neural activity to generate simulated FC

data that can be compared to empirical FC data. We do this through the

medium of neural mass modelling.
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As neural mass models typically simulate brain activity across a number

of brain regions, post-processing techniques can be applied to the output

signals to determine a measure of correlation between the time series of

each node, thereby generating a FC matrix. There are a number of different

methods, such as Pearson correlation [134], amplitude envelope correction

[23, 83], and mean phase coherence [126, 65], that can be used to determine

the correspondences between time series. The simulated FC can then be

compared to empirical FC data by means of a similarity measure, such as

Pearson correlation or the Jaccard similarity [99]. This begs the question:

can simulated FC generated via a mathematical model of neural function

be engineered such that it gives as close an approximation as possible to

empirical FC data? This chapter explores a possible method of doing this,

in the form of structural eigenmode fitting, and studies the differences be-

tween the results yielded from two different models of neural activity; one

of which is a purely phenomenological model, and the other which is more

firmly based in observed biological processes.

6.2.1 Data

In this chapter, the models and simulations will incorporate the use of

real brain data. All of the data used is provided by the Human Connec-

tome Project (HCP) [172, 173] and is publicly available at https://www.

humanconnectome.org. The methods behind the acquisition of this data are

outlined in Section 2.4. Although the full data set contains a large amount

of data from 1200 subjects, we only consider a small subset of the data in

this work. We take the structural connectivity, functional connectivity, and

path length data from 10 individual subjects in this data set and average

them to yield a single matrix for each data type.

As neural mass networks are made up of “clusters” of neurons, they typ-

ically contain a relatively small number of network nodes. Neural field

models, on the other hand, are posed on a continuum domain, but due to

https://www.humanconnectome.org
https://www.humanconnectome.org


6.2 using structure to predict function 112

the numerical routines employed to solve them they tend to be discretised

into a large number of spatial nodes [10]. When working at the neural mass

level, it is common to split a cortical domain up according to a parcellated

brain atlas and use each region as a node in the network. There are many dif-

ferent atlases that are used amongst the brain imaging community, such as

the Automated Anatomical Labeling (AAL) atlas [168], and the HCP Multi-

Modal Parcellation (MMP) atlas [71]; however, in this chapter, we consider

the 68 node parcellation given by the Desikan-Killiany (DK) atlas [50]. This

atlas subdivides the cortex on MRI scans into gyral based regions of inter-

est. We selected this parcellation in order to balance the computational cost

of evolving the network equations with comparing the output to functional

connectivity data.

Figure 27: Visual representation of the Desikan-Killiany 68 region atlas on

a full cortical domain, with each colour depicting a different re-

gion. The top row shows the view from the left and right sides of

the cortex, while the bottom row shows the anterior and dorsal

perspectives, respectively.
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Structural Connectivity

As introduced in Section 2.4.1, a structural connectome is a comprehensive

map of the physical connections between regions of the brain. An in-depth

explanation of the how a connectome is constructed can be found in [159].

To recap, diffusion MRI is utilised to track the diffusion of water molecules

through white matter tracts. As this diffusion is anisotropic, meaning

that the water molecules travel along the axonal fibres rather than across

them, post-processing techniques known as tractography can be applied

to build a map of the white matter tracts in the brain. These algorithms

work by taking an initial seed point and then either deterministically [12]

or probabilistically [15] tracking the flow of the diffusion through areas

of the white matter domain, known as voxels, until a boundary or other

such termination point is reached. These flows are known as streamlines.

Repeating this across multiple seed points yields multiple streamlines

that estimate the bundles of axonal fibres. As the true structure is so

complex, there is scope for these algorithms to produce false positive

and false negative streamlines. Although dMRI cannot directly quantify

connection strengths, it does allow for estimation of edge weights that

can reflect desired properties, such as axonal density, myelination, etc.

One of the most commonly used measures of connection strength is

the streamline count, which is defined as the number of streamlines

that intersect a pair of regions. Enumerating these counts for all pairs

of regions allows for the population of a structural connectivity (SC) matrix.

For the structural connectivity matrix used in this chapter, connec-

tome data was taken from 10 individual subjects and averaged to yield

a single connectome. This was then divided through by the maximum

element in the matrix in order to normalise the connection strength to be on

[0, 1]. Manipulations via normalisation, or even non-linear transformations

such as the logarithm, are common practice before analysis to reduce
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the effects of different alogrithmic choices and ensure consistency across

subjects [159, 73, 97].

Figure 28: Structural connectivity matrix derived from connectome data av-

eraged from 10 HCP subjects and normalised to be on [0, 1].

As seen in Figure 28, the connectome is fairly sparse and does not contain

a large degree of structure. This can be due to post-processing methods at

the acquisition stage. To combat this, we consider applying a log transform

to the data (before normalisation) of the form w → log (w + A), where w

is the connectivity matrix, A is some positive real constant, and log is the

natural logarithm. This is also then renormalised to be on [0, 1].
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Figure 29: Log transformed connectivity data from Figure 28, with a trans-

form of the form log (w + A), for A = 0. This is, again, followed

by normalisation to the range [0, 1].

Evidently, from Figure 29, applying the log transform with a value of

A = 0 reveals much more structure in the network. As A gets larger, the

normalised ‘logged’ matrix gets closer and closer to the original ‘unlogged’

data.

Functional Connectivity

An introduction to functional MRI is given in Section 2.4.2. To recap, this

data is acquired by measuring the changes in blood flow in the brain. The

oxygenation of the haemoglobin in the blood determines how sensitive

it is to a magnetic field, with deoxygenated haemoglobin being far more

sensitive than oxygenated haemoglobin. When neurons fire, the MRI

machine detects the changes in blood flow via the oxygenation of the

haemoglobin, which leads to a visualisation of the different areas of the

brain that are concurrently active at any given time. This is known as the

BOLD signal. Comparing the activity profile of these signals at different

spatial points in the brain, via correlation measures such as Pearson’s



6.2 using structure to predict function 116

correlation coefficient [134], allows conclusions to be made about how the

different regions of the brain are functionally connected. This is typically

represented as a matrix, analogously to SC.

The fMRI data used in this chapter is resting state activity readings

from 10 individual HCP subjects, in the form of the BOLD signal, approx-

imately spanning 52.8 minutes. In the same way as Demirtaş et al. [48],

to process the data into a FC matrix the BOLD signal time series for each

region of interest are first z-scored (quantifying how much the data varies

from the mean in terms of a signed multiple of the standard deviation) and

then the correlation between each pair of time series is computed via the

Pearson correlation coefficient. Similarly to the structural connectivity data,

the FC matrices from these 10 subjects are then averaged to give a single

matrix.

Figure 30: Functional connectivity matrix derived from data averaged from

10 HCP subjects.

Figure 30 shows a visual representation of this matrix, with areas

of higher correlation coloured in yellow and areas of lower correlation
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coloured in blue. This is the empirical FC data that we are aiming to

replicate through simulation of neural mass models.

Distance Data

In order to incorporate axonal delays into the models, we assume that the

delay time is the time taken for information to propagate along the axonal

fibres between regions. To compute this, we require the lengths of the paths

between each region. This data is acquired via the dMRI processes ex-

plained above in Section 6.2.1. Once again, the path lengths for 10 HCP

subjects is averaged to give a single data set.

Figure 31: Path length data averaged from 10 HCP subjects, showing the

average distance (in metres) between each region of the DK atlas.

As it is the intention to simulate with a time unit of seconds, the distance

data is given in metres and we assume that the propagation velocity is in

metres per second. Figure 31 visualises the data in the form of a matrix,

similarly to the structural and functional connectivity data seen above.
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6.2.2 Eigenmode Fitting

The structural connectivity matrices that are used in neural modelling play

a huge part in governing the solutions and stability of the models that

they are incorporated in, whether they are derived from real structural

data, or are based entirely on a user-defined connectivity function. This

can be used advantageously to engineer the simulation output so that it

may conform to empirical FC data. As seen in Chapter 3 (Section 3.2),

the steady state stability behaviour of an arbitrary non-linear network can

be determined by the eigenvalues of the non-local connectivity matrix, w.

When the real part of specific eigenvalues of the Jacobian of the linearised

network equations become positive, thereby pushing the system over the

instability threshold, the resulting simulation output is reflective of the

corresponding structural eigenmodes. If a parameter set for a given model

can be determined, such that it excites specific structural eigenmodes

that explain empirical FC to a desired degree, then it is reasonable to as-

sume that the model output will give a good approximation of empirical FC.

Tewarie et al. [164] use an approach where they consider whether

an empirical FC matrix can be explained by a linear combination of the

eigenmodes of the structural matrix. To build this prediction of the FC,

matrices were generated from each eigenvector of the SC matrix by taking

the outer product of the eigenvector with itself. A non-linear least squares

fitting algorithm was then used to establish the linear combinations of

these matrices that most accurately fit the empirical FC matrix. Another

method for generating these matrices for each eigenvector is to consider

the cosine of the phase differences, as seen in [44]. For a given eigenvector,

vp, of length N, the columns of the corresponding matrix, Mp, are given by

Mp
i = cos

(
π
(
vp − vp

i
))

, (153)
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for i = 1, . . . , N. The multiplication by π allows the values of the matrix to

be in the range [0, 1]. This is the method that will be used in this thesis as

simulation results appear to be better reflected by the cosine predictions

than the outer product predictions.

In order to determine a set of eigenmodes that best predict the empirical

FC, the single best-fitting mode is found first and then consecutively

built upon by adding in one mode at a time, each time locating the next

best-fitting mode. To measure the goodness of fit, the adjusted coefficient

of determination (or adjusted R2) at each stage is considered. This value

is the proportion of the variance in the empirical FC that is explained by

the structural eigenmode fit, and is adjusted to account for the change

in number of modes. An R2 of 0 shows that the fit explains none of the

variance of the empirical FC, while an R2 of 1 means the model is a perfect

fit. For the data introduced in Section 6.2.1, the eigenmode fitting process

reveals that although the ‘logged’ matrices depict a greater degree of

structure, the R2 of the fit decreases as the offset value, A, tends to 0 from

above. Hence, we consider an offset value of A = 1 in order to balance

the exposure of structure versus a higher R2. As an example, the first 5

best-fitting eigenmodes of this matrix to the empirical FC data are the 11th,

39th, 3rd, 68th and 66th eigenmodes. This fit yields an R2 value of 0.3575.

We note here that the ordering of the eigenmodes is with respect to the

sorted order of the eigenvalues of the SC matrix, with the 1st eigenvalue

being the largest and the 68th being the smallest.

Although this approach is useful in highlighting the eigenmodes

that best fit the empirical FC, it is completely independent of any models

of neural activity. It must be noted that just because a model can generate

solutions that give a good fit to the empirical FC, it does not necessarily

mean that the model output is a good reflection of brain data, and vice

versa.
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6.3 a network of wilson-cowan nodes

Before exploring a next-generation neural mass model, it is important to

study the existing models of neuronal activity so as to have a base to com-

pare to. One of the most prevalent models in the history of neural mass net-

works is the Wilson-Cowan model, as introduced in Chapter 2 (Section 2.3.1).

Naturally, the Wilson-Cowan model supports oscillatory solutions, which

can be interpreted as naive representations of brain rhythms. In this section,

we introduce a two-population model of neuronal activity and explore the

dynamics that arise when it is posed on a realistic brain atlas, with connec-

tivity and distance data provided by the HCP.

6.3.1 The Model

In [1, 164], the authors consider a network of neural masses whose dynamics

are governed by the two-population Wilson-Cowan model, given by

d
dt

τEEi (t)

τI Ii (t)

 = −

Ei (t)

Ii (t)

+ f

wEEEi (t) + wEI Ii (t) + P + ∑N
j=1 wijEj (t)

wIEEi (t) + wI I Ii (t)

 .

(154)

Here, Ei and Ii refer to the mean firing rates of the excitatory and inhibitory

populations at brain location i = 1, . . . , N, τa are time-scaling constants

(where a ∈ {E, I}), P is a constant external excitatory input, f is the stan-

dard sigmoidal response function (see Section 2.3.2) used throughout this

thesis (with steepness, µ, and threshold, θ), wab are the local coupling

strengths between populations (where a, b ∈ {E, I}), and wij are the non-

local white-matter connections from region i to region j. The inhibitory con-

nections in this model are purely local, with only the excitatory connections

affecting the non-local dynamics.
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Incorporation of Delays

The model presented above does not contain delays; however, it can be

extended to incorporate distance-dependent delays by changing the sum-

mation term in the first equation to

N

∑
j=1

wijEj

(
t −

Dij

v

)
, (155)

where Dij is some measure of distance between region i and region j, and v

is the axonal conduction velocity. We make the assumption that v is constant

and identical for all paths.

6.3.2 Linear Stability Analysis

In order for oscillations to arise in the solution, it is useful to locate a pa-

rameter regime where the system has undergone a Hopf bifurcation. Using

the linear stability analysis of non-linear networks presented in Chapter 3

(Section 3.2), the eigenvalue problem for the network can be constructed in

terms of the eigenvalues of the SC matrix, w.

Firstly, Eq. (154) can be written in the form

d
dt

xi = F (xi) + G
(

wlocxi + si + ρ
)

, si =
N

∑
j=1

wijH
(
xj
)

, (156)

with F (x) = −Γ−1x, G (x) = Γ−1 f (x),

xi =

Ei

Ii

 , H(x) =

E

0

 , Γ =

τE 0

0 τI

 , wloc =

wEE wEI

wIE wI I

 , ρ =

P

0

 .

Using this notation, the steady state of the network is given by the solution

to

xi = f
(

wlocxi + si + ρ
)

, si =
N

∑
j=1

wijH
(
xj
)

. (157)
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From Eq. (55), we define the matrices

DF̃i = Γ−1
[
−I2 + D f

(
wlocxi + si + ρ

)
wloc

]
, (158)

DG̃i = Γ−1D f
(

wlocxi + si + ρ
) 1 0

0 0

 , (159)

where I2 is the 2 × 2 identity matrix and D f (x) is the diagonal matrix

whose diagonal entries are given by [D f (x)]ii = f ′
(
xi). Imposing a row-

sum normalisation condition on the SC matrix (∑j wij = 1 for all i =

1, . . . , N), the dependence on i is removed from DF̃i and DG̃i, and the steady

state xi now becomes the homogeneous steady state xi = x, where x is the

solution to

x = f
(

wlocx + H (x) + ρ
)

. (160)

Letting the eigenvalues of w be denoted by βp, p = 1, . . . , N, the full spec-

trum of eigenvalues, λ, can be generated for the network by solving the

eigenvalue problem E (λ; p) :=
∣∣∣λI2 − DF̃ − βpDG̃

∣∣∣ = 0. Writing DF̃ +

βpDG̃ as a new matrix A (p), the eigenvalue equation can be written in the

traditional form |λI2 −A (p)| = 0, where

A (p) = Γ−1

I2 − D f
(

wlocx + H (x) + ρ
) wloc +

βp 0

0 0

 , (161)

for p = 1, . . . , N. This has solutions λ = λ± (p), where

λ± (p) =
1
2

[
Tr (A (p))±

√
Tr (A (p))2 − 4 det (A (p))

]
. (162)

A Hopf bifurcation (λ = iω, for some ω ∈ R \ {0}) occurs when both

Tr (A (p)) = 0 and det (A (p)) > 0.

In the presence of delays, the eigenvalue problem becomes a transcendental

equation under the replacement

βp → βp (λ) =
N

∑
i=1

N

∑
j=1

wij e−λ
Dij
v γ

p
i ζ

p
j , (163)

where γp and ζ p are the pth normalised left and right eigenvectors of w,

respectively, such that they form a dual basis of the eigenspace of w. To

solve the delay problem, the use of a numerical non-linear equation solver

is required.
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6.3.3 Results

The linear stability analysis presented in the previous section relies on the

imposition of a row-sum normalisation condition on the SC matrix. This

condition greatly aids in simplifying the search for a parameter regime that

allows the system to undergo a Hopf bifurcation. Not only does it facilitate

the existence of a homogeneous steady state, but it also transforms the size

2N × 2N eigenvalue problem into N individual 2 × 2 eigenvalue problems

(see Section 3.2 for a full explanation of why this is possible). This allows

for the easy distinction between the eigenmodes of the SC matrix that

are causing the system to become unstable. As discussed in Section 6.2.1,

normalisations of this kind are commonly applied to structural connectome

data to ensure consistency across the data of different subjects and reduce

the effect of confounds reflecting algorithmic choices [159, 66].

To start, we consider the model in the absence of delays. For the SC

matrix, we select the log transformed data (as explained in Section 6.2.1)

with an offset value of A = 1. The core model parameter values, that

remian unchanged for the rest of this section, are the same as those used by

Tewarie et al. [164], who base their choices on previous work by Abeysuriya

et al. [1] and Deco et al. [45]. These are detailed below in Table 2.



6.3 a network of wilson-cowan nodes 124

Parameter Description Value

τE Excitatory time scale 0.01

τI Inhibitory time scale 0.02

wEE Local excitatory-to-excitatory coupling 3.5

wEI Local inhibitory-to-excitatory coupling -2.5

wIE Local excitatory-to-inhibitory coupling 3.75

wI I Local inhibitory-to-inhibitory coupling 0.0

µ Firing rate steepness 4.0

θ Firing rate threshold 1.0

Table 2: Wilson-Cowan network parameters, based on those used in [164].

This leaves the constant excitatory drive parameter, P, which can be tuned

to cause the system to undergo a Hopf bifurcation, leading to oscillatory

solutions. In the absence of delays, the order of the eigenvalues of the SC

matrix (β1 > β2 > . . . > βN) is preserved by the eigenvalues of the system,

meaning that for each complex conjugate pair of eigenvalues, λ±, the real

part follows λ± (1) > λ± (2) > . . . > λ± (N). No matter what parameters

are selected, this order is always preserved, thereby resulting in the first

eigenmode of the SC matrix always crossing the imaginary axis first. This

is illustrated in Figure 32, which depicts the entire spectrum of eigenvalues

for a variety of values of P.
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Figure 32: Eigenvalue spectrum of the Wilson-Cowan network in the ab-

sence of delays, computed around the steady state, x, for a range

of values of the excitatory drive parameter, P. The conjugate pair

of eigenvalues corresponding to the first eigenmode of the SC ma-

trix cross the imaginary axis at the critical value of P∗ = 0.183077,

resulting in a Hopf bifurcation.

It is evident that as P is increased, the real part of the spectrum

also increases. At the critical value of P∗ = 0.183077, the spectrum

crosses the imaginary axis, led by the conjugate pair of eigenvalues

corresponding to the first eigenmode of the SC matrix. This means that

it is impossible to excite any specific eigenmodes that might yield a bet-

ter simulation output, as predicted by the methods outlined in Section 6.2.2.

In order to allow a greater degree of flexibility when it comes to ex-

citing different eigenmodes, axonal delays can be introduced into the

system. Eq. (155) shows the typical format of these distance-dependent

delays; however, it has been shown by Tewarie et al. [164] that very little

change to the ordering of the eigenmodes occurs unless an additional
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constant offset delay is also introduced. This results in the delay term now

taking the form
N

∑
j=1

wijEj

(
t −
(

τ0 +
Dij

v

))
, (164)

where τ0 is the offset delay. Ideally, this offset delay would not be present in

the model as it is not as physically relevant (as explained in Section 2.3.2).

Some authors attribute it to representing a synaptic and dendritic process-

ing delay [125], though it is typically incorporated in firing rate models as

it can allow for dynamics similar to those seen in simulations of large-scale

spiking networks [142]. We select the axonal conduction velocity, v, to be

10m s−1, in line with [164, 45].

For this system of equations, as the offset delay is increased, it acts to rotate

the spectrum respective to each half of the imaginary plane. An example of

this can be seen in Figure 33.

Figure 33: Eigenvalue spectrum of the Wilson-Cowan network with delays,

computed around the steady state, x, for a range of values (be-

tween 0 and 0.03 seconds) of the constant offset delay, τ0. The

excitatory drive parameter, P, is fixed with value P = 0.1868.

While this still restricts the ability to excite any specifically chosen eigen-

modes, it does allow the system to be excited from the opposite end of the
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spectrum to the non-delay case, yielding more opportunity for finding pa-

rameter regimes that generate solutions which emulate empirical FC data.

As stated in Section 6.2.2, the 68th and 66th eigenmodes are both in the list

of the top five best-fitting eigenmodes, therefore τ0 can be utilised to push

these eigenmodes unstable, amongst others at the lower end of the spec-

trum. It should be noted that the linear theory only provides a prediction

of the behaviour close to the point of bifurcation. Due to the nature of the

spectrum, it is extremely difficult, if not impossible, to simultaneously ex-

cite just the eigenmodes indicated by the fitting prediction. As the system

is pushed further away from bifurcation, the linear theory breaks down and

yields little information as to how the unstable eigenmodes will interact

with each other.

To find a parameter regime that yields the results that best reflect the em-

pirical FC, we first fix the offset delay, τ0, at a point where the spectrum

is rotated enough to excite the system from the lower end of the spectrum.

An appropriate value for which this occurs is τ0 = 0.013s, also leading

to the magnitude of the imaginary part of the leading eigenvalues to be

around 80. This yields oscillations that have a frequency of around 12Hz,

which sits on the upper end of the alpha band. Next, slowly increasing

the excitatory drive parameter, P, over a range of values, we generate a

simulation output for each value. This is done efficiently by utilising the

DelaySparseRungeKutta32Solver solver from the NFESOLVE suite. As P is

increased, more and more eigenvalues become unstable. The amplitude en-

velope correlation (AEC) [23] can then be computed, for a variable of choice,

to generate FC matrices for each data set. This is done by first computing

the envelope of each node’s signal by taking the absolute value of the ana-

lytic signal, which we compute by making use of MATLAB’s built-in hilbert

function. Following this, a Pearson correlation is performed between each

pair of envelopes to build a FC matrix. For each P value, we compare the

outputted AEC FC matrix to the empirical FC data by means of a Pearson
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correlation. Figure 34a shows this Pearson correlation coefficient, r, for each

value of P, where the variable of interest is the excitatory firing rate, E.

(a) Pearson correlation of the AEC of the

model output compared to empirical

FC.

(b) Spectrum of eigenvalues for the de-

layed Wilson-Cowan network with

P = 0.2104, computed around the

steady state, x.

Figure 34: On the left, Figure (a) depicts the Pearson correlation coefficient,

r, for the comparison of the AEC of the simulated excitatory fir-

ing rate (E) output signals against the empirical FC, computed

for a range of values of the excitatory drive parameter, P, and

for the fixed offset delay value τ0 = 0.013s. Highlighted in the

red circle is the maxima of the plot, indicating that a value of

P = 0.2104 yields the simulation results that most emulate the

empirical FC. Figure (b) shows the eigenvalue spectrum for this

value of P, computed around the steady state, x.

The value of P for which the simulation output yields the closest match

to empirical FC occurs at P = 0.2104, as indicated by the red circle, with the

Pearson r value being r = 0.2307. The entire spectrum for this parameter

regime is depicted in Figure 34b. The unstable eigenmodes of the system

are led by 68th eigenmode and tailed by the 53rd eigenmode, with the ex-

clusion of the 54th mode which has not yet crossed the imaginary axis. The

eigenmodes in between are not necessarily ordered consecutively. Although
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the linear theory does not show how these modes interact, it is clear that in

order to get a simulation output that is most reflective of the empirical data,

a great deal of modes must be pushed unstable and far from bifurcation.

(a) Simulated FC matrix. (b) Empirical FC matrix.

Figure 35: Figure (a) shows the simulated FC matrix for the excitatory firing

rate variable E, generated via AEC, with parameters P = 0.2104,

τ0 = 0.013s and other parameters given in Table 2. On the right,

Figure (b) shows the empirical FC matrix, as introduced in Sec-

tion 6.2.1. The Pearson r value that measures the correlation be-

tween the two matrices, as shown in Figure 34, is r = 0.2307.

The simulated FC matrix can be seen in Figure 35, alongside the empirical

FC matrix from Section 6.2.1. Although there are aspects of the empirical

FC that come through in the simulated data, it is evident that the Wilson-

Cowan model clearly has its limitations when it comes to producing output

that is reflective of observed functional connectivity patterns.

6.4 next-generation neural mass model

Models such as the Wilson-Cowan model have been around since the 1970s

and have been employed in a number of different settings to simulate brain

activity. However, the explanatory power of such models can only go so far.



6.4 next-generation neural mass model 130

Recent developments in neural modelling have led to more advanced and

descriptive models emerging in the community. The next-generation model

that we introduce in this section is based on work pioneered by Coombes,

Byrne, and others [36, 25, 26, 28, 29]. They use an approach that has been

explored by Montbrió et al. [124] to reduce a network of quadratic integrate-

and-fire (QIF) neurons in the thermodynamic limit, using the so-called Ott-

Antonsen ansatz [131]. This work is taken further by Byrne and Coombes

by adapting the model to include intrinsic biological mechanisms such as

synaptic reversal potentials and gap-junction coupling at the local nodal

level, and axonal delays at the larger spatial scale. This model has already

been used to describe phenomena such as beta rebound [27], whereby there

is an observed decrease in beta band oscillations during body movement,

followed by an increase above baseline once movement has ceased, before

settling back to the default state.

It is our aim in this section to explore the model in a network setting and

to replicate empirical functional connectivity results, investigating the dif-

ferences when compared to the Wilson-Cowan model seen in the previous

section (Section 6.3).

6.4.1 The Model

Chemical synapses, as described in Chapter 2 (Section 2.1), allow for the

transmission of currents between neurons. These currents are best modelled

using event-driven interactions. Denoting the mth firing time of the jth

neuron by Tm
j , the current received by a given neuron, i, from neuron j is

proportional to ∑m∈Z s
(

t − Tm
j

)
. Here s is the temporal shape of the post-

synaptic response generated by the firing event. Typically, this is chosen to

be a Green’s function of a linear differential operator Q, thereby satisfying

the equation Qs = δ, where δ is the Dirac delta function. Although there
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are several common choices of s (as explored by Byrne et al. in [25, 27]),

here we consider the α-function response given by

s (t) = α2t exp (−αt) H (t) , (165)

where H (t) is the Heaviside step function. An example of this curve with

various α values is depicted in Figure 36.

Figure 36: Example of the α-function response curve given by Eq. (165), with

three different values of α.

This choice in s yields the corresponding linear differential operator

Q =

(
1 +

1
α

d
dt

)2

, (166)

where α−1 is the time-to-peak of the synaptic response.

On the other hand, electrical synapses allow for the post-synaptic neuron

to directly “feel” the shape of the action potential being sent by the

pre-synaptic neuron. As outlined in Chapter 2 (Section 2.1), this is

facilitated by conductive channels called gap junctions. Following a simple

ohmic model, for two neurons with voltages vi and vj, the current flowing

between neuron i and j is proportional to the difference in voltage between

the post- and pre-synaptic neuron, i.e., vj − vi.
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At the microscopic level, consider a network of N QIF neurons with

gap junction coupling, synaptic coupling, and synaptic reversal potentials.

The voltage, vi, of the ith neuron, i = 1, . . . , N, with inputs from the rest of

the network, is described by the system

τ
dvi

dt
= ηi + v2

i +
κv

N

N

∑
j=1

(
vj − vi

)
+ Ii, (167)

where τ is the membrane time constant, ηi are constant background drives,

κv is the gap junction coupling strength, and Ii is a synaptic input current.

This current is assumed to take the form Ii = g (t)
(
vsyn − vi

)
, where vsyn is

the synaptic reversal potential of the neurons, and g is the overall conduc-

tance. The synaptic reversal potential is the value of the membrane potential

for which there is no net transfer of ionic current from one side of the post-

synaptic membrane to the other. As the cell receives and transmits signals,

it seeks to bring its voltage to an equilibrium of this value. If the synaptic

current Ii is positive (negative) then the synapse is referred to as excitatory

(inhibitory). The global conductance, g, is mediated by the equation

Qg =
κs

N

N

∑
j=1

∑
m∈Z

δ
(

t − Tm
j

)
. (168)

Here, Q is the linear differential operator given by Eq. (166), and κs is the

synaptic coupling strength. This choice of Q is to best capture the temporal

characteristics of the synaptic response. The mth firing time of the jth neu-

ron is defined implicitly by vj

(
Tm

j

)
= vth. The network neurons are subject

to reset vi → vreset at the firing times Tm
i . The threshold and reset values

are considered to be vth → ∞ and vreset → −∞. The drives, ηi, are selected

such that they are randomly drawn from a Lorentzian distribution

L(η) =
1
π

∆

(η − η0)
2 + ∆2

, (169)

with center η0 and half-width ∆. These two parameters can be thought of

as setting the level of excitability and the degree of heterogeneity in the
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network, respectively.

Using the methods outlined in [124, 29], we consider the network in the

thermodynamic limit. As N → ∞, the state of the network at time t can

be described by a continuous probability density function ρ (v|η, t). This

satisfies the continuity equation

∂ρ

∂t
+

∂ (ρv̇)
∂v

= 0, (170)

which arises from the conservation of oscillators. A realisation of the system

is

τv̇ = η + v2 − κvv + κvV + g
(
vsyn − v

)
, (171)

Qg = κsR, (172)

where V is the average voltage, given by

V (t) = lim
N→∞

1
N

N

∑
j=1

vj, (173)

and R is the population firing rate, given by

R (t) = lim
N→∞

1
N

N

∑
j=1

∑
m∈Z

δ
(

t − Tm
j

)
. (174)

Now, using a Lorentzian Ansatz [124], we assume that ρ (v|η, t) has a solu-

tion of the form

ρ (v|η, t) =
1
π

x (η, t)

(v − y (η, t))2 + x (η, t)2 . (175)

For a fixed η, the firing rate (number of spikes per unit time) can be calcu-

lated as

r (η, t) = ρ (v → ∞|η, t) v̇ (v → ∞|η, t) . (176)

This yields the result

x (η, t) = πτr (η, t) . (177)

After averaging over the distribution of single neuron drives, L (η), the total

population firing rate can be written as

R (t) =
1

πτ

∫ ∞

−∞
x (η, t) L (η)dη. (178)
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Similarly, we gain an expression for V (t) by exploiting the pole structure

of Eq. (175) and taking the contour integral of vρ (v|η, t) over v, then once

again averaging over L (η). This yields

V (t) =
∫ ∞

−∞
y (η, t) L (η)dη. (179)

For fixed η, substituting Eq. (175) into the continuity equation, Eq. (170),

and balancing powers of v shows that x and y obey two coupled differential

equations that can be written as

τẇ = − (g + κv)w + i
(

η + κvV + vsyng − w2
)

, (180)

where w (η, t) = x (η, t)+ iy (η, t). Finally, using the fact that L (η) has poles

at η± = η0 ± i∆, the expressions for R (t) and V (t) can be evaluated using

contour integration to give

R (t) =
1

πτ
x (η−, t) , (181)

V (t) = y (η−, t) . (182)

This allows for the substitution of w (η−, t) = πτR (t) + iV (t) into Eq. (180),

yielding

πτ2Ṙ + iτV̇ = − (g + κv)πτR + ∆ + 2πτRV

+ i
(
− (g + κv)V + η0 + κvV + vsyng − π2τ2R2 + V2

)
. (183)

Simplifying and balancing real and imaginary terms, the equations for the

next-generation neural mass model with gap junction coupling, synaptic

coupling, and synaptic reversal potentials, are given by

τṘ = 2RV +
∆

πτ
− R (g + κv) , (184)

τV̇ = η0 − π2τ2R2 + V2 + g
(
vsyn − V

)
, (185)

Qg = κsR. (186)

Multiple Interacting Sub-Populations

Many models, such as the Wilson-Cowan equations (Eq. (154)), consider

multiple sub-populations of neurons. Most commonly, an excitatory pop-

ulation and an inhibitory population. This can be incorporated within the
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next-generation model by generalising the mean-field equations (Eqs. (184)

to (186)) to treat electrical connections between sub-populations E (excita-

tory) and I (inhibitory), giving the equations

τaṘa = 2RaVa +
∆a

πτa
− Ra ∑

b∈{E,I}
(gab + κv

ab) , (187)

τaV̇a = ηa
0 − π2τ2

a R2
a + V2

a

+ ∑
b∈{E,I}

κv
ab (Vb − Va) + ∑

b∈{E,I}
gab

(
vab

syn − Va

)
,

(188)

Qabgab = κs
abRb, (189)

where a, b ∈ {E, I}, Qab =
(

1 + α−1
ab

d/dt
)2

, and the subscript ab dictates

that b is the pre-synaptic sub-population and a is the post-synaptic sub-

population. Each sub-population, a, has its own time scale, τa, and back-

ground drives drawn from a Lorentzian distribution with center ηa
0 and

half-width ∆a. There are now three gap junction coupling strengths (as

κv
EI = κv

IE), four synaptic coupling strengths, four synaptic reversal poten-

tials, and four synaptic time scales, that mediate the interactions between

populations.

Networks of Populations

The mean-field model (Eqs. (184) to (186)) characterises the dynamics of a

single population of neurons. This can be extended to describe an inter-

connected network of N populations, which can be attributed to different

areas of the brain. Let i denote the ith population (or ‘node’) in the network,

where i = 1, . . . , N. The dynamics of each node is governed by the orig-

inal equations; however, to facilitate the long-range connections between
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nodes, an additional g variable, named gext, is introduced. The model now

becomes

τṘi = 2RiVi +
∆

πτ
− Ri (gi + gext + κv) , (190)

τV̇i = η0 − π2τ2R2
i + V2

i + (gi + gext)
(
vsyn − Vi

)
, (191)

Qgi = κsRi, Qextgext = κs
ext

N

∑
j=1

wijRj, (192)

where Qext =
(

1 + α−1
ext d/dt

)2
, κs

ext is the non-local synaptic coupling

strength, and wij are the entries of the non-local connectivity matrix

w. Typically, when working with real connectivity data, the self-to-self

connections in the matrix are zeroed. Hence, the self-to-self connections are

governed by the evolution equations for gi, while the external variable gext

is introduced to govern the non-local dynamics.

Analogously, the excitatory and inhibitory sub-population mean field

model, given by Eqs. (187) to (189), can also be extended to a network

of N interacting sub-populations by introducing the non-local interaction

variable, gext, along with its corresponding parameters αext and κs
ext. In

this case, the long-range connections are considered to only apply to the

excitatory population. The evolution equation of gext is dependent on the

excitatory population firing rate, RE.

As we wish to compare results to the Wilson-Cowan network intro-

duced in Section 6.3, the excitatory-inhibitory network is the version of the

next-generation model that we will be exploring in this section.

Incorporation of Delays

Similarly to the Wilson-Cowan network in Section 6.3.1, delays can be incor-

porated into the network by altering the long-range connection term. For

the next-generation model, the long-range connections are mediated by the
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evolution equation of the external variable gext, as shown in Eq. (192). With

the inclusion of delays, this equation becomes

Qextgext = κs
ext

N

∑
j=1

wijRj

(
t −

Dij

v

)
, (193)

where, as in Section 6.3.1, Dij is some measure of distance between node i

and node j, and v is the axonal conduction velocity. Note that here we do

not include the biologically unrealistic offset delay (τ0) that was present in

the Wilson-Cowan model.

6.4.2 Linear Stability Analysis

As explained previously, to best replicate brain data we require oscillatory

solutions to arise from the model. A simple way to do this is to consider

the homogeneous steady state of a system and use the linear stability tech-

niques seen throughout this thesis to locate a Hopf bifurcation. Here, we ap-

ply these techniques and present an analysis of the next-generation model,

starting with the single population model. This analysis is then extended to

the network in a similar fashion to the Wilson-Cowan model (Section 6.3.2),

allowing for the overall system to be reduced into N independent systems,

each of which are representative of an eigenmode of the long-range connec-

tivity matrix, w.

Single Population Model

For the single population mean-field model, described by Equations (184)

to (186), the steady state of the system, given by the triple
(

R, V, g
)
, is the

solution to the non-linear equations

0 = 2R V +
∆

πτ
− R

(
κsR + κv) , (194)

0 = η0 − π2τ2R2
+ V2

+ κsR
(
vsyn − V

)
, (195)

along with g = κsR. As R is a firing rate, it should be noted that it is

required to be positive.
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Consider the solution, (R, V, g) =
(

R, V, g
)
+ (R0, V0, g0) eλt, arising from

a small perturbation to the steady state. Firstly, substituting into Eq. (186)

and linearising around the steady state yields(
1 +

λ

α

)2

g0 = κsR0, (196)

making note that this can be rearranged to give g0 = κsR0 (1 + λ/α)−2. Sub-

stituting into the remaining equations, Eqs. (184) and (185), and again lin-

earising around the steady state, gives the two dimensional system of equa-

tions

A (λ)

R0

V0

 =

 −Rg0(
vsyn − V

)
g0

 , (197)

where A (λ) = τλI2 − J, and J is the Jacobian matrix of Eqs. (184) and (185)

evaluated at the steady state. Using the fact that g = κsR, this matrix is

given by

J =

2V − κsR − κv 2R

−2π2τ2R 2V − κsR

 . (198)

Applying Cramer’s rule to Eq. (197) yields the solution

R0 =
1

|A (λ)|

∣∣∣∣∣∣ −Rg0 −2R(
vsyn − V

)
g0 τλ − 2V + κsR

∣∣∣∣∣∣ (199)

=
g0

|A (λ)|

∣∣∣∣∣∣ −R −2R(
vsyn − V

)
τλ − 2V + κsR

∣∣∣∣∣∣ (200)

=
g0

|A (λ)|R
(
τλ + κsR − 2vsyn

)
. (201)

Using the earlier result that g0 = κsR0 (1 + λ/α)−2, and requiring that R0

has a non-trivial solution, we may simplify further to give the eigenvalue

equation

E (λ) := |A (λ)|
(

1 +
λ

α

)2

+ κsR
(
τλ + κsR − 2vsyn

)
= 0. (202)

Expanding this out fully yields a fourth order polynomial equation in λ.

Assuming that λ = ν + iω, where ν, ω ∈ R, a Hopf bifurcation occurs
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when ν = 0 and ω ̸= 0. To locate a Hopf bifurcation, we must solve the

simultaneous equations

Re (E (iω)) = 0, (203)

Im (E (iω)) = 0, (204)

for ω ̸= 0. If ω = 0, then the system undergoes a fold bifurcation; however,

this does not lead to dynamic solutions.

E-I Sub-Population Network Model

The analyses seen thus far (in Sections 3.2 and 6.3.2) can be extended to the

two sub-population network in order to generate eigenvalue spectra for the

model. As the evolution equations for the variables gab, where a, b ∈ {E, I},

are second order, we introduce dummy variables hab for each equation, such

that (
1 +

1
αab

d
dt

)
gab = hab, (205)(

1 +
1

αab

d
dt

)
hab = κs

abRb, (206)

which reduces the second order ODEs, Qgab = κs
abRb, into two first order

ODEs for each ab pair. This is also applied to the external variable, gext,

that mediates the non-local connections. After reducing the second order

equations, the system is now made up of 14 first order ODEs. This system

can be written generally in the form

d
dt

xi = F (xi) +
N

∑
j=1

wijG
(
xj
)

, i = 1, . . . , N, (207)

where xi ∈ R14, which is similar to that seen in Section 3.2.

However, as the coupling between sub-populations in the next-

generation model is mediated slightly differently, we use this

altered form that does not include the wloc matrix. Here, x =

(RE, VE, RI , VI , gEE, gEI , gIE, gI I , gext, hEE, hEI , hIE, hI I , hext). The first four

terms of F (x) are given by the right-hand side of Eqs. (187) and (188),
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under the replacement gEE → gEE + gext. The remaining terms come

from Eqs. (205) and (206), along with the same equations for gext and hext,

except for the non-local connections term in the last equation, which is

handled in G. This is given by G (x) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, κs
extRE).

Applying the linear stability analysis techniques explored in Section 3.2,

the eigenvalue equation can be reduced down to N independent 14 × 14

determinant problems of the form

E (λ; p) :=
∣∣λI14 − DF − βpDG

∣∣ = 0, p = 1, . . . , N, (208)

where DF and DG are the corresponding Jacobian matrices of F and G, and

βp, p = 1, . . . , N, are the eigenvalues of the non-local connectivity matrix,

w. Again, a Hopf bifurcation is located by solving Eqs. (203) and (204) for

Eq. (208), for any p = 1, . . . , N.

Analogously to the Wilson-Cowan model, the introduction of delays into

the next-generation model, shown by Eq. (193), can be accounted for in the

stability equation by the replacement βp → βp (λ), depicted in Eq. (163).

6.4.3 Results

In order to compare the results of the next-generation model to the

Wilson-Cowan model (see Section 6.3.3), this section will consider the

delayed excitatory-inhibitory network version of the model. Similarly to

the Wilson-Cowan model, the imposition of the row-sum normalisation on

the connectivity matrix allows for the eigenvalue equation of the system to

be reduced from a 14N by 14N determinant problem to N individual 14 by

14 determinant problems. This facilitates the much simpler computation of

eigenvalues, as the numerical stability of the determinant calculation for

large near-singular matrices can yield inaccurate results.

A major drawback of the Wilson-Cowan model is the need to incor-

porate a constant offset delay in order to excite a variety of eigenmodes. As
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explained in Section 6.3.3, this offset delay does not have a natural physical

interpretation, and is often only included in models to enable a richer

array of dynamics [142]. In comparison to this, the next-generation model

does not require the inclusion of this offset delay to generate intricate

solutions. This is incredibly powerful as it pushes the model closer to goal

of accurately recreating observed brain behaviour. For the remainder of

this section, we consider a conduction velocity value of 2m s−1. This is

slightly slower than the value of 10m s−1 used in the Wilson-Cowan results;

however, it is still within the 1-10m s−1 range that is commonly referred to

in the literature [51, 45].
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Parameter Description Value

τE Excitatory time scale 0.3

τI Inhibitory time scale 0.2

∆E Excitatory degree of heterogeneity 0.9

∆I Inhibitory degree of heterogeneity 0.9

κv
EI Inhibitory-to-excitatory gap junction coupling 0.05

κv
EI Excitatory-to-inhibitory gap junction coupling 0.05

κv
EI Inhibitory-to-inhibitory gap junction coupling 0.1

ηE
0 Excitatory degree of excitability 0.2

η I
0 Inhibitory degree of excitability 0.1

vEE
syn Excitatory-to-excitatory synaptic reversal potential 15.0

vEI
syn Inhibitory-to-excitatory synaptic reversal potential −5.0

vIE
syn Excitatory-to-inhibitory synaptic reversal potential 15.0

vI I
syn Inhibitory-to-inhibitory synaptic reversal potential −5.0

αEE Excitatory-to-excitatory synaptic time scale 10.0

αEI Inhibitory-to-excitatory synaptic time scale 2.0

αIE Excitatory-to-inhibitory synaptic time scale 10.0

αI I Inhibitory-to-inhibitory synaptic time scale 5.0

αext Long-range synaptic time scale 10.0

κs
EE Excitatory-to-excitatory synaptic coupling 0.5

κs
EI Inhibitory-to-excitatory synaptic coupling 0.2

κs
EI Excitatory-to-inhibitory synaptic coupling 0.4

κs
EI Inhibitory-to-inhibitory synaptic coupling 0.4

κs
ext Long-range synaptic coupling 0.2

Table 3: Next-generation network model parameters.

The other fixed parameters for this section are detailed in Table 3, and

have been selected such that the solutions arising from a Hopf bifurcation

oscillate with frequencies corresponding to the alpha band (8-12Hz).

Here, the excitatory-to-excitatory gap junction coupling parameter, κv
EE,
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is the chosen parameter of interest to be varied in order to push the

spectrum unstable. In a similar fashion to the results presented in

Section 6.3.3, we simulate the model for a variety of values of κv
EE (using the

DelaySparseRungeKutta32Solver solver) and subsequently compute the AEC

of each output, with the variable of interest being the excitatory firing rate,

RE. Each matrix is then compared by means of a Pearson correlation to the

empirical FC data. Figure 37a shows the Pearson r value for each value of

κv
EE. Indicated by the red circle is the maxima of this plot, highlighting that

a value of κv
EE = 0.106 gives the highest correlation value of the AEC matrix

of the output to the empirical FC. For this parameter set, the correlation

value is r = 0.3548.
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(a) Pearson correlation of the AEC of the

model output compared to empirical

FC.

(b) Spectrum of eigenvalues for the de-

layed next-generation network with

κv
EE = 0.106, computed around the

steady state, x.

Figure 37: Figure (a) shows the Pearson correlation coefficient, r, for the

comparison of the AEC of the simulated excitatory firing rate

(RE) signals against the empirical FC, computed for a range of

values of the excitatory-excitatory gap junction coupling strength

parameter κv
EE. The red circle indicates the maxima of the plot,

occurring at κv
EE = 0.106, at which the simulation results yield

the best fit to empirical FC. Figure (b) depicts the corresponding

eigenvalue spectrum, computed around the steady state, x, for

this value of κv
EE.

In comparison to the Wilson-Cowan results, which yielded a maximum

correlation value of r = 0.2307, this is a significant improvement. The

eigenvalue spectrum of the system, for this parameter set, is depicted in

Figure 37b. For illustration purposes, only the eigenvalues close to the sta-

bility border are shown. Following the same eigenmode ordering scheme

detailed in Section 6.2.2, the seven unstable eigenmodes are led by the 68th

eigenmode and tailed by the 62nd, with those in between appearing in de-

scending ordered. There are far less unstable eigenmodes here than in the

Wilson-Cowan results, which required fifteen unstable eigenmodes to give
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the AEC output with the highest correlation value. The corresponding AEC

matrix generated from the simulation output is shown below in Figure 38a,

alongside the empirical FC for comparison.

(a) Simulated FC matrix. (b) Empirical FC matrix.

Figure 38: Figure (a) shows the simulated FC matrix, generated via AEC,

for the excitatory firing rate variable (RE). Model parameters are

given in Table 3, along with κv
EE = 0.106. On the right, figure

(b) shows the empirical FC matrix, as introduced in Section 6.2.1.

The Pearson r value that measures the correlation between the

two matrices is r = 0.3514.

The Pearson correlation value for the next-generation results is signifi-

cantly higher than that of the Wilson-Cowan results, which is backed up ob-

servationally by the next-generation simulated FC reflecting the features of

the empirical FC far more than the Wilson-Cowan simulated FC. There are

several key landmarks that appear in both the next-generation simulated FC

and the empirical FC, mostly appearing in dark blue in the matrices shown

in Figure 38. It is important to note that the Pearson correlation value is

just one measure of similarity between the two matrices and is chosen here

purely to aid in informing the conclusions taken from the results. Upon vi-

sual inspection, it can be possible that two matrices look more similar than

a correlation measure indicates, or that the matrices do not look particularly

alike even though a correlation measure argues a high level of similarity. It
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is clear here that the next-generation model outperforms the Wilson-Cowan

in both respects, as the resulting FC matrix has a higher correlation value

and also visually appears to be far closer to the empirical FC matrix.

6.5 summary

This chapter has presented a selection of key results from the perspective

of neural mass modelling. Initially, we introduced the different modalities

of brain data (supplied by the HCP) and explored how SC and path length

data can be incorporated into models of neural activity in an attempt to

replicate FC data. Following on from this, we highlighted methods used

by Tewarie et al. [164] to break down the eigenstructure of an SC matrix

and apply a fitting algorithm to determine which eigenmodes best reflect

FC data. Although these methods are useful in highlighting eigenmodes

that could lead to better FC fits, in practice, it is usually difficult to locate

parameter regimes that excite just the desired eigenmodes in a dynamic

model, while also taking into account aspects such as the frequency of

the resulting oscillations and the biological plausibility of the selected

parameter values.

Section 6.3 proceeds to introduce and discuss the Wilson-Cowan

neural mass network model. Beginning with the model description, the

section then moves on to presenting the linear stability analysis of the

network steady state for the model. This uses key results from Section 3.2,

showing how the eigenvalue equation can be reduced to N independent

2 × 2 determinant problems, each in terms of a distinct eigenvalue of

the SC matrix. This reduction follows in a similar fashion under the

incorporation of delays in the system, except each 2 × 2 problem becomes

dependent on a distinct pair of left and right eigenvectors of the SC matrix,

and is transcendental in the eigenvalue, λ. Making use of this linear

stability analysis, we show that in the absence of delays, the eigenmodes
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can only be excited in descending consecutive order. To explore a wider

range of results, we show that it is necessary to consider the model with

the incorporation of axonal delays. However, a key drawback of the

Wilson-Cowan model is that it requires a constant offset delay to be added

to the space-dependent delays in order to excite a different eigenmode

pattern to the non-delay case. This offset delay, as discussed in Section 2.3.2,

is not as biologically realistic as the space-dependent delays, and is often

only included in models as it can yield richer dynamics, similar to those

seen in simulations of large-scale spiking networks [142]. To illustrate how

this offset delay affects the eigenvalue spectrum, we plot the spectrum

for a range of values of the offset delay. It becomes evident that as the

offset delay is increased, the spectrum rotates so that it can be excited

from the tail end, in ascending order, instead of the descending order of

the non-delay case. Selecting an appropriate value that gives the rotated

spectrum, we then proceed to simulate the model for a range of values

of the excitatory drive parameter, P, through the use of the solvers in the

NFESOLVE library. For each simulation, we use AEC to generate a FC

matrix from the excitatory firing rate variable (E) signals, and subsequently

compare it to the empirical FC data by means of a Pearson correlation. As

the aim is to best replicate the empirical FC matrix, we take the highest

correlation value, for the range of P considered, and plot a visualisation

of the simulated FC matrix next to the empirical FC matrix. The resulting

correlation value is determined to be r = 0.2307; however, upon visual

inspection of the two matrices shows, it is clear that they do not share a lot

of the structural elements present in the empirical FC matrix.

With the recent emergence of next-generation models of neural activ-

ity, comes the question of whether the Wilson-Cowan model can be

outperformed in a similar setting to that presented above. Section 6.4

begins by introducing the model developed by Coombes and Byrne [36].

This is based on techniques previously explored by Montbrió et al. [124].
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The derivation begins with a network of N QIF neurons that incorporates

gap junction coupling, synaptic coupling, and synaptic reversal potentials.

To make the bridge from microscopic to macroscopic dynamics, the

thermodynamic limit (N → ∞) of the network is considered. By means of

a Lorentzian ansatz, the model is finally reduced to a system of four first

order equations (due to the choice of α-function response yielding a second

order linear differential operator), with variables representing the average

firing rate, voltage, and global conductance of the population of neurons.

We then showed how this model can be extended to two sub-populations

(excitatory and inhibitory), followed by the construction of a network

of populations. An exploration of the linear stability analysis was then

undertaken, utilising the same technique as with the Wilson-Cowan model

to reduce the eigenvalue equation from a 14N × 14N determinant problem

to N individual 14 × 14 determinant problems. The incorporation of

delays into the model was also accounted for, making it clear that for the

next-generation model it was not necessary to include a constant offset

delay to excite a variety of different eigenmodes. In order to compare the

next-generation model to the Wilson-Cowan model, it was necessary to

locate a parameter regime which led to the simulation output exhibiting

oscillations occurring with similar frequency. Fixing all parameters except

for the excitatory-to-excitatory gap junction coupling parameter, κv
EE, we

then simulated the model for a range of κv
EE. Once again, taking the AEC

of the excitatory firing rate parameter (RE), FC matrices were generated for

each value of κv
EE and compared to the empirical FC by means of a Pearson

correlation in order to find the parameter regime that yielded solutions

that could best describe the empirical FC. The AEC FC matrix that gave

the best fit had a correlation value of 0.3514, which was significantly

higher than that of the Wilson-Cowan model. Visual inspection also

allowed the viewer to note the much more defined structural elements

of the AEC FC matrix, especially reflective of those seen in the empirical FC.
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The main observations and conclusions that can be drawn from this

chapter are that although the Wilson-Cowan model has been a cornerstone

in modelling and simulating neural activity, it clearly has its drawbacks.

The need for the inclusion of the biologically unrealistic constant offset

delay to match data at the network level, is a key characteristic in favour

of the next-generation model for this study. This is not to say that the

Wilson-Cowan model is inferior to the next-generation model; however,

in the context presented in this chapter, the results show that the next-

generation model can generate simulation output that is more reflective

of empirical FC data, and due to the large number of physiologically

meaningful parameters available to explore and the number of equations

present in the model, it has more scope to be used in different settings

and to generate a wider variety of solutions. Although the next-generation

model is marginally more computationally expensive to simulate than the

Wilson-Cowan model, it is more firmly rooted in biological reality and can

evidently generate desirable and relevant results.

There is also the question of whether it is realistic to consider only solutions

arising from instabilities of a steady state. The row-sum normalisation

of the SC matrix facilitates the existence of a homogeneous steady state

solution and allows for the simple computation of the system’s eigenvalues

via the linear stability analysis described in Section 3.2, which makes the

location of a dynamic model solution a straightforward task. However,

the disadvantage of this approach is that only considering solutions

near to bifurcation may restrict the scope of the results that are possible.

Conversely, there have been several studies around the brain and how it is

theorised to operate at a critical state [13, 137, 182, 14]. These explore the

relationship between criticality and models of neural networks. Deco et

al. [46, 47] specifically study the role criticality plays in the emergence of

resting state functional connectivity patterns produced by a network model,

and conclude that the brain appears to operate close to a critical state when

at rest.
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N E U R A L F I E L D S O N R E A L I S T I C C O RT I C A L D O M A I N S

7.1 introduction

This chapter will showcase the capabilities of the NFESOLVE library by util-

ising it to solve a variety of problems posed an a realistic cortical domain.

We explore three different models of neural activity with the inclusion of

space-dependent axonal delays. These models are the standard neural field

equation, the neural field equation with linear adaptation, and the next-

generation neural field model (as introduced for a network of neural masses

in Chapter 6). In each instance, we utilise data supplied by the Human

Connectome Project (HCP) to provide a simulation context closer to real-

ity. We present this data in Section 7.2, before moving on to explore the

specified models of neural activity and some example solutions that each

model yields. Supplementary material, such as movies of the presented

dynamic solutions, can be found at https://github.com/sammyjp/Thesis-

Supplementary-Material.

7.2 data

Similarly to the networks of neural masses explored in Chapter 6, this chap-

ter also aims to incorporate real brain data into simulations of neural field

models. These models are posed on a continuum domain, which for the
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scope of this body of work we select to be a cortical surface. The data

utilised in this chapter is once again supplied by the HCP. Before exploring

the specific models that will incorporate the data, this section will first detail

the chosen cortical mesh, along with the corresponding structural connec-

tivity and path length data. All data presented here is based on average

measurements taken from a single subject.

7.2.1 Cortical Mesh

To numerically solve continuum models of cortical activity, the spatial do-

main must be dicretised into a set of unique nodes (see Section 3.3 for more

details). The original mesh data supplied by the HCP is incredibly detailed

and contains 32, 492 nodes per hemisphere. In practice, it is extremely com-

putationally expensive to simulate a system with such a large number of

mesh points, especially with the incorporation of delays. The HCP have de-

veloped a powerful tool named Connectome Workbench [119] that allows

the user to manipulate, resample, and visualise HCP data. One of Con-

nectome Workbench’s key features is the ability to down-sample data to a

specified degree while preserving the sample space, allowing for the cor-

responding connectivity and path length data to also be down-sampled ac-

cordingly in the same sample space. When simulating, in order to compute

solutions in a viable time frame, ideally a balance should be struck between

computational efficiency and the degree of granularity that is present in the

mesh. We wish to preserve the geometric details of the brain, such as the

gyri and sulci, in order to push the simulations as close towards a realistic

setting as possible, but it is not necessarily required to use the full resolution

mesh to accurately represent such features.
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(a) Surface mesh of the left and right hemispheres of the cortex with 32, 492 nodes

per hemisphere.

(b) Surface mesh of the left and right hemispheres of the cortex with 2, 892 nodes

per hemisphere.

Figure 39: The contrast between the original HCP cortical mesh with a large

number of nodes and a down-sampled mesh with fewer nodes.

Visualisation generated using Connectome Workbench.

Figure 39 shows the original high-resolution mesh compared to a down-

sampled version containing only 2, 892 nodes per hemisphere. This level of

granularity has been selected due to the computational expense of simulat-

ing models with space-dependent delays on higher resolution meshes. It is

clear that although some of the detail is lost, the main mesh features are pre-

served. With the provision of higher computing power, the number of mesh

nodes could be increased to achieve a more accurate approximation to the

solution. However, as the computational complexity of the delay problem

scales in proportion to the square of the number of nodes in the mesh, it
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soon becomes a challenging computational problem to overcome. Although

the full lower-resolution mesh contains 2, 892 nodes per hemisphere, the

medial wall is not included in simulations, thereby reducing the node count

to 2, 652 per hemisphere.

7.2.2 Structural Connectivity

As introduced in Sections 2.4.1 and 6.2.1, a structural connectome describes

the strength of the long-range cortical connections. This is an important

data set that can easily be incorporated into neural field models to facilitate

the modelling of non-local interactions. In this chapter, we consider the

structural connectome from a single subject. This is visualised below in

Figure 40, with blue representing weak connections and yellow depicting

strong connections. The data has been normalised to take values on the

range [0, 1].

Figure 40: Structural connectome data from a single HCP subject, nor-

malised to [0, 1].
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Similarly to the data used in Chapter 6, this connectome is extremely

sparse, with very few high-strength connections. As explained in Sec-

tion 6.2.1, this can be down to the processing that is undertaken at the

acquisition stage. To reveal more structure in the connectivity patterns,

the data can be log transformed and re-normalised [159]. Due to the

intense computational requirements of solving neural field models with

space-dependent delays, the computational load can be relieved somewhat

by thresholding the structural connectivity matrix to cull values close to

zero. After the data has been logged and re-normalised, all values less than

a selected threshold are set to zero. For the purposes of this chapter, the

threshold value is chosen to be 0.01, with less than one percent of the values

in the matrix being smaller than that value. This helps to maintain the core

structural pattern of the matrix, but allows the delay solvers to perform

more efficiently by skipping computations for delay state values that would

ultimately end up being multiplied by zero. As seen in Figure 41, a much

more intricate network of connections is revealed when the log transform

and thresholding is applied.
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Figure 41: Log transformed connectome data, followed by normalisation to

[0, 1], and thresholding such that values less than 0.01 are set to

zero.

An important point to note is that the data shown in Figure 41 depicts

purely excitatory connections. This is because the tractography algorithms

that map the pathways only determine the absolute strength of a connection,

not the resulting excitatory/inhibitory impact. For more information on the

data acquisition techniques, please refer to Section 2.4.

7.2.3 Path Lengths

Along with the structural connectivity data, the HCP also supply the cor-

responding path length data for the connections. This data is particularly

relevant to models of neural activity when it comes to computing any terms

that are space-dependent. In the absence of specfic path length data, typ-

ically a Euclidean or geodesic distance is used to approximate the lengths

of the paths between nodes [105, 177]. These path lengths play a key part

in models that incorporate delays, as it is most commonly assumed that ax-
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onal delays are space-dependent, with a directly proportional relationship

between distance and delay.

Figure 42: Path length data from a single HCP subject, showing the distance

(in millimetres) between each node of the cortical mesh shown in

Figure 39b.

Shown above, in Figure 42, is a visualisation of the path length data that

will be utilised in the simulations that follow in this chapter. Regions in yel-

low depict long-distance connections and regions in blue show short-range

connections, with a distance of zero representing non-existent connections.

7.3 standard neural field equation

The first model that we focus on here is the standard NFE. This model

has been studied by the mathematical neuroscience community for several

decades, and forms the basis of a number of more advanced models. How-

ever, there has been comparatively little exploration of the outcomes yielded

by the model when it is posed on a realistic cortical domain and incorpo-

rates real brain data. In this section, we explore the formulation of the
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model in the presence of space-dependent delays, and present some exam-

ple solutions that arise when the model is considered on a cortex.

7.3.1 The Model

As seen throughout this thesis, the equation for the standard neural field

model is given by

τ
∂

∂t
u (x, t) = −u (x, t) +

∫
Ω

w
(
x, x′

)
f
(
u
(
x′, t
))

dx′, (209)

where u, x, t, and Ω, represent brain activity, the spatial coordinates, time,

and the entire spatial domain, respectively. The connectivity kernel that fa-

cilitates the non-local interactions is given by w, and the firing rate function,

f , is the standard sigmoidal response function used throughout this thesis

(with steepness parameter, µ, and threshold parameter, θ), as originally de-

fined in Section 2.3.2. A temporal scaling parameter, τ, is also included.

In order to adapt the model to more realistically describe observed phenom-

ena, space-dependent delays can be incorporated into the non-local interac-

tions. The relevance and significance of delays in models of neural activity

has been introduced previously in Section 2.3.2, along with the exploration

and simulation of a variety of neural models with delays in Chapters 5

and 6.

The delayed standard NFE takes the form

τ
∂

∂t
u (x, t) = −u (x, t) +

∫
Ω

w
(
x, x′

)
f
(
u
(
x′, t − s

(
x, x′

)))
dx′, (210)

where the space-dependent delay term is represented by s (x, x′). As seen

in previous chapters, this term often takes the form

s
(
x, x′

)
= τ0 +

∥x − x′∥
v

, (211)

where τ0 is a constant offset delay, ∥·∥ is some measure of distance, and v

is the axonal conduction velocity. Although not as physically relevant (as

discussed in Section 2.3.2, the offset delay term, τ0, has been shown to aid
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in yielding dynamic solutions similar to those seen in simulations of large-

scale spiking networks [142], hence we choose to include it as a tunable

parameter. It is also extremely helpful to include as the maximum step size

of the chosen delay solver is restricted to the minimum delay value due to

the interpolation step in the algorithm (see Appendix A.2.3 for details on

continuous output methods for DDEs). This means that as τ0 increases, so

does the maximum possible step size that the solver can adapt to. This can

potentially lead to quicker solution times, depending on the smoothness of

the solution. For the case of the fast oscillatory solutions that we seek, there

may not always be noticeable changes in computation time as a smaller step

size may be required to account for the higher frequency solution; however

this is also dependent on just how small the original minimum delay value

actually is.

To numerically solve Eq. (210), we first employ a Nyström discretisation

(as introduced in Section 3.3) to discretise the spatial component. As the

mesh, structural connectivity data, and path length data are already at a

pre-determined resolution, we select the integration nodes to coincide with

the existing mesh points. Introducing new integration nodes would require

the data to be interpolated, thereby introducing another instance of numer-

ical error into the system, so it makes sense to consider the existing mesh

points as the integrations nodes. Using the quadrature library implemented

in the NFESOLVE library (see Section 4.3), a set of quadrature weights can

easily be generated for a vertex quadrature rule on the cortical mesh. Al-

though not as accurate as a higher order quadrature rule (such as Gaussian

quadrature), this specific vertex rule is analogous to the trapezoid rule in

one dimensional space, which is commonly used to numerically solve NFEs

[120]. The spatially discretised form of Eq. (210) is written as

τu̇i = −ui +
N

∑
j=1

wij f
(
uj
(
t − sij

))
σj, (212)

for i = 1, . . . , N, where N is the total number of mesh points, wij is the struc-

tural connection strength between the ith and jth nodes, σj is the quadrature
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weight corresponding to the jth node, and sij = τ0 + Dij/v, with Dij repre-

senting some discrete distance between nodes i and j, corresponding to the

measure given by ∥·∥. For the purposes of our simulations, we select these

distances to be the path length data provided by the HCP, as presented in

Section 7.2.3. In all simulations in this chapter, we further apply a normali-

sation to the structural connectivity data such that

max
i

N

∑
j

wijσj = 1, (213)

for i = 1, . . . , N, in order to ensure that the magnitude of the integral ap-

proximation is controlled to appropriately.

7.3.2 Examples

The system given by Eq. (212) can be solved in an efficient manner by the

DDE solvers in the NFESOLVE library. For the remainder of this chapter,

we make use of the adaptive-step solver, DelaySparseRungeKutta32Solver, to

evolve all of the presented solutions. This solver is chosen to allow results

to be computed in an efficient manner while maintaining an appropriate

level of accuracy. As explained in Section 4.6, this solver relies on the

sparsity pattern of the delay state matrix, Z. This is very simple to compute

for the space-dependent delay set up used here. The choice to use an

adaptive-step solver is also an important decision, as an adaptive-step

solver can often be more useful than a fixed-step solver when solving delay

equations. When dealing with a large number of delays the computational

intensity can be extremely high, meaning that any potential saving gleaned

by adapting the step size during smoother areas of the solution is often

welcome.
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(a) Left (b) Right

(c) Anterior (d) Posterior

Figure 43: Four perspectives of an example steady state solution to the stan-

dard NFE posed on a cortical domain. Parameter values: µ = 20,

θ = 0.1, τ = 1, τ0 = 0.01, v = 10000.
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For all simulations in this section, the temporal scaling parameter, τ, is

fixed to a value of τ = 1. For the delay parameters, as the path length data

is given in millimetres, we select the axonal propagation speed to have a

value of v = 10, 000mm s−1, as we wish the temporal unit of the solution to

be seconds. As explained in Section 2.3.2, the velocities of action potentials

along axons averages around 10m s−1, which is why we have selected

this value of v. In order to aid the efficiency of the temporal evolution

algorithm, we opt to also introduce a fixed delay of τ0 = 0.01s (10ms),

so that the maximum step size of the solver is not too small to generate

solutions in an acceptable time frame. This is small enough that it should

not have a large impact on the solution.

Figure 43 depicts an example steady state solution to Eq. (210). In

this example, the firing rate steepness parameter is selected to have a value

of µ = 20, and the firing rate threshold parameter is chosen to be θ = 0.1.

This particular stationary state appears to form a pattern depicting global

mid-level activity with spots of high and low activity positioned around

the cortex. Through simulation across a wide range of parameter values,

a key observation that we gleaned is that the majority of the steady states

yielded follow an extremely similar patterned structure, although often

across various degrees of magnitude. There are, however, some states that

exhibit a differing stable pattern from that seen in Figure 43. An example of

this can be seen in Figure 44, where the majority of the cortex features low

level activity, but the anterior end of the cortex is illuminated with activity.

The firing rate parameter values used for this simulation are µ = 20 and

θ = 0.15381.
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(a) Left (b) Right

(c) Anterior (d) Posterior

Figure 44: Four perspectives of an example steady state solution to the stan-

dard NFE posed on a cortical domain. Parameter values: µ = 20,

θ = 0.15381, τ = 1, τ0 = 0.01, v = 10000.

Although there are a selection of interesting stationary patterns gener-

ated by the delayed NFE, ultimately it is severely limited when it comes to

recreating observed brain activity data. Due to limitations around the pro-

duction of this work, it has proved difficult to locate interesting dynamic

patterns for the delayed NFE with the data available. However, as reflected

in the ‘Future Work’ section of this thesis (Section 8.2), there is evidently
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more that can be done around the exploration of the model to yield more

dynamic results. In the meantime, in order to produce output more re-

flective of real-life brain activity patterns, there are other, more developed

models that can be considered.

7.4 neural field with linear adaptation

As true brain activity patterns are not static, it is preferable to explore mod-

els of neural activity that allow for dynamic solutions to arise more readily.

One such model takes the standard NFE and incorporates an additional vari-

able in the form of linear adaptation [135]. As introduced in Section 2.3.3,

this can be thought of as implementing an intrinsic negative feedback mech-

anism that neurons possess, whereby they actively work to decrease the

activity levels after periods of high activity.

7.4.1 The Model

Firstly, we consider the model in the absence of delays. Building upon the

standard NFE (Eq. (209)), the model takes the form

τ
∂

∂t
u (x, t) = −u (x, t)− ga (x, t) +

∫
Ω

w
(
x, x′

)
f
(
u
(
x′, t
))

dx′, (214)

1
α

∂

∂t
a (x, t) = u (x, t)− a (x, t) , (215)

where the additional variable, a, is a dummy variable that facilitates the

negative feedback. This is also referred to as ‘adaptation’, as the neurons are

adapting to constant stimulus by decreasing their activity levels. Including

this additional variable naturally allows for oscillatory instabilities to occur

in the non-delay case, unlike the standard NFE, due the model now being

multi-dimensional. The model parameters represent the same things as

that of the standard NFE, with the addition of two new parameters, g and

α, representing the coupling strength of the feedback and the rate at which
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the adaptation occurs, respectively. When the coupling strength, g, is equal

to zero, the model is equivalent to the standard NFE. Extending the model

to incorporate delays is analogous to that of the standard NFE, with the

non-local interaction term in Eq. (216) being modified to give the equation

τ
∂

∂t
u (x, t) = −u (x, t)− ga (x, t)

+
∫

Ω
w
(
x, x′

)
f
(
u
(
x′, t − s

(
x, x′

)))
dx′, (216)

where, as seen previously, the delay term is chosen to take the form

s
(
x, x′

)
= τ0 +

∥x − x′∥
v

. (217)

In order to numerically solve this system of equations, the techniques intro-

duced in Section 3.3.4 can be employed to spatially discretise the system,

giving a system of N DDEs of the form

τu̇i = −ui − gai +
N

∑
j=1

wij f
(
uj
(
t − sij

))
σj, (218)

1
α

ȧi = ui − ai, (219)

for i = 1, . . . , N. Once again, wij is the structural connectivity strength

between node i and j, σj is the quadrature weight corresponding to the jth

spatial node, and sij = τ0 + Dij/v, for some discrete distance, Dij, between

the ith and jth nodes. In the following simulations, these distances are

again selected to be the anatomical path lengths supplied by the HCP, as

introduced in Section 7.2.3.

7.4.2 Examples

Similarly to Section 7.3.2, here we present some example solutions to the

NFE with linear adaptation. As the model is equivalent to the standard

NFE when the coupling strength, g, is set to zero, we use the stationary

state depicted in Figure 43 as a basis for locating a dynamic solution.
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t = 0.000 t = 0.536 t = 1.073 t = 1.609

t = 2.145 t = 2.682 t = 3.218 t = 3.755

t = 4.291 t = 4.827 t = 5.364 t = 5.900

Figure 45: Dorsal view of one period of an oscillatory solution to the NFE

with linear adaptation, lasting approximately 5.9 seconds, arising

from a Hopf bifurcation of the stationary state. The state variable

depicted here is the activity variable, u (x, t), and the period is

divided into 12 equally spaced frames with times given to three

decimal places. Parameter values: µ = 20, θ = 0.1, τ = 0.23,

α = 1, g = 0.6, τ0 = 0.01, v = 10, 000.
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Fixing the firing rate parameters to µ = 20 and θ = 0.1, the coupling

strength can slowly be increased to observe the emergence of other solu-

tions, with the temporal scaling parameters, τ and α, being tuned to deter-

mine the frequency of the oscillations. The delay parameters are fixed to

v = 10, 000mm s−1 and τ0 = 0.01s, as explained in Section 7.3.2.

One period of an oscillatory solution is illustrated over 12 frames in Fig-

ure 45, with the variable of interest being the activity variable, u (x, t). For

this simulation, we select a coupling strength value of g = 0.6, and tempo-

ral scaling values of τ = 0.23 and α = 1. This yields an oscillatory solution

with a period of approximately 5.9 seconds. The pattern of activity in this

simulation remains visually similar to the steady state; however, the oscil-

latory nature of the solution causes a gradual decrease in activity globally

across the cortex. As the oscillation reaches its trough, the definition in the

starting pattern is lost as the magnitude of the range of the solution at that

point becomes much smaller than to start with. The pattern then proceeds

to rise back to the peak of the oscillation at a slightly faster pace than which

it descended. Note that the area, best described as a horizontal band across

the centre of the cortex, oscillates with a much smaller amplitude than the

anterior and posterior regions.

Another example is depicted in a similar fashion in Figure 46. In this exam-

ple, the firing rate steepness parameter is increased to a value of µ = 40, and

the coupling strength parameter is reduced slightly to a value of g = 0.5.

The resulting pattern, still a global oscillation, appears to exhibit the oppo-

site behaviour of that observed in the first example. The regions further

away from the central lateral band (closer to the anterior and posterior ends

of the cortex) oscillate with a much smaller amplitude, such that the effect

is barely visible in the simulations. Whereas, the middle region much more

noticeably fluctuates to a lower magnitude of activity.
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t = 0.000 t = 0.518 t = 1.036 t = 1.555

t = 2.073 t = 2.591 t = 3.109 t = 3.627

t = 4.145 t = 4.664 t = 5.182 t = 5.700

Figure 46: Dorsal view of one period of an oscillatory solution to the NFE

with linear adaptation, lasting approximately 5.7 seconds, arising

from a Hopf bifurcation of the stationary state. The state variable

depicted here is the activity variable, u (x, t), and the period is

divided into 12 equally spaced frames with times given to three

decimal places. Parameter values: µ = 40, θ = 0.1, τ = 0.2, α = 1,

g = 0.5, τ0 = 0.01, v = 10, 000.
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Although these two example solutions exhibit oscillatory behaviour, in

both cases the oscillations occur globally. Similarly to the standard delayed

NFE, the model does theoretically provide the ability to produce intricate

and heterogeneous dynamic solutions; however, due to the computational

difficulty of carrying out numerical stability analyses of large-scale delay

equations, these more advanced solutions are challenging to locate. The

generation of the solutions depicted was largely down to trial and error,

aided by the swift computations of the NFESOLVE library. The ‘Future

Work’ section of this thesis (Section 8.2) describes the potential avenues that

could be pursued to explore the wider variety of solutions that this model

has to offer.

7.5 next-generation neural field model

The models discussed previously in this chapter clearly have their limita-

tions when it comes to recreating patterns of neural activity. As introduced

in Chapter 6, Coombes and Byrne [36, 25, 26] have recently developed a

next-generation model that has a much stronger foundation in observed bi-

ological processes than models such as the standard NFE. In Section 6.4, we

discussed the derivation of the model in detail and explored a selection of

results in the setting of a neural mass network. Here, we extend the work

of Section 6.4 to consider the neural field version of the model.

7.5.1 The Model

Although the field model was originally introduced in [25, 26], the version

that we choose to study in this chapter is closer to that presented in [29]. The

model has been evolved to now incorporate gap junction coupling, synaptic
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coupling, and synaptic reversal potentials (all of which are explained in

Section 6.4.1). The field version is given by the equations

τ
∂R
∂t

= 2RV +
∆

πτ
− R (g + κv) , (220)

τ
∂V
∂t

= η0 − π2τ2R2 + V2 + g
(
vsyn − V

)
, (221)

Qg = κsΨ, (222)

where (R, V, g) = (R (x, t) , V (x, t) , g (x, t)) represent the firing rate, aver-

age membrane potential, and synaptic activity, respectively. The linear dif-

ferential operator, Q, is given by Q =
(
1 + α−1∂/∂t

)2, and Ψ is the spatial

convolution given by

Ψ =
∫

Ω
w
(
x, x′

)
R
(
x′, t
)

dx′. (223)

The parameters, τ and α, are temporal scaling parameters. Other parame-

ters present in the model are the degree of heterogeneity in the underlying

microscopic network, ∆, the gap junction coupling strength, κv, the degree

of excitability in the underlying microscopic network, η0, the synaptic re-

versal potential, vsyn, and the synaptic coupling strength, κs. For a full

description of the parameters, see Section 6.4.1. Further to the variables al-

ready defined, the complex Kuramoto order parameter, Z, can be described

by the conformal mapping [124]

Z =
1 − W∗

1 + W∗ , (224)

where W∗ is the complex conjugate of the value W = πτR + iV. The

magnitude of this value, given by |Z|, yields the degree of synchrony

within the population of neurons. This computed quantity has a range of

[0, 1, ], where 0 represents complete asynchrony and 1 is full synchrony.

To incorporate space-dependent delays into the model, the non-local

interaction term is modified in an analogous fashion to that seen with the

previous two models (Sections 7.3.1 and 7.4.1), with the firing rate variable,
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R, now becoming dependent on its previous states. This transforms

Eq. (223) into

Ψ =
∫

Ω
w
(
x, x′

)
R
(
x′, t − s

(
x, x′

))
dx′, (225)

where, once again, the delay term takes the form

s
(
x, x′

)
= τ0 +

∥x − x′∥
v

. (226)

Similarly to the previous models, Eqs. (220) to (222) can be spatially

discretised to give

τṘi = 2RiVi +
∆

πτ
− Ri (gi + κv) , (227)

τV̇i = η0 − π2τ2R2
i + V2

i + gi
(
vsyn − Vi

)
, (228)

1
α

ġi = −gi + hi, (229)

1
α

ḣi = −hi + κs
N

∑
j=1

wijRj
(
t − sij

)
σj, (230)

for i = 1, . . . , N, making note that the second order linear differential op-

erator, Q, has been broken down here to transform Eq. (222) into two first

order equations. Likewise, the synchrony for each node can be computed

as

|Zi| =
∣∣∣∣1 − πτRi + jVi

1 + πτRi − jVi

∣∣∣∣ , (231)

for i = 1, . . . , N, where in this case, j represents the imaginary unit.

7.5.2 Examples

Here, we explore a selection of example solutions to the delayed next

generation neural field model. To start, we fix the delay parameters to have

values v = 10, 000mm s−1 and τ0 = 0.01s for all simulations (reasoning

for this is detailed in Section 7.3.2). It is especially useful to have the

constant offset delay, τ0, present here due to the large number of equations
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in the system. The mesh contains 5, 304 nodes, thus the total number

of equations in the system is 21, 216. As locating meaningful solutions

via simulation with large-scale delayed equations is very much trial and

error due to the inability to accurately perform any kind of numerical

stability analyses (at least with the current tools available), solutions that

are not of interest can take just as long to compute as solutions that are of

interest. The offset delay allows the maximum step size that the solver can

reach to be increased, thereby reducing the time it takes to garner a solution.

In comparison to the previous two models explored in this chapter,

the hypothesis we wish to explore is whether the next generation

model yields more intricate and dynamic patterns that could be

conceivably more reflective of real-life observed brain patterns. All

dynamic simulations presented here can be viewed in video form at

https://github.com/sammyjp/Thesis-Supplementary-Material, along

with views of other state variables that have not been explicitly included

in this section. For simplicity, the figures presented in this section are all

from the dorsal perspective; however, other angles are viewable on the

supplementary material page.

Figures 47 and 48 depict one period of a dynamic solution to the

delay next generation neural field model, with parameters τ = 5, η0 = 1,

α = 0.5, vsyn = 8, κs = 12, κv = 0.4 and ∆ = 0.5. The first of these figures

illustrates the dynamics of the firing rate variable, R (x, t), while the second

describes the corresponding synchrony pattern through the computed

quantity, |Z (x, t) |. Immediately, it is apparent that this solution is formed

of localised spots of high firing rate activity that do not remain stationary.

To fully appreciate the non-static nature of the solutions, it is advisable to

view them at the supplementary material link provided. One period of

this specific oscillatory solution lasts approximately 5 seconds. The spots

appear to gently rotate in localised regions around the cortex.

https://github.com/sammyjp/Thesis-Supplementary-Material
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t = 0.000 t = 0.453 t = 0.905 t = 1.358

t = 1.811 t = 2.264 t = 2.716 t = 3.169

t = 3.622 t = 4.075 t = 4.527 t = 4.980

Figure 47: Dorsal view of one period of an oscillatory solution to the next

generation neural field model, lasting approximately 5 seconds,

arising from a Hopf bifurcation of the steady state. The state

variable depicted here is the firing rate variable, R (x, t), and the

period is divided into 12 equally spaced frames with times given

to three decimal places. Parameter values: τ = 5, η0 = 1, α = 0.5,

vsyn = 8, κs = 12, κv = 0.4, ∆ = 0.5, τ0 = 0.01, v = 10, 000.
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t = 0.000 t = 0.453 t = 0.905 t = 1.358

t = 1.811 t = 2.264 t = 2.716 t = 3.169

t = 3.622 t = 4.075 t = 4.527 t = 4.980

Figure 48: Dorsal view of one period of an oscillatory solution to the next

generation neural field model, lasting approximately 5 seconds,

arising from a Hopf bifurcation of the steady state. Depicted here

is the synchrony variable, |Z (x, t)|, and the period is divided

into 12 equally spaced frames with times given to three decimal

places. Parameter values: τ = 5, η0 = 1, α = 0.5, vsyn = 8,

κs = 12, κv = 0.4, ∆ = 0.5, τ0 = 0.01, v = 10, 000.
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A similar observation can also be made for the synchrony, as shown in

Figure 48. The majority of the cortex is teal coloured, indicating medium

levels of synchrony. However, there are a number of localised spots of

high synchrony, as indicated by the yellow regions. When comparing the

synchrony to the firing rate, it is extremely evident that the regions where

the firing rate is more visibly oscillating are also the areas with the higher

degrees of synchrony. Conversely, the horizontal mid section of the cortex

(when viewed dorsally) appears to not display much movement in the

firing rate solution, which is reflected in the synchrony by it remaining

medium-to-low. This example is just one of the intricate solutions that the

next generation model gives rise to.

Another is depicted in Figures 49 and 50, this time with a longer os-

cillatory period of approximately 17.8 seconds. Although it has a longer

period than the previous example, this solution has much more distinctive

features. There are a larger number of localised spots, and each are clearly

visible against the low firing rate that the majority of the cortex exhibits

in Figure 49. Dynamically, these spots appear to rotate and move around

the cortex, similarly to that of the previous example. The parameters

selected for this simulation are τ = 10, η0 = 2, α = 0.8, vsyn = 8, κs = 10,

κv = 0.8 and ∆ = 0.3. The corresponding synchrony pattern, as visualised

in Figure 50, reflects the distinctive features described by the firing rate.

There is a much larger degree of synchrony seen across the whole cortex,

making note that the minimum synchrony value throughout the entire

temporally evolved solution is approximately 0.56. This is reflected well

when comparing to the firing rate, as it is clear that the there is localised

movement occurring across the entire domain.
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t = 0.000 t = 1.615 t = 3.229 t = 4.844

t = 6.458 t = 8.073 t = 9.687 t = 11.302

t = 12.916 t = 14.531 t = 16.145 t = 17.760

Figure 49: Dorsal view of one period of an oscillatory solution to the next

generation neural field model, lasting approximately 17.8 sec-

onds, arising from a Hopf bifurcation of the stationary state. The

state variable depicted here is the firing rate variable, R (x, t),

and the period is divided into 12 equally spaced frames with

times given to three decimal places. Parameter values: τ = 10,

η0 = 2, α = 0.8, vsyn = 8, κs = 10, κv = 0.8, ∆ = 0.3, τ0 = 0.01,

v = 10, 000.
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t = 0.000 t = 1.615 t = 3.229 t = 4.844

t = 6.458 t = 8.073 t = 9.687 t = 11.302

t = 12.916 t = 14.531 t = 16.145 t = 17.760

Figure 50: Dorsal view of one period of an oscillatory solution to the next

generation neural field model, lasting approximately 17.8 sec-

onds, arising from a Hopf bifurcation of the stationary state. De-

picted here is the synchrony variable, |Z (x, t)|, and the period is

divided into 12 equally spaced frames with times given to three

decimal places. Parameter values: τ = 10, η0 = 2, α = 0.8,

vsyn = 8, κs = 10, κv = 0.8, ∆ = 0.3, τ0 = 0.01, v = 10, 000.



7.6 summary 177

The next generation model evidently conforms to our expectation of pro-

viding detailed and intricate solutions. It has produced more complex and

varied solutions than the standard NFE and NFE with linear adaptation.

Other solutions that are not presented here also depict a similar level of in-

tricacy. Although the solutions are alike in their spatial patterning, there are

clear variations in the oscillatory period and amplitude. With more detailed

tuning of parameters and assessing the significance of realistic physically-

based values of each parameter, there is definitely scope to improve on the

solutions discovered.

7.6 summary

This chapter has mostly been a proof of concept to show what is possible

when it comes to solving delayed models of neural activity on realistic cor-

tical domains. The three models considered each have their own attributes

and challenges when it comes to generating dynamic and detailed solutions.

We first considered the standard NFE, which has been a staple across many

mathematical neuroscience studies, and forms the building blocks of a

lot of the more advanced models that have been developed since. With

the incorporation of real structural brain data into the model, along with

path length data for the distribution of delays, we have shown that it is

extremely achievable to generate solutions in an efficient and inexpensive

manner using the NFESOLVE library. Although due to the time constraints

of this work we were unable to present dynamic solutions to the standard

delayed NFE, there is definitely scope to explore this model deeper in the

future.

Following on from this, we introduced the NFE with linear adaptation.

This model is similar to the standard NFE, except that it implements a

negative feedback mechanism in the form of a recovery variable. Two

example solutions were presented, each depicting a different scenario of
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global oscillatory behaviour. Again, similarly to the standard NFE, the

model does support different types of oscillatory solutions; however, with

this particular data set they proved difficult to locate. It is worth noting

that in this section we only made use of a single data set. A future direction

this work could be taken in is to explore other data sets from different

test subjects and to study how the data affects the solutions yielded from

different models. Tuning the delay parameters also has the potential lead

to more interesting solutions.

Finally, we explored the next generation NFE pioneered by Coombes and

Byrne [36]. The work of Byrne et al. [29] shows the intricate solutions that

are possible on a standard rectangular domain, and so it was the aim of

this thesis to take their work further by posing the model on the cortical

domain. As evidenced by the solutions presented, this model allows for

some extremely interesting dynamics on the cortex. Although the example

solutions were not directly correlated to any real-life observations, the

results yield a great insight into what is possible with this model. Given

time to investigate and traverse the capabilities that the next generation

model possesses, there is definitely potential to refine the application to

realistically recreating observed cortical behaviour.



8
C O N C L U S I O N

To conclude the work discussed in this thesis, we now look back and give

an overview of the results discussed in each chapter, before wrapping up

by presenting future opportunities and considerations that could take the

results even further.

8.1 summary of thesis

The main aim of this thesis was to produce a suite of code that could

efficiently solve large-scale delay differential equations, and use this code to

explore solutions of delayed neural field models posed on realistic cortical

domains.

Chapter 2 introduced and discussed the main background and key

concepts required to understand the work explored in this thesis. This

began by giving a description of neurons at the cellular level and how they

send and receive signals between each other. Following on from this, we

examined several models of individual neuron behaviour, with a focus on

the groundbreaking work of Hodgkin and Huxley [84], before moving on to

discuss models of neural activity at the macroscopic level. This is where we

first introduced and broke down the standard NFE, which we have referred

to many times across this work, along with the concept of large-scale

space-dependent delays. Next, this chapter talked about the methods

179
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behind how macroscopic brain connections are measured in practice. Here,

we presented the differences between structural and functional MRI, and

how organisations such as the Human Connectome Project [172, 173] have

gathered and published a vast amount of brain data, some of which we

make use of in our simulations. Finally, we introduced the fundamentals

of numerical quadrature rules for approximating integrals. Here, we met

Gauss-Legendre quadrature, which is a key numerical rule that we employ

in Section 3.3.

The following chapter illustrated a selection of analytical and numer-

ical techniques that are an important prerequisite to the work that follows

in the latter chapters. The first area considered was the construction and

analysis of an arbitrary non-linear network. Here, we presented the linear

stability analysis for a network whose dynamics are governed by generic

non-linear functions, in order to easily compute eigenvalues for any given

network model of neural activity. This was especially useful as it allowed

for information to be yielded quickly on the behaviour of a system for

a given parameter regime. Also included here was the analysis for the

incorporation of delays into the network. We made use of this in Chapter 6

where we considered solutions to a variety of different network models,

with the intention of locating Hopf regimes that yield oscillatory dynamics.

Moving on from this, we discussed the spatial discretisation of continuum

models of neural activity so that they may be evolved temporally via

numerical methods. Here, we covered the definition of the spatial

mesh, along with quadrature rules for numerically approximating the

integral terms present in neural field models. We then illustrated how

these techniques can be applied to the NFE, via the Nyström method,

to discretise it into a system of ODEs. To verify that the disretisation

scheme yields solutions that match theoretical expectations with respect

to error, a convergence analysis was undertaken. This involved using

specially constructed problems for which an analytical solution is known
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so that the numerical solution could be compared to the true solution. As

demonstrated, the chosen discretisation methods perform as expected.

Chapter 4 gave an in-depth look at the design of our highly efficient

suite of differential equation solvers: NFESOLVE. This began by laying

out the drawbacks of existing solvers and how the NFESOLVE could fill

the gaps that these solvers have. We then moved on to discuss the choices

made prior to beginning development about the tools and methodologies

we would use to build the library. The remaining sections of this chapter

outlined the design of each module that makes up the library, starting with

the classes for handling everything to do with storing and numerically

integrating over a geometric mesh. This was followed by a description

of the design of the ODE solver suite, before moving on to exploring the

nuances of designing an efficient DDE solver package. As part of this,

we introduced our sparse DDE solver module, which was designed to

eliminate unnecessary computations from the solution process. This was

one of the major areas where we were able to streamline and improve upon

existing DDE solvers. Finally, we presented how the code may be sped up

by making use of OpenMP parallelisation [43] when working with large

systems of equations containing multiple delays.

After giving this explanation of the design of the NFESOLVE library,

Chapter 5 then moved on to exploring several different validation examples

with known results in order to prove that our code performed to the

expected standard. Firstly, an error analysis was undertaken to demonstrate

that each ODE and DDE solver yield numerical solutions which converge

to their corresponding analytical solutions at the rates depicted in the

names of each solver (i.e., proving that RungeKutta3Solver is a third order

solver). To follow this, the next section looked at solutions to the standard

NFE on a spherical domain. This work was based on results by Visser et al.

[177] and was selected here as a validation example due to the analytical
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results available, along with the spherical geometry being treated as a very

naive cortex, paving the way for the work explored in Chapter 7. We then

considered the one-dimensional NFE with the presence of a single constant

delay, before finally moving on to discussing various neural field examples

with full-scale space-dependent delays. Here, we also talked about the

most efficient way to set up the sparse solvers in the NFESOLVE library to

solve neural field models. This chapter allowed us to demonstrate that the

NFESOLVE library performs to the specifications dictated, and that it can

applied to solve large-scale models of neural activity with multiple delays.

Chapter 6 proceeded to explore the relationship between structural

and functional connectivity in networks of neural masses. In this chapter,

we first presented a set of brain data supplied by the HCP. This included

structural connectivity, functional connectivity, and path length data. We

then explained the theory behind using structure to predict function via

eigenmode fitting, based on work by Tewarie et al. [164]. To illustrate

this practically, we considered two different models of neural activity,

starting with the Wilson-Cowan model. Using techniques introduced in

Chapter 3, we formulated eigenvalue equations for the model in both the

absence and presence of delays in order to inform on the eigenmodes

that were unstable for a given parameter regime. This allowed us to

locate parameter regimes which yielded solutions whose dynamics were

governed by specific eigenmodes which the fitting analysis dictated would

be most reflective of the functional connectivity. We then introduced a

next-generation neural mass model, pioneered by Coombes and Byrne [36],

and repeated the analysis process to again locate parameter regimes which

would yield relevant solutions. The work undertaken here showed how

the next-generation model can produce much more desirable solutions

than models such as the Wilson-Cowan model, while simultaneously being

much more grounded in biological reality.
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The final chapter of this thesis took a deep dive into the solution of

delayed neural field models posed on realistic cortical domains. It began

by introducing the data, supplied by the HCP, which was incorporated

into the various models considered. This included the cortical mesh,

structural connectivity, and path length data. The first model presented

was the standard delayed NFE. Here, we illustrated some of the steady

state solution patterns which the model naturally supports. Following this,

we moved on to a more advanced model of neural activity: the NFE with

linear adaptation. The negative feedback mechanism in this model allows it

to naturally support dynamic solutions which arise via a Hopf bifurcation.

In this section, we build upon the steady states found for the standard

NFE in order to generate several different globally oscillatory solutions.

Finally, we re-introduced the next-generation model described in Chapter 6,

and demonstrated how it can be adapted from a neural mass model to a

neural field model. As predicted, this model yielded considerably more

interesting dynamic solutions with highly intricate patterning. This leaves

huge scope for the future of dynamic brain modelling, as the tools to

efficiently solve realistic large-scale delayed models of neural activity now

sit at the fingertips of scientific researchers.

8.2 future work

The work undertaken in this thesis has only just scratched the surface of

what is now possible with modern algorithms, technology, and models of

neural activity. There are a number of directions in which this work could

be taken in the future, with areas from Chapter 4, Chapter 6, and Chapter 7,

all having individual scope for future considerations. This section outlines

some of these areas where there is a strong potential to build upon the

current work.
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8.2.1 NFESOLVE Improvements

The NFESOLVE library is still in its infancy when it comes to the features

it could possess and the improvements that could be made to the existing

code. Here, we will outline some of these improvements and how they

would benefit the library.

Quadrature Library

As discussed in Section 4.3.2, the current implementation of the Quadrature-

Library namespace only supports vertex quadrature rules. A key improve-

ment that could be made is to add higher order quadrature rules, such as

Gaussian quadrature. This would not be a difficult task to approach, and

the only reason that it is not presently a part of the library is due to vertex

quadrature rules being sufficient for the work presented in this thesis. Gaus-

sian quadrature, as traditionally implemented for interval domains, can be

analogously extended to domains made up of triangular or quadrilateral

elements [49].

Automatic Delay Matrix Population For Sparse Solvers

At present, the sparse delay solvers that are part of the NFESOLVE library

(see Section 4.6) require a sparsity pattern to be passed in to the constructor,

so that the solver knows which entries in the delay state matrix require

computing. A future consideration for the library would be to remove the

need for the user to pre-compute this sparsity pattern and instead have the

solver automatically generate the sparsity pattern on the first iteration of

the time-stepping process. One way of doing this could be by designing

a custom data structure that records the accessed indices on the first pass

until it has built an entire map of the elements that are non-zero. Once

the sparsity pattern has been built then it would be used to instantiate a

sparse matrix that follows the current implementation design. Although
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this change will have no direct impact to the time-stepping algorithm, it is

definitely a design choice that would improve user experience and make it

easier for someone who did not have knowledge of sparse matrices, or their

use in delay differential equation solvers, to use the NFESOLVE library.

Linear Algebra Library

As discussed in Section 4.2, the NFESOLVE library is built upon the data

structures provided by the Armadillo [145, 146, 147] linear algebra library.

This is a fantastic library that offers a variety of vector and matrix structures,

as well as several linear algebra operations, while providing a MATLAB-like

syntax. However, due to the way it is designed, there are slight negative im-

pacts to performance when compared to some of the other linear algebra

libraries that are openly available. Armadillo was originally selected due

to its similarities to MATLAB (which is commonly used by researchers in

the area of applied mathematics), and its wide use across a number of other

tools and libraries. At the time of development, it met all the necessary

requirements to build the NFESOLVE library and was extremely easy to

integrate with, making it a good starting point for developing a brand new

suite of solvers. However, upon further research into the other tools avail-

able that provide the same/similar functionality, there are considerations

that could be made for future implementations of the NFESOLVE library in

order to improve performance.

One such library that is frequently used across a variety of applications is

Eigen [76]. It boasts extremely fast and efficient computations, and pos-

sesses all the features that would be required in the NFESOLVE library. It

does not rely on a back-end implementation of BLAS and LAPACK like Ar-

madillo does, instead containing its own built-in optimised operations and

subroutines. Ultimately, the key selling point of the NFESOLVE library is

its ability to solve large-scale delay differential equations in an efficient time

frame. Although Armadillo offers a MATLAB-like syntax, which is useful
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for programmers who are new to C++, the main focus of the NFESOLVE

library should be to achieve the best performance that it can offer.

Stochastic Differential Equations

Although not mentioned as part of the scope of this thesis, an extremely

rich area of opportunity to expand the work presented here is the world

of stochastic neural modelling. Naturally, the signals that are measured by

MRI and EEG/MEG contain some degree of noise. The models we have

considered thus far are purely deterministic and do not account for any

sort of noise that would likely be present in the signals that we are attempt-

ing to recreate. Stochastic modelling of biological phenomena has been a

long-studied branch of mathematics, with authors such as Bressloff [21, 22]

providing a historical insight into the incorporation of stochastic processes

into models of neural activity.

When it comes to the numerical solution of stochastic differential equations

(SDEs), there exist several numerical methods that can be implemented to

facilitate this. As an initial starting point, the Euler-Maruyama scheme

[121, 107] is a commonly used method for time-stepping SDEs. The NFE-

SOLVE library is designed in such a way that it is simple to expand and

introduce new solvers and features. A key area of improvement for the fu-

ture would be to create a suite of SDE solvers to complement the existing

ODE and DDE solvers. Note that comparatively little work has been done

with regards to developing numerical schemes for approximating the solu-

tions of stochastic delay differential equations (SDDEs). This is very much

an area of interest for future work, as when combined with the sparse de-

lay solvers available in the NFESOLVE library, methods for solving SDDEs

could see a significant increase in efficiency and open up a world of possi-

bilities for the neural modelling communities.
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8.2.2 Eigenmode Fitting for Neural Mass Networks

Chapter 6 demonstrated techniques for predicting functional connectivity

using the eigenmodes of structural connectivity matrices. As with all of the

examples considered in this thesis, one of the biggest areas which could

be improved upon in future is the amount of different data that could be

utilised in the simulations. The results presented in this chapter only con-

sidered the data from a single HCP subject; however, there is astronomically

more data available, from multiple subjects, that could be explored to give

a wider array of results. Similarly, we only consider two models of neural

activity in this chapter. There are a number of variations and other mod-

els that exist which may present solutions more reflective of the observed

functional connectivity which we are attempting to recreate. The eigen-

mode fitting process is independent of the model which the data is being

incorporated into, thereby not guaranteeing that the models considered will

actually yield the desired solutions.

Another point for consideration is the method by which the eigenmodes

of the structural connectivity matrices are constructed. In this chapter, we

use the cosine of the phase differences between each eigenvector, which is

preferred over the outer product calculation used by Tewarie et al. [164].

However, there may be other constructions which yield better simulation

results. Also related to this are the pre-processing techniques that the struc-

tural matrices undergo before being incorporated into the models. As de-

tailed in Section 6.3.3, in order to easily compute the stability of the system

a row-sum normalisation condition must be applied. Although this makes

analysis much simpler, especially in the presence of delays, one of the main

drawbacks of using a row-sum normalised matrix is that it heterogeneously

transforms the data away from its original symmetric form. This can drasti-

cally affect the solutions that the models yield and may make the prediction

of functional connectivity worse than if the original matrix was used prior

to any row-sum normalisations. With the ability to be able to accurately
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predict stability of a model using the non-normalised matrix, a future en-

hancement could be to explore the goodness of fit of the models with this

original structural connectivity.

Computing the BOLD Signal

Currently, we have only considered the functional connectivity of the raw

activity signals generated by the models. In practice, functional connectiv-

ity generated by an fMRI is measured via the BOLD signal [74, 169] (see

Section 2.4.2 for more details). This differs from the activity signals seen in

the numerical solutions presented. In order to yield a representation of the

BOLD signal from these activity signals, the solution can be passed through

a haemodynamic filter known as the Balloon-Windkessel model [69]. This

is given by the set of equations

d
dt

x (t) = εu (t)− kx (t)− γ ( f (t)− 1) , (232)

d
dt

f (t) = x (t) , (233)

τ
d
dt

v (t) = f (t)− v
1
α (t) , (234)

τ
d
dt

q (t) =
f (t)

ρ

(
1 − (1 − ρ)

1
f (t)

)
− q (t) v

1
α−1 (t) , (235)

where u is a neural activity signal, x is the vasodilatory signal, f is blood

inflow, v is blood volume, and q is deoxyhaemoglobin content. The param-

eters ε, k, γ, τ, α, and ρ, represent the activity signal coupling strength, rate

of signal decay, rate of flow-dependent elimination, haemodynamic transit

time, Grubb’s exponent, and resting oxygen extraction fraction, respectively.

Typical values and explanations of each of these parameters can be found

in [48]. Given the blood volume and deoxyhaemoglobin content state vari-

ables from the above model, the BOLD signal, y (t), may then be computed

via

y (t) = V0

[
k1 (1 − q (t)) + k2

(
1 − q (t)

v (t)

)
+ k3 (1 − v (t))

]
. (236)

Here, V0 is the resting blood volume fraction and the parameters k1, k2, and

k3 are dimensionless constants which reflect baseline physiologial proper-



8.2 future work 189

ties of brain tissue [80]. Utilising the BOLD signal to then generate a func-

tional connectivity matrix may yield results that differ from those presented

in Chapter 6. As a piece of future work, this definitely holds value and may

allow an even greater understanding of how structure can be used to predict

function.

8.2.3 Models Posed on Cortical Domains

The work presented in Chapter 7 provides a strong foundation in

demonstrating how models of neural activity can be applied in a realistic

geometric setting with the incorporation of real patient data. The NFE-

SOLVE library made it simple to generate solutions to the models in the

presence of space-dependent axonal delays. However, the work undertaken

as part of this thesis just scratches the surface of what is possible, and there

is clearly a plethora of opportunities that this work has opened up for the

future.

One of the main limitations discussed in Chapter 7 is the inability

to accurately perform stability analyses on the delayed versions of the

chosen models. Due to the large number of mesh points required to

preserve cortical detail in the mesh, along with the transcendental nature

of the stability equations for delayed systems, locating parameter regimes

under which a desired bifurcation has occurred is near impossible via

traditional methods. The main tool at our disposal for locating different

solution types, at least for the results shown, was trial and error. The

example solutions to the delayed standard neural field model, presented in

Section 7.3.2, were both steady state solutions. Ideally, a future direction

this work could be taken in is to locate other, more interesting solutions

that arise from this model, with a focus on dynamic patterns. Although

the current data assumptions may mean that there does not exist dynamic

solutions in this context, there is still scope to explore and categorise the
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range of solutions this model potentially has to offer.

Similarly, for both the other models explored, this work only presented two

examples of dynamic solutions for each in order to show a glimpse into the

possibilities that arise when they are posed on realistic cortical domains.

These solutions were interesting, especially for the next generation neural

field model; however there is a considerable amount of work that can be

done in order to attempt to yield solutions more reflective of observed

brain patterns. Building upon the work achieved by Byrne et al. [29], who

study the model in both one and two dimensions, there is scope to extend

this to a cortical domain to record the effects of each parameter on the

patterns generated, and attempt to replicate EEG/MEG signals.

Another hugely important consideration for future development of the

work in this thesis is the exploration of other data sets and their effects on

the solutions of different models. All of the data used in Chapter 7 came

from a single subject; however, the HCP have a large amount of data from

many different individuals, all of which could yield different and more

interesting results when incorporated into models of neural activity. There

is also opportunity to look at different types of data, such as fMRI, along

with attempting to recreate different neurological phenomena, such as beta

rebound currents [27].



A
T E C H N I C A L B A C K G R O U N D

a.1 runge-kutta schemes for ordinary differential equa-

tions

The numerical evaluation of differential equations has been a long studied

area of mathematics, dating back to the 18th century. First presented in

1768 [60], this started with Euler’s method for solving initial value problems

(IVPs) of the form

y′ (t) = f (t, y (t)) , y (t0) = y0, (237)

where t ∈ R, y ∈ Rn, f : Ω ⊂ R × Rn → Rn, the domain Ω is an open

set of R × Rn, and the point (t0, y0) lies in Ω. Here, in Appendix A.1,

we shall outline formulae developed to solve differential equations and the

accompanying adjustments that can be incorporated to allow for continuous

output and step size adaptation. Appendix A.2 will then build on this work

to present methods for numerically solving differential equations with the

inclusion of delays.

a.1.1 Explicit Runge-Kutta Formulae

For a fixed step h ∈ R, Euler’s method is given by

yn+1 = yn + h f (tn, yn) , (238)

191
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where tn = t0 + nh, for n = 0, 1, 2, . . . , and yn is the approximate solution to

the IVP at point tn. This gives a first order approximation of the solution

[7], i.e.

max
n

|y (tn)− yn| ≤ Ch, (239)

for some constant C ≥ 0. Using big O notation, we say that the scheme is

O (h).

In 1895, and again in 1900, Runge [144] and Heun [82] furthered Euler’s

work by adding in additional steps to the method. Kutta [109] then for-

mulated, in 1901, what is known today as the Runge-Kutta method. In k

notation, a general s-stage (s ∈ Z+) explicit Runge-Kutta (ERK) scheme is

written as

k1 = f (tn, yn) ,

k2 = f (tn + c2h, yn + ha21k1) ,

k3 = f (tn + c3h, yn + ha31k1 + ha32k2) ,
...

ks = f

(
tn + csh, yn + h

s−1

∑
j=1

asjk j

)
,

yn+1 = yn + h
s

∑
i=1

biki,

(240)

where the coefficients aij, bi, ci, for i = 1, 2, . . . , s and j = 1, 2, . . . , i − 1, are

real numbers and c1 = 0. The coefficients ci typically satisfy the conditions

ci = ∑i−1
j=1 aij, so that all the points where f is evaluated are first order

approximations to the solution [77]. A Runge-Kutta method is said to be of

order p (or O (hp)), if for sufficiently smooth problems,

∥y (tn+1)− yn+1∥ ≤ Khp+1, (241)
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for some constant K ≥ 0. The classical Runge-Kutta method [109] is a 4th

order method comprised of four stages and is given as

k1 = f (tn, yn) ,

k2 = f
(

tn +
1
2

h, yn +
1
2

hk1

)
,

k3 = f
(

tn +
1
2

h, yn +
1
2

hk2

)
,

k4 = f (tn + h, yn + hk3) ,

yn+1 = yn +
1
6

h (k1 + 2k2 + 2k3 + k4) .

(242)

In 1946, from work by Butcher [24], it became convention to write the coeffi-

cients of a Runge-Kutta scheme in a tableau, now called a Butcher tableau.

c1

c2 a21

c3 a31 a32

...
...

... . . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs

. (243)

The Runge-Kutta method can also be written using Y notation as

Yi = yn + h
i−1

∑
j=1

aij f
(
tn + cih, Yj

)
, i = 1, . . . , s,

(244)

yn+1 = yn + h
s

∑
i=1

biF (tn + cih, Yi) . (245)

There exist many different Runge-Kutta schemes of varying orders and

number of stages [62, 139, 77, 94].

a.1.2 Continuous Output

Pioneered by Horn in 1983 [88], continuous output Runge-Kutta schemes

allow solution values to be calculated at points that do not fall on the dis-

cretisation grid, i.e., for an interval [tn, tn + h], we can compute tn + θh for
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some 0 ≤ θ ≤ 1. This can be done using polynomials in θ as the b coef-

ficients in the Runge-Kutta scheme [152]. Starting from a standard s stage

Runge-Kutta scheme with coefficients aij, bi and ci, if additional stages are

added such that the method now has s∗ stages, then the following formula

can be constructed:

ki = f

(
tn + cih, yn + h

i−1

∑
j=1

aijk j

)
, i = 1, . . . , s∗,

(246)

un (θ) = yn + h
s∗

∑
i=1

bi (θ) ki, (247)

where bi (θ) are polynomials in θ to be determined such that

un (θ)− y (tn + θh) = O
(

hp∗+1
)

. (248)

The construction of these polynomials is explained in Hairer, Norsett and

Wanner [77] and Owren and Zennaro [132]. However, we shall not pursue

this here. A more efficient method is to use a two point Hermite interpolant

[151, 163], as this does not require the use of the k stages of the Runge-Kutta

scheme and can therefore be called at any time. This formula is given as

y (tn + θh)) = (1 − θ) yn + θyn+1 + θ (θ − 1) ((1 − 2θ) (yn+1 − yn)

+ (θ − 1) hy′n + θhy′n+1
)

, (249)

where y′n represents the approximation of the derivative of the solution

(with respect to t) at time tn, i.e., y′n ≈ y′ (tn). This may be computed

at each Runge-Kutta stage as y′n = f (tn, yn). It can be shown that Eq. (249)

is a special case of Eq. (247) [77]. For any underlying scheme of order p ≥ 3,

this will give a 3rd order continuous output Runge-Kutta scheme [77]. This

method also guarantees that the continuous output solution will be globally

C1 continuous, whereas with the polynomials this is not always the case.
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a.1.3 Embedded Runge-Kutta schemes

Suppose that instead of a fixed step size h, we wish to utilise a method that

can adapt the step size in order to compute solutions more efficiently with

respect to their behaviour. In particular, we aim to select, at each step, the

smallest step size that meets a user-specified error tolerance. This can be

done by computing a second approximation ŷn along with the approxima-

tion yn and then using these to compute an estimate of the local error at that

point. Let us consider these approximations such that yn is of order p and

ŷn is of order p̂ and they are both computed using the same function eval-

uations. This is referred to as a p ( p̂) embedded Runge-Kutta method. The

method is written out as

ki = f

(
tn + cih, yn + h

i−1

∑
j=1

aijk j

)
, i = 1, . . . , s,

(250)

yn+1 = yn + h
s

∑
i=1

biki, (251)

ŷn+1 = yn + h
s

∑
i=1

b̂iki. (252)

An extra line is added to the Butcher tableau for the b̂ coefficients.

c1

c2 a21

c3 a31 a32

...
...

... . . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs

b̂1 b̂2 . . . b̂s

. (253)

The first methods of this type were developed by Merson [123], Ceschino

[30] and Zonneveld [185] in the late 1950s and early 1960s. In the case where
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p̂ > p, the lower order approximation is propagated forward as the solution

and the higher order approximation is used to estimate the local error by the

quantity yn+1 − ŷn+1. However, when p̂ < p, it is the higher order approxi-

mation that is used as the solution value and the lower order approximation

is used purely for step size adaptation, abandoning the concept of ‘error es-

timation’ [77, 150, 100]. This is referred to as local extrapolation [149, 52] and

tends to make the method very accurate with regards to global error [9].

Typically, the approximation ŷn has either order p̂ = p + 1 or p̂ = p − 1. As

an example, for any 3rd order method [77] with s = 3 stages, the coefficients

b̂i, i = 1, . . . , 3, required to give a 2nd order method can be given by

b̂1 = 1 − 1
2c2

, b̂2 =
1

2c2
, b̂3 = 0. (254)

a.1.4 Step size adaptation

For the step size adaptation, we want the quantity yn+1 − ŷn+1 to satisfy,

componentwise, ∣∣∣yi
n+1 − ŷi

n+1

∣∣∣ ≤ sci, (255)

where

sci = AToli +max
(∣∣∣yi

n

∣∣∣ ,
∣∣∣yi

n+1

∣∣∣) · RToli, i = 1, . . . , m, (256)

and m is the number of equations in the system. Here ATol and RTol repre-

sent absolute and relative tolerances respectively. A measure of the error is

taken as

err =

√√√√ 1
m

m

∑
i=1

(
yi

n+1 − ŷi
n+1

sci

)2

, (257)

which is used to compute a new step size and determine whether it is ac-

cepted. Ceschino [31] tells us that optimal step size is

hopt = h · p

√
1

err
. (258)

However, to increase the probability that the error the next time will be

acceptable, we multiply by a safety factor, fac. This is usually taken to
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be between 0.8-0.9, as taking the optimal step size on its own will likely

yield errors that are slightly too large for the desired tolerance [155]. It

is important that h is prevented from increasing or decreasing too quickly,

hence a minimum and maximum factor that h can be multiplied by is also

specified. These are denoted in the formula below by facmin and facmax,

respectively. The new step step size is computed using

hnew = h · min

(
facmax, max

(
facmin, fac · p

√
1

err

))
. (259)

If err ≤ 1, then the new step size is accepted and used in the next step of

the Runge-Kutta scheme. If err > 1, then the new step size is rejected and

Eq. (259) is repeated using the newly computed hnew in the place of h. In

the event of a rejected step size it is also advisable to set f acmax = 1 for

the new computation. This is because if a step has been rejected then it is

likely that the solution changes behaviour and so caution must be taken

not to increase the step size too much [155].

Amongst the most commonly used embedded Runge-Kutta methods

are the Dormand-Prince 5(4) scheme [52] used in MATLAB’s ode45 solver,

the Bogacki-Shampine 3(2) scheme [20] used in MATLAB’s ode23 solver,

and others outlined by Fehlberg in [62].

a.2 runge-kutta schemes for delay differential equations

In this section, we give an introduction to delay differential equations

(DDEs), also referred to in older literature as differential-difference

equations. We will then present some of the methods that exist to solve

these types of equations, building on work seen in the previous section.

Finally, we show how these methods can be utilised to build a powerful

DDE solver; and subsequently, perform convergence tests to show that

the observed numerical error is congruent with the theoretical error

approximation.



A.2 runge-kutta schemes for delay differential equations 198

a.2.1 Delay Differential Equations

Modelling using DDEs has become a common tool for many applications

including, but not limited to, biological phenomena such as population dy-

namics, immunology, physiology, neural networks and epidemiology [141,

157]. A famous example is the delayed logistic equation for population

growth, developed by Hutchinson in 1948 [89]. The standard logistic equa-

tion is given by

N′ (t) = N (t) [b − aN (t)] , (260)

where a, b > 0. Hutchinson noticed that population densities influence birth

rates at later times due to developmental and maturation delays. This led

him to introduce a delay into the equation, giving

N′ (t) = N (t) [b − aN (t − r)] , (261)

where r > 0.

In [17], Bellman and Cooke illustrate the general theory behind DDEs. A

retarded DDE has the form

y′(t) = f
(
t, y (t) , y (t − τ1) , y (t − τ2) , . . . , y

(
t − τq

))
, t ≥ t0,

(262)

y (t) = φ (t) , t ≤ t0.

(263)

The delays τ1, . . . , τq can be constant (τ = c ∈ R), time dependent (τ = τ(t)),

or state dependent (τ = τ(y(t))). For the purposes of this work we shall

only consider constant delays; however, methods for handling time depen-

dent and state dependent delays can be found in Bellen and Zennaro [16].

The function φ : R → Rn is known as the history function as it provides a

solution for when t is less than the initial time t0.

There also exists a type of DDE called a neutral DDE. These can be depen-

dent on the past states of the derivative y′ as well as the past states of the

solution y. Again, we do not consider those in this work, but they are dis-

cussed in Hale [78].
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DDEs can be solved numerically in a similar way to ODEs, except the delay

states also need to be evaluated for use in the computation of the solution.

This usually requires some form of interpolation as the delay terms are un-

likely to fall on the stages of the standard Runge-Kutta timestepper.

a.2.2 Natural Runge-Kutta Method for DDEs

If the delay terms do fall on the Runge-Kutta stages then we can employ a

method known as the Natural Runge-Kutta (NRK) method for delay differ-

ential equations [16]. Suppose that for a non-adaptive method with fixed

step size h, we have a single constant delay τ such that τ = κh for some inte-

ger κ. Having such a condition means that the delay terms will always fall

on the stages of the Runge-Kutta scheme, hence no interpolation is required.

In Y notation, the scheme is given by

Yi
n+1 = yn + h

i−1

∑
j=1

aij f
(

tn + cih, Y j
n+1, Y j

n+1−κ

)
, i = 1, . . . , s, (264)

yn+1 = yn + h
s

∑
i=1

bi f
(

tn + cih, Yi
n+1, Yi

n+1−κ

)
. (265)

When n is less than κ, the delay terms fall in the history function φ (t). This

is extended analogously for multiple delays; however, all the delays must be

integer multiples of h. The downside to this method is that it requires all the

Runge-Kutta stages for each step (or at least as far back as the (n + 1 − κ)th

step) to be saved in memory. Otherwise, they need to be recomputed again

at the moment they are needed. It is also very restrictive in terms of the

time step that can be chosen, and does not allow for step size adaptation.

The method becomes highly impractical when working with large systems

of equations and/or a large number of delays [77].
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a.2.3 Continuous Output Methods for DDEs

The NRK method is good for small systems with a single delay and fixed

step size, but what if a more flexible method is desired? As illustrated in

Figure 51, suppose that a delay state (red dot) falls arbitrarily between two

previously computed solution points (blue dots).

Figure 51: Example delay state timeline where the closed blue dots repre-

sent computed solution points, the open blue circle is the current

solution point being computed, and the red dot is an arbitrary

example of where a delay state may fall between two previously

computed solution points.

The progression of the scheme is dependent on computing this delay state.

As the delay state is bounded by known solution points, an interpolant can

be applied [93, 54]. The order of the interpolant, and hence the number of

support points required, would have to be varied in accordance with the

order of the Runge-Kutta scheme to achieve the desired order of the overall

method [128, 95]. Given a pth order underlying Runge-Kutta scheme with

a qth order interpolant for the delay terms, the overall order of the DDE

scheme is min (p, q) [133]. Continuous output schemes, as presented in

Appendix A.1.2, can be utilised to provide an approximation to the delay

state that maintains the order of the scheme without requiring many extra

computations. This can be seen in Shampine and Thompson [154], where

they discuss the methods behind MATLAB’s dde23 solver. These methods

are also more flexible as they allow for the underlying Runge-Kutta scheme

to be adaptive.
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a.3 sparse matrix structures

There are several storage methods for storing sparse matrices, such as co-

ordinate (COO) format, compressed sparse row (CSR) format and compressed

sparse column (CSC) format [136, 106]. Although the most commonly used

format in general is CSR, this project mainly uses the CSC format. They are

constructed analogously to each other, so only CSC will be introduced here.

a.3.1 Compressed Sparse Column

CSC works by only storing three one dimensional arrays instead of the full

matrix. The first of these arrays stores the non-zero entries of the matrix.

The second array stores the row indices of every entry in the non-zero value

array. This, like the non-zero values array, is of length equal to the number

of non-zeros (NNZ). The final array is known as the column pointer array

and works by indicating at what index in the non-zero values array the

next column of the matrix would begin at. For an m × n matrix, this array

contains n + 1 entries.

As an example, consider the 5 × 5 matrix

M =



3 0 9 0 0

0 1 3 0 7

0 2 0 0 0

6 0 0 5 0

0 0 4 0 0


. (266)

The number of non zero entries in M is 9. Hence, the three storage vectors,

of lengths 9, 9 and 6 respectively, can be constructed.

Values = [3 6 1 2 9 3 4 5 7] (267)

Row_index = [0 3 1 2 0 1 4 3 1] (268)

Col_ptr = [0 2 4 7 8 9]. (269)
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Note that zero-based indexing is used here.

The difference between the consecutive entries in Col_ptr gives the number

of non-zero entries in each column. For example, the number of entries in

the second column of M is given by 4 − 2 = 2. The values in this column

correspond to values from the second to the fourth position in the Values

array. CSC format is only more computationally efficient if

NNZ <
(n(m − 1)− 1)

2
. (270)



B
N F E S O LV E S U P P L E M E N TA RY M AT E R I A L

Here, we include the README.md file for the NFESOLVE repository in or-

der to illustrate the steps needed to install the suite of code. The repository

can be found at https://github.com/UoN-Math-Neuro/NFESOLVE.

b.1 readme

NFESOLVE is a suite of differential equation solvers with a focus on the

efficient computation of delay differential equations.

1. Make sure Armadillo is installed with an OpenBLAS backend (Open-

BLAS isn’t strictly necessary but provides optimised BLAS routines

that will make code faster). See Armadillo’s README.md for advice

on this.

2. If you are wanting to run the parallel version of the code then you

must have OpenMP 3.1 or later installed, as detailed in the Armadillo

documentation.

3. Open terminal and cd to NFESOLVE directory. If you have OpenMP

installed and wish to compile both the serial and parallel versions

of NFESOLVE then just type ‘make’. To compile only the serial

version type ‘make NFESOLVE’, or for the parallel version type

‘make NFESOLVE_PAR’.
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4. To include the NFESOLVE library in your project type ‘#include "NFESOLVE.hpp"’

in the header definitions of your files.

5. See Examples folder for a variety of ODE and DDE example problems.

For each problem a Makefile is supplied that follows the same tem-

plate. It is recommended that you copy and edit the provided Make-

files to suit your own usage. It is important to make sure that the

‘NFESOLVE_DIR’ variable in the Makefile is changed to the directory that

you installed NFESOLVE in. The DelayNFE_Example1 and SparseDe-

layNFE_Example1 makefiles contain both serial and parallel versions

which can be made individually by adding or removing the ‘_PAR’ suf-

fix to the make target when making.
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