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Abstract

In this thesis, the charge-carrier mobility in graphene, limited by multiple sources of
electron scattering, is studied under the framework of the Boltzmann transport equa-
tion using the Born approximation for scattering potentials. Two congruent methods
are explored: deterministic discontinuous Galerkin, and stochastic Direct Simulation
Monte Carlo, to solve the full Boltzmann equation. Such temporal simulations, show-
casing the transient dynamics from thermal equilibrium to a new steady-state under
electrostatic perturbation, reveal the profound effects of the Joule heating capabilities
of graphene, where the electrons behave as an electron gas with weak external lat-
tice coupling. Mobility curves reveal the nature of electronic transport with changing
electron population, and under varying physical parameters. As modelled for impurity
dominated graphene, we find a “universal” connection between the carrier mobility and
variation of conductivity with carrier population, applicable for both pristine graphene
and graphene heterostructures. Ultimately, such universality relies on universality at
the Dirac point. When thermally excited phonons and charge carriers become impor-
tant, the behaviour around the Dirac point should be carefully considered. We show
how thermal effects on the low-energy electron distributions affect the width of the
total resistivity curve with respect to variations of carrier density, and how this affects
the measured mobility and it’s temperature dependence. Twisting between constituent
layers of hexagonal lattices alters the periodic lattice potential, forming secondary Dirac
points and band gaps within the low-energy spectrum of a single graphene layer. We
show how this can limit conductivity with and without external lattice perturbations.
We find intriguing features, such as negative differential conductance, at electron ener-
gies around the secondary Dirac points, due to Bloch oscillating electrons. 3D printing
provides a potential solution for scalable and efficient manufacturing of 2D materials
and heterostructures. Flakes deposited via inkjet printing form percolating networks.
Results reveal how the macroscopic electrical properties, characterised by the hopping
and tunnelling between individual flakes, are strongly influenced by the distribution of
flakes and by complex meandering electron trajectories, which traverse multiple printed

layers.
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Chapter 1

Graphene Structure and Charge
Transport

1.1 Introduction

Graphene has exciting electronic properties due to its 2D hexagonal carbon struc-
ture. The resulting electronic bands, which give rise to electrons with a linear energy-
wavevector dispersion, analogous to zero effective mass, were first studied in 1947 by
Wallace [1], and later by DiVincenzo and Mele [2] in 1984. In 2004, Geim and Novoselov
were able to effectively demonstrate the transfer of atomically thin graphene from bulk
graphite onto a silicon dioxide (SiOg) substrate using scotch tape [3]. Following this,
there has been extensive focus on the manufacture of high quality graphene; mostly
via exfoliation [4] and chemical vapour deposition [5]. Given the very small effective
mass of graphene near the Dirac point (where the conduction and valence bands meet),
the electrons behave as relativistic Dirac fermions with a Fermi velocity of v ~ 109
ms~!. This large velocity allows for potentially high intrinsic electron mobility, re-
ported to be as large as 20 m?/Vs for suspended graphene, in the low-field regime [6].
It is known that highly dielectric substrates degrade this mobility by as much as two
orders of magnitude [7, 8]. Understanding the origins of electron scattering is vital for a
complete understanding of the electronic properties in graphene. Advancements in ma-
terial manufacturing have brought new possibilities to test the fundamental properties
of graphene electronics, with some suspended and protectively encapsulated exfoliated
graphene samples reported in the ballistic regime [9, 10]. Heterostructures comprising
2D materials have been demonstrated on a research-scale with a broad range of ap-
plications, including broadband photodetection [11-13], LEDs [14, 15], tunnelling field
effect transistors [16, 17] and flexible electronics [18]. However, there still exists a need
for scalable manufacturing techniques to ensure that such layered 2D materials have a
wide commercial impact. Additive manufacturing (3D printing) provides a promising
solution. A large amount of progress has been made in the development of material

inks comprising dielectric, semiconducting and conducting 2D flakes and nano-particles
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(a) (b)

Figure 1.1: (a) The real-space lattice structure and (b) the first Brillouin zone in k-
space. The primitive unit vectors a; and as, with a magnitude of one lattice constant,
a = 2.46 A, make up the unit cell. ag is the carbon-carbon bond length. Nearest-
neighbour vectors are labelled §; = <0, %), 0y = <%, —%) and 03 = (—%, —%) The
reciprocal lattice vectors by and by define the Brillouin zone, with the high symmetry
points K4, I' and M. Filled black and grey circles are used to distinguish between the
two sub-lattices.

[19-26]. However, there is a need for greater understanding of the transport phenomena
and structural properties of 3D printed heterostructures.

This introductory chapter outlines the theory that underpins charge carrier scat-
tering in graphene and an overview of the comprehensive subject of transport in dis-

continuous conductive materials, relevant to inkjet printed structures.

1.2 Electronic Structure of Graphene

1.2.1 Tight-Binding Model

Different hybridization of carbon atoms results in a number of different allotropes with
vastly different properties, despite having the same atomic building blocks. Graphene
is formed by sp? hybridization, whereby an electron is promoted from the 2s orbital
into the 2p orbital in order to form an array of sigma bonds in a 2D plane with a
separation of 120°. The atoms are therefore arranged in a 2D hexagonal lattice, with
the out-of-plane dangling bonds forming a network of m-bonds.

The real-space lattice has a basis of two atoms, which are often referred to as the
two sub-lattices. The unit cell, as shown in fig. 1.1a, is defined by two primitive lattice
vectors, a; = (%, @) and ap = (%, —@), where a = 2.46 A is the lattice constant
[27], related to the inter-atomic distance, ace, by @ = as./v/3. The reciprocal lattice
vectors are b; = (%”, %) and by = <%’T, —%) This results in the hexagonal first
Brillouin zone shown in fig. 1.1b.

In the tight-binding model, the electronic wavefunction of the j** orbital, U,(k,r),
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is given as a superposition of Bloch functions,

N
> e Riig (r — Ryy), (1.1)

=1

D;(

E\H

where R; ; is the lattice vector corresponding to the position of the 4t atomic orbital
within the #*" unit cell. This can be applied to the 2p® orbitals at each atomic site of
the two sub-lattices, resulting in a basis of two Bloch functions. We can define a 4 x 4

Hamiltonian, H, in this basis with matrix elements

N N
1 e (Re s —Row s
Hyn = Z 3" el Bog~Roni) (6 (2 — Ry i) [H| 6 (r — Rinj) (1.2)
=1 j=1

where m and n can be either of the sublattices A and B. We shall only consider the
most dominant terms within the Hamiltonian. These are the terms described by on-site
and nearest-neighbour interactions. Therefore, the diagonal matrix elements are given

by same-site interactions (i = j),
Haam (¢a(r —Ra;) [H|¢a(r — Ra;)) = e2p, (1.3)

where €9, is defined as the energy of the 2p” orbital [28]. The off-diagonal elements,

describing inter-sublattice coupling, are given by the nearest neighbour interactions,

N 3
1
Hap~ 5 303 e (60 = Ra) [H0n (r = Rp ) = —0f(0 (14)
1= =
where we have defined the nearest-neighbour hopping parameter g = —t =

(pa(r—Ray) |H| ¢ (r — Rpy)), the function
3 . . .
fk) = Z Ot — gikya/V3 | go—ikya/2V3 g (kza/2) (1.5)

=1

and the respective positions of the neighbouring atoms d; = Rp; — Ra; (shown in

fig. 1.1a). Taking the complex conjugates gives Hpp = H} y = €2p and Hpa = H)jz =

—v0f*(k), such that
H— €2p _’YOf(k) . (16)
—/f"(k) ey

Similarly, an overlap matrix, S, with elements
NN
- ik-(Rn,j—Rum,i) _ . _ .
Smn = N Zl Zl e ! (Pm (r — Ryn,i) |on (r Rn,])> (1.7)
=1 j=

accounts for non-orthogonality of neighbouring atomic states. Following the same steps
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as for the Hamiltonian, we find that

g 1 so.f (k) ’ (1.8)
sof*(k) 1
where so = (¢4 (r — Ra) |¢p (r —Rp;)). Solving Hi; = £;S51; using

det (H —¢;5) =0, (1.9)

gives the two energy bands:
et snlfK)
T 1—ssolf(k)]

where s = +1 denotes the band indices, conduction and valence bands respectively.

(1.10)

We set the energy axis such that 2, = 0 is the zero-point energy and use the values
Yo = 3.033eV and sop = 0.129 [27]. The resulting band structure, shown in fig. 1.2a, has
a band crossing at the K points with no band gap, from which we name two inequivalent
valleys K_ and K, . In a similar fashion to the band index, s, we will denote the valley
index ¢ = £1.

Exactly at the valleys (the Dirac point), the wavevector is K¢ = ¢ (47/3a, 0), such
that there is no coupling between sublattices, f(K¢) = 0. We can expand about the
K points to find the dispersion relation for low energy electrons. Defining a relative

momentum p = hk — hK¢ = (ps, py) and substituting into eq. (1.5) gives

V3a

700 ~ =22 (¢p. — ipy) (111)

to first order in momentum, resulting in the Hamiltonian

Ho=of O S iPy) (1.12)
(pz +ipy 0

where v = v/3av/(2h) =~ 105ms~! is the “Fermi velocity”, often denoted vr. Through-
out this thesis, “v” will be used to denote this constant Fermi velocity, i.e. v = vp.
The overlap matrix can be approximated as unitary to first order in momentum and

we are left with the energy bands
e+ = sv|p| (1.13)
and corresponding Bloch eigenstates

_ 1 1 ik-r
2 = 757 (see )" )

normalized on the unit cell of area A, where ¢ is the polar angle of momentum. The

Hamiltonian (1.12) is Dirac-like and the resulting band structure (1.13) leads to elec-
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Figure 1.2: Band structure of single layer graphene in the tight-binding approximation.
(a) Variation of the eigenvalues (1.10) for k, = 0. (b) The Dirac eigenvalues (1.13)
compared to a magnification of (a) around the Dirac point.

trons with zero effective mass and a constant velocity, v. As shown in fig. 1.2b, the
Dirac form of the Hamiltonian is a reasonable approximation to the tight-binding model

for low energy electrons (|e| < 0.25 eV).

1.2.2 Charge Density and Quantum Capacitance

The linear dispersion relation (1.13), results in a density of states that depends linearly

on energy,

9sgv €]
D(e) = 2m h2v?’

where g, = 2 and g, = 2 are the spin and valley degeneracies, respectively. Using the

(1.15)

Fermi-Dirac distribution function,

1
f0(5) = B

e—er) + 1 (1.16)

where ep is the chemical potential, 5 = 1/(kpT'), and T is the absolute temperature of
the graphene sheet, for the probability of occupation of any given state with energy &,

we find the Fermi-Dirac integral form of the charge carrier densities,

2 2
— 9s9v (kBT © v g, 2 (kT
n= 21 ( hv ) fO eV*U—i-ldl/ T ow ( hv F1(77)

2 2
sgv [ kT 00 _ 2 (kBT
p= g2fr ( f?’u > fO el’*z?-l—ldy T ( f?’u > Fl(_n)’

(1.17)

for electrons in the conduction band, n, and holes in the valence band, p, where F}
is the first-order complete Fermi-Dirac integral and we have defined the dimensionless
variables v = ¢/(kpT) and n = ep/(kgT). These complete functions are related to the
polylogarithms, Fj(x) = —Lij;1 [—€”], such that

n(ep,T) = — 9590 (P51 2Li2 —exp [ L (1.18)
’ 2 hv kgT
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and

9sgv (kBT\? EF
T)= 22 [ 27 ) Liy |— - . 1.1
pler, T) . ( o > ip [ eXP( kBT>] (1.19)

For large chemical potentials, or low temperature, |er| > kpT, the density of electrons
(1.18) is
_ 9sgv EF°
4 h20?’

and the density of holes, p — 0, for ep > 0. In the same limit, if ep < 0, the density

(1.20)

of electrons and holes is reversed due to the symmetry of egs. (1.18) and (1.19). In
the opposing limit, |ep| < kT, the charge density is dominated by thermally excited

electron-hole pairs,

9sgom (kBT 2

The chemical potential can be expressed in terms of a channel potential, Vi, ep =

eVen, where e is the elementary charge of an electron. Then the quantum capacitance,

— aQnet
OVen

Cy (1.22)
encapsulates the effect of the density of states on the occupancy of states and, therefore,
the net sheet charge density Q,e; in response to a change in the potential energy of the
graphene sheet, V. The net sheet charge density here is given by Qpnet = e(p — n).
We will also define the total transport charge density, Qo = €Ny, as the total charge
contributing to current in an applied electric field, where N;,; = n+p is the total carrier
density. This will be further discussed in section 2.1. Using egs. (1.18) and (1.19), the

quantum capacitance is

2
gsgv€ kBT EF
= —— |In [ 2 + 2cosh | —— . 1.2
0= 22 1 (oo (22)) w21

When additional graphene layers are added, the energy bands become parabolic

around the K points with a tunable band gap between conduction and valence bands
[28]. In bilayer graphene the band gap has been measured as large as 250 meV un-
der large displacement fields [29]. To consider the most general case of a parabolic
dispersion relation, we will leave the bandgap, €4, arbitrary. The density of states is

constant,
_ gsgum”
2mh?

where m* is the effective mass. Fixing ¢ = 0 at the middle of the band gap, we now

(1.24)

have the incomplete Fermi-Dirac integrals

n = gsgvm k’BT fogg 1 dv
2kgT

2mh? ev—n+1
po o (1 (1.25)
orhz VB 7%;7, evtn41
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since states residing in the bandgap cannot be occupied. These integrals are evaluated

as
n= g;f:g kT [m (1 + eTéT”ﬂ (1.26)
and .
__f9
p= g;f:;’; kT [m (1 +e BT ’7)] . (1.27)

It is important to note that in the limit ¢, — 0, we retrieve the same form as expected

for the complete Fermi-Dirac integral functions:

"= —93%2: kpTLir (=€) (1.28)
p = — 4L kpTL) (—e ™)

1.3 Fermi’s Golden Rule

The influence of external perturbations to the lattice potential is to ‘scatter’ electrons
between the different eigenstates of eq. (1.14). Fermi’s golden rule gives the transition
rates between such states. This is an important tool that allows us to understand
macroscopic properties, such as the mobility, of the many-body ensemble based upon
the quantum mechanics that governs the individual transitions.

Possible causes of such perturbations will be discussed in sections 2.3.2 and 2.4.
For now, we can consider two types: constant in time, and harmonically time-varying.
An example of the former is a static charged impurity, whilst the latter could be a
harmonically oscillating phonon.

The Hamiltonian now includes this perturbation, U(t), as
H=Hy+U(t), (1.29)

where Hy is the unperturbed Hamiltonian of the lattice (1.12), with corresponding
eigenstates (1.14). The golden rule is derived using time-dependant perturbation the-
ory. We describe the time-dependence of the eigenstates using the Schrodinger equation
in the Dirac picture,

0

iho [V(1)) = Ur(t)[¥()) (1.30)

where Uj(t) = eHot/hy(t)e=#ot/h We denote the initial electron state |W(t = tg)) =
|i), which corresponds to some Bloch eigenstate ®; of Hy, with eigenenergy ¢;. Con-
sidering electrons near the Dirac point, ¢; and ®; are given by eqgs. (1.13) and (1.14)
respectively.

From eq. (1.30), the wavefunction at time ¢, ¥(¢), is given by

ey =10+ [ @t (1.31)

to

to first order in the perturbation, U. We assume a harmonically time varying pertur-

10
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bation with an adiabatic amplitude such that the states of the initial Hamiltonian, Hy,

are exact in the limit ¢ — —oo0,
U(t) =e"U (e7™" + ™). (1.32)

We will later take the limit 7 — 0T, describing a harmonically oscillating potential
with constant amplitude. Taking the overlap of eq. (1.31) with some ’final’ state |f)

and evaluating the integral in the limit {5 — —o0,

ei(Effsifhw)t/her]t ei(

Ei—5f+hw+ih7’]+€i—€f—hbd+’ih77

sffsiJrhw)t/hent

(F12(t)) = (fIUI4) (1.33)
gives the probability amplitude of finding the electron in the state |f) at time ¢. The
transition rate of electrons from the initial to the final state is given by the rate of change
of the probability of occupation of the final state due to the harmonic perturbation U (t)
made on the initial states in the adiabatic limit (n — 0%),

. d 27
i = limy g S FIBE)P = 2T U2 15 (6 — g+ ) +8 (e — & — )] (130

where Uy; = (f|U]i) and we have used the identity 6(z) = %limn%m#w. The two
terms in eq. (1.34) represent two separate events: absorption and emission into the
oscillating modes of the potential.

For a static potential, the transitions are elastic: the initial and final electron states
have equal energy. This can be seen by setting the frequency of oscillation, w, to 0. In

this case,
2
Sisp = f|Ufi‘26(€f — &) (1.35)

From here onwards, we will label the states with respect to their wavevector, i.e.
Sk_k’ is the transition rate of electrons from an initial state with wavevector k to a
final state with wavevector k. In general, the perturbation, U(t), does not depend on

the orientation of the wavevector, ¢, so the matrix element is
1 . /! .
Uk = oA (K| U k) R (1 + ss’e’wkvk’) (1.36)

for intra-valley scattering (¢’ = (), using eq. (1.14) for the eigenstates relative to
the position of the source of the potential, R. In eq. (1.36), |k) = exp(ik -r), O =
ok — K is the angle between k and k’, and ss’ = +1 for intra- and inter-band transitions

respectively. This simply results in taking the 2D Fourier transform of the perturbation,
0= (K| U k) = / U(r)e— 9%y (1.37)

where we have defined q = k’ — k.

Considering a sample of finite area, A, in the 2D graphene plane, there can be a
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1.4. BOLTZMANN TRANSPORT AND DRUDE CONDUCTIVITY

number of scatterers available to cause transitions, such that the total perturbation is
a sum over the N individual perturbations at positions R;, U(r) = Zf\i Lu(r — Ry).
For randomly distributed scatterers of the same type, we can simply accumulate the
transition rates, since [FT[U(r)]|? = ‘z;i  FT]u(r — R,»)]‘2 ~ N |FT[u(r)]]®. We will
consider the effects of correlated distributions in section 3.4. For random distributions,
we define a function, A, which encapsulates the number of scatterers available for the

allowed transitions, such that

s

Sk = mm(q)ﬁu + 55'cosfy 1) Ak sk (1.38)
For inelastic scattering
Alre, , = N§(e(K') — e(k)), (1.39)

and for elastic scattering
AL (W) = N(w)d(e(s', K)—e(s, k) —hw)+ (N (w)+1)5(e(s', k') —e(s, k) +hw), (1.40)

where N(w) is the number of harmonically oscillating scatterers of frequency w, given

by the Bose-Einstein distribution function

1

Nw) = o7

(1.41)
Note that for the emission process, the number of scatterers, N(w) + 1, encapsulates
both the phonon occupation of N(w) available to induce scattering (stimulated emis-
sion) and the ability of an electron itself to emit into the phonon mode of frequency w

(spontaneous emission).

1.4 Boltzmann Transport and Drude Conductivity

When the averaged distance between scattering events, ls, is much smaller than the
device length, the electron momenta is dephased and transport is diffusive. In this
case, the Drude model is employed to describe the conductivity in terms of scattering
of classical-like particles from their classically accelerated trajectories. The Boltzmann
transport equation (BTE) can be used to determine the evolution of the distribution
function, f(x,k), using kinetic theory. The two parts that govern the electron trajec-
tory, free drift and instantaneous transitions, are described separately, such that the

evolution is given by three terms:

of(t,x, k)

+v-vxf<t,x,k>+IF-vkﬂt,x,k):(W’“”) S
ot h coll

ot

The second term on the left hand side of eq. (1.42) describes the real-space diffusive

motion of particles, and the third term is the acceleration of particles due to some
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1.4. BOLTZMANN TRANSPORT AND DRUDE CONDUCTIVITY

electromagnetic force, F; these two terms are the free drift part. The right hand side,

the ‘collision term’, is given by

Of(tx1)\ g R
( ot >Cou ;[k%kﬂt’ =) (1.43)

- Sk—>k’f(t7 X, k)(l - f(tv X, k/))] )

where the two terms describe opposing transitions, maintaining a detailed balance. In

the case of spatial homogeneity, we can use the homogenised Boltzmann equation,

8fg k) + 71iF Vif(t, k) = <a‘fg£k)>wu, (1.44)

where we eliminate the real spatial coordinates and only consider the trajectory of
electrons in reciprocal (k) space. Given a steady-state solution to eq. (1.44), f(k), we

can calculate the current density

gsgu /f )Viee (K)dk — 959“ /de/kdk;f (1.45)

where v = v(cosfx + sinfy).

Using eq. (1.38), the total rate at which electrons, of wavevector k, are scattered is

given by the sum over all possible final states k’,
A /
k) = Z Sk—)k’ ~ W Sk_>k/dk y (1.46)
k/

where (27)2/A is the reciprocal space area between states.

The collisional relaxation time, 7. = 1/T', gives the mean free time between col-
lisions. Within the Drude model for the diffusive conductivity, the motion of the
individual electrons between individual scatter events is assumed to be ballistic, and
the events are assumed to occur instantaneously. To get the measurable relaxation
time, the effect of the transition on the change in the electrons trajectory should be
considered. The weighted mean free time, which we call the single-electron momentum

relaxation time, 7., where

A /
Te(k) = ; Sk—)k’(l — COSHk,k/) ~ W /Sk—>k’(1 — C089k7k/)dk s (1.47)
takes into account the relative effect of the angle of scattering, 6y 1/, on the change in
momentum.

The homogenised Boltzmann eq. (1.44), is highly nonlinear. To find analytical
solutions, it is generally linearised by assuming a linear shift in the distribution function,

proportional to the momentum relaxation time and of first order in the applied field
[30], f = fo—eTE- V , where fp is the Fermi-Dirac distribution function (1.16). The
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1.5. CHARGE TRANSPORT IN LOCALISED SYSTEMS

derivation of the perturbed distribution function will be discussed in more detail in
section 3.2. Using eq. (1.45), the conductivity is thus
62’02 oo 8f0

o= deD(s)T(5)< as>‘ (1.48)

—0
The momentum relaxation time, 7, is calculated in reference [31] using the BTE
(eq. (1.44)), /
T(lk) ~ (21:)2 / St (1 — cos9k7k/)u((ﬁlli;dk’. (1.49)
Equation (1.49) is the single electron momentum relaxation rate, eq. (1.47), modified by
the occupation of electrons in the states k and k’ to account for the electron ensemble.
In the case of elastic scattering, k = k', eqgs. (1.47) and (1.49) are equivalent. In the
case of inelastic scattering, eq. (1.49) conserves the detailed balance, dependant upon
the relative occupation of states at k and k’.
For finite temperatures, it is useful to exploit the symmetry between conduction
and valence bands. Given that fo(—e,ep) = 1 — fo(e, —eF), and the transition rates,

Sk—k’, only depend on |¢| in general, we can split eq. (1.48) into two terms:

2,,2 o]

o= [ a=n(e) {T(g,sF) <—af(g’;F)> +7(e, —¢F) <—8f(55;”)>] , (L.50)

where the first term is the contribution from electrons and the second is the contribution
from holes.
We can rewrite eq. (1.48), in terms of the ensemble averaged momentum relaxation

rate, (1), ,
o= %(ﬂ /dsfo(s), (1.51)

where

B Jer(e) (—%)ds
- fa(—%)de .

In the degenerate, low temperature regime, the Fermi-Dirac distribution (1.16) is a

(1) (1.52)

Heaviside step function, J(ep—e(k)), and the derivative is a delta function, §(ep—e(k)).
Consequently, in the limit 7' — 0, the ensemble average is given by the value at the

Fermi level, (1) = 7(ep). Using eq. (1.20) for the carrier density, we find the mobility

o ev’7(er)

=7 LR 1.53
p= - (1.53)

1.5 Charge Transport in Localised Systems

A system with strong disorder results in localised electronic states. Anderson locali-
sation can occur in lattice structures in the presence of a large number of impurities

or defects. In granular materials, there is a structural localisation of states within the
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1.5. CHARGE TRANSPORT IN LOCALISED SYSTEMS

grains and, in general, an absence of states in the surrounding medium. Localised states

also appear in disordered organic (polymer) conductors.

1.5.1 Hopping Conductivity

To conduct, electrons need to be able to move between localised states via a tunnelling
or hopping process. In granular conductors, the dynamics is usually assumed to depend
entirely on such processes and the effect of scattering within the granules is assumed
to be negligible. The rate of thermally assisted hopping from site ¢ with energy ¢; to
site j with energy ¢; can be described by the Miller-Abrahams expression [32, 33],

—(ej—ei)/kBT 4 .
e or €¢; > ¢
L= e_aRij J Z, 1.54
g =10 { 1 for e; <¢; ( )

where: 7 is a constant, describing the attempt frequency and is related to the strength
of phonon coupling; « is the tunnel constant, also known as the inverse localisation
radius; I2;; is the distance between sites ¢ and j; and 7' is the temperature.
The conductivity depends directly on the hopping rate and is often used in the
simplified form of the Arrhenius equation
O Arrhenius < € *"e " Fe/kp T (1.55)
where r is the hopping distance and E. is the activation energy required to charge a
neighbouring state. This expression is used widely in the literature to fit and predict
the conductivity of granular conductors, such as nano-crystal arrays [34-36]. Typically
hopping is considered to be nearest-neighbour only, since conductivity is exponentially
suppressed relative to the distance between sites. However, for small temperatures, the
exponential suppression relative to E./kpT becomes important. This means that it
can become energetically favourable for an electron to hop further to a site of similar
energy. In this case, the distance, r, in eq. (1.55) becomes temperature dependent [34].

Such variable range hopping is often described by
OV RH X €eXp [— (To/T)l/ﬁ] y (1.56)

where [ is some exponent depending on the details of the system, such as the dimen-
sionality, and Tp is a constant depending on the energy density of states/sites and the
tunnel constant, «. Mott showed that 5 = 4 for a 3D system, assuming a constant
density of states around the Fermi level [33, 37]. The same expression with § = 4
was also derived using a percolation method by Ambegaokar et al. in the presence of
energetic and spatial disorder [38]. Equation (1.56) has been found to agree well with
the conductivity measured in amorphous germanium at 7' < 300 K [39, 40] and ordered
defect compound CulnsTes at 7' < 210 K [41].
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1.5. CHARGE TRANSPORT IN LOCALISED SYSTEMS

1.5.2 Field-Effect in Discontinuous and Disordered Media

To model the field-effect in a discontinuous, thin (2D) film, Adkins et al. proposed
a model based on the capacitative charging energy required to place a charge on the
grains and the detailed balance of relative occupation between grains [42]. Assuming a
maximum of one charge per grain, standard Boltzmann statistics are used to determine
the probability of any one grain being positively charged (a hole), negatively charged

(an electron) or uncharged,

p+ = exp (—piess/kpT) [ [exp (Ee/kpT) + 2cosh (pesp/kpT))]
p— =exp (peff/kBT) [ [exp (Ec/kpT) + 2cosh (pess/kpT)] (1.57)
po = exp (Ec/kpT) [ [exp (Ee/kpT) + 2cosh (uesr /kpT)]

respectively, where E. is the charging energy between flakes and p.rs is an effective
chemical potential of the granular system which promotes the charging of grains and
is controlled by the gate voltage, V,, via CV, = N(p— — p;) where C is the areal
capacitance density between the gate and the bulk film and N is the areal density of
grains. The conductivity depends on the relative occupation of grains, since electrons

can only transport into unoccupied states,

T Adkins X Po(P— + P4). (1.58)

Assuming E. > kT (a necessary condition for the Adkins model, since multiple charg-
ing is neglected) and perr = 0, eq. (1.58) has the same form as the Arrhenius equation
(1.55). As discussed in [42], this model is derived assuming a granular film which is
ordered in both the charging energy between any two grains and their distance apart.
The introduction of disorder can cause trapped states, time dependence, frustration
and non-ergodicity.

Highly disordered systems exhibiting Anderson localisation or composed of granular
structures can display glassy behaviour out of equilibrium [43, 44]. A particular feature
of such electron glasses is the anomolous field effect, as observed in granular metal
films [45-48]. Unlike the ordinary field effect, where changing the gate voltage causes
an increase or decrease in conductivity, depending on the relative change in carrier
density, in the anomolous field effect any change in gate voltage results in an increase
of conductivity if the electron glass has already equilibrated at the initial gate voltage.
This is a feature of the slow response of the electron glass to external perturbation. If
a long enough time is left between each measurement, thus allowing the electron glass
to reach equilibrium at each gate voltage, the normal field effect can be retrieved, as

demonstrated in two-dip experiments [49, 50].
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Chapter 2

Electron Scattering in Graphene
and Numerical Methods

2.1 Thermal Equilibrium Calculations of Charge Carrier

Population in Gated Graphene

We model the effects of gating the graphene sheet with a potential, Vj, over a capac-
itance, Cy4, on the charge carrier population. We anticipate this carrier population to
be sensitive to the temperature around the Dirac point, since electrons can easily be
excited into the conduction band from the valence band, creating electron-hole pairs,
due to the zero-band gap.

Semiconductors have an associated ‘quantum capacitance’, due to the finite density
of states. For graphene, we derived this in section 1.2.2. This quantum capacitance
can force a voltage drop at the graphene plane compared to what would be expected
for a metallic parallel plate capacitor, thus reducing the number of excited carriers. We

explore this effect first before considering the simpler parallel plate capacitor model.

2.1.1 Quantum Capacitance Model

Here we model a basic field-effect transistor (FET) consisting of a single gate electrode,
separated from the graphene plane via a dielectric medium of capacitance Cy, as shown
in fig. 2.1a. A current is passed through the graphene channel by the source and
drain electrodes, controlled by the drain-source potential, V. The carrier density
is controlled by the potential difference across the source and gate electrodes, V;. We
consider diffusive transport with a constant electric field, E = Vy,/L, across the channel
of length L. Applying Kirchoft’s voltage law to the circuit diagram in fig. 2.1b, where
we have defined the direction of V such that positive V, corresponds to a positive

channel potential, results in the self-consistent equation for the channel potential

Cq

‘/C -
" CataC,

(Vg + V(@) (2.1)
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2.1. THERMAL EQUILIBRIUM CALCULATIONS OF CHARGE CARRIER
POPULATION IN GATED GRAPHENE

v
(2) (b)

Figure 2.1: (a) Diagram showing graphene FET. Graphene sheet forms a conducting
channel between two electrodes with potential difference Vgs. A gate voltage, Vy, is
applied over the dielectric gate material. The applied voltages, V; and Vg, are com-
pensated by a potential difference over the dielectric capacitance, Cy, and the quantum
capacitance, Cy. (b) Circuit diagram for FET in figure (a) at position z along the
channel length. A gate voltage V, is applied; the capacitance, Cy, is known for a given
dielectric medium between the gate electrode and the graphene plane; and the potential
dropped across the channel, V(z), is assumed to increase linearly from 0, at = 0, to
Vs, at © = L. Kirchoff’s law, along with an expression for the quantum capacitance,
Cy, can be used to determine the potential, V¢, that controls the chemical potential.

which determines the chemical potential, ep = eV, where V(z) is the value of the
potential at position x along the channel, in the direction of the field, due to the
drain-source potential gradient. In eq. (2.1), « is defined as the capacitance weighting

factor,
Qnet = —/C’quch = —OthVCh. (2.2)

From eq. (1.20), at T = 0, n = (eV,;,)?/mh?v?. Substituting this into eqs. (2.1)

and (2.2) and solving for the channel potential, V,, results in

Niot(T = 0) = ng; + ng (1 — 1+ QZG) (2.3)
Q

for V(z) = 0, where ng = Cqg|Vy|/e is the charge density induced by the gate elec-

2
trode assuming a single parallel plate capacitor and ng = § <Cg§”) determines the

correction due to the quantum capacitance.

In order to probe the electrical properties of graphene, we need to drive a cur-
rent through the transistor, thus requiring the application of a drain-source poten-
tial difference, Vy,, across the in-plane electrodes. This creates an inhomogeneity in
the potential, V(x), across the channel. We assume that the potential varies lin-
early across the channel, V(z) = Vysz/L. We can calculate the charge density at
points along the channel, n(z) + p(z), and define the total carrier density as the mean,
n+p= L' [dz[n(z) + p(z)]. Figure 2.2a shows the result of including this drain-
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2.1. THERMAL EQUILIBRIUM CALCULATIONS OF CHARGE CARRIER
POPULATION IN GATED GRAPHENE

0.8

——Varying T exc. Cq
--=-T=0Kinc. C
q

Figure 2.2: Variation of the total transport carrier density n + p with applied gate
voltage, V;, for Cy = 1.15 X 10~* Fm~2. (a) Effect of the applied drain-source potential,
Vs, on the charge carrier profile, demonstrated here for T' = 0, calculated using the
results of eq. (2.1). (a) Effect of changing the temperature from 7'= 0 to 7" = 400 K in
increments of 50 K for Vs = 0, calculated excluding (exc.) quantum capacitance using
the results of charge conservation with the linear capacitor model, 2.4 (solid orange
lines). A comparison of the results including (inc.) quantum capacitance is shown by
the black dashed line for T'= 0 K.

source potential. We see that the total transport charge never reaches 0, due to the
inhomogeneity, and the gate voltage of minimum carrier concentration, Vj, is offset by
Vis/2, the mean of V(x). Such effects have been observed experimentally [51]. How-
ever, the effect of drain-source voltage on carrier density is often unimportant, since the
applied Vj;, is usually small compared to the range of gate voltages, V. Furthermore,
the spatially inhomogeneous residual charge induced by the charged impurity potential,

to be demonstrated in section 2.3.1, is much more significant in most devices.

2.1.2 Linear Capacitor Model

We can generally ignore the quantum capacitance, particularly at large gate voltages,
where ng > ng. Neglecting the quantum capacitance and V (), fig. 2.1b is reduced to
a simple parallel plate capacitor with net charge density |Qnet| = Cq|Vy|. The polarity
of the charge, Q,¢:, depends on the direction of the applied gate voltage. By convention,
we assume that a positive gate voltage corresponds to a build up of electrons in the
graphene layer, i.e. Qnet = —CqVjy. To calculate the chemical potential, we equate this
gate induced net charge density to the carrier densities, n and p, defined in egs. (1.18)
and (1.19),

e(p(er, T) = nler, T)) = —CaVy (2.4)

thus ensuring conservation of charge density.
For non-zero temperatures we expect, from eq. (1.21), that Nyy(ep = 0,7) =
n(ep =0,T)+pler = 0,T) < T?. Figure 2.2b shows the results of solving eq. (2.4) to

calculate the variation of total carrier density with gate voltage and temperature for a
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2.2. DIELECTRIC RESPONSE: SCREENING

gate capacitance of Cy = 1.15 x 10~* Fm~2 (corresponding to a 300 nm layer thickness
of SiOg).

Figure 2.2b compares the results for the two calculations, with and without quantum
capacitance. Both egs. (2.1) and (2.4) give ep = 0 for V; = 0. Away from this point,
we find a minor decrease in the total charge density due to the quantum capacitance of
the graphene sheet. The effect of the quantum capacitance is found to be insignificant,
validating the approximation of a sheet charge density given by the gate capacitance,
na. We will choose to use this linear capacitor model for all future calculations, since

it is both simpler and more commonly used for experimental fitting.

2.2 Dielectric response: Screening

Screening by the Fermi gas can reduce the effect of external perturbations. This is
characterised by a dynamic relative permittivity, €5.(q,w). In the random phase ap-
proximation (RPA), a linear response is assumed; the electrons respond to a linear sum

of the external, U, and induced, U™?, potential:

Uet(q,w)

U(q,w) = U (q,w) + U™ (q,w) = (@, @)

, (2.5)
where the potentials are Fourier tranforms with reciprocal space components, q, and
frequency of oscillation, w. The perturbation in the charge density is given in terms of

the polarization function, II,

6n(q7w) = —H(q,w)U(q,w), (26)

this results in the induced potential,

U (q,w) = ve(q)on(q, w) (2.7)

where v.(q) is the 2D Fourier transform of the coulomb potential [52]. Introducing the
variable k = 4mege,, where €, is the external dielectric constant (without the addition

of free charges),

2e?

ve(q) = o (2.8)

Equations (2.5) and (2.7) form a self-consistant set; the solution is a simple geometric

series with the result,
6sc(qa w) =1+ UC(Q)H(qvw)' (2'9)

The response function is given by the Lindhard function

sYv s ry ].
1(g,w) = —gj > " Efk Ji = (1 4 s5'costy 1) (2.10)
k /

ks — €x’s’ +1h04 | 2
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2.2. DIELECTRIC RESPONSE: SCREENING

where the term in square brackets results from the angular dependence of the overlap,
as in eq. (1.36). For a static potential (w = 0), summing over bands s and s’ and

performing the angular integral in eq. (2.10) results in the response function [53]

2€F q 4k‘BT 4kBT _ knT
I(q,ep,T)= 5+ — + —5 + —51 (1 er/kp )
(GerT) = G55+ qhe T amzer T a2\ e

2 [u? 2K\ 1 1
B 7122/ diy 1= <> hok + hok ’
vt Jo q exp ( ka_TEF> +1 exp ( ”k;;p> +1

(2.11)

where we have assumed that g; = g, = 2 for graphene. In the long wavelength limit
(¢ < k), the response is well described by the Thomas-Fermi approximation. Since
the change in potential energy at any given point, 6U(R), is equivalent to the apparent
change in the chemical potential, 6U(R) = —dep(R), one can say that, if the change

in potential energy is only slowly varying over space,

dn Of(e,ep) 2 /
Hpyp=—= | Dle)———de = —— g,ep)de. 2.12
rr JECE= i [ feen) (212)
This is the Thomas-Fermi approximation of the polarization function. The degeneracy
of the distribution at low temperatures can be used to simplify the expression, such
that the polarization function is just the density of states at the Fermi-level, Ipp(T =

0) = D(eF). Using eq. (1.15) for the polarization, the dielectric screening is

6sc(‘])|q<<2kF,T:O ~1+ QS/Q7 (213)

where ¢ = 4kre?/(hvk) is the Thomas-Fermi wave number.

In the opposing, large energy limit, ¢ > 2kp, screening by the conduction band
becomes significantly small, such that the polarization function is given only by the
polarization of the valence band, I1,, = ¢q/4hv [54]. In this case, the dielectric screening

tends to a constant value,
s

€sclgs2kp,r=0 1 + 5 (2.14)

The response function over the full range of wavelengths was calculated by Hwang
and Das Sarma [54] using the Lindhard equation (2.10), they found

1+qs/q for g < 2kp
€ — =
eldlr=0=9, (3 -sint (Ze)) + 2 (1 ~ L /1- 4’;52) for ¢ > 2kp
(2.15)

where r; = €?/(hvk), such that ¢s = 4kprs. Equation (2.15) returns eqs. (2.13)
and (2.14) in the corresponding limits.
In simulations describing the evolution of the distribution function over time, which

will be presented in section 2.5, the distribution function can become far from the initial
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Figure 2.3: Screening polarization response, 11, as a function of temperature, T', and
inverse wavelength, q. D(ep) is the density of states at the Fermi energy, e, and kp
is the Fermi wavenumber. (i) Il/D(er) ~ 1, (ii) II/D(er) = FL and (iii) II/D(er) ~

2
In(4) kfFT + 5 R (é) show the three limiting regimes.

Fermi distribution assumed in the derivation of eq. (2.15). However, throughout the
time-dependant simulations, the result of the integral in eq. (2.12) does not change, due
to conservation of charge. Therefore, since both egs. (2.13) and (2.14) are independent
of the evolution of the distribution function, we define a time-independent two-regime
screening function, where Thomas-Fermi screening is assumed for low-energy scattering

and the valence electron screening is assumed for high-energy electrons, i.e. we set

1+%5 for qS%kF

. 2.16
1+ 5= for ¢ > %k}?‘ (2.16)

€SC(Q) |Tz0 = {

In the high temperature limit, kT > ep, eq. (2.11) is reduced to (kT > cp) =
2kpTIn(2)/(rh?v?) + ¢*/(12nkgT) such that the screening function is

8In(2)e’kpT 2
n n(2)e“kp n e’q

Esc|T>>5F/kB ~ 1 Kh21)2q 6l€kBT. (2.17)

Figure 2.3 shows the result of numerical evaluation of eq. (2.11). To summarise,

the three analytical limits are given by

1 2€F
(i) Il(g =0,T = 0) = Hrp(T = 0) = D(cp) = s
ii —0) &~ _ T q
(ii) T(q > 2kp, T = 0) ~ Iy = D(cF) oy .15)

kpT 1 erF q ?
(a. T kg) ~ D In(4)—+-7—= | = :
0 10073 )~ 20e) 2+ ()
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2.3 Impurities

The presence of any charged impurities of unit charge, e, on/within the substrate

material, at distance d from the graphene plane, causes a long-range coulomb potential,

e2

ul\r) = ———) 219
P (219)
before the effects of screening. The integral over the angular part of the 2D Fourier

transform results in the integral representation of the zero-th order Bessel function,

U=

€2 /°° 2mJo(gr)rdr  2me? exp(—qd)
Kxesc(q) 0 \/m K quC(Q)

where we have now added in the k-space screening function, e4.(¢q), from eq. (2.16).

(2.20)

The result of integration is as given in reference [55].

2.3.1 Residual Charge

Charged impurities induce a spatially varying potential at the graphene plane, Vi, (r),
the spatial mean of which we denote Vpimp = (Vimp(r)). This distorts the bands
throughout the graphene, as shown schematically in fig. 2.4a. When a potential of
Voimp 1s applied, corresponding to some gate voltage V; = Vj, we mostly cancel this
impurity induced potential and achieve the point of minimum carrier density, at which
er = 0. However, at this point there still remains spatial fluctuations in the potential,
Vimp(r) = [Vimp(r) —Voimp]. Quantifying the average fluctuation of the potential about
the mean [56, 57,

d*q
OV = Wiy = Voiml®) = iy [ 25 (a) (2.21)
(2m)
and using eq. (2.20),
62 2
(0Vimp) = 2T i <H> Co(rs, 4kpd), (2.22)

where n;p,, is the density of impurities. In eq. (2.22), the function

4F; [b] 2¢~q

— 1
Co(a,t) * (2+ma)?2  1+2a

+ (1 + 2ab)e®®(Ey[2ab] — E1[b(1 + 2a)]), (2.23)

where F[z] represents the exponential integral function [57]. To calculate the extent of
the resulting electron-hole puddles, the root mean squared spatial average fluctuation

in the impurity potential, ,/(6V;2 ), is equated to the spatially averaged shift in the

imp

local Dirac point, (d€imp) [57]. A self-consistent equation is obtained for the offset of
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Figure 2.4: (a) Band structure of energy, ¢, shown over spatially varying impurity
potential, Vi, (r), with mean Vj;pmp,. The shift of the Dirac point, de;p,, at any position

r is given by Vimp(r) — Voimp- /<(5Vﬁnp> is the root-mean squared of the deviation of
Vimp(r) from Vyimyp. (b) and (c) show representative (spatially averaged) electron (right)
and hole (left) puddles for chemical potentials of (b) ep = 0 and (c) ep > 0. As an

approximation to model the induced electron and hole puddles, /(6V2 ), as shown in

imp
(a), can be equated to mean the shift of the Dirac point from € = 0, (deimp) [57]. €},
and 5}7 . denote the quasi-Fermi level in hole and electron puddles, respectively.

the Dirac point, (6€imp),

2\ 2
(0imp)? = 2T Nimp <‘;> Co(rs, 4{02imp)d/hv). (2.24)

Due to these inhomogeneities, approximately half of the graphene sheet will ex-
perience a potential below the mean (electron puddles), whilst the other half has a
potential above the mean (hole puddles). We define a quasi-Fermi level locally in the
hole and electron puddles, 5}‘% = ep — (0€imp) and €*F7 . = €r + (0€imp), respectively.
Energetics of the spatially averaged electron-hole puddles are shown schematically in
figs. 2.4b and 2.4c.

For simple charge transport calculations, we can assume a homogeneous potential
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2.3. IMPURITIES

landscape with a chemical potential which varies as calculated via eq. (2.4). To ac-
count for the effect of residual charge, we set a minimum limit on the magnitude of
the chemical potential of the total system, given by (d€imp). Given e calculated for
graphene in the absence of potential inhomogeneity: for ep < (d€mp), the charge den-
sity is dominated by residual charge, for ep > (d€mp), we assume that the fluctuations
are washed out. This sets a hard boundary between the gate induced charge density

and the gate-independent residual charge density,

Ny {n((&simp),T)—F p((Gimp), T) if er < (Gimp) (2.25)

n(ep,T) + p(er,T) if er > (0€imp)

as in ref. [57]. From eq. (1.20), at T = 0, the residual carrier density at charge

neutrality is

<65im >2
Nyes = T252 (226)

To calculate the Ny (Vy) profile more precisely, with a continuous variation between
gate-induced and residual charge dominated regimes, we explicitly include the spatially

averaged electron and hole puddles. Therefore eq. (2.4) becomes

1 * * * *

¢ p (€7 T) +p(ere:T) —n (. T) —n (ke T)| =-CV, (2.27)
for the net charge density, which can be solved to find the chemical potential, e, and
substituted back into

1
Niot = 5 [p (s;h, T)+p (5}76, T)+n (Eh, T)+n (E*F,C, T)] (2.28)

to calculate the total carrier density. The results of this full calculation are shown in
fig. 2.5.

The total residual carrier density at the charge neutrality point, ep = 0, is

1
Niot(ep =0,T) = 5 [(n(=0€imp, T') + P(—0€imp, T') + n(6€imp, T') + p(0€imp, T)]

- <55imp>2 + E k:BT 2
 wh20? 3\ hv ’

(2.29)

where we have made use of egs. (1.18) and (1.19) and the dilogarithm inversion iden-
tity. Remarkably, this is simply the sum of the residual carriers due to local potential
fluctuations calculated at 7' = 0, eq. (2.26), and the thermally excited carriers at the
Dirac point in the absence of potential fluctuations, nyry = n(T, e} = 0)+p(T, €3 = 0).
Therefore, the effects of the impurity-induced residual carrier density and the thermally

excited carrier density are additive at the charge neutrality point,

MNP = Nres + NTH, (2.30)
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Figure 2.5: Total transport carrier density variation with gate voltage, V,, about the
offset, Vp, for varying density of impurities, n;,p,. Carrier densities were calculated
using eq. (2.28), accounting for electron and hole puddles. (a) "= 50 K. (b) 7" = 300
K. The legend shown in (a) also applies to (b).

where nyp denotes the carrier density at the charge neutrality point (ep = 0).

2.3.2 Impurity Scattering

The impurity potential will also result in the deflection and decoherence of electron mo-
menta, as described for a general potential in section 1.3. The transition rate between

momentum states, given by eq. (1.38), is

2

2 2
e e 2191 + 55’ cosfy 1 )d (e — €x) (2.31)

Simp ™
Hquc(Q)

k—k! = ”impfAh

where we have used the result of eq. (2.20). Note that ss’ = 1 since scattering is
assumed to be elastic. Using eq. (1.49), the momentum relaxation time is
1 ) /27r . e—2qd
——— = NympTUTSk dfsin“——. (2.32)
T(k) e ° 0 (q€SC(Q))2
For elastic scattering, ¢ = 2ksin(fy 1/ /2).

In the low temperature limit, the ensemble relaxation time is given by the value of
the momentum relaxation time, 7, at k = kr. As a result, the Thomas-Fermi screening
limit, ¢ < 2kp, is always satisfied. This makes sense, as we are approximating that the
distribution is highly degenerate, with all electrons residing below the Fermi-level. If

we approximate that d = 0, we find the analytical solution,

1 NimpTV
_ D I

T(kF) N 16]4317

(1/2r5) (2.33)
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for the momentum relaxation time at the chemical potential, where the function

(127 — 8722 - (24— 160%) tan~! () )

1—22

2
I(z) = = |27z + 242 — 127 +
(x) =73 N

(2.34)

The electrostatic environment for graphene on a SiO9 substrate is assumed to be

described by the bulk 3D properties of neighbouring materials. The external dielectric

constant is therefore taken as an average of the dielectric constant in the two mediums

that the field permeates (SiO2 and vacuum) [58], €, ~ 2.5, thus rs ~ 0.8. Using this
value and eq. (2.34), we find I(1/2rs) ~ 1.6.

Using eq. (1.20) for the low temperature carrier density and eq. (1.53), we obtain

the low-temperature, linearised Boltzmann result for d = 0,

20e

—_— 2.35
nimph7 ( )

Himp =
as in [57]. The mobility due to ionised impurities is constant, and the conductivity is
thus proportional to the carrier density, with a gradient dependent on the density of
impurities. We will further explore impurity scattering and the effects of the distance
of impurities from the graphene plane in detail in chapter 3. However, from eq. (2.32),
it is straightforward to observe qualitatively that for an increased impurity distance, d,
the scattering of higher energy electrons (i.e. large ¢) is suppressed.

It should be noted that we have only considered randomly distributed impurities.
If the substrate chemistry is such that impurities are correlated, then above a critical
impurity density, the nature of correlations becomes important, as will be shown in

section 3.4.

2.3.3 Real-Space Screened Coulomb Potential

Before deriving the form of the 2D screened Coulomb potential, we start by deriving
the well-known Yukawa-potential for a 3D screened Coulomb potential for comparison.
The Thomas-Fermi approximation for the dielectric screening in 3D is e3sp = 1 +
¢%/q?, where the Thomas-Fermi wavevector, grp = 1/65%% in 3D [59]. The Fourier

transform of the 3D coulomb potential is

e2 1 . 4re?
Gsp = ——— [ BroedT = —— 2.36
P kesp(q) / r resp(q)q? (2.36)

To find the form of the real-space screened potential, we now take the inverse Fourier

transform of eq. (2.36),

1 4rre? ; e? & q
usp(r) = /dgq e " = / dg———5—sin(¢qr).  (2.37)
(2m)3 k(g% + a7p) RTT Jooo @+ Gpp
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The integrand of eq. (2.37) has two simple poles, ¢ = igrr and ¢ = —igrp. Evaluating a
contour integral over an infinitely large semicircular region in the top (complex positive)

half of the complex plane, we find

e2

ugp(r) = —e ITF", (2.38)

RT

Considering the k-space form of the 2D coulomb potential (2.20), the inverse Fourier

transform is,

1 2re? , e e—ad
— dZg—"— _emedeiaT / d Jo(qr). 2.39
u2p(r) (277)2/ Telg+a) © ko latgsl olar) (2:39)

The Laplace transform of the Bessel part is [55],

1
V2 4+ 82

The inverse Laplace transform of the preceding factor of the integrand can be evaluated

Li(s) = /000 Jo(gr)e ¥dq = (2.40)

as

1 iR qe—qd
L£51(s) = 1i — L e%dq. 2.41
2 (8) = limpeo 2mi /—iR q+ q5€ 1 (241)

Evaluating the relevant contour integral, semicircle over the left (real negative) of the

complex plane, we find that

(2.42)

1 —qse D) L 5(s —d) for s—d >0
L57(s) = :
0 for s —d <0

Integrating over egs. (2.40) and (2.42),

e? [*> e 9= §(s—d)
usp(r) = /‘f/d ds [qs N + Vel (2.43)

The resulting real-space screened 2D coulomb potential is

€2 €2 s
up(r) = o : F(gs) {r,d} (2.44)

where F(¢s) {r,d} is the Laplace transform,

equu
du.
V24 (u+d)?

Therefore, a 3D electron gas modifies the Coulomb potential by a multiplicative

Fla) {rod) = /0 h (2.45)

factor, e79TF"  whilst a 2D electron gas modifies the Coulomb potential by the additive
term, s F(gs) {r,d}. The form of eqgs. (2.38) and (2.44) are compared in fig. 2.6 for

K

given values of the screening wavevectors, gsc = qrr = ¢s-
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Figure 2.6: Potential, u(r), for attractive impurity, screened by a 2D (solid lines) and
a 3D (dashed lines) electron gas with screening wavevector, gs. = ¢s = qrp. For the
2D electron gas, we have assumed that d = 0.

2.4 Further Scattering Mechanisms

2.4.1 Point Defects

Defects to the lattice chemistry will disrupt the band structure over a small area. Such
scatterers will be considered as short-range potentials, only effective over a small region

containing the defect. This ‘region’ can be characterised as a finite spatial limit, R,

u(r) = {UO for r <R (2.46)

0 for r>R’

The integral over the angular part of the 2D Fourier transform results in the integral

representation of the zero-th order Bessel function,

R
2
il = Qﬂ-UO/ Jo(gr)rdr = 7TR2% <J1(qR)) , (2.47)
€sc Jo €sc qR

where we have included the screening effect of the 2D carriers, €s.. Considering point
defects (R — 0), we find the limit

. 2J1(qR) . .
iy () = i, nctar) =1, (249
such that @ ~ TR2U /€sc. This gives an effective cross-section of scattering, Ag, = TR2.

Consequently, the transition rate, given by eq. (1.38), is

2

AS'I"
Yo (1 + ss'cosOy k)0 (ex — x) (2.49)

ESC(Q)

T
Sk = Nsr 7

Ah
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for a density of ng,. defects. We assume defect scattering to be elastic: ss’ = 1 and

q = 2ksin(fy 1 /2). Using eq. (1.49), the momentum relaxation time is

1 (AeUo)? ke /27r o 1 g (AgU)’ k
- E 70 (1 - cost) —— = F(2r), (250
o) = dmh o ), W) dnipy L @re) (250)

where the function

F)=L [ 52 (gt ()

4
+ <87r:z + 96m2® — 32072” + 162 (—7 + 4027) + 2 (1 + 30x2> — 2)] :

(2.51)

Using egs. (1.20) and (1.53) for the low temperature carrier density and mobility
respectively, the mobility due to short range scatters is inversely proportional to the

carrier density, n,

1 hv?
LLsy ﬂviin—l. (2.52)
7 (AsrUO) Nsr

This means that the conductivity limited by short range scattering potentials, o4 =

neflsy, is a constant, determined only by the density of defects and the strength of the
potential that they generate.

2.4.2 Strong Defects and Mid-Gap States

For strongly interacting defect potentials, it is necessary to go beyond the Born ap-
proximation. Various forms of charge-neutral “resonant” impurities and defects, such
as vacancies, adatoms and adsorbates, create mid-gap states [60-62]. The presence
of such mid-gap states has been confirmed and characterised by density functional
theory (DFT) calculations [63]. Extended calculations of the interaction Hamiltonian
[60, 64, 65] lead to the relaxation rate

1 TNyesD

2
@ aen WD) (253)

in the limit of a large defect potential, U — oo, and assuming that ¢ < D,..s, where
Dyes =/ \/57170 ~ 6 eV and n,..s is the number of resonant scatterers per carbon atom.

The resulting resonant impurity limited mobility is

2 —— 2
fres = M <1n <hv Wn)) . (2.54)

2
WnresDr Dyes

Although eq. (2.54) decreases with increasing carrier density (since ep < Dyes), the
logarithmic decrease is not as strong as the inverse relationship found for weak scatter-

ing, eq. (2.52). Therefore, such scattering can be difficult to distinguish from that of
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charged impurity scattering with a weak defect scattering from conductivity measure-

ments alone [61].

2.4.3 Acoustic Phonons

Acoustic phonons, of wavevector k,, couple to the lattice through the ‘deformation
potential’, U(r) = D,ce(r), proportional to the strain, e(r), with a constant of propor-
tionality, D,. =~ 25eV [66]. The deformation potential constant, Dy, is reported with a
large range of experimentally calculated values [6, 66, 67]. Assuming harmonic phonon

oscillations, described by the atomic displacement

s(r,t) = 4/ z‘lpnidh(kcﬁcos(ka T —w(ky)t), (2.55)

the deformation potential is

. hk O s
u(r,t) = Uaps (1, 1) + tem (v, 8) = iy | oot Am:vs Dae (elk“ re-iwka)t _ g=ika re’“““”)

(2.56)
where p,, = 7.6 x 1077 kgm ™2 is the graphene mass density, vs ~ 2.6 x 10* ms™! is the
speed of sound in graphene [66] and we have assumed a linear vibrational dispersion
relation w, = vsk,, strictly valid for long wavelengths (¢ < 7/a). The amplitude of
oscillation in eq. (2.55) is found by equating the total energy of oscillation to the single

phonon quantum, hw(k,) [59]. For the absorption term, the Fourier transform

hk,

SApm0s Dace_i‘“(ka)t/eik“'re_iq'rdr (2.57)

Ughs = 1
is simply the Dirac-delta function, requiring that wavevectors sum to zero, k, = q.
The case is similar for emission, with k, = —q. In both cases, the magnitude of the
phonon wavevector is equivalent to magnitude of the change in electron wavevector

ko, = g = |k’ — k|. The transition rate, including both absorption and emission, is

S8 =~ D2 (1 + cosbiere) (2N(q) + 1) 8(ewr — £xc)- (2.58)

2Apmvs
In deriving eq. (2.58), we made the quasi-elastic approximation, fuww(q) = 0. This is a
useful simplification to make, especially when it comes to the computational methods,
since the dynamic dependence of the change in energy on the initial and final wavevec-
tors can be ignored. The approximation is strictly valid for hw(q) < ep, which is the

case since v < v.
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Using eq. (1.49), the resulting total relaxation time is

- D2, I gsin?0 _ _
o Il oo A ey 1 R R (S B

+ Ng (1 = fe + hwy))].

In the equipartition regime, T' > Trq = hvs2kr /kp, the phonon occupation is N, ~
kpT/hw, and scattering is dominated by stimulated emission and absorption events.
Equation (2.59) simplifies to 74(g) ~ 4pmv2ih3v?/kpTD2.c, and using eq. (1.50), we
find that the equipartition conductivity is

(kgT)™, (2.60)

independent of n and inversely proportional to 7. A comparison between eq. (2.60)
and the full, numerically integrated acoustic conductivity from eq. (2.59) is shown
in fig. 2.7a, where we calculated the chemical potential, ep(V;) using eq. (2.4). The
EP conductivity, eq. (2.60), agrees with the full calculation in the limit of large 7" and
small V. Using eq. (2.60), the mobility limited by acoustic phonons in the equipartition

regime,
4ehv? prv?

-1
= 2.61
WEP TkpTD2, (n+p), (2.61)

is inversely proportional to the carrier density, similar to short-range defects (2.52),
and also inversely proportional to temperature.

In the opposing, Bloch-Gruneisen, limit, T" < Tpg, the relaxation rate was calcu-
lated in ref. [68]: T(cr) = (2mh3v2 prer)/(41¢(4) D2 v(kpT)*). Given that we are in a
low temperature regime, T' < Tpg < ep/kp, we can use eq. (1.53), to find that the

conductivity is
2m8/2e2 p, v A2
41¢(4) Dz,

oBG = [nTzo]g/Q(kBT)izl. (2.62)

From eq. (2.62), we can see that opg o n?/2T~%. A comparison between eq. (2.62)
and the full, numerically calculated acoustic conductivity is shown in fig. 2.7b, the two
calculations agree in the limit of small 7" and large V.

From fig. 2.7a, it can be seen that the EP approximation, eq. (2.60), is valid at

room temperature over a reasonable range of applied gate voltages.

2.4.4 Optical Phonons

Calculations of the finite momentum coupling to in-plane optical phonon modes about
the I' point have been carried out in ref. [31]. We shall summarise and use the
results here. DFT was used to determine the eigenvectors of the phonon modes, and

the perturbation in the presence of mixing of modes. For intraband longitudinal and
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Figure 2.7: Conductivity due to acoustic phonon scattering, using the deformation
potential approximation, as a function of applied gate voltage, V;, and temperature, T,
(green). (a) Comparison to the EP approximation eq. (2.60) (black). (b) Comparison
to BG approximation eq. (2.62) (black).

transverse optical scattering, the transition rates in the small momentum limit are

™ [
S = 550 (1= ss'cos (@i 1 ¢x = 200)) Ao (wo) (2.63)
and
i &
Sk = mﬁ% (14 s5'cos (g1 + P — 20q)) A 0 (wk). (2.64)

The total transition rate due to optical phonons,
O o l
Sk = ﬁAiak’(wO)’ (2.65)

is independent of the angular distribution. Given that the angular dependence from
longitudinal and transverse modes cancel out, the total transition rate is the same for
both intra- and inter- band scattering by I' optical phonons.

Phonons at the K point cause intervalley scattering in which an electron scatters by
the reciprocal lattice vector, K, to an inequivalent valley. As noted in reference [31], the
DFT calculations for the phonon dispersion and corresponding matrix elements were
performed in [69]. The result is

2

SK = B% (1 — sscosty i) AL o (wk) (2.66)

Apmwi

The ‘gauge field’, 5, terms are physical parameters representing the phonon coupling
strength, calculated to be Bo ~ 10 eV/A and Bx ~ 3.5 eV/A [67]. The resonant
optical modes in graphene are near dispersionless, such that we can assume them to be
of constant energy, independent of the electron transition, with values of hwp ~ 165
meV for both transverse and longitudinal modes and hwg ~ 124 meV [67].

The sum of longitudinal and transverse optical phonons around the I' point results

33



2.4. FURTHER SCATTERING MECHANISMS

in the relaxation time

1 2 1— fle+ hw
_ /30 2[N(wo) ’8+hLUO’ f( O)
TO(E) pmwO(hv) 1- f(E) (2 67)
1—f(e— Mo):| ’
+ (N(wo) +1) |e — hw .
( ( O) )| O| 1 _ f(€)
Similarly, for phonons at the K point,
1 33 3 1— f(e+ hwg)
= -N hw
S i 2l hel RS
1 1-— f(6 - th)
N 1 — hw —(e — hw .
+ (Nwr) +1) (’5 K|+ 5 K>> - /() ]
(2.68)
In calculating eq. (2.68), we have taken care that, for electron emission, ss’ = —1

(interband) in eq. (2.66) if iw > ¢ and ss’ = +1 (intraband) otherwise. Taking the low
temperature limit, 7" — 0, using eq. (1.53),

e2p wov /M=o wo wo 1-1 . hwo
o0|T~0 s ﬁﬁ% H TT=0 + 7‘ + ‘ TNT=0 — TH sinh <k:BT>
(2.69)
and

e pmwicv?\/NT—0 sinh (th >

UK!Tzo ~ \/Eﬂ%(
1

(2.70)
« B\m#‘ﬂﬂﬁ—w*z(\/m_?ﬂ

Figure 2.8 shows the calculated resistivity of the two optical phonon modes using
the full relaxation times (egs. (2.67) and (2.68)) and eq. (1.50). The result of egs. (2.69)
and (2.70) are also shown at V; =20 V in fig. 2.8.

The (1 — fo(erp — hw)) terms in egs. (2.67) and (2.68) highly suppress the scattering
by emission, since, for most temperatures considered, the distribution at ¢ = ep — hw
will be approximately full. However, the shift of the distribution function under an
applied field will make more low-energy states available for electrons to scatter in
to. The full time-dependant simulations described in section 2.5 will overcome any

oversimplifications that are present in egs. (2.67) and (2.68).

2.4.5 Substrate Polar Phonons

Optical phonons in neighbouring polar substrate materials, such as hBN or SiO9, create
fluctuating electric fields; electrons in the graphene plane then couple to the modes of

the polarization field. The perturbation to the Hamiltonian is characterised by the
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Figure 2.8: Resistivity due to (a) I'- and (b) K- optical phonon scattering, as a function
of applied gate voltage, V,, and temperature, T, compared to the low temperature
approximations, egs. (2.69) and (2.70), at V; =20 V (black line).
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substrate dielectric response,

e—koz

ivko

for surface optical modes of frequency ws,, where z is the normal distance to the

u(r,t) = eF

(elko'l‘e_lwsot _ e—lko'relwsot> s (271)

substrate surface and F' is the Frohlich coupling parameter [70]:

F= Ke(oo; F1 e(o)1+ 1) ;ZZZ]W’ 2.72)

where €(0) and €(00) are the static and high frequency dielectric constants respectively.
When taking the overlap, we maintain the 2D Fourier transform by restricting the z-
extent of the wavefunction to an impulse, 0(z — dspp), at the distance of the graphene
plane from the substrate, d,,. As for acoustic phonons, the spatial Fourier transform

from the overlap results in k, = ¢ and the resulting transition rate is

e—2qd5pp

S = F2T (

) (14 s5'cosO ) AP 2.73
qesc(q)Q) ( ) ) k—k ( )
For a SiOs substrate, €(0) = 2.5 and €(c0) = 3.9, dgpp ~ 0.4 nm and there are two
dominating, near dispersionless, surface modes of energy hws, ~ 56 meV and hwg, =~
140 meV [71].

We write the momentum relaxation rate as a sum of the absorption and emission
parts

1 1 1
= + (2.74)

Tspp Tspp,abs Tspp,em
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where
1 A 2F2 1— hwso 2w _Qqe+dspp
= ° QN(wso) |<‘5 + hWSO‘ f(5 + ) / d@Sin297G ,
TSPp,abS(e) drh(hv) 1— f(e) 0 qo+€sc(qo+)
(2.75)
1 Ae?F? 1 — f(e — hwso)
= N s0 1 - hwso
@)~ T | Vs D — 7
27 e_ZqG—dspp
X (19 (e — hwso) / df ————sin?0 (2.76)
0 QH—esc(QH—)
27 672q9idspp 9
+19(—5+hwso)/ A0 (4 cosh) ) ,
0 qeiesc(q9i>

G = [2(g% & ehwso) (1 — cosh) + h*w?]/(hv)? is the reciprocal scattering length for
intraband absorption and emission, respectively, and 3, = [2(e? — ehwso)(1 + cosf) +

h%w?]/(hw)? for interband emission.

2.5 Computational Methods

In the models shown in this section, we make a number of simplifying assumptions: (1)
homogeneity in real-space throughout the device, this can later be extended to consider
transport between real-space cells, where inhomogeneity can exist on the scale of the cell
size; (2) high chemical potential, such that only intraband scattering is present, ss’ = 1;
(3) valleys are assumed to have equivalent distributions. We will explore two methods
to model transport given a uniform applied electric field, E, and multiple sources of
electron scattering: Direct Simulation Monte Carlo and discontinuous Galerkin. Later,
in section 3.1, we will expand upon these methods to allow us to relax assumption (2)

and model inter-band transitions.

2.5.1 Direct Simulation Monte Carlo (MC)

A rectangular grid is used to discretise the 2D k-space into a set of values over a
range [—kJ'", k] x [—k; kyer], chosen such that the distribution, f(t,k), at
the boundary and beyond is negligibly small throughout the simulation. Each k-space
coordinate (k;(7),ky(j)) defines a cell, C;;. We simulate N, electrons on this grid,
assumed to be representative of the entire ensemble of real electrons that would be
present in the device. These simulated electrons are distributed onto the grid, with
each simulated electron holding the same statistical weight in comparison to the real
electron distribution. Therefore, the Pauli exclusion principle (PEP) is accounted for
by setting a maximum number of electrons allowed in each cell, N/**. Using the same
reasoning as in [72],
2 N,

Nmaw — =, 2P 9.
L) (271‘)2 J n ( 77)
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since 0 < f <1, where {);; = fcij dk is the k-space area of the cell Cj; and n is the real-
space density of electrons given by eq. (1.18) with g, = 1 (only one simulated valley).
Initially, the electrons are distributed according to the Fermi-Dirac distribution (1.16).
This equates to assuming that the system is initially in equilibrium with the thermal
bath of the environment and has some chemical potential, e, which sets the density of
real electrons, n, and, therefore, the maximum number of simulated electrons in each
cell, Nj7*. The simulated distribution in each cell is given by fi; = Nj; /N{j’.mz.

The free-flight trajectories are determined by assuming uniform acceleration by the
applied electric field, E, over the short times between scattering, At. Integrating over

the rate of change in electron momentum, equated to the electrostatic force gives

Ak = —%At. (2.78)

Upon updating the wavevector of each electron, the grid is also shifted according to
eq. (2.78) to ensure that the number of electrons in each cell remains constant. This
procedure, which is well described in ref. [73], ensures that distribution doesn’t be-
come unphysical (ensures that f < 1) due to inhomogeneities in the flux between cell
boundaries.

Using the total transition rates, I'(k), for each scatterer, we can use a stochastic
approach to model the evolution of the system to a steady-state solution of the Boltz-
mann equation (1.44). The duration of free flight, between any two collisions, for a
single electron is given by [74]

At =

— 1 2.
Ftot Hel ( 79)

where o7 is a randomly generated number from a uniform distribution between 0 and 1
and I'tps = >, T'; is the sum of total transition rates over each individual scatter rate,
I';. At the end of free drift, the scatterer encountered by the electron is chosen based
on the relative total scattering rates. A randomly selected value, o2, is compared to
the accumulative sum of the individual total scatter rates, I';.

Generally, to consider a large distribution of electrons, an energy-dependant self-
scattering term is included, such that all electrons free drift for the same length of time
over each iteration. In essence, this means that I';y; is the same for each electron, whilst
the self-scattering, I's = I'ioy — Y, T'i(€), differs, as shown in fig. 2.9. If self-scattering is
chosen as the scatterer at the end of free drift, the electron remains in its current state.
For our simulations, we find that, since having to calculate the values of I'; for each
electron to determine the scatterer encountered, it is beneficial to allow the electrons
to free drift independently and neglect the large amount of self-scatters that would
otherwise have to be considered.

The state after scattering, k’, is then selected by consideration of the transition
rate, Sk_,x, to different k-states. The magnitude, k, after scattering is given by the
energy conserving terms (1.39) and (1.40). The probability of the change in polar angle
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Figure 2.9: Total scatter rates, I'(¢), over a range of electron energies, ¢, for the different
sources of scattering. We have used the following parameters: density of impurities,
Nimp = 0.5 X 10" m~2; impurity distance, dimp = 0.4 nm; substrate distance, dgp, = 0.4
nm; chemical potential, e = 0.3 eV. (a) Temperature, 7' = 10 K. (b) Temperature,
T = 300 K. In both cases we have approximated low temperature screening, eq. (2.16).

of the wavevector being between 6 and 6 + df is given by

dOSk_w (6.)

P(0)d) = — .
o Sk (0:)do

(2.80)

Another uniformly generated random number, g3, is selected to represent a point on

the probability distribution, corresponding to the angle, 6., such that

03 = foec Skﬁk’(ec)dg
3 = = .
2T Sie st (0)d0

(2.81)

The simplest angular dependence of scattering comes from the overlap of the pseu-
dospinor part of the Bloch states. This corresponds to the (1 + cosf) term in eq. (2.49)
for short-range defects, for example. Using eq. (2.81), the change in angle, ., is thus

found by solving
1

2

Solving such equations using symbolic equation solvers can be inefficient. Therefore, it

03 (90 + Sinec) . (282)

is found to be beneficial to discretise § into an array and selecting 6. by comparing the
relative probabilities to g3 in a similar manner to selecting the scatterer encountered
at the end of free drift.

The cell, ij, that the electron scatters to can now be determined, and the distri-
b
the chosen transition can occur based on the PEP. It follows the form of the ‘collision

bution, has to be considered. A rejection technique is used to de