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Abstract

This thesis examines the optimal estimation of parameters in a variety of quantum os-

cillator models, including cavity quantum optomechanics and the quantum van der Pol

oscillator. To achieve this, we employ theoretical tools from open quantum systems,

quantum estimation theory and Gaussian states. In all cases, we compare the ultimate

limits to parameter estimation (quantum Cramer-Rao bounds) to the performance of

experimentally feasible observables (e.g. quadrature or number operator measurements).

The majority of the thesis addresses the estimation of the “linear” and “quadratic” cou-

pling constants in strongly driven and dissipative optomechanical models, which are well

described by bilinear master equations and Gaussian steady states. In this framework,

we explore how the estimation precision can be affected by temperature, drive strength,

detuning and higher order corrections to the optomechanical Hamiltonian. Through a

combination of analytical and numerical methods, we find that temperature is not always

detrimental to the estimation precision. We also find that quadrature measurements can

perform close to the ultimate bounds in appropriate parameter regimes.

The last chapter focuses instead on estimating the ratio (λ) between linear amplification

and non-linear damping in a quantum van der Pol oscillator. We present both numerical

and (approximate) analytical results covering all parameter regimes. In the steady state,

we find that the quantum Cramer-Rao bound can in principle be saturated by a mea-

surement of the number operator. We also observe divergent behaviour of the quantum

Fisher information (which implies a vanishing quantum Cramer-Rao bound) for λ → 0.

The origin and interpretation of such singular behaviour is left as an investigation for

future work.
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Chapter 1

Introduction

Quantum optomechanics is a rapidly evolving research field that focuses on the interac-

tion between light and mechanical motion [1, 2, 3]. The origins of this field can be traced

back to the 19th century, at which time the mechanical effects of light were already widely

speculated [4]. The investigation of quantum optomechanical systems was pioneered by

Braginsky and co-authors [5, 6, 7]. The rapid theoretical and experimental developments

in this field have been subsequently driven by its wide range of potential applications

including in fundamental physics and precision measurements. Indeed, when considering

the many fundamental and technological applications of optomechanical systems, accu-

rate knowledge of the light-matter coupling constants involved is essential. The aim of

this thesis is to theoretically explore the best methods for estimating such constants in a

variety of optomechanical models.

The mechanism responsible for the optomechanical interaction is radiation pressure, a

phenomenon that was first postulated by Kepler in the 17th century [2, 8, 9]. The relevant

physical theory, however, was not formulated until the 19th century and the existence of

radiation pressure was only demonstrated experimentally at the beginning of the 1900s

via light mill experiments [10]. In 1909, Einstein, through his study of the radiation
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CHAPTER 1. INTRODUCTION

pressure effects on a movable mirror, was able to correctly derive a formula describing

wave-particle duality of black body radiation [11]. Thirty years later, the exchange of

momentum between macroscopic objects and photons was evidenced experimentally for

the very first time [12, 13].

The great potential of quantum optomechanical systems for precision measurements was

realised early on [3]. These systems allow for highly precise detection of small forces,

displacements, masses and accelerations, and as such, they are of great importance for

many applications including gravitational wave detectors, scanning probe microscopy, and

force sensing [2]. The sensitivity with which these parameters can be measured, however,

is limited by quantum noise. Quantum noise, or quantum radiation pressure noise, is

a fundamental consequence of the quantum nature of light [14]. The physical nature

of the measurement, in particular, gives rise to quantum backaction, which inevitably

affects the state of the mechanical element and introduces the standard quantum limit

(SQL) for measurement sensitivity [4, 15]. This limit arises when the position of an

oscillator is measured continuously and reflects a balance between the precision of the

measurement and the quantum backaction that arises. The SQL was first established in

works by Caves, Braginsky and co-authors, and sets a benchmark for the performance

of gravitational wave detectors, such as LIGO [16, 17, 18]. However, the SQL is not

a fundamental limit and can be evaded by adopting a more sophisticated measurement

strategy (e.g. measuring only a single quadrature of the oscillator [19]).

In order to reach a regime where quantum effects become observable and hence where

quantum levels of sensitivity can be reached all non-quantum noise sources, and in par-

ticular thermal noise, need to be removed as much as technologically possible [20, 21, 22].

A typical experimental goal in this direction is cooling the mechanical element to its

ground state (or more generally, a pure state). In reality, however, the removal of all

thermal phonons from the mechanical element poses an experimental challenge. Along-

side quantum (and thermal) noise, the physical effects of radiation pressure may also have
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a hindering, or facilitating, effect on the measurement sensitivity of optomechanical pa-

rameters of interest. In fact, it was Braginsky who first realised the potential of radiation

pressure for cooling macroscopic objects [5]. Indeed, it was discovered that through an

effect known as “dynamical backaction” the mechanical element could, in theory, self-cool

down to its ground state [6, 23, 24]. In short, dynamical backaction is a consequence of

the finite delay between a position shift of the mechanical element and the response of

the cavity field that leads to cooling or amplification of mechanical motion, depending

on the detuning [7, 20]. However, to accurately model this radiation-pressure-induced

backaction cooling and the associated cooling limits, a quantum treatment is required.

Ultimately, the fundamental cooling limit is set by quantum fluctuations of light in the

cavity. The prospect of ground state cooling has prompted a rapid development of the

field of optomechanics over the past 20 years. In 2010 and 2011, breakthrough near

ground state cooling of the mechanical element has been achieved in both microwave and

optical domains [25, 26, 27, 28]. Dynamical backaction can be further exploited to allow

the manipulation of mechanical motion in the quantum regime, hence revealing quantum

signatures of large mechanical objects [29, 30, 31, 32]. This, in turn, could provide a

direct route for testing quantum theories in largely unexplored parameter regimes.

The precision with which the desired optomechanical parameters can be measured may

also be limited by the environment-induced quantum noise, i.e. shot noise [15]. Its im-

pact, however, can be controlled through an appropriate choice of a measurement strategy.

Quantum estimation theory (QET) provides the necessary tools to discern the optimal

strategy for estimating unknown parameters in quantum systems [33]. Indeed, depend-

ing on the priori knowledge of the parameter, global or local QET can be employed to

identify the optimal measurement strategy subject to appropriate criteria. These optimal

quantum measurements offer a route for enhanced precision measurements compared to

approaches based on semi-classical procedures. In some cases, the optimal measurements

predicted by QET may not be technologically feasible. Whilst quantum technologies con-
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tinue to evolve, however, QET can alternatively help discern which of the conventionally

used measurement techniques comes closest to reaching the precision bounds.

While this thesis focuses mostly on “stable” optomechanical systems (e.g. red-detuned or

resonant regimes), the blue-detuned regime is also interesting to explore. Here, dynamical

backaction has an anti-damping effect on the mechanical motion, leading to the emergence

of complex non-linear behaviour [4, 23, 34]. In this regime, the dynamical instability

ensues as a result of the incident photons carrying more energy than the intracavity

photons, and the mechanical element absorbing the extra energy [2]. In more detail,

when the power of the laser driving the cavity is large enough, the intrinsic damping

of the mechanical element will be overcome [2, 4, 34]. The energy of the mechanical

element and the consequent amplification of mechanical motion will then continue to

grow exponentially until becoming saturated by the onset of the non-linear effects [22].

At this point, the steady state regime is reached and the system starts to display self-

induced oscillations. These self-sustained oscillations take the form of stable limit cycles,

arising from the competition between amplification and non-linear damping.

The classical dynamics in the blue-detuned regime have been studied extensively in both

experimental and theoretical settings [34]. The dynamical multistability, or the existence

of multiple stable limit cycles, is one of the more prominent effects arising in the classical

treatment of the optomechanical instability [2]. A quantum analysis also reveals non-

classical features that can emerge in this regime [35, 36]. The dynamical state of the

oscillator changes radically when limit cycles develop, which naturally poses a question

of whether it is easier or harder to extract information about coupling parameters in

this regime. However, the complexity of the underlying quantum dynamics makes this

a difficult problem to explore. Therefore, in this thesis we explore parameter estimation

in a much simpler quantum system that also displays limit cycle oscillations, namely a

quantum van der Pol (vdP) oscillator [37]. For this system, much of the analysis can

be done analytically [38] and the existence of a critical point [39] leads to particularly
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interesting behaviour.

1.1 Outline of the thesis

The goal of this thesis is to explore the application of local QET to estimate coupling

parameters in driven-dissipative optomechanical systems. Accurate knowledge of these

parameters is indeed essential for any application of these systems. The thesis also

explores the application of local QET in a quantum vdP oscillator, a system that can

aid our understanding of the quantum signatures, and in particular, the emergence of

self-sustained limit cycles, in non-linear optomechanical systems.

Chapter 2 introduces QET, a tool that will be used to estimate unknown parameters

in the studied quantum systems. Focusing on the local QET, first, single and multi-

parameter estimation methods, and the associated precision bounds are presented. There,

the feasibility and/or the conditions for saturating these bounds are also discussed. Then,

the single parameter approximation to multi-parameter estimation theory is outlined.

Within this approximation, the estimation methods applicable to Gaussian states are

introduced. The general settings of the covariance matrix language are also presented,

which the formulation of the QET in Gaussian models is reliant upon. With the Gaussian

states being fully characterised by their first and second moments, the chapter finishes

by explicitly quantifying the classical and quantum precision bounds in terms of these

two quantities.

Chapter 3 analyses the main subject of the thesis, that is quantum optomechanics. Firstly,

a historical review of the standard model of cavity optomechanics [40] is given. With the

radiation pressure interaction being intrinsically non-linear, approximate Hamiltonian

models are often employed; the linear and quadratic models are introduced and their

limitations examined. This is followed by a discussion of open system dynamics. There,
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a master equation description for a driven-dissipative optomechanical system is identified.

This description provides a more realistic representation of the system by accounting for

its interaction with the environment. The influence of the detuning on the behaviour of

the optomechanical system is also briefly explored. The last part of this chapter features

parts of original research. In particular, it outlines the procedure for bilinearising the

dynamics of a driven-dissipative optomechanical system within the framework of the

quadratic model in the limit of strong cavity driving. The non-linearity of the resultant

equations of motion for the first moments indicates the occurrence of static multistability

within the system. In consequence of the bilinearisation, the system admits a Gaussian

steady state. The investigation of the validity of the Gaussian dynamics approximation

further reveals the need for a constraint on the strength of the quadratic optomechanical

interaction, or equivalently the driving power.

Chapter 4 examines single parameter estimation in driven-dissipative optomechanics

within the framework of the linear model in both red-detuned and resonant regimes.

Both of these regimes feature a large region where the Gaussian formalism remains appli-

cable, whilst the multistability of the system can be completely avoided. Armed with the

closed-form expressions available for QET in Gaussian models, the chapter details the

procedure for estimating the linear coupling constant. The goal of this chapter is to dis-

tinguish an optimal strategy for estimating this parameter from a range of experimentally

feasible measurements as well as investigate the influence of driving and temperature on

its estimation precision. The model parameters selected to explore this topic were moti-

vated by recent experiments where near ground state cooling of a mechanical oscillator

was achieved. In the red-detuned regime, the measurement of the mechanical position

is found to constitute the best strategy for estimating the coupling parameter at all in-

tracavity photon numbers in the explored range. Instead, for the resonant regime, the

choice of an ultimate measurement strategy depends on both temperature and driving.

In regards to temperature, for the red-detuned regime, temperature has a facilitating
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effect on the parameter estimation at lower driving powers. The estimation performance

in the resonant regime, however, has considerably weaker temperature dependence, and

at sufficiently high driving strengths the predicted QFI limits are qualitatively equal at

all temperatures.

Chapter 5 expands on the previous discussion by considering single parameter approxi-

mation to multi-parameter estimation theory in driven-dissipative optomechanics within

the framework of the quadratic model, strictly in the red-detuned regime. There, the

effects of corrections due to the quadratic term on the estimation precision of the linear

coupling constant are additionally explored. The chapter begins with a summary of the

single parameter approximation to multi-parameter QET applicable to Gaussian models

for one unknown parameter (at a time) - the linear or quadratic coupling constant. The

numerical analysis reveals that for realistic values of the model parameters, the quadratic

coupling parameter is significantly harder to estimate than the linear one at lower driv-

ing powers. At higher intracavity photon numbers, however, their estimation precisions

becomes comparable. The measurement of the mechanical position is similarly found

to constitute the best strategy for estimating the coupling parameters. Interestingly, in

this case, temperature is found to have a facilitating effect on the estimation precision of

the quadratic coupling constant at all intracavity photon numbers in the explored range.

Chapter 5 also explores single parameter estimation in the red-detuned regime within the

framework of the purely quadratic model. This model is obtained through a second-order

expansion of the cavity frequency with respect to mechanical position in cases where the

first order term vanishes. This part of the chapter begins with a detailed summary of

the bilinearisation procedure along with a discussion of its validity in the case of a purely

quadratic model. In this case, the equations of motion for the first moments are uncou-

pled and independent of the parameter of interest. There, an exact form for the steady

state second moments is obtained and Gaussian QET theory is applied to the quadratic

coupling constant. A numerical analysis reveals that a stronger optomechanical inter-
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CHAPTER 1. INTRODUCTION

action leads to an improved estimation precision of the parameter at lower intracavity

photon numbers. At sufficiently high driving powers, however, the estimation precision

saturates at exactly the same value, irrespective of the strength of the interaction. In

this case, it is also found that the measurement of the mechanical momentum constitutes

the best strategy for estimating the quadratic coupling constant.

Chapter 6 investigates the application of local QET in a quantum vdP oscillator. The

chapter begins with a summary of the classical model of the vdP oscillator along with an

introduction to the corresponding quantum model. In this case, open system dynamics

are assumed and the quantum vdP oscillator is described via a master equation. The way

in which the relative simplicity of the quantum vdP model allows an exact evaluation

of the steady state is then reviewed. The resulting steady state is found to be diagonal

in the number state basis and purely dependent on the ratio of the rates of the linear

and non-linear dissipative processes. QET is then employed leading to explicit formulas

quantifying the classical and quantum precision bounds of the parameter. There, a

measurement of the number operator is also shown to be optimal. The chapter proceeds

with an outline of the numerical procedure for estimating the single parameter which

controls the state of this system: the ratio of the rates of the dissipative processes. The

numerical method reveals a contrasting behaviour of the quantum Fisher information

(QFI) at small and large values of the ratio-of-rates parameter. Analytical methods

are subsequently employed to investigate the behaviour of the QFI in these two limiting

cases. For small values of the parameter, a power series expansion is used, whilst for large

values the QFI is approximated via expressions available for QET in Gaussian models,

adapted for scalar quantities. The analytical methods are found to agree well with the

results obtained from the numerical methods. For small values of the parameter the QFI

displays divergent behaviour, whilst for large values the QFI declines to zero.

The results covered in chapters 3 (Sec. 3.4), 4, 5 and 6 (Sec. 6.4-6.5) constitute origi-

nal research undertaken in collaboration with Andrew Armour and Tommaso Tufarelli.
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The key results on the multi-parameter estimation in driven-dissipative optomechanical

systems described by a quadratic model in the red-detuned regime, are published in [1].

9



Chapter 2

Quantum Estimation Theory

2.1 Introduction

Accurate knowledge of the parameters of a quantum system is essential for understand-

ing the behaviour or virtually any application of that system [1, 41]. However, many

parameters, particularly those in quantum mechanical systems, remain elusive to direct

measurements [33]. When this is the case, we resort to indirect measurements where the

value of a parameter of interest is inferred from the data collected from the measure-

ments of different observables. This, in turn, amounts to solving a parameter estimation

problem whose solution gives the “best guess” for the actual parameter value [42]. In our

case, “best” refers to a correct guess of the parameter on average whilst also minimising

the variance of the estimates over many experimental runs. Quantum estimation theory

(QET) then provides the theoretical tools to find the optimal measurement strategies for

estimating parameters in quantum systems, i.e. the combination of observables and data

analysis strategies that minimise the estimation error.

The theory of quantum parameter estimation was pioneered by Helstrom [43] and Holevo

[44] in the late 1900s [45, 46]. This theory has a wide range of applications including in the
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detection of gravitational waves, clock synchronisation, magnetic, electric and gravitation

field sensing et cetera [15, 42, 47, 48, 49, 50].

QET can be broken down into local and global theories [33, 42]. Intuitively, in local

QET, the unknown parameter is in the neighbourhood of its “true value”, an order

of magnitude estimate of which is typically known in advance, for example from first

principles, material science modelling or from previously rough estimates [1]. Instead,

in global QET, the parameter is typically assumed to be completely unknown to begin

with, and as such it is not restricted to a neighbourhood of its true value [51]. More

in detail, global QET seeks a measurement strategy that minimises the average error

in estimating the parameter. Global QET has proven particularly useful for evaluating

precision bounds set by unitary transformations, such as squeezing of the radiation field

[52, 53]. Instead, local QET seeks a measurement strategy that maximises the Fisher

information (FI) over all possible measurements, resulting in a fundamental quantity

called the quantum Fisher information (QFI). Local QET has commonly been used to

solve parameter estimation problems of open quantum systems. As this is the focus of

the thesis, only the local theory will be considered from this point onward.

The ultimate limit to parameter estimation is set by the quantum Cramer Rao bound

(QCRB) [33, 42]; the QCRB is the fundamental limit imposed by quantum mechanics on

the achievable estimation precision [54]. The saturation of this bound is guaranteed in

single parameter estimation theory provided that every mathematically permitted quan-

tum measurement can be executed [1, 55, 56]. This, however, is not the case for the

multi-parameter estimation theory, where multiple unknown parameters are estimated

simultaneously, as optimal measurements for the various parameters may not be com-

patible [46]. The search for the most general conditions under which the QCRB in

multi-parameter estimation theory can be saturated remains an active research pursuit.

Exploiting the QCRB, the ultimate limit to estimation precision can be quantified with

11



CHAPTER 2. QUANTUM ESTIMATION THEORY

the QFI in single parameter estimation theory, or the quantum Fisher information ma-

trix (QFIM) in multi-parameter estimation theory [33, 46, 57]. The QFIM is a multi-

parameter generalisation of the QFI with diagonal entries equal to the QFI of each indi-

vidual parameter [42].

In single parameter estimation, a measurement is considered optimal if the FI associated

with that measurement is equal to the QFI [33]. In this case, the ultimate estimation

precision allowed by quantum mechanics can in principle be achieved [57]. However, the

optimal measurement strategy may not always be realisable in practice [58]. For example,

it may require technologically unfeasible measurements, or it may be implicitly dependent

on the actual value of the parameter of interest which is unknown to begin with. The

latter issue can be addressed by utilising adaptive measurements where the choice of

an observable to be measured is updated dynamically based on the results of previous

experimental runs. Thanks to the asymptotic nature of the QCRB, after many such

runs the adaptive measurement will eventually converge to the optimal measurement.

In multi-parameter estimation it is instead required that the FI matrix (a matrix of

the estimation performances of various measurement strategies) is equal to the QFIM

in order to regard a measurement strategy as optimal [42]. The existence of an optimal

measurement strategy, however, is not guaranteed; since different parameters may be

associated with different, generally non-commuting, optimal observables, a measurement

strategy that is simultaneously optimal for all the unknown parameters may simply not

exist.

For the majority of this thesis we shall be concerned with estimation problems that can

be tackled within the formalism of Gaussian states [1]. This is particularly relevant for

optomechanical models, but more generally open quantum systems described with Hamil-

tonians that are bilinear in the canonical operators which will in general admit a Gaussian

steady state [59]. The appeal of these states lies in their simplicity: they can be fully

characterised by their first and second moments [46, 61]. From an experimental stand-
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point, Gaussian states are also attractive as they can be easily created and manipulated.

Beyond optomechanics, Gaussian states have various applications in quantum optics. The

utilisation of Gaussian states also greatly facilitates the computation of the QFI (or the

QFIM) which is necessary to evaluate the QCRB [63]. For such a case, the QFI will only

depend on the state’s first and second moments (along with their derivatives), the closed

form expressions for which are available in the literature [55, 56].

This chapter is organised as follows. In Sec. 2.2 the key results of local QET along

with an explanation of their origin are presented. The general framework of the single

parameter estimation theory is also outlined. Then, in Sec. 2.4 the framework of single-

parameter estimation theory is presented along with its application to Gaussian models.

The covariance matrix language is also reviewed, which is an indispensable tool in the

study and application of Gaussian states.

2.2 Single parameter estimation

The task of single parameter estimation theory is to estimate the value of an unknown

parameter θ associated with a system [42, 59]. This amounts to finding an estimator

θ̂, which is a function of the collected data that returns the “best guess” for the actual

parameter value [33]. The precision of an estimator can be quantified via its mean squared

error which can be conveniently expressed as the sum of the variance and the square of

the bias of an estimator, E [(θ̂ − θ)2] = V (θ̂) + (E [θ̂] − θ)2. In the case of an unbiased

estimator, E (θ̂) = θ; hence, by the definition of unbiasedness, the estimated value should

on average be correct [55]. The average, in this regard, is intended over many repetitions

of the same experiment (ideally infinite). Indeed, the mean squared error of an unbiased

estimator can be quantified via its variance, such that higher precision implies lower

variance.
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The classical setting of a parameter estimation problem starts with a probabilistic model

of the form P(S = s|θ), i.e. the conditional probability of obtaining the value s when

measuring a random variable S , given that the parameter has the value θ [33]. This

constitutes a statistical model for how the measured data S depends on the value of

the unknown parameter θ. In essence, the estimation theory is all about manipulating

the measured data in an optimal way to figure out (the best guess for) the value of

θ. Developing an estimator θ̂ then entails using the knowledge of the model P(S = s|θ)

combined with the actual data S to build a formula for the best guess, which for unbiased

estimators is encapsulated in the variance, V (θ̂). In classical estimation theory, the

optimal estimators are then those that saturate the Cramer-Rao bound (CRB)

V (θ̂) ≥ 1

MF (θ)
, (2.1)

where M is the number of measurements and F (θ) is the FI [42]. The right-hand side

of this inequality simply depends on the form of P(S = s|θ) along with the actual “true

value” of θ. In accordance with this inequality, the FI quantifies the classical limit to

estimation precision; it provides a measure for the amount of information that a random

variable S carries about a parameter θ [64]. The FI is defined by an integral

F (θ) =

∫
P(S = s|θ) (∂θ lnP(S = s|θ))2 ds =

∫
(∂θP(S = s|θ))2

P(S = s|θ)
ds. (2.2)

In a quantum setting of a parameter estimation problem the value of an unknown pa-

rameter θ is encoded in a density matrix ρθ, which in this context describes the state

of a quantum system [33, 55]. The goal is to estimate this unknown parameter through

a measurement of some observable on ρθ, described by a positive operator valued mea-

sure (POVM). The POVMs are the most general measurements, comprising of a set of

non-negative operators Πs ≥ 0 that satisfy the completeness relation,
∑

s Πs = 1 [42, 59].

Once a POVM has been chosen, the statistical model can be derived which is now of
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the form P(S = s|θ) = Tr[Πsρθ] [58]. From this, the CRB can be obtained, leading to a

precision bound that is dependent on the chosen POVM. An appropriately chosen POVM

thus guarantees that as much information as possible on the parameter can be extracted

from the quantum state. Accordingly, a general quantum parameter estimation protocol

involves the identification of a POVM, repeated measurement of the quantum system

through this POVM and a high-precision estimation of the unknown parameter based on

the data set.

The ultimate precision bound compatible with quantum mechanics can instead be de-

termined by optimising the CRB over all possible POVMs [33]. Indeed, the optimal

precision of a parameter θ is given by the QCRB, which for M experimental runs sets the

ultimate lower bound for the variance V (θ̂) of an unbiased estimator of θ, as per

V (θ̂) ≥ 1

MQ(θ)
, (2.3)

with Q(θ) the QFI [42, 55, 56, 59]. In accordance with this inequality, the ultimate

precision for estimating an unknown parameter can be quantified with the QFI. Moreover,

for any choice of a POVM, resulting in a specific value of F (θ), this is always bounded

from above by Q(θ):

Q(θ) ≥ F (θ). (2.4)

In other words, irrespective of the choice of an observable, the QCRB cannot be beaten.

Moreover, in a quantum setting of a parameter estimation problem, there are two opti-

misations: one on the POVM (in order to have the FI equal to the QFI) and one on the

classical estimators (in order to saturate the FI).

In general, the QFI can be defined in terms of the Symmetric Logarithmic Derivative
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(SLD), Lθ, a self-adjoint operator satisfying the equation [44]

(Lθρθ + ρθLθ) = 2∂θρθ. (2.5)

This, in turn, results in a relation ∂θP(S = s|θ) = Tr [Πs∂θρθ] = Re(Tr [ρθΠsLθ]), which

upon substituting into Eq. 2.2 leads to an alternative definition of the FI [33, 59]:

F (θ) =

∫
(Re (Tr [ρθΠsLθ]))2

Tr[Πsρθ]
ds. (2.6)

Using the Cauchy-Schwarz inequality (|Tr[A†B]|2 ≤ Tr[A†A]Tr[B†B]) with A =
√

Πs
√
ρθ

and B =
√

ΠsLθ
√
ρθ, the POVM normalisation condition and the cyclic property of the

trace, it can then be shown that in general the QFI can be calculated via:

Q(θ) = Tr[ρθL2
θ]. (2.7)

2.3 Multi-parameter estimation

For completeness, we discuss the general settings of the multi-parameter estimation the-

ory. The notation introduced in this section will be useful for the remainder of the thesis.

The theory itself, however, will not be utilised to its full extent – we shall merely con-

sider the single parameter approximation to multi-parameter estimation theory, i.e. by

assuming that only of the parameters is unknown.

The task of the multi-parameter estimation theory is to estimate a set of parameters

θ encoded in a density matrix of a quantum system [42]. The main appeal of this

theory lies in the possibility of estimating several unknown parameters at once within

the same experimental set-up. This is particularly relevant for applications in imaging,

microscopy and spectroscopy, which are inherently multi-parameter estimation problems
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[66, 67]. Although the simultaneous multi-parameter estimation may offer significant

improvement to precision, it suffers from a saturability problem; the multi-parameter

QCRB will in general not be saturated due to the possible incompatibility of the optimal

quantum measurements associated with different parameters [55, 57].

The multi-parameter estimation theory can be formulated by generalising the single pa-

rameter estimation theory, outlined in Sec. 2.2, to the case of various unknown parame-

ters. This can be achieved with help of matrix formalism. Accordingly, solving a multi-

parameter estimation problem amounts to finding an estimator θ̂ whose precision quan-

tifies the performance of the associated measurement and estimation strategy [33, 66].

As anticipated, the precision of θ̂ is given by the mean square error E
[

(θ − θ̂)(θ − θ̂)T
]
,

which for unbiased estimators is equal to the covariance matrix Cov(θ̂) [42, 46, 55, 57].

The covariance matrix contains information about the estimation errors of the various pa-

rameters (encoded in the diagonal elements), as well as the possible correlations between

the estimation errors of the different parameters (encoded in the off-diagonal elements).

In this case, the ultimate precision bound compatible with quantum mechanics is given

by the multi-parameter QCRB, which is a matrix inequality that generalises the single

parameter estimation theory. In more detail, the multi-parameter QCRB places a lower

bound on the covariance matrix of an unbiased estimator of θ:

Cov(θ̂) ≥ 1

M
F (θ)−1 ≥ 1

M
Q(θ)−1, (2.8)

where F (θ) is the Fisher information matrix (FIM) and Q(θ) is the QFIM [42, 57, 66].

Similarly, the FIM bounds the covariance matrix of an estimator for specific measure-

ments. Note again that different choices of POVMs give different FI matrices, whilst the

QFIM is always the same. As such, the QFIM quantifies the ultimate limit to multi-

parameter estimation valid for every possible POVM and data analysis strategy. In

multi-parameter estimation theory, the optimal estimators are therefore those with the

FIM equal to the QFIM.
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In practice, the knowledge of estimation performances of experimentally feasible mea-

surements is helpful in discerning the best strategy for estimating unknown parameters

[1]. For a given measurement strategy this is quantified in terms of the FIM, the elements

of which are defined as [42, 57]

[F (θ)]ij =

∫
(∂θi

P(S = s|θ))
(
∂θj

P(S = s|θ)
)

P(S = s|θ)
ds. (2.9)

As before, the conditional probabilities are obtained in terms of the chosen POVM, such

that P(S = s|θ) = Tr[Πsρθ] [33]. The diagonal entries of the FIM then simply correspond

to the FI of each individual parameter (as per Eq. 2.2). The QFIM can instead be

calculated via the SLDs, the elements of which are defined as

[Q(θ)]ij =
1

2
Tr
[
ρθ
(
Lθi
Lθj

+ Lθj
Lθi

)]
, (2.10)

where Lθi
is the SLD for the parameter θi . Notice that this is simply a multi-parameter

generalisation of Eq. 2.7; accordingly, the diagonal elements of the QFIM are equal to

the QFI of a corresponding parameter.

Just like its single parameter analogue, the multi-parameter CRB (i.e. first inequality in

Eq. 2.8) can in principle always be saturated [42, 66]. The optimisation of this bound

can, for example, be achieved by the maximum likelihood estimator in the asymptotic

limit [57]. However, as discussed above, the saturation of the multi-parameter QCRB

(i.e. second inequality in Eq. 2.8) may not be possible in general due to the potential

incompatibility of optimal measurements for different observables.

In single parameter estimation theory, the CRB and the QCRB can in general always be

saturated [42]. In reality, however, the existence of optimal estimators and hence optimal

measurements is not guaranteed [55, 57]. Alternatively, measurement schemes that rely

on the asymptotic saturability of the classical and quantum precision bounds can be

exploited [58]. For example, in the case of adaptive measurements these will converge to
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the optimal measurement as M →∞. The asymptotic saturation of the precision bounds

can also be achieved by the maximum likelihood estimator, which for M →∞ returns a

parameter value that is most likely to have generated the observed data.

2.3.1 Single parameter approximation to multi-parameter esti-

mation theory

In this thesis, the optimal estimation of two unknown parameters – the linear and

quadratic coupling constants – is examined. For simplicity, this is studied within the

framework of single parameter estimation theory by assuming that only one of the pa-

rameters is unknown at a time. In general, this may overestimate the optimal precision

with which the two parameters can be estimated simultaneously. However, these quanti-

ties can serve as a practical benchmark for assessing the performance of experimentally

feasible measurements. In this sense, the performance of such measurements is never

overestimated since it is judged against a benchmark that is harder to achieve, compared

to the one given by the multi-parameter QET.

Indeed, assuming that only one of the parameters is unknown, say θi , reduces the multi-

parameter estimation problem to single parameter estimation. In that case, the diagonal

elements of the QFIM quantify the best possible estimation performance for each indi-

vidual parameter, as per [1]

Var(θi ) ≥
1

M[Q(θ)]ii
. (2.11)

Instead, the diagonal elements of the FIM are useful for quantifying the estimation errors

of various experimentally feasible measurements. These can be equivalently quantified

with the “single shot” relative error, which in accordance with the QCRB for M = 1,
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obeys the inequality

∆θi

θi
≥ 1

θi

√
[F (θ)]ii

≥ 1

θi

√
[Q(θ)]ii

. (2.12)

A smaller relative error then implies that more information about a given parameter is

available and the easier it is to estimate it. This shall be a central quantity used to assess

the results in this thesis due to the relative error having a more immediate practical

interpretation compared to the QFIM.

2.4 Quantum estimation for Gaussian models

Gaussian states are a popular choice of quantum states in quantum optics and optome-

chanics [46, 57]. The appeal of these states can be attributed to their simplicity, together

with the ease of creating and manipulating them experimentally [61]. Gaussian states

are also of particular interest in QET [56]. In fact, estimation theory specific to Gaus-

sian models has recently been formulated. In this case, all of the information about the

unknown parameters will be contained in the states’ first and second moments.

The formulation of the multi-parameter QET of Gaussian states relies on the covariance

matrix language, the general settings of which are outlined below. The analysis focuses

on a system consisting of N bosonic modes described by a vector of quadratures R =

(Xi ,Pi , ...,XN ,PN), the elements of which satisfy the commutation relations [Xi ,Pj ] = iδij

and [Xi ,Xj ] = [Pi ,Pj ] = 0 [1, 46, 69]. More compactly, the commutator between any two

quadrature operators can be written in the matrix form as

Wij = [Ri ,Rj ] = iΩij , (2.13)
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where Ω is a 2N × 2N symplectic matrix [57, 59]:

Ω =

 0N 1N

−1N 0N

 . (2.14)

Here, W denotes the matrix of commutators which, by construction, satisfies WT = −W.

In this setting, the first moments r of a quantum state ρ form a vector of average values

defined as

r = 〈R〉 = Tr[ρR], (2.15)

while the second moments σ are embodied in the covariance matrix with elements

σkl =
1

2
〈{Rk ,Rl}〉 − 〈Rk〉〈Rl〉, (2.16)

where {A,B} ≡ AB + BA is the anticommutator. However, in order for σ to be a phys-

ical covariance matrix, it needs to be real-valued and satisfy the Robertson-Schrödinger

uncertainty relation,

2σ + W ≥ 0. (2.17)

If it does, then it is automatically positive semi-definite; hence, there exists a quantum

(Gaussian) state ρ, such that σ is given by Eq. 2.16. Conversely, all covariance matrices

obtained from a quantum state ρ, as in Eq. 2.16, automatically satisfy Eq. 2.17. Indeed,

the inequality (2.17) is the necessary and sufficient condition for σ to represent the

covariance matrix of a Gaussian state.

Recall that the goal of the multi-parameter QET is to estimate a set of parameters

θ encoded in a density matrix of a quantum system (see Section 2.3) [42]. As noted

previously, for a Gaussian state all of the information about the parameters of interest
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will be contained in its average values r along with its covariance matrix σ [56, 57].

Assuming that only one of the parameters is unknown at a time, the “best-case-scenario”

estimation performance for each of the parameters may be quantified with the respective

diagonal elements of the QFIM. In this specific example, the diagonal elements of the

QFIM can be expressed as

[Q(θ)]ii =
(
∂θi

rT
)
σ−1 (∂θi

r) + 2Tr
[

(∂θi
σ) (4Lσ + LW )−1 (∂θi

σ)
]

, (2.18)

where Lσ(A) = σAσ and LW (A) = WAW represent the superoperators, while the term

(4Lσ + LW )−1 refers to the pseudoinverse if the term inside the bracket is singular [55].

In this thesis, the first term shall be referred to as the “contribution due to the averages”,

whilst the second term the “contribution due to the covariances” towards each diagonal

element of the QFIM [1]. This terminology is adopted for formal convenience as well as to

guide the reader’s intuition in the technical discussions to follow. Note, however, that this

terminology simply refers to the origin of the dependence of the gradients with respect

to the unknown parameters, i.e. a term’s “name tag” does not exclude its inevitable

dependence on both quantities.

While the diagonal elements of the QFIM quantify the ultimate limit to single parameter

estimation (i.e. estimation of θi when all remaining parameters in a set θ are known),

the maximum precision of specific measurement strategies is controlled by the diagonal

elements of the FIM (see Section 2.3.1) [42]. Moreover, given a set of unknown parameters

θ, the performance of various measurement strategies in estimating θ can be calculated

(in the continuous outcomes case) by first computing the conditional probabilities P(S =

s|θ) = Tr[Πsρθ], where Πs ≥ 0 is the POVM element corresponding to the outcome s

of the chosen observable, and then computing the integral (2.9). Interestingly, in the

case of Gaussian states, analytical solutions to this integral are possible for the relevant

cases of quadrature measurements, i.e. measurements of quadrature operators Xi ,Pi

and their linear combinations [1]. Quadrature measurements of light can, for example,

22



CHAPTER 2. QUANTUM ESTIMATION THEORY

be implemented by homodyne detection techniques (i.e. projective measurements of

canonical operators), whilst quadrature measurements of a mechanical object correspond

to measurements of its position, momentum or linear combination thereof [59]. In the

case of homodyne detection, the probability distribution associated with a measurement

of Sk ∈ {Xi ,Pi} is given by

P(Sk = sk |θ) =
e
− (sk−rk (θ))2

2σkk (θ)√
2πσkk(θ)

, (2.19)

where rk(θ) is the average of the chosen quadrature and σkk(θ) is the corresponding

diagonal entry of the covariance matrix. For example, for a measurement of X1, this

corresponds to r1(θ) = 〈X1〉 and the diagonal element σ11(θ); similarly, for a measurement

of P1, this corresponds to r2(θ) = 〈P1〉 and the diagonal element σ22(θ). In this setting,

an analytical solution to integral (2.9) exists and the diagonal elements of the FIM are

explicitly given by

[F (θ)]ii =
1

2σkk(θ)2
×

[
2σkk(θ)

(
∂rk(θ)

∂θi

)2

+

(
∂σkk(θ)

∂θi

)2
]

. (2.20)

In the case of Gaussian states, when an optimal strategy for estimating θ exists, it is

then one with the FIM equal to the QFIM, i.e. F (θ) = Q(θ). Note, however, that the

optimal measurement for Gaussian states is not necessarily Gaussian [60].
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Quantum Optomechanics

3.1 Introduction

Quantum optomechanics focuses on the interaction between the electromagnetic (EM)

radiation and motional degrees of freedom of mechanical oscillators [2, 4, 71]. It is a

relatively new research field with its roots going back to the 19th century. That was the

time the mechanical properties of light started being investigated quantitatively. This

was also when the radiation pressure force, the force responsible for the optomechanical

interaction, was first theorised and later demonstrated experimentally.

The idea that light should exert pressure on material objects was first postulated by

Kepler in the 17th century in his attempt to explain the specific shape of comet tails

[2, 8, 9]. In particular, he noted that their tails were always pointing away from the Sun,

which he proposed was due to the pressure exerted by the solar beams. The existence of

radiation pressure was formally predicted by Maxwell in the 19th century and was later

confirmed experimentally via light mill experiments [10].

The forces generated by radiation pressure are typically very weak, which makes it chal-
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lenging to detect them experimentally [2, 5]. Braginsky and co-workers were the first

people to investigate these effects in the context of interferometers [6]. Their experimen-

tal set-up featured a cavity with a harmonically bound end-mirror [4, 23]. The purpose of

the cavity was to boost the otherwise weak radiation pressure forces, enhancing the light-

matter interaction. Through these experiments, Braginsky demonstrated that radiation

pressure forces give rise to an effect known as “dynamical backaction”, which depending

on the detuning, can either have a damping or amplifying effect on the mechanical motion.

In this way, dynamical backaction could provide the means for controlling the motional

degrees of freedom of the mirror in a predictable manner. This effect has been exploited

in a variety of applications including gravitational wave detection and optomechanical

backaction cooling [22].

Focusing on interferometers, Braginsky was also the first person to discuss quantum

effects of the radiation pressure forces, and how they impose limits on the precision of

mirror-displacement measurements [2, 23, 71]. Interferometers enable highly sensitive

detection of the minute changes in the position of the mirror [72]. Their sensitivity,

however, is limited by quantum noise which comes in two distinct forms: photon shot

noise and quantum backaction [73, 74]. The photon shot noise is given by the statistical

fluctuations in the rate of arrival of photons at the detector and dominates at lower laser

powers [75]. As the laser power is increased, quantum backaction starts to dominate

instead, arising from the quantum fluctuations of the EM field. These fluctuations are

then converted into a random force and fed into the mirror, ultimately modifying its

motion, and effectively causing the mirror to be heated. At the optimum laser power, the

contributions from both the photon shot noise and quantum backaction are equal, and the

SQL for measurement sensitivity is reached. This limit has important consequences for

gravitational wave detectors, scanning probe microscopy and force sensing. Interestingly,

however, the SQL is not the ultimate limit to measurement sensitivity and can in fact be

overcome by reducing the quantum backaction, e.g. through the use of squeezed light.
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Figure 3.1: Schematic of an optomechanical set-up in Fabry-Perot geometry. The system
consists of a cavity of bare length L and position-dependent frequency ω(Xb) which is
composed of two mirrors, one fixed and the other movable mounted on a spring. To
a good approximation, the movable mirror can be assumed to behave as a mechanical
oscillator with frequency ωm and effective mass m. Additionally, the interaction of the
optomechanical system with its cavity and mechanical environments leads to cavity decay
and mechanical damping of the oscillator at rates κ and Γm, respectively. The mechanical
element is also characterised by a temperature Tm. The cavity mode is driven by an
external laser. Adapted from [4, 82].

The photon shot noise was first observed experimentally in 2013 [4, 76]. However, no

direct detection of the effect of quantum backaction on measurement sensitivity has been

made as of yet. The main reason why quantum backaction remains challenging to measure

is due to it being masked by thermal noise, the dominant source of noise of the oscillating

mirror at finite temperatures [23, 77]. More in detail, at non-zero temperatures the mirror

undergoes Brownian motion which effectively conceals the small motions generated by

quantum backaction. Thus, to reach a regime where a range of quantum phenomena

become clearly observable, the oscillating mirror has to be cooled close to its ground

state [78]. This in itself is a challenge as in an effort to enter a quantum regime thermal

occupation of the mirror needs to be brought to below unity, which in turn requires

extremely low temperatures [74]. Interestingly, however, researchers have found ways

in which dynamical backaction effects can be exploited to provide effective cooling of

mechanical motion, all the way down to almost the ground state of the mechanical system.
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The radiation pressure interaction can also give rise to the prospect of multistability

[4, 23, 79, 80, 81]. In this phenomenon, the optomechanical system can have multiple

steady states. Depending on the strength of the radiation pressure interaction, two

(different) stable equilibrium positions for the mirror may exist, and when this happens

the system is said to be “bistable” [4]. In the optical domain, bistability was first observed

by Dorsel et al. using a Fabry-Perot interferometer.

The simplest optomechanical system consists of a single cavity mode interacting with a

single mechanical mode and is realised, for example, in an optical cavity with a movable

mirror [82]. Perhaps the most well-known example of an optomechanical set-up is a Fabry-

Perot resonator, depicted in Fig. (3.1). Although alternative set-ups and geometries

are also possible, the popularity of a Fabry-Perot type set-up is directly linked to how

intuitive it is and how well it captures the main features of an optomechanical system. In

optomechanics, a Fabry-Perot resonator consists of a cavity formed by two mirrors, one

fixed and the other mounted on a spring [2]. To a good approximation, the behaviour of

the movable mirror can be assumed to be that of a harmonic oscillator. Typically, the

cavity and mechanical modes will not be isolated, but instead coupled to their respective

environments. In that case, the interaction of the optomechanical system with its cavity

and mechanical environments will lead to cavity decay, mechanical damping and heating

of the oscillator. In most experiments, the cavity mode is also driven by an external

laser. After having interacted with the optomechanical system, such laser light can be

recollected and measured to gain information about the optomechanical interaction.

This chapter introduces the key theoretical models used in optomechanics. In Sec. 3.2,

starting with its historical background, the Hamiltonian model of optomechanics is de-

rived. This is achieved by considering the radiation pressure interaction between a single

cavity mode and a mechanical oscillator. Next, in Sec. 3.3 the theory of open quantum

systems is considered and a master equation description of an optomechanical system is

identified. In comparison to the Hamiltonian model, this description constitutes a much
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more realistic representation of an optomechanical system since realistic quantum sys-

tems are unlikely to be isolated from their environments. Finally, Sec. 3.4 outlines the

procedure for approximating the dynamics of driven-dissipative optomechanical systems

via a bilinear master equation in the limit of strong cavity driving.

3.2 Hamiltonian models of optomechanics

A theoretical exploration of quantum optomechanical systems began during the 1990s

[2]. Then, in 1995, the first exact Hamiltonian formalism to describe these systems was

proposed by C. K. Law [40]. The derivation of the Hamiltonian model of optomechanics

was facilitated by a previously established theory on the EM field quantisation for a one-

dimensional cavity with variable length [83]. The analysis was based on a set-up featuring

a cavity formed by two perfectly reflecting mirrors, one movable and the other one fixed.

Starting with a classical description of the optomechanical interaction, C. K. Law used

the equations of motions for the oscillating mirror and the EM field to construct a classical

Hamiltonian model of the system. Following the canonical quantisation procedure, he

was then able to derive the most rigorous, at the time, quantum Hamiltonian approach

to modelling the mirror-field coupling.

Focusing on the simplest optomechanical system consisting of a single cavity mode in-

teracting with a single mechanical mode, the quantum Hamiltonian, as derived by C. K.

Law, to describe such system reads

Hlaw = ~ωm
P2

b + X 2
b

2
+ ~ω(Xb)

(
a†(Xb)a(Xb) +

1

2

)
, (3.1)

where Xb and Pb are the dimensionless position and momentum operators of the movable

mirror, a(Xb) and a†(Xb) are the position-dependent annihilation and creation operators

for the cavity mode, whilst ω(Xb) is the position-dependent cavity frequency [1, 40]. To
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further simplify the C. K. Law’s Hamiltonian model, here, it was additionally assumed

that the behaviour of the movable mirror can be well approximated by that of a me-

chanical oscillator with effective mass m and frequency ωm [2]. The position-dependent

annihilation and creation operators for the cavity mode are defined as

a(Xb) =

√
1

2~ω(Xb)
(ω(Xb)q + ip) , (3.2)

a†(Xb) =

√
1

2~ω(Xb)
(ω(Xb)q − ip) , (3.3)

with q and p the canonical operators of the field [40, 82]. Also, here, the only non-

trivial commutators read [Xb,Pb] = i , [q, p] = i~ and [a(Xb), a†(Xb)] = 1. Note that the

quadrature operators (depicted by capital letters) are conveniently defined to ensure their

dimensionlessness, hence why ~ = 1 in the commutator between Xb and Pb [4].

In order to better understand the nature of the optomechanical interaction, a comprehen-

sive overview of the contributing terms in Hamiltonian (3.1) is required. The first term

in this Hamiltonian only depends on the mirror’s canonical variables and gives the bare

energy of the mechanical mode [4, 40]. The second term instead describes the energy

of the field as a function of the mirror’s position. Such parametric dependence is the

origin of the radiation pressure interaction in this type of model. It also implies that

the radiation pressure interaction is intrinsically non-linear [2]. Besides, the parametric

dependence of the field energy on the mirror’s position may just as well be interpreted as

a field-dependent correction to the mirror’s trapping potential. Intuitively, the radiation

pressure forces encoded in this Hamiltonian can induce a shift in the position of the mov-

able mirror, which in turn leads to a change in the cavity length (hence in its frequency).

This will consequently cause a change in the radiation pressure forces experienced by the

mirror, et cetera.

The non-linear nature of the radiation pressure interaction hinders the possibility of

studying optomechanical systems analytically [40]. For this reason, approximate models
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of optomechanics are typically used [2, 4]. In fact, C. K. Law was the first person to

explore the linear approximation to Hamiltonian (3.1) in detail. He argued that if the

mirror were bounded by a potential ~ωmX
2
b /2, it would perform small oscillations around

its equilibrium position in which case the associated variations in cavity frequency would

be tiny and the action of the radiation pressure forces on the mirror could simply be

regarded as a small perturbation. With a generic optomechanical set-up in mind, in this

setting, linearly expanding the cavity frequency and the field operators about Xb = 0

yields

a(Xb) ≈ a +
ω′(0)

2ω0
a†Xb, (3.4)

ω(Xb) ≈ ω0 + ω′(0)Xb, (3.5)

where a ≡ a(0). Substituting these expansions into Hamiltonian (3.1) then gives

Hlin = ~ωm
P2

b + X 2
b

2

+ ~ (ω0 + ω′(0)Xb)

(
a†a +

1

2
+
ω′(0)

2ω0

(
a†2 + a2

)
Xb +

ω′(0)2

4ω2
0

aa†X 2
b

)
. (3.6)

The inclusion of the counter-rotating terms (i.e. a†2 +a2) in this Hamiltonian means that

the cavity photon number n = a†a is not conserved, which poses significant computational

challenges [82]. Fortunately, the contribution from the counter-rotating terms can be

typically neglected on the assumption that the mechanical range of the movable mirror’s

motion is very small (e.g. on the scale of the average cavity length). Additionally, in

standard optomechanical set-ups, the higher order terms O(ω′(0)2X 2
b /ω

2
0) yield negligible

contributions and can thus be ignored. As a result of these simplifications, the so-called
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“linear model”1 of optomechanics is then recovered:

Hlin = ~ωm
P2

b + X 2
b

2
+ ~

(
ω0 +

√
2g1Xb

) Q2 + P2

2
. (3.7)

Here, the annihilation and creation operators for the cavity mode have been replaced by

the amplitude and phase quadratures, defined as Q =
(
a + a†

)
/
√

2 and

P = −i
(
a − a†

)
/
√

2, respectively, which satisfy the commutation relation [Q,P] = i .

This quadrature formalism will be relevant in the upcoming chapters. The quadratic

terms in Hamiltonian (3.7) give the energies of the mechanical and cavity modes, whilst

the cubic term describes the linear in Xb mirror-field interaction. In this case, the strength

of the optomechanical interaction has been quantified with the linear coupling strength,

which for a generic set-up is defined as [1]

g1 ≡
1√
2
ω′(0). (3.8)

The factor of
√

2 will be convenient later on.

The linear model, although very simple, has proven extremely successful at describing

the vast majority of optomechanics experiments thus far [2]. The success of this model

is further aided by the fact that the optomechanical coupling strength is typically very

small [4]; in standard optomechanics experiments, the optomechanical coupling strength

is much smaller than the mechanical frequency, i.e. g1 � ωm [84]. For example, in [26],

authors consider g1 = 2 × 102 Hz, whilst in [85], g1 = 3 × 102 Hz. In fact, the linear

model is expected to remain valid provided that the displacement of the movable mirror is

many orders of magnitude below the average cavity length, which is generally satisfied for

optomechanical systems. However, the investigation led by Brunelli et al. revealed that

this model hides some potential problems [89]. There, the linear coupling Hamiltonian

1Commonly, in literature, “linearised optomechanics” refers to a linearised Hamiltonian model
achieved by expanding the cavity field: a → α + δa, where α = 〈a〉 is the average intracavity opti-
cal coherent amplitude and δa the fluctuating term, valid for sufficiently strong driving [2, 4].
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was found to be unbounded from below, leading to the emergence of (non-physical)

negative energies at large photon numbers, with the consequence that a well-defined

thermal state does not exist [82]. This problem becomes prominent in the ultra-strong

coupling regime where the linear coupling strength and the mechanical frequency have

the same orders of magnitude. More generally, these findings highlight the necessity for

more refined models of optomechanics as ways of enhancing the optomechanical coupling

are continually explored, and the potential of optomechanics as tools for high-accuracy

applications such as Planck physics is investigated [1]. The next step beyond the linear

approach is to expand the cavity frequency up to and including second order in Xb,

leading to the so-called “quadratic model”. In many cases, the inclusion of the extra

term improves the accuracy of the Hamiltonian model and also fixes the unboundedness

issue.

More explicitly, for the quadratic model of optomechanics the position-dependent cavity

frequency is approximated by

ω(Xb) ≈ ω0 +
√

2g1Xb + g2X
2
b , (3.9)

where

g2 =
1

2
ω′′(0) (3.10)

is the quadratic coupling strength for a generic optomechanical set-up [1]. Once again, the

numerical factor of 1/2 is chosen for later convenience. Here, g2 quantifies the strength of

the quadratic mirror-field interaction. In parallel with Eq. 3.7, the quadratic Hamiltonian

reads

Hquad = ~ωm
P2

b + X 2
b

2
+ ~

(
ω0 +

√
2g1Xb + g2X

2
b

) Q2 + P2

2
. (3.11)
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This type of coupling can, for example, be realised in the membrane-in-the-middle op-

tomechanical system which allows for great flexibility in the choice of both linear and

quadratic coupling strengths [4, 85]. The membrane-in-the-middle configuration is achieved

by placing a thin dielectric membrane inside a Fabry-Perot cavity [86]. The behaviour

of the membrane is then assumed to be that of a harmonic oscillator. Moreover, in this

system, a purely quadratic coupling (corresponding to g1 = 0) can be engineered by

placing the membrane at a node or antinode of the intracavity field [88]. Also, in this

case, the linear model can be recovered by simply setting g2 = 0. As an important aside,

the quadratic model does not include all second order corrections arising from the micro-

scopic treatment of the radiation pressure (see Eq. 3.1). How important these corrections

are depends on the specific parameter regime under investigation. Unsurprisingly, the

system dynamics as described by this model are also much more difficult to study.

To give a concrete example, a Fabry-Perot cavity with a movable mirror on one end is

briefly considered [4, 82]. In this special case, the position-dependent frequency is of the

form

ω(Xb) =
ω0

1 +
√

2xzpXb

L

, (3.12)

where xzp =
√

~/2mωm is the ground state position uncertainty of the mechanical oscil-

lator and L is the bare cavity length [2, 40]. In accordance with Eqs. 3.8 and 3.10, in

this setting the linear and quadratic coupling strengths are given by g1 = ω0xzp/L and

g2 = 2ω0x
2
zp/L

2, respectively [1]. Additionally, in a standard Fabry-Perot setting, xzp is

typically many orders of magnitude below L in which case the detection of the quadratic

model corrections may be experimentally challenging. However, as discussed above, there

are systems where this may be easier, e.g. the membrane-in-the-middle optomechanical

system. Note also that here, the positivity of g1 can be ensured through a redefinition of

the positive direction of Xb.
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3.3 Dissipative dynamics

In order to establish a realistic optomechanical model, one needs to additionally consider

the effects of environment on the dynamics of the system [4]. For this reason, it is often

convenient to model an optomechanical system as an open quantum system, i.e. a system

that is coupled to a large number of external degrees of freedom that are beyond one’s

control [68]. This system-environment coupling introduces dissipation (or more generally,

decoherence) the effects of which are typically studied via a master equation description

[91, 92].

In quantum mechanics, the state of any quantum system can be described by a density

matrix, which is a semi-positive, Hermitian matrix with trace equal to one [55, 68, 91]. In

most open quantum system models, the global state of the system+environment is first

considered [94]. Then, by tracing out the environmental degrees of freedom, an equation

of motion for the reduced density matrix of the system alone can be obtained. Such

reduced density matrix is typically governed by a master equation [91]. For a memoryless

(or Markovian) environment (also known as bath), this master equation is of the Lindblad

form

ρ̇(t) = Lρ(t), (3.13)

where L is a time-independent generator of the dynamics [95]. The Markovian approxi-

mation ensures that the future evolution of the system is only dependent on its present

state; it is justified when memory effects of the environment are very short-lived in com-

parison to the dynamical timescales of the system. In this case, the action of L on the

reduced density matrix is of the general form:

Lρ(t) = − i

~
[H , ρ(t)] +

∑
ij

γdecoh,ij

2
[2Riρ(t)Rj − {RjRi , ρ(t)}] . (3.14)
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Note here that the above master equation has been written in terms of quadrature opera-

tors that satisfy R†i = Ri . More generally, the dissipative part reads 2Lρ(t)L†−{L†L, ρ(t)},

where L is the Lindblad (or jump) operator of the system. Also here, the first term in the

master equation (3.14) describes the Hamiltonian contribution to time evolution of ρ(t)

with H denoting the Hamiltonian of the system. The second term is instead responsible

for making the overall dynamics non-unitary with γdecoh a matrix encoding decoherence

rates of the open quantum system.

For a generic oscillator with frequency ω, a characteristic decoherence rate is defined as

γdecoh = γ(2n̄ + 1) (3.15)

where γ is the damping rate, n̄ = 1/(e~ω/kB T −1) is the mean occupancy of the oscillator,

kB is the Boltzmann constant and T is the temperature of the coupled thermal bath

[4, 94]. Here, the term “thermal bath” refers to an environment that is in a thermal

equilibrium state [68]. Accordingly, there are two contributions towards decoherence:

thermal noise and vacuum noise, as prescribed by the first and second term of Eq. 3.15,

respectively. Thermal noise leads to the loss of information from the system at a rate

proportional to the temperature of the bath, whereas the vacuum noise arises from the

zero-point fluctuations of the environmental degrees of freedom [23, 97, 98, 99]. Which

of these noise types dominates can be determined by assessing the magnitude of n̄. In

particular, a vacuum noise dominated regime is recovered if n̄ is less than unity.

More in detail, the focus of this study is a generic optomechanical system coupled to

its environment. In this example, the mechanical and cavity modes are assumed to be

interacting with their respective thermal baths at temperatures Tm and Tc , respectively

[93]. The interaction of an optomechanical system with its cavity and mechanical envi-

ronments leads to cavity decay and mechanical damping of the oscillator at rates κ and

Γm, respectively [4]. In standard optomechanical set-ups featuring an optical cavity and
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a mechanical oscillator coupled to their respective room temperature thermal baths, tem-

perature can be neglected for the cavity but not for the mechanics due to the different

orders of magnitude in the relevant frequencies (i.e. n̄c ' 0, n̄m 6= 0) [2]. Indeed, for

an optical cavity with bare frequency ω0 ≈ 3 × 1015 Hz, and mechanical oscillator with

frequency ωm = 1×1010 Hz coupled to their respective thermal baths at 300 K, the mean

occupancies of light and mechanics are n̄c ≈ 10−35 and n̄m ≈ 4000. This puts the cavity

deep in the vacuum dominated regime, whilst the mechanical oscillator in the thermal

noise dominated regime. In this case, temperature effects can thus only be neglected for

the cavity. Additionally, in order to neglect thermal occupation in microwave cavities,

cryogenic conditions are required. In summary, for an undriven optomechanical system

described by a quadratic Hamiltonian (3.11), the master equation is assumed of the form

ρ̇(t) =− i

~
[Hquad , ρ(t)] +

∑
ij

γdecoh,ij

2
[2Riρ(t)Rj − {RjRi , ρ(t)}] , (3.16)

where the vector of quadrature operators is defined as

R = (Q,P ,Xb,Pb), (3.17)

while the matrix of decoherence rates is:

γdecoh =



κ
2
−i κ

2
0 0

i κ
2

κ
2

0 0

0 0 Γm

2
(2n̄m + 1) −i Γm

2

0 0 i Γm

2
Γm

2
(2n̄m + 1)


, (3.18)

and n̄m = 1/
(
e~ωm/kB Tm − 1

)
is the mean occupancy of the mechanical oscillator [1].

In typical optomechanics experiments, the cavity will be coherently driven by an external

laser field [2, 4]. This can be employed to both control and measure the properties of

the system. The drive effectively enhances the optomechanical interaction by increasing
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the strength of the mirror-field coupling while also altering the essential character of the

interaction through detuning.

A coherently driven optomechanical system may be described by the following effective

Hamiltonian

Hdrive =~
(
ω0 +

√
2g1Xb + g2X

2
b

) Q2 + P2

2
+ ~ωm

X 2
b + P2

b

2
+
√

2~ε cos(ωLt)Q, (3.19)

with ωL the frequency of the driving laser and ε the drive amplitude [4, 100]. The explicit

time-dependence of the driving term can then be removed by transforming into a frame

rotating at the frequency of the incident laser. In this frame, the Hamiltonian of the

driven system can be written as

H = ~
(

∆0 +
√

2g1Xb + g2X
2
b

) Q2 + P2

2
+ ~ωm

X 2
b + P2

b

2
+
√

2~εQ, (3.20)

where ∆0 = ω0−ωL is the detuning between the cavity and driving laser [1]. In the rotat-

ing frame, the dynamics of a driven-dissipative optomechanical system can be described

by a Lindblad master equation:

ρ̇(t) =− i

~
[H , ρ(t)] +

∑
ij

γdecoh,ij

2
[2Riρ(t)Rj − {RjRi , ρ(t)}] , (3.21)

with R and γdecoh defined in Eqs. 3.17 and 3.18, respectively.

As previously mentioned, the radiation pressure forces responsible for the optomechanical

interaction also lead to an effect known as “dynamical backaction”, which arises as a

consequence of finite cavity decay rate, κ [4, 23, 101]. Essentially, the finite κ gives rise

to a component of the radiation pressure force which is out of phase with respect to the

mechanical oscillatory motion, leading to an effective damping of the mechanical oscillator

[2]. In that sense, the cavity field can be thought of as acting on the mechanical element

like an additional effective thermal bath (although the associated effective temperature,
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set by quantum fluctuations in the cavity, is typically much lower than that of the true

thermal bath). Depending on the detuning, dynamical backaction can either have a

damping or anti-damping effect on the oscillator’s motion.

The detuning is thus a deciding factor behind the type of behaviour exhibited by an

optomechanical system [2, 4, 23]. Depending on its sign, three distinct regimes can

be identified. In the resonant regime, corresponding to ∆0 = 0, the cavity acts as an

oscillator-dependent interferometer and it is possible to use the cavity output light to

perform a continuous measurement of the mechanical position. In this case, the radiation

pressure interaction also leads to heating of the mechanical oscillator, while its damping

rate remains unchanged. In this regime, the limit to the precision of mirror displace-

ment measurement is imposed by the SQL, achieved by minimising the thermal noise

of the oscillator. In order to reach the SQL, near ground state cooling of the mechani-

cal environment is thus required. As this is not straightforward to achieve in practice,

in many scenarios the SQL may be impossible to reach altogether. Interestingly, the

∆0 6= 0 regimes provide a route for enhanced measurement precisions, beyond those set

by the SQL. In the blue-detuned regime, corresponding to ∆0 < 0, an optomechanical

system can become unstable as a result of the energy being (on average) transferred to

it from the driving laser. Therefore, in this case, the cavity field has an anti-damping

effect on the motion of the oscillator, which is most pronounced at the blue sideband,

∆0 = −ωm. Instead, in the red-detuned regime, corresponding to ∆0 > 0, the radia-

tion pressure interaction introduces additional damping to the mechanical element. In

this regime, the effective temperature of the mechanical oscillator can be significantly

reduced, that is the weighted average of the true thermal temperature and the (generally

much lower) backaction temperature arising from quantum fluctuations in the cavity; the

weightings are given by the standard mechanical damping and the additional damping

arising from the backaction. This cavity field-induced-cooling effect is most pronounced

at the red sideband, ∆0 = ωm, and can be exploited to allow near ground state cooling
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of the mechanical oscillator.

3.4 Gaussian dynamics approximation

This section will demonstrate that given the right set of circumstances, alongside strong

cavity driving, the dynamics of an optomechanical system can be approximately described

by a master equation that is bilinear in the canonical operators [1]. In that case, the

system admits a Gaussian steady state, which can be fully described by its first and

second moments [46, 61].

3.4.1 General Gaussian formalism

We start by presenting the general Gaussian formalism that allows to treat efficiently the

most general picture involving a quantum system described by a quadratic Hamiltonian,

coupled linearly to its environment.

Indeed, for a generic quantum system (with jump operators that are linear in the canonical

quadratures), the master equation describing the system-environment interaction will be

of the general Lindblad form (3.14) with

H =
1

2

∑
ij

HijRiRj =
1

2
RT HR (3.22)

the bilinear Hamiltonian and H the Hamiltonian matrix which, without the loss of gen-

erality, can be assumed to be a symmetric matrix (H = HT ) [59]. Here, Eq. 3.22 is the

general expression for a strictly quadratic Hamiltonian.

As anticipated, a Gaussian steady state can in general be fully characterised by its first

and second moments, which will now be encoded in the steady state averages R0 and
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the steady state covariance matrix σ̄ [59]. Symbolically, the average value of a generic

observable A evolves according to

d

dt
〈A〉 ≡ Tr[ρ̇(t)A] =

i

~
〈[H ,A]〉+ 〈D†(A)〉, (3.23)

with [1, 68]

D†(A) =
∑

ij

γdecoh,ij

2
(Rj [A,Ri ] + [Rj ,A]Ri ). (3.24)

Using the same convention, the equation of motion for the vector of first moments can

be found:

Ṙ0 = − i

~
WHR0 + WγAR0 (3.25)

= BT R0, (3.26)

where W is the matrix of commutators (3.43), B is the drift matrix and γdecoh is a

decoherence matrix with elements γdecoh,ij that has been conveniently decomposed into

its symmetric and antisymmetric parts [59, 69]:

γS =
γdecoh + γT

decoh

2
, (3.27)

γA =
γdecoh − γT

decoh

2
. (3.28)

By definition, the steady state averages satisfy Ṙ0 = 0. Instead, the covariance matrix

evolves according to

σ̇ = (− i

~
WH + WγA)σ + σ(

i

~
HW + γAW) + WγSW. (3.29)

As the steady state covariance matrix satisfies dσ̄/dt = 0, it is thus a solution of the
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Lyapunov equation

BT σ̄ + σ̄B = C, (3.30)

where

B =
i

~
HW + γAW, (3.31)

C = −WγSW. (3.32)

The necessary conditions for σ̄ to represent a valid steady state covariance matrix of a

Gaussian state have been discussed in Sec. 2.4. Moreover, in order for the quantum

system to admit a Gaussian steady state, the drift matrix B needs to be stable (i.e. the

real parts of the eigenvalues of B need to all be negative).

3.4.2 Bilinear approximation of optomechanics

In this section we dicuss the procedure for bilinearising the dynamics of a driven-dissipative

optomechanical system within the framework of the quadratic model in the limit of strong

cavity driving.

Intuitively, the main effect of a strong cavity drive is to displace the steady states of

both, cavity field and mechanics [4]. Provided that the cavity is driven sufficiently

strongly whilst the optomechanical couplings are weak enough, the system dynamics

can be well approximated by a bilinear master equation where only small quantum fluc-

tuations around the semi-classical steady state are considered [62].

In the special case of driven-dissipative optomechanics, the bilinearisation of Hamiltonian

(3.20) can be achieved by transforming into a frame in which the steady state displace-

ments vanish [4]. This corresponds to first, making the displacements R → R + R0,
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where

R0 = (Q0,P0, x0, p0) (3.33)

is the vector of steady state quadrature averages, and then neglecting terms that are

beyond quadratic in the canonical operators [1]. Mathematically, this is equivalent to

applying two displacement operators, D(Q,P) = e iP0Q−iQ0P and D(Xb,Pb) = e ip0Xb−ix0Pb ,

to master equation (3.21), as per ρ̇(t) → D†(Q,P)D†(Xb,Pb)ρ̇(t)D(Q,P)D(Xb,Pb) [62,

70]. Here, x0 and p0 denote the average position and momentum of the mechanics in the

steady state, whereas Q0 and P0 are the steady state displacements of the amplitude and

phase quadratures, respectively. With help of relation (3.23), the following set of coupled

equations for the steady state values of the system’s first moments can be derived

Q0 =
−2∆eff ε√

2
(
∆2

eff + κ2

4

) , (3.34)

P0 =
−κε√

2
(
∆2

eff + κ2

4

) , (3.35)

x0 =

√
2g1ωmε

2(
ω2

m + Γ2
m

4

) (
∆2

eff + κ2

4

)
+ 2g2ωmε2

, (3.36)

p0 =
Γm

2ωm
x0, (3.37)

where ∆eff = ∆0 −
√

2g1x0 + g2x
2
0 is the effective detuning. The non-linearity of these

equations implies that multiple steady state solutions are possible in a phenomenon known

as dynamical multistability [2, 81]. In terms of physical interpretation, this phenomenon is

a consequence of the radiation pressure interaction; it arises from the cavity-field-induced

shift in the position of the mechanical oscillator, which in turn leads to the elongation

of the cavity and subsequent displacement of the amplitude and phase quadratures of

the field [23]. Depending on the driving strength, up to five (quadratic model) or three

(linear model) possible steady state solutions may exist. However, by adjusting the

driving strength, the multistability can be completely avoided and the system can be

42



CHAPTER 3. QUANTUM OPTOMECHANICS

restricted to a regime where it is stable, i.e. where a unique real solution to Eqs. 3.34-

3.37 exists. Additionally, in accordance with Eq. 3.37, the displacement of the mechanical

oscillator’s momentum is caused by the mechanical noise. This can be seen as a “side

effect” of some of the approximations underlying the modelling of mechanical damping in

the master equation, and on physical grounds p0 → 0 would be expected. Fortunately, in

realistic optomechanical set-ups the mechanical damping rate is typically much smaller

than the mechanical frequency (i.e. Γm � ωm) so that this (unphysical) displacement of

the steady state mechanical momentum is minuscule in general.

Following the displacement of the canonical operators in the master equation (3.21), the

displaced optomechanical Hamiltonian takes the form

HD =
~
2

∆eff (Q2 + P2) + ~geff Xb(QQ0 + PP0) +
~
2
ωeff X

2
b +

~
2
ωmP

2
b

+
~
2
geff Xb(Q2 + P2) +

~
2
g2X

2
b (Q2 + P2 + 2QQ0 + 2PP0), (3.38)

where geff = −
√

2g1 + 2g2x0 is the effective coupling strength, ωeff = ωm + 2g2|α|2 is

the effective mechanical frequency and |α|2 ≡ (Q2
0 +P2

0 )/2 is the steady state intracavity

photon number [1, 4]. For the sake of clarity, here, terms that do not depend on the

canonical operators have been neglected as they do not contribute towards the dynamics.

In order to attain a bilinear form of this Hamiltonian, the leftover non-linear terms (i.e.

terms that are beyond second order in quadrature operators) need to also be neglected.

This, however, requires a careful consideration of their contributions to ensure that the

remaining quadratic terms are the dominant ones. In the case of a linear model of

optomechanics, recovered when g2 → 0, strong cavity driving (i.e. |α|2 � 1) is the

necessary condition to achieving the bilinearised description of Hamiltonian (3.38) [62]. If

this condition is satisfied, the third order non-linear term∝ g1Xb(Q2+P2) would generally

have a negligible contribution in comparison to all other terms; hence, its exclusion

would be justified. Instead, in the case of a quadratic model, the bilinearisation of

Hamiltonian (3.38) is possible provided that the dominant non-linear term ∝ g1Xb(Q2 +
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P2) is small compared to the second order terms that depend on g2. In general, the

largest g2-dependent bilinear term is the one proportional to g2|α|2. All non-linear terms

in Hamiltonian (3.38) can thus be neglected provided that the relation g2 � g1/|α|2

is satisfied, which effectively sets a constraint on the driving power. Note also that

depending on the driving strength, the remaining g2−dependent terms may or may not

have negligible contributions. For example, at high drive strengths all quadratic terms

should be kept to maximise the accuracy of the bilinear model. Instead, at lower drive

strengths, where only the term proportional to g2|α|2 should be kept, a numerical analysis

reveals that the effect of the additional g2−dependent contributions is so minuscule that

their inclusion (or otherwise) has no visible effect on system dynamics. Accordingly,

all bilinear terms can be kept provided that the condition g2 � g1/|α|2 is satisfied. In

conclusion, for strong cavity driving and g2 � g1/|α|2 the dynamics of an optomechanical

system can be approximated by a bilinear master equation description:

ρ̇(t) =− i

~
[HB , ρ(t)] +

∑
ij

γij

2
[2Riρ(t)Rj − {RjRi , ρ(t)}] , (3.39)

where the Lindblad operators remain unchanged, while the Hamiltonian now takes the

form

HB =
~
2

∆eff (Q2 + P2) + ~geff Xb(QQ0 + PP0) +
~
2
ωeff X

2
b +

~
2
ωmP

2
b . (3.40)

Comparing with Eq. 3.22, in this case, the Hamiltonian matrix reads

H =



~∆eff 0 ~geff Q0 0

0 ~∆eff ~geff P0 0

~geff Q0 ~geff P0 ~ωeff 0

0 0 0 ~ωm


. (3.41)

Additionally, in this displaced frame of reference the steady state covariance matrix is
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given by

σ̄ =



〈Q2〉 〈1
2
{Q,P}〉 〈QXb〉 〈QPb〉

〈1
2
{Q,P}〉 〈P2〉 〈PXb〉 〈PPb〉

〈XbQ〉 〈XbP〉 〈X 2
b 〉 〈1

2
{Xb,Pb}〉

〈PbQ〉 〈PbP〉 〈1
2
{Xb,Pb}〉 〈P2

b〉


, (3.42)

the explicit form of which can be found by solving the Lyapunov equation (3.30) with

[69]

W =



0 i 0 0

−i 0 0 0

0 0 0 i

0 0 −i 0


, (3.43)

B =



−κ
2

−∆eff 0 −geff Q0

∆eff −κ
2

0 −geff P0

geff P0 −geff Q0 −Γm

2
−ωeff

0 0 ωm −Γm

2


, (3.44)

and

C =



−κ
2

0 0 0

0 −κ
2

0 0

0 0 −Γm

2
(2n̄m + 1) 0

0 0 0 −Γm

2
(2n̄m + 1)


. (3.45)

In this particular example, assuming that the drift matrix B is stable, γdecoh ≥ 0 is the

necessary and sufficient condition for σ̄ to represent the steady state covariance matrix

of a Gaussian state.
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The bilinear model of optomechanics that has just been derived is valid for generic values

of detuning. Accordingly, by letting ∆0 > 0 or ∆0 = 0 in the above equations, a model

applicable for the red-detuned and resonant cases, respectively, can be obtained [2, 4]. In

each of these two cases, there exists a regime where a single real solution to Eqs. 3.34-

3.37 occurs and a system is stable [1]. Moreover, for a given set of parameter values, a

suitable range of drive strengths for which the system remains stable can be found using

computational methods.

Blue detuning (∆0 < 0) is a separate case [4]. In this case, the system exhibits a dynamical

instability which eventually leads to periodic, self-induced mechanical oscillations [2, 102].

In the blue-detuned regime, the resulting steady state is a limit cycle, arising from the

competition between amplification and non-linear detuning or damping. The bilinear

model clearly fails to capture this non-linear behaviour of the optomechanical system,

and as such it may not be applicable in this case.
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Chapter 4

Parameter estimation in the linear

model

4.1 Introduction

As previously discussed, quantum optomechanical systems are a consequence of the ra-

diation pressure interaction between a cavity mode and a movable mirror [2, 4]. Un-

fortunately, the non-linear nature of this interaction hinders the possibility of studying

these systems analytically, and approximate models of optomechanics are typically used

instead [40]. Here, we focus on the linear model of optomechanics, which assumes a linear

dependence of the cavity frequency ω(Xb) on the dimensionless position of the movable

mirror, Xb. As discussed in Sec. 3.2, this model is a sufficiently good approximation

in the majority of modern optomechanics experiments, since the range of motion of the

movable mirror is typically very small.

Within this framework, we exploit the application of local QET in driven-dissipative

optomechanics [1]. The goal of this chapter is to investigate the achievable precision of the

coupling constant g1, adopting the linear model of optomechanics. The knowledge of the
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linear coupling constant is sufficient to accurately model the dynamics of optomechanical

systems in many realistic experimental platforms [103].

In order to form a realistic description of a driven-dissipative optomechanical system, we

assume open system dynamics. The interaction of the system with its environment will

then lead to damping and decoherence, which can be described via a Lindblad master

equation (see Sec. 3.3). The full model of a driven-dissipative optomechanical system

will thus include dissipation, decoherence, driving as well as a non-linear Hamiltonian

describing the light matter-interaction (see Sec. 3.3). As suspected, this complete model

is difficult to solve, however by assuming sufficiently strong cavity driving the dynamics

of the system can be approximated via a master equation that is bilinear in the canonical

operators (see Sec. 3.4) [1]. This then leads to a Gaussian steady state which can be

fully characterised by its first and second moments (see Sec. 3.4) [46, 61]. This steady

state, with its explicit dependence on all of the model parameters, and in particular the

unknown linear coupling strength, can subsequently be attacked via general closed-form

expressions that are available for QET in Gaussian models [56]. The visual representation

of the parameter estimation methodology for driven-dissipative optomechanics is shown

in Fig. 4.1.

As discussed in Chapter 2, the ultimate limit to parameter estimation is set by the QCRB

and may be quantified via the QFI [33, 42, 61]. The optimal measurement strategy for

estimating g1 is then one with the FI equal to the QFI. As anticipated, in this chapter we

investigate how well the specific measurements of mechanical position Xb, field amplitude

Q, mechanical momentum Pb and field phase P perform against the fundamental limits

imposed by QET [1]. In our analysis, we focus on a regime where the multistability of the

system can be completely avoided, which in turn sets an upper bound on the intracavity

photon numbers considered. This “stable” region will also vary depending on the detuning

between the cavity and driving laser, that is ∆0 = ω0 − ωL. For completeness, we study

both the red-detuned and resonant regimes as for the two, there is a large region where
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Figure 4.1: Schematic of the parameter estimation methodology for driven-dissipative op-
tomechanics. We consider a driven-dissipative optomechanical system featuring a driven
(by an external laser) and lossy (photons escaping the cavity) cavity and a damped me-
chanical oscillator. The mechanical support has low but finite temperature (leading to
a non-zero thermal occupation number). The optomechanical coupling arises due to the
radiation pressure on the movable mirror. Once the system has reached a steady state
we measure an observable. We repeat the measurement many times to get the statistics.
Finally, we process the data to find the best guess for the coupling parameters of interest.
Reproduced from [1].

both unique steady state exists and the Gaussian formalism remains applicable.

Our main findings are the following: in the red-detuned regime (for the special case of

∆0 = ωm), we find that the best strategy for estimating the linear coupling constant is

through a direct measurement of the mechanical position Xb. Instead, in the resonant

regime (∆0 = 0), which of the “realistic” measurements does best at estimating g1 de-

pends on both temperature and driving power. At higher temperatures, we find that

the measurement of the field amplitude Q constitutes the best strategy for estimating

the linear coupling constant for low-high driving powers. At sufficiently high intracav-

ity photon numbers, the measurement of the field phase P performs better instead. In

contrast, in the zero temperature scenario, we find that at low driving powers the best

strategy for estimating the linear coupling constant is through a direct measurement of
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the mechanical position, whereas at high driving powers it is through a measurement of

the field amplitude, or the field phase at sufficiently high |α|.

As anticipated above, temperature has an important role in our predictions [1]. In par-

ticular, we examine three temperature scenarios: zero temperature (Tm = 0 K), low

temperature (Tm = 1 mK) and “high” temperature (Tm = 80 mK) of the mechanical

bath. In the red-detuned regime, the influence of temperature is most notable at lower

intracavity photon numbers, where better estimation precision can be achieved at higher

temperatures. This could be the consequence of the radiation-pressure-induced backac-

tion cooling of the oscillator, which is most pronounced at higher tempratures. At higher

intracavity photon numbers, the zero temperature scenario predicts a better estimation

precision instead. Similarly, in the resonant regime, the effect of temperature on the

estimation precision of the linear coupling constant is most pronounced at lower driving

powers. In this region, the estimation precision of g1 displays non-trivial dependence

on temperature. In fact, at lower driving powers, the best precision is obtained at zero

temperature, whilst the worst precision is obtained for Tm = 1 mK. Instead, at high

intracavity photon numbers all temperature scenarios give qualitatively identical results.

The topic of single parameter estimation in quantum optomechanical systems was recently

explored in works by Bernád, Sanavio and Xuereb [62, 103]. In [103], non-dissipative

dynamics was assumed and it was found that better estimation precision of the linear

coupling constant could be achieved at higher intracavity photon numbers. Our results

support this claim for high driving powers in both red-detuned and resonant cases [1].

However, in the red-detuned regime we also find that for weaker drive strengths the

observed behaviour becomes more complicated when finite-temperature effects are con-

sidered. In the resonant regime, although higher intracavity photon numbers clearly

facilitate the estimation of the linear coupling constant, depending on the temperature

the predicted QFI limits may not be achievable by simple quadrature measurements. In

fact, at higher driving powers, the distance between the QFI limits and the measure-
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ments of Q, P and Xb increases. Recently, the same authors considered a driven-damped

optomechanical system although using a somewhat different approach to ours [62]. In

particular, the authors neglected the contribution of the steady state’s first moments to

the QFI, which, although a well-justified assumption for the model parameters adopted in

their work, is not justifiable in general. In fact, our results to follow clearly demonstrate

that there are experimentally accessible parameter regimes where the first moments come

to dominate the QFI in both red-detuned and resonant regimes. Aside from considering

both the contributions from the steady state’s first and second moments towards the QFI,

the thesis uniquely examines the performance of the measurements on the mechanics in

estimating the linear coupling parameter. Typically, only the measurements on the light

mode are considered as they are much easier to implement experimentally.

This chapter explores single parameter estimation in a driven-dissipative system, adopting

the linear model of optomechanics. In Sec. 4.2, we adapt the multi-parameter QET

introduced in Sec. 2.4 to the case of a single unknown parameter – g1. Then in Secs.

4.3 and 4.4, we present and discuss the findings of our research for the red-detuned and

resonant regimes, respectively.

4.2 Single parameter Gaussian state estimation

The parameter to be estimated – g1 – first appears in Hamiltonian (3.7) where it quantifies

the strength of the linear in Xb mirror-field interaction [40]. After approximating the

master equation (3.21) to bilinear order under the assumption of strong cavity driving

(see Sec. 3.4), the Hamiltonian of the system takes the bilinear form (3.40), or explicitly

[1]

HB =
~
2

∆eff (Q2 + P2) + ~geff Xb(QQ0 + PP0) +
~
2
ωmX

2
b +

~
2
ωmP

2
b . (4.1)
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Here, the dependence on the linear coupling constant is embedded in the effective pa-

rameters, which in the limit g2 → 0 can be implicitly determined by the following set of

equations: geff = −
√

2g1 and ∆eff = ∆0 −
√

2g1x0, where x0 is the average steady state

position of the mechanics (Eq. 3.36),

x0 =

√
2g1ωmε

2(
ω2

m + Γ2
m

4

) (
∆2

eff + κ2

4

) . (4.2)

Due to the bilinear form of the master equation (3.39), in our approximated model of

driven-dissipative optomechanics the system will admit a Gaussian steady state [1, 59].

All of the information about the unknown coupling parameter g1 will thus be contained

in the steady state averages R0 and the steady state covariance matrix σ̄, defined in Eqs.

3.33 and 3.42, respectively. Moreover, in single parameter estimation theory, the ultimate

limit to parameter estimation may be quantified via the QFI, introduced in Chapter 2

[33, 42, 61]. Specifically for our coupling parameter g1, the QFI is given by

Q(g1) =
(
∂g1R

T
0

)
σ̄−1 (∂g1R0) + 2Tr

[
(∂g1σ̄) (4Lσ̄ + LW )−1 (∂g1σ̄)

]
, (4.3)

where Lσ̄(A) = σ̄Aσ̄ and LW (A) = WAW represent the superoperators and W is the

matrix of commutators (3.43) [55, 56]. Notice that the above expression is simply a single

parameter analogue to Eq. 2.18. Accordingly, as discussed in Sec. 2.4, the first term in

Eq. 4.3 is the contribution due to the averages, while the second term is the contribution

due to the covariances towards the QFI.

In single parameter estimation theory, the QCRB (Eq. 2.3) sets the ultimate limit to

the precision with which an unknown parameter can be estimated [33]. This precision

bound can be equivalently expressed in terms of the single shot relative error, defined in
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Eq. 2.12. In our specific example, the relative error satisfies the inequality [1]

∆g1

g1
≥ 1

g1

√
Q(g1)

≡ δgmin
1 . (4.4)

As the relative error is a dimensionless quantity, it allows for a fair comparison between

parameters of different magnitudes or dimensions. This property will be particularly use-

ful when re-introducing the quadratic coupling constant g2 due to the varying magnitudes

of the two coupling parameters.

As shown in Sec. 2.2, the estimation performance of various measurement strategies may

be quantified via the FI [1, 33]. In our case, the FI measures the amount of information

that a classical random variable s (the outcome of a quantum measurement) contains

about the coupling parameter g1. In congruence with Eq. 2.2, here, the FI is given by

F (g1) =

∫
(∂g1P(S = s|g1))2

P(S = s|g1)
ds, (4.5)

where P(S = s|g1) is the conditional probability of obtaining the value s when measuring

the observable S , given that the parameter has the value g1 [42, 57]. In our model of

driven-dissipative optomechanics, analytical solutions to this integral exist for quadrature

measurements, that is measurements of Q, P , Xb, Pb or their linear combinations. In

these systems, the light quadratures, Q and P , can typically be measured using the ho-

modyne detection scheme [59, 104]. In contrast, a direct measurement of the mechanical

quadratures, Xb and Pb, could, for example, be achieved using another optical mode of

the cavity. Following from Sec. 2.4, in this case, the probability distribution associated

with a measurement of S ∈ {Q,P ,Xb,Pb} is given by

P(S = s|g1) =
e
− (s−s0(g1))2

2σ̄kk (g1)√
2πσ̄kk(g1)

, (4.6)

where s0(g1) ∈ {Q0,P0, x0, p0} is the steady state average of the chosen quadrature, while
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σ̄kk(g1) is the corresponding diagonal entry of the steady state covariance matrix (i.e. σ̄11

for S = Q, σ̄22 for S = P , etc.). In this setting, an analytical solution to integral (4.5) is

of the simple form

F (g1) =
1

2σ̄kk(g1)2
×

[
2σ̄kk(g1)

(
∂s0(g1)

∂g1

)2

+

(
∂σ̄kk(g1)

∂g1

)2
]

. (4.7)

The choice of a measurement strategy for estimating the coupling parameter g1 is then

optimal if the FI and the QFI are equal, i.e. F (g1) = Q(g1).

Notice here that both the definitions of the QFI (Eq. 4.3) and the FI (Eq. 4.7) are

dependent on the derivatives of the steady state covariance matrix and the averages

with respect to the coupling parameter, g1. Since the first and second moments are

determined by the non-linear set of equations (3.34)-(3.37), which in general requires

numerical methods to solve, we employ implicit differentiation to evaluate the derivatives

in question. As all of the relevant quantities can now be conveyed in the numerical

solutions to the above system of equations, our method allows for numerical differentiation

to be avoided altogether. See Appendix A for detailed explanation of the use of implicit

differentiation in our model.

4.3 Red-detuned regime

In this section, we explore the effects of temperature and driving on the estimation

precision of the linear coupling constant g1 in the red-detuned regime. Per our definition,

the red-detuned regime is characterised by positive detuning values, i.e. ∆0 > 0 [1, 4].

Most commonly, as is the case also in this section, the detuning is chosen equal (or close

to) the bare mechanical frequency; this is known as “red sideband driving”. In our work,

we consider the following parameter values: ωm = 1.1 × 107 Hz, m = 4.8 × 10−14 kg,

Γm = 32 Hz, ∆0 = ωm, κ = 105 Hz and g1 = 2 × 102 Hz. These values were inspired

54



CHAPTER 4. PARAMETER ESTIMATION IN THE LINEAR MODEL

by [26] where near ground state cooling of the mechanical oscillator was achieved via the

radiation-pressure-induced dynamical backaction.

As discussed in Sec. 3.4, in the linear model of optomechanics, strong cavity driving is the

necessary condition to ensure that the Gaussian approximation is valid. This effectively

places a lower bound on the drive amplitudes considered. In order to guarantee the

stability of the system, we additionally need to restrict the range of drive amplitudes

to a region where a single unique solution to the steady state averages (Eqs. 3.34-3.37)

exists. Intuitively, we expect this region to be wider for a more stable system. With the

two constraints in mind, for our set of parameter values, we select the following range of

drive amplitudes as our study region: 108 ≤ ε ≤ 3.8× 109 Hz. In terms of the intracavity

photon number, this corresponds to 80 . |α|2 . 1.2× 105 (or 1.9 . log10 |α|2 . 5.1).

In order to investigate the effects of temperature on the estimation precision of the linear

coupling constant, we examine three temperature scenarios: zero temperature (Tm = 0

K), low temperature (Tm = 1 mK) and “high” temperature (Tm = 80 mK) of the

mechanical bath. In each case, we seek the best measurement strategy for estimating the

coupling parameter, g1. We start by evaluating the “global”1 QFI, which corresponds to

the best estimation precision achievable via a global measurement on the whole system

[1]. In congruence with the QCRB, the calculated QFIs set the fundamental quantum

limits to parameter estimation. By tracing out the mechanical or light modes, we can

also extract the local QFIs, quantifying the ultimate limits to parameter estimation when

only the light or mechanical modes are directly measurable. Comparing the local and

global QFIs will then reveal how much information about the linear coupling parameter

is contained in the reduced states of light and mechanics. Finally, we compare the global

QFIs with the FIs of the realistic measurements of Q, P , Xb and Pb to help discern which

of the experimentally common measurements constitute the best strategy for estimating

the linear coupling constant in each temperature scenario.

1Note here that the quantities we refer to as the “global” and “local” QFIs are unrelated to the global
and local QET, introduced in Chapter 2.
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Figure 4.2: Log-log plot of the relative error bound on g1 (as implied by the QFI) against
the intracavity photon number, |α|2, as predicted by the linear model in the red-detuned
regime in the zero temperature (purple dot-dashed line), low temperature (black line)
and high temperature (orange dashed line) scenarios. Adapted from [1].

In Fig. 4.2 we investigate the effects of driving and temperature on the estimation

precision of the linear coupling constant, g1. According to this plot, the dependence of

the relative error bound on g1 (i.e. δgmin
1 = 1/(g1

√
Q(g1))) on temperature appears to

be fairly complex; depending on the driving strength, temperature can either have an

amplifying or hindering effect on the estimation precision of the linear coupling constant.

In fact, there is a crossover around log10 |α|2 ∼ 4.7 (or |α|2 ∼ 5× 104) below which value

the high temperature scenario offers the best estimation precision, whilst above it the best

precision for estimating g1 is found at lower temperatures. Additionally, in the non-zero

temperature scenarios, δgmin
1 displays non-monotic behaviour, the origins of which can be

understood by studying how the contributions of the averages and variances to the QFI

vary with temperature. Appropriately, in Fig. 4.3 we plot these contributions against the

intracavity photon number for the three temperature scenarios. Here, g̃1−QFI refers to

the dimensionless QFI, defined as Q(g̃1) = ω2
mQ(g1) with g̃1 = g1/ωm the dimensionless

linear coupling constant [1]. The scope of the dimensionless parameters is to allow a

simpler comparison between the linear and quadratic coupling constants due to their
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Figure 4.3: Log-log plots comparing the contributions from the variances (orange dashed
line) and the averages (green circles) to the g̃1−QFI in the linear model in the red-detuned
regime (black line) in (a) the zero temperature scenario as well as the (b) T = 1 mK and
(c) T = 80 mK cases.

differing dimensions. The dimensionless parameters also provide a simpler way to separate

the contributions of the variances and averages to the QFI. Moreover, as shown in Fig.

4.3, the non-monotonic behaviour of δgmin
1 in the non-zero temperature scenarios appears

to be a result of the crossover of the dominance of the contributions from the variances

to the averages. In the zero temperature limit no such crossover occurs; hence no local

maximum is detected.

More in detail, Fig. 4.3 clearly demonstrates the contrasting behaviour of the contri-

butions of the averages and variances. In particular, in all of the explored temperature

scenarios, the contribution due to the averages increases monotonically with the intracav-

ity photon number. As such, this contribution will always become dominant at sufficiently

high |α|. Interestingly, in the zero temperature scenario, the contribution due to the aver-

ages dominates at all intracavity photon numbers. Accordingly, in the zero temperature

limit, the majority of information about the linear coupling constant is encoded in the

averages. Instead, in the non-zero temperature scenarios, the contribution due to the

variances is important and comes to dominate at lower intracavity photon numbers. This

could be related to the radiation-pressure-induced backaction cooling of the oscillator,

which makes the effective mechanical temperature, hence the steady state covariance

matrix, strongly dependent on the coupling [1, 2, 4]. This effect also becomes more pro-
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Figure 4.4: (a) Relative error bound on g1 as a function of the intracavity photon number,
|α|2, as implied by the global, light and mechanics QFIs in the red-detuned regime in the
cases of zero temperature (black line, purple dot-dashed line, blue squares, respectively)
and high temperature (orange dashed line, red dotted line and green circles, respectively).
Adapted from [1]. (b) and (c) are the log-log plots of the ratios of the FI for the mea-
surements of Q (FI(Q), purple dot-dashed line), P (FI(P), red dotted line), Xb (FI(Xb),
green circles) and Pb (FI(Pb), orange dashed line) to light and mechanics QFIs against
the intracavity photon number, |α|2, in the red-detuned regime for g1 in the high and
zero temperature scenarios, respectively.
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nounced at higher temperatures as visualised by the widening of the region where the

contribution due to the variances dominates.

In Fig. 4.4(a) we investigate how much information about the linear coupling constant is

contained in the reduced states of light and mechanics versus the full system in the zero

and high temperature scenarios. Clearly, in all of the explored cases, nearly all of the

information about g1 is encoded in the mechanical subsystem. This is better seen from

Figs. 4.4(b) and (c). There, we plot the ratios of the FIs for the measurements of light

and mechanical quadratures to light and mechanics QFIs, respectively, in the high and

zero temperature scenarios. At 80 mK, for log10 |α|2 . 4.2 the ratios of the FIs for the

measurements of mechanical position and mechanical momentum to the mechanics QFI

are both approximately equal to 0.5. In other words, in this region, the two measurements

contribute roughly equally towards the mechanics QFI. At higher intracavity photon

numbers, however, most of the mechanics QFI can be accessed via a measurement of

mechanical position Xb. Instead, the ratios of the FIs for the measurements of field

amplitude (Q) and field phase (P) to the light QFI are both approximately equal to 0.2

in the region log10 |α|2 . 3.6. This may suggest that another measurement on light has a

higher contribution towards the light QFI in this region. At sufficiently high intracavity

photon numbers, however, all information encoded in light about the system can be

accessed via a measurement of Q. In contrast, in the zero temperature limit, the FI

for the measurement of mechanical position is essentially equal to the mechanics QFI

at all intracavity photon numbers within our study range. Instead, the measurement of

field amplitude only comes close to the light QFI at higher intracavity photon numbers.

This again suggests that there might be another measurement on light that has a higher

contribution towards the light QFI in the low driving region.

On the contrary, in optomechanics experiments, measurements are commonly performed

on the light mode as it is generally more easily accessible. However, in accordance with

our findings, to maximise the amount of information gained on the coupling parameter

59



CHAPTER 4. PARAMETER ESTIMATION IN THE LINEAR MODEL

Figure 4.5: Log-log plots of the relative error bound on g1 (as implied by the QFI)
against the intracavity photon number, |α|2, in the red-detuned regime (black line) and
the measurements of P (red dotted line), Q (purple dot-dashed line), Xb (green circles)
and Pb (orange dashed line). (a) and (b) are for g1 in the high and zero temperature
scenario, respectively.

through a measurement, it may be beneficial to find ways of probing the mechanical mode

more directly [1]. Additionally, both the light and mechanics QFIs reflect the monotonic

or non-monotonic behaviour of the global QFI in the two temperature scenarios.

Then, in Fig. 4.5 we compare the performances of the realistic measurements of Q, P ,

Xb and Pb against the ultimate QFI limits in the zero and high temperature scenarios.

Overall, in all of the explored cases, the mechanical position does best at estimating the

linear coupling constant. Here, it is also evident that the QFI limit can only be approached

in the zero temperature scenario. In addition, the behaviour of the realistic measurements

is clearly temperature-dependent. In particular, the measurements of Q, P and Xb reflect

the monotonicity, or otherwise, of the QFI limit in both temperature scenarios. The

measurement of Pb, however, behaves very differently. In fact, in the high temperature

scenario the measurements of the two mechanical quadratures perform very similarly,

whilst in the zero temperature limit the measurement of Xb as well as the measurements of

the light quadratures clearly outperform the measurement of the mechanical momentum.
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Figure 4.6: Log-log plots of the ratios of the FI for the measurements of Q (FI(Q),
purple dot-dashed line), P (FI(P), red dotted line), Xb (FI(Xb), green circles) and Pb

(FI(Pb), orange dashed line) to the QFI against the intracavity photon number, |α|2, in
the red-detuned regime. (a) and (b) are for g1 in the high and zero temperature scenario,
respectively.

More in detail, in Fig. 4.6 we look at the ratios of the realistic measurements to the

QFI in the zero and high temperature scenarios. In the high temperature scenario, both

measurements of Xb and Pb contribute roughly 0.4 to the QFI in the region log10|α|2 .

4.15. Beyond this region, approximately all information about the system can be accessed

via a measurement of mechanical position. Instead, the realistic measurements on the

light quadratures have minuscule contributions towards the QFI for the whole study

region. Similarly, in the zero temperature scenario, all information about the system can

roughly be accessed via the measurement of Xb at all intracavity photon numbers within

our study range. This agrees well with our previous findings.

4.4 Resonant regime

For completeness, we additionally explore the estimation of the linear coupling strength

in the resonant regime. Much like the red-detuned regime, in the resonant case there
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exists a large region where both unique steady state exists and the Gaussian formalism

remains applicable [1]. In fact, the extent of this region can be explicitly determined by

finding a range of drive amplitudes for which there exists a single, real solution for the

average position of the mechanics, x0 (Eq. 3.36). This, in turn, amounts to finding the

discriminant of the cubic Eq. 3.36 with ∆0 = 0 (and g2 = 0 for the linear model), and

solving it for the drive amplitude, ε. In the resonant regime, the extent of the stable

region can thus be determined by solving

ε4 = −κ
6(Γ2

m + 4ω2
m)2

27648g 4
1ω

2
m

. (4.8)

From Eq. 3.19 we also know that ε must be real, hence there is no solution to this

equation. In other words, in the resonant regime, there exists a unique, real solution for

the average position of the mechanics at all drive strengths. Accordingly, in this case, for

a given set of parameter values, a suitable study region is only constrained by the strong

cavity driving requirement, i.e. |α|2 � 1.

In order to allow for a comparison between the resonant and red-detuned regimes, we

consider the same set of parameter values in both cases. However, to capture the most

interesting features of the optomechanical system in this regime, we constrain our study

region to 106 ≤ ε ≤ 4 × 108 Hz. In terms of the intracavity photon number, this

corresponds to 100 . |α|2 . ×107 (or 2 . log10 |α|2 . 7). This is a much wider region

than that considered in the red-detuned case. As before, here, we explore the estimation

of the linear coupling constant in the high, low and zero temperature scenarios. Our goal

is to find the best strategy for estimating this coupling parameter in the resonant regime

and how these results compare to our findings in the red-detuned case.

In Fig. 4.7(a) we explore the effects of temperature and driving on the estimation precision

of the linear coupling constant, g1. In contrast to the red-detuned case, in the resonant

regime δgmin
1 displays a straightforward dependence on the intracavity photon number.
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Figure 4.7: (a) Log-log plot of the relative error bound on g1 (as implied by the QFI)
against the intracavity photon number, |α|2, as predicted by the linear model in the
resonant regime in the zero temperature (purple dot-dashed line), low temperature (black
line) and high temperature (orange dashed line) scenarios. (b) Semi-log plot of the relative
error bound on g1 (as implied by the QFI) against the temperature of the mechanical
bath, Tm, for the intracavity photon number log10 |α|2 = 3.5.

Here, the relative error bound on g1 decreases monotonically with the intracavity photon

number over the whole study region. On the other hand, the dependence of δgmin
1 on

temperature is non-trivial at lower driving. This is illustrated in Fig. 4.7(b), which clearly

demonstrates the non-monotonic dependence of δgmin
1 on temperature at log10 |α|2 =

3.5. In this case, the relative error bound on g1 increases sharply with temperature

in a region Tm . 2 mK, reaches a maximum at Tm ≈ 2 mK and slowly declines at

higher temperatures. At lower driving powers, the best precision for estimating g1 is

found at zero temperature, whilst the worst at Tm = 1 mK. Interestingly, at higher

intracavity photon numbers the effect of temperature on the estimation precision becomes

less important. In fact, for log10 |α|2 & 5.3, all temperature scenarios give qualitatively

identical results.

The observed behaviour can be better understood by comparing the contributions of the

variances and averages to the QFI in the three temperature scenarios. As visualised

in Fig. 4.8, unlike in the red-detuned regime, in this case both contributions display
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Figure 4.8: Log-log plots comparing the contributions from (a) the averages and (b) the
variances to the g̃1−QFI in the linear model in the resonant regime in the T = 0 K
(orange dashed line), T = 1 mK (black line) and T = 80 mK (green circles) cases.

monotonic behaviour. Nevertheless, here, the crossover of the contributions from the

variances to the averages is also observed. The location of this crossover point appears to

be temperature-dependent. However, studying the origin of this temperature dependence

is beyond the scope of this thesis, and is left for future work. At lower driving powers,

the contribution due to the variances dominates. Interestingly, despite of its temperature

dependence, this contribution is largest in the zero temperature scenario for the major-

ity of the studied region. Instead, the contribution due to the averages dominates at

large intracavity photon numbers. This, along with the temperature-independence of the

averages, explains why the curves in Fig. 4.7(a) converge at large driving powers.

In Fig. 4.9 we investigate how much information about the linear coupling constant is

encoded in the reduced states of light and mechanics versus the full system in the zero

and high temperature scenarios. In comparison to the red-detuned regime, here, the

observed behaviour is very different. Recall that in the red-detuned case, the majority

of information about the linear coupling constant was contained in the mechanical sub-

system. In the resonant regime, which of the two subsystems contains most information
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Figure 4.9: Relative error bound on g1 as a function of the intracavity photon number,
|α|2, as implied by the global, light and mechanics QFIs in the resonant regime in the
cases of zero temperature (black line, purple dot-dashed line, blue squares, respectively)
and high temperature (orange dashed line, red dotted line and green circles, respectively).

about g1 depends instead on both temperature and driving power. Indeed, in the zero

temperature scenario, there is a crossover at log10 |α|2 ≈ 4.35 below which value the ma-

jority of information about the linear coupling constant is encoded in the reduced state

of the mechanics, whilst above it in the reduced state of light. Notice also that in this

case, the g1−QFI of the mechanics, or light, are only close to the global QFI in their

respective regions of dominance. Instead, in the high temperature scenario, the majority

of information about g1 is contained in the light subsystem at all |α|2. Additionally, in

this case, the g1−QFI of the light subsystem is only close to the global QFI at lower

intracavity photon numbers.

Finally, in Fig. 4.10 we compare the performances of the realistic measurements of Q,

P , Xb and Pb against the ultimate QFI limits in the zero and high temperature scenarios

[1]. Unlike in the red-detuned regime, in this case there is no single measurement that

constitutes the best strategy for estimating the linear coupling constant over the whole

study region or all temperatures. For example, in the high temperature scenario, there

is a crossover at log10 |α|2 ≈ 6.45 below which value the best strategy for estimating g1
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Figure 4.10: Log-log plots of relative error bound on g1 (as implied by the QFI) against the
intracavity photon number, |α|2, in the resonant regime (black line) and the measurements
of P (red dotted line), Q (purple dot-dashed line), Xb (green circles) and Pb (orange
dashed line). (a) and (b) are for g1 in the high and zero temperature scenario, respectively.

is through a measurement of the field amplitude Q, whilst above it the measurement

of the field phase P performs better. However, the ultimate limit to parameter esti-

mation can only be approached by the measurement of Q for a limited range of drive

strengths. Moreover, although the measurements of the light quadratures generally show

a better agreement with the predicted QFI limit, at sufficiently low intracavity photon

numbers, the measurement of the mechanical position Xb outperforms the measurement

of P . Interestingly, the agreement between the QFI limit and the measurements of Q, P

and Xb worsens with the intracavity photon number in the high driving regime, where

these measurements start to display non-monotonic behaviour. In contrast, in the zero

temperature scenario, the performance of the mechanical quadrature measurements is

vastly improved. In fact, in the region log10 |α|2 < 4.35, the measurement of the mechan-

ical position constitutes the best strategy for estimating the linear coupling constant.

Instead, in the high driving regime, we find that the best strategy for estimating g1 is

through a direct measurement of the field amplitude Q, whilst at sufficiently high |α|2

it is through a measurement of the field phase P . In this case, the predicted QFI limit
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can be approached by both the measurement of Q in the region 4.85 . log10 |α|2 . 6.2

and the measurement of P in a very limited range of drive strengths. Similarly to the

high temperature scenario, here, the measurements of the light quadratures as well as

the measurement of Xb start to display non-monotonic behaviour at sufficiently high in-

tracavity photon numbers. Although the ultimate limit to parameter estimation clearly

improves with driving, this limit is not attainable by simply choosing one quadrature of

light and increasing the drive strength indefinitely.
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Chapter 5

Parameter estimation beyond the

linear model

5.1 Introduction

Although the linear model has been very successful at describing the vast majority of

optomechanics experiments to date, with the potential of using optomechanics for ultra-

high accuracy applications, this model will eventually need to be refined [2, 82].

This chapter explores the application of local QET in driven-dissipative optomechanics

within the framework of the quadratic model. As discussed in Sec. 3.2, the quadratic

model of optomechanics is obtained by expanding the cavity frequency up to and includ-

ing second order in Xb [1]. The task of QET, in this case, is to find the best strategy

for estimating both the linear (g1) and quadratic (g2) coupling constants [33]. Provided

that the cavity is driven sufficiently strongly and the optomechanical couplings are weak

enough, the bilinear master equation description remains applicable and the general ex-

pressions that are available for QET in Gaussian models can once again be employed.
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Similarly to the previous chapter, here, we investigate the estimation of the linear and

quadratic coupling constants in the red-detuned regime. Although a system described

by the Hamiltonian that is consistent with the quadratic model will in general be more

stable, for comparative purposes, we keep the parameter values and the study region the

same as in Chapter 4. For completeness, here, we additionally explore the estimation

of the quadratic coupling constant within the framework of the purely quadratic model.

This model is obtained by removing the linear term in the expansion of the cavity fre-

quency up to (and including) second order in Xb [4, 86]. This type of coupling can, for

example, be realised in the membrane-in-the-middle optomechanical system in which the

magnitudes of the linear and quadratic coupling constants can be independently adjusted

by varying the position of the membrane. For comparative purposes, we adopt the same

parameter values as in our investigation of the quadratic model. However, to capture all

the interesting features of a system described by the purely quadratic model, in this case

we consider a wider study region. Additionally, to gain understanding of the effect of the

strength of the optomechanical interaction on the estimation precision of the quadratic

coupling constant, here, we explore both g2 = 10 Hz and g2 = 100 Hz scenarios.

In the case of a quadratic model, we find that at low driving powers, the quadratic cou-

pling constant is notably harder to estimate than the linear one [1]. This is somewhat

intuitive since g2 is associated with a higher order approximation of the optomechanical

Hamiltonian in comparison to g1. At higher drive strengths, however, the achievable

estimation precisions of the two parameters become comparable. In the case of a purely

quadratic model, we instead find that for low-high intracavity photon numbers, the esti-

mation precision of the quadratic coupling constant improves significantly for g2 = 100

Hz. At sufficiently high driving powers, however, the relative error bound on g2 saturate

at approximately
√

2 for both g2 = 10 Hz and g2 = 100 Hz scenarios.

In analogy to the previous chapter, here, we explore how well the specific measurements

of mechanical position Xb, field amplitude Q, mechanical momentum Pb and field phase
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P perform against the fundamental limits imposed by QET. In the case of a quadratic

model, we find that in general the best strategy for estimating the coupling parameters

is through a direct measurement of the mechanical position at all intracavity photon

numbers within our study range [1]. Interestingly, in some parameter regimes, the mea-

surement of the mechanical momentum performs just as well as the measurement of Xb.

Instead, in the case of a purely quadratic model, all information about the quadratic

coupling constant is contained in the mechanical subsystem. Additionally, we find that

the measurement of Pb constitutes the best strategy for estimating this coupling param-

eter at all intracavity photon numbers within our study range. The measurement of Xb

gives comparable estimation precision at low intracavity photon numbers, whereas at

higher driving powers the relative error bound on g2 increase with |α|2. Although the

general behaviour of the two realistic measurements appears unchanged with the value

set for g2, the ultimate limits to the estimation precision of this coupling parameter can

be approached at slightly lower intracavity photon numbers for g2 = 100 Hz.

Here, we additionally investigate the influence of temperature on the estimation preci-

sion of the parameters of interest. Once again, we examine three temperature scenarios:

zero temperature (Tm = 0 K), low temperature (Tm = 1 mK) and “high” temperature

(Tm = 80 mK) of the mechanical bath. In the case of a quadratic model, we find that

the influence of temperature on the estimation precision of the linear coupling constant

is qualitatively identical to that discussed in Chapter 4: at lower driving powers better

estimation precision can be achieved at higher temperatures, whilst at higher driving

powers zero temperature is more advantageous instead [1]. Additionally, we find that

higher temperatures favour the estimation precision of the quadratic coupling constant

at all intracavity photon numbers within our study range. Instead, for a purely quadratic

model, the relative error bound on g2 shows weak dependence on temperature. Neverthe-

less, for low-high intracavity photon numbers, the highest estimation precision of g2 can

be achieved in the zero temperature limit. Also, in this region, the agreement between
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the realistic measurements and the ultimate limits set by the QFI improves slightly at

higher temperatures.

The application of local QET in a quantum optomechanical system within the framework

of the quadratic model was recently explored by Schneiter et al. [105]. Although using

a different approach to ours, there a non-trivial dependence of the estimation precision

of the coupling parameters on the temperature was also observed. In the case of purely

quadratic optomechanics, local QET has been used to estimate the mechanical frequency,

or equivalently the mass of the mechanical element [107]. Accurate knowledge of this

parameter could, for example, be useful in mass precision detection.

This chapter explores quantum parameter estimation in a driven-dissipative system,

adopting the quadratic and purely-quadratic models of optomechanics. In Sec. 5.2 we

adapt the multi-parameter QET introduced in Sec. 2.4 to the case of two unknown param-

eters – g1 and g2. Starting with the quadratic model, in Sec. 5.3 we present and discuss

the findings of our research for the red-detuned regime. Then, in Sec. 5.4 we discuss

the validity of the bilinear master equation description in the case of a purely quadratic

model and analyse the corresponding findings. Finally, in Sec. 5.5 we summarise our

results. Note that the work covered in Sec. 5.2 is based on the research conducted in [1].

Sec. 5.4 instead features work that is fully original and yet unpublished.

5.2 Multi-parameter Gaussian state estimation

Adopting the quadratic model of optomechanics, the parameters to be estimated are the

linear and quadratic coupling constants – g1 and g2. These parameters quantify the overall

strength of the optomechanical interaction as well as the relative importance of the two

types of coupling: linear and quadratic [1]. Methods to reliably estimate both coupling

parameters would greatly benefit as their knowledge is essential for all applications of
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these systems.

The linear and quadratic coupling strengths were first introduced in Hamiltonian (3.11).

Considering an optomechanical open system governed by Eq. 3.21 and taking the usual

limit of strong cavity driving, the Hamiltonian of the system takes the bilinear form (3.40)

instead, which we repeat here

HB =
~
2

∆eff (Q2 + P2) + ~geff Xb(QQ0 + PP0) +
~
2
ωeff X

2
b +

~
2
ωmP

2
b . (5.1)

As before, the dependence on the two coupling constants is embedded in the effective

parameters which can be determined by solving the coupled equations: geff = −
√

2g1 +

2g2x0, ωeff = ωm + 2g2|α|2 and ∆eff = ∆0 −
√

2g1x0 + g2x
2
0 with x0 the average steady

state position of the mechanics (Eq. 3.36),

x0 =

√
2g1ωmε

2(
ω2

m + Γ2
m

4

) (
∆2

eff + κ2

4

)
+ 2g2ωmε2

. (5.2)

As discussed in Sec. 3.4, Hamiltonian (5.1) (rewritten Eq. 3.40) is a valid approximation

if both conditions |α|2 � 1 and g2 � g1/|α|2 are satisfied so that the system will admit a

Gaussian steady state [1, 59]. Within these approximations, we recall that all information

about the coupling parameters will be contained in the steady state averages R0 and the

steady state covariance matrix σ̄, given in Eqs. 3.33 and 3.42, respectively.

As we now have two different parameters to estimate, the relevant theory is the multi-

parameter estimation theory, introduced in Chapter 2. However, assuming that only one

of these parameters is unknown, say gi , the multi-parameter estimation problem reduces

to single parameter estimation. Hence, as discussed in Sec. 2.3.1, the best estimation

precision for each individual parameter may be quantified with the diagonal elements of
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the QFIM:

[Q(g)]ii =
(
∂gi

RT
0

)
σ̄−1 (∂gi

R0) + 2Tr
[

(∂gi
σ̄) (4Lσ̄ + LW )−1 (∂gi

σ̄)
]

, (5.3)

where g = (g1, g2), Lσ̄(A) = σ̄Aσ̄, LW (A) = WAW and W is the matrix of commutators

(3.43) [33, 42, 55, 56, 61]. For succinctness, we will refer to Q(g)11 as the “g1−QFI” and

Q(g)22 as the “g2−QFI”. Comparing with the general form of this expression (Eq. 2.18),

we call the first term the contribution due to the averages and the second term the

contribution due to the covariances towards each diagonal entry of the QFIM [1, 56]. In

this case, the QCRB (Eq. 2.8) takes the form analogous to Eq. 2.11, or explicitly

Var(ĝi ) ≥
1

M[Q(g)]ii
. (5.4)

Additionally, as the linear and quadratic coupling constants will typically be several

orders of magnitude apart, it may be preferable, at times, to measure the estimation

precision with the single shot relative error, defined in Eq. 2.12. In our specific case, this

relative error is implicitly defined by

∆gi

gi
≥ 1

gi

√
[Q(g)]ii

≡ δgmin
i . (5.5)

Similarly, the diagonal elements of the FIM quantify a classical limit to how well various

measurement strategies can perform at estimating the unknown parameter [33]. In our

example, the FIM provides a way for measuring the amount of information that a classical

random variable s (the outcome of a quantum measurement) contains about the coupling

parameters g = (g1, g2) [1]. In agreement with Eq. 2.2, we get the following expression

for the diagonal elements of the FIM

[F (g)]ii =

∫ ∞
−∞

ds
1

P(S = s|g)

(
∂P(S = s|g)

∂gi

)2

, (5.6)
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where P(S = s|g) is the conditional probability of obtaining the value s when measuring

the observable S [42, 57]. Once again, we select quadrature measurements, and specifically

the measurements of Q, P , Xb and Pb, as our chosen observables. In that case, an

analytical solution to this integral exists and is given by

[F (g)]ii =
1

2σ̄kk(g)2
×

[
2σ̄kk(g)

(
∂s0(g)

∂gi

)2

+

(
∂σ̄kk(g)

∂gj

)2
]

, (5.7)

where

P(S = s|g) =
e
− (s−s0(g))2

2σ̄kk (g)√
2πσ̄kk(g)

, (5.8)

is the probability distribution associated with a measurement of S ∈ {Q,P ,Xb,Pb},

s0(g) ∈ {Q0,P0, x0, p0} is the steady state average of the chosen quadrature, whilst σ̄kk(g)

is the corresponding diagonal element of the steady state covariance matrix (i.e. σ̄11 for

S = Q, σ̄22 for S = P , etc.) (for the general form of these expressions, see Eqs. 2.19 and

2.20). Also, as both the definitions of the diagonal elements of the QFIM and the FIM

depend on the derivatives of the steady state covariance matrix and the averages with

respect to the coupling constants, we will once again employ implicit differentiation to

evaluate the derivatives in question, eliminating the need for numerical differentiation.

5.3 Red-detuned regime

Analogous to Sec. 4.3, here, we explore the influence of temperature and driving on the

estimation precision of the linear and quadratic coupling constants. In this section, we

additionally highlight any similarities and differences between the linear and quadratic

optomechanical models. The differences between the two models emphasise the effect of

corrections due to the quadratic term [1]. In order to make this comparison possible, we

adopt the same parameter values and the same study region as in Sec. 4.3. Specifically,
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the parameter values we use are: ωm = 1.1 × 107 Hz, m = 4.8 × 10−14 kg, Γm = 32

Hz, ∆0 = ωm, κ = 105 Hz and g1 = 2 × 102 Hz, whilst our chosen study region is

108 ≤ ε ≤ 3.8 × 109 Hz (or 80 . |α|2 . 1.2 × 105 in terms of the intracavity photon

number) [26]. Note that although we have chosen to keep the study region the same, for

comparative purposes, for these parameter values the system described by the quadratic

model will remain stable at all |α|. The addition of the quadratic term thus results in

a more stable system overall, in comparison to a system described by the linear model

which exhibits bistability at finite ε. Moreover, our choice for the value of the quadratic

coupling constant is motivated by the condition g2 � g1/|α|2, which ensures that the

bilinear Hamiltonian (3.40) is valid (see Sec. 3.4); we let g2 = 10 Hz to guarantee

that this condition is satisfied at all intracavity photon numbers within our study range.

Although this value is not consistent with the Fabry-Perot type set-up in [26], it can

be realised in others, such as in the membrane-in-the-middle optomechanical system. In

fact, [106] features a set-up in which the same order of magnitude value for the quadratic

coupling constant was considered (i.e. g2 = 0.07g1).

Here, we follow the same procedure as in Sec. 4.3. To summarise, we consider three

temperature scenarios: zero temperature (Tm = 0 K), low temperature (Tm = 1 mK)

and “high” temperature (Tm = 80 mK) of the mechanical bath. In each case, our goal is

to determine the best strategy for estimating the linear and quadratic coupling constants.

First, we evaluate the global QFIs, which in accordance with Eq. 5.4, quantify the “best-

case-scenario” performance for the estimation of each of the coupling constants. Next,

we calculate the local QFIs. By comparing these with the global QFIs, this will then tell

us how much information about the linear and quadratic coupling constants is encoded

in the reduced states of light and mechanics. Finally, we compare the global QFIs with

the FIs of the measurements of Q, P , Xb and Pb to help us determine which of these

measurements does best at estimating the linear and quadratic coupling constants in

each temperature scenario.
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Figure 5.1: (a) Log-log plot of the relative error bound on g1 against the intracavity
photon number, |α|2. The plot compares linear and quadratic models in the zero temper-
ature (blue squares and purple dot-dashed line, respectively), low temperature (brown
triangles and black line, respectively) and high temperature (green circles and orange
dashed line, respectively) scenarios. (b)-(d) Log-log plots comparing the contributions
from the variances (orange dashed line) and the averages (green circles) to the g̃1−QFI
in the quadratic model (black line) for g̃1 in (b) the zero temperature scenario as well as
the (c) T = 1 mK and (d) T = 80 mK cases. Reproduced from [1]
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In Fig. 5.1(a) we explore the influence of the higher order g2 term, temperature and driv-

ing on the estimation precision of the linear coupling parameter, g1. As anticipated, the

relative error bound on g1 (i.e. δgmin
1 ) shows a complicated dependence on temperature

[1]. Interestingly, however, the general behaviour of δgmin
1 with temperature as predicted

by the quadratic model matches that predicted by the linear model, i.e. up to around

log10 |α|2 ∼ 4.7 (or |α|2 ∼ 5 × 104) the high temperature scenario offers the best esti-

mation precision, whilst above this value the best precision for estimating g1 is found at

lower temperatures. For the quadratic model, non-monotonic behaviour of δgmin
1 is also

observed, although exclusively in the low temperature scenario. This is consistent with

how the contributions of the averages and variances to the QFI vary with temperature

in each of the three temperature scenarios, visualised in Figs. 5.1(b)-(d). As before, this

non-monotonic behaviour appears to be a consequence of the crossover of the dominance

of the contributions from the variances to the averages. Interestingly, in contrast to the

linear model (see Fig. 4.3(c)), for the quadratic model no such crossover occurs in the

high temperature scenario. Instead, in this case, the contribution due to the variances

dominates at all intracavity photon numbers within our study range. The effect of the

higher order g2 term thus appears to be temperature-dependent; hence the contribution

due to the variances is mainly affected. Additionally, for the quadratic model, δgmin
1

remains roughly invariant with |α|2 in the high temperature scenario.

In Fig. 5.2(a) we investigate the influence of temperature and driving on the estimation

precision of the quadratic coupling parameter, g2. At low driving powers, the quadratic

coupling constant is significantly harder to estimate than the linear one, as indicated by

the considerably larger relative error bounds for g2 than g1 [1]. Interestingly, at high

intracavity photon numbers, these error bounds become comparable, brought on by the

fact that g2 is boosted by a factor |α|2 in Hamiltonian (3.38). Additionally, in this

case, higher temperatures appear to favour the estimation precision of g2 for all driving

strengths considered; according to Fig. 5.2(a), the lowest relative error bound on g2 can
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Figure 5.2: Log-log plot of the relative error bound on g2 against the intracavity pho-
ton number, |α|2, as predicted by the quadratic model in the zero temperature (purple
dot-dashed line), low temperature (black line) and high temperature (orange dashed line)
scenarios. (b)-(d) Log-log plots comparing the variances (orange dashed line) and aver-
ages (green circles) contributions to QFI (black line) for g̃2 at (b) zero temperature as
well as the (c) T = 1 mK and (d) T = 80 mK cases. Reproduced from [1].
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Figure 5.3: Semi-log plot of the relative error bound on g2 (as implied by the QFI)
against the temperature of the mechanical bath, Tm, for the intracavity photon number
log10 |α|2 = 3.5.

always be achieved in the high temperature scenario. This can be better understood

by studying how the contributions of the averages and variances to the QFI vary with

temperature in each of the three temperature scenarios, illustrated in Figs. 5.2(b)-(d).

Recall that here, g̃i−QFI refers to the dimensionless QFI, defined as Q(g̃i ) = ω2
mQ(gi ),

where g̃i = gi/ωm is the dimensionless linear (i = 1) or quadratic (i = 2) coupling

constant. Indeed, in the low and high temperature scenarios, the temperature-dependent

contribution due to the variances always dominates. In contrast, at zero temperature,

the contribution due to the variances dominates at sufficiently low intracavity photon

numbers before being overtaken by the contribution due to the averages at log10 |α|2 ∼ 4.2.

Despite this crossover, no non-monotonic behaviour of δgmin
2 is observed. Nevertheless,

for all temperature scenarios, δgmin
2 decreases monotonically with increasing drive.

The dependence of the relative error bound on g2 on temperature is further investigated in

Fig. 5.3. The plot clearly displays non-monotonic dependence of δgmin
2 with temperature

at log10 |α|2 = 3.5. In this case, the relative error bound on g2 increases sharply with

temperature in a region Tm . 1.4× 10−5 K, reaches a maximum at Tm ≈ 1.4× 10−5 K,

declines sharply for 1.4 × 10−5 . Tm . 3.7 × 10−5 K, plateaus in a region 3.5 × 10−5 .
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Figure 5.4: Relative error bounds on the coupling strengths (a) g1 and (b) g2, against the
intracavity photon number, |α|2, as predicted by the global, light and mechanics QFIs
in the zero temperature (black line, purple dot-dashed line, blue squares, respectively)
and high temperature (orange dashed line, red dotted line and green circles, respectively)
scenarios. Reproduced from [1].

Tm . 6.3 × 10−5 then slowly declines at higher temperatures. This explains why we

observe the temperature to have a facilitating effect on the estimation precision of g2 for

the considered temperature scenarios (see Fig. 5.2). Interestingly, for all Tm & 1.4×10−5

K, temperature appears to have an overall positive effect on the estimation precision of

the quadratic coupling constant.

In Fig. 5.4 we compare the global and local QFIs for the linear (Fig. 5.4(a)) and

quadratic (Fig. 5.4(b)) coupling constants. According to these plots, substantially more

information about these parameters is encoded in the mechanical subsystem as compared

to the light subsystem [1]. Accordingly, to optimise the information gained about either

parameter through a local measurement, probing mechanical motion directly would be

recommended.

More in detail, for g1, the general behaviour of the mechanics and light QFIs matches that

displayed in Fig. 4.4 for the linear model. Here also, the mechanics QFI closely matches
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the global QFI for all considered temperatures and drive strengths [1]. In contrast, in

the case of g2, the QFI of the mechanical subsystem is very close to the global QFI for

all considered intracavity photon numbers in the zero temperature scenario as well as

at sufficiently high drive strengths (log10 |α|2 & 3.8) for T = 80 mK. At lower drive

strengths, there is instead a visible gap between the two QFIs in the high temperature

scenario. Notice also that the g2−QFI of the mechanical subsystem always outperforms

the g2−QFI of the light subsystem in both temperature scenarios.

Finally, in Fig. 5.5 we compare the performances of the realistic measurements of Q,

P , Xb and Pb against the ultimate limits set by the g1− and g2−QFIs in the zero and

high temperature scenarios. Generally, for all considered temperatures, the measurement

of the mechanical position constitutes the best strategy for estimating the linear and

quadratic coupling constants [1]. Here, it also clear that the g1− and g2−QFIs can

only be approached in the zero temperature scenario, typically via a measurement of the

mechanical position. These ultimate limits cannot be achieved at higher temperatures for

either coupling parameter, although for g2, the agreement between the g2−QFI and the

FI of the measurement of Xb improves at higher driving. At higher temperatures, the best

strategy for estimating either coupling constant is instead through a direct measurement

of the mechanical position or mechanical momentum. In contrast, in the zero temperature

scenario, the corresponding ultimate limits to estimation precision can be approximately

reached via a measurement of Xb for g1 and g2, or a measurement of Pb for g2 in the low

driving regime.

The temperature dependence of the higher order g2 term is further demonstrated by com-

paring Figs. 5.5(a) and (c) with Fig. 4.5. In the zero temperature limit, the performance

of the realistic measurements in estimating g1 for the linear and quadratic models is qual-

itatively the same. Instead, in the high temperature scenario, the behaviour of the FIs

and the g1−QFIs for the two models is visibly different, particularly in the strong driving

regime. Additionally, unlike in the linear model, in the case of the quadratic model either
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Figure 5.5: Log-log plots of the relative error bounds on the coupling parameters g1 and g2

against the intracavity photon number, |α|2, as predicted by the QFI (black line) and the
measurements of P (red dotted line), Q (purple dot-dashed line), Xb (green circles) and
Pb (orange dashed line). (a) and (b) are for g1 and g2 in the high temperature scenario,
whilst (c) and (d) are for g1 and g2 in the zero-temperature scenario. Reproduced from
[1].
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Figure 5.6: (a) Log-log plot comparing the contributions from the covariance element
(orange dashed line) and the average (green circles) to the g̃2-FI for the measurement of
P in the quadratic model (black line) in the high temperature scenario. (b) Semi-log plot
comparing the contributions from the covariance element (orange dashed line) to the g̃2-
FI for the measurement of P in the quadratic model (black line) in the high temperature
scenario.

the measurement of the mechanical position or mechanical momentum constitutes the

best strategy for estimating g1 over the full range of drive strengths considered.

From Fig. 5.5(b), notice also the two peaks of the relative error bound on g2 for the

measurement of the phase quadrature P in the high temperature scenario [1]. This

behaviour can be better understood by considering the analytical form of the FI for this

measurement (see Eq. 5.7):

F (g2) =
1

2σ̄22(g2)2
×

[
2σ̄22(g2)

(
∂P0

∂g2

)2

+

(
∂σ̄22(g2)

∂g2

)2
]

. (5.9)

The FI is composed of two terms consisting of derivatives of the steady state average of

the phase quadrature P0 and of the corresponding diagonal element of the steady state

covariance matrix σ̄22 with respect to the quadratic coupling constant. To clarify the

discussion, we shall refer to the first term as the “contribution due to the average” and

the second term as the “contribution due to the covariance element” towards the FI for
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the measurement of P . In Fig. 5.6 we investigate these FI contributions for g̃2 at T = 80

mK. Indeed, for the direct measurement of the phase quadrature, the majority of infor-

mation about the quadratic coupling constant is contained in the covariance element.

The behaviour of the measurement of P in the high temperature scenario will thus re-

semble that of the second term in Eq. 5.9. The observed peaks then correspond to two

extremal points where the information about g2 is very close to zero, as demonstrated in

Fig. 5.6(b).

5.4 Purely quadratic regime

As the name suggests, a purely quadratic model of optomechanics assumes purely quadratic

coupling with respect to the dimensionless position of the movable mirror [4, 86]. Such

an interaction renormalises the bare frequency of the mechanical oscillator and in con-

sequence, redefines the potential energy of the mechanical element [2]. As such, these

systems enable measurement of the oscillator’s energy, or equivalently the photon num-

ber. This type of coupling can, for example, be engineered in the membrane-in-the-middle

optomechanical system through careful positioning of the dielectric membrane.

A purely quadratic model of optomechanics can be recovered by setting g1 to zero in Eq.

3.11, resulting in the Hamiltonian:

Hq = ~ωm
P2

b + X 2
b

2
+ ~

(
ω0 + g2X

2
b

) Q2 + P2

2
. (5.10)

As usual, we model the dynamics of a driven-damped optomechanical system via the

master equation (3.21), which in this case explicitly reads

ρ̇(t) =− i

~
[H , ρ(t)] +

∑
ij

γdecoh,ij

2
[2Riρ(t)Rj − {RjRi , ρ(t)}] , (5.11)
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with

H =~
(
∆0 + g2X

2
b

) Q2 + P2

2
+ ~ωm

X 2
b + P2

b

2
+
√

2~εQ, (5.12)

the corresponding Hamiltonian in the frame rotating at the frequency of the driving laser,

ωL [1]. Once again, ∆0 is the detuning, R = (Q,P ,Xb,Pb) is the vector of quadrature

operators and γdecoh is the matrix of decoherence rates, defined in Eq. 3.18. Moreover,

within the framework of the purely quadratic model, the bilinearisation of the master

equation (5.11) is justified provided that both conditions |α|2 � 1 and |ε| � 2
√

2∆0 are

satisfied. In that case, the system will admit a Gaussian steady state and the QET tools

for estimating unknown parameters in Gaussian models, developed in Sec. 2.4, can once

again be employed.

A detailed procedure for approximating the dynamics of driven-dissipative optomechan-

ical systems via a bilinear master equation in the limit of strong cavity driving has been

outlined in Sec. 3.4. In summary, we begin by displacing the canonical operators, as per

R→ R+R0, where R0 = (Q0,P0, x0, p0) is the vector of steady state quadrature averages,

and subsequently neglecting terms that are beyond quadratic in the operators [1]. In the

present case of purely quadratic optomechanics, this then generates the following system

of equations for the steady state first moments:

Q0 =
−
√

2∆0ε(
∆2

0 + κ2

4

) , (5.13)

P0 =
−
√

2κε

2
(
∆2

0 + κ2

4

) , (5.14)

x0 = p0 = 0. (5.15)

Indeed, in the case of purely quadratic optomechanics, the main effect of the drive is

to displace the steady state of the cavity field by an amount that is independent of

the quadratic coupling constant [4]. Accordingly, here, all of the information about the
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quadratic coupling parameter will be contained in the variances.

Following the displacement of the canonical operators in the master equation (5.11), the

driven-displaced Hamiltonian takes the form

HD =
~
2

(
∆0 + g2X

2
b

) (
Q2 + P2

)
+ ~g2X

2
b (QQ0 + PP0) +

~
2
ωeff X

2
b +

~
2
ωmP

2
b , (5.16)

where ωeff = ωm + 2g2|α|2 is the effective mechanical frequency. Here, terms that do

not depend on the canonical operators have already been neglected since they do not

contribute towards system dynamics [4]. In order to attain the bilinear form of this

Hamiltonian, the remaining cubic and quartic terms (i.e. terms ∝ g2X
2
b (QQ0 + PP0) and

∝ g2X
2
b (Q2 + P2), respectively) need to also be eliminated. To achieve this, a careful

consideration of their contributions is required. Indeed, in the case of a purely quadratic

model, we simply require the quadratic term ∝ g2|α|2X 2
b to have a dominant contribution.

Comparing the coefficients of the relevant terms, we then arrive at the two constraints:

|α|2 � 1 and |ε| � 2
√

2∆0. Thus, for strong cavity driving and |ε| � 2
√

2∆0, the system

dynamics can be approximated via a bilinear master equation description

ρ̇(t) =− i

~
[HB , ρ(t)] +

∑
ij

γdecoh,ij

2
[2Riρ(t)Rj − {RjRi , ρ(t)}] (5.17)

with

HB =
~
2

∆0(Q2 + P2) +
~
2
ωmP

2
b +

~
2
ωeff X

2
b . (5.18)

In accordance with Eq. 3.22, in this case, the matrix Hamiltonian is then simply

H =



~∆0 0 0 0

0 ~∆0 0 0

0 0 ~ωeff 0

0 0 0 ~ωm


. (5.19)
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Thus, within the framework of the purely quadratic model, optics couple to the mechan-

ical position via the intracavity photon number.

Thanks to the simplicity of the bilinear model, in this case, an analytical expression for

the steady state covariance matrix can be found, which is given below. Indeed, solving

the Lyapunov equation (3.30) with W given in Eq. 3.43, drift matrix

B =



−κ
2
−∆0 0 0

∆0 −κ
2

0 0

0 0 −Γm

2
ωeff

0 0 ωm −Γm

2


, (5.20)

and

C =



−κ
2

0 0 0

0 −κ
2

0 0

0 0 −Γm

2
(2n̄m + 1) 0

0 0 0 −Γm

2
(2n̄m + 1)


, (5.21)

yields

σ̄ =



1
2

0 0 0

0 1
2

0 0

0 0
(1+2n̄m)(Γ2

m+4ωm(ωm+g2|α|2))
2(Γ2

m+4ωm(ωm+2g2|α|2))
−2g2|α|2(1+2n̄m)

2(Γ2
m+4ωm(ωm+2g2|α|2))

0 0 −2g2|α|2(1+2n̄m)
2(Γ2

m+4ωm(ωm+2g2|α|2))

(1+2n̄m)(Γ2
m+4ωm(ωm+g2|α|2))

2(Γ2
m+4ωm(ωm+2g2|α|2))


, (5.22)

where n̄m = 1/
(
e~ωm/kB Tm − 1

)
is the mean occupancy of the mechanical oscillator [1].

By inspection, σ̄ is a real, symmetric matrix. Given that the Robertson-Schrödinger

uncertainty relation (Eq. 2.17) is also satisfied, σ̄ represents a valid steady state covari-

ance matrix of a Gaussian state. In addition, the form of this covariance matrix implies
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that all of the information about the quadratic coupling constant is contained in the

mechanical subsystem. Moreover, the 2 × 2 off-diagonal matrices consisting entirely of

zeros indicate the lack of correlations between the mechanical oscillator and the cavity

field [4]. In other words, the bilinearisation procedure results in the decoupling of the

optical and mechanical degrees of freedom in the steady state.

As demonstrated, in the case of a purely quadratic model, all information about the

quadratic coupling constant will be contained in the steady state covariance matrix and,

in particular, in the mechanical subsystem. Accordingly, within the framework of the

single parameter estimation theory, introduced in Chapter 2, the ultimate limit to the

precision with which g2 can be estimated may be quantified via the QFI, which is now

explicitly given by

Q(g2) = 2Tr
[

(∂g2σ̄) (4Lσ̄ + LW )−1 (∂g2σ̄)
]

, (5.23)

with Lσ̄(A) = σ̄Aσ̄ and LW (A) = WAW representing the superoperators [1, 55, 56].

However, as the pseudoinverse (4Lσ̄ + LW )−1 might in general be difficult to evaluate

analytically, we shall use the following formula for the QFI instead, valid for general

single-mode Gaussian states [87]:

Q(g2)sm =
Tr
[(
σ̄−1

m ∂g2σ̄m

)2
]

2(1 + Pg2)
+

2 (∂g2Pg2)2

1− P4
g2

, (5.24)

where σ̄m = Trl [σ̄] is a 2 × 2 steady state covariance matrix for the mechanical mode

only (obtained by taking a partial trace over the light mode) and

Pg2 = (det(σ̄m))−
1
2

=
2(

(2n̄m + 1)2

(
64g2

2 ε
4

(4∆2
0+κ2)(32g2ε2ωm+(4∆2

0+κ2)(Γ2
m+4ω2

m))
+ 1

)) 1
2

(5.25)
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is the purity of the mechanical-mode steady state1. Indeed, in the case of a purely

quadratic model, the bilinearisation procedure essentially results in a single-mode Gaus-

sian steady state described purely by σ̄m (as the steady state averages of the mechanics

vanish, see Eq. 5.15).

Alternatively, in congruence with the QCRB (Eq. 2.3), this ultimate limit may be mea-

sured via the single shot relative error, satisfying the inequality

∆g2

g2
≥ 1

g2

√
Q(g2)

≡ δgmin
2 . (5.26)

As anticipated, here, we simply examine the estimation performance of the measurements

of the mechanical position Xb and mechanical momentum Pb. As usual, this may be

quantified via the FI, which following from Eq. 2.20 with g2 as the parameter of interest,

is explicitly given by

F (g2) =
1

2σ̄kk(g2)2
×

[
2σ̄kk(g2)

(
∂s0(g2)

∂g2

)2

+

(
∂σ̄kk(g2)

∂g2

)2
]

, (5.27)

where s0(g2) ∈ {x0, p0} is the steady state average of the chosen quadrature, and σ̄kk(g2)

is the corresponding diagonal element of the steady state covariance matrix (i.e. σ̄33 for

the measurement of Xb and σ̄44 for the measurement of Pb). In this case, the FI for the

measurements of Xb and Pb can be expressed explicitly as

FXb
(g2) =

8ω4
m|α|2 (Γ2

m + 4ω2
m) 2

(4ωeff ωm + Γ2
m) 2 (2ωm (ωeff + ωm) + Γ2

m) 2
, (5.28)

and

FPb
(g2) =

8ω2
m|α|2 (Γ2

m (ωm − 2ωeff )− 4ω2
eff ωm) 2

(4ωeff ωm + Γ2
m) 2 (2ωeff (ωeff + ωm) + Γ2

m) 2
. (5.29)

1Note that Eq. 5.24 allows for the QFI to be evaluated analytically. However, due to its lengthy
expression, this analytical form has not been included in the thesis.
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As before, here, we investigate the effects of temperature and driving on the estimation

precision of the quadratic coupling constant. For comparative purposes, we adopt the

same parameter values as in Sec. 5.3, except that g1 will now be set to zero. The

corresponding parameter values are: ωm = 1.1 × 107 Hz, m = 4.8 × 10−14 kg, Γm = 32

Hz, ∆0 = ωm, κ = 105 Hz and g2 = 10 Hz [26]. We also choose the same starting

point for our region of interest. However, to capture all of the interesting features of the

optomechanical system within the framework of the purely quadratic model, we extend

our range of drive strengths to 108 ≤ ε ≤ 1.5 × 1012 Hz (or 80 . |α|2 . 1.8 × 1010

in terms of the intracavity photon number). Indeed, since the mechanical position is

unchanged by the strong cavity driving and the steady state displacements of the light

quadratures are all real numbers, the system described by the purely quadratic model

will remain stable at all intracavity photon numbers. Accordingly, any range of drive

strengths that satisfies the two constraints for the validity of our bilinear approximation

will in general constitute a suitable choice for the model. Moreover, to better understand

the effect of the strength of the optomechanical interaction on the estimation precision

of the quadratic coupling constant, we also explore a regime where g2 = 100 Hz with the

remaining parameter values and the study region unchanged.

As usual, to assess the effects of temperature on the estimation precision of the quadratic

coupling constant, we consider three temperature scenarios: zero temperature (Tm = 0

K), low temperature (Tm = 1 mK) and “high” temperature (Tm = 80 mK) of the me-

chanical bath. In Fig. 5.7, we investigate the dependence of the relative error bound

on g2 – δgmin
2 – on temperature and driving in these three temperature scenarios and

for two separate g2 values. As illustrated, for both g2 values, the highest estimation

precision for estimating the quadratic coupling parameter can be achieved at zero tem-

perature for sufficiently low intracavity photon numbers (i.e. log10 |α|2 . 6.9 for g2 = 10

Hz or log10 |α|2 . 5.9 for g2 = 100 Hz). Additionally, focusing on the non-zero tem-

perature scenarios, in this region, δgmin
2 is approximately unchanged with temperature,
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Figure 5.7: Log-log plot of the relative error bound on g2 (as implied by the QFI) against
the intracavity photon number, |α|2, as predicted by the purely quadratic model in the
red-detuned regime for g2 = 10 Hz and g2 = 100 Hz in the zero temperature (pur-
ple dot-dashed line and red dotted line, respectively), low temperature (black line and
green dashed line, respectively) and high temperature (orange circles and blue squares,
respectively) scenarios.

thus demonstrating weak temperature dependence of the estimation precision of this pa-

rameter. Interestingly, the influence of the strength of the optomechanical interaction on

the estimation precision of the quadratic coupling constant is mostly significant in the

low-high driving regime, where the higher g2 value leads to an improvement in the esti-

mation precision. In contrast, at very high intracavity photon numbers, all temperature

scenarios examined and g2 values give qualitatively identical results. In particular, δgmin
2

tends to approximately
√

2 for very large driving powers. The origin of this limit is not

well understood and requires further work to analyse. Nevertheless, for all temperature

scenarios, the relative error bound on g2 displays the same behaviour with driving: δgmin
2

decreases monotonically with the intracavity photon number before saturating at suffi-

ciently high |α|. Beyond this saturation point, stronger driving offers no improvement to

the estimation precision of the quadratic coupling constant. Moreover, in the very high

driving region, the strength of the optomechanical interaction simply affects the value of

ε at which the relative error bound on g2, as given by the three temperature scenarios,
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Figure 5.8: Log-log plots of the relative error bound on g2 (as implied by the QFI) against
the intracavity photon number, |α|2, for g2 = 10 Hz and g2 = 100 Hz in the red-detuned
regime (black line and red dotted line, respectively) as well as the measurements of Xb

(green circles and blue squares, respectively) and Pb (orange dashed line and purple
dot-dashed line, respectively). (a) and (b) are for g2 in the high and zero temperature
scenarios, respectively.

saturate.

In Fig. 5.8 we compare the performances of the realistic measurements of Xb and Pb

against the ultimate QFI limits in the zero and high temperature scenarios and for two

separate g2 values. In general, the measurement of the mechanical momentum almost

always does best at estimating the quadratic coupling constant. Instead, the measurement

of the mechanical position displays non-monotonic behaviour with a minimum point

located at |α|2 = (Γ2
m + 4ω2

m)/4
√

2g2ωm. The measurement of Xb shows a good agreement

with the QFI limit in the low driving regime, i.e. below this minimum value.

In Fig. 5.8, weak temperature dependence of the estimation precision of g2 is also further

demonstrated. In the low driving regime, the agreement between the ultimate limits to

the estimation precision of the quadratic coupling constant and the realistic measure-

ments improves slightly at higher temperatures. Additionally, in the high temperature

scenario, these ultimate limits can be approached by the measurement of the mechanical
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momentum at somewhat lower intracavity photon numbers. As the coupling strength

is increased, the agreement between the measurement of Pb and the QFI limits is also

further improved.

5.5 Conclusion: quantum estimation in beyond linear-

model optomechanics

In this chapter, we explored the application of local QET in driven-dissipative optome-

chanics within the frameworks of the quadratic and purely quadratic models. In the case

of a quadratic model, we found that the higher order g2 term has a temperature-dependent

effect on the estimation precision of the linear coupling constant, mainly affecting the be-

haviour of the relative error bound on g1 in the high temperature scenario. Our analysis

also revealed that the ultimate limit to the estimation precision of g1 can only be reached

in the zero temperature scenario via a measurement of the mechanical quadrature Xb,

which is indeed consistent with our findings for the linear model. Additionally, exploring

the influence of temperature on the estimation precision of the coupling strengths, we

found that for some parameter regimes, higher temperatures can have favourable effect

on the estimation performance. In fact, in the case of the quadratic coupling constant,

a hotter mechanical bath led to an improved estimation performance of this parameter.

Nevertheless, we found that the ultimate limits for estimating g2 can only be approached

in the zero temperature scenario via a measurement of Xb for all intracavity photon

numbers within our study range, or a measurement of Pb in the low driving regime.

In the case of a purely quadratic model, we investigated the effects of cavity driving, tem-

perature and the strength of the optomechanical interaction on the estimation precision

of the quadratic coupling constant. For all temperatures considered, we found that the

relative error bound on g2 decreases monotonically with the intracavity photon number
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before saturating at approximately
√

2 for sufficiently high drive strengths. Beyond this

saturation point, extra driving was found to have no effect on the estimation precision

of the parameter. Our analysis also revealed that all information about the quadratic

coupling constant is contained in the mechanical subsystem. As such, the ultimate limits

to estimation precision could typically only be reached in the high driving regime via a

measurement of Pb. Additionally, these ultimate limits as well as the measurements of

the mechanical quadratures Xb and Pb showed very weak dependence on temperature.

Indeed, we found that the zero temperature scenario predicts slightly lower relative errors

in the low-high driving regime before converging with the non-zero temperature scenarios,

and eventually saturating.

In future work, one could investigate the origin of the saturation point in the purely

quadratic model of optomechanics. This could perhaps be achieved by solving the rate

equations for the mechanical oscillator in the classical limit and evaluating the QFI an-

alytically [88]. As all information about the quadratic coupling constant is contained in

the mechanical degrees of freedom, this could also aid our understanding of the weak

temperature dependence of the estimation precision of this parameter.
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Chapter 6

Quantum van der Pol Oscillator

6.1 Introduction

The van der Pol (vdP) oscillator is a prototypical self-oscillatory system that can phase

lock with an external drive or with other oscillators [37, 108]. It was originally proposed

by Balthazar van der Pol in the late 1920s to describe non-linear behaviour in electrical

circuits [109]. The vdP oscillator has since been used to model oscillatory processes in

physics, biology, electronics, among other fields.

Self-oscillators are non-linear systems in which amplification (or negative damping) com-

petes with non-linear damping [4]. These oscillators take energy from a source in a way

that the energy gained is equal to the energy lost, thus resulting in limit cycles [111, 112].

In short, limit cycles are isolated closed trajectories in phase space. Stable limit cycles

are particularly relevant to the concept of self-sustained oscillators - they are attractors,

thus despite the initial conditions, or driving, the solutions will inevitably fall onto the

stable oscillations as time approaches infinity [113]. The amplitude of these oscillations

is governed by the rates of negative and non-linear damping.
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The classical model of a vdP oscillator has been used extensively to study the phenomenon

of synchronisation [114]. In short, synchronisation is a collective behaviour of a group of

self-oscillators which when weakly coupled can oscillate in unison. Recently, a quantum

version of the vdP oscillator model has been proposed using a Lindblad master equation

that combines a linear anti-damping (gain) process with non-linear loss [37]. Due to the

simplicity of its quantum model, the vdP oscillator has also been proven useful for study-

ing synchronisation in the quantum limit where quantum fluctuations become important

[111]. Accordingly, with the vdP oscillator as the model system, the differences in the

extent of this phenomenon in the classical and quantum regimes can be thoroughly ex-

plored [112]. In fact, a qualitative comparison of the synchronisation behaviour in the two

regimes was recently investigated in [115], revealing some significant differences. In [114],

the quantum vdP oscillator was also used to study the connection between entanglement

and synchronisation. More importantly, for our purposes, the quantum vdP oscillator is

a step towards studying the blue-detuned regime of quantum optomechanics where limit

cycles also occur, but in a more complex model [36, 102].

This chapter explores the application of local QET in a quantum vdP oscillator to esti-

mate the ratio of the linear and non-linear damping rates, λ. It is organised as follows.

In Sec. 6.2, starting with the classical model, the origin of the quantum model of the vdP

oscillator is reviewed. There, the procedure for deriving the exact steady state solution

for the vdP oscillator is also outlined. Then, in Sec. 6.3 we recall the QET theory and give

explicit formulas that are applicable to this system. Subsequently, in Sec. 6.4 we outline

the procedure for evaluating the QFI numerically, whilst in Sec. 6.5 we use analytical

approximations to analyse the behaviour of the QFI in two limiting cases: λ � 1 and

λ� 1. In Sec. 6.5 we additionally compare the analytical results against the numerical

methods, and explore the behaviour of the QFI in the intermediate region. Finally, in

Sec. 6.6 we summarise our findings.
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6.2 Quantum model

The vdP oscillator is perhaps the most well-known example of a self-sustained oscillator

[37, 115]. Classically, its evolution can be described with a non-linear second order

differential equation:

ẍ − γ1(1− γ2x
2)ẋ + ω2

0x = 0, (6.1)

with ω0 the natural frequency of the oscillator and x a dimensionless displacement [39,

108, 111]. The vdP model includes dissipation and gain processes: negative damping

(−ẋ) and non-linear damping (x2ẋ) at rates γ1 and γ1γ2, respectively, the combination

of which gives rise to a limit cycle. More explicitly, making a change of variables via

x =
α + α∗

2
, ẋ = iω0

α∗ − α
2

, (6.2)

the resulting limit cycle can be approximated by the amplitude equation [114, 116]

α̇ = −iω0α + αγ1(1− γ2

4
|α|2). (6.3)

This result has been achieved with help of the rotating wave approximation by which fast

oscillating terms can be neglected on the assumption that both γ1 � ω0 and γ2 � ω0/γ1

[4]. For a detailed derivation of the amplitude equation (6.3) see Appendix B. Moreover,

provided that γ1, γ2 > 0, the steady state solution is a stable limit cycle with amplitude

|α| = 2/
√
γ2, frequency ω0 and no preferred phase.

6.2.1 Master equation

In a quantum regime, the vdP oscillator is modelled as an open quantum system, i.e. a

system that is coupled to its environment [68]. Accordingly, the dynamics of the quantum
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vdP oscillator can be described via a master equation of the form [37, 39, 111]

ρ̇(t) + i
[
ω0a

†a, ρ(t)
]

=κ1

(
2a†ρ(t)a − aa†ρ− ρ(t)aa†

)
+ κ2

(
2a2ρ(t)

(
a†
)2 −

(
a†
)2

a2ρ(t)− ρ(t)
(
a†
)2

a2
)

. (6.4)

Namely, a quantum vdP oscillator is modelled as a quantum harmonic oscillator with

frequency ω0, and annihilation and creation operators a and a† [94]. As anticipated,

the interaction of the oscillator with its environment leads to two dissipative processes:

negative damping and non-linear damping, quantified with κ1 and κ2, respectively [114].

Physically, these processes correspond to a gain of a phonon at a rate 2κ1〈aa†〉 and a loss

of two phonons at a rate 2κ2〈(a†)2a2〉.

The quantum limit of the quantum vdP oscillator can be realised in a regime where

κ2 � κ1 in which case the two-phonon emission process dominates and the oscillator

has a very low mean occupation number [4, 37, 114]. Conversely, the classical regime

is recovered when κ2/κ1 → 0. In this case, the one-phonon anti-damping (i.e. gain)

process dominates, which leads to the oscillator having a large number of phonons (i.e.

n = 〈a†a〉 � 1) [111]. Moreover, the interconnection of the quantum and classical models

can be realised by considering the evolution of the expectation value of the annihilation

operator, a. Indeed, using the relation 〈ȧ〉 = Tr[aρ̇(t)], we find that the annihilation

operator evolves as per [94]

〈ȧ〉 = −iω0〈a〉+ κ1〈a〉 − 2κ2〈a†a2〉. (6.5)

Also, making a semi-classical approximation 〈a†aa〉 = |α|2α, and defining α = 〈a〉, results

in an amplitude equation equivalent to that in Eq. 6.3 with κ1 = γ1 and κ2 = γ1γ2/8.

It is thus evident that the two dissipative terms in the master equation (6.4) are simply

quantum analogues to the classical damping terms in Eq. 6.3. Accordingly, the limit

cycle behaviour of the steady state of the vdP oscillator is preserved in the quantum
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regime, provided that κ1,κ2 > 0 [39]. In addition, the fact that the limit cycle is found

in the quantum regime is attributed to the non-linear dissipative term in Eq. 6.4; this

limit cycle behaviour would not be observed if the damping terms were purely linear.

6.2.2 Exact solution

The relative simplicity of the quantum vdP model (6.4) signifies that the system’s steady

state can be obtained exactly. To demonstrate this, our analysis proceeds from rate

equations satisfied by the probabilities1 pn = 〈n|ρ(t)|n〉 for the vdP oscillator to occupy

the nth energy eigenstate [94]:

ṗn(t) = 2κ1[npn−1 − (n + 1)pn] + 2κ2[(n + 1)(n + 2)pn+2 − n(n − 1)pn]. (6.6)

Indeed, the symmetry of the problem means that the system is diagonal in the harmonic

oscillator basis. In a stationary case (ṗn(t) = 0), an exact analytical solution to this set

of equations can be found by introducing a steady state generating function

G (z) =
∞∑

n=0

znpn, (6.7)

where z is an auxiliary variable [118, 119]. In consequence, the rate equations (6.6) reduce

to a single differential equation with respect to the variable z

G ′′(z)(1 + z)− λzG ′(z)− λG (z) = 0, (6.8)

where λ = κ1/κ2 is the ratio of the strengths of phonon absorption (i.e. gain) and

emission processes. This differential equation can then be solved subject to two boundary

1All of the off-diagonal elements of the density matrix decouple from the diagonal ones and decay to
zero in the steady state of the vdP oscillator [117].
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conditions: the normalisation condition

G (1) =
∞∑

n=0

pn = 1, (6.9)

and the semi-positivity requirement of the probabilities

pn =
1

n!

dnG

dzn

∣∣∣
z=0
≥ 0. (6.10)

Accordingly, the analytical solution can be found by transforming the differential equation

(6.8) into the exactly solvable Kummer’s equation:

xy ′′ + (λ− x)y ′ − y = 0, (6.11)

achieved through a substitution x = λ(1 + z), such that y = G (x).

Kummer’s equation has two singularities at x = 0 and x = ∞, or z = −1,∞ in the

original variable. The solution to Eq. 6.11 is chosen to ensure that G (z) remains finite

at z = −1 [118]. This, in turn, leaves us with a solution in the form of the confluent

hypergeometric function, Φ(1;λ; x) [119]. Indeed, in the original variable z and subject

to the normalisation condition (6.9), the following solution to Eq. 6.8 is obtained

G (z) =
Φ(1;λ;λ(1 + z))

Φ(1;λ; 2λ)
. (6.12)

In this case, the semi-positivity requirement of the probabilities (Eq. 6.10) is satisfied

provided that λ > 0 which, by construction, is always guaranteed. Knowing the steady

state generating function, the probabilities can now be calculated via

pn =
1

n!

∂nG

∂zn
|z=0. (6.13)
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In fact, with help of the relation

dn

dxn
Φ(a; c ; x) =

(a)n

(c)n
Φ(a + n; c + n; x), (6.14)

where (a)n = a(a + 1)...(a + n − 1) = Γ(a + n)/Γ(a) is the Pocchammer symbol and

Γ(a) = (a − 1)! is the gamma function, the probabilities can be shown to satisfy [120]

pn =
(λ)n

(λ)n

Φ(1 + n;λ + n;λ)

Φ(1;λ; 2λ)
, (6.15)

with (λ)n = λ(λ+ 1)...(λ+ n− 1) = Γ(λ+ n)/Γ(λ). Using the above relation, the steady

state of the quantum vdP oscillator can be shown to have the following analytical form:

ρSS =
∑

n

(λ)n

(λ)n

Φ(1 + n;λ + n;λ)

Φ(1;λ; 2λ)
|n〉〈n|. (6.16)

The off-diagonal elements of the density matrix decouple from the diagonal ones and are

all found to be zero, as noted previously [117].

6.2.3 Behaviour of the steady state occupation probabilities

The behaviour of the steady state occupation probabilities of the quantum vdP oscillator

pn is distinctively different for small and large values of the parameter λ. In the limit

λ� 1 (corresponding to a regime where κ1 → 0), the quantum vdP oscillator is largely

confined to its ground state and its first excited state with probabilities p0 = 2/3 and

p1 = 1/3, as evidenced in Fig. 6.1(a) [37]. In this regime, the two-phonon emission

process dominates; hence, all higher energy eigenstates are annihilated by the non-linear

damping, and the quantum limit is approached. Indeed, in this case, the steady state of

the oscillator has a simple analytical form: ρSS ≈ 2/3|0〉〈0|+ 1/3|1〉〈1|.

The classical vdP oscillator can also be considered to have a critical point at λ = 0,
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Figure 6.1: Semi-log plots of the steady state occupation probabilities pn against the
phonon number n for (a) small (λ = 0.01 - green circles and λ = 0.1 - red squares) and
(b) intermediate λ values (λ = 5 - green circles and λ = 15 - red squares).

associated with the divergence of susceptibility in this limit [39]. In short, susceptibility

quantifies the response of the oscillator to a weak drive, and is defined by the gradient of

the steady state amplitude with respect to the drive strength [4]. It is also noteworthy

that systems in the neighbourhood of a critical point are very sensitive to perturbations.

Interestingly, in [39] the authors showed that this concept can be carried across to the

quantum regime. This suggests that in the limit λ→ 0, the quantum vdP oscillator could

be used as a sensitive measuring device since its amplitude should be highly sensitive to

any small changes in the weak drive signal.

As the size of λ is increased, the probability distribution becomes more spread out, as

seen in Fig. 6.1(b). For increasingly large λ, the steady state occupation probability pn

peaks at progressively larger phonon number n.

In the large λ limit, the one-phonon anti-damping process dominates instead, leading to

the oscillator having a large number of phonons (i.e. n = 〈a†a〉 � 1). In this regime, it is

thus expected that the dynamics of the quantum vdP oscillator approach its classical ana-

logue with n ≈ |α|2 and its energy spectrum becoming continuous [111, 115]. Accordingly,

in the large λ limit, we treat n as a continuous rather than a discrete variable.

Moreover, in the weak two-phonon emission regime, the probabilities pn can be shown to
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Figure 6.2: Plot comparing the steady state occupation probabilities pn for large λ values
as given by the full analytical form (λ = 50 - black line and λ = 70 - purple dot-dashed
line) and the Gaussian approximation (λ = 50 - orange, dashed line and λ = 70 -
green circles). Here, the values specified by the full analytical form have been plotted as
continuous curves although they are, strictly speaking, only defined for integer values of
n.

follow a Gaussian distribution [118]

pn = A
(

2

3πλ

) 1
2

e−
(2n−λ)2

6λ , (6.17)

where A is a normalisation factor for the interval 0 ≤ n <∞, with an explicit form

A =

(
1

2
erfc

(√
λ

6

))−1

. (6.18)

In the limit λ→∞, this normalisation factor can simply be replaced by unity. Thus, we

arrive at a Gaussian distribution with mean 〈n〉 = λ/2 and variance ∆2n = 3λ/4 2[115].

In Fig. 6.2, we show that the Gaussian distribution is indeed a good approximation to

the full analytical form for the steady state occupation probabilities of the quantum vdP

oscillator (Eq. 6.15), the agreement between which improves with λ.

2The steady state of the vdP system can also be visualised in phase space using the Wigner function.
However, this adds very little to the number distribution itself: the fact that the number distribution
is diagonal implies a Wigner function with circular symmetry (see [117]). One therefore finds that the
Wigner function of the vdP oscillator is always a ring in phase space and it is also always positive (see
[117]).
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6.3 Quantum estimation

As discussed in Chapter 2, the goal of QET is to find the best strategy for estimating un-

known parameters in quantum systems [33]. In the case of a quantum vdP oscillator, the

parameter of interest is λ, the magnitude of which quantifies which of the two dissipative

processes - linear amplification or non-linear damping - dominates. Indeed, in this case,

the task of single parameter estimation theory is to estimate λ through a measurement of

some observable on ρλ, described by a POVM. To summarise, given a choice of a POVM,

the FI can in general be calculated via the Symmetric Logarithmic Derivatives (SLDs,

found by solving Lλρλ + ρλLλ = ∂ρλ/∂λ):

F (λ) =

∫
dx

(Re (Tr [ρλΠxLλ]))2

Tr[Πxρλ]
. (6.19)

Maximising the FI over all possible POVMs then yields the QFI [59]:

Q(λ) = Tr[ρλL2
λ]. (6.20)

The above relations can be further simplified by considering a special case of a density

matrix that is diagonal in its number state basis. This scenario is of particular interest

for a quantum vdP oscillator whose steady state solution is indeed of the diagonal form

(Eq. 6.16). Accordingly, as the SLD satisfies the Lyapunov matrix equation (2.5), its

general solution can be written as [33]

Lλ = 2

∫ ∞
0

dte−ρλt∂λρλe
−ρλt . (6.21)

Assuming that ρλ is diagonal in its number state basis, such that ρλ =
∑

n pn|n〉〈n|, this
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solution then becomes

Lλ = 2
∑
n,m

〈m|∂λρλ|n〉
pn + pm

|m〉〈n|, (6.22)

with pn + pm 6= 0. Hence, in this special case, the QFI is simply given by

Q(λ) = 2
∑
n,m

|〈m|∂λρλ|n〉|2

pn + pm
. (6.23)

In this particular example, only the probabilities pn depend on the parameter λ; hence,

the partial derivative can be explicitly written as ∂λρλ =
∑

n ∂λpn|n〉〈n|. Inserting this

relation into Eqs. 6.22 and 6.23 then gives

Lλ =
∑

n

∂λpn

pn
|n〉〈n|, (6.24)

Q(λ) =
∑

n

(∂λpn)2

pn
. (6.25)

Due to the eigenvectors (i.e. the number states) being independent of the parameter

λ, in the special case of a quantum vdP oscillator, the FI of the measurement of a

number operator is equal to the QFI. This automatically implies that the number state

is the optimal observable for the estimation of λ. In other words, this indicates that the

quantum statistical model is indeed a “classical statistical model”, where only eigenvalues

depend on the parameter.

6.4 Numerical calculations

We now turn to explore the behaviour of the QFI for the quantum vdP oscillator in detail.

We start by discussing a numerical approach for calculating the QFI. This allows us to

explore the behaviour of the QFI over a wide range of λ values whilst also suggesting

that simple limiting forms emerge for very large and very small λ. Then, in Sec. 6.5 we
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show how these limiting forms can be derived analytically.

The finite difference method (FDM) is one of the simplest numerical methods used to

solve differential equations [121]. In this method, the derivatives are approximated with

appropriate difference quotients and the differential equation is reduced to a system of

polynomial equations as a result [122]. In the FDM, the function f ′(x0) is approximated

via

f ′(x0) ≈ f (x0 + ∆x)− f (x0)

∆x
, (6.26)

where ∆x , the step size, is assumed to be small [123, 124]. This identity is known as the

first order approximation of f ′(x0); it gives an approximation of the derivative accurate

to O(∆x).

In the case of a quantum vdP oscillator, the FDM can be used to obtain a numerical ap-

proximation to the QFI (Eq. 6.25). In particular, we can use this method to approximate

the derivative of the probabilities with respect to the ratio of the strengths of phonon

absorption (i.e. gain) and emission processes, λ. We start by setting up an array of pn

evaluated at k different λ values with a step size ∆λ = (λk − λ1)/k . At some value

λj ∈ [λ1,λk ], the probabilities are then given by pn(λj ) = pn(λ1 + j∆λ). As per Eq. 6.26,

at this point, the derivative of pn can be approximated using

∂λpn(λj ) ≈
pn(λj+1)− pn(λj )

∆λ
. (6.27)

In order to ensure that this approximation is accurate, we require ∆λ to be very small.

In more detail, we require ∆λ to be small enough so that the results change negligibly as

the step size is reduced. The appropriate step size to use in numerical calculations can

be determined by “trial and error”, which in our case corresponds to ∆λ = 0.0005.
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Using relation 6.27, the numerical approximation to the QFI (Eq. 6.25) can be obtained:

Qdiff (λj ) ≈
N∑

n=0

(pn(λj+1)− pn(λj ))2

(∆λ)2pn(λj )
. (6.28)

Here, the exact QFI is approximated by a finite sum of the first N terms. The upper

limit N is chosen to ensure that the truncation error is very small, again using a simple

trial and error approach. This guarantees that the results are virtually unchanged by

the truncation of the infinite series in the QFI definition in Eq. 6.25. In numerical

calculations, the choice of N will also depend on the size of λ. In the limit of small λ,

only a few of the lower energy eigenstates of the quantum vdP oscillator will be occupied

with non-negligible probabilities, and the series can be truncated at N = 15 with no loss

in accuracy. However, as the size of λ is increased, progressively more terms will need

to be included in the sum to guarantee high accuracy of the approximation. In fact,

a numerical investigation reveals that for the largest λ values that we will consider, a

sufficient maximum upper limit to use is N = 80, which is indeed the value we use for all

λ > 1.

In numerical calculations, we consider a region 0 < λ ≤ 80. This region is sufficient

to display the contrasting behaviour of the QFI in the two limiting cases - strong and

weak two-phonon emission - while still allowing for efficient numerical computation. The

behaviour of the numerical QFI (Eq. 6.28) in this range of λ values is shown in Fig.

6.3(a). The most striking feature of the QFI revealed here is that it diverges in the limit

λ→ 0. This behaviour could be related to the presence of a critical point at λ = 0 [39]. A

divergent behaviour of the quantum vdP oscillator as the critical point is approached was

recently noted in [39]. Beyond the vicinity of this point, the QFI steadily declines with

λ. We thus expect the majority of information about the parameter λ to be available

in the strong two-phonon emission regime, or λ � 1 limit. To better emphasise the

limiting behaviours of the QFI for small and large values of λ, we also plot a function

λQdiff (λj )− 1/3 in Fig. 6.3(b). In both limits (λ → 0 and λ → ∞), the function λQ(λ)
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Figure 6.3: (a) Semi-log plot of the numerical QFI, Qdiff (λj ), against the ratio of the
strengths of phonon absorption (i.e. gain) and emission processes, λ. (b) Semi-log plot
of the numerically computed function λQ(λ)− 1/3 against λ.

converges to 1/3, albeit from different directions.

6.5 Analytical analysis

As anticipated, the size of λ determines which of the two dissipative processes - phonon

emission or phonon absorption (i.e. gain) - dominates. Two limiting cases can be iden-

tified: λ� 1 and λ� 1, which, for the sake of brevity, we shall refer as the strong and

weak two-phonon emission regimes, respectively. Unlike the steady state probability dis-

tribution, the QFI cannot be calculated analytically for arbitrary values of λ. However,

as we now show, it is possible to obtain simple expressions for the QFI in the limits of

small and large λ.

6.5.1 Strong two-phonon emission

In the small λ limit, the quantum vdP oscillator is largely confined to its ground state

[4, 37, 114]. Hence, only the lower energy eigenstates will be occupied with non-negligible

probabilities and the QFI can be approximated via a power series expansion [118].
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The method for obtaining the power series approximation to the QFI is based on the

direct expansion of the steady state generating function (Eq. 6.12). This is achieved by

approximating the confluent hypergeometric functions in the expression for G (z) as finite

sums of the first six terms, in congruence with the definition [118]

Φ(a; c ; x) =
∞∑

k=0

(a)kx
k

(c)kk!
. (6.29)

The probabilities pn are then calculated using Eq. 6.13. The number of terms included

in the power series expansion is determined by the desired precision of the QFI. Indeed,

it can be shown that in order to obtain an expression for the QFI correct to O(λp), terms

of O(λp+2) need to be included in the series expansion of pn. Accordingly, using Eq. 6.25,

the power series approximation to the QFI, accurate to O(λ2), is found to take the form:

Qsum(λ) =
1

3λ
+

4

9
− 97

36
λ +

1681

162
λ2. (6.30)

In agreement with the numerical case, this approximate form predicts divergent behaviour

of the QFI in the λ→ 0 limit. Interestingly, here we can show analytically that the limit

of λQ(λ) as λ approaches zero is indeed precisely 1/3.

In order to assess the performance of the power series approximation in the strong two-

phonon emission regime, we plot Qsum(λ) against the numerical QFI (Eq. 6.28) for λ

values in the range 0 < λ ≤ 0.3. From Fig. 6.4(a), it is clear that the power series

expanded QFI is a good approximation in a region 0 < λ . 0.12. However, as λ gets

progressively larger, the discrepancy between the two models increases. In Fig. 6.4(b)

we also plot the function λQ(λ) − 1/3 as given by the numerical and the power series

expansion methods. The two approaches agree very well in a region 0 < λ . 0.07,

including the convergence of λQ(λ) to 1/3 in the λ → 0 limit. Beyond this region,

however, λQ(λ) as given by the FDM reaches a plateau, whilst that given by the power

series expansion method increases rapidly with λ.
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Figure 6.4: (a) Semi-log plot of the QFI against the ratio of the strengths of phonon
absorption (i.e. gain) and emission processes, λ. The plot compares the numerical QFI,
Qdiff (λj ), (orange dashed line) and the power series QFI, Qsum(λ), (black line) in the
region 0 < λ ≤ 0.3 (b) Plot comparing the numerically computed function λjQdiff (j)−1/3
(orange dashed line) and the power series evaluated function λQsum − 1/3 (black line) in
the region 0 < λ ≤ 0.3.

6.5.2 Weak two-phonon emission

As dicussed in Sec. 6.2.3, in the limit of large λ, the steady state probability distribution

of the quantum vdP oscillator follows a Gaussian distribution [118]. Appropriately, in

this case the QFI can be approximated via [55]:

Qgauss(λ) =
(
∆2n

)−1
(∂λ〈n〉)2 + 8

(
∆2n

)−2
(∂λ〈n〉)2 . (6.31)

Using the expressions for the mean (〈n〉 = λ/2) and variance (∆2n = 3λ/4) of the

quantum vdP oscillator, in the limit of large λ, the Gaussian approximation to the QFI

is

Qgauss(λ) =
1

3λ
+

9

8 + 18λ2
. (6.32)

According to this model, in the limit λ→∞, the QFI tends to zero. Hence, as expected,

the majority of information about the parameter λ is available in the strong two-phonon

emission regime. This analytical result also confirms that λQ(λ)→ 1/3 as λ→ +∞, as

suggested by the numerical calculation.
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Figure 6.5: (a) Plot of the QFI against the ratio of the strengths of phonon absorption
(i.e. gain) and emission processes, λ. The plot compares the numerical QFI, Qdiff (j), (red
dashed line) and the Gaussian QFI, Qgauss(λ), (black line) in the region 35 ≤ λ ≤ 80 (b)
Plot comparing the numerically computed function λjQdiff (λj ) − 1/3 (red dashed line)
and the Gaussian evaluated function λQgauss−1/3 (black line) in the region 35 ≤ λ ≤ 80.

Once again, we can assess the performance of the Gaussian approximation to the QFI

in the weak two-phonon emission regime by plotting Qgauss(λ) against the numerical

QFI (Eq. 6.4). From Fig. 6.5(a) it is clear that the two models predict very similar

behaviour of the QFI for the entirety of the study region, 35 ≤ λ ≤ 80. Unsurprisingly,

the agreement between the two models also improves with λ. In Fig. 6.5(b) we plot

the function λQ(λ) − 1/3 as given by the numerical and Gaussian approximations to

emphasise the limiting behaviour of the QFI. Although both the numerical and analytical

calculations predict the same behaviour in the limit λ → ∞, they converge towards it

from different directions and at different rates.

6.6 Conclusions

In this chapter, we explored the application of local QET for estimating the ratio of the

strengths of phonon absorption (i.e. gain) and emission processes, λ, in a quantum vdP

oscillator. A quantum vdP oscillator has a well-defined average amplitude of oscillation

in the steady state and serves as a simple model for the kinds of limit cycle oscillations

encountered in optomechanics (in the blue-detuned regime). The simplicity of the model
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allows an analytical solution for the steady state to be obtained, which proves to be

diagonal in the number state basis.

We explored the behaviour of the QFI in this system as a function of the only relevant

parameter, λ. For small values of λ, only a very few of the number states are occupied in

the steady state. In contrast, for very large λ, there is a Gaussian number distribution

with an average that is proportional to λ. The corresponding behaviour of the QFI in

the two limiting cases is very interesting. In the small λ limit, we showed, via power

series expansion, that the QFI diverges. Other authors identified the λ → 0 limit to be

the critical point for the system [39]. It remains an interesting open question whether

this divergent behaviour of the QFI at low λ is related to this critical behaviour. Here,

we also showed analytically that λQ(λ) (the product of λ and the QFI) converges to 1/3

in the limit λ → 0. In contrast, in the large λ limit, we used general expressions that

are available for QET in Gaussian models to approximate the QFI. Furthermore, using

the Gaussian approximation, we showed that in the limit λ→∞, λQ(λ) also converges

to 1/3. The full numerical model was found to converge to the same limit as well, albeit

from a different direction.

The interesting properties of the QFI for the quantum vdP oscillator would be worth

investigating further. It is indeed curious that the 1/3 behaviour arises in both small

and large λ limits. The simple rational form of this limit could suggest a straightforward

explanation to its origin. It is also curious that for λ � 1, the limit as given by the

numerical and analytical methods is approached from opposite directions. It would be

interesting to uncover the origin of this inconsistency upon more careful exploration. In

this case, we have also shown that the measurement of the number operator constitutes

the optimal strategy for estimating the parameter λ. In practice, however, other measure-

ments, such as the quadrature measurements, might be more easily accessible. Future

work could explore this concept in detail.
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The initial goal of this chapter was to serve as a benchmark for exploring quantum

parameter estimation in blue-detuned optomechanics. In this regime, the mechanical

oscillator also exhibits self-sustained limit cycles although in a more complex model [34].

Perhaps our findings for the quantum vdP oscillator are also applicable to blue-detuned

optomechanics. In particular, here, we have shown that the maximum information about

the parameter λ is available in the λ → 0 limit. This makes sense considering that

a system is known to be highly sensitive to perturbations in the vicinity of its critical

point, which the λ = 0 point has been identified as in [39]. Extending to blue-detuned

optomechanics, this suggests that the best estimation performance could be achieved in

a regime where a limit cycle is just forming rather than where it is well-developed.
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Conclusion

In this thesis, we have investigated optimal estimation of coupling parameters in driven-

dissipative optomechanics. Accurate knowledge of these parameters is crucial for un-

derstanding the behaviour as well as any application of these systems. The thesis also

explored the application of local QET in a quantum vdP oscillator. The findings, in

this case, could aid our understanding of blue-detuned optomechanics where complex

non-linear behaviour starts to emergence. In particular, it could give us an insight into

a regime where the information about parameters of interest could in principle be max-

imised.

In Chapter 2 we outlined the single and multi-parameter estimation methods within the

framework of local QET. In addition, we presented the single parameter approximation

to multi-parameter estimation theory, which assumes that only one of the parameters

is unknown at a time. Within this approximation, we outlined the estimation methods

applicable to Gaussian models. This was the procedure we followed when estimating

the linear and quadratic coupling constants within the framework of the quadratic op-

tomechanical model. The approximation returned the “best-case-scenario” estimation

performance for each of the parameters. In future work, it would be interesting to con-
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sider multi-parameter estimation (i.e. simultaneous estimation of both parameters) to

investigate how these bounds compare to the most optimistic ones.

In Chapter 3 we introduced the approximate Hamiltonian models of optomechanics, in-

cluding the linear and quadratic models, characterised by how many terms were retained

in the expansion of the cavity frequency with respect to mechanical position. There,

we also identified a master equation description for a driven-dissipative optomechanical

system. Finally, we discussed the procedure for bilinearising the dynamics of the system

along with the conditions for its validity. In the case of the linear model, we found the

bilinear approximation to be valid for sufficiently strong cavity driving. In the case of the

quadratic model, we additionally required a constraint on the magnitude of the quadratic

coupling constant. This ensured that the dominant non-linear terms were small compared

to the second order g2-dependent terms we retained, hence justifying their exclusion. As

a result of the bilinearisation, the system admitted a Gaussian steady state that could

be fully characterised by its first and second moments; first moments were embodied in a

non-linear system of equations of motion, whilst second moments in a steady state covari-

ance matrix. The non-linearity of the equations of motion also signified the occurrence

of static multistability within the system. Moreover, in all of the examples considered we

restricted our study region to a regime where multistability could be completely avoided.

The resultant “stable” region varied depending on driving and detuning. Intuitively, we

found this stable region to be wider for a more stable system.

In Chapter 4 we examined single parameter estimation of the linear coupling constant

in driven-dissipative optomechanics within the framework of the linear model in the red-

detuned and resonant regimes. For the parameter values adopted (inspired by recent

experiments), in the case of the red-detuned regime, the multistability of the system was

avoided by setting an upper bound on the drive strengths considered. In the case of the

resonant regime, the system was shown to remain stable at all intracavity photon num-

bers. The goal of this chapter was to find an optimal measurement strategy for estimating
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the linear coupling constant. For the red-detuned regime, we found the measurement of

mechanical position to constitute the best strategy, whilst for the resonant regime, the

choice of an optimal strategy was dependent on both temperature and driving. Inter-

estingly, in most optomechanics experiments, measurements are typically performed on

the light mode. However, our results suggest that in some parameter regimes probing

the mechanical mode would be more advantageous. Finding ways of probing mechanics

more directly would thus be recommended. Exploring the effects of temperature, in the

case of the red-detuned regime, temperature was found to have a facilitating effect on the

estimation precision of the linear coupling constant at lower driving powers. This tem-

perature dependence was found to be considerably weaker for the resonant regime, where

at sufficiently high intracavity photon numbers the predicted QFI limits were found to

be qualitatively equal at all temperatures.

In Chapter 5 we considered single parameter approximation to multi-parameter estima-

tion theory in a driven-dissipative optomechanical system described by a quadratic model

in the red-detuned regime. In this case, the system was found to remain stable at all

intracavity photon numbers. Expanding on the previous chapter, here we additionally

explored the effects of corrections due to the quadratic term on the estimation precision

of the linear coupling constant. Adopting the single parameter approximation to multi-

parameter estimation theory applicable to Gaussian models, for realistic values of the

model parameters, we found the quadratic coupling constant to be considerably harder

to estimate than the linear one at lower intracavity photon numbers. At higher driving

powers, their estimation precisions were found to be comparable instead. In general, the

measurement of mechanical position was again found to constitute an optimal measure-

ment strategy for both parameters, further justifying the importance of findings ways of

probing the mechanical mode more directly. Interestingly, in this case, we found temper-

ature to have an overall positive effect on the estimation performance of the quadratic

coupling constant at all intracavity photon numbers within the study region. In fact, at
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a set drive strength, all temperatures above Tm ≈ 1.4 × 10−5 K were found to facilitate

the estimation of the quadratic coupling constant. This chapter also investigated sin-

gle parameter estimation in the red-detuned regime within the framework of the purely

quadratic model. Once again, the system was found to remain stable at intracavity pho-

ton numbers. As the name suggests, a purely quadratic model of optomechanics was

obtained by assuming purely quadratic coupling with respect to the dimensionless po-

sition of the movable mirror. First, we presented the procedure for approximating the

dynamics of the system via a bilinear master equation along with a discussion of its va-

lidity. In this case, we found the bilinear approximation to be valid for sufficiently strong

cavity driving together with a detuning-dependent condition on the absolute value of

the drive amplitude. The bilinearisation procedure essentially resulted in a single-mode

Gaussian steady state described purely by a steady state covariance matrix for the me-

chanical mode only (as the steady state averages of the mechanics were found to vanish).

Thanks to the simplicity of the bilinear model, in this case the analytical expressions

for the QFI and the FIs for the measurements of mechanical position and momentum

could also be obtained exactly. Moreover, a numerical analysis revealed that a stronger

optomechanical interaction facilitates the estimation of the quadratic coupling constant

at lower driving powers. Instead, at sufficiently high intracavity photon numbers, the

estimation precision was found to saturate at exactly the same value, irrespective of the

strength of the interaction. Additionally, in this case, the measurement of mechanical

momentum was found to constitute an optimal strategy for estimating the quadratic

coupling constant.

Finally, in Chapter 6 we explored the application of local QET in a quantum vdP oscil-

lator to estimate the ratio of the strengths of phonon absorption and emission processes,

λ. The goal of this chapter was to serve as a benchmark for studying quantum parameter

estimation in blue-detuned optomechanics, where limit cycle oscillations also occur but

in a more complex model. In the case of the quantum vdP oscillator, an analytical solu-
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tion for the steady state can be obtained exactly which was shown to be diagonal in the

number state basis and purely dependent on λ. Employing QET, explicit formulas for the

classical and quantum precision bounds were then derived and the measurement of the

number operator was shown to be optimal. Depending on the size of the parameter, two

limiting cases were identified. For small values of λ, the quantum limit of the quantum

vdP oscillator could be realised where the two-phonon emission process dominates and

only a very few of the number states were populated in the steady state. The behaviour

of the QFI, in this case, was studied analytically via a power series expansion. Through

this method, the QFI was shown to display a divergent behaviour in the small λ limit.

For large values of the parameter, the classical regime was recovered and the QFI was

approximated via expressions available for QET in Gaussian models, adapted for scalar

quantities. Through this method, the QFI was found to decay to zero in the limit of large

λ. The employed analytical methods were found to agree well with the results obtained

from numerical methods. In future work, it would be interesting to investigate how differ-

ent the results would be for blue-detuned optomechanics in comparison to the simplified

vdP model. In particular, based on our analysis, we would expect most information

about the parameters of interest to be available close to λ = 0 point, corresponding to

the critical point of the system. If these results could be extended to blue-detuned op-

tomechanics, we would then expect the best estimation performance of the parameters

to be achievable in a regime where a limit cycle is just forming rather than where it is

well-developed.
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Implicit differentiation

For completeness, we discuss the use of implicit differentiation in evaluating the classical

and quantum precision bounds of the coupling parameters within the framework of the

bilinear optomechanical model. The primary reason for employing implicit differentiation

in this case is to avoid numerical differentiation.

As discussed in Sec. 3.4.2, the bilinear model of optomechanics is obtained by trans-

forming into a frame in which the steady state displacements vanish and hence, where

only small quantum fluctuations around the semi-classical steady state can be considered

[4, 62]. This, in turn, requires strong cavity driving (along with a constraint on the mag-

nitude of the quadratic coupling constant in the case of the quadratic optomechanical

model). Implementing these displacements then results in the non-linear set of equations

for the steady state values of the system’s first moments (Eqs.3.34-3.37). Due to the

non-linearity of these equations, enforced by their implicit dependence on the coupling

constants through the effective parameters (effective mechanical frequency ωeff , effective

detuning ∆eff and effective coupling strength geff ), numerical methods would typically be

required to evaluate their derivatives, which are essential for evaluating the classical and

quantum precision bounds of the coupling constants (see Eqs. 4.7 and 4.3 or Eqs. 5.7
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and 5.3 for the linear and quadratic models, respectively). Instead, the implementation

of implicit differentiation results in a non-linear set of equations for the derivatives of

the system’s steady state first moments that can be solved numerically. In other words,

implicit differentiation ensures that all of the relevant quantities can be conveyed in the

numerical solutions to the set of equations for the steady state averages of the system.

Indeed, using this method, we find the following analytical expressions for the derivatives

of the steady state averages with respect to the linear and quadratic coupling constants

(valid for the quadratic model):
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((4∆2

eff + κ2) (Γ2
m + 4ω2

m) + 32g2ε2ωm) 2
,

(A.7)
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APPENDIX A. IMPLICIT DIFFERENTIATION

∂p0

∂g2

= −

8
√

2g1ε
2Γm

 4096g2
1 ε

4∆eff ω
2
m(Γ2

m+4ω2
m)(3(4∆2

eff +κ2)(Γ2
m+4ω2

m)+32g2ε
2ωm)

((4∆2
eff +κ2)(Γ2

m+4ω2
m)+32g2ε2ωm)3

(
1−

256g2
1
ε2∆eff ωm(4∆2

eff
+κ2)(Γ2

m+4ω2
m)2

((4∆2
eff

+κ2)(Γ2
m+4ω2

m)+32g2ε
2ωm)3

) + 32ε2ωm


((4∆2

eff + κ2) (Γ2
m + 4ω2

m) + 32g2ε2ωm) 2
.

(A.8)

Equivalent formulas for the derivatives of the steady state averages with respect to the

linear coupling constant (g1), valid for the linear model, can be recovered by simply

setting g2 = 0.
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Appendix B

Derivation of the amplitude

equation for limit cycle oscillations

Here, we present a detailed derivation of the amplitude equation (6.3).

As discussed in Sec. 6.2, classically, the evolution of the vdP oscillator can be described

via a non-linear second order differential equation:

ẍ − γ1(1− γ2x
2)ẋ + ω2

0x = 0, (B.1)

with ω0 the natural frequency of the oscillator and x a dimensionless displacement [39,

108, 111]. The resulting limit cycle can then be approximated by the amplitude equation

(6.3), recovered through a change of variables:

x =
α + α∗

2
, (B.2)

ẋ = iω0
α∗ − α

2
. (B.3)
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CYCLE OSCILLATIONS

Subsequently, differentiating Eq. B.3 with respect to time, we obtain

ẍ = iω0
α̇∗ − α̇

2
. (B.4)

Substituting the expressions for x , ẋ and ẍ into Eq. B.1, we then end up with a following

first order equation:

−(α̇∗ − α̇) + γ1

(
α∗ − α− γ2

4
(|α|2α∗ + α∗3 − α3 − |α|2α)

)
+ ω0(α + α∗) = 0. (B.5)

Separating the real and imaginary parts, we obtain a first order differential equation for

α:

α̇ = −iω0 + αγ1

(
1− γ2

4
(|α|2 + α3)

)
. (B.6)

Finally, the O(α3) term can be neglected provided that both conditions: γ1 � ω0 and

γ2 � ω0/γ1 are satisfied, resulting in the amplitude equation (6.3) [4].
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