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Abstract

This thesis presents a collection of works, some methodological and others obser-
vational, with the common theme of strong gravitational lensing. We have leveraged
a wide variety of techniques, from machine learning algorithms to uv-plane modelling,
and used a multitude of simulated and real data products to achieve the results con-
tained within this thesis.

In Chapter 2, we explored the feasibility of combining the predictions of an approx-
imate Bayesian neural network with the parametric profile fitting of PyAutoLens. By
using the predicted 1-σ uncertainties on the lens model parameters from the CNN to
inform our choice of prior within PyAutoLens, we were able to show that a technique
that combines both of these tools is able to outperform either method alone. We
applied our methodology to a series of increasingly complex and realistic simulated
strong gravitational lenses, beginning with simple parametric lenses and sources, and
graduating to HUDF sources and lenses extracted from the EAGLE simulation.

In Chapter 3, we addressed the issue of the existence of unphysical source re-
constructions by applying a convolutional neural network to detect these solutions,
and developed a simple prescription to re-initialise the lens modelling process in a
new region of parameter space to help ensure convergence upon the global solution.
Such tools are necessary components to developing a truly automated lens modelling
pipeline, as will become increasingly necessary in the era of LSST and Euclid.

In Chapter 4, we presented and modelled ∼0.1 arcsec resolution ALMA imaging
of seven strong gravitationally lensed galaxies detected by the Herschel Space Ob-
servatory. We inferred the mass profiles of the lensing galaxies and by determining
the magnification factors, we investigated the intrinsic properties and morphologies of
the lensed submillimetre sources. We found that these submillimetre sources all have
ratios of star formation rate to dust mass that are consistent with, or in excess of, the
mean ratio for high-redshift submillimetre galaxies and low redshift ultra-luminous
infrared galaxies. Reconstructions of the background sources reveal that the majority
of our sample display disturbed morphologies. The majority of our lens models have
mass density slopes close to isothermal, but some systems show significant differences.

In Chapter 5, we present a comparison between performing lens modelling in the
uv-plane versus the image-plane. When dealing with interferometer observations, one
must make a choice of whether to perform the analysis on the raw visibility data, or
to employ an algorithm such as CLEAN to produce an image to work with. When
producing an image from visibility data, there are several choices one must make that
can impact the final image, such as the adopted weighting scheme. We investigated
whether these choices can lead to biases in the inferred lens model parameters, and
whether some choices outperform others. We found that in general, direct modelling
of the visibilities provided the most robust means for recovering the lens model pa-
rameters, but also that using the Briggs weighting scheme performed better than the
natural weighting scheme.
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Chapter 1

Introduction

1.1 The ΛCDM Cosmological Model

Currently, our most successful cosmological model is the flat ΛCDM model of the

Universe (Planck Collaboration et al., 2020a), which describes the formation of struc-

tures in a hierarchical fashion. Observations of the universe on large scales show it to

be expanding (Hubble, 1929), with the average density of matter, in large volumes,

decreasing. If we imagine rewinding the clock on this cosmic evolution, we infer that

at some point in the past, there must have been a point where the density of the

universe was infinite. It is this moment that we refer to as the “Big Bang”. The Uni-

verse evolves from t = 0 (see Figure 1.1) through a period of cosmic inflation (Guth,

1981; Linde, 1982), during which an extremely rapid expansion of spacetime occurs

between 10−36 and 10−32 seconds after the big bang. At such early times, the universe

is nearly homogeneous, except for small quantum mechanical perturbations in density

(Mukhanov & Chibisov, 1981), and it is these regions of over and under density that

sow the seeds of structure formation.

1
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Figure 1.1: Representation of the expansion history of the Universe. Image reproduced
from NASA & WMAP Science Team (2006)
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As the Universe continues to grow and cool over the next second, the first baryons

are able to form, though it is still far too hot for neutral matter to exist, and so

the universe is filled by an opaque plasma. One second after the big bang, the first

baryons have formed, forming the coupled photon-baryon soup that permeates the

early universe. The matter density fluctuations propagate at the speed of sound in this

opaque plasma, forming what are known as Baryon Acoustic Oscillations (Peebles &

Yu, 1970; Sunyaev & Zeldovich, 1970). After 380,000 years, the Universe had cooled

to an extent that allowed the first atoms to form and photons are finally able to

stream freely throughout the Universe, creating the Cosmic Microwave background

(CMB) that we observe today (Penzias & Wilson, 1965). At this point, the photons

and baryons have become decoupled from one another, leaving the matter density

perturbations frozen into the dark matter distribution. On large scales, the CMB is

observed to be homogeneous and isotropic, with a near perfect black body spectrum

characterised by a temperature of T ∼ 2.7K today (Fixsen, 2009). The CMB can be

characterised by its power spectrum, which describes the relative contributions to the

anisotropies of the CMB as a function of angular scale (see Figure 1.2). The CMB

power spectrum is a powerful tool for cosmologists to study the early Universe. For

example, the location of the peaks in the power spectrum can be used to determine

the curvature of the Universe (Hu & White, 1997).

The period of time after this initial release of photons is known as the “Dark

Ages”, whilst the clouds of hydrogen gas slowly collapse to form the first galaxies and

stars. This period of time is referred to as ”Dark” because until the first stars have

formed, the only sources of light are the rapidly red-shifting photons of the CMB

and the occasional 21-cm radio emissions of Hydrogen atoms. As time continues, the

dark matter and baryons continue to slowly collapse into virialised haloes (Kravtsov

& Borgani, 2012). The hierarchical growth of the ΛCDM model tells us that smaller
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Figure 1.2: Planck 2018 CMB temperature power spectrum from Planck Collabora-
tion et al. (2020b). The solid blue line shows the best fit to the ΛCDM theoretical
predictions.
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haloes form first, with larger haloes growing more slowly. This can be understood in

terms of larger over densities, typically be less dense than smaller ones. As such, the

haloes that host galaxies form earlier than the much larger haloes that form galaxy

clusters. These dark matter haloes provide the potential wells for baryons to collapse

onto, and as the primordial Hydrogen and Helium cools to temperatures of around

T ∼ 20 − 30K, molecular gas clouds are able to collapse to the point that the first

stars can form (Couchman & Rees, 1986).

The intense ultraviolet (UV) radiation emitted by the first stars, quasars and

galaxies began the gradual process of reionisation that began approximately 300 Myrs

after the Big Bang, and finishes by approximately 1 Gyr after the Big Bang (Loeb &

Barkana, 2001). This process of reionisation turns the inter-galactic medium (IGM)

from neutral Hydrogen into a highly ionised state, allowing for the passage of Lyman

continuum photons (Loeb & Barkana, 2001; Barkana & Loeb, 2001).

As cosmic time continues to progress towards the present day, the dark matter

haloes distributed throughout the Universe, are drawn together by the attractive forces

of gravity, forming ever more massive haloes (Somerville et al., 2012). The galaxies

that call these haloes home also undergo mergers and this plays an important role in

their evolution, as will be discussed in the following section. The observed distribution

of galaxy masses in the local universe, or number density of galaxies per logarithmic

mass bin, is one that follows a power law for low masses, and has an exponential cutoff

at the high-mass end, often fitted with the Schechter function (Baldry et al., 2012;

Press & Schechter, 1974). The location of the exponential cut-off, or “characteristic

mass” in the local universe is approximately M∗ ∼ 1010.6 − 1011M⊙ (Panter et al.,

2007; Li & White, 2009). As such, there are many more low mass galaxies than those

with masses m > M∗. In order to explain the shape of this galaxy mass function, we

require that the fraction of baryonic mass converted into stars increases with mass to
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a particular value before decreasing again (Shankar et al., 2006; Marinoni et al., 2002).

Theories of galaxy formation must therefore explain the suppression of star formation

efficiency at the low mass end of the slope, as well as the exponential cut-off at high

masses. In low mass galaxies, galactic winds from supernovae feedback is thought to

play a critical role in regulating star formation (Dekel & Silk, 1986; Larson, 1974),

whilst at the high mass end of galaxies feedback from active galactic nuclei (AGN)

is thought to prevent the necessary cooling of gas for star formation activity (Kereš

et al., 2005; Bower et al., 2006).

1.2 Galaxy Evolution

There exists a number of bimodalities in galaxy populations, both at high redshift and

in the local universe, in terms of their morphology, colour and star formation. In 1926,

Hubble famously discovered that galaxies can be split in terms of their morphology

into two broad groups of early and late-type galaxies (see Figure 1.3). The early-type

classification includes elliptical and lenticular galaxies, whilst the late-type classifica-

tion includes spiral and barred spiral galaxies. The nomenclature of this classification

scheme has often led to the presumption that Hubble implied an evolutionary pathway

from early to late-type galaxies, which is in fact the opposite direction of evolution

we currently expect. However, Hubble never intended this to be interpreted in such

a way, saying that “The nomenclature, it is emphasized, refers to position in the se-

quence, and temporal connotations are made at one’s peril. The entire classification

is purely empirical and without prejudice to theories of evolution...” (Hubble, 1927).

A related bimodality in their colour is observed, such that galaxies typically fall

into either the passively evolving red-sequence or the star-forming blue cloud (Strat-

eva et al., 2001; Brammer et al., 2009). It is widely believed that the quenching of
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star formation is responsible for causing the migration of galaxies in the blue cloud

to the red sequence. In addition to being quenched, there exists a morphological dif-

ference between the two populations, with passive galaxies usually having early-type

morphologies and star-forming galaxies preferentially forming discs (Kennicutt, 1998).

A wide variety of galaxy evolution models have been proposed to explain both

the quenching of star formation and morphological changes required to move a galaxy

from the blue cloud into the red sequence (Dekel & Birnboim, 2006; Martig et al.,

2009; Matteo et al., 2005; Eales et al., 2018). The underpinning of many of these

models is the major merger scenario, where a starburst is triggered by the merging

event, and AGN feedback drives away the remaining gas (particularly relevant in high

mass galaxies) (Hopkins et al., 2006b; Trayford et al., 2016). Alternatively, models

have shown that the inflow of cold gas can cause disc instabilities and form compact

spheroids (Dekel et al., 2009b)

1.2.1 Dusty Star Forming Galaxies

Dusty Star Forming Galaxies (DSFGs) (see Blain et al., 2002; Casey et al., 2014;

Shapley, 2011, for a comprehensive review) at high redshift play host to some of the

most intense rates of star formation in the Universe. The rest frame UV emission as-

sociated with young stellar populations is often completely obscured by the large dust

reservoirs in DSFGs (e.g Dudzevičiūtė et al., 2020), produced by low/intermediate

mass stars and supernovae. This absorbed radiation is re-emitted by the high opacity

dust in the sub-millimetre wavelength regime. Resultantly, DSFGs are most com-

monly detected via their continuum emission in the far-IR to millimetre wavelengths,

with typical dust temperatures in the range of 30-50K (Casey et al., 2014; Bussmann

et al., 2013).
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Figure 1.3: Hubble’s tuning fork diagram showing that galaxies can be broadly divided
into two categories; ellipticals and spirals. Image reproduced from NASA & ESA
(2013)
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The first DSFGs were discovered in the 850µm sub-mm band by the Submillimeter

Common-User Bolometer Array (SCUBA; Holland et al., 1999; Hughes et al., 1998),

an instrument on the James Clerk Maxwell Telescope (JCMT). For this reason, they

are often referred to as sub-millimetre galaxies (SMGs) and this term will be used for

the remainder of this thesis.

Studies of the star formation rate (SFR) volume density as a function of redshift

show that the peak of cosmic star formation activity occurred at a redshift of 1 < z < 3

(Madau & Dickinson, 2014). This peak, occurring between 1.5-3.5 Gyrs after the big

bang, corresponds to ∼ 0.2M⊙yr
−1Mpc−3, which is an order of magnitude higher

than the present day value of 0.01M⊙yr
−1Mpc−3 (Hopkins & Beacom, 2006). SMGs

contribute an estimated 20 per cent of the cosmic star formation rate (SFR) density

up to a redshift of z ∼ 4 (Swinbank et al., 2013; Lapi et al., 2011) and hence provide

a valuable aid to our understanding of the formation of galaxies during this period.

Additionally, ∼ 50 per cent of all the extra-galactic background radiation is from the

sub-mm regime, and so understanding the sources of this radiation is vital to obtaining

a complete picture of the contributors to the star formation density of the universe

(Fixsen et al., 1998; Hauser & Dwek, 2001; Hill et al., 2018). The redshift distribution

of SMGs peaks at z ∼ 2.5 (Chapman et al., 2005; Simpson et al., 2014), which is

coincident with the epoch associated with the greatest AGN activity (Richards et al.,

2006; Assef et al., 2011). Typical SFRs of SMGs, measured from their far-IR/sub-mm

continuum Spectral Energy Distribution (SED), are on the order of hundreds or even

thousands of solar masses per year, which are extreme when compared with the SFR

of our galaxy of 2M⊙yr
−1 (Chomiuk & Povich, 2011).

The origin of these extreme SFRs is still a contested subject, but there are two key

proposed mechanisms; short-lived starbursts induced by major mergers (Narayanan

et al., 2010a) and cold mode accretion (Davé et al., 2010; Dekel et al., 2009a).
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Short-lived intense starbursts, triggered by gas-rich major mergers, are a plausible

explanation for the observed SFRs of SMGs. Although considerably less abundant,

Ultra Luminous Infrared Galaxies (ULIRGs; Sanders & Mirabel, 1996) found in the

local Universe are often seen as analogues to high-redshift SMGs due to their strongly

dust-obscured UV luminosities, high infrared luminosities, and comparable bolomet-

ric luminosities (Alaghband-Zadeh et al., 2012; Rowlands et al., 2014), and as such

ULIRGs can provide useful insight into the processes at play in SMGs. The SFRs of

ULIRGs are thought to be driven by the mechanisms of gas-rich major mergers, where

gas is compressed during the coalescence, causing strong inflows towards the centre of

the galaxy. These inflows support the star formation activity until the gas is depleted

or expelled from the galaxy by AGN or supernova feedback (Casey et al., 2014). It has

been demonstrated by hydrodynamic simulations that the observed SEDs of SMGs

can be reproduced by this major merger induced starburst activity (Narayanan et al.,

2010a,b). Furthermore, the clumpy morphology due to gas compression in ULIRGs

appears to match well the morphologies observed in SMGs.

It is not clear, however, that the major merger rate at high-redshift is capable of

accounting for the observed numbers of SMGs. Cosmological simulations suggest that

only a small fraction of the host haloes of SMGs will undergo major mergers between

2 < z < 4 (Whitney et al., 2021; Narayanan et al., 2015), and whilst the frequency of

mergers increases with redshift, the fraction of extremely star-forming galaxies does

not (Bournaud et al., 2014).

The second scenario, of cold mode accretion, posits that the majority of SMGs

are orderly rotating disks, with star formation supported by cold gas accretion and

minor mergers (Dekel et al., 2009a; Kereš et al., 2009). Hydrodynamical simulations

have been used to show that only those starburst galaxies with the most intense SFRs

require major mergers, with the rest being stream-fed (Dekel et al., 2009a). Major
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mergers play a more dominant role at higher redshifts, but simulations have indicated

that the peak brightness of SMGs typically occurs 1 Gyr after the last major merger.

This paradigm has successfully reproduced the observed characteristics of SMGs, such

as the stellar masses and clustering properties.

SMGs are not only interesting for the potential mechanisms of their formation,

but also for the role they play in our overall picture of galaxy evolution. Consider a

typical SMG of mass 1011M⊙ at z ∼ 2, with a star formation rate of 500M⊙yr
−1 and

gas reserves of 5×1011M⊙. After approximately 1 Gyr, this SMG will have converted

all of its gas into stars and have a stellar mass on the order of 1012M⊙. Such stellar

masses are typically found in massive elliptical galaxies at z = 0. Similarities in their

size, number density and clustering properties with quiescent galaxies at low redshifts

(e.g., Simpson et al., 2014; Toft et al., 2014) is suggestive of an evolutionary connection

(An et al., 2019; Dudzevičiūtė et al., 2020). An explanation for how the population of

SMGs became the red and dead population of massive elliptical galaxies observed in

the local Universe is underpinned by the process of gas quenching and the mechanism

of gas-poor mergers (Oogi & Habe, 2012; Guo & White, 2008; Lapi et al., 2018).

In addition to the reprocessing of UV photons from young stars by the dust in

SMGs, Active Galactic Nuclei (AGN) may also contribute to this emission, but studies

have shown that approximately 10 per cent of SMGs have associated AGN (Wang

et al., 2013). Characterising the properties of the dust in SMGs requires fitting an

SED model to observed flux densities in the far-IR to mm wavelengths. Typical SED

models are formed from modified black bodies, and can have multiple components

to deal with hot and cold dust respectively (Pearson et al., 2013). One such dual

temperature SED has the form

Sν = νβ[NcB(ν, Tc) +NwB(ν, Tw)], (1.1)



12 Chapter 1. Introduction

where N is the weighting of the cold and warm components (denoted with subscripts),

T is the dust temperature of the two components (denoted by the subscripts) and Bν

is the Planck function. The spectral index, β, controls the dust emissivity, modifying

the standard black body equation, and is a property of the crystallinity of the dust

grains. Theoretically, we expect β = 2 for crystalline dielectrics and metals, whilst

β = 1 for amorphous, layer-lattice materials (Tielens & Allamandola, 1987). With

an SED model fitted to the observed photometry for an SMG, the total infrared

luminosity can be computed from its integral over the rest frame range of 3-1100µm

LIR = 4πD2
L(z)

∫
Sνdν, (1.2)

where DL is the luminosity distance of the SMG. Typical populations of SMGs have

total IR luminosities between 1012 − 1013L⊙, which are comparable to the values

found in ULIRGs (Rowlands et al., 2014; Swinbank et al., 2013). At the extreme,

some SMGs have been observed to have LIR ≥ 1013L⊙, characterising them as Hyper-

Luminous Infrared Galaxies (HyLIRGs; Rowan-Robinson & Wang, 2010; Ivison et al.,

2013; Bussmann et al., 2015).

If we make the simplifying assumption that all the IR emission has its roots in the

dust reprocessed stellar radiation, the star formation rates of SMGs can be derived

from the relation,

log(SFR) = log(LIR)− 43.41, (1.3)

(Kennicutt & Evans, 2012) which assumes a Kroupa initial mass function (Kroupa,

2001).

There have been many notable surveys conducted in the sub-millimetre and mil-

limetre wavelength regimes to date. Some examples of these are:
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• The Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS; Eales

et al., 2010) observed 660 deg2, at 100 and 160 µm using the Photoconduc-

tor Array Camera and Spectrometer (PACS; Poglitsch et al., 2010), and also

at 250, 350 and 500 µm using the Spectral and Photometric Imaging Receiver

(SPIRE; Griffin et al., 2010). Both of these instruments are on-board the Her-

schel Space Observatory. Results from this survey are used in Chapter 4 to

constrain the SEDs of strongly lensed SMGs.

• The Herschel Multi-tiered Extragalactic Survey (HerMES; Oliver et al., 2012)

was carried out using the PACS and SPIRE instruments to map a series of

nested fields totalling 380 deg2, with approximately 270deg2 having only SPIRE

photometry measurements. Again, results from this survey are used in the work

of Chapter 4.

• The SCUBA-2 Cosmology Legacy Survey (S2CLS; Geach et al., 2013, 2017)

observed an area of 5 deg2 using the SCUBA-2 camera on the JCMT at 450 and

850 µm. We have made use of some 850µm flux densities in Chapter 4.

• The South Pole Telescope Survey (SPT; Carlstrom et al., 2011), making use of

the 10-metre single dish South Pole Telescope, observed an area of 2500 deg2 at

1.4 and 2.0 mm.

The H-ATLAS and SPT surveys have been particularly successful at discover-

ing hundreds of thousands of SMGs, in part due to the large areas of observation.

However, another factor at play in their success is the negative K-correction (Blain,

1996). This correction is applied to convert an object’s flux density from the observed

frame to that of the rest frame. Measurement’s of a galaxy’s SED Sν , at an observed

frequency ν, are given by

Sν =
Lν

4πD2
L(z)

, (1.4)
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where Lν is the luminosity of the galaxy at that frequency. Making use of the Rayleigh-

Jeans approximation, we can write Lν ∼ ν2+β0 , where ν = ν0/(1 + z). The redshift

dependence on the luminosity distance scales as DL ∼ (1+ z)2 (this approximation is

valid at 0.5 < z < 3) and thus we can rewrite Equation 1.4 as

Sν ∼
(1 + z)2+β

(1 + z)4
∼ (1 + z)β−2. (1.5)

The spectral index β for typical dust SEDs varies between 1.5 and 2.0 (Casey et al.,

2014), and so the resulting observed flux density remains constant over a wide range

of redshifts. This effect is demonstrated in Figure 1.4, and is more prominent at

1.0 < λ < 2.0mm. The effect of this is that SMGs are readily detectable up to very

high redshifts (z ∼ 8).

There exists a strong lensing bias in the sub-mm regime due to the steep number

counts of sub-mm galaxies and the conservation of surface brightness by gravitational

lensing. Magnifying this population leads to an increase in the surface density of

galaxies above a given flux threshold, making it possible to find lensed sources in

wide surveys with a simple cut in flux density above 100 mJy at 500 µm (Blain,

1996; Negrello et al., 2007, 2010; Perrotta et al., 2003). Figure 1.5 shows how this

simple flux cut selects lensed SMGs extremely efficiently. One can easily remove any

contaminating objects, which are typically local galaxies or radio-loud AGN, via cross

correlation with relevant catalogues.

1.2.2 The Evolution of Mass Density Profiles in Early Type Galaxies

There are many open questions in the field of the formation and evolution of early

type galaxies (ETGs). Their sizes appear to increase with decreasing redshift at

a fixed stellar mass (Carollo et al., 2013; Huertas-Company et al., 2013; Newman
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Figure 1.4: Observed flux densities for a typical IR-luminous galaxy as a function
of redshift (Casey et al., 2014). In particular, this highlights the almost constant
flux densities that SMGs have in the millimetre/sub-millimetre regime over a redshift
range of 1 ≤ z ≤ 10. Figure reproduced from Casey et al. (2014).
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Figure 1.5: Integral number counts of z > 1 DSFGs at 500 microns. The lensed sub-
mm galaxies contribution to the number density at fluxes > 100mJy is dominant and
thus allows for efficient lens selection. Figure reproduced from Negrello et al. (2017).
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et al., 2012), the star formation mode seems to differ from that seen in late-type

galaxies (Cappellari et al., 2013; Brewer et al., 2012), and their number density has

evolved dramatically since z ∼ 2 (Ilbert et al., 2013). It is thought that major and

minor mergers are responsible for the evolution of the structural and morphological

characteristics of ETGs, but reproducing these observations remains a challenge for

theoretical models (Oser et al., 2012; Remus et al., 2013).

Gravitational lensing, both by itself and in conjunction with other probes, can

be effectively used to study the mass profiles of ETGs in the local universe and over

cosmological distances (Koopmans et al., 2006a; Auger et al., 2010; Lagattuta et al.,

2010). Extending the range of redshift over which we can study the mass profiles of

ETGs, as well as simply increasing the number of known strongly lensed galaxies, has

been a focus of several surveys in recent years (Lagattuta et al., 2010; Vieira et al.,

2013; Gavazzi et al., 2012).

Tentative evidence exists that the average density slope inside the effective radius

of the ETG (since both the Einstein radius and velocity dispersion probe regions

< Reff), steepens with cosmic time (Bolton et al., 2012; Ruff et al., 2011; Koopmans

et al., 2009). These trends are in agreement with some theoretical work (Dubois

et al., 2013), but contrasting trends have been found by others (Remus et al., 2013).

This dependence of density slope on redshift might be due to a dependence of the

slope on other properties of ETGs, such as their mass and size, which are known

to grow during their evolution. The density slope of ETGs is closely linked to the

concentration of the stellar distribution, with more centrally concentrated galaxies

having steeper overall density profiles. It has been shown by Sonnenfeld et al. (2013)

that the average total mass density slope of galaxies, for a fixed stellar mass, decreases

with redshift. However, (Sonnenfeld et al., 2013) also find that individual ETGs

grow with approximately constant density slopes, and so the apparent dependence of
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Figure 1.6: Illustration of a galaxy evolution scenario consistent with observations.
The solid black arrows show the evolutionary tracks of two galaxies, between z = 1
and z = 0, in the parameter space of stellar mass, effective radius, effective density,
and mass density profile slope. If the density profile is assumed not to change for an
individual galaxy, at fixed stellar mass and size, it apparently increases due to the
difference in the initial (z = 1) stellar densities of the two galaxies. Figure reproduced
from Sonnenfeld et al. (2013).
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density slope on redshift can be understood in terms of the evolution of the mass-

size relation and a dependence on the stellar mass density. Figure 1.6 illustrates a

possible evolutionary scenario consistent with these findings; the evolutionary paths

of two galaxies, between z = 1 and z = 0 are shown in the parameter space of stellar

mass, effective radius, effective density, and mass density profile. These two galaxies

are chosen such that at z = 1, one galaxy has the same stellar mass and effective

radius as the other at z = 0. Mass and size are evolved with the empirical relations

found by Sonnenfeld et al. (2013), and the value of the z = 0 slope of the density

profile based on the correlation with mass and size is set, whilst assuming it does

not evolve for the individual galaxies. An apparent evolution of the density slope is

observed, due to the difference in the initial stellar density being larger for the more

massive galaxy.

1.3 Gravitational Lensing Theory

In this section, we introduce the relevant gravitational lensing theory required to

understand the proceeding chapters. We discuss the lens equation, the deflection

angle, deflection potential, the formation of multiple images, and explore some basic

lens models. The derivations in this section follow closely those presented in Springer

(2006).

1.3.1 The Deflection Angle

Given a mass M with spherical symmetry, let us consider the deflection of a ray of

light travelling close-by. Assuming the impact parameter ξ is significantly larger than

the Schwarzschild radius, the General Relativity prediction for the deflection angle α̂
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is

α̂ =
4GM

c2ξ
, (1.6)

which is twice the prediction from Newtonian gravity. Our condition on the impact

parameter implies that α̂ ≪ 1. This leads to the conclusion that the strength of the

Newtonian gravitational field is very weak, ϕN
c2

≪ 1.

Einstein’s field equations can be linearised in the weak field limit. This allows us

to express the deflection angle for a collection of point masses, as a vectorial sum of

the individual deflection angles. Consider the mass distribution in 3D with density

ρ(r), that we partition into elements of volume dV and mass dm = ρ(r)dV . A ray of

light, whose trajectory can be described by (ξ1(λ), ξ2(λ), r3(λ)), with the coordinates

chosen such that in the far field, the incoming light ray propagates along r3, passes

nearby the mass distribution.

For a small deflection angle, the Born approximation tells us that the integral along

the null geodesic through the deflection field can be approximated by the integral along

a straight line path. The result of this is that we can approximate the actual path

of the null geodesic as a straight line with an instantaneous deflection in the lens

plane. A system which satisfies the conditions of this approximation is referred to as

a geometrically thin lens. In this case, the trajectory does not depend on the affine

parameter λ, and so ξ(λ) ≈ ξ, where ξ = (ξ1, ξ2) is a two-dimensional vector. The

impact vector, with respect to the mass element at r′ = (ξ′1, ξ
′
2, r

′
3), is given by ξ − ξ′

and does not depend on r′3.

Consider the mass element dMi = ρ(ri)dVi, then the deflection due to this element

is
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dα̂i(ξ) =
4G

c2
dMi(ξ − ξ′i)

|ξ − ξ′i|2
. (1.7)

To find the total deflection of the light ray we sum over all the individual elements,

α̂(ξ) =
4G

c2

∑
i

dMi(ξ − ξ′i)

|ξ − ξ′i|2
(1.8)

and to make the summation exact, we take the limit

lim
dM→0

α̂(ξ) =
4G

c2

∫
d2ξ′

∫
dr′3ρ(ξ

′
1, ξ

′
2, r

′
3)
(ξ − ξ′i)

|ξ − ξ′i|2
. (1.9)

We define a surface mass density containing all the dependence on r′3, which is the

projected mass density on a plane perpendicular to the incident light ray

Σ(ξ) =

∫
dr3ρ(ξ1, ξ2, r3). (1.10)

Substituting this back into Equation 1.9 yields an equation for the deflection produced

by a general density distribution

α̂(ξ) =
4G

c2

∫
d2ξ′Σ(ξ′)

(ξ − ξ′i)

|ξ − ξ′i|2
, (1.11)

assuming that any deviation in the path that an actual photon takes compared to a

straight line, is small with respect to the characteristic scale over which the density of

the distribution varies significantly. This condition is fulfilled by almost all relevant

astrophysical situations and will be assumed to hold throughout this work.
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Figure 1.7: Diagram of a gravitational lens system. The lensing mass is at a distance
DL from the observer, with the distance to the background source being given by DS.
The distance between the lens plane and source plane is DLS. The source lies at the
angular position β in the source plane, at a distance η from the optic axis. α̂ denotes
the deflection angle of the light ray, and ξ the impact parameter of the light ray in
the lens plane, with θ being the apparent position of the lensed source on the sky.
Figure reproduced from Schneider et al. (2005).
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1.3.2 The Lens Equation

Figure 1.7 depicts a typical situation in gravitational lensing. A mass concentration

at angular diameter distance DL deflects light originating from a source at angular

diameter distance DS. We define the lens and source plane as perpendicular to the

optical axis, whose exact definition is unimportant due to the small angles involved

in such a system. Using our straight line approximation of the smoothly curved light

paths, along with a flat sky approximation, allows us to develop the lens equation.

Consider a source at an angular position β, lying in the source plane at a distance

η = βDS from the optical axis. The deflection angle α̂ of the light ray originating

from the source, having impact parameter ξ = θDL in the lens plane, is given by

equation 1.11. The deflection of the light ray causes an observer to receive the light

as if it were coming from the angular position θ. Making use of the small angle

approximation, the true and apparent position of the source in the sky are related by

the lens equation

θDS = βDS + α̂DLS, (1.12)

where DLS is the angular diameter distance between the source and lens planes. We

now divide through by DS and define the scaled deflection angle,

α(θ) =
DLS

DS

α̂(θ), (1.13)

from which we transform the lens equation to

β = θ −α(θ), (1.14)

where we have changed the dependent variable of α from ξ to θ.
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The physical interpretation of Equation 1.14 is that an image of a source at true

position β will be observed at angular positions θ satisfying Equation 1.14. If the

lens equation has multiple solutions, then the lens system produces multiple images.

We want to express the scaled deflection angle as a function of the surface mass

density, and so we start from Equation 1.11 and invert the definition in Equation 1.13

to find

α =
DLS

DS

4G

c2

∫
d2ξ′Σ(ξ′)

ξ − ξ′

|ξ − ξ′|2
. (1.15)

Using ξ = DLθ we can make a change of variables from ξ to θ,

α =
1

π

∫
d2θ′DLDLS

DS

4πG

c2
Σ(DLθ

′)
θ − θ′

|θ − θ′|2
. (1.16)

We now define a dimensionless surface mass density, otherwise called the convergence,

κ(θ) =
Σ(DLθ)

Σcrit

, (1.17)

which is the surface mass density as defined before, divided by a critical surface mass

density. The critical surface mass density will be discussed in a later section, but it

is defined as

Σcrit =
c2

4πG

DS

DLSDL

. (1.18)

Using these definitions we rewrite Equation 1.16 as

α =
1

π

∫
d2θ′κ(θ′)

θ − θ′

|θ − θ′|2
. (1.19)
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1.3.3 The Deflection Potential

We introduce the deflection potential ψ(θ) by projecting the Newtonian potential

onto the two-dimensional plane,

ψ(θ) =
1

π

∫
R2

d2θ′κ(θ′)ln(θ − θ′). (1.20)

For any two-dimensional vector, we have that ∇ln(|θ|) = θ

|θ|2
and we can use that

fact to write the scaled deflection angle as the gradient of the deflection potential

α = ∇ψ, (1.21)

α =
1

π

∫
d2θ′κ(θ′)∇ln(θ − θ′)

=
1

π

∫
d2θ′κ(θ′)

θ − θ′

|θ − θ′|2
.

(1.22)

In addition to this, using the identity ∇2ln(|θ|) = 2πδD(θ) we can write the

convergence in terms of the Laplacian of the deflection potential,

∇2ψ =
1

π

∫
d2θ′κ(θ′)2πδ(θ − θ′), (1.23)

∇2ψ = 2κ(θ), (1.24)

which is the two-dimensional Poisson equation. There is a parallel between these

equations and Newtonian gravity. ψ is analogous to the gravitational potential, α⃗ is

an acceleration vector and κ represents the volumetric mass density.
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1.3.4 Magnification and Distortion

Gravitational lensing conserves surface brightness, however, the deflection angle is

dependent upon the impact parameter. This leads to a modified apparent surface of

a lensed object and an apparent change in total brightness. This effect is known as

magnification and is driven by the change in solid angle of the image with respect to

the source. If we have that I(s)(β) describes the distribution of surface brightness for

a source, then the distribution observed in the lens plane will be

I(θ) = I(s)[β(θ)]. (1.25)

As such, the mapping of the coordinates in the source plane to the lens plane is

determined by the Jacobian,

A(θ) =
∂β

∂θ
,

=

∂β1
∂θ1

∂β1
∂θ2

∂β2
∂θ1

∂β2
∂θ2

 ,
(1.26)

illustrating how a small displacement in the source plane propagates to the lens plane.

We can compute the components of this matrix by taking the derivative of Equation

1.14 with respect to θ,

Aij =
∂θi
∂θj

− ∂αi(θ)

∂θj
,

=

1− ∂α1

∂θ1
−∂α2

∂θ1

−∂α1

∂θ2
1− ∂α2

∂θ2

 .

(1.27)

As was previously shown, the deflection angle is the gradient of the deflection potential

and so,
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α1 =
∂ψ(θ1, θ2)

∂θ1
, (1.28)

α2 =
∂ψ(θ1, θ2)

∂θ2
, (1.29)

which we use to rewrite the matrix Aij as

Aij =

1− ∂2ψ
∂θ21

− ∂2ψ
∂θ1∂θ2

− ∂2ψ
∂θ1∂θ2

1− ∂2ψ
∂θ22

 ,

=

1− ψ11 −ψ12

−ψ12 1− ψ22

 ,

(1.30)

where the subscripts on ψ correspond to partial derivatives with respect to the vector

components, (θ1, θ2) respectively. We further manipulate the matrix Aij by introduc-

ing the shear γ = γ1 + iγ2 = |γ|e2iφ, with components

γ1 =
1

2
(ψ11 + ψ22), γ2 = ψ12. (1.31)

The amplitude of γ provides information about the amount of distortion, whilst its

phase φ, tells us the direction of distortion. The factor of two in the phase angle is

there because an ellipse transforms to itself under a rotation by π.

Rewriting the A11 component as

1− ψ11 = 1− 1

2
(ψ11 + ψ22)−

1

2
(ψ11 − ψ22), (1.32)

we see that by employing the definition of the shear components and Equation 1.24

we can write

1− ψ11 = 1− κ− γ1. (1.33)
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Similar treatment for the other components results in the matrix being written as

Aij =

1− κ− γ1 −γ2

−γ2 1− κ+ γ1

 . (1.34)

Finally, we rewrite the Jacobian by factoring out (1− κ) as,

Aij = (1− κ)

1− g1 −g2

−g2 1 + g1

 , (1.35)

where we have introduced the reduced shear

g ≡ γ

1− κ
=

|γ|
1− κ

e2iφ. (1.36)

From Equation 1.25, we see that for a point θ0 within an image, that corresponds

to a point β0 = β(θ0) within the source, then

I(θ) = I(s)[β0 +A(θ0)(θ − θ0)], (1.37)

where we have used the linearised lens equation. The magnification tensor, M(θ), is

defined by taking the inverse of the Jacobean,

M(θ) = A−1, (1.38)

and tells us how to map points from the source plane to the image plane. The ratio

of observed fluxes from an image, and it’s unlensed source constitutes a definition of

the magnification µ, of a source. From Equation 1.37 we have that the magnification
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is

µ = det(M),

=
1

det(A)
,

=
1

(1− κ)2 − |γ|2
.

(1.39)

1.3.5 Critical Curves and Caustics

In a lens system, smooth closed curves can exist, called critical curves, where the

determinant of the Jacobian vanishes, detA(θ) = 0. Mapping these curves to the

source plane, with the lens equation, gives us the so-called caustic curves; which are

not necessarily smooth. The magnification of an image, µ = 1
det(A)

diverges on these

critical curves. Of course, infinite magnifications are unphysical and do not occur in

reality. This issue is resolved by moving away from the geometric optics approximation

to a wave optics approach. Even so, sources located near caustics can have extremely

high magnifications.

Another important point to note is that the location of a source relative to the

caustics determine the number of images produced by the lens system. The number

of images produced by a source will not change unless it’s position moves across a

caustic (Schneider et al., 2005).

1.3.6 The Mass Sheet Degeneracy

Upon observing a lensed object, we wish to find a mass distribution for the lens system

that is able to account for the observations. It is natural to wonder whether such a

model is unique, or if there exist multiple models capable of explaining the data.

Letting κ(θ) represent a model that produces a good fit to the observed data, one can
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show that there exists a set of lens models with mass distribution

κλ(θ) = (1− λ) + λκ(θ) (1.40)

that are equally good. The first term in this new mass distribution is equivalent

to adding a homogeneous sheet to the distribution, which is where the term

mass sheet degeneracy gets its name (Falco et al., 1985). The second term is simply

a rescaling of the original mass distribution.

The deflection angle produced by the mass distribution, described by Equation

1.40, is given by

αλ(θ) = (1− λ)θ + λα(θ). (1.41)

Inserting this deflection angle into the lens equation yields

β = θ −αλ(θ),

= θ − (1− λ)θ − λα(θ),

= λ(θ −α(θ)),

(1.42)

which is equivalent to
β

λ
= θ − α(θ), or a rescaling of the unlensed source position,

which is not an observable.

Through application of the definition of the deflection potential (Equation 1.20),

we see that the scaled deflection angle αλ(θ) corresponds to a deflection potential

ψλ(θ) =
1− λ

2
|θ|2 + λψ(θ), (1.43)

satisfying the Poisson equation ∇2ψλ = 2κλ.
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1.3.7 The Fermat Potential

An alternative approach to explaining lensing phenomena can be found through appli-

cation of Fermat’s principle. This principle states that images will form at locations

corresponding to the minimum travel time for the light rays. We can express the

additional light travel time, t, due to the deflection of a gravitational lens in terms of

the Fermat potential, τ ,

t =
1 + zL
c

DLDS

DLS

(
1

2
(θ − β)2 − ψ(θ)

)
, (1.44)

where we define τ to be

τ(θ;β) =
1

2
(θ − β)2 − ψ(θ). (1.45)

There are two distinct components of the time delay induced by gravitational lensing.

Firstly, there is the geometric delay due to the difference in path length of deflected

light rays, and secondly there is the so-called Shapiro time delay due to the slowing

of a light ray in a gravitational field, encoded within the gravitational potential ψ(θ).

Application of Fermat’s principle to the Fermat potential,

∇τ(θ;β) = 0 (1.46)

recovers the lens equation and shows that images will form at the stationary points of

the time delay surface. This is generalised to include images formed at the minima,

maxima and saddle points of the time delay surface (see Figure 1.8). For smooth, finite

mass distributions, there will always be at least one image formed at a minimum of

τ .
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Figure 1.8: Image configurations for two lensing scenarios. The left column panels
show the source position and caustics; the middle column panels show the image
positions and critical curves; The right column panels show the image positions with
contours of the time delay surface overlaid. Figure reproduced from Courbin et al.
(2008).
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The local magnification can take either positive or negative values, and so images

formed at extrema of the time delay surface might have either positive or negative

parity. Images outside the tangential critical curve will have positive parity, since

both eigenvalues of the lensing Jacobian are positive. In the region between the

tangential and radial critical curves, the eigenvalues have opposite signs, and thus

the images produced have negative parity (i.e. they are inverted with respect to the

source). Inside the radial critical curve, both the eigenvalues of the lensing Jacobian

are negative, and so the resulting images have positive parity. Positive parity images

form at minima of the time delay surface, whilst negative parity images form at the

saddle points and a single positive parity image forms at the maximum (Blandford &

Narayan, 1986).

1.4 Basic Lens Models

In general, the deflection angle for a mass distribution must be found through nu-

merical integration. However, for certain mass models, it is possible to find analytic

solutions, owing to the exploitation of some symmetries. These simple models are

typically spherically symmetric, or rather axisymmetric, since we deal with the pro-

jection of the mass distribution onto a plane. In these situations, the lens equation

can be recast as an equation in one dimension. We shall consider the properties of

several basic lens models here, such as the point mass lens and the singular isothermal

sphere.
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1.4.1 Axially Symmetric Lenses

An axisymmetric lens has a matter distribution that depends only on the distance

from the centre Σ(ξ) = Σ(|ξ|), provided that we locate our origin at the centre. This

implies that κ(θ) = κ(|θ|) and by applying Equation 1.11 we see that

α(θ) =
2θ

|θ|2

∫ |θ|

0

dθ′θ′κ(θ′), (1.47)

or expressed in terms of the impact parameter ξ,

α̂ =
ξ

|ξ|2
4G

c2
2π

∫ |ξ|

0

dξ′ ξ′Σ(ξ′)

≡ 4GM(|ξ|)
c2|ξ|2

ξ,

(1.48)

where in the last step we have defined M(|ξ|) to be the projected mass inside a circle

of radius |ξ|. From this we can see that the deflection angle at a point ξ, due to

an axisymmetric mass distribution, is simply the deflection for a point mass M(|ξ|).

This is analogous to Birkhoff’s theorem that states the gravitational force due to a

spherically symmetric shell is zero inside it.

Due to the symmetry of this situation, α is collinear with θ and β. Thus, if we

describe a source position β = βê, then θ = θê too, where ê is a unit vector. This

leads to the lens equation becoming one dimensional,

β = θ − α(θ), (1.49)

and we can write the lens equation in terms of the deflection angle as

β = θ − DLS

DLDS

4GM(θ)

c2θ
. (1.50)
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Rearranging equation 1.50, for a source lying on the optical axis (i.e. β = 0), leads to

the expression of the Einstein radius,

REin = θE =

√
DLS

DLDS

GM(θE)

c2
. (1.51)

The Einstein radius is an important quantity in gravitational lensing, acting as a

characteristic length scale for any strong lens. A source lying on the optic axis, lensed

by a circularly symmetric lens will form a ring image of radius θE. Additionally, the

typical image separation of multiply imaged background sources is twice the Einstein

radius, Furthermore, sources within the Einstein radius are likely to be highly mag-

nified, whereas those that lie outside it are not. For many lens models, the Einstein

radius also acts as a rough indicator for whether a source will be multiply or singly

imaged.

Defining the dimensionless mass m(θ) over a disc of angular radius θ, and the

mean surface mass density κ̄ inside this radius,

m(θ) = 2

∫ θ

0

dθ′ θ′κ(θ′); κ̄ =
m(θ)

θ2
, (1.52)

we see that the deflection angle can be written as

α(θ) =
m(θ)

θ

= κ̄(θ)θ.

(1.53)

Using these definitions, one can write the lens equation as

β = [1− κ̄(|θ|)]θ, (1.54)
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and computing the Jacobian yields

A(θ) = [1− κ̄(|θ|)]Î − κ̄′

|θ|

 θ21 θ1θ2

θ1θ2 θ22

 , (1.55)

where Î is the unit matrix and κ̄′ =
dκ̄

dθ
=

2[κ(θ)− κ̄(θ)]

θ
. The determinant of this

Jacobian is,

detA = (1− κ̄)(1− κ̄− θκ̄′) (1.56)

and the simple form makes for easy exploration of the critical curves for such a system.

The critical curves are circles that occur when 1− κ̄ = 0 or when 1− κ̄− θκ̄′ = 0, i.e.

when the magnification tensor diverges.

1.4.1.1 The Point Mass Lens

The point mass lens is characterised by a surface mass density of the form Σ(ξ) =

MδD(ξ) and from Equation 1.11 one finds the deflection angle to be

α̂(θ) =
4GM

c2
ξ

|ξ|2
, (1.57)

where the direction of deflection matches what you would expect given the symmetry

of this situation. Rewriting this in terms of the scaled deflection angle (Equation 1.13)

and making use of the symmetry, we find that

α(θ) =
4GM

c2θ

DLS

DLDS

. (1.58)

Defining the Einstein angle, θE,

θE =

√
4GM

c2
DLS

DLDS

(1.59)
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and substituting into the lens equation yields,

θ2 − βθ − θ2E = 0 (1.60)

from which we can find the solutions

θ =
β

2
±
√
β2

4
+ θ2E. (1.61)

The two solutions to this equation correspond to two separate positions on the sky

where images will form of the lensed object.

1.4.1.2 The Singular Isothermal Sphere

The singular isothermal sphere is of particular interest as a mass model, since it

yields the flat rotation curves we observe in spiral galaxies. The density distribution

is characterised by one number, its velocity dispersion σv,

ρ(r) =
σ2
v

2πGr2
. (1.62)

This model describes a distribution of self-gravitating particles whose velocities are

Maxwellian. There are two key problems with this distribution: The density diverges

at r = 0 and the total mass diverges as r → ∞. Nevertheless, it is a useful model to

study.

By projecting Equation 1.62 along the line of sight, we calculate the surface mass

density Σ(ξ) to be,

Σ(ξ) =

∫ ∞

−∞
dr3 ρ

(√
ξ2 + r23

)
,

=
σ2
v

2Gξ
.

(1.63)
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Computing the deflection angle using Equation 1.48,

α̂(ξ) =
ξ

|ξ|2
4G

c2
2π

∫ ξ

0

dξ′ξ′Σ(ξ′),

=
ξ

|ξ|2
4G

c2
2π

∫ ξ

0

dξ′ξ′
σ2
v

2Gξ′
,

=
4πσ2

v

c2
.

(1.64)

Through application of the lens equation, one finds the Einstein radius, θE, for this

system to be

θE =
4πσ2

v

c2
DLS

DS

. (1.65)

From the definition of the dimensionless surface mass density in Equation 1.17, one

finds that

κ(θ) =
θE
2|θ|

; κ̄(θ) =
θE
|θ|
, (1.66)

which leads us to the conclusion that the critical curve for this system satisfies θ = θE.

1.4.2 Elliptical lens models

A useful generalisation of the Singular Isothermal Sphere model described in Section

1.4.1.2 is the so-called Singular Isothermal Ellipsoid (SIE). Lens galaxies are typically

not spherically symmetric, and so being able to account for that fact with our lens

models is important. The SIE model is defined through transforming the radial coor-

dinate, r of the SIS model to r → R =
√
x2 + y2/q2, where q is the axis ratio of the

lens. The deflection angles in this case can be expressed as

αx =
θEq√
1− q2

tan−1

[√
1− q2x

R2

]
, (1.67)
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αy =
θEq√
1− q2

tanh−1

[√
1− q2y

R2

]
, (1.68)

as given by Keeton (2001).

A further generalisation is to allow the slope of the mass profile to deviate from

isothermal (allowing for the evolution of the mass density profile, as discussed in

Section 1.2.2). Such models are referred to as elliptical power law models, where the

isothermal profile is a special case. The parameterisation of the elliptical power law

surface mass density used in this thesis is given by

κ(x, y) =
3− α

1 + q

(
θE
R

)α−1

, (1.69)

and the resultant deflection angles are calculated numerically, using algorithms such

as those presented in Barkana (1998). Extensive use of the SIE and elliptical power

law mass model is made throughout this thesis.

1.5 Gravitational Lensing Science

1.5.1 The Einstein Mass

A characteristic mass scale for a strong lens, the Einstein mass MEin = M(θE), can

be computed by rearranging Equation 1.51 for the mass term. Provided that one

has spectroscopic redshifts for both the lens and source and a cosmological redshift-

distance relation, the relevant distances can be measured, whilst the source’s image

plane positions provide θE. From this, we can obtain a measurement of the total

projected mass inside the circular aperture of radius equal to the Einstein radius.

The Einstein mass is model independent and thus does not rely upon any assumptions

about the mass profile of the lens.
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The robustness of the measurement ofMEin makes it ideal for use as a constraint on

other astrophysical measures. Stellar dynamics can also be used to obtain a measure

of the total mass inside a particular aperture, but this is limited to relatively small

scales, typically on the order of the half-light radius of the galaxy, and assumes that

the galaxy is dynamically relaxed. Combining this measurement of mass, with that

of the Einstein mass, provides two independent measures of the mass enclosed at two

distinct scales that can be used to constrain the density profile of the lens galaxy.

Measurements of this kind, making use of the Sloan Lens ACS Survey (SLACS;

Bolton et al., 2006), have shown that the total mass density profiles of massive ellip-

tical galaxies are very close to isothermal on average (Koopmans et al., 2006b; Treu

& Koopmans, 2004), with low intrinsic scatter. The physical mechanism responsible

for this result is not yet fully understood. In the Λ Cold Dark Matter paradigm, the

logarithmic slope of the halo mass profile α, is not isothermal (i.e. α = 2) but rather

α ≲ 1.5. If instead, we consider that mass follows light, then for a de Vaucouleurs

profile α ∼ 2.3 (Shankar et al., 2017). Given that we observe α ≈ 2, this implies that

both the baryons and dark matter contribute a significant fraction of the mass inside

the effective radii of massive elliptical galaxies. The implication that the Baryons and

dark matter must ”know” about each other in order to produce total mass density

slopes close to isothermal is sometimes referred to as the ”Bulge-halo conspiracy”.

Recent works have aimed to gain a more detailed understanding of this interplay by

employing decomposed mass-profiles in studies of stellar dynamics (Sonnenfeld et al.,

2015; Poci et al., 2017; Nightingale et al., 2019).
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1.5.2 Measuring The Hubble-Lemâıtre Constant

The Hubble constant is one of the most important cosmological parameters, with its

value setting the age, size and critical density of the Universe. Extremely precise

measurements of its value have been made, derived from observations of the Cosmic

Microwave Background anisotropies (Planck Collaboration et al., 2020a), finding a

value of H0 = 67.4 ± 0.5kms−1Mpc−1. Presenting a challenge to the extremely suc-

cessful ΛCDM model, is the measurement of the Hubble constant using late universe

probes, such as gravitational lensing of variable sources, which find values of H0 that

are significantly higher (Birrer et al., 2020; Wong et al., 2020).

In 1964, Sjur Refsdal proposed a method to determine the Hubble constant using

the measured time delay of a gravitationally lensed supernova (Refsdal, 1964). As was

discussed in Section 1.3.7, images form at the stationary points of light travel time.

If we have a sufficiently varying background source, we can measure the difference in

arrival times between two images as a time delay

∆tAB =
(1 + zL)

c

DLDS

DLS

∆τAB, (1.70)

where ∆τAB is the difference in the Fermat potential at the two image positions A

and B. Given a mass model that predicts ∆τAB, and a measurement of the time delay

∆tAB, we can infer the time delay distance D∆t, which is in fact a combination of

angular diameter distances:

D∆t = (1 + zL)
DLDS

DLS

. (1.71)

These angular diameter distances can be determined provided we have spectroscopic

redshifts for the lens and source, and assume a cosmological model. This ratio of
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angular diameter distances depends on the Hubble constant, D∆t ∝ H−1
0 , and so this

quantity can be used to infer its value. At the time of Refsdal’s suggestion, there

were no known strong gravitationally lensed sources. Ultimately, the first time-delay

measurements of the Hubble constant were made using lensed quasars, which are

sufficiently variable, several decades after Refsdal’s idea was proposed (Vanderriest

et al., 1989). The first resolved multiply-imaged supernova, named SN Refsdal, was

discovered in 2014, and lensing models were used to accurately predict when new

image components would appear on the sky (Rodney et al., 2016a,b).

In practice, there are several key ingredients to a successful determination of H0

using this method. An accurate measurement of the time delay value must be made

from comparing the multiple light curves of the images. High resolution imaging and

spectroscopy are required to constrain the lens galaxy’s mass profile. A multi-plane

lensing approach, taking into account the weak lensing effects of the surrounding

environment, must be undertaken.

There is significant risk of systematic errors when determining the lens mass pro-

file. Whilst image positions are invariant under the mass sheet transformation (see

Section 1.3.6) (Falco et al., 1985; Schneider, Peter & Sluse, Dominique, 2013), and

its generalisation, the source position transformation (Schneider & Sluse, 2014), the

predicted time delays are not. In general, this has the effect of making the mass dis-

tribution κ(θ), and its transformed counterpart, κ′(θ) being equally likely given the

data. Further information about the lensing system is required to break this degener-

acy. A popular method for achieving this is to combine the constraints of independent

measures of the mass distribution, such as stellar kinematics, with those of the lensing

analysis (Koopmans & Treu, 2003).
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1.6 Interferometry and Synthesis Imaging

The maximum achievable resolution in radians, θ, of a typical telescope is given by

θ ≈ 1.22
λ

D
, (1.72)

where λ is the observed wavelength of light, and D is the diameter of the telescope

aperture. Evidently, for a given λ, it is necessary to build larger and larger tele-

scopes to improve this resolution. We can avoid this issue by employing the use of

interferometers.

1.6.1 Interferometery

An interferometer is an array of antennae, whose resolving power depends upon the

maximum separation between two antennae, or baseline distance B, such that θ ∝ λ

B
.

An interferometer does not observe a source’s surface brightness T (l,m) directly,

where (l,m) are on-sky coordinates; rather, an interferometer measures the complex

visibility function V (u, v), which is its Fourier transform,

V (u, v) =

∫ ∫
dldmA(l,m)T (l,m)e−2πi(ul+vm), (1.73)

where A(l,m) is the primary beam profile and (u, v) are the baseline coordinates in

the Fourier plane. Assuming that the source is small compared to the primary beam,

equation 1.73 implies that a visibility sample V (u, v) contains information on T (l,m)

everywhere, and the sample V (0, 0) determines the total flux density of the source.

Furthermore, due to the real nature of T (l,m) we get two visibilities for each baseline

measurement since V (−u,−v) = V ∗(u, v).
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Recovery of the true source surface brightness is complicated by the fact that we

can only measure V (u, v) at discrete coordinates in Fourier space, determined by the

baselines. The result of this is that we can recover a so-called dirty image TD(l,m),

TD(l,m) = A−1(l,m)

∫ ∫
dudvS(u, v)V (u, v)e2πi(ul+vm), (1.74)

where S(u, v) is the sampling function in the uv-plane. We can rewrite the dirty image

as the convolution of the true source surface brightness with the dirty beam B(l,m),

such that,

TD(l,m) = T (l,m) ∗B(l,m), (1.75)

where the dirty beam is the inverse Fourier transform of the sampling function.

The effect of this incomplete sampling of the uv-plane is to produce a side-lobe

structure in the dirty beam that depends on the physical configuration of the antennae

as well as the weighting scheme (see Section 1.6.2 below) applied to the visibilities.

This leads to spatially correlated noise in the image plane that must be dealt with

through deconvolution techniques. Side lobe artefacts and correlated noise could in

principle bias our ability to accurately recover lens model parameters, as we will

explore in Chapter 5.

1.6.2 Synthesis Imaging

When creating images, we must choose a visibility weighting function W (u, v), which

modifies the sampling function and thus changes the shape of the dirty beam. A

natural choice is to set the weighting function to the inverse of the noise variance of
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that visibility, such that the imaging weight, wi, is given by

wi = ωi =
1

σ2
k

(1.76)

where the data weight is given by ωi, determined during calibration. When gridding

the data into the same uv-cell, the weights are summed, resulting cells containing

more visibilities being given greater weight; this is known as natural weighting. This

weighting scheme has the effect of maximising point source sensitivity and producing

the lowest RMS noise in the image, but due to the greater weight given to short

baselines the resulting angular resolution is lowered.

Another option for W (u, v) is the so-called uniform weighting function, where the

weight is set according to the inverse of the local density of points in the uv-plane

(and zero for empty cells). Firstly, the data weights are calculated identically to the

natural weighting scheme. The data is then gridded into uv-cells and re-weighted to

achieve uniform imaging weights. Letting ωi be the inverse variance of the RMS noise

on the visibility data, the imaging weights are given by

wi =
ωi
Wk

, (1.77)

where Wk is the weight on the gridded data. This means that the sum of weights in

a given occupied cell is constant, more weight is given to longer baselines, and thus

angular resolution is enhanced. It does have the drawback however of degrading the

point source sensitivity.

A third choice ofW (u, v) is Briggs weighting, which is a variant of uniform weight-

ing capable of avoiding giving too much weight to uv-cells that would otherwise have
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low natural weightings. The imaging weights are given by

wi =
ωi

1 +Wkf 2
, (1.78)

where Wk is defined in the same way as in the uniform weighting scheme, and

f 2 = (5× 10−R)2
∑

i ωi∑
kW

2
k

. (1.79)

Briggs weighting is able to smoothly vary between behaving like uniform weighting

or natural weighting (i.e. between maximum resolution and maximum point source

sensitivity), via adjusting the so-called Robustness parameter, R. A common choice

that provides a good compromise between sensitivity and resolution is to set R = 0.

Further processing of visibilities via uv-tapering can be performed, but we do not

consider the effects of this in this work.

The dominant deconvolution algorithm in radio astronomy is clean, originally

developed by Högbom (Högbom, 1974). At its core lies the a priori assumption that

the sky brightness distribution T (l,m), is a collection of point sources. The clean

algorithm begins by initialising a residual map to the dirty image, as well as creating

a clean component list. The highest peak in the residual map is identified as a point

source, and some fraction is subtracted by scaling the dirty beam by a particular

gain. This point source is added to the clean component list and the cycle repeats

until a stopping criterion, typically a threshold value or number of iterations, has

been reached. The last step in the process is to make a model image from all the

point source clean components. The point sources are convolved with an elliptical

Gaussian, or clean beam, that has been fitted to the main lobe of the dirty beam.

The remaining noise in the residual map is then added back to the clean image.
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1.7 Semi-Linear Gravitational Lens Inversion

At the heart of much of the work in this thesis is the inference of lens model parame-

ters and the reconstruction of the unlensed background source. In particular, Chapter

2, Chapter 3 and Chapter 5 deal with the modelling of image plane data, and we will

discuss the methodology used to facilitate this in this section. The modelling of in-

terferometer datasets is relevant to Chapter 4 and Chapter 5 and will be discussed

in the following section. There exists a multitude of methods for inferring lens model

parameters and performing source reconstruction, some of which rely on fitting para-

metric source light distributions and others that allow for much more flexibility in the

source light distribution, such as shapelet and pixelised source plane methods (Birrer

et al., 2015; Tagore & Jackson, 2016).

The method of Semi-Linear gravitational Lens Inversion (SLI) was introduced by

Warren & Dye (2003). This method makes use of a pixelised source light distribution

and a parametric mass distribution for the lens mass. The key advantage of Semi-

Linear Inversion is that the step of inverting an image for a given mass distribution

in order to obtain the deconvolved source light distribution and its uncertainties is a

linear one. Finding the parameters to model the mass distribution is still a non-linear

problem, hence the name semi-linear inversion. The increased efficiency of SLI makes

the task of optimising the lens model simpler and faster.

We first consider the case where the figure of merit of choice is G = χ2
im, computed

from a model image and the observed image, and there is no regularisation applied.

The essence of the problem is to find the values of the source pixels that, given a

mass distribution, minimise the merit function. We label pixels in the source plane

i = 1, . . . , I and pixels in the image plane j = 1, . . . , J . Note that there is no restriction

on the pixelisation scheme used in the source plane. We assume that the counts in
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the image pixels are purely due to the lensed image of the source and that the data

in each image pixel is independent, i.e. no covariance between pixels.

The inversion process works as follows: for a given mass distribution, we form

the image by ray tracing and convolution with the PSF, of each pixel in the source

plane with unit counts. In other words, we compute the counts in the jth image

pixel due to the ith source pixel fij. This results in I images, one for each source

pixel. We must now combine these I images, scaled by a factor si in such a way

as to minimise G. The scalings constitute the deconvolved intrinsic source surface

brightness distribution. Writing the merit function as

G = χ2
im =

J∑
j=1

(∑I
i=1 sifij − dj

σj

)2

(1.80)

where dj and σj are the counts and 1-σ uncertainty of the jth observed image pixel.

Minimising this with respect to the source terms yields a set of I simultaneous equa-

tions

1

2

∂G

∂si
=

J∑
j=1

(
fij
∑I

k=1 skfkj − fijdj
σ2
j

)
= 0 (1.81)

where we have artificially inserted a fact or of 1
2
for reasons that will become obvious

shortly. Rewriting these equations on matrix form

FS = D. (1.82)

S is a column matrix with I entries representing the scalings si, which we wish to

solve for. F is a symmetric I × I matrix, whose elements are Fik =
J∑
j=1

fijfkj
σ2
j

. Lastly,

D is a column matrix with I elements Di =
J∑
j=1

fijdj
σ2
j

. We can solve for the counts in
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the source pixels by matrix inversion

S = F−1D (1.83)

which has eliminated the need for variational optimisation of the source. We now wish

to compute the covariance matrix for the source pixels in order to find the errors. We

note that

Fik =
1

2

∂2G

∂si∂sk
(1.84)

is the Hessian matrix multiplied by a factor of a half. This is the reason for multiplying

Equation 1.81 by one half. We can show that C = F−1 is the covariance matrix of S.

Under our assumption of independent image pixels, the covariance between source

pixels i and k is given by

σ2
ik =

J∑
j=1

σ2
j

∂si
∂dj

∂sk
∂dj

(1.85)

which can be rewritten as

σ2
ik =

J∑
j=1

σ2
j

I∑
l=1

Cil
flj
σ2
j

I∑
m=1

Ckm
fmj
σ2
j

= Cik. (1.86)

Since we have fixed the mass model parameters, the covariance matrix of the source

pixels has been computed during the inversion process. It is not in fact the complete

solution for the errors, since we have not varied the mass model, but the so-called

“source covariance matrix” is useful in exploring different solutions.

One important difference between SLI solutions to this problem and the maximum

entropy method, is that we place no constraints on the counts in the source pixels. In

principle, they can be negative, due to being below the mean sky count, whereas in

the maximum entropy solution, they must be positive.
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To complete the solution, we must search the mass model parameter space, min-

imising χ2
im at each point using SLI to find the global minimum.

The full solution to the errors is more complicated than before, due to the addi-

tional non-linear mass parameters, L (labelledml). We must form the (I+L)×(I+L)

curvature matrix, but note that we have already computed the majority of terms from

the computation of F at the global minimum. The remainder of the terms can be

found through measurement of the shape of the χ2
im surface at the global minimum.

The full covariance matrix for the mass and source parameters is therefore the inverse

of this curvature matrix.

1.7.1 Regularised Linear Inversion

This method can be readily extended to include a linear regularisation term that avoids

the problem of over-fitting noisy solutions (Warren & Dye, 2003). We can preserve

the linearity of the minimum χ2 approach by forming our regularisation term GL from

a linear combination of the source scalings sisk,

GL =
∑
i,k

aiksisk. (1.87)

We write the merit function containing the regularisation term as,

G = χ2
im + λGL, (1.88)

where λ is a scalar weighting of the regularisation. This term acts like a prior, favour-

ing solutions where the reconstructed source has a smooth distribution. The source

pixel brightness is given by
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S = [F+ λH]−1D, (1.89)

where H is termed the regularisation matrix and can be computed as follows

Hik =
1

2

∂2GL

∂si∂sk
. (1.90)

If we choose for example, GL =
I∑
i=1

= s2i , then H is simply the identity matrix, which

is termed ”zeroth-order” regularisation. Other forms of regularisation include ”gradi-

ent” and ”curvature” forms, which take into account differences between neighbouring

pixel counts. Details of these schemes can be found in (Warren & Dye, 2003). The

computation of the covariance matrix is complicated in this case by that fact that it

is no longer true that the inverse of the full curvature matrix is the full covariance

matrix. More recently, the method of regularised Semi-Linear Gravitational Lens

Inversion has been placed within a Bayesian framework by Suyu et al. (2006), and

it is the maximisation of the Bayesian evidence that is used throughout this thesis.

Finding the optimal lens model parameters, to maximise this Bayesian evidence, was

achieved using MultiNest (Feroz et al., 2009) for the work in Chapter 2 and Chapter

3, whilst dynesty (Speagle, 2020) was used for the work in Chapter 4 and Chapter

5.

1.7.2 Adaptive Semi Linear Inversion

Previously, it was mentioned that SLI places no restriction on the pixelisation scheme

used in the source plane. Adaptive semi-linear inversion makes use of an h-means clus-

tering algorithm to produce a pixelisation that adapts to the magnification of the lens

model (Nightingale & Dye, 2015). Adaptive SLI overcomes many of the disadvantages
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associated with using a fixed source pixel grid, such as the ability to place smaller

pixels in regions of the source plane with higher magnification. Additionally, there is

no need to define the source plane grid in advance, and so the issue of unconstrained

source pixels is avoided (Nightingale & Dye, 2015).

The essence of how adaptive-SLI works is the way in which it allocates traced

image pixels to their source plane pixels. The spatial coordinates of the J traced

image pixels are the input to the h-means clustering algorithm (Hartigan & Wong,

1979), giving us a set of h-clusters. These h-clusters are the regions in the source

plane to which a subset of image pixels belong. These h-clusters are defined through

their centre coordinates, found by minimising E,

E =
I∑
i=1

ei =
I∑
i=1

K∑
k=1

r2k (1.91)

where ei are the cluster energies. The cluster energy is the sum in quadrature of the

distances to each of it’s associated image pixels from the cluster’s centre. The algo-

rithm works by first allocating traced image pixels to their nearest cluster centre, and

then recomputing the set of cluster centres for these new assignments. This continues

until the cluster centres no longer move, or a set number of iterations have occurred.

The resultant pixelisation of the source plane then depends on the spatial distribu-

tion of the traced image pixels, and thus the magnification of the lens model, unlike a

regular Cartesian grid. The shapes of these clusters are completely unrestricted, and

thus do not suffer from the biasing effects on the lens model of some schemes.

In practice, it is the centres of sub-grid pixels that are fed into the h-means al-

gorithm. For example, we may split a pixel into a 4 × 4 grid and use the centres of

these pixels during clustering and inversion. Whilst this increases the computational

workload, it helps to address certain aliasing issues that arise (Nightingale & Dye,
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2015). Furthermore, the image is masked to remove the background noise from the

image. This means that the source plane maps only to those points contained within

the mask and helps to reduce the number of coordinates being fed into the clustering

algorithm.

Figure 1.9: A comparison between square and adaptive SLI pixelisation schemes
(Nightingale & Dye, 2015)

One of the key disadvantages with using the regular grid is that it is set up be-

fore the inversion takes place. This leads to large variations in magnification between

source pixels and the possibility that pixels on the outer edge of the source not map-

ping to any of the image pixels. These unmapped pixels are then only constrained by

regularisation.

1.7.3 The semi-linear inversion method in the uv-plane

The standard image plane approach of the semi-linear inversion method makes use of

a pixelised source plane. For a given lens model, the image of each pixel is formed and

the linear superposition of these images that best fits the data determines the source
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surface brightness distribution. Analogously to the image plane version, when working

with interferometer visibility data, a model set of visibilities is formed for an image of

each source pixel. The linear combination of these model visibilities determines the

source surface brightness distribution for a particular lens model.

In this thesis, we have used the source inversion method implemented within PyAu-

toLens (Nightingale et al., 2021), which is based on the operator approach described

within Powell et al. (2020), for the modelling of interferometric datasets (see Chapter

4 and Chapter 5). An interferometer visibility dataset d is comprised of samples of

complex visibilities. The surface brightness in the source plane is given by the vector

s, with each element corresponding to the surface brightness of a source plane pixel.

The parameterised projected surface mass density of the lens model is given by the

vector, η and the mapping of the source light s to the image plane is described by

the operator L(η). The sky brightness is therefore simply L(η)s. The response of an

interferometer is encoded into the operator D, which performs the Fourier transforms

to convert the pixelised sky brightness distribution into a set of complex visibilities.

The observed data d, can therefore be described by the combination of these effects:

d = DL(η)s+ n. (1.92)

Assuming uncorrelated Gaussian noise n in the observed visibility data, the noise

covariance can be represented by the diagonal matrix C−1. The uncertainties on visi-

bilities are often set to arbitrary values, or estimated from poorly understood antenna

and receiver properties. This can lead to problems when accurate uncertainties are re-

quired, such as for performing visibility data lens modelling. Using a similar method

to Dye et al. (2018) to determine the 1σ uncertainties on the visibilities, we used

the CASA task statwt to empirically measure the visibility scatter computed over all
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baselines, ensuring reasonable uncertainties on all visibilities.

Combining equation 1.92 with the set of model visibilities DL(η)s allows us to

write the χ2 statistic as

χ2 = (DLs− d)TC−1(DLs− d). (1.93)

With the addition of a prior on the source denoted by the operator R and with the

regularisation strength given by λs, Powell et al. (2020) show that we can write the

regularised least-squares equation as

[
(DL)TC−1DL+ λsR

TR
]
sMP = (DL)TC−1d (1.94)

where the maximum a posteriori source inversion matrix (i.e., the solution matrix

for sMP) is given by the quantity in square brackets in equation 1.94. This linear

system of equations is in principle straightforward to solve, but becomes extremely

memory intensive for large numbers of visibilities and/or large numbers of source

plane pixels. For this reason, a direct Fourier transform is replaced by a non-uniform

fast Fourier transform, constructed out of a series of operators. This substitution

results in a modified version of equation 1.94, where the solution for sMP is given by

a series of operators evaluated by use of an iterative linear solver (see Powell et al.,

2020; Nightingale et al., 2021, for more details on this methodology and the specific

implementation used here).

To find the optimal lens model parameters with PyAutoLens, we used the nested

sampling algorithm dynesty (Speagle, 2020) to maximise the Bayesian evidence as

derived within Suyu et al. (2006). We adopted a gradient regularisation scheme,

analogous to that which is described in Warren & Dye (2003), with a constant weight

for the source plane due to its simplicity and to not add more computational costs
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to an already expensive procedure. Other techniques, such as those that use multiple

regularisation weights adapted to the surface brightness in the source plane, require

introducing more free parameters to be fitted, and thus increase the complexity of the

problem. When dealing with data sets containing many visibilities, such a process

could add days of analysis time. We first reconstructed the background source using

a source plane pixelisation adapted to the lens magnification. This magnification-

based fit was then used to initialise a new search of parameter space with a source

plane that adapted to the brightness of the reconstructed source (Nightingale & Dye,

2015; Nightingale et al., 2018). The mass model parameters, along with the source

plane parameters (regularisation, number of source plane pixels), were fully optimised

throughout the lens modelling procedure.

1.8 Machine Learning

Deep neural networks are being used widely in astronomy, in topics ranging from

measurements of galaxy morphology (Tohill et al., 2021), detection of strong lensing

events (Jacobs et al., 2017; Lanusse et al., 2017a; Cheng et al., 2020) and predictions

of the merger history of high redshift galaxies (Whitney et al., 2021). The major

benefits of deep neural networks are that they are naturally suited to the analysis of

image-plane data, and that once a network has been trained, the computational cost

of performing a classification or regression task is extremely low compared to other

traditional methods.
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1.8.1 Neural Networks

Fundamentally, neural networks rely on simple principles analogous to many other

regression techniques. The desired output of the network is a prediction, y⃗pred, given

an input x⃗ and model parameters α⃗. In order to optimise this non-linear model,

F (x⃗|α⃗) = y⃗ and find the best fitting set of model parameters α̂, we must minimise the

error in F (x⃗|α̂) = y⃗pred. This is achieved with the use of a loss function, L(y⃗, y⃗pred), and

typically requires a large set of known measurements (x⃗, y⃗), known as the training set.

Analogously, if we wanted to perform linear regression, our model F would represent

a straight line, and our loss function could be represented as the χ2 function.

We can represent a deep neural network as a graph of multiple layers, each consist-

ing of many neurons (see Figure 1.10). In this case, the function F and the free model

parameters are encapsulated by the interconnected nodes, called hidden layers. The

inputs are passed from neuron to neuron through the layers of the network, through

the connections, as shown in Figure 1.10. Popular networks in use today, so-called

deep neural networks, are constructed from several layers, each consisting of hundreds

or thousands of layers. Furthermore, these neurons are typically connected to each

neuron in the following layer, creating a fully-connected network (Figure 1.10 is such

an example).

The optimisation of the network is achieved by tuning the weights, w⃗i,j, and biases,

bi,j, of each i, jth neuron. Applied to each neuron is an activation function f , which

controls whether a specific neuron produces an output. Accordingly, we can describe

the output of a given neuron as

x⃗′ = f(w⃗i,j.x⃗+ bi,j) (1.95)

The chosen activation function may depend upon the specific application being con-



58 Chapter 1. Introduction

x⃗

k⃗1,1

x⃗′ = f(w⃗ij
· x⃗+ bij)

k⃗1,2

k⃗1,3

k⃗2,1

k⃗2,2

k⃗2,3

y⃗pred

compute loss L(y⃗, y⃗pred)

adjust weights k⃗′ = k⃗ − η∇L

input
layer

hidden layers

output
layer

k⃗ij =

(w⃗ij, bij)

Figure 1.10: Schematic of a neural network model. The input x⃗ (green) is passed
through a series of hidden layers (blue), each applying a function to x⃗. The output of
the hidden layers is combined to predict the output, y⃗ (red).
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sidered, but a commonly used example is the Rectified Linear Unit (ReLU; Nair &

Hinton, 2010), defined as

f(x) = ReLU(x) = max(0, x). (1.96)

The popularity of ReLU is owed to its simplicity to compute and the fact that it does

not suffer from the problem of vanishing gradients (Glorot & Bengio, 2010). Typically,

the output later uses the softmax activation function (Goodfellow et al., 2016) when

dealing with classification tasks.

Finally, the output of the model y⃗pred and the true values y⃗ are compared, with

their difference encoded by the loss function L. A common choice of loss function

for classification tasks is that of the categorical cross entropy loss function. The

neuron weights are then adjusted, from the last layer to the first, in a process called

back-propagation, using the gradient of the loss function to minimise loss, such that

w⃗′
i,j = w⃗i,j − η∇⃗L(y⃗, y⃗pred), (1.97)

where η is the so-called learning rate. η is typically chosen to be small such that the

training process is stable, but not so small that training takes an inordinate amount

of time.

1.8.2 Convolutional neural networks

Image analysis is a particularly common task in astronomy, and one that deep learning

methods excel at. Convolutional Neural Networks (CNNs; Fukushima, 1980) are a

subset of deep neural networks that were developed specifically to analyse imaging

data.
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The key difference between CNNs and the more simplistic networks discussed in

the previous section, is that in a CNN the neurons are represented by convolutional

kernels, not simply weights. An input image is convolved with each kernel, producing

its response image. This response represents the features picked out by a particular

kernel and can then be used later in the tasks of classification or regression.

Each kernel has dimensions N ×N , with each element having its own weight, and

a single bias is applied to the entire kernel. Resultantly, these filters add N2 + 1 free

parameters to the model that must be optimised. Every layer of the network can

be made up from multiple kernels, and the number of these will depend on the CNN

architecture and the specific application being considered. The filters produce varying

responses to certain features in the image, such as sharp edges, patterns, or colour

gradients. As the image is fed through the network, the features detected by filters

build upon earlier features, capturing more complex information from the image.

Once the final convolutional filter has been applied to an input image, typically

a flattened vector is formed and this is passed into a fully connected network (as

described in the previous section) for the task of classification or regression.

CNNs are employed in both Chapter 2 and Chapter 3 of this thesis, for both the

tasks of regression and classification; a detailed description of the relevant network

architecture is provided in the respective chapters, and so we refrain from repeating

such an illustration here.

1.9 Outline

In Chapter 2 we compare two different approaches to lens modelling, parametric

fitting and machine learning, testing these techniques against a series of increasingly
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complex and realistic simulated images. In addition to this, we propose two methods

for combining these techniques to produce a hybrid, fully automated approach to lens

modelling, that can be applied in the era of large numbers of discovered strong lensing

systems with upcoming surveys. We show that this combined methodology is greater

than the sum of its parts, achieving higher accuracies than either method alone, and

receiving a speed boost from the CNN-assisted prior initialisation.

In Chapter 3 we discuss the existence of unphysical source reconstructions, that

represent local minima in χ2, and often serve to derail the lens modelling process.

These solutions represent a challenge to be overcome in the quest for a truly automated

lens modelling pipeline. We train a CNN to identify when our lens modelling has

converged upon a solution with an unphysical source reconstruction, and develop a

simple prescription to re-initialise the parameter priors in order to ensure convergence

upon the true solution. We show that using this approach, we can greatly improve

upon the fraction of lens modelling runs that converge to the global maximum solution.

This represents a further step towards creating a fully automated lens modelling

pipeline.

In Chapter 4 we present our modelling of high-resolution ALMA observations of

strongly lensed dusty star forming galaxies detected by Herschel. We employ uv plane

lens modelling to infer the mass profiles of the lensing galaxies, and by determining

the magnification factors, we investigate the intrinsic properties and morphologies

of the lensed sub-millimeter sources. We find that these sources all have ratios of

star formation rate to dust mass that are consistent with, or in excess of, the mean

ratio for high-redshift sub-millimetre galaxies and low redshift ultra-luminous infrared

galaxies.

In Chapter 5 we investigate the differences between performing lens modelling in

the uv plane versus the image plane. We simulate a set of ALMA observations, for
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varying antenna configurations and on-source integration times, and for a variety of

lensed image configurations. From each simulated measurement set, we produce two

image plane measurements via the clean algorithm, using natural and Briggs weight-

ing. We then perform direct visibility lens modelling, and image plane modelling for

each system, and compare our results to look for biases introduced by one method

over another.

Finally, in Chapter 6 we summarise the results from this thesis and discuss the

prospects for extending the work presented here in the future.
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Strong lens modelling: comparing and

combining BNNs and parametric

profile fitting

To date, a relatively small number of strong gravitational lensing systems have been

discovered, on the order of hundreds, with most of these being low redshift obser-

vations. A variety of surveys have been undertaken with the goal of discovering

lensing systems, such as the Sloan Lens ACS (SLACS) survey (Bolton et al., 2006),

the CFHTLS Strong Lensing Legacy Survey (SL2S; Cabanac et al., 2007), the Sloan

WFC Edge-on Late-type Lens Survey (SWELLS; Treu et al., 2011), and the BOSS

Emission-Line Lens Survey (BELLS; Brownstein et al., 2011). This is all set to change

with the advent of two upcoming surveys: Euclid (Laureijs et al., 2011a), the Euro-

pean Space Agency’s telescope scheduled to launch in 2023 will cover 15,000 deg2

over 6 years and study the accelerated expansion of the universe out to a redshift

of z = 2; Additionally, the Vera Rubin Legacy Survey of Space and Time (LSST;

Ivezic et al., 2008), also focused on the study of dark energy and dark matter, will

63
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commence science operations in 2024. LSST will cover 18,000 deg2 over ten years in

six different filters (u, g, r, i, z, y). It is expected that these surveys will discover many

tens of thousands of lensing systems; 120,000 and 170,000 lenses for LSST and Euclid

respectively (Collett, 2015a). For this reason, the development of fast, automated,

and accurate pipelines for finding and modelling strong lenses is of great importance.

CNNs have been employed to great effect in rapidly identifying strong gravitational

lenses (Lanusse et al., 2017a; Petrillo et al., 2017; Davies et al., 2019; Jacobs et al.,

2019; Metcalf et al., 2019; He et al., 2020; Huang et al., 2021), and have been proved

to be able to handle the vast amounts of data we are expecting due to their ability

to rapidly classify images. The performance of a CNN hinges upon the quality of

its training data, and since we have so few known strong lensing systems, we must

turn to simulated images to provide the necessary volume of data. Citizen science

and spectroscopic methods have also been leveraged in the search for strong lenses

(More et al., 2015; Sonnenfeld et al., 2020; Holwerda et al., 2015). However, it has

been shown that these methods tend to detect distinct populations of lensing systems,

highlighting a need for multiple approaches to build up a complete sample (Knabel

et al., 2020).

Once a lens system has been identified, parametric mass modelling techniques

are typically used to study the lens galaxy and reconstruct the background source

distribution. A variety of techniques are available for doing this, such as those that

reconstruct the source on a pixelised grid (Warren & Dye, 2003; Vegetti & Koopmans,

2009; Nightingale et al., 2018), or those that make use of the shapelet decomposition

(Birrer et al., 2015; Birrer & Amara, 2018). Such modelling is a time-consuming pro-

cess, typically involving a great deal of trial and error to hone in on an approximate

set of parameters around which we can perform a more exhaustive search. Addi-

tionally, fitting models to complex datasets is often done in an iterative procedure,
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with relatively simple fits performed at the start of the process, and more complex

models of mass and source light distribution being fitted as the model is refined. To

compound the problem, preprocessing of the data is often required for point spread

function estimation, lens light removal and image masking. Techniques that simul-

taneously fit the lens galaxy light and mass profile have been developed, but at the

expense of adding more non-linear parameters to the problem, and thus increasing

the computational cost of lens modelling further.

In addition to lens identification, CNNs have been used as an alternative means of

lens modelling. This was demonstrated for the first time by Hezaveh et al. (2017a),

who used a combination of neural networks to predict the mass model parameters of

simulated and real lensed images. Approximate Bayesian Neural Networks (BNNs)

have been used to predict the uncertainties on the mass model parameters (Levasseur

et al., 2017), further extending the utility of machine learning methods in this area.

Whilst the training of these networks requires multiple days of GPU time, once this

up front cost has been paid, the lens modelling speed is increased by several orders

of magnitude over traditional parametric methods. Furthermore, these techniques

have been extended to the application of uv-plane interferometer modelling and the

reconstruction of the background source (Morningstar et al., 2018; Morningstar et al.,

2019).

Whilst a trained neural network is capable of predicting the mass model parameters

of a lensing system in a fraction of the time of traditional methods, it is constrained

by the quality of the training data; A comprehensive set of data is required to deal

with the nuances of real observations, and shortcomings in this area can lead to

CNNs producing unreliable predictions. This is a key area in which the conventional

parameter fitting techniques retain their utility and justify the significantly longer

modelling times.
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In this chapter, we investigate the following questions: How well can CNNs recover

the mass model parameters of increasingly realistic simulated images? How well do

traditional parameter-fitting techniques perform in comparison? Can the combination

of the two techniques provide a more powerful lens modelling tool than either on their

own?

For this work, we focus on the imaging characteristics of the Euclid telescope, and

compare the CNN to the semi-linear inversion technique of PyAutoLens (Nightingale

et al., 2018) as well as a combination of the two. Each of these modelling methods

is tested on a suite of increasingly realistic lensing setups, beginning with SIE lenses

and parametric sources, then incorporating real Hubble Ultra-Deep Field (HUDF;

Beckwith et al., 2006a) source galaxies and CosmoDC2 (Korytov et al., 2019) line-

of-sight (LOS) structure. We then move to using elliptical power law mass profiles

and galaxies from the Evolution and Assembly of Galaxies and their Environments

(EAGLE) cosmological hydrodynamical simulation suite (Crain et al., 2015; Schaye

et al., 2015).

This chapter is organised as follows: Section 2.1 details the simulations used to

produce the image data sets used for training and testing. Section 2.2 provides an

overview of the parameter-fitting methods used in this chapter: PyAutoLens and the

convolutional neural network. Section 2.3 presents and compares the results from

testing on image data sets of increasing complexity, from simple parametric lenses

and sources to hydrodynamical EAGLE galaxy lenses with real HUDF sources and

line-of-sight structure. The results are discussed in Section 2.4 along with a conclusion

of this work in Section 2.5.
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2.1 Gravitational Lens Simulation

Here, we detail the simulated gravitational lens images used throughout this work.

The CNN was trained on data comprised of simulated parametric lenses and para-

metric sources, whilst the datasets used to test the network had varying levels of

complexity, from purely parametric, to HUDF sources and lens galaxies extracted

from the EAGLE simulation suite.

2.1.1 Training set

Pearson et al. (2019) describes the simulation method used to generate the 100,000

images needed to train our CNN. The majority of strong gravitational lenses are

massive elliptical galaxies, and so we opted to use the SIE model (Kormann et al.,

1994; Keeton, 2001) and its generalised form, the elliptical power law model (Tessore

& Metcalf, 2015), to represent the mass profiles in our training simulation datasets.

The SIE model has three key parameters: Einstein radius, orientation and axis ratio.

The elliptical power law model has an additional parameter; the power law slope.

Consequently, we produced two trained CNNs, one trained on a set of SIE lensed

images, and another trained on the set of power law lensed images. Aside from this

difference in training, the two CNNs were identical in architecture and the training

procedures used. The distributions of the lens model parameters were chosen to be

uniform to ensure sufficient training across the parameter space. A range of 0.2− 3.2

arcseconds, 0 − 180◦, 0.4 − 1.0, and 1.5 − 2.5 for Einstein radii, orientations, axis

ratios and slopes, were chosen, respectively. The range of Einstein radii was chosen

to reflect that which we expect to obtain from the Euclid survey (Collett, 2015a).

We assumed that the lenses were correctly centred, with the lens centroid following

a Gaussian distribution centred on the image centre, and a standard deviation of one
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pixel.

We adopted the expected characteristics of the Euclid telescope’s VIS filter, for all

the simulated images in this work. Resultantly, we have used an image pixel scale of

0.1 arcsec pixel−1 (Racca et al., 2016) and a point spread function with full-width half-

maximum of 0.17 arcseconds. Supplementing the parametric Sérsic profiles used in

Pearson et al. (2019), our training data also contained Gaussian sources and complex

sources constructed from multiple Sérsic sources to represent a wide range of source

morphologies. The fraction of the training data taken up by the single Sérsic profiles,

Gaussian profiles and multiple Sérsic profiles were 25, 25, and 50 per cent, respectively.

The position of the sources were chosen at random from a uniform distribution within

the Einstein radius of the lens, to ensure that a wide range of lens image configurations

and magnifications were represented in the training data. Example training images

are shown in Fig. 2.1.

The lens and source redshifts were sampled from uniform distributions with upper

limits of zlens = 2 and zsource = 6. A number of criteria were enforced to ensure that

strong gravitational lenses were produced: the centre of the source must be multiply-

imaged, with a resolved counter image, and a minimum magnification of µTOT > 3,

tangential shearing (µTOTRe,source > seeing) and signal-to-noise ratio (SNR > 20).

The sky background for Euclid VIS (Collett, 2015a; Niemi, 2015) was added along

with Poisson noise, the expected read noise (five electrons per readout) and dark

current (two electrons per pixel per second; Radeka et al., 2009). The simulated images

initially contained light from the lens galaxy, and the true profile was subtracted after

convolution with the PSF, leaving only Poisson noise residuals.
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2.1.2 Test sets

In order to test the CNN and PyAutoLens we created a variety of test datasets, of 1000

images each, using the Pipeline for Images of Cosmological Strong Lensing (PICS; Li

et al., 2016a). As a source for complex, high redshift and high resolution background

galaxies, we made use of their selection of Hubble Ultra-Deep Field (HUDF; Beck-

with et al., 2006a) galaxies. We did not attempt to deconvolve these sources in this

work. The magnitudes and angular extents of these sources, along with the Sérsic

and Gaussian profiles, were incorporated into the images. Changes in the lens and

source redshifts therefore only had the effect of modifying the Einstein radii, and so

we fixed the lens and source redshifts to be zlens = 0.5 and zsource = 2.0, respectively,

with Einstein radii set manually.

In addition to the main lensing galaxy, PICS facilitates the inclusion of line-of-sight

(LOS) structure through the ray-tracing of small light cones covering lens caustics,

extracted from the semi-analytic CosmoDC2 (Korytov et al., 2019) model, based on

the Outer Rim cosmological N-body simulation (Heitmann et al., 2019). We selected

one thousand of these light cones, with each containing a primary lens and up to

one hundred LOS galaxies between the observer and background source. A range of

test data sets were created for a variety of increasingly complex and realistic lensing

systems, examples of which can be seen in Figure 2.2:

• SIE lenses + simple parametric source profiles

• SIE lenses + HUDF sources, with and without LOS structure

• Power law lenses + HUDF sources, with and without LOS structure

• EAGLE galaxy lenses + HUDF sources, with and without LOS structure

In the case of the SIE lens mass profiles, the parameter distributions followed those
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determined by PICS to be the main halos in the CosmoDC2 light cones. The Einstein

radii, orientations and axis ratios of the lenses were distributed in the ranges 1.3-

2.6 arcseconds, 0-180◦ and 0.4-1.0, respectively. For the power law lenses, the same

distribution of lens parameters was used, with the addition of the slope parameter

being uniformly sampled from a range of 1.5-2.5, matching the CNN training data.

On average, the main halo lenses selected in this manner, were more massive and

thus produced larger Einstein radii than those expected to be found by the Euclid

survey. For the purposes of this work, we did not change these values, as we wished to

maintain the halo masses and positions of the LOS structure for realistic ray-tracing.

EAGLE galaxy lenses, selected from the EAGLE galaxy catalogue, were also used.

The galaxies were selected by computing their Einstein radii from their halo masses,

assuming zlens = 0.5 and zsource = 2.0, and ensuring that they were within the range of

0.5-5.0 arcseconds. This resulted in a sample of lenses with Einstein radii distributed

in the range of 0.5-3.2 arcseconds. This distribution of parameters differs from those

selected from the CosmoDC2 halos, but we limit the axis ratios and orientations to

the same range. These values were obtained by performing a least squares fit to the

convergence maps of the EAGLE particle data, weighted by the square root of the

convergence map, using the SIE and power law mass profiles as the fitting function.

This process was repeated for the inclusion of LOS structure.

The inclusion of LOS structure serves to increase the observed Einstein radius of a

lens when compared to the Einstein radius of the lens itself. As such, we measured the

observed Einstein radius for each system, using the previously mentioned convergence

map fitting process. This measured value was then taken as the true value of the

Einstein radius of the system, to mitigate biases in the results due to the CNN and

PyAutoLens examination of the observed images.
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2.2 Lens modelling methodology

In this section, we detail the techniques used to model our simulated gravitational

lenses. We describe the processes used within the context of the parametric fitting

approach of PyAutoLens, the convolutional neural network and the means by which

we combine these two techniques.

2.2.1 PyAutoLens

To represent the conventional parameter fitting approach to modelling strong grav-

itational lenses, we used the semi-linear inversion implementation of PyAutoLens1

(Nightingale et al. (2018); see Section 1.7 for a detailed description). This allows

for the simultaneous modelling of the foreground deflector and reconstruction of the

background source in a Bayesian framework. PyAutoLens offers a wide range of con-

figuration options and can be tailored to suit many lensing scenarios. For example,

the background source can be reconstructed on a rectangular grid, or a variety of

adaptive grids that place smaller pixels in regions of high magnification or where the

source is brightest. During the modelling process, a χ2 statistic for the observation

and model is produced and used to calculate the Bayesian evidence. The parameter

space of the mass model and source plane is explored, searching for the set of param-

eters that corresponds to the global maximum of the evidence (and correspondingly,

the global minimum in χ2). Due to the large volume of simulated lenses that we had

to model, we opted for a relatively simple setup of PyAutoLens, in order to make

the computational cost of the process more reasonable. We chose to reconstruct the

background source on an adaptive, magnification based, Voronoi grid, making use of a

gradient regularisation scheme, analogous to that which is described in Warren & Dye

1https://github.com/Jammy2211/PyAutoLens

https://github.com/Jammy2211/PyAutoLens
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(2003), with a constant weight for the source plane. The lens modelling process was

initialised with a mass model prior, a regularisation prior and a prior on the number

of pixels in the source plane (see below). Each image-plane pixel was sub-gridded

into four sub-pixels for the purpose of ray-tracing calculations, and the images were

masked according to the process described in Maresca et al. (2020). PyAutoLens offers

a number of sampling algorithms for the optimisation of model parameters, but for

this work we opted to use the Bayesian inference tool, MultiNest (Feroz et al., 2009),

run in constant efficiency mode and a sampling efficiency of 0.4.

Setting up PyAutoLens requires choosing a set of priors on the free parameters of

the model. The priors on the mass model are typically set through a process of human

inspection, and trial and error. This process would be too time-consuming for this

work, and so throughout this work, we set up an automated and standardised approach

to choosing the mass-model priors. PyAutoLens was run either with blindly initialised

priors, or with values informed by the predictions of the CNN. To facilitate the blind

modelling approach with PyAutoLens, we approximated the Einstein radius by fitting

a circle to the image pixels above a 3-sigma threshold, using uniform weights. We then

constructed a prior on the Einstein radius, centred on this approximate value, with a

fixed with of ±0.2 arcseconds. The priors on the other lens model parameters were

left uniform over the full range of values. This automated approach was necessary to

avoid significant contamination to our results from unphysical source reconstructions

(Maresca et al., 2020), and is representative of what one might do when faced with

finding an unknown lens model, so remained a fair comparison to the other automated

methods we consider here.
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2.2.2 Convolutional Neural Networks

The following section describes the CNN used throughout this work. A description

of the network architecture is given in Section 2.2.2.1, and a brief overview of how

uncertainties can be obtained on the CNN’s predictions is given in Section 2.2.2.2.

Some details of how the network was trained are provided in Section 2.2.2.3.

2.2.2.1 Architecture

The network used in this work is composed of six convolutional layers, six dropout

layers, four pooling layers and two fully connected layers, as shown in Figure 2.3. In

the convolution layers, the inputs are convolved with a series of kernels, as described in

Section 1.8.1. The weights and biases of these kernels are optimised during the training

process. Some hyperparameters of the network, such as the number of convolutional

layers, and the number and size of the kernels used, were manually tuned through a

process of experimentation to provide the best efficiency for this work.

The final layer of the network is the output layer, whose output is the CNN

predictions of the lens model parameters, given a lensed image. For an SIE lens, the

predicted parameters are the Einstein radius and the two ellipticity components, given

by

e1 =
1− q2

1 + q2
cos 2ϕ ,

e2 =
1− q2

1 + q2
sin 2ϕ ,

where ϕ and q are the orientation and axis ratio of the mass profile, respectively.

Where the power law profile has been used, the network also predicts the slope pa-

rameter, n. We refer the reader to Pearson et al. (2021) for further details of the CNN
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Figure 2.3: Layout of the CNN used in this work, detailing the six convolutional
layers, with dropout and batch normalisation, four max-pooling layers and two fully
connected layers. A flatten layer is used to connect the multidimensional data to the
1D fully connected layer. A ReLU activation function is used throughout. The kernel
sizes (in pixels) are given underneath each block. Further details can be found at the
end of Section 2.2.2.1. Figure reproduced from Pearson et al. (2021).
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architecture.

2.2.2.2 Uncertainties

Convolutional neural networks applied to regression problems are trained to predict

model parameters, but they do not offer a value of uncertainty on these values. In

recent years, work by (Gal & Ghahramani, 2016a,b; Kendall & Gal, 2017) has incor-

porated Bayesian statistics into neural networks, allowing the network’s weights to

vary according to a probability distribution, and thus obtain a posterior probability

and uncertainties on the predicted parameters. Work by Levasseur et al. (2017) ap-

plied these ideas to the problem of strong lens modelling, via the use of variational

inference. A discussion of the theory underpinning this can be found in Pearson et al.

(2021), with more detail being available within Levasseur et al. (2017).

2.2.2.3 Training

100,000 images were used to train the network, with a further 10,000 set aside for

validation data. The images were 100× 100 pixels, featuring a wide variety of source

types in order to be able to cope with a wide array of realistic sources (see Section

2.1.1). The two CNNs (one for SIE predictions and the other for power law predic-

tions), were trained in the same manner and featured identical architectures, except

for the inclusion of an extra output for the slope parameter in the case of the power

law model.

A GPU machine was employed, allowing for much faster processing than a typical

CPU machine. The CNN was trained over 150 epochs and this was completed in

under two hours.
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2.2.3 PyAutoLens + CNN

Parametric fitting with PyAutoLens allows for accurate modelling of the lens profile

and background source, with a great deal of flexibility in the chosen models. For

example, it is trivial to add new components to the lens model, such as external

shear, and there are no assumptions about the source morphology when using the

semi-linear inversion method. However, this comes with a relatively high cost of CPU

time and the need for the user to invest time in setting up the models. With our

expectations of discovering hundreds of thousands of strong galaxy-galaxy lenses with

upcoming surveys, we would like to retain the power and flexibility of parametric

modelling, whilst reducing the time spent by the user in setting up and maintaining

such large numbers of modelling runs. One can perform a kind of crude automation

with PyAutoLens by setting the priors to cover parameter space without basing them

on human inspection (i.e. “blind modelling”). In theory, this should allow for the

exploration of parameter space and convergence upon the global best fit, however,

in practice this leads to increased modelling times and an increase in the chances of

converging upon a solution representing a local minimum in χ2 (Maresca et al., 2020).

The opposite problem also exists; setting the widths of the priors to be too narrow,

when we don’t know precisely where in parameter space we should search, won’t allow

for the sampling algorithm to converge upon the correct solution.

A trained CNN represents a significantly faster and more automated alternative

to the approach of PyAutoLens, but the quality of the predictions from the CNN

is dependent upon a sufficiently varied and realistic training set. Shortfalls in the

training data, such as not including enough complexity in the background sources,

could lead to the CNN not being able to reach the high degree of accuracy that

PyAutoLens is capable of. However, we can leverage the strengths of both methods

by combining the fast predictions of the CNN with the flexible and accurate modelling
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of PyAutoLens.

Modelling a gravitational lens with PyAutoLens requires the user to set up prior

distributions on the lens model parameters, which are typically either uniform or

Gaussian distributions. The CNN can predict lens model parameters, along with

uncertainties on those values, opening up the potential for using this as a means of

initialising PyAutoLens. We propose two basic approaches to combining these meth-

ods: Firstly, we can use the CNN predictions to initialise the PyAutoLens lens model

with uniform prior distributions of some predetermined width, but centred on the

CNN predictions. Secondly, we can use the CNN predicted uncertainties to initialise

the PyAutoLens lens model with Gaussian priors, centred on the predicted values and

with the CNN predicted uncertainties defining the 1σ value of the distribution.

This combination of CNNs and parametric modelling has the potential to alle-

viate the shortcomings of each method. The CNN can vastly reduce the volume of

parameter space necessary for PyAutoLens to search, via the automatic initialisation

of sensible prior distributions, and PyAutoLens can provide a means of accurately

modelling complex lensing systems that may not be properly accounted for in the

training data of the CNN. In this manner, combining these two methods can lead to

a fully-automated lens modelling pipeline, capable of providing accurate results on

timescales that are acceptable when dealing with large numbers of newly discovered

lensing systems.

2.3 Results

In this section, we compare the performance of blind modelling with PyAutoLens

(PyAL (blind)) to that of the CNN for a range of test cases of varying complexity.

Additionally, we compare with the two techniques we have used for combining the
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CNN’s predictions with the creation of priors in PyAutoLens: the first method (PyAL

+ CNN) uses uniform priors of a predetermined width, centred on the CNN predic-

tions. The second method (PyAL + CNN (1σ)) uses Gaussian priors, centred on the

CNN predictions with a width set by the CNN predicted uncertainty. We experi-

mented with using twice the CNN predicted uncertainties as the 1-sigma widths of

the Gaussian priors, but found this to be too generous, causing a negative impact on

the results, and so have opted to not include those here. The prior distributions used

by the PyAL (blind) method were uniform over the full range of parameter space,

except for the Einstein radius, which used a uniform prior of width 0.4 arcseconds,

centred on the approximate Einstein radius, as discussed in Section 2.2.1. For the

PyAL + CNN method, we used uniform prior distributions, centred on the CNN pre-

dictions with bounds of ±0.2 arcseconds, ±40◦, ±0.1, and ±0.2 for Einstein radius,

orientation, axis ratio and slope, respectively.

In Sections 2.3.1 and 2.3.2, the modelling techniques are applied to simulated im-

ages containing SIE lenses, with parametric (Sérsic and Gaussian) and real HUDF

sources, respectively. In the case of HUDF sources, results are compared for lenses

with and without line-of-sight structure, and this is repeated for the case of power

law lenses in Section 2.3.3. In Section 2.3.4, the techniques are instead applied to

simulated images with complex lenses in the form of galaxies obtained from the EA-

GLE hydrodynamical simulation, again with HUDF sources and for those with and

without line-of-sight structure.

Throughout the remainder of this chapter, we quantify the error on predicted

lens model parameters by the 68 per cent confidence interval computed from the

distributions of differences between true and predicted parameter values across the

test image set.
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2.3.1 SIE Lenses + Parametric Sources

To begin with, we tested all of our methodologies on 1000 images with SIE lenses and

parametric sources. Half of these were Sérsic sources, with the other half being Gaus-

sian sources. We present the results in Figure 2.4 as distributions of the differences

between predicted values and true values for each mass model parameter. Fractional

differences are used for Einstein radius and axis ratio, whilst the absolute difference is

used for the orientation. Table 2.1 gives the 68 per cent confidence intervals of these

distributions. Scatter plots of predicted versus true values are given in Figure 2.4,

including the CNN’s predicted 1σ uncertainties. We can see from these results that

the CNN’s uncertainties are of a reasonable size and accurately capture its errors.

The large uncertainties on some of the CNN’s predictions of orientation are driven by

rounder lenses having less well-defined orientations.

PyAutoLens by itself, working in the PyAL (blind) mode, achieves a higher accu-

racy than the CNN for both the Einstein radius and orientation parameters. PyAL

(blind) suffers from significant numbers of outliers at ±90◦ in the prediction of orien-

tation (see Figure 2.4), which dramatically decrease its overall performance for this

parameter. The CNN slightly outperforms PyAL (blind) in its predictions of the axis

ratio. However, for all mass model parameters the combination of the two methods

does significantly better than PyAL (blind), with PyAL + CNN (1σ) achieving 36-44

per cent lower errors than PyAL (blind). There is also a significant benefit to using

the CNN’s predicted 1σ uncertainties as the basis of a Gaussian prior for PyAutoLens,

with 12-17 per cent lower errors for PyAL + CNN (1σ) compared to PyAL + CNN.

There are some observed biases in the distributions of these predictions, but they are

small enough to have negligible impact on modelling. The bias in Einstein radius is

approximately 0.2 per cent, whilst the bias in axis ratio is < 1 per cent.
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Figure 2.4: Left column: error distributions for the SIE mass model parameters for a
test data set of 1000 images with parametric sources (500 Sérsic and 500 Gaussian).
Einstein radius and axis ratio are given as fractional errors, whilst orientation is given
as an absolute error. Right column: Comparison of the predicted vs true value for the
same test data set, for each parameter. Figure reproduced from Pearson et al. (2021).

Table 2.1: SIE lenses + parametric sources. The 68 per cent confidence intervals on
predicted parameters for each modelling method, computed from the distributions of
differences between true and predicted parameter values across 1000 test images.

Method θE (arcsec) ϕ (◦) q
CNN 0.0090 4.92 0.018
PyAL (blind) 0.0089 4.44 0.027
PyAL + CNN 0.0065 2.81 0.021
PyAL + CNN (1σ) 0.0055 2.47 0.017
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2.3.2 SIE Lenses + HUDF Sources

Our next series of tests involved replacing the simple parametric sources with real

HUDF ones. We also investigated the impact of adding line-of-sight structure to the

lensing simulations. The results from modelling images without LOS structure are

shown in Figures 2.5. The results containing LOS structure are shown in Figures 2.6.

The 68 per cent confidence intervals are given in Table 2.2.

Examining the results for images without line-of-sight structure, we see that in

general, the accuracies for all methodologies have dropped in comparison to the images

with parametric sources. As before, the CNN accuracy is lower for the Einstein

radius and orientation, whilst performing better than PyAL (blind) when determining

the axis ratio. Once again, we see that the two methods incorporating the CNN’s

predictions into PyAutoLens outperform either method in isolation. PyAL + CNN

(1σ) errors are 31-39 per cent lower than PyAL (blind). Likewise, in Figure 2.5,

we continue to see significant numbers of underpredicted axis ratios in the results

of PyAL (blind); these results correlate with under-predicted Einstein radii, and are

not dependent upon lensing configuration, but rather are likely due to MultiNest

converging upon an unphysical source reconstruction, as discussed in Maresca et al.

(2020); as such, the methods that restrict parameter space using priors informed by

the CNN’s predictions, do not suffer from this issue.

The inclusion of line of sight structure into the images has the effect of generally

decreasing the accuracy for all results, with errors increasing by factors of 2.2, 8.2

and 2.3 on average for Einstein radius, orientation and axis ratio, respectively. This

behaviour is expected, since the inclusion of extra mass along the LOS increases the

complexity of the lensing system and this will not be properly accounted for by a

single smooth parametric profile. As described in Section 2.1.2, we defined the “true”
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parameters for these systems by fitting an SIE model to the convergence maps of

the SIE profile and LOS structure. Of particular note is the fact that the CNN was

not trained on any images containing HUDF sources or LOS structure, and yet it

still performs comparatively well as an automated modelling method on its own or in

conjunction with PyAutoLens.

Here, the CNN outperforms the other methods in its predictions for Einstein ra-

dius, achieving errors 10 per cent lower than PyAL + CNN (1σ), but this combined

method continues to provide the best results for axis ratio and orientation. The overall

difference in performance between each of the methods is less pronounced when com-

pared to the results for images without LOS structure. Compared to PyAL (blind)

the errors are reduced by 9-28 per cent, 11-17 per cent, and 16-21 per cent for the

CNN, PyAL + CNN, and PyAL + CNN (1σ), respectively. The CNN’s predicted

uncertainties for images with LOS structure are not always reflective of its actual

error, due to the lack of images with LOS structure in the CNN training set.

2.3.3 Power Law Lenses + HUDF Sources

We present the results of our lens modelling tests, but this time with power law

lenses. Here, a nearly identical version of the CNN was used, with one extra output

for predicting the power law slope, n, along with its 1σ uncertainty, and the training

and testing data was composed of power law mass profiles. The 68 per cent confidence

intervals are given in Table 2.3. Figure 2.7 presents results for images without LOS

structure, while figure 2.8 presents those containing LOS structure.

Figures 2.7 and 2.8 highlight the difficulty of predicting the slope parameter of

the power law model. PyAL + CNN (1σ) achieved the highest accuracy, but with

significant scatter in its predictions. This extra degree of freedom, and the degeneracy
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Table 2.2: SIE lenses + HUDF sources. The 68 per cent confidence intervals on
predicted parameters for each modelling method, computed from the distributions of
differences between true and predicted parameter values across 1000 test images.

Method θE (arcsec) ϕ (◦) q
Without LOS structure
CNN 0.013 6.10 0.029
PyAL (blind) 0.013 4.22 0.038
PyAL + CNN 0.010 3.02 0.030
PyAL + CNN (1σ) 0.009 2.57 0.026
With LOS structure
CNN 0.021 30.7 0.067
PyAL (blind) 0.029 33.8 0.077
PyAL + CNN 0.026 28.0 0.068
PyAL + CNN (1σ) 0.023 27.1 0.065
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Figure 2.5: Left column: error distributions for the SIE mass model parameters for a
test data set of 1000 images containing HUDF sources and no line-of-sight structure.
Einstein radius and axis ratio are given as fractional errors, whilst orientation is given
as an absolute error. Right column: Comparison of the predicted vs true value for the
same test data set, for each parameter. Figure reproduced from Pearson et al. (2021).
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Figure 2.6: Left column: error distributions for the SIE mass model parameters for
a test data set of 1000 images containing HUDF sources and line-of-sight structure.
Einstein radius and axis ratio are given as fractional errors, whilst orientation is given
as an absolute error. Right column: Comparison of the predicted vs true value for the
same test data set, for each parameter. Figure reproduced from Pearson et al. (2021).
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between n, q, and θE, leads to generally worse performance at predicting the other

lens model parameters compared to the SIE lenses; for increasing true slope values,

predicted slopes in general go from over- to under-predicted, while the opposite occurs

for axis ratio predictions. The errors increased by factors of 1.2-2.9 and 1.1-4.2 for test

sets with and without LOS structure, respectively. While the scatter in the power law

results is larger than that of SIE lenses, the CNN’s predicted uncertainties remain

a generally accurate reflection of its errors for both lenses with and without LOS

structure.

Regarding the images without LOS structure, the errors of PyAL + CNN (1σ) are

5-39 per cent lower than those of PyAL + CNN, and 32-62 per cent lower than those

of PyAL (blind). Meanwhile, the CNN alone achieves errors comparable to PyAL

(blind), from 19 per cent lower to 13 per cent larger. We see from Figure 2.7 that

a significant number of the predicted orientations from PyAL (blind) are offset by

±90◦, whereas the frequency of this occurring is greatly reduced when incorporating

the CNN predictions into PyAutoLens’s prior setup. These results once again highlight

the power of combining machine learning methods with parametric modelling.

With LOS structure, the CNN and PyAL + CNN (1σ) methods reduce errors by

23-35 per cent and 27-36 per cent compared to PyAL (blind) respectively. As before,

with the SIE lenses and LOS structure, the difference between the CNN and PyAL

+ CNN (1σ) methods is less pronounced than for the images not containing LOS

structure; the PyAL + CNN (1σ) method obtains only 0.3 - 14 per cent lower errors

than the CNN, compared with the 28 - 66 per cent improvement obtained for images

without LOS structure. Similarly, the incorporation of 1σ uncertainties into the priors

of PyAutoLens only serves to reduce the errors by 5-12 per cent over the PyAL +

CNN method. The errors on the lens model parameters, when compared to the images

without LOS structures, increase by factors of 1.6, 9.2, and 1.3 for Einstein radius,
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orientation and axis ration, respectively, whilst the errors on the slope parameter

actually decreased by 18 per cent. Generally speaking, the modelling methods tend

to over-estimate the slope values (i.e. more centrally concentrated lenses), so the

inclusion of LOS structure away from the central lens may be acting to reduce the

inferred value and thus decrease the overall error in these results.

2.3.4 EAGLE Lenses + HUDF Sources

Our final set of test images were created with complex lenses, that do not follow an

analytic profile, taken from the EAGLE hydrodynamical simulation. Once again, we

created two sets of 1000 test images, which were identical apart from the inclusion of

LOS structure, as was previously done for the parametric lenses. The“true”parameter

values for these lenses were set by fitting the known convergence maps with an SIE

mass profile. Figures 2.9 and 2.10 display the accuracies for each modelling method,

with corresponding scatter plots in Figs 2.9 and 2.10, in the same format as previous

results.

It is worth noting that the EAGLE galaxy lenses modelled here have, on average,

smaller Einstein radii than those lenses discussed in previous sections (see Section

2.1.2), resulting in more pixelated lensed arcs. It is therefore expected that all of our

modelling methods will produce higher errors on the parameters, in addition to the

increased complexity of modelling the non-parametric mass distributions. However,

when analysing the results of lenses with θE > 1.3, as is the case for our other

test sets, we see much larger errors than those seen previously, suggesting that the

dominant source of error is the complexity of the lens distribution rather than the

smaller Einstein radii.

With no LOS structure, the CNN outperforms PyAL (blind), achieving 36-55 per
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Table 2.3: Power law lenses + HUDF sources. The 68 per cent confidence intervals
on predicted parameters for each modelling method, computed from the distributions
of differences between true and predicted parameter values across 1000 test images.
The final column contains the confidence intervals for the power law slope parameter.

Method θE (arcsec) ϕ (◦) q n
Without LOS structure
CNN 0.050 7.37 0.083 0.27
PyAL (blind) 0.065 6.53 0.106 0.29
PyAL + CNN 0.049 2.63 0.080 0.25
PyAL + CNN (1σ) 0.029 2.50 0.062 0.20
With LOS structure
CNN 0.070 32.2 0.093 0.19
PyAL (blind) 0.091 44.1 0.143 0.26
PyAL + CNN 0.068 34.1 0.096 0.19
PyAL + CNN (1σ) 0.060 32.1 0.091 0.18
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Figure 2.7: Left column: error distributions for the power law mass model parameters
for a test data set of 1000 images containing HUDF sources and no line-of-sight
structure. Einstein radius, slope, and axis ratio are given as fractional errors, whilst
orientation is given as an absolute error. Right column: Comparison of the predicted
vs true value for the same test data set, for each parameter. Figure reproduced from
Pearson et al. (2021).
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Figure 2.8: Left column: error distributions for the power law mass model parameters
for a test data set of 1000 images containing HUDF sources and line-of-sight structure.
Einstein radius, slope, and axis ratio are given as fractional errors, whilst orientation
is given as an absolute error. Right column: Comparison of the predicted vs true
value for the same test data set, for each parameter. Figure reproduced from Pearson
et al. (2021).
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cent lower errors than the latter method. Here, the performance of PyAL + CNN (1σ)

achieves similar results to the CNN, giving 30-58 per cent lower errors than PyAL

(blind). However, this method does not outperform all the CNN based methods for

all parameters: For Einstein radius and orientation, PyAL + CNN (1σ) achieves

11-22 per cent and 2-7 per cent lower errors compared to PyAL + CNN and the

CNN, respectively, but for axis ratio the PyAL + CNN and CNN methods instead

achieve 2.7 and 9.6 per cent lower errors than PyAL + CNN (1σ). This behaviour

may be explained in part by the under-prediction of axis ratio (see Figure 2.9) by our

modelling methods. This is likely due to a combination of the fact that these complex

foreground galaxies can have axis ratios that are a function of radius, and that fewer

smooth arcs are produced than the data on which the CNN was trained. It is also clear

from both Figures 2.9 and 2.10, that the CNN has underpredicted its uncertainties,

particularly in the case of the Einstein radius. This will have a knock-on effect to the

achieved accuracy of the PyAL + CNN (1σ) method.

For our final test set of images, containing LOS structure, PyAL + CNN (1σ)

achieves the lowest errors for all parameters, but is broadly comparable to the perfor-

mance of the CNN’s results, with only an improvement of 0.4-7 per cent over the latter

method. Consequently, their improvements over PyAL (blind) are near identical, at

28-48 per cent and 28-47 per cent, for PyAL + CNN (1σ) and the CNN respectively.

We continue to see an improvement in our results by incorporating the CNN’s pre-

dicted uncertainties into our PyAutoLens prior models, which reduce errors by 6-28

per cent compared with PyAL + CNN. The inclusion of LOS structure in these im-

ages has a much smaller impact than the complex nature of the EAGLE galaxy lenses

themselves, with errors a factor of 1.3, 1.5 and 1.0 larger than for images without LOS

structure for Einstein radius, orientation and axis ratio, respectively. Including LOS

structure, when compared to SIE lenses with LOS structure, the errors are factors of
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2.2, 0.5 and 1.8 larger for Einstein radius, orientation and axis ratio; this is contrasted

with factors of 3.9, 3.1, and 4.2, for Einstein radius, orientation, and axis ratio when

there is no LOS structure.

2.3.5 Modelling Speed

One of the key benefits to incorporating the CNN into our parametric modelling

approach is the reduction in CPU time required to model a strong gravitational lens

system. The distributions of the time taken by each modelling approach are shown

in Figure 2.11, for the SIE lenses with HUDF sources, SIE lenses with HUDF sources

and LOS structure, and EAGLE galaxy lenses with HUDF sources and LOS structure.

We do not include distributions for the CNN modelling time, as these are almost

instantaneous.

Figure 2.11 clearly demonstrates the computational benefits of providing the CNN

predictions to PyAutoLens for all three test data sets. PyAL + CNN achieves mod-

elling speeds that are factors of 1.34, 1.08 and 1.14 times faster than PyAL (blind),

whilst PyAL + CNN (1σ) achieves speeds 1.56, 1.37, and 2.25 times faster. The most

significant improvements are obtained by using the CNN’s predicted 1σ uncertainties

to construct Gaussian priors in PyAutoLens, with particular benefits coming to the

modelling of EAGLE galaxy lenses. Each of the modelling methods suffer from some

outliers that take significantly longer to complete, however, PyAL + CNN (1σ) has

far fewer and less severe outliers when compared to PyAL (blind). By applying priors

that better constrain parameter space, PyAutoLens is able to converge upon a solution

faster, as it spends less time exploring unhelpful regions of parameter space and is

less likely to converge upon solutions corresponding to local minima in χ2. This boost

to computational efficiency relies on the selection of priors that accurately constrain
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Table 2.4: EAGLE galaxy lenses + HUDF sources. The 68 per cent confidence
intervals on predicted parameters for each modelling method, computed from the
distributions of differences between true and predicted parameter values across 1000
test images.

Method θE (arcsec) ϕ (◦) q
Without LOS structure
CNN 0.035 8.70 0.108
PyAL (blind) 0.064 19.56 0.170
PyAL + CNN 0.044 9.12 0.116
PyAL + CNN (1σ) 0.034 8.12 0.119
With LOS structure
CNN 0.046 12.6 0.114
PyAL (blind) 0.070 23.8 0.157
PyAL + CNN 0.060 15.4 0.121
PyAL + CNN (1σ) 0.043 12.4 0.114
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Figure 2.9: Left column: error distributions for the SIE mass model parameters for a
test data set of 1000 images containing EAGLE galaxy lenses, HUDF sources and no
line-of-sight structure. Einstein radius, and axis ratio are given as fractional errors,
whilst orientation is given as an absolute error. Right column: Comparison of the
predicted vs true value for the same test data set, for each parameter. Figure repro-
duced from Pearson et al. (2021).
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Figure 2.10: Left column: error distributions for the SIE mass model parameters for a
test data set of 1000 images containing EAGLE galaxy lenses, HUDF sources and line-
of-sight structure. Einstein radius, and axis ratio are given as fractional errors, whilst
orientation is given as an absolute error. Right column: Comparison of the predicted
vs true value for the same test data set, for each parameter. Figure reproduced from
Pearson et al. (2021).
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parameter space; in the case of the EAGLE galaxy lenses, the CNN under-predicted

its 1σ uncertainties and so the priors applied within PyAutoLens were likely too re-

strictive, making it difficult for the proper exploration of parameter space around

the correct solution. This problem is compounded by having too narrow priors that

are not necessarily centred on the correct solution. Had this not been the case, we

would expect to see a greater improvement to the modelling times and more accurate

modelling results.

2.4 Discussion

We have compared the accuracy of a variety of automated approaches for modelling

many thousands of simulated images of galaxy-galaxy strong lenses, using both SIE

and power law mass models. The test sets had steadily increasing complexity and re-

alism, beginning with parametric lenses and sources, and graduated to HUDF sources,

and EAGLE galaxy lenses with line-of-sight-structure. We explored the feasibility of

combining our CNN approach with that of PyAutoLens’ semi-linear inversion imple-

mentation to produce a truly automated lens modelling pipeline that is both faster

and more accurate than PyAutoLens alone. We examined two approaches to achieving

this: One that uses the CNN predicted parameter values to centre uniform priors of a

fixed width and pass these onto PyAutoLens, and another that also incorporates the

CNN predicted 1σ uncertainties to define a Gaussian prior that can be applied to the

PyAutoLens model.
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Figure 2.11: Distributions of the time taken by PyAutoLens to model the set of lenses
making up a given test case. The distributions for PyAL (blind), PyAL + CNN and
PyAL + CNN (1σ) are shown, but not the distribution of the CNN itself as this
is almost instantaneous. From top to bottom: SIE lenses with HUDF sources, SIE
lenses with HUDF source and LOS structure, and EAGLE galaxy lenses with HUDF
source and LOS structure. Figure reproduced from Pearson et al. (2021).
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2.4.1 Modelling Accuracy

In the simplest case of SIE lenses and parametric sources, all the methods we have

considered perform extremely well, with errors below 0.01 arcsecond, 5◦ and 0.03 for

Einstein radius, orientation and axis ratio, respectively. The story remains the same

when we replace the background source with HUDF galaxies, with errors below 0.015

arcseconds, 7◦ and 0.04, respectively. In these test cases, the CNN’s performance

is comparable to that of PyAL (blind), however, we see a dramatic reduction in

error when we combine our techniques, with PyAL + CNN (1σ) errors 37 per cent

lower than PyAL (blind) on average. Incorporating the CNN’s uncertainties into

PyAutoLens’s priors leads to an improvement of 15 per cent over the errors of PyAL

+ CNN.

The modelling of power law profiles is significantly more challenging, and as such,

we see a decrease in accuracy for all methods, with errors from 0.03 to 0.065 arcsec-

onds, 2.5 to 7.4◦, 0.06 to 0.11, and 0.2 to 0.3 for Einstein radius, orientation, axis

ratio and slope, respectively; these correspond to factors of 1.1 to 4.2 times larger

than when modelling an SIE profile. The scatter in predicted slope values is large for

all our modelling methods, but we see significant improvements when combining the

CNN with PyAutoLens, with PyAL + CNN (1σ) errors decreasing by 5-39, 28-66, and

32-62 per cent compared to PyAL + CNN, the CNN, and PyAL (blind), respectively.

The introduction of significant LOS structure complicates the results, increasing

errors by factors of 2.2-8.2 for SIE lenses and by 1.3-9.2 for power law lenses. PyAL

+ CNN (1σ) and the CNN have comparable performance here, but both show signif-

icant improvement over PyAL (blind), with 27-36 per cent and 23-35 per cent lower

errors, respectively. No accommodation for the LOS structure, such as allowing for an

external shear or convergence field, was added into the model fitted by PyAutoLens,
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and so it is no surprise that the performance was negatively impacted. Likewise, the

CNN was not trained on images containing LOS structure, nor to predict external

shear or convergence.

We see similar trends between each of the methods for the data set composed of

EAGLE galaxy lenses. With no LOS structure, PyAL + CNN (1σ) achieves 30-58 per

cent lower errors than PyAL (blind), whilst the CNN’s errors are 36-55 per cent lower

than PyAL (blind). With the inclusion of LOS structure, PyAL + CNN (1σ) and the

CNN have almost identical improvements over PyAL (blind), with 28-48 per cent and

28-47 per cent lower errors. Even though the CNN was not trained on EAGLE galaxy

lenses, or images containing LOS structure, it continues to be a powerful tool that

can be used to enhance the performance of parametric modelling. The error in lens

model parameters is seemingly dominated by the complexity of the lens galaxy, as the

inclusion of LOS structure has a less pronounced effect, increasing errors on average

by factors of 1.0 to 1.5. Further improvements to the performance of PyAL + CNN

(1σ) would likely be made if the issue of the CNN underpredicting its uncertainties

was addressed, through a more complete training set.

2.4.2 Modelling Speed

Not only does the combination of the CNN and PyAutoLens lead to an increase in

accuracy, but it also results in faster modelling times than PyAutoLens alone. PyAL

+ CNN and PyAL + CNN (1σ) have modelling speeds factors of 1.19 and 1.73 times

faster compared to PyAL (blind). The incorporation of more well-defined priors helps

to reduce the number of outlier lenses that take large amounts of time to model;

additionally, the problem of PyAutoLens converging upon local minima solutions is

mitigated by the more restrictive priors. In this sense, the CNN can effectively replace
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the need for significant human inspection and intervention in lens modelling, which is

especially important in light of dealing with the expected large volume of data with

upcoming surveys.

2.4.3 Modelling Difficulties and Limitations

As our results show, modelling power law profiles is more challenging than SIE profiles.

The difficulty in accurately predicting slope values led to slight biases in our results,

with over-predicted Einstein radii and under-predicted axis ratios. Our SIE results

are, in general, unbiased, however, there exist a significant number of lenses where

PyAL (blind) has under-predicted the Einstein radii and axis ratios. This behaviour

is linked to PyAutoLens converging upon local minima corresponding to unphysical

source reconstructions. These outliers are not seen in our other modelling methods,

exemplifying the power of the CNN to constrain the parameter space.

The inclusion of LOS structure can simulate a lens residing within a galaxy group,

with many tens of galaxies along the line-of-sight. This added complexity made lens

modelling challenging with both the SIE and power law profile. The replacement of

the parametric main lensing galaxy with hydrodynamical EAGLE galaxies further

increased the difficulty of lens modelling. These lensing systems had fewer smooth,

well-defined arcs, which can worsen the degeneracy between axis ratio and orientation

(Mukherjee et al., 2018). Furthermore, these lenses had generally smaller Einstein

radii than the parametric lenses, and thus produced smaller, more pixelated arcs,

which provide less information for lens modelling. A key difficulty in accurately re-

covering the axis ratio of EAGLE galaxies is due to the fact that the axis ratio is

able to vary as a function of radius of the galaxy. Additionally, many of these lenses

contained notable substructure in their convergence maps, and as such, obtaining the
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“true” parameter values via fitting to the convergence map proved difficult.

In this work, we have used a lower limit on magnification in order to ensure that

strongly-lensed images are produced, focusing on sources in regions of higher mag-

nification, and producing only around 30 - 40 per cent of double image lens-source

configurations. It is, however, expected that doubles will dominate the discoveries of

lensed systems in future surveys. We investigated the performance of the lens mod-

elling methods for 100 doubles and 100 non-doubles, in the SIE lens and HUDF source

test set. Errors in Einstein radii and axis ratios for doubles, were factors of 2.1 and 1.9

times larger, respectively, than non-doubles. Orientation errors were on average 0.8

times that of non-doubles, which were more likely to be near-complete Einstein rings

with high axis ratios. Whilst the modelling errors depended upon whether a double-

image was being examined, the relative performance of each methodology considered

here remained much the same.

An important consideration for producing a fully automated lens modelling

pipeline is the potential contamination from incorrectly identified lensing systems.

PyAutoLens would likely produce extremely low evidence values if it attempted to fit

a lens model to a non-lensed image, which could be used to indicate an issue with

the process. The CNN, however, was not trained on such images and so its reaction

to them is unknown. It may be that the predicted errors from the CNN would

drastically increase, and this could be used to flag an issue with the data, but such

investigation is left to further work.

2.5 Summary

Strong gravitational lensing is a unique and powerful tool for studying galaxy evolu-

tion, probing high-redshift source populations, and constraining cosmological models.
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Our current catalogue of strong lensing systems is relatively small, but we expect it to

grow to many tens of thousands of systems, thanks to upcoming large-scale surveys.

Current lens modelling techniques, such as the parametric fitting of PyAutoLens re-

quire significant time investment from the user to setup and avoid common pitfalls

during the modelling process, in addition to being relatively computationally slow.

As a result, convolutional neural networks have been used to recover lens mass model

parameters extremely efficiently, once the CNN has been properly trained.

In this work, we have compared the performance of an approximate Bayesian

convolutional neural network with the semi-linear inversion technique of PyAutoLens

for an array of increasingly complex lens simulations. These simulations included SIE

and power law profiles, EAGLE galaxy lenses and line-of-sight structure. In addition

to comparing these two methods, we explored the possibilities of combining them to

leverage both of their strengths. We investigated two ways of doing this, one which

made direct use of the CNN’s predicted uncertainties to form priors and another that

used priors of a fixed width.

Our results show that on average, the CNN’s performance is comparable to that of

PyAL (blind) for the majority of tests. This reflects the fact that PyAutoLens requires

manual inspection of the images to properly constrain the lens model parameters and

perform at its best. Combining these two methods, using only the CNN’s predicted

value and a fixed width prior, PyAL + CNN outperforms PyAL (blind), with errors

27 ± 11 per cent lower across the parameters. Additionally, the combination of these

two modelling approaches leads to a speed-up of modelling times by a factor of 1.19.

This method, however, is often matched in performance by the CNN.

The most significant improvement is attained when the CNN’s predicted uncer-

tainties are folded into the construction of PyAutoLens’s priors, PyAL + CNN (1σ).

The CNN’s predicted uncertainties are able to constrain the parameter space that
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PyAutoLens must search, and this helps to ensure convergence upon the correct solu-

tion. This combined methodology achieves significantly higher accuracies than either

method alone. The errors on PyAL + CNN (1σ) are 37 ± 11 per cent lower across the

parameters compared to PyAL (blind), 17 ± 21 per cent lower compared to the CNN,

and 13 ± 9 per cent lower compared to PyAL + CNN. This combination of the two

techniques outperforms PyAL (blind) in all cases, as well as the CNN in the majority

of testing scenarios. In addition to achieving the highest accuracy, modelling speeds

are improved by a factor 1.73 on average across all test sets, compared to those of

PyAL (blind). Particularly in the case of EAGLE galaxy lenses, the CNN tended to

under-predict its uncertainties, leading to narrower than optimal priors. Addressing

this issue would likely see even greater improvements to these results be realised.

Whilst the CNN’s modelling speed makes it an attractive option for dealing with

large numbers of newly discovered lenses, the fundamental limitation to its success

lies in the quality of the training data. The complications and artefacts likely to be

present in real data represent a significant challenge to overcome due to the difficulty

in identifying poor fits to the data. However, the CNN still performed reasonable well

when applied to the EAGLE lenses in this work, whilst having not been trained on

such lenses. The PyAL + CNN (1σ) combination represents a promising automated

modelling method that retains the flexibility and robustness of parametric modelling,

whilst benefiting from the speed and accuracy of the CNN predictions. Rather than

thinking of parametric modelling and machine learning techniques as adversarial tech-

niques, this work highlights the potential for combining the two.



Chapter 3

Auto-identification of unphysical source

reconstructions

As was discussed in Chapter 2, the number of strong lensing systems we know of is

still relatively small, measuring in the hundreds. This is set to change in the coming

years, with two significant surveys coming online: Euclid (Laureijs et al., 2011b); and

the Vera Rubin Legacy Survey of Space and Time (LSST; Ivezic et al., 2008). It is

expected that these surveys will discover many tens of thousands of lensing systems

(Collett, 2015b); for this reason, the development of fast, automated, and accurate

pipelines for finding and modelling strong lenses is of great importance. In Chapter

2, we explored the idea of combining machine learning approaches to lens modelling

with those of parametric modelling; we used an approximate Bayesian neural network

to predict lens model parameters and their 1σ uncertainties, which could then be

used to initialise a subsequent round of modelling with PyAutoLens. We showed

that the combination of these two techniques leveraged each of their strengths and

formed a tool more accurate than either acting on their own. This represents a

promising approach to fast, automated lens modelling. In this chapter, we aim to
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address a common issue with parametric modelling, again through the application of

machine learning methods, to further enhance the capabilities and robustness of a

truly automated lens modelling pipeline.

When dealing with the lensing of an extended source, we wish to reconstruct both

the source’s intrinsic brightness distribution and model the mass distribution of the

lens galaxy. One such method is that of semi-linear inversion (Warren & Dye, 2003), a

technique that reconstructs the pixelised source in a linear step for a given lens model.

This technique has been placed within a Bayesian framework for optimising the model

evidence (Suyu et al., 2006), and more recent implementations reconstruct the source

on an irregular grid of pixels that can adapt to the lens magnification or the source

surface-brightness (Nightingale & Dye (2015); Nightingale et al. (2018); see Section

1.7 for a detailed description of the method). Another method for reconstructing the

intrinsic source makes use of the family of polynomials known as shapelets (Birrer

et al., 2015). An analytical reconstruction of the source can be formed using a small

subset of these polynomials, leading to a reduced number of source parameters (Tagore

& Jackson, 2016). Convolutional Neural Networks (CNNs) have been used to reliably

and automatically recover the mass-model parameters of galaxy-galaxy strong lenses

in orders of magnitude less time than traditional parametric techniques (Hezaveh

et al., 2017b; Pearson et al., 2019, 2021). Furthermore, advancements have been

made in the application of neural networks for reconstructing the background source

of a strongly lensed system (Morningstar et al., 2019).

Techniques that model the lens mass with a parametric density profile remain a

necessary and indispensable tool. There are significant difficulties involved in creating

unbiased and sufficiently varied training sets for CNNs to learn from. This is a par-

ticular problem in the case of lensed high-redshift sources, where the source light is

likely to be highly irregular. In addition, contamination of a lens data-set by objects
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such as galaxy mergers and ring galaxies poses a problem for CNN based methods. In

these circumstances, a CNN will produce a set of lens model parameters without any

indication of failure, whilst parametric modelling techniques will fail to fit the data

since they operate within the context of physically-motivated density profiles and are

bound by the multiple imaging constraints of a real lens. Typically, it has been nec-

essary to rely upon parametric techniques to obtain a robust measure of uncertainties

on the lens parameters. Recently, however, methods for obtaining the uncertainties on

CNN predicted parameters have been developed (Levasseur et al., 2017; Park et al.,

2021).

A particular issue for methods based on the pixelised source reconstruction is

the existence of unphysical solutions (see Section 3.1 for details). Such solutions are

perfectly valid, providing excellent fits to the data, and can be challenging for sampling

algorithms to avoid. An unsupervised modelling run can spend large amounts of time

exploring the parameter space around these solutions and never converge towards

the true parameter values. These solutions can be avoided with careful tuning of

the model parameters, but this represents a significant investment of time for each

system being modelled. For this reason, we have developed a CNN based approach to

recognise these unwanted solutions and a simple prescription for updating the priors

in our model to aid convergence towards the true solution. In this manner, we can

iteratively improve our lens model by identifying and avoiding reconstructions that

correspond to under and over-magnified solutions.

This chapter is organised as follows: Section 3.1 describes the occurrence of un-

physical solutions in the modelling process and their properties. Section 3.2 discusses

the methodology for simulating the required images of strongly lensed galaxies, and

the processes involved to create source reconstructions from these images. Addition-

ally, an overview of the CNN architecture is provided, with details on how the network
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was trained and the manner in which the CNN was used in conjunction with our mod-

elling process. The results of applying this technique to our testing set of data are

presented in Section 3.3. Finally, the results in this work are discussed along with our

conclusions in Section 3.4. Throughout this chapter, we assume a flat ΛCDM cosmol-

ogy using the 2015 Planck results (Planck Collaboration et al., 2016), with Hubble

parameter h = 0.677 and matter density parameter Ωm = 0.307.

3.1 Erroneous Solutions and Their Inversions

One of the key motivations for using the Semi-linear inversion method is the reduced

computational complexity of the lens modelling process. Using analytic profiles to

model the complex source light of a lensed galaxy can require exploring a highly mul-

tidimensional parameter space. Not only does this increase the likelihood of inferring

a solution corresponding to a local maximum in evidence, but can also lead to biasing

of the lens model due to constraints on the light profiles. Semi-linear inversion allows

us to reconstruct the source light distribution in a linear step and since this distribu-

tion is pixelised, it is not constrained by an analytic profile. It does however introduce

a new set of problems for the modelling process, namely under and over-magnified

solutions.

These so-called under-magnified and over-magnified solutions can be understood

in terms of the inferred amount of mass in the model lens galaxy. Here, we use the

Einstein radius as a proxy for the mass of a galaxy. Ideally, the modelling process

will converge upon the true value of the Einstein radius, along with the other model

parameters, and the reconstructed source will reproduce the unlensed features of the

source galaxy. If, however, the modelling process converges upon a solution with too

small an Einstein radius, the resultant deflection angles will also be under-estimated.
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This leads to the formation of an under-magnified image of the observation itself.

Similarly, a model with too large an Einstein radius will over-estimate the deflection

due to the lens. This will lead to an over-magnified, but this time, parity inverted

image of the source. Fig. 3.1 illustrates this point with stylised ray diagrams for each

class of source reconstruction we are considering.

Whilst these erroneous source reconstructions are obviously not the physical so-

lution we are looking for, they exist nevertheless and can provide excellent fits to

the data, thus posing a challenge for sampling algorithms to avoid them. Fig. 3.2

shows an example of another set of source reconstructions for a simulated observa-

tion. Here, we also show the residual and chi-squared maps for each reconstruction,

showing the quality of the fit to the data. The Bayesian evidence is comparable for

the under-magnified solution and the correct solution, whilst it is significantly lower

for the over-magnified case. Generally speaking, we find that the under-magnified so-

lution is much more probable to occur than the over-magnified one. This is likely due

to the regularisation employed in the semi-linear inversion process. Regularisation

serves to penalise overly complex solutions, which is certainly a characteristic of the

over-magnified solution. In addition to regularisation reducing the likelihood of this

solution, it can often be excluded by sufficiently accurate masking of the lens system.

Provided the mask used when modelling the system does not extend considerably far-

ther than the image separation, it can be used to set the upper-bound on the Einstein

radius prior.

It is usually clear to the experienced modeller when something has gone wrong

and an erroneous source reconstruction has been produced. It is not however so easy

to discriminate between these solutions programmatically. Multiple techniques can be

employed to avoid these solutions; careful tuning of the prior distributions on the lens

model parameters is effective but time-consuming. For this reason, it is not a suitable



3.1. Erroneous Solutions and Their Inversions 111

O
bservation

R
ay D

iagram
Source R

econstruction

Under-magnifiedOver-magnified Correct

F
igu

re
3.1:

F
rom

left
to

righ
t:

O
rigin

al
ob

servation
,
ob

server,
len

s
galax

y,
sou

rce
galax

y,
recon

stru
cted

sou
rce.

F
rom

top
to

b
ottom

:
u
n
d
er-m

agn
ifi
ed

solu
tion

,
correct

solu
tion

,
over-m

agn
ifi
ed

solu
tion

.
N
ote

th
e
sim

ilarities
in

stru
ctu

re
b
etw

een
th
e

u
n
d
er-m

agn
ifi
ed

solu
tion

an
d
th
e
origin

al
ob

servation
.
B
oth

im
ages

h
ave

sim
ilar

m
orp

h
ology,

b
u
t
d
iff
eren

t
an

gu
lar

ex
ten

ts.
It

is
m
ore

ch
allen

gin
g
to

see
th
e
sim

ilarities
b
etw

een
th
e
over-m

agn
ifi
ed

solu
tion

an
d
th
e
origin

al
ob

servation
,
b
u
t
it
is
clear

th
at

th
e
ex
ten

d
ed

arc
in

th
e
n
orth

of
th
e
ob

servation
is

b
ein

g
rep

ro
d
u
ced

in
th
e
sou

th
of

th
e
recon

stru
ction

,
illu

stratin
g

th
e
p
arity

in
verted

n
atu

re
of

th
e
solu

tion
.
T
h
e
len

sed
im

age
of

each
of

th
e
recon

stru
cted

sou
rces

con
sid

ered
h
ere

is
alm

ost
in
d
istin

gu
ish

ab
le

from
th
e
ob

served
im

age.



112 Chapter 3. Auto-identification of unphysical source reconstructions

Observation Source Reconstruction Residual Map  Mapχ2

U
nd

er
-m

ag
ni

fie
d

C
or

re
ct

O
ve

r-m
ag

ni
fie

d

Figure 3.2: Column 1 contains a simulated observation of a lensed galaxy. Column 2
contains the source reconstructions for three classes of solution (under-magnified: row
1, correct: row 2, over-magnified: row 3). Column 3 contains the residual maps (model
image - observation) for each class of solution. Column 4 contains the chi-squared
maps (the squared significance of the residuals) for each class of source reconstruction.
The lensed images of each class of source reconstruction demonstrated here are almost
indistinguishable from the observed image.
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method for dealing with the large numbers of lensed galaxies we expect to encounter

in the coming years. Another possibility, which has the benefit of being automatic,

is to create a pipeline of models that first fits an analytic light profile to the source

galaxy and then uses the results of this fit to initialise the priors in the inversion

process (Nightingale et al., 2018). By requiring a compact source in the initial phase

of modelling, the aim is to infer a lens model sufficiently accurately to effectively

rule out regions of parameter space that would correspond to under or over-magnified

solutions. This lens model, along with new priors on its parameters, is then used

in the inversion process to refine the lens model and more accurately fit the source

galaxy’s light. The complex morphology of high-redshift sources poses a challenge for

fitting the data with an analytic light profile, which can lead to a poorly constrained

or entirely wrong lens model. If the inferred lens parameters used to initialise the

model in the inversion process are of poor quality, then the modelling can once again

fail at this step. Even if a fit with an analytic source profile provides a reasonable

initialisation for the inversion process, it is challenging to constrain the width of the

subsequent prior distributions such that erroneous source reconstructions are ruled

out but feasible lens models that fit the more complex source are not. Our approach

to this challenge is to use a CNN that can accurately classify source reconstructions

as successful or under/over-magnified. In this way, we completely remove the need

to assume an analytic light profile for the source, since we can throw away unwanted

solutions in the inversion process that do not correspond to a compact reconstructed

source. Furthermore, we have developed a simple method for updating the model

to move away from these unwanted solutions towards the correct parameters. This

technique requires no human intervention and the CNN classification step is extremely

fast (<1s).
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3.2 Methodology

The CNN described in this work requires training data consisting of labelled source

reconstructions and residual images. To produce these data, it was first necessary to

create a large number of simulated strong gravitational lens images. We used the lens

modelling software PyAutoLens 1 (Nightingale & Hayes, 2020; Nightingale & Dye,

2015; Nightingale et al., 2018) to produce our simulated images and to perform the

source reconstruction. MultiNest (Feroz et al., 2009) was used for the exploration

of parameter space where a full analysis of the data was carried out. The modelling

process produces the residual images between the simulated observations and the

reconstructed model image that we need for training the CNN. In Section 3.2.1 we

describe our procedures for generating the simulated strongly lensed images. Section

3.2.2 details our method for generating the source reconstructions and residual images

required for training our neural network. We then describe the CNN architecture used

in this work in Section 3.2.4. The process used to update the prior distributions on

the model, based on the CNN predictions is then detailed in Section 3.2.5.

3.2.1 Lensing Simulations

In this work, we have assumed that all the foreground deflectors are early-type galax-

ies, and so we have adopted the Singular Isothermal Ellipsoid (SIE) mass profile

(Keeton, 2001). For the light profile of the background lensed galaxies, we have opted

to use the Sérsic profile since it can represent a wide variety of galaxy morphologies.

The data sets generated for this work were simulated to have distributions of

parameters similar to those observed in the Sloan Lens ACS (SLACS) survey (Bolton

et al., 2006). The Einstein radius θE and axis ratio q of our lensing galaxies were drawn

1https://github.com/Jammy2211/PyAutoLens
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Figure 3.3: A selection of simulated images produced for this work, used for creating
pixelised source reconstructions to train a CNN. All images have a pixel scale of 0.1
arcsec pixel−1 and each image’s color scale has been normalised to the peak signal of
the image.
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from distributions fitted to the measurements of 131 strongly lensed galaxies observed

in the SLACS survey (Bolton et al., 2008), whilst the orientation ϕ was allowed to

vary uniformly over the full range. The Einstein radii of our lenses were drawn from

a normal distribution with mean µ = 1.16 and a standard deviation σ = 0.42. The

axis ratios of our SIE profiles were randomly sampled from a normal distribution with

mean µ = 0.80 and standard deviation σ = 0.16, in close agreement with empirical

studies (Koopmans et al., 2006b). In all cases, the centroid of the lens was placed in

the centre of the image. In this work, we did not include light from the lens galaxies

in the simulations.

As with the lenses, the parameters describing our source galaxy Sérsic profiles were

randomly sampled from fitted distributions. In this case, we used the inferred Sérsic

parameters from the parametric source reconstructions of a subset of the SLACS lenses

(Newton et al., 2011). The Sérsic indices n, of our sources, were randomly drawn from

an exponentially modified Gaussian distribution, with a probability density function

of the form

f(x;µ, σ, λ) =
λ

2
Exp

(
λ

2
(2µ+ λσ2 − 2x)

)
erfc

(
µ+ λσ2 − x√

2σ

)
(3.1)

with scale parameter λ = 0.723, mean µ = 0.71, standard deviation σ = 0.97, and

erfc representing the complementary error function. The effective radii reff of our

sources were randomly sampled from an exponential distribution with scale parameter

λ = 6.64. We allowed the axis ratio of the sources qs to vary uniformly over the range

[0.3, 1]. The overall intensity normalisation I of the sources was drawn from a uniform

distribution I ∼ U [10, 20] electrons s−1, allowing for a wide variety of signal-to-noise

ratios in our training data. The centroid of each source was uniformly distributed in

the source plane, with the requirement that it lay inside the Einstein radius of the
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lens (i.e. that there are multiple images).

In the production of our simulated images, we opted to use the pixel scale of the

VIS instrument for Euclid (0.1 arcsec pixel−1) and the characteristic exposure time

of 565 seconds (Cropper et al., 2016). The lensed image was then convolved with a

Gaussian point spread function with a full-width at half-maximum of 0.17 arcseconds.

A background sky of 1 electron s−1 and Poisson noise due to the background sky and

source light photon counts were added to the images, thus completing the simulation

procedure. Some examples of our simulated images are shown in Fig. 3.3.

3.2.2 Training Data

The CNN was not trained directly on the simulated images, but rather the pixelised

source reconstructions and residual images obtained from the modelling process. Be-

fore the modelling began, each simulated image needed to be masked to ensure that

only the area of interest was reconstructed in the source plane and to reduce the

computational load. Due to the large number of simulated images, an automated

masking scheme was used. Firstly, the images were thresholded using the minimum

cross-entropy approach (Li & Lee, 1993). Then, the centroid of this thresholded image

was found through calculating its moments. A circular annular mask, centred on the

centroid of the image, was then fitted to the thresholded pixels. For the inner radius

of the annulus, the largest radius circle that did not contain any unmasked pixels was

found, and 90 per cent of this value was used. Similarly, for the outer radius, the

smallest circle containing all the unmasked pixels was computed, and 110 per cent of

this value was used. These adjusted values for the inner and outer radii of the mask

were used to minimise the chances of masking out faint emission from the source.

These masked images were then modelled using PyAutoLens to produce the pix-
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elised source reconstructions and residual images that we need for training our CNN.

In all cases, we adopted the SIE mass profile to model the lens galaxy. We recon-

structed the background source on a pixelised grid that adapts to the magnification of

the system. For each simulated lensed image, we created three source reconstructions

and three residual images, corresponding to the under-magnified, over-magnified, and

correct solutions. This resulted in approximately 300,000 images to be used as training

data for our network. To deal with such a large computational task, it was necessary

to employ some approximate methods in the source reconstruction/lens modelling

process.

For 250 of our simulated images, we performed a full analysis of the data, opti-

mising the lens model and source parameters in the inversion process. In each case,

the analysis had to be repeated three times, to produce the under-magnified, correct

and over-magnified source reconstructions. When modelling each of these systems, we

allowed the mass-model parameters to vary uniformly over the full range of parame-

ter space with the exception of the Einstein radius. To produce an under-magnified

source reconstruction, we set a uniform prior distribution on the Einstein radius with

an upper limit of 0.9 times the true value for the system, thus forcing PyAutoLens to

find the under-magnified solution. To produce source reconstructions corresponding

to the correct model, we allowed the Einstein radius to vary over a small range cen-

tred on its true value, guaranteeing that a sensible source reconstruction is produced.

Finally, to produce over-magnified source reconstructions, we allowed the Einstein

radius to vary over a range of 1.1 times the true value up to 3 times this value, again

forcing PyAutoLens to find the over-magnified solution. In this manner, we built up

an understanding of the properties of each class of source reconstruction.

In these tests, we observed that the mean fractional error in Einstein radius when

producing an under-magnified source reconstruction is f̂θE ≈ −0.5. As expected, we
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observed no significant bias in the Einstein radius, or any of the other parameters,

when using a model with priors accurately centred on the true parameter values. The

mean fractional error in Einstein radius when producing over-magnified reconstruc-

tions was f̂θE ≈ 2. A scatter plot of the true value of Einstein radius versus the

inferred value for each class of source reconstruction is shown in Fig. 3.4 along with

the coefficients of a linear fit to the data. These fitted parameters allowed us to de-

fine an approximate transformation of the Einstein radius, taking us from one class

of source reconstruction to another. We found that the Einstein radius was the key

parameter in controlling which class of source reconstruction was obtained. Fig. 3.5

shows that in both cases of erroneous source reconstructions, the axis ratio of the lens

is most often under-estimated, but it does not follow an easily predictable pattern in

the same way as the Einstein radius. Fig. 3.6 shows that there is no apparent rela-

tionship between the inferred orientation of the mass profile and its true value when

either the under-magnified or over-magnified solution is found.

The relationship between the unphysical reconstructions and the correct solution

allowed us to rapidly generate source reconstructions without the need for a full op-

timisation of the lens model. Fig. 3.4 shows how the predicted value of the Einstein

radius relates to the true value in each of the three classes of source reconstruction we

are considering here. The coefficients of a linear fit to the data allow us to construct

an approximate transformation of the predicted Einstein radius to the true value

for a given system. As expected, in the case of successful source reconstructions,

the inferred value for the Einstein radius very closely matches the true value. The

under-magnified solutions have inferred Einstein radii, θ̂U that can be approximated

as θ̂U ≈ 0.46θE − 0.08, where θE is the true value for the system. Similarly, in the

case of over-magnified solutions, the inferred Einstein radii θ̂O can be approximated

as θ̂0 ≈ 2.11θE + 0.16. Using these approximate transformations, along with the true
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Figure 3.4: The relationship between the true value of θE and the predicted value θ̂E
follows a predictable pattern for each class of source reconstruction. In each case, the
coefficients of a linear fit are shown; These are used to construct the transformation
of the prior distribution on θE to converge upon the correct solution.

Table 3.1: Summary of the approximate transformations of Einstein radius, linking
the inferred values in a given class of solution to the true value.

CNN Prediction Transformation Updated Prior

Under θ = 1
0.46

(θ̂U + 0.08) θE ∼ U [θ ± 0.25]
Recon θ = θR θE ∼ U [θ ± 0.25]

Over θ = 1
2.11

(θ̂O − 0.15) θE ∼ U [θ ± 0.5]
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Figure 3.5: The relationship between the true axis ratio of the lens q and the inferred
value q̂ for each class of source reconstruction. For successful source reconstructions, q
and q̂ are directly proportional to one another, but in the case of under/over-magnified
solutions there is no obvious trend aside from a tendency for q̂ to under-estimate q.
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Figure 3.6: Successful source reconstructions accurately recover the lens orientation,
ϕ, whilst under/over-magnified solutions infer a value ϕ̂ that appears to have no
relationship to ϕ.
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parameters describing the lens, we identified the regions of parameter space where we

expect each class of source reconstruction to occur. Keeping the position, axis ratio

and orientation of the lens fixed to the truth, we varied the Einstein radius around

its expected value and computed the linear inversion for each sample. The inversion

achieving the highest evidence is considered to be the solution, and we record the

source reconstruction and residual image for our catalogue of training data.

3.2.3 Testing Data

A portion of the training data, produced as described in Section 3.2.2, was set aside for

evaluating the CNN’s performance after training. These simple source reconstructions

allowed us to test the network on a set of images with similar properties to the training

data. In addition, to explore whether our CNN trained on reconstructions of simple

parametric sources would be capable of classifying the reconstructions of more complex

lensed sources, we produced SIE-lensed images of high redshift galaxies extracted

from the Hubble Ultra Deep Field (HUDF; Beckwith et al., 2006b). For this, we

used the Pipeline for Images of Cosmological Strong lensing (PICS; Li et al., 2016b),

simulating images to have the expected properties of Euclid VIS data (Cropper et al.,

2016; Niemi, 2015). A sample of these simulated images is displayed in Fig. 3.8. For

each of these simulated images, we produced a source reconstruction corresponding

to the under-magnified, over-magnified and accurate solution, following the same full

analysis procedure described in Section 3.2.2. These source reconstructions, along

with the residual images of the models that produced them, were used to test the

CNN’s classification ability on significantly more complex images than it was trained

on. A sample of the accurate HUDF source reconstructions is shown in Fig. 3.9.
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Figure 3.7: A one dimensional slice through Einstein radii values (normalised by the
true Einstein radius), with all other mass model parameters fixed to their true values.
Shown below from left to right: Under-magnified source reconstruction, successful
source reconstruction, over-magnified source reconstruction.

Figure 3.8: A selection of simulated SIE lenses with HUDF background sources, used
to test the performance of the CNN on complex reconstructions. All images have a
pixel scale of 0.1 arcsec pixel−1 and each image’s colour scale has been normalised to
the peak signal of the image.
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Figure 3.9: A selection of accurate source reconstructions of SIE-lensed HUDF galax-
ies. These reconstructions were used to test CNN performance on more complicated
sources than the simple parametric sources used to create its training sample.
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3.2.4 CNN Architecture

For a general discussion of CNNs and their operation, see Section 1.8.1. In this section,

we describe in detail the architecture of the CNN used to carry out the work described

in this chapter.

The network we built to classify our source reconstructions has a forked design,

with two input paths. Each path consists of three convolutional layers and three max-

pooling layers. The outputs of both paths are concatenated, before being flattened

and fed into two fully connected layers. Dropout is employed between each layer to

improve the network’s resistance to over-fitting and the Leaky Rectified Linear Unit

activation (Leaky ReLU; Nair & Hinton, 2010) function is used everywhere except

for the final layer which employs the Sigmoid activation function. The Leaky ReLU

activation function allows a small positive gradient for negative input values.

The tuneable hyperparameters for our network, such as the number of convolu-

tional layers, the size of the kernels and the dropout rates were set by a process of

hyperparameter optimisation. We opted to use Talos (Autonomio, 2019) to automate

the evaluation of model performance. In order to explore the very large parameter

space, it was necessary to down-sample and look at a small fraction of combinations

of parameter values. Once a rough estimate of hyperparameters had been obtained,

a more thorough search was carried out in a smaller region of parameter space.

The network aims to predict the category of source reconstruction that a given

input belongs to. To train the network, pairs of source reconstructions and the corre-

sponding residual images are fed into the network in batches. The error on a prediction

is determined via the categorical cross-entropy loss function (LOSS),

LOSS = −
3∑
i=1

yi · logŷi (3.2)
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where yi is the target value and ŷi the predicted value. The network optimisation

used the Nadam optimiser, which is a combination of stochastic gradient descent and

Nesterov momentum (Dozat, 2015). The CNN was trained and tested on a GPU

machine, vastly improving the time taken to process large numbers of images. The

training took place over 50 epochs, using 120,000 pairs of images.

The weights and biases of the network are summarised as follows:

• Convolutional layer: For an input image of height x1 and width x2, the input

is an (x1, x2, 1) matrix. The output of a convolutional layer is an (x1, x2, N)

matrix, where N is the number of output filters applied in the convolution.

Training adjusts the biases and weights for each filter, but their values remain

fixed during each iteration. Each kernel of dimension (k1, k2) has an associated

bias, giving a total of k1 × k2 ×N weights and N biases for each convolutional

layer. The exact dimensions of each kernel are given in Fig. 3.10.

• Max-pooling layer: Pooling applies a 2 × 2 kernel with a stride of two, resulting

in an output of dimension (⌊x1/2⌋, ⌊x2/2⌋) for an input of (x1, x2).

• Concatenate: After the three convolutional layers in each input path of the

network, the outputs are concatenated to form a tensor with dimensions (13,

13, 256).

• First fully connected layer: The input is a flattened 43,264-node array, whilst

the output is a 512-node array. Accordingly, there are 43, 264×512 weights and

512 biases.

• Final layer: The input is an array with 512 nodes, whilst the output is a 3-node

array (one node for each class of source reconstruction), hence there are 512 ×

3 weights and 3 biases.
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Figure 3.10: Structure of the CNN used in this work, showing the two input images
and their respective paths in the network. There are six convolutional layers, each
with max-pooling and dropout. A concatenation and flatten layer is included to join
the outputs of the dual convolution pathways and connect this tensor with a 1D dense
layer. LeakyReLU is used throughout the network, except for the activation of the
final layer, which uses the Sigmoid activation function. The types of layers in the
network at each step are given, along with the size of the kernel in pixels. The output
dimensions are indicated above each block. A more detailed description can be found
at the end of Section 3.2.4.
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• There are a total of 5,820,323 trainable parameters.

3.2.5 Combining CNN and Lens Modelling

The trained CNN is capable of taking a source reconstruction and a residual image,

both of which are outputted in the lens modelling process, and returning an accu-

rate prediction of whether the correct lens model has been found, or whether an

under/over magnified solution has been identified. This prediction, along with the

knowledge of how the inferred Einstein radius relates to each class of solution, allows

us to automatically correct the modelling process when erroneous solutions are found.

Using the approximate transformations given in Table 3.1 we can update the model’s

prior distribution on θE for subsequent modelling. In this way, we aim to improve

the robustness of our modelling process against unwanted solutions and reduce the

amount of human intervention required to produce accurate lens-models and source

reconstructions. When considering the predictions of our CNN, we will use the ab-

breviation UM to refer to a predicted under-magnified solution, OM for a predicted

over-magnified solution and C for when the network predicts a correct reconstruction.

To test this hybrid approach to lens modelling, we simulated a new set of 100

lensed images, following the approach detailed in Section 3.2.1. We used PyAutoLens

to model each system, conducting a full analysis, allowing all the SIE mass-model

parameters to vary and reconstructing the background source on a magnification

based Voronoi grid (see Section 1.7). For all the mass-model parameters, as well

as the source plane pixelisation parameters, we opted to use uniform distributions

covering a suitable range of parameter space. We chose a uniform prior distribution

for the position of the lens centroid, centred on the true value with a width of 0.6

arcseconds. In the case of the orientation ϕ of the lens, we allowed the full range of
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values ϕ ∼ U [0, π] radians. The axis ratio of the lens, q was able to vary over the

full range of values included in the simulations q ∼ U [0.25, 0.999]. Again, the prior

distribution of the Einstein radius θE followed a uniform distribution constrained only

by the dimensions of the annular mask (computed according to the criteria detailed in

3.2.2, θE ∼ U [rmin, rmax]. Such an approach to modelling the data was taken to show

the extremes of how things can go wrong without some tuning of the priors before

modelling begins. Furthermore, this serves to illustrate the problems experienced by

sampling algorithms when exploring large and complex parameter spaces.

Once this initial round of modelling was completed, the source reconstruction and

residual images were fed into our CNN to obtain a prediction on whether the modelling

had been successful or not. The next step in the process depends on the prediction

of the CNN, as follows:

• UM prediction: The modelling process is repeated with an updated prior distri-

bution on the Einstein radius. This new prior is defined in Table 3.1. The prior

distributions on the other free parameters were left unchanged.

• C prediction: In this instance, we choose to repeat the modelling process with a

decreased evidence tolerance and a narrowed uniform prior distribution centred

on the inferred values from the previous modelling run. The goal of this repeated

run is to more thoroughly explore the parameter space around the accepted

solution and improve the accuracy of the model.

• OM prediction: The modelling process is repeated with an updated prior distri-

bution on the Einstein radius, whilst leaving everything else unchanged. This

new prior is defined in Table 3.1.

After this additional stage of modelling, the updated source reconstructions and

residual images were fed into the CNN once more, providing a new prediction for each
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system. With this information, we proceeded similarly to before, but now we take

into account the history of results for each system.

• UM prediction:

– If the previous prediction was also UM, then the system is flagged for

manual intervention at a later time. This indicates that the process for

updating the priors was unable to move the model away from this solution,

or that the CNN has misclassified a reconstruction.

– If the previous prediction was OM, this indicates that the prior update has

’overshot’ the C solution, and so a uniform prior on the Einstein radius is

chosen to lie between the two previous values. The width of the prior was

set such that it excludes the regions of parameter space that corresponded

to the previous under and over-magnified solutions.

• C prediction:

– If the previous prediction was UM, as before, we chose to repeat the mod-

elling process with a decreased evidence tolerance and use narrowed uni-

form prior distributions centred on the inferred values from the previous

modelling run.

– if the previous prediction was C, no further action required.

– If the previous prediction was OM, again, we choose to repeat the modelling

process with a decreased evidence tolerance and use narrowed uniform prior

distributions centred on the inferred values from the previous modelling

run.

• OM prediction:
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– If the previous prediction was also OM, then the system is flagged for

manual intervention at a later time. This indicates that the process for

updating the priors was unable to move the model away from this solution,

or that the CNN has misclassified a reconstruction.

– If the previous prediction was UM, this indicates that the prior update

’overshot’ the correct solution and so a uniform prior on the Einstein radius

is chosen lying between the two previous values. The width of the prior is

set such that it excludes the regions of parameter space that corresponded

to the previous UM and OM solutions.

This process can be repeated many times until an acceptable fraction of the CNN’s

predictions are that the correct model has been found. In practice, due to the crude

nature of the prior-updating routine, there are diminishing returns on repeated cy-

cles. The systems that become manually flagged during this process will need human

intervention to guide the modelling to a suitable solution, but the overall load on the

modeller is greatly reduced.

3.3 Results

In this section, we present the results of testing our CNN on the reserved data-set,

evaluating its performance on a per-class basis. We show that the CNN performs

exceptionally well at the task of classifying source reconstructions. Additionally, we

show the result of modelling 100 simulated observations using the procedure outlined

in Section 3.2.5. This set of images were simulated according to the procedures out-

lined in subsection 3.2.1. Here, we opted to apply our iterative approach three times,

observing good progress towards a complete sample of successfully modelled lenses

with each step.
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3.3.1 CNN performance

The CNN was trained on 130,000 pairs of source reconstructions and residual images,

for 50 epochs. 10,000 pairs of source reconstructions and residual images were used

as validation data throughout the training process. To further increase the variety in

the training data, augmentation techniques were employed. Each pair of images was

randomly reflected horizontally, vertically or rotated through an angle. The remaining

6,928 pairs of images were reserved as a testing set to evaluate the performance of the

network on never before seen images once training had completed.

Fig. 3.11 shows the confusion matrix C for the CNN evaluated on the testing

data set. The elements of this matrix are defined such that Ci,j contains the number

of true objects of class i predicted to be in class j. Thus, the diagonal elements of

C represent the correctly labelled instances and the off-diagonals where the network

has incorrectly labelled an observation. The values displayed in C are normalised

over the rows. The CNN’s recall or ability to find all samples of a particular class

is above 99.9 per cent in all cases, and performed perfectly on our test set for both

under and over-magnified source reconstructions. Similarly, our CNN’s precision, or

ability to not label a sample of Y as X is greater than 99.9 per cent in all cases, with

a perfect score in the case of successful source reconstructions. i.e, only successful

source reconstructions were labelled as such. These results are summarised in Table

3.2.

As a further test of the CNN’s ability to accurately classify source reconstructions,

we applied it to the more complex HUDF source reconstructions described in Section

3.2.3. Here, the CNN gave predictions on 100 each of under-magnified, over-magnified

and accurately reconstructed sources. We found that our CNN correctly classified

87 per cent of the under-magnified reconstructions, whilst misclassifying them as
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Table 3.2: Summary of key performance statistics for our CNN applied to testing
data.

Precision Recall F1-score Support
UM 0.9996 1.000 0.9998 2277
C 1.0000 0.9991 0.9996 2341
OM 0.9996 1.0000 0.9998 2310

Figure 3.11: Confusion matrix for the CNN when tested on 6,928 never seen before
pairs of source reconstructions and residual images for a simple Sérsic source. The
confusion matrix has been normalised over its rows.
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Figure 3.12: Confusion matrix for the CNN when trained on reconstructions of Sérsic
sources and tested on reconstructions of HUDF sources. The confusion matrix has
been normalised over its rows.
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correctly reconstructed 8 per cent of the time, and incorrectly classifying 5 per cent

of them as over-magnified. The CNN gave accurate predictions for 87 per cent of

the correctly reconstructed sources, whilst incorrectly labelling 10 per cent as under-

magnified and 3 per cent as over-magnified. Finally, the CNN correctly labelled 93 per

cent of the over-magnified reconstructions, with just 3 per cent incorrectly labelled as

under-magnified and 4 per cent mislabelled as accurate reconstructions. These results

are summarised in Fig. 3.12. The performance of the CNN on this complex dataset

is remarkably good, given the simplicity of the reconstructed sources in the training

data.

3.3.2 Performance of PyAutoLens combined with CNN

Here, we describe the results of applying our CNN to blindly modelled data. For this,

we have used our simulated images of Sérsic sources. We describe the process of using

our CNN predictions to automatically adjust the prior distributions on the Einstein

radius in three subsequent rounds of modelling.

The results of this are presented in Fig. 3.13. The initial modelling of this set of

100 lenses was carried out with no prior information on the lens model parameters

and as such, under-magnified solutions have dominated the output. The bottom-right

histogram in Fig. 3.13 shows how the proportion of different source reconstructions

changes with each iteration of modelling according to our CNN predictions. Initially,

our CNN identifies 88 models as UM, 11 as OM, and just 1 is identified as C. This is

reflected in the error distributions for the key SIE mass model parameters. The top-

left distribution in Fig. 3.13 shows the fractional error in Einstein radius fθ for all 100

systems. There is a very significant peak in the initial data at fθ = −0.45, represent-

ing the large number of under-magnified solutions, and thus under-estimated Einstein
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radii. We also see in the top-right distribution of Fig. 3.13 the significant bias towards

under-estimating the axis ratio of the lens. The bottom-left distribution, showing the

absolute error on the inferred orientation of the lens, reflects the seemingly random

relationship between the erroneous models and the true lens orientation. Labelled as

rerun 1, rerun 2, and rerun 3, we show that the application of our CNN and prior up-

dating routine to these results leads to a huge improvement in recovering the true lens

parameters for the sample. After rerun 1 has been completed, much of the bias in the

Einstein radii fractional error distributions is removed, though there is still significant

density in regions indicating under and overestimation of its value. Similarly, in the

case of the axis ratio, a clear peak around fq = 0 has been formed, removing much

of the probability mass in the under-estimate region of before. The inference of the

orientation of the lens has also been greatly improved, as we would expect by increas-

ing the number of successfully modelled systems. These results are reflected in the

bottom right histogram of Fig. 3.13, showing that the proportion of successful source

reconstructions has increased from 1 to 52, according to our CNN predictions. The

number of under-magnified reconstructions has been decreased by 68, down to just

20. The frequency of over-magnified solutions has increased, however, suggesting that

our scheme for updating the Einstein radius prior has ’overshot’ the correct solution

in some cases. Rerun 2 increases the number of successful reconstructions by a small

margin, but mostly results in moving solutions from the over-magnified category into

the under-magnified category. Significant improvements are made in the final round of

modelling, rerun 3, by considering the history of models for each case. For a system

that has models that have previously been classified as under-magnified and over-

magnified, we can search parameter space between the inferred Einstein radii values

and hopefully converge upon the correct solution. In all the error distributions for the

mass-model parameters, we see improvements, i.e. taller, narrower peaks centred on
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zero. After the final round of modelling, we achieved a decrease of 69 per cent in the

occurrence overall of unphysical source reconstructions. The final count of successful

source reconstructions stands at 70, with 17 under-magnified and 13 over-magnified

solutions. In principle, we could continue with this process until we no longer see any

improvement in the number of successful source reconstructions being identified by

the CNN, or all systems that have not been labelled as C become flagged for manual

inspection.

3.4 Conclusions

Strong gravitational lensing allows us to probe the mass distributions of the lensing

galaxy as well as the properties of the background sources. Upcoming surveys such as

LSST and Euclid are expected to observe in excess of one hundred thousand strong

gravitational lenses. To deal with this huge amount of data, it is necessary to develop

fast, robust and automatic lens modelling pipelines that do not require significant

time investment from humans for each system. For this reason, we constructed a

CNN to detect when the modelling process has gone awry and developed a simple

scheme for automatically adjusting the prior distribution on the Einstein radius to

guide the sampler to the correct solution. Simulated images with the resolution and

expected seeing characteristics of the Euclid VIS instrument were created, to be used

as inputs for the production of source reconstructions. We chose to simulate all of our

lenses as SIEs and used Sérsic profiles for our sources. In both cases, we used realistic

distributions of parameters that matched those observed in the SLACS survey. From

these simulated images, we produced three source reconstructions for each observation

corresponding to the under/over magnified solution and the correct solution. These

source reconstructions, along with the residual images for the model were used to
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Figure 3.13: Top row: Fractional error distributions for the SIE mass model param-
eters, θE and q after successive rounds of modelling. Bottom left: Absolute error
distribution for the SIE mass model parameter ϕ after successive rounds of modelling.
Bottom right: Histogram of the CNN’s predictions for how the fraction of successful
source reconstructions changes with successive rounds of modelling.
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train a CNN to classify source reconstructions. We then blindly modelled 100 strong

lenses, reconstructing the background sources on a Voronoi grid. The CNN was used to

detect the kind of source reconstruction that had been produced, and this information

coupled with a simple scheme for updating the prior distribution on the Einstein radius

was used to improve upon the fraction of successfully modelled systems.

We find that our CNN is capable of extremely accurate identification of under-

magnified, successful and over-magnified reconstructed sources. The network achieves

a precision and recall over 99.9 per cent, as well as an f1-score, or harmonic mean of

the precision and recall, greater than 0.99 across all classes of source reconstruction.

In addition to identifying the class of solution that has been found, we have shown

that a simple procedure for updating the model based on its predicted class can lead

to significant improvements in the outcomes of blind modelling without the need for

human intervention throughout the process.

The success of our CNN in this task suggests that our procedure for generating the

source reconstructions, omitting the full exploration of parameter space, has not neg-

atively impacted its ability to perform the task. The axis ratio of the SIE mass-model

corresponding to an erroneous solution tends to be under-estimated. Our network is

trained on source reconstructions produced by fixing the axis ratio to its true value.

This leads to the network being trained on images produced by less elliptical lens

models than it might encounter when being tested upon a freely varied model.

It is possible that incorporating the information regarding erroneous source re-

constructions tendency to have an under-estimated lens axis ratio could lead to im-

provements in our procedure for updating the model priors. An approach that uses

a Gaussian prior to bias towards higher values of q, but with a standard deviation

large enough to easily allow the exploration of the lower end of parameter space is

something that could be investigated.
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We have also tested our CNN, trained on reconstructions simple Sérsic sources,

on reconstructions of images generated using real sources extracted from the HUDF.

The CNN continued to perform well, showing that it can generalise to a more complex

dataset without any retraining. There is however an obvious detriment to the perfor-

mance of the network, and so the construction of a more complex training set would

likely be beneficial. Before this technique can be applied to real data, further investi-

gations into how our simplifications affect the network’s performance are needed. One

such simplification that we made was to omit lens light from our simulated images.

Even in the best possible scenario of lens light removal, its presence will affect the

noise characteristics of the image, which can impact the source reconstruction. Re-

alistic features in our simulated images such as cosmic rays and hot pixels were not

considered. Increased complexity of the sources in our training data would be required

to deal with the variety of real images that might be observed and to minimise the

performance decrease due to an overly simplified training set. Furthermore, a wider

variety of mass models, the inclusion of substructure and deflectors along the line of

sight would be required to create more realistic lensing scenarios. The question of

how well this method of applying CNN predictions to parametric models generalises

to real data requires further investigation.
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Modelling high-resolution ALMA

observations of strongly lensed dusty

star forming galaxies detected by

Herschel

As already discussed in Chapter 1, SMGs play a key role in our overall picture of

galaxy evolution. Similarities in their size, number density and clustering properties

with quiescent galaxies at low redshifts (e.g., Simpson et al., 2014; Toft et al., 2014) is

suggestive of an evolutionary connection (An et al., 2019; Dudzevičiūtė et al., 2020).

An explanation for how the population of SMGs became the red and dead population

of massive elliptical galaxies observed in the local Universe is underpinned by the

process of gas quenching and the mechanism of gas-poor mergers (Oogi & Habe, 2012;

Guo & White, 2008; Lapi et al., 2018). Although considerably less abundant, Ultra

Luminous Infrared Galaxies (ULIRGs) found in the local Universe are often seen as

analogues to high-redshift SMGs due to their strongly dust-obscured UV luminosities,
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high infrared luminosities, and comparable bolometric luminosities (Alaghband-Zadeh

et al., 2012; Rowlands et al., 2014), and as such ULIRGs can provide useful insight

into the processes at play in SMGs.

The study of high-redshift sub-mm galaxies has benefited greatly from the advent

of large interferometric arrays such as the Atacama Large Millimeter/Sub-millimeter

Array (ALMA) (Wootten & Thompson, 2009), which allow observations to reach res-

olutions of < 0.1 arcsec and thus probe previously unreachable physical scales. Strong

gravitational lensing provides a further boost in spatial resolution due to the magnifi-

cation of the background source, which is typically within the range of 5-10 for SMGs

(Spilker et al., 2016; Bussmann et al., 2013; Bussmann et al., 2015). In addition, there

exists a strong lensing bias in the sub-mm regime (see Chapter 1 for a more detailed

explanation). Using this technique, follow-up ALMA observations of strongly lensed

sub-mm galaxies detected in wide area surveys, such as the Herschel Astrophysical

Terahertz Large Area Survey (H-ATLAS; Eales et al., 2010), have contributed to a

rapidly increasing understanding of galaxy formation in its early stages (Dye et al.,

2018; Sun et al., 2021; Harrington et al., 2021; Cañameras et al., 2017a,b). Most

existing observations have mainly targeted extremely luminous sources, but with the

increased sensitivity of instruments such as ALMA, it has become possible to inves-

tigate more typical main-sequence star-forming galaxies which are responsible for the

bulk of the Universe’s star formation at z ∼ 3.

High-resolution sub-mm follow-up observations of lensed SMGs not only allow

for more precise determination of the lens mass distribution, but also allow intrinsic

properties of the source – such as its luminosity, SFR, and gas and dust mass – to be

better characterised. Indeed, investigating properties such as these will be the main

motivation of this chapter. A classic example of this approach is the lensed system

SDP.81, first discovered within the H-ATLAS sample and then observed with ALMA
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(ALMA Partnership et al., 2015; Dye et al., 2015; Rybak et al., 2015a; Rybak et al.,

2015b; Negrello et al., 2010). Studies of the molecular gas and dust in lensed sub-mm

galaxies have been used to constrain models of star formation in the early Universe

(Dye et al., 2022a; Cava et al., 2018; Dessauges-Zavadsky et al., 2019). Recent studies

have begun to reveal the compact nature of dust in SMGs (Puglisi et al., 2019; Tadaki

et al., 2020) which indicate a disparity in size when compared with local ULIRGs.

Reconstruction of the background lensed source from interferometer observations

can be achieved with two distinct approaches. There are methods that model the

visibilities directly in the uv-plane (Bussmann et al., 2012; Bussmann et al., 2013;

Dye et al., 2018), and those that model the cleaned image plane data (Dye et al.,

2015; Inoue et al., 2016; Yang et al., 2019) (see Chapter 1 for a discussion of lens

modelling in both the image and uv plane, along with a description of how images

are formed from interferometer datasets). The benefit of working in the image plane

is that the task is significantly less computationally expensive; however, due to the

incomplete coverage of the uv-plane, spatially correlated noise is introduced which

can in principle bias the inferred lens model, as we will discuss in Chapter 5. Working

directly with the visibility data avoids this problem, at the cost of longer modelling

times.

In this work, we carry out lens modelling in the uv-plane of seven galaxies ob-

served with ALMA. Four of these systems are galaxy-galaxy scale, and the remaining

three are group-scale lenses. These systems were originally detected by Herschel

within H-ATLAS and the extension to the HerMES field, HerMES Large Mode Sur-

vey (HeLMS) (Asboth et al., 2016; Nayyeri et al., 2016). We investigate the intrinsic

source properties, namely, their luminosities, SFRs, and gas and dust masses by de-

termining the magnification factors. Additionally, we investigate the morphologies of

the reconstructed sources.
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The layout of this chapter is as follows: Section 4.1 describes the ALMA observa-

tions and other sources that were drawn upon for this work. Section 4.2 details the

methodology of our lens modelling, and Section 4.3 presents the results of our work.

In Section 4.4 we compare our results to other similar studies. Finally, in Section 4.5

we summarise our findings and discuss their interpretation. Throughout this chapter,

we assume a flat ΛCDM cosmology using the 2015 Planck results (Planck Collabora-

tion et al., 2016), with Hubble constant H0 = 67.7 kms−1Mpc−1 and matter density

parameter Ωm = 0.307.

4.1 Data

The seven ALMA observations modelled in this work are from the ALMA programme

2013.1.00358.S (PI: Stephen Eales) and are described in detail within Amvrosiadis

et al. (2018). The observation targets for the original ALMA programme were selected

from the H-ATLAS and HeLMS surveys for having the brightest 500 µm flux densities

(> ∼130 mJy) and with spectroscopic redshifts > 1, with the exception of HeLMS

J235331.9+031718. Originally, 42 sources were identified in this way, but only 16 had

follow-up ALMA observations. Of the 16 sources observed during ALMA cycle 2, 14

exhibit obvious lensing features. Six of these remaining 14 sources have already been

modelled in the work of Dye et al. (2018), and are all galaxy-galaxy scale lenses; one

of them we leave for future work, and the remaining seven are modelled in this work.

Due to the timings of when the ALMA observations were carried out, it was natural

to split the sample, leading to all the group scale lenses being dealt with in this work.

Of these seven sources, one was identified in H-ATLAS, whilst the remaining six are

from HeLMS.

The spectral setup employed by ALMA was identical for each of the lensing systems
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observed. The band 7 continuum observations were comprised of four spectral win-

dows, each with a width of 1875 MHz and centred on the frequencies 336.5 GHz, 338.5

GHz, 348.5 GHz and 350.5 GHz. The central frequency of 343.404 GHz corresponds

to a wavelength of 873 µm. Each spectral window is comprised of 128 frequency chan-

nels, resulting in a spectral resolution of 15.6 MHz. The ALMA configuration utilised

between thirty-five and forty-two 12 m antennae, with an on-source integration time of

approximately 125 s. Upon combining all four spectral windows, this achieves an an-

gular resolution of 0.12 arcsec and Root Mean Square (RMS) values of approximately

230 µJy/beam and 130 µJy/beam for the H-ATLAS and HeLMS sources, respec-

tively. This setup was chosen to optimise band 7 continuum observations, as well

as to achieve the angular resolutions necessary to probe the interstellar medium on

the scales of giant molecular clouds with high signal-to-noise. The synthesised beam

shape for HeLMS J005159.4+062240 is the least elliptical of our sample, with a ratio

of major to minor axis of ∼1.2. For the observation of HeLMS J235331.9+031718,

the ratio of major to minor axis of the synthesised beam is the most elliptical of our

sample at ∼1.7, with the remaining observations having ratios of ∼1.5. The maximum

recoverable scales for our observations are between 1.32 arcsec and 1.46 arcsec. The

details of the number of antennae, achieved sensitivity, and beam sizes are summarised

in Table 4.1.

In this work, we used the visibility data provided by the ALMA science archive, and

re-calibrated them using Common Astronomy Software Applications version

(CASA) 4.3.1 (McMullin et al., 2007), and the scripts provided by the archive. Baselines

flagged as bad by the ALMA data reduction pipeline were excluded from the analysis.

The CASA task tclean was used to create images in order to measure the flux density

of the sources at 873 µm. The images were constructed using a natural weighting

scheme and were primary beam corrected. In order to ensure the minor axis of the
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primary beam was well-sampled, image pixel scales of 0.02 arcsec and 0.03 arcsec

were used for the H-ATLAS and HeLMS sources respectively. For the creation of

these images, we used CASA version 6.1.2.7. The data reduction follows closely the

method of Dye et al. (2018), with the exception of using natural weighting in favour

of Briggs weighting when creating images with tclean.

For the calculation of intrinsic source properties, photometry from our ALMA data

was used in combination with a number of other datasets. Sub-mm photometry, ob-

tained by the Herschel Space Observatory, was employed. This photometry made use

of two different instruments: the Spectral and Photometric Imaging Receiver (SPIRE;

Griffin et al., 2010) at wavelengths of 250 µm, 350 µm, and 500 µm; and the Photocon-

ductor Array Camera and Spectrometer (PACS; Poglitsch et al., 2010) at wavelengths

of 100 µm and 160 µm. SPIRE and PACS photometry for the H-ATLAS and HeLMS

sources was taken from Zhang et al. (2018) and Nayyeri et al. (2016). Where possible,

we have also used 850 µm Sub-millimeter Common User Bolometer Array 2 (SCUBA-

2) flux densities (14 arcsec resolution; Mackenzie et al., 2011) taken from Bakx et al.

(2017), 880 µm photometry taken from the Sub-millimeter Array (SMA) (0.6 arcsec

resolution) as described in Bussmann et al. (2013) and ALMA/ACA rest-frame 290

µm and 310 µm photometry taken from Riechers et al. (2021). Finally, the ALMA

band 4 (1940 µm, 0.3 arcsec resolution) flux density for H-ATLAS J083051.0+01322

was taken from Yang et al. (2019).

The available lens and source redshifts for the seven systems modelled in this work

can be found in Table 4.2. The observed photometry can be found in Table 4.3.
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4.2 Methodology

4.2.1 The semi-linear inversion method in the uv-plane

The modelling of the systems in this work was carried out in the uv-plane, and as

such, we used the source inversion method implemented within PyAutoLens (Nightin-

gale et al., 2021), which is based on the operator approach described within Powell

et al. (2020). For a description of this methodology, see Section 1.7.3. We first recon-

structed the background source on a Voronoi grid adapted to the lens magnification,

before using this to initialise a fit that reconstructed the source on a grid adapted

to the source light (Nightingale & Dye, 2015; Nightingale et al., 2018). A gradient

regularisation scheme, analogous to that which is described in Warren & Dye (2003),

with a constant weight for the source plane, was used throughout. The nested sam-

pling algorithm dynesty (Speagle, 2020) was used to find the optimal lens model

parameters that maximised the Bayesian evidence (Suyu et al., 2006).

4.2.2 Lens Model

We have used the elliptical power-law density profile, which is a generalised form of

the singular isothermal ellipsoid that is commonly used to fit strong lens profiles (Kee-

ton, 2001). When it improves the Bayesian evidence, an external shear component is

included to compensate for the influence of line of sight galaxies that may be outside

our field of view. Where indicated by additional imaging or unusual image configura-

tions, two elliptical power-law profiles have been used to model the group-scale lenses

present in the sample. We find that in all cases this is sufficient to provide acceptable

fits to the data and, through the use of optical/near-infrared imaging, we see no in-

dication of more than two lenses being required to produce an accurate model. The
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surface mass density, κ, of this profile is given by:

κ(R) =
3− α

1 + q

(
θE
R

)α−1

, (4.1)

where θE is the model Einstein radius in arc seconds, α the power-law index and R

the elliptical radius defined as R =
√
x2 + y2/q2, where q is the axis ratio (Suyu,

2012). The lens orientation ϕ is measured as the angle counterclockwise from the east

axis to the semi-major axis of the elliptical lens profile. The centre of the lens profile

is given by the coordinates in the image-plane (xc, yc). The external shear field is

parameterised by a shear strength γ and shear direction ϕγ, measured counterclock-

wise from east. The shear direction is defined to be perpendicular to the direction of

the resulting image stretch. For single lens systems, there are six lens model param-

eters (eight when including external shear) and 12 lens model parameters (14 when

including external shear) in the case of group-scale lenses.

4.3 Results

Fig 4.1 shows the model image, residual image and source reconstruction for each of

the seven lenses modelled in this work. The lens model parameters from our fitting

procedure are given in Table 4.4.

Different interferometer configurations probe distinct scales and reach varying sur-

face brightness limits. Fig 4.3 shows how, for each system, the inferred magnification

is sensitive to this effect. By working down a list of a subset of source-plane pixels

ordered by their flux density (and chosen to have a surface brightness above a certain

threshold), the lensed image and average magnification of these pixels was computed.

The source flux density fraction tells us how much of the total flux density is con-
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Figure 4.1: Lens reconstructions for each system. The left column shows the cleaned
ALMA image. The middle left column shows the lensed image of our reconstructed
source, i.e. the model image with the lens centroid(s) and centre of the source plane
indicated by white crosses and white circles respectively. The middle right column
shows the residual image for our model, i.e. the image of the observed visibilities
minus the image of the model visibilities. The right column shows the reconstructed
source. The colour bar indicates the 873µm surface brightness in Jy/arcsec2 for each
of the panels related to a particular source and all residuals are < 3σ. The caustics
are shown in red. North is up and east is left. The beam is shown as a white ellipse
in the bottom left corner of the cleaned ALMA images.
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Figure 4.2: Lens reconstructions for each system. The left column shows the cleaned
ALMA image. The middle left column shows the lensed image of our reconstructed
source, i.e. the model image with the lens centroid(s) and centre of the source plane
indicated by white crosses and white circles respectively. The middle right column
shows the residual image for our model, i.e. the image of the observed visibilities
minus the image of the model visibilities. The right column shows the reconstructed
source. The colour bar indicates the 873µm surface brightness in Jy/arcsec2 for each
of the panels related to a particular source and all residuals are < 3σ. The caustics
are shown in red. North is up and east is left. The beam is shown as a white ellipse
in the bottom left corner of the cleaned ALMA images.
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tained within the subset of source-plane pixels as we move down the list. Likewise,

the image flux density fraction tells us how much of the total image flux density is

contributed by the lensed image of our subset of source-plane pixels. This process was

repeated 100 times using a randomised source plane pixelisation for each, to produce

an averaged magnification profile.

4.3.1 Intrinsic source properties

For each lens system, we have determined the intrinsic properties of the background

source. To achieve this, we have demagnified the sub-mm photometry (see Table 4.3)

by the total source magnification factors given in Table 4.5, taking into account the

uncertainties on our magnification values. With the source redshifts given in Table

4.2, we fitted the rest-frame photometry with two SEDs. Firstly, a single temperature,

optically thick SED was fitted, of the form:

Sν ∝ [1− exp
(
−(ν/ν0)

β
)
]B(ν, Td), (4.2)

where Sν is the flux density at frequency ν, ν0 is the frequency at which the optical

depth is equal to unity, β is the dust emissivity index, Td is the dust temperature and

B(ν, Td) denotes the Planck function. Secondly, a dual temperature, optically thin

SED was fitted, of the form:

Sν = νβ[NcB(ν, Tc) +NwB(ν, Tw)], (4.3)

where N is the weighting of the cold and warm components (denoted with subscripts)

and T is the dust temperature of the two components (denoted by the subscripts).

This allows for the computation of an upper and lower bound in the range of possible
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Figure 4.3: The magnification profile for each of the reconstructed background sources.
Each plot shows how the total magnification (solid red line) and image flux density
fraction (dashed black line) varies as a function of the source flux density fraction
above a surface brightness threshold (more details given in the main text). The mag-
nification profiles represent the average of 100 realisations of the source plane pixelisa-
tion for the best-fit lens model. The plot demonstrates how the inferred magnification
can vary with different interferometer configurations.



158 Chapter 4. High-resolution ALMA observations of strongly lensed DSFGs

T
ab

le
4.5:

In
trin

sic
sou

rce
p
rop

erties.
T
h
e
colu

m
n
s
are

total
m
agn

ifi
cation

,
µ
to
t ,

d
u
st

m
ass

com
p
u
ted

from
th
e
sin

gle
tem

p
eratu

re
op

tically
th
ick

S
E
D
,
M

th
ick

d
,
d
u
st

m
ass

assu
m
in
g
a
d
u
al

tem
p
eratu

re
op

tically
th
in

S
E
D
,
M

th
in

d
,
tem

p
eratu

re
of

th
e
op

tically
th
ick

S
E
D
,
T

th
ick,

tem
p
eratu

res
of

th
e
op

tically
th
in

S
E
D
,
T

th
in,

th
e
op

tical
d
ep
th

at
100

µ
m

for
th
e
op

tically
th
ick

S
E
D
,
τ
1
0
0 ,

th
e
d
em

agn
ifi
ed

lu
m
in
osity

(com
p
u
ted

as
th
e
in
tegral

of
th
e
op

tically
th
in

S
E
D

from
3
to

1100
µ
m
),
L
IR
,

th
e
H

2
gas

m
ass

com
p
u
ted

u
sin

g
th
e
scalin

g
relation

of
H
u
gh

es
et

al.
(2017),

M
g
a
s ,
an

d
th
e
S
F
R

scaled
from

L
IR

u
sin

g
th
e

p
ro
ced

u
re

given
b
y
K
en
n
icu

tt
&

E
van

s
(2012)

w
ith

a
K
rou

p
a
IM

F
.
D
u
st

m
asses

are
ex
p
ressed

as
log

(M
d /M

⊙
),
lu
m
in
osities

as
log

(L
IR
/L

⊙
),

an
d
gas

m
asses

as
log

(M
g
a
s /M

⊙
).

T
h
e
sou

rce
H
eL

M
S
J
235331.9+

031718
ap

p
ears

tw
ice,

d
isp

lay
in
g
th
e

in
trin

sic
sou

rce
p
rop

erties
for

th
e
u
p
p
er

an
d
low

er
valu

e
of

sou
rce

red
sh
ift

b
ein

g
con

sid
ered

(in
d
icated

in
th
e
ID

colu
m
n
).

ID
µ
to
t

M
th

ick
d

M
th

in
d

T
th

ick
(K

)
T

th
in
(K

)
τ
1
0
0

L
IR

M
g
a
s

S
F
R

(M
⊙
/y

r)
G
09v

1.97
6.7

±
0.5

8.5
9.2

70
32

/
70

3.1
13.4

±
0.1

11.4
±

0.1
3700

±
500

H
E
L
M
S
18

10.2
±

0.5
8.2

8.9
62

28
/
59

6.9
12.6

±
0.1

11.1
±

0.1
590

±
50

H
E
L
M
S
5

6.7
±

0.5
8.3

9.1
62

26
/
53

7.8
13.1

±
0.1

11.4
±

0.1
1900

±
300

H
E
L
M
S
7

4.9
±

0.5
8.5

9.1
63

30
/
55

4.2
13.0

±
0.1

11.3
±

0.1
1500

±
300

H
E
L
M
S
2

5.5
±

0.5
8.5

9.1
60

28
/
51

4.9
13.1

±
0.1

11.5
±

0.1
1900

±
300

H
E
L
M
S
15

9.2
±

0.5
8.5

9.0
48

28
/
63

4.9
12.5

±
0.1

11.2
±

0.1
500

±
50

H
E
L
M
S
40

(z=
2.0)

8.7
±

0.5
8.7

9.0
37

25
/
31

3.3
12.1

±
0.1

11.1
±

0.1
180

±
50

H
E
L
M
S
40

(z=
3.7)

8.7
±

0.5
8.2

8.5
59

20
/
40

1.4
12.7

±
0.1

10.8
±

0.1
800

±
50



4.3. Results 159

dust masses, which were determined using the method described in Dunne et al.

(2011). In this work, we have used the 873 µm ALMA flux density and computed

the dust mass absorption coefficient by extrapolating the 850 µm value of κ850 =

0.077 m2kg−1 (James et al., 2002 – see Dunne et al., 2000 for more details). The

uncertainties in the dust mass absorption coefficient are known to be large, but a

relative comparison between dust masses computed with this value is still valuable.

The same value of κ873 was used for all of our galaxies, which assumes that the physical

properties of the dust, such as grain size and density, are constant for our sample of

galaxies. The scaling relations from Hughes et al. (2017) were used to calculate the

H2 gas mass.

During the fitting of the optically thin SED, the temperature and normalisation

of both dust components were allowed to vary. In the case of the optically thick SED,

the temperature, normalisation, and opacity at 100 µm, τ100, were varied during the

fit. Throughout, the emissivity index, β, was fixed to 2.0 (see Smith et al., 2013). The

fitted SEDs and the demagnified source photometry can be seen in Fig 4.4. The best

fit parameters for these SEDs can be found in Table 4.5, along with the demagnified

luminosity of the sources, computed by integrating the optically thin SED from 3-1100

µm. Finally, the SFRs of the sources are given, computed using the conversion from

luminosity

log(SFR) = log(LIR)− 43.41 (4.4)

given by Kennicutt & Evans (2012), who employ the Initial Mass Function (IMF)

of Kroupa (2001). This conversion assumes that all the infrared emission originates

from star forming regions, which may result in biased SFR values if an active galactic

nucleus (AGN) is significantly contributing to the luminosity of the galaxy.
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Figure 4.4: SEDs of the lensed background sources. The two-temperature optically
thin fit (solid black line) and the single-temperature optically thick fit (dashed red
line) are shown in each subplot. The measured photometry and uncertainties, shown
as the error bars in the plots, have been demagnified by the appropriate lensing
magnifications µ, given in Table 4.5. The SED for HeLMS J235331.7+031718 is
shown at a redshift of z = 2.
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4.3.2 Object notes

H-ATLAS J083051.0+013225 - This lens system has an almost complete ∼1.5 arcsec

Einstein ring with three major image components, along with a fainter central image.

The central image is due to the rare line of sight configuration of the dual deflectors.

Keck Adaptive Optics Ks band imaging of this lensing system (see Calanog et al.,

2014) shows two galaxies, but the lensing features are ambiguous due to the low signal-

to-noise ratio. Upon superimposing the lensed emission from the background source

as detected in ALMA data, it is clear that both of these galaxies are interior to the

Einstein ring (see Yang et al., 2019). Long slit spectroscopy, presented in Bussmann

et al. (2013), provides evidence that these two galaxies are at different redshifts (0.626

and 1.002 respectively). Bussmann et al. (2013) present the modelling of SMA data

for this system, fitting two SIE models for the foreground deflectors and a Sérsic model

for the background source. They infer a magnification factor µ = 6.9± 0.6, which is

in agreement with the magnification we find with our best fit model of µ = 6.7± 0.5.

Yang et al. (2019) present ALMA band 4 data, along with the band 7 data presented

in this thesis, and find a significantly higher magnification factor of µ = 10.5+0.5
−0.6, using

a double SIE lens model and a dual disk model for the background source.

The SFR of this lensed source is extremely high at 3700±500M⊙yr
−1, in reasonable

agreement with the value reported by Zhang et al. (2018), who used the magnification

factor from Bussmann et al. (2013) to determine the SFR. This compares to the

lower values of SFR inferred by Yang et al. (2019) who find 600 ± 300 M⊙yr
−1 and

900 ± 400 M⊙yr
−1 for each of the components in their source model. Our value of

SFR is reduced to 2400 M⊙yr
−1 when using the magnification factor of 10.5 found

by Yang et al. (2019). A possible explanation for the large discrepancy in SFR is

differential magnification of the source. Yang et al. (2019) find evidence of differential

magnification for the compact and extended components of their source model, which
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they have taken into account in their SED modelling. In addition to this, whilst the

lens model that we find is similar to that of Yang et al. (2019), we have allowed the

power-law slope to vary rather than using SIE profiles. The higher values (>2) of

slope that we find will tend to decrease the overall magnification of the source plane.

Our reconstructed source for this system shows significant disturbance, with a

main component oriented north-south and a fainter component oriented east-west.

HeLMS J005159.4+062240 - This system is a group-scale lens with a doubly-

imaged background source. Optical imaging from the Sloan Digital Sky Survey Data

Release 14 (Abolfathi et al., 2018) reveals two lensing galaxies within the lensed arcs.

Tergolina (2020) investigated these objects, finding that one was a red and passive

early-type galaxy (ETG) (z = 0.60246 ± 0.00004), whilst the other is the host of a

quasar (z = 0.59945± 0.00009; Okido et al., 2020). We were able to find a lens model

constructed from two elliptical power-law density profiles and an external shear field

that reconstructs the background source as a single component. Our reconstructed

source appears elongated with a disturbed morphology.

With a magnification factor of µ = 10.2 ± 0.5, this system has the highest total

magnification in our sample. Our measurement of the intrinsic source luminosity,

log(LIR/L⊙) = 12.6 ± 0.1, is in reasonable agreement with the far-infrared (far-IR)

luminosity given in Nayyeri et al. (2016), once the lens magnification has been taken

into account. It is unlikely that the quasar, hosted in one of the lens galaxies, is

contributing to the infrared luminosity, as it is not detected at the lens centroid in

our ALMA data. The peak of the SED is bounded by the SPIRE photometry, and the

PACS flux densities indicate the presence of a warm dust component. As such, the two

temperature SED provides a better fit to the data. With an SFR of ∼590±50M⊙yr
−1

and a dust mass range of 108.2−108.9M⊙, this source’s SFR to dust mass ratio is typical
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of high-redshift SMGs and low redshift ULIRGs according to the empirical relations

in Rowlands et al. (2014).

HeLMS J234051.5-041938 - This system displays a nearly-complete ∼0.75 arcsec

Einstein ring with three image components. A singular power-law with external shear

provides a good fit to the data, with the power-law index preferring relatively high

values of around 2.3. The source has evidence of a disturbed morphology, displaying

extended faint emission to the west and east.

The peak of the source SED is constrained by our ALMA and SPIRE photometry.

The PACS flux densities do not indicate the presence of a significant warm dust

component, with both the single and double temperature SEDs providing excellent

fits to the data.

This source’s intrinsic luminosity of log(LIR/L⊙) = 13.1± 0.1 agrees well with the

luminosity calculated by Nayyeri et al. (2016). An SFR of ∼1900± 300 M⊙yr
−1 and

a dust mass range of 108.3 − 109.1 M⊙ places this source above the typical dust mass

to SFR ratio for high-redshift SMGs and local ULIRGs.

HeLMS J232439.5-043935 - This system exhibits an unusual image configura-

tion with three distinct image components, the two westernmost of which show faint

extended features, whilst the eastern component is more compact. Two power-law

density profiles with an external shear field provide an excellent fit to the data, re-

constructing a source with faint extended emission to the north.

The peak in flux density for this source occurs close to the 250 µm SPIRE mea-

surement, with the constraints coming from the PACS measurements. The SED does

not show clear evidence of a significant second temperature component, with both

SED models providing good fits to the measured flux densities.

With an intrinsic luminosity of log(LIR/L⊙) = 13.0±0.1, our estimate is consistent
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within our uncertainties of the value given by Nayyeri et al. (2016). An SFR of

∼1500± 300M⊙yr
−1 and a dust mass range of 108.5− 109.1M⊙ means that this source

has a higher than typical ratio of SFR to dust mass for high-redshift SMGs and local

ULIRGs.

HeLMS J233255.4-031134 - This is a doubly-imaged source with some faint ex-

tended emission emanating from the southern image; it is well fit by a single power-law

density profile and an external shear field. The reconstructed source is relatively com-

pact and featureless.

The peak of the SED is constrained by the SPIRE photometry, with the PACS flux

densities not showing any major warm dust component. The SED is well described

by an optically thick model.

The intrinsic source luminosity we have obtained of log(LIR/L⊙) = 13.1± 0.1 is in

agreement with Nayyeri et al. (2016). The SFR of ∼2000±300M⊙yr
−1 for this source

agrees with the value quoted by Zhang et al. (2018) within our stated uncertainties.

A dust mass range of 108.5− 109.1M⊙ means that this galaxy also lies above the mean

SFR to dust mass ratio, as given by Rowlands et al. (2014).

HeLMS J233255.6-053426 - This quadruple image system is well described by a

power-law density profile embedded in an external shear field. The source exhibits

a relatively featureless, compact morphology. The peak of the source SED is well

constrained by the ALMA and SPIRE photometry. The PACS photometry indicates

the presence of a warmer dust component, as shown by the relatively high 100 µm

PACS flux density measurement, and the significantly better fit of the two temperature

SED. Our measurement of the intrinsic source luminosity, log(LIR/L⊙) = 12.5± 0.1,

is in agreement with the far-IR luminosity given in Nayyeri et al. (2016) using our

magnification factor of 9.2 to demagnify the quoted value. With an SFR of ∼500 ±
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50 M⊙yr
−1 and a dust mass range of 108.5 − 109.0 M⊙, this source’s SFR to dust

mass ratio is consistent with typical high-redshift SMGs and low redshift ULIRGs as

determined by the empirical relations given in Rowlands et al. (2014).

HeLMS J235331.9+031718 - This double image system has an extremely small

image separation, with an Einstein radius of ∼0.1 arcsec. This system is described

by a single power-law density profile and an external shear field. The inferred slope

of the power-law density profile is relatively low at α = 1.64 ± 0.04, contributing to

the high magnification of this source, which also lies near a lensing caustic cusp. The

source itself appears to be mostly compact, with an extended feature to the southeast,

which is readily visible in the observed lensed image.

There is no redshift measurement for this source, and so we have opted to use the

range of redshifts (z ∼ 2− 3.7) present in our sample to calculate redshift dependent

quantities. There are also no PACS flux density measurements for this source, and so

we rely on the SPIRE and ALMA measurements to constrain the SED. The peak of

the SED appears to lie within the SPIRE wavelengths, and fitting the optically thick

SED for the range of redshifts considered gives a temperature range of 37 − 59 K.

Without the PACS measurements and with the extra free parameters of the optically

thin SED, it is not possible to meaningfully infer the presence of a warmer dust

component.

4.4 Discussion

Combining our sample with that of Dye et al. (2018), who carried out a similar

analysis on a set of 6 strongly lensed sub-mm galaxies observed as part of the same

ALMA programme, we can start to make more significant comparisons between our

results and those found by other surveys. The HERschel ULIRG Survey (HERUS;
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Figure 4.5: Temperature distribution as a function of far-IR luminosity. The
red crosses show the luminosities taken from this work (excluding HeLMS
J235331.9+031718), and Dye et al. (2018). The spectroscopic redshift range of this
combined dataset is approximately z ∼ 1 − 4. The blue pluses show the data taken
from the HERUS Survey (Clements et al., 2017), with a spectroscopic redshift range of
approximately z ∼ 0.02−0.26. The grey dots come from the ALESS survey (Swinbank
et al., 2013), with a photometric redshift range of z ∼ 0.5 − 6.5. The black markers
show data taken from the SCUBA-2 Lensing Cluster Survey (Hsu et al., 2017), with
a redshift range of z ∼ 0.7− 4 (mixed spectroscopic and photometric redshifts).
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Clements et al., 2017) is a sample of 43 local ULRIGS, selected at 60 µm by the

Infrared Astronomical Satellite. The ALMA LESS survey is a set of cycle 0 and cycle

1 ALMA observations of the sub-mm sources detected in the LABOCA ECDFS Sub-

mm Survey (LESS). The 10 sources we present in Figure 4.5 come from the SCUBA-2

Cluster lensing survey and are those sources that have corresponding detections by

Herschel, and thus IR luminosities have been derived. Comparing the relationship

between the far-IR luminosity and the effective dust temperature (see Fig. 4.5) from

the optically thick model between our sample, the ULIRG population from HERUS

and the sub-mm sources in ALESS, we can see that our sources tend to possess both

more extreme luminosities and higher dust temperatures. The median luminosity of

the ALESS sample is LIR = (3.0± 0.3)× 1012 L⊙, compared with the median lumi-

nosity of the HERUS sample of LIR = (1.7± 0.3)× 1012 L⊙, and finally, that of our

sample: LIR = (5.1± 2.5)× 1012 L⊙. Given our small sample size and large scatter

on this measurement, our luminosities are overall consistent with both the HERUS

and ALESS samples. The median effective temperature of the ALESS sample is

T = 31± 1 K, which is consistent at the 2σ level with that of the HERUS sample,

for which T = 38± 3 K. The median dust temperature of our sample is significantly

higher at T = 59± 3 K. The high dust temperatures can be interpreted as a product

of the extreme SFRs present in our sample, though it is important to bear in mind

that the significance of these results is likely explained by the combination of selec-

tion effects due to our observing of the brightest galaxies detected by Herschel and the

sample of ALESS galaxies being selected at 870µm. Comparison with the sources of

the SCUBA-2 Cluster Lensing survey, whose sources have experienced lower magnifi-

cation factors on the whole than those in the galaxy-scale lenses of our sample, seems

to support the notion that our Herschel selected sample is a biased one, preferentially

selecting the most intrinsically bright sources.
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Figure 4.6: SFR, computed with the method of Kennicutt & Evans (2012), plotted
against dust masses for our seven lensed sources (black pluses), with the six sources
from Dye et al. (2018) shown as blue pluses with a central circle. The horizontal error
bars represent the range of dust masses for each source encompassed by M thick

d and
M thin

d , whilst the vertical error bars represent the uncertainty in SFR, plotted at the
midpoint of the dust mass range. Shown in red are the values for the two extremes
of redshift for HeLMS J235331.9+031718. Also shown are the empirical relations
between Md and SFR determined by Rowlands et al. (2014) for high-redshift SMGs
and low redshift ULIRGs (solid line with 1σ spread indicated in dark grey) and the
population of galaxies detected in H-ATLAS with z < 0.5 (dashed line with 1σ spread
indicated in light grey).
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Fig 4.6 shows the degree to which our sources exceed the ratio of the SFR (de-

termined using the scaling relation of the far-IR luminosity given by Kennicutt &

Evans, 2012) to the dust mass. Given that our SFRs are derived from scaled far-IR

luminosity, we can conclude that our sources have higher than expected luminosities

for the amount of gas available for star formation. An obvious interpretation of this

fact would be that a large fraction of the luminosity is due to an AGN, but without

additional imaging we cannot confirm this. It is also important to note that this

excess could be at least in part explained by selection bias, as we have chosen the

brightest Herschel sources to follow up on.

Converting the rest frame 850 µm flux density of our sources to H2 gas mass (see

Table 4.5) using the scaling relation given by Hughes et al. (2017), we find that our

sources all lie on or above the mean relationship between SFR and H2 gas mass, as

determined by Scoville et al. (2016). One interpretation is that our sources possess

a higher star formation efficiency (SFE), provided that dust is an accurate tracer for

molecular gas. Fitting a line parallel to the SMG/ULIRG relation shown in Fig. 4.6,

and treating the range of dust masses as the 1σ error, we find an increase in SFE by

a factor of six when compared with the value implied by the SMG/ULIRG relation

from Rowlands et al. (2014). This increases to a factor of 50 when compared to the

z < 0.5 H-ATLAS galaxies.

An unknown fraction of our sources could have their SFR overestimated due to sig-

nificant contamination in the infrared by strongly obscured AGN. In order to quantify

this effect, additional observational evidence would need to be considered. For exam-

ple, the stellar mass could be estimated from broadband SED fitting. However, this

procedure would either require careful lens light subtraction or additional follow-up

observations in the X-ray hard band to reveal the obscured nucleus.

Out of our combined sample of 13 reconstructed sources, nine show signs of possess-
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ing a disturbed morphology, with at least two being potential mergers. Morphological

studies of sub-mm galaxies have found that it is common for them to exhibit peculiar

and complex morphologies; this is suggestive of a high frequency of mergers in the

population (Chapman et al., 2003; Ricciardelli et al., 2010). It has been found that

samples of ULIRGs in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy

Survey (CANDELS) (Grogin et al., 2011) fields are more likely to have undergone

interactions and mergers than a field galaxy sample Kartaltepe et al. (2012). How-

ever, it has also been shown that the morphologies of a sample of spectroscopically

confirmed SMGs do not differ significantly from a sample of star forming galaxies

in the field Swinbank et al. (2010). Galaxy morphology is strongly correlated with

star formation history (Larson et al., 1980; Strateva et al., 2001; Lee et al., 2013).

At z ∼ 3, massive galaxies are mostly star forming disks, with the SFR peaking at

1 < z < 2 (Madau & Dickinson, 2014), and then dropping as the fraction of massive

quiescent galaxies grows rapidly. This period of galaxy evolution is extremely dra-

matic, and many different mechanisms have been proposed to explain the build up of

ETGs we see today. Galaxy mergers are one such mechanism, as they are effective at

disturbing the morphology and building a central bulge in a galaxy (Hopkins et al.,

2006a; Snyder et al., 2011). They have also been shown to trigger starbursts and

AGNs, which can lead to strong supernovae and/or AGN winds contributing to the

quenching of a galaxy (Bekki et al., 2005).

4.5 Conclusions

We have modelled seven ALMA observations of strongly lensed sub-millimetre galax-

ies. Four of these systems are galaxy-galaxy scale strong lenses, which are well de-

scribed by a single power-law mass profile; the remaining three are group-scale lenses,
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which have been successfully fitted with two power-law mass profiles. Where we found

it improved the fit, an external shear term was also included in the lens model. In

this work, we have opted to model the visibility data directly, rather than to work

with CLEANed image plane data. Whilst the uv-plane method is more computa-

tionally expensive, it does not suffer from the image pixel covariances introduced due

to incomplete sampling of the uv-plane. However, Dye et al. (2018) showed that

with sufficient sampling of the uv-space, both the image-plane and direct visibility

modelling approaches produce very similar results. We have fitted a smooth power-

law density profile (and in some cases two profiles) to each of the lensing systems,

and found that most of the lenses are close to isothermal. This result is expected

in massive ETGs due to the combination of an inner Sérsic profile representing the

baryonic component and an outer Navarro-Frenk-White (Navarro et al., 1996) profile

representing the dark matter component (Lapi et al., 2012). In some instances, there

are significant deviations from an isothermal power-law slope, which may be due to

degeneracies between parameters in our model or reflect the true nature of the lens,

but we leave a more thorough explanation of this to further work.

By obtaining the total magnification factors from our models, we have demagnified

the available sub-millimetre source photometry. Fitting rest frame SEDs to these data

allowed us to determine the dust temperatures, dust masses, intrinsic luminosities, and

SFRs of our lensed sources. In order to estimate a range of possible dust masses for

these sources, we fitted the photometry with both single temperature, optically thick

SEDs, as well as dual temperature, optically thin SEDs. Using the midpoint of this

range to calculate the SFR to dust mass ratio, we find that all seven of our sources

lie above the mean ratio for the SMG/ULIRG population as described in Rowlands

et al. (2014).

Our combined sample of strongly lensed sub-mm galaxies contains a majority of
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sources that display a disturbed morphology. Nine of the 13 galaxies in our sample are

visually classified as being disturbed, with at least two of them having evidence of be-

ing mergers (H-ATLAS J142935.3-002836, and H-ATLAS J083051.0+01322). Other

observations of sub-mm galaxies have found similarly high fractions of disturbed mor-

phologies, such as those made by Chapman et al. (2004), who used high-resolution

optical and radio imaging of 12 sub-mm galaxies in order to study their spatially

extended star formation activity. It has been suggested that high density molecular

gas is more commonly found in galaxy mergers than quiescent systems, and that this

can be used to predict the star formation mode of a galaxy (Papadopoulos & Geach,

2012). We are not able to conclusively say what fraction of our sample’s disturbed

morphologies are a result of mergers, but the source with the most extreme ratio of

SFR and gas mass (H-ATLAS J083051.0+01322) does display a significantly disturbed

morphology, and is identified as being a merger by Yang et al. (2019).



Chapter 5

Lens modelling biases in CLEANed

images

As has been discussed in Section 1.2.1, SMGs are thought to be the progenitors of

quiescent galaxies seen at low redshift, and as such are an important area of study for

our understanding of galaxy evolution. The extreme SFRs of these sources must be

fuelled by large gas reservoirs, and studies have found strong evidence for this (Huynh

et al., 2017; Dye et al., 2018; Kaasinen et al., 2019). A difficulty of studying these high

redshift sources is the necessary angular resolution needed to probe their ISM at sub-

kpc scales, or the scale of giant molecular clouds (∼ 100 pc). Gravitational lensing is

uniquely placed to aid in the study of SMGs due to the boosting of the background

source’s apparent flux and magnification of their extent on the sky. The combina-

tion of this, with the high-resolution configurations of ALMA, has huge potential for

investigating the physical properties of the ISM and furthering our understanding of

the processes at play in these high redshift galaxies (Dye et al., 2015; Rybak et al.,

2015b; Dye et al., 2022b).

Understanding the properties of lensed SMGs is contingent upon our ability to

173
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produce accurate lens models, and thus faithfully reconstruct the properties of the

background source. Likewise, if we wish to study the properties of the lensing galaxy,

for example to study the evolution of the slope of the density profile (see Section

1.2.2), we must be able to accurately model the lens mass profile. However, when

dealing with ALMA (or any other interferometer) observations, there are a number

of considerations one must take into account before embarking upon the analysis.

Chief amongst these are whether to model the visibility data directly, or to employ

a deconvolution algorithm such as clean (Högbom, 1974) to form an image that can

subsequently be modelled. Modelling the visibility data has the benefit of working

with the purest form of the data, but comes at the cost of time and computational

resources. For this reason, it is often attractive to work with a derived image-plane

representation of the data, which is significantly easier to model, but introduces arte-

facts due to the discrete sampling of the uv-plane in the form of correlated noise.

This is further complicated by the many choices afforded in the production of these

images, such as how to weight the visibilities (see Section 1.6.2). There has been

some work showing that the differences between the inferred models when working

with the image-plane versus the uv-plane data are negligible, in cases of good uv-plane

sampling Dye et al. (2018). However, there are still many questions to be asked and

explored on this topic, and that is what we set out to do here. Some of the questions

that we seek to answer are: Does uv-plane modelling provide a more accurate lens

model than its image plane counterparts? Does the amount of time-binning effect

the resulting lens model? Does our choice of visibility weighting scheme lead to the

inference of a different lens model? Do these different weighting schemes introduce

different biases?

The layout of this chapter is as follows: Section 5.1 describes in detail the processes

used to produce all the simulated data products used in this paper. Section 5.2 outlines
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the lens modelling methodology we have used. The results of our lens modelling

are presented in Section 5.3, and their interpretation are described in Section 5.4.

Finally, Section 5.5 presents a brief summary and our main conclusions. Throughout

this paper, we assume a flat ΛCDM cosmology using the 2015 Planck results (Planck

Collaboration et al., 2016), with Hubble constant H0 = 67.7 kms−1Mpc−1 and matter

density parameter Ωm = 0.307.

5.1 Simulated Data

This work relies on a variety of simulated data products to compare modelling re-

sults between them. Interferometer datasets, and images derived from interferometer

measurements, are used. In this section, we describe the process used to create the

simulated data products used in this paper.

The starting point for all of our simulated data was three sets of eight ray-traced

lensing simulations, produced using PyAutoLens (Nightingale & Hayes, 2020). These

three sets of simulated images consist of one SIS mass model and two SIE mass models,

the parameters of which can be found in Table 5.1. In each case, a spherical Gaussian

source was used to produce eight lensed images, with the source being stepped away

from the optic axis by 0.1 arcsec each time. In the case of the SIE lensed images, the

two sets represent the source being stepped through a fold and cusp configuration (see

Figure 5.1). These simulated images are then used as the sky brightness distribution

for our simulated observations.

We used the Common Astronomy Software Application V6.3.0.48 (CASA)

and the simobserve task to produce mock ALMA measurement sets. We used the

ALMA cycle7.3 array configuration and three different observing times (60s, 600s,

6000s) were employed (see Table 5.2 for a summary of the setup). The coverage of
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Figure 5.1: The source positions relative to the caustics of the two SIE datasets used
in this work. A lensed image was created for each of the source positions. The left-
handed panel shows the source stepping away from the optic axis in the direction of
the caustic fold, whilst the right-handed panel shows the source moving towards the
cusp of the caustic.

Table 5.1: A summary of the two lens models used to create the simulated images
in this work. The columns are the Einstein radius θE, the lens centroid (xc, yc),
corresponding to west and north respectively, the orientation of the lens ϕ, measured
counter-clockwise from east to the lens semi-major axis, and the lens profile axis ratio.

Lens model θE (xc, yc) ϕ q
(arcsec) (arcsec) (deg)

SIS 1 (0, 0) N/A 1
SIE 1 (0, 0) 45 0.67
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the uv-plane for each of these observing setups can be seen in Figure 5.3. We assume

a Spectral Energy Distribution (SED) for our lensed sources that is constant with

Sν . The spectral setup in our simulated ALMA observations was identical for each

system. The band 7 continuum observations, comprised of four spectral windows,

each with a width of 2000 MHz and centred on the frequencies 337.5 GHz, 339.5

GHz, 347.5 GHz and 349.5 GHz. The central frequency of 343.404 GHz corresponds

to a wavelength of 873 µm. Each spectral window consists of 128 frequency channels,

resulting in a spectral resolution of 15.6 MHz. The noise model for these simulated

ALMA observations is generated by the simobserve task, using pre-defined values

that correspond to good observing conditions (i.e. precipitable water vapour of 0.5

mm and an ambient temperature of 269 K). The three on-source integration times of

60s, 600s, and 6000s lead to a total number of 21672, 216720 and 2167200 visibilities

respectively. In order to make the challenge of modelling these large numbers of

visibilities more tractable, we time bin the data, using three different sizes of bins,

10s, 20s and 30s. In addition to reducing the computational cost of the modelling

process, this allows us to make an initial exploration of the question of how much

time binning is appropriate for problems of this type.

As well as modelling the visibility data directly, we perform image-plane modelling

for each system by producing images via the tclean algorithm. When creating images

with tclean, one of the choices that must be made is how to weight the visibility

data. A common choice is natural weighting, where visibilities are weighted according

to the inverse of the noise variance of that visibility, determined during calibration

(see Section 1.6.2), which provides good signal-to-noise and sensitivity, but relatively

poor resolution. Another option is that of uniform weighting, where the weights are

adjusted based on the density of points in the uv-plane, giving greater weighting to

sparse regions. This achieves better resolution, but at the cost of poor signal-to-noise.
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A third option, Briggs weighting, allows for a smoothly varying compromise between

the two aforementioned methods by modifying the value of the ‘robustness’ parameter

R. This parameter varies between the values of −2, which is approximately equivalent

to a uniform weighting and +2, which closely resembles the natural weighting scheme

(Briggs, 1995). For a more detailed discussion of synthesis imaging, see Section 1.6.2.

From each of our simulated measurement sets, we produce two images; one with

natural weighting and another with Briggs weighting with the robustness parameter

set to zero, which provides a good tradeoff between resolution and sensitivity. We use

an image pixel scale of 0.1 arcsec pixel−1, providing good sampling of the minor axis

of the primary beam. A threshold value of twice the background noise was used as

the stopping criteria for the tclean algorithm in all cases.

5.2 Methodology

All the modelling in this work was carried out using the semi linear inversion method

(Warren & Dye, 2003) and the extensions to this method that adapt to the source-

plane magnification or source-plane brightness distribution (Nightingale et al., 2018)

as it’s implemented with PyAutoLens (Nightingale & Hayes, 2020). The standard

image-plane method was employed for modelling the data produced via the tclean

algorithm, whilst modelling of the visibility data was carried out using a modified

version of this technique as implemented within PyAutoLens.

5.2.1 Image-plane modelling

In order to model our image-plane data using the semi-linear inversion method, we

needed to acquire an estimate for the noise in our images. This was achieved by
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Figure 5.2: A selection of the images produced via the tclean algorithm, with a
variety of on-source integration times, ALMA configurations and weighting schemes.
The first row contains sources lensed by the SIS model. The second row contains
sources lensed by the SIE model, with the source positions in the fold configuration.
The third row contains sources lensed by the SIE model, with the source positions in
the cusp configuration.

Figure 5.3: The uv-coverage of the ALMA cycle7.3 configuration as a function of the
different observation times used in the creation of the simulated datasets in this work.
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measuring the standard deviation of a 25 × 25 pixel region of each image, far away

from any lensed source emission. Due to the incomplete sampling of the uv-plane,

and the covariant noise that this introduces into the images, we opted to use a 1σ

value of twice the measured standard deviation in our images.

The first stage of our modelling process was to reconstruct the source on a Voronoi

grid, adapted to the magnification of the source plane. We assumed that all our ob-

servations were properly centred on the lens, and used a Gaussian prior on the (x, y)

coordinated of the lens centroid with µ = 0 and σ = 0.2′′. A uniform prior of width

0.5′′, centred on the true value, was used for the Einstein radius. Uniform priors

covering the whole range of parameter space were used for the ellipticity components.

We adopted a gradient regularisation scheme, as we have done throughout this the-

sis, with a constant weight for the source plane. This magnification based fit was

then used to initialise a new fit, using a Voronoi grid, this time adapted to the re-

constructed source light (Nightingale et al., 2018). The nested sampling algorithm

dynesty (Speagle, 2020) was used to maximise the Bayesian evidence (Suyu et al.,

2006) and find the optimal lens model parameters. For a more detailed description of

the semi-linear inversion process works, see Section 1.7.

5.2.2 uv-plane modelling

The uv-plane modelling carried out in this work follows the same setup as the de-

scribed above, but using the modified version of the semi-linear inversion method

that was developed by Powell et al. (2020) and has been implemented within PyAu-

toLens. See Section 1.7.3 for more details on how this process works.
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5.2.3 Lens Model

To fit our data, we have once again used the elliptical power-law density profile. All

of our simulated lenses have isothermal profiles, but we are interested in our ability

to recover the slope of the density profile, and so we allow for this extra degree of

freedom in our modelling. The surface mass density, κ, of this profile is given by:

κ(R) =
3− α

1 + q

(
θE
R

)α−1

, (5.1)

where θE is the Einstein radius in arc seconds, the power-law α index and R the

elliptical radius defined by R =
√
x2 + y2/q2, where q is the axis ratio (Suyu, 2012).

The orientation of the lens ϕ is measured as the angle counterclockwise from east

to the semi-major axis of the elliptical lens profile. The centre of the lens profile is

given by the coordinates in the image-plane (xc, yc). This results in six lens model

parameters.

5.3 Results

5.3.1 Time-binning visibilities

The first question we wish to answer is, ”to what extent are our uv-plane lens mod-

elling results impacted by our choice of time binning in the visibility data?”. Time

averaging of visibilities is a means to reduce the overall data volume and thus reduce

the computational cost of performing lens modelling in the uv-plane. Since the pro-

cess of visibility modelling is more computationally expensive, compared to its image

plane counterpart, it is useful to know if our attempts to make the task more tractable

have negative impacts on our results. Here, we focus on the effects of time-averaging
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on our shortest observation (60s on-source integration time), since a relatively small

change in the size of the time-binning will produce the largest effect on datasets with

low numbers of visibilities. i.e a 30 second time-binning value is a much more ex-

treme value to use for the 60s integration time observations compared with a 6000s

integration time.

As described in Section 5.1, for each of the three lensing scenarios considered in

this work (and each of the 8 source positions), we produced three visibility datasets

with different time-binning values of 10s, 20s, and 30s. We used PyAutoLens to model

each of these datasets, and the results are presented in Figures 5.4, 5.5, and 5.6.

Inspecting the results displayed in Figures 5.4, 5.5, and 5.6, it is clear to see that

for all three of the simulated scenarios, the value of the time-binning plays little to

no role in the overall performance of the uv-plane modelling. Except for a handful

of outliers, the three time-bin values are all consistent with one another and there

is no striking evidence that moving to smaller values of time-averaging is worth the

increased computational cost. In particular, we see no improvement in the bias to

lower axis ratios at any source positions in the SIS model when moving to smaller

values of time-binning. Likewise, the tendency to overestimate the value of the slope

of the power law mass model at small source offsets in the SIS model is not clearly

improved by employing less time-averaging. These results therefore justify our use

of 30s time averaging for all of our datasets, as the reduction in computational cost

outweighs any potential benefit in modelling accuracy. As such, all the uv-plane

modelling results in the rest of this work have been time-averaged with a time bin of

30s, unless explicitly stated otherwise.
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Figure 5.4: A comparison of uv-plane lens modelling results for three different time-
binning values of visibilities. In each case, we show the results from time-binning at
10, 20 and 30 seconds (shown in yellow, magenta and cyan respectively). The three
panels show the 1-σ spread for the lens parameters of the SIS model, as a function of
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Figure 5.5: A comparison of uv-plane lens modelling results for three different time-
binning values of visibilities. In each case, we show the results from time-binning at
10, 20 and 30 seconds (shown in yellow, magenta and cyan respectively). The four
panels show the 1-σ spread for the lens parameters of the SIE model (source moving
through the caustic fold), as a function of source offset from the lens centroid.



186 Chapter 5. Lens modelling biases in CLEANed images

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Fr
ac

tio
na

l e
rro

r

Power law index

0.125

0.100

0.075

0.050

0.025

0.000

0.025

0.050

Fr
ac

tio
na

l e
rro

r

Einstein radius

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Fr
ac

tio
na

l e
rro

r

Axis ratio

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

60

40

20

0

20

40

60

Ab
so

lu
te

 e
rro

r

Orientation
30s
20s
10s

Source offset (arcsec)

SIE - Cusp configuration

Figure 5.6: A comparison of uv-plane lens modelling results for three different time-
binning values of visibilities. In each case, we show the results from time-binning at
10, 20 and 30 seconds (shown in yellow, magenta and cyan respectively). The four
panels show the 1-σ spread for the lens parameters of the SIE model (source moving
through the caustic cusp), as a function of source offset from the lens centroid.
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5.3.2 Modelling results

In this section, we present the results of our lens modelling for each of the different

data products considered in this work. In some instances, it is clear that our mod-

elling has not converged upon the global solution, but rather upon an unphysical,

demagnified solution (see Maresca et al., 2020, for more discussion). Where this is

the case (confirmed by visual inspection of the source reconstruction), we have opted

to mask the data point, as we are interested in biases on lens model parameters that

correspond to the global solution.

Figure 5.7 displays the ensemble of results from modelling the SIS lens with the

source at varying offsets from the optical axis. Each quadrant of the plot shows the

fractional error on a lens parameter as a function of source offset for both natural and

Brigg’s weighting, as well as for the direct visibility modelling approach. Each sub-

panel contains the results for the three on-source integration times as indicated by the

legend. The modelling of the naturally weighted images performs well for determining

the power law index, but significant biases in the inferred value of Einstein radius and

axis ratio begin to appear at approximately 0.4′′ of source offset. The results for

the Briggs weighted images are largely similar, but the extent to which the inferred

values for θE and q are biased at large source offsets is less than that of the naturally

weighted images. The direct modelling of visibility data appears to show a small bias

in the value of α at small source offsets. The inferred values of Einstein radius for this

approach do not show any evidence of being biased at large values of source offset.

There is, however, a bias at all source offsets in the axis ratio value inferred by the

direct visibility modelling approach. This bias remains approximately constant over

the range of offsets considered here.

Figure 5.8 follows the same layout as Figure 5.7, with the addition of the bottom
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figuration) as a function of the source offset from the optical axis. The error bars
represent the 1-σ range on the inferred parameter values. The legend indicates the
on-source integration time of each measurement. The three sub-panels for each pa-
rameter represent modelling carried out on images created with natural weighting,
Briggs weighting, and direct visibility modelling respectively (from top to bottom).
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right panel displaying the results for the orientation of the mass profile. Comparing

the results of the two image-plane approaches with that of the uv-plane results, we

see that all three methods perform comparably well at recovering the true value of

the power law index over the full range of source offsets considered. The naturally

weighted image results, for all three on-source integration times, show some evidence

of a bias towards lower values of α when the source is on the optical axis. However,

both image-plane datasets show a tendency to under-estimate the power law index,

whilst still being consistent with the truth. For the Einstein radius, we see again that

the naturally weighted image result biases towards lower values when the source is

on the optical axis; an issue that does not arise when working with either the Briggs

weighted imaging or the visibility data. At large source offsets, both the image-plane

approaches start to bias towards higher values of θE, but once again, the magnitude

of this bias is greater for the naturally weighted images. The uv-plane results do

not suffer from this bias, maintaining accurate recovery of the parameter value at

all source offsets. Biases in the power law index and Einstein radius also translate

into biases in the axis ratio, due to the well known degeneracy between this triplet of

parameters. The more extreme biases in θE of the naturally weighted images result in

larger biases in q compared with those we see for the Briggs weighted images. There

is some significant scatter in the uv-plane modelling results, but no clear systematic

bias. The uv-plane modelling provides a consistent and accurate measurement of the

lens orientation, whilst both image plane datasets appear to suffer from the same bias.

The bias in lens orientation correlates with the bias in axis ratio; where the value of

q is over-estimated, the bias in lens orientation increases.

Figure 5.9 follows the same layout as Figure 5.8. For the inference of the power

law index, the visibility modelling approach significantly outperforms the image plane

modelling, across the full range of source offsets. Similarly to the fold configuration,
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Figure 5.9: Fractional and absolute error in SIE lens model parameters (cusp con-
figuration) as a function of the source offset from the optical axis. The error bars
represent the 1-σ range on the inferred parameter values. The legend indicates the
on-source integration time of each measurement. The three sub-panels for each pa-
rameter represent modelling carried out on images created with natural weighting,
Briggs weighting, and direct visibility modelling respectively (from top to bottom).
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the results of modelling the naturally weighted images show a tendency to under-

estimate α when the source is on the optical axis. In fact, with the source on the

optical axis, these images are identical except for different realisations of random

noise. This behaviour is once again not seen in either the Briggs weighted images

or the visibility modelling. At larger source offsets, both image plane methods tend

to under-estimate α. As expected, the 0.0′′ offset source for the naturally weighted

images shows a bias towards lower values in θE. In general, the modelling of all

three data sources provides a reliable estimate of the Einstein radius. The visibility

modelling approach provides the least biased estimate of the lens axis ratio for all

source offsets. Both the naturally and Briggs weighted datasets exhibit significant

biases at large source offsets. The lens orientation is recovered without any signs of

bias in any of the data sources.

5.4 Discussion

The relatively good performance of the modelling of the Briggs weighted data, com-

pared to that of the naturally weighted data, suggests that there is important infor-

mation on small scales that is being lost by using natural weighting. At least, for

this simple lensing scenario, with a parametric source, any benefits from the increased

sensitivity of natural weighting appear to be outweighed by the greater resolution

achieved by Briggs weighting. In order to explore this effect, we generate a new set of

lensed images using PyAutoLens. We consider two scenarios: one where the source is

on the optic axis; and another where the source is located at (0.7′′, 0.0) with respect to

the centre of the lens. For each scenario, we produce ray-traced images of the source,

lensed by a power law profile with θE = 1′′, axis ratio varying as q ∼ [0.4, 0.9], and

power law index varying as α ∼ [1.8, 2.2]. Following the same procedure as described
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in Section 5.1, we produce two images using the tclean algorithm, one with natural

weighting and the other with Briggs weighting and a robustness parameter of 0.

Figures 5.10 and 5.11 show the variance of the Fourier transformed true source

surface brightness distributions as a function of axis ratio, and power law index re-

spectively, with the source on the optical axis. This is computed by stacking a set of

i images in the z-plane, and computing the variance along this axis for each (k1, k2)

position in the Fourier transformed true source surface brightness distributions. There

is a wealth of information contained at high k-numbers, indicated by the intensity at

large radial distances from the centre of the Fourier transformed images. It can be

seen from Figure 5.10 that the variance of Fourier components, as a function of axis

ratio, at large k increases with increasing power law index. Figure 5.11 shows that the

variance of Fourier components, as a function of power law index, at high k numbers

has a weak radial dependence on the axis ratio, but particularly for very elliptical

lenses, there is a strong directional component that is most prominent at low k num-

bers. In both instances, there is significant variance at high k numbers, indicating

that variations in the lens model parameters, q and α, lead to changes at high spatial

frequencies, that if captured, could be useful in constraining the lens model.

Figures 5.12 and 5.13 respectively, show how this variance as a function of axis ratio

and power law index changes when we displace the source from the optic axis to (0.7”,

0.0). Generally speaking, the variance in both cases becomes less circularly symmetric

and more pronounced at high k-numbers. This strong azimuthal dependence on the

variance, however, does not change the conclusion that there exists a large amount

of information at high k-values that could in principle be used to constrain our lens

model.

The significance of this variance at high k-numbers can be seen by looking at the

relative sensitivity to these scales in the naturally and Briggs weighted images. Due
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Figure 5.10: Variance of Fourier transformed true source surface brightness as a func-
tion of axis ratio, for a range of power law index values. The source is on the optic
axis and the images have been created at a resolution of 0.1 arcsec pixel−1 to match
that of the CLEANed images for the ALMA cycle 7.3 configuration.
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Figure 5.11: Variance of Fourier transformed true source surface brightness as a func-
tion of power law index, for a range of axis ratio values. The source is on the optic
axis and the images have been created at a resolution of 0.1 arcsec pixel−1 to match
that of the CLEANed images for the ALMA cycle 7.3 configuration.
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Figure 5.12: Variance of Fourier transformed true source surface brightness as a func-
tion of axis ratio, for a range of power law index values. The source is placed at (0.7”,
0.0”) relative to the centre of the lens and the images have been created at a resolution
of 0.1 arcsec pixel−1 to match that of the CLEANed images for the ALMA cycle 7.3
configuration.
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Figure 5.13: Variance of Fourier transformed true source surface brightness as a func-
tion of power law index, for a range of axis ratio values. The source is placed at (0.7”,
0.0”) relative to the centre of the lens and the images have been created at a resolution
of 0.1 arcsec pixel−1 to match that of the CLEANed images for the ALMA cycle 7.3
configuration.
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Figure 5.14: Ratios of the variance of Fourier transformed Briggs and natural weighted
CLEAN images as a function of axis ratio, for a range of power law indices. The source
is on the optic axis and the images have been reconstructed at a resolution of 0.1 arcsec
pixel−1 to match that of the CLEANed images for the ALMA cycle 7.3 configuration.
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Figure 5.15: Ratios of the variance of Fourier transformed Briggs to natural weighted
CLEAN images as a function of power law index, for a range of axis ratios. The
source is on the optic axis and the images have been reconstructed at a resolution
of 0.1 arcsec pixel−1 to match that of the CLEANed images for the ALMA cycle 7.3
configuration.
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Figure 5.16: Ratios of the variance of Fourier transformed Briggs and natural weighted
CLEAN images as a function of axis ratio, for a range of power law indices. The
source is placed at (0.7′′, 0.0) with respect to the centre of the lens, and the images
have been reconstructed at a resolution of 0.1 arcsec pixel−1 to match that of the
CLEANed images for the ALMA cycle 7.3 configuration.
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Figure 5.17: Ratios of the variance of Fourier transformed Briggs and natural weighted
CLEAN images as a function of power law index, for a range of axis ratios. The source
is placed at (0.7′′, 0.0) with respect to the centre of the lens, and the images have been
reconstructed at a resolution of 0.1 arcsec pixel−1 to match that of the CLEANed
images for the ALMA cycle 7.3 configuration.
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to the nature of the weighting schemes, it is expected that the naturally weighted

images will contain less information on the smallest scales compared to the Briggs

weighted images, as discussed in section 1.6.2. Figures 5.14 and 5.15 show the ratio

of the variance of the Fourier transformed Briggs and naturally weighted CLEAN

images, as a function of axis ratio and power law index, respectively, for the case

where the source is on the optic axis. It is plain to see from the annular structure

in these figures that the Briggs weighted CLEAN images are capturing information

at higher k-numbers than the naturally weighted images, in regions where the true

surface brightness distributions show significant variation, as shown in Figures 5.10

and 5.11. This increased angular resolution in the Briggs weighted images likely plays

a key role in the ability to accurately recover the lens model parameters, more so

than the better point source sensitivity of the naturally weighted images. This effect

becomes even more important when considering cases where the source is significantly

displaced from the optic axis, such as in Figures 5.12 and 5.13. Due to the strong

azimuthal dependence of the variance in these images, a greater proportion of the

signal is contained at high k-values. As shown by Figures 5.16 and 5.17, it is in

these high k-regions that the Briggs weighted images are able to capture more of the

signal. In addition to this, there is also less information within the Einstein ring to

constrain the lens model at large source offsets, which can partly explain the difficulty

in recovering the true lens model parameters.

The difference in lens modelling accuracy between the Briggs and naturally

weighted image datasets can, at least in part, be explained by the different angular

resolutions achieved by the two weighting schemes. In order to quantify this effect,

we analyse the azimuthally averaged two-dimensional Fourier transforms of our

true source distributions and the associated images produced by tclean from the

simulated ALMA observations. Hereafter, we refer to this azimuthally averaged
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two-dimensional Fourier transform as a power spectrum, but acknowledge that

technically speaking, it is not.

Inspecting the power spectra of the simulated lensed images reveals a bimodal

split in the data as a function of source position offset. As can be seen in Figure

5.18, the power spectra fall into two camps. For small source offsets (x ≤ 0.3) the

power spectra for each simulated image is virtually identical, whilst for source offsets

greater than x ≥ 0.4 we begin to see an ever-increasing power at large k numbers.

This divide occurs at approximately the point where any source emission connecting

the multiple images of the background source is too faint to be of consequence, and

thus the image becomes dominated by smaller structure. From this, it is natural to

suspect that the lower angular resolution achieved by naturally weighted images is to

blame for the relatively poorer performance in recovery of lens model parameters at

larger source offsets.

In Figure 5.19 we compare the power spectra of the underlying simulated image

with that of the images produced with the tclean algorithm using both Briggs and

natural weighting, for the two extremes of source offset in the SIE cusp configuration.

With the source on the optical axis, the naturally weighted image is underestimating

the power for 10 ≤ k ≤ 40, whereas the Briggs weighted image is overestimating

the power in the same region. As we move the source to its extreme offset, the

power spectrum of the underlying simulation has a much shallower decline at high

k-numbers. This serves to dramatically increase the amount by which the naturally

weighted image is underestimating the power at these high frequencies. In contrast,

the Briggs weighted image is capable of reproducing this higher frequency structure

out to larger values of k, but ultimately does underestimate the power at the highest

frequencies.

We define the quantity of excess power ϵ, as the difference between the total power
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Figure 5.18: Power spectra of the underlying simulated lensed images and a selection
of CLEAN images. The top left panel shows the power spectra for each of the source
positions considered with the SIS lens model. The top right panel shows the power
spectrum for each of the source positions moving through the fold configuration of
the SIE lens model. The bottom left panel shows the power spectrum for each of the
source positions moving through the cusp configuration of the SIE lens model. The
legends in each plot indicate the distance between the source and lens centroid in
arcseconds.
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images created with Briggs and natural weighting for two extremes of source offset
position in the SIE cusp configuration.
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of the underlying simulation and that of the image produced with tclean in question,

above a threshold value of k = 10,

ϵ =

∫ 50

10

PT (k)dk −
∫ 50

10

PC(k)dk, (5.2)

where PT and PC are the power spectra of the simulated image and tclean image

respectively. The threshold value of k = 10 was chosen as a reasonable approximation

to where the power spectra in all cases begin to diverge significantly from the true

underlying power spectra. We then use this value of ϵ to explore the biases in our

lens modelling results as both a function of source offset and excess power.

The fractional error on the key SIS lens model parameters as a function of excess

power, for the 6000s integration time ALMA observations are shown in Figure 5.20.

There are several trends in this data that have explanatory capabilities for the be-

haviour we are seeing in the modelling results. Notably, in the case of the naturally

weighted images, the negative excess power is neatly correlated with the source offset,

with more negative values of ϵ corresponding to larger values of source offset. Par-

ticularly in the cases of Einstein radius and axis ratio, these more negative values of

excess power result in larger absolute values of fractional error. This is suggestive that

the naturally weighted images are more susceptible to the degeneracy between θE and

q. The relationship between fractional error in α and ϵ is strikingly different for the

naturally weighted and Briggs images, displaying non-linear behaviour in the case of

the former. In general, the range of values of excess power occupied by the naturally

and Briggs weighted images are comparable, but the correlation with fractional errors

on the lens parameters is much weaker for the Briggs weighted images.

The fractional error of the SIE lens model parameters (fold configuration) as a

function of excess power, for the 6000s integration time ALMA observations, are
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Figure 5.20: Fractional error in SIS lens model parameters as a function of the excess
power, as defined in Equation 5.2. Plotted side by side are the same quantities for the
naturally and Briggs weighted images created from the 6000s integration time ALMA
observations. The colour bar indicates the source offset in arcseconds.
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Figure 5.21: Fractional error in SIE lens model (fold configuration) parameters as a
function of the excess power, as defined in Equation 5.2. Plotted side by side are the
same quantities for the naturally and Briggs weighted images created from the 6000s
integration time ALMA observations. The colour bar indicates the source offset in
arcseconds.
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shown in Figure 5.21. Here, there is no correlation between the excess power and the

fractional error in α, with both the naturally and Briggs weighted images performing

comparably. For the Einstein radius, in both cases, the excess power is strongly

correlated with the bias in the parameter value. The correlation between ϵ and the

bias in q is far stronger for the naturally weighted images, compared to the Briggs

weighted images.

The fractional error of the SIE lens model parameters (cusp configuration) as

a function of excess power, for the 6000s integration time ALMA observations, are

shown in Figure 5.22. There is a clear correlation between ϵ and the bias in α for

the naturally weighted images when compared with the relationship for the Briggs

weighted images. As the negative excess power becomes greater, so does the bias in

α. There is no correlation between the excess power and fractional error in Einstein

radius for either datasets. Extreme values of negative excess power are associated

with a larger bias in q for the naturally weighted images. There is no correlation

between ϵ and the fractional error in ϕ.

5.5 Conclusions

In this chapter, we have introduced a set of realistic simulated ALMA observations,

produced using the capabilities of CASA. From these simulated measurement sets, we

have used the tclean algorithm to produce images, both with natural weighting and

Brigg’s weighting. With these data products, we have been able to explore a number of

different questions related to lens modelling methodology: How does time-binning the

visibility data effect our lens model accuracy? Does the weighting scheme chosen for

use in tclean introduce biases into our lens model? and, is the extra computational

cost of performing lens modelling in the uv-plane worth it?
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Figure 5.22: Fractional error in SIE lens model (cusp configuration) parameters as a
function of the excess power, as defined in Equation 5.2. Plotted side by side are the
same quantities for the naturally and Briggs weighted images created from the 6000s
integration time ALMA observations. The colour bar indicates the source offset in
arcseconds.
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We have shown that, at least for the simple parametric source and low angular

resolution ALMA setup used here, relatively extreme values of time-binning can be

used without negatively impacting our ability to recover the lens model parameters.

We used three values of time binning, 10s, 20s, and 30s, and found that the results were

all consistent with one another, and so the computational benefits of larger time-bins

clearly outweighed any potential cost in modelling accuracy. We have not explored

what effect, if any, this might have on our ability to recover intrinsic source properties.

These conclusions would likely differ had we considered more complex background

sources, or used longer baseline ALMA setups. We leave further exploration of these

questions to future work.

Our lens modelling results indicate that the higher resolution images, produced

by using Brigg’s weighting with tclean, lead to less biased results. At large source

offsets from the lens centroid, both image weight schemes led to an over-estimation of

the Einstein radius, but this effect was more pronounced for the naturally weighted

images. Similarly, in the case of the SIS and SIE (fold configuration), we observed

a tendency to under-estimate the axis ratio at large source offsets. This behaviour

was stronger in the case of the naturally weighted images. We found, in particular,

that when the source lay on the optic axis of our SIE lens, our modelling of naturally

weighted images led to a 20 per cent underestimation of the power law index. This

behaviour was not seen in our Brigg’s weighted images.

Generally speaking, the uv-plane modelling outperformed both of our image plane

tests in almost every instance. In the case of the SIS, the uv-plane approach exhibited

a slight bias towards higher values of α at small source offsets, but was generally

consistent. The inferred value of Einstein radius was accurate at all source offsets,

and whilst the axis-ratio values were under-predicted, they do not display the same

bias as a function of source offset; instead, the level of bias remains constant. In both
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the SIE fold and SIE cusp configurations, the uv-plane approach performs remarkably

well, showing no clear signs of bias in the recovery of any lens model parameters.

These results indicate that performing lens modelling in the uv-plane is the most

robust way to recover the true lens model parameters when working with relatively

compact ALMA configuration datasets. Whilst the computational cost of doing so is

high, it is justified by its accuracy.

There is a massive amount of scope for exploring the ideas in this work further.

We have only considered one compact ALMA configuration (with three different on-

source integration times). Understanding how these effects vary as a function of

angular resolution is an important question for informing our choices of methodology,

as the computational cost of performing visibility modelling only increases with higher

resolution data. We used the same source in all of our tests (albeit at different

positions), and so could not answer any questions pertaining to whether the effects

we see are more pronounced for more compact or extended sources. Additionally, the

source we have used was a simple parametric one, and so understanding how these lens

modelling biases are effected by more complex source morphologies is an interesting

question. Furthermore, we have only considered the impact on our ability to recover

the lens model parameters, and have not explored the consequences for determining

the intrinsic source properties.
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Conclusions and Future Work

In this final section, we summarise the main findings of this thesis and discuss the

prospects for future work. In particular, we will discuss the possibilities of extending

the work of Chapter 2 and Chapter 3 to increase the level of automation in our

lens modelling pipelines, and the need for further investigation into performing lens

modelling on CLEANed images.

6.1 Summary of main results

Strong lens modelling: comparing and combining Bayesian neural networks and

parametric profile fitting

We have developed a novel automated technique for the efficient modelling of

strongly lensed galaxies. Firstly, we have trained an approximate Bayesian CNN

to predict the mass model parameters and their associated uncertainties. These

values are then used to initialise lens model priors for PyAutoLens, which we use

to re-fit the data and produce a reconstructed background source. We explored
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two techniques for initialising PyAutoLens; one that centres a fixed width uniform

prior on the CNN’s prediction, and another that uses the CNN’s uncertainty on a

parameter to initialise a Gaussian prior with a standard deviation equal to that of

the CNN’s prediction (centred on the CNN predicted value). We find that whilst the

CNN is vastly more time-efficient, the combination of the CNN with PyAutoLens

produces results with greater accuracy than either method alone. Additionally, the

incorporation of the CNN’s predictions into PyAutoLens speeds up the run-times for

lens modelling. This work represents a promising step towards a fully automated lens

modelling pipeline, which is becoming increasingly important as we move towards

the era of LSST and Euclid.

Auto-identification of unphysical source reconstructions

We have shown that the convergence upon unphysical source reconstructions, which

can often de-rail the lens modelling process, can be effectively avoided through the

use of a CNN. Such unphysical source reconstructions represent valid solutions to

the lens equation, and are, as such, difficult to discriminate against when optimising

a lens model. The existence of these solutions often leads to the need for human

intervention in the lens modelling process, to carefully tune the priors of the lens

model, or to manually check the converged models for sensible source reconstruction.

Obviously, this is not a process that lends itself to the modelling of the many

thousands of strong lenses we expect to discover with upcoming surveys, such as

LSST and Euclid. Whilst the techniques of combining PyAutoLens with a CNN’s

predictions can greatly reduce the occurrence of these issues, as discussed in Chapter

2, they can still arise nonetheless. To tackle this problem, we trained a CNN to

identify these unphysical source reconstructions, and developed a simple prescription

to re-initialise the lens modelling process with new priors in order to converge upon
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the true solution. This methodology allows for less human intervention in the lens

modelling process, and is thus important for the development of a truly automated

lens modelling pipeline.

Modelling high-resolution ALMA observations of strongly lensed dusty star

forming galaxies detected by Herschel

We presented modelling of ∼0.1 arcsec resolution ALMA imaging of seven strong

gravitationally lensed galaxies detected by the Herschel Space Observatory. Four

of these systems were galaxy-galaxy strong lenses, with the remaining three being

group-scale lenses. Through careful modelling of visibilities, we inferred the mass

profiles of the lensing galaxies and by determining the magnification factors, we

investigated the intrinsic properties and morphologies of the lensed sub-millimetre

sources. We found that these sub-millimetre sources all have ratios of star formation

rate to dust mass that are consistent with, or in excess of, the mean ratio for

high-redshift sub-millimetre galaxies and low redshift ultra-luminous infrared

galaxies. Reconstructions of the background sources revealed that the majority of

our sample display disturbed morphologies. The majority of our lens models have

mass density slopes close to isothermal, but some systems show significant differences.

Lens modelling with interferometric datasets

We have shown that the methodological choices that one can make when working

with interferometer datasets has a significant impact on the inferred lens model.

By producing a series of simulated ALMA observations, and images with different

weighting schemes via the tclean algorithm, we explored several questions that

lens modellers are faced with when it comes to choosing their methodologies. We

looked at the impact that time binning of the visibility data had on our recovery of
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the true lens model parameters, and found that it did not play a significant role,

though we did not consider the impact that this may have on the recovery of the

intrinsic source properties. We compared the performance of image-plane modelling

applied to two different sets of images, created with either natural weighting or

Brigg’s weighting (R=0), and found that in general, the increased resolution of

the Brigg’s weighted images led to more accurate lens models. Last, but certainly

not least, we compared the performance of the image-plane modelling to that of

the uv-plane method, and found that the uv-plane method performs significantly

better, and is less prone to several of the biases we observed in our image-plane results.

6.2 Future improvements

Error handling with CNNs

We argued in Chapter 2 that one of the drawbacks to using CNNs was that their

performance was so tightly coupled with our ability to create high quality training data

sets. Whilst we showed that the CNN still performed reasonably well when applied

to the EAGLE lenses in this work, despite having not been trained on such lenses,

it did under-predict its uncertainty values. This had a knock-on effect when used

in combination with PyAutoLens that the prior distributions used in the parametric

modelling were both too narrow and often not properly centred. This likely led to a

dramatic reduction in the performance of this combined method. Addressing these

issues in the training data would allow us to properly explore the potential of this

method when applied to extremely realistic lensing simulations.

Furthermore, whilst state-of-the-art lens finding algorithms are very good, they

are not perfect (Lanusse et al., 2017b; Cheng et al., 2020; Petrillo et al., 2017).
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Categorising non-lensed objects and data artefacts as lensed galaxies can lead to

issues in the creation of a fully automated lens modelling pipeline. We did not

explore what the output of the CNN would be if given an object such as a ring

galaxy to predict upon. An extension to this work would be to explore how we can

mitigate the issue of the CNN failing silently and simply outputting a lens model to

be passed to the parametric fitting algorithm.

Auto-identification of Unphysical Source Reconstructions

In Chapter 3 we showed that a CNN could be employed to detect when our sampling

algorithms had converged upon solutions corresponding to over/under-magnified

source reconstructions. We also developed a simple prescription for re-initialising

our lens model priors to avoid these solutions and ultimately converge upon the true

solution. Our implementation of this technique was relatively crude, and waited

until the stopping criteria of the modelling process had been met before providing

a classification of the result. To improve upon this, we could use the CNN to

reject/accept samples during the modelling process, by checking the ’intermediate’

source reconstructions, to effectively cut down on the amount of time spent exploring

these regions of parameter space. Additionally, information could be gathered about

these rejected samples, and the relationships between unphysical and physical source

reconstructions could be used to increase the density of sampling in the likely region

of parameter space.

Lens modelling with Interferometer datasets

There is a huge scope for exploring the work of Chapter 5 further. The lensing

scenario we used as the basis of our work was incredibly simple, with a parametric

source and either an SIS or SIE mass model acting as the lens. Simply increasing
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the complexity of the background source could lead to interesting discovery, since so

much of the behaviour we observed seemed to be linked to the resolution achieved in

the observations. Also linked to the source, we did not carry out any investigation

into how the different methodologies impacted our ability to infer the intrinsic

properties of the source. The parameter space for exploring the many ALMA

configurations and options when producing images with tclean is vast, but some

obvious examples of what to do next are: What happens when we use a more

extended ALMA configuration? If Brigg’s weighting outperforms natural weighting,

does that imply the existence of an optimal robustness parameter? How does

time-binning effect our results when a more complex source is used?

6.3 Outlook

In the near future, surveys such as LSST and Euclid are set to come online, revo-

lutionising the field of strong gravitational lensing. These two projects are expected

to discover many thousands of galaxy-galaxy strong lensing systems (Collett, 2015b),

providing statistical power that has been lacking up to this point.

The multi-band imaging of LSST will allow for the determination of photometric

redshift estimates, for both the lens and source galaxies. This will allow for mea-

surements of the mass of the lens galaxy enclosed within the Einstein radius, as well

as providing accurate aperture mass-to-light ratios for each lens galaxy. Studies of

the mean density profile and evolution of early-type galaxies will greatly benefit from

the large sample sizes of LSST lenses. Currently, surveys such as SLACS have used

relatively small numbers of low redshift, luminous galaxies to place constraints on the

mean logarithmic slope of the density profiles of early type galaxies. With the LSST

galaxy-galaxy strong lensing sample, this ensemble size can be increased from tens to
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many thousands, and dramatically increase both the redshift range and mass range

of galaxies included (Marshall et al., 2022). Synergies with other upcoming survey

telescopes, such as the Nancy Grace Roman Space Telescope (Spergel, D., 2015), will

allow for tighter constraints on the lens profiles of LSST detected strong lenses (Eifler

et al., 2019).

Our current sample of strong lenses capable of being used for measuring time-

delays, and thus the Hubble-Lemâıtre constant, is relatively small. This sample con-

tains many lenses that are difficult to model, such as having multiple lens galaxies,

or being contained within a cluster potential. LSST will provide a large sample of

time-delay lenses, and thus allow for the selection of a subsample of lenses that do not

suffer from these issues. It is expected that LSST will observe 2600 lensed quasars

and 330 lensed supernovae, with 90 of these being Type Ia (Marshall et al., 2022).

After selections for environment and complexity have been made, it is reasonable to

expect a sample of approximately 100 high quality time delay lenses, allowing for an

order of magnitude increase in measurement precision over our current sample. It

is known that characterisation of the external convergence is the dominant source

of uncertainty in determining time-delay measurements, and so significant effort will

need to be put into managing any systematics introduced by the adopted treatments

(LSST Dark Energy Science Collaboration, 2012)

Astronomy is undergoing a revolution in the scale of the data products being pro-

duced, from projects as diverse as Gaia (Gaia Collaboration et al., 2016), which will

provide accurate positions and radial-velocities for more than a billion stars in our

galaxy, to the Square Kilometer Array (SKA; Dewdney et al., 2009), which will be

capable of mapping the primordial distribution of gas in the universe. In light of

the unprecedented challenges that this volume of data will present, astronomers are

developing many new tools to rise to the occasion, with machine learning algorithms
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being very prevalent among them. Machine learning algorithms are typically divided

into two categories; supervised and unsupervised. The former requires labelled data

for the algorithm to learn a mapping from the input to the output, whilst the latter is

able to learn relationships that exist in the data, without the need for labelling. These

ML algorithms can be used to great effect to efficiently deal with huge amounts of

data and perform traditionally CPU intensive tasks, such as lens modelling, measur-

ing galaxy morphology and predicting photometric redshifts. One particular challenge

faced by these algorithms is their specificity to the data they were trained upon. Typi-

cally, when training a convolutional neural network, for example, one would use many

images with the characteristics of the survey we wish to apply our network to. Such

networks fail to generalise to other surveys or imaging characteristics, which is of par-

ticular importance when we wish to use them to search for rare astrophysical objects.

In the case of finding strong gravitational lenses, we have so few observations that we

must rely on simulated data to train the algorithms, but this can pose a challenge

when applying the tool to real data. One such method for dealing with this issue,

is transfer learning, where knowledge gained in the solution of one problem can be

leveraged by the same network to solve another (Zhuang et al., 2019). The application

of such techniques will be vital to properly exploiting the wealth of information con-

tained within upcoming datasets, such as achieving a high purity and completeness

in the search for strong gravitational lenses in the LSST sample (LSST Dark Energy

Science Collaboration, 2012).
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Mayer L., Tamburello V., 2018, Nature Astronomy, 2, 76

Chapman S. C., Windhorst R., Odewahn S., Yan H., Conselice C., 2003, ApJ, 599,
92

Chapman S. C., Smail I., Windhorst R., Muxlow T., Ivison R. J., 2004, The Astro-
physical Journal, 611, 732

Chapman S. C., Blain A. W., Smail I., Ivison R. J., 2005, ApJ, 622, 772

Cheng T.-Y., Li N., Conselice C. J., Aragón-Salamanca A., Dye S., Metcalf R. B.,
2020, Monthly Notices of the Royal Astronomical Society, 494, 3750

Chomiuk L., Povich M. S., 2011, AJ, 142, 197

Clements D. L., et al., 2017, Monthly Notices of the Royal Astronomical Society, 475,
2097

Collett T. E., 2015a, The Astrophysical Journal, 811, 20

Collett T. E., 2015b, The Astrophysical Journal, 811, 20

Couchman H. M. P., Rees M. J., 1986, MNRAS, 221, 53

Courbin F., Saha P., Schechter P., 2008, Quasar Lensing. Springer-Verlag, pp 1–54,
doi:10.1007/3-540-45857-3 1

Crain R. A., et al., 2015, Monthly Notices of the Royal Astronomical Society, 450,
1937

Cropper M., et al., 2016, in MacEwen H. A., Fazio G. G., Lystrup M., Batalha
N., Siegler N., Tong E. C., eds, Vol. 9904, Space Telescopes and Instru-
mentation 2016: Optical, Infrared, and Millimeter Wave. SPIE, pp 269 – 284,
doi:10.1117/12.2234739, https://doi.org/10.1117/12.2234739
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D. H., 2010, MNRAS, 404, 1355

Davies A., Serjeant S., Bromley J. M., 2019, Monthly Notices of the Royal Astronom-
ical Society, 487, 5263

Dekel A., Birnboim Y., 2006, Monthly Notices of the Royal Astronomical Society,
368, 2

Dekel A., Silk J., 1986, ApJ, 303, 39

Dekel A., et al., 2009a, Nature, 457, 451

http://dx.doi.org/https://doi.org/10.1016/j.physrep.2014.02.009
http://dx.doi.org/10.1038/s41550-017-0295-x
https://ui.adsabs.harvard.edu/abs/2018NatAs...2...76C
http://dx.doi.org/10.1086/379120
https://ui.adsabs.harvard.edu/abs/2003ApJ...599...92C
https://ui.adsabs.harvard.edu/abs/2003ApJ...599...92C
http://dx.doi.org/10.1086/422383
http://dx.doi.org/10.1086/422383
http://dx.doi.org/10.1086/428082
https://ui.adsabs.harvard.edu/abs/2005ApJ...622..772C
http://dx.doi.org/10.1093/mnras/staa1015
http://dx.doi.org/10.1088/0004-6256/142/6/197
https://ui.adsabs.harvard.edu/abs/2011AJ....142..197C
http://dx.doi.org/10.1093/mnras/stx3227
http://dx.doi.org/10.1088/0004-637x/811/1/20
http://dx.doi.org/10.1093/mnras/221.1.53
https://ui.adsabs.harvard.edu/abs/1986MNRAS.221...53C
http://dx.doi.org/10.1007/3-540-45857-3_1
http://dx.doi.org/10.1117/12.2234739
https://doi.org/10.1117/12.2234739
http://dx.doi.org/10.1111/j.1365-2966.2010.16395.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.404.1355D
http://dx.doi.org/10.1111/j.1365-2966.2006.10145.x
http://dx.doi.org/10.1086/164050
https://ui.adsabs.harvard.edu/abs/1986ApJ...303...39D
http://dx.doi.org/10.1038/nature07648
https://ui.adsabs.harvard.edu/abs/2009Natur.457..451D


224 BIBLIOGRAPHY

Dekel A., Sari R., Ceverino D., 2009b, The Astrophysical Journal, 703, 785

Dessauges-Zavadsky M., et al., 2019, Nature Astronomy, 3, 1115

Dewdney P. E., Hall P. J., Schilizzi R. T., Lazio T. J. L. W., 2009, IEEE Proceedings,
97, 1482

Dozat T., 2015, In Proc. ICLR Workshop

Dubois Y., Gavazzi R., Peirani S., Silk J., 2013, MNRAS, 433, 3297
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