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Abstract

This dissertation reviews past literature on belief updating/belief-based learning and sophistication (reason-
ing), links the two models with recent experimental findings in repeated prisoner’s dilemma, supergame
strategies, attention and incentives, and tries to answer how these two models interact with each other with
experience. These two models have good performance in explaining part of the repeated games separately
but fail to a smooth and united explanation. By re-examining the literature from the perspective of the in-
formation source to generate different types of belief, elements of two models can be reconciled into one.
Recent new findings in attention and incentives also contribute to the evolution of sophistication, which was
not captured by the sophistication models. This helps to examine sophistication models in a dynamic way

and makes both models comparable from the dynamic point of view.
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1 Introduction

Strategic interactions between agents play a foundational role in many economic models. Games, like pris-
oner’s dilemma, coordination game, ultimatum game, etc., have been applied to a number of sub-fields
in economics. Prisoner’s dilemma is the oldest game discussed in economics. It has been widely stud-
ied due to its unique structure on the tension between individual interest and collective benefit. Being a
non-cooperative and non-zero-sum game, it contains richer situations in strategic interaction that can be
studied and worth studying. Recent empirical evidence and meta-studies on prisoner’s dilemma provide
many new findings on supergame strategies and payoff structure, which can be linked with much literature
on sophistication reasoning and cognitive effort.

Traditional game theory is built upon rational agents with unlimited computational power. However, em-
pirical evidence on these games does not support its prediction. Recent studies on these games are streamed
into two channels. One is adaptive learning, which allows agents to make reactions based on past experi-
ence, and gradually converge to equilibrium. The belief formation/updating model is one class of this family
and the most widely used in economics, where agents learn their opponents’ move, form beliefs about their
move from experience/learning and respond to that belief. The other channel is behavioural strategic rea-
soning, an extension of the traditional game theory. This kind of model (best summarized in Crawford et al.
(2013)) can make predictions of non-equilibrium plays. The most powerful and popular model is sophisti-
cation reasoning including level-k thinking and cognitive hierarchy. Sophistication reasoning roots in the
idea that “the natural way of looking at game situations ... is not based on circular concepts, but rather
on a step-by-step reasoning procedure” (Selten 1998). The models provide a well-specified set of belief
and behavioural rules at each level of sophistication for players with limited rationality and computational
power.

A longstanding problem is whether and how sufficient exercise/training can improve people’s decision-
making. Empirical studies on various experimental settings including payoft structure, matching protocols,
number of repetitions, game complexity, rewarding theme!, etc, give a positive answer to the first question.
As for the second question, the mechanism is still not perfectly clear. Sufficient training is defined differently
in different models. In the belief formation models Brown (1951), agents learn in a setting, where the
same stage game is repeated again and again with a partner/opponent, and the reward is calculated by a
(discounted) sum of payoff in each stage, while in sophistication reasoning models, agents are trained in
a setting where the same game is replayed with a different opponent, and the reward is calculated by a
randomly picked round.

Different model settings generate different information for agents to make predictions and reasoning
mechanisms. It is widely acknowledged that sophistication reasoning shows a good performance for the
initial play of each repeated game (Crawford et al. 2013, Camerer et al. 20040), while belief updating tracks
the belief change stage by stage accurately (Crawford & Broseta 1998, Nyarko & Schotter 2002, Aoyagi et al.
2021). Since many findings, either in theories or experiments, are based on different settings, a systematic
review is lacking on how different elements, such as beliefs, information, and incentive, influence people’s
decision. In this dissertation, I review the literature on belief-based models and sophistication reasoning

in order to provide a comprehensive view of how people make strategic decisions. In this dissertation, I

'Two typical themes are that subjects are rewarded by accumulated payoff or the payoff of a randomly picked stage



am going to show when beliefs (over stage actions, supergame strategies or sophistication levels) and the
information used to form beliefs are classified based on either individual or group level, many different
results under different settings can be reconciled.

It is important to review models and to go deep into elements leading to equilibrium play. Empirical
evidence suggests that both belief updating and sophistication reasoning works in repeatedly playing a game,
but the specific mechanism is vague. The main question is under what conditions people use one or the other,
and change from one to the other. Is there any possibility that both are part of a unified reasoning mechanism
that people learn to reason? Moreover, by digging into the elements behind each model, can they provide
a smoother explanation? Both models use beliefs, but they are generated over different sets (stage actions,
supergame strategies, level of sophistication), do they have anything in common? Traditional definitions of
belief ignore the information source used to form beliefs, a specific opponent or the opponent population.
For example, the stage action belief assumes agents have no history/information about the opponent at
the initial stage, but is there truly no information for the agents to make predictions? Can the agent use
the population information as a substitute? Besides, do recent new findings in attention and cognitive effort
provide new insights into the problem? By making these questions clear, we can have a better understanding
of how these scattered studies link to each other and the real gap we are facing with.

The structure of the remaining dissertation is arranged in the following way: In section 2, I will introduce
the setup of the prisoner’s dilemma and people’s practical behaviour in different experimental settings. In
section 3 and 4, the two main models, belief updating and sophistication reasoning are introduced succes-
sively. I am going to show how the model proprieties capture some specific behaviour in playing prisoner’s
dilemma in different settings. Finally, I will reexamine beliefs based on their information source and discuss

the possibility of people learning to reason by combining the elements of both models together.

2 Behaviour pattern in prisoner’s dilemma

2.1 Prisoner’s dilemma

The repeated prisoner’s dilemma game starts with a stage game G(/, A, I1), which is a standard two-person
i € I = {1,2} prisoner’s dilemma game (PD game) with two actions, cooperation (C) and defection (D).
Let A; = {C, D} be the stage action set for both players (a; € A; refers to player i’s an action), and let
A = A; x A, be the stage action space for the stage. The stage payoff m;(a1,a2) € II to each player ¢
is jointly determined by both players’ simultaneous actions (or stage action profile (a;, as)), which can be
shown in the form of a matrix (table 1). For example, when player 1 (2) choose C (D), the payoft to player
1 (2)is m(C, D) = b (me(C, D) = ¢), which is shown in table 1 in bold.

A repeated PD game (often called a supergame G (I, A, I1, H, T, 0)) is to play the stage game repeatedly
with a horizon 7" (the number of repetitions). If horizon 7" = 1, then it is a standard PD game, often called
a one-shot PD game. If horizon 7" > 2, it can be a finite supergame (7' < o0), where the terminal stage
is well and commonly identified before a supergame, or an infinite supergame (7' = co), where there is
a high probability (continuation probability) to extend an extra stage. At any stage ¢ = 1,2, ..., players
make the decision af(h!~1) based on the history of past ¢ — 1 periods, h'~1. For ¢ = 1, there is no history
h? = (). Correspondingly, we have a history space at the stage ¢ denoting the history actions in the past t — 1
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Table 1: Payoff matrix of PD games

C D
C a,a b,c
D ¢ b d,d

Note: Parameters follow ¢ > a > d > b (Mengel 2018), the first (second) letter in each cell refers to row (column)
player’s payoft.

stages, H'~! = Uh!~! = A'~!. The (continuation) payoffs in supergames are calculated as the discounted

(arithmetical) sum of payoffs in each stage game in the infinite (finite) case?.

oo 0wk (al (1Y), ab(h'Y))  Infinite case

UZ(G) B T t 1 1 o .
Yo mi(ah (hh), ab(hf) Finite case

(1

where ¢ € [0, 1] is the discount factor®. For the scope of this dissertation, I only consider the full information
case.

Players are also assumed to use some patterns/paradigms of thinking/reasoning tactics, called (supergame)
strategies o; : (a;|h'~') — [0, 1], mapping player ¢’s action set A; to a probability space [0, 1] based on his-
tory*. Normally, by playing a supergame with a horizon of 1" periods, there are 27 pure strategies (Aoyagi
etal. 2021). However, people tend to play a typical subset of strategies in practice, such as always defection
(AD), always cooperation (AC), Tit-For-Tat (TFT), Grim, and threshold-x strategies (T-x) (See Table 2).

Table 2: Description of supergame strategies

Strategy Description

Always Defect (AD) Always play D.
Always Cooperate (AC) Always play C.
Tit-For-Tat (TFT) Play C unless partner played D last stage.
Grim Play C until either player plays D, then play D forever.
Threshold-x (T-x) Play Grim until stage x then switch to AD.

Note:
1. Source: Aoyagi et al. (2021). Only the most widely used strategies across literatures are listed here.
2. By the definition of threshold strategies, AD can also be interpreted as a threshold-0 strategy.

2.2 Cooperation in supergames

The Folk theorem provides a baseline prediction of people’s behaviour that choosing the actions (sequence)
that lead to a continuation payoff above the minmax one is optimal. In the infinite supergame, it is to
figure out a discount factor § € [0, 1] sustaining a higher payoff (see equation (1)). In repeated PD games,

we can reach an AD strategy by applying backward induction from the final stage. This action sequence

2In many literatures, a normalized factor 1 — J is multiplied to the infinite continuation payoffs.
3Sometime, this can also be interpreted as a continuation probability in infinite supergame (Fudenberg & Tirole 1991)
“In some literature, strategies function is interpreted as a mapping from history to action.



leads to a minmax payoft, which is the lower bound of all possible available payoffs. Any action sequence
leading to a payoff lower than minmax should not be chosen. This opens the possibility of choosing any
action sequence and mutual cooperation at the early stage of a repeated PD game becomes reasonable. It
is often related to the reputation effect. It is also the case in infinitely repeated PD games. Aoyagi et al.
(2021) reported high average cooperation (80%) along the first several eight stages with a high continuation
probability (0 = 7/8) and a payoff structure helpful to cooperation. Dal B6 & Fréchette (2011) also reported
relatively high average cooperation (60-80%) with a continuation probability of 3/4 and around 35% with
a continuation probability of 1/2, when C-C is supported by both the equilibrium play and risk dominance.

Sensitive to game parameters Dal B6 & Fréchette (2011) first claimed that cooperation might not in-
crease with experience, even though C-C is supported as the equilibrium and risk-dominant play. In their
case, the cooperation rate decreases with experience (from 30% to 5%), when C-C is not supported by the
equilibrium and sustains at a low level (around 20-30%) with experience when C-C is supported by the
equilibrium play but not the risk-dominance. It seems to be contradictory whether experience enhances
cooperation. Dal B6 & Fréchette (2018) summarized determinants of cooperation in infinite supergames.
They found that the more likely one is going to interact with his/her opponents, the more cooperative he/she
is, and this cooperativeness increases with experience. This implies the assumption for the holding of repu-
tation effect (or the shadow of future) that the continuation probability needs to be high (close to an infinite
case rather than a finite case), The second important finding is that the cooperation rate is high when the
parameters form a game that can hedge the strategic uncertainty from opponents’ decisions.

Mengel (2018) provided a more detailed look into this issue. Three key factors are found crucial in
(finitely repeated) PD games: temptation (percentage gain when unilaterally defecting against a coopera-
tor), risk (percentage loss when unilaterally cooperating against a defector) and efficiency (the number of
gains by mutual cooperation as opposed to mutual defection) (Mengel 2018). She argued that the play of
subjects is highly sensitive to the payoff parameters. They carried out experiments, covering a wide range
of payoff parameter values, and found that risk (temptation) significantly influences average cooperation
rates in one-shot (finitely repeated) PD games, but the influence magnitude of temptation in the repeated
setting is smaller than that of risk in a one-shot setting. There is more cooperation in repeated settings if and
only if the risk is high and temptation is low. Also, in finitely repeated games, the risk is more important
in the early stages of a game and when players are inexperienced, while in later stages of the game and
when players are more experienced temptation becomes more important. Besides, Embrey et al. (2018) ran
an experiment to compare the cooperation rate between settings with higher risk (risk > temptation) and
higher temptation (risk < temptation) and found that games with higher risk generates more cooperation.
Also, initial cooperation increases with experience in the high-risk setting but shows no difference with

experience in the high-temptation setting.

Endgame effect People prefer to play defection at stages close to the terminal stage in the finite case
(Aoyagi et al. 2021, Embrey et al. 2018). Selten & Stoecker (1986) named such a phenomenon endgame
effect. A Probit regression analysis also shows this negative association between the terminal stage and the
cooperation rate (Aoyagi et al. 2021). Besides, the stage to first defection changes with experience. Selten

& Stoecker (1986) explored cooperation behaviour in 25 supergames, with 10 stages each and reported a
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gradual decrease in the stage to the first defection. Embrey et al. (2018) replicated the result but added
a restriction when the horizon of the supergame is large enough (e.g. eight stages). When the horizon is
small (e.g. four stages), the pattern is different (see Figure 1). This is consistent with the Folk theorem that
when cooperation cannot bring a high continuation payoff, defection is the optimal choice. Nonetheless,
there is also evidence against it, which suggests an opposite change. Andreoni & Miller (1993) compared
cooperation between 200 one-shot PD games with random matching and 20 finite ten-stage supergame with
human subjects. The mean round to the first defection increases with subjects gaining experience, starting

below two in the first supergame and ending above 5 in the last.

Figure 1: Cooperation rate by rounds
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Source: Embrey et al. (2018). The top two panels (D8 & ES8) are treatments with eight stages per supergame, while the bottom two
(D4 & E4) are treatments with four stages. With more supergame played (from SG 1-5 to SG 13-17 to SG 26-30), the cooperation
rates at the early stages go up under the long horizon (the top two panels), but this is not the case in the short horizon (the bottom
two panels). There is no single stage where the cooperation rate increases with experience.

Aoyagi et al. (2021) compared initial cooperation rates® in both finite and infinite cases in their exper-
iment and found that the initial rates in both cases are similar. Though mutual cooperation can be a long-
standing stable equilibrium in the infinite situation, it dropped dramatically when it is close to the terminal

stage in the finite case. In Andreoni & Miller (1993)’s experiment, they also found in the repeated setting,

They used a payoff structure leading to high initial cooperation



the cooperation rate begins at a high level (above 60%), lasts at 50% for 6 stages and dropped dramatically
(10%)in the last stage, while less than 30% of subjects in the one-shot setting choose to cooperate in the last
ten rounds (Equivalently, the last one supergame in the repeated setting). The comparison implies that extra
information allows subjects to make more inferences about their opponents, and to be more responsive to the
belief. Besides, past experience has a systematic impact on decisions in the subsequent stages. Cooper et al.
(1996) compared cooperation between 20 one-shot PD games and two finite supergame with ten stages, and
found that cooperation rates start above 50% in the finitely repeated game and end below, but are always
lower for the one-shot game. However, the data in this study is not sufficient to attribute this to any learning
or evolution. Moreover, some literatures (Huck & Weizsdcker 2002, Aoyagi et al. 2021, Embrey et al. 2018)
also claimed that people’s behaviour is forward-looking even though a move cannot be supported by past

action frequency.

2.3 Summary

Empirical evidence supports the Folk theorem that mutual cooperation is practically possible or rational
when the payoff of mutual cooperation is higher than that of mutual defection. Mutual cooperation as an
SPE is a necessary condition for a high cooperation rate. Moreover, indicators, risk and temptation, explain
the reason why SPE is a necessary condition in a behavioural aspect. When the temptation is high, extra
information from experience is risky to be used. Besides, the Folk theorem also supports the endgame effect
if agents examine the continuation payoff in every stage, then they should defect only at the final stage in
the finite supergame. However, it fails to capture the gradual decrease with experience in the stage to the

first defection.

3 Belief updating

The Folk theorem provides theoretical support to cooperation as an equilibrium play in the repeated PD
games, but it does not tell which equilibrium play would be sustained along the horizon. A typical way is
to assume people follow a belief and respond to that belief. The belief is a probability distribution over
opponents’ choice. It can be an belief over actions if subjects treat each PD game as one stage of a su-
pergame and predict opponents’ next stage actions, or belief over supergame strategies if subjects treat
the supergame as a whole and predict opponents’ supergame strategies. This section is going to introduce

models and experiments on the belief over stage actions and supergame strategies.

3.1 Belief over stage actions

Early studies focus on belief learning, which is unobservable and is recovered from action data. To the
best of my knowledge, Nyarko & Schotter (2002) are the first to study stated belief. Though the accuracy
of eliciting belief in experiments and its effect on subjects making better decisions are still disputable®, it

Gichter & Renner (2010) discussed the behaviour of incentivised stated belief in the repeated public good games and found
that incentives to belief would additionally raise the proportion of contribution and the belief. However, in most belief elicitation
experiments in repeated PD games, there is no report on the effect of elicitation, mostly because they avoided belief elicitation
throughout the whole experiment(Aoyagi et al. 2021, Gill & Rosokha 2020). A comprehensive review of belief elicitation can



comes to the fact that action data are best response to subjects’ stated beliefs, no matter whether it is a finite
or infinite supergame (Aoyagi et al. 2021).

Fictitious play was first introduced by Brown (1951) as a cognitive algorithm to compute the equilibrium
by simulation and was later interpreted as a model learning from actual behaviour history. This model, in
most studies, was applied to two-player simultaneous move games, so there is no compatible problem with
applying the model to our case (Dhami 2016). Agents are assumed to use opponents’ historical action
frequencies to construct the distribution and make the best response conditional on that distribution. The
most critical assumption in this model is the stationary assumption of the distribution from which opponents
draw their actions. Then agents are assumed to maximise their current-period payoft.

In our case G(I, A, 11, H), at any stage ¢, agents own a weight w!(C};, D;) (i refers to agent self, and j

refers to the opponent) and applied the weight to form belief over actions (z%) at stage ¢ (Equation 2).

t _ w;(a;)
ST AR R @

where a; € A; = {C, D}. Then, agents make the best response a! conditional on this belief (Equation 3).
aj < BR(LU}Z) = {Cli € Az . 7Ti<ai7'r§) 2 WZ(CZ“I'}Z),VC& € Az} (3)

Belief updating follows the frequency rule. If an action is played at stage ¢, then its weight for next stage is
augmented by 1 unit and the unplayed one remains the same (Equation 4). The initial belief is also formed

by the exogenous initial weight.

1 wi(aj) +1 ifa; is played at stage ¢ @
wi —
w(ay) otherwise

)

One problem of this original model is the non-differentiable best response function (Dhami 2016). Hence,

a smooth version of fictitious play was introduced by adding an additive shock to the payoff (Equation 5).

71_;Smooth = ﬂi(ai’ aj) -+ i
InPr(n; <y)=—e ¥ ()

efkiﬂ'l- (ag,a5)

tlala.) —
wi(aila;) = e 2ilmi(Cira;)+mi(Dy,az)]

where 7 is the random shock and ) is an individual-specific parameter. In this smooth fictitious play, action
belief is not explicitly disclosed. Instead, it is displayed as the probability of a player ¢’s action given his/her
opponents’ plays a; (or sometimes mixed strategies). Another more general variant is weighted fictitious
play, introduced by Cheung & Friedman (1997), which takes into account the distance of historical events to
the current period. Earlier experience is heavily discounted by the rate ¢. This somehow models the recency
effect or forgetting effect of the faraway past, solving the unpractical problem of unlimited memory in the

original model.

be checked on Charness et al. (2021).



1(aj, at) + S, ¢F1(ay, ai7F)
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where 1(-, -) is the indicator function and equal to one if the two input is the same and zero otherwise. When

(6)

i(a;) =

¢ comes to 1, it becomes the original model, while when ¢ goes to 0, it becomes Cournot play.

Though fictitious play is a behaviour learning model, it is still possible to reach the same result (SPE) as
the traditional game theory suggests. This means the perfect rational result can be nested in the fictitious play
model. Fudenberg & Levine (1995) showed that if the following two conditions are met both predictions are
consistent: 1) The initial belief over stage actions are given by the Dirichlet distribution. 2) Every player
believes that opponents’ play sequence is i.i.d. multinational random at each stage. This covers the link
between practical behaviour and extreme behaviour (full rationality).

Fictitious play is a popular model of belief-based learning models. Some other models include general
belieflearning (Crawford & Broseta 1998), and Bayesian learning (Jordan 1991) . There are fewer studies on
these models theoretically and empirically. The general belief learning model was proposed by Crawford
& Broseta (1998) to explain the convergence of scattered initial beliefs and adaptive dynamics in order-
statistic coordination games (Van Huyck et al. 1991). In an order-statistic coordination game, subjects
guess a number (s;()) between 1 to 7 and are incentivised positively by their guess and negatively by the
difference (y(t)) between their guess and the order statistic’. In their model, the initial choice is given by a
time-specific group element (ag) and an individual-time-varying element (&), and the subsequent choice
is updated by a weighted sum of the guess (s;(t)) and the difference (y(¢)), apart from the two variables

above. (See equation 7)

5(0) = ao + &o
5i(t) = oy + & + (1 — @)yt — 1) + ¢ysi(t — 1)

(7

where the weight (¢;) is time varied, representing an agent’s degree of improvement from the previous
order statistic. Crawford & Broseta (1998) pointed out that though it is sensitive to the selection of initial
parameters, the model predicts that people will eventually reach the equilibrium by keeping modifying their
choice from feedback and by shrinking the group belief and individual shocks.

The Bayesian learning (Jordan 1991) models behaviours in an environment where agents are not sure
about the exact payoff matrix of their opponents, but they have common knowledge about the potential al-
ternatives of opponents’ payoff matrix. So, agents can learn which payoff matrix is applied to their opponent
after continuous playing. However, this model cares more about which payoff matrix is used rather than
what action their opponents will do. Agents try to use action beliefs to learn opponents’ payoffs. When the
potential payoff matrix becomes known to every subject, the model prediction that subjects should imme-
diately reach the equilibrium was not observed so often in Cox et al. (2001)’s experiment. Camerer et al.
(2004a) criticized the fragility of the model that its correct prediction stands on the right plays of the first sev-
eral rounds. However, some theorists love this model because it captures the unrealistic perfect anticipation
of others’ moves with belief updating, which is not a typical feature in belief-based learning models.

Fictitious play (also other belief-based learning models) only allows agents to passively adapt to his/her

"In Van Huyck et al. (1991), the order statistic is the minimum
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opponent by simulating the data from the previous stages, but cannot model active strategic moves. How-
ever, empirical evidence does not fully support this. Nyarko & Schotter (2002) designed an experiment to
play a finitely repeated 2 x 2 game with a unique mixed Nash equilibrium in fixed and random matching
with/without belief (over actions) elicitation. They compared the incentivized stated belief over actions with
the belief estimated by the weighted fictitious play model using past opponents’ actions. The weight ¢ is
fitted close to 1. They found three interesting results: 1) subjects’ behaviour best responds to their stated
belief; 2) stated belief varies from stage to stage and does not converge; 3) estimated belief (from weighted
fictitious play) better predicts opponents’ decisions. So, the belief subjects held is not an accurate one or a
pure summary belief that can lead them to a higher payoff. This shows that there must have more elements
in forming people’s beliefs.

A recent study comprehensively compares people’s cooperation in finite and infinite PD games. Aoyagi
et al. (2021) asked subjects to play the same stage PD game repeatedly in finite (eight stages) and infinite
(essential eight stages with a continuation probability of 7/8) cases. The payoff parameters are carefully
designed to have high cooperation rates in the initial response in both cases (of their interest). Subjects were
asked to elicit their action belief stage by stage only after four supergames in order to avoid the incentivised
belief effect. They confirmed and extended Nyarko & Schotter (2002)’s result that people best respond to
their belief in both cases. Furthermore, by having a detailed look into stated action belief, they found two
patterns of systematic deviation, an early pessimism in the infinite supergames and a late optimism in the
finite case. This provides a potential explanation for the gap between stated action belief and estimated
belief in Nyarko & Schotter (2002). Besides, they also found the same action frequencies do not reach the
same belief in the finite and infinite cases and vice versa. This is not covered in the fictitious play. They
also noticed that stated action beliefs predict the change of their opponents’ behaviour (forward-looking)
within a game, which is not a feature of belief-based models as well. The main difference in stated action
belief in both settings is the drop of cooperation in the terminal stage and people seem to anticipate such
breakdown. All these evidence shows that the way people play repeated PD games is similar at the beginning
in both cases with beliefs responding to their action beliefs. Nonetheless, the difference in belief and play
in both settings is led by forward-looking the potential breakdown of cooperation in the final stage of the
finite supergame. Since there is no terminal stage in the infinite supergame, there is no need to forward look

anything, with no dramatic drop in the cooperation rate in the last one or two stages.

3.2 Belief over supergame strategies

Some literatures then put their emphasis to the belief over supergame strategies due to the failure of action
belief to capture the endgame effect or forward-looking and the fact that elicited action belief is not purely
the summary of past action frequency. It becomes a complementary method to model people’s behaviour
in addition to simple belief-based learning. Dal B6 & Fréchette (2011) tried to propose one to explain the
change in strategy.

Dal B6 & Fréchette (2011) report that AD, Grim, and TFT (slightly) account for the strategies played

in the infinite supergames®. By focusing on AD and Grim, they used a belief-based model (for stage action

8 AD and Grim account for 88% of the data. The proportion to each specific strategy is summed up more than one because
Dal B6 & Fréchette (2011) only ensure the behaviour is consistent with the behavioural rule of a specific strategy. (It is hard to
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belief) to model the evolution of supergame belief. Given subjects’ weights on AD 34 and on Grim 35,
they are updated in a way of discounted fictitious play.
Blisry = 0Bl +1(af) (8)

where 0; is an individual-specific discount rate and k is specified to a strategy (AD or G). Their beliefs are

calculated in the following way.

1 a
eAitUit

a _
Pit = T gap 10c ©)
eXt it et it

where a refers to a specific action (C or D) and U is a random utility function.

AD a

Ug = ﬁu‘l(afl)) + ﬁua(af) + el (10)
where u“(af ) is the average utility function when agent i plays action a with agent j playing action a;. Ay
1s a parameter representing how an agent best responds to his/her belief. €;; is an idiosyncratic error term.
Dal B6 & Fréchette (2011) reported a good model performance with the empirical data. This model follows
the manner of fictitious play, but it is only limited to two strategies and is burdensome to extend it to more
strategies. Hence, most studies now are focused on experiments.

Gill & Rosokha (2020) asked participants to play 25 rounds of infinite supergame with a continuation
probability of 3/4, by choosing within ten supergame strategies’ at the beginning of each supergame. Par-
ticipants were incentivized to elicit their beliefs on supergame strategies at the first and final supergame.
They manipulated the value of mutual cooperation payoff as the way in Dal B6 & Fréchette (2011). Basi-
cally, supergame belief is generally consistent with the chosen strategies at the aggregate level in the first
supergame even though there is no history of this experiment and its accuracy increases in the payoff value
of mutual cooperation. However, when goes to the individual level, only 25% of subjects perfectly best
respond to their supergame belief. Besides, they replicated that the cooperation rate increases in the payoff
value of mutual cooperation (Dal B6 & Fréchette 2011), and found that there is a positive relationship be-
tween optimism and cooperation. Optimism is defined as the expected cooperation rate and also increases in
the payoff value of mutual cooperation. The accuracy of supergame belief is decreased by optimism when
the payoff of mutual cooperation is low but is slightly higher due to optimism when the payoff is high. In
addition, they found that optimism obstacles people from best responding to their beliefs when the payoft
is low under an approximation definition of best response!°

Gill & Rosokha (2020) also used the regression model to study the transition between strategies types
(see Figure2). They classified the ten strategies into three categories based on the time of the first defec-
tion: unfriendly (defection in the first round), provocable (defection as long as the opponents defect), and
(Ienient) delayed defection after being unravelling. One of their regression results shows that subjects using

provocable strategies and experiencing long horizons in previous strategies tend to keep applying provoca-

tell the difference (between AC, TFT and G) if a player always plays D). Dal B6 & Fréchette (2018) replicated the result and
constrained that punishment in TFT and G is credible to be useful only if cooperation is supported by the equilibrium play.
9Participants familiarized the strategy set by preplay it with themselves.
10A strategy is the best response if its payoff is in the vicinity of 3.15% of the best response
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Figure 2: Strategy category
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Source: Gill & Rosokha (2020)

ble strategies and lower the probability of using unfriendly strategies. These findings show both beliefs on
supergame strategies and their transitions are only affected by opponents’ actions. If opponents prefer coop-
eration more, subjects are less likely to change beliefs greatly in one or two supergames. This is also verified
in their regression analysis. When others’ strategy is cooperative in the previous supergame, subjects tend
to remain at the strategy used in the previous round, but the magnitude of the probability of remaining in
the same strategy category is a quarter lower when subjects played unfriendly strategies compared with the
other two categories.

Embrey et al. (2018) recruited participants to play finite supergames of 20 or 30 rounds, providing ample
experience. Controlling the payoff and horizon of the supergame, they found that the fraction of subjects
who learn to make threshold strategies implied by the backward induction increases with the number of
supergame. Even though various strategies are carried out at the beginning, it converges into threshold
strategies when a great amount of experience is gained. This is also supported by the experiment result that
the skewness of the probability distribution of breakdown of cooperation (over stages in a supergame) shifts
to the left when more rounds of supergames are played. Types’ shifts from normal supergame strategies (AD,
TFT, Grim, etc.) to threshold strategies were also found in Aoyagi et al. (2021). This shows the possibility of
the existence of strategic reasoning over supergame strategies because the best response to threshold strategy
m 1is threshold strategy m — 1. By anticipating opponents’ supergame strategy distribution, one can take
out his/her best response, similar to the logic of level-k thinking. Players who anticipate their opponents to
play a threshold-x strategy tend to carry out a threshold-(x-1) strategy. In this manner, applying supergame
strategies becomes a number guessing game, choosing the stage of the first defection.

Aoyagi et al. (2021) used elicited action belief 1} (a;|h'!) in the last one to three supergames to recover
subjects’ supergame belief p}(o;|h'~!) via a Bayesian rule and assume agents use supergame belief at the

first stage p; (o;|h'~') to compute one’s own supergame strategies applied to that whole supergame.

pi(Clh =) =32, <z Pioj | =)o (ClR')
~t—1 t—1),t—1 t—1
St pt—1y p; (05| (Clh* ™)
o) = S T o T (1)

o; € argmax;. . . pi(0;)ui(6:,05)

where Z; C Y; is a finite subset of the full strategy set. Aoyagi et al. (2021) built up the subset with 16
strategies based on literature evidence. They used SFEM!! (Dal B6 & Fréchette 2011) to estimate a group-

level strategies distribution. The results confirmed findings in Embrey et al. (2018) that subjects like to use

"UThey used the 0.06 for implementation error (1 — 3)
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threshold (T-x) strategies in the finitely repeated PD games (T7 for30%, T8 for 22%, AD for 12%, TFT
for 9%, and T6 for 8%) and in Dal B6 & Fréchette (2018) that people prefer to apply conditional cooper-
ative strategies, such as TFT (36%), Grim(18%), Grim2 (11%), AC (11%)'2. Subjects were classified into
different types based on the most frequent strategies used in the experiment, and Aoyagi et al. (2021) built
the supergame belief by various types. They found subjects managed to predict popular strategies in each
game setting and subjects using different supergame strategies held heterogeneous supergame beliefs. To be
specific, subjects tend to overestimate others’ use of the same strategies as themselves and to underestimate
others’ use of less cooperative strategies than themselves. Aoyagi et al. (2021) ranked strategies based on
expected payoffs when there is no implementation error (5 — 0). The cooperativeness ranked from least to
most as follows: AD, STFT, T6, T7, T8, Grim, TFT, Grim2, TF2T, and AC.

It is innovative to include belief over supergame strategies into belief over actions. However, there
are still some questions left unanswered. The first one is how people narrow down the large supergame
strategies to a feasible subset of strategies. As the potential pure strategies space in a supergame is 27 (7" is
the horizon of a supergame), the criteria that agents apply to choose the subset of supergame strategies lack
study. Second, the time people begin to consider supergame strategies is unknown. As mentioned above,
the consideration of choice (stage actions or supergame strategies) to supergame strategies explicitly shows
ways agents treat the supergame, either stage by stage or as a whole. It is unclear what the condition that
triggers the transfer is. Lastly, though I classify belief over supergame strategies as one of belief formation
and updating, it contains the property of sophistication reasoning (forward-looking), which will be discussed

in the next section!?.

3.3 Summary

Theoretical action belief is basically a summary of past opponents’ actions, usually in a manner of the
weighted average of frequency. It fails to predict anything unrealized in history. However, elicited action
belief shows a different pattern and the difference between finite and infinite supergame cannot be captured
by belief-based learning. Nonetheless, elicited beliefs are not only accurate to predict opponents’ moves but
also are best responded to by the players themselves. The empirical evidence ensures the validity of the idea
of using beliefs to predict players’ actions and the assumption that people are subjective rational (Boudon
1989), which defines people’s behaviour to be rational as long as it is reasonable, and is not necessary to
carry out decisions resulting in the objective maximal payoff. The difference between theoretical action
beliefs and the stated one is studied from the view of supergames strategies. Supergame strategies play a
role as a paradigm guiding agents to make choices. This explains why some actions with tiny probability
based on history are played. Several studies found that even though players apply various strategies at the
beginning, their behaviour steadily converges to some typical strategies with experience, Grim and TFT in
the infinite supergame and threshold-x strategies in the finite case.

2AD is only for 9% in the infinite case.
13 A better interpretation of belief over supergame strategies is a way of strategic reasoning in the form of belief updating.
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4 Sophistication reasoning

The other mainstream of considering people’s reasoning is the Sophistication model. It is a class of strategic
reasoning in a more behavioural view. It is good at predicting players’ initial play in repeated games, but
cannot track the subsequent plays in the same repeated game. Interestingly, when agents have no experience
in playing the game and knowledge of their opponents, the models can capture players’ behaviour. The word
’sophisticated’ is usually used in describing and comparing the depth/number of iterations of reasoning. The
term ’sophistication’ refers to one’s cognitive ability to carry out reasoning based on game structure/payoff
without learning (about the opponent) in most cases. The two most popular models are level-k thinking and
cognitive hierarchy. It provides good predictions for the initial play in contrast to belief updating, which
often assumes an exogenous initial weight/belief, and in some cases, the prediction may be sensitive to initial

parameters.

4.1 Models and empirical evidences

Level-k thinking Level-k thinking, proposed by Stahl & Wilson (1995) and Nagel (1995), is a model pre-
dicts non-equilibrium strategic reasoning model. The model assumes the population of players are heteroge-
neous in sophistication (a cognitive resource used to make reasoning). There is no restriction or assumption
on the component of the population. The model fixes the behaviour of each level of sophistication think-
ing to be the same. Level-0 (L)) is assumed to follow a naive and non-strategic behaviour with a uniform
distribution over all feasible actions. L1 players suppose all his/her opponents to be L{) players and make
the best response to the L{) pattern. L2 players make the best responses to the L1 pattern. In summary,
Lk players only realize all players are one level lower than themselves and make the best responses to the
L(k — 1) pattern. A large number of studies show that there are rare L{) players (Crawford & Broseta 1998,
Dhami 2016, Camerer et al. 2004a). Most players are L1 type, a minority is L2 and few are L3 or above.
Hence, the L() behaviour type is more likely a stereotype model/ anchor type in L1 reasoning. This model

is a deterministic one, avoiding the effect of the noisiness of others’ responses.

Cognitive hierarchy Cognitive hierarchy (CH), proposed by Camerer et al. (20045b), is a generalization
of level-k thinking. The main motivation for this generalization is when k goes up, the proportion of higher
level does not shrink, instead, it goes up as well because level-k thinking model assumes all players hold
sophistication one level lower that the players, which is contradictory to empirical studies that higher k(>
3) is rare. For example, the actual L3 players are rare in practice, but for a L4 player, all other players
are L3 type. CH-k players realize the existence of players with sophistication from CH — 0 to CH —
(K — 1), including all levels lower than theirs. Due to cognitive limits, equal or higher level than & is
unrecognized by a C'H — k player. The composition of players in a population follows a distribution, which
is common knowledge to all players but is restricted to the sophistication level CH — k one holds. The

Poisson distribution is the most popular one.

flk)y="——1k=0,1,2,... (12)
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where 7 (the mean and variance of a Poisson distribution) can be interpreted as the expected level of sophis-
tication of the population. f (k) tells the proportion of C'H — k players with different level % in population.
f(fk(f)l) decreases at a rate proportional to k is consistent with empirical evidence. In each
CH — k player’s point of view, the relative frequency (gx(h)) of players of each levels lower than his/her

CH — h(h < k) is calculated as

Its property that

f(h)
eh) =
gr(h) )

Another big difference between level-k thinking and cognitive hierarchy is the error structure. In level-k

(13)

thinking, players are allowed to have implementation errors to create fluctuations because the only random
type/level is L{), which rarely exists in practice. However, in CH, the L{) disturbance though rarely happens
yet was repeated again as a C'H — k player considers also levels of players below him/her. This adds more
randomness than level-k thinking does. Hence, CH does not allow errors for agents. One drawback of
this generalized model is the sensitivity to the population distribution. Different distribution assumptions
affect the model predictions. Camerer et al. (2004b) report the 7 on 24 p-beauty contests with various p,
and found that the parameter 7 ranges from 0.1 to 4.9, with a median close to the golden ratio (1.618)'.
They also estimated the parameter in other games (with mixed strategy equilibrium) in the early rounds
without feedback, and the value ranged from 0 to 15.9. One explanation they provided is the value of the
payoff. They argued that a higher payoff pushes participants to make more steps of reasoning, which would
be discussed later.

In dominance-solvable games (such as prisoner’s dilemma), C'H — k agents always assume their op-

ponents with a lower level of sophistication CH — h (k > h). The CH — 0 is assume to have uniform

1

# of actions in the action set In

randomization on their actions, so the action distribution (C'H — 0) of is p(a;) =

the prisoner’s dilemma case, it would be p(C;) = p(D;) = 1/2. Then, we can iterate to get the action
distribution for each level h below k& By knowing the relative frequency of players with lower sophistication

gr(h), we can have the opponents’ action distribution by summing the weighted probability up.

pr(al) =" ge(h)p(a)) (14)

Dhami (2016) pointed out that when 7 — oo, agents’ behaviour is close to the behaviour in Nash equilibrium
and level-k thinking. Crawford et al. (2013) summarized the model performance in various games that
cognitive hierarchy performs at least better than Nash equilibrium.

Alaoui & Penta (2016) and Alaoui & Penta (2022) proposed a model of strategic thinking of initial re-
sponses to extend the argument in Camerer et al. (2004b) that payoff stake might change people’s depth
of reasoning (expectation of sophistication)'>. In their study, the choice is a result of depth of reasoning,
determined by the value and the cost of reasoning. Each step of reasoning leads to a better understanding of
their opponent in the game. The value of reasoning (benefit) increases in games’ payoff, while the cost is

negatively associated with one’s exogenous reasoning ability. A higher level of cognitive reasoning ability

14The background of subjects are various from students to professionals.

5Players’ behaviour is fixed for each level in level-k thinking model. Hence, agents are insensitive to incentives/payoffs.
Another method considering the influence of incentives on deviation is quantal response equilibrium (QRE). However, it is not
of my focus here because this model is highly sensitive to the noise distribution Haile et al. (2008).
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(upper limit of one’s sophistication) exerts less effort/cost to the reasoning for the same depth of reasoning.
In a game, the cost of reasoning is fixed. Higher the payoff, the more steps of reasoning. The incentive for
a further step of reasoning is the payoff difference between the one a player could get if he chose the best
response (one more step) and the one he would receive given his current action. This model disentangles
the actual sophistication in the reasoning process from intrinsic cognitive sophistication ability/state. This
implies one’s reasoning sophistication can be inconsistent with the actual sophistication reflected by his/her
action. For example, a level-3 player only needs to play a level-2 strategy when he/she thinks his/her op-
ponent is level-1. If the opponent is thought to be less sophisticated than the player, the best response of
that player is not to play at his/her full strategic sophistication, but some level lower, which is the actual
sophistication. Based on one’s belief about their opponent’s sophistication/reasoning cost, one’s depth of
reasoning changes.

Their findings are supported by an experiment. The task they used in the experiment is the 11-20 game.
The game is played in the following way: Two players report a number between 11-20. They can get the
number of tokens they report. Besides, if the number that one reports is just one below his/her opponent’s,
then one will get x tokens as a bonus. Also, if tied, then both subjects gain 10 tokens as a bonus. There
are two kinds of treatments. One is to manipulate incentives/value of reasoning, by setting x to be either 20
or 80. The other is to manipulate subjects’ beliefs about their opponents’ reasoning sophistication/cost of
reasoning. This piece of information is given to the subjects in the form of either their opponents’ programme
types (“science and maths” or “humanities”) or test levels (high or low). Participants were asked to play
18 games in a row, covering all the combinations of treatments. Partners were randomly assigned for each
game. The result shows that the depth of reasoning (weakly) decreases in the payoff. The steps of reasoning
are also influenced by the sophistication belief of opponents and higher-order belief of the sophistication
belief (i.e. a second-order belief is that one believes his/her opponent believes the sophistication one is)

However, Esteban-Casanelles & Gongalves (2020) criticized Alaoui & Penta (2016)’s implication that
only the difference between payoff (payoff distortion) matters and provided some empirical evidence for
how full incentive scale up also changes people’s behaviour and beliefs via choice implementation mistakes
(for noisy best response) and belief formation (in sophistication reasoning). They used diagonal games
(Gongalves 2020), an experimental tool that can vary the steps of reasoning by keeping other things (e.g.
payoff structure and the number of actions) unchanged, to run a 2 x 2 x 2 experiment, with two levels
of players’ incentive, two levels of opponents’ incentives and two levels of the number of iteration to the
dominant solution. The level of payoff stake reaches a ratio of 40, with a large absolute value, which
magnifies the incentive effect. Each subject played the one-shot game once with a completion time of 22
minutes. Choices and action beliefs about their opponents were elicited. They used a very special experiment
setting, adding the position of an observer (Huck & Weizsdcker 2002). A player (A’) is assumed to play with
an opponent (B) who is also playing the same game with a player (A), who has the same incentive treatment
as A’. The payoff of players A’ is jointly determined by both A’ and B’s choice, but not vice versa. The
authors focused on the behaviour and belief of player A’s and asked player A’s to elicit the expected belief
of player B’s action. Basically, they found high own incentives raise people’s belief and action tendency
toward non-dominated strategies (it is only the case of the change of opponents’ incentives if subjects’ own

incentive is high), while complexity (the number of iterations to reach the dominance solution) decrease
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subjects’ belief and action tendency to dominant solutions. In terms of the implementation mistakes, they
showed that when own incentive is high, people are more likely to best respond to one’s belief with fewer
implementation errors and there is a distributional shift down in losses. As for belief formation, they found
the belief of subjects with high own incentives are less uniformly random and are more accurate (only when
their opponents have high incentives). They also explained that subjects with high incentives indirectly

influence the accuracy of beliefs by increasing response time (effort).

Dynamic level-k Both two sophistication models do not allow agents to improve their prediction with
experience, which violates the reality. Agents in level-k thinking always prefer all other players to be one
level below theirs, while agents in CH estimate a distribution of the population sophistication level and holds
it along the supergame. Ho & Su (2013) proposed a dynamic level-k thinking model to explain violation
in backward induction, the limited induction and repetition unravelling. Limited induction refers to the
phenomenon that the number of stages deviated from backward induction increases with the horizon of a
sequential game. Repetition unravelling is a violation that game behaviour converges to the prediction of
backward induction when the game is repeated more enough. They constructed a rule hierarchy (a set of
potential moves for the whole sequential game or centipede game in their case), with each corresponding
to a specific level of sophistication. Unlike level-k thinking or CH, they allow participants to build the
composition of the population by trials. Agents update their sophistication belief (the belief over opponents’
sophistication level in the population) stage by stage by following the rule of fictitious play, given the initial
belief. Hence, the subjects are assumed to be homogeneous (in contrast to level-k thinking and CH) but
heterogeneous in their sophistication beliefs. The model explains the limited induction by the sophistication
belief. A longer horizon allows the sophistication belief to be updated more times, leading to more deviation.
Repetition unravelling is explained by a best response to sophistication belief and shifting to higher level
of sophistication with few people choosing low-level rule. This model shows how people improve their

decision through learning.

4.2 Attention

Attention is widely measured as an indicator of sophistication. Eye-tracking experiments have verified its
validity as a measure of information collection and a reflection of the use of sophistication (Polonio et al.
2015). A recent study tracked the use of attention to show the evolution in sophistication with experience,
which again proves that sophistication is not a fixed characteristic, but is something that can be learned.
Marchiori et al. (2021) explored whether and how previous experience affects the level of sophistication
reasoning. The sophistication was measured via visual fixation and lookup patterns on various payoff areas,
which separates sophistication from belief updating.

The authors ran an experiment with two-person 3 x 3 normal-form dominance-solvable games, evaluat-
ing subjects’ level of sophistication in three games requiring various levels of analytic effort: the one with
dominant strategy only for players (DS), the one with dominant strategy only for the opponent(DO) and
the one with no dominant strategy for both (ND). Players played with an algorithm (always played as the

opponent) which always plays the equilibrium move'®. They compared players’ decisions and eye fixations

16participants were informed of the rationality of this algorithm before the experiment
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before and after the learning stage to see whether the learning experience makes a difference in subjects’
choice, eye fixation and visual moving patterns. The learning stage contains 2 x 2 treatments with a binary
treatment of with/without feedback and two levels of analytic effort required for the task.

One of their main results shows that experiencing cognitive-difficult games with feedback greatly in-
creases subjects’ frequencies of equilibrium choice and sophistication level. Subjects in the difficult with
feedback treatment had a significant transition from self-payoff to opponent-payoft, while subjects in easy
treatment did not. Participants increase their attention (fixation time) to other-sum and other-dominant pay-
off regions, decrease in own-sum fixation, but do not decrease in own-dominant. By contrast, participants
in the easy treatment with feedback group did not learn to consider others’ incentives.

The study showed the possibility of the learning effect in understanding the game structure. To be more
specific, having experience requiring more analytic effort with feedback shifts subjects’ attention assignment
to others’ dominant strategy. This study shows how sophistication evolves in non-zero-sum games. The
main problem is here payoff scheme. Subjects were randomly rewarded by one trial, which means subjects
had to take each round separately, eliminating the reputation effect. Each round is a one-shot game. This

differs from the repeated games, as they only focus on learning the game rather than learning the opponent.

4.3 Summary

This section introduced the two main sophistication models, in which action beliefs and behavioural rules
are pre-set and agents do not learn or improve their choice with experience. This corresponds to the opinion
that sophistication is an intrinsic mental cognitive ability, which should not change in a short time. However,
as technology allows sophistication to be measured in experiments, evidence supports that sophistication is
also possible to evolve. This separates the concept of sophistication as a cognitive ability and reasoning
level reflected in choice. Moreover, the incentive plays an important role in sophistication reasoning, but
the mechanism between incentives and presented sophistication is not well set. Either full scale-up or partial

distortion seems to influence people’s reasoning.

5 Discussion

In this dissertation, three beliefs are mentioned, belief over stage action, belief over supergame strategies and
belief over the level of sophistication (either in CH or in dynamic level-k thinking). Beliefs!” are widely
considered as a distribution over a set (stage actions, supergame strategies or sophistication level) to the
opponent whom one is playing with, but it fails to identify the belief type by the information source, a group
belief or an individual belief. A group belief is a belief using population information (estimated by the
samples), while an individual belief refers to a belief using the information of a specific opponent.

When using supergame belief or sophistication belief, subjects are asked to make a decision without
specific information about the randomly matched new opponent. In the supergame literature, the value or
source of the initial supergame belief is not mentioned, either recovered from stated action belief or elicited,

and the supergame strategy implemented cannot be changed in a supergame, while the sophistication belief

17In this section, beliefs refer to all three beliefs if not specified.
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is decided by the expected sophistication level 7. It is a question of how people have these beliefs or ex-
pectations even if they do not have the information about their specific opponents. In other words, players
should have consistent beliefs and actions when there is no individual-specific information. However, em-
pirical evidence supports that people’s initial performance improves (e.g. an increasing initial cooperation
rate) even if their history in a specific supergame is still empty. Hence, there must be some information in
this improvement and group information is the only option left. People tend to use population information
as a reference to form their beliefs. This implies that a change in these two beliefs reflects subjects’ knowl-
edge and estimation of the group. Hence, both supergame belief and sophistication belief are group beliefs.
The convergence of supergame strategies chosen at the beginning of a supergame in both finitely (threshold
strategies) and infinitely (conditional cooperative) repeated games can be evidence that subjects gradually
reach an agreement on the group action distribution, not on a specific individual (In the prisoner’s dilemma
case, it is the cooperation rate). This is also why the estimation of supergame belief can be transformed into
sophistication belief (Gill & Rosokha 2020) because some supergame strategies are a mutual representation
of some sophistication levels.

Such an inference can also be applied to stage action belief of the initial stage in a supergame because
the initial belief is not formed by any specific information about their opponent. A player A should always
form the same belief in a supergame no matter whether he/she plays with opponent B or C' because he/she
does not know which move the opponent will play and use the population belief as an approximation to
the individual one. In the subsequent play, agents collect information specific to that opponent. They can
make specific action sequences in the manner of fictitious play. However, many literatures on PD games
showed that people’s elicited belief, though best responded, is different from fictitious play. From the scope
of belief type, the question is whether the elicited belief is an individual belief of stage actions which is
proceeded by fictitious play. The endgame effect is a counter-example to this. The decrease in the round
to the first defection is only possible when group information is used. Otherwise, a player should not know
when his/her opponent defects.

Hence, I propose a potential mechanism for people to generate beliefs. The elicited belief ,(a;) is
a joint distribution of both summarized stage action beliefs b7(a;) to a specific opponent by summarizing

history frequency in a supergame and a group belief b7 (a;) over action sequence across supergames.

bi(a;) = pubi(a;) + (1 — pir)bi(a;) (15)

where p;; is a stage-varying preference for individual-specific or group belief, related to the learning paths/action
sequence (e.g. initial cooperation/defection) and the game structure'®. An interpretation of this parameter is
the level of trust in one’s opponent. If one trusts his/her opponent, one should weigh individual belief more
than group belief because individual belief provides more information to the opponent whom one is playing
with. After receiving the feedback, both group and individual beliefs are updated marginally and jointly.
(see Figure 3)

While the marginal update is an adaptive behaviour to their previous marginal belief and the joint update
is an adaption to the weight between individual belief and group belief. On one side, it is decided by the

history of a specific opponent. If the cooperation between the two does not unravel before, the inertia keeps

8The influence of game structure will be discussed in next paragraph.
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Figure 3: Marginal updating process
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the player to infer the opponent to be trustful. On the other hand, the incentive is an important component
of the trust parameter p;. Trust should not be built purely on experience but also better be sustained by some
practical assurance. Incentives, constructing the game’s structure, provide such an assurance. If mutual
cooperation is not an SPE or the temptation is sufficiently high, one can hardly believe his/her opponent
will not betray even if it has not happened before.

The incentive is not covered in the previous two classes of models. Either model fails to sustain its belief
with some practical elements/facts. Given the same initial belief, incentives do not generate different beliefs
if the history is the same, and the incentive does not change the behavioural rules and stage action beliefs in
each level of sophistication. However, Dal B6 & Fréchette (2011), Dal B6 & Fréchette (2018) argued that
mutual cooperation is possible when it is an SPE with a high continuation probability in the infinite case.
Besides, (Mengel 2018) has shown that regardless of a repeated (finite (Embrey et al. 2018) or one-shot
game, incentives are important to players in a prisoner’s dilemma game. The temptation and risk critically
influence people’s cooperation choices. Besides, incentive structure influences people’s cognitive effort
on forming beliefs, shifting subjects’ attention on some specific actions (Marchiori et al. 2021), changing
depth of reasoning (Alaoui & Penta 2016, 2022), and requiring various response time (Esteban-Casanelles
& Gongalves 2020). The link between incentives and belief is worth a deep study. It definitely influences
people’s initial decision, which is repeated again and again in each stage of the game.

If I call the belief updating to a specific opponent learning, and to a group of opponent reasoning, then
this mechanism can be called learning to reason. In simple words, an elicited stage action belief is not
only conditional on the history of a supergame but also conditional on the history of that specific stage
across supergames played. Hence, the endgame effect or forward-looking can be explained by beliefs across
supergames at stage ¢. It can be a potential direction for a simulation and an experiment in the future. This

mechanism might solve another question of how supergame strategies and behaviour related to a specific
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sophistication level are consciously recognized by an agent. Theoretical models do not explain how these
are formulated by people from inexperience to experience. By putting group beliefs as adaptive behaviour
evolving during play, these pre-set behaviour and belief patterns can be a result of repeated playing.
Recently, there is one study close to this idea. Mengel (2014) proposed a model combining belief updat-
ing and forward-looking. Agents in this model are classified as a group role. For example, in our PD games
case, one player is randomly chosen from group ¢, and the other player is also randomly picked from a group
j. Hence, a group stage action belief is updated in each supergame. She assume agents have limited mem-
ory M!(H|m), which can recall opponents’ action in the last m-instance starting from the h-stage history

Hi(h) = {a'™" a1 ... a'~1}. (see Figure 4 for example) After knowing the history, agents randomly

Figure 4: Example (Mengel 2014)
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Assume that h = 1 and m = 5. The 7" means a supergame. Att = 27 + 1, the history is H* = {(B, A)}, and the memory is
M!((B, A)|5). 1 emphasize the history (B, A) on the timeline. The last five actions of opponent —i are {4, B, A, A, A}. The
last one in the second supergame does not count because there is no reaction for that history at that supergame.

sample p < m from the memory and form opponents’ stage action belief ! (a_;| H ). Besides, agents have
an action plan by looking at k-stages forward. The stage ¢t + £ will be a temporary terminal stage for the
bk (qT)EEk

action plan and a belief of terminal stage £ ((al, a”,);=7|(al)5y) is constructed based on their action plans.
Action plans are made by best response to belief along these forward-looked £ stages. Hence, the belief
in Mengel (2014)’s model is a group belief specific to a history (Hf(h)). An agent summarizes history to
estimate the stage action belief of the opponent population, and make future decision plans by constructing
opponents’ future action based on the group belief and best responding to each group action belief at each
future stage. As an implication, it allows individuals to make an actual decision different to their plans.
However, in this way, individual-specific information is wasted, and only group information is retained to

estimate group belief.

t+k
Maz(ary, =tV (L (H), (a]) = > pi((a],a”)iTE|(a])5E) Y " mila],a7,) (16)
(af,aii)iili T=t

Other popular streams also explain people’s cooperation in repeated PD games, including team reason-
ing (Sugden 2003, 2011, Gold et al. 2012), conditional cooperation (Gédchter & Renner 2010, Neugebauer
et al. 2009, Chaudhuri et al. 2017), social or other-regarding preference (Yamagishi et al. 2013, Pei et al.
2021), and inequality aversion (Backhaus & Breitmoser 2021). However, Dal B6 & Fréchette (2018) ar-
gued that there is no robust evidence on whether those behavioural traits systematically influence the play
in the infinite supergames where C-C is sustained as an equilibrium play, and strategic motivation behind
the cooperation in infinite supergame prevails in empirical evidence(Dal B6 & Fréchette 2018). Besides,
it is still unknown whether these characteristics are the factors for cooperation or a result of cooperative

interaction. This needs to be checked in future studies.
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A Brief literature review for other learning models

Belief-based models are one family of adaptive learning models. Other adaptive learning models, such as
the reinforcement learning (Roth & Erev 1995, Erev & Roth 1998), experience-weighted attraction (EWA)
learning (Camerer et al. 1997, Camerer & Hua Ho 1999), and learning direction theory might also reach
similar prediction by focusing on different aspects. Since it is not our focus, I will have a simple summary
and comparison here.

A closely related model to belief-based learning is the learning direction model. Rigorously speaking,
this model does not show belief explicitly as well. There is no clear specification on this model. It only
provides a qualitative prediction of the direction of the next play relative to the current play. The well-known
analogous ’archer shooting’ that an archer exactly aims at the target by moving close to it little by little best
describes this theory. The concept of impulse balance theory (Selten et al. 2005), summarized the theory
that the long-term goal is to find a point (target), which has the same probability to move in either direction.
Suppose an agent chooses an action s! and his/her opponent(s) chooses actions s’ ;, an agent i’s ex-post best
response b’ is

b € argn;axm(si, s)) (17)
;€04

Then for the next stage ¢ + 1, the agents’ action choice s'™* lies between b! and st. Selten & Stoecker (1986)
used this theory to explain the endgame effects in finitely repeated PD games. Subjects in their experiment
played 25 supergame with 10 stages each. In their model, each agent is assumed to naturally play defection
at stage k, given interaction begins with cooperation. So, agents lower down the first stage to defection
k by one unit with probability « if he/she was defected earlier by his/her opponents or with probability
(3 if he/she defects at the same stage with his/her opponent!®, or increase & by one unit with probability
v if he/she defects earlier than his/her opponent. They reported that the behaviour of 65% of subjects is
consistent with the model. The median estimated values of «, § and ~ are 0.5, 0.135, 0.225 respectively.
They suggested that people are predicted to play defection immediately at the beginning of a supergame
under these parameters.

A parallel model to belief-based learning is value-based learning, usually referred to as reinforcement
learning. Agents using reinforcement learning are unaware of the structure of the game they played or
the action one’s opponents are going to play. Basically, reinforcement learning updates the propensity of
action actually played by reinforcing prediction error with the learning rate. Agents always choose the
action with the highest action value but do not understand the incentive behind their opponents’ play and
the next potential action. Dhami (2016) commented that using reinforcement learning only makes better
decisions but not the optimal ones. A large number of empirical studies compared the fitness between
belief-based learning and reinforcement learning but do not reach an agreement as either model performs
better in some games not all. The EWA model contains core elements in both reinforcement learning and
weighted fictitious play. It used the information of one’s own play history?° to form propensity to each own
actions and allows the propensity of unplayed moves to be discounted 2!. From this point of view, EWA

models can also be viewed as an overarching model of belief-based models and reinforcement learning

Ya > B because agents were betrayed earlier are more motivated to change their behaviour
20A drawback of fictitious play is not
2 A drawback of reinforcement learning is the unchanged propensity for actions unplayed
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models. With some specific sets of parameters, EWA can be transformed into either case. A related model
is the learning direction model. Rigorously speaking, this model does not show belief explicitly as well.
There is no clear specification on this model. It only provides a qualitative prediction of the direction of the
next play relative to the current play. The well-known analogous ’archer shooting’ that an archer exactly
aims at the target by moving close to it little by little best describes this theory. The concept of impulse
balance theory (Selten et al. 2005), summarized the theory that the long-term goal is to find a point (target),
which has the same probability to move in either direction. Suppose an agent chooses an action s! and

his/her opponent(s) chooses actions s” ;, an agent i’s ex-post best response b! is

bl € argmax m;(s;, 5" ;) (18)

;€S
Then for the next stage ¢ + 1, the agents” action choice s lies between b! and s!. Selten & Stoecker (1986)
used this theory to explain the endgame effects in finitely repeated PD games. Subjects in their experiment
played 25 supergame with 10 stages each. In their model, each agent is assumed to naturally play defection
at stage k, given interaction begins with cooperation. So, agents lower down the first stage to defection
k by one unit with probability « if he/she was defected earlier by his/her opponents or with probability

(3 if he/she defects at the same stage with his/her opponent?

, or increase k£ by one unit with probability
~ if he/she defects earlier than his/her opponent. They reported that the behaviour of 65% of subjects is
consistent with the model. The median estimated values of «, § and ~ are 0.5, 0.135, 0.225 respectively.
They suggested that people are predicted to play defection immediately at the beginning of a supergame

under these parameters. A summary of how information is used in each model can be seen in Table 3

Table 3: Information used in each Learning model

Learning theories

Information Reinforcement Beliefs Learning direction model EWA  Sophistication
i’s choice a! X X X

—i’s choice a’ | X X X

i’s received payoff m;(st, s' ;) X X X

1’s forgone payoff Wi(gi‘f, st;) X x X

i’s best response b; (st ;) X

—i’s received payoff 7_;(st, st ) X

—4’s forgone payoff m;(st, st ) X

Note: From table 6.3 in Camerer et al. (2004a). I only picked the models I discussed in the dissertation, which are
also the main models. The learning direction model is listed beyond the beliefs due to its unique information on
the best response.

2o, > f3 because agents were betrayed earlier are more motivated to change their behaviour
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