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Abstract

In this thesis, the charge-carrier mobility in graphene, limited by multiple sources of

electron scattering, is studied under the framework of the Boltzmann transport equa-

tion using the Born approximation for scattering potentials. Two congruent methods

are explored: deterministic discontinuous Galerkin, and stochastic Direct Simulation

Monte Carlo, to solve the full Boltzmann equation. Such temporal simulations, show-

casing the transient dynamics from thermal equilibrium to a new steady-state under

electrostatic perturbation, reveal the profound effects of the Joule heating capabilities

of graphene, where the electrons behave as an electron gas with weak external lat-

tice coupling. Mobility curves reveal the nature of electronic transport with changing

electron population, and under varying physical parameters. As modelled for impurity

dominated graphene, we find a “universal” connection between the carrier mobility and

variation of conductivity with carrier population, applicable for both pristine graphene

and graphene heterostructures. Ultimately, such universality relies on universality at

the Dirac point. When thermally excited phonons and charge carriers become impor-

tant, the behaviour around the Dirac point should be carefully considered. We show

how thermal effects on the low-energy electron distributions affect the width of the

total resistivity curve with respect to variations of carrier density, and how this affects

the measured mobility and it’s temperature dependence. Twisting between constituent

layers of hexagonal lattices alters the periodic lattice potential, forming secondary Dirac

points and band gaps within the low-energy spectrum of a single graphene layer. We

show how this can limit conductivity with and without external lattice perturbations.

We find intriguing features, such as negative differential conductance, at electron ener-

gies around the secondary Dirac points, due to Bloch oscillating electrons. 3D printing

provides a potential solution for scalable and efficient manufacturing of 2D materials

and heterostructures. Flakes deposited via inkjet printing form percolating networks.

Results reveal how the macroscopic electrical properties, characterised by the hopping

and tunnelling between individual flakes, are strongly influenced by the distribution of

flakes and by complex meandering electron trajectories, which traverse multiple printed

layers.
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Chapter 1

Graphene Structure and Charge

Transport

1.1 Introduction

Graphene has exciting electronic properties due to its 2D hexagonal carbon struc-

ture. The resulting electronic bands, which give rise to electrons with a linear energy-

wavevector dispersion, analogous to zero effective mass, were first studied in 1947 by

Wallace [1], and later by DiVincenzo and Mele [2] in 1984. In 2004, Geim and Novoselov

were able to effectively demonstrate the transfer of atomically thin graphene from bulk

graphite onto a silicon dioxide (SiO2) substrate using scotch tape [3]. Following this,

there has been extensive focus on the manufacture of high quality graphene; mostly

via exfoliation [4] and chemical vapour deposition [5]. Given the very small effective

mass of graphene near the Dirac point (where the conduction and valence bands meet),

the electrons behave as relativistic Dirac fermions with a Fermi velocity of v ∼ 106

ms−1. This large velocity allows for potentially high intrinsic electron mobility, re-

ported to be as large as 20 m2/Vs for suspended graphene, in the low-field regime [6].

It is known that highly dielectric substrates degrade this mobility by as much as two

orders of magnitude [7, 8]. Understanding the origins of electron scattering is vital for a

complete understanding of the electronic properties in graphene. Advancements in ma-

terial manufacturing have brought new possibilities to test the fundamental properties

of graphene electronics, with some suspended and protectively encapsulated exfoliated

graphene samples reported in the ballistic regime [9, 10]. Heterostructures comprising

2D materials have been demonstrated on a research-scale with a broad range of ap-

plications, including broadband photodetection [11–13], LEDs [14, 15], tunnelling field

effect transistors [16, 17] and flexible electronics [18]. However, there still exists a need

for scalable manufacturing techniques to ensure that such layered 2D materials have a

wide commercial impact. Additive manufacturing (3D printing) provides a promising

solution. A large amount of progress has been made in the development of material

inks comprising dielectric, semiconducting and conducting 2D flakes and nano-particles

4



1.2. ELECTRONIC STRUCTURE OF GRAPHENE

(a) (b)

Figure 1.1: (a) The real-space lattice structure and (b) the first Brillouin zone in k-
space. The primitive unit vectors a1 and a2, with a magnitude of one lattice constant,
a = 2.46 Å, make up the unit cell. acc is the carbon-carbon bond length. Nearest-

neighbour vectors are labelled δ1 =
(

0, a√
3

)
, δ2 =

(
a
2 ,−

a√
3

)
and δ3 =

(
−a

2 ,−
a√
3

)
. The

reciprocal lattice vectors b1 and b2 define the Brillouin zone, with the high symmetry
points K±, Γ and M. Filled black and grey circles are used to distinguish between the
two sub-lattices.

[19–26]. However, there is a need for greater understanding of the transport phenomena

and structural properties of 3D printed heterostructures.

This introductory chapter outlines the theory that underpins charge carrier scat-

tering in graphene and an overview of the comprehensive subject of transport in dis-

continuous conductive materials, relevant to inkjet printed structures.

1.2 Electronic Structure of Graphene

1.2.1 Tight-Binding Model

Different hybridization of carbon atoms results in a number of different allotropes with

vastly different properties, despite having the same atomic building blocks. Graphene

is formed by sp2 hybridization, whereby an electron is promoted from the 2s orbital

into the 2p orbital in order to form an array of sigma bonds in a 2D plane with a

separation of 120◦. The atoms are therefore arranged in a 2D hexagonal lattice, with

the out-of-plane dangling bonds forming a network of π-bonds.

The real-space lattice has a basis of two atoms, which are often referred to as the

two sub-lattices. The unit cell, as shown in fig. 1.1a, is defined by two primitive lattice

vectors, a1 =
(
a
2 ,

√
3a
2

)
and a2 =

(
a
2 ,−

√
3a
2

)
, where a = 2.46 Å is the lattice constant

[27], related to the inter-atomic distance, acc, by a = acc/
√

3. The reciprocal lattice

vectors are b1 =
(
2π
a ,

2π√
3a

)
and b2 =

(
2π
a ,−

2π√
3a

)
. This results in the hexagonal first

Brillouin zone shown in fig. 1.1b.

In the tight-binding model, the electronic wavefunction of the jth orbital, Ψj(k, r),

5



1.2. ELECTRONIC STRUCTURE OF GRAPHENE

is given as a superposition of Bloch functions,

Φj(k, r) =
1√
N

N∑
i=1

eik·Ri,jϕj (r−Ri,j) , (1.1)

where Ri,j is the lattice vector corresponding to the position of the jth atomic orbital

within the ith unit cell. This can be applied to the 2pz orbitals at each atomic site of

the two sub-lattices, resulting in a basis of two Bloch functions. We can define a 4 × 4

Hamiltonian, H, in this basis with matrix elements

Hm,n =
1

N

N∑
i=1

N∑
j=1

eik·(Rn,j−Rm,i) ⟨ϕm (r−Rm,i) |H|ϕn (r−Rn,j)⟩ (1.2)

where m and n can be either of the sublattices A and B. We shall only consider the

most dominant terms within the Hamiltonian. These are the terms described by on-site

and nearest-neighbour interactions. Therefore, the diagonal matrix elements are given

by same-site interactions (i = j),

HAA ≈ ⟨ϕA (r−RA,i) |H|ϕA (r−RA,i)⟩ = ε2p, (1.3)

where ε2p is defined as the energy of the 2pz orbital [28]. The off-diagonal elements,

describing inter-sublattice coupling, are given by the nearest neighbour interactions,

HAB ≈ 1

N

N∑
i=1

3∑
l=1

eik·δl ⟨ϕA (r−RA,i) |H|ϕB (r−RB,l)⟩ = −γ0f(k), (1.4)

where we have defined the nearest-neighbour hopping parameter γ0 = −t =

⟨ϕA (r−RA,i) |H|ϕB (r−RB,l)⟩, the function

f(k) =
3∑

l=1

eik·δl = eikya/
√
3 + 2e−ikya/2

√
3cos (kxa/2) (1.5)

and the respective positions of the neighbouring atoms δl = RB,l − RA,i (shown in

fig. 1.1a). Taking the complex conjugates gives HBB = H∗
AA = ε2p and HBA = H∗

AB =

−γ0f∗(k), such that

H =

(
ε2p −γ0f(k)

−γ0f∗(k) ε2p

)
. (1.6)

Similarly, an overlap matrix, S, with elements

Sm,n =
1

N

N∑
i=1

N∑
j=1

eik·(Rn,j−Rm,i) ⟨ϕm (r−Rm,i) |ϕn (r−Rn,j)⟩ (1.7)

accounts for non-orthogonality of neighbouring atomic states. Following the same steps

6



1.2. ELECTRONIC STRUCTURE OF GRAPHENE

as for the Hamiltonian, we find that

S =

(
1 s0f(k)

s0f
∗(k) 1

)
, (1.8)

where s0 = ⟨ϕA (r−RA,i) |ϕB (r−RB,l)⟩. Solving Hψj = εjSψj using

det (H − εjS) = 0, (1.9)

gives the two energy bands:

εs =
ε2p + sγ0 |f(k)|
1 − ss0 |f(k)|

, (1.10)

where s = ±1 denotes the band indices, conduction and valence bands respectively.

We set the energy axis such that ε2p = 0 is the zero-point energy and use the values

γ0 = 3.033eV and s0 = 0.129 [27]. The resulting band structure, shown in fig. 1.2a, has

a band crossing at the K points with no band gap, from which we name two inequivalent

valleys K− and K+. In a similar fashion to the band index, s, we will denote the valley

index ζ = ±1.

Exactly at the valleys (the Dirac point), the wavevector is Kζ = ζ (4π/3a, 0), such

that there is no coupling between sublattices, f(Kζ) = 0. We can expand about the

K points to find the dispersion relation for low energy electrons. Defining a relative

momentum p = ℏk− ℏKζ = (px, py) and substituting into eq. (1.5) gives

f(k) ≈ −
√

3a

2ℏ
(ζpx − ipy) (1.11)

to first order in momentum, resulting in the Hamiltonian

Hζ = v

(
0 ζpx − ipy

ζpx + ipy 0

)
, (1.12)

where v =
√

3aγ0/(2ℏ) ≈ 106ms−1 is the “Fermi velocity”, often denoted vF . Through-

out this thesis, “v” will be used to denote this constant Fermi velocity, i.e. v ≡ vF .

The overlap matrix can be approximated as unitary to first order in momentum and

we are left with the energy bands

ε± = sv |p| (1.13)

and corresponding Bloch eigenstates

Φ± =
1√
2A

(
1

sζeiζφ

)
eik·r, (1.14)

normalized on the unit cell of area A, where φ is the polar angle of momentum. The

Hamiltonian (1.12) is Dirac-like and the resulting band structure (1.13) leads to elec-

7



1.2. ELECTRONIC STRUCTURE OF GRAPHENE
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(b)
Figure 1.2: Band structure of single layer graphene in the tight-binding approximation.
(a) Variation of the eigenvalues (1.10) for ky = 0. (b) The Dirac eigenvalues (1.13)
compared to a magnification of (a) around the Dirac point.

trons with zero effective mass and a constant velocity, v. As shown in fig. 1.2b, the

Dirac form of the Hamiltonian is a reasonable approximation to the tight-binding model

for low energy electrons (|ε| ≲ 0.25 eV).

1.2.2 Charge Density and Quantum Capacitance

The linear dispersion relation (1.13), results in a density of states that depends linearly

on energy,

D(ε) =
gsgv
2π

|ε|
ℏ2v2

, (1.15)

where gs = 2 and gv = 2 are the spin and valley degeneracies, respectively. Using the

Fermi-Dirac distribution function,

f0(ε) =
1

eβ(ε−εF ) + 1
(1.16)

where εF is the chemical potential, β = 1/(kBT ), and T is the absolute temperature of

the graphene sheet, for the probability of occupation of any given state with energy ε,

we find the Fermi-Dirac integral form of the charge carrier densities,

n = gsgv
2π

(
kBT
ℏv

)2 ∫∞
0

ν
eν−η+1

dν = 2
π

(
kBT
ℏv

)2
F1(η)

p = gsgv
2π

(
kBT
ℏv

)2 ∫∞
0

ν
eν+η+1

dν = 2
π

(
kBT
ℏv

)2
F1(−η),

(1.17)

for electrons in the conduction band, n, and holes in the valence band, p, where F1

is the first-order complete Fermi-Dirac integral and we have defined the dimensionless

variables ν = ε/(kBT ) and η = εF /(kBT ). These complete functions are related to the

polylogarithms, Fj(x) = −Lij+1 [−ex], such that

n(εF , T ) = −gsgv
2π

(
kBT

ℏv

)2

Li2

[
−exp

(
εF
kBT

)]
(1.18)

8



1.2. ELECTRONIC STRUCTURE OF GRAPHENE

and

p(εF , T ) = −gsgv
2π

(
kBT

ℏv

)2

Li2

[
−exp

(
− εF
kBT

)]
. (1.19)

For large chemical potentials, or low temperature, |εF | ≫ kBT , the density of electrons

(1.18) is

n ≈ gsgv
4π

εF
2

ℏ2v2
, (1.20)

and the density of holes, p → 0, for εF > 0. In the same limit, if εF < 0, the density

of electrons and holes is reversed due to the symmetry of eqs. (1.18) and (1.19). In

the opposing limit, |εF | ≪ kBT , the charge density is dominated by thermally excited

electron-hole pairs,

n(εF = 0, T ) = p(εF = 0, T ) =
gsgvπ

24

(
kBT

ℏv

)2

. (1.21)

The chemical potential can be expressed in terms of a channel potential, Vch, εF =

eVch, where e is the elementary charge of an electron. Then the quantum capacitance,

Cq =
∂Qnet

∂Vch
, (1.22)

encapsulates the effect of the density of states on the occupancy of states and, therefore,

the net sheet charge density Qnet in response to a change in the potential energy of the

graphene sheet, Vch. The net sheet charge density here is given by Qnet = e(p − n).

We will also define the total transport charge density, Qtot = eNtot, as the total charge

contributing to current in an applied electric field, where Ntot = n+p is the total carrier

density. This will be further discussed in section 2.1. Using eqs. (1.18) and (1.19), the

quantum capacitance is

Cq =
gsgve

2

2π

kBT

ℏ2v2

[
ln

(
2 + 2cosh

(
εF
kBT

))]
. (1.23)

When additional graphene layers are added, the energy bands become parabolic

around the K points with a tunable band gap between conduction and valence bands

[28]. In bilayer graphene the band gap has been measured as large as 250 meV un-

der large displacement fields [29]. To consider the most general case of a parabolic

dispersion relation, we will leave the bandgap, εg, arbitrary. The density of states is

constant,

D =
gsgvm

∗

2πℏ2
(1.24)

where m∗ is the effective mass. Fixing ε = 0 at the middle of the band gap, we now

have the incomplete Fermi-Dirac integrals

n = gsgvm∗

2πℏ2 kBT
∫∞

εg
2kBT

1
eν−η+1

dν

p = gsgvm∗

2πℏ2 kBT
∫∞

εg
2kBT

1
eν+η+1

dν
, (1.25)

9



1.3. FERMI’S GOLDEN RULE

since states residing in the bandgap cannot be occupied. These integrals are evaluated

as

n =
gsgvm

∗

2πℏ2
kBT

[
ln
(

1 + e
− εg

2kBT
+η
)]

(1.26)

and

p =
gsgvm

∗

2πℏ2
kBT

[
ln
(

1 + e
− εg

2kBT
−η
)]
. (1.27)

It is important to note that in the limit εg → 0, we retrieve the same form as expected

for the complete Fermi-Dirac integral functions:

n = −gsgvm∗

2πℏ2 kBTLi1 (−eη)

p = −gsgvm∗

2πℏ2 kBTLi1 (−e−η)
. (1.28)

1.3 Fermi’s Golden Rule

The influence of external perturbations to the lattice potential is to ‘scatter’ electrons

between the different eigenstates of eq. (1.14). Fermi’s golden rule gives the transition

rates between such states. This is an important tool that allows us to understand

macroscopic properties, such as the mobility, of the many-body ensemble based upon

the quantum mechanics that governs the individual transitions.

Possible causes of such perturbations will be discussed in sections 2.3.2 and 2.4.

For now, we can consider two types: constant in time, and harmonically time-varying.

An example of the former is a static charged impurity, whilst the latter could be a

harmonically oscillating phonon.

The Hamiltonian now includes this perturbation, U(t), as

H = H0 + U(t), (1.29)

where H0 is the unperturbed Hamiltonian of the lattice (1.12), with corresponding

eigenstates (1.14). The golden rule is derived using time-dependant perturbation the-

ory. We describe the time-dependence of the eigenstates using the Schrödinger equation

in the Dirac picture,

iℏ
∂

∂t
|Ψ(t)⟩ = UI(t)|Ψ(t)⟩ (1.30)

where UI(t) = eiH0t/ℏU(t)e−iH0t/ℏ. We denote the initial electron state |Ψ(t = t0)⟩ =

|i⟩, which corresponds to some Bloch eigenstate Φi of H0, with eigenenergy εi. Con-

sidering electrons near the Dirac point, εi and Φi are given by eqs. (1.13) and (1.14)

respectively.

From eq. (1.30), the wavefunction at time t, Ψ(t), is given by

|Ψ(t)⟩ = |i⟩ +
1

iℏ

∫ t

t0

dt′UI(t′)|i⟩ (1.31)

to first order in the perturbation, U . We assume a harmonically time varying pertur-

10



1.3. FERMI’S GOLDEN RULE

bation with an adiabatic amplitude such that the states of the initial Hamiltonian, H0,

are exact in the limit t→ −∞,

U(t) = eηtU
(
e−iωt + eiωt

)
. (1.32)

We will later take the limit η → 0+, describing a harmonically oscillating potential

with constant amplitude. Taking the overlap of eq. (1.31) with some ’final’ state |f⟩
and evaluating the integral in the limit t0 → −∞,

⟨f |Ψ(t)⟩ = ⟨f |U |i⟩

[
ei(εf−εi−ℏω)t/ℏeηt

εi − εf + ℏω + iℏη
+

ei(εf−εi+ℏω)t/ℏeηt

εi − εf − ℏω + iℏη

]
(1.33)

gives the probability amplitude of finding the electron in the state |f⟩ at time t. The

transition rate of electrons from the initial to the final state is given by the rate of change

of the probability of occupation of the final state due to the harmonic perturbation U(t)

made on the initial states in the adiabatic limit (η → 0+),

Si→f = limη→0+
d

dt
|⟨f |Ψ(t)⟩|2 =

2π

ℏ
|Ufi|2 [δ (εi − εf + ℏω) + δ (εi − εf − ℏω)] (1.34)

where Ufi = ⟨f |U |i⟩ and we have used the identity δ(x) = 1
π limη→0+

η
x2+η2

. The two

terms in eq. (1.34) represent two separate events: absorption and emission into the

oscillating modes of the potential.

For a static potential, the transitions are elastic: the initial and final electron states

have equal energy. This can be seen by setting the frequency of oscillation, ω, to 0. In

this case,

Si→f =
2π

ℏ
|Ufi|2δ(εf − εi). (1.35)

From here onwards, we will label the states with respect to their wavevector, i.e.

Sk→k′ is the transition rate of electrons from an initial state with wavevector k to a

final state with wavevector k′. In general, the perturbation, U(t), does not depend on

the orientation of the wavevector, φ, so the matrix element is

Uk′k =
1

2A
⟨k′|U |k⟩ ei(k′−k)·R

(
1 + ss′eiζθk,k′

)
(1.36)

for intra-valley scattering (ζ ′ = ζ), using eq. (1.14) for the eigenstates relative to

the position of the source of the potential, R. In eq. (1.36), |k⟩ = exp(ik · r), θk,k′ =

φk−φk′ is the angle between k and k′, and ss′ = ±1 for intra- and inter-band transitions

respectively. This simply results in taking the 2D Fourier transform of the perturbation,

Ũ = ⟨k′|U |k⟩ =

∫
U(r)e−iq·rdr (1.37)

where we have defined q = k′ − k.

Considering a sample of finite area, A, in the 2D graphene plane, there can be a

11



1.4. BOLTZMANN TRANSPORT AND DRUDE CONDUCTIVITY

number of scatterers available to cause transitions, such that the total perturbation is

a sum over the N individual perturbations at positions Ri, U(r) =
∑N

i=1 u(r − Ri).

For randomly distributed scatterers of the same type, we can simply accumulate the

transition rates, since |FT[U(r)]|2 =
∣∣∣∑N

i=1 FT[u(r−Ri)]
∣∣∣2 ≈ N |FT[u(r)]|2. We will

consider the effects of correlated distributions in section 3.4. For random distributions,

we define a function, ∆, which encapsulates the number of scatterers available for the

allowed transitions, such that

Sk→k′ =
π

A2ℏ
|ũ(q)|2(1 + ss′cosθk,k′)∆k→k′ . (1.38)

For inelastic scattering

∆inel
k→k′ = Nδ(ε(k′) − ε(k)), (1.39)

and for elastic scattering

∆el
k→k′(ω) = N(ω)δ(ε(s′,k′)−ε(s,k)−ℏω)+(N(ω)+1)δ(ε(s′,k′)−ε(s,k)+ℏω), (1.40)

where N(ω) is the number of harmonically oscillating scatterers of frequency ω, given

by the Bose-Einstein distribution function

N(ω) =
1

eβℏω − 1
. (1.41)

Note that for the emission process, the number of scatterers, N(ω) + 1, encapsulates

both the phonon occupation of N(ω) available to induce scattering (stimulated emis-

sion) and the ability of an electron itself to emit into the phonon mode of frequency ω

(spontaneous emission).

1.4 Boltzmann Transport and Drude Conductivity

When the averaged distance between scattering events, ls, is much smaller than the

device length, the electron momenta is dephased and transport is diffusive. In this

case, the Drude model is employed to describe the conductivity in terms of scattering

of classical-like particles from their classically accelerated trajectories. The Boltzmann

transport equation (BTE) can be used to determine the evolution of the distribution

function, f(x,k), using kinetic theory. The two parts that govern the electron trajec-

tory, free drift and instantaneous transitions, are described separately, such that the

evolution is given by three terms:

∂f(t,x,k)

∂t
+ v · ∇xf(t,x,k) +

1

ℏ
F · ∇kf(t,x,k) =

(
∂f(t,x,k)

∂t

)
coll

. (1.42)

The second term on the left hand side of eq. (1.42) describes the real-space diffusive

motion of particles, and the third term is the acceleration of particles due to some
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1.4. BOLTZMANN TRANSPORT AND DRUDE CONDUCTIVITY

electromagnetic force, F; these two terms are the free drift part. The right hand side,

the ‘collision term’, is given by(
∂f(t,x,k)

∂t

)
coll

=
∑
k′

[
Sk′→kf(t,x,k′)(1 − f(t,x,k))

− Sk→k′f(t,x,k)(1 − f(t,x,k′))
]
,

(1.43)

where the two terms describe opposing transitions, maintaining a detailed balance. In

the case of spatial homogeneity, we can use the homogenised Boltzmann equation,

∂f(t,k)

∂t
+

1

ℏ
F · ∇kf(t,k) =

(
∂f(t,k)

∂t

)
coll

, (1.44)

where we eliminate the real spatial coordinates and only consider the trajectory of

electrons in reciprocal (k) space. Given a steady-state solution to eq. (1.44), f(k), we

can calculate the current density

J = e
gsgv
(2π)2

1

ℏ

∫
f(k)∇kε(k)dk = e

gsgv
(2π)2

∫
dθ

∫
kdkf(k)v (1.45)

where v = v(cosθx̂ + sinθŷ).

Using eq. (1.38), the total rate at which electrons, of wavevector k, are scattered is

given by the sum over all possible final states k′,

Γ(k) =
∑
k′

Sk→k′ ≈ A

(2π)2

∫
Sk→k′dk′, (1.46)

where (2π)2/A is the reciprocal space area between states.

The collisional relaxation time, τc = 1/Γ, gives the mean free time between col-

lisions. Within the Drude model for the diffusive conductivity, the motion of the

individual electrons between individual scatter events is assumed to be ballistic, and

the events are assumed to occur instantaneously. To get the measurable relaxation

time, the effect of the transition on the change in the electrons trajectory should be

considered. The weighted mean free time, which we call the single-electron momentum

relaxation time, τe, where

1

τe(k)
=
∑
k′

Sk→k′(1 − cosθk,k′) ≈ A

(2π)2

∫
Sk→k′(1 − cosθk,k′)dk′, (1.47)

takes into account the relative effect of the angle of scattering, θk,k′ , on the change in

momentum.

The homogenised Boltzmann eq. (1.44), is highly nonlinear. To find analytical

solutions, it is generally linearised by assuming a linear shift in the distribution function,

proportional to the momentum relaxation time and of first order in the applied field

[30], f = f0− eτE ·v ∂f0
∂ε , where f0 is the Fermi-Dirac distribution function (1.16). The
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1.5. CHARGE TRANSPORT IN LOCALISED SYSTEMS

derivation of the perturbed distribution function will be discussed in more detail in

section 3.2. Using eq. (1.45), the conductivity is thus

σ =
e2v2

2

∫ ∞

−∞
dεD(ε)τ(ε)

(
−∂f0
∂ε

)
. (1.48)

The momentum relaxation time, τ , is calculated in reference [31] using the BTE

(eq. (1.44)),
1

τ(k)
≈ A

(2π)2

∫
Sk→k′(1 − cosθk,k′)

1 − f0(k
′)

1 − f0(k)
dk′. (1.49)

Equation (1.49) is the single electron momentum relaxation rate, eq. (1.47), modified by

the occupation of electrons in the states k and k′ to account for the electron ensemble.

In the case of elastic scattering, k = k′, eqs. (1.47) and (1.49) are equivalent. In the

case of inelastic scattering, eq. (1.49) conserves the detailed balance, dependant upon

the relative occupation of states at k and k′.

For finite temperatures, it is useful to exploit the symmetry between conduction

and valence bands. Given that f0(−ε, εF ) = 1 − f0(ε,−εF ), and the transition rates,

Sk→k′ , only depend on |ε| in general, we can split eq. (1.48) into two terms:

σ =
e2v2

2

∫ ∞

0
dεD(ε)

[
τ(ε, εF )

(
−∂f(ε, εF )

∂ε

)
+ τ(ε,−εF )

(
−∂f(ε,−εF )

∂ε

)]
, (1.50)

where the first term is the contribution from electrons and the second is the contribution

from holes.

We can rewrite eq. (1.48), in terms of the ensemble averaged momentum relaxation

rate, ⟨τ⟩,

σ =
e2

πℏ2
⟨τ⟩
∫

dεf0(ε), (1.51)

where

⟨τ⟩ =

∫
ετ(ε)

(
−∂f0

∂ε

)
dε∫

ε
(
−∂f0

∂ε

)
dε

. (1.52)

In the degenerate, low temperature regime, the Fermi-Dirac distribution (1.16) is a

Heaviside step function, ϑ(εF−ε(k)), and the derivative is a delta function, δ(εF−ε(k)).

Consequently, in the limit T → 0, the ensemble average is given by the value at the

Fermi level, ⟨τ⟩ = τ(εF ). Using eq. (1.20) for the carrier density, we find the mobility

µ =
σ

ne
≈ ev2τ(εF )

εF
. (1.53)

1.5 Charge Transport in Localised Systems

A system with strong disorder results in localised electronic states. Anderson locali-

sation can occur in lattice structures in the presence of a large number of impurities

or defects. In granular materials, there is a structural localisation of states within the

14



1.5. CHARGE TRANSPORT IN LOCALISED SYSTEMS

grains and, in general, an absence of states in the surrounding medium. Localised states

also appear in disordered organic (polymer) conductors.

1.5.1 Hopping Conductivity

To conduct, electrons need to be able to move between localised states via a tunnelling

or hopping process. In granular conductors, the dynamics is usually assumed to depend

entirely on such processes and the effect of scattering within the granules is assumed

to be negligible. The rate of thermally assisted hopping from site i with energy εi to

site j with energy εj can be described by the Miller-Abrahams expression [32, 33],

γij = γ0e
−αRij

{
e−(εj−εi)/kBT for εj > εi

1 for εj ≤ εi
, (1.54)

where: γ0 is a constant, describing the attempt frequency and is related to the strength

of phonon coupling; α is the tunnel constant, also known as the inverse localisation

radius; Rij is the distance between sites i and j; and T is the temperature.

The conductivity depends directly on the hopping rate and is often used in the

simplified form of the Arrhenius equation

σArrhenius ∝ e−αre−Ec/kBT , (1.55)

where r is the hopping distance and Ec is the activation energy required to charge a

neighbouring state. This expression is used widely in the literature to fit and predict

the conductivity of granular conductors, such as nano-crystal arrays [34–36]. Typically

hopping is considered to be nearest-neighbour only, since conductivity is exponentially

suppressed relative to the distance between sites. However, for small temperatures, the

exponential suppression relative to Ec/kBT becomes important. This means that it

can become energetically favourable for an electron to hop further to a site of similar

energy. In this case, the distance, r, in eq. (1.55) becomes temperature dependent [34].

Such variable range hopping is often described by

σV RH ∝ exp
[
− (T0/T )1/β

]
, (1.56)

where β is some exponent depending on the details of the system, such as the dimen-

sionality, and T0 is a constant depending on the energy density of states/sites and the

tunnel constant, α. Mott showed that β = 4 for a 3D system, assuming a constant

density of states around the Fermi level [33, 37]. The same expression with β = 4

was also derived using a percolation method by Ambegaokar et al. in the presence of

energetic and spatial disorder [38]. Equation (1.56) has been found to agree well with

the conductivity measured in amorphous germanium at T < 300 K [39, 40] and ordered

defect compound CuIn3Te5 at T < 210 K [41].
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1.5. CHARGE TRANSPORT IN LOCALISED SYSTEMS

1.5.2 Field-Effect in Discontinuous and Disordered Media

To model the field-effect in a discontinuous, thin (2D) film, Adkins et al. proposed

a model based on the capacitative charging energy required to place a charge on the

grains and the detailed balance of relative occupation between grains [42]. Assuming a

maximum of one charge per grain, standard Boltzmann statistics are used to determine

the probability of any one grain being positively charged (a hole), negatively charged

(an electron) or uncharged,

p+ = exp (−µeff/kBT )
/

[exp (Ec/kBT ) + 2cosh (µeff/kBT )]

p− = exp (µeff/kBT )
/

[exp (Ec/kBT ) + 2cosh (µeff/kBT )]

p0 = exp (Ec/kBT )
/

[exp (Ec/kBT ) + 2cosh (µeff/kBT )] ,

(1.57)

respectively, where Ec is the charging energy between flakes and µeff is an effective

chemical potential of the granular system which promotes the charging of grains and

is controlled by the gate voltage, Vg, via CVg = N(p− − p+) where C is the areal

capacitance density between the gate and the bulk film and N is the areal density of

grains. The conductivity depends on the relative occupation of grains, since electrons

can only transport into unoccupied states,

σAdkins ∝ p0(p− + p+). (1.58)

Assuming Ec ≫ kBT (a necessary condition for the Adkins model, since multiple charg-

ing is neglected) and µeff = 0, eq. (1.58) has the same form as the Arrhenius equation

(1.55). As discussed in [42], this model is derived assuming a granular film which is

ordered in both the charging energy between any two grains and their distance apart.

The introduction of disorder can cause trapped states, time dependence, frustration

and non-ergodicity.

Highly disordered systems exhibiting Anderson localisation or composed of granular

structures can display glassy behaviour out of equilibrium [43, 44]. A particular feature

of such electron glasses is the anomolous field effect, as observed in granular metal

films [45–48]. Unlike the ordinary field effect, where changing the gate voltage causes

an increase or decrease in conductivity, depending on the relative change in carrier

density, in the anomolous field effect any change in gate voltage results in an increase

of conductivity if the electron glass has already equilibrated at the initial gate voltage.

This is a feature of the slow response of the electron glass to external perturbation. If

a long enough time is left between each measurement, thus allowing the electron glass

to reach equilibrium at each gate voltage, the normal field effect can be retrieved, as

demonstrated in two-dip experiments [49, 50].
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Chapter 2

Electron Scattering in Graphene

and Numerical Methods

2.1 Thermal Equilibrium Calculations of Charge Carrier

Population in Gated Graphene

We model the effects of gating the graphene sheet with a potential, Vg, over a capac-

itance, Cd, on the charge carrier population. We anticipate this carrier population to

be sensitive to the temperature around the Dirac point, since electrons can easily be

excited into the conduction band from the valence band, creating electron-hole pairs,

due to the zero-band gap.

Semiconductors have an associated ‘quantum capacitance’, due to the finite density

of states. For graphene, we derived this in section 1.2.2. This quantum capacitance

can force a voltage drop at the graphene plane compared to what would be expected

for a metallic parallel plate capacitor, thus reducing the number of excited carriers. We

explore this effect first before considering the simpler parallel plate capacitor model.

2.1.1 Quantum Capacitance Model

Here we model a basic field-effect transistor (FET) consisting of a single gate electrode,

separated from the graphene plane via a dielectric medium of capacitance Cd, as shown

in fig. 2.1a. A current is passed through the graphene channel by the source and

drain electrodes, controlled by the drain-source potential, Vds. The carrier density

is controlled by the potential difference across the source and gate electrodes, Vg. We

consider diffusive transport with a constant electric field, E = Vds/L, across the channel

of length L. Applying Kirchoff’s voltage law to the circuit diagram in fig. 2.1b, where

we have defined the direction of Vg such that positive Vg corresponds to a positive

channel potential, results in the self-consistent equation for the channel potential

Vch =
Cd

Cd + αCq
(Vg + V (x)) (2.1)
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POPULATION IN GATED GRAPHENE

(a) (b)

Figure 2.1: (a) Diagram showing graphene FET. Graphene sheet forms a conducting
channel between two electrodes with potential difference Vds. A gate voltage, Vg, is
applied over the dielectric gate material. The applied voltages, Vg and Vds, are com-
pensated by a potential difference over the dielectric capacitance, Cd, and the quantum
capacitance, Cq. (b) Circuit diagram for FET in figure (a) at position x along the
channel length. A gate voltage Vg is applied; the capacitance, Cd, is known for a given
dielectric medium between the gate electrode and the graphene plane; and the potential
dropped across the channel, V (x), is assumed to increase linearly from 0, at x = 0, to
Vds, at x = L. Kirchoff’s law, along with an expression for the quantum capacitance,
Cq, can be used to determine the potential, Vch, that controls the chemical potential.

which determines the chemical potential, εF = eVch, where V (x) is the value of the

potential at position x along the channel, in the direction of the field, due to the

drain-source potential gradient. In eq. (2.1), α is defined as the capacitance weighting

factor,

Qnet = −
∫
CqdVch = −αCqVch. (2.2)

From eq. (1.20), at T = 0, n = (eVch)2/πℏ2v2. Substituting this into eqs. (2.1)

and (2.2) and solving for the channel potential, Vch, results in

Ntot(T = 0) = nG + nQ

(
1 −

√
1 + 2

nG
nQ

)
(2.3)

for V (x) = 0, where nG = Cd|Vg|/e is the charge density induced by the gate elec-

trode assuming a single parallel plate capacitor and nQ = π
2

(
Cdℏv
e2

)2
determines the

correction due to the quantum capacitance.

In order to probe the electrical properties of graphene, we need to drive a cur-

rent through the transistor, thus requiring the application of a drain-source poten-

tial difference, Vds, across the in-plane electrodes. This creates an inhomogeneity in

the potential, V (x), across the channel. We assume that the potential varies lin-

early across the channel, V (x) = Vdsx/L. We can calculate the charge density at

points along the channel, n(x) + p(x), and define the total carrier density as the mean,

n + p = L−1
∫

dx[n(x) + p(x)]. Figure 2.2a shows the result of including this drain-
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Figure 2.2: Variation of the total transport carrier density n + p with applied gate
voltage, Vg, for Cd = 1.15×10−4 Fm−2. (a) Effect of the applied drain-source potential,
Vds, on the charge carrier profile, demonstrated here for T = 0, calculated using the
results of eq. (2.1). (a) Effect of changing the temperature from T = 0 to T = 400 K in
increments of 50 K for Vds = 0, calculated excluding (exc.) quantum capacitance using
the results of charge conservation with the linear capacitor model, 2.4 (solid orange
lines). A comparison of the results including (inc.) quantum capacitance is shown by
the black dashed line for T = 0 K.

source potential. We see that the total transport charge never reaches 0, due to the

inhomogeneity, and the gate voltage of minimum carrier concentration, V0, is offset by

Vds/2, the mean of V (x). Such effects have been observed experimentally [51]. How-

ever, the effect of drain-source voltage on carrier density is often unimportant, since the

applied Vds is usually small compared to the range of gate voltages, Vg. Furthermore,

the spatially inhomogeneous residual charge induced by the charged impurity potential,

to be demonstrated in section 2.3.1, is much more significant in most devices.

2.1.2 Linear Capacitor Model

We can generally ignore the quantum capacitance, particularly at large gate voltages,

where nG ≫ nQ. Neglecting the quantum capacitance and V (x), fig. 2.1b is reduced to

a simple parallel plate capacitor with net charge density |Qnet| = Cd|Vg|. The polarity

of the charge, Qnet, depends on the direction of the applied gate voltage. By convention,

we assume that a positive gate voltage corresponds to a build up of electrons in the

graphene layer, i.e. Qnet = −CdVg. To calculate the chemical potential, we equate this

gate induced net charge density to the carrier densities, n and p, defined in eqs. (1.18)

and (1.19),

e(p(εF , T ) − n(εF , T )) = −CdVg (2.4)

thus ensuring conservation of charge density.

For non-zero temperatures we expect, from eq. (1.21), that Ntot(εF = 0, T ) =

n(εF = 0, T ) + p(εF = 0, T ) ∝ T 2. Figure 2.2b shows the results of solving eq. (2.4) to

calculate the variation of total carrier density with gate voltage and temperature for a
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gate capacitance of Cd = 1.15× 10−4 Fm−2 (corresponding to a 300 nm layer thickness

of SiO2).

Figure 2.2b compares the results for the two calculations, with and without quantum

capacitance. Both eqs. (2.1) and (2.4) give εF = 0 for Vg = 0. Away from this point,

we find a minor decrease in the total charge density due to the quantum capacitance of

the graphene sheet. The effect of the quantum capacitance is found to be insignificant,

validating the approximation of a sheet charge density given by the gate capacitance,

nG. We will choose to use this linear capacitor model for all future calculations, since

it is both simpler and more commonly used for experimental fitting.

2.2 Dielectric response: Screening

Screening by the Fermi gas can reduce the effect of external perturbations. This is

characterised by a dynamic relative permittivity, ϵsc(q, ω). In the random phase ap-

proximation (RPA), a linear response is assumed; the electrons respond to a linear sum

of the external, Ũ ext, and induced, Ũ ind, potential:

Ũ(q, ω) = Ũ ext(q, ω) + Ũ ind(q, ω) =
Ũ ext(q, ω)

ϵsc(q, ω)
, (2.5)

where the potentials are Fourier tranforms with reciprocal space components, q, and

frequency of oscillation, ω. The perturbation in the charge density is given in terms of

the polarization function, Π,

δn(q, ω) = −Π(q, ω)Ũ(q, ω), (2.6)

this results in the induced potential,

Ũ ind(q, ω) = vc(q)δn(q, ω) (2.7)

where vc(q) is the 2D Fourier transform of the coulomb potential [52]. Introducing the

variable κ = 4πϵ0ϵr, where ϵr is the external dielectric constant (without the addition

of free charges),

vc(q) =
2πe2

κq
. (2.8)

Equations (2.5) and (2.7) form a self-consistant set; the solution is a simple geometric

series with the result,

ϵsc(q, ω) = 1 + vc(q)Π(q, ω). (2.9)

The response function is given by the Lindhard function

Π(q, ω) = −gsgv
A

∑
kss′

fks − fk′s′

ℏω + εks − εk′s′ + iℏ0+

[
1

2

(
1 + ss′cosθk,k′

)]
(2.10)
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where the term in square brackets results from the angular dependence of the overlap,

as in eq. (1.36). For a static potential (ω = 0), summing over bands s and s′ and

performing the angular integral in eq. (2.10) results in the response function [53]

Π(q, εF , T ) =
2εF
πℏ2v2

+
q

4ℏv
+

4kBT

πℏ2v2
+

4kBT

πℏ2v2
ln
(

1 + e−εF /kBT
)

− 2

πℏ2v2

∫ q/2

0
dk

√
1 −

(
2k

q

)2
 1

exp
(
ℏvk−εF
kBT

)
+ 1

+
1

exp
(
ℏvk+εF
kBT

)
+ 1

 ,
(2.11)

where we have assumed that gs = gv = 2 for graphene. In the long wavelength limit

(q ≪ kF ), the response is well described by the Thomas-Fermi approximation. Since

the change in potential energy at any given point, δU(R), is equivalent to the apparent

change in the chemical potential, δU(R) = −δεF (R), one can say that, if the change

in potential energy is only slowly varying over space,

ΠTF =
dn

dεF
=

∫
D(ε)

∂f(ε, εF )

∂εF
dε = − 2

π(ℏv)2

∫
f(ε, εF )dε. (2.12)

This is the Thomas-Fermi approximation of the polarization function. The degeneracy

of the distribution at low temperatures can be used to simplify the expression, such

that the polarization function is just the density of states at the Fermi-level, ΠTF (T =

0) = D(εF ). Using eq. (1.15) for the polarization, the dielectric screening is

ϵsc(q)|q≪2kF ,T=0 ≈ 1 + qs/q, (2.13)

where qs = 4kF e
2/(ℏvκ) is the Thomas-Fermi wave number.

In the opposing, large energy limit, q ≫ 2kF , screening by the conduction band

becomes significantly small, such that the polarization function is given only by the

polarization of the valence band, Πval = q/4ℏv [54]. In this case, the dielectric screening

tends to a constant value,

ϵsc|q≫2kF ,T=0 ≈ 1 +
πrs
2
. (2.14)

The response function over the full range of wavelengths was calculated by Hwang

and Das Sarma [54] using the Lindhard equation (2.10), they found

ϵsc(q)|T=0 =

 1 + qs/q for q ≤ 2kF

1 + rs

(
π
2 − sin−1

(
2kF
q

))
+ qs

q

(
1 − 1

2

√
1 − 4kF

2

q2

)
for q > 2kF

(2.15)

where rs = e2/(ℏvκ), such that qs = 4kF rs. Equation (2.15) returns eqs. (2.13)

and (2.14) in the corresponding limits.

In simulations describing the evolution of the distribution function over time, which

will be presented in section 2.5, the distribution function can become far from the initial

21



2.2. DIELECTRIC RESPONSE: SCREENING

Figure 2.3: Screening polarization response, Π, as a function of temperature, T , and
inverse wavelength, q. D(εF ) is the density of states at the Fermi energy, εF , and kF
is the Fermi wavenumber. (i) Π/D(εF ) ≈ 1, (ii) Π/D(εF ) ≈ π

8
q
kF

and (iii) Π/D(εF ) ≈

ln(4)kBT
εF

+ 1
24

εF
kBT

(
q
kF

)2
show the three limiting regimes.

Fermi distribution assumed in the derivation of eq. (2.15). However, throughout the

time-dependant simulations, the result of the integral in eq. (2.12) does not change, due

to conservation of charge. Therefore, since both eqs. (2.13) and (2.14) are independent

of the evolution of the distribution function, we define a time-independent two-regime

screening function, where Thomas-Fermi screening is assumed for low-energy scattering

and the valence electron screening is assumed for high-energy electrons, i.e. we set

ϵsc(q)|T≈0 =

{
1 + qs

q for q ≤ 8
πkF

1 + πrs
2 for q > 8

πkF
. (2.16)

In the high temperature limit, kBT ≫ εF , eq. (2.11) is reduced to Π(kBT ≫ εF ) ≈
2kBT ln(2)/(πℏ2v2) + q2/(12πkBT ) such that the screening function is

ϵsc|T≫εF /kB ≈ 1 +
8ln(2)e2kBT

κℏ2v2q
+

e2q

6κkBT
. (2.17)

Figure 2.3 shows the result of numerical evaluation of eq. (2.11). To summarise,

the three analytical limits are given by

(i) Π(q = 0, T = 0) = ΠTF (T = 0) = D(εF ) =
2εF
πℏ2v2

(ii) Π(q ≫ 2kF , T = 0) ≈ Πval = D(εF )
π

8

q

kF

(iii) Π(q, T ≫ εF /kB) ≈ D(εF )

[
ln(4)

kBT

εF
+

1

24

εF
kBT

(
q

kF

)2
]
.

(2.18)
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2.3 Impurities

The presence of any charged impurities of unit charge, e, on/within the substrate

material, at distance d from the graphene plane, causes a long-range coulomb potential,

u(r) =
e2

κ
√
r2 + d2

, (2.19)

before the effects of screening. The integral over the angular part of the 2D Fourier

transform results in the integral representation of the zero-th order Bessel function,

ũ =
e2

κϵsc(q)

∫ ∞

0

2πJ0(qr)rdr√
r2 + d2

=
2πe2

κ

exp(−qd)

qϵsc(q)
, (2.20)

where we have now added in the k-space screening function, εsc(q), from eq. (2.16).

The result of integration is as given in reference [55].

2.3.1 Residual Charge

Charged impurities induce a spatially varying potential at the graphene plane, Vimp(r),

the spatial mean of which we denote V0imp = ⟨Vimp(r)⟩. This distorts the bands

throughout the graphene, as shown schematically in fig. 2.4a. When a potential of

V0imp is applied, corresponding to some gate voltage Vg = V0, we mostly cancel this

impurity induced potential and achieve the point of minimum carrier density, at which

εF = 0. However, at this point there still remains spatial fluctuations in the potential,

δVimp(r) = [Vimp(r)−V0imp]. Quantifying the average fluctuation of the potential about

the mean [56, 57],

⟨δV 2
imp⟩ = ⟨[Vimp − V0imp]

2⟩ = nimp

∫
d2q

(2π)2
|ũ(q)|2 (2.21)

and using eq. (2.20),

⟨δV 2
imp⟩ = 2πnimp

(
e2

κ

)2

C0(rs, 4kFd), (2.22)

where nimp is the density of impurities. In eq. (2.22), the function

C0(a, b) = −1 +
4E1[b]

(2 + πa)2
+

2e−ba

1 + 2a
+ (1 + 2ab)e2ab(E1[2ab] − E1[b(1 + 2a)]), (2.23)

where E1[z] represents the exponential integral function [57]. To calculate the extent of

the resulting electron-hole puddles, the root mean squared spatial average fluctuation

in the impurity potential,
√
⟨δV 2

imp⟩, is equated to the spatially averaged shift in the

local Dirac point, ⟨δεimp⟩ [57]. A self-consistent equation is obtained for the offset of
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(a)

(b) (c)

Figure 2.4: (a) Band structure of energy, ε, shown over spatially varying impurity
potential, Vimp(r), with mean V0imp. The shift of the Dirac point, δεimp, at any position

r is given by Vimp(r) − V0imp.
√
⟨δV 2

imp⟩ is the root-mean squared of the deviation of

Vimp(r) from V0imp. (b) and (c) show representative (spatially averaged) electron (right)
and hole (left) puddles for chemical potentials of (b) εF = 0 and (c) εF > 0. As an

approximation to model the induced electron and hole puddles,
√

⟨δV 2
imp⟩, as shown in

(a), can be equated to mean the shift of the Dirac point from ε = 0, ⟨δεimp⟩ [57]. ε∗F,h
and ε∗F,e denote the quasi-Fermi level in hole and electron puddles, respectively.

the Dirac point, ⟨δεimp⟩,

⟨δεimp⟩2 = 2πnimp

(
e2

κ

)2

C0(rs, 4⟨δεimp⟩d/ℏv). (2.24)

Due to these inhomogeneities, approximately half of the graphene sheet will ex-

perience a potential below the mean (electron puddles), whilst the other half has a

potential above the mean (hole puddles). We define a quasi-Fermi level locally in the

hole and electron puddles, ε∗F,h = εF − ⟨δεimp⟩ and ε∗F,e = εF + ⟨δεimp⟩, respectively.

Energetics of the spatially averaged electron-hole puddles are shown schematically in

figs. 2.4b and 2.4c.

For simple charge transport calculations, we can assume a homogeneous potential
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landscape with a chemical potential which varies as calculated via eq. (2.4). To ac-

count for the effect of residual charge, we set a minimum limit on the magnitude of

the chemical potential of the total system, given by ⟨δεimp⟩. Given εF calculated for

graphene in the absence of potential inhomogeneity: for εF < ⟨δεimp⟩, the charge den-

sity is dominated by residual charge, for εF ≥ ⟨δεimp⟩, we assume that the fluctuations

are washed out. This sets a hard boundary between the gate induced charge density

and the gate-independent residual charge density,

Ntot =

{
n(⟨δεimp⟩, T ) + p(⟨δεimp⟩, T ) if εF < ⟨δεimp⟩

n(εF , T ) + p(εF , T ) if εF ≥ ⟨δεimp⟩
, (2.25)

as in ref. [57]. From eq. (1.20), at T = 0, the residual carrier density at charge

neutrality is

nres =
⟨δεimp⟩2

πℏ2v2
. (2.26)

To calculate the Ntot(Vg) profile more precisely, with a continuous variation between

gate-induced and residual charge dominated regimes, we explicitly include the spatially

averaged electron and hole puddles. Therefore eq. (2.4) becomes

1

2
e
[
p
(
ε∗F,h, T

)
+ p

(
ε∗F,e, T

)
− n

(
ε∗F,h, T

)
− n

(
ε∗F,e, T

)]
= −CVg (2.27)

for the net charge density, which can be solved to find the chemical potential, εF , and

substituted back into

Ntot =
1

2

[
p
(
ε∗F,h, T

)
+ p

(
ε∗F,e, T

)
+ n

(
ε∗F,h, T

)
+ n

(
ε∗F,e, T

)]
(2.28)

to calculate the total carrier density. The results of this full calculation are shown in

fig. 2.5.

The total residual carrier density at the charge neutrality point, εF = 0, is

Ntot(εF = 0, T ) =
1

2
[n(−δεimp, T ) + p(−δεimp, T ) + n(δεimp, T ) + p(δεimp, T )]

=
⟨δεimp⟩2

πℏ2v2
+
π

3

(
kBT

ℏv

)2

,

(2.29)

where we have made use of eqs. (1.18) and (1.19) and the dilogarithm inversion iden-

tity. Remarkably, this is simply the sum of the residual carriers due to local potential

fluctuations calculated at T = 0, eq. (2.26), and the thermally excited carriers at the

Dirac point in the absence of potential fluctuations, nTH = n(T, ε∗F = 0)+p(T, ε∗F = 0).

Therefore, the effects of the impurity-induced residual carrier density and the thermally

excited carrier density are additive at the charge neutrality point,

nNP = nres + nTH , (2.30)
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Figure 2.5: Total transport carrier density variation with gate voltage, Vg, about the
offset, V0, for varying density of impurities, nimp. Carrier densities were calculated
using eq. (2.28), accounting for electron and hole puddles. (a) T = 50 K. (b) T = 300
K. The legend shown in (a) also applies to (b).

where nNP denotes the carrier density at the charge neutrality point (εF = 0).

2.3.2 Impurity Scattering

The impurity potential will also result in the deflection and decoherence of electron mo-

menta, as described for a general potential in section 1.3. The transition rate between

momentum states, given by eq. (1.38), is

Simp
k→k′ = nimp

π

Aℏ

∣∣∣∣ 2πe2

κqϵsc(q)

∣∣∣∣2 e−2qd(1 + ss′cosθk,k′)δ(εk′ − εk) (2.31)

where we have used the result of eq. (2.20). Note that ss′ = 1 since scattering is

assumed to be elastic. Using eq. (1.49), the momentum relaxation time is

1

τ(k)
= nimpπvr

2
sk

∫ 2π

0
dθsin2θ

e−2qd

(qϵsc(q))
2 . (2.32)

For elastic scattering, q = 2ksin(θk,k′/2).

In the low temperature limit, the ensemble relaxation time is given by the value of

the momentum relaxation time, τ , at k = kF . As a result, the Thomas-Fermi screening

limit, q ≤ 2kF , is always satisfied. This makes sense, as we are approximating that the

distribution is highly degenerate, with all electrons residing below the Fermi-level. If

we approximate that d = 0, we find the analytical solution,

1

τ(kF )
=
nimpπv

16kF
I(1/2rs) (2.33)
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for the momentum relaxation time at the chemical potential, where the function

I(x) =
2

x4

2πx2 + 24x− 12π +

(
12π − 8πx2 −

(
24 − 16x2

)
tan−1

(
x√
1−x2

))
√

1 − x2

 .
(2.34)

The electrostatic environment for graphene on a SiO2 substrate is assumed to be

described by the bulk 3D properties of neighbouring materials. The external dielectric

constant is therefore taken as an average of the dielectric constant in the two mediums

that the field permeates (SiO2 and vacuum) [58], ϵr ≈ 2.5, thus rs ≈ 0.8. Using this

value and eq. (2.34), we find I(1/2rs) ≈ 1.6.

Using eq. (1.20) for the low temperature carrier density and eq. (1.53), we obtain

the low-temperature, linearised Boltzmann result for d = 0,

µimp ≈
20e

nimph
, (2.35)

as in [57]. The mobility due to ionised impurities is constant, and the conductivity is

thus proportional to the carrier density, with a gradient dependent on the density of

impurities. We will further explore impurity scattering and the effects of the distance

of impurities from the graphene plane in detail in chapter 3. However, from eq. (2.32),

it is straightforward to observe qualitatively that for an increased impurity distance, d,

the scattering of higher energy electrons (i.e. large q) is suppressed.

It should be noted that we have only considered randomly distributed impurities.

If the substrate chemistry is such that impurities are correlated, then above a critical

impurity density, the nature of correlations becomes important, as will be shown in

section 3.4.

2.3.3 Real-Space Screened Coulomb Potential

Before deriving the form of the 2D screened Coulomb potential, we start by deriving

the well-known Yukawa-potential for a 3D screened Coulomb potential for comparison.

The Thomas-Fermi approximation for the dielectric screening in 3D is ϵ3D = 1 +

q2TF /q
2, where the Thomas-Fermi wavevector, qTF =

√
e2

ϵ0ϵr
∂n
∂εF

in 3D [59]. The Fourier

transform of the 3D coulomb potential is

ũ3D =
e2

κϵ3D(q)

∫
d3r

1

r
eiq·r =

4πe2

κϵ3D(q)q2
. (2.36)

To find the form of the real-space screened potential, we now take the inverse Fourier

transform of eq. (2.36),

u3D(r) =
1

(2π)3

∫
d3q

4πe2

κ(q2 + q2TF )
e−iq·r =

e2

κπr

∫ ∞

−∞
dq

q

q2 + q2TF

sin(qr). (2.37)
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The integrand of eq. (2.37) has two simple poles, q = iqTF and q = −iqTF . Evaluating a

contour integral over an infinitely large semicircular region in the top (complex positive)

half of the complex plane, we find

u3D(r) =
e2

κr
e−qTF r. (2.38)

Considering the k-space form of the 2D coulomb potential (2.20), the inverse Fourier

transform is,

u2D(r) =
1

(2π)2

∫
d2q

2πe2

κ(q + qs)
e−qde−iq·r =

e2

κ

∫ ∞

0
dq

e−qd

q + qs
qJ0(qr). (2.39)

The Laplace transform of the Bessel part is [55],

L1(s) =

∫ ∞

0
J0(qr)e

−qsdq =
1√

r2 + s2
. (2.40)

The inverse Laplace transform of the preceding factor of the integrand can be evaluated

as

L−1
2 (s) = limR→∞

1

2πi

∫ iR

−iR

qe−qd

q + qs
eqsdq. (2.41)

Evaluating the relevant contour integral, semicircle over the left (real negative) of the

complex plane, we find that

L−1
2 (s) =

{
−qse−qs(s−d) + δ(s− d) for s− d ≥ 0

0 for s− d < 0
. (2.42)

Integrating over eqs. (2.40) and (2.42),

u2D(r) =
e2

κ

∫ ∞

d
ds

[
−qs

e−qs(s−d)

√
r2 + s2

+
δ(s− d)√
r2 + s2

]
. (2.43)

The resulting real-space screened 2D coulomb potential is

u2D(r) =
e2

κ
√
r2 + d2

− e2qs
κ

F(qs) {r, d} (2.44)

where F(qs) {r, d} is the Laplace transform,

F(qs) {r, d} =

∫ ∞

0

e−qsu√
r2 + (u+ d)2

du. (2.45)

Therefore, a 3D electron gas modifies the Coulomb potential by a multiplicative

factor, e−qTF r, whilst a 2D electron gas modifies the Coulomb potential by the additive

term, e2qs
κ F(qs) {r, d}. The form of eqs. (2.38) and (2.44) are compared in fig. 2.6 for

given values of the screening wavevectors, qsc = qTF = qs.
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Figure 2.6: Potential, u(r), for attractive impurity, screened by a 2D (solid lines) and
a 3D (dashed lines) electron gas with screening wavevector, qsc = qs = qTF . For the
2D electron gas, we have assumed that d = 0.

2.4 Further Scattering Mechanisms

2.4.1 Point Defects

Defects to the lattice chemistry will disrupt the band structure over a small area. Such

scatterers will be considered as short-range potentials, only effective over a small region

containing the defect. This ‘region’ can be characterised as a finite spatial limit, R,

u(r) =

{
U0 for r ≤ R

0 for r > R
. (2.46)

The integral over the angular part of the 2D Fourier transform results in the integral

representation of the zero-th order Bessel function,

ũ = 2π
U0

ϵsc

∫ R

0
J0(qr)rdr = πR2U0

ϵsc

(
2J1(qR)

qR

)
, (2.47)

where we have included the screening effect of the 2D carriers, ϵsc. Considering point

defects (R→ 0), we find the limit

lim
qR→0

(
2J1(qR)

qR

)
= lim

qR→0
(sinc(qR)) = 1, (2.48)

such that ũ ∼ πR2U0/ϵsc. This gives an effective cross-section of scattering, Asr = πR2.

Consequently, the transition rate, given by eq. (1.38), is

Ssr
k→k′ = nsr

π

Aℏ

∣∣∣∣AsrU0

ϵsc(q)

∣∣∣∣2 (1 + ss′cosθk,k′)δ(εk′ − εk) (2.49)
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for a density of nsr defects. We assume defect scattering to be elastic: ss′ = 1 and

q = 2ksin(θk,k′/2). Using eq. (1.49), the momentum relaxation time is

1

τsr(k)
= nsr

(AsrU0)
2

4πℏ
k

ℏv

∫ 2π

0
dθ
(
1 − cos2θ

) 1

ϵsc(q)
=
nsr (AsrU0)

2 k

4πℏ2v
F (2rs), (2.50)

where the function

F (x) =
1

8x

[
64x4

(
−4 + 5x2

)
√
x2 − 1

(
π − 2tan−1

(
1√

x2 − 1

))

+

(
8πx+ 96πx3 − 320πx5 + 16x2

(
−7 + 40x2

)
+ 2

(
1 +

40

3
x2
)
− 2

)]
.

(2.51)

Using eqs. (1.20) and (1.53) for the low temperature carrier density and mobility

respectively, the mobility due to short range scatters is inversely proportional to the

carrier density, n,

µsr ≈
100

7

ℏv2e
(AsrU0)

2 nsr
n−1. (2.52)

This means that the conductivity limited by short range scattering potentials, σsr =

neµsr, is a constant, determined only by the density of defects and the strength of the

potential that they generate.

2.4.2 Strong Defects and Mid-Gap States

For strongly interacting defect potentials, it is necessary to go beyond the Born ap-

proximation. Various forms of charge-neutral “resonant” impurities and defects, such

as vacancies, adatoms and adsorbates, create mid-gap states [60–62]. The presence

of such mid-gap states has been confirmed and characterised by density functional

theory (DFT) calculations [63]. Extended calculations of the interaction Hamiltonian

[60, 64, 65] lead to the relaxation rate

1

τres(ε)
=
πnresD

2
res

2εℏ
(ln (ε/Dres))

−2 (2.53)

in the limit of a large defect potential, U → ∞, and assuming that ε < Dres, where

Dres =
√√

3πγ0 ≈ 6 eV and nres is the number of resonant scatterers per carbon atom.

The resulting resonant impurity limited mobility is

µres =
2ev2ℏ

πnresD2
res

(
ln

(
ℏv

√
πn

Dres

))2

. (2.54)

Although eq. (2.54) decreases with increasing carrier density (since εF < Dres), the

logarithmic decrease is not as strong as the inverse relationship found for weak scatter-

ing, eq. (2.52). Therefore, such scattering can be difficult to distinguish from that of
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2.4. FURTHER SCATTERING MECHANISMS

charged impurity scattering with a weak defect scattering from conductivity measure-

ments alone [61].

2.4.3 Acoustic Phonons

Acoustic phonons, of wavevector ka, couple to the lattice through the ‘deformation

potential’, U(r) = Dace(r), proportional to the strain, e(r), with a constant of propor-

tionality, Dac ≈ 25eV [66]. The deformation potential constant, Dac, is reported with a

large range of experimentally calculated values [6, 66, 67]. Assuming harmonic phonon

oscillations, described by the atomic displacement

s(r, t) =

√
2ℏ

Aρmω(ka)
cos(ka · r− ω(ka)t), (2.55)

the deformation potential is

u(r, t) = uabs(r, t) + uem(r, t) = i

√
ℏka

2Aρmvs
Dac

(
eika·re−iω(ka)t − e−ika·reiω(ka)t

)
(2.56)

where ρm = 7.6× 10−7 kgm−2 is the graphene mass density, vs ≈ 2.6× 104 ms−1 is the

speed of sound in graphene [66] and we have assumed a linear vibrational dispersion

relation ωq = vska, strictly valid for long wavelengths (q ≪ π/a). The amplitude of

oscillation in eq. (2.55) is found by equating the total energy of oscillation to the single

phonon quantum, ℏω(ka) [59]. For the absorption term, the Fourier transform

ũabs = i

√
ℏka

2Aρmvs
Dace

−iω(ka)t

∫
eika·re−iq·rdr (2.57)

is simply the Dirac-delta function, requiring that wavevectors sum to zero, ka = q.

The case is similar for emission, with ka = −q. In both cases, the magnitude of the

phonon wavevector is equivalent to magnitude of the change in electron wavevector

ka = q = |k′ − k|. The transition rate, including both absorption and emission, is

Sac
k→k′ =

πq

2Aρmvs
D2

ac

(
1 + cosθk,k′

)
(2N(q) + 1) δ(εk′ − εk). (2.58)

In deriving eq. (2.58), we made the quasi-elastic approximation, ℏω(q) = 0. This is a

useful simplification to make, especially when it comes to the computational methods,

since the dynamic dependence of the change in energy on the initial and final wavevec-

tors can be ignored. The approximation is strictly valid for ℏω(q) ≪ εF , which is the

case since vs ≪ v.
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Using eq. (1.49), the resulting total relaxation time is

1

τac(ε)
=

D2
ac

8πρmvs(ℏv)2
ε

∫ 2π

0
dθ

qsin2θ

1 − f(ε)

[
(Nq + 1) (1 − f(ε− ℏωq))

+Nq (1 − f(ε+ ℏωq))
]
.

(2.59)

In the equipartition regime, T ≫ TBG = ℏvs2kF /kB, the phonon occupation is Nq ≈
kBT/ℏωq and scattering is dominated by stimulated emission and absorption events.

Equation (2.59) simplifies to τac(ε) ≈ 4ρmv
2
sℏ3v2/kBTD2

acε, and using eq. (1.50), we

find that the equipartition conductivity is

σEP =
4e2ρmv

2
sℏv2

πD2
ac

(kBT )−1, (2.60)

independent of n and inversely proportional to T . A comparison between eq. (2.60)

and the full, numerically integrated acoustic conductivity from eq. (2.59) is shown

in fig. 2.7a, where we calculated the chemical potential, εF (Vg) using eq. (2.4). The

EP conductivity, eq. (2.60), agrees with the full calculation in the limit of large T and

small Vg. Using eq. (2.60), the mobility limited by acoustic phonons in the equipartition

regime,

µEP =
4eℏv2ρmv2s
πkBTD2

ac

(n+ p)−1, (2.61)

is inversely proportional to the carrier density, similar to short-range defects (2.52),

and also inversely proportional to temperature.

In the opposing, Bloch-Gruneisen, limit, T ≪ TBG, the relaxation rate was calcu-

lated in ref. [68]: τ(εF ) = (2πℏ3v5sρmεF )/(4!ζ(4)D2
acv(kBT )4). Given that we are in a

low temperature regime, T ≪ TBG ≪ εF /kB, we can use eq. (1.53), to find that the

conductivity is

σBG =
2π3/2e2ρmv

5
sℏ4v2

4!ζ(4)D2
ac

[nT=0]
3/2(kBT )−4. (2.62)

From eq. (2.62), we can see that σBG ∝ n3/2T−4. A comparison between eq. (2.62)

and the full, numerically calculated acoustic conductivity is shown in fig. 2.7b, the two

calculations agree in the limit of small T and large Vg.

From fig. 2.7a, it can be seen that the EP approximation, eq. (2.60), is valid at

room temperature over a reasonable range of applied gate voltages.

2.4.4 Optical Phonons

Calculations of the finite momentum coupling to in-plane optical phonon modes about

the Γ point have been carried out in ref. [31]. We shall summarise and use the

results here. DFT was used to determine the eigenvectors of the phonon modes, and

the perturbation in the presence of mixing of modes. For intraband longitudinal and
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(a) (b)

Figure 2.7: Conductivity due to acoustic phonon scattering, using the deformation
potential approximation, as a function of applied gate voltage, Vg, and temperature, T ,
(green). (a) Comparison to the EP approximation eq. (2.60) (black). (b) Comparison
to BG approximation eq. (2.62) (black).

transverse optical scattering, the transition rates in the small momentum limit are

SLO
k→k′ =

π

AρmωO
β2O
(
1 − ss′cos (φk′ + φk − 2φq)

)
∆el

k→k′(ωO) (2.63)

and

STO
k→k′ =

π

AρmωO
β2O
(
1 + ss′cos (φk′ + φk − 2φq)

)
∆el

k→k′(ωK). (2.64)

The total transition rate due to optical phonons,

SO
k→k′ =

2πβ2O
AρmωO

∆el
k→k′(ωO), (2.65)

is independent of the angular distribution. Given that the angular dependence from

longitudinal and transverse modes cancel out, the total transition rate is the same for

both intra- and inter- band scattering by Γ optical phonons.

Phonons at the K point cause intervalley scattering in which an electron scatters by

the reciprocal lattice vector, K, to an inequivalent valley. As noted in reference [31], the

DFT calculations for the phonon dispersion and corresponding matrix elements were

performed in [69]. The result is

SK
k→k′ =

2π

AρmωK
β2K
(
1 − ss′cosθk,k′

)
∆el

k→k′(ωK) (2.66)

The ‘gauge field’, β, terms are physical parameters representing the phonon coupling

strength, calculated to be βO ≈ 10 eV/Å and βK ≈ 3.5 eV/Å [67]. The resonant

optical modes in graphene are near dispersionless, such that we can assume them to be

of constant energy, independent of the electron transition, with values of ℏωO ≈ 165

meV for both transverse and longitudinal modes and ℏωK ≈ 124 meV [67].

The sum of longitudinal and transverse optical phonons around the Γ point results
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in the relaxation time

1

τO(ε)
=

β2O
ρmωO(ℏv)2

[
N(ωO) |ε+ ℏωO|

1 − f(ε+ ℏωO)

1 − f(ε)

+ (N(ωO) + 1) |ε− ℏωO|
1 − f(ε− ℏωO)

1 − f(ε)

]
.

(2.67)

Similarly, for phonons at the K point,

1

τK(ε)
=

β2K
ρmωK(ℏv)2

[
3

2
N(ωK) |ε+ ℏωK | 1 − f(ε+ ℏωK)

1 − f(ε)

+ (N(ωK) + 1)

(
|ε− ℏωK | +

1

2
(ε− ℏωK)

)
1 − f(ε− ℏωK)

1 − f(ε)

]
.

(2.68)

In calculating eq. (2.68), we have taken care that, for electron emission, ss′ = −1

(interband) in eq. (2.66) if ℏω > ε and ss′ = +1 (intraband) otherwise. Taking the low

temperature limit, T → 0, using eq. (1.53),

σO|T≈0 ≈
e2ρmωOv

2√nT=0√
πβ2O

[∣∣∣√πnT=0 +
ωO

v

∣∣∣+
∣∣∣√πnT=0 −

ωO

v

∣∣∣]−1
sinh

(
ℏωO

kBT

)
(2.69)

and

σK |T≈0 ≈
e2ρmωKv

2√nT=0√
πβ2K

sinh

(
ℏωK

kBT

)
×
[

3

2

∣∣∣√πnT=0 +
ωK

v

∣∣∣+
∣∣∣√πnT=0 −

ωK

v

∣∣∣+
1

2

(√
πnT=0 −

ωK

v

)]−1

.

(2.70)

Figure 2.8 shows the calculated resistivity of the two optical phonon modes using

the full relaxation times (eqs. (2.67) and (2.68)) and eq. (1.50). The result of eqs. (2.69)

and (2.70) are also shown at Vg = 20 V in fig. 2.8.

The (1 − f0(εF − ℏω)) terms in eqs. (2.67) and (2.68) highly suppress the scattering

by emission, since, for most temperatures considered, the distribution at ε = εF − ℏω
will be approximately full. However, the shift of the distribution function under an

applied field will make more low-energy states available for electrons to scatter in

to. The full time-dependant simulations described in section 2.5 will overcome any

oversimplifications that are present in eqs. (2.67) and (2.68).

2.4.5 Substrate Polar Phonons

Optical phonons in neighbouring polar substrate materials, such as hBN or SiO2, create

fluctuating electric fields; electrons in the graphene plane then couple to the modes of

the polarization field. The perturbation to the Hamiltonian is characterised by the
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(a) (b)

Figure 2.8: Resistivity due to (a) Γ- and (b) K- optical phonon scattering, as a function
of applied gate voltage, Vg, and temperature, T , compared to the low temperature
approximations, eqs. (2.69) and (2.70), at Vg = 20 V (black line).

substrate dielectric response,

u(r, t) = eF
e−koz

i
√
ko

(
eiko·re−iωsot − e−iko·reiωsot

)
, (2.71)

for surface optical modes of frequency ωso, where z is the normal distance to the

substrate surface and F is the Fröhlich coupling parameter [70]:

F =

[(
1

ϵ(∞) + 1
− 1

ϵ(0) + 1

)
ℏωso

2Aϵ0

]1/2
, (2.72)

where ϵ(0) and ϵ(∞) are the static and high frequency dielectric constants respectively.

When taking the overlap, we maintain the 2D Fourier transform by restricting the z-

extent of the wavefunction to an impulse, δ(z − dspp), at the distance of the graphene

plane from the substrate, dspp. As for acoustic phonons, the spatial Fourier transform

from the overlap results in ko = q and the resulting transition rate is

Sspp
k→k′ = F 2e2

π

ℏ

(
e−2qdspp

qϵsc(q)2

)(
1 + ss′cosθk,k′

)
∆inel

k→k′ . (2.73)

For a SiO2 substrate, ϵ(0) = 2.5 and ϵ(∞) = 3.9, dspp ≈ 0.4 nm and there are two

dominating, near dispersionless, surface modes of energy ℏωso ≈ 56 meV and ℏωso ≈
140 meV [71].

We write the momentum relaxation rate as a sum of the absorption and emission

parts
1

τspp
=

1

τspp,abs
+

1

τspp,em
(2.74)
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where

1

τspp,abs(ε)
=

Ae2F 2

4πℏ(ℏv)2
N(ωso) |ε+ ℏωso|

1 − f(ε+ ℏωso)

1 − f(ε)

∫ 2π

0
dθsin2θ

e−2qθ+dspp

qθ+ϵsc(qθ+)
,

(2.75)

1

τspp,em(ε)
=

Ae2F 2

4πℏ(ℏv)2

[
(N(ωso) + 1) |ε− ℏωso|

1 − f(ε− ℏωso)

1 − f(ε)

×
(
ϑ (ε− ℏωso)

∫ 2π

0
dθ

e−2qθ−dspp

qθ−ϵsc(qθ−)
sin2θ

+ ϑ (−ε+ ℏωso)

∫ 2π

0
dθ
e−2qθidspp

qθiϵsc(qθi)
(1 − cosθ)2

)]
,

(2.76)

q2θ± = [2(ε2 ± εℏωso)(1 − cosθ) + ℏ2ω2]/(ℏv)2 is the reciprocal scattering length for

intraband absorption and emission, respectively, and q2θi = [2(ε2 − εℏωso)(1 + cosθ) +

ℏ2ω2]/(ℏv)2 for interband emission.

2.5 Computational Methods

In the models shown in this section, we make a number of simplifying assumptions: (1)

homogeneity in real-space throughout the device, this can later be extended to consider

transport between real-space cells, where inhomogeneity can exist on the scale of the cell

size; (2) high chemical potential, such that only intraband scattering is present, ss′ = 1;

(3) valleys are assumed to have equivalent distributions. We will explore two methods

to model transport given a uniform applied electric field, E, and multiple sources of

electron scattering: Direct Simulation Monte Carlo and discontinuous Galerkin. Later,

in section 3.1, we will expand upon these methods to allow us to relax assumption (2)

and model inter-band transitions.

2.5.1 Direct Simulation Monte Carlo (MC)

A rectangular grid is used to discretise the 2D k-space into a set of values over a

range [−kmax
x , kmax

x ] ×
[
−kmax

y , kmax
y

]
, chosen such that the distribution, f(t,k), at

the boundary and beyond is negligibly small throughout the simulation. Each k-space

coordinate (kx(i), ky(j)) defines a cell, Cij . We simulate Np electrons on this grid,

assumed to be representative of the entire ensemble of real electrons that would be

present in the device. These simulated electrons are distributed onto the grid, with

each simulated electron holding the same statistical weight in comparison to the real

electron distribution. Therefore, the Pauli exclusion principle (PEP) is accounted for

by setting a maximum number of electrons allowed in each cell, Nmax
ij . Using the same

reasoning as in [72],

Nmax
ij =

2

(2π)2
Ωij

Np

n
, (2.77)
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since 0 ≤ f ≤ 1, where Ωij =
∫
Cij

dk is the k-space area of the cell Cij and n is the real-

space density of electrons given by eq. (1.18) with gv = 1 (only one simulated valley).

Initially, the electrons are distributed according to the Fermi-Dirac distribution (1.16).

This equates to assuming that the system is initially in equilibrium with the thermal

bath of the environment and has some chemical potential, εF , which sets the density of

real electrons, n, and, therefore, the maximum number of simulated electrons in each

cell, Nmax
ij . The simulated distribution in each cell is given by fij = Nij/N

max
ij .

The free-flight trajectories are determined by assuming uniform acceleration by the

applied electric field, E, over the short times between scattering, ∆t. Integrating over

the rate of change in electron momentum, equated to the electrostatic force gives

∆k = −eE
ℏ

∆t. (2.78)

Upon updating the wavevector of each electron, the grid is also shifted according to

eq. (2.78) to ensure that the number of electrons in each cell remains constant. This

procedure, which is well described in ref. [73], ensures that distribution doesn’t be-

come unphysical (ensures that f ≤ 1) due to inhomogeneities in the flux between cell

boundaries.

Using the total transition rates, Γ(k), for each scatterer, we can use a stochastic

approach to model the evolution of the system to a steady-state solution of the Boltz-

mann equation (1.44). The duration of free flight, between any two collisions, for a

single electron is given by [74]

∆t = − 1

Γtot
lnϱ1 (2.79)

where ϱ1 is a randomly generated number from a uniform distribution between 0 and 1

and Γtot =
∑

i Γi is the sum of total transition rates over each individual scatter rate,

Γi. At the end of free drift, the scatterer encountered by the electron is chosen based

on the relative total scattering rates. A randomly selected value, ϱ2, is compared to

the accumulative sum of the individual total scatter rates, Γi.

Generally, to consider a large distribution of electrons, an energy-dependant self-

scattering term is included, such that all electrons free drift for the same length of time

over each iteration. In essence, this means that Γtot is the same for each electron, whilst

the self-scattering, Γs = Γtot−
∑

i Γi(ε), differs, as shown in fig. 2.9. If self-scattering is

chosen as the scatterer at the end of free drift, the electron remains in its current state.

For our simulations, we find that, since having to calculate the values of Γi for each

electron to determine the scatterer encountered, it is beneficial to allow the electrons

to free drift independently and neglect the large amount of self-scatters that would

otherwise have to be considered.

The state after scattering, k′, is then selected by consideration of the transition

rate, Sk→k′ , to different k-states. The magnitude, k, after scattering is given by the

energy conserving terms (1.39) and (1.40). The probability of the change in polar angle
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Figure 2.9: Total scatter rates, Γ(ε), over a range of electron energies, ε, for the different
sources of scattering. We have used the following parameters: density of impurities,
nimp = 0.5×1015 m−2; impurity distance, dimp = 0.4 nm; substrate distance, dspp = 0.4
nm; chemical potential, εF = 0.3 eV. (a) Temperature, T = 10 K. (b) Temperature,
T = 300 K. In both cases we have approximated low temperature screening, eq. (2.16).

of the wavevector being between θ and θ + dθ is given by

P (θc)dθ =
dθSk→k′(θc)∫ 2π

0 Sk→k′(θc)dθ
. (2.80)

Another uniformly generated random number, ϱ3, is selected to represent a point on

the probability distribution, corresponding to the angle, θc, such that

ϱ3 =

∫ θc
0 Sk→k′(θc)dθ∫ 2π
0 Sk→k′(θc)dθ

. (2.81)

The simplest angular dependence of scattering comes from the overlap of the pseu-

dospinor part of the Bloch states. This corresponds to the (1 + cosθ) term in eq. (2.49)

for short-range defects, for example. Using eq. (2.81), the change in angle, θc, is thus

found by solving

ϱ3 =
1

2π
(θc + sinθc) . (2.82)

Solving such equations using symbolic equation solvers can be inefficient. Therefore, it

is found to be beneficial to discretise θ into an array and selecting θc by comparing the

relative probabilities to ϱ3 in a similar manner to selecting the scatterer encountered

at the end of free drift.

The cell, C ′
ij , that the electron scatters to can now be determined, and the distri-

bution, f ′ij , has to be considered. A rejection technique is used to determine whether

the chosen transition can occur based on the PEP. It follows the form of the ‘collision

term’, eq. (1.43), in the BTE: a random number ϱ4 is chosen such that, if ϱ4 < 1 − f ′ij
the transition is accepted, else it is rejected.

The simulated distribution function is continuously updated after every scatter
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event to ensure the PEP is always satisfied. Macroscopic quantities, such as total

velocity and energy, are recorded at designated time steps. An outline of the algorithm

used is shown in fig. 2.10.

Using eq. (1.46) and the calculated transition rates from sections 2.3.2 and 2.4, the

scatter rates are:

ΓO(ε) =
β2O

ℏ2v2ρmωO
[(ε− ℏωO) (NωO + 1)ϑ (ε− ℏωO) + (ε+ ℏωO)NωO ] (2.83)

for Γ-optical phonons, where the Heaviside function, ϑ (ε− ℏωO), ensures that only

emission events for which the electron is left in the conduction band are allowed; for

K-optical phonons,

ΓK(ε) =
β2K

ℏ2v2ρmωK
[(ε− ℏωK) (NωK + 1)ϑ (ε− ℏωK) + (ε+ ℏωK)NωK ] . (2.84)

The expressions for impurity, short-range, acoustic phonon, and substrate polar phonon

scattering are more involved and are therefore integrated numerically. An example

of the total scatter rates over the range of considered electron energies are shown in

fig. 2.9. For low temperatures (fig. 2.9a), optic phonon and substrate phonon scattering

is effectively switched off at low electron energies due to the lack of absorption (N(ω) ≈
0) and inability to emit into the valence band.

2.5.2 Discontinuous Galerkin (DG)

In the DG scheme, the Boltzmann equation is integrated using time variation dimin-

ishing (TVD) Runge-Kutta [75] on a finite element grid in which the flux between grid

elements is carefully considered. For a hyperbolic set of differential equations, the TVD

conditions are used to prevent the formation of spurious oscillations. The conditions are

such that the total spatial variation of the distribution function, f , between cells does

not increase over time. The temporal integration is performed with a time step chosen

to satisfy the CFL condition for a convergent solution [76]; 1 fs is used as standard.

In order to exploit the rotational symmetry of the electron energy in k-space, a

polar coordinate system is used, discretised over a circular grid, as shown in fig. 2.11.

In a similar manner to the MC method, the size of the grid is chosen such that the

distribution outside of the considered domain is negligible. We label the Nc cells Cα

and, instead of considering single particle trajectories from k to k′, we consider the flux

from cell Cα to Cβ. The result is Nc coupled Boltzmann equations with a constant,

piece-wise distribution function, fα(t), in each cell. The prescription of the DG method

used is well outlined in [77], here we will look at the key points.
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Initialize: Input parameters. Initial-
ize distribution, f , with Nmax particles.
Set uniform temporal grid with spacing
tstep and maximum tmax.
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Figure 2.10: Flow chart of Monte Carlo (MC) algorithm for diffusive electron transport
that obeys the Pauli exclusion principle (PEP).
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Integrating over each cell, the Boltzmann equation for cell Cα becomes

Ωα
dfα(t)

dt
=
e

ℏ
E ·
∫
Cα

∇kf(t,k)dk

+
A

(2π)2

Nc∑
β=1

[
Aβ,αfβ(t) (1 − fα(t)) −Aα,βfα(t) (1 − fβ(t))

] (2.85)

where Ωα =
∫
Cα

dk and

Aα,β =

∫
Cα

(∫
Cβ

Sk→k′dk′

)
dk. (2.86)

The first term on the right hand side of eq. (2.85), the drift-term, requires knowledge

of the values of f(t,k) on the boundaries of each cell. Each cell, defined by radius kn

and angle θm, has boundary distribution values at half integer values of n and m,

as shown in fig. 2.11. The boundary coordinates are uniformly spaced and labelled

k−1/2 = 0 < k1/2 < k3/2 < · · · < kN+1/2 = kmax and θ−1/2 = 0 < θ1/2 < θ3/2 < · · · <
θM+1/2 = 2π. For an electric field in the x-direction, E = E ı̂, the drift-term evaluates

to

E ·
∫
Cα

∇kf(t,k)dk =E
[(
kn+1/2fn+1/2,m − kn−1/2fn−1/2,m

) (
sinθm+1/2 − sinθm−1/2

)
−
(
sinθm+1/2fn,m+1/2 − sinθm−1/2fn,m−1/2

) (
kn+1/2 − kn−1/2

)]
.

(2.87)

The boundary values are estimated using a Taylor expansion, taking into account the

direction of flux by defining a ‘wind velocity’, a = −E · n, where n is the unit vector

normal to the boundary in the direction away from the cell. For the boundaries of

constant k,

fn+1/2,m ≈

{
fn,m + ∆kn

2 ∂kfn,m for a > 0

fn+1,m − ∆kn+1

2 ∂kfn+1,m for a < 0
(2.88)

where ∆kn = kn+1/2 − kn−1/2 and the derivatives, ∂kfn,m, can be approximated using

a minmod slope limiter, to ensure the TVD conditions are satisfied [78]. The minmod

limited gradients are defined as

f ′n,m = minmod

(
fn,m − fn−1,m

kn − kn−1
,
fn+1,m − fn,m
kn+1 − kn

)
, (2.89)

where the minmod function is

minmod(a, b) =
1

2
(sgn(a) + sgn(b)) min (|a| , |b|) . (2.90)

Exactly the same procedure is followed for the boundaries of constant θ.

The second term on the right hand side of eq. (2.85), the collision term, requires the
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2.5. COMPUTATIONAL METHODS

Figure 2.11: Diagram of the radial discretisation of k-space used in the DG simulation.
fn,m is the occupation of cell Cn,m, where the labels n,m and α can be used inter-
changeably, the values of k and θ at the boundaries are denoted by half integer indices,
n is the unit vector normal to any given boundary and E shows the direction of the
applied electric field.

evaluation of the integrals (2.86), which are constant throughout the simulation, for

each given cell. For each cell Cα and each scatterer, the summation over all cells, Cβ, is

reduced to a sum over two sets (absorption and emission), at fixed k, by consideration

of the energy conserving limits (1.39) and (1.40) of the transition rates. For intrinsic

phonons, this can be evaluated analytically, whereas the values for substrate polar

phonons, impurities and short-range defects are evaluated numerically in quadrature.

At each time step, we calculate the simulated charge density,

nsim(t) =
2gv

(2π)2

∫
f(t,k)dk =

2gv
(2π)2

∑
α

fα(t)Ωα, (2.91)

mean velocity,

⟨v(t)⟩ =
2gv

(2π)2nsim

1

ℏ

∫
f(t,k)∇kε(k)dk =

2gv
(2π)2nsim

v
∑
α

fα
kα

kα
Ωα, (2.92)

and mean energy,

⟨ε(t)⟩ =
2gv

(2π)2nsim

∫
f(t,k)ε(k)dk =

2gv
(2π)2nsim

ℏv
∑
α

fαkαΩα. (2.93)

Charge conservation means that the charge density (2.91) should be constant through-

out the simulation. This is used as a test to make sure that flux through cells is balanced

and the domain size is reasonable.
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2.5.3 Preliminary Results

The results shown are obtained using both the MC and DG methods, along with all

of the scattering mechanisms shown in sections 2.3.2 and 2.4, except for short-range

scattering. Therefore, we have assumed pristine, non-defective monolayer graphene on a

SiO2 substrate. The physical parameters used are the same as were used to demonstrate

the scatter rates, Γ, in fig. 2.9a: density of impurities, nimp = 0.5× 1015 m−2; impurity

distance, dimp = 0.4 nm; substrate distance, dspp = 0.4 nm, and temperature, T = 10

K.

In both the MC and DG simulations, the drift velocity is calculated as the mean

velocity in the direction of the applied electric field, vd = ⟨vx⟩ for a field in the x-

direction. The mobility is calculated from this drift velocity, µ = vd/E.

Figure 2.12 shows comparisons of the two methods over the course of the simulation.

These results were achieved on a grid of kmax = 1.5 nm−1, partitioned as {k × θ} =

{140 × 100} for DG and kmax = 2 nm−1, partitioned as {kx × ky} = {150 × 150} for

MC. In the MC simulations we use 5×104 particles. The DG and MC methods provide

congruent results for both the electron drift velocity (average velocity in the direction

of the applied electric field), vd, and average energy, ⟨ε⟩, over all times t.

Using the DG method, we investigate the effect of the electric field on the mobility.

For small fields, we expect mobility to be independent of the applied field, where vd ∝ E.

The low-field dynamics are described in detail in section 3.2. The results of varying

applied electric field on the mobility and drift velocity are shown in fig. 2.13. For the

electronic scattering used here, the mobility converges for electric fields E < 103V/m, as

shown in fig. 2.13a. Figure 2.13b shows that the drift velocity tends toward a constant

value, limited by the single electron speed (v = 106 ms−1), in the high field regime such

that µ ∝ 1/E for very large (> 106 V/m) electric fields. Similar saturation points (106

V/m) have been observed in graphene field effect transistors [7].

2.5.4 Discussion

It clear from fig. 2.12 that the MC and DG methods give equivalent results, as was been

shown previously in ref. [73]. This provides two methods to choose from when solving

the Boltzmann equation for broad distributions with multiple sources of scattering.

The DG method has an advantage over MC in that statistical noise is absent. In

MC simulations, this problem increases at low fields. For low driving electric fields, the

SNR is reduced due to the small drift velocities resulting in the stochastic scattering

becoming the dominant term the Boltzmann equation. This noise can only be decreased

by increasing the number of simulated particles, vastly increasing computational time.

However, MC provides flexibility to include additional effects, acting on the in-

dividual electrons throughout simulation. It could have potential advantages when

considering spatial inhomogeneity. For this case, one can discretise real space into Nr

real-space cells. Although, the computational cost should be considered. The simula-
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Figure 2.12: Variation of drift velocity (left-most plots), vd, and mean electron energy
(right-most plots), ⟨ε⟩, with time, t. The plots show comparisons of the results from
both MC and DG methods for chemical potentials of 0.1 eV, 0.3 eV and 0.5 eV from top
to bottom for a field of E = 106 V/m. Physical parameters used: density of impurities,
nimp = 0.5×1015 m−2; impurity distance, dimp = 0.4 nm; substrate distance, dspp = 0.4
nm; temperature, T = 10 K.
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Figure 2.13: (a) Mobility, µ, variation with chemical potential, εF , for a number of
different applied electric field strengths, E (in V/m). (b) Drift velocity, vd, as a function
of applied electric field strength, E, for different values of the chemical potential, εF .
The DG method was used to calculate the results. Physical parameters used: density
of impurities, nimp = 0.5 × 1015 m−2; impurity distance, dimp = 0.4 nm; substrate
distance, dspp = 0.4 nm; temperature, T = 10 K.

tion time, tsim, is increased by more than Nr × tsim, due to running Nr homogeneous

simulations and then redistributing the particles throughout the real space cells after

each time step. In chapter 4, we will employ and adapt the MC method for transport

in superlattice structures, where the energy band structure is significantly perturbed

from the isotropic conical structure and, within each time step, we can simulate both

electron scattering and tunnelling between subbands.
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Chapter 3

Modelling of Conductivity in

Pristine Graphene

3.1 Simulating Inter-Band Scattering

At high temperatures and small chemical potentials, there exists both holes in the

valence band and electrons in the conduction band. If there are no inelastic scattering

events, then the two bands can be treated independently. However, if inelastic phonon

scattering is present, then the bands are coupled and interband scattering should be

carefully considered.

The linearised Boltzmann method, eq. (1.50), can be used to find the conductivity

based upon the rates Sk→k′ of electron scattering between any two states k and k′,

where there exists no discrimination between the bands of the initial and final states

(i.e. s = ±1 and s′ = ±1 independently). However, in simplifying the problem to the

LB method, we lose information on the momentum distribution of electrons and holes.

Here we show how the methods described previously, in section 2.5, for simulating

an electron distribution can be extended to a coupled electron-hole distribution. We

will then use these simulations to investigate the effect of phonon scattering on the

electron-hole dynamics.

First, it is useful to define the distribution function of the electrons and holes

separately, fe(k) = f(s = +1,k) and fh(k) = 1 − f(s = −1,k) respectively, within

k-space where s = ±1 denotes the band index (ε = sℏvk).

The DG method treats the full distribution function in energy space according to

eq. (2.85). Therefore, we can easily extend the method to model the electron distri-

bution over negative energy values (s = −1). In the scattering term (second term on

RHS of eq. (2.85)), it should be taken care that the band indices (s) are included when

computing the scattering coefficients, Aα,β, from eq. (2.86). For the drift term (first

term on RHS of eq. (2.85)), it is most convenient to calculate separately for electrons

and holes i.e. dfdrift,e = E ·
∫
Cα

∇kfe(t,k)dk and dfdrift,h = −E ·
∫
Cα

∇kfh(t,k)dk, using

eq. (2.87). This also ensures symmetry in the TVD conditions for electrons and holes.
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3.1. SIMULATING INTER-BAND SCATTERING

The total drift term over all energy space is then

dfdrift(s,k) =

{
dfdrift,e(k) for s = +1

−dfdrift,h(k) for s = −1
. (3.1)

In the MC simulations we model the distinct hole and electron distributions, fe and

fh. The algorithm for the hole distribution, fh, follows that of the electron distribution

outlined in section 2.5.1, where E → −E due to the changed polarity of the charge

carriers. The total scatter rates, Γ, for holes are found as in eq. (1.46) using the electron

scatter rates Sk→k′ , except we sum over all initial electron states, k, rather than final

states, k′, since the initial state of the electron corresponds to the final state of the

hole. We also have to be sure to include the band indices, s i.e. ε(k) → −ε(k). Then,

upon calculating the total scatter rates for holes, we find that they are equivalent to

the electron scattering rates with respect to the k-coordinates. Therefore, we have

two simultaneous independent identical algorithms moving the electrons and holes in

their respective k-space grids. However, upon scattering, we now have to consider

the possibility for interband transport, thus coupling the two otherwise independent

algorithms.

The interband transitions consist of emission and absorption. We will first address

emission. This is simply incorporated into the electron scattering. Including the band

index of the final state, s′, in the calculation, the total scatter rates of electrons in the

conduction band by Γ- and K-optical phonons (eqs. (2.83) and (2.84)) become

ΓO(ε) =
β2O

ℏ2v2ρmωO

[
ε− ℏωO

s′
(NωO + 1) + (ε+ ℏωO)NωO

]
(3.2)

and

ΓK(ε) =
β2K

ℏ2v2ρmωK

[
ε− ℏωK

s′
(NωK + 1) + (ε+ ℏωK)NωK

]
. (3.3)

If the electron scatters via emission and the final state, k′, is in the valence band

(s′ = −1), then a hole from the corresponding cell in the valence band, specifically the

closest hole to the final state, and the scattered electron are both removed from the

simulation.

Since we are simulating valence holes and conduction electrons, there are no simu-

lated particles that can represent electron absorption into the conduction band. Instead,

we need to input a reasonable number of new particles (electron/hole pairs) represent-

ing absorption from the continuum of available electron states (i.e. empty hole states)

in the valence band at each time step within the simulation. For each cell, Cij , in

the valence band with k < ω/v, we find cells in the conduction band that are cou-

pled via absorption, Ci′j′ . This means finding the cells with k-space coordinates such

that |k′ − ℏω + k| < δk/2, where k′ =
√
kx(i′)2 + ky(j′)2 and k =

√
kx(i)2 + ky(j)2

correspond to the k-space coordinates of the cell in the conduction and valence band

respectively, and δk is the width of each cell. For each pair of coupled cells, we calculate

47



3.1. SIMULATING INTER-BAND SCATTERING

0 50 100 150 200

t (ps)

7.2

7.4

7.6

7.8

8

8.2

n
, 

p
 (

1
0

1
4
 m

-2
)

MC

DG

(a)

0 50 100 150 200

t (ps)

0

0.5

1

1.5

2

2.5

3

v
d
 (

1
0

5
 m

s
-1

)

MC

DG

LB

(b)

Figure 3.1: (a) Electron and hole carrier densities, n and p, and (b) drift velocity, vd, as
a function of time, calculated for K and Γ- optical phonon scattering with zero chemical
potential, εF = 0, temperature, T = 300 K, and an electric field of strength E = 103

V/m using both MC and DG methods. The black dashed line in figure (b) shows the
value of vd calculated using the linearised Boltzmann (LB) method.

the flux between them using the incremental scatter rates

ΓO
abs(ε) =

β2O
2πℏ2v2ρmωO

(ε+ ℏωO)NωO∆θ (3.4)

and

ΓK
abs(ε, θk,k′) =

β2K
2πℏ2v2ρmωK

(ε+ ℏωK)NωK (1 + cosθk,k′)∆θ, (3.5)

where ∆θ is the angular extent of the coupled cell in the conduction band, which is

approximately 2π divided by the number of coupled cells, and θk,k′ is the angle between

cells Cij and Ci′j′ . The time between each absorption event is calculated as in eq. (2.79),

except the scatter rate is adjusted by the occupation, since we are generating the flux

from the simulated distribution function rather than individually simulated particles,

∆t = − 1

Γabs (1 − fh(k)) (1 − fe(k))
lnϱ (3.6)

where 0 < ϱ < 1 is a randomly generated number. For each absorption event, a hole

and an electron are randomly generated within cells Cij and Ci′j′ respectively.

In this subsection, the interband simulations were performed using k-space grids

with an extent kmax = 0.5 nm−1, partitioned as k × θ = 200 × 140 for DG simulations

and kx × ky = 200 × 200 for MC simulations. The total number of particles (electrons

and holes) used in the MC simulations is 5 × 104.

Figure 3.1 shows the results of both methods when simulating scattering by optical

(K and Γ) phonons only with no doping (εF = 0) at room temperature (T = 300 K)

and with an applied electric field strength of E = 103 V/m. Firstly, we note that the

two methods successfully provide congruent results. Figure 3.2 shows the number of

interband scatter events by both emission and absorption in 10 ps intervals from the
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3.1. SIMULATING INTER-BAND SCATTERING

Figure 3.2: Number of interband scattering events per particle in a 10 ps interval via
Γ and K optical phonon emission and absorption over time, t, simulated using the
MC method. Chemical potential, εF = 0, temperature, T = 300 K, and electric field,
E = 103 V/m.

MC simulation. Initially, as the distribution is perturbed, the rate of electron emission

is larger than absorption. At later times, the emission and absorption rates equilibrate

and reach a detailed balance. This results in a net decrease in the carrier density

initially (fig. 3.1a), with phonon emission causing electrons in the conduction band to

fill available states in the valence band as the distributions are shifted under the applied

field.

Using the relaxation times, eqs. (2.67) and (2.68), we also calculated the the conduc-

tivity, σ, using the linearised Boltzmann (LB) method, eq. (1.50). The drift velocity

is then calculated as vd = σE/(e(n + p)) where, for εF = 0, n and p are given by

eq. (1.21). Figure 3.1b shows the results of MC and DG simulations compared to the

LB result for the carrier drift velocity, vd. We find that the simulated results of the full

Boltzmann equation give a smaller value of drift velocity than the LB method. This

is likely due to the increased availability of lower energy states for electron emission as

the distribution spreads out in k-space causing an increase in scattering which is not

captured in eqs. (2.67) and (2.68) due to the rigid 1 − f0 terms, as described in sec-

tion 2.4.4. We note, however, that the drift velocity is of the same order as calculated

using the LB method and the change in the carrier density is less than 10%. Therefore,

the LB method still provides a reasonable approximation of the behaviour of inelastic

scattering, even around the charge neutrality point, εF = 0.

When elastic scattering dominates over inelastic scattering, the steady-state char-

acteristics converge towards the LB approximation. To demonstrate this, we include a

simple characteristic unscreened (ϵsc = 0) short-range defect elastic scattering potential

with transition rate given by eq. (2.49). Using the LB method, the mobility for such

scattering is

µ =
4eℏv2

nsrAsrU0π(n+ p)
, (3.7)

where nsr is the density of defects, Asr is the effective cross-sectional area of defect
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Figure 3.3: (a) Electron and hole carrier densities, n and p, and (b) drift velocity, vd,
as a function of time, calculated using both MC and DG methods including K and Γ-
optical phonon scattering and an unscreened short-range defect scattering potential of
strength nsr(AsrU0)

2 = 0.21 nm2eV2. The chemical potential, εF = 0, temperature,
T = 300 K, and electric field strength, E = 103 V/m. The black dashed line in figure
(b) shows the value of vd calculated using the linearised Boltzmann (LB) method.

scattering and U0 is the potential perturbation caused by the defects. Figure 3.3 shows

the time-varying carrier densities, n and p, and drift velocity (vd = µE) when including

defect scattering of strength nsrAsrU0 = 0.21 nm2eV2.

Stochastic simulation of defect scattering, combined with the reduced drift velocity,

vd, results in a smaller signal-to-noise ratio (SNR) for the MC results in fig. 3.3b

compared to fig. 3.1b, where only phonon scattering is included. This SNR can be

increased by increasing the number of simulated particles within the MC simulation.

3.2 Joule Heating

The conductivity described by the linearised Boltzmann approximation, eq. (1.48),

assumes that the distribution function, expanded as powers of the applied field, is

dominated by the zero-th and first order terms. This is generally the case for small

electric field strengths, where the shift in the distribution function is linear with respect

to the field strength, as long as the distribution is constrained by elastic scattering. If

the electron gas momenta are not constrained by elastic scattering, then the electron

energy can continue to increase under the applied fields such that the higher order terms

become significant. This phenomenon, known as ‘Joule heating’, has been observed

previously, e.g. in metals [79].

Here, we will expand the Boltzmann equation up to second order, using the mo-

mentum relaxation time approximation, and compare the results with full numerical

solutions of the BTE using the DG and MC methods.

The momentum relaxation time, eq. (1.49), gives the time constant over which a

perturbed, coherent distribution of electrons is completely dephased by scattering to a
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distribution with zero net momentum. The momentum relaxation time approximation

approximates the collision term, eq. (1.43), in the BTE as(
∂f(t,k)

∂t

)
coll

≈ −f(t,k) − f̄(t, k)

τ(k)
(3.8)

where f̄ represents the angular average of the function f [30]. Substituting this into

the BTE, eq. (1.44), we have

∂f(t,k)

∂t
+

1

ℏ
F · ∇kf(t,k) = −f(t,k) − f̄(t, k)

τ(k)
. (3.9)

We expand the time-dependant distribution function as a linear sum, f(t,k) = f0(t,k)+

f1(t,k) + f2(t,k) · · · , of terms with varying field dependencies: fn ∝ En. The zero-

th order term, f0, is the unperturbed Fermi-Dirac equilibrium distribution, f0(k) =

[exp(ε(k)/kBT ) + 1]−1.

Expanding the BTE to first order in the applied field strength,

∂f1(t,k)

∂t
+

F

ℏ
· ∇kf0(k) = −f1(t,k) − f̄1(t, k)

τ(k)
, (3.10)

since f0(k) is time independent and symmetric i.e. ∂f0/∂t = 0 and f0 = f̄0. From

eq. (3.10), we can see that the solution for f1(t,k) will be asymmetric in k with respect

to the direction of the field, F. This can be understood physically, since the first order

perturbation, f1, is proportional to the applied field, which drives the electron motion

such that states with momentum opposing the field direction (negative F · k) have an

increasing distribution (positive f1) whilst those with momentum in the field direction

(positive F · k) have an decreasing distribution (negative f1) and charge conservation

requires that the magnitude of change in the distribution be equivalent for positive

and negative F · k. Therefore, the angular average disappears, f̄1(t, k) = 0. Solving

eq. (3.10) for the first order correction,

f1(t,k) = −τ(k)
F

ℏ
· ∇kf0(k)

(
1 − e−t/τ(k)

)
. (3.11)

In the long time limit (t≫ τ), we find the steady state solution,

f1(t→ ∞,k) = −τ(k)
F

ℏ
· ∇kf0(k), (3.12)

for which ∂f1(t,k)/∂t = 0, and thus ∂f(t,k)/∂t = 0 to first order. In section 1.4, we

used the first order steady state solution, f(k) = f0(k) + f1(t→ ∞,k), to calculate the

linearised Boltzmann mobility, eq. (1.53).

Expanding to second order, we find

∂f2(t,k)

∂t
+

F

ℏ
· ∇kf1(t,k) = −f2(t,k) − f̄2(t, k)

τ(k)
, (3.13)
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where we have used eq. (3.10) to cancel out the first order terms. Approximating f1 in

the long time limit,

∂f2(t,k)

∂t
≈ τ

ℏ2
(F · ∇k)2 f0(k) − f2(t,k) − f̄2(t, k)

τ(k)
. (3.14)

Taking the angular average of eq. (3.14) and integrating with respect to time,

f̄2(t, k) ≈ tτ(k)

ℏ2
〈

(F · ∇k)2 f0(k)
〉
θ

(3.15)

is the angular average of the second order perturbation in the long time limit (t≫ τ),

where we have also used ⟨. . . ⟩θ to represent the angular average. Firstly, we note that

f̄2 is proportional to time. This means that, to second order in the applied field, there

is no steady state solution. Secondly, since the energy of electrons depends only on the

magnitude of the momentum and not the orientation, the average energy of electrons

in the distribution depends only on the angular average of the distribution,

⟨ε⟩(t) =
1

n

∫
dε εD(ε)

(
f̄0(ε) + f̄2(t, ε)

)
. (3.16)

The integral over f̄0(ε) gives the time-independent initial average energy as given by

the Fermi-Dirac distribution which, for graphene at T = 0, is ⟨ε⟩(t = 0) = 2εF /3.

Using eq. (3.15), the average energy of electrons increases linearly with time in the long

time limit,

δ⟨ε⟩(t) = ⟨ε⟩(t) − ⟨ε⟩(t = 0) ≈ t

ℏ2n

∫
dε εD(ε)τ(ε)

〈
(F · ∇k)2 f0(k)

〉
θ
. (3.17)

To check the validity of the second order expansion, we will compare eq. (3.17) to results

using the numerical calculations of the MC simulations as outlined in section 2.5.1.

In 2D, the angular average of the second order perturbation, eq. (3.15), is

f̄2(t, k) =
tτ(k)e2E2

ℏ2
1

2π

∫ 2π

0
dθ

∂2

∂k2x
f0(kx(θ), ky(θ))

= − tτ(k)e2E2

ℏ2

[
δ(kF − k)

k
+
k

2

∂

∂k

(
δ(kF − k)

k

)]
,

(3.18)

where we have assumed that the field is in the x-direction, E = E ı̂.

For the purpose of comparing the analytical 2nd order approximation to the Monte

Carlo simulations, we will consider a simple case of isotropic elastic scattering with an

energy-independent relaxation time. Then, the total scatter rate, Γ, (eq. (1.46)) used

in the MC simulation is related to the momentum relaxation time (eq. (1.49)) by

Γ =
1

τ

2π∫ 2π
0 (1 − cosθ)

=
1

τ
. (3.19)
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Figure 3.4: Monte Carlo results for the change of average electron energy, δ⟨ε⟩, with
time t, for varying parameters: (a) relaxation time, τ , (b) electric field strength, E, and
(c) chemical potential, εF . In each case, δ⟨ε⟩ is scaled by the parameter being varied
such that the same temporal dependence remains the same for ease of comparison. The
black dashed line shows the results of eq. (3.20). We have set τ = 1 ps, E = 50 V/m,
εF = 0.02 eV as standard.

In 2D graphene, the density of states is D(ε) = gsgvε/2πℏ2v2 and carrier density,

n = D(εF )εF /2 (see eqs. (1.15) and (1.20)). Using eq. (3.18), eq. (3.17), describing the

time-varying change in the average electron energy, becomes

δ⟨ε⟩ = − tτe
2E2

ℏ2
2

ε2F
(ℏ2v2)

∫
dε ε2

[
δ(εF − ε)

ε
+
ε

2

∂

∂ε

(
δ(εF − ε)

ε

)]
=
tτe2E2v2

εF
.

(3.20)

The results of the time-varying averaged energy from MC simulations are compared

to eq. (3.20) in fig. 3.4 under varying parameters: relaxation time, τ ; electric field

strength, E; and chemical potential, εF .

If the momentum relaxation time, τ , is energy-dependent then the mean change in

electron energy due to an applied field depends only on the value at the Fermi energy,

i.e.

δ⟨ε⟩ =
tτ(εF )e2E2v2

εF
, (3.21)

in the limit T = 0.

3.2.1 Including Inelastic Scattering

We have found that, when scattering is purely elastic, it is not possible to reach a steady-

state within the BTE. Physically, this means that an electric field applied to an electron

distribution causes the electrons to continually gain energy according to eq. (3.17). In

order to find physical steady-state, equilibrium solutions of the electron distribution in

an electric field, we need to consider inelastic scattering. Inelastic scattering by phonon

emission will remove energy from hot electrons that have been accelerated by the field

to the phonon energy.

Here we model graphene with elastic impurity scattering (section 2.3.2) and inelastic
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Figure 3.5: Steady-state distribution of electron momenta calculated for a small im-
purity density, nimp = 0.025 × 1016 m−2, at a distance dimp = 1 nm and chemical
potential, εF = ⟨δεimp⟩ = 0.015 eV. (a) Cross-section of the distribution at ky = 0
calculated using MC (solid red line) and DG (dashed blue line) compared to the initial
Fermi-Dirac distribution, f0. (b) Steady-state distribution shown in the full 2D k-space
calculated using DG method (top) and MC method (bottom). Solid black circle rep-
resents the initial Fermi circle, of radius kF , dashed black circle shows a linear shift of
the Fermi circle by δkx = eEτ(εF )/ℏ, orange dashed circle represents the K-phonon
level, and the orange dashed-dotted circle represents the Γ-phonon level. Note that the
right-hand plots show the centre of the left-hand plots. The colour scale corresponds
to both left- and- right hand plots.

Γ- and K-optic phonon scattering (section 2.4.4) to investigate how Joule heating could

affect the mobility compared to the mobility calculated using the linearised Boltzmann

(LB) steady-state solution, eq. (1.53).

For small impurity densities, i.e. highly pure graphene, the mean chemical potential

at charge neutrality can also be small. When the chemical potential is much smaller

than the phonon energy, Joule heating will have a stronger effect on the electrons, since

inelastic scattering is only effective once the electrons are accelerated to the phonon

energy.

To demonstrate this, we consider a small impurity density, nimp = 0.025 × 1016

m−2. We take the chemical potential to be at the limit set by residual carriers at charge

neutrality, ⟨δεimp⟩, as given by eq. (2.24). From the initial Fermi-Dirac distribution, f0,

at t = 0, we achieve a non-degenerate, dilute electron gas in the long-time, steady-state

limit as shown in fig. 3.5a. The point at which the steady-state is realised is determined

by the phonon energy, as shown in fig. 3.5b. Once the carriers reach the phonon limit,

they relax their energy resulting in an equilibrium ensemble distribution.

Figure 3.6 shows the results of simulation for nimp = 0.025×1016 m−2 (correspond-

ing to fig. 3.5). For small times, the simulated drift velocity agrees well with the result

calculated from the LB formalism as the distribution is initially shifted from thermal

equilibrium. However, as the distribution spreads in k-space and the second order

term, eq. (3.15), becomes more dominant, the mean velocity decreases. Steady state is
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Figure 3.6: Variation of drift velocity, vd, with time, t, calculated for a range of applied
electric field strengths, E, using the DG method (bold solid lines) and MC method
(fine solid lines). The time-independent LB result is shown by the dashed black line.
The impurity density used is, nimp = 0.025× 1016 m−2, at a distance dimp = 1 nm and
with a chemical potential, εF = ⟨δεimp⟩ = 0.015 eV.

realised once the carrier energy approaches the optical phonon energy.

For larger chemical potentials, the maximum electron energy at thermal equilibrium

may already be close to the phonon energy at t = 0. For large impurity densities, the

spatial fluctuation, δεimp, in the impurity potential is large and so the mean carrier

energy will always be large. Figure 3.7a shows the steady-state distribution function

for a large impurity density, nimp = 10 × 1016 m−2 calculated using the DG method,

and compared to the thermal thermal equilibrium distribution, f0. In this case, the

deviation of the final distribution from the initial distribution, f0, is much smaller than

in the previous case (fig. 3.5a) where the chemical potential was smaller. Since the

perturbation to the distribution is smaller, it can be expected that the effect of the

second order term, eq. (3.15), will be smaller and the first order correction, eq. (3.12),

may be dominant at all times. In fig. 3.7b, we see that this is the case: the drift

velocity agrees with the linearised Boltzmann result for the 1st order steady state

solution, eq. (1.53).

3.2.2 Energy Relaxation By Acoustic Phonons

Acoustic phonons with dispersion ℏωq = ℏvsq can also dissipate the energy of the

system. We will now include inelastic acoustic phonon scattering in the MC simulations

to see how effective they may be in suppressing the effects of Joule heating. In the low

temperature limit, T → 0, scattering occurs only via emission with transition rate

Sac
k→k′ =

πq

2Aρmvs
D2

ac

(
1 + cosθk,k′

)
δ(εk′ − εk + ℏωq). (3.22)

Unlike in eq. (2.58), we have not omitted the phonon energy, ℏωq, from the delta

function since we are no longer making the quasi-elastic approximation. Given the

linear phonon dispersion, ℏωq = ℏvsq where q = |k′ − k|, energy conservation, as
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Figure 3.7: (a) Cross-section, at ky = 0, of the steady-state distribution of electron
momenta calculated for a large impurity density, nimp = 10 × 1016 m−2, at a distance
dimp = 1 nm and chemical potential, εF = ⟨δεimp⟩ = 0.15 eV calculated using the DG
method (solid red line). The solid black line shows the initial Fermi-Dirac distribution,
f0. Inset shows the steady-state distribution in the full 2D k-space where the black
dashed circle represents the K-phonon level, and the black dashed-dotted circle repre-
sents the Γ-phonon level. (b) Variation of drift velocity, vd, with time, t, calculated for
electric field strength, E = 104 V/m, using the DG method. Dashed line shows the
result of the linearised Boltzmann method.

enforced by the delta function in eq. (3.22), imposes a constraint on k′:

vα− v + vs

√
α2 + 1 − 2αcosθk,k′ = 0 (3.23)

where k′ = α(θk,k′)k. Therefore, the momentum after scattering, ℏk′, is proportional

to the initial momentum, k, but the constant of proportionality, α, is dependent on the

angle of scattering, θk,k′ , and is given by the solution of eq. (3.23). Figure 3.8 shows a

schematic example of all possible scattering states via acoustic emission for one initial

energy state. Forward scattering (θk,k′ = 0) is elastic: k′ = k and the phonon energy is

ℏωq = 0. The maximum phonon emission energy occurs for backscattering (θk,k′ = π):

k′ = v−vs
v+vs

k ≈ 0.95k and ℏωq = 2vs
v+vs

ℏvk ≈ 0.05ℏvk. Using the transition rate between

single states, eq. (3.22), the total scatter rate of an electron with momentum ℏk for the

MC simulations is

Γac(k) =
D2

acv

8πℏvρmv2s
k2
∫ 2π

0
dθ α(θ) [1 − α(θ)] (1 + cosθ) . (3.24)

Figure 3.9 shows the increase in mean electron energy with time for varying electric

fields both with and without the inclusion of inelastic acoustic phonons. We note that

the MC simulations over estimate the effect of acoustic phonons in removing energy

from the system. This is best seen for E = 10 V/m in fig. 3.9, where the average energy

decreases with time when acoustic phonons are included. This is an unphysical result

which occurs due to the discrete cell spacing used to describe the distribution. Electrons
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Figure 3.8: Schematic diagram showing the conical energy-wavevector, ε(k), dispersion
in graphene with possible scattering states (blue line) from an initial energy state (blue
dot) of energy εk via acoustic emission. The angle of scattering is denoted θk,k′ .

are able to emit energy values from a continuous range, between 0 < ℏωq < 0.05ℏvk,

such that emission of low-energy phonons can allow an electron to move into a lower

energy state within its current cell of occupation. In all other cases, the energy increase

from thermal equilibrium follows eq. (3.21) at small times, before tending towards the

steady-state at larger times. Despite the limitations of the MC method for modelling

such low energy inelastic scattering, our calculations show that the hot electron effect

is significant for electric fields at least as low as ∼100 V/m, comparable to commonly

used experimental values, even with elastic scattering from acoustic phonons.

We suspect that at small electric fields (< 102 V/m), the acoustic phonon scatter-

ing may allow the distribution to reach steady state before the optical phonon limit.

However, for larger electric fields, the rate of energy increase due to the applied field

exceeds the rate of energy dissipation in acoustic phonons, thus requiring the optical

phonon modes to achieve steady-state. We note that this hot-electron phenomenon is

particularly prominent in graphene, due to its relatively high-energy optical phonons

and weak electron-acoustic phonon scattering. As presented in 2.4.3, acoustic phonon

scattering in graphene is most often approximated as elastic (the “quasi-elastic” ap-

proximation) because the phonon energy ℏωq only corresponds to a very small change

in electron energy (≲ 5%), since v ≫ vs.

3.3 Scaling Laws in Impurity-Dominated Graphene

Various theoretical models have been proposed to explain the effect of impurities on

carrier mobility in SLG. It is commonly accepted that µ is inversely proportional to

the impurity density, nimp, and independent of carrier density (eq. (2.35)) [57, 58].

Scattering by charge-neutral point defects can also affect µ, which is typically inversely

proportional to the carrier density (eq. (2.52)), making it the dominant scattering

mechanism at large carrier densities. The 2D nature of SLG means that it is sensitive

to the surrounding environment, in particular the presence and position of the charged
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Figure 3.9: MC results for the change of average energy, δ⟨ε⟩, with time, t, calculated for
a range of applied electric field strengths, E, with and without inelastic acoustic phonon
scattering (dashed and solid lines, respectively). The 2nd order BTE result, eq. (3.21),
is shown by the solid red line. The impurity density used is, nimp = 0.025 × 1016 m−2,
at a distance dimp = 1 nm and with a chemical potential, εF = ⟨δεimp⟩ = 0.015 eV.

impurities. However, there is still limited understanding of the effect that the standoff

distance, d, of the impurities from the graphene plane has on the carrier mobility,

and other transport parameters. Additional complications arise in graphene-based

heterostructures where SLG is sandwiched between two other materials with the same

or different dimensionality (3D bulk, 2D layers and/or 0D quantum dots [80–83]).

We will begin by deriving a simple phenomenological analytical equation. Following

this we will use the DG method to perform numerical k-space simulations of carrier

transport over a range of experimentally relevant gate-induced doping levels, which we

compare to results using the simplified linearised Boltzmann formalism. We find that

the shape of the conductivity curve over a wide range of carrier densities demonstrates

that the mobility increases inversely as the conductance peak narrows. The calculations

are supported by analysing experimental results obtained on both pristine (fig. 3.10a)

and surface-decorated (fig. 3.10b) graphene devices, we find this inverse scaling to be

universal throughout the devices presented.

3.3.1 Theoretical Model

We consider graphene sheets with charged impurities at a distance, dimp, from the

graphene plane and optical phonons with energy, ℏω (fig. 3.10a). We model the effect of

these two scattering mechanisms on the following electrical properties of graphene: the

full-width-half-maximum (FWHM) carrier concentration (δn) of resistivity, mobility

(µ), conductivity (σ) and resistivity (ρ) at the Dirac point (ρmax) (fig. 3.11). The

minimum conductivity, σmin, in impurity-dominated graphene is generally restricted

by residual charge and temperature (section 2.3.1). Here, we will assume that T = 0,

before discussing the effect of non-zero temperatures in section 3.9. In the samples

with high residual charge, localised ‘puddles’ of electrons and holes are formed. The
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Figure 3.10: (a) Schematic diagram showing the impurity position, dimp, with respect to
the graphene sheet and a pictorial representation of spatio-temporal (angular frequency
ω) phonon oscillations over one unit cell. (b) Schematic diagram showing the position
of impurities (dimp) and surface-charges (dtop), due to 0D structures (e.g. perovskites)
and 2D structures (e.g. InSe), with respect to the graphene sheet.
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Figure 3.11: Exemplar, idealised curve of resistivity, ρ, against carrier density, n, show-
ing the full-width-half-maximum (FWHM), δn. The maximum resistivity, ρmax corre-
sponds to n = n0.

electrons and holes play equal roles in determining the graphene conductivity with no

scattering at the borders between the n- and p-type graphene areas due to the Klein

paradox [84]. Only in highly clean, usually suspended, graphene at low temperatures,

can the Dirac point, n = 0, be probed. Even in this ballistic regime, there remains a

finite conductance [9, 85–87].

An analytical expression is derived simply by assuming that away from the Dirac

point, where the mobility is measured, conductivity increases linearly with carrier den-

sity. In this case, the resistivity at half maximum is ρ−1
1/2 = 1/(n1/2eµ1/2) = 2ρ−1

max

where ρmax = 1/σmin and n1/2 and µ1/2 are the carrier density and mobility at the half

maximum, respectively. Assuming that the mobility is constant, independent of carrier

density, then the mobility at the half maximum gives the mobility at all n, µ1/2 = µ.

Considering both types of carriers (electrons and holes), the full-width-half-maximum

(FWHM), δn, is 2n1/2, thus,

µ ≈ µ1/2 =
4

eρmax

1

δn
. (3.25)
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To explain the observed µ(δn) and µ(Vg) curves in more detail, we use the Boltz-

mann transport method for diffusive scattering. Specifically we use the DG method

(section 2.5.2) for the impurity scattering. We perform the DG calculations using an

initial Fermi-distribution of low finite temperature, T = 20 K, to avoid discontinu-

ities over the discretised k-space. Therefore, one might not expect phonons to have

a significant effect on the transport properties compared to that of scattering by im-

purities [88]. However, for low carrier densities, carriers can be accelerated to high

energies (∼ 100 meV) resulting in a ‘hot electron’ distribution due to the Joule heating

phenomena described in section 3.2. In this case, inelastic optical phonon scattering

becomes important in relaxing the energy of the carriers. In our calculations we set the

phonon occupation to N = 0, such that only spontaneous emission occurs since we are

considering only the low temperature regime (T ≈ 0).

For all numerical simulations, we apply an electric field, E = 104 V/m (0.1 V drop

across a 10 µm-long SLG), corresponding to a regime of low-field mobility, where µ

is independent of the applied electric field strength (see fig. 3.6). For comparison, we

also calculate the mobility using the LB formalism, eq. (1.53), with the momentum

relaxation time for impurity scattering, calculated by evaluating eq. (2.32) numerically.

We assume that the residual charge density of electron-hole puddles at the Dirac

point defines the limit of the minimum conductivity throughout. Here, we assume that

the transition from the residual charge dominated minimum carrier concentration to

the linearly Vg -dependent concentration occurs when the gate-induced charged density,

n(Vg−V0), is equal to the residual charge density, nNP = nres, where V0 is the position

of the Dirac point and nres is given by eq. (2.26). Since we are assuming randomly

distributed, unipolar impurities, we can make the assumption that nimp = n0 due to

the requirement of charge neutrality, where n0 = n(V0) is the doping carrier density.

Figure 3.12a shows the calculated dependence of µ on n for n > nNP . With increas-

ing n, we observe an initial increase of µ. This is followed by a peak and a monotonic

decrease of µ at large n. This dependence arises from the competition between scat-

tering by long-range Coulombic impurities and short-range defects. Short-range defect

scattering is found to be dominant at large n, as expected from comparison of the

momentum relaxation time for short-range defects, τsr ∼ n−1/2, calculated using the

Born approximation, and long-range impurities, τimp ∼ n1/2. Beyond the Born approx-

imation, for sufficiently strong defect scattering, the exponent of n in the momentum

relaxation time, τsr, can increase towards that of long-range impurity scattering, as

shown in section 2.4.2. The dependence of mobility on carrier concentration, µ(n), is

affected by the density of impurities, n0, and by their distance from the graphene plane,

dimp. Hence, both δn and the mobility depend on n0 and dimp. As shown in fig. 3.12b,

the mobility increases as dimp is increased. Furthermore, for low impurity densities, and

thus small residual charge densities, the mobility given by the DG simulations differs

from that obtained from the LB calculations due to Joule heating effects, whereas the

two methods give µ values that converge at higher impurity densities.
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Figure 3.12: (a) Mobility, µ, calculated using the Discontinuous Galerkin (DG) method
as a function of gate-induced carrier density, n, beyond the minimum carrier density,
nNP (vertical dashed line), for varying short-range scattering strengths. The impurity
density is n0 = 0.6 × 1016 m−2. (b) Mobility, µ, calculated as a function of impurity
density, n0, for several stand-off distances, dimp. Dashed curves are calculated using
the linearised Boltzmann (LB) approximation, using eq. (1.53). The solid green curve,
where α = 20e/h, shows eq. (2.35) (corresponding to the LB result in the limit dimp = 0)
as given in [57]. (c) Dependence of FWHM, δn, on impurity density, n0, for different
stand-off distances: dimp = 0.5 nm (blue curves), 1.0 nm (red curves), 2.0 nm (black
curves).

Our calculations demonstrate that the linewidth, δn, of the ρ(Vg) curve broadens

with decreasing dimp and increasing impurity density, n0 (fig. 3.12c). Suggesting a key

link between the FWHM, δn, and the strength of the impurity potential.

3.3.2 Comparison to Experimental Devices

In this study, we analysed the data recorded in previous work on graphene devices

fabricated using single-layer graphene placed on 300 nm thick SiO2/Si or on a few

monolayer thick hBN/SiO2/Si substrates with a bottom gate electrode. We used two

device geometries: a 2-terminal diode and a Hall bar. Results obtained for the following

devices are analysed in this work: pristine exfoliated single-layer graphene [89]; pris-

tine CVD-grown single-layer graphene (Graphenea and Graphene Supermarket) [90];

graphene covered by a thin (from 5 nm to 50 nm) layer of exfoliated InSe [90]; graphene

covered by a layer of inorganic perovskite CsPbI3 nanocrystals [91]; graphene covered

by a layer of colloidal PbS quantum dots [92].

We apply our analysis to the above experimental results reported previously for over

20 devices fabricated using exfoliated and CVD-grown graphene, and for heterostruc-

tures incorporating 2D (InSe, hBN) or 0D (colloidal QDs, inorganic perovskites) layers.

There exists large experimental uncertainty in the value of the impurity density,

n0, due to the uncertainty in it’s origin: we will see later, in section 3.4, that many

impurity configurations can lead to the same n0. However, in examining the mobility,

we can eliminate n0 by combining the results of figs. 3.12b and 3.12c and using the
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carrier density fluctuations, δn, as a more direct probe of the nature, and specifically

the scattering strength, of underlying potentials. The carrier mobility decreases with

increasing δn (fig. 3.13a), with the broadening of δn being larger for smaller dimp at a

given value of mobility. Measurements from graphene devices are in good agreement

with the results of our DG simulations with dimp = 2 nm. We note that our fit

(fig. 3.13a) uses δn calculated from ρ1/2 (resistivity/conductivity at half maximum),

rather than n0 extracted from the gate voltage at which σ(Vg) = σmin. By using

eq. (3.25) and assuming a universal minimum conductivity for pristine graphene, σmin ≈
4e2/h [93], we obtain a simple inverse power law for mobility, which provides excellent

agreement with experimental data from a range of devices (see section 3.3.3),

µ ≈ 16e

h

1

δn
. (3.26)

Recently, the decoration of graphene devices with other low-dimensional materials,

such as 0D (colloidal PbS quantum dots [94] or CsPbI3 perovskite [95]) and 2D (InSe

flakes) [96] materials has been used to functionalise these devices, e.g. for photon

sensing [95–97]. The properties of the graphene heterostructures are greatly affected

by both the unintentional presence of charged impurities in the vicinity of graphene (as

described above by dimp) and those deliberately introduced by the top layer (dtop) in

graphene heterostructures (fig. 3.10b), which we model as a distribution of impurities

at an effective distance, deff . We note that in surface-decorated graphene devices, the

distance between the graphene plane and the top layer can be controlled, for example

by introducing a dielectric layer such as hBN, thus providing a tool for tailoring the

electrical properties.

The relationship between mobility and the gate-voltage offset is µ ∝ 1/n0 for most

pristine devices (eq. (2.35)). However, for devices with high densities of correlated

unipolar charges [98, 99] or uncorrelated bipolar charges, [92] spatial correlation be-

tween charges must be considered, as will be shown in section 3.4. This is particularly

important when the dopants are mobile and able to adopt low energy, correlated config-

urations. Such effects were recently demonstrated for quantum dot-decorated graphene

and validated using Monte Carlo simulations [92, 99]. Despite the different µ(n0) char-

acteristics of decorated and pristine graphene, remarkably we find that both types of

device exhibit the “universal” scaling behaviour shown in fig. 3.13b.

Different surface-decorated devices follow a common trend observed in pristine

graphene. In particular, the experimental results for the InSe, perovskite and PbS

decorated SLG are best fitted by DG calculations when deff = 1 nm. Therefore, we

find that the relationship between µ and δn is consistent throughout all of the devices,

as can be expected from the analytical expression given in eq. (3.26), with modifica-

tions to only the effective distance of the impurities. Flexibility to modify composition

and/or geometry of a heterostructure offers opportunities to tune the distribution and

stand-off distance of ionised impurities, hence changing deff and providing a tool to
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Figure 3.13: (a) Calculated mobility, µ, versus FWHM, δn, curves (dashed and solid
curves) compared to data from pristine graphene samples grown by CVD (filled circles)
or exfoliated (filled triangles). The dashed lines are obtained from eq. (1.53), the solid
lines are obtained using the DG simulations. (b) Relationship between mobility, µ, and
the FWHM, δn, obtained using the DG simulations, taking deff = 1.0 nm. In surface
decorated devices the effective impurity distance, deff , describes the combined effect
of charges below (dimp) and above (dtop) the graphene layer. Compared to data from
multiple modified graphene samples (data points for each sample type are labelled as
shown in the inset legend).

control transport properties of these devices. We note, that our model is valid for all

devices where the position of ionised impurities is not affected by Vg. In rare cases, at

high Vg, the ionisation of donor impurities can be affected by the applied gate voltage

[90, 100] and the corresponding change in the impurity distribution, nimp and dimp,

would need to be accounted for.

3.3.3 Key Transport Parameter Relations

The model developed allows us to link together three key transport parameters of SLG

devices: µ, n0 and δn, from which it is possible to predict the σ(Vg) behaviour. We now

look to extract some simple, phenomenological-based analytical expressions to relate

these transport parameters into an easy-to-use set.

Figure 3.14a shows that the minimum conductivity for all pristine graphene samples

is around the quantum limit, σmin ∼ 4e2/h, with no correlation to the doping density,

n0. As a result, the simple analytical expression (3.26) provides a good fit (fig. 3.14b).

For the surface modified devices measured in this study, the average maximum con-

ductivity is found to be slightly larger than in the pristine SLG devices (fig. 3.14c).

This is likely due to the increased amount of residual charge, as modelled by the the

smaller effective distance. If we approximate σmin ≈ 5e2/h, we find that µ ≈ 20e/hδn

for modified graphene (see fig. 3.14d). This result suggests that the characteristic car-

rier density fluctuation determined from the FWHM, δn, of the R(Vg) dependence can

be used to estimate the mobility of a wide range of graphene devices in a way that
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Figure 3.14: Values of the maximum resistivity, ρmax, measured for (a) pristine
graphene and (c) surface modified graphene with different levels of doping, n0. Varia-
tion of the mobility, µ, with the carrier density fluctuation, δn, measured for (b) pristine
graphene and (d) surface modified graphene. Magenta curve shows the analysis using
the inverse power law, eq. (3.25), where A1 = 16e/h and A2 = 20e/h.

is strikingly similar to the phenomenological relation defined for impurity density, i.e.

µ = α/n0 (eq. (2.35)).

From fig. 3.15a, we see that eq. (2.35), with nimp = n0, is reasonable for µ(n0),

µ ≈ 20e

h

1

n0
. (3.27)

Equating eqs. (3.26) and (3.27), we find that δn ≈ 4
5n0, which is a reasonable approxi-

mation over the range of data considered here, as shown in fig. 3.15b.

We note that the results of µ(n0) and δn(n0) (fig. 3.15) are more scattered, with

larger variance, than the results of µ(δn) (fig. 3.14). As described in section 3.3.2,

this is likely due to the fact that there are many different configurations of charged

impurities that can lead to the same value of the doping density, n0. The assumption

that n0 = nimp only corresponds to the simplest case of uniform randomly distributed

unipolar impurities. However, by eliminating n0, we find the “universal” behaviour of
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Figure 3.15: (a) Mobility, µ, calculated as a function of dopant density, n0, for sev-
eral stand-off distances, dimp. The solid magenta curve is given by eq. (3.27) (i.e.
α = 20e2/h). The results are compared to data from pristine graphene samples. (b)
Dependence of δn, on impurity density n0 for several stand-off distances compared to
the phenomenological relation, δn = 4

5n0. The results are compared to data from pris-
tine graphene samples.

µ(δn) as presented in fig. 3.13.

To summarise, the key analytical relations for transport measurements of graphene

on SiO2, or substrates with a similar dielectric constant, useful for fast experimental

analysis are:

• µ ≈ 20e
h

1
n0

• µ ≈ 16e
h

1
δn

• ρmax ≈ h/4e2

• δn ≈ 4
5n0

Overall, our model of µ(δn), which considers the effect of impurity scattering to

be dominant on mobility, describes well all examined types of graphene: high mobility

exfoliated graphene and low-mobility CVD-grown graphene.

3.4 Correlated Impurities

Here we consider the effect of spatial correlations between charged impurities on the

total impurity induced potential and the impact that this has on the mobility and

self-consistently calculated residual charge density. For the calculations of mobility, we

use the linearised Boltzmann approximation. We consider two new scenarios: (A) spa-

tially correlated unipolar impurities, (B) spatially correlated bipolar impurities; further

expanding the random distributions derived in section 2.3 and used in section 3.3.

For Nj correlated scatterers at positions Rj , we retain the full summation over

individual scattering centre positions. In this case, the transition rate, eq. (1.38),
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becomes

Sk→k′ =
π

A2ℏ

∣∣∣∣∣∣
Nj∑
j=1

e−iq·Rj

∣∣∣∣∣∣
2

|ũ(q)|2 (1 + cosθk,k′)δk′k (3.28)

in the case of elastic scattering, where δk′k = δ (ε(k′) − ε(k)). Using eq. (2.20), the

Fourier transform of the single charged impurity potential, we find

Sk→k′ =
π

A2ℏ

∣∣∣∣ 2πe2

κqϵsc(q)

∣∣∣∣2
∣∣∣∣∣∣
N(−)∑
j=1

e−iq·Rj −
N(+)∑
k=1

e−iq·Rk

∣∣∣∣∣∣
2

e−2qd(1 + cosθk,k′)δk′k (3.29)

where N(−) and N(+) are the number of negatively and positively charged impurities,

respectively. Using eq. (1.49), the momentum relaxation time is

1

τ(kF )
= πvr2skF

∫
dθ

sin2θ

(2kF sin(θ/2) + qs)
2

Sf (2kF sin(θ/2))

A
e−4kF sin(θ/2)d, (3.30)

where we identify the structure factor

Sf (q) =

∣∣∣∣∣∣
N(−)∑
j=1

e−iq·Rj −
N(+)∑
k=1

e−iq·Rk

∣∣∣∣∣∣
2

(3.31)

which depends on the spatial distribution of impurities.

Conserving the full spatially dependant potential in the calculation of the residual

charge fluctuations, eq. (2.21), gives

⟨δεimp⟩2 =

∫
d2q

(2π)2

∣∣∣∣2πe2e−qd

κqϵsc(q)

∣∣∣∣2 Sf (q) = 2π

(
e2

κ

)2 ∫ ∞

0
qdq

e−2qd

(qϵsc(q))2
Sf (q), (3.32)

from which we find the residual charge, nNP = ⟨δεimp⟩2/(πℏ2v2) at the point of mini-

mum conductivity.

In the limit of randomly distributed impurities, Sf ≈ N− + N+ = Nimp, and we

retrieve the results derived in section 2.3.

3.4.1 Unipolar

Correlations of the N(±) unipolar impurities can be expected due to positioning the

charges in a lattice network, or due to doping with mobile unipolar charges which can

move into low energy, highly correlated configurations. We characterise this correlation

by a minimum allowed distance between any two impurities, r0. For a given r0 there

exists a maximum density of impurities, nmax = 1/(πr20), constrained by the minimum

separation, r0, between the impurities.
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The structure factor, eq. (3.31), for unipolar impurities is

Sf (q) =

N(±)∑
j=1

N(±)∑
k=1

e−iq·(Rj−Rk) = N(±) +

N(±)∑
j=1

∑
k ̸=j

e−iq·(Rj−Rk). (3.33)

We approximate the structure factor by averaging over the possible distribution of

positions, Rj,k,

Sf (q) ≈ N(±) +N(±)(N(±) − 1)⟨eiqrcosθ⟩ (3.34)

where ⟨...⟩ represents the ensemble average, r0 < r < L is the distance and between the

vectors Rj and Rk of any two impurities, L is the maximum distance between any two

impurities (i.e. roughly the device size) and θ is the angle between q and Rj −Rk.

The ensemble average of the exponential phase difference between impurities is

found by assuming a uniform probability distribution of impurity-impurity distances

between r0 and L,

〈
eiqrcosθ

〉
≈
∫ 2π
0 dθ

∫ L
r0
rdreiqrcosθ

A− πr20
=

2π (LJ1(qL) − r0J1(qr0))

A− πr20
(3.35)

where A = πL2 is the device area and J1(x) is the Bessel function of the first kind. In

the limit of a large sample size, L→ ∞,〈
eiqrcosθ

〉
≈ − 2π

qA
r0J1(qr0), (3.36)

such that the structure factor is given by

Sf (q) ≈ N(±)

(
1 − 2πn(±)r

2
0

J1(qr0)

qr0

)
, (3.37)

assuming that N(±) ≫ 1. There are two important limits:

J1(qr0)

qr0
→

{
1/2 when qr0 → 0

0 when qr0 → ∞
. (3.38)

When r0 = 0, we retrieve Sf (q) = N(±) as for the random case.

We note that the same result as eq. (3.37) can be achieved by the structure factor

formulation given in Refs. [98, 101] using the pair distribution function,

g(r) =

{
0 for r ≤ r0

1 for r > r0
, (3.39)

which describes the relative density of impurities at position r from any given impurity.

67



3.4. CORRELATED IMPURITIES

Subbing eq. (3.37) into eq. (3.30), results in

1

τ(kF )
= n(±)πvr

2
skF

∫
dθ

[
sin2θ(

2kF sin2(θ/2) + qs
)2 e−4kF dsin(θ/2)

×
(

1 − 2πn(±)r
2
0

J1 (2kF sin(θ/2)r0)

2kF sin(θ/2)r0

)] (3.40)

for the momentum relaxation rate. Whilst subbing eq. (3.37) into eq. (3.32), we find

δk2imp = 2π

(
e2

ℏvκ

)2

n(±)

[
C0(rs, 4δkimpd) − 2πn(±)r0

(∫ 2δkimp

0
dq

e−2qd

(q + qs)2
J1(qr0)

+
4

(2 + πrs)2

∫ ∞

2δkimp

dq
e−2qd

q2
J1(qr0)

)]
,

(3.41)

where we have defined δkimp = ⟨δεimp⟩/ℏv, the mean fluctuation in the quasi-

Fermi wavevector due to the impurity potential. Equation (3.41) can be solved self-

consistently using an iterative process with input wavevector calculated from the ran-

dom case, eq. (2.24).

We will now investigate the effect of changing the correlation length. Here, we

consider the case of d = 1 nm for varying impurity densities, 0.02 × 1016m−2 ≤ n(±) ≤
20 × 1016m−2.

Figures 3.16a and 3.16b show the calculated variation of charge density, nNP , and

mobility, µ(nNP ), at the Dirac point. From this we calculate the maximum resistivity,

ρmax = (1/nNP eµ(nNP )) (fig. 3.16c). We see that, as correlation is increased, the

effect of the electrostatic field is reduced. As a result, the residual charge decreases

(fig. 3.16a) and mobility increases (fig. 3.16b). The increase in mobility is stronger

than the decrease in residual charge such that the resistivity at the Dirac point, ρmax =

1/(nNP eµ(nNP )), decreases with increasing correlation (fig. 3.16c). For low impurity

densities, n(±), and small correlation lengths, r0, the results are the same as the random

case; for small densities, the correlated configurations will be indistinguishable from

random configurations.

Figures 3.17a and 3.17b show the variation of mobility and resulting resistivity

with carrier density, between the minimum carrier concentration, nNP , and the density

corresponding to the FWHM, n1/2, for an impurity density of n(±) = 2×1016 m−2. We

see that, when correlations are strong, the mobility begins to decrease with increasing

carrier concentration due to an increase in scattering at high energy as a direct result

of the structure factor.

Figure 3.18a shows the variation of FWHM, δn, with doping level, n0 = n(±). There

exists a maximum value of δn for a given correlation length, as can be understood by

the results of fig. 3.16, where we see that the effects of the field are reversed as n0 = n(±)

increases. Figure 3.18b shows the relationship between mobility, µ, (calculated at the
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Figure 3.16: Calculated variations of (a) residual charge, nNP , (b) mobility at nNP ,
µ(nNP ), (c) maximum resistivity, ρmax, for varying n0 = n(±). Results show a number
of correlation lengths, r0, in 0.5 nm increments. We have set a stand-off distance of
d = 1 nm.
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Figure 3.17: (a) mobility and (b) resistivity as a function of carrier concentration, n,
for a number of correlation lengths, r0, from the neutrality carrier density, n = nNP ,
to the carrier density at the resistivity half-maximum, n = n1/2. The impurity density
is n(±) = 2 × 1016 m−2. We have set a stand-off distance of d = 1 nm.

half maximum, n1/2), and the FWHM, δn. As the correlations begin to flatten the

field, the mobility varies from the µ(δn) curve for the random case (black line). From

eq. (3.25), we can see that this is due to the large decrease in ρmax for large n0 = n(±),

as shown in fig. 3.16c.

3.4.2 Bipolar

Here we consider a fixed random distribution of N(−) negatively charged impurities,

and explore the effects of adding N(+) positively charged impurities. As in reference

[92], we assume that each positive impurity added will become correlated to a negative

impurity to reduce the overall electrostatic potential energy of the sample. We define

rmax as the maximum radius between a given negative impurity and a corresponding
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Figure 3.18: (a) FWHM, δn as a function of n0 = n(±) and (b) mobility, µ, as a
function of FWHM, δn, calculated for a number of correlation lengths, r0. We have set
a stand-off distance of d = 1 nm.

correlated positive impurity. The structure factor is

Sf (q) =

N(−)∑
j=1

N(−)∑
k=1

eiq·(R−,j−R−,k) +

N(+)∑
j=1

N(+)∑
k=1

eiq·(R+,j−R+,k)

−
N(−)∑
j=1

N(+)∑
k=1

eiq·(R−,j−R+,k) −
N(+)∑
j=1

N(−)∑
k=1

eiq·(R+,j−R−,k),

(3.42)

where R−,j represents the position of the jth negative impurity. As for the random

case, the first two double summations of eq. (3.42) give N(−) +N(+), since the negative

distribution, and thus the positive distribution, are random so only the j = k terms

contribute and all other terms average to zero. However, we now also need to consider

the j = k terms in the third and fourth double summation in eq. (3.42), since the jth

positive impurity is correlated to the jth negative impurity. Thus we find that

Sf (q) = N(−) +N(+) −
N(+)∑
k=1

eiq·(R−,k−R+,k) −
N(+)∑
j=1

eiq·(R+,j−R−,j). (3.43)

Using the same approach as in section 3.4.1, we approximate

N(+)∑
k=1

eiq·(R−,k−R+,k) =

N(+)∑
j=1

eiq·(R+,j−R−,j) ≈ N(+)

〈
eiqrcosθ

〉
(3.44)

where 0 < r < rmax is the distance between the vectors R+,j and R−,j of the correlated

impurities, and θ is the angle between q and R+,j −R−,j . The ensemble average of the

contribution from correlated impurities is found by evaluating the Hankel transform,

〈
eiqrcosθ

〉
≈

2π
∫ rmax

0 rdrJ0(qr)

πr2max

= 2
J1(qrmax)

qrmax
. (3.45)
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Therefore, the total structure factor is

Sf (q) ≈ N(−) +N(+) − 4N(+)
J1(qrmax)

qrmax
. (3.46)

Making use of the limits shown earlier (eq. (3.38)), we can see that when rmax → 0,

Sf (q) = N(−) − N(+), i.e. we return a random distribution of N(−) − N(+) negative

impurities, since the positive impurities are perfectly aligned with the negative impuri-

ties such to cancel the field of N(+) negative impurities exactly. Whereas, in the limit

rmax → ∞, Sf (q) = N(−) + N(+), i.e. we return the case of a random distribution of

N(−) +N(+) impurities.

Subbing eq. (3.46) into eq. (3.30), results in

1

τ(kF )
= πvr2skF

∫
dθ

[
sin2θ

(2kF sin(θ/2) + qs)2
e−4kF dsin(θ/2)

×
(

(n(−) + n(+)) − 4n(+)
J1 (2kF sin(θ/2)rmax)

2kF sin(θ/2)rmax

)] (3.47)

for the momentum relaxation rate. Whilst subbing eq. (3.46) into eq. (3.32), obtains

δk2imp = 2π

(
e2

ℏvκ

)2
[

(n(−) + n(+))C0(rs, 4kimpd)

− 4n(+)

(∫ 2δkimp

0
dq

qe−2qd

(q + qs)2
J1(qrmax)

qrmax

+
4

(2 + πrs)2

∫ ∞

2δkimp

dq
e−2qd

q

J1(qrmax)

qrmax

)] (3.48)

for the mean deviation of the quasi-Fermi level from zero at the minimum conductivity.

As for eq. (3.41), this can be solved iteratively.

We will now investigate the effect of changing the correlation length. Here, we

consider the case of d = 1 nm for a fixed density of ‘negative’ impurities, n(−), and add

‘positive’ impurities of varying density, n(+).

From fig. 3.19, we see that, at rmax = 0, the system behaves as if it contains

n(−) − n(+) randomly distributed unipolar impurities, due to perfect cancellation of

the N+ charges. As rmax increases, we observe transition to a point where the system

behaves as if it contains n(−) + n(+) randomly distributed unipolar impurities, except

for offset of the Dirac point, which is always defined as n0 = n(−) − n(+). As a result,

we get a reflection of the unipolar random case about n0 = n(−) as rmax → ∞. The

expected scale of rmax, about which this transition occurs can be calculated as the mean

distance between the randomly distributed negative impurities, ⟨r(−)⟩ ≈
√
π/n(−).

In fig. 3.20b, we eliminate n0 by plotting µ(δn). We see behaviour that can be

anticipated from the results of fig. 3.19. That is that when rmax = 0 and when rmax →
∞ the behaviour is of randomly distributed unipolar impurities, in terms of µ(δn). In
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Figure 3.19: Calculated variations of (a) residual charge, nNP , (b) mobility at nNP ,
µ(nNP ), (c) maximum resistivity, ρmax, for varying n0 = n(−)−n(+) where we have fixed
n(−) = 2×1016 m−2. Red- rmax = 0, blue- rmax = 5 nm, purple- rmax = 10 nm, salmon-
rmax = 15 nm, yellow- rmax = 20 nm. The dotted black line was calculated for a random
distribution of unipolar impurities (Sf = N(±) = An0). The dashed line was calculated
for a random distribution with both polarities of impurity (Sf = N(−) + N(+)). We
have set a stand-off distance of d = 1 nm.

between these two limits, we observe a period of transition.

3.4.3 Summary

For a given doping density, n0, if impurities are unipolar, spatial correlations can lead

to increased mobility. While, if both negatively and positively charged impurities exist,

the mobility may be decreased relative to the expectation by the perceived impurity

density, n0.

In both cases, the mobility for a given δn appears to be increased relative to that of

a random distribution due to the effect of the smoothing of the electrostatic potential

on the carrier dynamics at the charge neutrality point. However, the extent of devi-

ation is limited by the maximum correlation for a given impurity density, as shown

in fig. 3.21. Figure 3.21 shows the results of µ(δn) for a number of different impurity

configurations (taken from sections 3.3 (random), 3.4.1 (unipolar correlated) and 3.4.2

(bipolar correlated)).

We note that the measurements of QD doped graphene (fig. 3.13b) seems to show no

obvious deviations from the observed “universal” trend in µ(δn) even when correlations

between impurities/dopants are expected [92, 99].

3.4.4 Classical Real-Space Monte Carlo

In references [92] and [99], a real-space Monte Carlo simulation was used to model

the effect of impurity/QD dopant correlations. Their Monte Carlo model used a phe-

nomenologically modified Coulomb potential for a randomly generated, correlated dis-

tribution of electrons to simulate the deterministic trajectory of electrons. Here we
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Figure 3.20: (a) FWHM, δn as a function of n0 = n(−) − n(+) and (b) mobility, µ,
as a function of FWHM, δn. We have fixed n(−) = 2 × 1016 m−2. Red- rmax = 0,
blue- rmax = 5 nm, purple- rmax = 10 nm, salmon- rmax = 15 nm, yellow- rmax = 20
nm. The black dotted line was calculated for a random distribution, as in (A), for just
one type of impurity (Sf = N(±) = An0). The black dashed line was calculated for a
random distribution, as in (A), with both types of impurity (Sf = N(−) + N(+)). We
have set a stand-off distance of d = 1 nm.
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Figure 3.21: Mobility, µ, as a function of FWHM, δn, for d = 1 nm. The legend shows
the type of distribution of impurities considered ((A) random - sections 2.3 and 3.3.1,
(B) unipolar - section 3.4.1, (C) bipolar - section 3.4.2) and the relevant correlation
length.
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will look at employing the modified potential, as described in [92], to model a classical

single-electron trajectory and compare the results to those obtained in sections 3.4.1

and 3.4.2.

The potential of a single charged impurity at distance, r, is given by [92]

u(r) = uC(r)uq(r)usc(r), (3.49)

where uC(r) is the classical Coulomb potential, uq(r) is the quantum correction to the

classical potential, and usc(r) is the screening correction. The quantum correction,

uq(r) = erf(r/λq) where erf(x) is the error function and λq is a fitting parameter

[92, 102]. The screening correction is approximated to be of the Yukawa form (2.38),

usc(r) = exp(−r/λsc), where the screening length, λsc = ℏv/(8ln(2)rskBT ) is taken as

the high-temperature limit [53].

A grid is generated and the total field, generated by the simulated distribution of

charged impurities, is calculated at the centre of each cell on the grid, according to

eq. (3.49). The size of the cells is chosen in accordance with the chosen time step, such

that an electron is only able to move to one of the surrounding 8 cells in one time step,

given the velocity, v = 106 ms−1. Typically, the cell size is chosen to be 1 nm with

a time step of 1 fs. Electrons are input with a wavevector chosen randomly from the

Fermi-Dirac distribution with kF =
√
πn(−). Once an electron completes the length of

the channel (chosen to be 2 µm here), it is reinserted with a new randomly selected

input wavevector. The details of the algorithm are shown in fig. 3.22.

The maximum time, tmax, is chosen such that the mean energy and velocity have

converged, within the constraints imposed by statistical noise. The velocity is averaged

over the final time steps to find the drift velocity, vd, from which we calculate the

mobility, µ = vd/E.

For a random unipolar impurity density n(−) = 2×1016 m−2 at a distance, d = 1 nm,

calculated using the linearised Boltzmann formalism (used in sections 3.4.1 and 3.4.2),

we find µ ≈ 0.3 m2/Vs. From this, we calibrate the quantum correction to the impurity

potential and find λq = 11 nm.

Figure 3.23a shows the fluctuation of the total impurity potential about the mean

(U − Ū), for increasing minimum distance between unipolar impurities, r0. As r0

increases, the fluctuations in the potential are reduced, thus carrier mobility increases,

as shown in fig. 3.23b, in agreement with the results from section 3.4.1.

Figure 3.24a shows the total impurity potential, U , from a random and a corre-

lated distribution of bipolar charges. Correlations between the negative and positive

impurities result in a decrease in the fluctuations of the field due to the cancellation of

the potential from oppositely charged impurities. In fig. 3.24b, the results of mobility

obtained from the classical Monte Carlo, for varying rmax, are compared to the results

of section 3.4.2.

It is clear from figs. 3.23b and 3.24b, that the classical single electron trajectory ap-
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Initialize: Generate distribution of charged impurities
with relevant correlation. Set up a uniform grid in Carte-
sian coordinates with cell size l. Calculate the field at the
centre of each cell on the grid. Calculate the time step,
tstep = l/v. Position electrons (x, y) randomly, and with a
momentum chosen randomly from the Fermi distribution:
kx =

√
r1kF cos(2πr2), ky =

√
r1kF sin(2πr2) where r1 and

r2 are randomly generated numbers. Add an applied field,
E, in the x-direction.

Find cell, i, that electrons reside in.

t = t+ tstep

Update momenta according to field of corresponding cells, i. kx/y =
kx/y − eEx/y(i)tstep/ℏ,

Update positions, x = x+ tstepv
kx√
k2x+k2y

Apply periodic boundary conditions

Update indices, i, of cells of electron residence.

Has electron crossed boundary in x?

Update momentum as an input momentum, kx = ±√
r1kF cos(πr2 −

π/2), ky =
√
r1kF sin(2πr2)

Calculate and store average electron velocity and energy.

t < tmax?

End

No

Yes

Figure 3.22: Flow chart of a simple algorithm for electron trajectories through an
impurity potential with a defined input and output.
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Figure 3.23: (a) Variation of potential, U(x, y), about the mean, Ū , for unipolar im-
purities (black crosses) of density n(−) = 2 × 1016 m−2 with r0 = 0 nm (random)
and r0 = 3 nm. (b) Variation of mobility, µ, with impurity density, n0 = n(−), for a
number of correlation lengths, r0, in 1 nm increments. Solid lines are the results of
the linearised Boltzmann method (section 3.4.1), filled circles show the results of the
phenomenological real-space Monte Carlo for n0 = 2 × 1016 m−2.
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Figure 3.24: (a) Variation of potential, U(x, y), for bipolar impurities (black crosses-
negative, white crosses- positive) of densities n(−) = n(+) = 2×1016 m−2 with rmax = ∞
(random) and rmax = 5 nm. (b) Variation of mobility, µ, with impurity charge density,
n0 = n(−) − n(+), for a number of correlation lengths, rmax, where we have fixed the
density of negative impurities, n(−) = 2 × 1016 m−2. Solid lines are the results of
the linearised Boltzmann method (section 3.4.2), filled circles show the results of the
phenomenological real-space Monte Carlo for n(+) = 0 and n(+) = 2 × 1016 m−2.
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Figure 3.25: (a) Maximum resistivity, ρmax, as a function of dopant density, n0, and (b)
Mobility, µ, as a function of the FWHM of resistivity, δn. Solid lines show results using
the LB approximation for a combination of scattering by random unipolar impurities,
with a stand-off distance dimp = 1 nm, and charge-netural resonant impurities. nres
shows the number of charge neutral impurities (vacancies, adatoms) as a percentage
of the number of carbon atoms. Results are compared to data from pristine graphene
samples grown by CVD (filled circles) or exfoliated (filled triangles).

proach qualitatively captures the results of the Boltzmann equation. Therefore, it could

be used to predict and explain the characteristics of more complex impurity configura-

tions. In particular, it could provide intuition, and possibly a quantitative analysis, of

the electron-hole asymmetry believed to arise from the difference in scattering strength

between attractive and repulsive potentials [103, 104], which is not present in the result

of the Born approximation (2.31).

3.5 Charge-neutral Impurities

As shown in section 2.4, the scattering rate from weak point defects and even phonons

is typically proportional to electron energy. Therefore, they do not usually restrict

the acceleration of low energy charge carriers, at the Dirac point. However, for neutral

resonant impurities, the momentum relaxation time has a weaker dependence on energy.

This means that the potential remains effective at scattering electrons even at low

energies, approaching the Dirac point.

Figure 3.25a shows the effect of such impurities on the maximum resistivity. At low

dopant densities, the charge neutral defects remain effective, and can even become the

dominant source of scattering, causing an increase in the maximum resistivity on top of

the charged impurity scattering. This potentially explains the large spread of measured

values, with little correlation to the charged doping density, n0. The increased ρmax

due to neutral resonant impurities results in a decreased mobility at fixed δn, as shown

in fig. 3.25b.
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3.6 Universal Temperature-Dependent Properties

The temperature dependence of electron transport in single layer graphene (SLG) field-

effect transistors (FETs) is unusual, e.g. a relatively large electron mobility, µ ≈ 1

m2/Vs, was found to have relatively little change over a wide range of temperatures (4K

< T < 300 K) [3] compared to conventional semiconductors. Most experimental studies

of graphene FETs have focused on high mobility exfoliated graphene (µ > 10 m2/Vs)

either suspended [85] or encapsulated in hexagonal boron nitride (hBN) [10, 105]. They

revealed a significant decrease of mobility at high temperatures due to phonon scat-

tering [105]. They also indicated that a large number of different mechanisms, namely

charged impurity scattering, sample edge scattering [10, 105], scattering on graphene

bubbles [105] and acoustic and optical phonon scattering [106] can affect the carrier

mobility in different temperature ranges. These studies have also demonstrated that

the temperature dependence of the conductivity, σ(T ), of SLG can vary between a

linear/superlinear increase to a marked decrease with increasing temperature [85, 107].

The nature of this temperature dependence of conductivity and mobility is sensitive to

both the applied gate voltage and the type of SLG material, as different types of scat-

tering are observed in exfoliated graphene compared to CVD-grown layers, and other

types of SLG e.g. graphene grown on SiC, and multilayer graphene [85, 107–110].

There have been a number of theoretical models to investigate the scattering pro-

cesses responsible for electron transport in SLG, and the way in which they depend

on temperature and carrier concentration [57, 68, 111, 112]. There appears to be no

obvious universal behaviour of σ(T ) and µ(T ). Moreover, additional factors arise from

the significant role of ballistic transport in small size (∼ 10 µm) high mobility SLG

devices; these ballistic effects can be observed up to room temperature [10, 113, 114].

In section 3.3, we showed that the mobility at the half maximum of the resistivity is

given by µ1/2 = 4/(eδnρmax). Since ρmax appears uncorrelated to the impurity density,

we found a simple inverse relation µ ∝ 1/δn describing the mobility across a broad

range of SLG devices (fig. 3.14). Here we inspect the deviation from this simple trend

within any given graphene device under variation of the temperature.

In this study, we analyse the results from 6 different SLG FETs, which can be

divided into 3 groups according to their mobility and manufacturing technique. The

high mobility devices Exf1 and Exf2 (µ > 20 m2/Vs at T < 10 K) were fabricated

using dry transfer of single layer graphene encapsulated between two hBN layers and

dry-transfer onto a Si/SiO2 substrate [10, 105, 113, 115]. The lower mobility exfoliated

devices Exf3 and Exf4 (1 < µ < 2 m2/Vs at T < 10 K) were fabricated using exfoliated

SLG and conventional wet-transfer of graphene onto Si/SiO2 [116] but without use of

additional protective layers of hBN or other materials. The lowest mobility devices

CVD1 and CVD2 (µ < 1 m2/Vs) were fabricated using commercial CVD-hBN film

heterostructures mounted on Si/SiO2 wafers. CVD2 was fabricated by capping half of

the graphene layer of CVD1 with a thin (∼ 1 µm) layer of exfoliated monocrystalline
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Figure 3.26: (a) Field-effect mobility, µ, as function of δn for each device over a wide
range of temperatures. Black lines show the results of µ = 16e/(hδn) (dashed line).
(b) Suggested universal dependence of the graphene mobility, µ = 4/(eρmaxδn) shown
for all devices and temperatures.

InSe using the technique described in ref. [90]. The InSe layer is known to affect the

carrier density and mobility of the adjacent graphene layer [90]. Further details of

all devices can be found in appendix A. See ref. [117] for acknowledgements to those

responsible for the fabrication of the 6 devices and for providing the experimental

measurements on the 6 devices, shown throughout sections 3.6 to 3.9.

Figure 3.26a shows the results of the relationship between mobility, µ, and FWHM,

δn. Notably, the low mobility samples appear to largely maintain the inverse relation-

ship under varying temperatures. However, the high mobility (Exf1 and Exf2) samples

display a more stable mobility with varying δn. The reason for this is that, when con-

sidering the temperature dependence, the assumption of a constant (or uncorrelated)

maximum resistivity is only valid for the low mobility samples, where ρmax is almost

independent of temperature (see fig. 3.34a). For exfoliated graphene, the temperature

dependence of ρmax is significant. We note that, for Exf2, at large δn, corresponding

to high temperature, the inverse relationship is established. This is because ρmax(T )

stabilises, likely due to increased phonon scattering compensating for the increased

thermally excited carrier density.

As shown in fig. 3.26b, the mobility calculated using eq. (3.25) provides excellent

agreement with the field-effect mobility calculated using conventional methods: namely

the linearisation of σ(Vg) [107] and the value of mobility at the maximum of dσ/dVg.

Equation (3.25) can be used to calculate the mobility from the measured ρ(Vg) curve

of a graphene FET from ρmax and δn. This way of calculating the field-effect mobility,

requires measurements of ρ(Vg) at just 3 points (the “3-point method”): one at ρ(Vg) =

ρmax and two at the FWHM points, with ρ(Vg) = ρmax/2. This 3-point method provides

a better defined estimate of the field-effect mobility in the vicinity of the Dirac point,

|n| < δn/2, compared to the method of linearisation of σ(Vg). In particular, it is well

defined even if σ(Vg) has a nonlinear dependence, as for the case of strong short range
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(a) (b)

Figure 3.27: Cross-sections of the energy, ε, band structure diagrams for an applied
potential difference, V , over a distance L in the x-direction. The chemical potential is
denoted εF . (a) Cross-section at ky = 0, i.e. electrons have no momentum component
perpendicular to the direction of the potential difference. (b) ky ̸= 0, i.e. electrons
have a finite momentum component perpendicular to the direction of the potential
difference. The energy gap is ∆ = 2ℏv |ky|.

scattering or ballistic transport.

3.7 Beyond Diffusive: Charge Transport in High Quality

Graphene

3.7.1 Ballistic Transport

Here we analyse the ballistic conductivity using the standard Landauer formula. A

potential difference, V , is applied between two regions, as shown in fig. 3.27a. At

T = 0, the distribution of electrons in the bands is sharp and right-going electrons on

the LHS, with energy εF − eV < ε < εF , are able to accelerate into the available states

in the RHS. The Landauer formula for charge transport is,

J =
gsgve

(2π)2

∫
dk vgT [f(k, εF ) − f(k, εF − eV )] , (3.50)

where vg(k) = vk/k is the group velocity, T (k) is the transmission coefficient, and

f(k, εF ) is the Fermi-Dirac distribution function.

For large chemical potentials, εF > eV , at T = 0, all transport will be in the

conduction band. In this case, eq. (3.50) becomes

J(εF > eV, T = 0) =
gsgve

(2π)2
v

(ℏv)2

∫ π/2

−π/2
dθcos(θ)

∫ εF

εF−eV
dε ε (3.51)

for ideal transmission (T = 1), where we have assumed the potential difference to be

in the x direction. Evaluating eq. (3.51) and using J = σV/L, where L is the length
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over which there exists the potential difference, we find that

σ(εF > eV ) = L
2gsgse

2v

(2πℏv)2

(
εF − 1

2
eV

)
. (3.52)

Significantly, the conductivity is found to be proportional to the length. This is ex-

pected for ballistic transport, where the ‘quantum’ conductance becomes independent

of length over which the ballistic transport occurs. We also find that σ ∝ εF . Therefore,

the conductivity is sublinear with applied gate voltage, σ ∝ V
1/2
g .

Considering both conduction and valence bands, the current density is J = Jk(ε+)+

Jk(ε−), where

Jk(ε±) =
gsgve

(2π)2
v

∫ ∞

−∞
dky

∫ ∞

0
dkx

kx
k
T [f(ε±, εF ) − f(ε±, εF − eV )] (3.53)

and ε± = ±ℏv
√
k2x + k2y are the energies of electrons in the conduction and valence

bands, respectively, on the left-hand-side of figs. 3.27a and 3.27b. The band structure

of graphene is cononical with zero band gap. However, for ballistic transport in the

x-direction, electron momentum in the y-direction, ky, must be conserved. The energy

of electrons in the right band is given by ε±,R = ±ℏv
√
k2x,R + k2y,R − eV . Since the

momentum in the y-direction and total energy are conserved (i.e. ky,R = ky and

ε±,R = ε±), we find a constraint, |ε± + eV | > ℏv|ky|, on the allowed energies of electrons

in the left band that are able to transport into the right band. This momentum and

energy conservation manifests itself as a gap in the available states for non-zero ky

(see fig. 3.27b), ∆ = 2ℏv|ky|. Therefore, one should modify eq. (3.53) to impose this

constraint,

Jk(ε±) = ±gsgve
(2π)2

v

∫ ∞

−∞
dky

∫ ∞

0
dkx

kx
k
T [f(ε±, εF ) − f(ε±, εF − eV )]

×H (|ε± + eV | − ℏv|ky|) .
(3.54)

Since the energy constraint and the distribution functions depend explicitly on energy,

it is convenient to substitute kx for energy. However, after doing so, the two variables

of integration, ky and ε, will not be independent. Therefore, one will have to take care

when changing the limits of integration: the maximum value of ℏvky is given by the

maximum value of ε. Making the substitution, the total current density is

J =
gsgve

(2π)2
1

ℏ

∫ ∞

−∞
dky

∫ ∞

−∞
dεT F (ε, ky)H (|ε+ eV | − ℏv|ky|) (3.55)

where

F (ε, ky) = [f(ε(ky), εF ) − f(ε(ky), εF − eV )] (3.56)

determines the availability of states. Imposing the energy and ky conserving Heaviside
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function on the range of integration,

J =
gsgve

(2π)2
1

ℏ

[∫ ∞

−∞
dky

∫ ∞

∆
2

dεT F (ε, ky)

+

∫ eV
2ℏv

− eV
2ℏv

dky

∫ −∆
2

−eV+∆
2

dεT F (ε, ky)

+

∫ ∞

−∞
dky

∫ −eV−∆
2

−∞
dεT F (ε, ky)

]
.

(3.57)

The first, second and third terms in eq. (3.57) describe current from transport intraband

in the conduction band, interband and intraband in the valence band, respectively. For

T = 0, the difference of the distribution functions, F (ε) = H(εF − ε)−H(εF − eV − ε),
simply acts to restrict the energy range to the interval εF − eV < ε < εF . Let us first

evaluate each of the double integrals in eq. (3.57) separately for the case of completely

ideal transport (T = 1) and a positive chemical potential, εF > 0, before collating the

results to find the total current.

The first term is

J1 =
gsgve

(2π)2
1

ℏ

∫ εF
ℏv

− εF
ℏv

dky

∫ εF

max(∆
2
,εF−eV )

dε. (3.58)

The lower energy limit, max(∆2 , εF − eV ) = max(ℏv|ky|, εF − eV ), is ∆/2 for ℏv|ky| >
εF − eV and εF − eV for ℏv|ky| < εF − eV . Therefore, for εF < eV ,

J1 =
gsgve

(2π)2
2

ℏ

∫ εF
ℏv

0
dky

∫ εF

ℏvky
dε =

gsgve

(2π)2
ε2F
ℏ2v

, (3.59)

whilst, for εF > eV ,

J1 =
gsgve

(2π)2
2

ℏ

[∫ εF−eV

ℏv

0
dky

∫ εF

εf−eV
dε+

∫ εF
ℏv

εF−eV

ℏv

dky

∫ εF

ℏvky
dε

]
=
gsgve

(2π)2
1

ℏ2v
(
2εF eV − (eV )2

)
.

(3.60)

The second term does not contribute for εF > eV , since all transport will be in the

conduction band. However, for εF < eV ,

J2 =
gsgve

(2π)2
2

ℏ

∫ min( eV
2ℏv ,

eV −εF
ℏv )

0
dky

∫ −∆
2

max(−eV+∆
2
,εF−eV )

dε. (3.61)

For eV < 2εF , min( eV
2ℏv ,

eV−εF
ℏv ) = eV−εF

ℏv and max(−eV + ∆
2 , εF − eV ) = εF − eV for
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all ky. Therefore, for eV/2 < εF < eV ,

J2 =
gsgve

(2π)2
2

ℏ

∫ eV −εF
ℏv

0
dky

∫ −ℏvky

εF−eV
dε =

gsgve

(2π)2
1

ℏ2v
(εF − eV )2 , (3.62)

For εF < eV/2, min( eV
2ℏv ,

eV−εF
ℏv ) = eV

2ℏv , and max(−eV + ∆
2 , εF − eV ) varies over ky,

J2 =
gsgve

(2π)2
2

ℏ

[∫ εF
ℏv

0
dky

∫ −ℏvky

εF−eV
dε+

∫ eV
2ℏv

εF
ℏv

dky

∫ −ℏvky

−eV+ℏvky
dε

]

=
gsgve

(2π)2
1

ℏ2v

(
1

2
(eV )2 − ε2F

)
.

(3.63)

Finally, the third term does not contribute for εF > 0, J3 = 0.

Summing the results for the intra- and inter- band components, J1 and J2, the total

conductivity is

σ = L
gsgve

(2π)2ℏ2v
×


1
2e

2V if |εF | < eV
2

ε2F /V + (|εF | − eV )2 /V if eV
2 ≤ |εF | ≤ eV

2e |εF | − e2V if |εF | > eV

, (3.64)

where we have made use of the symmetry in the chemical potential (εF → −εF ) in

eq. (3.50) when transport switches from electrons to holes.

Zener tunnelling describes the process of electron tunnelling through an energy gap.

Using the WKB approximation, the tunnel coefficient is TZ = exp
(
−πm∆2L/(4ℏpeV )

)
,

where ∆ is typically the size of the band gap [118, 119]. For graphene, the band

gap is zero and the relativistic Dirac electrons are able to tunnel almost unimpeded,

without reflection; this is Klein tunneling [84]. However, tunnelling by Dirac electrons

in graphene with finite ky is similar to that of massive zener electrons where ∆ = 2ℏvky,

TZK = exp
(
−π∆2L/(4ℏveV )

)
[120–123]. For interband tunneling, where the electrons

have to penetrate the forbidden energy gap, ∆, the transmission coefficient is given by

the Zener-Klein coefficient, TZK . Therefore, eq. (3.64) is strictly the limiting case for

V/L→ ∞. The interband part corresponds only to the second term in eq. (3.57), such

that

J =
gsgve

(2π)2
1

ℏ

[∫ ∞

−∞
dky

∫ ∞

∆
2

dεF (ε, ky)

+

∫ eV
2ℏv

− eV
2ℏv

dkyTZK(ky)

∫ −∆
2

−eV+∆
2

dεF (ε, ky)

+

∫ ∞

−∞
dky

∫ −eV−∆
2

−∞
dεF (ε, ky)

]
.

(3.65)

For T = 0, eq. (3.65), can be evaluated analytically following the same process as

in deriving eq. (3.64). This has been done in ref. [123]. We find that, as expected,

84



3.7. BEYOND DIFFUSIVE: CHARGE TRANSPORT IN HIGH QUALITY
GRAPHENE

-2 -1 0 1 2

F 
 (10

-3
eV)

0

0.02

0.04

0.06

0.08

0.1

J
 (

C
/m

)
L = 100 m

0

Figure 3.28: Current density, J , as a function of chemical potential, εF , for ballistic
transport in graphene using the Landauer formula and WKB approximation of Zener-
Klein tunnelling. The red lines show results for varying finite channel lengths, L = 100,
10, 1 µm, as calculated in reference [123]. The black line shows the result of eq. (3.64),
the limit of L→ 0. The potential difference is V = 1 meV.

Zener-Klein tunneling suppresses the current for |εF | < eV , where most transport is

interband, whilst converging toward eq. (3.64) in the limit L/V → 0, as shown in

fig. 3.28.

For non-zero temperature, we can integrate eq. (3.65) numerically. Figure 3.29

shows the results for varying temperature. There is an increase in the current around

the Dirac point with increasing temperature, as expected by the increasing carrier den-

sity. Comparing figs. 3.29a and 3.29b, the temperature dependence of conductivity

around the Dirac point is weaker when the applied potential difference, V , is larger.

This is because, when the applied potential difference is large, the transport window,

eV , shown in fig. 3.27, is large, such that the window of transport by thermally excited

electrons, kBT , is less significant (kBT ≪ eV ). For sufficiently large chemical poten-

tials, |εF | ≫ (kBT, eV ), the difference in occupation between left and right contacts is

approximately 0 around ε < ∆/2 over most momentum states, ky. Therefore we can

write the current density eq. (3.50) as

J(|εF | ≫ kBT, eV ) ≈ gsgve

(2π)2
v

(ℏv)2

∫ π/2

−π/2
dθcos(θ)

∫ ∞

0
dε ε [f(ε, εF ) − f(ε, εF − eV )]

=
qv

π
[n(εF , T ) − n(εF − eV, T )] .

(3.66)

As shown in section 1.2.2, in the limit |εF | ≫ kBT , n(εF ) → gsgvε
2
F /(4πℏ2v2). Then

eq. (3.66) returns eq. (3.51), derived strictly for T = 0 and with ideal transmission, and

the current at all temperatures converge at large |εF |, as shown in fig. 3.29. However,

from eq. (2.4), we find that the chemical potential decreases with increasing temperature

for a given gate voltage, Vg. This can be understood qualitatively: the energy density

of states is proportional to energy, meaning that, as electrons are thermally excited into

higher energy states, the chemical potential is relaxed due to the increased availability
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Figure 3.29: Current density, J , as a function of chemical potential, εF , for ballistic
transport in graphene using the Landauer formula and WKB approximation of Zener-
Klein tunnelling. The red lines show results for varying finite temperatures (T = 100,
200, 300, 400 K) calculated by numerical integration of eq. (3.65), the black line shows
the result for T = 0 K. The length is L = 1 µm. (a) Potential difference, V = 1 meV.
(b) V = 0.1 eV.

of states at higher energy. As a result, the conductivity is found to decrease with

increasing temperature for large gate voltages, even in ballistic devices, as shown in

fig. 3.30, an effect often attributed to phonon scattering.

When the potential difference is applied between contact leads, the leads themselves

impose boundary conditions on the wavefunctions within the graphene sheet. In this

case, the transmission coefficient is limited by these boundary conditions. Calculations

of the boundary effects have been done in references [9, 124]. In ref. [124], they found

that, in the limit of a sufficiently wide device (W/L→ ∞), the minimum conductivity

(corresponding to εF = 0) is given by 4e2/πh. In ref. [9], the same method was used

to find that σ = e2LεF /hℏv for large sufficiently large values of the chemical potential,

εF .

If we are able to neglect such constraints imposed at the boundaries, in a 4-terminal

Hall bar measurement for example [9], then we can assume T = 1 for intraband trans-

port and T = TZK for interband transport. Figure 3.31a shows the results from a

4-terminal measurement of conductance for Exf1, at varying temperatures. Figure

fig. 3.31b shows the total transport carrier density, Ntot, calculated as in section 2.1.2.

To see how the ‘mobility’ varies with gate voltage, we divide the experimental conduc-

tance by the calculated total carrier charge density, as shown in fig. 3.31c. At small

temperatures, there is large uncertainty in the value of Ntot around the Dirac point, due

to possible spatial fluctuations in the local quasi-Fermi level. Since we assume complete

spatial homoegeneity (δεimp = 0), the mobility is ill-defined at low temperatures and

small Vg, where Ntot → 0. Also, quantum conductance around Ntot = 0 will result

in an undefined ‘mobility’. However, at higher temperatures, the results displayed in

fig. 3.31c are much less susceptible to uncertainty in δεimp, since the carrier density is
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Figure 3.30: Conductivity, σ, as a function of gate voltage, Vg, for ballistic transport
in graphene using the Landauer formula and WKB approximation of Zener-Klein tun-
nelling. The red lines show results for varying finite temperatures (T = 100, 200, 300,
400 K), the black line shows the result for T = 0 K. We have calculated the conduc-
tivity as σ/L = J/V , where current density J , is calculated by numerical integration
of eq. (3.65). The chemical potential for each gate voltage is found by eq. (2.4), where
we assume the capacitance, Cd/e = 7 × 1014 m−2V−1. The length is L = 1 µm. (a)
Potential difference, V = 1 meV. (b) V = 0.1 eV.

dominated by thermally excited carriers.

Typically, such Hall measurements are performed using a constant current [10, 113].

Therefore, the potential difference changes as the device resistance changes. This means

that V in eq. (3.65) is a function of εF . Here, we investigate how changes in the applied

potential could explain the mobility drop around the Dirac point shown in fig. 3.31c. In

fig. 3.32 we have estimated the potential dropped over the ballistic region as V = IBR,

where R is the resistance measured experimentally, for some constant value of current,

IB, over the ballistic region. We assume the transport channel length to be L = 4

µm and width W = 0.4 µm, close to the device dimensions (see appendix A and ta-

ble A.1). As V increases, the conductivity (and therefore mobility) around the Dirac

point decreases sharply, converging toward the measured values. This is due to the

increasing range of energies where the valence band on the LHS and the conduction

band on the RHS of fig. 3.27 are in energetic alignment. This means that more elec-

trons, with ky ̸= 0, are tunnelling through the inter-band energy gap, ∆, and their

transmission coefficient is suppressed by Zener-Klein tunneling. The applied potential

is largest at the Dirac point, whilst the chemical potential here is smallest, such that

the ratio between the number of states undergoing interband transport compared to

those undergoing intraband transport is at a maximum and, therefore, suppression by

Zener-Klein tunnelling is also maximum.
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Figure 3.31: (a) Measured conductance, G, of Exf1 as a function of applied gate voltage,
Vg−V0, where V0 ≈ −0.08 V is the offset of the Dirac point, for varying temperature T .
(b) Total transport carrier charge density, Qtot = eNtot, as a function of applied gate
voltage, Vg − V0, calculated using eq. (2.4) for varying temperature, T . (c) Effective
mobility, µG = G/Qtot, of Exf1 as a function of gate voltage, Vg − V0, for varying
temperatures.
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Figure 3.32: Effective mobility, µG = G/eNtot, as a function of gate voltage, Vg − V0,
for T = 230 K, where G is the conductance and Ntot is the total carrier density. The
solid black line shows the results from the experimentally measured conductance of
Exf1. The black dashed line and solid red lines show the results from the calculated
conductance assuming ballistic transport (eq. (3.65)). The potential difference input
into the ballistic calculations (eq. (3.65)) is be V = IBR, where R is the experimentally
measured resistance of Exf1. The black dashed line shows the results for IB = 0.2 µA.
The solid red lines show the results for increasing the assumed potential dropped over
the ballistic region by increasing the assumed current 2 µA < IB < 14 µA in increments
of 2 µA. Note µG is the ratio of conductance to carrier charge density. To compare
to the experimental mobility, µG should be multiplied by the experimentally measured
aspect ratio (L/W = 4 in this case).
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3.7.2 Note on Hydrodynamic Transport

Recently, it has been shown that the hydrodynamic regime, characterised by the viscous

flow of charge carriers, can be realised in graphene [125, 126]. Such viscous flow occurs

when the momentum-conserving electron-electron scattering length lee is less than both

the momentum changing, diffusive scattering lengths and the sample length. In this

case, the conductivity is given by

σv = LW
εF e

2

ℏ2v4lee
, (3.67)

where W is the width. At a given temperature, less than the chemical potential (kBT <

εF ), lee is a constant with respect to the chemical potential [127]. In this regime,

the conductivity of hydrodynamic flow, eq. (3.67), has the same form as for ballistic

transport, eq. (3.52), with respect to any doping. At larger temperature, kBT > εF ,

the electron-electron scattering length is proportional to the chemical potential [127],

such that the hydrodynamic conductivity tends toward a constant with respect to the

gating level.

3.8 Temperature-Dependent Diffusive Transport

In section 3.3, we showed that the electronic properties of graphene deposited on a

substrate can mostly be explained by the scattering of carriers by charged impurities

at low temperatures. At high temperatures, inelastic phonon scattering is activated and

can have a significant effect on the total scattering relaxation time of the charge carriers.

Furthermore, the thermal broadening of the distribution function affects the relaxation

time of inelastic events, leading to a temperature dependence of impurity scattering

[53, 111]. Here, we perform calculations of the effect of temperature on the conductivity

of graphene due to substrate effects involving charged impurities and substrate polar

phonons, as well as the intrinsic acoustic and optical phonons of graphene. Specifically,

we want to inspect the effect of the non-zero perpendicular distance of the substrate

on the effectiveness of scattering at different energies. This will be important when we

try to understand the behaviour of the FWHM of resistivity at varying temperatures

in section 3.9.

Since we are interested in examining both the low and high temperature regimes,

we need to use the full LB equation (eq. (1.50)), including the temperature depen-

dant Fermi distribution function. Similarly, by using eq. (2.11), we also maintain the

temperature dependence of the electron distribution in the polarization function for

screening by the electron gas. Since we are considering a broad range of chemical po-

tential energies and temperatures, for completeness we include scattering by: both the

transverse and longitudinal optical phonons of graphene around the Γ and K points;

acoustic phonons; polar phonons in the substrate layer. The momentum relaxation

time, τ , for each of the scattering mechanisms is evaluated using the expressions de-
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rived in section 2.3.2 for charged impurities and throughout section 2.4 for phonons.

Then, the conductivity is calculated by integrating eq. (1.50) numerically for both hole

(ε∗F = ε∗F,h) and electron (ε∗F = ε∗F,e) puddle regions.

Figure 3.33a shows the variation of impurity-limited conductivity with gate voltage

and temperature for two impurity densities, nimp = 1 × 1015 m−2 and nimp = 1 × 1016

m−2, where we have approximated dimp = 0 for ease of comparison to the analyti-

cal results of [57] obtained at T = 0. Unlike phonon scattering, impurity scattering

is intrinsically temperature independent. However, the conductivity is affected by the

temperature dependence of carrier density (see fig. 2.2b). There is also a weak tempera-

ture dependence, notable at large gate voltages, due to the effect of thermal broadening

of the Fermi-Dirac distribution of electron occupation on screening, energy of occupied

states, and the chemical potential.

Figure 3.33b shows the results of conductivity including scattering by substrate

polar phonons and intrinsic phonons, where we have assumed that dimp = 1 nm. The

finite distances of charged impurities and the polarization field generated by substrate

phonons from the graphene plane, dimp and dspp, result in the suppression of scattering

as the electron energy, and therefore the reciprocal space scattering length, q, increase.

This exponential increase in the relaxation times, eqs. (2.32) and (2.74), arises from

the interaction between the 2D electronic wavefunctions with the 3D spatially varying

electric fields. This suppression of scattering at high energies leads to an increasing

mobility with gate voltage (fig. 3.33c) and a superlinear dependence of the conductivity

on gate voltage.

Figure 3.33b shows that the resistivity decreases with increasing temperature at low

gate voltage due to the increased carrier density involving thermally excited electron-

hole pairs. However, as the gate voltage and hence the carrier energy is increased, fewer

electron-hole pairs are created by thermal excitation and phonon scattering becomes

dominant. Therefore, since the phonon scattering rate increases with increasing tem-

perature, due to increased phonon occupancy and availability of electronic states, the

resistivity increases with increasing temperature at high gate voltages.

3.9 Analytical Model of T-Dependent Transport Param-

eters

Equation (3.25) provides a good fit to the measured temperature-dependent mobility

(see fig. 3.26b). To model µ(T ) in more detail, we first consider the effect of temperature

on ρmax and δn. Since δn represents an uncertainty in the carrier density near the

Dirac point and ρmax is directly related to δn, they both involve temperature-induced

broadening described by the Fermi-Dirac (FD) function. The minimum carrier density

at the neutrality (Dirac) point is nNP = nres + nTH , as determined by eq. (2.29),

where nres is the sheet density of the residual carriers due to spatial variations of the

potential landscape and nTH = (π/3)(kBT/ℏv)2 is the density of thermally activated
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Figure 3.33: (a) Impurity-limited conductivity, σimp, assuming an impurity distance
of dimp = 0, as a function of applied gate voltage, Vg − V0, and temperature, T , for
graphene on SiO2. Red lines show results of ref [57], i.e. using the analytical expressions
(2.35) and (2.25). (b) Total conductivity, σ, as a function of applied gate voltage,
Vg − V0, and temperature, T , for graphene on SiO2, calculated assuming scattering by
charged impurities, polar substrate optical phonons, and intrinsic acoustic and optical
phonons. The impurity distance is assumed to be dimp = 1 nm. In both (a) and (b) we
show results for two impurity densities: nimp = 1015 m−2 (green) and nimp = 1016 m−2

(grey). (c) Mobility, µ, for varying gate voltage, Vg−V0, for temperatures between 4 K
and 400 K. The mobility is obtained here from the conductivity in (b) as µ = σ/(eNtot)
where Ntot is the total carrier density, given by eq. (2.28). The temperature is varied
in steps of equal intervals, and is shown by the black lines in (b).

electron-hole pairs. Therefore

ρmax =
1

(eµ0nNP )
=

1

eµ0(nres + nTH(T ))
, (3.68)

where µ0 is the mobility at the neutrality point. Since the relaxation rate of phonon

scattering is proportional to electron energy (see section 2.4), the effect of phonon

scattering is expected to be relatively weak around the Dirac point [88]. Therefore, we

make the approximation that µ0 is temperature-independent. As shown in fig. 3.34a,

eq. (3.68) provides a good fit to the measured values of ρmax(T ) for all six devices using

µ0 and nres as fitting parameters. The average deviation from the data is less than

10% for all fits1. The values of these fitting parameters for each sample are shown as

a plot of µ0 versus nres in fig. 3.34b. Their values are consistent with those obtained

from eqs. (2.26) and (2.35), as presented in [57], for graphene on SiO2 with impurity-

to-graphene distances, dimp, within a range of 0.3 nm ≲ dimp ≲ 1 nm (see grey shaded

region in fig. 3.34b).

1Method of least squares used to find optimal values, nres and µ. For CVD1, the optimal solution
is unphysical, nres → ∞ and µ → 0. We restricted nres < 2.5 × 1016 m−2, where we find that the
optimal solution fits within the bounds of 0.3 nm ≲ dimp ≲ 1 (grey shaded region in fig. 3.34a) and
remains well within a 10% deviation of the data.
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Figure 3.34: (a) Maximum resistivity, ρmax, as function of temperature for all 6 devices
as shown by the data points, see legend in (b). The solid lines are determined using
eq. (3.68). (b) The parameters µ0, mobility at charge neutrality, and nres, residual
carrier density at charge neutrality, used in (a) for each device are compared to the
model reported in ref. [57] within a range of impurity stand-off distances, 0.3 nm
≲ dimp ≲ 1 nm (grey shaded region).
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Figure 3.35: (a) Temperature dependence of the carrier concentration at the FWHM of
resistivity, δn. The data points are the measured δn(T ) dependences for the 6 devices;
dashed lines: fits using the Fermi-Dirac model with δn = 4(nres + nTH) for impurity
induced carrier densities, nres = 0, 1.25×1015 and 2.5×1015 m−2, and where nTH ∝ T 2

is the thermally excited carrier density; solid lines: fits using conductivity calculations
including substrate impurities and phonons, see section 3.8. (b) Mobility, µ, calculated
at the half maximum resistivity using eq. (3.72) as a function of temperature for all
devices (solid lines), compared to the measured mobility (data points).
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Substituting eq. (3.68) into eq. (3.25) we obtain the following expression:

δn = 4nNP (µ0/µ), (3.69)

where µ is the mobility defined by eq. (3.25), i.e. at the half-maximum point of the

resistivity. This expression indicates that δn is proportional to the total carrier density

at the neutrality point and is modulated by the ratio of the mobility at the neutrality

point to that at the half maximum. Assuming that the mobility is constant, µ0 = µ,

eq. (3.69) becomes δn(T ) = 4nNP (T ). The resulting T -dependence of δn is shown by

the dashed lines in fig. 3.35a for different values of nres given in the figure caption.

For the low mobility devices, we find that the effect of residual charge is particularly

important, resulting in the non-zero δn at low temperatures where δn ≈ 4nres. For

the hypothetical case when nres = 0 (no charged impurities, no e-h puddles, etc.), the

FWHM would be dependant only on the thermally excited carrier density, nTH ∝ T 2,

and has no fitting parameters (see the bold dashed line in fig. 3.35a starting from the

δn = T = 0 origin). This simple model provides good qualitative agreement with

the measured δn(T ) for the low mobility devices and at low temperatures, T < 100

K. However, at high temperature we find a weaker increase in δn(T ) than the one

predicted by the relation δn(T ) = 4nNP (T ). This suggests that the electron mobility

may vary significantly in the vicinity of the Dirac point, where |n| < δn/2, i.e. µ0/µ < 1

in eq. (3.69). By modelling the substrate scattering effects (charged impurities and

substrate phonons) at a finite distance from the graphene plane, we find that µ0/µ < 1

(see fig. 3.33c). The results for δn calculated from fig. 3.33b, where the effects of

charged impurities and phonons on mobility variations were modelled, are included in

fig. 3.35a as solid lines, which are in better agreement with the measurements.

The measurements of the high mobility devices, in particular Exf1, reveal a weak

δn(T ) dependence (fig. 3.35a), suggesting an even stronger relative decrease of mobility

close to the Dirac point. This mobility dip at the Dirac point can be seen directly

in fig. 3.31c. Our initial assumption of a gate-voltage independent mobility cannot

be applied to the high mobility devices (> 10 m2/Vs) in the vicinity of the Dirac

point. Unfortunately, experimental measurements of the Hall carrier concentration

and mobility have a large uncertainty at gate voltages close to the Dirac point where

|n| < δn/2, due to the presence of both electron and hole carriers. Given the very

weak impurity scattering, we are unable to attribute this dependence of mobility on

carrier density to substrate scattering effects in the high mobility samples. Also, in

section 3.1, we saw that the effect of interband scattering at εF = 0 only has a weak

effect on the thermally excited carrier density. However, it is also known that high

mobility quasi-ballistic devices are sensitive to the detailed electrostatics within the

device and can be non-ohmic [123, 128]. Therefore, changes in the applied bias voltage

dropped across the ballistic transport regions of high mobility devices can result in

changes to the measured resistivity as shown in section 3.7.1.
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Since we have established that the mobility calculated at the half-maximum of the

charge density given by eq. (3.25) agrees closely with the measured mobility, we can use

a linearised Boltzmann model to describe the temperature dependence of the mobility,

µ(T ). For simplicity, we consider a single relaxation time, τop, to model the optical

phonon scattering, which has both a temperature and energy dependence given by

1

τop(ε, T )
∝
[
N(ω, T ) |ε+ ℏω| 1 − f(ε+ ℏω, T )

1 − f(ε, T )

+ (N(ω, T ) + 1) |ε− ℏω| 1 − f(ε− ℏω, T )

1 − f(ε, T )

]
,

(3.70)

where N(ω, T ) is the phonon occupation. For simplicity, we also use an energy of

ℏω = 100 meV for the high energy optical phonon modes in graphene [31, 71]. This

gives an onset of phonon occupation around T ≈ 200 K, in qualitative agreement

with the measured decrease of mobility shown in fig. 3.35b. This approximates to the

range of weakly dispersed, higher energy phonon modes of graphene. We make the

approximation of eq. (1.53), µ ≈ ev2τ(εF )/εF , which is exact in the limit T → 0. For

εF < ℏω, the mobility is then given by

1

µ
=

1

µc
+
Dop

√
δn/2

sinh
(

ℏω
kBT

) . (3.71)

Here we have assumed that the carrier density n ∝ ε2F (strictly true in the limit εF ≫
kBT ), and µc is the mobility in the low temperature limit. In eq. (3.71), Dop is a

constant related to the optical phonon gauge field coupling strength, βop, given by

Dop = 2βop2π
1/2/(ev3ρm), where ρm is the mass density of graphene. Substituting

eq. (3.69) for δn into eq. (3.71) and solving the resulting self-consistent equation we

obtain the following relation

µ/µ0 = D2
op

µ2c
2

nNP (T )

sinh2
(

ℏω
kBT

)
1 −

√√√√
1 +

2sinh2
(

ℏω
kBT

)
D2

opµcµ0nNP (T )


2

. (3.72)

We have determined the values of nres and µ0 for each device from the measured ρmax

using eq. (3.68), see fig. 3.34. The typical value of the gauge field strength for optical

phonons is βop ≈ 12 eV/Å [31], which gives an estimate Dop ≈ 1×10−8 Vs/m. We find

that a value of Dop = 3 × 10−8 Vs/m provides a good fit for the high mobility exfoli-

ated graphene on hBN, while Dop = 1 × 10−7 Vs/m fits the lower mobility exfoliated

graphene on SiO2 and the lowest mobility CVD devices, see fig. 3.35b. These values

of Dop are larger than the estimated value deduced from the single optical gauge field

strength since, for simplicity, we use a single energy, 100 meV, for the optical phonon

modes and a single average scattering rate. We note that a discrepancy exists between

the values of Dop for the different types of graphene device. Differences between the
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environment of the different graphene samples, the surrounding materials, and even

distances to the substrates, will affect the details of polar and remote optical phonon

scattering in each sample. Stronger substrate phonon scattering in the graphene on

SiO2 which arises from the weaker screening and a lower onset energy [71] likely results

in differing fitting parameters, Dop. In high mobility samples, the chemical potential

is likely to be small even around the half maximum resistivity point. This will lead

to a large additional carrier concentration from thermal excitation on top of the gate

induced carrier concentration. Therefore, in addition to any differences in electrostatic

environment, we expect the fitting parameter, Dop, to be affected by uncertainty in

carrier concentration in high mobility samples, with a weaker apparent phonon cou-

pling potentially compensating for underestimation of temperature-dependent carrier

concentration, present within all methods of mobility measurement.

Our analytical model, based on scattering by charged impurities and phonons, de-

scribes and interrelates the temperature dependences of each of the transport param-

eters: ρmax, δn and µ. It demonstrates that the resistivity of graphene at low carrier

concentrations, n < δn, which is typically excluded from the data analysis due to

the nonlinear σ(n), can be analysed using a model based on Fermi-Dirac temperature

broadening and impurity-induced broadening of δn.
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Chapter 4

Transport in Perturbed

Superlattices

4.1 Formation of Moiré Patterns

Moiré patterns form in overlapping hexagonal layers due to angular rotation and/or

lattice mismatch in the size of the unit cells. Hexagonal boron nitride (hBN) is often

used to protect graphene from the substrate materials (as discussed in chapter 3) or to

provide a tunnel barrier [16, 129, 130]. Due to the larger lattice constant of hBN, 1.8%

longer than in graphene [131], there exists Moiré patterns even without misalignment,

as shown in fig. 4.1a. Rotation of the basal planes in adjacent hexagonal layers can

cause further Moiré patterns, as shown in fig. 4.1b for two graphene layers. Twisted

bilayer graphene can exhibit rich phenomena such as Mott insulator-like phases and

ferromagnetism due to the flattening of bands and opening of band gaps [132, 133].

Superconductivity has even been observed for an angle of misalignment between the

two overlapping monolayers of around 1.1°- the ‘magic angle’ [134].

Periodicity within the arising Moiré patterns forms a superlattice (SL) with a lattice

constant which depends on the size difference and angle of rotation between the unit

cells in adjacent layers. The wavelength of the Moiré pattern, which describes the

spatial extent of this periodicity and the resulting SL lattice constant is [131]

λ =
(1 + δ)a√(

1 − cosϕ
1+δ

)2
+
(
sinϕ
1+δ

)2 (4.1)

where a is the lattice constant of graphene and δ is the ratio of lattice mismatch (δ = 0

for bilayer graphene, δ = 0.018 for graphene on hBN). For large rotation angles, the SL

lattice constant becomes small, such that the low energy structure within the individual

layers is unchanged and the layers are effectively uncoupled.
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(a) (b)

Figure 4.1: Schematic diagrams showing Moiré patterns in overlapping hexagonal lat-
tices comprising (a) graphene on hBN and (b) twisted bilayer graphene. Lattice mis-
match between the hBN and graphene unit cell sizes has been exaggerated in (a) for
illustrative purposes.

4.2 The Reciprocal Lattice and Brillouin Zones

The superlattice exhibits the same hexagonal translational symmetry as in graphene,

except the lattice constant is larger. This means that the reciprocal lattice vectors are

smaller and multiple superlattice Brillouin zones can fit into the 1st Brillouin zone (BZ)

of the intrinsic graphene lattice. We denote the 6 reciprocal lattice vectors between

neighbouring high symmetry lattice points Gn, each of magnitude 2π/aSL where aSL

denotes the SL constant.

To construct the Brillouin zones, standard geometrical procedures can be used by

drawing out the Bragg planes, intersecting the vectors joining reciprocal lattice points.

However, it is much more convenient to use the eigenvectors of the superlattice central

equation. This will be discussed in section 4.4. Figure 4.2 provides a schematic of the

first ≈ 24 BZs and one of the reciprocal lattice vectors, Gn, for a reciprocal lattice

constant aSL = 7.5 nm. We will assume aSL = 7.5 nm for the entirety of this chapter.

4.3 The Central Equation

We consider the periodic SL potential, U(r + R) = U(r), where R is a combination

of primitive lattice vectors connecting symmetric points of the real space lattice, to

perturb the low-energy graphene Hamiltonian, H0, as given by eq. (1.12), resulting in

a new SL Hamiltonian, H0 + U(r). For a sinusoidal potential, the SL potential can be

written as a Fourier series,

U(r) =

6∑
n=1

UGne
iGn·r, (4.2)
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Figure 4.2: Brillouin Zones (BZs) of the superlattice created by Moiré interference
with a lattice constant aSL = 7.5 nm. The reciprocal lattice points (black dots) have
hexagonal symmetry with nearest neighbours connected by the vectors Gn, as shown
for G1.

where UGn are the Fourier coefficients at the reciprocal lattice points, Gn. We will

assume lattice symmetry such that all SL potential energy Fourier coefficients are the

same under translations by each reciprocal lattice vector, UGn = UG, corresponding to

a spatially isotropic potential. For graphene on hBN, UG was calculated as UG ≈ 0.06

eV using second order perturbation theory on the two coupled layers [131].

The general wavefunction for the perturbed Hamiltonian can be written as a series

of plane waves with arbitrary coefficients, Cs,k, over both positive and negative energies

(s = ±1),

ΨSL(r) =
∑
s

∑
k

Cs,ke
ik·r. (4.3)

The low-energy eigenstates of graphene are given by eq. (1.14),

Φs,k =
1√
2A

(
1

seiφk

)
eik·r, (4.4)

around a single K point in SLG. We can calculate the energies of the perturbed SL

Hamiltonian directly from the Schrodinger equation,(
H0 +

∑
n

UGne
iGn·r

)∑
s

∑
k

Cs,ke
ik·r = ε

∑
s

∑
k

Cs,ke
ik·r, (4.5)

given the coefficients, Cs,k. To determine the energy and coefficients, we act both sides

of eq. (4.5) on the spinor part of the graphene eigenstate,
(
1 seiφk

)T
, and take the

overlap with the full graphene eigenstate, Φs′,k′ . This results in a set of simultaneous

equations,

(ε(s,k) − ε0(s,k))Cs,k =
∑
s′

6∑
n=1

UGn

1

2

[
1 + ss′e(i(φk−Gn−φk))

]
Cs′,k−Gn , (4.6)
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describing the SL energy in terms of the unperturbed graphene energy

eigenvalues, ε0(s,k), and the eigenstate mixing,
〈
Φs′,k′ |U(r)|Φs,k

〉
=∑

n δk′,k+GnUGn [1 + ss′exp (i(φk − φk′))] /2, due to the SL potential. The ener-

gies and coefficients are given by the eigenvalues and eigenvectors of the effective SL

Hamiltonian:

HSL =



. . .
. . .

. . .
. . .

. . .

ε0(−1,k−G) U−1,k−G,−1,k U−1,k−G,+1,k U−1,k−G,+1,k−G

U−1,k,−1,k−G ε0(−1,k) U−1,k,+1,k U−1,k,+1,k−G

U+1,k,−1,k−G U+1,k,−1,k ε0(+1,k) U+1,k,+1,k−G

U+1,k−G,−1,k−G U+1,k−G,−1,k U+1,k−G,+1,k ε0(+1,k−G)
. . .

. . .
. . .

. . .
. . .


,

(4.7)

where Us′,k′,s,k =
〈
Φs′,k′ |U(r)|Φs,k

〉
. The matrix, eq. (4.7), extends over all reciprocal

lattice points, G, described by all possible linear combinations of reciprocal lattice

vectors, Gn. However, it can be truncated at a maximum number of reciprocal lattice

points to accurately evaluate the energy. Typically, to model the energy landscape

within a given BZ, it is only necessary to include the nearest neighbour reciprocal

lattice points.

The matrix, eq. (4.7), also provides a fast and efficient way to construct the BZs.

Setting all off-diagonal elements, Us′,k′,s,k, to 0 simply returns the graphene eigenen-

ergies. We can evaluate the BZ by finding the eigenvalue corresponding to the energy

about the central reciprocal lattice point, ε0(+1,k). This can easily be located from

the corresponding eigenvector, since, for the simple diagonal matrix the eigenvectors

will not change. The electronic energy in the n-th BZ corresponds to the n-th energy

band when translated back into the 1st BZ. Therefore, for the n-th BZ, the eigenvalue

ε0(+1,k) will be the n-th smallest of the positive (s = +1) eigenvalues.

4.4 Construction of the Energy Bands

Two representations can be used to model the energy subbands of the superlattice:

reduced zone and extended zone. The extended zone describes the states over an un-

constrained range of wavevectors, k, relative to k = 0. In this representation, the eigen-

states in the n-th BZ are given by those corresponding to the n-th smallest eigenenergy.

Due to the periodicity and symmetry of the lattice, all physical states can be traced

back into the first BZ under translation by reciprocal lattice vectors. Therefore, we can

restrict k to values only within the first BZ. Then, the first ‘n’ eigenenergies form the

first ‘n’ subbands. This is the reduced zone representation.

The carrier density, n, is calculated numerically by summing over the occupancy of
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(a) (b)

Figure 4.3: (a) Energy band structure, ε, and (b) group velocity in the x direction,
vx, in the extended zone representation of momentum space. Results shown in both
(a) and (b) are taken from the conduction band (ε > 0). The superlattice potential is
UG = 0.05 eV.

(a) (b)

Figure 4.4: (a) Energy band structure, ε, and (b) group velocity in the x direction, vx,
in the reduced zone representation of momentum space. Results shown in (b) are taken
from the first three subbands of the conduction band (ε > 0), with the bottom axes
showing the first (lowest energy) subband. The superlattice potential is UG = 0.05 eV.
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all k states, discretised into cells, α,

n =
4

(2π)2

∑
α

f(εkα)Ωα (4.8)

as in eq. (2.91), where Ωα is the area of cell α in k space.

Since the effective SL Hamiltonian, eq. (4.7), is Hermitian, the group velocity in

the x-direction is

vx(s,k) =
1

ℏ

〈
s,k

∣∣∣∣ ∂∂kxHSL

∣∣∣∣ s,k〉 , (4.9)

given the eigenstate |s,k⟩ of the matrix (4.7).

Figure 4.3 shows the energy band structure and velocities in the conduction band

(s = +1) within the extended zone representation. Figure 4.4a shows the first 3 sub-

bands in both the conduction (s = +1) and valence (s = −1) bands, and fig. 4.4b

shows the corresponding velocities in the first 3 conduction subbands. The SL poten-

tial opens band gaps between the subbands, with the largest gap between the 1st and

2nd conduction subbands appearing at the K points on the SL Brillouin zone. At the

M points, k = Gn/2, the gap closes, forming secondary Dirac points. In the SL poten-

tial, electrons have to tunnel through the energy gaps between subbands in order to

accelerate up the conduction/valence bands. Also, flattening of the bands towards the

subband gaps causes the initially relativistic electrons to gain an effective mass. This

results in a reduced group velocity, as shown in fig. 4.4b.

At the BZ edges, where the bands are most deformed, the density of states (DoS) is

perturbed relative to that of SLG. Flattening of the subbands towards the band gaps

causes initial peaks in the DoS with dips in between due to the energy gaps, as shown

in fig. 4.5a. Figure 4.5b shows the effect that this has on the carrier density for varying

chemical potential. The carrier density is increased with increasing SL potential, UG,

over the range of chemical potentials considered, due to the flattening of the bands into

a lower energy range, and there exists plateaus at chemical potentials corresponding to

the dips in the density of states.

4.5 Diffusive Transport

To model diffusive transport within the SL band structure, we will adapt the MC

method (section 2.5.1) for electron acceleration through the SL subbands with a single

source of electron scattering. We will use the reduced zone representation, which allows

us to easily Umklapp scatter electrons within the first BZ and move them up or down

the bands at given tunnelling points.

4.5.1 Momentum Relaxing Scattering

Before we discuss the details specific to modelling transport through the SL subbands,

we first characterise the scattering. For now, we are mostly concerned with the effects of
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Figure 4.5: (a) Energy density of states, D(ε), for a superlattice potential UG = 0.05
eV. (b) Total carrier density, Ntot = n+ p, calculated as a function chemical potential,
εF , for varying superlattice potentials, UG = 0, 0.01, 0.05 and 0.1 eV.

the SL perturbations. Therefore, we want to use the simplest form of scattering possible.

We use an energy-independent scattering rate given by Γ = 1/τ , as in section 3.2. Since

we do not directly include any inelastic scattering, we relax the electron energy to a

k-state from the initial Fermi-Dirac distribution upon scattering to avoid uncontrolled

Joule heating of the electron distribution. This replicates the momentum relaxation

time approximation [30],(
∂f(t,k)

∂t

)
coll

≈ −f(t,k) − f(t = 0,k)

τ
(4.10)

made in the linearised Boltzmann (LB) equation of conductivity, eq. (1.53).

4.5.2 Umklapp Scattering

Umklapp scattering describes the translation of the electron wavevector by one recip-

rocal lattice vector. Each k-state on the BZ edge is equivalent to a k-state on the

opposing edge, connected by a reciprocal lattice vector, where the reciprocal space dis-

tance between them is 2π/a, as shown in fig. 4.6. The electron wavevector, k′, after

Umklapp scattering from a state k on the BZ boundary is

k′ = k− 2KΓM (4.11)

where KΓM is the vector between the Γ point and the closest M point.

Due to the lattice symmetry, an electron accelerated continuously through k-space

without Umklapp scattering experiences the same changes in energy and velocity as

if it is continuously accelerated up to the edge of the first BZ and Umklapp scattered

back. Therefore, all of the physical properties can be considered within just the first

BZ.
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Figure 4.6: Schematic showing Umklapp scattering (red arrows) across the 1st Brillouin
zone (purple) by the reciprocal lattice vector 2KΓM where KΓM connects the closest M
point to the Γ point. Black dots show the positions of the M and Γ points, as labelled.
Turquoise and yellow zones show the second and third Brillouin zones, respectively.

4.5.3 Monte Carlo for a Multi-Band Superlattice

Here, we describe the adaptations made to algorithm outlined in section 2.5.1 to model

transport through the subbands.

As described in section 2.5.1, the grid of cells used to quantify electron occupation

should be shifted along with the particles under the uniform, field-induced acceleration

in order to ensure that the PEP is obeyed. We will call this the ‘floating grid’. To avoid

solving eq. (4.7) at each time step and for each particle, we initialise all parameters

(energy, velocity, BZ edges, subband energy gaps) on a ‘static grid’, equal to the floating

grid at t = 0. When the floating grid cells have shifted by more than half the cell length

from their initial positions, the grid is ‘re-calibrated’ i.e. moved back by one cell length.

This process ensures that the floating grid cells remain centered on their corresponding

position relative to the static grid, which crucially tells us where the electrons are with

respect to the BZ edges. To reduce temporal noise in the measurable parameters, such

as velocity, a third static grid can be used with increased resolution, allowing electrons

within a given floating cell to have different velocities.

To ensure that the floating grid does not deviate too far from the static grid, the

time step of acceleration, ∆tacc, used should be constrained to

∆tacc ≤
ℏ∆kx
2eE

, (4.12)

where ∆kx is the cell size in the x direction (the direction of the applied electric field,

E). Therefore, it may be necessary to use two time steps: one for scattering, typically

∆ts = 0.2τ , and one for acceleration, ∆tacc. The time step of acceleration, ∆tacc, is

chosen as the largest possible value which satisfies both eq. (4.12) and ∆ts = nacc∆tacc,

where nacc is an integer. All physical parameters are calculated at each scattering time

step.

At any acceleration time step for which the floating grid is re-calibrated, any elec-
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(a) (b)

Figure 4.7: Tunnel points in momentum (k) space used in the Monte Carlo simulations
for tunnelling between (a) the first and second subband and (b) the second and third
subband. The colour bars show the probability of tunnelling, T , at each tunnel point
for an SL potential UG = 0.01 eV.

trons that pass into a cell outside of the BZ are Umklapp scattered back into the BZ,

according to eq. (4.11).

As the electrons accelerate through the bands, they can also tunnel into adjacent

bands. Typically, this occurs at the points of minimum energy gap. We define such

points as ‘tunnel points’. They lie at the points in k-space where the eigenstate of

eq. (4.7) with UG = 0, corresponding to the energy within the subband, change. This

corresponds to the points at the edges of the BZs in the extended zone representation.

Care should be taken when locating the tunnel points to ensure that they are chosen

only at the point where the eigenstates change in the direction of the applied field.

This ensures that the direction of electron acceleration through bands is satisfied. At

each acceleration time step for which the floating grid is re-calibrated, electrons within

a cell corresponding to a tunnel point are moved up or down the subbands based on

the following process: if ϱ < T = TZK(δε), where 0 ≤ ϱ ≤ 1 is a uniformly selected

random number, TZK = exp
(
−πδε2/(4ℏveE)

)
is the Zener-Klein tunnel probability

and δε is the minimum energy difference between bands within the cells of the tunnel

points, then the electron is moved between subbands. The transmission probability, T ,

at all tunnel points between the first and second and second and third subbands in the

conduction band are shown in fig. 4.7 for UG = 0.01 eV. The transmission probability

is highest at the points of smallest band gap: the M points between subbands 1 and 2

and the K and Γ points between subbands 2 and 3. The energy gap δε is found with

increased resolution around the tunnel points, ensuring that T ≈ 1 at all tunnel points

for UG = 0.

4.5.4 Diffusive Results

Figure 4.8a shows the initial distribution of simulated particles for a SL potential UG =

0.05 eV, arranged in accordance with the Fermi-Dirac distribution at T = 10 K. We
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(a) (b)

Figure 4.8: Simulated electron momentum distribution, f(k), over the first three con-
duction subbands (bottom to top) for (a) t = 0 i.e. the initial Fermi-Dirac distribution
and (b) t→ ∞ i.e. the steady-state distribution. Results are obtained from the Monte
Carlo simulation for diffusive scattering with a momentum relaxation time, τ = 1 ps.
The SL potential is UG = 0.05 eV and applied electric field strength is E = 5 × 104

V/m.

have used this small finite temperature to ensure continuity over the discretised grid.

The usual Fermi circle is distorted by the perturbed energy bands, resulting in the flat

edges seen in the second band. Figure 4.8b shows the steady-state distribution under

an applied field, E = 5× 104 V/m, with a scattering rate of τ = 1 ps. The distribution

is shifted in the negative kx direction by the applied field, with Umklapp scattering at

the BZ edges and tunnelling between subbands, most noticeable at the K points in the

third subband in this example.

Figure 4.9 shows the results of conductivity for varying chemical potential obtained

from the MC simulation and compared to the results of the low-field LB approximation,

eq. (1.53), for SLG (i.e. UG = 0):

σ =
e2εF τ

πℏ2
. (4.13)

If the chemical potential is such that the extent of the initial distribution is close

to the BZ boundary, then Umklapp scattering can suppress the bulk acceleration of

the electron distribution when the subband gaps are large: electrons Bloch oscillate,

confined within the first subband. Coupled with the reduction in electron velocity

around the edge of the 1st BZ, this results in large dips in the conductivity around

energies corresponding to the M points, as shown in fig. 4.9. As UG increases, the
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Figure 4.9: Conductivity, σ, calculated as a function chemical potential, εF , for varying
superlattice potentials, UG. Results are obtained from the Monte Carlo simulation for
diffusive scattering with a momentum relaxation time, τ = 1 ps, and acceleration under
an applied electric field of strength E = 1 × 104 V/m. The dashed red line shows the
results of the linearised Boltzmann conductivity, eq. (1.53), for graphene (i.e. UG = 0).
The vertical dashed black lines show the energy at the M and K points in the SL,
assuming ε ≈ ℏvk, where kM = 0.42 nm−1 and kK = 0.48 nm−1.

position of the BZ boundary (i.e. M and K points) in energy space is decreased due to

the flattening of the bands, resulting in a shift in the conductivity dip with respect to

εF . Since only carriers on the fringe of the distribution contribute to the drift velocity,

the conductivity increases again as the chemical potential is increased past the first BZ.

As the SL potential, UG, is increased, the effect of subband confinement and reduced

group velocity causes larger suppression of conductivity at the BZ edge.

4.6 Ballistic Transport

To calculate the conductivity in the limit of no electronic scattering, we use the Lan-

dauer equation (3.50) and numerically integrate over a cartesian grid in k-space. As-

suming an applied electric field, E, in the x direction, momentum in the y direction

is conserved. Electrons tunnelling between any two subbands will be required to tun-

nel through an energy gap, unless directly at the monolayer Dirac point (ky = 0) or

any of the secondary SL Dirac points. For a given ky, we define the minimum energy

gap between neighbouring bands ∆(ky). Then, the Zener-Klein transmission coefficient

between any two bands/subbands is

TZK(ky) = exp

(
−π∆(ky)2

4ℏveE

)
. (4.14)

To perform a continuous integral over kx and ky, we use the extended zone repre-

sentation. This also means that constraint on conservation of momentum, ℏky, can be

easily implemented without the need to Umklapp transform the crystal momentum, ℏk.

Usually, the Landauer integral is restricted to kx > 0 i.e. only right going carriers, in
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Figure 4.10: Energy, ε, band structure taken as a cross-section through the K point of
the SL Brillouin zone (ky = 0.24 nm−1) with a potential difference V applied in the
x direction over a length L. The blue bands show the energy bands through which
electron transport can be facilitated for the given example chemical potential, εF .

the direction of induced transport. In the SL band structure, there can exist right going

carriers with kx < 0 due to the curvature at the band edges (see fig. 4.3b). Therefore,

we integrate over all k-space, with the imposed condition vx > 0 on included k-states.

We impose a second constraint on k-states to ensure energy conservation. Within

each subband, the integral is performed over all energy states, ε(kx, ky), for which there

exists a subband with energy, ε′(ky), at the same ky, such that ε(kx, ky) = ε′(ky) − eV

as shown in fig. 4.10.

The transmission coefficient for a given k-state depends on the position of the energy

state ε′(ky) within the energy band structure. If ε′ and ε are in the same subband then

T = 1 and if they are in neighbouring subbands then T = TZK . It is possible that

the states are separated by more than one subband, as in fig. 4.10, in which case the

transmission coefficient is the product of all intermediate probabilities between the two

subbands.

The limits of the integral in ky and kx can be constrained, depending on the oc-

cupancy, f(kx, ky). For T = 0, only energy states up to the chemical potential, εF

need to be included for a given ky. For each kx, we also need to ensure that all

states up to εF + eV are included. This imposes the minimum limits ky = εF /ℏv and

kx = (εF + eV )/ℏv on integration over ky and kx, respectively. Here, we consider a

range of εF ≤ 0.35 eV and V ≤ 0.4 V, encompassing the first 8 BZs.

4.6.1 Ballistic Results

When the chemical potential lies around the subband gaps, the conductivity is sup-

pressed due to the tunnel barriers, the reduced window of energy-conserving states

and reduced group velocity. As described in section 4.5.4, the first subband gaps lie

around the edge of the first BZ. Figure 4.11 shows the conductivity for varying chem-

ical potential with different SL potential energies, UG. The first dip in conductivity
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Figure 4.11: Conductivity, σ, calculated as a function chemical potential, εF , for varying
superlattice potentials, UG. Results are obtained from the Landauer equation with
Zener-Klein limited tunnelling. The potential difference is V = 0.04 V, corresponding
to an electric field of strength E = 1 × 104 V/m over a length L = 4 µm. The vertical
dashed black lines show the energy at the M and K points in the SL, assuming ε ≈ ℏvk,
where kM = 0.42 nm−1 and kK = 0.48 nm−1.

occurs between the M and K points in the SLG energy, as found for diffusive scattering

(fig. 4.9).

4.7 Differential-Conductance

It is clear that, when the most energetic electrons within the SL exist at the edges of

the BZ, there exists a dip in conductivity caused by the SL potential, UG. This leads

to an interesting interplay between the chemical potential, εF , and the applied field,

E, which can even result in a regime of negative differential conductance (NDC).

Under diffusive acceleration, the electron distribution is shifted by an amount δk ≈
eEτ/ℏ. Assuming small SL energy perturbations, this corresponds to a shift in the

energy at the fringe of the distribution by δεdiff ≈ sevEτ . Figure 4.12 shows the

variation of conductivity and differential conductivity with both chemical potential

and applied field for diffusive limited scattering with relaxation time, τ = 1 ps. The

position in energy at which the conductivity starts to dip, deviating from that of SLG,

is given by the point at which the fringe of accelerated electrons reaches the BZ edge:

εF + sevEτ ≈ sεM , (4.15)

where s denotes the conduction/valence band (s = +1 for εF > 0 and s = −1 for

εF < 0).

For larger relaxation time between scattering events, electrons are accelerated fur-

ther by the electric field, reducing the extent of the ‘SLG-like’ zone, as shown in fig. 4.13

for τ = 3 ps.

For ballistic transport, the distribution is not limited by the scattering time, τ , (or
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(a) (b)

Figure 4.12: (a) Conductivity, σ, and (b) differential conductivity, dJ/dE, where J =
σE is the current density, calculated as a function chemical potential, εF , and electric
field strength, E. Results are obtained from the Monte Carlo simulation for diffusive
scattering with a momentum relaxation time, τ = 1 ps, and a superlattice potential
UG = 0.05 eV. The black lines show the estimated chemical potential required for the
extent of the charge carrier ensemble momentum distribution to reach the M point of
the first Brillouin zone for a given applied field strength.

(a) (b)

Figure 4.13: (a) Conductivity, σ, and (b) differential conductivity, dJ/dE, where J =
σE is the current density, calculated as a function chemical potential, εF , and electric
field strength, E. Results are obtained from the Monte Carlo simulation for diffusive
scattering with a momentum relaxation time, τ = 3 ps, and a superlattice potential
UG = 0.05 eV. The black lines show the estimated chemical potential required for the
extent of the charge carrier ensemble momentum distribution to reach the M point of
the first Brillouin zone for a given applied field strength.
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(a) (b)

Figure 4.14: (a) Conductivity, σ, and (b) differential conductivity, dJ/dE, where J =
σE is the current density, calculated as a function chemical potential, εF , and electric
field strength, E. Results are obtained from the Landauer equation with Klein-Zener
limited tunnelling and a superlattice potential UG = 0.05 eV. We have assumed that
E = V/L, where V is the potential difference across the device and L = 4 µm is the
device length. The black lines show the estimated chemical potential required for the
extent of the charge carrier ensemble momentum distribution to reach the M point of
the first Brillouin zone for a given applied field strength.

equivalently, the mean free path ls) but rather the distance between the contacts, L.

The shift in the internal electron energy is δεball ≈ eEL = eV . As shown in fig. 4.10,

the energy states on the RHS are shifted down by eV . Therefore, for transport within

the conduction band, the point at which the conductivity deviates from that of SLG is

given by the point at which the chemical potential, εF , aligns with the edge of the BZ

on the RHS, εM − eV . Allowing also for hole transport, εF < 0, gives

εF + seV ≈ sεM , (4.16)

as shown in fig. 4.14a.

At the boundary between diffusive and ballistic transport, given by ls = L, where

ls = vτ is the scattering mean free path and L is the device length, eqs. (4.15) and (4.16)

become equivalent. We can reformulate eqs. (4.15) and (4.16) to give the chemical

potential at which accelerated electrons reach the SL subband gap over both diffusive

and ballistic transport regimes:

εF + seEmin(ls, L) ≈ sεM . (4.17)

In both the diffusive and ballistic cases, for a given electric field, there is an initial

drop in the conductivity at a chemical potential given by eq. (4.17), with a local mini-

mum around εF ≈ sεM . As the field is increased, the position of the onset of this dip

in conductivity decreases, as shown by the black lines in figs. 4.12a, 4.13a and 4.14a.

This causes a decrease in the differential conductivity as shown in figs. 4.12b, 4.13b

and 4.14b. As the relaxation time decreases, through to the ballistic limit, the position
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this onset conductivity drop starts to decrease sharply with increasing applied field.

This causes a negative differential conductance at low fields, as shown in figs. 4.13b

and 4.14b. This interesting phenomenon, where the current decreases with increasing

applied electric field, can be explained physically by the increased number of Bloch

oscillating carriers. As the field is increased, more carriers are Umklapp scattered

across the BZ into states with opposing velocity. It can also be understood, in the

ballistic case, by the lowering of available energy states between the drain lead (i.e.

RHS of fig. 4.10) and the source lead (i.e. LHS of fig. 4.10) over the transport window

(εF − eV < ε < εF ) due to acceleration into or from an area with low density of states,

effectively ‘blocking’ the current flow.
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Chapter 5

Modelling Conductivity in

Deposited Graphene Flakes

5.1 Percolation of Current in Graphene Flake Networks

Additive manufacturing provides promising new methods to manufacture functional de-

vices comprising electrically conducting graphene networks [20, 135]. Generally, liquid-

exfoliated graphene flakes are deposited onto a substrate via inkjet. The ink is made

up of the graphene flakes, a liquid solvent and additional surfactants to enhance the

dispersion of the graphene flakes. Alternatively, graphene oxide flakes are hydrophilic

and can be dispersed in water without the need for additional surfactants [136, 137].

After deposition, the resulting structure is post-processed. This usually requires ther-

mal or photonic annealing, to evaporate the solvent [20, 138]. In the case of graphene

oxide flakes, UV reduction of the flakes is also required, which can often lead to the

presence of atomic defects [139, 140].

Here, we consider the dynamics of current flow through a network of deposited

graphene flakes. We will define the microscopic tunnel current and see how flake po-

sitioning affects the macroscopic properties of printed graphene electronics. We model

the conductive characteristics of the network of flakes by first using Monte Carlo simu-

lations of flake positioning and then analysing the percolation networks between flakes.

5.1.1 Inter-Flake Tunnel Current

We use the Simmons equation [141], derived for tunnelling between two similar metallic

electrodes, for the current between two graphene flakes, Iff . In the limit of a small

potential difference between flakes, eVff ≪ ϕ0, the Simmons equation reduces to

Iff ∝ AffeVffexp(−αs) (5.1)

where Aff is the areal overlap of the two flakes, Vff is the potential difference between

flakes, s is the normal distance between flakes, α = (2/ℏ)
√

2mϕ0 is the tunneling
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constant, m is the mass of the tunnelling electron and ϕ0 is the work function. We

take m to be the free electron mass and the work function ϕ0 = 1 eV. This value of the

work function is comparable to that found using Simmons fits for tunnelling between

two graphene sheets [142–144]. Note that, for this value of ϕ0, the approximation of

a constant barrier height (ϕ0 ≫ eVff ) is reasonable because the drain-source potential

is ≲ 1 V, and the channel is made up of > 10,000 flakes (channel length approx. 4000

µm, flake diameter approx. 0.057 µm) for all measurements used in this study [19, 20].

The key exponential dependence on distance, s, in eq. (5.1) results from the WKB

approximation for the tunnelling probability [141, 145]. The constant of proportionality

in eq. (5.1) could be temperature dependant, as described by the Arrhenius equation

for hopping transport, eq. (1.55).

5.1.2 Flake Resistor Network Model

We consider a distribution of parallel flakes, each of volume Vf = 50 × 50 × 1.95 nm3,

consistent with the mean area and thickness of flakes used in the inks [19, 20]. We

define the packing factor, PF = Vgr/Vd, as the ratio of the total volume occupied by

graphene flakes, Vgr = NVf , where N is the number of flakes, to the total volume of

the device, Vd.

Two methods can easily be employed to generate a ‘pseudo-random’ simulated

distribution of flakes: randomly dispersed flakes and planes of flakes.

In the case of randomly dispersed flakes, the flakes are inserted into a cuboid space

individually with randomly generated positions and a constraint to ensure that no two

flakes occupy the same space. Examples of randomly distributed flakes for two different

packing factors can be found in figs. 5.2a and 5.2b.

To build the distribution of flakes using planes, we start with a perfectly ordered,

close-packed arrangement of flakes where each flake has a fixed separation, ⟨d⟩, from all

of its 6 neighbours in all directions, x, y and z. For a given printed layer thickness, ⟨d⟩
will specify the number of distinct planes that the flakes occupy, or vice versa. Next,

we randomize both the overlap area between adjacent flakes on different planes and the

distance between individual flakes, d, which is constrained to lie between 0 and 2⟨d⟩.
The PF can then be reduced by randomly removing flakes. In this representation,

the interflake separation is controlled and the gaps are in-plane. Not only does this

allow us to achieve more ordered and dense structures, it may also better represent

the physical system: where flakes sit and fold tightly on top of one another in the z

direction with gaps forming in the x-y plane [135]. Examples of flake distributions for

different numbers of planes (i.e. different mean separation distances, ⟨d⟩) can be found

in figs. 5.2c and 5.2d. Inserting flakes in planes allows us to reach higher values of

packing factors, where a certain amount of ordering is required to fit the flakes into a

given volume.

We define the tunnelling distance, s, between two flakes as s = d+ dvdW where d is

the distance between two modelled flakes and dvdW = 0.335 nm is the van der Waals

113



5.1. PERCOLATION OF CURRENT IN GRAPHENE FLAKE NETWORKS

0 0.2 0.4 0.6 0.8 1

d
ij
 (nm)

0

5

10

15

20

25

30

35

ij (
1

0
6
 S

m
-1

)

0 0.5 1

10
-2

10
-1

10
0

10
1

Figure 5.1: Conductivity of tunnel junction, σij , between two flakes versus inter-flake
separation, dij .

distance [146, 147]. This ensures that when ⟨d⟩ = 0, i.e. PF = 1 and the space is

completely full of flakes, then the van der Waals distance between contacting flakes is

still accounted for.

A hard-core soft shell model is employed to define the adjacency of any two flakes

[148, 149]. The hard-core is defined by the physical dimensions of the flakes, whilst

the soft-shell protrudes the hard core by a length ds. Flakes with intersecting shells

are considered to be adjacent and a current is allowed to flow between them. This

essentially enforces a maximum tunnelling distance of 2ds, which should be chosen with

care, such that the current between flakes (5.1) is insignificant at distances d > 2ds.

Using eq. (5.1), with the computationally enforced soft-shell, the conductance between

two flakes i and j is

Gij =

{
eζ0Aijexp(−αdij) if dij < 2ds

0 if dij ≥ 2ds
, (5.2)

where the van der Waals distance, dvdW , is included in the constant of proportionality,

ζ0. To calibrate the constant of proportionality, ζ0, we ensure that the conductivity

between flakes, σij = Gij(dij + dvdW )/Aij is comparable to that of few-layer-graphene

(FLG), σFLG ≈ 40 × 106 Sm−1 [150], for flakes in contact (dij = 0). Therefore, we are

assuming that, for two FLG flakes in direct contact, the total conductivity is given by

that of the flakes, i.e. the contact resistance is negligible. We set eζ0 = 1017 Sm−2.

The resulting conductivity between flakes is shown in fig. 5.1.

For simplicity, the resistance of each flake will be neglected in the computational

calculations. In most cases, this is a reasonable simplification, since the tunnelling

resistance typically dominates. For particularly high packing factors, we will use

Matthiessen’s rule to include the upper-limit of σFLG, as will be demonstrated in

fig. 5.2f.

A current is driven through the simulated device by applying a voltage between

the Ns left- and Nd right- most flakes (green shaded regions in figs. 5.2a to 5.2d).
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The potential of these ‘contact’ flakes determines the boundary conditions, from which

we calculate the potential of the Np intermediate flakes self-consistently, by ensuring

conservation of current through each flake. This equates to solving a system of Np

coupled simultaneous equations,

Np∑
i=1

Gij(Vi − Vj) =

Ns∑
s=1

Gjs(Vj − Vs) +

Nd∑
d=1

Gjd(Vj − Vd) (5.3)

for each flake, j, where Vj is the potential of the j-th flake and the potential of the

contact flakes, Vs and Vd, are fixed to the values of the applied source and drain potential

respectively.

For the V -independent conductance (5.2), eq. (5.3) can be solved by a simple matrix

inversion. If the potential difference between flakes is large, eV ∼ ϕ0, the full Simmons

equation should be used [141], and a Newton-Raphson method can be applied to solve

the Np coupled equations (5.3).

Once eq. (5.3) has been solved to find the potential of each flake, we can calculate

the total conductivity, σ = GtotL/WT where Gtot is the total conductance of the device

and L, W and T are the device length, width and thickness in the x, y and z directions

respectively (L × W × T = Vd). The total conductance is given by Gtot = Itot/Vds,

where

Itot =

Ns∑
s=1

Np∑
i=1

Gis(Vi − Vs) =

Nd∑
d=1

Np∑
i=1

Gid(Vd − Vi) (5.4)

is the total current through the device and Vds = Vd − Vs is the drain-source potential.

Figure 5.2e shows the variation of conductivity, σ, with packing factor, PF, calcu-

lated for 4 to 7 planes of flakes per printed layer, i.e. for ⟨d⟩ = 0.05 nm to ⟨d⟩ = 1.55

nm, where we have assumed a thickness of 14 nm for each printed layer [19]. Figure 5.2f

shows the modified conductivity, (1/σ+1/σFLG)−1, using Matthiessen’s rule to include

the FLG upper limit on the total conductivity. Comparing figs. 5.2e and 5.2f, we find

that a potential drop along the flakes should also be accounted for when ⟨d⟩ ≲ 0.8 nm,

as the effect of the tunnelling resistance is sufficiently reduced due to the closely packed

layers.

5.1.3 Percolation Dynamics

Figure 5.3 shows the conductivity for ⟨d⟩ = 0.05 nm, where there exists a clear insulat-

ing phase (σ ≈ 0) and conducting phase (σ ≈ σFLG) with a percolating transition. The

nature of the transition around the percolation threshold, PFc, can be characterised

as a continuous phase transition with order parameter given by the conductivity and a

critical exponent, β ≈ 0.47, describing the power law onset of conductivity at percola-

tion, σperc ∝ (PF − PFc)
β.

For bulk materials the conductivity should be independent of the device geometry.

However, for randomized percolation networks, we find that the size of the device
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Figure 5.2: (a) Random distribution of flakes with packing factor PF = 0.1. (b)
Random distribution of flakes with packing factor PF = 0.35. (c) Distribution of flakes
in distinct planes with packing factor PF = 0.35. There are 7 planes of graphene per
printed layer (per 14 nm), with a mean separation of ⟨d⟩ = 0.05 nm between flakes in
adjacent planes. (d) Distribution of flakes in distinct planes with packing factor PF
= 0.35. There are 4 planes of graphene per printed layer (per 14 nm), with a mean
separation of ⟨d⟩ = 1.55 nm between flakes in adjacent planes. (a)-(d) Red rectangles
represent flakes. Green shaded regions represent the source-drain electrodes; any flake
within these regions are contact flakes. (e)-(f) Total conductivity calculated for two
printed layers (T = 28 nm) over a square region of area As = (1.25 µm)2 for varying
packing factor using planes of flakes with mean separation ⟨d⟩ (solid coloured lines) and
random flakes (black dashed line). (e) Initial results, where we have only accounted
for the inter-flake resistance. (f) Results after applying Matthiessen’s rule with the
intra-flake conductivity, σFLG ≈ 40 × 106 Sm−1.
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Figure 5.3: Conductivity simulated for two printed layers (T = 28 nm) over a square
region of area As = (1.25µm)2 using planes of flakes with mean separation ⟨d⟩ = 0.05
nm. The inset shows the results of simulation (black crosses) around the percolation
threshold, PFc ≈ 0.17, and the critical behaviour at percolation (dashed red line) with
a critical exponent of β = 0.47.

can effect the total conductivity. Given the constant resistivity in bulk materials,

the resistance, R, of a bulk conductor is inversely proportional to its thickness, T .

Experimentally, the conductivity of printed devices is found to decrease with decreasing

thickness and the measured conductivity is found to be unstable for particularly thin

devices [135, 151]. We consider the effect of increasing the number of printed layers,

n, on the conductivity (see left of fig. 5.4a). Figure 5.4a shows the ratio of the mean

resistance for one printed layer (n = 1, T = 14 nm) to the mean resistance of two

printed layers (n = 2, T = 28 nm) for different packing factors and a square area of

(1.25 µm)2. As the packing factor increases, the behaviour of the disordered flakes

tends towards the bulk ratio of R1/R2 = 2.

As the sheet area, As = W × L increases, the conductivity decreases, as shown in

figs. 5.4b and 5.4c, due to the increased probability of finding a high resistance junction

in any given path from the source to drain. Complete randomisation of flake positions

results in a strong decrease of conductivity with length (fig. 5.4c), which converges to a

constant value for large sheet areas. However, we find that the conductivity for planes of

flakes is much more stable with increasing sheet area (fig. 5.4b). Since the conductivity

is found to be approximately independent of the top area of the region probed, As, for

planes of flakes, this method is thus ideal for reducing the large number of flakes (∼ 109)

in an actual sample to a computationally manageable quantity (typically ∼ 104) in our

calculations.

We find that 5 planes of flakes per printed layer (⟨d⟩ = 0.85 nm) with a packing

factor of PF = 0.26 and a random distribution of flakes with PF = 0.31 results in the

sheet conductance Gs ≈ 2.2 mS for 2 printed layers with the sheet areas considered

here (see figs. 5.4b and 5.4c), consistent with that measured for the printed graphene

ink in ref. [20].

In both the simulated devices and the experimentally measured data for the ink-jet

117



5.1. PERCOLATION OF CURRENT IN GRAPHENE FLAKE NETWORKS

(a)

0 0.5 1 1.5 2 2.5

0.263
0.264

P
F

0 0.5 1 1.5 2 2.5

A
s
 ( m

2
)

0

1

2

3

4

G
n
 (

1
0

-3
 S

)

n = 1

n = 2

(b)

0 0.5 1 1.5 2 2.5

0.3095
0.31

P
F

0 0.5 1 1.5 2 2.5

A
s
 ( m

2
)

0

2

4

6

G
n
 (

1
0

-3
 S

)

n = 1

n = 2

(c)

Figure 5.4: (a) Ratio of resistance for one printed layer, Rn = R1, to the resistance of
two printed layers, Rn = R2, over a square region of area As = (1.25 µm)2 for varying
packing factor, using planes of flakes with mean separation ⟨d⟩ (solid coloured lines) and
random flakes (black dashed line). The left panel shows exemplar flake arrangements
for one printed layer, n = 1, and two printed layers, n = 2. The thickness of each
layer is assumed to be 14 nm. (b)-(c) Conductance, Gn, for varying sheet area, As, for
1 printed layer, n = 1, and two printed layers, n = 2. The top plots show the slight
changes in packing factor, PF, as we vary the area, As, due to the discrete number of
flakes that can be used. (b) ⟨d⟩ = 0.85 nm, PF ≈ 0.26. (c) Random, PF ≈ 0.31.
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printed graphene [20, 151], the resistance decreases with increasing thickness (fig. 5.5a),

but at a higher rate than expected for a bulk conducting material, where R ∝ 1/T ,

due to increased percolation arising from the randomized positioning of flakes. This

percolation effect increases further when the positions of the flakes are completely

randomised, rather than randomised about the mean separation ⟨d⟩. We also find

that the coefficient of variation, measuring the deviation of resistance about the mean,

decreases as the thickness increases for the simulated devices (fig. 5.5b), indicating

better stability and repeatability of the electrical properties for larger printed samples.

The simulations reveal regions of inhomogeneity in the potential landscape (5.5c)

and charge trajectories (fig. 5.5d) due to the randomized positioning of flakes. As the

thickness of the conductor decreases, the size of these regions of spatial inhomogeneity

become comparable to the device thickness, resulting in the significant variance in the

resistance between devices shown in fig. 5.5b. Since the current between two flakes is

determined by their areal overlap, the current between flakes with lateral overlap is

significantly larger than the current between the edges of adjacent flakes. From the

example shown in fig. 5.5d, the two highest current percolation paths (fig. 5.5e), which

meander between several layers, require tunnelling in the z direction. Therefore, as the

conductor thickness decreases, the probability of these high-conductivity meandering

paths existing also decreases, thus explaining the increased resistivity as shown in

fig. 5.5a.

5.1.4 Aspect Ratio

Changing the aspect ratio (radius/thickness) of the flakes has been shown to have

a large effect on the total conductivity in graphene-based composites [152]. For a

completely ordered distribution of flakes with tunnelling only in the z-direction, where

the mean inter-flake separation is kept constant, regardless of flake aspect ratio, the

total resistivity is proportional to the flake thickness, ρ ∝ Tf . This can be understood

from consideration of the resistor network. For increasing flake thickness, the number

of parallel channels in the network decreases, with inverse proportionality. Similarly,

the number of parallel channels is also decreased if the width of the flake, Wf , in the

direction parallel to the contacts, is increased. However, if the flake length, Lf , in the

direction perpendicular to the contacts is increased, the number of resistive junctions in

series increases proportionally. Assuming that the flakes are approximately circularly

symmetric, such that Wf ≈ Lf , and the orientation in the x-y plane is randomised, the

effects of decreasing parallel junctions and increasing series junctions cancel out with

increasing flake area. However, the conductance of the the individual tunnel junctions,

eq. (5.2), is proportional to the overlap area. Therefore the overall effect of increasing

flake area, Af , is ρ ∝ 1/Af .

To demonstrate the expected behaviour, ρ ∝ Tf and ρ ∝ 1/Af , for an ordered

distribution of flakes with tunnelling in the z-direction, we have used a simplified model

with only tunnelling in the z-direction and a shell size equal to the mean interflake
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Figure 5.5: (a) Ratio of electrical resistance, Rn, calculated for n printed layers to
the resistance of one printed layer, R1, for inkjet graphene with: 5 layers per printed
layer (mean interlayer separation ⟨d⟩ = 0.85 nm) with packing factor 0.26 (solid blue
curve); and randomly distributed flakes with packing factor 0.31 (black dashed black
curve). The expected dependence for a bulk conductor is shown by the solid black
curve, Rn/R1 = 1/n. The thickness of each layer is assumed to be 14 nm. Data
points are experimental results from reference [20]. (b) Coefficient of variation of the
calculated conductance with varying number of printed layers, n, for 1000 simulated
flake distributions. (c) Representative arrangement of flakes used in our Monte Carlo
simulation with packing factor PF = 0.26 and mean interlayer separation ⟨d⟩ = 0.85 nm,
positioned between electrodes (green cuboids). The colour of each flake represents the
value of electrical potential between the source and drain potentials, Vs and Vd (scale
right). (d) Current paths between flakes (positions shown grey) with colour-scaled
current magnitudes, relative to the highest inter-flake current (scale right). (e) The
two highest contributing current paths found by following the path of highest current
from the left electrode to right (black) and vice versa (red).
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Figure 5.6: (a) Modelled behaviour of resistivity, ρ, for varying flake dimensions: thick-
ness, Tf , perpendicular to the direction of the applied potential difference, and area, Af ,
parallel to the direction of the potential difference. The flake positions are structured
in layers with a fixed mean separation, ⟨d⟩. Distances between flakes are randomised
about the mean separation and some flakes are randomly removed to reduce the packing
factor to PF ≈ 0.3. The mean distances and number of removed flakes is constant for
all flake dimensions considered. Tunnelling is assumed to be only in the z-direction, i.e.
perpendicular to the flakes. We consider only nearest-neighbour tunnelling by setting
the shell size, ds = 2⟨d⟩. (b) Modelled resistivity, ρ, as a function of packing factor,
PF, for flakes of varying dimensions, as shown in the legend. Here, the flake positions
are randomised and the shell size is kept constant, ds = 2 nm. The solid black line
shows the few-layer graphene limit.

distance, ds = ⟨d⟩, such that there only exists nearest neighbour tunnelling. We vary

the flake sizes but keep the mean interflake separation, on top of the van der Waals

distance, constant, ⟨d⟩ = 0.1 nm. An array of 25×25 flakes is used with 10 layers of

flakes with randomised overlap. The number of randomised ‘gaps’ (flakes removed) per

layer is 444, resulting in a packing factor PF ≈ 0.3. Figure 5.6a shows the resulting

resistivity for varying flake thickness and flake area.

For a disordered, percolating network, there exists a higher probability for there

to exist a percolating path when there are more parallel channels and fewer series

junctions. Therefore, increasing flake thickness leads to a further increase of resistance.

This is entirely analogous with the results shown in fig. 5.5a, where the device thickness

is varied, rather than the flake thickness.

For a given density (PF) of flakes, the mean interflake separation increases as the

flake size increases. Given that the tunnelling in the z-direction contributes the most,

changes in the mean interflake distance in the z-direction, dz, given by

δd3z +
3

2
T 2
f δdz −

T 3
f

2

(
1

PF
− 1

)
≈ 0 (5.5)

for cuboid shaped flakes, causes further increase in resistivity with increasing flake

thickness.
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A combination of increased percolation, decreased tunnelling distances, and in-

creased next-nearest neighbour connectivity result in a potentially large decrease in

resistivity with increasing flake aspect ratio for a given packing factor when flake posi-

tions are completely randomised, as shown in fig. 5.6b, beyond the expectation for an

ordered resistor array.

5.2 Calculations of Transport Between Individual

Graphene Flake Pairs

We now turn our attention to the temperature and chemical potential dependence of

the conductivity between any two few-layer graphene flakes. We know that for systems

of localised energy states, the hopping conductivity generally follows the Arrhenius

conductivity, eq. (1.55). However, in graphene flakes there can exist a distribution of

multiple energy states per site covering the energy range εF ± kBT , depending on the

flake size.

5.2.1 Hopping

The transition rate from energy state εi at flake i to energy state εj at flake j is [38]

Γij = f(εi) [1 − f(εj)] γij =
γij
4

exp
(
εj−εi
2kBT

)
cosh

(
εi−εF
2kBT

)
cosh

(
εj−εF
2kBT

) (5.6)

where f(ε) is the Fermi-Dirac distribution function, εF is the chemical potential of

the flakes and γij is the hopping rate. Using Miller-Abrahams hopping, eq. (1.54), to

describe the hopping rate, the transition rate becomes

Γij =
γ0e

−αRij

4

exp
(
− |εj−εi|

2kBT

)
cosh

(
εi−εF
2kBT

)
cosh

(
εj−εF
2kBT

) . (5.7)

A potential difference, V , between the two flakes will drive a current between them.

This offsets the energy states at flake j by eV relative to flake i, as shown in fig. 5.7.

The net current between the two energy states on the two flakes is given by

Iij = e (Γij − Γji) = eγijf(εi) [1 − f(εj + eV )] − eγjif(εj + eV ) [1 − f(εi)]

=
eγ0e

−αRij

2
sinh

(
eV

2kBT

) exp
(
− |εj−εi|

2kBT

)
cosh

(
εi−εF
2kBT

)
cosh

(
εj+eV−εF

2kBT

) . (5.8)
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Assuming that eV ≪ kBT and eV is much smaller than relevant energies, i.e. eV ≪ εF

or eV ≪ εi,

Iij ≈ e2V
γ0e

−αRij

4kBT

exp
(
− |εj−εi|

2kBT

)
cosh

(
εi−εF
2kBT

)
cosh

(
εj−εF
2kBT

) . (5.9)

Further assuming that the chemical potential and temperature are small relative to the

state energies, εF ≪ εi, εj and kBT ≪ εi, εj , we find the the approximate conductance

Gij = Iij/V ≈ e2
γ0e

−αRij

kBT
exp

(
−|εj − εF | + |εi − εF | + |εi − εj |

2kBT

)
(5.10)

as often seen in the literature [33, 38, 43]. For 2D flakes, we need to sum over all

energy states in each flake. Using eq. (5.8), for the current between individual states,

and summing over k-states ki and kj , the total hopping current between flakes i and j

is

Ih = βhsinh

(
eV

2kBT

)
(gsgv)2

∑
si=±1

∑
sj=±1

∑
ki

∑
kj

exp

(
−|εsj,kj−εsi,ki−eV |

2kBT

)
cosh

(
εsi,ki−εF
2kBT

)
cosh

(
εsj,kj−εF

2kBT

) ,
(5.11)

where

βh =
eγ0e

−αRij

2
, (5.12)

gs and gv are the spin and valley degeneracies, respectively, εsi,ki ≡ ε(si, ki) is the

‘internal’ energy of electron state ki in band si, as determined by the bandstructure,

and we have taken care that the energy of flake j is offset by the potential i.e. εj =

ε(kj) − eV , as shown in fig. 5.7. Assuming the flakes are large such that the energy

gaps between states are small around the chemical potential relative to kBT , we can

make the continuum approximation for the summation over individual states,

Ih ≈ AiAjβhsinh

(
eV

2kBT

)∫ ∞

−∞

∫ ∞

−∞
dεkidεkj

D(εki)D(εkj)exp

(
−|εkj−εki−eV |

2kBT

)
cosh

(
εki−εF
2kBT

)
cosh

(
εkj−εF
2kBT

) ,

(5.13)

where D(ε) is the density of states and Ai is the area flake i. Typically, graphene flakes

used in ink-jet printing are of few-layer thickness [20, 135, 136, 153]. Assuming that

the flakes, which are exfoliated from bulk graphite, contain strongly interacting layers,

the 2D bands of each layer will be parabolic with a constant density of states, given

by eq. (1.24). Substituting in the density of states and evaluating the integral, we find

the hopping current

Ih ≈ π2

3
AiAj

(
gsgvm

∗

2πℏ2

)2

eγ0e
−αRijkBTeV ∝ kBT (5.14)

in the limit kBT ≫ eV .
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Figure 5.7: Diagram of the energetic band structure in two adjacent flakes, i and j,
with a potential difference, V . εF denotes the chemical potential. The internal energy
is given by the parabolic dispersion, εk = ℏ2k2/2m∗. For flake j, this internal energy
is shifted by eV relative to that of flake i, as described by the energies εi and εj .

The allowed k-states in any system are discretised by the boundary conditions

imposed at the edges [59]. For a 2D flake, the allowed states are given by

(kx, ky) =

(
2πl

L
,

2πm

L

)
, l,m = 0,±1,±2, . . . (5.15)

where the energy of each state is εk = ℏ2
(
k2x + k2y

) /
2m∗ and L =

√
A is the length of

the flake. As L → ∞, the gaps between energy states become small and the contin-

uum approximation is valid, however for small sized materials the energy level spacing

becomes large. This effect is often exploited, for example in quantum dots where the

energy level spacing gives rise to photoluminescence. The flakes in ink-jet printed

graphene vary in lateral size and have been reported with average sizes between 50 nm

and 530 nm [19, 20, 135, 151, 154], inks containing flakes with average size as large

as 36 µm have also been successfully printed [153]. Therefore, we should check the

validity of the continuum approximation. Figure 5.8 shows the results of summing over

all k-states, as given by eq. (5.11) compared to the approximation of eq. (5.14). From

fig. 5.8a, we see that, for T > 100 K and L > 200 nm, the continuum approximation,

eq. (5.14), holds well over a reasonable range of chemical potentials (|εF | < 0.5 eV). For

smaller sizes, at T = 100 K, the hopping current shows significant peaks at chemical

potentials corresponding to to the energy values of the discrete k-states. For a given

size, the results converge back to eq. (5.14) as temperature is increased due to the

thermal broadening of electron energies over many k-states, as shown in fig. 5.8b. For

the parabolic band considered here, the size of the energy gaps increases as energy is

increased, since ε ∝ k2. Therefore, the effect of the discrete k-states is more significant

at large chemical potentials.

For a random distribution of flake sizes, the hopping current between flakes will

dephase due to the mismatch of energy level spacing at different junctions. This should

124



5.2. CALCULATIONS OF TRANSPORT BETWEEN INDIVIDUAL GRAPHENE
FLAKE PAIRS

-0.5 0 0.5

F
 (eV)

0

0.5

1

1.5

2

2.5

G
h
/A

2

0
e

-
R

ij
 (

1
0

1
5
 s

m
-4

-1
) Continuum approximation

L = 200 nm

L = 150 nm

L = 100 nm

L = 50 nm

(a)

-0.5 0 0.5

F
 (eV)

0

0.5

1

G
h
/T

0
e

-
R

ij
 (

1
0

-1
6
 s

K
-1

-1
) Continuum approximation

T = 400 K

T = 300 K

T = 200 K

T = 100 K

(b)

Figure 5.8: (a) Hopping conductance, Gh = Ih/V , between two flakes for varying
chemical potential, εF , parameterised by the flake area, A = L2, for varying lengths,
L. The temperature is T = 100 K (b) Hopping conductance, Gh = Ih/V , between
two flakes for varying chemical potential, εF , parameterised by the temperature, T , for
varying temperatures. The length is L = 50 nm. In both (a) and (b) we have also
divided the conductance by unknown/phenomenological parameters: hopping strength,
γ0, and e−αRij where α is the inverse localisation radius and Rij is the inter-flake
distance. The hopping current, Ih, is calculated using eq. (5.11) assuming a small
potential, V . Dashed lines show the results of the continuum approximation, eq. (5.14),
which becomes exact in the limit L→ ∞.

lead to a smoothing out of the current peaks seen in fig. 5.8 for a single junction, when

measured over many junctions.

5.2.2 Tunnelling

Assuming a potential applied in the x-direction, the Landauer tunnel current density,

eq. (3.50), is

Jt =
egsgv
A

∑
s=±1

∑
k:kx>0

vg,xe
−αR (f(εs,k) − f(εs,k + eV )) (5.16)

where vg,x is the x-component of the group velocity, which is vg,x = ℏkx/m∗ for a

parabolic band. This is in analogy with the Simmons tunnel current for electrons

incident on a barrier [141], i.e. electrons incident on the flake edges. Making the

continuum approximation, we find that

Jt ≈
egsgv
2π2

√
2m∗

ℏ2
e−αR

∫ ∞

−∞
dε |ε|1/2 (f(ε) − f(ε+ eV )) (5.17)

which, assuming that εF ≫ kBT and εF ≫ eV , is

Jt ≈
egsgv
2π2

√
2m∗

ℏ2
e−αRε

1/2
F eV. (5.18)
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Therefore, the total inter-flake conductance is

Gff = Ih/V + JtW/V ≈ e2gsgv
2π2

e−αR

[
π2

6

A2gsgvm
∗2

ℏ4
γ0kBT +W

√
2m∗

ℏ2
ε
1/2
F

]
(5.19)

where W is the width of flake overlap and we have assumed that εF ≫ kBT , eV ≈
0 and L → ∞. Therefore, the total flake-to-flake conductance can be expected to

be proportional to temperature and proportional to the square root of the chemical

potential independently.

5.2.3 Single Droplet Graphene FET

If the number of flakes within the device is small, the glassy behaviour associated with

large-scale disorder can be reduced. In this case, it is possible to observe the field effect

resulting from the doping of the graphene flakes, without complications arising from the

slow-relaxations present in highly disordered systems, which give rise to the anomalous

field effect. Here, we consider a single droplet graphene FET composed of a thermally

annealed, drop-cast graphene ink droplet. This single droplet forms the active material

in a 5 µm organic field-effect transistor (OFET) with a SiO2 gate dielectric and silver

electrodes.

For percolating resistor networks, the total conductance is described by G = NGc

where N is some characteristic scale of the system and Gc is the critical conductance,

defined as the lowest conductance between any two flakes in the highest conductance

connected path spanning the full length of the network, i.e. the lowest conductance

in the first percolating path [33, 38, 155]. Therefore, if nearest-neighbour hopping

applies, we can express the total network conductance as G ≈ NGff,c where Gff,c is the

conductance given by eq. (5.19) for the highest resistance junction within a percolating

path and N is representative of the total number of independently percolating paths.

Assuming gapless (εg = 0) parabolic bands with electron and hole densities, n and

p, described by eqs. (1.26) and (1.27), results in a charge density of

n− p =
gsgvm

∗

2πℏ2
εF (5.20)

for chemical potential, εF . An expression describing the dependence of the chemical

potential, εF , on gate voltage, Vg,

εF =
C

e

Tf
T Nl

1

PF

2πℏ2

gsgvm∗ (Vg − V0) , (5.21)

is found by equating the total charge across all 2D layers, given by eq. (5.20), to the

charge induced by the gate voltage over a capacitance, C, where Tf is the flake thickness,

T is the total thickness of flake network, Nl is the number of 2D layers per flake, and V0

is the offset of gate-induced doping, due to doping by charged impurities for example.
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Substituting eq. (5.21) into eq. (5.19), the total current through a percolating flake

network can be described by

I ≈ N
(
c1
√
Vg − V0 + c2T

)
(5.22)

where

c1 =
e2V gsgve

−αR

π2ℏ
W

√
C

e

Tf
T Nl

1

PF

π

gsgv
(5.23)

and

c2 =
e2V gsgve

−αR

π2ℏ
π2A2gsgvm

∗2

12ℏ3
γ0kB. (5.24)

Measurements on a single, post processed droplet of the graphene ink on a SiO2 sub-

strate reveal that the current appears proportional to temperature over a temperature

range 100 K < T < 350 K, as shown in fig. 5.9a, and over gate voltages |Vg −V0| < 150

V for a 300 nm SiO2 gate dielectric (fig. 5.9b). Similar to the analysis of graphene in

section 2.3.1, we assume spatial fluctuations of the quasi Fermi level. This means that

at charge neutrality, Vg = V0, there exists a net charge carrier population described by

V ∗
g . We use the same approximation as in eq. (2.25). For gate voltages |Vg − V0| > V ∗

g ,

we assume spatial inhomogeneities to be washed out and the transport characteristics

to be dominated by transport calculated at the Fermi level induced by the gate. For

gate voltages |Vg − V0| < V ∗
g , we assume that the total charge transport is dominated

by transport at the quasi Fermi level induced by the spatially varying potential across

the structure. Fitting eq. (5.22) to the measurements on the single droplet, as shown

in fig. 5.9b, we find that Nc1 ≈ 0.129 µAV−1/2, Nc2 ≈ 1.76 nAK−1 and V ∗
g ≈ 78.8 V.

The values of c1 and c2 can be used to estimate the hopping strength, γ0, and

the exponent describing the penetration of the wavefunction through the barrier, αR.

Evaluating c1/c2, we find

A2γ0
W

≈ 6.5 × 10−12 m3s−1, (5.25)

where we have assumed that C = 1.15 × 10−4 Fm−2 (300 nm of SiO2), m
∗ ≈ 0.03me

[88], Tf ≈ 2 nm, Nl ≈ 3, T ≈ 2Tf , PF ≈ 0.5. Further assuming that W =
√
A and

A ≈ 2500 nm2 is the average flake area, then γ0 ≈ 52 ns−1.

The ink used contains an additive, ethyl cellulose. This acts as a stabalizing poly-

mer. However, it is also expected to further facilitate charge transport upon decompo-

sition in the annealing process [19]. This is due to the carbon residuals formed upon

decomposition of the ethyl cellulose, resulting in a network of graphene flakes which are

densely packed with aromatic species. Such aromatic species are graphene-like. The

smaller size of the aromatic residuals, compared to the graphene flakes, means that

there exists a smaller amount of states within a given energy range for transport, as

characterised by a smaller area, A, in eq. (5.25). This results in a large uncertainty in

the value of γ0. For example, if we assume transport between a graphene flake of size
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Figure 5.9: (a) Current, I, measured across a 5 µm thermally annealed graphene ink
droplet for varying temperature, T (red data points). The applied potential is 20 mV.
Black line shows a linear relationship, I ∝ T . (b) Current, I, measured across the
same device for varying gate voltages, Vg, (dashed lines) for 3 temperatures (shown
in the legend). Solid lines show the results of eq. (5.22) where we have used Nc1 =
0.129 µAV−1/2, Nc2 = 1.76 nAK−1, V0 = 100 V and we have imposed V ∗

g = 78.8
V on the minimum value of |Vg − V0|, a fitting parameter which accounts for spatial
inhomogeneities in the chemical potential. The measured current (dashed lines) shows
a hysteresis over the forward and backward gate voltage sweeps. Similar hysteresis
is also observed in CVD graphene and is expected to arise from the gate capacitance
or charge transport between the graphene and neighbouring adsorbates or charge trap
states in the substrate [156, 157]. We thank Nathan D. Cottam at the University of
Nottingham for the fabrication of the single droplet FET and for the measurement and
analysis of the data used in figures (a) and (b).
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50 nm and a single aromatic ring of size 2.5 Å, then γ0 ∼ 10 ps−1, comparable to the

vibrational frequency of low energy optical phonons in SLG and FLG [67, 158–160].

From the value of c1, we find that NWV e−αR ≈ 0.1 nVm. Assuming that W ∼ 10

nm, V ∼ 1 mV, 1 and 1 ≲ N ≲ 100, we find

αR ∼ 1, (5.26)

i.e. the distance between flakes, R, is approximately equal to the size of the localization

radius, α−1, as may be expected for the highest resistance junction in a percolating

path.

1Applied source-drain voltage is 20 mV. Approximately 100 flakes across channel (50 nm flakes, 5
µm channel). A larger proportion of the potential will be dropped over highest resistance junction.
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Chapter 6

Conclusions

We have developed and unified key analytical models of electron transport in graphene

and graphene heterostructures. Numerical time-dependent analysis of charge carrier

distributions revealed the effects of Joule heating - relevant for graphene with few

impurities, where the diffusive acceleration of electrons results in a dilute, energetic

electron gas. The properties of a wide range of devices, from high-quality graphene

with low carrier density to graphene-based heterostructures, exhibit “universal” be-

haviour between the mobility and linewidth (FWHM) that can be accurately described

within the model of randomly distributed charged impurity scattering. We showed that

the “universal” inverse power law depends crucially on behaviour at the Dirac point.

Theoretically, charged impurity correlations were found to result in small deviations

from the inverse-power law due to smoothing of the electrostatic impurity potential.

The lack correlation observed between the type of graphene device and/or dopant den-

sity (CVD/Exfoliated, pristine/surface modified) and the resistivity around the Dirac

point can be explained by the remarkable stability of the calculated resistivity at charge

neutrality despite the varying effects of charged impurities, charge-neutral impurities

and the ballistic quantum limit.

A simple relation between graphene’s mobility, µ, charge carrier density fluctua-

tions, δn, and the resistivity at the Dirac point, ρmax, is found to apply accurately

for all of the graphene layers including both exfoliated and CVD-grown SLG devices

with electron mobilities ranging from 0.5 m2/Vs to > 25 m2/Vs in the temperature

range 4 K < T < 400 K. This universal behaviour provides crucial information re-

garding the carrier densities that contribute most to the measured charge transport

characteristics. Overcoming this conundrum, we were able to effectively demonstrate

a generalised, analytical temperature dependence of the charge transport properties of

graphene due to phonon scattering and thermally excited charge carriers, compatible

with experimentally measured values over the entire range of 6 devices presented in this

thesis. We demonstrated that the resistivity of graphene at low carrier concentrations,

n < δn, typically excluded from the data analysis due to nonlinear conductivity, can

be analysed using a model based on Fermi-Dirac temperature broadening and impurity
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broadening of δn.

Our calculations combine multiple parameters that affect charge transport in

graphene and facilitate the design, accurate ab initio prediction of key transport pa-

rameters, and analysis of future electronic and optoelectronic devices based on 2D

materials.

Moiré interference potentials formed by overlapping, twisted 2D lattice structures

lead to perturbed low-energy band structures. Flattening of the energy bands causes

an increase in the energy density of states and, therefore, an increased charged carrier

density. However, the band gaps opened by the overlapping 2D bands results in an

increased effective mass and increased Bloch oscillations across subbands. This causes

a suppression of charge transport. Therefore, the conductivity is reduced for chemical

potentials corresponding to the subband edges. Charge carriers can be accelerated up

to the the vicinity of the subband edges before further acceleration is suppressed. This

causes a dynamic relationship between the applied electric field of acceleration and the

initial internal energy of electrons, which can result in a striking negative differential

conductance for both ballistic and diffusive transport.

In inkjet-printed devices, composed of conductive flakes, the electronic properties

are largely governed by the interflake transport processes. Disorder in flake positioning

results in complex current paths leading to percolating networks, as demonstrated by

detailed numerical modelling and confirmed by the measured transport characteristics.

Disorder, packing density and morphology are all shown to have strong effects on

the percolating structures. The highest conductivity is achieved with laterally larger,

thinner flakes with a high density. The effects of complex meandering current paths

on the percolation dynamics are reduced as flake ordering is increased, allowing for the

potential to achieve better stability in the bulk properties for thin printed films.

131



References

[1] Philip Richard Wallace. The band theory of graphite. Physical Review, 71(9):

622, 1947.

[2] DP DiVincenzo and EJ Mele. Self-consistent effective-mass theory for intralayer

screening in graphite intercalation compounds. Physical Review B, 29(4):1685,

1984.

[3] Kostya S Novoselov, Andre K Geim, Sergei V Morozov, D Jiang, Y Zhang,

Sergey V Dubonos, Irina V Grigorieva, and Alexandr A Firsov. Electric field

effect in atomically thin carbon films. Science, 306(5696):666–669, 2004.

[4] Minzhen Cai, Daniel Thorpe, Douglas H Adamson, and Hannes C Schniepp.

Methods of graphite exfoliation. Journal of Materials Chemistry, 22(48):24992–

25002, 2012.

[5] YI Zhang, Luyao Zhang, and Chongwu Zhou. Review of chemical vapor depo-

sition of graphene and related applications. Accounts of Chemical Research, 46

(10):2329–2339, 2013.

[6] Jian-Hao Chen, Chaun Jang, Shudong Xiao, Masa Ishigami, and Michael S

Fuhrer. Intrinsic and extrinsic performance limits of graphene devices on SiO2.

Nature Nanotechnology, 3(4):206, 2008.

[7] Vincent E Dorgan, Myung-Ho Bae, and Eric Pop. Mobility and saturation ve-

locity in graphene on SiO2. Applied Physics Letters, 97(8):082112, 2010.

[8] Kosuke Nagashio, Tomonori Nishimura, Koji Kita, and Akira Toriumi. Mobility

variations in mono-and multi-layer graphene films. Applied Physics Express, 2

(2):025003, 2009.

[9] Xu Du, Ivan Skachko, Anthony Barker, and Eva Y Andrei. Approaching ballistic

transport in suspended graphene. Nature Nanotechnology, 3(8):491–495, 2008.

[10] Alexander S Mayorov, Roman V Gorbachev, Sergey V Morozov, Liam Britnell,

Rashid Jalil, Leonid A Ponomarenko, Peter Blake, Kostya S Novoselov, Kenji

Watanabe, Takashi Taniguchi, et al. Micrometer-scale ballistic transport in en-

capsulated graphene at room temperature. Nano Letters, 11(6):2396–2399, 2011.

132



REFERENCES

[11] Liam Britnell, Ricardo Mendes Ribeiro, Axel Eckmann, Rashid Jalil, Branson D

Belle, Artem Mishchenko, Y-J Kim, Roman V Gorbachev, Thanasis Georgiou,

Sergei V Morozov, et al. Strong light-matter interactions in heterostructures of

atomically thin films. Science, 340(6138):1311–1314, 2013.

[12] Kallol Roy, Medini Padmanabhan, Srijit Goswami, T Phanindra Sai, Gopalakr-

ishnan Ramalingam, Srinivasan Raghavan, and Arindam Ghosh. Graphene–MoS

2 hybrid structures for multifunctional photoresponsive memory devices. Nature

Nanotechnology, 8(11):826–830, 2013.

[13] Woo Jong Yu, Yuan Liu, Hailong Zhou, Anxiang Yin, Zheng Li, Yu Huang,

and Xiangfeng Duan. Highly efficient gate-tunable photocurrent generation in

vertical heterostructures of layered materials. Nature Nanotechnology, 8(12):952–

958, 2013.

[14] Freddie Withers, O Del Pozo-Zamudio, A Mishchenko, AP Rooney, Ali Gholinia,

K Watanabe, T Taniguchi, Sarah J Haigh, AK Geim, AI Tartakovskii, et al.

Light-emitting diodes by band-structure engineering in van der Waals het-

erostructures. Nature Materials, 14(3):301–306, 2015.

[15] Carmen Palacios-Berraquero. Atomically-thin quantum light emitting diodes. In

Quantum Confined Excitons in 2-Dimensional Materials, pages 71–89. Springer,

2018.

[16] Liam Britnell, Roman V Gorbachev, Rashid Jalil, Branson D Belle, Fred Schedin,

Mikhail I Katsnelson, Laurence Eaves, Sergey V Morozov, Alexander S Mayorov,

Nuno MR Peres, et al. Electron tunneling through ultrathin boron nitride crys-

talline barriers. Nano Letters, 12(3):1707–1710, 2012.

[17] Thanasis Georgiou, Rashid Jalil, Branson D Belle, Liam Britnell, Roman V Gor-

bachev, Sergey V Morozov, Yong-Jin Kim, Ali Gholinia, Sarah J Haigh, Oleg

Makarovsky, et al. Vertical field-effect transistor based on graphene–WS2 het-

erostructures for flexible and transparent electronics. Nature Nanotechnology, 8

(2):100–103, 2013.

[18] Tae-Hee Han, Hobeom Kim, Sung-Joo Kwon, and Tae-Woo Lee. Graphene-based

flexible electronic devices. Materials Science and Engineering: R: Reports, 118:

1–43, 2017.

[19] Ethan B Secor, Pradyumna L Prabhumirashi, Kanan Puntambekar, Michael L

Geier, and Mark C Hersam. Inkjet printing of high conductivity, flexible graphene

patterns. The Journal of Physical Chemistry Letters, 4(8):1347–1351, 2013.

[20] Feiran Wang, Jonathan H Gosling, Gustavo F Trindade, Graham A Rance,

Oleg Makarovsky, Nathan D Cottam, Zakhar Kudrynskyi, Alexander G Balanov,

133



REFERENCES

Mark T Greenaway, Ricky D Wildman, et al. Inter-flake quantum transport

of electrons and holes in inkjet-printed graphene devices. Advanced Functional

Materials, 31(5):2007478, 2021.

[21] Jayasheelan Vaithilingam, Ehab Saleh, Lars Körner, Ricky D Wildman,

Richard JM Hague, Richard K Leach, and Christopher J Tuck. 3-Dimensional

inkjet printing of macro structures from silver nanoparticles. Materials & Design,

139:81–88, 2018.

[22] Marco Simonelli, Nesma Aboulkhair, Mircea Rasa, Mark East, Chris Tuck, Ricky

Wildman, Otto Salomons, and Richard Hague. Towards digital metal additive

manufacturing via high-temperature drop-on-demand jetting. Additive Manufac-

turing, 30:100930, 2019.

[23] Belen Begines, Ana Alcudia, Raul Aguilera-Velazquez, Guillermo Martinez, Yin-

feng He, Gustavo F Trindade, Ricky Wildman, Maria-Jesus Sayagues, Aila

Jimenez-Ruiz, and Rafael Prado-Gotor. Design of highly stabilized nanocom-

posite inks based on biodegradable polymer-matrix and gold nanoparticles for

inkjet printing. Scientific Reports, 9(1):1–12, 2019.

[24] J Vaithilingam, E Saleh, C Tuck, R Wildman, I Ashcroft, R Hague, and P Dick-

ens. 3D-inkjet printing of flexible and stretchable electronics. In Proceedings of

the 26th Solid Freeform Fabrication Symposium, pages 10–12, 2015.

[25] Fan Zhang, Christopher Tuck, Richard Hague, Yinfeng He, Ehab Saleh, You Li,

Craig Sturgess, and Ricky Wildman. Inkjet printing of polyimide insulators for

the 3D printing of dielectric materials for microelectronic applications. Journal

of Applied Polymer Science, 133(18), 2016.

[26] Joohoon Kang, Vinod K Sangwan, Joshua D Wood, and Mark C Hersam.

Solution-based processing of monodisperse two-dimensional nanomaterials. Ac-

counts of Chemical Research, 50(4):943–951, 2017.

[27] G Dresselhaus, Saito Riichiro, et al. Physical properties of carbon nanotubes.

World Scientific, 1998.

[28] Edward McCann. Electronic properties of monolayer and bilayer graphene. In

Graphene Nanoelectronics, pages 237–275. Springer, 2011.

[29] Yuanbo Zhang, Tsung-Ta Tang, Caglar Girit, Zhao Hao, Michael C Martin, Alex

Zettl, Michael F Crommie, Y Ron Shen, and Feng Wang. Direct observation of

a widely tunable bandgap in bilayer graphene. Nature, 459(7248):820–823, 2009.

[30] Charles M Wolfe, Nick Holonyak Jr, and Gregory E Stillman. Physical properties

of semiconductors. Prentice-Hall, Inc., 1988.

134



REFERENCES

[31] Thibault Sohier, Matteo Calandra, Cheol-Hwan Park, Nicola Bonini, Nicola

Marzari, and Francesco Mauri. Phonon-limited resistivity of graphene by first-

principles calculations: Electron-phonon interactions, strain-induced gauge field,

and Boltzmann equation. Physical Review B, 90(12):125414, 2014.

[32] Allen Miller and Elihu Abrahams. Impurity conduction at low concentrations.

Physical Review, 120(3):745, 1960.

[33] Nir Tessler, Yevgeni Preezant, Noam Rappaport, and Yohai Roichman. Charge

transport in disordered organic materials and its relevance to thin-film devices:

a tutorial review. Advanced Materials, 21(27):2741–2761, 2009.

[34] Kevin Whitham, Jun Yang, Benjamin H Savitzky, Lena F Kourkoutis, Frank

Wise, and Tobias Hanrath. Charge transport and localization in atomically co-

herent quantum dot solids. Nature Materials, 15(5):557–563, 2016.

[35] Rachel H Gilmore, Samuel W Winslow, Elizabeth MY Lee, Matthew Nickol Ash-

ner, Kevin G Yager, Adam P Willard, and William A Tisdale. Inverse tempera-

ture dependence of charge carrier hopping in quantum dot solids. ACS Nano, 12

(8):7741–7749, 2018.

[36] Willi Aigner, Oliver Bienek, Bruno P Falcão, Safwan U Ahmed, Hartmut Wig-

gers, Martin Stutzmann, and Rui N Pereira. Intra-and inter-nanocrystal charge

transport in nanocrystal films. Nanoscale, 10(17):8042–8057, 2018.

[37] NF Mott and EA Davis. Electron processes in non-crystalline materials’, in Mott,

N. F.(Ed.). Adv. Phys., Clarendon Press, Oxford, 50:865–945, 1979.

[38] Vinay Ambegaokar, BI Halperin, and JS Langer. Hopping conductivity in disor-

dered systems. Physical review B, 4(8):2612, 1971.

[39] Alton Harold Clark. Electrical and optical properties of amorphous germanium.

Physical Review, 154(3):750, 1967.

[40] KL Chopra and SK Bahl. Structural, electrical, and optical properties of amor-

phous germanium films. Physical Review B, 1(6):2545, 1970.
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assisted high photoconductive UV–visible gain in perovskite-decorated graphene

transistors. ACS Applied Electronic Materials, 2(1):147–154, 2019.

[92] Lyudmila Turyanska, Oleg Makarovsky, Laurence Eaves, Amalia Patanè, and
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Appendix A

Device Details

All devices presented here were fabricated by those in ref. [117]. Devices details shown

below are also provided by those in ref. [117].

In this study, we compared theoretical analysis to the results from 6 different SLG

FETs, which can be categorised into 3 groups:

(i) High mobility devices, Exf1 and Exf2, fabricated using dry transfer of single layer

graphene exfoliated in a glove box, encapsulated between two hBN layers and

dry-transferred onto a Si/SiO2 substrate. Details of the hBN encapsulation and

dry-transfer technique can be found in ref. [105].

(ii) Lower mobility exfoliated devices, Exf3 and Exf4, fabricated using conventional

wet-transfer of graphene onto Si/SiO2 [116] but without use of additional protec-

tive layers of hBN or other materials.

(iii) Lowest mobility devices, CVD1 and CVD2, fabricated using commercial CVD

graphene hBN heterostructures mounted on a Si/SiO2 wafer (Graphene Super-

market). The device CVD2 was fabricated by capping roughly half of the graphene

layer with a thin (∼ 1 µm) layer of exfoliated monocrystalline InSe using the tech-

nique described in ref. [90].

All SLG FETs were processed into Hall bars of similar size (fig. A.1, table A.1).
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(a) (b) (c)

Figure A.1: Optical images of samples (a) Exf1, (b) Exf2, (c) CVD1, CVD2. Images
provided by: [117].

Sample
Name

Material used and
sample processing

techniques

Distance
between
potential
leads, L

Graphene
channel

width, W

Doping
level at
T < 10 K

(m−2)

Carrier
mobility

at
T < 10 K
(m2/Vs)

Exf1 Dry transferred
exfoliated graphene,

encapsulated with hBN

4 µm 1 µm 5.6 × 1013 25

Exf2 4 µm 4 µm 4.1 × 1013 21

Exf3 Wet transferred
exfoliated graphene,

on SiO2

4 µm 1 µm 2.9 × 1014 1.8

Exf4 4 µm 1 µm 3.0 × 1014 1.6

CVD1
Commercial CVD

graphene
5 µm 3 µm 8.4 × 1015 0.7

CVD2
Commercial CVD

graphene with InSe
5 µm 3 µm 1.1 × 1016 0.5

Table A.1: Sample details. The doping level is derived from the position of the maxi-
mum resistivity relative to gate-induced doping. Data provided by: [117].
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