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Abstract

The underlying theme of this thesis is noncommutative geometry, with a particular

focus on Dirac operators. In the first part of the thesis, we investigate through a

module theoretic approach to noncommutative Riemannian (spin) geometry how one

can induce differential, Riemannian and spinorial structures from a noncommutative

ambient space to an appropriate notion of a noncommutative hypersurface, thus pro-

viding a framework for constructing Dirac operators on noncommutative hypersur-

faces from geometrical data on the embedding space. This is applied to the sequence

T2
θ ↪→ S3

θ ↪→ R4
θ of noncommutative hypersurface embeddings. The obtained Dirac

operators agree with ones found in the literature obtained by other means.

The second part of the thesis deals with BV quantisation of finite dimensional non-

commutative field theories. The modern formulation of the BV formalism of Costello

and Gwilliam is adapted to fit our setting. The formalism is illustrated through the

computation of correlation functions for scalar field theories and Chern-Simons the-

ories on the fuzzy 2-sphere. The techniques are generalised to accommodate theo-

ries with symmetries encoded by triangular Hopf algebras. We use this to compute

correlation functions for braided scalar field theories on the fuzzy 2-torus. The BV

formalism is also used to study gauge-theoretic aspects of dynamical fuzzy spectral

triple models of quantum gravity. Perturbations around the trivial Dirac operator

D0 = 0 and an example of perturbations around a non-trivial Dirac operator D0 6= 0

in the quartic (0, 1)-model are investigated. From our analysis, we conclude that the

gauge-theoretical effects on the correlation functions depend strongly on the amount

of gauge symmetry that is broken by the background Dirac operator one chooses to

perturb around.

ii



Acknowledgements

First and foremost, I would like to thank Alex, my principal supervisor, for introduc-

ing me to this subject and ideas. I very much appreciate your patience and ability to

guide me through the vast sea of material and concepts, as well as the support for

whatever choice I made for my future. It has been a great intellectual, and personal,

journey. I will also remember all the visits to various pubs.

Next, I would like to express my gratitude to John. From our discussions, I have

learnt to think from a broader perspective. Additionally, I am thankful for you listen-

ing to, and your support on, a particular issue.

This thesis would not have been possible without Richard and James, my collabora-

tors. It has been great working together and seeing things from your perspective.

I am incredibly grateful for all the friends I made and people I met during my stay

in Nottingham. Thank you for enriching my experience and giving me a fantastic time

abroad. I have learnt a lot from you! I would also like to express a heartfelt thanks to

my friends in Sweden. All the time spent together has been invaluable.

A special thanks also goes to my Year 10-12 (gymnasiet) teacher Stellan, for having

provided (up to date still) the best classroom experience and for being a great role

model. I chose this path due to your encouragements and I do not regret it.

I am immensely thankful for my family - my parents and four siblings David, Julia,

William and Fredrik. It is reassuring to know that there is always a home I can return

to regardless of anything. Also, you always make way too much food (which I’ve

learnt to really appreciate over the years).

Another thanks should be extended to my partner’s family. You always make me

feel welcome. Also, thanks for helping us out with so many practical issues.

And to Louise, my life partner. Words cannot express how grateful I am to have

you in my life. I am immeasurably thankful for your endless support through my

postgraduate studies, and everything else. We have also had so much fun together

over the years. I look forward to our future together.

Last, not least, but definitely the smallest, Florence. How can someone so tiny have

such an enormous impact on one’s life?

iii



C O N T E N T S

Introduction 1

I Part I: Dirac operators and modules in noncommutative geometry

1 preliminaries 11

1.1 Modules and noncommutative Riemannian (spin) geometry . . . . . . . 11

1.1.1 Example: noncommutative R4 . . . . . . . . . . . . . . . . . . . . 16

1.2 Hopf algebras and their (co)modules . . . . . . . . . . . . . . . . . . . . . 22

1.2.1 Hopf algebra modules . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.2 Hopf algebra comodules . . . . . . . . . . . . . . . . . . . . . . . . 31

2 dirac operators on noncommutative hypersurfaces 38

2.1 Induced geometric structures on noncommutative hypersurfaces . . . . 38

2.1.1 Noncommutative hypersurfaces . . . . . . . . . . . . . . . . . . . 39

2.1.2 Induced Riemannian structure . . . . . . . . . . . . . . . . . . . . 41

2.1.3 Induced spinorial structure . . . . . . . . . . . . . . . . . . . . . . 45

2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2.1 Noncommutative hypersurface S3
θ ↪→ R4

θ . . . . . . . . . . . . . . 49

2.2.2 Noncommutative hypersurface T2
θ ↪→ S3

θ . . . . . . . . . . . . . . 55

3 conclusions and outlook 61

II Part II: Batalin-Vilkovisky quantisation of noncommutative field the-

ories

4 preliminaries 63

4.1 Cochain complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Cyclic L∞-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Batalin-Vilkovisky formalism in finite dimensions . . . . . . . . . . . . . 72

iv



Contents

4.3.1 Finite-dimensional BV formalism . . . . . . . . . . . . . . . . . . 74

4.3.2 Interaction terms and cyclic L∞-algebras . . . . . . . . . . . . . . 79

4.3.3 Correlation functions and homological perturbation theory . . . 80

5 batalin-vilkovisky quantisation of fuzzy field theories 85

5.1 Field theory on the fuzzy sphere . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.1 Scalar field theories . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.2 Chern-Simons theory . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 BV quantisation of braided field theories . . . . . . . . . . . . . . . . . . 101

5.2.1 Finite-dimensional braided BV formalism . . . . . . . . . . . . . 101

5.2.2 Braided L∞-algebras, their cyclic versions and interaction terms 105

5.2.3 Correlation functions and braided homological perturbation the-

ory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Braided field theories on the fuzzy torus . . . . . . . . . . . . . . . . . . 108

6 bv quantisation of dynamical fuzzy spectral triples 121

6.1 Fuzzy spectral triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Automorphisms and dynamical fuzzy spectral triples . . . . . . . . . . . 129

6.3 Classical BV formalism of dynamical fuzzy spectral triple models . . . 132

6.4 BV quantisation and correlators . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5 Perturbations around D0 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.6 Example for D0 6= 0: the quartic (0, 1)-model . . . . . . . . . . . . . . . . 143

7 conclusions and outlook 153

Bibliography 157

v



I N T R O D U C T I O N

One of the greatest challenges of modern theoretical physics is the development of a

quantum theory for gravity. So far, the attempts at unravelling the microscopic nature

of gravity have been met with resistance. Notable approaches include the likes of

string theory, loop quantum gravity, causal set theory, etc.

It is a well known fact that quantum physics is in general noncommutative in na-

ture. Therefore, it is not far-fetched to investigate the possibility if spacetime itself

could be described as a noncommutative space in an attempt at understanding quan-

tum gravity. This leads to one of the main themes underlying this thesis: noncommuta-

tive geometry. In ordinary commutative geometry, there are in many cases a one-to-one

correspondence between the (commutative) algebras of functions and the spaces them-

selves. Thus, one may often reconstruct the spaces from their algebra of functions. A

seminal result is that of the commutative Gelfand-Naimark theorem (or Gelfand duality)

[GN43], which essentially states that the category of commutative (and possibly non-

unital) C∗-algebras is equivalent to the category of locally compact Hausdorff spaces.

Noncommutative geometry takes this idea and generalises it to also include noncom-

mutative algebras to be thought of as the algebra of functions on some quantum space.

One may then construct analogues of geometric objects found in regular commutative

geometry.

Noncommutative geometry is also interesting from a physical standpoint apart from

quantum gravity. A remarkable example is that the standard model can be expressed

in terms of noncommutative geometry [CL91, Con96, CC97, Bar06, Con06, CCM07],

see also [vanS15]. Another example is the phase space of a quantum mechanical

particle, which is known to be noncommutative. Indeed, the presence of Heisenberg’s

uncertainty principle is due to the noncommutativity of the position and momentum

operators. In particular, this means that the notion of point is absent in the quantum

phase space - the uncertainty principle states that one cannot determine the position

and momentum of a particle to arbitrary accuracy. In fact, this is a generic feature in

noncommutative geometry.
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Introduction

There are several approaches to noncommutative geometry. We will in particu-

lar focus on two formulations of noncommutative Riemannian (spin) geometry. The

first follows a module theoretic approach akin to the formalisms described in e.g.

[Lan97, D-V01, BM20]. The other concept we will focus on is that of real spectral triples,

conceived and vastly developed by Alain Connes [Con80, Con85, Con94]. Since its

inception, this subject has been widely researched and there is an abundance of lit-

erature on spectral triples, see e.g. [Con94, G-BVF01, CM08, vanS15]. It is today

considered to be one of the main cornerstones of noncommutative geometry. Other

approaches for encoding the geometry on a noncommutative space are for instance

the vielbein approaches of [AC09] or deformations of commutative Riemannian geom-

etry as in [ADMW06]. There are also other metric based works (which are different

but share some conceptual resemblances to the ones we consider in this thesis) with

roots in traditional Riemannian geometry such as [AN19, Nor21, AI22].

We will put a particular emphasis on Dirac operators, which play a significant role

in the description of the noncommutative version of Riemannian (spin) geometry. A

Dirac operator is thought of as encoding the geometric/metric structure of a non-

commutative space; in ordinary commutative Riemannian spin geometry, one can

reconstruct the geodesic distance from the Dirac operator via the Connes distance

formula [Con94]. In Part I of the thesis, we will approach this from a perspective

close to that of classical differential geometry. There, we will provide a framework for

inducing Dirac operators on a certain notion of noncommutative hypersurfaces from

geometrical data on some ambient noncommutative embedding space. Afterwards,

Dirac operators will make a return in the spectral triples approach in Part II, Chapter

6, where we will see Dirac operators regarded as dynamical fields of a field theory,

describing (toy) models for quantum gravity.

This thesis is based on the three papers [NS20, NSS21, GNS22], and is divided in two

parts. Part I treats [NS20] which is joint work of the author and Alexander Schenkel.

First out in Chapter 1 is Section 1.1, which aims to introduce the underlying geomet-

rical concepts for building Dirac operators from a module theoretical perspective of

noncommutative Riemannian (spin) geometry. This entails to introducing a notion of

differential calculus, Riemannian structure and spinorial structure, encoded in a layer

by layer fashion. We also introduce in Section 1.1.1 the embedding space R4
θ which

serves as the embedding space from which we will induce the geometric structures
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Introduction

for the examples later. The following section, Section 1.2, is dedicated to reviewing

the relevant Hopf algebra theory used throughout the thesis. In there, we will first

introduce the concept of Hopf algebras and present some basic properties before mov-

ing on to treat modules over them. There, we will in particular meet the important

concept of a (quasi)triangular structure which amongst other things defines a braid-

ing on the category of (left) Hopf algebra modules. We then translate the discussion

to the case of Hopf algebra comodules, which carries equivalent formulations of the

concepts introduced for modules.

In Chapter 2 we present the central results of [NS20], i.e. the framework for induc-

ing the differential, Riemannian and spinorial structures to noncommutative hypersur-

faces (in the sense of Definition 2.1.2) in Section 2.1. For the construction to work, we

require that certain hypotheses should be satisfied, introduced in Assumptions 2.1.6,

2.1.11 and 2.1.13. This leads to the main outcome of the section: an explicit formula

for the Dirac operator on noncommutative hypersurfaces. In order to illustrate the

formalism, we apply in Section 2.2 the construction to the sequence of hypersurface

embeddings T2
θ ↪→ S3

θ ↪→ R4
θ studied by Arnlind and Norkvist [AN19]. This is per-

formed stepwise, first for the embedding of the Connes-Landi sphere S3
θ into R4

θ , and

then for the embedding of the noncommutative Clifford torus T2
θ into S3

θ using the re-

sults from the previous case. The induced hypersurface Dirac operators on S3
θ and T2

θ

turn out to be isospectral deformations of the commutative ones. In fact, they coincide

with the Dirac operators obtained from toric deformations in [CL01, CD-V02, BLvS13].

We close Part I of the thesis in Chapter 3 with some concluding remarks around pos-

sible applications and future directions regarding the framework we built in Chapter

2.

The main topic of Part II is that of quantisation of noncommutative field theories,

in particular Batalin-Vilkovisky (BV) quantisation. This part is based on [NSS21] which

is joint work with Alexander Schenkel and Richard J. Szabo, and [GNS22] which is

joint work with James Gaunt and Alexander Schenkel. It is a well-known fact that

noncommutative field theories display several features not present in ordinary com-

mutative quantum field theory, see e.g. [Sza03]. One of the challenges up to date is

to understand quantisation of noncommutative gauge theories, see e.g. [BKSW10] for

an overview of different approaches to noncommutative gauge theory. In this part of

the thesis we present our approach to quantisation of noncommutative gauge theo-
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Introduction

ries based on the modern formulation of the BV formalism of Costello and Gwilliam

[CG16, CG21, Gwi12]. The BV formalism, pioneered by Batalin and Vilkovisky [BV81],

is a procedure for defining gauge theoretic path integrals through homological meth-

ods. In this thesis, we only consider finite dimensional systems, which significantly

simplifies the discussion without impairing the central ideas. In particular, the issues

surrounding functional analytical technicalities otherwise found in continuum field

theories do not arise in such models. We also would like to mention that similar work

has been performed in [Ise19a, Ise19b] for the finite dimensional classical BV formalism

on certain matrix models, and in [IvS17] in the context of spectral triples.

We begin in Chapter 4 by presenting the underlying mathematical concepts of the

finite dimensional BV formalism. In Section 4.1, we review the language in which

the finite dimensional BV formalism is expressed, namely that of cochain complexes.

There, we give the basic definitions and conventions and provide some important ex-

amples. We then introduce the concept of L∞-algebras in Section 4.2. These are higher

generalisations of ordinary Lie algebras where the Jacobi identity only holds up to

homotopy. We also discuss so called cyclic structures on L∞-algebras, which are the

appropriate notion of inner products in this setting. In fact, there is a relation between

L∞-algebras, classical field theories and the BV formalism, see [JRSW19]. Having set

up the mathematical background, we then outline the finite dimensional BV formal-

ism, which constructs from the data of a free BV theory (which is the cochain complex

of the fields, ghosts, and their respective antifields, together with a pairing playing

the role of a shifted symplectic structure, see Definition 4.3.1) the free classical observ-

ables, which one then deforms in order to obtain the interacting case and the quantum

observables. We also provide a method for constructing interaction terms using cyclic

L∞-algebras based on the so called homotopy Maurer-Cartan action, see e.g. [JRSW19].

Finally, we describe how one can obtain and compute correlation functions using ho-

mological perturbation theory. In particular, the n-point correlation functions can be

computed perturbatively order by order in coupling constant or Planck’s constant

(here treated as formal parameters).

The main content of [NSS21] is presented in Chapter 5. Section 5.1 is an application

of the BV formalism as described in Section 4.3 to field theories on the fuzzy 2-sphere.

In particular, we consider scalar field theory and Chern-Simons theory on the fuzzy

sphere. For the scalar field theory, we study in detail the example of Φ4-theory where
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we compute the 2-point correlation function at 1-loop order, reproducing the results

obtained through more traditional means as in [CMS01]. From the calculations, one

observes the known distinction between planar and non-planar loop corrections in the

standard noncommutative field theories, see e.g. [Sza03]. The scalar field theory how-

ever has trivial gauge symmetries. To have an example with non-trivial gauge group,

we consider Chern-Simons theory (see [ARS00, GMS01]). Note that the fuzzy 2-sphere

has a 3-dimensional differential calculus, which explains why we may define Chern-

Simons theory on it. Quantisation of noncommutative Chern-Simons theory was men-

tioned in [GMS02]. Here, we provide a full framework for the quantisation and tools

for a perturbative computation of the correlation functions on the fuzzy 2-sphere. The

results share many similarities with the study in [CM10] on the Chern-Simons model

on finite dimensional commutative dg Frobenius algebras. Next, in Section 5.2, we

begin the analysis of so called braided field theories, studied in [DCGRS20, DCGRS21].

In there, they defined the notion of braided L∞ algebras which lead to the construc-

tion of braided field theories. In short, these are field theories equivariant under

the action of a triangular Hopf algebra and whose fields are braided commutative.

The first account of standard noncommutative field theories formulated in terms of

L∞-algebras was presented in [BBKL18]. We would like to stress that the terminology

“braided” used in this context in fact refers to algebraic structures which are defined in

a symmetric braided monoidal category, whose symmetric braiding is however defined

through a non-trivial triangular R-matrix (i.e. it is not the identity). The more general

situation of non-symmetric braidings are significantly more complicated because it

obstructs the formulation of certain key properties such as a braided version of sym-

metry and Jacobi identity for the antibracket. In order to accommodate the braided

field theories, a braided version of the considerations in Section 4.3 is developed. This

includes a braided BV formalism, a method for constructing interaction terms using

braided L∞-algebras and an adaptation of homological perturbation theory for com-

puting correlation functions to this setting. For scalar field theories, this agrees with

the earlier accounts of [Oec00, Oec01] of (symmetric) braided quantum field theory,

based on a braided generalisation of Wick’s theorem and Gaussian integration. How-

ever, in contrast to our framework, theories with gauge symmetries where not treated

there. In order to illustrate the braided formalism, we consider scalar field theories

on the fuzzy 2-torus in Section 5.3. Due to the braided symmetry, the planar and non-
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planar loop corrections coincide. This was pointed out for twist deformed theories in

[Oec00], and later by [Bal+07]. We will also through an explicit example see that there

are non-trivial effects from the braiding in the correlation functions.

The final topic of this thesis is treated in Chapter 6 and is based on [GNS22], which

is a contribution to the spectral triples approach to noncommutative quantum gravity.

We will mostly work with so called fuzzy spectral triples, which are a type of matrix

geometries developed by Barrett [Bar15]. We review the relevant concepts related to

fuzzy spectral triples in Section 6.1. Roughly speaking, a spectral triple (A,H, D)

consists of a potentially noncommutative algebra A represented on a Hilbert space H,

together with a Dirac operator D. The algebra A should be interpreted as the algebra

of functions of some noncommutative space and H should be taken as the space of

spinors on which A act. The Dirac operator should, as mentioned above, be thought

of as encoding the metric structure of noncommutative Riemannian geometry. For

real spectral triples, a so called real structure J and chirality operator Γ are further

required, which are related to spinorial structures. In fact, ordinary Riemannian spin

geometry can be reformulated in terms of real spectral triples. We are interested

in so called fuzzy spectral triples, which are finite dimensional versions of real spectral

triples where A = MatN(C) is the algebra of complex (N×N)-matrices, together with

a fixed (p, q)-Clifford module V such that H = A⊗ V. We also use the terminology

(p, q)-fermion space (A,H; Γ, J) for a fuzzy spectral triple without the data of a Dirac

operator.

Finite spectral triples were classified in [Kra98]. Based on this, the full classifica-

tion of fuzzy spectral triples was described in [Bar15], where in particular an explicit

form of the Dirac operators in terms of Hermitian and anti-Hermitian matrices was

presented. This sets up a good foundation for building a theory of random noncommu-

tative geometry, see [BG16] for the original account. For a fixed (p, q)-fermion space

(A,H; Γ, J), we may consider the finite dimensional vector space of Dirac operators D,

the so-called Dirac ensemble of (A,H; Γ, J), parametrising the fuzzy spectral triples with

(p, q)-fermion space (A,H; Γ, J). For a suitable action S : D → R, the partition func-

tion is defined as the integral (which exists rigorously due to the finite dimensionality

of D)

Z =
∫

D∈D
e−S(D) dD (0.0.1a)
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and the expectation value of an observable O : D → C by

〈O〉 = 1
Z

∫
D∈D
O(D) e−S(D) dD . (0.0.1b)

Through the classification of finite spectral triples [Kra98], together with the explicit

characterisation of Dirac operators [Bar15], the path integrals can be rewritten in terms

of random multi-matrix models. There is evidence that random noncommutative ge-

ometry exhibit properties also expressed by random matrix theory, for instance the

Wigner semicircle law and phase transitions. This was studied using Monte-Carlo

simulations in [BG16]. Other works on the numerical side include [BDG19, D’Ar22].

Analytical considerations of examples of such models can be found in e.g. [BDG19,

AK19, HKP21, KP21a, KP21b, PS19, PS21a, PS21b]. Random noncommutative geom-

etry of fuzzy spectral triples directly links to the study of (toy-)models of quantum

gravity on noncommutative spaces [BG16]. The idea is to consider Dirac operators D,

which encode the metric structure, as dynamical variables getting quantised through

the path integral (0.0.1). This is where the terminology of dynamical spectral triples

stem from. Another reason for considering this approach to quantum gravity is that

these Dirac operators have a maximum eigenvalue, which can be interpreted as a

natural cutoff to gravitational phenomena at the Planck scale [BG16].

Recall that the study of ordinary gravity is considered up to diffeomorphism gauge

symmetries. However, so far, gauge-theoretic considerations for dynamical spectral

triple models have not been presented in the literature yet. We present in Section 6.2 a

natural noncommutative analogue of these diffeomorphism gauge symmetries carried

by the dynamical spectral triple models. The gauge transformations are described by

certain unitary operators U on H and act on the Dirac ensemble D via the adjoint

action D 7→ U D U∗. We are mainly concerned with the infinitesimal versions of the

gauge transformations. This is because we use the BV formalism (described in Section

4.3), which works in the perturbative realm, to define and compute the gauge theoretic

path integrals (0.0.1). The actions we consider are invariant under these infinitesimal

gauge transformations. Furthermore, we will work with formal perturbations around

exact solutions D0 ∈ D of the classical equations of motion of a given action S. This

is one of the focus points of [GNS22]. From these considerations, we define an ac-

tion S̃ for the perturbation around D0, which by construction is invariant under the

infinitesimal gauge transformations.
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The principal accomplishment of [GNS22] is an explicit and computationally ac-

cessible account of both the classical and quantum BV formalism for the dynamical

spectral triple models introduced in [BG16]. The classical BV formalism, described in

Section 6.3, takes for a fixed fermion space as input the Dirac ensemble D, the in-

finitesimal gauge symmetries and the action S̃, and returns the classical observables.

This is achieved by adapting the systematic techniques from [BSS21], which are based

on the modern language of derived algebraic geometry. The perspective on the BV

formalism of starting from (in some sense) the more primitive data of a space of fields,

infinitesimal gauge symmetries and a gauge invariant action can also often be found

in the physics part of the literature, see e.g. [HT92]. Next, in Section 6.4, we briefly

recall the BV quantisation and framework for computing correlation functions from

Section 4.3 in order to adapt the notation to the current setting.

One of the goals of [GNS22] was to understand whether the gauge symmetries play

any role for the path integrals of dynamical spectral triples or not. The final two sec-

tions of Chapter 6 aim to answer this question. It turns out that it depends strongly

on the amount of gauge symmetry that is broken by the chosen background Dirac op-

erator D0 one perturbs around. The analysis is split in two parts: one for investigating

the instance of perturbations around a vanishing background Dirac operator D0 = 0

and one for the non-zero case D0 6= 0. The former, D0 = 0, is covered in Section

6.5. We show in Proposition 6.5.3 that the correlation functions for D0 do not receive

any contributions from the ghosts or antifield for ghosts. In other words, there are no

gauge-theoretic alterations to the path integrals (0.0.1) in this case. On the contrary,

for the case of non-zero backgrounds D0 6= 0 that break some of the gauge symmetry,

the quantum correlation functions indeed receive gauge-theoretic contributions to the

quantum correlation functions. This is observed in Section 6.6 through the study of

the explicit example of the so called quartic (0, 1)-model from [BG16]. Because this

model inhabits a “symmetry-breaking potential”, it displays a behaviour akin to the

Higgs mechanism. In fact, this is identified as the reason for the non-trivial gauge-

theoretic adjustments to the correlation functions. This is in particular displayed in

Examples 6.6.2 and 6.6.3, where we compute to leading order in coupling constant the

1-point and 2-point functions respectively. Hence, we may conclude that when con-

sidering quantum fluctuations localised around a non-trivial classical solution D0 6= 0

8
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that breaks the gauge symmetry, the path integrals (0.0.1) require gauge theoretic cor-

rections.

In Chapter 7, we summarise the conclusions of the material in Part II and give

some indications of possible future projects to consider. That is the final chapter, thus

marking the end of the thesis.

conventions and notation : In the following, we list the conventions and

notations used in this thesis.

• All vector spaces, algebras, etc., are over a field K of characteristic 0.

• All algebras are unital and associative unless stated otherwise.

• For an algebra A, we denote the category of left A-modules by AMod and the

category of A-bimodules by AModA. Furthermore, AModA is monoidal with

respect to the relative tensor product V ⊗A W ∈ AModA of bimodules V, W ∈

AModA and the monoidal unit is given by the 1-dimensional free A-bimodule

A ∈ AModA. We denote by AMod the left module category over the monoidal

category (AModA,⊗A, A) with left action given by the relative tensor product

V ⊗A E ∈ AMod for all V ∈ AModA and E ∈ AMod.

• We denote the dual of a finite dimensional vector space V by V∨ := hom(V, K).

• We use the notation m∗ for Hermitian conjugation.

• The natural numbers N include 0.

• The Levi-Civita symbol εijk is defined by ε123 = 1 and total antisymmetry in the

exchange of indices.

• The Kronecker delta symbol is denoted by δij.

• Summation over repeated indices is always understood, unless stated otherwise.

We will also frequently use the language of monoidal categories and other related

concepts. There is a plethora of literature treating this subject, see e.g. [Mac78, Kel05].

For a quick survey of the fundamental definitions surrounding monoidal categories,

see e.g. [Bae04]. We will also need the concept of closed monoidal categories and

internal homs, see e.g. [Kel05].
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1
P R E L I M I N A R I E S

The first part of the thesis is built around the paper [NS20], which aims to describe a

framework for inducing Dirac operators from a noncommutative embedding space to

a suitable notion of noncommutative hypersurface. In this first chapter, we will review

the underlying mathematical notions required for the construction. This includes an

account of the module theoretic approach to noncommutative Riemannian (spin) ge-

ometry in Section 1.1 and some theory surrounding Hopf algebras in Section 1.2. The

theory reviewed in Section 1.2 will furthermore be relevant for Chapter 5, when we

in Section 5.2 and Section 5.3 consider noncommutative field theories with symmetry

encoded by a so called triangular Hopf algebra.

1.1 modules and noncommutative riemannian (spin) geometry

The approach to noncommutative geometry to be described in the following is similar

to textbook commutative geometry in the sense that familiar structures such as differ-

ential calculi, metrics, connections and spinorial structures are encoded layer by layer

in a rather explicit fashion. In contrast to the more implicit nature of spectral triples,

intuition from ordinary geometry is thus more directly transferable. This is useful

for constructing and interpreting examples of noncommutative spaces. In fact, under

certain circumstances, this approach is shown by Beggs and Majid [BM17] to give rise

to spectral triples.

We now review some relevant concepts, see e.g. [Lan97, D-V01, BM20] and [NS20,

Section 2] (which this section is based on) for more details. For an (unital and associa-

tive) algebra A, which plays the role of the function algebra for some noncommutative

11



1.1 modules and noncommutative riemannian (spin) geometry

space, we begin by providing a concept of a differential calculus. The goal is to arrive

to a notion of a Dirac operator.

Definition 1.1.1. A (first-order) differential calculus on an algebra A is a pair (Ω1
A, d)

consisting of an A-bimodule Ω1
A ∈ AModA and a linear map d : A → Ω1

A (called

differential), such that

(i) d(a a′) = (da) a′ + a (da′), for all a, a′ ∈ A,

(ii) Ω1
A = A d(A) :=

{
∑i ai da′i : ai, a′i ∈ A

}
.

We call Ω1
A the A-bimodule of 1-forms on A.

Definition 1.1.2. Let (Ω1
A, d) be a differential calculus on an algebra A.

(i) A connection on a left A-module E ∈ AMod is a linear map ∇ : E → Ω1
A ⊗A E

that satisfies the left Leibniz rule

∇(a s) = a∇(s) + da⊗A s , (1.1.1)

for all a ∈ A and s ∈ E .

(ii) A bimodule connection on an A-bimodule V ∈ AModA is a pair (∇, σ) consisting

of a linear map ∇ : V → Ω1
A ⊗A V and an A-bimodule isomorphism σ : V ⊗A

Ω1
A → Ω1

A ⊗A V, such that the following left and right Leibniz rules

∇(a v) = a∇(v) + da⊗A v , (1.1.2a)

∇(v a) = ∇(v) a + σ(v⊗A da) , (1.1.2b)

are satisfied, for all a ∈ A and v ∈ V.

Note that the map σ in the definition for a bimodule connection is required to really

make ∇ a map into Ω1
A ⊗A V. Simply flipping the tensor factors only works when

A is commutative. The following proposition motivates further why the definition of

bimodule connections in Definition 1.1.2 (ii) is sensible, see e.g. [D-V01, Section 10].

Proposition 1.1.3. Let (Ω1
A, d) be a differential calculus on an algebra A.

(i) Let ∇E be a connection on a left A-module E ∈ AMod and (∇V , σV) a bimodule

connection on an A-bimodule V ∈ AModA. Then

∇⊗(v⊗A s) := ∇V(v)⊗A s + (σV ⊗A id)
(
v⊗A ∇E (s)

)
, (1.1.3)

for all v ∈ V and s ∈ E , defines a connection on the tensor product module V ⊗A E ∈

AMod.

12



1.1 modules and noncommutative riemannian (spin) geometry

(ii) Let (∇V , σV) and (∇W , σW) be bimodule connections on two A-bimodules V, W ∈

AModA. Then

∇⊗(v⊗A w) := ∇V(v)⊗A w + (σV ⊗A id)
(
v⊗A ∇W(w)

)
, (1.1.4a)

for all v ∈ V and w ∈W, and the composite A-bimodule isomorphism

σ⊗ : V ⊗A W ⊗A Ω1
A

id⊗AσW
// V ⊗A Ω1

A ⊗A W
σV⊗Aid

// Ω1
A ⊗A V ⊗A W

(1.1.4b)

defines a bimodule connection on the tensor product bimodule V ⊗A W ∈ AModA.

Since we are interested in noncommutative Riemannian geometry, we need a con-

cept of a metric. Additionally, we would like a symmetry property of metrics and

some sort of compatibility between metrics and connections, generalising Levi-Civita

connections in the commutative world.

Definition 1.1.4. A (generalised) metric on Ω1
A is an A-bimodule map g : A→ Ω1

A ⊗A

Ω1
A for which there exists an A-bimodule map g−1 : Ω1

A ⊗A Ω1
A → A, such that the

two compositions

Ω1
A
∼= Ω1

A ⊗A A
id⊗Ag

// Ω1
A ⊗A Ω1

A ⊗A Ω1
A

g−1⊗Aid
// A⊗A Ω1

A
∼= Ω1

A

Ω1
A
∼= A⊗A Ω1

A
g⊗Aid

// Ω1
A ⊗A Ω1

A ⊗A Ω1
A

id⊗Ag−1
// Ω1

A ⊗A A ∼= Ω1
A

(1.1.5)

are the identity morphisms. We call g−1 the inverse metric.

Remark 1.1.5. The algebra A itself is a free A-bimodule with basis given by the unit

element 1 ∈ A. Therefore, a bimodule map g : A→ Ω1
A⊗A Ω1

A is completely specified

by its image g(1) ∈ Ω1
A ⊗A Ω1

A. Furthermore, g(1) is central, i.e. a g(1) = g(1) a for

all a ∈ A. By writing g(1) = ∑α gα ⊗A gα, the two conditions in Equation (1.1.5) can

be recast as

∑
α

g−1(ω⊗A gα) gα = ω = ∑
α

gα g−1(gα ⊗A ω) , (1.1.6)

for all ω ∈ Ω1
A. This alternative form is useful later when proving that two A-

bimodule maps are a metric and inverse metric pair. It also makes a quick proof

of the uniqueness of g−1. M

Proposition 1.1.6. If it exists, the A-bimodule map g−1 : Ω1
A ⊗A Ω1

A → A in Definition

1.1.4 is unique.
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1.1 modules and noncommutative riemannian (spin) geometry

Proof. Assume there is another A-bimodule map g′−1 : Ω1
A ⊗A Ω1

A → A such that

∑
α

g′−1(ω⊗A gα) gα = ω = ∑
α

gα g′−1(gα ⊗A ω) , (1.1.7)

for all ω ∈ Ω1
A. Then in particular, for any ω′ ∈ Ω1

A,

∑
α

g−1(ω⊗A gα) gα ⊗ω′ = ∑
α

g′−1(ω⊗A gα) gα ⊗ω′ . (1.1.8)

Applying g−1 to both sides and using that both g−1 and g′−1 are A-bimodule maps

together with (1.1.6), we obtain for the left hand side of (1.1.8)

∑
α

g−1(ω⊗A gα) g−1( gα ⊗ω′) = g−1(ω⊗A ∑
α

gα g−1( gα ⊗ω′))

= g−1(ω⊗A ω′) (1.1.9)

and for the right hand side,

∑
α

g′−1(ω⊗A gα) g−1( gα ⊗ω′) = g′−1(ω⊗A ∑
α

gα g−1( gα ⊗ω′))

= g′−1(ω⊗A ω′) . (1.1.10)

Since ω, ω′ ∈ Ω1
A are arbitrary, this completes the proof.

Definition 1.1.7. Let (Ω1
A, d) be a differential calculus on an algebra A. A Riemannian

structure on (Ω1
A, d) is a pair (g, (∇, σ)) consisting of a (generalised) metric g on Ω1

A

and a bimodule connection (∇, σ) on Ω1
A that satisfies the following properties:

(i) Symmetry: The diagram

Ω1
A ⊗A Ω1

A

g−1
%%

σ // Ω1
A ⊗A Ω1

A

g−1
yy

A

(1.1.11)

commutes.

(ii) Metric compatibility: The diagram

Ω1
A ⊗A Ω1

A

g−1

��

∇⊗ // Ω1
A ⊗A Ω1

A ⊗A Ω1
A

id⊗Ag−1

��

A
d

// Ω1
A
∼= Ω1

A ⊗A A

(1.1.12)

commutes, where ∇⊗ is the tensor product connection from Proposition 1.1.3.
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1.1 modules and noncommutative riemannian (spin) geometry

Remark 1.1.8. One might expect there to be an additional torsion-free condition in the

definition of a Riemannian structure. Our choice to skip the implementation of such

a condition is because the construction to be outlined in Chapter 2 also covers connec-

tions with torsion. Moreover, one would need a notion of a second-order differential

calculus Ω2
A in order to describe torsion. In [BM20], the torsion tensor is defined as

T := ∧ ◦ ∇ − d : Ω1
A → Ω2

A, whereby the torsion-free condition simply would be

T = 0. M

The final building block we need for the definition of a Dirac operator is the concept

of a spinorial structure, which we base on the module theoretic approach by Beggs

and Majid [BM17, BM20]. For an algebra A, let (Ω1
A, d) be the corresponding differ-

ential calculus and (g, (∇, σ)) be a Riemannian structure on (Ω1
A, d). The spinorial

structure should consist of three objects which are interpreted as the module of sec-

tions of a spinor bundle (i.e. spinors), together with a spin connection and Clifford

multiplication. For the spinors, we take a left A-module E ∈ AMod and for the spin

connection, a connection ∇sp : E → Ω1
A ⊗A E . Finally, Clifford multiplication is im-

plemented by an A-module map γ : Ω1
A ⊗A E → E . These objects should furthermore

be compatible with the Riemannian structure (g, (∇, σ)). Before we give the full def-

inition of a spinorial structure, with the associated Dirac operator, let us introduce a

convenient notation for the A-module map

γ[2] : Ω1
A ⊗A Ω1

A ⊗A E
id⊗Aγ

// Ω1
A ⊗A E

γ
// E (1.1.13)

obtained from iteratively applying γ. Analogously, one obtains the n-times applied

Clifford multiplication γ[n] : Ω1
A
⊗An ⊗A E → E , for all n ∈N.

Definition 1.1.9. Let (Ω1
A, d) be a differential calculus on an algebra A and (g, (∇, σ))

a Riemannian structure on (Ω1
A, d). A spinorial structure on (g, (∇, σ)) is a triple

(E ,∇sp, γ) consisting of a left A-module E ∈ AMod, a connection ∇sp on E and an

A-module map γ : Ω1
A ⊗A E → E that satisfies the following properties:

(i) Clifford relations: The diagram

Ω1
A ⊗A Ω1

A ⊗A E
γ[2]+γ[2]◦(σ⊗Aid)

��

−2g−1⊗Aid
// A⊗A E

E
∼=

55
(1.1.14)

commutes.
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1.1 modules and noncommutative riemannian (spin) geometry

(ii) Clifford compatibility: The diagram

Ω1
A ⊗A E

γ

��

∇⊗ // Ω1
A ⊗A Ω1

A ⊗A E

id⊗Aγ
��

E
∇sp

// Ω1
A ⊗A E

(1.1.15)

commutes, where ∇⊗ is the tensor product connection from Proposition 1.1.3.

We shall call the composite

D : E ∇sp
// Ω1

A ⊗A E
γ

// E (1.1.16)

the Dirac operator associated with the given spinorial structure.

The Dirac operator satisfies a derivation-like property, specified in the proposition

below.

Proposition 1.1.10. The Dirac operator (1.1.16) satisfies

D(a s) = a D(s) + γ(da⊗A s) , (1.1.17)

for all a ∈ A and s ∈ E .

Proof. This is a direct consequence of the Leibniz rule (1.1.1) for ∇sp and the fact that

γ is left A-linear.

Remark 1.1.11. The definition of spinorial structure by Beggs and Majid [BM17, BM20]

is more general since it excludes the Clifford compatibility condition. We made the

decision to include it since it serves as an important guiding principle for our con-

struction of Dirac operators on noncommutative hypersurfaces and is satisfied by the

examples we consider, see Chapter 2. M

1.1.1 Example: noncommutative R4

To illustrate the formalism, let us study a noncommutative version of R4, which we

will denote by R4
θ .1 The material covered here can be found in [NS20]. In Chapter 2,

we will develop a framework for inducing the geometric structures described above to

1 The noncommutative space R4
θ should not be confused with the Moyal plane, which is given by a certain

deformation quantisation of the smooth functions on Rn known as the Moyal (star) product.
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1.1 modules and noncommutative riemannian (spin) geometry

noncommutative hypersurfaces. In the example we study there, R4
θ will serve as the

embedding space from which the geometric structures are induced.

To describe R4
θ , it will be more convenient to work in complex coordinates rather

than real ones. If the real coordinates are given by xµ, for µ = 1, . . . , 4, the corre-

sponding complex coordinates are z1 := x1 + ix2 and z2 := x3 + ix4, together with

their complex conjugates z3 := z1 = x1 − ix2 and z4 := z2 = x3 − ix4. Then, the

noncommutative algebra for R4
θ
∼= C2

θ is

A :=
C[z1, z2, z3, z4]

(zi zj − Rji zj zi)
(1.1.18)

i.e. the algebra freely generated by the complex coordinates, modulo the ideal gener-

ated by zi zj − Rji zj zi, where Rji are the entries of the matrix

R :=


1 e−iθ 1 eiθ

eiθ 1 e−iθ 1

1 eiθ 1 e−iθ

e−iθ 1 eiθ 1

 , θ ∈ R . (1.1.19)

Here, and in the following, we do not sum over repeated indices unless there is a

summation symbol displayed. Observe that the entries of R satisfy

Rij = Rji (1.1.20a)

and

Rij Rji = 1 . (1.1.20b)

We begin by introducing a differential calculus on A (see Definition 1.1.1). Consider

the free left A-module

Ω1
A :=

4⊕
i=1

A dzi , (1.1.21a)

together with the right A-action defined by

dzi zj := Rji zj dzi . (1.1.21b)

(compare with the commutation relations in (1.1.18).) One checks that this defines a

bimodule Ω1
A ∈ AModA. By equipping it with the differential d : A → Ω1

A, defined

by d : zi 7→ dzi on the generators and extended by Leibniz rule (Item (i) in Definition

1.1.1), (Ω1
A, d) becomes a differential calculus on A:
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1.1 modules and noncommutative riemannian (spin) geometry

Proposition 1.1.12. The pair (Ω1
A, d) is a differential calculus on A.

Proof. The statement holds by construction.

The next step is to introduce a Riemannian structure. The metric of choice is the

standard flat Euclidean metric on R4
θ

g :=
4

∑
i,j=1

gij dzi ⊗A dzj ∈ Ω1
A ⊗A Ω1

A , (1.1.22a)

where gij are the entries of the matrix

(gij) :=
1
2


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 . (1.1.22b)

By a straightforward calculation using (1.1.21), (1.1.20b) and (1.1.19), one confirms

that the metric g ∈ Ω1
A ⊗A Ω1

A is a central element. By Remark 1.1.5, it defines an

A-bimodule map g : A → Ω1
A ⊗A Ω1

A. The inverse metric g−1 : Ω1
A ⊗A Ω1

A → A is

defined on the basis {dzi ⊗A dzj : i, j = 1, . . . , 4} of Ω1
A ⊗A Ω1

A by

g−1(dzi ⊗A dzj) = gij , (1.1.23a)

where gij are the entries of the matrix

(gij) = 2


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 . (1.1.23b)

Observe that
4

∑
j=1

gij gjk = δk
i . (1.1.24)

Lemma 1.1.13. The element g ∈ Ω1
A ⊗A Ω1

A in (1.1.22) defines a (generalised) metric with

inverse metric g−1 : Ω1
A ⊗A Ω1

A → A defined by (1.1.23).

Proof. It is sufficient to verify the conditions (1.1.6) in Remark 1.1.5 on the basis {dzk ∈

Ω1
A}. Using (1.1.24), we compute

4

∑
i,j=1

gij dzi g−1(dzj ⊗A dzk) =
4

∑
i,j=1

gij dzi gjk = dzk . (1.1.25)

The second condition in (1.1.6) is confirmed through a similar calculation.
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The other part of a Riemannian structure is that of a bimodule connection. As a

candidate, we consider the standard connection ∇ : Ω1
A → Ω1

A ⊗A Ω1
A on Ω1

A defined

on the basis by

∇(dzi) := 0 (1.1.26)

and the left Leibniz rule. Furthermore, we define an A-bimodule isomorphism σ :

Ω1
A ⊗A Ω1

A → Ω1
A ⊗A Ω1

A by

σ(dzi ⊗A dzj) := Rji dzj ⊗A dzi (1.1.27)

and left A-linear extension to all of Ω1
A ⊗A Ω1

A (compare again with the commutation

relations in (1.1.18)).

Lemma 1.1.14. The pair (∇, σ) introduced in (1.1.26) and (1.1.27) defines a bimodule con-

nection.

Proof. We only need to confirm the right Leibniz rule from Definition 1.1.2 (ii). For

this, it is sufficient to consider homogeneous elements a = zj1 · · · zjn ∈ A, for some

n ∈N. We compute

∇
(
dzi zj1 · · · zjn

)
= ∇

(
Rj1i · · · Rjni zj1 · · · zjn dzi)

= Rj1i · · · Rjni d(zj1 · · · zjn)⊗A dzi

= σ
(
dzi ⊗A d(zj1 · · · zjn)

)
, (1.1.28)

where in the first equality we used (1.1.21) and in the second equality we used the

left Leibniz rule for the connection (1.1.26). The last equality follows by writing

d(zj1 · · · zjn) = ∑n
k=1 zj1 · · · zjk−1 dzjk zjk+1 · · · zjn utilising the Leibniz rule and then us-

ing (1.1.21), (1.1.20b) and the definition of σ in (1.1.27) in order to rearrange these

terms.

Proposition 1.1.15. The pair (g, (∇, σ)) defined above is a Riemannian structure on (Ω1
A, d).

Proof. We have to verify the two properties of Definition 1.1.7. The symmetry property

(1.1.11) is immediate from the definition of g−1 in (1.1.23), σ in (1.1.27) and R in (1.1.19).

The metric compatibility property (1.1.12) also holds since

(id⊗A g−1)∇⊗
(
dzi ⊗A dzj) = 0 = d

(
g−1(dzi ⊗A dzj)

)
⊗A 1 , (1.1.29)

where the first equality follows from (1.1.26) and the second equality from g−1(dzi ⊗A

dzj) ∈ C.
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1.1 modules and noncommutative riemannian (spin) geometry

With both a differential calculus and a Riemannian structure defined, we are now

ready to introduce a spinorial structure on R4
θ . For the spinor module, we choose the

4-dimensional free left A-module

E := A4 ∈ AMod . (1.1.30)

We will use the notation {eα ∈ E : α = 1, . . . , 4} for the standard basis for A4, i.e. eα

is the vector with 1 in the entry α and 0 elsewhere. For spin connection, we take the

standard spin connection ∇sp : E → Ω1
A ⊗A E defined by

∇sp(eα) := 0 (1.1.31)

and the left Leibniz rule. The final structure for a spinorial structure is a Clifford

multiplication, which however requires a bit more effort to write down. We begin by

considering the commutative case first before moving to the noncommutative one. In

our current complex coordinates z1, z2, z3, z4, the standard Euclidean gamma matrices

for R4 are given by

γ1 =

 0 −σ1 − i σ2

σ1 + i σ2 0

 ,

γ2 =

 0 −σ3 − I2

σ3 − I2 0

 ,

γ3 =

 0 −σ1 + i σ2

σ1 − i σ2 0

 ,

γ4 =

 0 −σ3 + I2

σ3 + I2 0

 , (1.1.32)

where I2 is the 2× 2 identity matrix and

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 (1.1.33)

are the Pauli matrices. The gamma matrices satisfy the Clifford relations {γi, γj} :=

γi γj + γj γi = −2 gij I4, with gij given in (1.1.23) and I4 is the 4× 4 identity matrix. Re-

call now that the Clifford relations (1.1.14) are given by an anticommutator involving

the isomorphism σ in (1.1.27). To define the Clifford multiplication for R4
θ , we need to

deform the gamma matrices. This can be done via the cocycle deformation techniques
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1.1 modules and noncommutative riemannian (spin) geometry

developed in [BLvS13, AS14, BSS14]. For an explanation, see the term γS3

(
da⊗B

S3
θ

) in

(2.2.26) and surrounding discussion. The deformed gamma matrices are given by

γ1
θ =

 0 e
i
4 θ (−σ1 − i σ2)

e−
i
4 θ (σ1 + i σ2) 0

 ,

γ2
θ =

 0 e−
i
4 θ (−σ3 − I2)

e
i
4 θ (σ3 − I2) 0

 ,

γ3
θ =

 0 e
i
4 θ (−σ1 + i σ2)

e−
i
4 θ (σ1 − i σ2) 0

 ,

γ4
θ =

 0 e−
i
4 θ (−σ3 + I2)

e
i
4 θ (σ3 + I2) 0

 . (1.1.34)

Finally, we define the associated Clifford multiplication γ : Ω1
A ⊗A E → E by

γ(dzi ⊗A eα) := γi
θ eα (1.1.35)

and left A-linear extension to all of Ω1
A ⊗A E , where γi

θ eα denotes the action of the

matrix γi
θ on the basis spinors eα ∈ E = A4 (i.e. the usual multiplication of a matrix

and a column vector). In the following, we record some identities that will be useful

later.

Lemma 1.1.16. Define the θ-anticommutator {γi
θ , γ

j
θ}θ := γi

θ γ
j
θ + Rji γ

j
θ γi

θ and the θ-

commutator [γi
θ , γ

j
θ ]θ := γi

θ γ
j
θ − Rji γ

j
θ γi

θ . Then the following properties hold true:

(i) {γi
θ , γ

j
θ}θ = Rji {γj

θ , γi
θ}θ

(ii) [γi
θ , γ

j
θ ]θ = −Rji [γ

j
θ , γi

θ ]θ

(iii) {γi
θ , γ

j
θ}θ = −2 gij I4

Proof. Items (i) and (ii) follow directly from the definitions and (1.1.20b). Item (iii) is

a straightforward calculation.

Proposition 1.1.17. The triple (E ,∇sp, γ) defined in (1.1.30), (1.1.31) and (1.1.35) is a spino-

rial structure on the Riemannian structure (g, (∇, σ)).
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Proof. We have to verify the two properties of Definition 1.1.9. It is sufficient to do

the verifications on bases. The Clifford relations (1.1.14) follow directly from Lemma

1.1.16 (iii), because

(γ[2] + γ[2] (σ⊗A id))
(
dzi ⊗A dzj ⊗A eα

)
= (γi

θ γ
j
θ + Rji γ

j
θ γi

θ) eα

= {γi
θ , γ

j
θ}θ eα

= −2 gij eα

= −2 g(dzi ⊗A dzj) eα . (1.1.36)

Clifford compatibility (1.1.15) follows from

(id⊗A γ)∇⊗(dzi ⊗A eα) = 0 = ∇spγ(dzi ⊗A eα) , (1.1.37)

where we used (1.1.26), (1.1.31) and (1.1.35).

We end the section by giving an explicit expression for the Dirac operator (1.1.16)

associated with our spinorial structure on R4
θ . Using our basis, the spinors can be writ-

ten as s = ∑4
α=1 sα eα ∈ E . Furthermore, let us introduce the notation da =: ∑4

i=1 ∂ia dzi,

for all a ∈ A. The Dirac operator on R4
θ associated to the spinorial structure developed

in this subsection is

D(s) = γ
(
∇sp(s)

)
=

4

∑
α=1

γ(dsα ⊗A eα) =
4

∑
α=1

4

∑
i=1

∂isα γi
θ eα

=
4

∑
α=1

4

∑
i=1

γi
θ ∂isα eα =

4

∑
i=1

γi
θ ∂is , (1.1.38)

where in the last equality we used the shorthand notation ∂is := ∑4
α=1 ∂isα eα.

1.2 hopf algebras and their (co)modules

Hopf algebras emerged as a noncommutative generalisation of the concept of groups

and Lie algebras. In noncommutative geometry, Hopf algebras play an important role

in constructing examples of noncommutative spaces from commutative ones. Fur-

thermore, some noncommutative spaces exhibit a natural Hopf algebra (co)action on

their function algebras. In this section, we will review the concept of Hopf algebras

and (co)modules over them. For more details on this subject, see e.g. [Maj95, BM20].

Much of the material covered here can also be found reviewed in [NS20, NSS21].
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1.2 hopf algebras and their (co)modules

In the following, for two vector spaces V and W, we shall denote the flip map by

flip : V ⊗W →W ⊗V, v⊗ w 7→ w⊗ v.

Definition 1.2.1. A Hopf algebra is an associative unital algebra H over K together with

two algebra homomorphisms2 ∆ : H → H ⊗ H (coproduct) and ε : H → K (counit), as

well as a K-linear map S : H → H (antipode) satisfying

(∆⊗ idH) ◦ ∆ = (idH ⊗ ∆) ◦ ∆ , (1.2.1a)

(ε⊗ idH) ◦ ∆ = idH = (idH ⊗ ε) ◦ ∆ , (1.2.1b)

µ ◦ (S⊗ idH) ◦ ∆ = η ◦ ε = µ ◦ (idH ⊗ S) ◦ ∆ , (1.2.1c)

where µ : H ⊗ H → H denotes the product and η : K → H denotes the unit of the

algebra H. Property (1.2.1a) is called coassociativity.

Following common practice, we use concatenation h h′ for the product µ(h⊗ h′). We

will do this for other product structures as well for the rest of the thesis.

Remark 1.2.2. The coproduct of an element h ∈ H is given by a sum ∆(h) = ∑n
i=1 h1 i⊗

h2 i ∈ H⊗ H, for some positive integer n ∈ Z≥1. A standard notational convention for

the coproduct is the so called Sweedler notation. For h ∈ H, we write

∆(h) =
n

∑
i=1

h1 i ⊗ h2 i =: h1 ⊗ h2 (summation understood) (1.2.2a)

and for the 2-fold application of the coproduct,

∆2(h) = h1 ⊗ h2 ⊗ h3 (summation understood) . (1.2.2b)

The notation for the 2-fold application is motivated by the coassociativity property

(1.2.1a), ∆2 = (∆⊗ idH) ◦ ∆ = (idH ⊗ ∆) ◦ ∆. This extends to the n-fold application

of the coproduct

∆n(h) = h1 ⊗ · · · ⊗ hn+1 (summation understood) . (1.2.2c)

Expressed in Sweedler notation, the second and third properties in (1.2.1) take the

form

ε(h1) h2 = h = h1 ε(h2) , (1.2.3a)

S(h1) h2 = ε(h)1 = h1 S(h2) , (1.2.3b)

for all h ∈ H, where 1 = η(1) and 1 is the unit in the field K. M

2 The algebra structure of H ⊗ H is given by (h⊗ g)(h′ ⊗ g′) = h h′ ⊗ g g′ for all h, h′, g, g′ ∈ H.
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1.2 hopf algebras and their (co)modules

The antipode can be thought of as something like an “inversion” map. Let us

document the following properties of the antipode in the below proposition, see e.g.

[Maj95, Proposition 1.3.1].

Proposition 1.2.3. Let H be a Hopf algebra with antipode S.

(i) The antipode of a Hopf algebra is unique; if S′ is another K-linear map satisfying the

axioms of an antipode for H, then S = S′.

(ii) The antipode is an algebra antihomomorphism: S(h h′) = S(h′) S(h) and S(1) = 1 for

all h, h′ ∈ H.

(iii) The antipode is a coalgebra antihomomorphism : S(h)1 ⊗ S(h)2 = S(h2)⊗ S(h1) and

ε(S(h)) = ε(h) for all h ∈ H.

1.2.1 Hopf algebra modules

We now introduce the concept of a module over a fixed Hopf algebra H. These mod-

ules, together with the appropriate morphisms, form a closed monoidal category. Af-

terwards, we will encounter so called quasitriangular structures, which can be used to

define braidings for the monoidal category of H-modules. We will also briefly touch

upon H-modules with a compatible algebra structure. We end this subsection by pro-

viding two standard examples, which can be seen as the starting point of the study of

Hopf algebras.

Definition 1.2.4. Let H be a Hopf algebra. A left H-module is a vector space V together

with a K-linear map . : H ⊗V → V, h⊗ v 7→ h . v (left action) such that

(h h′) . v = h . (h′ . v) , 1 . v = v , (1.2.4)

for all h, h′ ∈ H and v ∈ V. We denote by HMod the category of left H-modules and

H-equivariant maps (H-module morphisms), i.e. K-linear maps f : V →W satisfying

f (h . v) = h . f (v) for all h ∈ H and v ∈ V.

The category HMod is endowed with a monoidal structure defined by the coproduct

and the counit in H:
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1.2 hopf algebras and their (co)modules

• The monoidal product V⊗W of two objects V, W ∈ HMod is given by the tensor

product; the left tensor product action on V ⊗W is given by

h . (v⊗ w) := (h1 . v)⊗ (h2 . w) . (1.2.5)

This action is well-defined because the coproduct ∆ is an algebra homomor-

phism.

• The monoidal unit is given by the one-dimensional vector space K with the

trivial left H-action h . c = ε(h) c, for all h ∈ H and c ∈ K.

• The associator is the usual one for tensor products of vector spaces, α : (U ⊗

V)⊗W → U ⊗ (V ⊗W), (u⊗ v)⊗ w 7→ u⊗ (v⊗ w).

• The left and right unitors are given by the isomorphisms K⊗ V ∼= V ∼= V ⊗K,

defined by identifying 1⊗ v and v⊗ 1 with v, respectively.

Due to the antipode, the finite dimensional objects V ∈ HMod have duals given by

V∨ = HomK(V, K) together with the left action

h . f = f ◦ (S(h) . ·) , (1.2.6)

for all h ∈ H and f ∈ V∨. This action is well-defined because the antipode is an

algebra antihomomorphism, see Proposition 1.2.3 (ii).

Furthermore, the antipode ensures that HMod is closed monoidal. For V, W ∈ HMod,

the internal hom from V to W is the vector space hom(V, W) := HomK(V, W) of

all (not necessarily H-equivariant) linear maps from V to W with the left H-module

structure given by the left adjoint action

h . f := (h1 . ·) ◦ f ◦ (S(h2) . ·) , (1.2.7)

for all h ∈ H and all linear maps f : V → W. Note that this really is a left action

because the coproduct is an algebra homomorphism and the antipode is an algebra

antihomomorphism (Proposition 1.2.3 (ii)); for h, h′ ∈ H and f ∈ hom(V, W), we have

(h h′) . f = (h1 h′1 . ·) ◦ f ◦ (S(h2 h′2) . ·)

= (h1 h′1 . ·) ◦ f ◦ (S(h′2) S(h2) . ·)

= (h1 . ·) ◦ (h′ . f ) ◦ (S(h2) . ·)

= h . (h′ . f ) (1.2.8)
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1.2 hopf algebras and their (co)modules

and

1 . f = (1 . ·) ◦ f ◦ (S(1) . ·) = f . (1.2.9)

In the case when V ∈ HMod is finite dimensional and for any W ∈ HMod, the left

adjoint action can be identified with the left action on W ⊗ V∨ ∼= hom(V, W), which

is the tensor product action (1.2.5) in conjunction with the dual action (1.2.6).

Observe that the H-invariants of hom(V, W), i.e. the linear maps f : v → W such

that

h . f = ε(h) f , (1.2.10)

are precisely the H-equivariant maps. Indeed, if f : V → W is H-equivariant, then

it is by (1.2.3b) also H-invariant under the left adjoint action (1.2.7). Conversely, let

f : V →W be a H-invariant linear map. Then

f (h . v) = ε(h1) f (h2 . v)

= h1 . f (S(h2) . (h3 . v))

= h1 . f (ε(h2) . v)

= h . f (v) , (1.2.11)

for all h ∈ H and v ∈ V, i.e. f is H-equivariant. We used (1.2.3a) in the first equality,

and in the second one, we utilised the H-invariance of f in tandem with coassociativity

of the coproduct (1.2.1a) (using the notation (1.2.2c)) to write out the left adjoint action

(1.2.7). In the third equality, we used (1.2.3b) and in the final row (1.2.3a) again.

Thus, we have established that the H-invariant maps of hom(V, W) are precisely the

morphisms from V to W in HMod.

A left H-module algebra is a monoid in the monoidal category HMod, i.e. an object

A ∈ HMod together with H-equivariant maps µA : A⊗ A → A and ηA : K → A such

that the diagrams

A⊗ A⊗ A

µA⊗id
��

id⊗µA
// A⊗ A

µA

��

A⊗ A
µA

// A

(1.2.12a)

K⊗ A

∼=
((

ηA⊗id
// A⊗ A

µA

��

A⊗K
id⊗ηA

oo

∼=
vv

A

(1.2.12b)
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1.2 hopf algebras and their (co)modules

commute. Explicitly, the H-equivariance of the product µA and the unit ηA can be

written as

h . (a a′) = (h1 . a) (h2 . a′) (1.2.13a)

h . 1A = ε(h)1A (1.2.13b)

for all h ∈ H and a, a′ ∈ A. As before, we write ηA(1) = 1A.

Hopf algebras can also be equipped with additional structure that makes their cor-

responding categories of left (or right) modules closed braided or symmetric monoidal.

Let ∆op(h) = h2 ⊗ h1 be the opposite coproduct. For an element Rα ⊗ Rα ∈ H ⊗ H

(summation understood), we use the notation

R21 := Rα ⊗ Rα (1.2.14a)

and for particular related elements in H ⊗ H ⊗ H,

R12 := Rα ⊗ Rα ⊗ 1 , R13 := Rα ⊗ 1⊗ Rα , R23 := 1⊗ Rα ⊗ Rα .

(1.2.14b)

Definition 1.2.5. A quasitriangular structure for a Hopf algebra H is an invertible ele-

ment R ∈ H ⊗ H (universal R-matrix) satisfying

∆op(h) = R ∆(h) R−1 , (1.2.15a)

(idH ⊗ ∆)(R) = R13 R12 , (1.2.15b)

(∆⊗ idH)(R) = R13 R23 , (1.2.15c)

for all h ∈ H. A triangular structure is a quasitriangular structure R ∈ H ⊗ H which

additionally satisfies R21 = R−1.

Let us also write down a couple of useful standard identities for the R-matrix, see

e.g. [Maj95, Lemma 2.1.2]

Proposition 1.2.6. Let R be a quasitriangular structure on a Hopf algebra H. Then, R as an

element in H ⊗ H satisfies

(ε⊗ id) R = (id⊗ ε) R = 1 (1.2.16a)

(S⊗ id) R = R−1 , (id⊗ S) R−1 = R . (1.2.16b)
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1.2 hopf algebras and their (co)modules

Assuming that R = Rα ⊗ Rα ∈ H ⊗ H is a quasitriangular structure on H, we can

define a braiding for the closed monoidal category HMod

τR : V ⊗W −→ W ⊗V , v⊗ w 7−→ (Rα . w)⊗ (Rα . v) , (1.2.17)

for every pair of objects V, W ∈ HMod. Due to (1.2.15a), the braiding τR is a morphism

in HMod (i.e. τR is H-equivariant). If in addition R is triangular, this braiding is

symmetric (i.e. τR = τ−1
R ), meaning HMod is a closed symmetric monoidal category.

Using the braiding, we can obtain a notion of commutativity for H-module algebras:

we say that a left H-module algebra A ∈ HMod is (braided) commutative if the diagram

A⊗ A

µA
((

τR // A⊗ A
µA

��

A

(1.2.18)

commutes. The adjective braided will be used when we need to distinguish from strict

commutativity (i.e. µ ◦ flip = µ).

As mentioned in the beginning of this section, Hopf algebras are related to certain

constructions on groups and Lie algebras. We will now outline these examples.

Example 1.2.7. Let g be a finite dimensional Lie algebra with Lie bracket [ · , · ]. The

universal enveloping algebra of g is the free algebra of g modulo the relation encoding

the Lie bracket as a commutator,

Ug := T(g)/(x⊗ y− y⊗ x− [x, y]) (1.2.19)

with T(g) =
⊕∞

k=0 g
⊗k where g⊗0 = K. The universal enveloping algebra is a Hopf

algebra with coproduct, counit and antipode

∆(x) = x⊗ 1 + 1⊗ x , ε(x) = 0 , S(x) = −x (1.2.20)

for all x ∈ g and extended as algebra homomorphisms (in the case of the coproduct

∆ and counit ε) and algebra antihomomorphism (in the case of the antipode S) to

the entirety of Ug. This gives rise to a closed monoidal category UgMod of left Ug-

modules. In order to understand (left) Ug-modules more concretely, we check that

the closed monoidal category UgMod is in fact isomorphic to the closed monoidal cate-

gory RepK(g) of Lie algebra representations of g and equivariant maps. The monoidal

product of objects (V, πV), (W, πW) ∈ RepK(g) is just the tensor product represen-

tation (V ⊗W, πV⊗W) with πV⊗W(x) = πV ⊗ id + id ⊗ πW . The internal hom be-

tween representations (V, πV), (W, πW) ∈ RepK(g) is the vector space hom(V, W) :=
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1.2 hopf algebras and their (co)modules

HomK(V, W) of all linear maps between V and W together with the Lie algebra homo-

morphism πhom(V,W) : g → End(hom(V, W)) defined by x 7→ πW(x) ◦ f − f ◦ πV(x).

By comparing these with the analogous structures of UgMod, and the fact that there

is a one-to-one correspondence between Lie algebra homomorphisms g → End(V)

and algebra homomorphisms Ug→ End(V), it is not far to conclude that UgMod and

RepK(g) are isomorphic as closed monoidal categories.

From (1.2.13) and (1.2.20), a Ug-module algebra is an algebra A on which g acts as

x . (a a′) = (x . a) a′ + a (x . a′) , x . 1A = 0 (1.2.21)

for all x ∈ g and a, a′ ∈ A, i.e. g acts on A as derivations. O

Example 1.2.8. Let G be a finite group. The group Hopf algebra K[G] is the free vector

space spanned by the elements g ∈ G. The elements h ∈ K[G] can thus be written

uniquely as h = ∑g∈G hg g for some hg ∈ K. The product in K[G] is given by bilinear

extension of the group operation in G (which we here denote by · ), i.e. for two

elements h = ∑g∈G hg g and h′ = ∑g′∈G h′g′ g′ in K[G], their product is

h h′ = ∑
g,g′∈G

hg h′g′ g · g′ . (1.2.22)

The unit in K[G] is given by the identity element e ∈ G. The coproduct, counit and

antipode are given by

∆(g) = g⊗ g , ε(g) = 1 , S(g) = g−1 , (1.2.23)

for all g ∈ G and extending linearly to all of K[G]. Note that the concept of group

Hopf algebras also makes sense for non-finite groups, in which case the elements can

be written as a sum where all but finitely many of the hg vanish. However, we will

keep to the finite case for simplicity.

The (quasi)triangular structures that a group Hopf algebra may be equipped with

depends on what the underlying group G is. One triangular structure which works

for all G is the trivial one, Rtriv = e⊗ e ∈ K[G]⊗K[G]. The trivial triangular structure

Rtriv gives rise to a trivial symmetric braiding, i.e. the flip map. The corresponding

closed symmetric monoidal category K[G]Mod is nothing but the closed symmetric

monoidal category RepK(G) of K-linear representations of G and equivariant maps.

The monoidal product of two objects (V, ρV), (W, ρW) ∈ RepK(G) is the representation

(V ⊗W, ρV⊗W) with ρV⊗W(g) = ρV(g)⊗ ρW(g). The symmetric braiding in RepK(G)
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1.2 hopf algebras and their (co)modules

is the flip map. The internal hom between two G-representations (V, ρV), (W, ρW) ∈

RepK(G) is the vector space hom(V, W) := HomK(V, W) of all linear maps between

V and W together with the monoid map ρhom(V,W) : G → End(hom(V, W)) defined by

conjugation g 7→ ρW(g) ◦ f ◦ ρV(g−1). Since there is a one-to-one correspondence be-

tween monoid maps G → End(V) and algebra homomorphisms K[G]→ End(V), one

readily obtains the isomorphism between the closed symmetric monoidal categories

K[G]Mod and RepK(G).

The conditions (1.2.13) together with (1.2.23) implies that K[G]-module algebras are

algebras on which G acts by algebra automorphisms.

The following class of (non-trivial) examples of triangular group Hopf algebras will

be useful for describing the symmetries of the fuzzy torus. This is relevant for Chapter

5. In the following, let K = C. For two positive integers n, N ∈ Z≥1, consider the

Abelian group

Zn
N := ZN × · · · ×ZN︸ ︷︷ ︸

n-times

(1.2.24)

consisting of an n-fold product of the cyclic group ZN of order N. We will use the

notation

k := (k1, . . . , kn) ∈ Zn
N , (1.2.25)

for the elements of Zn
N and the group operation is given by addition modulo N in

each entry. A quasitriangular structure on the group Hopf algebra C[Zn
N ] is defined

for any N-th root of unity q ∈ C and any n× n integer matrix Θ ∈ Matn(Z) by the

element

R :=
1

Nn ∑
s,t∈Zn

N

qsΘt s⊗ t

:=
1

Nn ∑
s,t∈Zn

N

q∑n
i,j=1 Θij si tj s⊗ t ∈ C[Zn

N ]⊗C[Zn
N ] . (1.2.26)

Using the standard identity

∑
t∈Zn

N

qsΘt = Nn δs,0 = ∑
t∈Zn

N

qtΘs , (1.2.27)

where δs,0 denotes the Kronecker delta-symbol and 0 := (0, . . . , 0) ∈ Zn
N is the identity

element, one can verify that R is indeed a quasitriangular structure, see Definition

1.2.5. If the matrix Θ is in addition antisymmetric, the quasitriangular structure R on

C[Zn
N ] is in fact a triangular structure. O
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1.2.2 Hopf algebra comodules

The constructions built on Hopf algebras above can also be viewed in the dual pic-

ture of comodules over H, where the arrows are reversed. In some examples, the

dual picture is more natural, e.g. in the context of spaces with group actions, as we

shall see below in Example 1.2.11. In fact, concepts and theorems hold for the arrow-

reversed situation (replacing modules with comodules), as well as for the left-right

reversal (switching left (co)modules for right (co)modules) of the axioms. We will in

the following repeat the preceding constructions for the case of left comodules.

Definition 1.2.9. Let H be a Hopf algebra. A left H-comodule is a vector space V

together with a K-linear map δ : V → H ⊗V (left coaction) such that

(id⊗ δ) ◦ δ = (∆⊗ id) ◦ δ , (ε⊗ id) ◦ δ = id , (1.2.28)

for all h, h′ ∈ H and v ∈ V. We denote by HMod the category of left H-comodules

and H-coequivariant maps (H-comodule morphisms), i.e. K-linear maps f : V → W

satisfying (id⊗ f ) ◦ δ = δ ◦ f .

We will use a Sweedler-like notation for the coaction; for v ∈ V, we write

δ(v) = v−1 ⊗ v0 (summation understood). (1.2.29)

In this notation, (1.2.28) takes the form

v−1 ⊗ (v0)−1 ⊗ (v0)0 = (v−1)1 ⊗ (v−1)2 ⊗ v0 , ε(v−1) v0 = v . (1.2.30)

As in the case of the category of H-modules HMod, the category of H-comodules
HMod is monoidal. The monoidal product is the tensor product V⊗W of vector spaces

V, W ∈ HMod with left tensor product coaction given by

δ(v⊗ w) = v−1 w−1 ⊗ v0 ⊗ w0 . (1.2.31)

The monoidal unit is the one-dimensional vector space K with trivial left coaction

δ(c) = η(1)⊗ c = 1⊗ c for all c ∈ K. The associator and unitors are the same as for

HMod.

The category HMod is closed monoidal, see [CaGu05]. For V, W ∈ HMod, consider

again the vector space of all linear maps HomK(V, W). However, in contrast to the
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case of modules, this does not define an internal hom from V to W in general. We

define the map δ̃ : HomK(V, W)→ HomK(V, H ⊗W) by

δ̃( f )(v) = S(v−1) ( f (v0))−1 ⊗ ( f (v0))0 . (1.2.32)

Using that the counit ε is an algebra homomorphism and that S is a coalgebra antiho-

momorphism (see Proposition 1.2.3 (iii)), together with the coaction properties of the

coaction on W and V (1.2.30) respectively, we compute

((ε⊗ id) ◦ δ̃)( f )(v) = ε(S(v−1) ( f (v0))−1) ( f (v0))0

= ε(v−1) ε( f (v0))−1) ( f (v0))0

= ε(v−1) f (v0) = f (ε(v−1) v0) = f (v) . (1.2.33)

The map δ̃ is however not a coaction in general because that would require δ̃( f ) ∈

H ⊗HomK(V, W). As H ⊗Hom(V, W)K ⊂ HomK(V, H ⊗W), let

hom(V, W) := { f ∈ HomK(V, W) : δ̃( f ) ∈ H ⊗HomK(V, W)} . (1.2.34)

Maps f ∈ hom(V, W) are so called rational morphisms. In the case when H is finite

dimensional, all morphisms are rational. It is shown in [Ulb90, Lemma 2.2] that

hom(V, W) is a H-comodule with coaction δhom : hom(V, W) → H ⊗ hom(V, W)

given by restricting δ̃ to hom(V, W). Finally, by [CaGu05, Proposition 1.2], hom(V, W)

is an internal hom from V to W in HMod.

For finite dimensional objects V ∈ HMod, all linear maps φ ∈ HomK(V, K) = V∨

are rational because there is a linear isomorphism H ⊗HomK(V, K) ∼= HomK(V, H).

From (1.2.32), we hence obtain a left coaction δ∨ : V∨ → H⊗V∨ defined by δ∨(φ)(v) =

S(v−1) φ(v0). More generally, again for finite dimensional V, and for any W ∈ HMod,

we have a linear isomorphism H⊗HomK(V, W) ∼= H⊗W ⊗V∨ ∼= HomK(V, H⊗W).

Hence all maps in HomK(V, W) in this case are rational. Similarly to the case of

modules, the coaction from (1.2.32) on hom(V, W) = HomK(V, W) can be identified

with the coaction on V∨ ⊗W (∼= W ⊗V∨) consisting of the tensor product coaction in

conjunction with the coaction on V∨.

The δhom-coinvariants of hom(V, W), i.e. the linear maps f : V →W such that

δhom( f ) = 1⊗ f , (1.2.35)
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are precisely the left H-comodule morphisms. To see that, assume first that f : V →W

is a H-comodule morphism, i.e. v−1⊗ f (v0) = ( f (v))−1⊗ ( f (v))0 (see Definition 1.2.9).

Then

δhom( f )(v) = S(v−1) ( f (v0))−1 ⊗ ( f (v0))0

= S(v−1) (v0)−1 ⊗ f ((v0)0)

= S((v−1)1) (v−1)2 ⊗ f (v0)

= ε(v−1)1⊗ f (v0)

= 1⊗ f (v) (1.2.36)

where in the second equality we used that f is a comodule morphism, in the third the

properties of a coaction (1.2.30), in the fourth (1.2.3b) and finally, in the fifth equality,

we used that f is a K-linear map in conjunction with (1.2.3a). For the converse, let

f : V →W be δhom-coinvariant. Then we have

v−1 ⊗ f (v0) = (v−1) S((v0)−1) ( f ((v0)0))−1 ⊗ ( f ((v0)0))0

= (v−1)1 S((v−1)2) ( f (v0))−1 ⊗ ( f (v0))0

= ε(v−1) ( f (v0))−1 ⊗ ( f (v0))0

= ( f (v))−1 ⊗ ( f (v))0 . (1.2.37)

In the first row we used coinvariance, the second row (1.2.30) and in the third equality

(1.2.3b). In the last step, we used (1.2.3a) together with K-linearity of f . We have

thus verified the claim that the δhom-coinvariants of hom(V, W) are the exactly the

morphisms in HMod.

Continuing with the discussion, a left H-comodule algebra is a monoid in the monoidal

category HMod, i.e. an object A ∈ HMod together with left H-comodule morphisms

µA : A ⊗ A → A and ηA : K → A such that the diagrams in (1.2.12) commute.

Explicitly, H-coequivariance of the product µA and the unit ηA is expressed as

δ(a a′) = a−1 a′−1 ⊗ a0 a′0 (1.2.38a)

δ(1A) = 1⊗ 1A (1.2.38b)

for all a, a′ ∈ A.

Following the procedure, a braided or symmetric monoidal structure on HMod can

be obtained by considering additional datum on the Hopf algebra H.
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1.2 hopf algebras and their (co)modules

Definition 1.2.10. A coquasitriangular structure on H is a convolution-invertible3 linear

map R : H ⊗ H −→ K, i.e. there exists a linear map R−1 : H ⊗ H −→ K such that

R(h1 ⊗ h′1)R−1(h2 ⊗ h′2) = ε(h) ε(h′) , (1.2.39)

satisfying

R(h1 ⊗ h′1) h2 h′2 = h′1 h1R(h2 ⊗ h′2) (1.2.40a)

R(h h′ ⊗ h′′) = R(h⊗ h′′1 )R(h′ ⊗ h′′2 ) (1.2.40b)

R(h⊗ h′ h′′) = R(h1 ⊗ h′′)R(h2 ⊗ h′) (1.2.40c)

for all h, h′, h′′ ∈ H. A cotriangular structure is a coquasitriangular structure which

additionally satisfies R ◦ flip = R−1.

Given a coquasitriangular structure R : H ⊗ H −→ K on H, a braiding can be

defined for HMod,

τR : V ⊗W →W ⊗V , v⊗ w 7→ R(w−1 ⊗ v−1)w0 ⊗ v0 , (1.2.41)

for every pair of objects V, W ∈ HMod. If R is also cotriangular, τR is symmetric,

making HMod a (closed) symmetric monoidal category. Finally, using the symmetric

braiding, one says that a H-comodule algebra A ∈ HMod is (braided) commutative if

the diagram (1.2.18) (with τR replaced with τR) commutes.

Example 1.2.11. The following class of examples are given by the so called affine group

schemes, which can be identified with the commutative (but not necessarily cocom-

mutative) Hopf algebras. Let us give a rough explanation. Consider the category

Aff := CAlg
op
K of affine schemes, which per definition is the opposite of the category of

commutative unital associative K-algebras CAlgK. An affine group scheme is a group

object in Aff, i.e. an object G ∈ Aff together with maps m : G × G → G, e : pt → G

and ( · )−1 : G → G, with pt ∈ Aff the terminal object. These maps are required to

satisfy the commutative diagrams encoding the group axioms. By reversing the ar-

rows of these maps and their associated commutative diagrams, the function algebra

H := O(G) ∈ CAlgK of G will thus be equipped with maps ∆ := O(m) : H → H ⊗ H

(recall that the coproduct in CAlgK is the tensor product), ε := O(e) : H → K (K

3 One can endow HomK(H, K) with an algebra structure using the coproduct of H. The product is called

the convolution product and is given by f ∗ g := ( f ⊗ g) ◦ ∆ ∈ HomK(H, K) for all f , g ∈ HomK(H, K).

The left hand side of (1.2.39) is nothing but the convolution product R ∗R−1 in Hom(H ⊗ H, K).
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1.2 hopf algebras and their (co)modules

is the initial object in CAlgK) and S := O(( · )−1) : H → H such that the conditions

for H being a (commutative) Hopf algebra are satisfied.4 In a similar fashion, Hopf

algebras H ∈ CAlgK correspond to affine group schemes G := Spec(H) ∈ Aff, hence

the identification. The Examples 1.2.12 and 1.2.13 below are examples of affine group

schemes.

In the context of affine group schemes, the notion of Hopf algebra coactions emerge

naturally. A (left) group action l : G × X → X of an affine group scheme G =

Spec(H) ∈ Aff on some space X = Spec(A) ∈ Aff in Aff corresponds to a (left) Hopf

algebra coaction δ := O(l) : A → H ⊗ A in CAlgK by reversing the arrows of the

group action l and the relevant diagrams. Indeed, the commutative diagrams for the

group action l

G× G× X

m×id
��

id×l
// G× X

l
��

G× X
l

// X

(1.2.42a)

pt× X

p2
((

e×id
// G× X

l
��

X

(1.2.42b)

where p2 is the canonical projection, correspond to commutative diagrams for the

coaction δ in CAlgK

A

δ
��

δ // H ⊗ A

id⊗δ
��

H ⊗ A
∆⊗id

// H ⊗ H ⊗ A

(1.2.43a)

A

∼=
''

δ // H ⊗ A

ε⊗id
��

A

(1.2.43b)

which translate to the conditions (1.2.28) in Definition 1.2.9, making A a commutative

H-comodule algebra. O

The following two examples are heavily inspired by [BSS17] (in particular, Example

1.2.13 is covered there). In these examples, we set the underlying field K to be the

field of complex numbers C.

4 In the affine world, Spec : CAlgop
K
→ Aff and O : Affop → CAlgK, are the identity functors. In other

words, they are mere labels in the present setting. They are kept here to reminisce about the geometric

nature of the involved concepts.
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1.2 hopf algebras and their (co)modules

Example 1.2.12. Consider the finite subgroup of the n-torus Tn = U(1)n

Tn
N =

{(
exp

(
2 π i k1

N

)
, . . . , exp

(
2 π i kn

N

))
∈ U(1)n : ki ∈ {0, . . . , N − 1}

}

(1.2.44)

consisting of the N-th roots of unity. Note that the groups Zn
N
∼= Tn

N are isomorphic.

Hence, the (commutative) Hopf algebra C[Zn
N ] in Example 1.2.8 can be recognised

as the Hopf algebra of functions O(Tn
N) on Tn

N by identifying k with the exponential

function tk(ξ) = exp
(

2 π i
N (k1 ξ1 + · · ·+ kn ξn)

)
, where ξ takes value in Zn

N
∼= Tn

N . The

Hopf algebra structure is given by

tk tk′ = tk+k′ , 1 = t0 , ∆(tk) = tk ⊗ tk , ε(tk) = 1 , S(tk) = t−k . (1.2.45)

A coquasitriangular structure on O(Tn
N) is defined on generators by

R(tk ⊗ tk′) = exp

(
2 π i

N
k Θ k′

)
= exp

(
2 π i

N

n

∑
l,m

kl Θl m k′m

)
(1.2.46)

where Θ ∈ Matn(Z) is an n × n integer matrix. If Θ is antisymmetric, R defines

a cotriangular structure. Note that the same could have been defined in the C[Zn
N ]

picture as well. O

Example 1.2.13. We will now consider the full algebraic n-torus Tn, which means the

Hopf algebra O(Tn) of functions on the n-torus is given by

O(Tn) = spanC{tk : k ∈ Zn} (1.2.47)

where tk(φ1, . . . , φn) = exp
(

i (k1 φ1 + · · · kn φn)
)

, with 0 ≤ φi < 2 π, is the exponen-

tial function with momentum k. The (commutative) Hopf algebra structure is given

by

tk tk′ = tk+k′ , 1 = t0 , ∆(tk) = tk ⊗ tk , ε(tk) = 1 , S(tk) = t−k . (1.2.48)

As we can see, this case is very similar to the previous case and we may identify O(Tn)

with the group algebra C[Zn] defined similarly to C[Zn
N ] in Example 1.2.8. (In general

however, the identification of the function Hopf algebra of a non finite group with a

group Hopf algebra is generally not possible.)
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1.2 hopf algebras and their (co)modules

The Hopf algebra O(Tn) can be endowed with a coquasitriangular structure given

by

R(tk ⊗ tk′) = exp( i k Θ k′) = exp

(
i

n

∑
l,m

kl Θl m k′m

)
(1.2.49)

with Θ ∈ Matn(R) a real n× n matrix. As before, by choosing Θ to be antisymmetric,

the coquasitriangular structure is a triangular structure.

We will now describe an example of a coaction of O(T2). Let AR4 be the com-

mutative algebra of functions on R4. In complex coordinates {zi}4
i=1, with z3 = z1

and z4 = z2, the algebra of functions AR4 = PolC(z1, z2, z3, z4) is given by the (com-

mutative) complex polynomials in {zi}4
i=1. Denoting the Hopf algebra of functions

on T2 by H := O(T2) and given any k1, k2 ∈ Z, we define the left H-coaction

δ : AR4 → H ⊗ AR4 by

δ(z1) = t(k1,0) ⊗ z1 , δ(z2) = t(0,k2) ⊗ z2

δ(z3) = t(−k1,0) ⊗ z3 , δ(z4) = t(0,−k2) ⊗ z4 (1.2.50)

such that the conditions in (1.2.38) are satisfied. This makes AR4 an H-comodule

algebra. In the real coordinates x1 = 1
2 (z

1 + z3), x2 = 1
2 i (z

1 − z3), x3 = 1
2 (z

2 + z4),

x4 = 1
2 i (z

2− z4), this would correspond to (k1-fold covers of) rotations in the (x1, x2)-

plane and (k2-fold covers of) rotations in the (x3, x4)-plane. O
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2
D I R A C O P E R AT O R S O N N O N C O M M U TAT I V E H Y P E R S U R FA C E S

This chapter is based on Section 3 and 4 of the paper [NS20]. Here, we will develop

an appropriate notion of hypersurface, on which we will describe a framework for

inducing the differential, Riemannian and spinorial structures from noncommutative

embedding spaces (outlined in Section 1.1). The framework is a generalisation of

well-known results from classical differential geometry, see e.g. [Bur93, Tra95, Bär96,

HMZ02]. From the induced geometric structures, one obtains an explicit expression

for the induced hypersurface Dirac operator. This process is described in Section 2.1.

In particular, the framework can be used to construct examples of curved noncommu-

tative hypersurfaces and associated Dirac operators from simple flat noncommutative

embedding spaces. In Section 2.2., we will investigate the particular example of the

sequence of noncommutative hypersurface embeddings T2
θ ↪→ S3

θ ↪→ R4
θ studied in

[AN19] (which is another work on noncommutative embeddings different from our

approach, but with conceptual similarities).

2.1 induced geometric structures on noncommutative hypersurfaces

For the remainder of this section, let A be an algebra together with a differential calcu-

lus (Ω1
A, d) on A (see Definition 1.1.1), a Riemannian structure (g, (∇, σ)) on (Ω1

A, d)

(see Definition 1.1.7) and a spinorial structure (E ,∇sp, γ) on (g, (∇, σ)) (see Definition

1.1.9). The algebra A is interpreted as the algebra of functions on a noncommutative

embedding space, which is equipped with a differential, Riemannian and spinorial

structure. The purpose of this section is to provide a framework for induction of these

geometric structures to a suitable class of hypersurfaces.
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2.1.1 Noncommutative hypersurfaces

In this subsection, we describe the particular class of hypersurfaces for which we build

the framework. For a 2-sided ideal I ⊂ A, we consider the quotient algebra

B := A
/

I (2.1.1)

together with its quotient algebra map q : A → B. We would like to obtain a differ-

ential calculus on B using the data from (Ω1
A, d). Associated with the quotient map

is a change of base functor q! : AModA → BModB for bimodules, which is given by

q!(V) = B⊗A V ⊗A B ∈ BModB, for all V ∈ AModA. Observe that since B = A/I with

quotient map q : A→ B, the map

q!(V)
∼=−→ V

IV ∪VI
, [a]⊗A v⊗A [a′] 7−→ [a v a′] (2.1.2)

is a natural B-module isomorphism, where IV := {a v : a ∈ I and v ∈ V} ⊆ V

and VI := {v a : a ∈ I and v ∈ V} ⊆ V. Note that it is not enough to only apply

the change of base functor to the bimodule of 1-forms Ω1
A ∈ AModA; in general, the

differential d : A → q!(Ω1
A) does not descend to the quotient B = A/I. Instead, one

considers the quotient (see e.g. [BM20, Exercise E1.4])

Ω1
B :=

q!(Ω1
A)

B[dI]B
∈ BModB , (2.1.3)

where B[dI]B := {∑i bi [dai] b′i : bi, b′i ∈ B and ai ∈ I} is the B-subbimodule generated

by [dI] ⊆ q!(Ω1
A). In this case, the differential d : A→ Ω1

A descends to a linear map

dB : B −→ Ω1
B , [a] 7−→ [da] . (2.1.4)

Proposition 2.1.1. (Ω1
B, dB) is a differential calculus on the quotient algebra B = A/I.

Proof. The necessary properties of Definition 1.1.1 are inherited from the differential

calculus (Ω1
A, d) on A, see e.g. [BM20, Exercise E1.4].

This is the first step in the definition of our class of hypersurfaces. However, we

still need to encode a few properties before q : A → B can be properly interpreted

as (the dual of) an embedding of a noncommutative hypersurface B into the noncom-

mutative embedding space A. In particular, we need to make precise the statement

that B should be of “codimension 1” and the existence of a “normalised normal vector
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2.1 induced geometric structures on noncommutative hypersurfaces

field” for B. The noncommutative generalisations of these concepts1 come about by

observing that the canonical quotient map q!(Ω1
A) � Ω1

B (see (2.1.3)) gives rise to the

short exact sequence of B-bimodules

0 // N1
B := B[dI]B // q!(Ω1

A)
// Ω1

B
// 0 , (2.1.5)

where N1
B ∈ BModB is a noncommutative analogue of the conormal bundle.

Definition 2.1.2. We say that B = A/I is a (metrically co-orientable) noncommutative

hypersurface if the B-bimodule N1
B ∈ BModB admits a 1-dimensional basis [ν] ∈ N1

B with

ν ∈ Ω1
A a central 1-form, i.e. a ν = ν a for all a ∈ A, that satisfies the normalization

condition

[
g−1(ν⊗A ν)

]
= 1 ∈ B . (2.1.6)

Remark 2.1.3. The “codimension 1” property in Definition 2.1.2 is given by the state-

ment that N1
B has rank 1. The existence of a “normalised normal vector field” is

encoded, in our dual language of forms, by the normalised 1-form ν ∈ Ω1
A. The adjec-

tive metrically co-orientable is used to emphasise the existence of such a form. However,

for the rest of the chapter, we will simplify the language by using the term noncom-

mutative hypersurface to refer to metrically co-orientable noncommutative hypersur-

faces. M

Example 2.1.4. The noncommutative level set hypersurfaces constitute a class of examples

of noncommutative hypersurfaces in the sense of Definition 2.1.2. These are deter-

mined by 2-sided ideals I = ( f ) ⊂ A generated by a central element f ∈ Z(A) ⊆ A

such that ν := d f ∈ Ω1
A is central and satisfies the normalization condition (2.1.6). In

this case, [ν] = [d f ] defines a basis of N1
B = B[dI]B = B[d f ]B = [d f ]B = B[d f ], where

in the last two steps we used that d f is central. All examples in Section 2.2 are of this

type. O

In the following, let B = A/I be a noncommutative hypersurface in the sense of

Definition 2.1.2. It will be useful to introduce a projector that produces a splitting

of the sequence (2.1.5) which determines a B-bimodule isomorphism between Ω1
B ∈

BModB and a certain B-subbimodule of q!(Ω1
A) ∈ BModB. To construct a candidate

1 We would like to thank Branimir Ćaćić for suggesting Definition 2.1.2 to us. This allowed us to gener-

alise our results for noncommutative level set hypersurfaces (cf. Example 2.1.4) from the first version of

[NS20].
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2.1 induced geometric structures on noncommutative hypersurfaces

for such a projector, we first use the inverse metric g−1 : Ω1
A ⊗A Ω1

A → A and the

normalised 1-form ν ∈ Ω1
A to define the A-bimodule endomorphism

Π : Ω1
A −→ Ω1

A , ω 7−→ ω− g−1(ω⊗A ν) ν . (2.1.7a)

The A-linearity follows from the centrality of ν. Then, by using the change of base

functor on Π, we obtain a B-bimodule endomorphism

Π : q!(Ω1
A) −→ q!(Ω1

A) , [ω] 7−→ Π
(
[ω]
)

:=
[
Π(ω)

]
. (2.1.7b)

Proposition 2.1.5. The B-bimodule endomorphism Π from (2.1.7b) satisfies the following

properties:

(i) Π
(
[ν]
)
= 0.

(ii) Π2 = Π, i.e. Π is a projector.

(iii) The induced B-bimodule map Π : Ω1
B → q!(Ω1

A) on Ω1
B (cf. (2.1.3)) is a section of the

quotient B-bimodule map k : q!(Ω1
A)� Ω1

B, i.e. k ◦Π = id. In particular, it defines an

isomorphism Ω1
B
∼= Πq!(Ω1

A).

Proof. Item (i) follows directly from the normalization condition (2.1.6) and item (ii) is

a direct consequence of (i). To prove item (iii), note that the induced map Π : Ω1
B →

q!(Ω1
A) is well-defined because of (i) and the fact that [ν] is by hypothesis a basis

for N1
B. It is a section of the quotient map because the latter maps [ν] to 0. This in

particular implies that the induced map Π : Ω1
B → q!(Ω1

A) is injective, hence it defines

an isomorphism onto its image Πq!(Ω1
A).

2.1.2 Induced Riemannian structure

We have so far introduced the notion of noncommutative hypersurface B = A/I to-

gether with a differential calculus (Ω1
B, d). The next step is to induce a Riemannian

structure (gB, (∇B, σB)) on (Ω1
B, d). Applying the change of base functor to the metric

g : A → Ω1
A ⊗A Ω1

A on Ω1
A and the inverse metric g−1 : Ω1

A ⊗A Ω1
A → A, we obtain

the B-bimodule maps

g : B −→ q!(Ω1
A)⊗B q!(Ω1

A) , [a] 7−→
[
g(a)

]
(2.1.8a)
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and

g−1 : q!(Ω1
A)⊗B q!(Ω1

A) −→ B , [ω]⊗B [ζ] 7−→
[
g−1(ω⊗A ζ)

]
. (2.1.8b)

This, together with the quotient map q!(Ω1
A) � Ω1

B and its section Π : Ω1
B → q!(Ω1

A)

from Proposition 2.1.5 (see also (2.1.7)), we define the composite B-bimodule maps

gB : B
g
// q!(Ω1

A)⊗B q!(Ω1
A)

// // Ω1
B ⊗B Ω1

B (2.1.9a)

and

g−1
B : Ω1

B ⊗B Ω1
B

Π⊗BΠ
// q!(Ω1

A)⊗B q!(Ω1
A)

g−1
// B . (2.1.9b)

However, to guarantee that the maps in (2.1.9) define a metric and an inverse metric,

we will make the following assumption:

Assumption 2.1.6. The A-bimodule isomorphism σ : Ω1
A ⊗A Ω1

A → Ω1
A ⊗A Ω1

A associ-

ated with the bimodule connection (∇, σ) on Ω1
A satisfies

σ(ω⊗A ν) = ν⊗A ω , σ(ν⊗A ω) = ω⊗A ν , (2.1.10)

for all ω ∈ Ω1
A.

Lemma 2.1.7. Assumption 2.1.6 implies the following properties:

(i) g−1(ω⊗A ν) = g−1(ν⊗A ω), for all ω ∈ Ω1
A.

(ii)
[
g−1(Π(ω)⊗A ν

)]
= 0 and

[
g−1(ν⊗A Π(ω)

)]
= 0 in B = A/I, for all ω ∈ Ω1

A.

This implies that[
g−1(Π(ω)⊗A Π(ζ)

)]
=
[
g−1(ω⊗A Π(ζ)

)]
=
[
g−1(Π(ω)⊗A ζ

)]
, (2.1.11)

for all ω, ζ ∈ Ω1
A.

(iii)
[
(id⊗A g−1)

(
∇(ν)⊗A ν

)]
= 0.

(iv) The two B-bimodule maps in (2.1.9) define a metric gB and its inverse g−1
B on Ω1

B.

Proof. Item (i) is a direct consequence of the symmetry property of g−1 (cf. Defini-

tion 1.1.7) and Assumption 2.1.6. The first equality of item (ii) follows from a short

calculation[
g−1(Π(ω)⊗A ν

)]
=
[
g−1((ω− g−1(ω⊗A ν) ν

)
⊗A ν

)]
=
[
g−1(ω⊗A ν)− g−1(ω⊗A ν) g−1(ν⊗A ν)

]
= 0 , (2.1.12)
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where we used the normalization condition (2.1.6) for ν. The second equality in item

(ii) follows from this and (i).

Item (iii) follows from the calculation[
(id⊗A g−1)

(
∇(ν)⊗A ν

)]
=
[
d
(

g−1(ν⊗A ν)
)
− (id⊗A g−1)(σ⊗A id)

(
ν⊗A ∇(ν)

)]
= −

[
(id⊗A g−1)

(
∇(ν)⊗A ν

)]
, (2.1.13)

where in the first step we used metric compatibility (1.1.12) and in the second step we

used the normalization condition (2.1.6) and item (i).

To prove item (iv), we use the same notations as in Remark 1.1.5 to write gB(1) =

[g(1)] = [∑α gα ⊗A gα] = ∑α[gα]⊗B [gα] and g−1
B ([ω]⊗B [ζ]) =

[
g−1(Π(ω)⊗A Π(ζ)

)]
.

We then compute

∑
α

g−1
B
(
[ω]⊗B [gα]

)
[gα] =

[
∑
α

g−1(Π(ω)⊗A gα
)

gα

]
=
[
Π(ω)

]
= [ω] , (2.1.14)

where in the first step we used (ii). The second step follows from g−1 being the

inverse metric of g and the last step uses that Π is a section of the quotient map (see

Proposition 2.1.5). The second property ∑α[gα] g−1
B
(
[gα]⊗B [ω]

)
= [ω] follows from a

similar calculation.

Remark 2.1.8. Observe that Lemma 2.1.7 (ii) can be interpreted as self-adjointness of

the projector Π : q!(Ω1
A)→ q!(Ω1

A) with respect to the inverse metric g−1 : q!(Ω1
A)⊗B

q!(Ω1
A)→ B. M

The remaining part of the Riemannian structure on (Ω1
B, d) is a metric compatible

bimodule connection, induced from (∇, σ) on Ω1
A. We first make the observation

that the connection ∇ : Ω1
A → Ω1

A ⊗A Ω1
A descends to a connection ∇ : q!(Ω1

A) →

Ω1
B ⊗B q!(Ω1

A) on q!(Ω1
A) ∈ BModB, which can be seen from how Ω1

B is defined (2.1.3).

This map is indeed well defined: from the left Leibniz rule, we have [∇(a ω)] =

[a∇(ω) + da ⊗A ω] = 0, for all a ∈ I. As in the case for the metric, we use the

quotient map q!(Ω1
A) � Ω1

B and its section Π : Ω1
B → q!(Ω1

A) from Proposition 2.1.5

(see also (2.1.7)) to define the composite linear map

∇B : Ω1
B

Π // q!(Ω1
A)

∇ // Ω1
B ⊗B q!(Ω1

A)
// // Ω1

B ⊗B Ω1
B . (2.1.15)

The A-bimodule isomorphism σ : Ω1
A ⊗A Ω1

A → Ω1
A ⊗A Ω1

A associated with the bi-

module connection (∇, σ) on Ω1
A descends to the B-bimodule isomorphism

σB : Ω1
B ⊗B Ω1

B −→ Ω1
B ⊗B Ω1

B , [ω]⊗B [ζ] 7−→
[
σ(ω⊗A ζ)

]
(2.1.16)

43



2.1 induced geometric structures on noncommutative hypersurfaces

as an immediate consequence of Assumption 2.1.6.

Lemma 2.1.9. The pair (∇B, σB) defined by (2.1.15) and (2.1.16) is a bimodule connection on

Ω1
B. It reads explicitly as

∇B
(
[ω]
)
=
[
∇(ω)− g−1(ω⊗A ν)∇(ν)

]
, (2.1.17)

for all [ω] ∈ Ω1
B.

Proof. The explicit expression (2.1.17) is obtained by a short calculation

∇B
(
[ω]
)
=
[
∇
(
ω− g−1(ω⊗A ν) ν

)]
=
[
∇(ω)− g−1(ω⊗A ν)∇(ν)− d

(
g−1(ω⊗A ν)

)
⊗A ν

]
=
[
∇(ω)− g−1(ω⊗A ν)∇(ν)

]
, (2.1.18)

where in the second step we used the left Leibniz rule for ∇ and in the third step that

ν is identified with 0 in Ω1
B (cf. (2.1.3)). The left Leibniz rule is a direct consequence of

this expression and the right Leibniz rule follows from the fact that ∇(ν) ∈ Ω1
A⊗A Ω1

A

is a central element. The latter statement is proven as follows

a∇(ν) = ∇(a ν)− da⊗A ν = ∇(ν a)− σ(ν⊗A da) = ∇(ν) a , (2.1.19)

where we used the left and right Leibniz rules for (∇, σ), centrality of ν and Assump-

tion 2.1.6.

Remark 2.1.10. The formula (2.1.17) is a noncommutative analogue of the usual Gauss

formula for connections on Riemannian submanifolds, see e.g. [KN96, Chapter VII.3].

M

In order to ensure that the metric and bimodule connection we introduced in this

section really defines a Riemannian structure on (Ω1
B, d), we need to make an addi-

tional assumption:

Assumption 2.1.11. The diagrams

q!(Ω1
A)⊗B q!(Ω1

A)

σ
��

Π⊗Bid
// q!(Ω1

A)⊗B q!(Ω1
A)

σ
��

q!(Ω1
A)⊗B q!(Ω1

A) id⊗BΠ
// q!(Ω1

A)⊗B q!(Ω1
A)

(2.1.20a)
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2.1 induced geometric structures on noncommutative hypersurfaces

and

q!(Ω1
A)⊗B q!(Ω1

A)

σ
��

id⊗BΠ
// q!(Ω1

A)⊗B q!(Ω1
A)

σ
��

q!(Ω1
A)⊗B q!(Ω1

A) Π⊗Bid
// q!(Ω1

A)⊗B q!(Ω1
A)

(2.1.20b)

commute.

Proposition 2.1.12. The pair (gB, (∇B, σB)) defined in (2.1.9), (2.1.15) and (2.1.16) is a

Riemannian structure on (Ω1
B, d).

Proof. It remains to prove the symmetry and metric compatibility properties from Def-

inition 1.1.7. The symmetry property (1.1.11) for (gB, (∇B, σB)) follows immediately

from Assumption 2.1.11 and symmetry of g−1. To verify metric compatibility (1.1.12)

for (gB, (∇B, σB)), we compute by using metric compatibility of the original Rieman-

nian structure (g, (∇, σ))

dB
(

g−1
B
(
[ω]⊗B [ζ]

))
=
[
(id⊗A g−1)

(
∇Π(ω)⊗A Π(ζ) + σ12

(
Π(ω)⊗A ∇Π(ζ)

))]
,

(2.1.21)

where σ12 := σ⊗A id. Using Lemma 2.1.7 (ii), we can in the first term replace ∇Π(ω)

with (id ⊗A Π)∇Π(ω). Using also Assumption 2.1.11, we can in the second term

replace σ12
(
Π(ω)⊗A ∇Π(ζ)

)
with (id⊗A Π⊗A id)σ12

(
ω ⊗A ∇Π(ζ)

)
and hence, via

Lemma 2.1.7 (ii), with (id ⊗A Π ⊗A Π)σ12
(
ω ⊗A ∇Π(ζ)

)
. The resulting expression

proves metric compatibility for (gB, (∇B, σB)).

2.1.3 Induced spinorial structure

Having introduced a Riemannian structure on (Ω1
B, d) (Section 2.1.2), the next task is

to induce a spinorial structure (EB,∇sp
B , γB) on the Riemannian structure (gB, (∇B, σB)).

In this section, we use well-known results on spinorial structures in classical, commu-

tative, differential geometry (see e.g. [Bur93, Tra95, Bär96] and also [HMZ02] for a

good review) to motivate our definitions and constructions. We begin by using the

change of base functor (for left modules) to define the left B-module of spinors

EB := q!(E) ∼=
E
IE ∈ BMod . (2.1.22)
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2.1 induced geometric structures on noncommutative hypersurfaces

For the Clifford multiplication γB : Ω1
B ⊗B EB → EB, we turn to the classical case from

[HMZ02, Eqn. (3.4)] for inspiration and define

γB : Ω1
B ⊗B EB −→ EB , [ω]⊗B [s] 7−→

[
γ[2]
(
Π(ω)⊗A ν⊗A s

)]
, (2.1.23)

where γ[2] was defined in (1.1.13). Since the normalised 1-form ν ∈ Ω1
A is central by

Definition 2.1.2, this map is well-defined.

The final structure we need for our framework is the spin connection on EB ∈ BMod.

Due to the relations in (2.1.3) and (2.1.22), note that the spin connection ∇sp : E →

Ω1
A ⊗A E on E ∈ AMod descends to a connection ∇sp : EB → Ω1

B ⊗B EB on EB ∈ BMod

because [∇sp(a s) = a∇sp(s) + da ⊗A s] = 0, for all a ∈ I. However, this is not the

desired induced spin connection on EB ∈ BMod. To amend this issue, we use this

connection together with the classical spinorial Gauss formula from [HMZ02, Eqn.

(3.5)] to define

∇sp
B : EB −→ Ω1

B ⊗B EB , [s] 7−→
[
∇sp(s) +

1
2
(id⊗A γ[2])

(
∇(ν)⊗A ν⊗A s

)]
.

(2.1.24)

This map is a connection on the left B-module EB ∈ BMod since both ν ∈ Ω1
A and

∇(ν) ∈ Ω1
A ⊗A Ω1

A are central (see (2.1.19) for the latter statement).

We need a last assumption to make sure that the data we just introduced defines a

spinorial structure in the sense of Definition 1.1.9:

Assumption 2.1.13. The element ∇(ν) ∈ Ω1
A ⊗A Ω1

A satisfies[
σ23σ12

(
Π(ω)⊗A ∇(ν)

)]
=
[
∇(ν)⊗A Π(ω)

]
∈ Ω1

B ⊗B q!(Ω1
A)⊗B q!(Ω1

A) ,

(2.1.25)

for all ω ∈ Ω1
A, where σ12 := σ⊗A id and σ23 := id⊗A σ.

Proposition 2.1.14. The triple (EB,∇sp
B , γB) defined in (2.1.22), (2.1.24) and (2.1.23) is a

spinorial structure on the Riemannian structure (gB, (∇B, σB)).

Proof. It remains to prove the Clifford relations and Clifford compatibility properties

from Definition 1.1.9. In these calculations we frequently use the identities[
γ[2]
(
Π(ω)⊗A ν⊗A s

)]
= −[γ[2]

(
ν⊗A Π(ω)⊗A s

)
] (2.1.26a)

and [
γ[2]
(
ν⊗A ν⊗A s

)]
= −[s] , (2.1.26b)

46



2.1 induced geometric structures on noncommutative hypersurfaces

which follow from the Clifford relations (1.1.14) for γ, Assumption 2.1.6, Lemma 2.1.7

(ii) and the normalization condition (2.1.6).

The Clifford relations (1.1.14) for γB follow from a direct calculation, for which we

introduce the convenient short notation σ(ω⊗A ζ) = ∑α ζα ⊗A ωα. We compute

γB[2]

(
[ω]⊗B [ζ]⊗B [s] + σB12

(
[ω]⊗B [ζ]⊗B [s]

))
=
[
γ[4]

(
Π(ω)⊗A ν⊗A Π(ζ)⊗A ν⊗A s

+ ∑
α

Π(ζα)⊗A ν⊗A Π(ωα)⊗A ν⊗A s
)]

=
[
γ[2]

(
Π(ω)⊗A Π(ζ)⊗A s + ∑

α

Π(ζα)⊗A Π(ωα)⊗A s
)]

= −2 g−1
B
(
[ω]⊗B [ζ]

)
[s] , (2.1.27)

where in the second step we used (2.1.26). The last step follows from Assumption

2.1.11, the Clifford relations for γ and the definition of g−1
B in (2.1.9b).

Proving the Clifford compatibility property (1.1.15) for∇B, ∇sp
B and γB is a lengthier

computation. Using as above (2.1.26), Assumption 2.1.11 and also Clifford compati-

bility for ∇, ∇sp and γ, one finds that the desired equality ∇sp
B γB

(
[ω] ⊗B [s]

)
=

(id⊗B γB)
(
∇⊗B
(
[ω]⊗B [s]

))
is equivalent to the statement that the two expressions[

(id⊗A γ[2])
(

σ12
(
Π(ω)⊗A ∇(ν)⊗A s

)
+

1
2
∇(ν)⊗A Π(ω)⊗A s

)]
(2.1.28a)

and [
(id⊗A g−1)

(
∇Π(ω)⊗A ν

)
⊗A s

+
1
2
(id⊗A γ[4])

(
σ12σ23

(
Π(ω)⊗A ν⊗A ∇(ν)⊗A ν⊗A s

))]
(2.1.28b)

are equal. (The term with g−1 in (2.1.28b) arises from computing (id⊗A Π)∇Π(ω) =

∇Π(ω) − (id ⊗A g−1)
(
∇Π(ω) ⊗A ν

)
⊗A ν via (2.1.7).) Using metric compatibility

(1.1.12) for (g, (∇, σ)), Lemma 2.1.7 (ii) and the Clifford relations for γ, we can rewrite

the first term of (2.1.28b) as

(2.1.28b)1st =
[
− (id⊗A g−1)σ12

(
Π(ω)⊗A ∇(ν)

)
⊗A s

]
=
[1

2
(id⊗A γ[2])

(
σ12
(
Π(ω)⊗A ∇(ν)⊗A s

)
+ σ23σ12

(
Π(ω)⊗A ∇(ν)⊗A s

))]
. (2.1.29)

47



2.2 examples

Concerning the second term of (2.1.28b), we use the Clifford relations for γ to bring

the left factor of ν to the right and observe that there is no g−1 contribution as a result

of Lemma 2.1.7 (iii). Hence, we can rewrite the second term of (2.1.28b) as

(2.1.28b)2nd =
[1

2
(id⊗A γ[2])

(
σ12
(
Π(ω)⊗A ∇(ν)⊗A s

))]
. (2.1.30)

From these simplifications and Assumption 2.1.13, it follows that the expressions in

(2.1.28b) and (2.1.28a) are equal. This completes our proof of the Clifford compatibility

property.

To conclude this section, we provide an explicit expression for the induced Dirac

operator on the hypersurface B

DB : EB
∇sp

B // Ω1
B ⊗B EB

γB
// EB . (2.1.31)

Proposition 2.1.15. The induced Dirac operator (2.1.31) reads explicitly as

DB
(
[s]
)
=
[
− 1

2
(
γ[2] − γ[2] (σ⊗A id)

)(
ν⊗A ∇sp(s)

)
+

1
2

γ[2]
(
(Π⊗A id)∇(ν)⊗A s

)]
, (2.1.32)

for all [s] ∈ EB.

Proof. This is a straightforward calculation using (2.1.24), (2.1.23), the projector (2.1.7)

and the Clifford relations (1.1.14) for γ, in particular (2.1.26). Since the relevant steps

are similar to those in the proof of Proposition 2.1.14, we do not have to write out the

details of this calculation.

2.2 examples

In this section, we will apply our framework to the sequence of noncommutative hy-

persurface embeddings T2
θ ↪→ S3

θ ↪→ R4
θ studied by Arnlind and Norkvist [AN19]. We

have already in Section 1.1.1 described the embedding space R4
θ together with a dif-

ferential, Riemannian and spinorial structure on it. In the following, we will use the

framework developed in Section 2.1 to induce these structures first to the noncommu-

tative hypersurface S3
θ ↪→ R4

θ and subsequently to the noncommutative hypersurface

T2
θ ↪→ S3

θ . As a result, we will also obtain explicit expressions for the Dirac operators

(in the sense of Definition 1.1.9) on these noncommutative hypersurfaces.
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2.2.1 Noncommutative hypersurface S3
θ ↪→ R4

θ

The first part of the sequence of embeddings is the noncommutative 3-sphere S3
θ ↪→ R4

θ ,

to which we will apply our framework from Section 2.1 to induce a differential, Rie-

mannian and spinorial structure from the corresponding structures on R4
θ . In practice,

it means we need to confirm that this is an example of a noncommutative hypersur-

face as described in Definition 2.1.2 and that Assumptions 2.1.6, 2.1.11 and 2.1.13 are

satisfied. We will from here on simplify the notation by omitting the square brackets

for denoting equivalence classes as it will be evident from context and the general

construction in Section 2.1 which expressions are considered in quotient spaces.

Consider the algebra A = AR4
θ

of R4
θ (see (1.1.18)). The algebra B = BS3

θ
of the non-

commutative Connes-Landi 3-sphere [CL01, CD-V02] is given by the quotient algebra

B := A
/
( f ) (2.2.1)

where ( f ) is the ideal generated by the unit sphere relation (in complex coordinates)

f :=
1
2

( 4

∑
i,j=1

gij zi zj − 1
)

=
1
2

(
z1 z1 + z2 z2 − 1

)
. (2.2.2)

The 1
2 -prefactor is chosen for the generator of the ideal ( f ) ⊂ A in order to agree

with the conditions in Example 2.1.4 for S3
θ ↪→ R4

θ to be a noncommutative level set

hypersurface. Using the commutation relations of the coordinate functions of R4
θ

(1.1.18) and (1.1.19), one sees that f ∈ Z(A) ⊆ A is central as required.

Proposition 2.2.1. The 1-form

ν := d f =
4

∑
i,j=1

gij zi dzj ∈ Ω1
A (2.2.3)

is central and normalized. Hence, by Example 2.1.4, B = BS3
θ

is a noncommutative hypersur-

face of A = AR4
θ

in the sense of Definition 2.1.2. The projector Π : q!(Ω1
A) → q!(Ω1

A) from

Proposition 2.1.5 reads explicitly as

Π(dzi) = dzi − zi ν . (2.2.4)

Proof. Centrality of ν is a simple check using (1.1.21) and (1.1.19) and the normaliza-

tion condition (2.1.6) is proven by

g−1(ν⊗A ν) =
4

∑
i,j,k,l=1

gij zi gjl gkl zk =
4

∑
i,k=1

gik zi zk = 1 . (2.2.5)
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The explicit expression for the projector is obtained from a short calculation

Π(dzi) = dzi − g−1
(

dzi ⊗A

4

∑
j,k=1

gjk zj dzk
)

ν

= dzi −
4

∑
j,k=1

gik gjk zj ν = dzi − zi ν , (2.2.6)

where in the second step we used (1.1.21), (1.1.19) and (1.1.23) in order to write

∑4
j,k=1 gjk zj dzk = ∑4

j,k=1 dzk gjk zj.

In the following, we will verify that Assumptions 2.1.6, 2.1.11 and 2.1.13 hold for

the noncommutative hypersurface S3
θ ↪→ R4

θ . We will also present explicit expressions

for the Riemannian and spinorial structures.

Proposition 2.2.2. Assumptions 2.1.6 and 2.1.11 hold true. The induced Riemannian struc-

ture from Proposition 2.1.12 reads explicitly as

gB =
4

∑
i,j=1

gij dzi ⊗B dzj ∈ Ω1
B ⊗B Ω1

B , (2.2.7a)

g−1
B
(
dzi ⊗B dzj) = gij − zi zj , (2.2.7b)

∇B(dzi) = −zi
4

∑
k,l=1

gkl dzk ⊗B dzl , (2.2.7c)

σB
(
dzi ⊗B dzj) = Rji dzj ⊗B dzi . (2.2.7d)

Proof. Verifying Assumption 2.1.6 is a simple check using (1.1.21), (1.1.27) and (1.1.19).

To prove commutativity of the top diagram in Assumption 2.1.11, we use (2.2.4) and

compute

σ
(
Π(dzi)⊗A dzj) = σ

(
dzi ⊗A dzj)− σ

(
zi ν⊗A dzj)

= Rji dzj ⊗A dzi − Rji dzj ⊗A zi ν

= Rji dzj ⊗A Π(dzi)

= (id⊗A Π) σ
(
dzi ⊗A dzj) , (2.2.8)

where we in the second step also used (2.1.10) and (1.1.21). Commutativity of the

bottom diagram in Assumption 2.1.11 is proven by a similar calculation.
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Concerning the explicit expressions for the induced Riemannian structure, we ob-

serve that (2.2.7a) follows trivially from (2.1.9a). Equation (2.2.7b) follows from (2.1.9b),

(2.2.4) and a straightforward calculation. Equation (2.2.7c) follows from (2.1.17) and

(1.1.26) by a short calculation

∇B(dzi) = ∇(dzi)− g−1(dzi ⊗A ν
)
∇(ν) = −zi∇(ν)

= −zi
4

∑
k,l=1

gkl dzk ⊗B dzl , (2.2.9)

where in the last step we used that

∇(ν) =
4

∑
k,l=1

gkl∇
(
zk dzl) = 4

∑
k,l=1

gkl dzk ⊗A dzl (2.2.10)

via the left Leibniz rule and (1.1.26). Finally, (2.2.7d) follows trivially from (2.1.16) and

(1.1.27).

Proposition 2.2.3. Assumption 2.1.13 holds true. The induced spinorial structure from Propo-

sition 2.1.14 reads explicitly as

EB =
E
f E , (2.2.11a)

γB
(
dzi ⊗B eα

)
= −

( 4

∑
k,l=1

gkl zk γl
θ γi

θ + zi
)

eα , (2.2.11b)

∇sp
B (eα) =

1
2

4

∑
i,j,k,l=1

gij gkl zk dzi ⊗B γ
j
θ γl

θ eα . (2.2.11c)

Proof. Recalling (2.2.10), Assumption 2.1.13 is verified by a similar calculation as the

one that proves centrality of the metric g.

Concerning the explicit expressions for the induced spinorial structure, we observe

that (2.2.11a) is just the definition in (2.1.22). Equation (2.2.11b) follows from (2.1.23)

by a short calculation

γB
(
dzi ⊗B eα

)
= −γ[2]

(
ν⊗A Π(dzi)⊗A eα

)
= −γ[2]

(
ν⊗A dzi ⊗A eα

)
+ g−1(dzi ⊗A ν

)
γ[2]
(
ν⊗A ν⊗A eα

)
= −

( 4

∑
k,l=1

gkl zk γl
θ γi

θ + zi
)

eα , (2.2.12)

where in the first step we used (2.1.26a) and in the third step we used (2.1.26b). Finally,

equation (2.2.11c) follows from writing out (2.1.24) and using (1.1.31) and (2.2.10).
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We now have all the building blocks for computing the induced Dirac operator on

S3
θ .

Proposition 2.2.4. The induced Dirac operator (2.1.31) on S3
θ is given by

DB(s) = −1
2

4

∑
i,j=1

[γ
j
θ , γi

θ ]θ ∂is zj −
3
2

s , (2.2.13)

where zi := ∑4
k=1 gik zk, ∂is := ∑4

α=1 ∂isα eα and [γ
j
θ , γi

θ ]θ is the θ-commutator from Lemma

1.1.16.

Proof. We have to compute the induced Dirac operator from Proposition 2.1.15 for our

example. Using (1.1.26) and (2.2.3), the first term of (2.1.32) is given by

(2.1.32)1st = −1
2

4

∑
α=1

4

∑
i,j,k=1

∂isα gkj zk (γj
θ γi

θ − Rij γi
θ γ

j
θ

)
eα

= −1
2

4

∑
i,j=1

[γ
j
θ , γi

θ ]θ ∂is zj , (2.2.14)

which yields the first term of (2.2.13). To compute the second term of (2.1.32), we first

observe that

(Π⊗A id)∇(ν) =
4

∑
i,j=1

gij Π
(
dzi)⊗A dzj =

4

∑
i,j=1

(
gij − zj zi

)
dzi ⊗A dzj , (2.2.15)

where in the first step we used (2.2.10) and in the second step (2.2.4). This element

is invariant under applying σ, i.e. σ(Π⊗A id)∇(ν) = (Π⊗A id)∇(ν), hence we can

write

(Π⊗A id)∇(ν) = 1
2

(
(Π⊗A id)∇(ν) + σ(Π⊗A id)∇(ν)

)
(2.2.16)

in the second term of (2.1.32). Using the Clifford relations (1.1.14), we obtain

(2.1.32)2nd = −1
2

4

∑
i,j=1

(
gij − zj zi

)
gij s = −1

2
(
4− 1

)
s = −3

2
s , (2.2.17)

where in the second step we used ∑4
i,j=1 gij gij = ∑4

i=1 δi
i = 4 (see (1.1.24)) and the

sphere relation ∑4
i,j=1 zj zi gij = ∑4

i,j=1 gij zi zj = 1 (see (2.2.2)).

Remark 2.2.5. Observe that for vanishing deformation parameter θ = 0, the Dirac

operator (2.2.13) on S3
θ reduces to the usual Dirac operator on the commutative 3-

sphere S3 ⊆ R4, see e.g. [Tra95, Section 7.1] or [Tra93]. M
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Having obtained the Dirac operator on S3
θ with our framework, we now want to

compare it with the Connes-Landi Dirac operator [CL01, CD-V02] which is obtained

from an isospectral deformation [BLvS13]. The techniques used in the following are

examples of Drinfeld twist (or 2-cocycle) deformations, see e.g. [BLvS13, AS14, BSS14].

First, we consider the coaction from Example 1.2.13 in Section 1.2, δ : AR4 → H⊗ AR4

given by

δ(z1) = t(2,0) ⊗ z1 , δ(z2) = t(0,2) ⊗ z2

δ(z3) = t(−2,0) ⊗ z3 , δ(z4) = t(0,−2) ⊗ z4 . (2.2.18)

where H = O(T2) is the algebra of functions on the algebraic 2-torus and AR4 is the

commutative algebra of functions on R4 ∼= C2. We may obtain the noncommutative

algebra (1.1.18) as a deformation quantisation of the commutative algebra AR4 by

introducing the star-product

a ?θ a′ := σθ

(
a−1 ⊗ a′−1

)
a0 a′0 (2.2.19)

where σθ : H ⊗ H → C is defined by

σθ

(
t(m1,m2) ⊗ t(n1,n2)

)
:= exp

(
iθ
8

(
m1 n2 −m2 n1

))
. (2.2.20)

(The map σθ is an instance of a so called 2-cocycle.) In a similar fashion, one obtains

the algebra B = BS3
θ

of the Connes-Landi sphere (2.2.1) as a deformation quantisation

of the commutative 3-sphere algebra BS3 .

A coaction on the differential calculus Ω1
A

R4
is induced from the coaction on AR4 by

demanding the differential d to be an H-comodule morphism. Explicitly, on the basis

{dzi}4
i=1,

δ(dz1) = t(2,0) ⊗ dz1 , δ(dz2) = t(0,2) ⊗ dz2

δ(dz3) = t(−2,0) ⊗ dz3 , δ(dz4) = t(0,−2) ⊗ dz4 . (2.2.21)

This is done similarly in the case of the sphere S3.

To obtain the module of noncommutative spinors E on R4
θ in (1.1.30), we perform

a deformation quantisation of the module of commutative spinors Ec. This is realised

by defining the left H-coaction

δ(e1) = t(1,1) ⊗ e1 , δ(e2) = t(−1,−1) ⊗ e2

δ(e3) = t(1,−1) ⊗ e3 , δ(e4) = t(−1,1) ⊗ e4 (2.2.22)
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and extension by the relation δ(a s) = a−1 s−1 ⊗ a0 s0 for all a ∈ AR4 and s ∈ Ec,

together with the associated star-module structure

a ?θ s := σθ

(
a−1 ⊗ s−1

)
a0 s0 . (2.2.23)

The spinor module EB on S3
θ given in (2.2.11a) is obtained in the same vein. In terms

of the star products, our Dirac operator (2.2.13) on S3
θ takes the form

DB(s) = −1
2

4

∑
i,j=1

[γ
j
θ , γi

θ ]θ ∂θ
i s ?θ zj −

3
2

s , (2.2.24)

where ∂θ
i is defined by da = ∂θ

i a ?θ dzi with respect to the deformed module structure.

The Connes-Landi Dirac operator DCL on S3
θ is given by regarding the classical Dirac

operator on S3 as an operator on the deformed spinor module, see [CL01, CD-V02,

BLvS13] for details. Concretely, it is given by setting the deformation parameter θ = 0

in (2.2.24), i.e.

DCL(s) = −1
2

4

∑
i,j=1

[γj, γi] ∂is zj −
3
2

s , (2.2.25)

where ∂i is defined by da = ∂ia dzi with respect to the undeformed module structure.

The Connes-Landi Dirac operator DCL is equivariant under the torus action. In other

words DCL is an H-comodule morphism (see Definition 1.2.9). (One can show this

explicitly through a direct calculation.) Hence, we may compute

DCL(a ?θ s) = σθ

(
a−1 ⊗ s−1

)
DCL(a0 s0)

= σθ

(
a−1 ⊗ s−1

) (
a0 DCL(s0) + γS3

(
da0 ⊗B

S3 s0
))

= σθ

(
a−1 ⊗ DCL(s)−1

)
a0 DCL(s)0

+ σθ

(
(da)−1 ⊗ s−1

)
γS3

(
(da)0 ⊗B

S3 s0
))

= a ?θ DCL(s) + γS3

(
da⊗B

S3
θ

s
)

, (2.2.26)

where ω⊗B
S3

θ

s := σθ(ω−1 ⊗ s−1) ω0 ⊗B
S3 s0 denotes the deformed tensor product and

γS3 the classical Clifford multiplication.2 In the third equality, we used that DCL and

d are equivariant under the torus action. Now, we see that this relation (2.2.26) is also

satisfied by our hypersurface Dirac operator by Proposition 1.1.10. The reason is that

2 In fact, this is how the deformed gamma matrices in (1.1.34) were constructed; the Clifford multiplication

for R4
θ is given by γi

θ eα := σ
(
(dzi)−1⊗ (eα)−1

)
γR4

(
(dzi)0⊗A

R4 (eα)0
)
, where γR4 is the standard Clifford

multiplication on R4 (in complex coordinates given by the gamma matrices (1.1.32)).
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our noncommutative Clifford multiplication (1.1.35) by construction coincides with

the classical Clifford multiplication regarded as a map on the deformed modules. This

holds similarly for the induced Clifford multiplication (2.1.23) on the noncommutative

hypersurface S3
θ since the normalised normal form ν in (2.2.3) is invariant under the

torus action, which translates to δ(ν) = 1⊗ ν. We may therefore finally provide the

following comparison result:

Proposition 2.2.6. The hypersurface Dirac operator (2.2.24) on S3
θ coincides with the Connes-

Landi Dirac operator DCL.

Proof. Because both DB and DCL satisfy the same property (2.2.26), they coincide if

and only if DB(eα) = DCL(eα), for all basis spinors eα. The latter follows from (2.2.24)

and (2.2.25) because DB(eα) = − 3
2 eα = DCL(eα).

2.2.2 Noncommutative hypersurface T2
θ ↪→ S3

θ

The next part of the example is to further apply the construction of Section 2.1 to

induce the differential, Riemannian and spinorial structure on S3
θ (cf. Section 2.2.1) to

the noncommutative 2-torus T2
θ ↪→ S3

θ . Following the procedure in Section 2.2.1, we

need to check that T2
θ ↪→ S3

θ is a noncommutative hypersurface (see Definition 2.1.2)

and that Assumptions 2.1.6, 2.1.11 and 2.1.13 are satisfied. As before, we will also

write down the explicit formulas for the induced structures.

The algebra C = CT2
θ

for the noncommutative 2-torus T2
θ is given by the quotient

algebra

C := B
/
( f̃ ) (2.2.27)

of the sphere algebra B = BS3
θ

(see (2.2.1)) by the ideal generated by

f̃ :=
1
2

( 4

∑
i,j=1

hij zi zj
)

=
1
2

(
z1 z1 − z2 z2

)
, (2.2.28)

where hij are the entries of the matrix

(hij) :=
1
2


0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

 . (2.2.29)
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Due to the commutation relations given by (1.1.18) and (1.1.19), the element f̃ ∈

Z(B) ⊆ B is central. The quotient map will be denoted by

q̃ : B −→ C (2.2.30)

to avoid confusion with the quotient map q : A → B in Section 2.2.1. To see that

C = CT2
θ

really is the algebra for the noncommutative 2-torus T2
θ , recall that the

noncommutative sphere algebra (2.2.1) is the quotient B = A/( f ). This means that

C = A/( f , f̃ ) is the quotient of the algebra A = AR4
θ

of R4
θ by the ideal generated

by the two relations f and f̃ in (2.2.2) and (2.2.28). By rescaling the coordinates,

u :=
√

2 z1 and v :=
√

2 z2, we obtain the usual torus relations from the linear combi-

nations

2 ( f + f̃ ) = 2 z1 z1 − 1 = u u− 1 , 2 ( f − f̃ ) = 2 z2 z2 − 1 = v v− 1 . (2.2.31)

Proposition 2.2.7. The 1-form

ν̃ := d f̃ =
4

∑
i,j=1

hij zi dzj ∈ Ω1
B (2.2.32)

is central and normalized. Hence, by Example 2.1.4, C = CT2
θ

is a noncommutative hypersur-

face of B = BS3
θ

in the sense of Definition 2.1.2. The projector Π̃ : q̃!(Ω1
B) → q̃!(Ω1

B) from

Proposition 2.1.5 reads explicitly as

Π̃(dzi) = dzi + (−1)i zi ν̃ . (2.2.33)

Proof. Centrality of ν̃ is a simple check using (1.1.21) and (1.1.19). To prove the nor-

malization condition, we use (2.2.7b) and compute

g−1
B
(
ν̃⊗B ν̃

)
=

4

∑
i,j,k,l=1

hij zi (gjl − zj zl) hkl zk =
4

∑
i,k=1

gik zi zk = 1 , (2.2.34)

where in the second step we used (2.2.28) and the identity

4

∑
j,l=1

hij gjl hkl = gik , (2.2.35)

and in the last step we used (2.2.2). The explicit expression for the projector is obtained

from a short calculation

Π̃(dzi) = dzi − g−1
B
(
dzi ⊗B ν̃

)
ν̃ = dzi −

4

∑
k,l=1

(
gil − zi zl) hkl zk ν̃

= dzi −
4

∑
k,l=1

gil hkl zk ν̃ = dzi + (−1)i zi ν̃ , (2.2.36)
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where in the second step we used (2.2.7b) and the third step (2.2.28). The last step

follows from ∑4
l=1 gil hkl = −(−1)i δi

k.

Following the structure of Section 2.2.1, we now verify Assumptions 2.1.6, 2.1.11

and 2.1.13 while also providing explicit expressions for the Riemannian and spinorial

structures.

Proposition 2.2.8. Assumptions 2.1.6 and 2.1.11 hold true. The induced Riemannian struc-

ture from Proposition 2.1.12 reads explicitly as

gC =
4

∑
i,j=1

gij dzi ⊗C dzj ∈ Ω1
C ⊗C Ω1

C , (2.2.37a)

g−1
C
(
dzi ⊗C dzj) = gij −

(
1 + (−1)i (−1)j) zi zj , (2.2.37b)

∇C(dzi) = −zi
4

∑
k,l=1

(
gkl − (−1)i hkl

)
dzk ⊗C dzl , (2.2.37c)

σC
(
dzi ⊗C dzj) = Rji dzj ⊗C dzi . (2.2.37d)

Proof. Verifying Assumption 2.1.6 is a simple check using (1.1.21), (1.1.27) and (1.1.19).

To prove commutativity of the top diagram in Assumption 2.1.11, we use (2.2.33) and

compute

σB
(
Π̃(dzi)⊗B dzj) = Rji dzj ⊗B dzi + (−1)i zi dzj ⊗B ν̃

= Rji dzj ⊗B dzi + Rji dzj ⊗B (−1)i zi ν̃

= (id⊗B Π̃) σB
(
dzi ⊗B dzj) , (2.2.38)

where in the second step we used (1.1.21). Commutativity of the bottom diagram in

Assumption 2.1.11 is proven by a similar calculation.

We observe that (2.2.37a) follows trivially from (2.1.9a) and (2.2.37b) follows from

(2.1.9b), (2.2.33) and a straightforward calculation. Equation (2.2.37c) follows from

(2.1.17), (2.2.7c) and

∇B(ν̃) =
4

∑
k,l=1

hkl dzk ⊗B dzl (2.2.39)

by a short calculation. Finally, (2.2.37d) follows trivially from (2.1.16) and (2.2.7d).
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Proposition 2.2.9. Assumption 2.1.13 holds true. The induced spinorial structure from Propo-

sition 2.1.14 reads explicitly as

EC =
EB

f̃ EB
=

E
fE ∪ f̃E

, (2.2.40a)

γC
(
dzi ⊗C eα

)
=
(

zi
4

∑
k,l,m,n=1

gmn zm hkl zk γl
θ γn

θ −
4

∑
k,l=1

hkl zk γl
θ γi

θ + (−1)i zi
)

eα ,

(2.2.40b)

∇sp
C (eα) =

1
2

4

∑
i,j,k,l=1

(
gkl zk gij dzi + hkl zk hij dzi

)
⊗C γ

j
θ γl

θ eα . (2.2.40c)

Proof. Recalling (2.2.39), Assumption 2.1.13 is verified by a similar calculation as the

one that proves centrality of f̃ given in (2.2.28). The explicit expressions in (2.2.40a),

(2.2.40b) and (2.2.40c) follow easily from the definitions (cf. (2.1.22), (2.1.23) and (2.1.24))

by straightforward calculations. (To obtain (2.2.40c), one has to recall that ν̃ = d f̃ = 0

in Ω1
C.)

We can now finally give the explicit expression for the induced Dirac operator on

T2
θ .

Proposition 2.2.10. The induced Dirac operator (2.1.31) on T2
θ is given by

DC(s) = −1
2

4

∑
i,j=1

[γ
j
θ , γi

θ ]θ

(
∂is z̃j −

4

∑
k=1

∂ks zk zi z̃j − s zi z̃j

)
, (2.2.41)

where zi := ∑4
k=1 gik zk, z̃i := ∑4

k=1 hik zk, ∂is := ∑4
α=1 ∂isα eα and [γ

j
θ , γi

θ ]θ is the θ-

commutator from Lemma 1.1.16.

Proof. The proof is a straightforward but slightly lengthy calculation and hence will

not be written out in detail.

In its current form, it is not obvious how to interpret (2.2.41) as a Dirac operator on

the flat noncommutative torus T2
θ . We will therefore in the following rewrite (2.2.41) in

a form which allows us to easier understand this. To this end, let us use the convenient

standard generators

u :=
√

2 z1 , v :=
√

2 z2 , u :=
√

2 z1 , v :=
√

2 z2 (2.2.42a)
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of the algebra C of T2
θ , which satisfy the relations

u u = 1 , v v = 1 , u v = eiθ v u . (2.2.42b)

We choose a central basis for the free 2-dimensional module of 1-forms Ω1
C

dφ1 :=
1
i

u du , dφ2 :=
1
i

v dv . (2.2.43)

(Our notation is inspired by thinking of u = ei φ1
and v = ei φ2

as exponential functions.)

In this basis, the inverse metric (2.2.37b) is written as

g−1
C
(
dφi ⊗ dφj) = 2 δij . (2.2.44)

The explanation for the factor 2 is that our embedded noncommutative torus T2
θ ↪→ S3

θ

has radius 1√
2
, see (2.2.31). The differential of any a ∈ C can be written in terms of the

basis (2.2.43) as da = ∂φ1 a dφ1 + ∂φ2 a dφ2. By comparing this with da = ∑4
i=1 ∂ia dzi ∈

Ω1
C, we obtain

∂1a =
2
i

∂φ1 a z1 , ∂2a =
2
i

∂φ2 a z2 , ∂3a = 0 , ∂4a = 0 (2.2.45)

for the noncommutative partial derivatives along zi.

Using the Clifford relations in the form of Lemma 1.1.16 (iii), we rewrite the Dirac

operator (2.2.41) on T2
θ as

DC(s) = −γ
(

ν̃⊗C

4

∑
i=1

(
γi

θ ∂is− γi
θ s zi

))
+ γ[2]

(
ν̃⊗C ν⊗C

4

∑
i=1

∂is zi
)

+
4

∑
i=1

(−1)i ∂is zi . (2.2.46)

Consider the map γ(ν̃ ⊗C (−)) : EC → EC. From the Clifford relations (1.1.14) and

because ν̃ is normalised, this map squares to −id. Applying it to (2.2.46), we define

D̃C(s) := γ
(
ν̃⊗C DC(s)

)
=

4

∑
i=1

(
γi

θ ∂is− γi
θ s zi

)
− γ

(
ν⊗C

4

∑
i=1

∂is zi
)
+ γ

(
ν̃⊗C

4

∑
i=1

(−1)i ∂is zi
)

.

(2.2.47)

Inserting (2.2.45) and the expressions for the normalised 1-forms (2.2.3) and (2.2.32)

into (2.2.47), and carrying out all summations, we receive

D̃C(s) =
1
i

(
γ1

θ ∂φ1 s z1 − γ3
θ ∂φ1 s z1

)
− 1

2

(
γ1

θ s z1 + γ3
θ s z1

)
+

1
i

(
γ2

θ ∂φ2 s z2 − γ4
θ ∂φ2 s z2

)
− 1

2

(
γ2

θ s z2 + γ4
θ s z2

)
. (2.2.48)

59



2.2 examples

We define the C-module map γ̃ : Ω1
C ⊗C EC → EC by

γ̃
(
dφ1 ⊗C s

)
:=

1
i

(
γ1

θ s z1 − γ3
θ s z1

)
, γ̃

(
dφ2 ⊗C s

)
:=

1
i

(
γ2

θ s z2 − γ4
θ s z2

)
,

(2.2.49)

for all s ∈ EC. It is straightforward to check that γ̃ satisfies the Clifford relations

γ̃[2]
(
dφi ⊗C dφj ⊗C s

)
+ γ̃[2]

(
dφj ⊗C dφi ⊗C s

)
= −2 g−1

C
(
dφi ⊗ dφj) s

= −4 δij s (2.2.50)

for the inverse metric (2.2.44). Note that there is no σ in this expression because

σ(dφi ⊗C dφj) = dφj ⊗C dφi. Hence we may simplify (2.2.48) and we obtain

D̃C(s) = γ̃
(

dφ1 ⊗C

(
∂φ1 s +

1
4

γ̃
(
dφ1 ⊗C

(
γ1

θ s z1 + γ3
θ s z1))))

+ γ̃
(

dφ2 ⊗C

(
∂φ2 s +

1
4

γ̃
(
dφ2 ⊗C

(
γ2

θ s z2 + γ4
θ s z2))))

= γ̃
(

dφ1 ⊗C

(
∂φ1 s +

1
8i
[γ1

θ , γ3
θ ]θ s

))
+ γ̃

(
dφ2 ⊗C

(
∂φ2 s +

1
8i
[γ2

θ , γ4
θ ]θ s

))
.

(2.2.51)

This is recognised as the Dirac operator on T2
θ corresponding to a rotating frame spin

structure, see [BGa19]. The spectrum of D̃C, and hence the spectrum of the Dirac

operator DC in (2.2.41) on the noncommutative torus T2
θ , can be found through a

direct calculation and is given by{
±
√

2
√(

m + 1
2

)2
+
(
n + 1

2

)2
: m, n ∈ Z

}
. (2.2.52)

It is observed that this spectrum coincides with the one of the Dirac operator corre-

sponding to the (1, 1) spin structure on the commutative 2-torus T2, see e.g. [Fri84].

(The factor
√

2 in (2.2.52) is present because our noncommutative torus T2
θ ↪→ S3

θ has

radius 1√
2
.)

The noncommutative hypersurface Dirac operator (2.2.51) on T2
θ coincides with the

isospectral deformation [BLvS13] of the classical Dirac operator of type (1, 1) on the

commutative 2-torus, acting as in [BGa19] on doubled, i.e. 4-dimensional, spinors.

This is shown by utilising the same arguments as in Proposition 2.2.6, however with

significantly longer calculations to compute DC(eα) on the basis spinors.
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In this part of the thesis, which is based on [NS20], we have devised a method for

inducing differential, Riemannian and spinorial structures from ambient noncommu-

tative spaces to an appropriate notion of noncommutative hypersurfaces. The induced

structures are then used to build noncommutative hypersurface Dirac operators. Our

effort is another attempt towards understanding the nature of noncommutative Rie-

mannian spin geometry. Through our methods, we managed in Section 2.2 to con-

struct Dirac operators on the Connes-Landi sphere and the noncommutative Clifford

torus which match with ones obtained by other means in the literature.

Due to the systematic nature of our framework, a possible application would be the

construction of novel examples of noncommutative Riemannian spaces (with spinorial

structures) from old ones, and in particular obtain expressions for Dirac operators on

them. It could also perhaps be of value to construct, as we did, Dirac operators on

already known spaces. However, our considerations fall in the realm of almost com-

mutative geometry and do not treat well strongly noncommutative algebras such as

matrix algebras due to the various centrality assumptions. For instance, there is only

one noncommutative level set hypersurface (in the sense of Example 2.1.4) associated

to A = MatN(K), namely the trivial algebra B = A/( f ) = 0, because the center of

MatN(K) consists of scalar multiples of the identity matrix 1 so ( f ) = A. Regardless,

the construction is still interesting because examples of noncommutative spaces are

far and few between and often not very well understood. Another potential direction

would be to link this to other approaches to noncommutative geometry, in particular

to spectral triples, in which Dirac operators play a vital role.
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Part II: Batalin-Vilkovisky

quantisation of noncommutative

field theories
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4
P R E L I M I N A R I E S

The second part of the thesis is based on the papers [NSS21] and [GNS22], which

adapts the modern formulation of the BV formalism of Costello and Gwilliam [Gwi12,

CG16, CG21] to include finite noncommutative field theories. In [NSS21], this is ap-

plied to fuzzy field theories. Furthermore, the (finite) BV formalism is generalised to

also account for fuzzy field theories with a symmetry encoded by a triangular Hopf

algebra, also known as braided fuzzy field theories. In [GNS22], we apply the BV for-

malism on so called dynamical fuzzy spectral triple models. This chapter aims to cover

the mathematical background, which includes a treatment of cochain complex in Sec-

tion 4.1 and cyclic L∞-algebras in Section 4.2, as well as the BV formalism for finite

noncommutative field theories in Section 4.3.

4.1 cochain complexes

In order to fix the notation and conventions, we recall some facts about cochain com-

plexes. For more details, see e.g. [Wei94], which is one of many references on this

subject. Most of the material covered here can be found in [NSS21]. We begin by

providing the basic definitions. For a graded vector space V =
⊕

n∈Z Vn, we define

the k-shifted vector space V[k], k ∈ Z, by V[k]n := Vn+k for all n ∈ Z.

Definition 4.1.1. A cochain complex of K-vector spaces consists a Z-graded vector space

V =
⊕

p∈Z Vp together with a K-linear map d : V → V[1] called differential such that

d2 = d ◦ d = 0.

Remark 4.1.2. The dual notion of a cochain complex is that of a chain complex, i.e. a

Z-graded vector space V =
⊕

p∈Z Vp together with a K-linear map d : V → V[−1]

such that d2 = d ◦ d = 0. M
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We will sometimes refer to a cochain complex (V, d) only by its underlying graded

vector space V. We will use the terminology cohomological degree to refer to the degree

of an element in a cochain complex. We will also say that a map f : V →W[k] between

graded vector spaces V and W is a map of (cohomological) degree k, i.e. f increases

the degree by k.

We define the k-shifted cochain complex V[k] ∈ ChK of any V ∈ ChK and k ∈ Z

as the cochain complex with underlying graded vector space V[k] and differential

dV[k] := (−1)k dV . Note that V[k] ∼= K[k] ⊗ V. The k-shifted cochain map f [k] :

V[k]→W[k] of any cochain map f : V →W is defined by f [k] := f .

Note that the differential d consists of maps dp : Vp → Vp+1 (also called differen-

tials) such that dp+1 ◦ dp = 0. The fact that d2 = 0, is a crucial property as it implies

that im(k) ⊂ ker(dk+1). This motivates the following definition.

Definition 4.1.3. The kth cohomology of a cochain complex (V, d) is the quotient space

Hk(V, d) =
ker(dk)

im(dk−1)
. (4.1.1)

We sometimes write only Hk(V) when the differential d is understood.

Definition 4.1.4. A cochain map f : V → W between cochain complexes (V, dV) =

(
⊕

p∈Z Vp, dV) and (W, dW) = (
⊕

p∈Z Wp, dW) is a collection of linear maps fp : Vp →

Wp such that for all p ∈ Z, the squares

Vp

fp

��

dV // Vp+1

fp+1

��

Wp
dW

// Wp+1

(4.1.2)

commute.

Observe that a cochain map f : V →W induces linear maps

Hk( f ) : Hk(V) −→ Hk(W) , [v] 7−→ [ f (v)] (4.1.3)

in cohomology due to (4.1.2). If Hk( f ) is a linear isomorphism for each k ∈ Z, we say

that f : V →W is a quasi-isomorphism.

The cochain complexes of K-vector spaces and cochain maps form a category which

we denote by ChK. The category ChK is closed symmetric monoidal. The monoidal
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4.1 cochain complexes

product of two cochain complexes V, W ∈ ChK is the tensor product of cochain com-

plexes, defined by the graded vector space

(V ⊗W)n :=
⊕
m∈Z

Vm ⊗Wn−m , (4.1.4a)

for all n ∈ Z, together with the differential

dV⊗W(v⊗ w) := (dVv)⊗ w + (−1)|v| v⊗ (dWw) , (4.1.4b)

where |v| ∈ Z denotes the degree of a homogeneous element v ∈ V. The monoidal

unit is given by the underlying field K ∈ ChK, regarded as a cochain complex concen-

trated in degree 0. The symmetric braiding is given by the Koszul sign rule

τ : V ⊗W −→ W ⊗V , v⊗ w 7−→ (−1)|v| |w| w⊗ v . (4.1.5)

The internal hom hom(V, W) ∈ ChK between two cochain complexes V, W ∈ ChK is

the mapping complex, defined by the graded vector space

hom(V, W)n := ∏
m∈Z

HomK

(
Vm, Wn+m) , (4.1.6a)

for all n ∈ Z, along with the “adjoint” differential

∂(ζ) := dW ◦ ζ − (−1)|ζ| ζ ◦ dV . (4.1.6b)

The vector space HomK

(
Vm, Wn+m) is the vector space of all linear maps between Vm

and Wn+m. The map ∂ is by construction of cohomological degree +1 and is nilpotent,

∂(dW ◦ ζ − (−1)|ζ| ζ ◦ dV) = dW ◦ (dW ◦ ζ − (−1)|ζ| ζ ◦ dV)

− (−1)|ζ|+1 (dW ◦ ζ − (−1)|ζ| ζ ◦ dV) ◦ dV

= 0 (4.1.6c)

so it is indeed a differential. Observe that the 0-cocycles of the mapping complex, i.e.

maps f ∈ hom(V, W)0 = ∏m∈Z HomK

(
Vm, Wm) with ∂( f ) = dW ◦ f − f ◦ dV = 0,

are exactly the cochain maps f : V → W. Furthermore, a cochain homotopy be-

tween two cochain maps f , g : V → W is a (−1)-cochain h ∈ hom(V, W)−1 =

∏m∈Z HomK

(
Vm, Wm−1) such that

f − g = ∂(h) = dW ◦ h + h ◦ dV . (4.1.7)

The cohomology of the mapping complex at degree 0 thus consists of the homotopy

classes of cochain maps.
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Let (V, d) be a cochain complex of finite dimensional vector spaces such that Vn = 0

for all |n| > N, for some N ∈ N. We define its dual as the internal hom V∨ :=

hom(V, K). Explicitly, the direct summands of the underlying graded vector space is

given by hom(V, K)n ∼= HomK(V−n, K). (Concretely, an element in hom(V, K)n is a

map defined by a linear map in HomK(V−n, K) and the zero map in all other degrees.)

The adjoint differential is given by ∂(ζ) = −(−1)|ζ| ζ ◦ d.

Definition 4.1.5. A differential graded algebra (dg-algebra) is a monoid in the monoidal

category ChK, i.e. a cochain complex A ∈ ChK together with cochain maps µA :

A⊗ A→ A and ηA : K→ A such that the diagrams

A⊗ A⊗ A

µA⊗id
��

id⊗µA
// A⊗ A

µA

��

A⊗ A
µA

// A

(4.1.8a)

K⊗ A

∼=
((

ηA⊗id
// A⊗ A

µA

��

A⊗K
id⊗ηA

oo

∼=
vv

A

(4.1.8b)

commute.

Explicitly, this means that A is a unital associative algebra such that the product is

degree preserving with the unit element in degree zero and the graded Leibniz rule

d(a a′) = d(a) a′ + (−1)|a| a d(a′) (4.1.9)

is satisfied for all homogeneous elements a, a′ ∈ A. In other words, µA : A⊗ A→ A is

a cochain map (see (4.1.4)). A dg-algebra is commutative (cdg-algebra) if the diagram

A⊗ A

µA
((

τ // A⊗ A
µA

��

A

(4.1.10)

commutes, which translates to the Koszul sign rule a a′ = (−1)|a| |a
′| a′ a.

Example 4.1.6. Let M be a smooth d-dimensional manifold. One of the standard

examples of a cochain complex is the de Rham complex of differential forms Ω•(M) =⊕d
p=0 Ωp(M) and the exterior derivative ddR : Ω•(M) → Ω•+1(M). Furthermore, it

is a commutative differential graded algebra via the wedge product. Examples of

cochain maps are pullback maps f ∗ : Ω•(M′)→ Ω•(M) of forms along smooth maps

f : M→ M′ between smooth manifolds M and M′. O
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Example 4.1.7. An important example of a commutative dg-algebra is that of the

symmetric algebra of a cochain complex (V, d). It is given by the quotient Sym V :=

T(V)/I, where T(V) =
⊕

k∈N V⊗k is the tensor algebra and I the ideal generated by

v ⊗ v′ − τ(v ⊗ v′), where τ is the symmetric braiding of ChK (4.1.5). We will often

denote the product in Sym V simply by concatenation. The differential is simply the

one induced by (4.1.4b) and linear extension. Note that it is well defined with respect

to the quotient.

Because our ground field K is of characteristic 0, the cohomology of the symmetric

algebra Sym V can be written in terms of the cohomology of V, i.e.

H•(Sym V) ∼= Sym H•(V) . (4.1.11)

This can be proven using standard arguments, which we sketch here for completeness

sake. First, observe that one can identify the symmetric algebra with

Sym V =
⊕
k∈N

(V⊗k)Sk (4.1.12)

where (V⊗k)Sk are the coinvariants of V⊗k with respect to the action of the symmetric

group Sk. A permutation σ ∈ Sk acts on v1 ⊗ · · · ⊗ vk ∈ V⊗k by permuting the

factors vi according to σ using the symmetric braiding (4.1.5). We denote this action

by τσ : V⊗k → V⊗k. The coinvariants are simply the quotient (V⊗k)Sk := V⊗k/WSk ,

where WSk is the smallest subspace containing all elements of the form v1⊗ · · · ⊗ vk −

τσ(v1 ⊗ · · · ⊗ vk) with v1 ⊗ · · · ⊗ vk ∈ V⊗k and σ ∈ Sk. The fact that the underlying

field K is of characteristic 0 is an integral part of the proof because it allows for a

further identification

Sym V ∼=
⊕
k∈N

(V⊗k)Sk (4.1.13)

with the invariants of the symmetric group action, i.e. (V⊗k)Sk := {v ∈ V⊗k : τσ(v) =

v for all σ ∈ Sk}. Let us explain this fact for general group actions with finite groups G

on some (graded) vector space W. There is a canonical linear map from the invariants

to the coinvariants WG →WG defined by w 7→ [w].1 The field K being of characteristic

0 allows for the formation of group averages. This leads to the linear map WG → WG

given by [w] 7→ 1
|G| ∑g∈G g . w, where |G| denotes the order of the group (division by

1 To clarify, WG := {w ∈W : w = g . w for all g ∈ G} and WG := W/〈w− g . w〉, where 〈w− g . w〉 is the

smallest subspace containing all elements of the form w− g . w with w ∈W and g ∈ G.
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4.1 cochain complexes

|G| is permitted because K is of characteristic 0). This map is well-defined because

w− g′ .w is sent to 0, and is an inverse to the former map. Hence WG ∼= WG so (4.1.13)

is justified. We now have

H•(Sym V) ∼= H•
(⊕

k∈N

(V⊗k)Sk
)
∼=
⊕
k∈N

H•
(
(V⊗k)Sk

) ∼= ⊕
k∈N

(
H•(V⊗k)

)Sk

∼=
⊕
k∈N

(
(H•(V))⊗k)Sk ∼= Sym H•(V) . (4.1.14)

In equality two, one uses that cohomology commutes with direct sums (see e.g. [Wei94,

Exercise 1.2.1]), in the third equality that cohomology commutes with taking invari-

ants in the case when the ground field is of characteristic 0 and the acting group is

finite2, and finally in equality four the Künneth theorem (see e.g. [Wei94, Theorem

3.6.3]). O

Example 4.1.8. The exterior algebra of V is related to the symmetric algebra and is

simply given by
∧•V := Sym V[−1]. O

Example 4.1.9. There is an intrinsic notion of cohomology related to Lie algebras,

which can be computed as the cohomology of the so called Chevalley-Eilenberg cochain

complex, see e.g. [Wei94, Corollary 7.7.3]. Let g be a Lie algebra and M be a left

g-module3. Then the Chevalley-Eilenberg cochain complex with coefficients in M is

given by

CE•(g, M) := Homg(Ug⊗
∧•

g, M) ∼= HomK(
∧•

g, M) (4.1.15)

together with the differential

dCEφ(X1, . . . , Xn+1) =
n+1

∑
i=1

(−1)i+1 Xi . φ(X1, . . . , X̂i, . . . , Xn+1)

+ ∑
1≤i<j≤n+1

(−1)i+j φ([Xi, Xj], X1, . . . X̂i, . . . , X̂j, . . . , Xn+1)

(4.1.16)

2 Taking invariants ( · )G defines a right adjoint functor, which implies that it preserves limits. Analogously,

taking coinvariants ( · )G is a left adjoint functor which implies that it preserves colimits. (See e.g. [Wei94,

Exercise 6.1.1].) Hence, ( · )G ∼= ( · )G (see below (4.1.13)) preserves both limits and colimits, and therefore

cohomologies; kernels, images and quotients are all special instances of limits and colimits.
3 A left g-module M is a K-vector space M together with a left action . : g⊗M→ M such that [x, y] . m =

x . (x′ . m)− x′ . (x . m) for all x, x′ ∈ g and m ∈ M
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4.1 cochain complexes

for all φ ∈ CE•(g, M) and Xi ∈ g. As usual, the hat ·̂ means omission. Note that in the

case when g is finite dimensional, CE•(g, M) ∼= M⊗ ∧•g∨. We will in the following

assume finite dimensionality of g.

Let us consider the case when M = A is an algebra and the left action acts as a

derivation, i.e. X . (a a′) = (X . a) a′ + a (X . a′) for all a, a′ ∈ A. Then, we may

define an algebra structure on CE•(g, A) ∼= A⊗ ∧•g∨ given by (a⊗ α) ∧ (a′ ⊗ α′) =

a a′ ⊗ α ∧ α′ for all a, a′ ∈ A and α, α′ ∈ ∧•g∨. If φ ∈ CEp(g, A) and φ′ ∈ CEq(g, A), the

action of φ ∧ φ′ on X1, . . . , Xp+q ∈ g is given by

(φ ∧ φ′)(X1, . . . , Xp+q) =
1

p! q! ∑
σ∈Sp+q

sign(σ)φ(Xσ(1), . . . , Xσ(p))

×φ′(Xσ(p+1), . . . , Xσ(p+q)) . (4.1.17)

Since the left action acts as a derivation, one may check that the differential satisfies

the graded Leibniz rule

dCE(φ ∧ φ′) = (dCEφ) ∧ φ′ + (−1)p φ ∧ (dCEφ′) , (4.1.18)

where φ ∈ A⊗∧pg∨ and φ′ ∈ A⊗∧•g∨, making CE•(g, A) a dg-algebra. In such case,

we call CE•(g, A) the Chevalley-Eilenberg dg-algebra of g with coefficients in A. Given a

basis {ti}dim g
i=1 of g with dual basis {θi}dim g

i=1 of g∨, the Chevalley-Eilenberg differential

(4.1.16) is explicitly given by

dCEa = (ti . a)⊗ θi , dCEθi = −1
2

f i
jk θ j ∧ θk , (4.1.19)

for all a ∈ A, where f i
jk are the structure constants of g (summation is understood over

repeated indices). O

Definition 4.1.10. A differential graded Lie algebra (dg-Lie algebra) (L, d, [ · , · ]) consists

of a cochain complex (L, d) and a bilinear map [ · , · ] : L⊗ L → L of degree 0 (called

Lie bracket) satisfying

(i) graded antisymmetry: [v, v′] = (−1)|v| |v
′|+1 [v′, v]

(ii) graded Jacobi identity:

(−1)|v| |v
′′| [v, [v′, v′′]] + (−1)|v

′| |v| [v′, [v′′, v]] + (−1)|v
′′| |v′| [v′′, [v, v′]] = 0

(iii) graded Leibniz rule: d[v, v′] = [dv, v′] + (−1)|v| [v, dv′]

for all homogeneous v, v′, v′′ ∈ L.
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The condition that the Lie bracket should satisfy the graded Leibniz rule simply

translates to the requirement that the Lie bracket [ · , · ] : L ⊗ L → L should be a

cochain map (see (4.1.4)). Note that a differential graded Lie algebra is in general not

a differential graded algebra because the associativity condition (4.1.8a) is generically

not satisfied by the Lie bracket. A differential graded Lie algebra concentrated in

degree 0 is nothing but an ordinary Lie algebra.

4.2 cyclic L∞ -algebras

L∞-algebras are higher generalisations of Lie algebras where the Jacobi identity is

no longer satisfied on the nose. Instead, the Jacobi identity only holds up to homo-

topy, encoded by a tower of n-ary maps known as the higher Lie brackets. These

in turn satisfy a higher generalisation of the Jacobi identity. Furthermore, if the L∞-

algebra is equipped with an appropriate notion of inner product, a so called cyclic

structure, we obtain the concept of a cyclic L∞-algebra. There are several approaches

to give the definition of an L∞-algebra. For instance, they emerge naturally through

the concept of homotopy transfer, see e.g. [Val14] for a review in the context of A∞-

algebras (which translates to the case of L∞-algebras). There is also a formulation

in terms of coalgebras, see e.g. [JRSW19, Appendices A]. We open this section by

providing the explicit version. For references, see e.g. [Sta92, LS93, LM94], see also

[JRSW19, BKJMSW21, NSS21].

Definition 4.2.1. An L∞-algebra (or strong homotopy Lie algebra) is a Z-graded vector

space L together with a collection {`n : L⊗n → L}n∈Z≥1 of graded antisymmetric

linear maps of degree |`n| = 2− n that satisfy the homotopy Jacobi identities

n−1

∑
k=0

(−1)k `k+1 ◦
(
`n−k ⊗ idL⊗k

)
◦ ∑

σ∈Sh(n−k;k)
sgn(σ) τσ = 0 , (4.2.1)

for all n ≥ 1, where Sh(n− k; k) ⊂ Sn denotes the set of (n− k; k)-shuffled permuta-

tions on n letters and τσ : L⊗n → L⊗n denotes the action of the permutation σ via the

symmetric braiding on the category of graded vector spaces. We refer to the maps `n

as higher (Lie) brackets.

To clarify, a (n− k; k)-shuffled permutation σ ∈ Sh(n− k; k) ⊂ Sn is a permutation on

n letters (1, 2, . . . , n) such that σ(1) < · · · < σ(n− k) and σ(n− k + 1) < · · · < σ(n).

(Note that the terminology unshuffle is used for this concept in other sources.)
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To get a feeling of what the higher brackets encode, we write out (4.2.1) explicitly

for the first three n. The identity for n = 1 simply states that the unary bracket

`1 : L → L[1] is nilpotent, `1 ◦ `1 = 0. In other words, every L∞-algebra has an

underlying cochain complex (L, dL := `1). For n = 2, denoting the binary bracket by

[ · , · ] := `2 : L⊗ L→ L, the homotopy Jacobi identity takes the form

dL[v1, v2] = [dL(v1), v2] + (−1)|v1| [v1, dL(v2)] (4.2.2)

for all homogeneous v1, v2 ∈ L. That is, dL = `1 is a graded derivation with respect

to the binary bracket [ · , · ] = `2. Finally, for n = 3, the homotopy Jacobi identity will

also include the ternary bracket h := `3 : L⊗ L⊗ L→ L[−1] and we obtain

[v1, [v2, v3]] + (−1)|v1|(|v2|+|v3|) [v2, [v3, v1]] + (−1)|v3|(|v1|+|v2|) [v3, [v1, v2]]

= −
(

dLh(v1 ⊗ v2 ⊗ v3) + h(dL(v1)⊗ v2 ⊗ v3)

+ (−1)|v1| h(v1 ⊗ dL(v2)⊗ v3) + (−1)|v1|+|v2|h(v1 ⊗ v2 ⊗ dL(v3))
)

= −(dL ◦ h + h ◦ dL⊗L⊗L)(v1 ⊗ v2 ⊗ v3) (4.2.3)

where dL⊗k : L⊗k → (L⊗k)[1] is the induced differential on L⊗k from dL = `1 (see

(4.1.4)). We thus see that the Jacobi identity for [ · , · ] = `2 is satisfied up to the cochain

homotopy h = `3 (see around Equation (4.1.7)). It is now evident that a dg-Lie algebra

is nothing but an L∞-algebra where `n = 0 for all n ≥ 3. The pattern continues for

higher n: the brackets `k with k < n will satisfy some relation up to higher homotopy

given by `n. In fact, for a fixed n, the terms in the homotopy Jacobi identity (4.2.1)

containing `n can collectively be written as an exact element in the mapping complex

hom(L⊗n, L) ∈ ChK (4.1.6),

dL`n(v1 ⊗ · · · ⊗ vn) + (−1)n−1
(
`n(dL(v1)⊗ · · · ⊗ vn) + · · ·

+ (−1)|v1|+···+|vn−1| `n(v1 ⊗ · · · ⊗ dL(vn))
)

= (dL ◦ `n − (−1)|`n| `n ◦ dL⊗n)

= ∂(`n) . (4.2.4)

Definition 4.2.2. A cyclic L∞-algebra is an L∞-algebra (L, {`n}) together with a nonde-

generate symmetric cochain map 〈〈 · , · 〉〉 : L⊗ L → K[k] (called cyclic structure) that

satisfies the cyclicity condition

〈〈v0, `n(v1, . . . , vn)〉〉 = (−1)n+n (|v0|+|vn|)+|vn| ∑n−1
i=0 |vi | 〈〈vn, `n(v0, . . . , vn−1)〉〉 , (4.2.5)

for all n ≥ 1 and all homogeneous elements v0, v1, . . . , vn ∈ L.
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Remark 4.2.3. By symmetric, we mean symmetric with respect to the braiding τ in

ChK (4.1.5), i.e. 〈〈 · , · 〉〉 = 〈〈 · , · 〉〉 ◦ τ.

Note that the cyclicity condition for the cyclic structure 〈〈 · , · 〉〉 : L⊗ L → K[k] in

the case when k is odd simplifies to

〈〈v0, `n(v1, . . . , vn)〉〉 = (−1)n (|v0|+1) 〈〈vn, `n(v0, . . . , vn−1)〉〉 , (4.2.6)

for all n ≥ 1 and all homogeneous elements v0, v1, . . . , vn ∈ L. This is the case for the

BV formalism, where k = −3 (see Section 4.3.2). M

It turns out that there is a natural L∞-algebra structure on the tensor product of an

L∞-algebra (L, {`n}) and a commutative dg-algebra (4.1.10) (A, d). The underlying

vector space is given by (see (4.1.4))

LA := A⊗ L . (4.2.7)

The extended higher brackets `ext
n : L⊗n

A → LA[2− n] are for n = 1 given by

`ext
1 (a1 ⊗ v1) := da1 ⊗ v1 + (−1)|a1| a1 ⊗ `1(v1) (4.2.8a)

and for n ≥ 2 by

`ext
n (a1 ⊗ v1, . . . , an ⊗ vn) := (−1)n ∑n

i=1 |ai |+∑n
j=2

(
|aj| ∑

j−1
l=1 |vl |

)
(a1 · · · an)⊗ `n(v1, . . . , vn) ,

(4.2.8b)

for all homogeneous a1, . . . , an ∈ A and homogeneous v1, . . . , vn ∈ L, and linear ex-

tension. As usual, a1 · · · an denotes the (commutative) associative product of elements

a1, . . . , an ∈ A. Furthermore, for completeness sake, let us also mention that if L is

equipped with a cyclic structure 〈〈 · , · 〉〉 and A with an inner product 〈 · , · 〉 there is a

natural cyclic structure on LA given by

〈〈a1 ⊗ v1, a2 ⊗ v2〉〉LA := (−1)|a2| |v1|〈a1, a2〉 〈〈v1, v2〉〉 . (4.2.9)

For more details, see e.g. [JRSW19].

4.3 batalin-vilkovisky formalism in finite dimensions

Quantum field theory, in the Lagrangian viewpoint, is described by a space of fields

M together with an action functional S : M → R. The expectation values of observ-
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ables O : M → C are often calculated through the (typically ill-defined) Feynman

path integral4

〈O〉 = 1
Z

∫
M
O(φ) e−S[φ] dφ (4.3.1)

with the partition function Z =
∫
M e−S[φ] dφ. The dominating contributions to the

expectation values are dictated by the classical physics, i.e. the critical locus of S,

which consists of the fields φ ∈ M that are solutions to the Euler-Lagrange equations.

In many cases, the physical system comes with a gauge symmetry, i.e. the action

functional S is invariant under the action of some Lie group G. This leads to redun-

dancies in the path integral and one would like to calculate it only up to this gauge

symmetry. However, one cannot simply take the naive quotient M/G and integrate

over it. Indeed, the orbit spaceM/G of a manifoldM with a non-free action of G is

no longer a manifold as it contains singularities. The Batalin-Vilkovisky (BV) formalism

[BV81, BV83, BV85, Sch93] offers a solution to this problem in the infinitesimal setting,

i.e. for infinitesimal gauge transformations where the symmetry is encoded by the

Lie algebra g of G. A study of the case of gauge transformations from group actions

(as opposed to Lie algebra actions) in the finite dimensional setting was conducted in

[BSS21]. The BV formalism also sets up for a homological approach to integration.

We will adopt the modern approach to the BV formalism of Costello and Gwilliam

[Gwi12, CG16, CG21]. The focus will be on the finite dimensional setting since the

systems we apply these techniques to will be of such nature; our space of fields will

generically comprise a finite dimensional noncommutative algebra. This allows us to

work in a purely algebraic framework and hence avoid functional analytical subtleties

otherwise found in continuum field theories. These issues are addressed in [Gwi12,

CG16, CG21]. There is also a useful earlier exposition of BV quantisation in finite

dimensions in [GJF18]. For an account of perturbative quantum field theories, the BV

formalism and homotopy algebras, complete with an interpretation of various objects

introduced in the following subsections, see [BKJMSW21, Section 4].

4 In this thesis, we consider Euclidean field theories.
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4.3 batalin-vilkovisky formalism in finite dimensions

4.3.1 Finite-dimensional BV formalism

We begin this subsection by recalling the definition of a classical free BV theory from

[Gwi12, CG16, CG21], see also [NSS21, Section 2]. As no assumptions on commuta-

tivity on the space of fields are made (the algebra structure on the space of fields is

not present in the construction), the BV formalism as presented here will apply also to

finite dimensional noncommutative field theories, i.e matrix models or so called fuzzy

field theories.

Definition 4.3.1. A free BV theory is a cochain complex E ∈ ChK, with differential

denoted by dE = −Q,5 together with a cochain map 〈 · , · 〉 : E ⊗ E → K[−1] that

is nondegenerate and antisymmetric, i.e. 〈 · , · 〉 = −〈 · , · 〉 ◦ τ where τ denotes the

symmetric braiding (4.1.5) on ChK.

Remark 4.3.2. The cochain complex E = (E,−Q) should be interpreted as a derived

solution space (derived critical locus) of some action. In physics language, the elements

in degree 0 are the fields of the theory, while the negative degrees account for the ghost

fields and the elements in the positive degrees encode the antifields. The pairing 〈 · , · 〉

plays the role of a (−1)-shifted symplectic structure.

Since we are working with finite dimensional systems, we will implicitly assume

that each homogeneous component En of the cochain complex E is a finite dimensional

vector space and that the complex itself is bounded both from above and below, i.e.

there exists a positive integer N ∈ Z>0 such that En = 0 for both n > N and n < −N.

Hence, E is a perfect complex and therefore dualisable. M

The next step is to assign a commutative dg-algebra of polynomial observables to E,

i.e. polynomial functions which take elements in E and return an element in K. These

will play the role of classical observables. This can be done for every free BV theory

(E,−Q, 〈 · , · 〉). Observe first that due to the nondegenerate pairing 〈 · , · 〉 : E⊗ E →

K[−1], the dual (see Section 4.1) to the complex E is E∨ ∼= E[1] with duality pairing

given by

E[1]⊗ E ∼= K[1]⊗ E⊗ E
id⊗〈 · , · 〉

// K[1]⊗K[−1] ∼= K . (4.3.2)

5 We have included a minus sign in the definition of Q in order to avoid unpleasant sign factors in the

dual differential on the observables, which we shall use more frequently.
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4.3 batalin-vilkovisky formalism in finite dimensions

(Note that the map E[1]→ hom(V, K) given by v 7→ 〈v, · 〉 really is an isomorphism of

cochain complexes because the nondegenerate pairing 〈 · , · 〉 is a cochain map, which

translates to the compatibility condition 〈Qv, w〉+ (−1)|v| 〈v, Qw〉 = 0.) The differen-

tial on E[1] acquires an extra sign

dE[1] = −dE = Q (4.3.3)

due to the degree shift, as mentioned in Section 4.1. The polynomial observables are

defined as Sym E∨ ∼= Sym E[1] ∈ CAlg(ChK). Abusing the notation, the differential

on the polynomial observables is denoted by the same symbol Q as the differential

on E[1] as in Example 4.1.7. Additionally, the pairing 〈 · , · 〉 induces a shifted Poisson

bracket on Sym E[1], forming a so called P0-algebra. We refer to [Saf17] for more details

on shifted Poisson structures.

Definition 4.3.3. A Pn-algebra is a commutative dg-algebra A ∈ CAlg(ChK) together

with a Lie bracket { · , · }n : A[n − 1] ⊗ A[n − 1] → A[n − 1] on the shifted cochain

complex A[n− 1] such that {a, · } defines a derivation on A for each a ∈ A, i.e.

{a, b c} = {a, b} c + (−1)(|a|+1−n) |b| b {a, c} (4.3.4)

for all a, b, c ∈ A.

In this thesis, we will exclusively work with P0-algebras. The Lie bracket { · , · } :=

{ · , · }0 is called shifted Poisson bracket or antibracket.

Remark 4.3.4. Let us explicitly spell out the properties of the antibracket.

(i) Graded antisymmetry: for all a, b ∈ A

{a, b} = −(−1)(|a|+1) (|b|+1) {b, a} . (4.3.5)

(ii) Graded Jacobi identity: for all a, b, c ∈ A

0 = (−1)(|a|+1) (|c|+1) {a, {b, c}}

+ (−1)(|b|+1) (|a|+1) {b, {c, a}}

+ (−1)(|c|+1) (|b|+1) {c, {a, b}} . (4.3.6)

(iii) Derivation property: for all a, b, c ∈ A

{a, b c} = {a, b} c + (−1)(|a|+1) |b| b {a, c} . (4.3.7)
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4.3 batalin-vilkovisky formalism in finite dimensions

(iv) Compatibility with the differential: for all a, b ∈ A

d{a, b} = {da, b}+ (−1)|a|+1 {a, db} . (4.3.8)

The compatibility condition with the differential is nothing but the statement that

the antibracket is a cochain map A[−1] ⊗ A[−1] → A[−1]. Note that a different

convention was used in [NSS21]. M

Remark 4.3.5. A concept related to P0-algebras is that of Gerstenhaber algebras. In

fact, Gerstenhaber algebras are also examples of shifted Poisson algebras, namely P2-

algebras, where the corresponding Lie bracket is { · , · }2 : A[1]⊗ A[1]→ A[1]. M

In the following, we will describe how the pairing 〈 · , · 〉 : E ⊗ E → K[−1] gives

rise to an antibracket on Sym E[1]. First, observe the trivial fact that E ∼= (E[1])[−1].

Then the pairing 〈 · , · 〉 : (E[1])[−1]⊗ (E[1])[−1] → K[−1] satisfies the graded anti-

symmetry property {ϕ, ψ} = −(−1)(|ϕ|+1) (|ψ|+1) {ψ, ϕ} for all ϕ, ψ ∈ E[1]. Next, we

define the map { · , · } : (Sym E[1])[−1]⊗ (Sym E[1])[−1] → (Sym E[1])[−1]. This is

accomplished by setting for all ϕ, ψ ∈ E[1]

{ϕ, ψ} := 〈ϕ, ψ〉1 , (4.3.9)

where 1 ∈ Sym E[1] denotes the unit element, and extension to the entirety of Sym E[1]

by the derivation property (4.3.7), together with the requirement that the antisymme-

try property (4.3.5) should be satisfied. Due to the shifted Poisson structure being

constant, the graded Jacobi identity (4.3.6) holds trivially. The compatibility condition

(4.3.8) follows from the fact that the pairing 〈 · , · 〉 is a cochain map. Thus, we have a

P0-algebra

Obscl :=
(
Sym E[1], Q, { · , · }

)
, (4.3.10)

interpreted as the classical observables of the free BV theory (E,−Q, 〈 · , · 〉).

So far, we have only described free field theories. Interactions, as well as quanti-

sation, are treated as certain deformations of the classical observables Obscl. We will

begin by outlining how to incorporate interactions into the picture before moving on

to quantisation. To this end, let λ be a formal parameter interpreted as a coupling

constant. We consider the formal power series extension of Obscl, which by abuse of

notation will be denoted with the same symbol. For any 0-cochain I ∈ (Sym E[1])0,
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interpreted as an interaction term in the classical BV action, the deformed differential

on Obscl is defined as

Qint := Q + {λ I, · } (4.3.11)

such that the nilpotency condition (Qint)2 = 0 is satisfied. Using properties of the

antibracket from Remark 4.3.4 together with nondegeneracy of the pairing 〈 · , · 〉, the

nilpotency condition can be shown to be equivalent to the classical master equation

Q(λ I) + 1
2 {λ I, λ I} = 0 . (4.3.12)

Thus, the classical observables for the interacting BV theory, with interaction term

I ∈ (Sym E[1])0 satisfying the classical master equation (4.3.12), is the P0-algebra

Obsint,cl :=
(
Sym E[1], Qint, { · , · }

)
. (4.3.13)

Next, we treat quantisation of free BV theories. Let h̄ be another formal parameter,

interpreted as Planck’s constant. Similarly, we consider the formal power series exten-

sion of Obscl in h̄ and again denote it by the same symbol. The differential on Obscl is

deformed along the BV Laplacian

Qh̄ := Q + h̄ ∆BV . (4.3.14)

The BV Laplacian ∆BV : Sym E[1] → (Sym E[1])[1] is the cochain map defined on

symmetric powers 0, 1 and 2 by

∆BV(1) := 0 , ∆BV(ϕ) := 0 , ∆BV(ϕ ψ) := (−1)|ϕ| {ϕ, ψ} = (−1)|ϕ| 〈ϕ, ψ〉 ,

(4.3.15a)

for all generators ϕ, ψ ∈ E[1] and extended to all of Sym E[1] by

∆BV(a b) = ∆BV(a) b + (−1)|a| a ∆BV(b) + (−1)|a| {a, b} , (4.3.15b)

for all a, b ∈ Sym E[1]. Using the properties of the antibracket in Remark 4.3.4, we

derive the explicit expression for the BV Laplacian

∆BV
(

ϕ1 · · · ϕn
)
= ∑

i<j
(−1)∑i

k=1 |ϕk |+|ϕj| ∑
j−1
k=i+1 |ϕk | {ϕi, ϕj} ϕ1 · · · ϕ̂i · · · ϕ̂j · · · ϕn

= ∑
i<j

(−1)∑i
k=1 |ϕk |+|ϕj| ∑

j−1
k=i+1 |ϕk | 〈ϕi, ϕj〉 ϕ1 · · · ϕ̂i · · · ϕ̂j · · · ϕn

∈ Sym E[1] (4.3.15c)
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for all ϕ1, . . . , ϕn ∈ E[1] with n ≥ 2, where the hat ·̂ signifies omission of the corre-

sponding factor.6 Using this explicit formula for the BV Laplacian, it is straightforward

to show that

(∆BV)
2 = 0 , Q ∆BV + ∆BV Q = 0 . (4.3.16)

This implies that the deformed differential Qh̄ (4.3.14) is indeed a differential, i.e.

(Qh̄)2 = 0. The resulting deformed cochain complex

Obsh̄ :=
(
Sym E[1], Qh̄) (4.3.17)

is interpreted as the quantum observables for the free BV theory. Note however that

the quantum observables Obsh̄ do not form a dg-algebra because the deformed differ-

ential Qh̄ does not respect the multiplication on Sym E[1]. Instead, Obsh̄ forms a so

called E0-algebra, i.e. a cochain complex with a distinguished 0-cocycle, which in this

case is the unit element 1 ∈ Sym E[1].

Finally, we shall treat interacting quantum BV theories. These are obtained by com-

bining the two types of deformations. We define a deformed differential

Qint,h̄ := Q + {λ I, · }+ h̄ ∆BV . (4.3.18)

In this case, the nilpotency condition (Qh̄,int)2 = 0 is equivalent to the quantum master

equation

Q(λ I) + 1
2 {λ I, λ I}+ h̄ ∆BV(λ I) = 0 . (4.3.19)

This can be shown by using (4.3.16) in conjunction with the identity

∆BV
(
{a, b}

)
= {∆BV(a), b}+ (−1)|a|+1 {a, ∆BV(b)} , (4.3.20)

for all a, b ∈ Sym E[1], which may be derived from (4.3.15b) by applying ∆BV on both

sides of the equality sign. The following E0-algebra

Obsint,h̄ :=
(
Sym E[1], Qint,h̄) (4.3.21)

is interpreted as the quantum observables for the interacting BV theory correspond-

ing to the interaction term I ∈ (Sym E[1])0 satisfying the quantum master equation

(4.3.19).

6 The sign factors in (4.3.15c) can be understood as follows: Since the pairing 〈 · , · 〉 : (E[1])[−1] ⊗

(E[1])[−1] → K[−1] is of degree 1 (with respect to elements in E[1]), the sign factor (−1)∑i−1
k=1 |ϕk | ap-

pears when moving it across ϕ1 · · · ϕi−1. Permuting ϕj to the (i + 1)th position yields the sign factor

(−1)|ϕj | ∑
j−1
k=i+1 |ϕk |.
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4.3.2 Interaction terms and cyclic L∞-algebras

There is a powerful method for the construction of interaction terms I ∈ (Sym E[1])0

satisfying the classical (and also the quantum) master equation from cyclic L∞-algebra

structures (see Section 4.2). We will give a brief outline in this section. For more details

surrounding this and more generally the relation between L∞-algebras, classical field

theories and the BV formalism, see [JRSW19]. There is a natural Abelian cyclic L∞-

algebra structure associated to every free BV theory (E,−Q, 〈 · , · 〉). The cyclic L∞-

algebra structure is defined by the shifted cochain complex E[−1] with `1 = dE[−1] =

Q and `n = 0 for all n ≥ 2, with cyclic structure given by

〈〈 · , · 〉〉 : E[−1]⊗ E[−1] ∼= (E⊗ E)[−2]
〈 · , · 〉[−2]

// K[−1][−2] ∼= K[−3] . (4.3.22)

The isomorphism E[−1]⊗ E[−1] ∼= (E⊗ E)[−2] is given by ϕ⊗ ψ 7→ (−1)|ϕ|−1 ϕ⊗ ψ,

for all ϕ, ψ ∈ E[−1]. (To understand this sign factor, recall that E[−1] ∼= K[−1]⊗ E

and observe that for ϕ ∈ E[−1] with E[−1]-degree |ϕ|, the E-degree is |ϕ| − 1.) One

checks that the antisymmetry property of 〈 · , · 〉 implies the symmetry property of the

cyclic structure 〈〈 · , · 〉〉.

By endowing the cochain complex (E[−1], `1 = Q) with higher brackets {`n}n≥2

such that (4.3.22) defines a cyclic structure, one can obtain interaction terms I ∈

(Sym E[1])0 satisfying the classical master equation. Even better, the problem of find-

ing an interaction term I ∈ (Sym E[1])0 that satisfies the classical master equation

(4.3.12) is equivalent to endowing the cochain complex (E[−1], `1 = Q) with higher

brackets {`n}n≥2 that result in a cyclic L∞-algebra with respect to (4.3.22). The rela-

tionship between the interaction term I ∈ (Sym E[1])0 and the higher brackets {`n}n≥2

is described by the so called homotopy Maurer-Cartan action (see e.g. [JRSW19, Section

4.3]).

Before writing down the interaction term stemming from the higher brackets, we

introduce the concept of “contracted coordinate functions” to simplify the presenta-

tion. We begin by choosing any basis {εα ∈ E[−1]} of the L∞-algebra and denote by

{$α ∈ E[−1]∗ ∼= E[2]} its dual with respect to the cyclic structure, i.e. 〈〈$α, εβ〉〉 = δα
β

for all α, β. The contracted coordinate functions are defined as the element

a := ∑
α

$α ⊗ εα ∈
(
(Sym E[1])⊗ E[−1]

)1 (4.3.23)
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of degree 1 in the tensor product of the dg-algebra of polynomial observables and the

L∞-algebra E[−1]. The L∞-algebra structure on E[−1] induces a natural L∞ structure

on the tensor product (Sym E[1])⊗ E[−1], with extended brackets

`ext
n :

(
(Sym E[1])⊗ E[−1]

)⊗n −→ (Sym E[1])⊗ E[−1] , (4.3.24)

for all n ≥ 2. The explicit formulas are given by (4.2.8). Using the cyclic structure of

E[−1], we define the extended pairing

〈〈 · , · 〉〉ext :
(
(Sym E[1])⊗ E[−1]

)
⊗
(
(Sym E[1])⊗ E[−1]

)
−→ (Sym E[1])[−3] .

(4.3.25)

Explicitly, it is given by

〈〈a1 ⊗ ϕ1, a2 ⊗ ϕ2〉〉ext := (−1)|a1|+|a2|+|ϕ1| |a2| a1 a2〈〈ϕ1, ϕ2〉〉 (4.3.26)

for all homogeneous a1, a2 ∈ Sym E[1] and homogeneous ϕ1, ϕ2 ∈ E[−1].

Using the contracted coordinate functions and the extended higher brackets, we

now write down the interaction term

λ I = ∑
p≥3

λp−2

p!
〈〈a, `ext

p−1(a, . . . , a)〉〉ext ∈ (Sym E[1])0 , (4.3.27)

where we recall that λ is a formal parameter interpreted as a coupling constant.7 It

can be shown (see [JRSW19, Section 4.3]) that the interaction term (4.3.27) satisfies the

classical master equation (4.3.12). Additionally, it can also be proven that it is anni-

hilated by the BV Laplacian, i.e. ∆BV(λ I) = 0, implying that it satisfies the quantum

master equation (4.3.19) as well.

4.3.3 Correlation functions and homological perturbation theory

The goal is to compute the expectation values (4.3.1) of (polynomial) observables

O ∈ Sym E[1]. (In our finite dimensional setting, the path integral can be rigorously

defined.) The problem is broken down to describing a method for calculating the n-

point correlation functions 〈ϕ1 · · · ϕn〉, with ϕ1, . . . , ϕn ∈ E[1]. To this end, we employ a

homological approach to integration using techniques from homological perturbation

7 It is easy to check that given any L∞-algebra structure {`n}n≥1 and any (formal or non-formal) parameter

λ, the rescaled brackets {λn−1 `n}n≥1 also satisfy the homotopy Jacobi identities (4.2.1). This explains

the powers of λ on the right-hand side of (4.3.27).
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theory, see e.g. [CG16, Gwi12]. For some original references regarding this topic, see

e.g. [Bro67, Gug72, GS86, LmS87, GLm89, Hueb89, GLmS90, HaTa90, GLmS91, HK91,

Lm91]. The correlation functions are computed perturbatively and are determined by

the cohomology of the cochain complex (4.3.21). We will provide a brief review of

the relevant constructions following [NSS21]. In the following, we will consider the

cohomology H•(V) of a cochain complex V ∈ ChK as a cochain complex with trivial

differential.

Definition 4.3.6. A strong deformation retract of a cochain complex V ∈ ChK onto its

cohomology H•(V) is given by the following data:

(i) A cochain map ι : H•(V)→ V;

(ii) A cochain map π : V → H•(V);

(iii) A (−1)-cochain ξ ∈ hom(V, V)−1.

These data are required to satisfy the following conditions:

(a) π ι = idH•(V);

(b) ι π − idV = ∂(ξ) = d ξ + ξ d;8

(c) ξ2 = 0, ξ ι = 0 and π ξ = 0.

A strong deformation retract may be visualized by

(H•(V), 0) (V, d)
ι

π
ξ , (4.3.28)

where we also explicitly display the differentials.

A key result is the homological perturbation lemma (see e.g. [Cra04]), which states

that small perturbations d+ δ of the differential d on V lead to perturbations of strong

deformation retracts. A perturbation is small when, in addition to (d + δ)2 = 0, the

map idV − δ ξ is invertible. In particular, the formal deformations of Section 4.3.1

are all small perturbations in this sense. We provide the precise statement of the

homological perturbation lemma below.

8 I.e. ξ is a cochain homotopy between ι π and idV , see (4.1.7)
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Theorem 4.3.7. Consider any strong deformation retract as in (4.3.28) and let δ ∈ hom(V, V)1

be a small perturbation. Then there exists a strong deformation retract

(H•(V), δ̃ ) (V, d + δ)
ι̃

π̃

ξ̃ (4.3.29a)

with

δ̃ = π (idV − δ ξ)−1 δ ι , (4.3.29b)

ι̃ = ι + ξ (idV − δ ξ)−1 δ ι , (4.3.29c)

π̃ = π + π (idV − δ ξ)−1 δ ξ , (4.3.29d)

ξ̃ = ξ + ξ (idV − δ ξ)−1 δ ξ . (4.3.29e)

Let (E,−Q, 〈 · , · 〉) be a free BV theory as in Definition 4.3.1 and choose a strong

deformation retract9 for its dual complex E∗ ∼= E[1],

(H•(E[1]), 0) (E[1], Q)
ι

π
ξ . (4.3.30)

In physical terms, different choices for a strong deformation retract can be seen as

different gauge fixings. We will also see in Chapter 5 that such deformation retracts

are related to Green operators through some concrete examples of matrix models.

Next, we will use a result in [Gwi12, Proposition 2.5.5] which states that there exists

an associated strong deformation retract

(
Sym H•(E[1]), 0

) (
Sym E[1], Q

)
J

Π
Ξ (4.3.31)

at the level of symmetric algebras. Note that Sym H•(E[1]) ∼= H•(Sym E[1]) (see

Example 4.1.7). Here, the cochain maps Π := Sym π and J := Sym ι are the usual

extensions of π and ι to commutative dg-algebra morphisms, i.e.

J
(
[ψ1] · · · [ψn]

)
:= ι([ψ1]) · · · ι([ψn]) , Π

(
ϕ1 · · · ϕn

)
:= π(ϕ1) · · ·π(ϕn) , (4.3.32)

for all [ψ1], . . . , [ψn] ∈ H•(E[1]) and ϕ1, . . . , ϕn ∈ E[1]. The extended cochain homo-

topy Ξ := Sym ξ is a bit more complicated to describe. First, note that from the

9 A strong deformation retract in our setting always exists, see e.g. [JRSW19, Appendices B]

82



4.3 batalin-vilkovisky formalism in finite dimensions

definition of a strong deformation retract, the composite ι π : E[1] → E[1] defines a

projector, i.e. (ι π)2 = ι π. This allows for the decomposition

E[1] ∼= E[1]⊥ ⊕ H•(E[1]) (4.3.33a)

and consequently

Sym E[1] ∼= Sym E[1]⊥ ⊗ Sym H•(E[1]) ∼=
⊕
n≥0

Symn E[1]⊥ ⊗ Sym H•(E[1]) ,

(4.3.33b)

where Symn denotes the n-th symmetric power. The cochain homotopy is then defined

by setting

Ξ
(

ϕ⊥1 · · · ϕ⊥n ⊗ a
)

:=
1
n

n

∑
i=1

(−1)∑i−1
j=1 |ϕ⊥j | ϕ⊥1 · · · ϕ⊥i−1 ξ(ϕ⊥i ) ϕ⊥i+1 · · · ϕ⊥n ⊗ a , (4.3.34)

for all homogeneous elements ϕ⊥1 · · · ϕ⊥n ⊗ a ∈ Symn E[1]⊥ ⊗ Sym H•(E[1]) in this

decomposition. The case n = 0 should be read as Ξ(a) = 0, for all a ∈ Sym H•(E[1]).

Recall from Section 4.3.1 that addition of interactions or quantisation of a free BV

theory amounts to the deformation of the differential Q by adding {λI, · } or h̄ ∆BV

to it. Applying the homological perturbation lemma (Theorem 4.3.7) to the strong

deformation retract (4.3.31) and the deformed differentials from Section 4.3.1, a strong

deformation retract for the quantum observables is obtained,

(
Sym H•(E[1]), δ̃

) (
Sym E[1], Q + δ

)
J̃

Π̃
Ξ̃ , (4.3.35)

where δ := {λ I, · }+ h̄ ∆BV (this of course also applies to the non-interacting case, i.e.

λ = 0). The n-point correlation functions are then defined by the application of the

map Π̃ on a product of “test functions” ϕ1, . . . , ϕn ∈ E[1], i.e.

〈ϕ1 · · · ϕn〉 := Π̃
(

ϕ1 · · · ϕn
)
∈ Sym H•(E[1]) . (4.3.36)

This can be computed perturbatively (as a formal power series in λ or h̄, or both).

Explicitly, from the formula for Π̃ in Theorem 4.3.7

Π̃ = Π + Π
(
id− δ Ξ

)−1
δ Ξ = Π ◦

∞

∑
k=0

(
δ Ξ
)k , (4.3.37)

we obtain

〈ϕ1 · · · ϕn〉 =
∞

∑
k=0

Π
((

δ Ξ
)k (

ϕ1 · · · ϕn
))
∈ Sym H•(E[1]) . (4.3.38)
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Observe that in general, the correlation functions are not numbers, but elements of

Sym H•(E[1]). The symmetric algebra Sym H•(E[1]) should be interpreted as the alge-

bra of polynomial functions on the space of vacua, which is the cohomology H•(E) of

the derived solution complex E (see Remark 4.3.2). The n-point correlation functions

are therefore functions on the space of vacua, which when evaluated at a particular

vacuum, yield the usual numerical correlations of the perturbative field theory around

the said vacuum. This will be elucidated through concrete examples in Chapter 5. We

shall also see that one can introduce graphical tools (in the form of Feynman diagrams)

to facilitate the computation of correlation functions.
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This chapter based on Section 3, 4 and 5 of [NSS21]. We will begin with applying

the finite dimensional BV formalism as described in Section 4.3 on a couple of non-

commutative field theories on the fuzzy 2-sphere in Section 5.1. First out in Section

5.1.1 are scalar field theories and we compute the 2-point function at 1-loop order for

the particular case of Φ4-theory. Then in Section 5.1.2, we treat Chern-Simons theory

as an illustration of the formalism in the case when the gauge symmetry really is

non-trivial. Having investigated these examples, we move on to Section 5.2 where we

generalise the finite dimensional BV formalism to also include noncommutative field

theories with a triangular Hopf algebra symmetry, so called braided field theories. This

is then applied to scalar field theories on the fuzzy torus in Section 5.3. As for the

scalar field on the fuzzy 2-sphere, we compute the 2-point function for Φ4-theory to

lowest non-trivial order in coupling constant. We also calculate the connected part of

the 4-point function to lowest non-trivial order in coupling constant to check that the

formalism really detects the triangular Hopf algebra symmetry.

5.1 field theory on the fuzzy sphere

In this section, we will apply the techniques from Section 4.3 to both scalar field theory

and Chern-Simons theory on the fuzzy 2-sphere in order to illustrate the formalism.

In the following, we will always assume that the underlying field K = C is the field

of complex numbers.
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5.1 field theory on the fuzzy sphere

5.1.1 Scalar field theories

The first case in consideration is the simplest one of scalar field theories. We will see

that the formalism reproduces the known 1-loop 2-point function for Φ4-theory on

the fuzzy sphere, see e.g. [CMS01]. However, as opposed to the more traditional ap-

proach of [CMS01], our correlation functions are generally disconnected and 1-particle

reducible, and contain unamputated external legs.

the fuzzy 2-sphere . We first describe the fuzzy sphere following [CMS01], see

also [NSS21]. For a positive integer N ∈ Z>0, let V denote the irreducible spin N/2-

representation for the Lie algebra su(2). The algebra of functions for the fuzzy sphere

S2
N is defined by

A := end(V) = V ⊗V∨ , (5.1.1)

where V∨ denotes the dual representation. It follows that A ∼= MatN+1(C) is isomor-

phic to the algebra of (N + 1) × (N + 1) matrices with complex entries since V is

(N + 1)-dimensional. The associated su(2)-action on V is the Lie algebra homomor-

phism

ρ : su(2) −→ A , (5.1.2)

where the Lie bracket on A is the matrix commutator. Let {ei ∈ su(2)}i=1,2,3 be a basis

of su(2) with the Lie bracket relations [ei, ej] = i εijk ek, where εijk is the Levi-Civita

symbol. By introducing the normalisation constant

λN :=
1√

N
2

(N
2 + 1

) ∈ R , (5.1.3)

the elements

Xi := λN ρ(ei) ∈ A (5.1.4a)

satisfy the fuzzy unit sphere relations

[Xi, Xj] = i λN εijk Xk , δij Xi Xj = IN+1 , X∗i = Xi , (5.1.4b)

where δij is the Kronecker delta and IN+1 is the (N + 1) × (N + 1) identity matrix.

Furthermore, by Burnside’s theorem, see e.g. [Lam98, Theorem 2], the elements Xi

generate A ∼= MatN+1(C).
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5.1 field theory on the fuzzy sphere

Integration on S2
N is given by the normalised trace map∫

: A −→ C , a 7−→ 4π

N + 1
Tr(a) , (5.1.5)

and the scalar Laplacian is defined as

∆ : A −→ A , a 7−→ ∆(a) :=
1

λ2
N

δij [Xi, [Xj, a]] . (5.1.6)

The eigenfunctions of the Laplacian, the fuzzy spherical harmonics Y J
j ∈ A, for J =

0, 1, . . . , N and −J ≤ j ≤ J, satisfy the identities

∆(Y J
j ) = J (J + 1)Y J

j (5.1.7a)

Y J
j
∗
= (−1)J Y J

−j (5.1.7b)

4π

N + 1
Tr
(
Y J

j
∗

Y J′
j′
)
= δJ J′ δjj′ . (5.1.7c)

The fuzzy spherical harmonics constitute a basis for A. Let us also mention that there

is a ‘fusion formula’ for the products Y I
i Y J

j of fuzzy spherical harmonics in terms of

Wigner’s 3j and 6j symbols, see e.g. [CMS01]. We will however not present them here

as they are not required in this thesis.

free bv theory. Having set up the required geometric data of the fuzzy sphere,

we now move on to describe the non-interacting scalar field theory on the fuzzy sphere

as a free BV theory in the sense of Definition 4.3.1.

Definition 5.1.1. The free BV theory associated to a scalar field with mass parameter

m2 ≥ 0 on the fuzzy sphere is given by the cochain complex

E =
( (0)

A
−Q
//
(1)
A
)

with Q := ∆ + m2 (5.1.8)

concentrated in degrees 0 and 1, together with the pairing

〈 · , · 〉 : E⊗ E −→ C[−1] , ϕ⊗ ψ 7−→ 〈ϕ, ψ〉 := (−1)|ϕ|
4π

N + 1
Tr
(

ϕ ψ
)

. (5.1.9)

Following the construction of Section 4.3.1, we obtain from this free BV theory a

P0-algebra of classical observables

Obscl :=
(
Sym E[1], Q, { · , · }

)
. (5.1.10)

Observe that the complex

E[1] =
( (−1)

A
Q
//
(0)
A
)

(5.1.11)

is concentrated in degrees −1 and 0.
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5.1 field theory on the fuzzy sphere

interactions . Since the generators of E[1] is concentrated in degrees −1 and

0, the dg-algebra Sym E[1] is concentrated in non-positive degrees. Therefore, every

0-cochain I ∈ (Sym E[1])0 satisfies

Q(I) = {I, I} = ∆BV(I) = 0 , (5.1.12)

implying that the classical master equation (4.3.12) as well as the quantum master

equation (4.3.19) are satisfied. Hence, every 0-cochain I ∈ (Sym E[1])0 is a well-defined

interaction term for a scalar field in both the classical and quantum cases.

We may still apply the cyclic L∞-algebra formalism from Section 4.3.2 to build inter-

action terms. We will focus on the usual p-point interactions. From the free scalar field

theory of Definition 5.1.1, we obtain the associated Abelian cyclic L∞-algebra given by

the cochain complex

E[−1] =
( (1)

A
Q
//
(2)
A
)

(5.1.13)

with the cyclic structure

〈〈 · , · 〉〉 : E[−1]⊗ E[−1] −→ C[−3] , ϕ⊗ ψ 7−→ 〈〈ϕ, ψ〉〉 = 4π

N + 1
Tr
(

ϕ ψ
)

.

(5.1.14)

For any p ≥ 3, we may augment the above Abelian L∞-algebra with the compatible

(p− 1)-bracket

`p−1 : E[−1]⊗p−1 −→ E[−1] , ϕ1 ⊗ · · · ⊗ ϕp 7−→
1

(p− 1)! ∑
σ∈Sp−1

ϕσ(1) · · · ϕσ(p−1) .

(5.1.15)

For degree reasons, the higher brackets (5.1.15) is only non-vanishing if each ϕi ∈

E[−1] is of degree 1 in E[−1]. As required, the higher brackets `p−1 are graded anti-

symmetric due to the symmetrisation of the matrix multiplications in the definition of

`p−1.

Next, we write out the contracted coordinate functions (4.3.23). In this case, they

may be described in terms of the fuzzy spherical harmonics Y J
j . We will use the

notation Y J
j ∈ E[−1]1 = A when we refer to the fuzzy spherical harmonics as elements

of degree 1 in E[−1] and Ỹ J
j ∈ E[−1]2 = A when we regard them as elements of degree

2 in E[−1]. With this notation, the contracted coordinate functions take the form

a = ∑
J,j

Y J
j
∗
⊗Y J

j + ∑
J,j

Ỹ J
j
∗ ⊗ Ỹ J

j ∈
(
(Sym E[1])⊗ E[−1]

)1 , (5.1.16)
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5.1 field theory on the fuzzy sphere

where Y J
j
∗
∈ E[1]0 = A denotes elements of degree 0 in E[1] and Ỹ J

j
∗ ∈ E[1]−1 = A

stands for elements of degree −1 in E[1].

In terms of the contracted coordinate functions (5.1.16), the interaction term (4.3.27)

corresponding to a p-point interaction takes the explicit form

λ I =
λp−2

p!
〈〈a, `ext

p−1(a, . . . , a)〉〉ext

=
λp−2

p! ∑
J0,j0,...,Jp−1,jp−1

Y J0
j0

∗
Y J1

j1

∗
· · · Y

Jp−1
jp−1

∗
〈〈Y J0

j0
, `p−1(Y

J1
j1

, . . . , Y
Jp−1
jp−1

)〉〉

∈ (Sym E[1])0 . (5.1.17a)

We would like to stress that the products of the Y Ji
ji

∗
∈ E[1]0 in the second line are

not given by matrix multiplication but rather by the product in the symmetric algebra

Sym E[1]. The constants

I
J0 J1···Jp−1
j0 j1···jp−1

:= 〈〈Y J0
j0

, `p−1(Y
J1
j1

, . . . , Y
Jp−1
jp−1

)〉〉 ∈ C (5.1.17b)

can be explicitly written out in terms of the Wigner 3j and 6j symbols as in [CMS01].

However, this level of detail is not necessary in the context of this thesis. From the

cyclicity property (4.2.6) of the cyclic structure, the constants I
J0 J1···Jp−1
j0 j1···jp−1

are symmetric

under the exchange of any neighbouring pairs of indices, i.e.

I
J0 J1···Ji Ji+1···Jp−1
j0 j1···ji ji+1···jp−1

= I
J0 J1···Ji+1 Ji ···Jp−1
j0 j1···ji+1 ji ···jp−1

. (5.1.18)

strong deformation retract. The cohomology of the complex (5.1.11) is

different depending on whether the scalar field is massless or not. Knowing that the

spectrum of the Laplacian (5.1.6) is {J (J + 1) : J = 0, 1, . . . , N} , we compute

H•(E[1]) ∼=


0 for m2 > 0 ,

C[1]⊕C for m2 = 0 .
(5.1.19)

Therefore, we need to consider the two cases separately. In the massive case m2 > 0,

we have the strong deformation retract

(0, 0) (E[1], Q)
ι=0

π=0
ξ=−G for m2 > 0 , (5.1.20)

where G is the inverse of Q = ∆ + m2, i.e. the Green operator, and ξ = −G is defined

to act as a degree −1 map on E[1] (see Definition 4.3.6 (iii)).
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5.1 field theory on the fuzzy sphere

The massless case m2 = 0 needs to be considered more carefully since the scalar

Laplacian Q = ∆ has a non-trivial kernel given by complex multiples of the unit 1 ∈ A.

The linear map η 1
N+1 Tr : A→ A , a 7→ 1

N+1 Tr(a)1, which is obtained by composing

the normalized trace and the unit map η : C→ A, defines a projector onto the kernel

of ∆. This leads to the orthogonal decomposition1

A ∼= A⊥ ⊕C . (5.1.21)

By the rank-nullity theorem of linear algebra, the scalar Laplacian therefore restricts

to an isomorphism ∆⊥ : A⊥ → A⊥, whose inverse we denote by G⊥ : A⊥ → A⊥.

Extending G⊥ by 0 to all of A, we obtain the linear map

G0 := G⊥
(
idA − η 1

N+1 Tr
)

: A −→ A . (5.1.22)

From these data, we obtain a strong deformation retract

(C[1]⊕C, 0) (E[1], Q)
ι=η

π= 1
N+1 Tr

ξ=−G0 for m2 = 0 (5.1.23)

for the massless case. The strong deformation retracts for both the massive (5.1.20) and

massless (5.1.23) cases extend to the symmetric algebras via the construction outlined

in Section 4.3.3, Equation (4.3.31) and below.

Remark 5.1.2. Both G and G0 are anti-self-adjoint with respect to the pairing (5.1.9).

We show this for G0 as the arguments in the case of G are a simplified version of the ar-

guments for the former case. First, one can verify through straightforward calculations

using the cyclicity of the trace that the Laplacian ∆⊥ : A⊥ → A⊥ is anti-self-adjoint.

Then, since the decomposition (5.1.21) is orthogonal,

〈ϕ, G0ψ〉 = 〈∆G0ϕ, G0ψ〉 = −〈G0ϕ, ∆G0ψ〉 = −〈G0ϕ, ψ〉 . (5.1.24)

M

correlation functions for m2 > 0 . Having described the strong deforma-

tion retract, we now would like to compute correlation functions for the scalar field

theory. We will explain the process and provide some explicit examples. The focus

1 Note that the projection onto A⊥ is given by idA − η 1
N+1 Tr, meaning A⊥ consists of the traceless

(N + 1) × (N + 1)-matrices in MatN+1(C), so the decomposition is indeed orthogonal with respect to

the pairing (5.1.9).
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5.1 field theory on the fuzzy sphere

will be mostly on the massive case m2 > 0 and later we briefly comment on the mass-

less case.

Recall again that the strong deformation retract (5.1.20) extends to the symmetric

algebras. Let δ be a small deformation of the differential Q on Sym E[1]. From the

homological perturbation lemma (Theorem 4.3.7), we obtain the deformed strong de-

formation retract

(
Sym 0 ∼= C, 0

) (
Sym E[1], Q + δ

)
J̃

Π̃
Ξ̃ . (5.1.25)

In particular, the n-point correlation functions of ϕ1, . . . , ϕn ∈ E[1] are computed

through the map Π̃ (4.3.38), which we repeat here

〈ϕ1 · · · ϕn〉 =
∞

∑
k=0

Π
((

δ Ξ
)k (

ϕ1 · · · ϕn
))
∈ Sym 0 ∼= C , (4.3.38)

where we recall that Π and Ξ are the respective extensions of π and ξ to the symmetric

algebras (see (4.3.32) and around (4.3.34)). Recall also that the perturbations δ in our

case are of the form

δ = h̄ ∆BV + {λ I, · } , (5.1.26)

where ∆BV is the BV Laplacian (4.3.15c) and λ I ∈ (Sym E[1])0 denotes the p-point

interaction term (5.1.17) for some p ≥ 3.

We are mainly interested in correlation functions Π̃(ϕ1 · · · ϕn) for test functions

ϕ1, . . . , ϕn ∈ E[1]0 of degree zero, which describe the correlators of physical fields, in

contrast to correlators involving antifields. In order to understand the perturbative

expansion (4.3.37), we need to pin down how the maps Π and δ Ξ act on elements

ϕ1 · · · ϕn ∈ Sym E[1] with all ϕi ∈ E[1]0 of degree zero. Since π = 0 in the present

case (see (5.1.20)), we have

Π(1) = 1 , Π(ϕ1 · · · ϕn) = 0 , (5.1.27)

for all n ≥ 1. For δ Ξ = h̄ ∆BV Ξ + {λ I, · }Ξ let us consider the two terms separately.

In the case of the first term, using the definition of (4.3.34) of Ξ = Sym ξ, the explicit

formula for the BV Laplacian (4.3.15c), and anti-self-adjointness of G (Remark 5.1.2),

we compute

h̄ ∆BV Ξ
(

ϕ1 · · · ϕn
)
= −2 h̄

n ∑
i<j

〈
ϕi, G(ϕj)

〉
ϕ1 · · · ϕ̂i · · · ϕ̂j · · · ϕn , (5.1.28)
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5.1 field theory on the fuzzy sphere

where we recall that G = −ξ is the Green operator for Q = ∆+m2. The second term is

written out using the axioms of P0-algebras (see Remark 4.3.4), the explicit expression

(5.1.17) for the p-point interaction term (together with its symmetry property (5.1.18)),

and also recalling how the antibracket was defined on generators (4.3.9), resulting in

{
λ I, Ξ(ϕ1 · · · ϕn)

}
= − λp−2

(p− 1)! n

n

∑
i=1

∑
J0,j0,...,Jp−1,jp−1

(
ϕ1 · · · ϕi−1

× I
J0 J1···Jp−1
j0 j1···jp−1

〈
Y J0

j0

∗
, G(ϕi)

〉
Y J1

j1

∗
· · · Y

Jp−1
jp−1

∗
ϕi+1 · · · ϕn

)
.

(5.1.29)

From the two expressions (5.1.28) and (5.1.29), we derive a graphical calculus. By

depicting the product ϕ1 · · · ϕn by n vertical lines, the map in (5.1.28) may be depicted

as

h̄ ∆BV Ξ
(

· · ·
)

= −2 h̄
n

(
· · · + · · · + · · · + · · ·

)
,

(5.1.30)

where the cap expresses a contraction of two elements with respect to { · , G(·)}. The

map in (5.1.29) may be pictured as

{
λ I , Ξ

(
· · ·

)}
= − λp−2

(p− 1)! n

( p− 1 legs
· · · + · · · + · · ·

p− 1 legs )
,

(5.1.31)

where the vertex acts on an element as ∑J0,j0,...,Jp−1,jp−1
I

J0 J1···Jp−1
j0 j1···jp−1

〈
Y J0

j0

∗
, G(·)

〉
×Y J1

j1

∗
· · · Y

Jp−1
jp−1

∗
, i.e. it turns a single vertical line into p− 1 legs.

Example 5.1.3. As an example, we compute the 2-point function

Π̃
(

ϕ1 ϕ2
)
=

∞

∑
k=0

Π
(
(δ Ξ)k(ϕ1 ϕ2)

)
(5.1.32)

for Φ4-theory, i.e. we set p = 4. (Note that by using our conventions in (5.1.17), the

4-point interaction vertex has coupling constant λ2.) Using the graphical calculus, we

first compute

δ Ξ(ϕ1 ϕ2) = −h̄ − λ2

3! 2

(
+

)
. (5.1.33)
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5.1 field theory on the fuzzy sphere

Applying δ Ξ twice, we get

(δ Ξ)2(ϕ1 ϕ2) =
λ2 h̄
3! 4

(
+ + + + +

+ + + + + +
)

+ O(λ4)

=
λ2 h̄

8

(
+ 2 +

)
+ O(λ4) , (5.1.34)

where we have used the symmetry property of the interaction term (5.1.18) for the

simplification in the second equality. The 3-fold application of δ Ξ is given by

(δ Ξ)3(ϕ1 ϕ2) = −λ2 h̄2

2
+ O(λ4) . (5.1.35)

From the above iterated applications of δ Ξ, we compute the 2-point function (5.1.32)

to leading order in the coupling constant as

Π̃(ϕ1 ϕ2) = −h̄ − λ2 h̄2

2
+ O(λ4) (5.1.36)

= −h̄
〈

ϕ1, G(ϕ2)
〉

− λ2 h̄2

2 ∑
J0,j0,...,J3,j3

I J0 J1 J2 J3
j0 j1 j2 j3

〈
Y J0

j0

∗
, G(ϕ1)

〉 〈
Y J1

j1

∗
, G(Y J2

j2

∗
)
〉 〈

Y J3
j3

∗
, G(ϕ2)

〉
+O(λ4) .

Note that the 2-point function at order λ2 (and higher), even though it is not directly

apparent in our graphical presentation, receives contributions from both planar and

non-planar diagrams. This is analogous to the computation of [CMS01] by traditional

perturbative techniques. These two kinds of contributions stem from the (graded anti-

)symmetrisation of the higher L∞-bracket (5.1.15), which enters the definition of the

constants I J0 J1 J2 J3
j0 j1 j2 j3

in (5.1.17). O

correlation functions for m2 = 0 . We end this subsection by briefly treat-

ing the massless m2 = 0 case. In contrast to the massive case, the cochain map

π = 1
N+1 Tr in the massless strong deformation retract (5.1.23) is not the zero map.

Hence, the extension of π to the symmetric algebra in this case is given by

Π(1) = 1 ∈ Sym C , Π(ϕ1 · · · ϕn) = π(ϕ1)� · · · � π(ϕn) ∈ Sym C , (5.1.37)

for all ϕ1, . . . , ϕn ∈ E[1]0 in degree 0, where we use the symbol� to denote the product

of the symmetric algebra Sym C in order to distinguish it from the multiplication of
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5.1 field theory on the fuzzy sphere

complex numbers. The factors π(ϕi) ∈ Sym C are regarded as linear functions on the

space of vacua H−1(E[1]) ∼= ker(∆ : A→ A) ∼= C via

π(ϕi) : ker(∆ : A→ A) −→ C , Φ = Φ0 1 7−→
1

N + 1
Tr
(

ϕi Φ
)
= π(ϕi)Φ0 ,

(5.1.38)

where the product π(ϕi)Φ0 in the last step is the usual multiplication of complex

numbers (denoted by juxtaposition).

We denote (5.1.37) graphically by attaching vertices on top of the vertical lines

Π
(

· · ·
)

= · · · . (5.1.39)

The vertices above should be interpreted as empty slots which can be evaluated

against classical vacua Φ ∈ ker(∆ : A → A) ∼= C. These purely classical contribu-

tions to the correlation functions are completely analogous to those one would obtain

in traditional approaches to quantum field theory by expanding the field operator

Φ̂ + Φ around a generic classical solution Φ.

Example 5.1.4. For the 2-point function of massless Φ4-theory, using (5.1.33)–(5.1.35),

we obtain

Π̃(ϕ1 ϕ2) = − h̄ − λ2

3! 2

(
+

)
+

λ2 h̄
8

(
+ 2 +

)
− λ2 h̄2

2
+ O(λ4) ,

(5.1.40)

as an element in Sym C. O

5.1.2 Chern-Simons theory

It is possible to define Chern-Simons theory on the fuzzy 2-sphere S2
N because it ad-

mits a well-known 3-dimensional calculus, see e.g. [ARS00, GMS01]. We will focus

on the Abelian Chern-Simons theory on S2
N as in [GMS01] which, due to the non-

commutativity of the differential calculus on S2
N , includes a ternary interaction term.

Extending to the non-Abelian case with matrix gauge algebras such as gl(n) or u(n)

is a straightforward process but will not present any essential novelties. This is the

simplest example of a noncommutative field theory with gauge symmetries on which

we will apply the BV formalism.
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differential calculus on the fuzzy 2-sphere . We begin by setting up

the basic theory of differential forms on S2
N which is required for the definition of

Chern-Simons theory. The standard su(2)-equivariant differential calculus on the

fuzzy sphere algebra (5.1.1) is given by the Chevalley-Eilenberg dg-algebra (see Ex-

ample 4.1.9)

Ω•(A) := CE•(su(2), A) = A⊗∧•su(2)∗ . (5.1.41)

The dual of the Lie algebra basis {ei ∈ su(2)}i=1,2,3 defines a basis {θi ∈ Ω1(A)}i=1,2,3

for the A-module of 1-forms. This in turn generates the entire differential calculus

Ω•(A). The basis for Ω1(A) is central, i.e. a θi = θi a for all a ∈ A = Ω0(A), and θi ∧

θ j = −θ j ∧ θi, for all i, j = 1, 2, 3. The de Rham differential is given by the Chevalley-

Eilenberg differential

da =
1

λN
[Xi, a] θi , dθi = − i

2
εijk θ j ∧ θk , (5.1.42)

for all a ∈ A = Ω0(A) and i = 1, 2, 3, together with the graded Leibniz rule

d(ω ∧ ζ) = (dω) ∧ ζ + (−1)p ω ∧ (dζ) , (5.1.43)

for all ω ∈ Ωp(A) and ζ ∈ Ω•(A).2 A significant difference is that the differential

calculus on the fuzzy 2-sphere is 3-dimensional, while the differential calculus on the

regular commutative 2-sphere is 2-dimensional. Higher-dimensional (covariant) cal-

culi are in fact a common feature in noncommutative geometry and arise in a myriad

of examples, from the fuzzy sphere to quantum groups.

As usual, one can define integration on top degree forms Ω3(A), in this case by∫
: Ω3(A) −→ C , ω = a θ1 ∧ θ2 ∧ θ3 7−→

∫
ω :=

4π

N + 1
Tr(a) . (5.1.44)

Using (5.1.42) together with the graded Leibniz rule (5.1.43), one checks that the inte-

gration map satisfies the Stokes theorem∫
dζ = 0 , (5.1.45)

for all 2-forms ζ = 1
2 ζij θi ∧ θ j ∈ Ω2(A).

2 The differential calculus (Ω•(A), d) we just introduced on the fuzzy 2-sphere is a so called derivation

based calculus introduced in [D-V88], see also [D-V01, Mas08, Sch14] for reviews of this concept.
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5.1 field theory on the fuzzy sphere

We end the discussion surrounding the differential calculus with some Hodge-

theoretical constructions. The Hodge operator ∗ : Ω•(A) → Ω3−•(A) on the fuzzy

sphere is defined on the A-module basis of Ω•(A) by

∗(1) := 1
3! εijk θi ∧ θ j ∧ θk , ∗ (θi) := 1

2! εijk θ j ∧ θk ,

∗(θi ∧ θ j) := εijk θk , ∗ (θi ∧ θ j ∧ θk) := εijk
1 . (5.1.46)

Note that the Hodge operator is idempotent, i.e. ∗ ∗ (ω) = ω, for all ω ∈ Ωp(A).

From here we can define the codifferential

δ := (−1)p ∗ d ∗ : Ωp(A) −→ Ωp−1(A) (5.1.47)

and the Hodge-de Rham Laplacian

∆ := −
(
δ d + d δ

)
: Ωp(A) −→ Ωp(A) , (5.1.48)

for all p = 0, 1, 2, 3. Acting with the Hodge-de Rham Laplacian on 0-forms, one shows

that it coincides with the scalar Laplacian (5.1.6).

free bv theory. Having outlined the necessary geometric structures, we can

now proceed to describe the non-interacting part of Abelian Chern-Simons theory on

the fuzzy sphere as a free BV theory as in Definition 4.3.1.

Definition 5.1.5. The free BV theory associated to Abelian Chern-Simons theory is

given by the cochain complex

E = Ω•(A)[1] =
( (−1)

Ω0(A)
−d
//

(0)

Ω1(A)
−d
//

(1)

Ω2(A)
−d
//

(2)

Ω3(A)
)

, (5.1.49)

i.e. Q := d is the de Rham differential, together with the pairing

〈 · , · 〉 : E⊗ E −→ C[−1] , α⊗ β 7−→ (−1)|α|
∫

α ∧ β , (5.1.50)

where |α| denotes the cohomological degree of α ∈ E. (Note that the latter differs from

the de Rham degree as |α|dR = |α|+ 1.)

Following the procedure in Section 4.3.1, we construct from the above input data

the corresponding P0-algebra

Obscl :=
(
Sym E[1], Q, { · , · }

)
(5.1.51)
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5.1 field theory on the fuzzy sphere

of classical observables of the non-interacting theory. Note that the complex

E[1] = Ω•(A)[2] =
( (−2)

Ω0(A)
d //

(−1)

Ω1(A)
d //

(0)

Ω2(A)
d //

(1)

Ω3(A)
)

(5.1.52)

is concentrated in degrees −2, −1, 0 and 1.

interactions . The next step is to augment the free Chern-Simons theory in Def-

inition 5.1.5 with interaction terms using the formalism in Section 4.3.2. The associated

Abelian cyclic L∞-algebra is given by the cochain complex

E[−1] = Ω•(A) =
( (0)

Ω0(A)
d //

(1)

Ω1(A)
d //

(2)

Ω2(A)
d //

(3)

Ω3(A)
)

(5.1.53)

together with the cyclic structure

〈〈 · , · 〉〉 : E[−1]⊗ E[−1] −→ C[−3] , α⊗ β 7−→ 〈〈α, β〉〉 =
∫

α ∧ β . (5.1.54)

The above structure can be endowed with a compatible 2-bracket

`2 : Ω•(A)⊗Ω•(A) −→ Ω•(A) , α⊗ β 7−→ [α, β] := α ∧ β− (−1)|α| |β| β ∧ α

(5.1.55)

given by the graded commutator in the differential calculus Ω•(A). Observe that, in

opposition to commutative Chern-Simons theory, the bracket `2 is not zero due to the

noncommutativity of the differential calculus on the fuzzy sphere S2
N .

We now would like to write down the contracted coordinate functions for this non-

Abelian cyclic dg-Lie algebra. To this end, we choose a basis of E[−1] which we

denote by ca ∈ E[−1]0 = Ω0(A), Ab ∈ E[−1]1 = Ω1(A), A+
c ∈ E[−1]2 = Ω2(A) and

c+d ∈ E[−1]3 = Ω3(A). In terms of this basis, the contracted coordinate functions take

the form

a = ∑
a

c∗a ⊗ ca + ∑
b

A∗b ⊗ Ab + ∑
c

A+∗
c ⊗ A+

c + ∑
d

c+∗d ⊗ c+d (5.1.56)

∈
(
(Sym E[1])⊗ E[−1]

)1 ,
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5.1 field theory on the fuzzy sphere

where the dual basis with respect to the cyclic structure 〈〈 · , · 〉〉 is denoted by c∗a ∈

E[1]1 = Ω3(A), A∗b ∈ E[1]0 = Ω2(A), A+∗
c ∈ E[1]−1 = Ω1(A) and c+∗d ∈ E[1]−2 =

Ω0(A). The Chern-Simons interaction term thus reads as

λ I =
λ

3!
〈〈a, `ext

2 (a, a)〉〉ext

=
λ

3! ∑
b,b′,b′′

A∗b A∗b′ A∗b′′ 〈〈Ab, [Ab′ , Ab′′ ]〉〉 − λ ∑
a,b,c

c∗a A∗b A+∗
c 〈〈ca, [Ab, A+

c ]〉〉

+
λ

2 ∑
d,a,a′

c+∗d c∗a c∗a′ 〈〈c+d , [ca, ca′ ]〉〉 ∈ (Sym E[1])0 . (5.1.57)

We would again like to emphasise that the products of the dual basis elements in

(5.1.57) are given by the product of the symmetric algebra Sym E[1].

strong deformation retract. In order to compute the cohomology of the

complex (5.1.52) we will make use of the Whitehead lemma, see e.g. [Wei94, Theorem

7.8.9]. To do this, we recall that the differential calculus Ω•(A) = CE•(su(2), A) is

by definition the Chevalley-Eilenberg cochain complex of su(2) with coefficients in

the fuzzy sphere algebra (5.1.1). Regarding the latter as a su(2)-representation, we

decompose it as A ∼=
⊕N

J=0 (J), where (J) denotes the irreducible spin J representation.

Therefore, we have

Ω•(A) ∼=
N⊕

J=0

CE•(su(2), (J)) . (5.1.58)

The Whitehead lemma tells us that the cohomology of CE•(su(2), (J)) is trivial for all

J > 0. From [Wei94, Corollary 7.8.10,Corollary 7.8.12] (also known as Whitehead’s

first and second lemmas), we know that H1(CE•(su(2), C) = H2(CE•(su(2), C) = 0.

The cohomology in degree 0 can be read off from (5.1.42) to be H0(CE•(su(2), C) ∼=

C. For the cohomology in top degree, observe that d(θi ∧ θ j) = 0 from (5.1.42) and

(5.1.43), which can be seen after rewriting θi ∧ θ j ∧ θk = εijk θ1 ∧ θ2 ∧ θ3. Therefore, the

image of d in the top degree is trivial. Because CE3(su(2), C) ∼= C is 1-dimensional,

H3(CE•(su(2), C) ∼= C. It follows that

H•
(
Ω•(A)

) ∼= H•
(
CE•(su(2), (0))

) ∼= C⊕C[−3] (5.1.59)

is concentrated in differential form degrees 0 and 3. Therefore, the cohomology of the

complex (5.1.52) is given by

H•(E[1]) = H•
(
Ω•(A)[2]

) ∼= C[2]⊕C[−1] . (5.1.60)
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5.1 field theory on the fuzzy sphere

Following the procedure, we now construct a strong deformation retract as in

(4.3.30). We begin by defining the maps ι and π. Using the unit η(1) = 1 ∈ Ω0(A) = A

and its Hodge dual ∗η(1) = ∗(1) ∈ Ω3(A) (see (5.1.46)), we define the cochain map

H•(E[1])

ι

��

E[1]

=


C

η

��

0 // 0

0
��

0 // 0

0
��

0 // C

∗η
��

Ω0(A)
d
// Ω1(A)

d
// Ω2(A)

d
// Ω3(A)

 . (5.1.61)

The cochain map

E[1]

π
��

H•(E[1])

=


Ω0(A)

1
4π

∫
∗
��

d // Ω1(A)

0
��

d // Ω2(A)

0
��

d // Ω3(A)

1
4π

∫
��

C
0

// 0
0

// 0
0

// C

 (5.1.62)

is defined using the Hodge operator (5.1.46) and the integration map (5.1.44), where

the normalization factor 1
4π is chosen so that π ι = idH•(E[1]) as required by the axioms

of a strong deformation retract (see Definition 4.3.6).

To obtain a strong deformation retract, we also need a cochain homotopy. We begin

by observing that the composite cochain map ι π : E[1]→ E[1] defines a projector onto

the harmonic forms3, leading to the decomposition

E[1] ∼= E[1]⊥ ⊕ H•(E[1]) . (5.1.63)

In virtue of the rank-nullity theorem of linear algebra, the Hodge-de Rham Laplacian

restricts to an isomorphism ∆⊥ : E[1]⊥ → E[1]⊥, whose inverse (i.e. the Green opera-

tor) we denote by G⊥ : E[1]⊥ → E[1]⊥. Together with the codifferential δ, we define

the cochain homotopy

ξ := δ G⊥
(
idE[1] − ι π

)
∈ hom(E[1], E[1])−1 , (5.1.64)

which results in the sought after strong deformation retract

(
C[2]⊕C[−1], 0

) (
Ω•(A)[2], d

)
ι

π
ξ (5.1.65)

3 A differential form α ∈ Ω•(A) is harmonic if it is annihilated by the Hodge-de Rham Laplacian ∆α = 0.

In this case, one can prove that the harmonic forms coincide with the de Rham cohomology (5.1.60) by

adapting the usual Hodge theory [War83, Chapter 6] to this setting (some proofs are vastly simplified

due to finite dimensionality).
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5.1 field theory on the fuzzy sphere

for Chern-Simons theory. The relevant properties of Definition 4.3.6 are straightfor-

ward to check. For instance, one may check that

∂(ξ) = d ξ + ξ d = d δ G⊥
(
idE[1] − ι π

)
+ δ G⊥

(
idE[1] − ι π

)
d

= d δ G⊥
(
idE[1] − ι π

)
+ δ d G⊥

(
idE[1] − ι π

)
= −∆⊥ G⊥

(
idE[1] − ι π

)
= ι π − idE[1] . (5.1.66)

The second line follows from the fact that the projector ι π commutes with d since it is

a cochain map, together with the property that the Green operator commutes with d

because d ∆⊥ = ∆⊥ d. In the final line, we used the definition of the Hodge-de Rham

Laplacian (5.1.48) and that G⊥ is the inverse of ∆⊥.

correlation functions . By applying the homological perturbation lemma

(Theorem 4.3.7) on the extension of the strong deformation retract (5.1.65) to sym-

metric algebras, together with the small perturbation

δ = h̄ ∆BV + {λ I, · } , (5.1.67)

where λ I is the Chern-Simons interaction term (5.1.57), we obtain the deformed strong

deformation retract

(
Sym

(
C[2]⊕C[−1]

)
, δ̃
) (

Sym E[1], Q + δ
)

J̃

Π̃
Ξ̃ . (5.1.68)

The perturbative expansion

Π̃(ϕ1 · · · ϕn) =
∞

∑
k=0

Π
(
(δ Ξ)k(ϕ1 · · · ϕn)

)
(5.1.69)

of the n-point correlation functions can then be computed in orders of λ and/or h̄ by

using the algebraic properties of Ξ = Sym ξ (4.3.34), the BV Laplacian ∆BV (4.3.15c)

and the graded derivation {λ I, · } (see the P0-algebra axioms in Remark 4.3.4). We

will however not write out any explicit examples of correlation functions in this case;

the computations are vastly more cumbersome than for the case of scalar field theories

due to the additional field species.
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5.2 bv quantisation of braided field theories

5.2 bv quantisation of braided field theories

The BV formalism outlined in Section 4.3.1 can be generalised to also include theories

with a triangular Hopf algebra symmetry, i.e. field theories defined in the represen-

tation category of a triangular Hopf algebra. The goal of this section is to make this

explicit and provide the details. We will use the adjective “braided” (instead of the

categorically more accurate “symmetric braided”) as in [DCGRS20, DCGRS21] in or-

der to indicate that the theories might contain symmetries encoded by a non-identity

triangular R-matrix, together with equivariance. We will unfortunately not treat the

more general quasi-triangular case as it is considerably more complicated since it ob-

structs the formulation of symmetry properties and the Jacobi identity. We refer to

Section 1.2 for a review of the relevant Hopf algebra constructions.

5.2.1 Finite-dimensional braided BV formalism

Let H be a triangular Hopf algebra with triangular structure R. Recall from Section

1.2 that the category HMod of left H-modules is a closed symmetric monoidal category.

Since HMod is an Abelian category, we may study cochain complexes in HMod using

standard techniques form homological algebra. We denote the category of cochain

complexes of left H-modules by

HCh := Ch
(

HMod
)

. (5.2.1)

An object in HCh is a Z-graded left H-module V (in particular, each graded component

is itself an H-module) together with an H-equivariant differential d : V → V[1], i.e.

d(h . v) = h . (dv), for all h ∈ H and v ∈ V. The morphisms consist of H-equivariant

cochain maps. Just as for ChK in Section 4.1, HCh is a closed symmetric monoidal

category. The monoidal product is given by endowing (4.1.4) with the left tensor

product H-action (1.2.5), the monoidal unit is K regarded as a left H-module with

the trivial left H-action (h . c = ε(h) c, for all h ∈ H and c ∈ K) and the internal

hom is given by equipping (4.1.6) with the left adjoint H-action (1.2.7). The symmetric

braiding is the combination of (4.1.5) with (1.2.17),

τR : V ⊗W −→ W ⊗V , v⊗ w 7−→ (−1)|v| |w| (Rα . w)⊗ (Rα . v) , (5.2.2)
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5.2 bv quantisation of braided field theories

for all V, W ∈ HCh, involving both the Koszul signs and the R-matrix R = Rα ⊗ Rα ∈

H ⊗ H.

We now give the generalisation of Definition 4.3.1 to the present case.

Definition 5.2.1. A free braided BV theory is an object E = (E,−Q) ∈ HCh together with

an HCh-morphism 〈 · , · 〉 : E⊗ E → K[−1] that is nondegenerate and antisymmetric,

i.e. 〈 · , · 〉 = −〈 · , · 〉 ◦ τR, or explicitly

〈ϕ, ψ〉 = −(−1)|ϕ| |ψ| 〈Rα . ψ, Rα . ϕ〉 , (5.2.3)

for all ϕ, ψ ∈ E.

Before introducing the (symmetric) braided version of P0-algebras (generalising Def-

inition 4.3.3), we need the concept of braided commutative dg-algebras (generalising com-

mutative differential graded algebras, see Definition 4.1.5 and below). The fact that

HCh is symmetric monoidal means that there is an associated category CAlg(HCh) of

commutative algebras in HCh. That is, the objects of CAlg(HCh) are the monoids in

HCh such that the associated product is (braided) commutative. Let us spell this out

explicitly. An object in CAlg(HCh) (i.e. a braided commutative dg-algebra) is a triple

(A, µ, η), consisting of an object A ∈ HCh and two HCh-morphisms µ : A⊗ A → A

and η : K → A satisfying the associativity and unitality axioms (4.1.8), together with

commutativity µ ◦ τR = µ (with braiding (5.2.2)) which in this case takes the explicit

form

a b = (−1)|a| |b| (Rα . b) (Rα . a) , (5.2.4)

for all a, b ∈ A. Being morphisms in HCh, the product µ and unit η are by definition

H-equivariant, which translates to

h . (a b) = (h1 . a) (h2 . b) , h . 1 = ε(h)1 , (5.2.5)

for all h ∈ H and a, b ∈ A. We will mainly be concerned with a specific example

of a braided commutative dg-algebra, namely that of the braided symmetric algebra

SymRV ∈ CAlg(HCh) associated with an object V ∈ HCh. In analogy with the usual

case, the H-equivariant dg-algebra SymRV ∈ CAlg(HCh) is generated by all v ∈ V,

modulo the commutation relations involving the R-matrix

v v′ = (−1)|v| |v
′| (Rα . v′) (Rα . v) , (5.2.6)
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for all homogeneous v, v′ ∈ V. As in the non-braided case, we have that

SymR H•(V) ∼= H•(SymR V) (5.2.7)

since we are working in characteristic 0 (the proof from Example 4.1.7 can be gener-

alised to accommodate the braided case in a straightforward manner).

Having introduced braided commutative dg-algebras, we may now provide the gen-

eralisation of Definition 4.3.3, given here in the explicit format of Remark 4.3.4.

Definition 5.2.2. A braided P0-algebra is a braided commutative dg-algebra A ∈ CAlg(HCh)

together with an HCh-morphism { · , · } : A[−1]⊗ A[−1] → A[−1] satisfying the fol-

lowing axioms:

(i) Braided antisymmetry: For all a, b ∈ A,

{a, b} = −(−1)(|a|+1) (|b|+1) {Rα . b, Rα . a} . (5.2.8)

(ii) Braided Jacobi identity: For all a, b, c ∈ A,

0 = (−1)(|a|+1) (|c|+1) {a, {b, c}}

+ (−1)(|b|+1) (|a|+1) {Rα . b, {Rβ . c, Rβ Rα . a}}

+ (−1)|c|+1) (|b|+1) {Rβ Rα . c, {Rβ . a, Rα . b}} . (5.2.9)

(iii) Braided derivation property: For all a, b, c ∈ A,

{a, b c} = {a, b} c + (−1)(|a|+1) |b| (Rα . b) {Rα . a, c} . (5.2.10)

Remark 5.2.3. The fact that { · , · } : A[−1] ⊗ A[−1] → A[−1] is a HCh-morphism,

translates to the compatibility with the differential condition

d{a, b} = {da, b}+ (−1)|a|+1 {a, db} (5.2.11)

for all a, b ∈ A, just as before. M

The classical observables of a free BV theory (E,−Q, 〈 · , · 〉) are given by the braided

P0-algebra

Obscl :=
(
SymRE[1], Q, { · , · }

)
(5.2.12)
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consisting of the symmetric braided algebra of the dual E∗ ∼= E[1] together with the

bracket defined by

{ϕ, ψ} = 〈ϕ, ψ〉1 , (5.2.13)

for all ϕ, ψ ∈ E[1] such that the braided antisymmetry (i) and braided derivation (iii)

properties of Definition 5.2.2 are satisfied.

As before, interactions and quantisation are given by certain deformations of the

differential Q in (5.2.12). To obtain a deformed cochain complex of left H-modules,

one should consider H-invariant deformations. We treat both cases one by one.

The interaction terms consist of 0-cochains I ∈ (SymRE[1])0 which are H-invariant,

i.e. h . I = ε(h) I for all h ∈ H, and satisfy the classical master equation

Q(λ I) + 1
2 {λ I, λ I} = 0 , (5.2.14)

where λ is an H-invariant formal parameter (coupling constant). The H-invariance

of λ I guarantees the H-equivariance of the map {λ I, · } as a consequence of the

fact that { · , · } : A[−1] ⊗ A[−1] → A[−1] is a HCh-morphism (recall how H acts

on tensor products (1.2.5)) and counitality of the coproduct (1.2.3a). The classical

observables for the interacting braided BV theory with interaction term I is then the

braided P0-algebra

Obscl,int :=
(
SymRE[1], Qint, { · , · }

)
with Qint := Q + {λ I, · } . (5.2.15)

In the case of quantisation, observe that the definition of the BV Laplacian in (4.3.15)

is compatible with our braided case without modification. Therefore, it defines an

HCh-morphism ∆BV : SymRE[1] → (SymRE[1])[1] that is nilpotent ∆2
BV = 0. The

explicit formula (4.3.15c) is however slightly different in the braided case, modified

with suitable R-matrix actions. One finds that

∆BV
(

ϕ1 · · · ϕn
)
= ∑

i<j
(−1)∑i

k=1 |ϕk |+|ϕj| ∑
j−1
k=i+1 |ϕk |

〈
ϕi, Rαi+1 · · · Rαj−1 . ϕj

〉
× ϕ1 · · · ϕi−1 ϕ̂i (Rαi+1 . ϕi+1) · · · (Rαj−1 . ϕj−1) ϕ̂j ϕj+1 · · · ϕn ,

for all ϕ1, . . . , ϕn ∈ E[1] with n ≥ 2. The quantum observables for the non-interacting

braided BV theory is then given by the braided E0-algebra

Obsh̄ :=
(
SymRE[1], Qh̄) with Qh̄ := Q + h̄ ∆BV . (5.2.16)
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Lastly, in order to describe the combined case, we consider interaction terms in

the form of H-invariant 0-cochains I ∈ (SymRE[1])0 that satisfy the quantum master

equation

Q(λ I) + h̄ ∆BV(λ I) + 1
2 {λ I, λ I} = 0 . (5.2.17)

Then the quantum observables for the interacting braided BV theory with interaction

term I constitute the braided E0-algebra

Obsint,h̄ :=
(
SymRE[1], Qint,h̄) (5.2.18)

with

Qint,h̄ := Q + h̄ ∆BV + {λ I, · } . (5.2.19)

5.2.2 Braided L∞-algebras, their cyclic versions and interaction terms

The construction in Section 4.3.2 of interaction terms satisfying the classical (and quan-

tum) master equation using cyclic L∞-algebra structures generalises to braided BV the-

ories by using braided L∞-algebras, which were introduced in [DCGRS20, DCGRS21].

We review the relevant constructions here.

Definition 5.2.4. A braided L∞-algebra is a Z-graded left H-module L together with a

collection {`n : L⊗n → L}n∈Z≥1 of H-equivariant graded braided antisymmetric linear

maps of degree |`n| = 2− n that satisfy the braided homotopy Jacobi identities

n−1

∑
k=0

(−1)k `k+1 ◦
(
`n−k ⊗ idL⊗k

)
◦ ∑

σ∈Sh(n−k;k)
sgn(σ) τσ

R = 0 , (5.2.20)

for all n ≥ 1, where τσ
R : L⊗n → L⊗n denotes the action of the permutation σ via the

symmetric braiding τR on the category of graded left H-modules.

Remark 5.2.5. Let us unpack some of the details of the definition above. The graded

braided antisymmetry of `n : L⊗n → L means that

`n
(
v1, . . . , vn

)
= −(−1)|vi | |vi+1| `n

(
v1, . . . , vi−1, Rα . vi+1, Rα . vi, vi+2, . . . , vn

)
(5.2.21)

for all i = 1, . . . , n − 1 and all homogeneous elements v1, . . . , vn ∈ L. The permu-

tation action τσ
R : L⊗n → L⊗n in (5.2.20) also includes, apart from the usual Koszul

signs, appropriate actions of the R-matrix as in (5.2.2). As discussed in Section 4.2,
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below Definition 4.2.1, every braided L∞-algebra has an underlying cochain complex

(L, dL := `1) ∈ HCh, and the binary bracket `2 : L⊗ L → L is an HCh-morphism. If

`2 is the only non-vanishing bracket, we recover a braided Lie algebra in the sense of

[Maj94]. M

The definition of a cyclic braided L∞-algebra given below is specialised to our situ-

ation, see Remark 4.2.3.

Definition 5.2.6. A cyclic braided L∞-algebra is a braided L∞-algebra (L, {`n}) together

with a nondegenerate braided symmetric HCh-morphism 〈〈 · , · 〉〉 : L ⊗ L → K[−3]

that satisfies the cyclicity condition

〈〈v0, `n(v1, . . . , vn)〉〉 = (−1)n (|v0|+1) 〈〈Rα0 · · · Rαn−1 . vn, `n(Rα0 . v0, . . . , Rαn−1 . vn−1)〉〉 ,

(5.2.22)

for all n ≥ 1 and all homogeneous elements v0, v1, . . . , vn ∈ L.

As in the ordinary case in Section 4.3.2, any free braided BV theory (E,−Q, 〈 · , · 〉)

in the sense of Definition 5.2.1 defines an Abelian cyclic braided L∞-algebra given by

E[−1], `1 := dE[−1] = Q and cyclic structure

〈〈 · , · 〉〉 : E[−1]⊗ E[−1] ∼= (E⊗ E)[−2]
〈 · , · 〉[−2]

// K[−1][−2] ∼= K[−3] . (5.2.23)

Then, as before, the introduction of interaction terms I ∈ (SymRE[1])0 that satisfy the

classical master equation (5.2.14) is equivalent to endowing the Abelian cyclic braided

L∞-algebra (E[−1], `1, 〈〈 · , · 〉〉) with compatible higher brackets {`n}n≥2. Again, this

is obtained from the homotopy Maurer-Cartan action and is given by

λ I = ∑
p≥3

λp−2

p!
〈〈a, `ext

p−1(a, . . . , a)〉〉ext ∈ (SymRE[1])0 , (5.2.24)

where the contracted coordinate functions

a := ∑
α

$α ⊗ εα ∈
(
(SymRE[1])⊗ E[−1]

)1 (5.2.25)

are defined by making a choice of basis {εα ∈ E[−1]} with dual basis {$α ∈ E[−1]∗ ∼=

E[2]}. We would like to stress that since this is the braided case, the extended brackets

`ext
n :

(
(SymRE[1])⊗ E[−1]

)⊗n −→ (SymRE[1])⊗ E[−1] (5.2.26)
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5.2 bv quantisation of braided field theories

and the extended pairing

〈〈 · , · 〉〉ext :
(
(SymRE[1])⊗ E[−1]

)
⊗
(
(SymRE[1])⊗ E[−1]

)
−→ (SymRE[1])[−3]

(5.2.27)

receive appropriate actions of the R-matrix (in addition to the obvious Koszul signs,

see [JRSW19, Section 2.3]). For the extended pairing (cf. (4.3.26)) we have

〈〈a⊗ v, a′ ⊗ v′〉〉ext = (−1)|a|+|a
′|+|v| |a′| a (Rα . a′) 〈〈Rα . v, v′〉〉 , (5.2.28)

for all homogeneous a, a′ ∈ SymRE[1] and v, v′ ∈ E[−1], and similarly for the extended

brackets `ext
n with n ≥ 2 (cf. (4.2.8b)).

Remark 5.2.7. The claim that (5.2.24) satisfies the classical master equation (5.2.14)

can be proven by the exact same calculation as in the ordinary case , see e.g. [JRSW19,

Section 4.3]. The reason is that the contracted coordinate functions (5.2.25) are H-

invariant elements of (SymRE[1])⊗ E[−1]. This implies that there are no occurrences

of R-matrices in the properties of the extended brackets `ext
n and the extended pairing

〈〈 · , · 〉〉ext in the evaluation on tensor products of the H-invariant element a. In the

same vein, the proofs from the ordinary case [JRSW19, Section 4.3] can be used to show

that the interaction term (5.2.24) is annihilated by the BV Laplacian, i.e. ∆BV(λ I) = 0,

and consequently that it also satisfies the quantum master equation (5.2.17). M

5.2.3 Correlation functions and braided homological perturbation theory

The homological perturbation lemma (Theorem 4.3.7) extends to the braided setting

if we assume that the perturbations δ ∈ hom(V, V)1 are H-invariant. This is the

situation in our case: recall that the perturbations corresponding to interactions and

quantisation from Section 5.2.1 are of such nature. We will spell out the details in the

following.

Definition 5.2.8. A braided strong deformation retract of an object V ∈ HCh onto its

cohomology H•(V) is a strong deformation retract

(H•(V), 0) (V, d)
ι

π
ξ , (5.2.29)

in the sense of Definition 4.3.6, such that π and ι are H-equivariant, i.e. morphisms

in HCh, and the homotopy ξ ∈ hom(V, V)−1 is H-invariant, i.e. h . ξ = ε(h) ξ for all

h ∈ H.
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5.3 braided field theories on the fuzzy torus

Corollary 5.2.9. Consider a braided strong deformation retract as in (5.2.29). Let δ ∈

hom(V, V)1 be a small H-invariant perturbation, i.e. h . δ = ε(h) δ for all h ∈ H. Then

the expressions (4.3.29) define a braided strong deformation retract.

Proof. By direct inspection, one observes that the explicit formulas in (4.3.29) satisfy

the necessary H-equivariance or H-invariance properties.

Let (E,−Q, 〈 · , · 〉) be a free BV theory in the sense of Definition 5.2.1 and choose

any strong deformation retract for its dual complex

(H•(E[1]), 0) (E[1], Q)
ι

π
ξ . (5.2.30)

A similar construction as in Section 4.3.3 gives rise to a strong deformation retract

(
SymR H•(E[1]), 0

) (
SymR E[1], Q

)
SymR ι

SymR π

SymR ξ . (5.2.31)

The cochain homotopy SymRξ is defined analogously to before, see (4.3.34) and be-

low. This works because the homotopy ξ ∈ hom(V, V)−1 is H-invariant. Note that

SymR H•(E[1]) ∼= H•(SymR E[1] (see (5.2.7)). The correlation functions of both braided

non-interacting and interacting quantum BV theories can be computed by applying

this version of the homological perturbation lemma (Corollary 5.2.9) to (5.2.31) and

the deformed differentials of Section 5.2.1. This works in complete analogy to the

ordinary case reviewed at the end of Section 4.3.3.

5.3 braided field theories on the fuzzy torus

To illustrate the construction from Section 5.2, we consider the example of scalar field

theories on the fuzzy 2-torus. We shall see that this reproduces many aspects of

Oeckel’s braided quantum field theory for symmetric braidings [Oec00]. In this sec-

tion we will fix the underlying field to be the field of complex numbers K = C.

the fuzzy 2-torus . We begin by introducing the fuzzy torus and its Hopf alge-

bra symmetry, see e.g. [BGa19, BSS17] for further details. Let N ∈ Z>0 be a positive

integer and set

q := e 2π i /N ∈ C . (5.3.1)
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5.3 braided field theories on the fuzzy torus

The algebra of functions of the fuzzy torus T2
N is defined as the noncommutative

∗-algebra

A := C[U, V]
/ (

U U∗ − 1 , V V∗ − 1 , U V − q V U , UN − 1 , VN − 1
)

(5.3.2)

freely generated by two elements U and V, modulo the ∗-ideal generated by the dis-

played relations. The generators U and V should be thought of as the two exponential

functions corresponding to the two 1-cycles of T2
N . An element a ∈ A can be uniquely

written as a = ∑i,j∈ZN
aij Ui V j, where the constants aij ∈ C should be interpreted as

Fourier coefficients.4

The fuzzy 2-torus has a (discrete) translation symmetry encoded by the left action

. : H ⊗ A→ A of the group Hopf algebra H := C[Z2
N ], see Example 1.2.8. Recall that

we denoted the basis vectors by k = (k1, k2) ∈ H, with k1, k2 ∈ ZN integers modulo N.

Concretely these act on the generators of A as

k . U := qk1 U , k . V := qk2 V . (5.3.3)

To extend this action to the entirety of A, we impose that A is a left H-module algebra,

i.e. k . (a b) = (k1 . a) (k2 . b) = (k . a) (k . b), for all a, b ∈ A, where we have used the

coproduct of H = C[Z2
N ].

We equip H with the triangular structure as in Example 1.2.8

R :=
1

N2 ∑
s,t∈Z2

N

qsΘt s⊗ t ∈ H ⊗ H with Θ =

(0 −1

1 0

)
. (5.3.4)

With this choice of triangular structure, A becomes a braided commutative left H-module

algebra, i.e. a b = (Rα . b) (Rα . a) for all a, b ∈ A. This can without loss of generality

be shown through a straightforward calculation on the basis elements a = Ui V j and

b = Uk V l , for some i, j, k, l ∈ ZN . By the commutation relations in (5.3.2), we calculate

(Ui V j) (Uk V l) = qi l−j k (Uk V l) (Ui V j) . (5.3.5a)

4 The torus algebra A can be identified as A ∼= MatN(C) by realizing the elements U and V as N × N

clock and shift matrices, see e.g. [LLS01]. This level of concreteness is however not required in our case.
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5.3 braided field theories on the fuzzy torus

On the other hand, from the definition of the R-matrix (5.3.4) and of the left action

(5.3.3), one computes

(
Rα . (Uk V l)

) (
Rα . (Ui V j)

)
=

1
N2 ∑

s,t∈Z2
N

qsΘt (t . (Uk V l)
) (

s . (Ui V j)
)

=
1

N2 ∑
s,t∈Z2

N

qsΘt qt1 k+t2 l qs1 i+s2 j (Uk V l) (Ui V j)

= qi l−j k (Uk V l) (Ui V j) , (5.3.5b)

where the last step follows from (1.2.27). Since the two expressions coincide, we have

showed that A is braided commutative.

Integration on the fuzzy torus is defined via the linear map∫
: A −→ C , a = ∑

i,j∈ZN

aij Ui V j 7−→
∫

a := a00 . (5.3.6)

This map is both H-equivariant and cyclic, i.e.
∫

a b =
∫

b a for all a, b ∈ A. The scalar

Laplacian ∆ : A −→ A is defined by

∆(a) := − 1(
q1/2 − q−1/2

)2

([
U,
[
U∗, a

]]
+
[
V,
[
V∗, a

]])
, (5.3.7)

for all a ∈ A, where we have chosen the square root q1/2 := e π i /N ∈ C of q. One

observes that the scalar Laplacian is H-equivariant under the action (5.3.3) because

the powers of q emerging from the action on U and on U∗ compensate each other, and

similarly for those from V and V∗. There is a basis of eigenfunctions for the Laplacian

given by

ek := Uk1 Vk2 ∈ A , (5.3.8)

for all k = (k1, k2) ∈ Z2
N , with the corresponding eigenvalues given by

∆(ek) =
(
[k1]

2
q + [k2]

2
q
)

ek , (5.3.9a)

where the q-numbers are defined as

[n]q :=
qn/2 − q−n/2

q1/2 − q−1/2 . (5.3.9b)

For later use, we list the properties

e∗k = q−k1 k2 e−k , ek el = q−l1 k2 ek+l ,
∫

e∗k el = δk,l , (5.3.10a)
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5.3 braided field theories on the fuzzy torus

and

τR(ek ⊗ el) = q−kΘl el ⊗ ek = qlΘk el ⊗ ek , (5.3.10b)

for all k, l ∈ Z2
N . In particular, this implies that {e∗k} is the dual basis {ek} under the

integration pairing.

free braided bv theory. We have now set up the underlying geometry. The

next step is to describe a non-interacting scalar field theory on the fuzzy torus as a

free braided BV theory in the sense of Definition 5.2.1.

Definition 5.3.1. The free braided BV theory associated to a scalar field with mass

parameter m2 ≥ 0 on the fuzzy torus is given by the HCh-object

E =
( (0)

A
−Q
//
(1)
A
)

with Q := ∆ + m2 (5.3.11)

concentrated in degrees 0 and 1, together with the HCh-pairing

〈 · , · 〉 : E⊗ E −→ C[−1] , ϕ⊗ ψ 7−→ 〈ϕ, ψ〉 := (−1)|ϕ|
∫

ϕ ψ . (5.3.12)

Remark 5.3.2. Observe that the H-equivariance of the pairing is a direct consequence

of the fact that both the product on A and the integration map (5.3.6) are H-equivariant.

To prove the antisymmetry property, observe first that

〈ϕ, ψ〉 = (−1)|ϕ|
∫

ϕ ψ = (−1)|ϕ|
∫

ψ ϕ = (−1)|ϕ|+|ψ| 〈ψ, ϕ〉

= −(−1)|ϕ| |ψ| 〈ψ, ϕ〉 (5.3.13)

is strictly antisymmetric, i.e. antisymmetric without R-matrix actions. Then, using

the explicit form of the R-matrix (5.3.4), together with the Hopf algebra structure on

H = C[Z2
N ] from Example 1.2.8, we check that

〈Rα . ψ, Rα . ϕ〉 = 1
N2 ∑

s,t∈Z2
N

qsΘt 〈t . ψ, s . ϕ〉

=
1

N2 ∑
s,t∈Z2

N

qsΘt 〈ψ, (s− t) . ϕ〉

=
1

N2 ∑
s′,t∈Z2

N

qs′Θt 〈ψ, s′ . ϕ〉

= ∑
s′∈Z2

N

δs′,0 〈ψ, s′ . ϕ〉 = 〈ψ, ϕ〉 . (5.3.14)
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In the second equality we used H-equivariance of the pairing to write 〈 · , · 〉 =

(−t) . 〈 · , · 〉 = 〈(−t) . · , (−t) . · 〉 and in the fourth step we used (1.2.27). This,

together with the strict antisymmetry (5.3.13), implies that the pairing 5.3.12 is both

strictly antisymmetric and braided antisymmetric. The latter is the property required

by Definition 5.2.1. M

From the general construction in Section 5.2.1, we obtain from the free braided BV

theory in Definition 5.3.1 a braided P0-algebra

Obscl :=
(
SymRE[1], Q, { · , · }

)
(5.3.15)

of classical observables of the non-interacting theory. Recall that SymR denotes the

braided symmetric algebra (defined via (5.2.6)). Note that the complex

E[1] =
( (−1)

A
Q
//
(0)
A
)
∈ HCh (5.3.16)

is concentrated in degrees −1 and 0.

interactions . The braided symmetric algebra SymRE[1] in this case is con-

centrated in non-positive degrees (see (5.3.16)), just as for the scalar field on the

fuzzy sphere in Section 5.1.1. Hence, for degree reasons, every H-invariant 0-cochain

I ∈ (SymRE[1])0 satisfies

Q(I) = {I, I} = ∆BV(I) = 0 (5.3.17)

and therefore both the classical and quantum master equations (5.2.14) and (5.2.17).

Regardless, we consider the p-point interactions obtained from the cyclic L∞-algebra

formalism from Section 5.2.2 as a concrete example. From the free BV theory of

Definition 5.3.1, there is the associated Abelian cyclic braided L∞-algebra defined by

the complex

E[−1] =
( (1)

A
Q
//
(2)
A
)
∈ HCh (5.3.18)

and the cyclic structure

〈〈 · , · 〉〉 : E[−1]⊗ E[−1] −→ C[−3] , ϕ⊗ ψ 7−→ 〈〈ϕ, ψ〉〉 =
∫

ϕ ψ . (5.3.19)

For any p ≥ 3, we may augment the above with the compatible (p− 1)-bracket

`p−1 : E[−1]⊗p−1 −→ E[−1] , ϕ1 ⊗ · · · ⊗ ϕp−1 7−→ ϕ1 · · · ϕp−1 (5.3.20)
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given by the multiplication in the left H-module algebra A. In comparison with (5.1.15)

in the case of the fuzzy sphere, note that the symmetrisation simplifies to the expres-

sion in (5.3.20) due to the braided commutativity of the fuzzy torus algebra A. Simi-

larly to before, for degree reasons, `p−1 is only non-vanishing if each ϕi ∈ E[−1] is of

degree 1 in E[−1]. Using this, together with the fact that A is braided commutative,

we verify the braided graded antisymmetry property of `p−1,

`p−1(ϕ1, . . . , ϕp−1) = ϕ1 · · · ϕi ϕi+1 · · · ϕp−1

= ϕ1 · · · (Rα . ϕi+1) (Rα . ϕi) · · · ϕp−1

= −(−1)|ϕi | |ϕi+1| `p−1(ϕ1, . . . , Rα . ϕi+1, Rα . ϕi, . . . , ϕp−1) ,

(5.3.21)

for all i = 1, . . . , p− 2.

For the contracted coordinate functions, we consider the basis {ek ∈ A}k∈Z2
N

in-

troduced in (5.3.8). Using its properties listed in (5.3.10), the contracted coordinate

functions take the form

a = ∑
k∈Z2

N

e∗k ⊗ ek + ∑
k∈Z2

N

ẽ ∗k ⊗ ẽk ∈
(
(SymRE[1])⊗ E[−1]

)1 , (5.3.22)

where, as in the fuzzy sphere example from Section 5.1.1, the individual elements

live in the vector spaces ek ∈ E[−1]1, e∗k ∈ E[1]0, ẽk ∈ E[−1]2 and ẽ ∗k ∈ E[1]−1. The

interaction term (5.2.24) corresponding to a p-point interaction is then written out as

λ I =
λp−2

p!
〈〈a, `ext

p−1(a, . . . , a)〉〉ext (5.3.23a)

=
λp−2

p! ∑
k0,...,kp−1∈Z2

N

q∑i<j kiΘkj e∗k0
· · · e∗kp−1

〈〈ek0
, `p−1(ek1

, . . . , ekp−1
)〉〉

∈ (SymRE[1])0 ,

with the factors of q emerging from the braiding identity in (5.3.10). Again, as before,

the products of the elements e∗ki
in the second line are of the braided symmetric algebra

SymRE[1] and not A.

The constants

Ik0k1···kp−1
:= q∑i<j kiΘkj 〈〈ek0

, `p−1(ek1
, . . . , ekp−1

)〉〉 ∈ C (5.3.23b)
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can be written out explicitly by using (5.3.19), (5.3.20), (5.3.6) and (5.3.10), from which

one obtains

Ik0k1···kp−1
= q∑i<j kiΘkj

∫
ek0

ek1
· · · ekp−1

(5.3.23c)

= q∑i<j kiΘkj q−∑i<j ki2 k j1

∫
ek0+k1+···+kp−1

= q−∑i<j ki1 k j2 δk0+k1+···+kp−1,0 ,

where the double subscript notation denotes the components ki = (ki1, ki2) ∈ Z2
N for

i = 0, 1, . . . , p− 1. The constants Ik0k1···kp−1
satisfy the q-deformed symmetry property

Ik0k1···kiki+1···kp−1
= qkiΘki+1 Ik0k1···ki+1ki ···kp−1

(5.3.24a)

for any exchange of neighbouring indices. In particular, this implies the strict cyclicity

property

Ik0k1···kp−1
= Ik1···kp−1k0

(5.3.24b)

by further using momentum conservation imposed by the Kronecker delta-symbol

δk0+k1+···+kp−1,0.

braided strong deformation retract. For the remaining part of this sec-

tion, we will assume that m2 > 0. (The massless case m2 = 0 can be treated analo-

gously to the example on the fuzzy sphere in Section 5.1.1.) Since the spectrum of the

operator Q = ∆ + m2 is positive (see (5.3.9) for the spectrum of the Laplacian ∆), the

cohomology for the complex E[1] in (5.3.16) is trivial, i.e. H•(E[1]) ∼= 0. There is thus

a strong deformation retract

(0, 0) (E[1], Q)
ι=0

π=0
ξ=−G , (5.3.25)

where G is the inverse of Q = ∆ + m2, i.e. the Green operator, and ξ = −G is defined

to act as a degree −1 map on E[1]. The homotopy ξ acts on the (dual) basis e∗k ∈ E[1]0

as

ξ(e∗k ) = −G(e∗k ) = − 1
[k1]2q + [k2]2q + m2 ẽ ∗k ∈ E[1]−1 , (5.3.26)

where we have used the same notation as in (5.3.22) for the basis vectors. The strong

deformation retract (5.3.25) satisfies the H-equivariance and H-invariance conditions

of a braided strong deformation retract in the sense of Definition 5.2.8.
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correlation functions . We have now arrived at the point where we can com-

pute correlation functions. The braided strong deformation retract (5.3.25) extends to

the braided symmetric algebras. For any small H-invariant perturbation δ of the dif-

ferential Q on SymRE[1], we obtain from the homological perturbation lemma for

braided strong deformation retracts (Corollary 5.2.9) a deformed braided strong de-

formation retract

(
SymR0 ∼= C, 0

) (
SymRE[1], Q + δ

)
J̃

Π̃
Ξ̃ , (5.3.27)

where the tilded quantities are computed through the homological perturbation lemma,

see Theorem 4.3.7. Following the previous notation, we have denoted the extension

of the maps ι, π and ξ to the symmetric algebras by J := SymR ι, Π := SymR π

and Ξ := SymR ξ, respectively. The correlation functions can be computed via the

HCh-morphism

Π̃ = Π ◦
∞

∑
k=0

(δ Ξ)k . (5.3.28)

The relevant perturbations δ are of the form

δ = h̄ ∆BV + {λ I, · } , (5.3.29)

where ∆BV is the BV Laplacian (5.2.16) and λ I ∈ (SymRE[1])0 denotes the p-point

interaction term (5.3.23) for some p ≥ 3.

We wish to compute the n-point correlation functions 〈ϕ1 · · · ϕn〉 = Π̃(ϕ1 · · · ϕn) for

test functions ϕ1, . . . , ϕn ∈ E[1]0 of degree zero. Therefore, we need to understand how

the maps Π and δ Ξ act on elements ϕ1 · · · ϕn ∈ SymRE[1] with all ϕ1, . . . , ϕn ∈ E[1]0

of degree zero. The case of Π is simple,

Π(1) = 1 , Π(ϕ1 · · · ϕn) = 0 , (5.3.30)

for all n ≥ 1. In the case of δ Ξ = h̄ ∆BV Ξ + {λ I, · }Ξ, it is useful to individually

investigate the summands. For the first term, from the formula (5.2.16) for the BV

Laplacian, one finds

h̄ ∆BV Ξ
(

ϕ1 · · · ϕn
)
= −2 h̄

n ∑
i<j

〈
ϕi, Rαi+1 · · · Rαj−1 . G(ϕj)

〉
× ϕ1 · · · ϕ̂i (Rαi+1 . ϕi+1) · · · (Rαj−1 . ϕj−1) ϕ̂j · · · ϕn . (5.3.31)
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The second term can explicitly be expressed as

{
λ I, Ξ(ϕ1 · · · ϕn)

}
= − λp−2

(p− 1)! n

n

∑
i=1

∑
k0,...,kp−1∈Z2

N

(
ϕ1 · · · ϕi−1

× Ik0k1···kp−1

〈
e∗k0

, G(ϕi)
〉

e∗k1
· · · e∗kp−1

ϕi+1 · · · ϕn

)
, (5.3.32)

using the expression (5.3.23) for the p-point interaction term, together with its proper-

ties (5.3.24).

As in Section 5.1.1, the two expressions (5.3.31) and (5.3.32) can be visualised graph-

ically. Using n vertical lines to represent the element ϕ1 · · · ϕn, the map in (5.3.31) may

be depicted as

h̄ ∆BV Ξ
(

· · ·
)

= −2 h̄
n

(
· · · + · · · + · · · + · · ·

)
,

(5.3.33)

where the cap indicates a contraction of two elements with respect to
〈
· , G(·)

〉
. Note

that in the pictures that the right leg of the contraction is permuted using the sym-

metric braiding τR across intermediate vertical lines, leading to the correct R-matrix

insertions in (5.3.31). The map (5.3.32) may be drawn as

{
λ I , Ξ

(
· · ·

)}
= − λp−2

(p− 1)! n

( p− 1 legs
· · · + · · · + · · ·

p− 1 legs )
,

(5.3.34)

where the vertex acts on an element as ∑k0,...,kp−1∈Z2
N

Ik0k1···kp−1

〈
e∗k0

, G(·)
〉

e∗k1
· · · e∗kp−1

,

attaching p− 1 legs to a vertical line.

Example 5.3.3. We begin by computing the 4-point function

Π̃(ϕ1 ϕ2 ϕ3 ϕ4) = Π
(
(h̄ ∆BV Ξ)2(ϕ1 ϕ2 ϕ3 ϕ4)

)
(5.3.35)

of a non-interacting scalar field, i.e. I = 0. In our graphical notation, we compute

h̄ ∆BV Ξ
( )

= − h̄
2

(
+ + + + +

)
(5.3.36)

and

(h̄ ∆BV Ξ)2
( )

=
h̄2

2

(
2 + + + +

)
= h̄2

(
+ +

)
. (5.3.37)
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5.3 braided field theories on the fuzzy torus

The simplification in the last step works as follows. Using H-equivariance of the

paring { · , · } and the standard identity (S⊗ idH)R = R−1 = R21 (see (1.2.16b)) for a

triangular R-matrix, it follows that

=
〈

ϕ1, Rα . G(ϕ3)
〉 〈

Rα . ϕ2, G(ϕ4)
〉

=
〈

ϕ1, Rα . G(ϕ3)
〉 〈

ϕ2, S(Rα) . G(ϕ4)
〉

=
〈

ϕ1, Rα . G(ϕ3)
〉 〈

ϕ2, Rα . G(ϕ4)
〉

= , (5.3.38)

and so the second and the fifth term in the first line of (5.3.37) coincide, yielding the

second term in the second line. To show that the third and the fourth term in the

first line of (5.3.37) agree and hence yield the third term in the second line, we again

use H-equivariance of the pairing { · , · }, together with the third R-matrix property in

(1.2.15) and the normalization condition ε(Rα) Rα = 1 (see (1.2.16a)) to obtain

=
〈

ϕ1, Rα Rβ . G(ϕ4)
〉 〈

Rα . ϕ2, Rβ . G(ϕ3)
〉

=
〈

ϕ1, Rα . G(ϕ4)
〉 〈

Rα
1 . ϕ2, Rα

2 . G(ϕ3)
〉

=
〈

ϕ1, Rα . G(ϕ4)
〉

ε(Rα)
〈

ϕ2, G(ϕ3)
〉

=
〈

ϕ1, G(ϕ4)
〉 〈

ϕ2, G(ϕ3)
〉

= . (5.3.39)

The free 4-point function is hence given by

Π̃(ϕ1 ϕ2 ϕ3 ϕ4) = h̄2
(

+ +
)

= h̄2
(〈

ϕ1, G(ϕ2)
〉 〈

ϕ3, G(ϕ4)
〉

+
〈

ϕ1, Rα . G(ϕ3)
〉 〈

Rα . ϕ2, G(ϕ4)
〉

(5.3.40)

+
〈

ϕ1, G(ϕ4)
〉 〈

ϕ2, G(ϕ3)
〉)

. (5.3.41)

Observe that there is a single appearance of an R-matrix, corresponding to the line

crossing in the second term. Because our R-matrix is triangular, we do not have to

distinguish between over and under crossings, just as in the case of Oeckl’s symmetric

braided quantum field theory [Oec00]. O

Example 5.3.4. The next example we would like to compute is the 2-point function

Π̃
(

ϕ1 ϕ2
)
=

∞

∑
k=0

Π
(
(δ Ξ)k(ϕ1 ϕ2)

)
(5.3.42)
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5.3 braided field theories on the fuzzy torus

of Φ4-theory (i.e. we set p = 4) to the lowest non-trivial order in the coupling constant

λ. The graphical expansion (without simplifications) is completely analogous to the

computation on the fuzzy sphere Example 5.1.3,

Π̃
(

ϕ1 ϕ2
)
= −h̄ − λ2 h̄2

3! 4

(
2 + + + +

+ 2 + + + +
)
+O(λ4) (5.3.43)

= −h̄ − λ2 h̄2

3! 2

(
+ + + + +

)
+ O(λ4) . (5.3.44)

The simplifications in the last step use the same arguments as in Example 5.3.3, see in

particular (5.3.38) and (5.3.39).

There are further simplifications since one can show that all six loop contributions

coincide. To illustrate the arguments, we show how the second and the third loop dia-

grams agree with the first one. The other terms are rewritten using similar arguments.

For the second term, we have that

= ∑
k0,k1,k2,k3∈Z2

N

Ik0k1k2k3

〈
e∗k0

, G(ϕ1)
〉 〈

e∗k1
, G(Rα . e∗k3

)
〉 〈

Rα . e∗k2
, G(ϕ2)

〉
= ∑

k0,k1,k2,k3∈Z2
N

q−k2Θk3 Ik0k1k2k3

〈
e∗k0

, G(ϕ1)
〉 〈

e∗k1
, G(e∗k3

)
〉 〈

e∗k2
, G(ϕ2)

〉
= ∑

k0,k1,k2,k3∈Z2
N

Ik0k1k2k3

〈
e∗k0

, G(ϕ1)
〉 〈

e∗k1
, G(e∗k2

)
〉 〈

e∗k3
, G(ϕ2)

〉
= . (5.3.45)

In the first step we used the properties (5.3.10) of the (dual) basis e∗k and in the second

step the q-deformed symmetry property (5.3.24) of the interaction term. In the case of

the third term, we find

= ∑
k0,k1,k2,k3∈Z2

N

Ik0k1k2k3

〈
e∗k0

, G(ϕ1)
〉 〈

e∗k2
, G(e∗k3

)
〉 〈

e∗k1
, G(ϕ2)

〉
= ∑

k0,k1,k2,k3∈Z2
N

Ik0k1k2k3

〈
e∗k0

, G(ϕ1)
〉 〈

Rα1 . e∗k2
, G(Rα2 . e∗k3

)
〉 〈

Rα . e∗k1
, G(ϕ2)

〉
= ∑

k0,k1,k2,k3∈Z2
N

Ik0k1k2k3

〈
e∗k0

, G(ϕ1)
〉 〈

Rα . e∗k2
, G(Rβ . e∗k3

)
〉 〈

Rβ Rα . e∗k1
, G(ϕ2)

〉
= ∑

k0,k1,k2,k3∈Z2
N

Ik0k1k2k3

〈
e∗k0

, G(ϕ1)
〉 〈

e∗k1
, G(e∗k2

)
〉 〈

e∗k3
, G(ϕ2)

〉
= . (5.3.46)
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5.3 braided field theories on the fuzzy torus

In the first step we used H-equivariance of
〈
· , G(·)

〉
together with the normalization

condition Rα ε(Rα) = 1 (see (1.2.16a)). The second step follows from the second iden-

tity in (1.2.15), and the third step from applying the q-deformed symmetry property

(5.3.24) of the interaction term twice.

In summary, the 2-point function of Φ4-theory on the fuzzy torus to leading order

in the coupling constant reads as

Π̃
(

ϕ1 ϕ2
)
= −h̄ − λ2 h̄2

2
+ O(λ4)

= −h̄
〈

ϕ1, G(ϕ2)
〉
− λ2 h̄2

2 ∑
k,l∈Z2

N

〈
e∗k , G(ϕ1)

〉 〈
ek, G(ϕ2)

〉
[l1]2q + [l2]2q + m2 + O(λ4) ,

(5.3.47)

where we also used the explicit expression (5.3.26) for the Green operator to write out

the
〈
e∗k1

, G(e∗k2
)
〉

factor in the loop diagram. Note that in contrast to the traditional

(unbraided) approaches to noncommutative quantum field theory [IIKK00, MVRS00],

there is no distinction between planar and non-planar loop corrections. This is closely

tied with the braided commutativity property of the fuzzy torus algebra (5.3.2). In

particular, this automatically implies the braided (graded) antisymmetry of the higher

L∞-algebra brackets (5.3.20), without the need for graded antisymmetrization, just as

in the fuzzy sphere case (5.1.15). The absence of non-planar features in loop correc-

tions has similarly been observed by Oeckl in his framework of (symmetric) braided

quantum field theory [Oec00]. O

Example 5.3.5. We would like to emphasize that the disappearance of the q-factors

from the interaction term (5.3.23) in the loop diagram in (5.3.47) is only due to the

shape of that diagram and not a general feature of our formalism. To demonstrate this,

we again consider Φ4-theory and compute the connected part of the 4-point function

to the first non-trivial order in the coupling constant. Using the same arguments as

in the previous examples, in particular the q-deformed symmetry property (5.3.24) of

the interaction term, one finds

Π̃(ϕ1 ϕ2 ϕ3 ϕ4)connected = λ2 h̄3 + O(λ4) (5.3.48)

= λ2 h̄3 ∑
k0,k1,k2,k3∈Z2

N

Ik0k1k2k3

〈
e∗k0

, G(ϕ1)
〉 〈

e∗k1
, G(ϕ4)

〉 〈
e∗k2

, G(ϕ3)
〉 〈

e∗k3
, G(ϕ2)

〉
+ O(λ4) .
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5.3 braided field theories on the fuzzy torus

From the explicit expression (5.3.23c) for the constants Ik0k1k2k3
, we indeed see that this

correlation function includes the expected q-factors from the interaction term. O
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6
B V Q U A N T I S AT I O N O F D Y N A M I C A L F U Z Z Y S P E C T R A L

T R I P L E S

This chapter is based on [GNS22] and is dedicated to the study of so called dynamical

fuzzy spectral triple models through the BV formalism which was outlined in Section

4.3. This calls for a review of the theory of fuzzy spectral triples, which can be

found in Section 6.1 below. Having set up the underlying geometric concepts, we

proceed in Section 6.2 by describing the natural notion of gauge symmetries intrinsic

to the such geometries, and subsequently also describing the constituents of dynam-

ical fuzzy spectral triples. The nature of these allows for the use of the classical BV

formalism to obtain a P0-algebra of classical observables. This is covered in Section 6.3.

An adaptation of the BV quantisation and computation of correlators to this setting is

briefly outlined in Section 6.4. One of the goals of [GNS22] was to see if the gauge sym-

metry contributes to correlation functions for dynamical fuzzy spectral triples. This

is split up and investigated in two parts: perturbations around a trivial background

D0 = 0 in Section 6.5 and a non-zero background D0 6= 0 in Section 6.6.

6.1 fuzzy spectral triples

In this section, we will give a brief review of the concept of real spectral triples, which

is another approach to noncommutative Riemannian spin geometry. For more details,

we refer to e.g. [Con94, CM08, vanS15]. Associated to every commutative Rieman-

nian spin manifold M with metric g is a triple of spectral data (C∞(M), ΓL2(S), DM).

As usual, sweeping many details under the carpet, C∞(M) are the smooth functions

on M and ΓL2(S) is the Hilbert space of L2-spinors, i.e. the completion (under a

certain norm) of the square integrable sections of the spinor bundle S . The space
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6.1 fuzzy spectral triples

of spinors furthermore carries a C∞(M)-action, making it a C∞(M)-module. Lastly,

DM : ΓL2(S) → ΓL2(S) is the Dirac operator built from the spinorial data. A result

which motivates the definition of spectral triples is that one can recover the geodesic

distance from the Dirac operator. Expressed in this language, it takes the form

d(x, y) = sup
f∈C∞(M)

{| f (x)− f (y)| : ||[DM, f ]|| ≤ 1}. (6.1.1)

The spectral triple formalism generalises this to also include noncommutative function

algebras; a spectral triple (A,H, D) consists of a (possibly noncommutative) ∗-algebra1

A represented on a Hilbert space H and a self-adjoint operator D : H → H.

A spin manifold is further defined by a certain antiunitary operator JM : Γ(S) →

Γ(S) called the charge conjugation operator (the JM operators can be seen as the operators

which selects the spin structures among the spinc structures). Additionally, when M

is even dimensional, Γ(S) can be assigned a Z2-grading defined by an operator γM

known as the chirality operator. These two operators satisfy certain sign rules (related

to the theory of Clifford algebras), which will be outlined in the definition of a real

spectral triple. The given definitions will focus on the algebraic side of spectral triples

as in e.g. [BM17, BM20] and not touch upon the functional analytical aspects. This

has no impact in our considerations because we are mainly concerned with the finite

dimensional case.

Definition 6.1.1. A spectral triple (A,H, D) consists of a ∗-algebra A together with a

faithful ∗-representation2 ρ : A→ End(H) on a Hilbert space H with Hermitian inner

product 〈〈·, ·〉〉 and a self-adjoint operator D : H → H.

A real spectral triple (A,H, D; Γ, J) of KO-dimension s ∈ Z/8Z is a spectral triple

(A,H, D) equipped with a C-linear operator Γ : H → H called the chirality operator

and a C-antilinear operator J : H → H called the real structure such that

(i) Γ∗ = Γ and Γ2 = id

(ii) Γ ρ(a) = ρ(a) Γ for all a ∈ A

(iii) J is antiunitary, i.e. 〈〈J u, J v〉〉 = 〈〈v, u〉〉 for all u, v ∈ H

(iv) J2 = ε and J Γ = ε′′ Γ J

1 All algebras in this section will be over C unless stated otherwise.
2 I.e. ρ(a∗) = ρ(a)∗ for all a ∈ A, where ρ(a)∗ is the adjoint of ρ(a) in End(H).
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6.1 fuzzy spectral triples

(v) [ρ(a), J ρ(a) J−1] = 0 for all a, b ∈ A

(vi) D Γ = −Γ D for even s and D Γ = Γ D for odd s

(vii) J D = ε′ D J

(viii) [[D, ρ(a)], J ρ(b)J−1] = 0 for all a, b ∈ A.

The signs ε, ε′ and ε′′ depend on s and are given in the table below:

s 0 1 2 3 4 5 6 7

ε 1 1 −1 −1 −1 −1 1 1

ε′ 1 −1 1 1 1 −1 1 1

ε′′ 1 1 −1 1 1 1 −1 1

The operator D satisfying axioms (vi)-(viii) is called the Dirac operator.

The archetypical example is of course the canonical real spectral triple extracted

from a commutative Riemannian spin manifold. One might also ask if the converse

also works, i.e. if it is possible to obtain a Riemannian spin manifold from a given

real spectral triple (A,H, D; Γ, J) with A commutative. It turns out that under suitable

conditions, this is possible. This is known as Connes’ Reconstruction Theorem [Con13].

We will adopt the terminology used in [Bar15]. As the Dirac operators are the

objects containing the metric data in the case of commutative spectral triples, it is

motivated to consider them separately. Thus, a real spectral triple without the data of

a Dirac operator (and consequently, without axioms (vi)-(viii)), is called a fermion space

(A,H; Γ, J). Looking back at the definition of a Dirac operator in Definition 6.1.1, the

R-vector space of Dirac operators

D :=
{

D ∈ End(H) : D = D∗ and (vi)-(viii) are satisfied
}
⊆ End(H) (6.1.2)

is called the space of geometries or the Dirac ensemble corresponding to the fermion space

(A,H; Γ, J).

Remark 6.1.2. The left action of A on H via ρ : A→ End(H) gives H a left A-module

structure. The real structure J : H → H of a real spectral triple gives H a right

A-action which commutes with the left action: for ψ ∈ H and a ∈ A,

ψ · a := J ρ(a)∗ J−1 ψ . (6.1.3)

123



6.1 fuzzy spectral triples

By axiom (v) in Definition 6.1.1, the left and right actions commute. The right action

is well-defined precisely because of the involution ∗. M

Remark 6.1.3. Though we will not use it in this thesis, it is worth mentioning that

there is a notion of differential calculus associated to every spectral triple. Given a

spectral triple (A,H, D), the Connes’ differential one-forms is the A-bimodule

Ω1
D(A) :=

{
∑

k
ak [D, bk] : ak, bk ∈ A

}
(6.1.4)

with differential given by [D, ·] : A→ Ω1
D. M

We will now focus on the finite dimensional incarnations of real spectral triples. A

finite (real) spectral triple is a (real) spectral triple with finite dimensional Hilbert space

H. A standard result, see e.g. [vanS15] states that unital ∗-algebras A acting faithfully

on finite dimensional Hilbert spaces are automatically matrix algebras, i.e.

A ∼=
N⊕

i=1

Matni(C) (6.1.5)

for some N ∈ Z≥0. Finite spectral triples were classified by Krajewski in [Kra98]. In

this thesis, we are in particular interested in a special case of finite spectral triples

developed in [Bar15] called fuzzy spaces. The definition written below is a slightly

adapted version.

Before writing down the definition, let us briefly recall some concepts surrounding

real Clifford algebras, see e.g. [BT88, LM89], or [Bar15, vanS15] for a discussion in

the context of spectral triples. Consider Rn together with a (symmetric and nonde-

generate) bilinear form η : Rn ⊗Rn → R defined (after a choice of orthonormal basis

{ei}n
i=1) by the diagonal matrix (ηij) with p occurrences of +1 and q occurrences of −1

with n = p + q. The corresponding Clifford algebra Clp,q(R) is given by

Clp,q(R) = T(Rn)/〈v w + w v− 2 η(v⊗ w) 1〉 , (6.1.6)

where T(Rn) =
⊕

k≥0(R
n)⊗k denotes the tensor algebra of Rn. (Note that there is

a difference between the sign conventions here and in the Clifford relations (1.1.14)

in Definition 1.1.9. We choose this sign here in order to match with the discussions

in [Bar15].) These Clifford algebras depend to great extent on s = q − p mod 8

and are completely classified in terms of matrix algebras over R, C or H. A Clifford

module is a vector space V = Ck on which Clp,q(Rn) acts via a representation ρV :
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6.1 fuzzy spectral triples

Clp,q(Rn) → End(V) ∼= Matk(C). We further assume that V is equipped with the

standard Hermitian inner product which we denote by 〈·, ·〉. The matrices γ̂i := ρ(ei)

are called gamma matrices and the C-linear operator

γ̂ := i
s(s+1)

2 γ̂1 · · · γ̂n : V → V (6.1.7)

is called the chirality operator. Since

γ̂i γ̂j + γ̂j γ̂i = 2 ηij , (6.1.8)

one can show that γ̂2 = 1 and γ̂∗ = γ̂, where ∗ denotes the adjoint with respect to 〈·, ·〉,

i.e. Hermitian conjugation. In the case when n = p + q is even, there is one unique

(up to equivalence) irreducible representation of Clp,q(R). When n is odd, there are

two inequivalent irreducible representations V+ and V−, respectively characterised by

γ̂ = 1 and γ̂ = −1. Lastly, a real structure for the Clifford module V is an C-antilinear

operator C : V → V satisfying

(i) C2 = ε,

(ii) 〈Cv, Cw〉 = 〈w, v〉,

(iii) C γ̂i = ε′ γ̂i C.

From this, the sign ε′′ can be derived,

C γ̂ = ε′′ γ̂ C . (6.1.9)

The signs ε, ε′ and ε′′ are given in the table in Definition 6.1.1.

Definition 6.1.4. Let N ∈ Z>0 and V = Ck be a (p, q)-Clifford module with chirality

operator γ̂ : V → V and real structure C : V → V. For p + q even, assume V is

irreducible and for p + q odd, assume V = V+ ⊕ V−. A fuzzy space (or fuzzy spectral

triple) of type (p, q) is a finite real spectral triple (A,H, D; Γ, J) of KO dimension s =

q− p mod 8 with

(i) A = MatN(C) with the ∗-involution given by Hermitian conjugation,

(ii) H = MatN(C)⊗V = A⊗V,

(iii) 〈〈m⊗ v, m′ ⊗ v′〉〉〉 = Tr(m∗ m)〈v, v′〉, where Tr is the trace on A = MatN(C),
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6.1 fuzzy spectral triples

(iv) ρ(a)(m⊗ v) = a m⊗ v, i.e. matrix multiplication of a and m on the first tensor

factor,

(v) Γ(m⊗ v) = m⊗ γ̂ v,

(vi) J(m⊗ v) = m∗ ⊗ C v,

for all m⊗ v, m′ ⊗ v′ ∈ H and a ∈ A.

As before, a fuzzy spectral triple of type (p, q) without the data of a Dirac operator

will be called a (p, q)-fermion space (A,H; Γ, J).

Remark 6.1.5. Viewing Remark 6.1.2 in the context of fuzzy spaces,H = MatN(C)⊗V

is an A-bimodule with the right action of A = MatN(C) given simply by right matrix

multiplication,

J ρ(a)∗ J−1(m⊗ v) = m a⊗ v . (6.1.10)

M

The Dirac operators of fuzzy spaces can be concretely expressed in terms of prod-

ucts of gamma matrices and Hermitian and anti-Hermitian matrices. Let us denote

Hermitian matrices and anti-Hermitian matrices in MatN(C) by Hi and Lj, respectively.

Furthermore, we use the notation τi to represent Hermitian products of gamma ma-

trices and αj for anti-Hermitian products. There are two separate cases depending on

ε′. For ε′ = 1, the Dirac operator can be written as

D(m⊗ v) = ∑
i
[Li, m]⊗ αi v + ∑

j
{Hj, m} ⊗ τ jv . (6.1.11a)

For ε′ = −1, the Dirac operator takes the form

D(m⊗ v) = ∑
i
[Li, m]⊗ αi

− v + ∑
j
{Hj, m} ⊗ τ

j
−v

+ ∑
k
{Lk, m} ⊗ αk

+ v + ∑
l
[Hl , m]⊗ τl

+v , (6.1.11b)

where αi
+, τ

j
+ are products of even numbers of gamma matrices and αk

−, τl
− odd num-

bers of gamma matrices (apart from being Hermitian/anti-Hermitian as prescribed

above). In both cases of ε′, whenever s is even, one only has products of odd numbers

of gamma matrices.
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6.1 fuzzy spectral triples

Example 6.1.6. Let us begin with some simple examples [Bar15] for fuzzy spaces with

N ≥ 2. In the following, we will use c to denote complex conjugation of c ∈ C.

(i) (p, q) = (0, 0):

• Clifford module: V = C

• Real structure: C(c) = c

• Gamma matrices: none

• Chirality operator: γ̂ = 1

• Dirac operator: D = 0

(ii) (p, q) = (1, 0)

• Clifford module: V = C

• Real structure: C(c) = c

• Gamma matrices: γ̂1 = 1

• Chirality operator: γ̂ = 1

• Dirac operator: D = {H, · }

(iii) (p, q) = (0, 1)

• Clifford module: V = C

• Real structure: C(c) = c

• Gamma matrices: γ̂1 = − i

• Chirality operator: γ̂ = 1

• Dirac operator: D = − i [L, · ]

(iv) (p, q) = (2, 0)

• Clifford module: V = C2

• Real structure: C

c1

c2

 =

c1

c2


• Gamma matrices: γ̂1 =

1 0

0 −1

, γ̂2 =

0 1

1 0


• Chirality operator: γ̂ =

 0 i

− i 0
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• Dirac operator: D = {H1, · } ⊗ γ̂1 + {H2, · } ⊗ γ̂2

(v) (p, q) = (1, 1)

• Clifford module: V = C2

• Real structure: C

c1

c2

 =

c1

c2


• Gamma matrices: γ̂1 =

1 0

0 −1

, γ̂2 =

 0 1

−1 0


• Chirality operator: γ̂ =

0 1

1 0


• Dirac operator: D = {H, · } ⊗ γ̂1 + [L, · ]⊗ γ̂2

(vi) (p, q) = (0, 2)

• Clifford module: V = C2

• Real structure: C

c1

c2

 =

 c2

−c1


• Gamma matrices: γ̂1 =

 i 0

0 − i

, γ̂2 =

 0 1

−1 0


• Chirality operator: γ̂ =

0 1

1 0


• Dirac operator: D = [L1, · ]⊗ γ̂1 + [L2, · ]⊗ γ̂2

O

Example 6.1.7. One of the standard examples of noncommutative geometry is the

fuzzy 2-sphere [Mad92, GP95]. The fuzzy sphere can be realised as a fuzzy spectral

triple, as we shall outline here.

Recall from Section 5.1 that the function algebra for the fuzzy sphere is A ∼=

MatN+1(C). We will consider the fuzzy sphere as a fuzzy space of type (1, 3). For

more details, we refer to [Bar15]. To match with the notation used there, we make a

change of basis for su(2). Define eij := [ei, ej] = i εijk ek. The Lie bracket in the new

basis is [eij, ekl ] = δjk eil − δjl eik − δik ejl + δil ejk. Let Lij := ρ(eij). We now list the re-

maining data (without providing details). There is a procedure for obtaining Clifford

modules for all (p, q) using the ones in Example 6.1.6, see e.g. [Bar15, Section II.B].
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6.2 automorphisms and dynamical fuzzy spectral triples

The (1, 3) case is obtained here by first forming a (0, 3) Clifford module from the (0, 2)

and (0, 1) Clifford modules and then augmenting the (1, 0) instance with it. The (1, 3)

Clifford module is V = C4 with gamma matrices

γ̂0 =

 0 I2

I2 0

 , , γ̂i =

 0 −σi

σi 0

 , , i = 1, 2, 3, (6.1.12)

where σi are the Pauli matrices (1.1.33).3 The corresponding chirality operator is given

by

γ̂ = − i γ̂0 γ̂1 γ̂2 γ̂3 =

−I2 0

0 I2

 . (6.1.13)

The real structure is

C


c1

c2

c3

c4

 =


−c4

c3

−c2

c1

 . (6.1.14)

Finally, the Dirac operator for the fuzzy sphere is defined to be

DS2
N

:= IN+1 ⊗ γ̂0 +
1
2

3

∑
i,j=1

[Lij, · ]⊗ γ̂0 γ̂i γ̂j . (6.1.15)

O

Another example of a fuzzy space is the fuzzy torus, see Section 5.3. We refer

to [BGa19] for an extensive exposition of the subject in the context of fuzzy spectral

triples.

6.2 automorphisms and dynamical fuzzy spectral triples

There is a natural notion of automorphisms of (p, q)-fermion spaces. An automorphism

of a (p, q)-fermion space (A,H, 〈〈 · , · 〉〉, π, Γ, J) is a pair (ϕ, Φ) consisting of

3 It should be noted that by using the method mentioned above for constructing the (1, 3) Clifford module,

one obtains a slight difference in signs and ordering of the gamma matrices, namely γ1 = −γ̂3, γ2 = γ̂2

and γ3 = γ̂1 (here, γi denote the gamma matrices before any change of signs or reordering). This does

not influence any of the other formulas because the gamma matrices γ̂1, γ̂2 and γ̂3 anticommute. We

present them in this way in order to have a uniform notation and to follow the ordering of the Pauli

matrices in (1.1.33). This also matches with how the (1, 3) fuzzy space is presented in [Bar15, Section VI].
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6.2 automorphisms and dynamical fuzzy spectral triples

• a ∗-algebra automorphism ϕ : A→ A

• a left A-module automorphism Φ : H → H relative to ϕ, i.e. Φ(a h) = ϕ(a)Φ(h)

for all a ∈ A and h ∈ H such that it preserves the inner product 〈〈Φ( · ), Φ( · )〉〉 =

〈〈 · , · 〉〉, the chirality operator Γ Φ = Φ Γ and the real structure J Φ = Φ J.

In particular, the morphism Φ can be written out more explicitly by using the fact that

H = A⊗V is a free module and that the center of A = MatN(C) consists of complex

multiples of the unit 1. Then one can conclude that Φ is of the form

Φ(a⊗ v) = ϕ(a)⊗ T(v) , (6.2.1)

for all a⊗ v ∈ H, where T ∈ Aut(V) is an automorphism of the Clifford module V

which preserves the inner product 〈T( · ), T( · )〉 = 〈 · , · 〉, the chirality γ T = T γ and

the real structure C T = T C. Denoting the group resulting from the automorphisms T

by K ⊆ Aut(V), we conclude that the automorphism group of the (p, q)-fermion space

is isomorphic to the product group Aut(A)× K. The two factors carry the following

interpretations: The group Aut(A) acts on the underlying ∗-algebra and thus should

be thought of as the analogue to the diffeomorphism group in commutative differen-

tial geometry, whereas the group K ⊆ Aut(V) acts only on the Clifford module V

and therefore should be viewed as as global, i.e. A-independent, transformations of

spinors.

Definition 6.2.1. We call G := Aut(A)× K the gauge group of the (p, q)-fermion space

over A = MatN(C). This group acts from the left as automorphisms of the (p, q)-

fermion space

ρA : G × A −→ A , (ϕ, T, a) 7−→ ρA(ϕ, T)(a) = ϕ(a) , (6.2.2a)

ρH : G ×H −→ H , (ϕ, T, a⊗ v) 7−→ ρH(ϕ, T)(a⊗ v) = ϕ(a)⊗ T(v) . (6.2.2b)

The induced left adjoint action on the space of Dirac operators is given by

ρD : G ×D −→ D , (ϕ, T, D) 7−→ ρH(ϕ, T) ◦ D ◦ ρH(ϕ−1, T−1) , (6.2.3)

where ◦ denotes composition of maps.

Remark 6.2.2. A standard fact is that Aut(A) ∼= PU(N) := U(N)/U(1) is isomorphic

to the projective unitary group, see e.g. [vanS15, Example 6.3]. This isomorphism

is given by assigning to an element [u] ∈ PU(N) the automorphism ϕ[u] ∈ Aut(A)
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6.2 automorphisms and dynamical fuzzy spectral triples

defined by ϕ[u](a) = u a u∗, for all a ∈ A. Hence, the G-actions from Definition 6.2.1

can be presented more explicitly as ρA(ϕ[u], T)(a) = u a u∗ and ρH(ϕ[u], T)(a⊗ v) =

(u a u∗)⊗ T(v).

This isomorphic perspective facilitates the description of the infinitesimal gauge

transformations. Since the Lie algebra of the projective unitary group is su(N) ∼=

pu(N), the Lie algebra g of the gauge group G is given by a direct sum

g = su(N)⊕ k , (6.2.4)

where k denotes the Lie algebra of K ⊆ Aut(V).4 The Lie algebra actions induced by

the G-actions from Definition 6.2.1 can then explicitly be expressed as

ρA(ε⊕ k)(a) = [ε, a]A , (6.2.5a)

ρH(ε⊕ k)(a⊗ v) = [ε, a]A ⊗ v + a⊗ k(v) , (6.2.5b)

ρD(ε⊕ k)(D) = [ρH(ε⊕ k), D]End(H) , (6.2.5c)

for all ε ⊕ k ∈ g, where [ · , · ]A denotes the commutator on A and [ · , · ]End(H) the

commutator on End(H). M

The next objective is to choose an appropriate action S : D → R on the Dirac

ensemble D for a fixed (p, q)-fermion space (A,H, 〈〈 · , · 〉〉, π, Γ, J). A typical class

of such actions are the spectral actions, introduced first in [Con96] and later exam-

ined in more depth and generality in [CC97]. One well studied choice is the action

S(D) = TrEnd(H)(
g2
2 D2 + g4

4! D4), where g2, g4 ∈ R are constants and TrEnd(H) is the

trace on the endomorphisms of the Hilbert space H. This action was investigated

in [BG16] due to its simplicity, as well as in [BDG19, KP21a]. There have also been

later studies of more general actions of the form S(D) = TrEnd(H)( f (D)), where f is

a real-valued polynomial in [PS19, HKP21, KP21b] and even more general multi-trace

actions appeared in [AK19]. In our case, for the majority of the time, we can work in

the more general setting given in the below definition, without making any specific

choices of actions. Let D∨ denote the dual to the real vector space D and SymD∨ its

symmetric algebra. Observe that SymD∨ is (isomorphic to) the algebra of polynomial

functions on D.

Definition 6.2.3. An action S : D → R is a gauge-invariant and real-valued polynomial

function on the space of Dirac operators, or equivalently a G-invariant element S ∈

SymD∨.

4 Recall that elements ε ∈ su(N) ⊆ MatN(C) are anti-Hermitian and trace-free N × N-matrices.
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6.3 classical bv formalism of dynamical fuzzy spectral triple models

Recall that the BV formalism treats field theories perturbatively. We will end this

section by briefly discussing the perturbative approach to dynamical fuzzy spectral

triples. First, we choose an action S ∈ SymD∨ and an exact solution D0 ∈ D of its

Euler-Lagrange equations. Then we may consider formal perturbations

D = D0 + λ D̃ (6.2.6)

of the Dirac operator, where λ is a formal parameter and the perturbation D̃ ∈ D is

an element of the same vector space D. The perturbation D̃ is considered as the dy-

namical field in this perturbative treatment. The infinitesimal gauge transformations

(6.2.5) of the perturbation then take the form

ρ̃D(ε⊕ k)(D̃) = [ρH(ε⊕ k), D0]End(H) + λ [ρH(ε⊕ k), D̃]End(H) . (6.2.7)

Note that they act through a combination of a linear transformation [ρH(ε⊕ k), D̃]End(H)

and an inhomogeneous one [ρH(ε⊕ k), D0]End(H) that depends on the background so-

lution D0.5 We then define the induced action for the perturbation D̃ as

S̃(D̃) :=
1

λ2

(
S(D0 + λ D̃)− S(D0)

)
. (6.2.8)

The subtraction of the constant term S(D0) is a convenient choice since it ensures

that S̃ is a sum of monomials of degree ≥ 2; the degree 1 term vanishes because

D0 is a solution of the Euler-Lagrange equations for the original action S. The role

of the normalisation 1
λ2 is to make sure that the quadratic term in S̃ is of order λ0.

By construction, the action S̃ ∈ SymD∨ is invariant under the infinitesimal gauge

transformations (6.2.7).

6.3 classical bv formalism of dynamical fuzzy spectral triple mod-

els

In contrast to the description of the BV formalism in Section 4.3, the classical BV for-

malism starts from (in some sense) the more primitive data of a space of fields, in-

finitesimal gauge symmetries and a gauge invariant action, and associates to that the

corresponding P0-algebra of classical observables. Subsequently, we will utilise the

5 Note that this is the same form as in e.g. Yang-Mills theory, where the infinitesimal gauge transforma-

tions χ ∈ C∞(M, g) act on connection one-forms A ∈ Ω1(M, g) via δχ(A) = dχ + [χ, A], where d is the

de Rham differential.
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6.3 classical bv formalism of dynamical fuzzy spectral triple models

formalism in Section 4.3 to quantise the theory and compute correlation functions.

In this section, we will predominantly be concerned with constructing the classical

observables for the perturbative dynamical fuzzy spectral triple models from Section

6.2. We will use the systematic techniques from [BSS21] without delving to far into

the details as that would require substantial coverage of derived geometry, which is

beyond the scope of this thesis. For a fixed (p, q)-fermion space (A,H, 〈〈 · , · 〉〉, π, Γ, J),

the classical observables can be constructed by specialising the general construction

from there to the following input data:

• The real vector space D (i.e. the Dirac ensemble of the fixed (p, q)-fermion space)

of perturbations D̃ of a given background Dirac operator D0 which is an exact

solution to the Euler-Lagrange equations of an action S. The space D serves as

the space of fields.

• The infinitesimal gauge symmetries given by the Lie algebra g = su(N)⊕ k of

the gauge group from Definition 6.2.1 acting on the fields according to (6.2.7).

• The g-invariant action S̃ defined in (6.2.8), which determines the perturbative

dynamics.

From the above data, we will construct the P0-algebra of interacting classical observ-

ables (4.3.13)

Obscl,int = (SymL, d, { · , · }) (6.3.1)

where have used the notation L = E[1]. We have also denoted the differential by

d := Qint to emphasise the slight shift of perspective; instead of starting from the

free theory, we immediately obtain the interacting theory. Using the general results

in [BSS21, Section 7], we obtain the underlying graded commutative algebra SymL of

the BV formalism for this model with

L := g[2]⊕D[1]⊕D∨ ⊕ g∨[−1] . (6.3.2)

In order to obtain a more concrete description, we choose a dual pair of vector space

bases{
ea ∈ D

}dimD
a=1 ,

{
f a ∈ D∨

}dimD
a=1 ,

{
ti ∈ g

}dim g

i=1 ,
{

θi ∈ g∨
}dim g

i=1 (6.3.3)

for D and D∨ and for g and g∨. Then SymL is the graded commutative algebra

generated by the generators ti in degree −2, ea in degree −1, f a in degree 0 and θi

133



6.3 classical bv formalism of dynamical fuzzy spectral triple models

in degree 1. The physical interpretation of the generators is as follows: θi are linear

observables for the ghost field c ∈ g, f a are linear observables for the field D̃ ∈ D, ea

are linear observables for the antifield D̃+ ∈ D∨, and ti are linear observables for the

antifield for the ghost c+ ∈ g∨.

The differential d in (6.3.1) is abstractly given as the totalisation of an internal differ-

ential and the Chevalley-Eilenberg differential (see [BSS21, Section 7]). It is convenient

to describe it in terms of the generators. With respect to our choice of bases, the Lie

bracket on g and the Lie algebra action (6.2.7) are characterised by structure constants

and we write

[ti, tj] = λ f k
ij tk , ρ̃D(ti)(ea) = βb

i eb + λ gb
ia eb , (6.3.4)

where βb
i describes the inhomogeneous term (depending on D0) in (6.2.7) and gb

ia the

linear term. Here, and for the rest of the chapter, we employ the standard summation

convention, i.e summation is understood over repeated indices. The action S̃ given in

(6.2.8) can also be expanded in terms of the basis

S̃ = ∑
n≥2

λn−2

n!
Sa1···an f a1 · · · f an ∈ SymD∨ , (6.3.5)

which starts at n = 2 because the background Dirac operator D0 is assumed to be an

exact solution of the Euler-Lagrange equations of the given action S. The coefficients

Sa1···an vanish for n greater than the polynomial degree of S̃. The differential d in

(6.3.1) is then determined by the graded Leibniz rule and the following action on the

generators

dti = βa
i ea + λ ga

ib ea f b − λ f k
ij tk θ j , (6.3.6a)

dea = ∑
n≥2

λn−2

(n− 1)!
Saa2···an f a2 · · · f an − λ gb

ja eb θ j , (6.3.6b)

d f a = −βa
j θ j − λ ga

jb f b θ j , (6.3.6c)

dθi = −λ

2
f i
jk θ j θk . (6.3.6d)

Note that the differential encodes both the equation of motion and the gauge symme-

tries, which is a feature of the BV formalism. The nilpotency d2 = 0 follows from Lie

algebra representation identities for the structure constants f k
ij, gb

ia and βa
i and gauge

invariance of the action S̃.
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6.3 classical bv formalism of dynamical fuzzy spectral triple models

In order to describe the antibracket { · , · } of (6.3.1), we use the canonical (−1)-

shifted symplectic structure of the dg-algebra (SymL, d) which in our case takes the

form

ω = ddRea ∧ ddR f a − ddRti ∧ ddRθi . (6.3.7)

Here, ddR denotes the de Rham differential. The (−1)-shifted symplectic structure

is nondegenerate and both d-closed and ddR-closed. The antibracket is the shifted

Poisson structure dual to ω. It is concretely defined by

{a, b} := ιa H ιb Hω , (6.3.8)

for all a, b ∈ Obscl, where ι denotes the contraction between vector fields and forms,

and aH is the shifted Hamiltonian vector field defined by ddRa = ιa Hω. One can show

that the antibracket satisfies the required graded antisymmetry property, the graded

Jacobi identity, the derivation property and compatibility with the differential, see

Remark 4.3.4 for the explicit formulas. As a result of these properties, the antibracket

is completely determined by its value on the generators,

{ti, θ j} = δ
j
i = −{θ j, ti} , {ea, f b} = −δb

a = −{ f b, ea} , (6.3.9)

and zero otherwise. We have thus constructed the P0-algebra of (interacting) classical

observables (6.3.1) for dynamical fuzzy spectral triples models.

Remark 6.3.1. For the purpose of putting the above considerations in a context, we

make a few brief comments surrounding differential forms in this setting. The SymL-

module of 1-forms Ω1
SymL

∼=
(
SymL

)
⊗ L (the underlying concept is that of Kähler

differentials) has a basis consisting of ddRti, ddRea, ddR f a and ddRθi which we for now

collectively denote by dxµ. Higher differential forms Ω•SymL are as usual built using

the wedge product, which satisfies α ∧ α′ = (−1)|α| |α
′|+p p′α′ ∧ α, where α and α′ are

differential forms of form degree p and p′ respectively. As before, | · | denotes the coho-

mological degree. In our conventions, the differential d and the de Rham differential

ddR commute, d ddR = ddR d (hence Ω•SymL forms a so called double complex).

In order to fix the signs, let us also swiftly write down the definition of the contrac-

tion operation. Dual to the 1-forms are the tangent vector fields TSymL ∼=
(
SymL

)
⊗

L∨. Let us denote the dual basis by ∂µ. Then the contraction is a SymL-linear map

ι : TSymL ⊗Ω•SymL −→ Ω•SymL , X⊗ α 7−→ ι(X⊗ α) := ιXα (6.3.10)
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6.3 classical bv formalism of dynamical fuzzy spectral triple models

defined by ι∂µ
dxν = δµ

ν and ι∂µ
1 = 0 such that the Leibniz rule is satisfied:

ιX(α ∧ α′) =
(
ιXα
)
∧ α′ + (−1)|X| |α|−pα ∧

(
ιXα′

)
(6.3.11)

for homogeneous X ∈ TSymL, homogeneous α ∈ Ωp
SymL, and α′ ∈ Ω•SymL. M

Remark 6.3.2. Let us rewrite what we have developed so far in this section in an

equivalent description commonly found in the literature, namely the BV action. The

BV extension of the action in (6.3.5) reads explicitly as

SBV = ∑
n≥2

λn−2

n!
Sa1···an f a1 · · · f an − λ ga

i b ea f b θi − λ

2
f k
ij tk θi θ j − βa

i ea θi . (6.3.12)

From the properties of the antibracket (Remark 4.3.4), one shows that the differential

(6.3.6) is given by

d = {SBV, · } . (6.3.13)

In fact, from here we see that the interacting part of d (i.e. the terms of order λ≥1)

indeed is given by {λ, I, · } with I ∈ (SymL)0, matching with how interactions are

treated in Section 4.3.1. The square-zero condition d2 = 0 for the differential is equiv-

alent to the classical master equation (4.3.19)

{SBV, SBV} = 0 (6.3.14)

for the BV action. M

In order to implement the formalism in Section 4.3, we extract the free part of

the classical observables (6.3.1) and treat interactions and subsequent quantisation as

perturbations. This means that we split the differential (6.3.6) into

d = dfree + λ dint (6.3.15)

where dfree is the part of the differential obtained by setting λ = 0 in (6.3.6). By

definition, dfree is linear in the generators. Hence the classical free observables (see

(4.3.10))

Obsfree :=
(
SymL, dfree, { · , · }

)
=
(
Sym(L, dfree), { · , · }

)
(6.3.16a)

are given by the symmetric algebra of the cochain complex

(L, dfree) =
(
g[2] dfree

// D[1] dfree
// D∨ dfree

// g∨[−1]
)

. (6.3.16b)

(The cochain complex (L, dfree) corresponds to the cochain complex (E[1], Q) in (4.3.10).)

Explicitly, the action of the differential on the vector space bases (6.3.3) reads as

dfreeti = βa
i ea , dfreeea = Sab f b , dfree f a = −βa

j θ j , dfreeθi = 0 . (6.3.16c)
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6.4 bv quantisation and correlators

6.4 bv quantisation and correlators

We now have everything set up for the procedure outlined in Section 4.3 for quanti-

sation and computation of correlation functions. We recall some of the parts here in

order to set up the notation. For BV quantisation, recall that we deform the differential

along the antibracket via the BV Laplacian (4.3.15). The quantum observables for the

interacting theory (4.3.21) are thus given by

Obsint,h̄ :=
(
SymL, dh̄ := dfree + λ dint + h̄ ∆BV

)
. (6.4.1)

The correlation functions can be computed by choosing a strong deformation retract

(see Definition 4.3.6)

(
H•(L, dfree), 0

)
(L, dfree)

ι

π
ξ (6.4.2)

of the cochain complex (L, dfree) onto its cohomology and running the machinery in

Section 4.3.3. The n-point correlation function is computed perturbatively in λ and h̄

from the formula (4.3.38), repeated here

〈ϕ1 · · · ϕn〉 =
∞

∑
k=0

Π
((

δ Ξ
)k (

ϕ1 · · · ϕn
))
∈ Sym H•(L, dfree) , (4.3.38)

where δ = λ dint + h̄ ∆BV. The maps Π and Ξ are the extensions of π and ξ to the

symmetric algebras, described in (4.3.32) and around (4.3.34) respectively. As before,

one can use graphical tools to compute the correlation functions, which we will see in

the upcoming sections.

6.5 perturbations around D0 = 0

In this section we will investigate perturbations around the zero Dirac operator D0 = 0

and provide some general results for this case. We fix an arbitrary (p, q)-fermion space

over A = MatN(C) and consider any gauge-invariant polynomial action of the form

S(D) =
g2

2
TrEnd(H)

(
D2)+ Sint(D) , (6.5.1)

where g2 6= 0 is a non-zero constant and the interaction term Sint is a sum of mono-

mials of degree ≥ 3. Observe that the zero Dirac operator D0 = 0 is an exact solution

to the Euler-Lagrange equations of this action and hence an admissible choice for
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background Dirac operator. Furthermore, the quadratic term in the action (6.5.1) is

nondegenerate: the complex vector space End(H) can be equipped with the Hermi-

tian inner product 〈B, B′〉 := TrEnd(H)(B∗ B′), for all B, B′ ∈ End(H), which restricts to

a real inner product on the real subspace D ⊆ End(H) of Dirac operators (6.1.2). The

nondegeneracy of the quadratic term will lead to a particularly simple propagator.

Having fixed the (p, q)-fermion space means we have also fixed the Dirac ensemble

of perturbations and the gauge Lie algebra (6.2.4). Having also chosen the action, we

now have the ingredients for running the classical BV formalism of Section 6.3, setting

up for quantisation and computation of correlation functions following Section 6.4.

We first describe the free theory. From the definition of the structure constants 6.3.4,

we see that for D0 = 0 the constants βa
i = 0 vanish, hence the cochain complex of

linear observables simplifies to

(L, dfree) =
(
g[2] 0 // D[1] dfree

// D∨ 0 // g∨[−1]
)

, (6.5.2)

where we recall that dfreeea = Sab f b is controlled by the quadratic term of the ac-

tion. The nondegeneracy of the quadratic term in the action (6.5.1) implies that Sab is

invertible. Hence the cohomology of the complex is

H•(L, dfree) = g[2]⊕ g∨[−1] . (6.5.3)

The other piece of data we need to feed into the formalism is a choice of strong

deformation retract (6.4.2). For this, we choose

π :



ti 7→ ti

ea 7→ 0

f a 7→ 0

θi 7→ θi

, ι :


ti 7→ ti

θi 7→ θi
, h :



ti 7→ 0

ea 7→ 0

f a 7→ −Sab eb

θi 7→ 0

, (6.5.4)

where Sab denotes the inverse of Sab, i.e. SabSbc = δa
c = ScbSba. (The relevant properties

of Definition 4.3.6 are straightforward to confirm.)

We now have all the building blocks to compute the quantum correlation functions

for our model. Let us collect the relevant information about the maps appearing in

(4.3.38):
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(i) The cochain homotopy Ξ is defined by (4.3.34) together with its action on gener-

ators (6.5.4). The relevant direct sum decomposition (4.3.33) is in this case given

by

L = L⊥ ⊕H•(L, dfree) =
(
D[1] dfree

// D∨
)
⊕
(
g[2]⊕ g∨[−1]

)
. (6.5.5)

(ii) The small perturbation of the differential is given by δ = λ dint + h̄ ∆BV. The

interaction part of the differential, dint, is defined by the graded Leibniz rule

and the order λ≥1 terms in (6.3.6). The BV Laplacian ∆BV is defined by (4.3.15)

and (6.3.9).

(iii) The dg-algebra map Π is given by (4.3.32) and its action on the generators (6.5.4).

To make the computations of the correlation functions (4.3.38) more tractable, we

introduce a graphical notation. We denote elements ϕ1 · · · ϕn ∈ Sym(L) by n vertical

lines, where each ϕi ∈ L. Since we have four different field species (fields, ghosts,

antifields and antifields for ghosts) distinguished by their cohomological degree in L,

we need four different types of lines

ti = , ea = , f a = , θi = . (6.5.6)

The action of the cochain homotopy Ξ on n lines can be expressed via (4.3.34) as a sum

of actions on the individual lines. We would like to emphasize that, because of the

direct sum decomposition (6.5.5), the number n in (4.3.34) counts only the number of

wiggly and straight lines, i.e. there are no contributions to n from dashed and dotted

lines. From (6.5.4), we observe that the homotopy Ξ is only non-zero when acting on

f a, which we depict as

Ξ
( )

= . (6.5.7)
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The interaction part of the differential acting on n lines can be written as a sum of

actions on the individual lines due to the (graded) Leibniz rule. The action on a single

line may be depicted as interaction vertices

λ dint
( )

= λ + λ , (6.5.8a)

λ dint
( )

= ∑
n≥3

λn−2

(n− 1)!

n−1 legs
· · ·

+ λ , (6.5.8b)

λ dint
( )

= λ , (6.5.8c)

λ dint
( )

= λ . (6.5.8d)

The diagrams should be read from bottom to top and the numerical values are given in

(6.3.6). Because the lines represent elements in the graded symmetric algebra SymL,

any two neighbouring lines can be permuted up to a Koszul sign determined by their

cohomological degree. For the BV Laplacian, its action on n lines can be reduced

to a sum of pairings between two lines by using the algebraic properties in (4.3.15).

Taking into account (6.3.9), we see that the only non-vanishing terms are the ones with

pairing between ti and θ j and when pairing between ea and f b. We will depict such

pairings as

h̄ ∆BV

( )
= h̄ , h̄ ∆BV

( )
= h̄ . (6.5.9)

Similarly to before, the ingoing lines can be permuted (in this case, the Koszul signs

are trivial). Finally, according to (4.3.32) the dg-algebra map Π acts on n lines as a

product of actions on individual lines, evaluating them to their cohomology classes

(6.5.4). This is only non-zero for ti and θi, which we will depict by

Π
( )

= , Π
( )

= . (6.5.10)

Remark 6.5.1. In comparison with [NSS21] and Chapter 5, note that there is a differ-

ence to how we approach the graphical calculus. In that case, there were fewer field

species and the homotopy was only non-trivial on ϕ ∈ E[1]0 = L0 (which will not be

the case in the next section), allowing for a significantly simpler graphical presenta-

tion. M
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6.5 perturbations around D0 = 0

Example 6.5.2. Let us study the case of an action with quartic interaction term (i.e.

the n = 4 term is the only non-trivial summand in (6.5.8b)) and the 2-point correlation

function

〈ϕ1 ϕ2〉 =
∞

∑
k=0

Π
(
(δΞ)k(ϕ1 ϕ2

))
, ϕ1, ϕ2 ∈ L0 = D∨ , (6.5.11)

on two generators in degree 0 to the lowest non-trivial order in the formal parameter

λ. This will be computed by iteratively applying δΞ. The first iteration is given by

δΞ
(

ϕ1 ϕ2
)
=

1
2

δ
(

+
)

=
h̄
2

(
+

)
+

λ2

3! 2
+

λ

2
− λ

2

+
λ

2
+

λ2

3! 2
+

λ

2

= h̄ +
λ2

3! 2

(
+

)

+
λ

2

(
− + +

)
. (6.5.12)

The negative sign in the second equality is a Koszul sign due to δ = λ dint + h̄ ∆BV

being a map of cohomological degree 1. In the third equality, we have sorted the

interaction terms according to their power in λ. The term of order h̄ is simplified as a

consequence of the identity

= ∆BV
(
ξ(ϕ1) ϕ2

)
= −{ξ(ϕ1), ϕ2} = {ϕ1, ξ(ϕ2)} = ∆BV

(
ϕ1 ξ(ϕ2)

)
= ,

(6.5.13a)

where the middle step is checked on basis elements

−{ξ( f a), f b} = Sac {ec, f b} = −Sab = −Sba = −Sbc{ f a, ec} = { f a, ξ( f b)}

(6.5.13b)

by using (6.3.9), (6.5.4) and symmetry of Sab.
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6.5 perturbations around D0 = 0

The subsequent calculations are performed using similar arguments as well as the

fact that the interaction term Sa1a2a3a4 is symmetric under the exchange of indices. As

a result, the second iteration is given by

(δΞ)2(ϕ1 ϕ2
)
=

h̄ λ2

8

(
+ + +

)

+
λ2

4

(
− +

+ − +

+ − +

+ − +

)

+ O(λ3) (6.5.14)

and the third by

(δΞ)3(ϕ1 ϕ2
)
=

h̄2λ2

2
+ O(λ3) . (6.5.15)

By applying Π to these expressions we obtain the 2-point function to order λ2,

〈ϕ1 ϕ2〉 = h̄ +
h̄2λ2

2
+ O(λ3) . (6.5.16)

Observe that neither the ghosts nor the antifields for ghosts contribute to the 2-point

function at order λ2. It turns out that in the case of perturbations around the zero

Dirac operator D0 = 0, this is true for all n-point functions of degree zero observables,

all interaction terms and to all orders of the perturbation series. O

Proposition 6.5.3. Consider an arbitrary (p, q)-fermion space over A = MatN(C) and any

gauge-invariant action of the form (6.5.1). Then, for perturbations around the zero Dirac op-

erator D0 = 0, all n-point quantum correlation functions 〈ϕ1 · · · ϕn〉 for degree 0 observables

ϕ1, . . . , ϕn ∈ L0 = D∨ do not receive contributions from ghosts and antifields for ghosts.
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6.6 example for D0 6= 0: the quartic (0, 1)-model

Proof. The proof is a simple argument using our graphical calculus. Starting from

n straight lines, representing the element ϕ1 · · · ϕn ∈ Sym(L), one observes by di-

rect inspection that iterated applications of δΞ do not include any dotted (antifield

for ghost) lines due to the explicit form of the interaction vertices (6.5.8) and of the

cochain homotopy (6.5.7). Because δΞ is of cohomological degree 0, the element

(δΞ)k(ϕ1 · · · ϕn) ∈ Sym(L) is of cohomological degree 0 too, hence together with

the previous observation it must contain an equal number of dashed (ghost) lines and

wiggly (antifield) lines. Applying the dg-algebra homomorphism Π and using that it

gives zero on every wiggly line, it follows that only those terms with no ghost lines

contribute to the correlation function 〈ϕ1 · · · ϕn〉 = ∑∞
k=0 Π

(
(δΞ)k(ϕ1 · · · ϕn)

)
. This

completes the proof.

6.6 example for D0 6= 0: the quartic (0, 1)-model

Having studied perturbations around the zero Dirac operator D0 = 0, we now would

like to consider the case when the background Dirac operator D0 6= 0 is non-zero.

This will be performed in the simplest dynamical spectral triple model, the so called

(0, 1)-model from [Bar15], and we will choose to work with a specific action. We shall

see that the quantum correlation functions are even in this primitive case dependent

on the ghosts and antifield for ghosts. In fact, as opposed to the case when D0 = 0 as

in Proposition 6.5.3, it will become evident as one works through the computational

details that this is a general feature of any model for perturbations around non-zero

backgrounds D0 6= 0 that breaks some of the gauge symmetries. (Note that the zero

Dirac operator D0 = 0 is gauge invariant under (6.2.5).)

the (0, 1)-model . We begin by recalling and collecting some relevant details of

the (0, 1)-model from [Bar15, BG16], of which some can be found in Example 6.1.6

(iii). The (0, 1)-fermion space (see Section 6.1) over A = MatN(C) consists of the

Hilbert space H = A, on which A acts via left multiplication, with inner product

〈〈a, a′〉〉 = TrA(a∗a′), chirality operator Γ(a) = a and real structure Γ(a) = a∗. The

Dirac operators (in the sense of Definition 6.1.1) are of the form

D = − i [L, · ] , (6.6.1)
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6.6 example for D0 6= 0: the quartic (0, 1)-model

where L ∈ MatN(C) is a trace-free anti-Hermitian N × N-matrix. The Dirac ensemble

of the (0, 1)-fermion space can therefore be identified as (the underlying real vector

space of) the Lie algebra su(N) of anti-Hermitian and trace-free N × N-matrices.

D ∼= su(N) . (6.6.2)

Taking Remark 6.2.2 into consideration, we see that the Lie algebra of infinitesimal

gauge transformations of this model is given by

g = su(N) , (6.6.3)

whose action on the Dirac ensemble is given by the Lie bracket of su(N), i.e.

ρD : g×D −→ D , (ε, L) 7−→ ρD(ε)(L) = [ε, L] . (6.6.4)

Our choice of action is the gauge invariant quartic action S(D) = TrEnd(H)

( g2
2 D2 +

g4
4! D4) under the assumption that g2 < 0 is negative and g4 > 0 is positive in order to

obtain a “symmetry-breaking potential”. We may without loss of generality assume

that g2 = −1 by rescaling the Dirac operator D. By inserting (6.6.1) into this action

and also using that L is trace-free, we may rewrite the action S as a function of L (see

also e.g. [BG16, Appendix A.2] for some useful identities),

S(L) = N TrA(L2) +
g4

4!

(
2 N TrA(L4) + 6

(
TrA(L2)

)2
)

. (6.6.5)

By varying this action with respect to L,

δS(L) = TrA

[
δL
(

2 N L +
g4

4!
(
8 N L3 + 24 L TrA(L2)

))]
, (6.6.6a)

we obtain the Euler-Lagrange equation

L +
g4

3!

(
L3 − 1

N
TrA(L3) +

3
N

L TrA(L2)
)

= 0 . (6.6.6b)

Note that the term TrA(L3) in (6.6.6b) arises due to the fact that the variation δL is

trace-free, hence the big round bracket in (6.6.6a) must be projected onto the space of

trace-free and anti-Hermitian matrices. Indeed, this becomes evident by decomposing

L3 =
(

L3 − 1
N TrA(L3)

)
+ 1

N TrA(L3) into its trace and trace-free parts in (6.6.6a).

Next, we need to find a non-trivial solution D0 6= 0 which we will perturb around.

For this, we consider the case for even N and the simple exact solution

L0 = i κ

1N/2
0

0 −1N/2

 , κ :=

√
3

2 g4
(6.6.7)
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6.6 example for D0 6= 0: the quartic (0, 1)-model

of (6.6.6b), which we have written in block matrix notation. This background solution

is enough to illustrate the main features; we shall see that it breaks the g = su(N)

gauge symmetry down to a Lie subalgebra. To this end, writing the Lie algebra

elements in block matrix notation

ε =

 ε1 ε3

−ε∗3 ε2

 ∈ g = su(N) , (6.6.8)

we check that the Lie algebra action (6.6.4) on L0 results in

ρD(ε)(L0) = [ε, L0] = −2 i κ

 0 ε3

ε∗3 0

 . (6.6.9)

From here, we see that the su(N) gauge symmetry is indeed broken down to the Lie

subalgebra g0 ⊂ g = su(N) stabilising the background (6.6.7), whose elements are of

the form

ε =

ε1 0

0 ε2

 ∈ g0 ⊂ g = su(N) . (6.6.10)

We will later make use of the linearisation around L0 of the Euler-Lagrange equation

(6.6.6b)

P(L̃) := −1
2

L̃ +
g4

3!
L0 [L̃, L0] +

g4

N
L0 TrA(L̃ L0) = 0 , (6.6.11a)

which in block matrix notation explicitly reads as

P(L̃) = −1
2

L̃1 0

0 L̃2

− 3
2N

Tr(L̃1 − L̃2)

1N/2 0

0 −1N/2

 , (6.6.11b)

where the unadorned trace Tr is over N/2× N/2-matrices. Furthermore, the perturbed

action (6.2.8) around L0 can be written as

S̃(L̃) = −N
4

TrA(L̃2) +
g4

4!

(
4 N TrA(L0 L̃ L0 L̃) + 24

(
TrA(L0 L̃)

)2
)

+
λ g4

4!

(
8 N TrA(L0 L̃3) + 24 TrA(L0 L̃)TrA(L̃2)

)
+

λ2 g4

4!

(
2 N TrA(L̃4) + 6

(
TrA(L̃2)

)2
)

. (6.6.12)

the complex of linear observables . In what follows, we will explicitly de-

scribe the complex of linear free observables (6.3.16). First, recall that D ∼= su(N) and

g = su(N). Hence, utilising the Killing form 2N TrA(X Y), for X, Y ∈ su(N), we may
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6.6 example for D0 6= 0: the quartic (0, 1)-model

also identify D∨ ∼= su(N) and g∨ ∼= su(N). The cochain complex (6.3.16) of linear

observables for the (0, 1)-model is then isomorphic to the complex

L =
(
su(N)[2] dfree

// su(N)[1] dfree
// su(N)

dfree
// su(N)[−1]

)
, (6.6.13a)

where we used the same notation for the differential dfree. In order to distinguish

between different su(N)-components in this complex, we introduce the notation

β ∈ su(N)[2] , α ∈ su(N)[1] , ϕ ∈ su(N) , χ ∈ su(N)[−1] (6.6.13b)

where we recall that they, in the presented order, are interpreted as linear observables

for the antifield for the ghost c+, the antifield D̃+, the field D̃ and the ghost c. Contin-

uing with using our block matrix notation (see (6.6.9) and (6.6.11)), the free differential

(6.3.16) takes the explicit form

dfreeβ = [β, L0] = −2 i κ

 0 β3

β∗3 0

 , (6.6.14a)

dfreeα = P(α) = −1
2

α1 0

0 α2

− 3
2N

Tr(α1 − α2)

1N/2 0

0 −1N/2

 , (6.6.14b)

dfreeϕ = [ϕ, L0] = −2 i κ

 0 ϕ3

ϕ∗3 0

 , (6.6.14c)

dfreeχ = 0 . (6.6.14d)

Remark 6.6.1. Let us explain the absence of the relative sign between dfreeβ and

dfree ϕ in (6.3.16). Essentially, it is compensated by the minus sign that comes from

forming adjoints with respect to the Killing form. (Explicitly, 2N TrA(X [Y, ε]) =

−2N TrA([X, ε]Y).) Observe that the antibracket can be built from the Killing form

(recall that the Killing form on su(N) is negative definite) by setting (cf. (6.3.9))

{ϕ, α} := −2N TrA(ϕ α) , {α, ϕ} := 2N TrA(ϕ α) ,

{β, χ} := −2N TrA(β χ) , {χ, β} := 2N TrA(β χ) . (6.6.15)

(One can reconstruct the corresponding symplectic form (6.3.7) from this by an appro-

priate choice of basis.) In particular, the antibracket is compatible with the differential

(see (4.3.8) in Remark 4.3.4) which specifically implies that

{ϕ, dfreeβ} = {dfree ϕ, β} . (6.6.16)
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6.6 example for D0 6= 0: the quartic (0, 1)-model

For dfreeβ = [β, L0] (see (6.6.14)), the left hand side can be written out as

{ϕ, dfreeβ} = −2N TrA(ϕ [β, L0]) = 2N TrA([ϕ, L0] β) (6.6.17)

and the right hand side is given by

{dfreeϕ, β} = 2N TrA(d
free ϕ β) . (6.6.18)

Altogether, nondegeneracy of the Killing form implies that

dfreeϕ = [ϕ, L0] . (6.6.19)

M

Let us write out in more detail what the complex of linear observables given by

(6.6.13) and (6.6.14) looks like. From the Lie subalgebra g0 ⊂ g = su(N) in (6.6.10),

we introduce its orthogonal complement g⊥0 ⊂ g = su(N) with respect to the Killing

form. The elements of g⊥0 are of the form

ε =

 0 ε3

−ε∗3 0

 ∈ g⊥0 ⊂ g = su(N) . (6.6.20)

By decomposing all components in (6.6.13) according to su(N) = g0 ⊕ g⊥0 , we see

directly from (6.6.14) that the differential dfree is only non-zero on one of the two

summands. This leads to the decomposition

L =


g0[2] g0[1]

dfree
// g0 g0[−1]

⊕ ⊕ ⊕ ⊕
g⊥0 [2] dfree

// g⊥0 [1] g⊥0 dfree
// g⊥0 [−1]

 . (6.6.21)

of the complex (6.6.13). The cohomology of this complex is apparent from the observa-

tion that the displayed non-trivial differentials are all injective (which can be quickly

concluded from simply comparing (6.6.14) with (6.6.10) and (6.6.20)) and therefore, by

the rank-nullity theorem, also surjective on the corresponding summands. Hence, we

obtain that

H•
(
L, dfree) = g0[2]⊕ g0[−1] . (6.6.22)

the strong deformation retract. The next step is to choose a strong defor-

mation retract (6.4.2). Observe that our complex of linear observables (6.6.21) decom-

poses into the direct sum

L = L⊥ ⊕H•
(
L, dfree) (6.6.23a)
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of the acyclic complex

L⊥ =


g0[1]

dfree
// g0

⊕ ⊕
g⊥0 [2] dfree

// g⊥0 [1] g⊥0 dfree
// g⊥0 [−1]

 (6.6.23b)

and the cohomology (6.6.22). From this consideration, we see that we may take for

the strong deformation retract (6.4.2) the π-map simply to be the projection onto

H•(L, dfree) and the ι-map to be the inclusion map. Then, a viable choice for a cochain

homotopy ξ can be found by inverting (the non-trivial parts of) dfree, yielding

ξ(β) = 0 , (6.6.24a)

ξ(α) = − i
2 κ

 0 α3

α∗3 0

 , (6.6.24b)

ξ(ϕ) = 2

ϕ1 0

0 ϕ2

− 3
2N

Tr(ϕ1 − ϕ2)

1N/2 0

0 −1N/2

 , (6.6.24c)

ξ(χ) = − i
2 κ

 0 χ3

χ∗3 0

 . (6.6.24d)

The verification of the relevant properties of Definition 4.3.6 is straightforward.

quantum correlation functions . We now have all the building blocks for

the computation of the correlation functions. To achieve this, we introduce a slightly

modified version of the diagrammatic calculus from Section 6.5. As in (6.5.6), there are

four types of lines corresponding to each field species. In this case however, we further

decompose them according to (6.6.23) into their L⊥ and cohomology components,

which we graphically will depict as

β = = ⊥ + 0 , α = , ϕ = , χ = = ⊥ + 0 . (6.6.25)

As before, from (4.3.34), the action of the cochain homotopy Ξ on several lines can be

expressed as a sum of action on individual lines. We further would like to emphasise

that, by definition, the number n not count the cohomology components of the lines,

i.e it only counts the wiggly, straight, ⊥-dashed and ⊥-dotted lines. The action of

the homotopy on individual lines is given by (6.6.24) and is non-zero only on the

L⊥-components. We will draw the non-vanishing components of the homotopy as

Ξ
(
⊥
)

= ⊥ , Ξ
( )

= , Ξ
( )

= ⊥ . (6.6.26)
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To obtain the graphical representation of the interaction part of the differential dint for

our model, we specialise (6.5.8) to the perturbative action (6.6.12). Observe that this

gives rise to cubic and quartic interaction vertices. Altogether, we visualise the action

of dint as

λ dint
( )

= λ + λ , (6.6.27a)

λ dint
( )

=
λ

2
+

λ2

3!
+ λ , (6.6.27b)

λ dint
( )

= λ , (6.6.27c)

λ dint
( )

= λ . (6.6.27d)

The numerical values of the interaction vertices with respect to a choice of bases can

be read off from (6.3.6). For the BV Laplacian there is no need for modification and

we again represent it as capping off two lines,

h̄ ∆BV

( )
= h̄ , h̄ ∆BV

( )
= h̄ . (6.6.28)

Finally, the map Π acts only non-trivially on the cohomology components of the lines,

Π
(

0

)
= 0 , Π

(
0

)
= 0 . (6.6.29)

Altogether, this describes the diagrammatic calculus for the computation of corre-

lation functions of the (0, 1) dynamical spectral triples model with action S(D) =

TrEnd(H)

(
− 1

2 D2 + g4
4! D4), where g4 > 0, perturbed around the non-trivial background

Dirac operator D0 given by (6.6.7).

Example 6.6.2. As a first example to illustrate the diagrammatic calculus we have set

up, we compute the 1-point function

〈ϕ〉 =
∞

∑
k=0

Π
(
(δΞ)k(ϕ)

)
, ϕ ∈ L0 , (6.6.30)

for a generator in degree 0 to the lowest non-trivial order in the formal parameter λ.

As before, this is performed by iteratively applying δΞ. The first iteration is computed

as

δΞ(ϕ) = δ
( )

=
λ

2
+

λ2

3!
+ λ

=
λ

2
+

λ2

3!
+ λ

⊥
+ λ

0

. (6.6.31)
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In the second line, we have decomposed the dashed line according to (6.6.23). Note

that we need to go to the next perturbative order to see any quantum corrections

because the application of Π to this expression yields 0. For the second iteration, we

use the algebraic expression of the homotopy Ξ (4.3.34) to first write out

(δΞ)2(ϕ) = δΞ

(
λ

2
+

λ2

3!
+ λ

⊥
+ λ

0
)

= δ

(
λ

2
+

λ2

3!
+

λ

2
⊥

⊥

− λ

2
⊥ + λ 0

⊥ )

=
h̄ λ

2
+

h̄ λ

2
⊥

⊥
− h̄ λ

2
⊥ + h̄ λ 0

⊥
+ O(λ2) .

(6.6.32)

Observe that the fourth term vanishes due to the fact that the decomposition g =

g⊥0 ⊕ g0 is orthogonal with respect to the Killing form. Furthermore, there is an identity

analogous to (6.5.13),

⊥
⊥ = ∆BV

(
ξ(α) χ

)
= {ξ(α), χ} = {α, ξ(χ)} = −∆BV

(
α ξ(χ)

)
= −

⊥
,

(6.6.33)

which in particular implies that the second and the third term coincide. Hence, the

1-point function is given by

〈ϕ〉 = h̄ λ

2
+ h̄ λ ⊥

⊥
+ O(λ2) . (6.6.34)

Let us write out the algebraic expression for the ghost contribution using explicit form

of the interaction part of the differential (see (6.3.6)). One finds that

h̄ λ ⊥
⊥

= h̄ λ
dim(g⊥0 )

∑
i=1

2 N TrA

(
ti ξ
(
[ti, ξ(ϕ)]

))
, (6.6.35)

where ξ are the components of the homotopy in (6.6.24), [ · , · ] is the Lie bracket on

g = su(N), and {ti ∈ g⊥0 } is an orthogonal basis with respect to the Killing form,

i.e. 2N TrA(ti tj) = −δij (the minus sign is a consequence of the Killing form being

negative definite).
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The above ghost field contribution (6.6.35) is in general non-zero. Let us check that

for the N = 2 case. An orthogonal basis for g = su(2) is given by the (appropriately

normalized and anti-Hermitian) Pauli matrices (see (1.1.33))

ti =
i√
8

σi , for i = 1, 2, 3 , (6.6.36)

which satisfy the Lie bracket relations [ti, tj] = − 1√
2

εijk tk. By comparing (1.1.33) with

(6.6.10) and (6.6.20), we see that the Lie subalgebra g0 ⊂ g is spanned by t3 and its

orthogonal complement g⊥0 is spanned by t1 and t2. Since the homotopy ξ(ϕ) in

(6.6.35) maps surjectively onto g0, we may without loss of generality set ξ(ϕ) = t3 by

an appropriate choice of ϕ. For the other homotopy in (6.6.35), which is of the type

ξ(α) from (6.6.24), we compute its action on the basis of g⊥0 to be

ξ(t1) =
1

2κ
t2 , ξ(t2) = − 1

2κ
t1 . (6.6.37)

We may therefore compute

(6.6.35) N=2
= h̄ λ 4 TrA

(
t1 ξ
(
[t1, t3]

)
+ t2 ξ

(
[t2, t3]

))
=

h̄ λ√
2 κ

= h̄ λ

√
g4

3
, (6.6.38)

showing that the ghost field contribution does not vanish. O

Example 6.6.3. With considerably more effort, one can also compute the 2-point cor-

relation function

〈ϕ1 ϕ2〉 =
∞

∑
k=0

Π
(
(δΞ)k(ϕ1 ϕ2

))
, ϕ1, ϕ2 ∈ L0 = D∨ , (6.6.39)

for two generators in degree 0 to the lowest non-trivial order in the formal parameter

λ. The final result is

〈ϕ1 ϕ2〉 = h̄ + h̄2λ2

(
1
2

+
1
2

+
1
2

+
⊥

⊥

+
⊥

⊥ ⊥ +
1
4

+
1
2

⊥
⊥

+
1
2

⊥
⊥

+ ⊥
⊥

⊥
⊥

)

+ O(λ3) . (6.6.40)
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6.6 example for D0 6= 0: the quartic (0, 1)-model

Just as in the previous Example 6.6.2 of the the 1-point function, there are non-trivial

contributions from the ghost field, which are absent for perturbations around the

trivial Dirac operator D0 = 0 (see Example 6.5.2). O
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In this part of the thesis, we have adapted and applied the modern formulation of the

BV formalism by Costello and Gwilliam [Gwi12, CG16, CG21] to finite dimensional

noncommutative quantum field theories. This provides powerful and systematic meth-

ods for dealing with gauge theoretic aspects in the noncommutative setting. This was

covered in Chapter 4.

In Chapter 5, the main content of [NSS21] was presented. In Section 5.1, the BV

formalism as described in Section 4.3 was applied to scalar field theory and Chern-

Simons theory on the fuzzy 2-sphere. In particular, we observe for scalar field theories

that the quantum correlation functions exhibit well-known noncommutative features

such as non-planar contributions to the loop diagrams, see Example 5.1.3.

We then extended in Section 5.2 the BV formalism to include also noncommuta-

tive field theories defined in the representation category HMod of a Hopf algebra H

equipped with a non-identity triangular R-matrix, i.e. the so called braided noncom-

mutative field theories of [DCGRS20, DCGRS21]. (Again, “braided” here actually

means “symmetric braided”.) Because the representation category of a triangular

Hopf algebra is symmetric monoidal, the procedure was fairly straightforward. The

techniques were then applied in Section 5.3 to scalar field theories on the fuzzy 2-

torus. The results coincide with the (symmetric) braided quantum field theory of

Oeckl [Oec00]. In particular, non-planar contributions to the loop diagrams are absent

in the braided framework, see Example 5.3.4.

There are two interesting directions one could pursue in future projects. The first

idea would be to generalise the BV formalism as treated in this thesis to also include

noncommutative quantum field theories on infinite-dimensional algebras (e.g. the

Moyal plane) by adapting the analytical aspects of Costello and Gwilliam’s formula-
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tion of the BV formalism [Gwi12, CG16, CG21]. Together with a better understanding

of noncommutative phenomena such as UV/IR mixing, this would allow for the study

of regularisation and renormalisation of (infinite dimensional) noncommutative quan-

tum field theories. The other route would be to generalise the braided BV formalism

to also include non-symmetric braidings, i.e. to symmetries encoded by quasitriangu-

lar Hopf algebras which are not triangular. In contrast to the symmetric braided case

presented here, the truly braided case is expected to be substantially more difficult.

This is in part due to the obstructions stemming from quasitriangularity one faces

when trying to encode certain properties such as symmetry or the Jacobi identity for

P0-algebras. There are examples such as braided analogues of Lie algebras [Maj94]

which, however, are substantially more involved. This level of complication is there-

fore to be expected when trying to define a truly braided version of P0-algebras. One

could, as a minimalistic approach, skip the P0-algebra step and directly try to gener-

alise the explicit formula of the BV Laplacian (5.2.16) to the case of a quasitriangular

R-matrix. The drawback of this method is that it is unclear how to define the BV

Laplacian ∆BV such that the crucial nilpotency condition ∆2
BV = 0 holds. However, it

does agree with Oeckl’s braided Wick Theorem [Oec01]. We are currently unaware of

any resolutions to these issues and why they are absent from Oeckl’s truly braided

approach.

In Chapter 6, which is based on [GNS22], we used the BV formalism to quantise

and compute correlation functions of dynamical spectral triple models. These are field

theories whose space of fields consists of a vector space of Dirac operators (the Dirac

ensemble), which parametrise fuzzy spectral triples with a fixed fermion space. Since

the dynamical variables are Dirac operators, which encode the (geo)metric structure of

noncommutative spaces, the dynamical spectral triple models can be seen as describ-

ing (toy-)models of quantum gravity. The particular gauge symmetries we consider

are analogues to the diffeomorphism symmetries of Riemannian (spin) manifolds, de-

scribed in Section 6.2. We then in Section 6.3 describe the classical BV formalism based

on the systematic techniques from [BSS21] to construct the classical observables. Using

then the procedure outlined in Section 4.3 we then quantise the classical observables

and compute the quantum correlation functions. It turns out that whether we have

gauge theoretical contributions or not to the correlation functions (i.e. contributions

from ghost fields and their antifields) is strongly impacted by the amount of gauge
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symmetry that is broken by the background Dirac operator D0 (which is a solution to

the classical equations of motion) we perturb around. The analysis is carried out for

two cases, perturbations around the trivial Dirac operator D0 = 0 and perturbations

around a non-zero Dirac operator D0 6= 0. The zero Dirac operator D0 = 0 is gauge

invariant and thus breaks no symmetry. It turns out that in this case, there are no

contributions from ghost fields and their antifields to the correlation functions, see

Proposition 6.5.3, i.e. gauge theoretical modifications to the path integral are absent

for perturbations around D0 = 0. However, the situation is different for the case

of non-zero Dirac operators D0 6= 0 breaking some of the gauge symmetries. This

was investigated for the simplest dynamical spectral triple model, the quartic (0, 1)-

model of [BG16]. The model carries a “symmetry breaking potential” which leads to

a Higgs-like mechanism. This is identified as the source of the non-trivial gauge theo-

retic modifications to the quantum correlation functions. This leads to the conclusion

that when considering quantum fluctuations localised around a non-trivial classical

solution D0 6= 0 which breaks the gauge symmetry, the quantum correlation functions

receive gauge-theoretic contributions.

In the future, it would be interesting to investigate and gain a deeper understanding

of the physical effects linked to the gauge-theoretic modifications to the correlation

functions and interpretation in the context of quantum gravity. In addition, it would

be useful to apply these techniques to dynamical spectral triple models with more

involved solutions to the Euler-Lagrange equations as the (0, 1)-model considered

here is somewhat too simplistic and thus of limited physical relevance (though it did

serve its purpose as a toy-model to demonstrate that there indeed are gauge-theoretic

effects in the path integrals to be taken into consideration). Such solutions, e.g. the

fuzzy sphere, have recently been investigated in [D’Ar22].

A further intriguing aspect to explore would be the large N behaviour of fuzzy

spectral triple models, see e.g. [HKPV22] for an overview. With this in mind, it is

natural to pose the question whether gauge symmetries and BV quantisation plays

any role in large N phenomena such as phase transitions. A study related to this

can be found in [GGHZ22, GHZ22], where homological methods are used to examine

the large N limit of the Gaussian Unitary Ensemble from random matrix theory. A

route for future research would be to adapt these techniques to the setting of fuzzy

spectral triple models in order to obtain a homological perspective of the results by
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the Western University group [HKPV22]. Following this approach, it might be feasible

to determine the effect of gauge symmetries in the large N limit on phenomena such

as phase transitions.

Another research direction of physical relevance would be to incorporate and treat

gauge symmetries coming from external gauge groups. These are not related to the

gauge symmetries investigated here, which are intrinsic to the noncommutative spaces

themselves. Further into the future, it would also be of interest to move away from the

perturbative realm to the non-perturbative one. However, up to date, there are few

such techniques available and they typically require more sophisticated machinery

based on derived geometry. Such an account can be found in e.g. [BSS21] (from which

we already extracted our perturbative techniques for the classical BV formalism).

156



B I B L I O G R A P H Y

[ARS00] A. Y. Alekseev, A. Recknagel and V. Schomerus, “Brane dynamics in back-

ground fluxes and noncommutative geometry,” JHEP 05, 010 (2000) [arXiv:hep-

th/0003187].

[AI22] J. Arnlind and K. Ilwale, “On the geometry of (σ, τ)-algebras,”

[arXiv:2207.08400 [math.QA]].

[AN19] J. Arnlind and A. T. Norkvist, “Noncommutative minimal embeddings and

morphisms of pseudo-Riemannian calculi,” [arXiv:1906.03885 [math.QA]].

[AC09] P. Aschieri and L. Castellani, “Noncommutative D = 4 gravity coupled to

fermions,” JHEP 06, 086 (2009) [arXiv:0902.3817 [hep-th]].

[ADMW06] P. Aschieri, M. Dimitrijevic, F. Meyer and J. Wess, “Noncommutative

geometry and gravity,” Class. Quant. Grav. 23, 1883–1912 (2006) [arXiv:hep-

th/0510059 [hep-th]].

[AS14] P. Aschieri and A. Schenkel, “Noncommutative connections on bimodules

and Drinfeld twist deformation,” Adv. Theor. Math. Phys. 18, no. 3, 513 (2014)

[arXiv:1210.0241 [math.QA]].

[AK19] S. Azarfar and M. Khalkhali, “Random finite noncommutative geometries and

topological recursion,” [arXiv:1906.09362 [math-ph]].

[Bae04] J. Baez, “Some definitions everyone should know,” Quantum Gravity Seminar

- Fall 2004, Gauge Theory and Topology (2004), Available at https://math.ucr.

edu/home/baez/qg-fall2004/definitions.pdf.

[Bal+07] A. P. Balachandran, T. R. Govindarajan, G. Mangano, A. Pinzul, B. A. Qureshi

and S. Vaidya, “Statistics and UV/IR mixing with twisted Poincaré invariance,”

Phys. Rev. D 75, 045009 (2007) [arXiv:hep-th/0608179].

157

https://arxiv.org/abs/hep-th/0003187
https://arxiv.org/abs/hep-th/0003187
https://arxiv.org/abs/2207.08400
https://arxiv.org/abs/1906.03885
https://arxiv.org/abs/0902.3817
https://arxiv.org/abs/hep-th/0510059
https://arxiv.org/abs/hep-th/0510059
https://arxiv.org/abs/1210.0241
https://arxiv.org/abs/1906.09362
https://math.ucr.edu/home/baez/qg-fall2004/definitions.pdf
https://math.ucr.edu/home/baez/qg-fall2004/definitions.pdf
https://arxiv.org/abs/hep-th/0608179


Bibliography

[BSS17] G. E. Barnes, A. Schenkel and R. J. Szabo, “Mapping spaces and automor-

phism groups of toric noncommutative spaces,” Lett. Math. Phys. 107 (2017) no.9,

1591-1628 [arXiv:1606.04775 [math.QA]].

[BSS14] G. E. Barnes, A. Schenkel and R. J. Szabo, “Nonassociative geometry in quasi-

Hopf representation categories I: Bimodules and their internal homomorphisms,”

J. Geom. Phys. 89, 111 (2014) [arXiv:1409.6331 [math.QA]].

[BSS17] G. E. Barnes, A. Schenkel and R. J. Szabo, “Mapping spaces and automor-

phism groups of toric noncommutative spaces,” Lett. Math. Phys. 107, no. 9,

1591–1628 (2017) [arXiv:1606.04775 [math.QA]].

[Bar06] J. W. Barrett, “A Lorentzian version of the non-commutative geometry of the

standard model of particle physics,” J. Math. Phys. 48 (2007), 012303 [arXiv:hep-

th/0608221 [hep-th]].

[Bar15] J. W. Barrett, “Matrix geometries and fuzzy spaces as finite spectral triples,” J.

Math. Phys. 56 (2015) no.8, 082301 [arXiv:1502.05383 [math-ph]].

[BDG19] J. W. Barrett, P. Druce and L Glaser, “Spectral estimators for finite non-

commutative geometries,” J. Phys. A 52, no. 27, 275203 (2019) [arXiv:1902.03590

[gr-qc]].

[BGa19] J. W. Barrett and J. Gaunt, “Finite spectral triples for the fuzzy torus,”

[arXiv:1908.06796 [math.QA]].

[BG16] J. W. Barrett and L Glaser, “Monte Carlo simulations of random non-

commutative geometries,” J. Phys. A 49, no. 24, 245001 (2016) [arXiv:1510.01377

[gr-qc]].

[BV81] I. A. Batalin and G. A. Vilkovisky, “Gauge Algebra and Quantization,” Phys.

Lett. B 102, 27–31 (1981).

[BV83] I. A. Batalin and G. A. Vilkovisky, “Quantization of Gauge Theories with Lin-

early Dependent Generators,” Phys. Rev. D 28 (1983), 2567-2582 [erratum: Phys.

Rev. D 30 (1984), 508]

[BV85] I. A. Batalin and G. A. Vilkovisky, “Existence Theorem for Gauge Algebra,” J.

Math. Phys. 26 (1985), 172-184

158

https://arxiv.org/abs/1606.04775
https://arxiv.org/abs/1409.6331
https://arxiv.org/abs/1606.04775
https://arxiv.org/abs/hep-th/0608221
https://arxiv.org/abs/hep-th/0608221
https://arxiv.org/abs/1502.05383
https://arxiv.org/abs/1902.03590
https://arxiv.org/abs/1902.03590
https://arxiv.org/abs/1908.06796
https://arxiv.org/abs/1510.01377
https://arxiv.org/abs/1510.01377


Bibliography

[BM17] E. Beggs and S. Majid, “Spectral triples from bimodule connections and Chern

connections,” J. Noncommut. Geom. 11, no. 2, 669–701 (2017) [arXiv:1508.04808

[math.QA]].

[BM20] E. Beggs and S. Majid, Quantum Riemannian Geometry, Grundlehren der math-

ematischen Wissenschaften 355, Springer Verlag (2020).

[BSS21] M. Benini, P. Safronov and A. Schenkel, “Classical BV formalism for group ac-

tions,” to appear in Communications in Contemporary Mathematics [arXiv:2104.14886

[math-ph]].

[BKSW10] D. N. Blaschke, E. Kronberger, R. I. P. Sedmik and M. Wohlgenannt,

“Gauge theories on deformed spaces,” SIGMA 6, 062 (2010) [arXiv:1004.2127 [hep-

th]].

[BBKL18] R. Blumenhagen, I. Brunner, V. Kupriyanov and D. Lüst, “Bootstrap-

ping non-commutative gauge theories from L∞-algebras,” JHEP 05, 097 (2018)

[arXiv:1803.00732 [hep-th]].
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abo, “Braided L∞-algebras, braided field theory and noncommutative gravity,”

[arXiv:2103.08939 [hep-th]].

[D-V88] M. Dubois-Violette, “Dérivations et calcul differentiel non commutatif,” C.R.

Acad. Sci. Paris, Série I, 307:403–408 (1988).

[D-V01] M. Dubois-Violette, “Lectures on graded differential algebras and noncom-

mutative geometry,” in: Y. Maeda, H. Moriyoshi, H. Omori, D. Sternheimer,

161

https://arxiv.org/abs/math/0107070
https://arxiv.org/abs/math/0011194
https://arxiv.org/abs/1110.3500
https://arxiv.org/abs/math/0403266
https://arxiv.org/abs/2005.00454
https://arxiv.org/abs/2103.08939


Bibliography

T. Tate and S. Watamura (eds.), Noncommutative differential geometry and its appli-

cations to physics, Math. Phys. Stud. 23, 245–306, Kluwer Acad. Publ., Dordrecht

(2001) [arXiv:math/9912017 [math.QA]].

[Fri84] T. Friedrich, “Zur Abhängigkeit des Dirac-Operators von der Spin-Struktur,”

Colloquium Mathematicae 48, vol. 1, 57–62 (1984).

[GNS22] J. Gaunt, H. Nguyen and A. Schenkel, “BV quantization of dynamical fuzzy

spectral triples,” J. Phys. A 55 (2022) no.47, 474004 [arXiv:2203.04817 [hep-th]].

[GN43] I. Gelfand, M. Naimark, “On the imbedding of normed rings into the ring of

operators in Hilbert space,” Mat. Sbornik, 12, no. 2, 197–217 (1943).

[GGHZ22] G. Ginot, O. Gwilliam, A. Hamilton and M. Zeinalian, “Large N phenom-

ena and quantization of the Loday-Quillen-Tsygan theorem,” Adv. Math. 409

(2022), 108631 [arXiv:2108.12109 [math.QA]].

[G-BVF01] J. M. Gracia-Bondia, J. C. Varilly and H. Figueroa, “Elements of Noncom-

mutative Geometry,” Springer Science+Business Media New York (2001).

[GMS01] H. Grosse, J. Madore and H. Steinacker, “Field theory on the q-deformed

fuzzy sphere 1,” J. Geom. Phys. 38, 308–342 (2001) [arXiv:hep-th/0005273].

[GMS02] H. Grosse, J. Madore and H. Steinacker, “Field theory on the q-deformed

fuzzy sphere 2: Quantization,” J. Geom. Phys. 43, 205–240 (2002) [arXiv:hep-

th/0103164].

[GP95] H. Grosse and P. Presnajder, “The Dirac operator on the fuzzy sphere,” Lett.

Math. Phys. 33 (1995), 171-182

[Gug72] V. K. A. M. Gugenheim, “On the chain-complex of a fibration,” Illinois J.

Math. 16 (1972), 398- 414

[GLm89] V. K. A. M. Gugenheim, and L. Lambe, “Applications of perturbation theory

to differential homological algebra I,” IL J. Math., vol. 33, (1989), 556-582.

[GLmS90] V. K. A. M. Gugenheim, and L. Lambe, and J. Stasheff, “Algebraic aspects

of Chen’s twisting cochain,” IL. J. Math., vol. 34, (1990), 485-502

162

https://arxiv.org/abs/math/9912017
https://arxiv.org/abs/2203.04817
https://arxiv.org/abs/2108.12109
https://arxiv.org/abs/hep-th/0005273
https://arxiv.org/abs/hep-th/0103164
https://arxiv.org/abs/hep-th/0103164


Bibliography

[GLmS91] V. K. A. M. Gugenheim, and L. Lambe, and J. Stasheff, “Perturbation theory

in differential homological algebra II,” IL. J. Math., IL J. Math., vol. 35, (1991), 357-

373.

[GS86] V. K. A. M. Gugenheim and J. Stasheff, “On perturbations and A∞ structures,”

Bull. Soc. Math. de Belg., 38(1986), 237-246.

[Gwi12] O. Gwilliam, “Factorization algebras and free field theories,” PhD thesis,

Northwestern University (2012). Available at https://people.math.umass.edu/

~gwilliam/thesis.pdf.

[GHZ22] O. Gwilliam, A. Hamilton and M. Zeinalian, “A homological approach to

the Gaussian Unitary Ensemble,” [arXiv:2206.04256 [math-ph]].

[GJF18] O. Gwilliam and T. Johnson-Freyd, “How to derive Feynman diagrams for

finite-dimensional integrals directly from the BV formalism,” Contemp. Math.

718, 175–185 (2018) [arXiv:1202.1554 [math-ph]].

[HaTa90] S. Halperin and D. Tanre, “Homotopie Filtre et fibres C∞,” IL. J. Math.,

34(1990), 284-324

[HT92] M. Henneaux and C. Teitelboim, “Quantization of gauge systems,” Princeton

University Press (1992).

[HKP21] H. Hessam, M. Khalkhali and N. Pagliaroli, “Bootstrapping Dirac ensem-

bles,” to appear in Journal of Physics A [arXiv:2107.10333 [hep-th]].

[HKPV22] H. Hessam, M. Khalkhali, N. Pagliaroli and L. S. Verhoeven, “From non-

commutative geometry to random matrix theory,” J. Phys. A 55 (2022) no.41,

413002 [arXiv:2204.14216 [hep-th]].

[HMZ02] O. Hijazi, S. Montiel and X. Zhang, “Conformal lower bounds for the Dirac

operator of embedded hypersurfaces,” Asian J. Math. 6, no. 1, 23–36 (2002).

[Hueb89] J. Hübschmann, “Cohomology of nilpotent groups of class 2,” J. Alg., 126

(1989), 400-450.

[HK91] J. Hübschmann and T. Kadeishvili, “Small models for chain algebras,” Math.

Z. 207 (1991), 245- 280

163

https://people.math.umass.edu/~gwilliam/thesis.pdf
https://people.math.umass.edu/~gwilliam/thesis.pdf
https://arxiv.org/abs/2206.04256
https://arxiv.org/abs/1202.1554
https://arxiv.org/abs/2107.10333
https://arxiv.org/abs/2204.14216


Bibliography

[Ise19a] R. A. Iseppi, “The BV formalism: Theory and application to a matrix model,”

Rev. Math. Phys. 31, 1950035 (2019) [arXiv:1610.03463 [math-ph]].

[Ise19b] R. A. Iseppi, “The BRST cohomology and a generalized Lie algebra cohomol-

ogy: Analysis of a matrix model,” [arXiv:1909.05053 [math-ph]].

[IvS17] R. A. Iseppi and W. D. van Suijlekom, “Noncommutative geometry and the

BV formalism: Application to a matrix model,” J. Geom. Phys. 120, 129–141 (2017)

[arXiv:1604.00046 [math-ph]].

[IIKK00] N. Ishibashi, S. Iso, H. Kawai and Y. Kitazawa, “Wilson loops in noncommu-

tative Yang-Mills,” Nucl. Phys. B 573, 573–593 (2000) [arXiv:hep-th/9910004].
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