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ABSTRACT 

Metal powder bed fusion systems have been rapidly gaining interest from high-value 

manufacturing sectors, such as aerospace and biomedical, due to the unique benefits the 

technology can offer in terms of part design flexibility and bespoke manufacturing. In-

process monitoring techniques for metal powder bed fusion have become increasingly 

popular as the technology continues to mature. However, adequate methods of handling 

data collected from the manufacturing process have yet to be explored in depth. Due to 

the large quantities of potential data and the temporal constraints when monitoring the 

PBF process, automated data interpretation is essential to allow for real time defect 

detection to be achieved. In this thesis, a novel measurement method for PBF systems is 

proposed that uses multi-view fringe projection to acquire high-resolution surface 

topography information of the powder bed. Measurements were made using a mock-up 

of a commercial powder bed fusion system to assess the system’s accuracy and precision 

in comparison to conventional single-view fringe projection techniques for the same 

application. Featured based characterisation methods were applied to the measured 

topography to extract salient information about spatter and particles with the data being 

compared against a higher resolution reference measurement (focus variation). Results 

show that the multi-view system is more accurate, but less precise, than single view fringe 

projection on a point-by-point basis. The multi-view system also achieves a high degree 

of surface coverage by using alternate views to access areas not measured by a single 

camera. Measurements from the multi-view fringe projection system achieved similar 

reconstruction fidelity to the reference focus variation, in particular at the scales required 

for the largest targeted features (200 µm size and up). Topography partitioning and feature 

identification results achieved by feature based characterisation were comparable 

between fringe projection and focus variation. 
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1 Introduction 

Additive manufacturing (AM) is defined as a “process of joining materials to make parts 

from 3D model data” [1].  In many additive processes, this is achieved by building 

horizontal layers on top of each other until the desired component is complete. The 

technology has attracted the attention of high value manufacturing sectors such as 

aerospace, automotive and biomedical, causing the industry to grow rapidly. Many 

advances being made across AM technologies continue to  push for different materials 

[2], more complex geometries [3,4], reduced material waste [5], and greater financial 

benefit for low volume or bespoke manufacture [6,7]. The geometrical freedom permitted 

by AM’s layer-by-layer build process [3] allows for unique features to be manufactured 

such as lattice structures and complex single component builds with internal features.  

Complex structures fabricated by AM have already been shown to provide additional 

functionality to parts such as integrated thermal heatsinks [8], vibration isolating lattice 

structures [9], and increased cellular activity for biomedical applications [10]. 

 

Figure 1.1.a The laser powder bed process. Starting on the left with a clear build plate before 

powder is spread across the build area and a high-power laser or electron beam melts 

selected regions into a solid component. This is repeated across many layers of powder until 

the desired part is complete. 

Metal AM methods, such as powder bed fusion (PBF) have gained strong interest due to 

the ability to build parts with high-grade metals such as steels and titanium alloys. PBF 

processes begin with powder being introduced to the build chamber through either a feed 

cartridge or a powder hopper. The powder is then spread evening over the build area by 

a wiper blade before a high-powered beam is scanned across the surface, creating a 
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meltpool that fuses the powder in the desire regions of the layer. Once a layer has been 

completed, the build plate will be lowered and a new layer of powder is applied on top 

and the process is repeated (shown in Figure 1.1.a). The most common methods of PBF 

for metals are laser-PBF (L-PBF), which uses a scanning laser to fuse each layer, and 

electron beam-PBF (EB-PBF), in which an electron beam is used for fusing. Both metal 

PBF methods are compatible with materials that have a high melting point due to the high 

power the systems can deliver to the meltpool. L-PBF is typically performed in an inert 

gas environment [11] whereas EB-PBF is performed in vacuum. Both methods of 

manufacture provide a high quality of build in modern machines with comparable 

outcomes in terms of part properties, typically accuracies in these systems vary more 

significantly from manufacturer to manufacturer than between the two methods of PBF. 

Although there are many benefits to metal PBF technologies, the processes are poorly 

understood when compared to traditional subtractive manufacturing methods, resulting 

in a relative lack of confidence in the quality of parts being built [12,13]. A significant 

cause for the lack of confidence in additive components stems from the complex 

phenomena present during the build process [13–16], such as the meltpool mechanics, as 

well as cost concerns associated with wasted time and discarded raw materials when a 

build process fails [13,17–19]. In an effort to improve understanding of the complex 

phenomena that occur during the PBF build process, many have turned to metrology 

solutions to analyse not only components that have been built through PBF methods, post 

manufacture, but also the process itself in real-time as the build is happening. Layer wise 

manufacturing allows new process monitoring methods to be used, capable of observing 

every section of the part, including internal regions, along with the machine’s condition 

that created it. Through extensive monitoring, a greater understanding of the technology 

can be gained, along with implemented defect detection and closed loop monitoring 

systems to assess build quality in real time. Publications by Tapia and Elwany [20] and 

Mani et al. [21] have pointed out that there are many aspects of additive processes that 

are yet to be monitored and understood. Their reviews highlight the measurement needs 

of AM technologies to access the large amount of in-process information that could be 

captured through various sensors. Further studies have reviewed the literature devoted to 

in-situ sensing and monitoring methods [22–24], summarising and comparing various 

possible solutions to make sense of large amounts of data measured layer by layer. Interest 
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in in-process monitoring solutions for AM technologies has continued to grow as the 

methods gain popularity with a range of manufacturers, with various commercial tools 

having been made available by almost all PBF system developers, and several novel 

patents related to in-situ sensing, measurement and monitoring techniques being released 

over the last few years.  

1.1 Aims and objectives 

The aim of this work is to develop an in-situ monitoring system for metal PBF methods 

that is capable of identifying sub 500 µm defects such as elongated pores, balling [25], 

lattice deviations [26] over the entire powder bed area. For such a system to work, it is 

key that a high resolving power is achieved over a relatively large field of view (FoV) 

within a timely fashion to avoid significant interruption to the manufacturing process and 

increase production times. As such, previous research on in-situ processing techniques 

will be reviewed to determine what methods have proved capable, and where 

improvements could potentially be made. For this work to be achieved, the following 

objectives will be met: 

• An out-of-machine prototype measurement system will be developed with the 

limitations of a real PBF system taken into consideration. 

• Repeatability studies and measurement comparisons against a significantly higher 

resolution commercial system will be performed to determine the systems 

resolving limitations. 

• A feature detection algorithm will be applied to the data to assess the feasibility 

of automatic detection of defects generated by the L-PBF process in real-time. 

1.2 Description of work 

Chapter 2 provides an overview of existing in-process monitoring methodologies that 

have been developed for metal AM. This review covers a wide range of monitoring 

methods and categorises them into types of measurement depending on what type of data 

is collected, and what the data can tell us about the manufacturing process. This review 

has been published in the journal Measurement Science and Technology [27]. 
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Chapter 3 presents the design and development of a multi-view fringe projection (FP) 

system to be used as an out-of-machine prototype of an in-process AM monitoring 

system. An introduction to FP applications is presented, the requirements for an in-

process topography measurement system is outlined, and initial data from the prototype 

is presented to assess the suitability of a multi-view FP system for in-process applications. 

Work from this chapter has been published and presented on at the conference 

ASPE/euspen Advancing Precision in Additive Manufacturing [28]. 

Chapter 4 addresses some of the issues found in the initial prototype of the multi-view FP 

system and hardware modifications are explained. Repeatability and uncertainty of the 

measurements are assessed using Additive Manufacturing Surface Artefacts (AMSA) 

[29] fabricated through L-PBF and EB-PBF. System resolution and limitations are 

discussed in the context of expected PBF surface features from the lasing process. Work 

from this chapter has been published in the Journal of the Optical Society of America A 

[30] and presented at the Solid Freeform Fabrication Symposium [31]. 

Chapter 5 further addresses issues with the system and some final hardware 

modifications. An introduction to automated defect detection in additive monitoring 

systems is presented, followed by findings from a feature based characterisation (FBC) 

algorithm that has been applied to the multi-view FP system. These findings highlight 

what information is present in the multi-view FP data that could potentially be 

automatically flagged by a defect detection system in a real manufacturing machine. 

Work from this chapter is currently in preparation for journal submission. 

Chapter 6 outlines the current findings from the out-of-machine prototype system, the 

contribution of work covered in this thesis, and the future work that is require for the 

project to continue. Potential applications of a machine integrated version of the system 

are discussed, and the aims and objectives of this thesis are addressed in the context of 

the work done.  
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2 Literature review 

2.1 Definitions and terminology 

2.1.1  Terminology 

Several terms referring to measurement and monitoring techniques are used in the 

literature and reviewed in this document. In some cases, there is inconsistency in the use 

of such terms, not only in the reviewed literature but also in different scientific fields. 

This section provides a glossary of terms to avoid confusion on how different 

measurement and monitoring methods can be classified. The most relevant terms, for 

which a definition is provided below, are summarised in Figure 2.1.a. The definitions that 

were developed during a recent roadmap exercise in the UK [32] have been adopted. 

 

 

Figure 2.1.a Graphical representation of different terms associated with measurement and 

monitoring techniques (from Leach and Carmignato [33]) 

The term “in-process” refers to any measurement gathered during the process or between 

successive manufacturing steps within the same production line. In-process 

measurements are synchronised with the different stages of the manufacturing process so 

that the process can be monitored. When in-process measurements are performed right 

before, right after or between manufacturing stations, they are referred to as “in-line” 

measurements. In-line measurements are taken on separate measurement systems along 

the standard production line where manufacturing is not occurring. Therefore, they 

belong to the category of “off-machine” measurements, i.e., measurements carried out 

outside the machine where the manufacturing process occurs. When in-process 

measurements are performed using sensors that are installed on the machine where the 
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process is occurring, they are referred to as “on-machine” measurements. On-machine 

measurements that primarily record data directly from the location where the process is 

occurring are referred to as “in-situ” measurements. The term “in-situ” is the most widely 

used in the AM literature to indicate sensing and monitoring techniques aimed at 

gathering information about the process stability and the product quality while the part is 

being produced. Finally, when measurements are not performed in-process, they are 

referred to as “off-line”. They belong to the category of off-machine measurements as 

they are commonly performed outside the manufacturing environment, either on a 

measurement station in the factory that is separate from the production line or in a 

laboratory.  

2.1.2 Classification of measurement levels in PBF 

The term “process signature” refers to one or more quantities that can be measured during 

the process to gather relevant information about the process stability, underlying physical 

phenomena and the onset of possible defects and errors [21]. In this review, the five level 

system of classification of of in-situ methods in adopted from Grasso et al. [27], as shown 

in Figure 2.1.b. 

 

Figure 2.1.b Five in-situ measurement levels applicable to PBF processes 
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Level 0 involves quantities that can be measured with sensors that are already available 

and embedded into the PBF system, typically related to machine states and environmental 

conditions in the process chamber. Level 0 measurements include chamber pressure, 

ambient temperature and oxygen content, current and torque signals from linear axis 

motors, inert gas flow, build plate temperature, status of installed filters, and other 

parameters. Such quantities are used to guarantee a normal machine functionality and 

stop the process in case of unproper operating conditions, avoiding defects or faults. Level 

0 methods mentioned here refer to a different perspective that allow a more advanced use 

of such signals to automatically detect anomalies and unstable process states that could 

possibly cause non-conforming part properties without activating machine state alarms. 

Level 1 involves measurements gathered once (or more than once) per layer, with a field-

of-view that covers the entire build area or a region of interest (RoI). Two families of 

process signatures can be envisaged at this level. The first involves quantities that are 

representative of the homogeneity of the powder bed and/or related to the presence of 

powder bed contaminations. The second involves both geometrical and dimensional 

features of the printed slice or its surface topography.  

Level 2 includes quantities that can be measured with temporal resolutions considerably 

higher than those used in Level 1. Level 2 involves process signatures that can be 

measured while the laser or the electron beam is displaced within the build area to produce 

the current layer. This entails the capability to observe the interaction between the beam 

and the material, the fast cooling history of the solidified area after the beam has moved 

to another location and the by-products of the process, such as spatters and plume 

emissions. 

Level 3 involves measurements of process signatures that are representative of the highest 

level of detail at which the PBF process can be observed in the current layer, the melt 

pool. The melt pool is known to be a primary feature of interest in any process that 

involves a beam-material interaction aimed at achieving a local fusion of the material.  

Level 4 finally regards the capability of gathering information about phenomena 

occurring under the currently processed layer. It includes measurements that can be 

obtained with ad-hoc prototype machine configurations that enable transverse X-ray 
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imaging, but also ultrasound and acoustic emissions caused by the release of elastic 

energy and plastic deformations in the solidified material.  

In addition to the above mentioned levels, it is possible to divide in-situ measurements 

into two further categories based on the location of the sensor. “Co-axial measurement” 

refers to the use of sensors that are integrated directly into the laser’s optical path (a 

configuration that is enabled only in L-PBF), whereas “off-axis measurement” refers to 

the use of sensors that are placed outside the optical path of the beam, which is suitable 

in both L- and EB-PBF.  

2.2 In-situ sensing and measurement methods 

2.2.1 Level 0 methods – Use of embedded sensors 

PBF systems require embedded sensors to keep the build chamber environment under 

control and to guarantee proper performance. In EB-PBF systems, some publications 

have suggested methods of using these embedded sensors for in-situ defect detection [34–

36]. Embedded sensor signals in EB-PBF are also known as “log signals” and include 

column and chamber temperature and pressure signals, filament current and voltage, grid 

current and voltage, pulse signals representative of powder dosing, duration of each 

process phases, and many more. Steed et al. [35] pointed out that many of these EB-PBF 

log signals are correlated with process errors and variations in process conditions. They 

are commonly used for troubleshooting purposes in the current industrial practice. 

However, due to the large number of signals and their complex dependencies, both data 

visualisation and automated detection of out-of-control patterns need the development of 

novel solutions. Steed et al. [35] introduced “Falcon”, a tool developed at the Oak Ridge 

National Laboratory for visualisation and analysis of large multivariate time series data 

generated by embedded sensors in EB-PBF. The tool was used in studies to investigate 

correlations between log signals and actual defects in parts produced via EB-PBF [37]. 

Chandrasekar et al. [36] showed that in-situ analysis of powder rake position and rake 

sensor pulse signals, used to measure when powder falls through the sensor as the powder 

is being spread, could provide in-depth information about the powder spreadability. The 

use of rake pulse sensor signals was also investigated by Grasso et al. [34], who 
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successfully developed a statistical process monitoring tool for automated detection of 

detects related to powder spreading conditions.  

These seminal studies open up either to further possible solutions in the framework of in-

situ process monitoring that require no additional sensors, or to new data fusion methods 

to take advantage of multiple signals coming from both embedded and external sensors 

[33]. 

2.2.2 Level 1 methods – Powder bed and printed slice 

In-situ measurement and characterisation of layer properties has become the primary 

method of defect detection in PBF systems. By observing the layer, either after the 

recoating operation or after the melting phase, a large amount of information about 

process stability and part quality can be gathered. Measurements performed before laser 

or electron beam scanning inform about the presence of raw powder inhomogeneities, 

defects produced by the recoating system (rippling, bouncing effects, etc.) and the 

presence of so-called super-elevated edges that may not be fully covered by the new 

powder layer. Measurements performed after scanning, instead, enable the 

characterisation of the printed slice as well as the powder bed contamination caused by 

the beam-material interaction and process by-products.  

As far as the analysis of the printed slice is concerned, two major streams of research can 

be identified. One regards the characterisation and detection of out-of-plane irregularities 

in the printed area and its surface topography. Irregular surface patterns may produce 

local regions of varying powder thickness, which may result in a varying energy density 

provided to the material by the beam. Surface irregularities may also interfere with the 

recoating operation, generating a propagation of defects within the build area. The other 

stream of research regards the reconstruction of the contours of the printed area to identify 

geometrical and dimensional deviations from the nominal shape, together with 

irregularities in the slice contours. In this case, the goal is to detect major deviations from 

the expected shape, as they can be representative of defects that are difficult or impossible 

to recover in post-processing steps. 
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Table 1 In-situ measurement performances for level 1 methods (includes only references 

where resolution values were specified). 

Sensing method Process Spatial 

(lateral) 

resolution 

µm/pixel 

Vertical 

resolution 

µm/pixel 

References 

Off-axis imaging 

in visible range 

L-PBF 7 

NA 

Aminzadeh and Kurfess, 2019 [38] 

10 - 13 Lu et al., 2020 [39] 

20 Caltanisseta et al., 2018 [40] 

24 Kleszcynski et al., 2012 [41], Jacobsmulhen et 

al., 2013 [42] & 2015 [43] 

20 - 30  Zur Jacobsmulhen et al., 2019 [7] 

15 - 50 Foster et al., 2015 [45] 

50 Gobert et al., 2018 [46] 

45 – 88 Abdelrahman et al., 2017 [47] 

125 Pagani et al., 2020 [48] 

20 - 290 Scime et al., 2020 [49] 

290 Scime and Beuth, 2018 [50,51] 

Off-axis NIR/IR 

imaging 

L-PBF 25 

NA 

Mahmoudi et al., 2019 [52] 

100 Bamberg et al., 2016 [53] 

830 Schwerdtfeger et al., 2012 [54] 

EB-PBF 100 Yoder et al., 2018 [37] & 2019 [55], Nandwana 

et al., 2018 [56] 

170 Ridwan et al., 2014 [57] 

350 Rodriguez et al., 2012 [58] 

Fringe projection L-PBF 6.8 - Zhang et al., 2016 [59,60], Land et al., 2015 [61] 

60 - Zhang et al., 2015 [62] 

100 <10 Kalms et al., 2019 [63] 

EB-PBF  <20 Liu et al., 2019 [64] & 2020 [65]  

Blade mounted 

sensor 

L-PBF 5.3 NA Phuc and Seita, 2019 [66] 

20 - Barrett et al., 2018 [67] 

Inline coherent 

imaging 

L-PBF 30 7 Fleming et al., 2020 [68] 

100 25 Depond et al., 2018 [69] 

Electronic 

imaging 

EB-PBF 33.33 

NA 

Wong et al., 2020[70] 

320 – 358 Wong et al., 2019 [71,72] 

60 Arnold et al., 2018 [73] & 2019[74] 

50 - 100 Pobel et al., 2019 [75] 
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Level 1 methods include a variety of sensing techniques, which produce different data 

formats and lead to different measurement performances and capabilities. They can be 

divided into the following major categories: off-axis mounted cameras in the visible or 

infrared (IR)/near IR (NIR) range, FP combined with single or stereo cameras, blade-

mounted sensors, in-line coherent imaging and electronic imaging (suitable in EB-PBF 

only). It is worth noting that in most reviewed studies, the term “spatial resolution” is 

commonly used in place of “instantaneous field of view”, whereas the true spatial 

resolution depends on the inherent optical blur [76]. Going forward in this chapter, the 

term “spatial resolution” will be used to indicate the width of an individual pixel on the 

measurement surface. A summary of Level 1 methods and the reported resolutions is 

provided in Table 1. 

2.2.2.1 Off-axis imaging in the visible range 

Powder bed cameras are already available in most L-PBF systems, hence the development 

of camera based in-situ measurement and monitoring methods has become commonplace 

due to few, or no, modifications being require. Seminal works demonstrated the 

feasibility of layerwise imaging techniques for the detection of powder bed irregularities 

[41,43,45,77] and powder bed monitoring algorithms have already been implemented by 

L-PBF system developers (a summary of commercial monitoring toolkits is reported in 

Colosimo and Grasso [33]).  

The capability to detect local inhomogeneity in the powder bed and/or irregular surface 

patterns requires a machine vision setup involving a sufficient spatial resolution and 

appropriate lighting conditions. The importance of lighting conditions has been pointed 

out by different authors, and different approaches have been used both in research studies 

and in industrial implementations [41,43,45,47]. Caltanissetta et al. [40] and Gobert et al. 

[46] investigated and compared different illumination sources, showing that significantly 

different layerwise image processing performances could be achieved by varying the 

lighting conditions. Figure 2.2.a shows examples of layerwise images with different 

lighting conditions Gobert et al. [46]. 
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Figure 2.2.a In-situ powder bed images using different single lighting conditions, adapted 

from Gobert et al. [46]. 

In most studies, high spatial resolution cameras where installed on L-PBF machines 

available viewports, but in a few cases, powder bed cameras and illumination conditions 

already available in industrial systems were used, without any modification of the original 

setup [48,49]. Recent studies focused on the automated extraction of features from 

powder bed images for the classification of irregularities within both loose powder 

regions and previously melted areas [38,39,46,50]. The generation of layerwise image 

datasets comprising both regular and irregular powder bed surfaces was needed in most 

studies [38,78]. Registration between in-situ gathered images and the nominal shape of 

the printed slice from the sliced STL model of the part was used by different authors to 

identify and isolate the melted region from the surrounding loose powder [79,80]. Despite 

being a relatively mature solution in L-PBF, powder bed homogeneity monitoring via off-

axis optical imaging has been investigated in only one study in EB-PBF [81]. The high 

temperature differences within the powder bed in EB-PBF after powder recoating, and 

the difficulty to install additional sensors on EB-PBF machines, makes this kind of in-

situ monitoring more challenging than in L-PBF. 

Layerwise optical imaging allows not only the identification of possible surface 

irregularities, but also the reconstruction of slice geometry. Aminzadeh and Kurfess [38] 

investigated the accuracy of in-situ image segmentations by comparing the identified 

contours with manual segmentation applied to the same images. A different approach was 

proposed by Caltanissetta et al. [40] who first compared different active contour 

segmentation methods under different lighting conditions, then investigated the sources 

of variability of in-situ measurements in terms of repeatability, part-to-part and build-to-

build variability. Caltanissetta et al. [40] showed that, by combining appropriate image 

pre-processing and segmentation algorithms with suitable lighting configurations, 
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sufficient measurement accuracy and repeatability to detect major geometric deviations 

could be achieved. Pagani et al. [48] extended the study of Caltanissetta et al. [40] by 

presenting a tuned image segmentation approach that is robust to non-optimal 

illumination conditions. Other methods for in-situ slice contour detection have been 

proposed by Gaikwad et al. [82], He et al. [83] and zur Jacobsmuhlen et al. [44].  

2.2.2.2 Off-axis imaging in the NIR/IR range 

In L-PBF, some authors have used NIR layerwise imaging for surface pattern analysis. 

Bamberg et al. [53] presented a method called “optical tomography”, currently 

implemented by EOS in the EOSTATE monitoring toolkit. The surface pattern of the 

printed area was reconstructed by translating off-axis NIR video frames, acquired during 

the the melting phase, into a layerwise image. A NIR filter was used to block the 

reflections of the laser beam and the emissions from ionised gases. Mahmoudi et al. [52] 

generated layerwise images by combining thermal images of the melt pool acquired via 

a co-axial two-wavelength thermal camera with a spatial resolution of 25 μm/pixel. 

Layerwise NIR and IR imaging have been more commonly used in EB-PBF. In the 

seminal works of Schwerdtfeger et al. [54], Rodriguez et al. [58], Ridwan et al. [57] and 

Mireles et al. [84], layerwise IR vision was used to characterise the surface pattern of 

printed areas to detect flaws and surface anomalies. More recently, Yoder et al. [37,55] 

and Nandwana et al. [56] used a layerwise imaging system called “LayerQam”, developed 

by Arcam for integration in its EB-PBF machines. The system consists of a NIR camera 

that acquires an image of the layer after the melting phase. Local pixel intensity variations 

and the presence of bright spots were used as proxies of possible volumetric flaws and 

material discontinuities in studies that correlated in-situ and ex-situ inspection results. 

Figure 2.2.b shows an example of layerwise patterns reconstructured via the optical 

tomography method discussed by Bamberg et al. [53]. 
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Figure 2.2.b Examples of optical tomography images for cubic samples with variation of 

energy density (a), a cylinder produced under shielding gas flow variation (b) and defect-

free complex shapes [53]. 

2.2.2.3 Fringe projection 

Off-axis imaging methods previously discussed are suitable to provide a 2D 

reconstruction of the powder bed and the printed slice. Local pixel intensity variations 

represent the only suitable driver to determine possible surface irregularities. Other 

methods have been applied in PBF processes to obtain a 3D reconstruction of the height 

map of the powder bed. One technique proposed by different authors is FP, which enables 

a combination of layer imaging and topographical analysis. The technique requires one 

or multiple cameras and a projector: various configurations have been proposed in the 

literature, mainly for L-PBF. 

The simplest configuration uses a single camera. With this approach, Zhang et al. [60] 

upgraded a method previously presented by the same authors [59,61], demonstrating the 

possibility to achieve a lateral resolution of 6.8 μm/pixel over a limited FoV of (28 × 

15) mm. The vertical resolution was quantified in terms of a single point repeatability 

equal to 0.47 μm. Land et al. [61] pointed out that the  most  important  factors in  

determining  the  resolution  of  the  height  map  are the  spatial  frequency of the projected 

fringes onto the build plane (that depends on the pixel density of the projector) and the 

geometric arrangement of the imaging hardware, which, in L-PBF applications, is  

constrained  by  the  chamber  size  and  the location of available viewports. Other authors 

proposed and tested multi-view configurations, with two cameras, suitable to achieve 

higher resolution and accuracy [63] and an example of surface reconstruction based on 

these methods is shown in Figure 2.2.c.  
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Figure 2.2.c Example of height map and height surface profiles gathered through a multi-

view FP approach (values in millimeters, FoV of (150 × 150) mm)[63]. 

The use of FP in EB-PBF was investigated by Liu et al. [64,65] and used on commercial 

machines from Weyland Precision. The FP measurements were taken during the time 

window between powder recoating and fusion and after EB melting. The proposed system 

was a single-view system including a (3016 × 4016) pixels CCD camera and a DLP 

projector installed on a commercial EB-PBF machine. Liu et al. [65] reported a vertical 

resolution below 20 μm with a maximum repeatability of 6.8 μm and a measurement 

accuracy of 15.8 μm enabled by a dedicated calibration approach. 

2.2.2.4 Blade mounted sensors 

A few authors explored the idea of using sensors mounted on the recoater to gather a full-

field and high spatial resolution 2D scan of the powder bed surface. Tan Phuc and Seita 

[66] installed a linear optical sensor on the recoater and equipped the L-PBF system with 

a microcontroller to synchronise the recoater speed with the image acquisition. With an 

optical resolution of 4800 dots-per-inch over a length of 210 mm, a spatial resolution of 

5.3 μm/pixel was achieved. The line-scanning approach avoids any perspective 

distortions and issues related to non-homogeneous illumination conditions within the 

build area. Tan Phuc and Seita [66] showed that their proposed approach could be used 

not only for 2D surface pattern characterisation of the entire powder bed, but also to detect 

irregularities along the vertical direction. Due to the small depth-of-field of the linear 

sensors, super-elevated edges and variations in the powder layer thickness were shown to 

fall out of the focal plane, resulting in “blurred” areas in the acquired images. By locally 

mapping the focus levels across the entire scan, it could be possible to detect local height 

variations. Figure 2.2.d shows an example of a powder bed image obtained with the line-

https://www.sciencedirect.com/topics/engineering/focal-plane
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scanning methods presented by Tan Phuc and Seita [66] and the corresponding estimate 

of the height map. 

 

Figure 2.2.d Example of high spatial resolution powder bed line-scan optical imaging (top) 

and corresponding reconstruction of irregularities based on focus level mapping (b) [66].  

In a previous work, Barrett et al. [67] mounted a high-resolution laser triangulation line-

scan system on the recoater arm of an L-PBF machine to perform surface mapping of the 

powder bed before and after the melting phase. A similar concept was first proposed by 

Erler et al. [85]. The advantage of this approach, compared to that presented by Tan Phuc 

and Seita [66], is the effective capability of reconstructing the powder bed topography via 

a height map. However, the obtained lateral resolution was lower than that reported by 

Tan Phuc and Seita [66] (the commercial triangulation system used by Barrett et al. [67] 

was characterised by a profile data interval of 20 μm and the laser scanner spans only a 

small fraction of the powder bed along a 15 mm scan width). 

2.2.2.5 In-line coherent imaging 

Rather than using an optical point or line triangulation instrument, some authors proposed 

a technique known as low-coherence interferometry or in-line coherent imaging, where 

the L-PBF laser beam itself is used, at the end of the melting phase to reconstruct the 

surface topography of the layer [68,69,86]. This approach exploits a co-axial sensing 

configuration to collect local height measurements by raster scanning the area with an 

imaging beam, collecting the backscattered radiation and interfering it with a reference 

beam. The imaging beam is directed through the same lens used for the processing beam, 

which prevents the need for perspective corrections [68]. The seminal work of Neef et al. 
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[86] demonstrated the feasibility of the method. The powder bed surface was exposed to 

a broadband light source integrated into the sensor within a (3 × 3) mm area. The RoI was 

raster scanned at nearly constant speed, with pulses generated at defined pixel positions 

to trigger the optical sensor. With such a high lateral resolution, the resulting height map 

could be used to detect single powder particles and defects of lateral size lower than 50 

μm. 

Two more recent studies further investigated the potential of this approach. Fleming et al. 

[68] used a sensing apparatus enabling a vertical resolution of 7 μm and a lateral 

resolution of 30 μm, with a sampling frequency of 50 kHz. Fleming et al. [68] also 

proposed a method to combine the in-line coherent imaging measurement with an in-situ 

surface topography correction method that exploits the same L-PBF laser for ablation of 

the layer surface. In Depond et al. [69], measurements were gathered at a sampling rate 

of 100 kHz, capturing the surface topography of a (44 × 44) mm square region with a 

lateral resolution of 100 μm and a vertical resolution of 25 μm. The vertical resolution is 

theoretically limited by the coherence length of the light source (with the setup used by 

Depond et al. [69], the theoretical limit was about 5 μm). The lateral resolution is limited 

by the beam diameter and the sampling strategy along the raster scanning direction. This 

method also requires a raster scan of the area after the melting phase, increasing the 

overall build time. Figure 2.2.e shows an example of in-situ topography reconstruction 

via in-line coherence imaging from Neef et al. [86]. 
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Figure 2.2.e RoI covered by the inline coherent imaging (left) and corresponding in-situ 

topography reconstruction (right) [86] 

2.2.2.6 Electronic imaging 

In EB-PBF the electrons produced as by-products of the beam-material interaction can be 

used to generate an electronic image of the layer. This idea has been explored and tested 

by various researchers. Wong et al. [71] presented a pilot study involving an in-house 

developed electronic imager comprising an electron detector, a differential signal 

amplifier, a data logger and software for image generation. The system was installed on 

an Arcam A1 machine. The electron beam was used to scan the layers and metal surfaces 

while the heat shield was used as an electron collector. A raw image was produced, where 

each pixel value was proportional to the signal strength of backscattered and secondary 

electrons. In following work, the same researchers [72] investigated the spatial resolution 

enabled by electronic imaging. They reported a spatial resolution of 320 μm/pixel to 358 

μm/pixel with a FoV of (180 × 180) mm or (60 × 60) mm, respectively. In a more recent 

work, the same authors showed the layerwise generation of bitmap images of the printed 

areas, for comparison against the nominal shape from the sliced CAD model [87] and 

investigated the possibility of detecting different materials within the build area [70]. 
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Arnold et al. [74] used the same approach, but only using backscattered electrons, and 

installed a circular backscattered electron detector above the build chamber of an Arcam 

S12 machine. Arnold et al. [74] demonstrated that this configuration enabled a much 

higher spatial resolution (60 μm/pixel). In this study, and in all previously mentioned 

studies, the electronic image was generated at the end of the melting phase by performing 

a raster scan of the entire build area with the electron beam. Arnold et al. [74] 

demonstrated, instead, that the same image could be generated during the melting phase. 

Along the direction orthogonal to the scan tracks, the resulting image resolution was 

equivalent to the hatch spacing (between 50 μm/pixel and 100 μm/pixel in the published 

work). Along the scan direction, the resolution was limited by the scan speed and the 

sampling rate of the measurement system, and was significantly higher than that in the 

other direction. In order to get square-shaped pixels, the data was downsampled to the 

lowest resolution. Figure 2.2.f shows some examples of electronic images in EB-PBF 

from Wong et al. [71] and Arnold et al. [74]. 

 

Figure 2.2.f Examples of electronic images in EB-PBF: a) images with different 

magnification factors from Wong et al. [71], b) images of squared printed areas generated 

via in-operando backscattered signal acquisition from Arnold et al. [74] for different 

materials (top panels: X15CrNiSi20-12, bottom panels: Ti6Al4V) with hatch spacing 

increasing from left to right (50 μm, 100 μm, 200 μm). 

2.2.3 Level 2 methods – Scan track 

In-situ process monitoring at track level involves in-process measurements of fast 

transient phenomena and high-speed emissions during laser or electron beam scanning. 
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Studies in the literature can be divided into two major streams of research. The first 

regards measurements related to the local or global cooling history of the slice, either for 

the characterisation of spatio-temporal thermal gradients in each slice or for the detection 

of anomalous heat exchanges and cooling patterns. The second research stream involves 

the in-process measurement of quantities related to the by-products of the L-PBF process 

such as spatters and plume emissions. The aim is either to understand underlying physical 

phenomena through the study of process by-products or to detect unstable process 

conditions and improper energy inputs. 

A third field of research in L-PBF is the in-situ measurement of acoustic emissions 

associated with air density variations caused by plasma formation and plume emissions 

during the laser scanning of the part. According to the nomenclature commonly used in 

laser welding [88], these acoustic emissions are called air-borne emissions and can be 

captured by microphones or other sensors in the vicinity of the melting area. These 

acoustic emissions are different from the so-called structure-borne emissions, which 

require contact sensors. 

Level 2 monitoring methods involve off-axis mounted sensors, mainly cameras in the 

visible range or thermal cameras. Unlike in level 1 methods, high temporal resolution is 

needed to capture fast and transient phenomena, whereas high spatial resolution is needed 

to characterise the spatial features of interest extracted from video or image data in terms 

of location, size, area and other relevant properties. 

2.2.3.1 Measurement of process heatmap and heating/cooling profiles 

AM allows the “seeing” of the thermal history of the process, in time and in space. Almost 

all major quality characteristics of the final part and its mechanical performance depend 

on the thermal history [89]. Local and global variations of heating and cooling patterns 

may indicate either a lack of fusion or excessive heat accumulation with resultant effects 

on material solidification at volumetric, microstructural and geometrical levels. 

Looking at adopted temporal resolutions, it is possible to distinguish between two major 

streams of research. One aimed at reconstructing a heatmap of the layer combining 

information gathered at low speed (up to 50 frames per second (fps)), while another aimed 

at capturing fast heating and cooling transients, with temporal resolutions from 300 fps 
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to more than 10000 fps. In terms of spatial resolution, it is also possible to identify two 

major categories of measurement approaches. In-situ measurement setups with a FoV 

limited to a small portion of the build area enable resolutions in the range 8 µm/pixel to 

100 µm/pixel, whereas with using a FoV covering the entire build area enables lower 

spatial resolutions, typically above 100 µm/pixel. 

Thermal cameras have been used in both L-PBF and EB-PBF in either the short wave IR 

(~0.9 µm to 2.5 µm), medium wave IR (2 µm to 5 µm) or long wave IR range (7.5 µm to 

14 µm or more). In L-PBF, Montazeri and Rao [90], Gaikwad et al. [91] and Heigel et al. 

[92,93] used short wave IR video imaging to capture thermal signature variations 

throughout the build of overhang features and bridges. The choice of a narrow short wave 

IR bandwidth (from 1.35 µm to 1.6 µm) was motivated by Heigel et al. [92,93] to filter 

out the laser wavelength and to minimise possible temperature measurement errors 

related to wavelength-dependent emissivity values. Short wave IR video imaging was 

used by Lough et al. [94,95] differently. Lough et al. used features extracted from the 

thermal map to generate a voxel-based representation of the part, to be correlated with its 

local and global quality characteristics. Lane et al [76] used a MWIR camera with a short 

wavelength filter to reduce the temperature measurement uncertainty due to inaccurate 

emissivity estimations, since this uncertainty can be reduced at short wavelengths. 

Despite their higher sensitivity to emissivity values for absolute temperature estimation, 

thermal cameras operating in the medium or long wave IR range can be calibrated in a 

wider temperature interval than that of short wave IR cameras, with high sensitivity even 

at high temperatures. This makes them the most utilised sensors for in-situ thermal video 

imaging applications in both L-PBF and EB-PBF.  

In some cases, thermal maps of the layer were generated by selecting frames acquired 

during different phases of the process [96,97] or by averaging video frames [98]. Whereas 

most studies focused on the analysis of the thermal map of each layer, Williams et al. [89] 

focused on the temperature evolution along the build, analysing the impact of the inter-

layer cooling time on the final quality and mechanical properties of the parts. They 

showed that the number of parts in the build and the way in which they are spatially 

located have a significant effect on the quality of the manufactured part because of its 

thermal history. 
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Other authors used high temporal resolution IR video imaging in L-PBF to enhance the 

reconstructing of temperature profiles in space and time, additionally capturing transient 

and fast phenomena. Foster et al. [99] used high-speed IR videos to estimate local peak 

IR intensities within the scanned areas and correlate their maximum value with different 

processing parameters. Mohr et al. [100] applied a feature extraction approach to high-

speed thermographic data to determine the time that a surface element was at an apparent 

temperature above a certain threshold, also called “time over threshold”; the same 

indicator was used by Paulson et al. [101]. An image from the study presented by Paulson 

et al. [101] and the local estimation of the time over threshold indicator is shown in Figure 

2.2.g. Mohr et al. [100] also showed that combining synchronous video imaging at high 

spatial resolution (NIR camera) and high temporal resolution (medium wave IR camera) 

increased the capability of detecting volumetric defects compared to imaging with a 

single sensor. 

 

Figure 2.2.g An example of in-situ reconstruction of local cooling profiles via high-speed IR 

video imaging and the “time over threshold” index computation by Paulson et al. [101]. 

In EB-PBF, in-situ video imaging methods need to be adapted to face specific 

characteristics of the process. Both conventional and thermal cameras need to be 

protected from X-ray emissions and metallisation. Available viewports can be equipped 

with leaded glass and a rolling Kapton film to prevent metal vapour from adhering to the 

window. The Kapton film has an IR transmission of about 79%, whereas a 10 mm thick 

leaded glass window has an IR transmission of 1.08% [102]. However, due to the high 

temperatures involved in the process, detailed IR images were captured despite such 

reduced transmission. Other researchers [103] used a mechanical shutter to protect the 
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viewport from metallisation, enabling image acquisition within a brief interval only. After 

the seminal studies that investigated the use of IR video imaging in EB-PBF [84,103], in-

situ thermography was further used by Cordero et al. [104], Raplee et al. [105] and 

following studies by the same researchers [106]. 

Although IR cameras enable measurements of thermal gradients in space and time, the 

estimation of absolute temperatures is difficult to achieve. PBF processes involve fast 

phase transitions from powder to liquid then to solidified material, in addition to 

continuous changes in surface properties and emissions of the vapourised material, which 

limit the feasibility of accurately estimating the emissivity needed to convert raw signals 

into temperature values. In several in-situ monitoring applications, the variation of the 

thermal signature over time is more relevant than the estimation of the absolute 

temperature. In those cases, data processing and monitoring algorithms can be directly 

applied on raw signals, i.e., measured radiance values in arbitrary units. When accurate 

estimates of the true temperature are needed, different methods can be used. A simple but 

less accurate approach used by some authors [107] consists of selecting the emissivity 

value to set the temperature measured within the melt-pool region at the known liquid–

solid transition temperature of the material. Other studies described calibration 

procedures using heated calibration artefacts, which enable more accurate estimates. 

These include the methods presented by Williams et. [89], Dinwiddie et al. [102] and 

Rodriguez et al. [103]. 

The calibration procedure described by Williams et al. [89] was applied in L-PBF. A 

calibration component was manufactured using the same L-PBF machine, process 

parameters and material used in the in-situ measurement study. The calibration 

component included a cartridge heater at the bottom and a K-type thermo-couple at the 

top surface and was placed in the chamber and heated in an inert atmosphere. The surface 

temperature was measured by means of both the thermal camera (mounted in the same 

configuration used for in-situ measurements) and the thermo-couple during both heating 

and cooling, to check for any hysteresis in camera intensity due to oxidation. The same 

calibration was repeated by covering the calibration surface with powder, leading to two 

distinct calibration curves, one for solidified material and one for loose powder.  
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Figure 2.2.h Examples of calibration components used in L-PBF (top panel) [89] and in EB-

PBF (bottom panel) [103] to enable true temperature estimation via in-situ IR video 

imaging. 

Similar calibration procedures in EB-PBF were presented by Dinwiddie et al. [102] and 

used in following studies (Raplee et al., [105] and Rodriguez et al. [103]). In this case, 

the electron beam itself was used to preheat the calibration sample instead of using 

embedded heaters. Figure 2.2.h shows the calibration components used by Williams et al. 

[89] in L-PBF (a) and the one used by Rodriguez et al. [103] in EB-PBF (b). 

Thermal cameras are large in size, expensive and typically require a modification of the 

machine hardware and viewports for installation on industrial systems. Conventional 

cameras are much cheaper and easier to integrate than thermal cameras, and high temporal 
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resolution can be made available with compact equipment. Although they do not allow 

actual temperature measurements, pixel intensity gradients in the visible range can be 

used as proxies for actual thermal gradients to identify anomalies and defects in some 

applications. In this framework, some studies focused on the detection of local over-

heating phenomena known as “hot-spots” via high-speed video imaging in the visible 

range [24,108,109]. A hot-spot is a local over-heating of the layer caused by out-of-

control heat exchanges with the surrounding material. A region affected by a hot-spot 

stays hot (bright) for a longer time with a slower cooling drift than in normal conditions. 

Because of this, a conventional camera with sufficient temporal resolution is suitable to 

capture the anomaly. High-speed vision in the visible range was also used in EB-PBF for 

hot-spot detection [81] and to support the development of a novel scan strategy that splits 

the melting beam, referred to as “ghost beam”,  by monitoring the dynamics of the 

meltpool [110].  

As a compromise between standard optical systems and thermal cameras, video-imaging 

in the NIR range (0.7 µm to ~1 µm) has been used by various researchers [107,111–114]. 

The main advantage is to filter out some deleterious effects at specific wavelengths and 

to reduce the dynamic range of the measurement with respect to that of optical video 

imaging, since a narrower spectral band mitigates pixel saturation in the presence of large 

temperature variations. NIR video imaging for level 2 in-situ measurements has been used 

mainly in EB-PBF. The leaded glass used to shield X-ray emissions has a transmission 

larger than 90% in the NIR range, much higher than in the IR range [112]. 

2.2.3.2 Measurement of process by-products 

Due to the different beam-material interactions in L-PBF and EB-PBF, different kinds of 

by-products are generated in the two processes. In L-PBF, a large quantity of spatters is 

ejected together with partial material vaporisation, also known as plume. The number of 

publications devoted to the in-situ measurement of process by-products in L-PBF has 

considerably increased in the last few years, as various researchers demonstrated the 

correlation between the information enclosed by such by-products and the process states 

that can have detrimental effects on part quality. Different by-products are generated in 

EB-PBF, including secondary and backscattered electrons and X-rays, but they are more 

appropriate for level 1 in-situ measurements rather than for capturing fast transient 
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phenomena during the electron beam scanning of the part. Therefore, this Section is 

devoted to methods applied to L-PBF only. 

Large numbers of process by-products can partially deflect and absorb the laser beam 

energy, or even deviate the laser focus position, leading to a modification in the laser 

beam geometry and the energy input. Spatter deposited on the powder bed may also 

produce contaminations in the part and discontinuities in the powder bed [115]. Unstable 

and out-of-control process by-product generation may have a detrimental effect on 

material properties. Figure 2.2.i depicts the plume emission and spatter ejection 

mechanisms in L-PBF, including droplet and hot powder spatters. The schematic example 

in Figure 2.2.i shows a forward plume emission, but, as shown by Bidare et al. [116], 

upwards and backwards plume emissions may occur, depending on process parameters, 

with different effects on powder bed denudation and spatter ejection. 

 

Figure 2.2.i Schematic representation of spatters and plume emissions in L-PBF. 

Various studies in the literature demonstrated the possibility to gather information about 

spatter and plume salient properties via visible and IR video imaging methods. Figure 

2.2.j shows some examples from the in-situ measurement of process by-products. 
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Figure 2.2.j Examples from the in-situ measurement of process by-products in L-PBF: a) 

ultra high-speed video frames with cameras synchronised to a pulsed high-power diode laser 

light source [117]; b) high speed video frames where only hotter objects are visible [118]; c) 

3D spatter localisation via high-speed stereo vision [119]; d) plume emissions captured with 

long wave IR video imaging [108]; e) high-speed X-ray video frames [120]; f) Schieleren 

imaging video frames [116]. 

In most cases, focus was on the characterisation of the by-product ejection mechanism 

and its correlation with different process parameters. To achieve this, the FoV was 

reduced, enabling high spatial resolution. A clear example can be found in Yin et al.’s 

[117] study which used a self-developed L-PBF system, equipped with a high-speed 

video imaging setup with a FoV of about (2 × 2) mm (spatial resolution 3.92 to µm/pixel 

5.70 µm/pixel). An even higher spatial resolution was obtained by Bidare et al. [116] on 

a self-developed L-PBF system using a high-speed vision setup with a 7:1 zoom and a 

FoV of (2 × 1.5) mm. In other studies, a similar high-speed vision setup was applied on 

industrial L-PBF systems. However, the in-situ measurement involved a larger FoV, 

possibly including the entire build area, and a lower spatial resolution. For example, 

Repossini et al. [121] achieved a spatial resolution of about 250 µm/pixel with a FoV of 

about (250 × 250) mm, corresponding to the build area of the Renishaw AM250 used for 

the experimental study.  
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Recent studies proposed a high-speed stereo vision setup to identify and track individual 

spatters in the 3D space above the layer [119,122–124]. Spatter tracking along its 

trajectory may improve the characterisation of process by-products and provide additional 

insights about their mechanism of origin and the influence of process parameters (an 

example is shown in Figure 2.2.j c)). Eschner et al. [123] used two ultrahigh-speed 

cameras with an angle between the two camera axes equal to 30° and both cameras 

inclined by 10° relative to the base plate. This setup provided a temporal resolution of 

60,000 fps and a spatial resolution of 40 µm/pixel (FoV: (20 × 10) mm). Eschner et al. 

[123] showed that this approach, combined with a particle detection and tracking 

algorithm, was suitable to determine the 3D position and velocity of spatter. The same 

approach was used in a more recent study [122] to correlate spatter signatures with the 

penetration depth measured ex-situ. Barrett et al. [124] demonstrated the use of low-cost, 

high-speed stereo vision methods on an industrial L-PBF machine (EOS M290).  

Some researchers used pulsed high-power diode laser light sources [117] or tungsten 

filament lamps [116] to enable the visualisation of the powder bed, melt track and the hot 

ejections from the melted area (as shown in Figure 2.2.jF e)). High-speed videos, where 

only hot objects such as spatter, plume and the laser heated zone are bright enough to be 

observable, facilitate the image segmentation and feature extraction of process by-

products (Figure 2.2.j b)). This was obtained by many other researchers without any 

external illumination [121,125–127]. In other cases, similar videos were recorded with 

external light sources to cope with limited sensor sensitivity or with too short integration 

times [118,128]. Some authors [108,129] used an IR camera to monitor hot plume 

emissions in L-PBF (Figure 2.2.j d)). For the characterisation of the spatter origination 

mechanism, various researchers used high-speed high-energy X-ray video imaging 

system [120,130–132]. The laser scan path is typically limited to a single continuous scan 

perpendicular to the X-ray beam (Figure 2.2.j e)). The scan occurs on a powder bed held 

in place by two transparent side walls. With this measurement set up it is not only possible 

to observe spatter dynamics, but also the melt pool behaviour in the currently melted layer 

and below the layer, providing information about melt pool penetration depth and sub-

surface porosity formation. Bidare et al. [116] combined high-speed video imaging in the 

visible range with a high-speed Schlieren video imaging method, which enabled the 
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visualisation of the Ar gas flow and its interaction with the plume and the affected spatters 

(Figure 2.2.j f)). 

2.2.3.3 Measurement of air-borne acoustic emissions 

Air-borne acoustic emission sensors have already been used in laser welding applications 

[88] and a few studies have tested this approach in L-PBF. The underlying principle 

consists of capturing air density variations during the laser scanning of the part by placing 

the sensor in the vicinity of the melted area. Therefore, the measured signature is related 

to the process by-product in terms of plume emissions and plasma formation. 

In Wasmer et al. [133] and Shevchik et al. [134], the airborne acoustic emission signal 

was acquired by means of a fibre Bragg grating optoacoustic sensor installed into the 

build chamber at about 200 mm from the process zone. In both studies, the sensor was 

installed on an industrial L-PBF machine and the sampling frequency was 1 MHz. The 

sensor was placed so that the longitudinal axis of the fibre was perpendicular to the 

acoustic wave to increase its sensitivity. In Ye et al. [135] a microphone was installed 

into the build chamber at a 30° angle above the build area. The frequency response of the 

sensor was in the range 0 to 100 kHz and the signal was acquired with a sampling 

frequency of 200 kHz. A similar approach was used in Kouprianoff et al. [136]. The 

information in these measurements can be viewed as signatures of the laser-material 

interaction during the laser scanning of the part. 

2.2.4 Level 3 methods – Melt-pool  

In-situ measurements of the melt pool properties have been investigated only in L-PBF, 

although some EB-PBF level 2 methods attempted to extract features at both track and 

melt pool level via off-axis video imaging. The significant advantage provided by L-PBF 

is the possibility of using the laser optical path in co-axial sensing mode. On this basis, 

the majority of the literature in this field relies on co-axial spatially integrated pyrometry 

measurements, co-axial spatially resolved video imaging methods or combinations of the 

two. The novelties presented in most recent studies are mainly related to the analysis of 

melt pool measurements via machine learning techniques. Nevertheless, a few studies 

proposed novel sensing solutions such as co-axial dual wavelength video imaging 

[89,137,138] or co-axial optical emission spectroscopy [94]. 
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2.2.4.1 Spatially integrated methods 

In-situ co-axial measurements of melt pool properties represented the core of research in 

L-PBF process monitoring in the first published studies (between 2010 and 2015, and in 

a few cases earlier). The melt pool properties of interest include melt pool size or 

geometry, intensities of the integrated radiation, spatial patterns and emission spectra. 

Spatially integrated pyrometry, by means of one or multiple photodiodes, is suitable to 

measure melt pool radiation intensity with high temporal resolution. Among the most 

important factors affecting the quality of the measured data, the measurement wavelength 

range and the sensor FoV play a central role. In all the studies reported [90,139–147] the 

wavelength range was slightly above or below 1000 nm, whereas some researchers used 

dual-wavelength measurements in the ranges 700 nm to 1050 nm and 1100 nm to 1700 

nm [148–150]. 

The wavelength region below the laser beam wavelength (typically 1064 nm) allows the 

capturing of the light emitted by the melt pool (between about 700 nm and 1050 nm). In 

certain cases, plasma emissions, below 1050 nm, could also be captured [148,149]. 

However, the radiation energy at the melting temperature has its peak in the NIR region. 

Measuring melt pool radiation above 1000 nm was prevented, in some cases, by the 

optical chain [143], but this limit was overcome in other studies [139,141]. 

Co-axial photodiodes are nowadays available in most industrial L-PBF systems, and, in 

most cases, a 2D map of melt pool intensities is provided by synchronising the photodiode 

signal with the laser spot coordinates. A different use of a co-axial photodiode was 

discussed in Montazeri et al. [90], where the authors showed that the chemical 

composition of the material can be determined via melt pool radiation measurement, 

leading to possible material cross-contamination detection. In this case, the detection 

range of the sensor was 350 nm to 1100 nm, with the aim of measuring the radiation 

intensity of the plume.  

Some researchers proposed in-situ melt pool measurement methods relying on off-axis 

mounted photodiodes. For example, Nadipalli et al. [151] and Bisht et al. [152] used an 

analogous approach for melt pool intensity measurements during the production of tensile 

specimens. The FoV of the sensor covered the entire build area, which enabled the 
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collection of not only melt pool radiation signals, but also radiation emitted by 

surrounding hot areas and by-product emissions. Due to this, the characterisation of melt 

pool properties is limited and imprecise, compared to co-axial methods. Instead of 

measuring the integrated radiation intensity emitted by the melt pool, Lough et al. [94] 

used a co-axial optical emission spectroscopy approach to measure the spectral content 

of the collected radiation and determine the chemistry and relative intensities of the 

excited species vaporised within the plume. To this aim, the measurement spectral range 

was 400 nm to 700 nm. 

2.2.4.2 Spatially resolved methods 

Richer information about melt pool properties and stability over time can be gathered via 

co-axial video imaging methods, and several studies proposed this approach. In most 

cases [139,142,143,145,153–159], a high-speed camera (with sampling rate between 

1000 fps and 50,000 fps) equipped with a narrow band NIR filter was used to enhance 

the dynamic range and capture predominant melt pool emissions at the melting 

temperature. The spatial resolution enabled by this measurement setup ranges between 8 

μm/pixel and 21 μm/pixel, due to the limited FoV. 

Some researchers used off-axis video imaging methods for melt pool measurements. This 

approach was made feasible by using high-magnification optics combined with a limited 

FoV. Zhirnov et al. [160] and Lane et al. [161] used an off-axis high-speed camera 

combined with a mirror that allowed close-range observation of the melt pool without 

obstructing the laser, achieving a spatial resolution in the order of 3 μm/pixel. Lane et al. 

[161] also used an off-axis thermal camera for melt pool thermography at lower resolution 

(36 μm/pixel). Similarly, Heigel et al. [92,93] used an off-axis IR camera for melt pool 

length and cooling rate estimations, whereas Scime and Beuth [162] and Bruna-Rosso et 

al. [163] used off-axis mounted high-speed cameras in the visible range to study the 

morphology of the melt-pool and its variation along the track. 

Only a few researchers reported calibration procedures for melt pool video imaging 

analysis. Lane et al. [161] calibrated their off-axial high-speed camera, equipped with a 

NIR filter, by using a light emitting diode-driven integrating sphere, leading to a non-

linear calibration curve between blackbody temperature and camera signal. A different 

approach was adopted by other researchers who proposed the use of dual wavelength 
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video imaging which involved the acquisition of video image streams at two different 

wavelengths (700 nm and 950 nm) to enable a temperature estimate via two-colour 

thermography [89,137,138]. The method allows the avoidance of the difficulties related 

to melt pool emissivity estimation by calculating the ratio of the radiances measured at 

the two separate wavelengths, under the assumption of a constant emissivity at these 

wavelengths. Figure 2.2.k shows some examples of melt pool images and melt pool 

surface temperature estimations.  

 

Figure 2.2.k a) Co-axial melt pool images in four sequential video frames in the visible range 

[164], b) melt pool surface temperature estimation via dual wavelength co-axial video 

imaging [138], c) melt pool surface temperature estimation via off-axis video imaging for 

different process parameters [160]. 

A different spatially resolved approach was used by Kanko et al. [165]. They used a co-

axial in-line coherent imaging method to measure the melt pool and surrounding area 

morphology changes. Unlike from the methods discussed above, which focused on melt 

pool signatures within the build plane, the in-line coherent imaging approach enables a 

local reconstruction of the height profile within the melt pool and along the track. This 

approach has been applied to single tracks only but it could be extended to three-

dimensional builds. 

2.2.5 Level 4 methods – under the layer 

All the in-situ sensing and measurement methods presented in the previous sections 

involve a measurement of the patterns and phenomena that occur in the layer during 

production, either before, during or after the melting phase. However, as the next layer is 

being printed, the material characteristics underneath it are modified as well, due to the 

partial remelting of top layers and heat exchanges within the build volume. Some in-situ 
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sensing and measurement methods have been proposed with the aim to gather information 

about what goes on under the current layer. One major stream of research regards methods 

that uses high-speed high-energy X-ray imaging systems to observe subsurface melt pool 

dynamics, the penetration depth and pore formation. Other researchers investigated the 

use of a similar sensing setup for X-ray diffraction measurements, which allows the 

characterisation of strain and stress formation and phase transformations [132,166–168]. 

One study also explored the feasibility of in-situ micro-tomography [169]. A completely 

different perspective characterises a second mainstream of research where acoustic 

emissions (from audible sound to ultrasounds and emissions in the megahertz bandwidth) 

are used to gather information about elastic energy releases under the layer, such as cracks 

and delamination. A few researchers also studied in-situ measurements of the baseplate 

[170,171]. All these methods have been applied only in L-PBF so far.  

Although X-ray video imaging methods can provide insights about the origin of process 

by-products, their main use presented and discussed in the literature regards the capability 

of observing the melt-pool cross-section in a plane perpendicular to the layer. Figure 2.2.l 

shows an example of the apparatus used for this kind of in-situ measurement [172], and 

an example of an in-situ X-ray video frame [101]. The high-energy X-ray beam penetrates 

the material along a direction orthogonal to both the scan and build directions. Laser 

scanning is performed along a narrow powder bed, spread between two transparent walls 

(usually glassy carbon sheets). A downstream detection system converts the X-ray signal 

into visible light by means of a scintillator, and the converted signal is finally recorded 

by a high-speed camera. 

 

Figure 2.2.l Scheme of the apparatus for in-situ X-ray video imaging in L-PBF (left) [172] 

and an example of an in-situ X-ray video frame (right) [101]. 

Figure 2.2.l shows that X-ray imaging for in-situ measurements can be used only at 

laboratory level using L-PBF prototype systems. Despite not being applicable on 
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production machines for industrial use, this approach turned out to be convenient to reveal 

complex dynamical changes in the melt pool and depression zones during laser scanning. 

This is enabled by the capability to look under the layer and by the very high spatial and 

temporal resolutions that can be achieved with this method. A spatial resolution of 1 

µm/pixel to 2 µm/pixel can be achieved, with a sampling rate higher than 100,000 fps. 

Calta et al. [168] and Zhao et al. [132] combined in-situ X-ray video imaging with in-situ 

X-ray diffraction to observe not only subsurface melt pool dynamics but also phase 

transformations in the material and changes in the strain and stress states. In these studies, 

two different detectors were used for X-ray imaging and X-ray diffraction. In-situ X-ray 

diffraction was also studied in Schmeiser et al. [166] and Uhlmann et al. [167]. A 

completely different configuration was proposed by Lhuissier et al. [169], where the aim 

was to demonstrate the feasibility of in-situ X-ray micro-tomography for the volumetric 

reconstruction of the part during the process. Figure 2.2.m (top panel) schematically 

shows how the apparatus presented by Lhuissier et al. [169] operates. Figure 2.2.m 

(bottom panel) shows the resulting 3D reconstruction of a wall measured at different 

consecutive layers (the 3D volume reconstruction was post-processed to remove particles 

of the powder bed and visualise the bulk wall). 

In Lhuissier et al. [169], the build plate was mounted on a piston that is raised up to a 

“shadow-free” imaging position after powder spreading. A microtomography scan of the 

deposited powder bed is first acquired. Laser melting is applied at the same imaging 

position and, once completed, a second microtomography scan is performed. Eventually, 

the build plate returns to its layering position and a new powder layer is deposited. During 

the microtomography scan, 1500 projections were acquired resulting in a scan time of 45 

seconds. The measurements presented in Lhuissier et al. [169] were gathered with a 

spatial resolution of 3.64 µm/pixel and a FoV of (8.8 × 6.2) mm.  
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Figure 2.2.m Schematic representation of the working principle of the in-situ X-ray micro-

tomography approach presented by Lhuissier et al. [169] (top panels); in-situ 3D 

reconstruction of a wall measured at different consecutive layers (powder bed particles were 

removed in 3D data post-processing to visualise the bulk wall). 

A different field of research with more direct application potentials in industry regards 

the in-situ measurements of acoustic emissions. Acoustic emissions can be divided into 

air-borne and structure-borne emissions. The latter are suitable to detect sudden releases 

of elastic energy that propagate within the material. This enables the possibility to detect 

crack formations, detachments of overhang areas from supports or delamination 

phenomena. The use of multiple sensors placed at different locations could also provide 

information about the location within the build where the energy release originated. The 
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structure-borne signal is also influenced by other laser-material interactions and hence 

they can provide additional insights about changes in process conditions.  

The use of structure-borne acoustic emission sensors has been proposed by various 

authors since the first seminal works of Rieder et al. [173,174] and patented by some 

major L-PBF system developers [175,176]. Rieder et al. [173,174] proposed an ultrasonic 

monitoring device in L-PBF mounted on the underside of the baseplate. The bandwidth 

range was 400 kHz to 30 MHz, with an acquisition frequency of 250 MHz. The 

researchers measured ultrasound emissions, focusing on the bottom plate interface echo 

and the backwall echo patterns as proxies of discontinuities in the material, while the 

specimen build-up height increased. More recently, a similar approach was presented in 

Eschner et al. [177] but the spectrogram of the signal was used to characterise the acoustic 

emission signature of the process rather than the recorder echo. Plotnikov et al. [98], 

instead, monitored the RMS of the signal.  

Finally, a couple of studies presented methods for baseplate distortion measurements 

during the process. In Dunbar et al. [171], a displacement sensor was attached to the 

underside of the baseplate. A more recent study [170] presented a smart baseplate for L-

PBF with an embedded optical fibre strain measurement sensor. Rather than measuring 

the baseplate deformation, Hehr et al. [170] demonstrated the feasibility of the proposed 

approach to detect plastic deformations like a delamination from the baseplate.  

2.3 In-situ monitoring and in-situ defect detectability 

This section is devoted to in-situ monitoring methods, i.e., to the capability of signalling 

process anomalies that could indicate the onset of defects in the part or undesired changes 

in the process. For the design of in-situ monitoring methods, two types of correlation 

could be investigated. The first regards the influence of input variables and controllable 

factors on in-situ measured quantities, including powder properties, process parameters, 

part and build geometry and chamber atmosphere. In the recent years, an increasing 

number of studies has investigated such influences and proposed data analytics and 

machine learning techniques to classify the process behaviour into different states based 

on in-situ measured data.  
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The second type of correlation regards the correspondence of events and anomalies 

detected during the process and the final quality and performances of the manufactured 

part. Studies belonging to this second category can be divided into two main classes, one 

focused on the quality of single tracks or single layers, and one exploring the final 

properties of three-dimensional parts, including their microstructure, porosity, 

geometrical errors, residual stresses, presence of cracks or delamination, and mechanical 

performances.  

In many cases, authors varied important process parameters to purposefully introduce 

flaws in the part. Other studies focused on the effect of geometrical features on process 

signatures and detectable anomalies, whereas only few authors addressed other sources 

of process signature variability such as different properties of metal powders (e.g., powder 

oxidation level or powder feedstocks from different vendors) or different chamber 

atmosphere conditions (e.g., ambient pressure, inert gas types or gas flow uniformity). 

The link between in-situ measured quantities and the final quality of manufactured parts 

has attracted a wide interest in the recent years. About 50% of studies published since 

2017 investigated such a link, either for sake of comprehension of underlying process 

dynamics or with the aim to develop and test novel in-situ defect detection solutions. One 

third of them involved single track (or single layer) experiments. Although the analysis 

of individual track properties is not sufficient to demonstrate actual in-situ defect 

detection capabilities in three-dimensional parts, it provides relevant information about 

defect onset mechanisms and the suitability of process signatures to identify variations in 

the process. This approach has been used mainly in level 2 methods focusing on process 

by-products and level 3 methods focusing on melt pool properties. The remaining portion 

of studies was devoted mainly to the in-situ detection of local porosities or the distinction 

between different density levels, whereas various authors investigated the capability of 

predicting the final microstructural properties of the part or detecting possible geometrical 

distortions, and/or the correlation between process signatures and mechanical properties. 

2.3.1 Influence of input variables on in-situ signals 

Varying process parameters and scan strategies represents the most common way adopted 

by researchers to intentionally introduce flaws in the final quality and functional 
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properties of the part and observe consequent anomaly and defect onset mechanisms 

through in-situ measurement of process signatures. 

Various authors showed that different energy density levels in L-PBF generate different 

surface topographies of each printed slice [38,39,68,69,79,80,178]. Deviations from a 

uniform and smooth surface were shown both at low energy density (resulting in irregular 

and porous patterns or even balling effects in more severe cases) and high energy density 

(resulting in uneven surfaces and superelevated edges). Similar effects have been studied 

in EB-PBF too, where porous and uneven surface patterns captured by in-situ electronic 

imaging were observed for different combinations of beam power and scan speed 

[74,74,75]. An irregular surface topography is more likely to generate defects in the part 

but it is not a sufficient condition, because partial remelting in following layers may 

mitigate or even avoid the onset of defects in the part.  

Many authors tested different sets of process parameters both in L-PBF and EB-PBF to 

investigate variations in the thermal history of the process measured in-situ via NIR or IR 

video imaging and pyrometry. In L-PBF, a variation of the energy density was shown to 

cause not only an increase of average and peak IR intensities [99], but also the occurrence 

of local outlying temperatures [96], a variations of the time a pixel temperature stays 

above a given threshold [95,100], a modification of cooling profile patterns [101] and a 

shift in emission spectral characteristics associated to specific chemical elements [179]. 

In EB-PBF, attention has been devoted to the effect of different process parameters on 

the temporal evolution of the average temperature of the layer [104], and to temporal and 

spatial thermal gradients in different locations of the part passing from line to point scan 

strategies [105,106]. 

A research field that has attracted a wide and recent interest is the analysis of process by-

product dynamics as a consequence of different process parameters and energy densities 

in L-PBF. Various authors showed that an excessive energy input to the material causes 

large and unstable plume emissions with a large amount of spatters characterized by high 

speed and spreading at large distances from the melting area [116,121,126,129,180,181]. 

In these conditions, large droplets of spatter were observed to be more likely ejected from 

the meltpool [126,180]. Some authors also reported an increase of the backward ejection 

angle of spatter as the laser power increases [117,181], although the orientation of spatter 
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ejections can range from forward to backward depending on the combination of laser 

power and scan speed [116]. In the presence of an insufficient energy input causing lack-

of-fusion defects or balling irregularities along the tracks, low plume and spatter 

emissions were observed [116,121,126,180,181]. However, some authors showed that 

excessive energy inputs have a much more evident effect on the spatter behaviour than 

insufficient energy inputs compared with optimal process conditions [121,126]. The 

effect of varying either the laser power or the scan speed may be different even if the 

energy density is the same [127]. 

In-situ X-ray video imaging confirmed these findings and enabled further insight to the 

by-product properties and origination mechanisms [130,132,182]. Young et al. [130] also 

showed the generation mechanism of power agglomeration spatters (formed through 

coalescing of multiple powder particles and spatters) and so-called “defect induced 

spatters”. The latter were observed in correspondence of large pores within previously 

built layers: the interaction between the melt pool and the depression zone with the 

localized pore under the surface was shown to cause a sudden eruption out of the melt 

pool with a consequent liquid material ejection. All the aforementioned studies 

investigated the spatter generation in single laser L-PBF. Only one study has been devoted 

to the analysis of process by-products in multi-laser L-PBF [128], showing that when 

multiple lasers work simultaneously in the same area a larger amount of spatter is 

produced and their area is larger than the one observed when a single laser beam is used. 

A large number of studies has been devoted to the effect of different process parameters 

on melt pool properties.  An increase of the energy input to the material was shown to 

cause an increase of the melt pool thermal emission (average and standard deviation), the 

size and peak radiance of melt pool temperature isotherms, melt pool area, lengths and 

width [139,150,153,160,164,183]. The amplitude of co-axial pyrometer signal varies 

could be used to identify transitions between conduction and key hole mode laser 

processing conditions [139]. The analysis of the melt pool shape and size at different 

energy densities enabled additional insights about stable and unstable process conditions 

and variations along the scan track, turning point effects and other dynamics related to 

the complex flow of molten material [132]. Other authors investigated the effect of 

continuous and pulsed modes on melt pool properties [151,154,155]. Vasileska et al. 
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[154] showed the melt pool area increase as a consequence of the increase of duty cycle 

in pulsed mode, whereas Demir et al. [155] showed the feasibility of assigning different 

emission types in different regions of the same part to keep the melt pool size stable 

during the entire process. In particular, pulsed mode was suggested for thin walls and 

continuous mode for bulk regions. Demir et al. [155] also showed that the energy density 

is not sufficient to describe the melting behaviour, as under the same energy density 

continuous and pulsed mode emission regimes resulted in different melt pool dimensions. 

Kolb et al. [153] showed that the melt pool properties are affected also by the surface 

roughness of the consolidated material beneath the current layer. The most significant 

mechanisms of laser-material interactions, convective motions, penetration depth 

variation, powder consolidation and pore formation for different sets of process 

parameters were highlighted in depth via in-situ X-ray video imaging [182,184,185]. 

Eventually, both air-borne and structure-borne acoustic emissions were shown to be 

affected by process parameters. Wasmer et al. [133] and Shevchik et al. [134] showed 

that different scan speeds caused different wavelet spectrograms patterns of the air-borne 

acoustic signal. The influence of process parameters on time and frequency domain 

features of the air-borne signal were discussed by Ye et al. [135] and Kouprianoff et al. 

[136], whereas Eschner et al. [177] and Plotnikov et al. [98] showed similar effects on 

structure-borne acoustic signals too. 

2.3.2 In-situ detectability of defects and prediction of final part properties  

2.3.2.1 In-situ estimation of single track quality 

Among the studies involving single track experiments, only few proposed machine 

learning methods suitable to determine the quality of the track based on in-situ 

measurements.    

Ye et al. [186] proposed a deep belief network classifier that exploited in-situ video image 

data on process by-products. The algorithm was trained in two different modes: i) using 

in-situ images as direct inputs for the network, which led to a classification accuracy of 

about 83% and ii) using extracted spatter and plume descriptors (including areas, lengths, 

widths, orientations, perimeters, etc.), which led to a classification accuracy of about 

81.9%. The same authors applied the same type of classifier to air-borne acoustic signals 
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[135]. In this case, the raw acoustic signal was pre-filtered and processed via fast Fourier 

transform before being provided as input to the deep belief network. The results showed 

a classification accuracy of 93.63%. Zhang et al. [187] compared different classification 

algorithms, either applied to plume and spatter descriptors or to raw images, showing that 

the best classification accuracy, in the order of 92.8%, could be achieved by applying a 

Convolutional Neural Network (CNN) directly on raw images. Zhang et al. [188] showed 

that previously presented results could be further improved by additionally including 

temporal information within the trained network. The underlying idea is that the relevant 

information content about spatter and plume behaviour is not only captured by individual 

video frames, but also by variations in sequential frames. Zhang et al. [188] proposed a 

hybrid CNN scheme consisting of two steps. In the first step, the network learns spatial 

features from single images. In the second step, the features extracted in step 1 are 

rearranged according to the video frame sequence and used as inputs to a second network, 

whose output is the classified process state. With this approach, an overall accuracy of 

99.6% was achieved. However, all these methods were applied to single tracks of simple 

specimens. There is still a need for studies demonstrating the suitability of L-PBF by-

product signatures, to identify changes of the process state in the presence of complex 

shapes, or to detect the onset of local defects.  

A semi-supervised classification approach was proposed by Yuan et al. [164], who used 

melt pool images acquired by means of a co-axial high-speed camera. The semi-

supervised approach trains the classifier using both labelled and unlabeled data. Labelling 

individual data samples can be a time-consuming task and defining the correct label for 

some samples is not always straight forward. Single tracks AISI 316L stainless steel were 

labelled by measuring their height after the process. The proposed CNN applied to melt 

pool images combined a supervised and unsupervised model. The classifier was trained 

using 1000 training data points, by varying the number of labelled ones. Yuan et al. [164] 

reported a successful classification rate of 93.8% when 50% of the training data were 

unlabeled. The classification performance decreased as the amount of unlabeled data 

increased. 
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2.3.2.2 In-situ porosity detection 

Porosity is the defect that attracted the largest interest and highest number of studies in 

the literature. Nonetheless, the number of researchers who effectively demonstrated 

practical in-situ porosity detection capabilities, is still limited. The literature on this area 

covers three distinct approaches when testing porosity detection, i) voids included into 

the model of the part, which are also referred to as “artificial” or “intentional” pores, ii) 

local porosity (single pores or local clusters of pores, either spherical or irregular pores 

caused by lack of fusion – LoF) and iii) part density (the overall percentage of voids in 

the volume). The majority of authors investigated the correlation between in-situ signals 

and the overall part density, but only few of them demonstrated the capability to detect 

local porosities within the part or even individual pores.  

The advantage of inserting artificial pores in the part is that their location and shape is 

known in advance, hence it is easier to determine the effect of these artificial flaws on in-

situ acquired signals. The main drawback is that the pattern of the measured process 

signatures is not fully representative of the one that can be observed when a real pore 

originates in the part. In effect, an artificial void implies that a small region of the layer 

is not scanned, whereas a real pore originates from the beam-material interaction without 

scan interruptions along the track. 

Voids of different shapes and sizes were used in various studies, including cubic voids 

with sizes in the range 30 μm to 300 μm [137] or 50 μm to 750 μm [47,79,80], cylindrical 

voids with diameters in the range 50 μm to 750 μm [47,79,80] and spherical voids with 

diameters in the range 600 μm to 900 μm [84]. Imani et al. [79,80] and Mahmoudi et al. 

[52] used intentionally seeded voids to test the capability of their proposed layerwise 

surface pattern monitoring methods, to detect surface discontinuities within the printed 

area. Both the methods presented by Imani et al. [79,80] and Mahmoudi et al. [52] were 

applied in L-PBF and worked by partitioning the surfaces into regions of interest (RoIs) 

and classifying them into defective or defect-free regions. In Imani et al. [79,80] , RoIs 

were generated from optical layerwise imaging, such that each RoI has the same number 

of pixels but different shapes, to adapt to layerwise varying part geometry. In Mahmoudi 

et al. [52], RoIs were identified as rectangular regions placed where connected 

components were observed after a binarisation of the layerwise reconstructed thermal 
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map. Imani et al. [79,80] used a deep learning approach to classify the RoIs into defective 

or defect-free. An accuracy (the ratio of RoIs that were correctly identified) of 92.5% was 

reported for artificial voids of different sizes and shapes. Mahmoudi et al. [52] proposed 

a modelling step, based on a Gaussian process model, that flags pixels with statistically 

significant deviations, followed by a final classification step to determine whether a RoI 

includes a defect or not. An accuracy of 96% was reported for this defect detection 

method, although tests were only carried out in the presence of one single artificially 

seeded void. Both the methods presented by Imani et al. [79,80] and Mahmoudi et al. [52] 

required a training phase involving samples of defective and defect-free image data.  

Mitchell et al. [137] proposed a method, based on off-axis dual wavelength video 

imaging, that combined the estimation of melt pool properties with a reconstruction of 

the thermal map of the part. In the presence of artificially seeded voids, Mitchell et al. 

[137] showed that voids as small as 120 μm were identified, however, the in-situ 

reconstructed void volume was underestimated by up to 28% with respect to the 

corresponding post-process reconstruction via X-ray computed tomography (XCT). 

Mitchell et al. [137] additionally investigated the capability of automatically detecting 

not only artificial voids but also natural porosity generated by the process. The AISI 316L 

specimens produced via L-PBF mainly included spherical pores with an equivalent 

spherical diameter (ESD) ranging between 11.4 μm (minimum size detectable by the 

micro-computer tomography (micro-CT)) and 70 μm. A neighborhood searching 

algorithm was proposed to classify individual melt pool images into normal or outlier, by 

comparing the similarity of the melt pool in a given location with melt pools observed in 

its vicinity, within a given radius in terms of melt pool aspect ratio and orientation. 

Mitchell et al. [137] showed that the percentage of pores detected by means of melt pool 

images signaled as outliers was in the range 25% to 55%, but it increased above 70% 

when considering only pores with ESD larger than 50 μm. Nevertheless, a relatively high 

false positive rate between 23% and 58% was reported. Examples of results from the 

study of Mitchell et al. [137] are shown in Figure 2.3.a. 

The high false alarm rate highlights the need for further research developments to design 

more effective in-situ monitoring tools for porosity detection. Such high false alarm rates 
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can also be related to the remelting effect as the process continues, which may cause 

partial pore annihilation in underneath layers.   

 

Figure 2.3.a Examples of results from Mitchell et al. [137]; a) three-dimensional 

reconstructions of all pores identified using micro-CT, pores correlated with in-situ outlying 

melt pool signals, and pores not correlated; b) percentages of pores spatially 

coincident/correlated with outlier melt pools at different minimum ESDs and different 

threshold values. 

Other studies investigated the capability to detect local pores using different in-situ 

monitoring approaches. As far as level 1 methods are concerned, Gobert et al. [46] 

presented a voxel-wise comparison between a 3D reconstruction of the part, based on in-

situ layerwise image pixel intensities and the post-process XCT reconstruction. A 

landmark-based registration between the in-situ data and the CT data was applied. Then, 

the support vector machine (SVM) approach was used as a binary classifier to detect flaws 

in the in-situ reconstruction. Layerwise images were acquired with different illumination 

conditions, and Gobert et al. [46] showed that the most appropriate pore detection 

performances were achieved using an ensemble learning system, merging SVM models 

associated with each condition. The test specimen built with stainless steel powder had 

pores with ESD in the range 29.5 μm to 50.5 μm (with very few above 50.5 μm). Gobert 

et al. [46] reported a detection accuracy of 85%, with a “precision” of 64%, where the 

precision was defined as the ratio between the number of true positives and the total 

number of true positives and false positives. 
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A comparison between in-situ and post-process XCT reconstructions of specimens, 

produced via L-PBF, was presented by Bamberg et al. [53], who performed a layerwise 

mapping of hot and cold areas. This method was later implemented by EOS in the 

EOSTATE suite and called “Optical Tomography”. Although no information about the 

pore detection algorithm was provided, the authors showed a probability of detection 

between 90% and 95% for lack-of-fusion flaws with diameters in the order of 150 μm. 

A voxel-wise comparison between thermal signatures generated via in-situ thermography 

and the XCT of the part was carried out by Mohr et al. [100], Lough et al. [95,189] and 

Bartlett et al. [67]. Lough et al. [95] compared different synthetic descriptors to generate 

layerwise thermal maps from IR video image data. They showed a correlation between 

the proposed synthetic indexes and the presence of local pores (at least the largest ones). 

Bartlett et al. [67] proposed another rule to detect potential anomalies in thermal maps. 

The rule consists of signaling any pixel whose temperature is K standard deviations above 

or below the average temperature of the layer. They applied this approach to cylindrical 

specimens, showing a detection rate of 33% for keyhole porosity and 82% for lack-of-

fusion porosity. Pores below approximately 50 μm were only detected with a 50% success 

rate, whereas all pores larger than 500 μm were correctly detected. The researchers also 

showed that false alarms were strongly affected by the selected value of K. A correlation 

between subsurface pores and cooling profiles reconstructed via in-situ thermography 

was presented by Paulson et al. [101], however, in this case, in-situ X-ray video imaging 

was used as ground truth instead of post-process XCT inspection. Pores were classified 

into small (<10 μm) and large (>10 μm), mainly focusing on spherical ones. By testing 

different sets of thermal history features and different classification algorithms, an 

accuracy in the range 84% to 100% was reported. 

Similar comparisons between in-situ reconstructed porosity maps and XCT inspections 

have also been carried out in EB-PBF. Yoder et al. [55] used the LayerQam system 

developed by Arcam to acquire layerwise images of the build in the NIR range, resulting 

in a voxel size of the in-situ data of (100  100  50) μm. Potential pores were identified 

simply by setting a threshold-to-pixel intensity, as surface cavities were assumed to yield 

a bright spot in the image. Lack-of-fusion defects were concentrated in banded regions 

along vertical tensile specimens. Yoder et al. [55] qualitatively demonstrated the 
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correspondence between pore concentration regions signaled by the in-situ monitoring 

tool and “ground truth” pore concentration regions from the XCT measurements. They 

also showed that tensile specimens failed in correspondence of those bands. The relevance 

of the overall build layout for the quality of individual parts in the build confirms the 

results discussed by Williams et al. [89] in L-PBF. Arnold et al. [74], instead, showed a 

comparison between in-situ electronic imaging, post-process optical microscopy on a 

prepared micro-section and XCT, as shown in Figure 2.3.b. Rather than identifying 

individual pores, Arnold et al. [74] directly compared the pixel intensities in the images 

generated with different in-situ and ex-situ methods. A good agreement was highlighted 

for lack-of-fusion pores larger than 100 μm. 

 

Figure 2.3.b Comparison between a cross-Section from an in-situ electronic image, ex-situ 

optical microscopy and ex-situ XCT [74]. 

2.3.2.3 In-situ detection of geometrical distortions 

Almost all the methods presented in the literature for the in-situ detection of geometrical 

distortions belong to level 1 and level 2. Regarding level 1 methods, the possibility to 

directly measure the geometry of the printed slice represents the major driver for in-situ 

geometrical distortion detection. However, only a few researchers developed automated 

alarm rules for the detection of deviations from the nominal shape with a validation based 

on ex-situ inspections of the final part. Gaikwad et al. [82] presented a CNN for the in-

situ prediction of the quality of thin-wall Ti6Al4V parts in L-PBF. Instead of 

reconstructing the slice contour, de-noised and binarised images of the powder bed were 
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provided as input to the CNN. Gaikwad et al. [82] showed agreement in the range 80% 

to 98% between the in-situ predicted quality of the thin walls and their ex-situ measured 

quality. 

 

Figure 2.3.c a) Comparison between in-situ and ex-situ estimates of the thin-wall quality in 

Gaikwad et al. [82] for different thin wall orientations (the horizontal dashed line indicates 

the upper limit before the thin wall collapsed) and examples of thin-wall defects; b) moving 

window control chart for the in-situ detection of geometrical distortions proposed by Pagani 

et al. [48] with an example of a detected geometrical distortion caused by warpage of the 

part. 

More recently, Pagani et al. [48] presented a statistical process monitoring approach for 

the in-situ detection of geometrical errors in L-PBF. The method allows modelling the 

natural variability of geometric errors for complex shapes whose layerwise geometry is 

changing every layer. This approach enabled the identification of anomalies in one or 

multiple layers through the estimation of a deviation index capturing local mismatches 

between the in-situ observed shape and the nominal one from the slice CAD model. The 

method was tested by producing Ti6Al4V specimens with complex shapes on an 

industrial L-PBF system, using the already embedded powder bed camera and light 

source. Pagani et al. [48] showed that the proposed approach produced a false alarm rate 

very close to the targeted one and allowed the signaling of various anomalies 
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corresponding to geometrical deformations quantified after the process via XCT 

inspection. Figure 2.3.c shows examples of thin-wall quality prediction by Gaikwad et al. 

[82] and the statistical process monitoring approach developed by Pagani et al. [48]. 

Level 1 methods, based on the analysis of the surface patterns of the powder bed and the 

printed slice, could also be suitable to detect geometrical distortions. A few researchers 

demonstrated correlations between in-situ detected and classified anomalies in one or 

multiple layers as well as the final quality of the part. Scime and Beuth [50,51] combined 

layerwise imaging in the visible range with a multi-scale CNN (MsCNN) in L-PBF, to 

automatically detect various kinds of anomalies such as recoater hopping and streaking, 

incomplete powder spreading, presence of debris on the powder bed, super-elevated 

edges and other part damages. Part damages were successfully classified in 94.2% of test 

samples with a false alarm rate of 0.7% (anomalies of any kind signaled in defect-free 

images). The method was validated during the L-PBF of an Inconel 718 heat exchanger, 

where macroscopic defects were observed and detected by the proposed approach. The 

training was performed using fifty-one builds produced on industrial systems involving 

different materials. An expert user manually selected square image patches from powder 

bed images corresponding to either correct powder spreading or anomalies belonging to 

different categories. The training set included about 10,000 patches. Although the 

formation of such a large dataset could be quite demanding, once it has been made 

available, it could be used to train the classifier implemented on different L-PBF 

machines during the production of different materials.  

Scime et al. [49] recently extended and tuned the method previously proposed by Scime 

and Beuth [50] and tested a transfer learning approach for the implementation of a 

classification algorithm, not only on different L-PBF machines from different vendors, 

but also in various metal AM technologies, for example, EB-PBF and binder jetting, using 

different sensing setups. Scime et al. [49] showed that false positive and false negative 

rates varied within a relatively wide range, depending on the AM system where the 

algorithm was tested. Best validation performances involved a false alarm rate of 0.4% 

and a true positive rate of 99.8%. Examples of in-situ detected geometrical distortions 

with these methods are shown in Figure 2.3.d. 
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Figure 2.3.d Examples of geometrical distortions and corresponding in-situ anomaly 

detection in a) Scime and Beuth [50] and b) Scime et al. [49]. 

A few other solutions suitable to detect anomalies affecting the geometrical accuracy of 

the part were proposed in the literature using level 2 in-situ monitoring methods. 

Colosimo and Grasso [190] proposed a hot-spot detection methodology based on the in-

process analysis of the spatio-temporal auto-correlation pattern of pixel intensities in 

high-speed videos gathered through off-axis machine vision in the visible range. They 

showed that local anomalous heat accumulations in L-PBF could lead to micro- and 

macro-scale geometrical deformations in the final part. Grasso et al. [191] proposed the 

use of an extension of the principal component analysis (PCA) method for high-speed 

video-image data. This extension, also known as “T-mode PCA”, is suitable to detect 

pixels whose intensity patterns over time exhibit anomalous temporal auto-correlations, 

which is a condition typically associated with pixels that remain hot for a long time with 

a slow cooling gradient. The spatial mapping of a synthetic PCA-based control statistic 

combined with a clustering-based alarm rule allowed the automated identification and 

localisation of local hot-spot events. This was expanded on with a spatio-temporal PCA 

method, where a spatial weight matrix was included into the PCA decomposition to 

account for both the temporal and spatial auto-correlations of pixel intensities in the video 

image. This allowed the detection of hot-spot events to be faster and more reliable. The 

method was tested during the L-PBF production of a complex geometry where hot-spots 

originated due to the presence of over-hang acute corners, leading to local geometrical 

distortions. In-situ video images were acquired by means of a high-speed camera in the 

visible range, placed outside the front viewport of an industrial L-PBF system. A more 

recent study of the same authors [192] presented a different approach based on the spatio-

temporal modelling of background and foreground patterns of the same high-speed video 
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image data. Ye et al. [192] showed that the proposed model-based approach was faster 

and more computationally efficient in detecting hot-spot events, at the expense of a 

number of parameters that needed to be tuned during the training phase. 

A different perspective was adopted in Grasso et al. [34] and Grasso and Colosimo [108] 

where a statistical monitoring method was proposed to monitor the stability over time of 

plume emissions during the L-PBF of pure zinc specimens with different process 

parameters. Off-axis IR video images were processed to isolate the RoI corresponding to 

the plume and extract salient features, such as the area, average intensity and orientation. 

A few initial layers were used to estimate the control limits to be applied in all following 

layers. Results showed that unstable process conditions leading to defective parts could 

be quickly detected since their onset stage. Such out-of-control states were characterised 

by anomalous and explosive plume patterns becoming more and more frequent along the 

build. Results also showed that no violations of the control limits occurred when optimal 

process parameters were used, leading to fully dense parts. 

2.4 Research gaps 

Many studies have been devoted to in-situ measurement and monitoring of PBF processes 

in the recent years. The majority of these studies presented and demonstrated in-situ 

anomaly and defect detection capabilities. However, there still is a lack of methods 

suitable to detect local flaws with acceptable false alarm rates. Without reliable detect 

detection methods for processing the data acquire, these systems have limited applications 

outside of research environments. 

A significant limitation of the current state of the art regards the fact that, in the majority 

of studies, the proposed methods were tested during single track experiments or during 

the production of simple specimens. This is often motivated by the need for easing post-

process inspections and tests to correlate in-situ measurements with quality and 

mechanical properties. This leads to at least two main issues. On the one hand, defect 

onset mechanisms and process signature dynamics in complex shapes can be quite 

different from those observed in simple specimens. On the other hand, there is a lack of 

methods to transfer knowledge and models from the simple specimens used during the 

development phase to the in-situ monitoring of more complex shapes. This latter issue is 
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also related to the training of machine learning approaches for defect detection or process 

state classification. Full powder bed monitoring and analysis is key to better understand 

the build process, and to create reliable defect detecting systems rather than just sampling 

small regions or single tracks on the powder bed. Although some full field monitoring 

methods do exist, they are mostly focussed on the analysis of optic image data taken per 

layer, where difference in greyscale values over the image may be indicative of surface 

features on the powder bed. Some efforts have been made to acquire topographical maps 

of the powder bed through FP, but these either focus on acquiring a high resolution 

measurement over a small region of the powder bed [59], or have covered a larger 

measurement area at the sacrifice of resolution to analyse larger bed features such as 

elevation drops from sintering [61,62,193] or curling defects [194]. High resolution 

topographical measurements capable of identifying small scale features generated by the 

lasing process, such as weld tracks (nominally 100 µm in width), elongated pores (50 µm 

to 500 µm), balling (up to 500 µm in width and potentially the length of the build) [25], 

unfused powder (100 µm to 150 µm) [195] and lattice deviations (up to 500 µm) [26], 

over the entire powder bed, which may be up to (400 × 400) mm, are yet to be developed. 
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3 System concept, design, and initial testing 

As has been discussed in the previous chapter, a significant gap in the literature comes 

from the lack of monitoring methods with adequate automatic anomaly detection over the 

entire volume of the part as it built. Current research has shown promising results when 

automatically assessing the quality of single weld tracks. However, when it comes to 

detecting build anomalies such as pores, spatter, balling and geometrical distortions over 

the entire build area capabilities are far more limited, typically only being able to identify 

larger features on the powder bed with a lower level of reliability. To achieve a more 

reliable identification of smaller features over the entire build area a new approach to both 

monitoring the build plate, and processing the data collected is required. In this chapter, 

the development of a potential system to achieve this goal is discussed, from original 

concept to initial prototype and testing. 

3.1 System concept 

The complex nature of the PBF process makes for a difficult challenge when considering 

appropriate inspection methods to implement. Four key factors to consider are: 

1. The impact on manufacturing times that the measurement system may have. 

2. The resolving capabilities and range limitations of the chosen method. 

3. The spatial limitations of the PBF chamber. 

4. The environmental conditions of the build chamber. 

PBF processes typically have long build times due to their layer-by-layer nature, with 

builds potentially taking days depending on the size and complexity of the component 

being manufactured. In a production environment, any additional time added to the build 

process results in additional costs for the company. PBF machine manufacturers have 

been putting a significant focus on reducing these build times, such as Renishaw’s 500Q 

systems implementing four lasers to decrease the time for each layer’s completion. To 

reduce the impact that an inspection system may have on the overall build time, data 

collection must either be rapid, or synchronised with the PBF mechanisms so that the 

machine is not significantly slowed or paused for too long. 
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As PBF technologies continue to advance, the build areas of the systems continue to 

increase. Current generation systems have build areas up to 160,000 mm2, such as the 

EOS M 400-4, Aconity ONE, and SLM solutions SLM 800 machines. A robust defect 

detection system must be effective over the entire powder bed area, whilst also being 

capable of identifying relevant process signatures that could be regarded as defects.  

The spatial limitations of L-PBF build chambers must be taken into consideration when 

implementing a measurement system. Any components places in the machine must not 

significantly interfere with the operation of the machine such that the build process is 

altered, or the machine’s components are obstructed or damaged. The three main 

considerations to ensure this are the path of the laser over the build area, the powder 

spreading system and the gas flow directly over the powder bed. 

The harsh environment of the L-PBF process, created by the need for low pressure inert 

atmosphere and the ejection of molten materials from the laser melting of powdered 

material, make the placement and protection of any inspection system challenging. These 

conditions, and the lack of physical tool-workpiece interaction, make contact metrology 

unsuitable for in-process monitoring. 

Machine vision systems have been proposed by multiple researchers in the field due to 

the their rapid acquisition rates, non-contact functionality, possible wide FoV and the 

small, easy to secure form factor of cameras [40,41,43,45,46,61,63,77,196,197]. Where 

many approaches have been focussed around the use of optical vision cameras and image 

processing to identify regions of non-conformity in the build layers, other approaches 

have used a machine vision method known as fringe projection (FP), which enables the 

generation of a topographical map of the surface rather than a 2D image of the build plate. 

Topographical data has a benefit over simple imaging systems as more dimensional 

information can be extracted such as height and volume of features. 

3.1.1 Fringe Projection 

FP is an optical measurement method commonly used for the three-dimensional 

measurement of object form and is used in many sectors due to its relatively fast 

acquisition rates and non-destructive nature [198–201]. In their simplest form, FP systems 

consist of a single camera-projector pair, sharing a common FoV that acts as the 
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measurement volume. Fringe images from the projector are distorted by the object’s shape 

and, when viewed from a different perspective by the camera, these distortions can be 

used to reconstruct the shape of the object, as shown in Figure 3.1.a. Depth information 

can be derived from the distortion of the fringes, making it possible to calculate the form 

of an object through a series of image projections and captures. The rapid acquisition rate 

and non-contact nature of FP make it appealing as an in-process measurement tool. 

However, FP has several disadvantages. When measuring highly specular surfaces, as 

would be expected during the AM build process of a metal component, data quality 

decreases and data drop out occurs when the positional value cannot be resolved [200]. 

In addition to data drop out issues, there is an inherent trade-off between the system’s 

FoV and the resolving power of a given camera sensor, meaning that obtaining a 

measurement of the complete powder bed region often requires the sacrifice of smaller 

scale surface details due to an effective decrease in magnification [202]. To combat issues 

such as data drop out or surface occlusions due to part form, FP systems often use multi-

view approaches that allow multiple measurements to be taken from different viewing 

points. Typically, the capture of multiple views is performed by placing the part being 

measured on a rotary table and performing a measurement at different fixed angles [203–

205] or by mounting the FP system onto a robot arm to be moved around the part 

[206,207]. Other methods have focussed on the simultaneous capture of multiple views 

by introducing more camera-projector pairs [208–210]. Simultaneous capture is 

beneficial as no moving parts are required and the capture time can be greatly reduced 

when compared to rotation stage or robot arm methods. However, when using a 

simultaneous capture approach with multiple fixed cameras, limitations in the flexibility 

of the system are introduced. 
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Figure 3.1.a. Illustration of depth determination in FP. Points A and B mark the same point 

on the measured object through both the projector’s and camera’s perspectives. 

The rapid acquisition and non-contact nature of FP makes the method ideal for performing 

in-process topographic measurements without significantly interrupting the build process. 

Multiple in-process monitoring systems have been proposed for PBF systems which the 

target of detecting defects that have arisen on the build area through topographical 

analysis of the powder bed. 

Land et al. [211] and Zhang et al. [62] present work on a single camera-projector pair FP 

system for use in a custom built metal L-PBF machine. The system consists of a DLSR 

(pixel array: 5184 × 3456) that measured approximately (100 × 100) mm of the build 

plate. This system proved capable of recognising regions of sintered material due to the 

elevation drop from the powder layer. Zhang et al [212] later reconfigured the system 

using a machine vision camera (pixel array: 4096 × 2160) which covered a reduced FoV 

of (28 × 15) mm. In this configuration, a lateral point spacing of 6.8 μm was achieved 

with a single point repeatability of 0.47 μm. This higher lateral resolution was achieved 

by trading off the larger FoV, making the system less beneficial for full powder bed 

process monitoring, but still highlighting FP as a valuable tool for in-process high 

resolution measurement. Li et al. [213] applied a two camera, single projector FP set up 

to a metal L-PBF system capable of identifying sintered contours. For this work, two 

machine vision cameras (pixel array: 2592 × 1944) were used to measure a region of the 
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powder bed approximately (200 × 250) mm in size. Resolving capabilities were not 

discussed, but regions of the powder that had dropped from the nominal plane were 

identifiable. Southon et al. [214] investigated the use of a commercial FP system pointed 

through the viewing window of a commercial polymer L-PBF machine as an in-process 

monitoring system. Over a measured region of approximately (200 × 100) mm, curling 

defects were identified on the test part being observed, with height differences as low as 

50 μm being clearly visible in the data. Liu et al. used the FP method and applied it to an 

EB-PBF system [215,216]. In this method a single camera and projector pair (pixel arrays 

of 3016 × 4016 and 912 × 1140, respectively) was used to observe a region of 

approximately (90 × 90) mm on the powder bed. A measurement of twenty-four fringes 

was taken in approximately 2 seconds. This system implemented an active feedback loop 

that either respreads the powder or alters the process parameters for correction when an 

issue is identified. The system was typically found to measure vertical distances to within 

7 μm when compared to a laser interferometer displacement measurement with the 

accuracy of the system quoted to be 15.8 μm. 

From these publications, FP methods have been demonstrated to have potential for in-

process monitoring of AM systems. However, there is a trade off between FoV and lateral 

resolving capabilities in these systems. Fringe projection systems that have been able to 

measure all. or the majority, of a modern systems powder bed area ((250 × 250) mm to 

(400 × 400) mm in size) are only discussed as resolving larger scale features over the 

build such as curling over the part or elevation drop of sintered regions. Systems that have 

been discussed to have high lateral sampling have been achieved by lowering the FoV to 

a small region of the powder bed, and in these cases lateral sampling or single point 

repeatability is reported rather than identifiable feature sizes within the data. 

Improvements need to be made to achieve a higher resolution surface reconstruction that 

can be used for feature-based identification of defects, such as those discussed in section 

2.4, over the majority of the build area for in-process monitoring purposes [217–220]. A 

feature-based identification approach could provide a more robust method of determining 

the successful manufacture of each additive layer and, therefore, the whole component. 

To address these issues, a multi-view FP approach has been chosen to investigate the 

possibility of using it as an in-process measurement system for L-PBF. A four camera 
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system has been designed with the aim of maintaining a high resolving power over the 

entire powder bed area by combining multiple measurements from four different cameras. 

Using multiple views to measure the same surface also reduces regions of data drop out 

(if, when data drop out occurs in one camera, one of the other views is able to measure it 

and fill in the gap on the surface). Using multiple views to acquire four point clouds 

should also increase user confidence in the measurements as a metric for data quality 

could be calculated based on how well the four point clouds agree on the surface 

reconstruction. 

3.1.2 System design 

For the development of a multi-view FP system for in-process inspection of a metal L-

PBF machine, an out of machine prototype was developed to test in a lab environment. 

The prototype was based around the chamber dimensions of a Renishaw AM250 machine 

with a (250 × 250) mm powder bed area. The target of the system is to use a multi-view 

FP [221] method with four cameras to measure surface topography of an L-PBF layer. 

The camera positions were chosen to provide a full field image of the build area from 

each perspective so that four point clouds can be collected from a single measurement 

[222] and combined into a high resolution surface reconstruction. 

To achieve a full field measurement from each perspective the cameras and projector 

must be placed at a significant distance from measurement volume. This distance means 

that the impact of the components presence on the powder spreading mechanism and the 

lower chamber air flow should be minimal with respect to machine performance and build 

quality. However, the effect of the components presence on machine performance should 

still be investigated as the benefits of a defect detection system would be redundant if the 

system itself was to introduce defects. In the chosen design the camera positions were 

placed in the upper corners of the build chamber, with the projector placed outside of the 

build chamber, projecting through a upper window at the front of the chamber that is 

typically used for a light source that is non-essential to the machine operation (design 

shown in Figure 3.1.b). The positioning of the components for this prototype have been 

selected so that the volume below the laser lens, and any moving components such as the 

powder spreader or powder hopper have as much clearance as possible, whilst 

maintaining a full FoV. The placement of the cameras being inside of the build chamber 
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would put the optics at risk of metallisation in a real manufacturing system. Fringe 

projection from the literature have successfully placed cameras both inside the chamber 

using a protective casing [63] and externally with view windows installed to the chamber 

ceiling [61]. Either of these approaches can be taken once the system is ready to be used 

in a real additive manufacturing system. 

 

Figure 3.1.b. CAD model of the multi-view FP concept. In this design, four cameras are 

placed in the upper corners of the L-PBF chamber where they would be protected by an 

inner chamber casing with viewing windows. The projector is place externally, looking 

through a window in the top of the chamber. 

It is worth noting that with the cameras in these positions, the camera’s line of sight is not 

normal to the powder bed surface, which will result in a varying focus from the closest to 

farthest corner from the camera. For this system the cameras will be focussed on the 

centre of the powder bed region, creating the a central letterbox of in focus image per 

camera (from the left to right corners powder bed are, as later shown in Figure 3.3.b). As 
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there is a camera in each corner, this will result in there being 2 in focus cameras for each 

corner of the powder bed which will affect an affect on the quality of data in these regions. 

For the work presented throughout this thesis, the central region of the powder bed has 

been focussed on as this is typically where L-PBF components are most commonly built. 

To meet the aim of this work, the multi-view FP system must achieve a spatial resolution 

that allows for identification of sub 500 µm features, such as those previously mentioned 

in section 2.4 over the (250 × 250) mm target measurement area. The system is being 

designed as an out-of-machine prototype with the spatial limitations of a currently 

existing commercial L-PBF system being considered. 

3.2 Metrology lab prototype 

A mock build chamber was designed and constructed out of aluminium extrude (CAD 

model in Figure 3.2.b) and PVC foamboard to mimic the spatial constraints of a Renishaw 

AM250 build chamber. A replica of the top panel of the build chamber was manufactured 

(Figure 3.2.a) to provide an entrance window for the projector, and a reference for where 

the laser lens and powder intake hopper are positioned as not to block them with the 

cameras when fixing them. The bench top system was built with black PVC and any gaps 

covered where possible using a black low reflectance foil to reduce any internal 

reflections and light pollution from the lab. A (265 × 265) mm measurement stage 

mimicking the build plate’s size and location. 

 

Figure 3.2.a. CAD of the top plate of a Renishaw AM250 L-PBF system used as a reference 

for hardware positioning. 
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Figure 3.2.b. CAD model of lab system design. The measurement chamber is designed to 

mimic the dimensions of a Renishaw AM250 build chamber with the measurement stage 

positioned where the build plate would be. The top panel of the system is the top plate of the 

Renishaw build chamber. 

3.2.1 Initial prototype system hardware 

The first version of the multi-view FP system was comprised of four Canon digital single-

lens reflex (DSLR) cameras (18 MP 3:2 sensor, stock lenses, framerate: 3 fps) and an 

Optoma UHD550X projector (pixel array: 3840 × 2160, maximum frame rate: 24 fps, 
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brightness: 2800 lm) fitted with a close-up lens attachment. Components were arranged 

to replicate the space limitations presented by a Renishaw AM250, with a 

(265 × 265) mm measurement stage mimicking the build plate’s size and location. An 

image of the bench top setup can be seen in Figure 3.2.c.  

 

Figure 3.2.c. Initial prototype of the multi-view FP system used for initial testing. 

This system design can achieve a lateral projected pixel size of approximately 60 µm and 

the DSLR cameras have an equivalent pixel imaging size of approximately 50 µm on the 

powder bed per camera assuming the image plane is squared up to the power bed area. 

Assuming a minimum of 3 points are required to identify a feature on the surface, this 

would potentially allow for features as small as 150 µm to be identified using a single 

camera, ruling out the possibility of identifying weld tracks (nominally 100 µm in width)  

and smaller pores (down to 50 µm), but still allowing for larger features such as larger 

elongated pores, balling [25] and lattice deviations [26] (up to 500 µm) identifiable with 

a single camera system. Given that four cameras are being used, this should double the 

lateral sampling, making features down to 75 µm visible, potentially making unfused 

powder (100 µm to 150 µm) identifiable. As the cameras and projector are placed at an 
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angle to the powder bed, and are not square on, the actual projected pixel size will be 

slightly larger, and varying across the FoV. 

3.2.2 Software 

To characterise the positions of the projector and cameras in space, geometric 

characterisation software [222] has been used on the system using a high precision 

checkerboard pattern. The checkerboard is imaged in multiple positions with all cameras 

with and without fringes being projected onto the measurement area. This provides the 

intrinsic and extrinsic parameters of the cameras and projector allowing for a global 

reference frame to be made between all the devices so measurements are accurate coarsely 

aligned between the four sets of data acquired by the four cameras. The characterisation 

also accounts for any optical distortions in the lens so that these can be corrected for in 

the data sets. 

Pre-existing FP code developed within the Manufacturing Metrology Team at the 

University of Nottingham was used on the multi-view FP system. The software used the 

geometric characterisation to create multiple point clouds form multiple perspectives that 

are pre-aligned and captured simultaneously [222]. The FP code projects 8 binary images, 

and 10-20 sinusoidal images at a range of frequencies to calculate a phase map of each 

camera’s perspective. The phase map is then calculated as a function of height across the 

image for the point cloud to be generating during the phase unwrapping process. Control 

of the DSLRs was achieved using digiCamControl [223], an open source camera control 

software, which was triggered through a MATLAB [224] library for digiCamControl. 

The projector was controlled as a second monitor on the acquisition PC with full screen 

images being displayed to project the fringe images. 

3.3 Initial data acquisition and analysis 

3.3.1 Measurement technologies 

To test the proposed multi-view FP system, measurements were made of the same sample 

using the FP system in its multi-view and single-view modes. A focus variation (FV) 

measurement was also taken of the sample to compare the FP measurements against a 

higher resolution system. 
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3.3.1.1 Fringe projection 

Geometric characterisation of the system was performed using a calibrated chequerboard 

which was placed manually in multiple locations around the measurement volume [209]. 

Chequerboard locations were chosen to represent the region of interest within a real L-

PBF system (a volume roughly (250 × 250 × 10) mm in size to cover the whole mock 

powder bed and a small vertical region). Images were captured in each position, both with 

and without projected fringes, to acquire the intrinsic and extrinsic parameters of all four 

cameras and the projector within a common global reference frame. The FP method used 

relies on a temporal phase unwrapping method that uses both phase-stepped sinusoidal 

fringes and varying frequency binary fringes to retrieve the absolute phase map. Further 

details of the geometric characterisation and the FP phase unwrapping methods are 

discussed in Shaheen et al. [209]. 

Eighteen images were captured per camera per measurement (eight binary images and ten 

sinusoidal images). The system operated as four separate camera-projector pairs, each 

outputting a point cloud of the measured surface. The four point clouds saved from a 

measurement cycle were initially coarsely aligned (due to the common reference frame), 

but required a further fine alignment process to create a combined, multi-view dataset. 

The projection covers the entire width and most of the length (approximately 190 mm) of 

the (265 × 265) mm measurement stage with the FoV of all four cameras covering the 

entire projected image. Point clouds were acquired with four samples in the measurement 

volume (shown in Figure 3.3.b.) with only the central sample, a Ti-64 additive 

manufactured flat, being used for analysis. 

3.3.1.2 Focus variation microscopy 

The FP results were compared against those from a commercial FV system [225]. The 

FV system has well-quantified metrological characteristics [226,227] and its resolving 

power is orders of magnitude higher than that of the FP system. The FV was used to 

measure the entire top surface of both samples using the following setup: 5× 

magnification objective lens (numerical aperture:  0.15, FoV: (2.82 × 2.82) mm, pixel 

sampling resolution: 3.52 µm), coaxial illumination, measured area: (12.5 × 12.5) mm, 

stitching of multiple FoVs performed in the manufacturer’s software. Height maps of the 
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two samples from the FV system were acquired separately for each sample due to the 

FoV limitations of the FV system. 

3.3.2  Sample 

For the initial testing of the multi-view FP system, a (50 × 50) mm flat square of Ti-64 

was manufactured using a Renishaw AM250 L-PBF system (image in Figure 3.3.a). For 

ease of orientation, a small piece of Blu Tack was placed on one corner of the sample. 

This corner was used as the RoI and was the only section measured by the FV system for 

comparison. 

 

Figure 3.3.a Ti flat sample measured in the initial testing of the multi-view FP system. The 

sample is a (50 × 50) mm square of Ti-64 built in a Renishaw AM250 L-PBF.  
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Figure 3.3.b. White image from single camera perspective when data was collected for 

multi-view DSLR testing of additive surfaces. Red circle shows RoI used for comparison. 

3.3.3 Data processing 

The raw data output from the FP and FV systems are point clouds (a 3D set of data points 

in space) and height maps (a collection of equispaced height points on a planar grid) 

formats respectively, with the FP FoV being multiple times larger than that of the FV 

system. To allow meaningful comparison, the two datasets were both cropped to only 

include the top surface of the ASMA4, and the FP data were converted to height maps 

(see section 3.3.3.3).  

3.3.3.1 Fringe projection data 

The point cloud generated from each camera was imported into CloudCompare 3D point 

cloud processing software [228], where it was cropped to only the region of the samples. 

A statistical outlier removal filter was applied (settings: number of points used for mean 

distance estimation = 8, standard deviations multiplier threshold (nσ) = 1, maximum 

point-to-point distance = mean distance + (nσ × standard deviation). Following the 

cropping and noise removal process, the point cloud was exported as an ASCII text file. 



System concept, design, and initial testing Initial data acquisition and analysis 

 

66 

 

Each point cloud was imported into Polyworks|Inspector™[229], where they were further 

manually cropped to the RoI (In this case the corner of the Ti flat with a Blu Tack marker 

shown by a red circle in Figure 3.3.b). A two-phase alignment process (coarse and fine) 

was performed to align the individual camera FP point clouds to the FV measurements. 

The coarse alignment involved the manual selection of three common features between 

the target dataset (FP point cloud) and the reference data (FV triangulated mesh). After 

the coarse alignment, a fine alignment was performed using an iterative closest point 

(ICP) fitting algorithm [230–232]. The multi-view point cloud was constructed by fusing 

the independent point clouds of each camera into a single high-density dataset. For this 

experiment the point cloud from camera 3 was not included in the multi-view data due to 

a focussing issue with camera 3 when the data was acquired. All datasets of the RoI are 

exported in an ASCII text point cloud format, before being converted to a triangulated 

mesh in Polyworks|Inspector™ through a Delaunay triangulation algorithm [233] with a 

maximum edge length of 0.7 mm. The polygonal models are all exported in “.ply” format. 
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Figure 3.3.c. Data processing pipeline for both FP and FV measurements. 

The ASCII point clouds of the FP RoIs are imported back into CloudCompare, where an 

approximate mean point spacing is calculated. 
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3.3.3.2 Focus variation data 

Height maps from the FV system were imported into Polyworks|Inspector™, 

downsampled to a 20 µm point spacing through linear interpolation, and converted into 

triangulated meshes using the same method outlined for the FP point clouds in section 

3.3.3.1. 

3.3.3.3 Data set comparisons 

A recently developed method [234] of point-by-point topography comparison that creates 

equi-point-spaced height maps of pre-aligned triangulated meshes was used for the FP 

and FV datasets to be compared in a meaningful manner. Polygonal models of both 

samples are converted into height maps by virtual raster scanning [234–236] (a method 

of interpolating the polygonal model into a uniform grid by rastering along the XY plane) 

with a 20 μm point spacing. The height maps are equivalently cropped before comparison. 

Point-by-point deviations in height between the FP and FV were mapped and the mean 

absolute deviation over the surface was calculated to provide a mean deviation which 

functions as a measure of the measurement accuracy (under the assumption that the FV 

measurement is a reference representation of the surface). 

Average point spacing of the multi-view and single-view FP point clouds are compared 

to act as an indicator of the system’s potential resolving capabilities. Point spacing is not 

synonymous with resolution, as the resolving power of a system describes the distance at 

which two features can be differentiated. However, a higher point density should result 

in an improved resolving capability due to an increased number of measured points per 

feature, assuming that the points are approximately equi-spaced over the measurement 

area and no aliasing is present. 

3.4 Initial results and discussion 

3.4.1 TI flat data 

Height maps of the FV and different FP measurements are presented in Figure 3.4.a for 

the Ti flat sample, with deviation maps relative to the FV measurement presented in 

Figure 3.4.b. 
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Figure 3.4.a Aligned height maps of the Ti flat RoI from a) FV, b) multi-view FP (omitting 

cameras 3), c) FP camera 1, d) FP camera 2, e) FP camera 3, f) FP camera 4. 
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Figure 3.4.b Deviation maps when compared to the FV measurement for a) multi-view FP 

(omitting camera 3), b) FP camera 1, c) FP camera 2, d) FP camera 3, e) FP camera 4. 



System concept, design, and initial testing Initial results and discussion 

 

71 

 

Out of the four point clouds collected by the system, data from camera 3 showed high 

levels of waviness due to a focussing error in the set up. As a result of this set up error, 

only cameras 1, 2 and 4 were used in the multi-view FP data set rather than all four 

cameras. Mean and max deviation from the FV measurement, and the mean point spacing 

of the raw point clouds are given in Table 2 for both the multi-view and all single camera 

FP measurements. 

Table 2. Max deviations, mean deviations of the FP height maps when compared to the FV 

data, and point spacing of the raw FP point clouds. 

 Multi-view FP Single-view FP 

Cam 1 Cam 2 Cam 3 Cam 4 

Max deviation/µm 694.2 694.2 731.1 711.3 389.4 

 

Mean 

deviation/µm 

25.6 25.7 28.4 69.4 25.7 

Point spacing/µm 59.15 91.56 101.24 113.18 97.20 

 

Maximum deviations of the multi-view and single-view FP data form the FV data remains 

roughly consistent at around 700 µm except for the single-view data from camera 4. The 

lower maximum deviation from camera 4 is a result of camera 4 not gaining full coverage 

of the RoI, as seen In Figure 3.4.b and Figure 3.4.c where the bottom and left edges have 

missing regions. These missing regions are where the most severe deviations occur. The 

mean deviations of cameras 1, 2 and 4 are also approximately the same as the multi-view 

data, with a minor improvement of 0.1 µm which is arguably negligible. The multi-view 

FP point cloud (pre-meshing and raster scanning) has a mean point spacing of 59.15 µm, 

with the single camera approach having 96.67 µm (averaged from cameras 1, 2 and 4), 

resulting in a point density that is 2.67 times higher when using the multi-view approach 

over an area measurement. For metal PBF defects, such as elongated pores (typical size: 

50 μm to 500 μm) and unfused powder (typical size: 100 μm to 150 μm) [237] the higher 

point spacing could make the difference between the features being resolvable or not due 

to multiple measured points covering the same feature. In Figure 3.4.c, A single surface 

feature is compared between the FV, multi-view FP, and the single-view FP data which 

qualitatively shows the resolving limits of a single camera approach. The single-view data 

has regions of data drop that are not present in the multi-view data, resulting in the multi-
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view data measuring the feature, and its surrounding areas, far more comparably to the 

FV measurement. 

 

Figure 3.4.c. Close up view of a single surface feature from the Ti flat sample. (From left to 

right) FV, 3 view FP, and single-view FP. 

3.4.2 Concluding remarks from initial prototype 

In this chapter, an in-situ monitoring system for metal PBF systems has been designed 

that uses multi-view FP to measure topography over a large percentage of the build area. 

To test this design, an out-of-machine prototype has been built using commercially 

available cameras and projector within the spatial limitations of a real PBF machine. A 

L-PBF manufactured sample has been measured using both the prototype multi-view FP 

system an initial test for the systems capabilities, with comparisons being made against a 

higher resolution FV measurement to assess the accuracy. This initial measurement data 

gave the following results: 

• A multi-view FP system is capable of measuring additive surfaces with results 

that do not largely differ from the FV data (mean deviations of 25.6 µm across the 

surface) 

• A higher potential lateral resolution is achievable through a higher density point 

cloud and that individual features can be more clearly resolved when compared to 

single-view FP data 

• Multi-view FP provides a level of measurement redundancy meaning that if one 

of the camera’s provides insufficient or unreliable data, either in a specific region 

of the surface or over the entire measurement, then the data taken from the other 

cameras can still be used 
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3.4.2.1 Remaining issues from the initial prototype 

Issues with version 1 of the system became apparent over the testing period. The Canon 

DSLRs requiring third party software control resulting in extremely slow capture times 

as the software could not be accurately synchronised with the projector. To ensure that 

the slow communication between Matlab [224] and digiCamControl [223] large delays 

had to be introduced to the measurement software, making the system ill-suited for any 

in-process application because of the additional time that would be added to the built 

process. This long acquisition time also resulted in the geometric characterisation 

becoming a full day task due to the repeat moving and recapturing of the checkerboard 

pattern throughout the measurement volume. Communication issues between Matlab 

[224] and digiCamControl [223] became a further issue during the characterisation 

program as the digiCamControl software was prone to crashing during prolonged 

runtime. When digiCamControl would crash, the FP characterisation software would fail 

and require the characterisation process to be started over again with all the checkerboard 

positions repeated, effectively making the characterisation process a game of chance as 

to whether it could be completed within a day ready to take measurements. 

Aside from the software issues found when operating the cameras, the DSLRs were also 

deemed unsuited to in-process measurement due to their size and internal software. In a 

real AM chamber, smaller more robust sensors would be required to minimise the impact 

on the L-PBF machines performance. The maximum frame rate of the DSLRs used is 

3 fps, which for an 18 image measurement would result in a shortest possible acquisition 

time of 6 seconds. If a measurement was to be taken for every layer of a hypothetical 

build, 6 additional second per layer could accumulate to hours of delay on a build that 

utilises the machines whole chamber height. To reduce dead time in the build process and 

to reduce the volume of the hardware, higher frame rate industrial machine vision cameras 

could be implemented. 
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4 System repeatability 

As discussed in the previous chapter, an in-process monitoring system must take the 

following considerations into account to ensure that it’s suitable for use in a real 

manufacturing machine: 

1. The impact on manufacturing times that the measurement system may have. 

2. The resolving capabilities and range limitations of the chosen method. 

3. The spatial limitations of the PBF chamber. 

4. The environmental conditions of the build chamber. 

Work presented in chapter 3 showed that the resolving capabilities of a multi-view FP 

system were potentially good enough to allow for in-process additive defects to be 

measured, with mean deviations from FV data being 25.6 µm across the samples surface 

and a mean point spacing of 59.15 µm. However, the cameras used for this version of the 

system would not be suitable for build chamber conditions, measuring time constraints, 

or the spatial limitations of a commercially manufacturing L-PBF machine. The Canon 

DSLRs used in the initial prototype are designed for consumer photography rather than 

industrial machine vision applications and therefore are not as compact and stable as what 

would be ideal, with a maximum frame rate of 3 fps.  

To address the issues outlined in chapter 3 with the initial prototype, the multi-view FP 

system has been modified to operate with machine vision cameras. With the new 

hardware changes, the system has been tested to assess the measurement repeatability of 

some additively manufactured metrology samples, with the results again compared to FV 

variation data as a standard. Results are presented from the newly modified prototype 

PBF chamber to compare the performance differences between a single camera and the 

multi-view FP system for on-machine monitoring applications. 

4.1 Changes to the multi-view fringe projection system 

To address the issues caused by the current cameras lack of suitability for an in-process 

system, the DSLRs have were replaced by Basler ace acA5472-17um cameras. The Basler 

cameras have a comparable pixel array size of 5472 × 3648 compared to the Canon 

DSLRs 5184 × 3456 pixel array, with a monochrome sensor. The Basler cameras also 
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have a maximum framerate of 17fps, meaning that all of the 18 images required to collect 

FP data could be captures in ~1 second rather than the 6 seconds limit imposed by the 

DSLRs tested previously. The use of industrial machine vision cameras also allows for 

digiCamControl [223] to be bypassed in favour of Matlab’s [224] native machine vision 

capabilities. Removing digiCamControl from the capture software eliminates the frequent 

crashing and additional time delays seen from digiCamControl when communicating with 

Matlab. The reconfigured benchtop prototype with the new Basler cameras can be seen 

in Figure 4.2.a. The more compact form factor of the machine vision cameras also makes 

them better suited for fitting in an additive machine without impacting the machines 

operating capabilities. 

4.2 Repeatability testing methodology 

4.2.1 Measurement technologies 

To test the proposed multi-view FP system, measurements were made of the same 

samples using the FP system in its multi-view and single-view modes. FV measurements 

were also taken of the samples to compare the FP measurements against a higher 

resolution system. 

4.2.1.1 Fringe projection updated hardware 

The modified multi-view FP system is comprised of four Basler ace acA5472-17um 

cameras (pixel array: 5472 × 3648, sensor size: (13.1 × 8.8) mm, maximum frame rate: 

17 fps), each fitted with a MVL16M1 16 mm focal length lens, and the same Optoma 

UHD550X projector (pixel array: 3840 × 2160, maximum frame rate: 24 fps, brightness: 

2800 lm) as before, fitted with a close-up lens attachment. Components were arranged 

within the same frame as before to replicate the space limitations presented by a Renishaw 

AM250, with the same (265 × 265) mm measurement stage mimicking the build plate’s 

size and location. Images of the bench top setup can be seen in Figure 4.2.a. 

Geometric characterisation of the system was again performed using a calibrated 

chequerboard which was placed manually in multiple locations around the measurement 

volume [209]. Images were captured in each position, both with and without projected 

fringes, to acquire the intrinsic and extrinsic parameters of all four cameras and the 

projector within a common global reference frame. The FP method used relies on a 
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temporal phase unwrapping method that uses both phase-stepped sinusoidal fringes and 

varying frequency binary fringes to retrieve the absolute phase map. Further details of the 

geometric characterisation and the FP phase unwrapping methods are discussed in 

Shaheen et al. [209]. 

 

 

Figure 4.2.a. Multi-view FP system. (a) External view of FP system with projector labelled. 

(b) Inside measurement chamber with the mock powder bed region (250 mm × 250 mm) 

and four cameras (labelled C1 to C4). 
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Eighteen images were captured per camera per measurement (eight binary images and ten 

sinusoidal images). The system operated as four separate camera-projector pairs, each 

outputting a point cloud of the measured surface. The four point clouds saved from a 

measurement cycle were initially coarsely aligned (due to the common reference frame), 

but required a further fine alignment process to create a combined, multi-view dataset 

(described in section 3.3.3.1). The projection covers the entire width and most of the 

length (approximately 190 mm) of the (265 × 265) mm measurement stage with the FoV 

of all four cameras covering the entire projected image. Point clouds were acquired with 

both samples (described in section 3.3.2) in the same measurement volume. Sample 

positioning is shown in Figure 4.2.d. 

4.2.1.2 Focus variation microscopy 

The FP results were compared against those from a commercial FV system [225]. The 

FV system has well-quantified metrological characteristics [226,227] and its resolving 

power is orders of magnitude higher than that of the FP system. The FV was used to 

measure the entire top surface of both samples using the following setup: 5× 

magnification objective lens, (numerical aperture:  0.15, FoV: (2.82 × 2.82) mm, pixel 

sampling resolution: 3.52 µm), coaxial illumination, measured area: (25 × 25) mm, 

stitching of multiple FoVs performed in the manufacturer’s software. Height maps of the 

two samples from the FV system were acquired separately for each sample due to the 

FoV limitations of the FV system. 

4.2.2  Samples 

Two AM surface samples that were designed and manufactured by Townsend et al. using 

an ARCAM Q10 EB-PBF system and a Renishaw AM250 L-PBF system [29] were used 

as samples for all measurements. The ASMA4 samples include three sections, each with 

a constant amplitude and decreasing wavelength sine-wave structure along the section 

length. Both samples were manufactured with the measured plane of the structured 

surface orthogonal to the build direction (see Figure 4.2.b). The use of these samples over 

one more representative of a L-PBF powder bed in is to identify at which spatial 

frequencies the fringe projection system has difficulty resolving the features. 
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Figure 4.2.b. (a) CAD model the AMSA4 (modified from Townsend et al. [29]) with three 

sections labelled in correspondence to Table 3. (b) Photograph of the two AMSA4 samples, 

manufactured using EB-PBF (left) and L-PBF (right) against a ruler for scale (numbered 

divisions in centimetres). 

For all measurements, the RoI was the top surfaces of the three 17 mm × 5 mm structured 

sections. The equations for the nominal structure of each section are given in Table 3, 
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with the accuracy achieved in the manufacturing of the samples reported in Townsend et 

al. [29]. All data presented is exclusively of the three structured top sections. 

Table 3. The equations of the CAD models for the three structured sections of the AMSA4 

[29], labelled in Figure 4.2.b(a), where Y is the amplitude and X is the distance along the 

section in millimetres. 

Section 

number 

Amplitude/ µm Structure equation/mm 

1 400 
𝑌 =  

sin(
𝑋2

16
)

2.5
  

2 200 
𝑌 =  

sin(
𝑋2

4
)

5
  

3 100  𝑌 =  
sin(𝑋2)

10
  

 

4.2.3 Data processing 

The raw data output from the FP and FV systems are point clouds (a 3D set of data points 

in space) and height maps (a collection of equispaced height points on a planar grid) 

formats respectively, with the FP FoV being multiple times larger than that of the FV 

system. To allow meaningful comparison, the two datasets were both cropped to only 

include the top surface of the ASMA4, and the FP data were converted to height maps 

(see section 3.3.3.3). Five repeat measurements, as deemed sufficient for estimating 

uncertainty by NPL’s Good Practice Guide No. 11 [238], were made on the single and 

multi-view FP systems and the FV system without repositioning the sample, so that a 

statistical measure of repeatability could be estimated. A schema of the data processing 

pipeline is shown in Figure 3.3.c and detailed explanations of this pipeline follow 

throughout this section.  

4.2.3.1 Fringe projection data 

The point cloud generated from each camera was imported into CloudCompare 3D point 

cloud processing software [228], where it was cropped to the region of the samples. A 

statistical outlier removal filter was applied (settings: number of points used for mean 

distance estimation = 8, standard deviations multiplier threshold (nσ) = 1, maximum 

point-to-point distance = mean distance + (nσ × standard deviation). Following the 

cropping and noise removal process, the point cloud was exported as an ASCII text file. 
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Figure 4.2.c. Data processing pipeline for both FP and FV measurements. 
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Each point cloud was imported into Polyworks|Inspector™[229], where they were further 

manually cropped to the RoI. A two-phase alignment process (coarse and fine) was 

performed to align the individual camera FP point clouds to the FV measurements. The 

coarse alignment involved the manual selection of three common features between the 

target dataset (FP point cloud) and the reference data (FV triangulated mesh). After the 

coarse alignment, a fine alignment was performed using an ICP fitting algorithm [230–

232]. During alignment, repeat measurements acquired using the same camera were fixed 

in space relative to one another to ensure that repeatability calculations were not 

influenced by geometric transformations. The multi-view point cloud was constructed by 

fusing the independent point clouds of each camera into a single high-density dataset. All 

datasets of the RoI are exported in an ASCII text point cloud format, before being 

converted to a triangulated mesh in Polyworks|Inspector™ through a Delaunay 

triangulation algorithm [233] with a maximum edge length of 0.7 mm. The polygonal 

models are all exported in “.ply” format. The ASCII point clouds of the FP RoIs are 

imported back into CloudCompare, where an approximate mean point spacing is 

calculated. 
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Figure 4.2.d. White image of both AMSA4 samples within the measurement volume of the 

FP system from the perspective of camera 1. Red box marks the region of initial cropping. 

4.2.3.2 Focus variation data 

Height maps from the FV system were imported into Polyworks|Inspector™, 

downsampled to a 20 µm point spacing through linear interpolation, and converted into 

triangulated meshes using the same method outlined for the FP point clouds in section 

3.3.3.1. 

4.2.3.3 Data set comparisons 

A recently developed method [234] of point-by-point topography comparison that creates 

equi-point-spaced height maps of pre-aligned triangulated meshes was used for the FP 

and FV datasets to be compared in a meaningful manner. Polygonal models of both 

samples are converted into height maps by virtual raster scanning [234–236] with a 20 

μm point spacing. The height maps are equivalently cropped before a mean z-value for 

each measurement point is calculated with a corresponding 95% confidence interval (CI), 

providing a measure of the measurement precision. 
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Point-by-point deviations in height between the FP and FV were mapped and the mean 

absolute deviation over the surface was calculated to provide a mean deviation which 

functions as a measure of the measurement accuracy (under the assumption that the FV 

measurement is a reference representation of the surface). Discrepancies between 

measurement methods are also mapped to present where the different methods disagree 

on the height position of each point. Discrepancy is defined here as the negative output 

from a binary measure that states where the CI width of the FP and FV height values do 

or do not overlap with one another, therefore, its value is dependent on both the magnitude 

of deviation and the CI width. Discrepancy as a percentage over the surface provides a 

measure of how well two measurement methods agree with one another. 

Point spacings of the multi-view and single-view FP point clouds are compared to act as 

an indicator of the system’s potential resolving capabilities. As previously stated in 

section 3.3.3.3, it is worth noting that point spacing is not synonymous with resolution. 

However, higher point density would result in an improved resolving capability due to an 

increased number of measured points per feature. 

Profiles were extracted along the centre of each structured section from the aligned 

datasets using MountainsMap®[239]. The profiles serve as a visual representation of the 

surface form that outline some effects of using multi-view over single-view FP. 

4.3 Results and discussion 

4.3.1 Focus variation measurements 

Height maps and associated CI widths of the FV measurements are presented in Figure 

4.3.a for both L-PBF and EB-PBF samples. Mean CI widths for the FV measurements 

were calculated to be 10 μm and 27 μm for the EB-PBF and L-PBF samples, respectively. 

The higher mean CI width value for the L-PBF sample is likely a result of the high slope 

angles as the structured surface tends towards the highest spatial frequencies [240]. On 

the EB-PBF sample, these high aspect ratio features are not present due to the resolution 

limits of the EB-PBF system in manufacturing. 
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Figure 4.3.a. Mean height maps (a and c) and CI maps (b and d) for the FV measurements 

of both the EB-PBF and L-PBF sample. Both CI plots are set to the same colour bar; all 

saturated values exceed colour bar scale. 

4.3.2 Fringe projection measurements 

4.3.2.1 Surface coverage 

To assess the impact on data dropout over the measured surface, a percentage of surface 

overlap between the FP and FV datasets is calculated (values presented in Table 4 and 
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Table 5). For both samples, the percentage of overlap on the measured surfaces is higher 

when multi-view is used, with some single-views losing as much as 10% of the overall 

surface data. Height maps presented in Figure 4.3.b and Figure 4.3.c of the FP data have 

regions of missing data from all individual cameras that are much less prevalent in the 

multi-view reconstruction, although there are cases where a single-view perspective 

covers the majority of the surface, achieving surface coverage of up to 97.9%, the multi-

view system still improves upon this, covering 99.5% of the surface for the same sample 

(L-PBF sample). High coverage of the single-view method is also not consistent across 

the entire measurement volume. In Figure 4.3.c (d), where 97.8% surface coverage was 

achieved of the L-PBF sample, the same camera only achieved 93.0% surface coverage 

of the EB-PBF sample, where the multi-view method was able to cover 98.7%. 

 

Table 4. Discrepancy (percentage point-by-point disagreement), surface overlap 

(percentage of data surface coverage) and mean deviation (point-by-point difference is 

height value) between FP and FV height maps of the EB-PBF sample. 

EB-PBF Data set Multi-view FP Single-view FP 

Cam1 Cam2 Cam3 Cam4 

Discrepancy from FV /% 51.1 81.7 83.8 81.5 78.1 

Surface overlap from FV /% 98.7 97.5 88.3 93.0 90.6 

Mean deviation from FV /μm 67 83 92 77 81 

Table 5. Discrepancy (percentage point-by-point disagreement), surface overlap 

(percentage of data surface coverage) and mean deviation (point-by-point difference is 

height value) between FP and FV height maps of the L-PBF sample. 

L-PBF Data set Multi-view FP Single-view FP 

Cam1 Cam2 Cam3 Cam4 

Discrepancy from FV /% 49.9 78.9 75.4 78.2 73.2 

Surface overlap from FV /% 99.5 97.9 90.3 97.8 88.2 

Mean deviation from FV /μm 69 93 85 79 82 
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Figure 4.3.b. Mean height maps and CI maps for the multi-view (a and b) and single-view 

(c to j) FP measurements of the EB-PBF. Single-view FP measurements all show larger 

regions of data drop-out than the multi-view measurements, although CI widths are shown 

to have increased in the multi-view data (sub-figures a-f on previous page). 
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Figure 4.3.c. Mean height maps and CI maps for the multi-view (a and b) and single-view 

(c to j) FP measurements of the L-PBF. Single-view FP measurements all show larger 

regions of data drop-out than the multi-view measurements, although CI widths are shown 

to have increased in the multi-view data. The high spatial frequency structured sections of 

the L-PBF sample that can be seen in the FV data (Figure 4.3.a(c)) were not resolved by 

either of the FP methods (sub-figures a-f on previous page). 

4.3.2.2 Measurement performance 

CI widths for the FP measurements are presented alongside the height maps in Figure 

4.3.b and Figure 4.3.c, while the mean and maximum CI widths from each measurement 

are plotted in Figure 4.3.d(a) and Figure 4.3.d(b) respectively. The multi-view method is 

shown to have significantly higher CI widths than each of the single-view height maps. 

As the same raw point cloud is used in both the single and multi-view scenarios, the 
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increase in multi-view CI width is not related to the repeatability of the individual camera 

measurements. Possible reasons for the increase in CI widths when using the multi-view 

system could be related to the use of data fusion with the multi-view dataset, with errors 

in the geometric characterisation of the global reference frame and the fine alignment 

performed in Polyworks|Inspector™ propagating into the final result. Another reason for 

increased CI widths when using the multi-view could be because the different camera 

views are effectively measuring different surfaces, since there is a large angular shift 

between their perspectives. Improvements to the data fusion method could potentially 

reduce the size of the CI for the multi-view data by reducing relative deformations in the 

individual point clouds. Although the additional transformations that occur from the data 

fusion process of the multi-view data may introduce further variation, effective averaging 

from multiple views results in a lower mean deviation than with the single-view height 

maps, with the mean deviation over both samples for the multi-view system being 68 µm 

and the mean over all individual views being 84 µm. Mean deviations across the surface 

for each data set are presented in Table 4 and Table 5. 

 

Figure 4.3.d. (a) Mean CI widths for all measurement methods on both the EB-PBF and L-

PBF samples. 
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Deviation maps of the FP datasets against the FV reference are presented in Figure 4.3.e 

and Figure 4.3.f, along with the corresponding discrepancy maps. Discrepancy as a 

percentage of the FV surface is also provided in Table 4 and Table 5. The single-view FP 

height maps each have a much higher discrepancy percentage than the multi-view height 

maps, with the two multi-view datasets having a mean of 50.5% discrepancy between the 

two samples and the single-view counter parts having a mean of 78.9% across both 

samples and all views. The mean deviation across the whole surface is also 16 μm less on 

average when using the multi-view approach over the single-view measurements (values 

presented in Table 4 and Table 5), which can be seen over the deviation maps presented 

in Figure 4.3.e and Figure 4.3.f. The reduction in both discrepancies and mean deviations 

suggests that the multi-view approach has a higher level of accuracy than a single-view 

system for the same FoV. However, it is worth noting that the increase in CI widths will 

also have improved the discrepancy values as well the point-by-point deviations. The 

trade-off between achieving a lower mean deviation but a higher CI width results in a 

multi-view system having a higher level of accuracy, but a lower level of precision when 

compared to the single-view set-up. 

A notable contributor to the deviations observed between the FP and FV data can be 

observed from the measurements of the deep, narrow valleys present on the L-PBF 

sample’s higher spatial frequency section. The FV measurement of the L-PBF sample 

presented in Figure 4.3.a(c) shows the high spatial frequency form of section 3. In Figure 

4.3.c, none of the FP measurements have been able to resolve the L-PBF samples surface 

features at the majority of section 3. While the FV system measures the sample 

orthogonally to the top surface, the cameras of the FP system are viewing the sample from 

a significant angular offset (seen in Figure (b)), which is a practical necessity for the FP 

method. This large angular offset results in the bottom of the sample valleys for the 

shorter peak-to-peak regions being occluded from the cameras line of sight, meaning that 

the bottoms of these valleys could not be measured by the FP system which results in the 

data showing what appears to be flat surface across the peaks of the features. Although 

for the sample used in this paper this appears as a significant limitation of the FP method, 

for the application of in-process monitoring it would not be expected that repeated 

features of such a high aspect ratio would occur, as by comparison the powder bed in a 

PBF is relatively flat. 
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4.3.2.3 Point cloud density 

The multi-view FP point cloud (pre-meshing and raster scanning) has a mean point 

spacing of 73.4 µm, with the single camera approach having 136.7 µm (values for each 

data set presented in Table 6 and Table 2), resulting in a point density that is 3.5 times 

higher when using the multi-view approach over an area measurement. A higher point 

density for the measurement will result in an improved resolution capability in terms of 

observable features. However, even with the multi-view setup, the average point spacing 

of 74.3 μm achieved across the surface will likely need to be reduced further if smaller 

scale additive defects are to be detected. Assuming a minimum of 3 points must be taken 

over a feature for it to be clearly identified, This would make the current limit in resolving 

particle size to be somewhere in the region of 225 µm. This would make larger features 

such as larger pores [195], balling [195], and lattice deviations [26] (up to 500 µm) 

detectable, but not smaller pores or unfused powder [195] (sub 150 µm). 

Table 6. Mean point spacing of the FP point clouds for EB-PBF sample (rounded to the 

nearest micrometre). 

EB-PBF Data 

set 

Multi-view 

FP/μm 

Single-view FP/μm 

Cam 1 Cam 2 Cam 3 Cam 4 

Repeat 1 76  138  131  158  133  

Repeat 2 76  137  131  158  132  

Repeat 3 75  137  131  159  131  

Repeat 4 76  137  132  158  132  

Repeat 5 76  137  131  158  131  

Table 7. Mean point spacing of the FP point clouds for L-PBF sample (rounded to the 

nearest micrometre). 

L-PBF Data set Multi-view 

FP/μm 

Single-view FP/μm 

Cam 1 Cam 2 Cam 3 Cam 4 

Repeat 1 73 147 121 140 129 

Repeat 2 72 147 121 141 129 

Repeat 3 73 148 123 141 129 

Repeat 4 73 147 123 141 129 

Repeat 5 73 147 121 142 129 
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Figure 4.3.e. EB-PBF FP against FV difference map and discrepancy (within CIs). Regions 

of data drop out from the FP system have been plotted as discrepancies. The multi-view 

measurement shows a vast improvement in both the deviations and discrepancy across the 

surface. Each of the single-view FP measurements has significant regions of the surface 

exceeding 0.5 mm of deviation from the FV measurement that are not present on the multi-

view data (sub-figures a-f on previous page). 
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Figure 4.3.f. L-PBF FP against FV difference map and discrepancy (within CIs). Regions of 

data drop out from the FP system have been plotted as discrepancies. The multi-view 

measurement shows a vast improvement in both the deviations and discrepancy across the 

surface. Each of the single-view FP measurements has significant regions of the surface 

exceeding 0.5 mm of deviation from the FV measurement that are not present on the multi-

view data (sub-figures a-f on previous page). 

4.3.2.4 Profiles 

Profiles of section 2 for the L-PBF sample are presented in Figure 4.3.g. In the plots, 

angular perspectives of the different cameras on the single camera FP data influence the 

peak topographies measured. On all single-view measurements, the profile skews in the 

direction of the camera’s placement in the chamber (shown in Figure (b)), with cameras 

1 and 4 skewing to the left, and camera 2 and 3 to the right. This deformation is averaged 
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out in the multi-view data, creating a profile that is more representative of the FV profiles 

but with a higher level of noise introduced from the fusion process. This skewing effect 

on single-view FP measurements is a further example of how the single-view has a lower 

level of accuracy than the multi-view approach. The inaccuracies of the single-view 

measurements over the surface features presents another possible cause for the increase 

in CI width observed on the multi-view dataset, as the fusion of the multi-view data is 

effectively averaging out the imperfections of the single-view measurements. This same 

effect was observed on profiles for all three sections on both samples. The skewing effects 

of the profiles would be expected to be greatly reduced when performing in-process 

measurements due to the relative flatness of the powder bed in comparison to the features 

present on the samples used in this study. 
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Figure 4.3.g. Line profiles from the aligned datasets of the L-PBF sample. Each numbered 

section corresponds to the sections labelled in Figure 4.2.b(a) and the profile is taken down 

the approximately the centre of each section. 
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4.4 Conclusions from repeatability tests 

In this chapter, measurements of two AMSA4 [29] samples, one manufactured through 

L-PBF and the other EB-PBF, have been performed using a multi-view FP method, 

single-view FP and FV to assess the improvements in performance of the multi-view 

system when compared to single-view data.  

• Measurements made using the multi-view approach provided a reduction in 

regions of missing data as well as an overall higher point cloud density than the 

data acquired using a single-view method. In comparison with FV measurements 

of the same surfaces, the multi-view measurements were shown to be more 

accurate than a single-view FP measurement, with an average decrease in point-

by-point deviations of 16 μm. 

• The multi-view measurements consistently achieved a higher level of surface 

coverage, measuring 98.7% and 99.5% of the EB-PBF and the L-PBF surfaces 

respectively.  

• The point cloud density of the multi-view system data was found to be 3.5 times 

higher than the single-view approach which means there is a higher lateral 

sampling rate over the measurement area. 

Although the multi-view system is of higher accuracy, surface coverage and point density, 

the data acquired also proved to have a higher average CI width across the measured 

surface, suggesting a lower level of precision. There are several potential reasons for this 

increase in CI width, including additional errors introduced by the geometrical 

characterisation and data fusion of the multi-view approach. The individual camera 

measurements also proved to have a skewing of the high aspect ratio surface features 

which contributed to the single-view methods decrease in accuracy that was averaged out 

in the multi-view data for a trade-off of increased noise in these regions. 

4.4.1 Remaining issues from repeatability testing 

In the configuration that was used for the measurements presented in this chapter, the 

measurement capabilities may not be sufficient for the detection of smaller surface defects 

that may be present in the metal PBF build process (sub-100 μm in lateral size). In chapter 

5 modifications have been made to the system to increase point cloud density by 
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repositioning the cameras for a slightly smaller FoV so that layer-wise defects in the PBF 

process would be more likely to be detected. With the set up used in this work, each 

perspective’s horizontal FoV was approximately 350 mm. Typical commercial metal PBF 

systems have a build area between 100 mm and 250 mm in width, meaning that a 

reduction in camera FoV would still cover the majority, if not all, of the powder bed. 

Due to the use of a commercial cinematic projector (which is operated as a second monitor 

for the systems computer with full screen fringe images being displayed for the 

projections) the acquisition cycle is software synchronised with induvial captures being 

trigger independently with each new projection. This is a limiting factor stopping the 

system from measuring at a faster rate due to the commercial projector that cannot be 

hardware synchronised with the cameras. In theory, when using an industrial projector 

the acquisition rate would be limited by the camera’s maximum frame rate of 17 fps, 

which would result in the nineteen images being captured just over 1 s. The acquisition 

time could then be reduced further by using higher framerate cameras if necessary. In the 

configuration used in this chapter, each measurement takes roughly 5 s, which over the 

course of an entire part build could add too much to the manufacturing time if every layer 

is measured. To improve the performance of the system presented, Further testing will 

also be performed with the cameras configured to cover a smaller measurement area to 

further increase the point cloud density, making the system better suited for the detection 

of smaller-scale PBF defects. 

For use in a manufacturing environment, it is not enough to simply be able to acquire the 

topography of a given layer in the build process. For the data be gather to be useful there 

must also be an automated analysis of the measurement so that potential issues can be 

flagged without manual data processing and analysis. Future testing of the system’s 

capabilities will include feature based segmentation [217–220] of the multi-view FP 

measurements to assess how well metal PBF surface features can be identified using this 

approach as a potential method of automical defect detection. 
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5 Feature based characterisation 

The work presented in chapter 4 has shown that surface topography data captured from 

reference samples by this technique does closely match the information that could be 

captured on a conventional lab-based surface topography measurement instrument, 

despite limitations in resolution. Whilst the ability to capture similar surface topography 

is beneficial, in an in-process monitoring scenario, two further aspects need to be 

considered: firstly, meaningful information must be inferred from the measured 

topography (content relevant to understanding how the manufacturing process is 

behaving must be extracted). Secondly, meaningful information must be extracted and 

processed quickly enough to allow for corrective actions to be taken or alerts triggered, 

in case of anomalies. In this chapter, the challenge of extracting meaningful information 

from topography measured by multi-view FP is addressed. 

5.1 In-situ feature identification in additive manufacturing 

For in-situ monitoring systems to be of significant value in a manufacturing environment 

it is not enough for a measurement to simply be taken. Information relevant to the process 

and part quality must be extractable from ted at collected in a repeatable manor so that 

any potential issues with the process can be identified and acted on. The importance of 

this ability is being highlighted more frequently in the literature surrounding in-situ 

monitoring of additive processes as more researchers focus on the identification of defects 

and final part quality indicators through a variety of different data processing 

methodologies. 

Different machine learning approaches have been applied to single weld track monitoring 

systems to automatically identify spatter and plume behaviour from in-situ video footage 

of the melt-process using deep belief network classifiers [186] and CNNs [187,188] with 

high rates of success in correctly identifying targeted features. A semi-supervised 

classification approach has also been applied to meltpool images captured by a co-axial 

high-speed camera [164] on single weld tracks with similar promising results. 

In-situ systems have been used to predict microstructural properties, such as grain size 

and orientation, which can provide valuable insights into final part quality and process 

variations throughout the build [106]. This has been studied in EB-PBF processes through 
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in-situ thermography [105] to access how different scan strategies may impact grain 

orientation with agreement between in-situ predictions and post-process destructive 

inspections. In L-PBF, in-situ thermography has been used to relate layer surface 

temperature to grain growth and orientation, as well as the amount of spatter being ejected 

from the meltpool [89]. 

In-situ porosity detection has been one of the largest areas of interest in the literature, 

with three main focusses on the topic:  

• Voids included into the model of the part, which are also referred to as “artificial” 

or “intentional” pores 

• Local porosity (single pores or local clusters of pores, either spherical or irregular 

pores caused by lack of fusion) 

• Part density (the overall percentage of voids in the volume) 

Voids of different shapes and sizes were used in various studies, including cubic voids 

with sizes in the range 30 μm to 300 μm [137] or 50 μm to 750 μm [47,79,80], cylindrical 

voids with diameters in the range 50 μm to 750 μm [47,79,80] and spherical voids with 

diameters in the range 600 μm to 900 μm [84]. In L-PBF, binarization of optical layer-

wise imaging has been used to feed supervised machine learning algorithms for the 

detection of pores on powder bed surface [52,79,80]. Off-axis dual wavelength video data 

has also been used to estimate meltpool properties and compare these against a thermal 

map of the layer to identify voids by using a neighbourhood searching algorithm to sort 

meltpool images as either normal or outliers [137]. Comparisons to post-process XCT 

measurements have been made to determine the success rate and further train the 

algorithms. 

Local porosity detection on L-PBF methods has been carried out using 3D constructions 

of layer-wise imaging [46], mapping of hot and cold areas and through in-situ 

thermography [53], IR video image data [67,95,189] with comparisons to post-process 

XCT measurements of the parts as a ground truth for part porosity. Sub-surface pores 

have also been correlated to cooling profiles re-constructed by in-situ thermography using 

in-situ X-ray video image as the ground truth [101]. In EB-PBF, NIR layer-wise imaging 
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[55] in-situ electron beam imaging [74] have been used to detect pores by pixel intensity 

values with comparisons to post-process XCT measurements being made. 

In-situ measures of globally porosity over the build of the part have been carried out by 

multiple researchers. Features identified from layer-wise optical images of both the 

powder layer post coating [39,178] and the build layer post melting phase [38] have been 

shown to correlate with final part density. Off-axis multi-spectral spatially integrated 

pyrometry measurements in L-PBF [179] have also been found to correlate with global 

porosity through Fourier analysis of measured signals. Machine learning algorithms have 

been applied to co-axial mounted photodiode signals [149], meltpool images [162], 

spatter descriptors [121], and acoustic emissions [133,134,177] all with the aim of 

monitoring global part porosity in-situ. 

Geometrical distortions across the powder bed have been monitoring and identified 

through a few different methods. Binarised powder bed images have been fed into a CNN 

to monitor thing wall features in L-PBF [82] with a similar approach being expanded to 

full part monitoring by comparing the images layer with a corresponding CAD slices of 

the part being built [48]. Layer-wise imaging of L-PBF has also been used to feed a 

MsCNN to monitor for features such as recoater hopping and streaking, incomplete 

powder spreading, presence of debris on the powder bed, super-elevated edges and other 

part damages pre-melting phase [50,51]. Hotspot detection using high speed video images 

from off-axis machine vision cameras [190] has been performed using principle 

component analysis to allow for automated identification of local hotspot events [191]. 

Monitoring stability of plume emissions over time during L-PBF using off axis IR video 

has also been done with correlations between plume events and part defects being found 

[34,108]. 

Other defects, such as residuals stresses, cracks, and delamination have also been 

identified during the build process via in-situ monitoring methods. Residuals stresses 

have been observed using X-ray diffraction to detect stress formations and phase changes 

beneath the current layer in custom built L-PBF systems [132,168]. Delamination 

detection has been developed through the use of a “smart” build-plate with embedded 

fibre optic strain sensors [170] capable of measuring strains, directions of strain vectors 

and location delamination events, as well as some cracking that may occur near the 



Feature based characterisation Feature based characterisation 

 

104 

 

baseplate surface that may not be visible with other sensors. Off-axis IR video imaging 

has also been used in combination with deep learning algorithms to detect severe defects 

that may cause large heat accumulations in the layer, such as delamination [241]. 

All these methods follow the same aim of attempting to correlate measured signals with 

known, real defects that have developed during the parts manufacture. This work is 

essential for the future of automated systems that can flag manufacturing issues without 

user intervention or interpretation of the measured data. 

5.2 Feature based characterisation 

FBC is a developing area of surface metrology that focusses around the characterisations 

of features found in topographical data that has been proven effective at identifying 

expected features on PBF surfaces [242,243]. This approach varies from conventional 

methods of surface characterisation, such as surface texture parameters like roughness 

and waviness, by targeting individual features on the surface. This is typically performed 

by segmenting topography into localised regions, and is done through a variety of 

different algorithms. The complete sequence of data processing operations characterising 

a FBC approach is usually custom-tailored to application-specific needs, and can be 

automated once these needs are verified and tested. However, due to its complexity and 

computational requirements, feature-based topography characterisation has not seen 

widespread application to in-situ measurement yet. Conventional optical imaging has 

more commonly been applied for automated detection, as discussed in section 5.1, and 

has shown promising results due to the intrinsic speed of image taking and the mature 

tools available for image processing methods. There has been some work on processing 

measured surface topography data in ways that are like FBC, for example by computing 

maps of local curvatures [194], and other attempts at processing topography data 

specifically acquired in-situ [59,61,65,193] though no comprehensive endeavour towards 

defining a proper FBC pipeline has been attempted yet.  

The design of a proper, FBC-compliant data processing pipeline must start from the 

identification of localised topographic formations which must be targeted, i.e. the 

topography “features” of interest for the specific application.  Leftover particles (isolated 

and in clusters) and spatter features are localised topographic formations, of similar 
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protruding nature, which are dominant on PBF surfaces due to the nature of the PBF 

process. Particles results from lack of, or incomplete, fusion of the powder bed. Spatter 

features are formed by fully molten gobs of material ejected from the processing area and 

fallen back onto the surface. FBC methods to identify leftover particles and spatter 

features have been successfully implemented in previous work, however only from lab-

based surface topography measurement, i.e. not in-situ [243–245].  

The in-process identification of leftover particles and spatter features from in-situ 

topography measurement has important implications for PBF process monitoring, 

because being able to detect such features paves the way to detecting important anomalies 

related to the manufacturing process.  As the PBF process builds a part, a layer of powder 

is spread using a wiper blade or powder roller to ensure the creation of a powder bed 

characterised by an even distribution of material (even thickness) for optimal, subsequent 

laser processing [11]. However, if a spatter formation of particle cluster is excessively 

large, it may stick out of the powder layer and consequently influence the laser melting 

process, or even interfere with the wiper blade or roller during spreading, resulting in 

catastrophic collisions, or at least causing unevenness of the bed and consequent defects 

in the part [117,246].  

5.3 Methodology for feature based characterisation 

An investigation of the performance of the measuring system based on multi-view FP is 

performed by acquiring the surface topography of samples fabricated by metal L-PBF. 

Most of the relevant surface topography features (leftover particles and spatter) are 

present in the samples. The analysis is aimed at determining if the achievable 

measurement resolution and in general, the metrological performance, which is 

compatible with the needs of an inspection process targeting features of such sizes and 

shapes. 

5.3.1 Measurement technologies 

5.3.1.1 Final multi-view fringe projection system 

The multi-view FP system used in this chapter is an updated version of the system 

described in detail in section 4.2.1.1. The system is comprised of four Basler ace 

acA5472–17um cameras and a newly fitted DLP Lightcrafter 6500 projector to replace 
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the Optoma projector previously used. The new projector provides monochromatic image 

projection rather than RGB to match the Basler cameras and allows for hardware 

synchronisation that was not possible with the Optoma projector. The Basler cameras 

have been repositioned to give a slightly smaller FoV than the previous version of the 

system with the aim of achieving point clouds of higher density (example of one of the 

perspectives white images shown in Figure 5.3.a). The projection and measurement cover 

the entire width and most of the length (approximately 190 mm) of the (265 × 265) mm 

measurement stage with the FoV of all four cameras covering the entire projected image. 

 

Figure 5.3.a White image of L-PBF flat sample within the measurement volume of the FP 

system. 

5.3.1.2 Focus variation microscopy 

As with in chapters 3 and 4, FV microscopy was used as the reference lab-based 

measurement. FV can operate at higher sampling resolution with respect to our multi-

view FP and has been demonstrated to be a suitable reference for the measurement of 

PBF surfaces [247]. The following settings were used to measure the entire top surface: 

5× magnification objective lens [numerical aperture: 0.15, FoV: (2.82 × 2.82) mm, pixel 

sampling resolution: 3.52 µm], ring light illumination; instrument vertical resolution: 1 

µm and instrument lateral resolution: 7.25 µm. Stitching of multiple FoVs were 
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performed to measure a (59.2 × 59.2) mm measurement area. Each FV measurement 

resulted in a height map (a matrix of height (z) values arranged onto a regular x,y grid 

with uniform x,y spacing).  

5.3.2 Samples 

A (50 × 50 × 5) mm L-PBF flat sample was used in this work, as shown in Figure 5.3.b. 

The sample was chosen for the presence of leftover particles/spatter on the top surface, 

as well as for the overall size of the measurable surface. While the whole surface was 

measured for the sample, a region of (10 × 10) mm was cropped down for the analysis 

and comparison as the FV system the data is being compared against is not capable of 

measuring the entire sample surface. These region the data has been cropped to is 

representative of the wider surface in terms of surface features. 

 

Figure 5.3.b Photograph of the (50 × 50 × 5) mm L-PBF flat surface with a British 20 pence 

piece for scale. 
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5.3.3 Alignment and registration 

Following the same procedure described in sections 3.3.3.1 and 4.2.3.1, each FV dataset 

(height map) was cropped to only include an (10 × 10) mm region using Polyworks 

Inspector [248]. The FV cropped maps were then downsampled to 20 µm point spacing 

through linear interpolation and converted into triangle meshes using Delaunay 

triangulation. The multi-view FP point cloud for the same surface (or analogously, any 

point cloud obtained using only one camera-projector pair in the FP system) was 

registered to the FV reference dataset over 6 degrees of freedom using coarse alignment 

by point selection followed by a finer ICP alignment [230–232]. The aligned FP point 

cloud was also triangulated using the Delaunay method. The whole process resulted in 

two triangle meshes (one FV and one FP) coarsely aligned to each other and to the x,y 

plane. In order to investigate geometric differences between the two meshes, both were 

resampled into aligned height maps using a virtual raster scanning method implemented 

in MATLAB. Virtual raster scanning consists of probing local heights on triangle meshes 

at selected locations defined by a regular x,y grid. Scanning was performed at 20 µm 

spacing to replicate the density chosen for the initial down-sampling. Following scanning, 

heigh values resulted vertically aligned at the same x,y positions, allowing for local 

comparison of heights. Both maps were finally cropped to the RoI. Moreover, the FP 

maps were smoothed by low-pass Gaussian filtering (nesting index: 20 µm) to reduce 

noise.  

5.3.4 Feature-based characterisation 

Using the method developed in Newton et al. [245], the active contours algorithm was 

applied to perform segmentation and isolation of leftover particles/spatter features on the 

PBF surfaces. Segmentation was performed using the following steps, optimised for the 

FV dataset:  

• Application of a L-filter (low-pass) with nesting index of 800 µm, designed to 

better highlight localised protrusions of the targeted size on the surface, whilst 

reducing any other higher-frequency topographic formation.  

• Generation of an initial guess mask (needed by the active contours algorithm), by 

applying thresholding on heights, using a height threshold equal to 95% of the 

height range.  
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• Application of the active contours algorithm, starting from the initial guess mask, 

to “grow” the initial masked regions outwards, to increasingly approximate the 

actual particle/spatter boundaries, over 100 iterations. 

5.3.5 Comparisons of FP and FV feature-based characterisation results 

The same feature-based characterisation method was applied to the FV and FP height 

maps. A quantitative comparison of the results was then performed using the method 

presented in Newton et al [230], using the FV results as the reference. The comparison 

method consisted of pairwise comparison performed at all the locations of the two 

segmented maps, using a binary classification scheme where each location labelled as 

belonging to a particle or spatter formation is tagged as “true”, whilst the other locations 

are labelled as “false”. Using the FV segmentation result as the reference, then each the 

FP segmentation result at each corresponding location was therefore labelled as true 

positive, false positive, true negative or false negative depending on the local agreement 

of segmentation results.  After this initial classification, the following metrics were 

computed:  

• Precision – positive predictive value – measure of the proportion of true positives 

over all positive instances. High precision implies a small number of excess 

feature points. 

• Recall – True positive rate – measure of the proportion of positives that are 

correctly identified. High recall implies a small number of missing feature points. 

• Specificity – True negative rate - measures the proportion of negatives that are 

correctly identified. High specificity implies a small number of excess feature 

points (pixels wrongly recognised as belonging to the feature). However, different 

to precision, the viewpoint is the identification of the background. 

• Balanced accuracy – arithmetic average of recall and specificity, this metric is less 

skewed by differences in number of feature and background pixels in the analysed 

region when compared to the conventional accuracy metric. 

Additionally, visual comparison was performed on single features (particles or spatter 

formations) in the topographies, as well as over the whole topography, looking at the 
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topographies themselves, the resulting segmentation mask applied to the surface 

topography and the binary classification comparison over the surface topography. 

5.4 Results 

5.4.1 Surface topography measurement 

The large (10 × 10) mm cropped region that is representative of the whole surface on the 

L-PBF flat sample surface as measured by FV can be shown in Figure 5.4.b. As with in 

chapter 4, discrepancy, surface overlap, mean deviation and mean point spacing were 

calculated for the repeat 5 measurements of the L-PBF flat sample and are present in 

Table 8 and Table 9. Deviation maps over the (10 × 10) mm cropped region can be seen 

in Appendix A1. 

Table 8. Discrepancy (percentage point-by-point disagreement), surface overlap 

(percentage of data surface coverage) and mean deviation (point-by-point difference is 

height value) between FP and FV height maps of the L-PBF flat sample. 

Ti-flat sample Multi-view FP Single-view FP 

Cam1 Cam2 Cam3 Cam4 

Discrepancy from FV /% 12.58 28.97 30.61 28.76 27.08 

Surface overlap from FV /% 100 99.95 100.00 99.98 100 

Mean deviation from FV /μm 27.2 34.7 30.0 34.6 28.5 

Table 9. Mean point spacing of the FP point clouds for the L-PBF flat sample from the first 

measurement of 5 repeats (rounded to the nearest micrometre). 

Ti-flat sample Multi-view 

FP/μm 

Single-view FP/μm 

Cam 1 Cam 2 Cam 3 Cam 4 

Repeat 1 35 72 66 75 65 

When compared to data from the previous version of the system, discrepancy, mean 

deviation and mean point spacing appear to have improved. Although individual camera 

CIs appear to be larger than before (presented in Figure 5.4.a). This increase in CI values 

could possibly be a result of the difference in sample surface form being measured or a 

result of the change projector, which is now projecting a (1920 × 1080) pixel  image rather 

than a (3840 × 2160) pixel image from the Optoma. 
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Figure 5.4.a. Mean CI widths for all measurement methods on both the L-PBF flat sample. 

On the L-PBF flat surface, particles and possibly spatter formations can be clearly shown 

positioned randomly over the surface, with a few larger singularities that have large 

heights. The higher resolution of the FV technique reveals the presence of some smaller 

formations (possibly individual particles) that are also scattered randomly over the 

surface. The FV measurement is shown in Figure 5.4.b. 
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Figure 5.4.b Surface topography height map from the L-PBF flat top surface measured with 

FV. The highlighted red square represents a cropped region used to evaluate some smaller 

features. 

 

Figure 5.4.c Surface topography height map for the L-PBF flat top surface, measured with 

single-view (camera 4) of the FP system. 
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Figure 5.4.d Surface topography height map of the cropped region on the L-PBF flat top 

surface measured with multi-view FP. 

In Figure 5.4.c, the single-view FP cropped measured topography from camera 4 of the 

FP system can be shown, taken approximately from the same surface region as the 

previous FV measurement. There is a higher amount of measurement noise, which were 

reduced with an 800 μm low pass filter (the filter was not applied in the figure). When 

compared to the FV measurement, there does seem to be clear topography similarities in 

relation to the surface features at larger scales, with many of the larger protruding 

formations (particles or spatter) clearly visible. It is only at the smaller scales in which 

the noise in the FP dataset decreases the reconstruction fidelity of the smallest particle 

features.  

The multi-view FP cropped measured topography of the L-PBF flat can be shown in 

Figure 5.4.d, this dataset is made from adding the measured point clouds of the four 

camera-projector pairs together and applying a filter, as a result there is a balance between 

increasing point density adding points that might create a noisier datasets and smoothing 

that removes too much detail. When compared to the FV topography shown in Figure 

5.4.b, the larger features can be clearly distinguished between the two topographies, but 
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there does appear to be a loss of fidelity in the FP data – even after data fusion is 

performed – that is likely due to the inherent resolution limits.  

5.4.2 Comparison of individual features 

Before looking at the larger regions of the surface, it is important to evaluate the ability 

to observe the particle features individually and whether their boundaries are effectively 

determined. From the larger surface region, a (3 × 3) mm region was cropped to evaluate 

a smaller topographic feature on the surface, this region is defined by the red square in 

Figure 5.4.b. Within the cropped regions, the differences between the FV and single-view 

FP measurement results can be visualised in terms of the volumetric difference between 

the two topographies.  

Figure 5.4.e (a) shows the comparison between the FV measurement in grey and the 

single-view FP measurement in green. The FV measurement is relatively smooth and the 

FP measurement is noisier at high spatial frequencies across the cropped measurement 

region but does appear to match the FV topography at lower spatial frequencies, 

suggesting that a low-pass filter might be useful to improve the correspondence. A similar 

conclusion may be drawn by observing the topography cross-section marked by the 

orange line in  

Figure 5.4.e (a) and shown in  

Figure 5.4.e (b). However, the FP data does seem to underestimate the heights of the tops 

of the protruding formations (spatter and particles) in comparison to the FV measurement 

data. Looking at the agreement between the two topographies we see that the same 

particles/spatter features are found in both topographies even though the FP measurement 

has a visible high frequency noise component. 
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Figure 5.4.e Volume differences for (a) cropped (3 × 3) mm region for an example single-

view FP topography (green) and against the FV reference topography (grey) with (b) a cross 

section (0.1 mm width) along the dominant feature shown. The yellow shows the volumetric 

difference between the two topographies. 
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Figure 5.4.f Volume differences for (a) cropped (3 × 3) mm region for multi-view FP 

topography (green) and against the FV reference topography (grey) with (b) a cross section 

(0.1 mm width) along the dominant feature shown. The yellow shows the volumetric 

difference between the two topographies. 
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In Figure 5.4.f, the volumetric comparison between the measurements of the FV reference 

measurement (grey) and the multi-view FP measurement (green) is shown. To generate a 

multi-view FP point cloud, the single-view point clouds are simply aggregated without 

smoothing or resampling, leading to local high frequency noise. To reduce this high 

frequency component, the multi-view FP measurement is subjected to a low-pass filter. 

There is disagreement of the results over the whole topography in Figure 5.4.f (a) as in 

the single-view FP case, however in the multi-view case the spikes are clearly removed 

by the low-pass filter. For the cross section in Figure 5.4.f (b), there is disagreement over 

the heights of the top of the particles, which could be due to the multi-view FP data having 

the potential to be distorted by one or more of the single-view FP measurements. In terms 

of the features found on both topographies, there is a agreement on the larger features, 

and like with the single-view FP topography, there is increased noise in the FP 

measurement which obscures some of the smaller features. 

5.4.3 Whole surface evaluation 

5.4.3.1 FBC results 

The FBC procedure outlined in section 5.3.4 was applied to all topographies, with the 

output segmentation mask for the reference FV data shown in Figure 5.4.g. On this mask, 

the algorithm seems to have been able to segment all the largest features and many of the 

smallest particles on the surface. Whilst the FV result is here taken as the reference, there 

will be limitations in how successful the segmentation algorithm is able to determine these 

feature boundaries which might be improved later. However, it is only the smallest 

particles that are either not being identified or partially identified. 

For the segmentation mask for a FP single-view system (Figure 5.4.h), the segmentation 

algorithm is also able to identify many of the same features as shown in the reference 

segmentation mask, however the effect of the noisier measurement data means that the 

feature boundaries are not well defined and some of the smaller features are not 

discernible from the background. 
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Figure 5.4.g Segmentation mask for the L-PBF flat surface measured with FV. Yellow 

indicates feature points determined through the segmentation approach. 

 

Figure 5.4.h Segmentation mask for the L-PBF flat surface measured with the single-view 

(camera 4) FP. Yellow indicates feature points determined through the segmentation 

approach. 
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Figure 5.4.i Segmentation mask for the L-PBF flat surface measured with the multi-view 

FP. Yellow indicates feature points determined through the segmentation approach. 

Figure 5.4.i shows the segmentation mask for the multi-view FP measured topography, 

whilst this is made from the combination of all the camera-projector pairs, it is still limited 

by the resolution of the FP system when compared to FV. As a result of this reduced 

resolution, the smallest features are still not detected by FBC when compared to the FV 

measurement. 

5.4.3.2 Comparison of FBC results 

Using binary classification testing with the FV segmentation result as a reference ‘truth’, 

the differences in feature segmentation can be visualised to compare the accuracy of same 

segmentation approach on similar features found by both segmentation masks, as well as 

to generate quantitative metrics. Figure 5.4.j shows the results of the single-view FP 

(camera four) segmentation result compared the FV segmentation result on the overlaid 

FV measurement. From the result it can be see that many of the larger particles are found 

also in the FP segmentation, shown as the large amounts of true positives, indicated in 

yellow in the figure. The FP measurements frequently over estimates boundaries in the 

FP result where big particles are close together (this can be seen in the detection masks 

for all camera measurements in Appendix A2), which is represented by the swathes of 

light blue that often connect particles together (light blue is used to indicate false 

positives, i.e. features recognised as such by FP, which are not labelled as features in the 
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FV result). Some of the smaller particles are not identified by the FP segmentation (false 

negatives, shown as red regions on the surface), with some of boundaries of small features 

also not completely identified – also false negatives, resulting in red regions around a 

yellow centre. It is also clear that there are missing particles that can be seen as not 

identified by either the FV or the FP (coloured in grey) – so there is a limitation of this 

segmentation method in identifying the very smallest features. Most of the discrepancies 

between the two results are due to the higher measurement noise in the FP topography, 

meaning it is likely that smaller particles, points around the slope of the particles, or 

particles with lower relative height aren’t as clearly defined and are therefore not 

identified in the FP segmentation result. When comparing particles that are identified as 

features on both topographies – that is, the true positive features – there are some particles 

that are approximately 200 µm in diameter that are detected. Many of the smallest 

particles (< 100 µm diameter) aren’t identified on the reference surface as features, so 

there is room to improve the segmentation approach. 
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Figure 5.4.j Binary classification results of the single-view FP (camera four) segmentation 

masks compared to the FV reference. Yellow indicates matched feature points (true 

positives), red shows missing feature points (false negatives) and blue shows the excess 

feature points (false positives) all between the reference and measurement segmentation 

results. 

For the multi-FP comparison in Figure 5.4.k, we see much of the same results as for the 

single-view FP comparison, but with some small improvements. With the measurement 

noise reduced for the multi-view FP topography, there is a lower number of missing points 

(red points) around the boundaries of particles than in the single-view FP case. In some 

cases, while there are still connected regions where lots of particles are present, the outer 

boundaries appear much smaller reducing the number of excess points (light blue) 

however, at the same time there are some regions where more points have been 
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determined as features in the multi-view FP result meaning there are more matching 

points and less missing points, but also excess points connecting other clusters of features 

together. There are still some points that haven’t been identified at all in the multi-view 

FP segmentation result, which suggests there is an inherent limit to the size and scale of 

features that are detectable. As with the example for the single-view camera, the particles 

identified as features on both topographies are approximately of the size of 200 µm in 

diameter. Many smaller particles ( < 100 µm diameter) weren’t identified on the reference 

surface as features, however, improvements to the segmentation algorithm might not be 

sufficient to separate the feature from noise on the noisier multi-view FP topography. 

From observing all the FBC detection masks for both FV and FP measurements 

(Appendix A2) and the deviation maps of the FP measurements from the FV standard 

(Appendix A1) it is apparently that all the FP measurements have difficulty with clearly 

identifying the edges of features on the surface. As previously seen from the line profile 

presented in Figure 4.3.g, high frequency features measured over the surface have a 

tendency to be skewed depending on the position of the camera perspective, which 

appears to be particular exaggerated in cameras 1 and 3 for these measurements. For the 

larger features on the surface, this is mostly averaged out from the data fusion of the 

multi-view FP data, as the skewing from each perspective is averaged out from the others. 

This results in the larger particle boundaries being noisier around the perimeter on the 

multi-view FP data than the single-view FP data, but more closely matching the FV in 

terms of position and area. In some regions however, individual point clouds from a single 

camera can have a disproportionate effect on the multi-view, which results in features 

being overestimated by the multi-view measurement in comparison to some of the single 

view perspectives.  
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Figure 5.4.k Binary classification results of the multi-view FP segmentation masks 

compared to the FV reference. Yellow indicates matched feature points (true positives), red 

shows missing feature points (false negatives) and blue shows the excess feature points (false 

positives) all between the reference and measurement segmentation results. 

Number of detected features, median feature area and maximum feature area for all 

measurements are given in Table 10. From these numbers it can be seen that the FBC 

detects more particles on the multi-view FP measurement, which more closely aligns with 

the number of particles detected on the FV measurement. The median feature is also lower 

on multi-view FP, meaning that more smaller features are being detected. This is further 

confirmed by the histogram plots in Figure 5.4.l that show the number of particles 

detected per particle area. On the smaller end of the particle sizes the histograms of the 
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multi-view FP data more closely resembles the histogram for the FV data, where the 

single view FP measurements have more particles spread amongst the size ranges. 

Although it is worth noting that these smaller particles that have been detected in the 

multi-view FP measurement are somewhat due to the particle boundary noise caused by 

the fusion of the four point clouds, and are not necessarily the same smaller particles that 

the FV system is capable of measuring. 

Table 10. number of features detected, median feature area and maximum feature area for 

each measurement. 

Ti-flat sample FV Multi-view 

FP 

Single-view FP 

Cam1 Cam2 Cam3 Cam4 

Number of features detected 141 123 106 98 95 105 

Median feature area /μm2 41600 25200 52000 53600 61600 60800 

Maximum feature area /μm2 839600 5131600 6477600 4017600 6367600 4360000 
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Figure 5.4.l Histograms of featured detected by area for each of the measurements. 

Minimum quantifiable area is 400 µm2 due to the 20 µm lateral resampling of all data sets. 
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From the binary classification results shown on the topographies, the metrics for balanced 

accuracy, precision, recall and specificity can be computed for each comparison of each 

single-view FP measurement and the multi-view FP measurement to the FV reference. 

There is a reasonably high balanced accuracy result for all single-view results, with a 

slight increase of performance for the multi-view FP result – with the average results of 

recall and specificity being also high. There are fluctuations between all single-view FP 

systems but no apparent significant differences. The precision score is relatively low, 

suggesting that there is a large proportion of excess feature points when compared to the 

true positives. This is evident in the visual topographies when looking at the excess points 

around closely located true feature points, however these excess feature points appear to 

agglomerate and over-define the boundaries of feature – which is likely a result of reduced 

resolution in the FP measurement data. To improve precision, the FP measurement will 

require increased resolution to better define the edge of the particles which will then 

benefit the segmentation algorithm in determining the feature boundaries. The specificity 

score is high, implying a small number of excess feature (false positive) points as a 

proportion to all negative points. The reason for this high score relates to the localisation 

of false positives around existing features – so while there are excess points, they are not 

dominant across the whole surface. The recall metric is the highest scoring metric, which 

is the proportion of correctly identified feature points. This can be seen in the earlier 

figures (Figure 5.4.j & Figure 5.4.k) as low amount of missing feature points in red 

scattered across the surface. Improvements to this score will likely come at a cost to 

precision, as to reduce missing feature points will require the segmentation algorithm to 

increase its prediction of regions containing (true) matched feature points will mean that 

many overpredictions are made – which will affect its balanced accuracy. 

Across all metrics but precision, the multi-view FP system scored higher than all single-

view FP results, suggesting that the use of multiple views is beneficial in increasing the 

quality of information in the resultant topography. The high score for most metrics for all 

single-view FP systems suggests a reasonably well positioned location for measurement 

with improvements more likely attained through more advanced instrumentation. 
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Figure 5.4.m Binary classification metrics for the various single-view FP and the multi-view 

FP segmentation masks when compared to the FV reference segmentation masks. 

5.5 Feature based characterisation discussion 

Whilst particle and spatter features were considered, there is no real limitation to using 

feature-based segmentation to target other features of interest, perhaps such as the weld 

tracks or even pores on the surface. The only requirement to achieve segmentation would 

be manual configuration of the FBC process to adapt the algorithms to isolate these 

different features. However, the analysis method outlined in this work could still be 

applied to validate and verify the segmentation methods on the same surface measured 

with the different technologies.  

Between the two techniques, it is clear that the factors that influence measurement 

uncertainty (difference in the topographic resolution among the most significant) lead to 

increased error and uncertainty found on the measurements of the FP system when 

compared to the FV measurement system, with there being additional differences between 

the measured topographies in terms of spatial frequency components. These differences 

Classification scores for fringe projection views against FV reference

LPBF Flat C
amera 1

LPBF Flat C
amera 2

LPBF Flat C
amera 3

LPBF Flat C
amera 4

LPBF Flat M
ulti-

FP

0

0.2

0.4

0.6

0.8

1

Balanced accuracy Precision Recall Specificity



Feature based characterisation Feature based characterisation conclusions 

 

128 

 

in measurement uncertainty would also become clear in any measurement parameter 

computed on the surfaces. The noise component on the FP measurement is rather 

dominant and is close to the scale of the individual particles so there is need for 

improvement in the instrumentation of the FP system if it is to be used for this form of 

analysis. 

In general, the ability to evaluate the errors between feature-based parameters or 

dimensional properties is not so important as the use of in-situ assessment is mostly 

required to instantly detect issues that might generally affect the build, which does not 

require highly accurate datasets that closely match ‘true surface’. 

The presented comparison method does require a reference. In this work, the reference is 

biased to the FV data where the resolution is sufficiently higher than FP. This analysis 

might benefit from use of a manual segmentation mask applied to the FV measurement 

data as in earlier work [230]. 

5.6 Feature based characterisation conclusions 

The same L-PBF surface has been measured with two different measurement 

technologies, resulting in an FV reference measurement, four single-view FP 

measurements and a single multi-camera FP measurement. The same segmentation 

method was applied to all measurements which was then compared to qualify and 

quantify the differences between the features identified on the FV reference and all the 

FP measurements. The following conclusions can be drawn from this work: 

• The specific segmentation approach results in low precision and high specificity 

and recall for all measurement datasets compared to the reference, implying that 

the FP method over-estimates regions containing true features by a far margin, 

which might be suitable for a quick assessment of particles. 

• FP in the tested configuration is more than capable of resolving larger 

agglomerated spatter/particle features present on a PBF surface, however clearly 

limited at observing individual particles from the process. 

• Generally, spatter/particle features can be resolved and segmented from the FP 

data and that features could be characterised down to a size of approximately 200 

microns. 
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• FBC performance can be assessed and improvements can be suggested based on 

the use of classification scores and visualisation of the matched features between 

topographies. 
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6 Discussion and concluding remarks 

The aim of the work that has been presented in this thesis was to develop an in-situ 

monitoring system for metal PBF capable of measuring and identifying manufacturing 

defects over the entire powder bed. The achieve this goal, a suitable method of 

measurement has been identified, an out of machine prototype has been developed and 

tested, and a potential methodology for processing the data and identifying defects has 

been explored. 

6.1 Multi-view fringe projection system findings 

As an in-situ inspection system for AM, multi-view FP appears to be well suited due to 

its non-contact nature and rapid acquisition rates. The system that has been designed can 

collect all of images needed for a measurement within 1.1 seconds, using 18 frames per 

camera, using the hardware selected and software synchronisation between the cameras 

and the projector. The limiting factor in the acquisition of the data comes from the frame 

rate of the cameras used, and in theory could be decreased further with higher framerate 

cameras and hardware synchronisation with the projector. Data collected from the system 

so far has shown that multi-view FP has the potential to be a valuable tool in the detection 

of layer-wise surface features and defects generated during the metal PBF process. 

6.1.1 System resolution and repeatability 

The resolving capabilities of the multi-view FP system has been assessed in this work 

through two main methods of analysis, point cloud point spacing, and repeatability of the 

measurements. Although these two factors are not synonymous with resolution, and do 

not fully describe the systems resolving capabilities, they are related to the systems 

performance and do provide an insight into where the systems limitations may lie. Three 

different hardware configurations of the multi-view FP system have been tested through 

this work: 

1. Projector: 4K Optoma UHD550X, Cameras: 18 MP Canon DSLRs. 

2. Projector: 4K Optoma UHD550X, Cameras: Basler ace acA572–17um. 

3. Projector: DLP Lightcrafter 6500, Cameras: Basler ace acA572–17um. 
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With each of the new hardware configurations the FoV of the projectors and cameras also 

varied due to different lenses between models, and differences in how the hardware was 

positioned within the system. Between hardware versions 1 and 2, the projector remained 

the same but was not moved. Between versions 2 and 3, the camera model remained the 

same, but their positions were changed to achieve a smaller FoV on the measurement 

area. 

6.1.1.1 Fringe projection point spacing 

Mean point spacing was assessed using data from all three versions of the system, with 

the mean point spacing of the multi-view data being 59 µm, 74 µm and 35 µm 

respectively. Although the resolution of the cameras being used between versions 1 and 

2 improved, the FoV was increased, which resulted in a higher mean point spacing. The 

FoV between versions 1 and 3 is more comparable, and in these two systems a significant 

improvement in point spacing is observed, although this can be attributed to not only 

improved cameras, but also a shift to an industrial machine vision projector over the 

original cinematic one. Examples of each of the systems FoV can be seen in Figure 3.3.b 

(version 1), Figure 4.2.d (version 2) and Figure 5.3.a (version 3). In all cases the mean 

point spacing of the multi-view FP was roughly half that of the single-view counterpart, 

equating to four times as many points over an areal measurement.  

In the context of system resolution, the mean point spacing acts as an effective lateral 

sampling rate when measuring mostly flat surfaces, as would be measured in-situ on a 

metal PBF system, although unlike other surface measurement systems these points are 

not positioned on an equispaced grid that is normal to the substrate. Known common 

features that occur during the metal PBF process include weld tracks (nominally 100 µm 

in width), elongated pores (50 µm to 500 µm), balling (up to 500 µm in width and 

potentially the length of the build) [25], unfused powder (100 µm to 150 µm) [195] and 

lattice deviations (up to 500 µm) [26]. To be able to measure these features on the surface, 

enough data points must be taken across the feature that they can be clearly resolvable 

from nominal. With the best point spacing achieved being 35 µm, it is unlikely that 

features down to 100 µm or less would be resolvable as only 2 or 3 points would be 

measured taken over the length of the feature. As more points would be measured over 

larger than 100 µm, they would be more easily resolved. As mentioned in section 3.1.2, 
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the target for the system was to resolve features under 500 µm in size, which is achievable 

with the demonstrated point spacing of all version of the system. The lateral sampling of 

the FP system is heavily dependent on the FoV of the cameras and the size of the CDD 

pixel array in the camera, meaning that smaller features would be better resolved on PBF 

systems that have smaller build areas when using the same hardware. For PBF systems 

with larger build areas, higher spec cameras with larger CCD pixel arrays would likely 

be beneficial. 

6.1.1.2 Measurement repeatability 

Repeatability of measurements was assessed on versions 2 and 3 of the system by running 

5 measurements on the same sample, in the same position. Repeatability has been 

quantified by calculating 95% CI sizes across the surface for both the multi-view point 

clouds and each single-view perspective. From the data taken on version 2 of the system, 

the multi-view FP data had a mean CI size of 101 µm, and the four single-view data sets 

had a mean CI of 42 µm between them. For version 3, the mean CIs were 117 µm and 80 

respectively. These numbers make the multi-view system appear to be less reliable than 

the single-view counterparts, however, when compared against a higher resolution FV 

measurement of the same sample, the multi-view system has a lower mean deviation over 

the surface in comparison to the single-view measurements (multi-view and single-view 

mean deviations being 67 µm and 83 µm for version 2 and 27 µm and 32 µm for version 

3, respectively). Data from version 3 of the system is far more inline than version 2 when 

compared to the measurements taken from the FV system, which could be attributed to 

the stability of the updated projector. However, it is much more likely to stem from the 

difference in sample used on the two versions of the system. Where the sample from 

version 2 has surface form that lead to areas of potential occlusion from the different 

perspectives, the sample used for version 3 was flat in form, with only features resulting 

from the L-PBF process present on the surface. From the data taken on both versions of 

the system, the multi-view approach appears to have a higher level of accuracy in 

measuring the surface, with a lower level of precision. This decrease in precision is most 

likely due to the multi-view point cloud being a combination of the individual single-view 

perspectives, meaning that errors from the single view perspectives are combined all 

combined into the multi-view point cloud, causing a resultant averaging affect over the 

measured regions, but a greater level of measurement noise.  
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An apparent issue with the multi-view data fusion approach is the significant impact that 

inaccuracies of an individual or multiple point cloud from the separate perspectives can 

have on the overall combined point cloud. This has been seen in all three versions of the 

system, with a point cloud having to be removed from the multi-view dataset in Chapter 

3, skewing of the wave features profiles being clearly visible in individual point clouds 

in in Chapter 4 (Figure 4.3.g), and a similar skewing affect causing smaller features to 

agglomerate in the FBC of Chapter 5 (seen in Appendix A where skewing is present from 

the deviation maps in all four cameras, but is significantly more present in cameras 1 and 

3, resulting in detected features being significantly skewed and oversized in comparison 

to cameras 2 and 4). Due to the data fusion method being an alignment of the four 

individual point clouds, these individual perspective errors propagate through into the 

multi-view point cloud. Optimisation of camera positions for the highest quality data and 

smarter data fusion methods may need to be developed to help reduce errors caused by 

the skewing of high frequency features by differing perspectives. 

With the system CIs being up to 100 µm in height, there would likely be some difficulty 

in measuring features that protrude from the powder bed layer around this amount or less. 

However, these CI results are without any noise or data processing other than a statistical 

outlier removal to the raw point clouds. The CIs could potentially be decreased with 

further noise removal or smoothing filters being applied to the data. With the mean 

variation from FV data being as low as 27 µm and an adequate noise removal or 

smoothing operation carried out on the data, it’s possible that the system could reliably 

measure smaller variations in height across the surface. Measurement noise in FP data is 

also partially dependent on the relative angle of FP with respect to the camera’s 

perspective [249]. Optimisation of both hardware positions and projected fringe angle 

could reduce measurement noise in the individual perspectives point clouds, which would 

result in a lower level of noise in the multi-view point cloud. However, with the spatial 

limitations present in a PBF system, and the simultaneous optimisation of four different 

camera projector pairs, this would not be a trivial task. 

6.1.2 Feature based characterisation suitability 

FBC has been explored as a potential method of identifying features and defects using the 

multi-view FP method. With an adequate feature identification method on an in-process 
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monitoring system, the potential for automatic defect flagging becomes a possibility 

which would be essential for commercial manufacturing defect prevention. Automatic 

feature identification would also be beneficial in research applications for tying features 

on the surface to processing phenomenon with relative ease compared to manual data 

processing. 

This first attempt at the use of FBC for multi-view FP data has proved promising, with 

results showing that surface particles of 200 µm in size can be consistently highlighted 

by the chosen algorithm, but as particles approach a size of 100 µm or less the success 

rate of detection begins to drop off. This means that the system has achieved it’s specified 

target of identifying sub 500 µm features, but there is still room for improvement if the 

identification of smaller features such as weld tracks, unfused powder and smaller pores 

is desirable. This limit on the size of detectible features falls in line with the mean point 

spacing calculated from the data collected, as if there are not enough sampled points 

across a feature of interest, then it’s shape, size and position will not be resolved well 

enough for a detection algorithm to pick up on it. As a low pass filter was applied, the 

high frequency noise of the multi-view FP data was reduced in comparison to the single-

view data. This reduced noise, in combination with the higher lateral sampling due to a 

denser overall point cloud, made the FBC algorithm able to better define the edges of 

detected particles compared to the single-view data. This could be seen in how the single-

view data was more likely to overestimate the size of particles, or to group near particles 

together, although this still happened with the multi-view dataset, but to a lesser extent. 

The successful identification of features present on the FP data when compared to a higher 

resolution FV measurement prove that the data collected from the FP system contains 

valuable information that can be extracted through automated data processing algorithms. 

Whilst particle and spatter features were considered, there is no real limitation to using 

feature-based segmentation to target other features of interest, perhaps such as the weld 

tracks or even pores on the surface assuming that the resolution of the system is able to 

measure them. The only requirement to achieve segmentation would be manual 

configuration of the FBC process to adapt the algorithms to isolate these different 

features. However, the analysis method outlined in this work could still be applied to 



Discussion and concluding remarks Future work on the multi-view fringe projection method 

 

135 

 

validate and verify the segmentation methods on the same surface measured with the 

different technologies.  

6.2 Future work on the multi-view fringe projection method 

6.2.1 Data processing for multi-view fringe projection system 

Real-time and efficient big data analysis represents a key issue for the development of 

closed-loop control [140,154,250] and/or in-situ defect correction and removal 

techniques. The lack of consolidated real-time implementations still represents one of 

factors contributing to the existing gap between the wide research in this field and 

industrially adopted solutions. This is a field where several research efforts and industrial 

developments are currently required. 

The data processing used through the work presented in this thesis has generally been a 

slow and manual process. The raw point clouds had a SOR filter applied in 

CloudCompare [251], before having a fine alignment of the four point clouds in 

Polyworks Inspector [229] and finally a conversion to height map format, followed by 

FBC algorithm, in Matlab [224]. This data pipeline in labour intensive and time 

consuming, making it unrealistic for use in a real manufacturing system, which could 

potentially be taking a measurement every layer of a build. For an in-situ measurement 

system such as this to work as part of a functional automatic detection method, these steps 

must be combined into a single, robust piece of software that performs the data processing 

immediately after the point clouds have been generated. Most of the work presented has 

been with minimal data filtering or smoothing, meaning that a lot of noise is still present 

in the final surface measurement. For the system to perform its best for a given 

application, data filtering methods should be chosen to give optimal measurement 

performance so that features of interest can be better measured once identified. 

For future work, FBC methods need to be developed to work at higher speeds or even to 

provide real time segmentation and analysis to allow for their implementation in-situ. 

FBC work has been performed on height maps converted from the raw point cloud format 

output from the FP system. This has only been performed on small regions of interest 

rather than the entire point cloud for the sake of comparisons against a FV system, which 

natively outputs height map data. The conversion from point cloud to height map is a 
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computationally demanding process than requires a significantly amount of time even for 

the small regions used in these studies, and this time would scale poorly as the area of 

measurement increases. Both for processing time improvements, and to minimise 

information lost from the resampling process, it would be better if a FBC designed for 

use on point cloud data were applied. Feature detection methods have been applied to 

point clouds for a variety of applications such as sharp edge detection [252,253], terrain 

analysis with tree and building detection for UAV data [254] and subtle feature extraction, 

such as weld seems over large parts [255,256]. Other future work would explore the 

accuracy in height extraction rather than lateral particle size, so that features can also be 

characterised based on height, this could enable the detection large particles/structures 

that might damage the wiper blade within the PBF process. 

Another approach might be to explore machine learning for feature detection, using FBC-

produced masks as training data to allow for an increase speed in feature detection, where 

there can still be an external additional verification step using the principles of 

comparison and validation applied in this work. Machine learning has been applied to 

point cloud data for object detection and segmentation, both on raw point clouds and on 

volumetric grid data sets converted from point clouds [257,258]. These algorithms have 

successfully been trained to identify geometries that are relatively complex in comparison 

to those expected on a L-PBF, such as office furniture, buildings and people [259], and 

have even been used for real-time object detection with applications like autonomous 

driving in mind [260]. 

An issue that has arisen from the current system is the size of the data collected per 

measurement. For each single measurement, four individual point clouds are collected 

which range from 400MB to 800MB for the data sets used in this thesis. With a lower 

estimate, this means 1.6GB of raw data per measurement without any data processing or 

conversions being carried out. On a real L-PBF machine, build layers are typically less 

than 100 µm in height, meaning that over a 100 mm tall build over 1000 layers are 

processed. If the in-situ monitoring strategy was to perform a measurement every single 

layer then this would mean that 1.6TB of raw data would be gathered over only 100 mm 

of height. For one of research applications this could be acceptable to allow further 

understand of the metal PBF process, but in a commercial environment it would be 
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unrealistic and extremely expensive to store this amount of data for every build. To target 

this issue, different data handling methods must be assessed to reduce the saved data to 

an acceptable size, such as raw point cloud compression, selective sampling strategies 

(measuring every n layers, or using the FP system as a high resolution investigative 

measurement once another monitoring system has flagged a potential issue) or data 

processing pipelines that identify and store the location and sizes of features of interest 

only, and deleting all non-significant regions of the point cloud. For these strategies to be 

successfully developed, further work into the relationship between process generated 

features and part quality must be performed so that the process can be tailored to target 

only features of significance with an adequate sampling rate. 

Throughout this thesis all data present has been of sampled placed in the central region 

of the powder bed region. As mentioned in section 3.1.2, the depth of focus of the cameras 

will have an impact on the data quality due to the angular perspective of each camera in 

the corner of the system. Although the central region of the powder bed would be in focus 

for all 4 of the cameras, each of the corners of the powder bed will only be in focus for 2 

of the cameras. This would result in a loss of resolution/data quality from the centre to 

the corners of the powder bed that has not been explored in this work. For this system to 

be robust for full powder bed monitoring then one of the following must be done:  

1. The camera position optimised to achieve an in focus image from all cameras 

across the entire powder bed without obstructing the PBF systems function. 

2. The cameras fitted with different optics, such as tilt lens, to achieve a plane of 

focus that is not normal to the cameras line of sight. 

3. Further analysis on the impact of varying focus across the powder bed to 

determine the limitations of the current configuration as parts are built away from 

the central region.  

6.2.2 Implementation in a real PBF system 

Although the system described in this thesis is intended for in-situ monitoring on metal 

PBF systems, it has currently only been built and tested as an out-of-machine lab 

prototype. Future work needed on the system involves integrating the hardware into a real 

PBF machine to collect in-situ data. The ground work for this has been laid out by Remani 

et al. [261], who will be continuing on the project within the Manufacturing Metrology 
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Team at the University of Nottingham. Remani et al. also plan to use co-axial meltpool 

imaging and full field IR imaging of the powder bed to cross correlate data between the 

three monitoring systems to gain a greater understanding of the manufacturing process. 

The integration design has the machine vision cameras within the build chamber, 

surrounded by metal enclosures and replaceable UV filters in front of the lenses to protect 

them from harm during the lasing process. The projector is mounted above the build 

chamber, with an optically flat mirror reflecting the projection inside through a window 

in the build chamber ceiling. 

The multi-view FP method has also been commercialised as a product for Taraz as their 

IM1 FP for AM system that can be configured as an integrated or free standing FP system 

[262]. 

6.3 Potential future applications 

As research on in-process monitoring of additive systems continues, there is a clear trend 

towards developing a greater understanding of the influence input parameters may have 

on the build quality and final part properties. Many authors has explored how varying 

process parameters impact the build already assessing energy density levels per printed 

slice [38,39,68,69,79,80,178], thermal history throughout the build [95,96,99–101,179], 

process by-products [116,121,126,129,180,181], in-situ X-ray video imaging 

[130,132,182], meltpool characteristics [139,150,153,160,164,183] and acoustic 

emissions [98,133–136,177]. All these methods have shown that there are correlations 

between in-process data and the outcome of the part being built. Complex part geometries 

have also been assessed to determine how in-process signals correlate to the success of 

fabrication. These include the presence of presence of anomalies within the printed slice 

[37,49–51,55,69] and thermal histories [100,109,112,191] and meltpool properties [153–

155] over thing walls and critical geometrical features. Understanding how the 

manufacturing system behaves over these geometries is essential as these kind of complex 

features and parts are one of the key benefits of AM over other conventional fabrication 

methods. Understanding these relationships is key to ensuring that metal PBF processes 

are manufacturing the highest quality parts possible. Having a more in-depth knowledge 

of what features and signals may contribute to a part failure once in service also allows 

for a catalogue features to be made by their severity of their impact on part functionality. 
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This would mean that for a given part with a specific function, a list of features can be 

labelled as true defects as they would be known to cause failure in service, where as other 

features would be known to has no impact on the parts function and can be ignored. 

Once the additive process is better understood, a significant overarching aim that is 

apparent in the currently available literature is the ability to control the process in real-

time and make corrective measures once a potential defect is identified. Methods of 

maintaining control over the process has been explored through a range of approaches 

such as distortion of CAD models to account for predictable thermos-mechanical effects 

[263–265], real-time high frequency adaptive control of the meltpool through the 

monitoring of co-axial signals [140,154,266], and remelting of the previous layer where 

defects have been detected as a corrective measure [84,97,142,267–269]. These 

preliminary studies into the application of control systems lay the foundation for future 

systems to that can adapt and correct all part threatening defects as they occur during the 

manufacturing process. A system of such design would require a wealth of prior 

information about defect formation and severity that could be applied when automatically 

analysing the data from a wide range of in-situ sensors.  

A high resolution, full powder bed topographical measurement system that’s capable of 

measuring and automatically highlighting features down to 100 µm in size would add a 

valuable new perspective to the already growing wealth of information being output on 

the subject. Systems such as the NIST Additive Manufacturing Metrology Testbed 

[157,270–272] are already being developed to obtained as much data as possible from the 

metal PBF process in the interest of further bettering the process parameters and sensors 

required for optimum part quality. In combination with the tools that have already been 

developed, the current understanding of in-processing manufacturing events and their 

impact on the final parts quality can expand even further. 

6.4 Concluding remarks 

In this thesis, the design, development and testing of a high-resolution topographical 

measurement system has been presented for use as a layer-by-layer monitoring system in 

metal-PBF manufacturing systems. This measurement system uses FP with four camera-

projector pairs to obtain a multi-view point cloud of the entire powder bed area. An out-
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of-machine prototype has been designed based on the spatial limitations of a Renishaw 

AM250 L-PBF system and has been tested in three different hardware configurations 

throughout the development process. FBC algorithms have also been applied to the data 

collected from the system on a representative metal PBF sample to explore to possibility 

of using the multi-view FP system for automatic defect detection on in-process 

measurements of the powder bed. From the work that has been carried out, the following 

conclusions have been drawn: 

• FP is a suitable method for acquiring full powder bed topographical 

measurements, while still capturing high frequency information such as small 

particles on the surface, at an acquisition rate that would not significantly impact 

manufacturing times (~1.1 s of image capture per measurement). 

• Adopting a multi-view FP approach grants several benefits over a single camera-

projector pairing including a higher lateral sampling, improved measurement 

accuracy, measurement redundancy and greater surface coverage while not 

impacting the acquisition rate due to simultaneous capture of the hour cameras. 

However, some issues have been observed with the data fusion approach applied, 

which allows for in-accurate and bad quality data from a single camera 

perspective to significantly impact the final multi-view point cloud, resulting in 

some measurement errors carrying forward. 

• The multi-view FP system is able to accurately and repeatably measure high 

frequency information well enough that individual particles down to 

approximately 200 µm in lateral size can be detected by a FBC algorithm with 

substantial agreement against a higher resolution FV measurement of the same 

sample. This would allow for features ranging from 200 µm to 500 µm in lateral 

size such as larger pores, balling [25], and lattice deviations [26] to be reliably 

detected, while further improvements would be required to consistently detect sub 

200 µm features such as weld tracks and unfused powder [25].
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Appendix A 

A.1 Deviation maps from measurements in chapter 5 

This appendix presents deviation maps the multi-view and all single-view fringe 

projection datasets relative to the FV measurement. These deviation maps are from the 

data used in chapter 5 of the thesis. 
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A.2 FBC detection maps from measurements in chapter 5 

This appendix presents the FBC particle detection maps for the FV, multi-view and all 

single-view fringe projection datasets. These FBC detections maps are from the data used 

in chapter 5 of the thesis. 
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