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Abstract

The cosmological constant problem is one of the biggest theoretical hurdles of the modern

age. It comes out of two great theories in physics: General Relativity (GR) and Quantum

Field Theory (QFT). QFT predicts the existence of vacuum energy and GR predicts that

it will gravitate like a cosmological constant, Λvac. Through observations we find that the

Universe is undergoing an accelerated expansion which can be sourced by a constant term,

Λobs, whose value is set by observations. Therefore it would be tempting to compare Λobs

with Λvac, but through this we find that the predicted value of the vacuum energy is far, far

greater than that of observation. In fact, at a lower estimate it represents a fine-tuning of

∼ 1036 orders of magnitude. However, this is not the full extent of the problem. Even if we

accept a fine-tuning in Λvac, its value is unstable to higher order perturbations, leading to

repeated fine-tunings and re-tunings. This is known as radiative instability of the vacuum,

and it is the true source of the cosmological constant problem.

This thesis chooses to focus on self-tuning as a method for alleviating this problem. Self-tuning

refers to the practice of modifying GR by adding extra fields which act to force Λvac ∼ Λobs,

removing the need for fine-tuning. In this thesis we review a variety of self-tuning mechanisms

to allow the reader to get a basic idea of the different approaches adopted.

The bulk of the thesis focuses on self-tuning with a massive scalar-tensor theory on an Anti-

de Sitter (AdS) background, the idea for which originated by examining a range of allowed

modifications to GR and placing some self-tuning conditions upon them. Here, we construct

an explicit model and analyse the resultant field equations to check whether it can or cannot

self-tune.
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We then perform a numerical analysis on the resultant cosmological equations to understand

the dynamics of the system; focusing specifically on whether our model can self-tune regardless

of initial conditions. Finally, we conduct a rudimentary analysis on the stability of this model

to further understand whether we can consistently self-tune without fine-tuning.

Overall this work serves as an initial point of exploration in self-tuning on an AdS background.

As we later discuss, there are many exciting future directions this model can take beyond

this thesis.
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Conventions

Throughout this thesis we adopt the following conventions, notations, and definitions unless

otherwise specified:

The spacetime metric uses the “mostly positive” signature, (−,+,+,+), where Greek indices

µ, ν, ... = (0, 1, 2, 3) represent the spacetime components. Here, 0 refers to the time coordinate

and 1, 2, 3 refers to the spatial coordinates. Alongside this, we sometimes refer to the time

components as t (which is equivalent to 0) and the spatial components as i, j, k (which could

refer to 1, 2, or 3 interchangeably). This is especially used when we are being agnostic

about the specific spatial coordinate used, but we want to specify which components are

spatial or temporal. For example, if we write Aij and let i ̸= j this could refer to a set

Aij = {A12, A13, A21, A23, A31, A32}, whereas Ati = {A01, A02, A03}. We also work in natural

units where c = ℏ = 1.

When computing derivatives we use ∂µ, ∇µ, and □ ≡ ∇µ∇µ to represent partial derivatives,

covariant derivatives, and the d’Alembert operator respectively. To simplify notation we often

use dots to represent derivatives with respect to t, for example ẋ = dx
dt
. We also use primes

to represent partial derivatives with respect to the argument of the function, for example

f ′(x) = ∂f
∂x
.

Finally to simplify our calculations we use the following notational devices:

• A[ab] =
1
2

(
Aab − Aba

)
,

• A(ab) =
1
2

(
Aab + Aba

)
,

• La,b =
∂La

∂b
.
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Chapter 1

Introduction

The cosmological constant problem is one of the most elusive problems in modern theoretical

physics. Annoyingly, the problem is born from two of the most prestigious and well-tested

theories of the 20th century: General Relativity (GR) and Quantum Field Theory (QFT).

This introductory chapter first focuses on the basics of GR in section 1.1, before discussing

vacuum energy and how it arises from QFT in section 1.2. Finally, in section 1.3 we outline

how the cosmological constant problem emerges from the existence of vacuum energy and

GR.

1.1 General Relativity

Gravity can be simply thought of as the theory of a massless spin-2 propagator (a graviton).

Although this is completely sufficient, it is through Einstein’s theory of GR that we arrive

at a far more intuitive and insightful approach to gravity. GR is based around Einstein’s

Equivalence Principle (EEP), which states that local non-gravitational experiments performed

in a free falling laboratory are independent of the position and velocity of the laboratory. In

other words, acceleration in a flat (or Minkowski) spacetime is locally indistinguishable from

gravity. Note, that this is only true while in infinitesimally small regions of spacetime, as

the gravitational field will be (approximately) homogeneous. As we expand to finite regions,

inhomogeneities in the gravitational field will apply and so too will its effects. Returning

1



CHAPTER 1. INTRODUCTION

to the local level, the acceleration that different forms of matter and energy experience will

depend only on the gravitational field i.e. the acceleration will be independent of its internal

properties. This idea suggests that gravity is an intrinsic feature of spacetime, hence we can

build GR as a geometric theory. Furthermore, matter and energy have a non-trivial effect

on the curvature of this spacetime. In fact, matter (and energy) distort the geometry of

spacetime and objects within it simply follow geodesics (the shortest distance between two

points). This phenomenon of following geodesics can be thought of as the force of gravity.

Hence, gravity can be understood by analysing the geometry of the spacetime and the effect

of matter and energy on it.

GR is built using objects called tensors which transform covariantly. By covariant

transformation, we mean that tensors will transform in a specific way under different co-

ordinate systems such that the underlying physics is unchanged. The metric tensor, gµν ,

describes the distance, ds, between two infinitesimally separated points using a line element

ds2 = gµνdx
µdxν . As such, the metric tensor is constructed as a 4× 4 matrix with one time

coordinate (denoted with t) and 3 spatial coordinates (denoted with i, j, k). Using these

metric tensors we can construct the Riemann curvature tensor given by

Rρ
σµν = Γρνσ,µ − Γρµσ,ν + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ, (1.1)

with Christoffel symbols:

Γρµν =
1

2
gρλ
(
gλµ,ν + gλν,µ − gµν,λ

)
, (1.2)

where a comma before indices refers to a partial derivative with respect to those indices i.e.

La,b =
∂La

∂b
. Rρ

σµν ascribes a tensor to each point in a pseudo-Riemannian manifold. These

manifolds, M, describe a Minkowski spacetime at a local level, but can admit to a non-trivial

geometry as we extend beyond that. Based on our description of EEP we can see that this

2



CHAPTER 1. INTRODUCTION

Riemann curvature tensor would be an ideal candidate to model GR1.

From this, we can construct the Einstein-Hilbert action which describes gravity:

SEH =

∫
d4x

√
−g
(
M2

Pl

2
R− Λbare

)
, (1.3)

where R = gµνRµν is the Ricci scalar, Rµν = Rρ
µρν is the Ricci tensor, g = det(gµν), and

M2
Pl =

1
8πG

is the Planck mass. We can also add a bare cosmological constant term, Λbare,

as there is nothing that disallows this kind of inclusion. Now, we can minimally couple the

matter sector to gravity such that

SGR = SEH + Sm[gµν , ψ], (1.4)

where ψ denotes the matter fields. Note, that throughout this thesis Sm[gµν , ψ] represents

the generic action for these matter fields. We can vary the above action with respect to gµν

to obtain Einstein’s field equation given by

M2
PlGµν = Tµν − Λbaregµν (1.5)

where Gµν = Rµν − 1
2
Rgµν is the Einstein tensor, and the energy-momentum tensor, Tµν , is

given by

Tµν = − 2√
−g

δSm
δgµν

. (1.6)

The 4×4 tensors in Einstein’s field equation (eq. (1.5)) are symmetric so contain 10 independ-

ent components, but they can be simplified to 6 using the Bianchi Identity, ∇µGµν = 0, and

the conservation of the energy-momentum tensor, ∇µTµν = 0, which provides 4 gauge-fixing

conditions. Here, ∇ denotes a covariant derivative that we use to compute gradients of objects

independent of the underlying coordinate system, which we define as: ∇µϕ = ∂µϕ for a scalar;

1Of course, the mathematical details are far more involved, whereas this description gives a broad overview
of GR’s relationship to geometry. Mathematical details can be found in [1, 2].
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CHAPTER 1. INTRODUCTION

∇µλν = ∂µλν − Γσµνλσ for a vector; and ∇σTµν = ∂σTµν − ΓρσµTρν − ΓρσνTµρ for a tensor.

Through Einstein’s field equation (eq. (1.5)) we can now model the effects of gravity and

its interaction with the matter sector. Particularly relevant to this thesis is modelling the

cosmology of the Universe through these equations. For this we use a Friedmann–Lemâıtre–

Robertson–Walker (FLRW) metric, which is an exact solution to eq. (1.5) and describes a

homogeneous, isotropic Universe given by

gµνdx
µdxν = −dt2 + a2(t)γijdx

idxj

= −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
.

(1.7)

Here, a(t) is the scale factor which is a function that ensures that distances are standardised

for a dynamic Universe (with a = 1 today), and k is the spatial curvature of the Universe.

The above describes the metric for a unit plane when k = 0; a sphere when k = 1; or a

hyperboloid when k = −1. These different choices can be rewritten as

γijdx
idxj = dr2 + Ω(r)2(dθ2 + sin2 θdϕ2), (1.8)

with

Ω(r) =



1√
k
sin
(
r
√
k
)
, k > 0

r, k = 0

1
|
√
k | sinh

(
r
√
|k|
)
, k < 0.

(1.9)

But for now we will take the simpler example of eq. (1.7).

We also often take the stress-energy tensor to be that of a perfect fluid, such that

T µν = diag(−ρ, p, p, p), (1.10)

4



CHAPTER 1. INTRODUCTION

where ρ and p are the energy density and pressure of a given fluid. Substituting eqs. (1.7)

and (1.10) into eq. (1.5) yields two equations. The tt components give the Friedmann equation:

(
ȧ

a

)2

= − k

a2
+

8πGρ

3
+

Λbare

3
, (1.11)

whereas the ij components give the acceleration equation:

ä

a
= −4πG

3
(ρ+ 3p) +

Λbare

3
. (1.12)

Through these equations we can effectively model the cosmology of the Universe. In particular

this thesis focuses on the interaction of gravity with the cosmological constant term. To

simplify we can set k, ρ, p = 0 so we are only left with Λbare and the scale factor terms. These

cosmological equations will have different solutions depending on the value of Λbare. Notice

that if Λbare = 0 then ä, ȧ = 0, therefore a = constant. This corresponds to a Universe that is

completely static with a flat spacetime curvature which is referred to as a Minkowski solution.

This is not to be confused with the spatial curvature denoted by k, which simply refers

to the way we can slice our cosmological solutions. Different spatial curvatures will come

with different symmetries. Whereas the spacetime curvature refers to an intrinsic curvature

which governs the dynamics of our Universe. Returning to our cases for Λ, if it is positive then

a = exp
(√

Λbare/3 t
)
which corresponds to a Universe undergoing an accelerated expansion,

where the spacetime is positively curved. This is known as a de Sitter (dS) solution. Finally

if Λbare < 0 then a = sinQt
Q

with Λbare = −3Q2, where the parameter “Q” is simply another

way of describing the spacetime curvature. This corresponds to a Universe that expands for

0 < t ≤ π
2Q

, but contracts for π
2Q

< t ≤ π
Q
. This is known as an Anti-de Sitter (AdS) solution

where the spacetime is negatively curved.

GR has celebrated much experimental success over the years [3], and recently there have

been experiments verifying GR’s prediction of the existence of gravitational waves [4]. These

5



CHAPTER 1. INTRODUCTION

experiments cement GR as the best current description of gravity.

Despite these experimental successes, GR faces some modern problems. Firstly, it is

well known that GR is incomplete when considering smaller scale phenomena where quantum

effects tend to dominate2. At this point a complete quantum theory of gravity is required

to further understand these interactions, but even without this expected breakdown of the

theory problems arise on a cosmological scale.

In [8, 9], they claimed that the Universe was accelerating through observations of type

1A supernovae. Type 1A supernovae come from exploding white dwarfs which were believed

to be “standard candles” as they all have similar masses, hence similar intrinsic luminosities.

In reality the intrinsic luminosity of these supernovae are varied, but they do exhibit a char-

acteristic luminosity decline rate [10], which allows the type 1A supernovae to be somewhat

standardised. Through measuring the spectral lines for many different supernovae we find

that some of these lines will be red-shifted, implying that these supernovae are moving away

from us. We can also independently measure the distances of galaxies that contain these

supernovae through measurements of the parallax3. Through this, [8, 9] find that galaxies

with a higher red-shift are further in distance. Therefore galaxies that are further away from

us are also travelling faster (away from us). This implies that the Universe is undergoing an

accelerated expansion. However, the notion that type 1A supernovae can be used as standard

candles is contested [11,12] (these papers are also challenged by [13]). Furthermore, a more

recent study of type 1A supernovae [14] has determined that the evidence for an accelerated

expansion is “marginal” [15]. However, these observations are still consistent with a uniform

rate of expansion. Importantly, both studies into type 1A supernovae show that the Universe

2Note that both quantum and gravitational effects tend to dominate in black holes (see [5,6] and for more
a recent review see [7]).

3In simple terms, this is achieved by observing the apparent position of a given galaxy at two separate
observation points. Extending the line of sights of these apparent positions to the observation points and
“drawing a line” between the two observation points produces a triangle, where the line of sight intersection is
the actual position of the galaxy. By knowing the distance between the two observation points and the angle
of the triangle, we can use simple geometry to determine the distance of the galaxy from the observer.

6



CHAPTER 1. INTRODUCTION

is expanding.

This has been verified through measurements of the Cosmic Microwave Background

(CMB) [16, 17] and large scale structure [18, 19]. In the early Universe photons and bary-

ons were coupled in a plasma. Over-densities within this plasma would cause contractions

and subsequent expansions, creating vibrations within the plasma called Baryon Acoustic

Oscillations (BAO). As the Universe cooled the photons decoupled from the baryons and

were allowed to free-stream out. These free-streaming photons created the CMB, and the

characteristic shape of it was due to these BAO. These BAO would have also left imprints

within the decoupled baryons corresponding to over-densities, which would go on to form large

scale structure. By comparing the shape of the CMB with the angular distance between these

large scale structures, we can determine the expansion rate of the Universe that would allow

such a distance. [16–19] show that the Universe must be undergoing an accelerated expansion.

But this method also has its flaws. Firstly, the above observations are also consistent with a

non-accelerating Universe [20] (but it once again confirms expansion). Secondly, the above

method is model dependent as it is based on a FLRW cosmology [21]. This is an assumption

that has been made, so it cannot be a true “objective” test of the expansion rate.

Despite its problems there are still a multitude of different observations that seem to

suggest that the Universe is currently undergoing an accelerated expansion (see [22] and

references therein for further discussions). So for the purposes of this thesis we will assume

that is the case4.

To describe the phenomenon of an accelerated expansion using our description of GR,

we can exchange the Λbare term in eq. (1.5) for a cosmological constant term that is consistent

with observation, Λobs. However, this does not explain where the source of the accelerated

expansion comes from, which has since been given the generic term “Dark Energy”. In this

4Even if this was not the case, this still does not change the nature of the cosmological constant problem
which will discuss in section 1.3.

7



CHAPTER 1. INTRODUCTION

sense we can write Λeff = Λbare + ΛDE, where the effective cosmological constant, Λeff, is

the combination of an arbitrary bare cosmological constant, Λbare, with that of DE, ΛDE.

Through this construction we require Λeff ∼ Λobs to match with observations. In [23] there is

an excellent review for both the observational evidence for DE and its possible candidates.

However, this thesis chooses to specifically focus on the candidate that arises from the vacuum

energy, Λvac.

1.2 Vacuum Energy

Vacuum energy can arise from two different places. One is from the classical contribution,

Λclass, which comes from the value of a particle’s potential at its minimum. If this is non-zero

then it will gravitate like a cosmological constant. The other is due to the quantum nature

of the source. This contribution, Λzp, comes from the consideration of zero-point fluctuations

around the ground state of a source, which will also gravitate as a cosmological constant.

Both of these contributions combine to give the cosmological constant due to the vacuum

energy i.e. Λvac = Λclass + Λzp. In this section we show where these contributions come from,

following the discussions in [24] (which provides an excellent review, both on the nature of

vacuum energy and how its existence creates the cosmological constant problem).

To see where the classical contribution comes from we consider an action for a real scalar

field, Φ:

S = −
∫

d4x
√
−g
[
1

2
gµν∂µΦ∂νΦ + V (Φ)

]
, (1.13)

where V (Φ) is the scalar potential. Then, we vary the action with respect to the metric to

find the corresponding stress-energy tensor

Tµν = ∂µΦ∂νΦ− gµν

[
1

2
gαβ∂αΦ∂βΦ + V (Φ)

]
, (1.14)

8



CHAPTER 1. INTRODUCTION

where the definition of Tµν is given by eq. (1.6). The energy of this scalar is at its lowest

when the kinetic terms vanish and the scalar sits at its minimum such that

Tµν = −V (Φmin)gµν . (1.15)

Notice that this form corresponds to that of a cosmological constant as in eq. (1.5), therefore

as long as the V (Φmin) is non-zero it will contribute to Λvac. This problem is most apparent

with phase transitions in the vacuum [25].

To demonstrate this we consider an explicit example with two interacting scalar fields,

with a potential given by [24]

V (Φ,Ψ) = V0 +
λ

4

(
Φ2 − v2

)2
+
g

2
Φ2Ψ2, (1.16)

where λ and g are arbitrary coupling constants, V0 is an arbitrary potential constant, and

v is the value of the scalar needed to minimise the potential without Ψ. If Ψ is in thermal

equilibrium we can identify the Ψ2 term with ⟨Ψ2⟩T , which is the average value of the field

at temperature, T . This average will be proportional to the temperature squared [26], which

alters the form of the potential to be

Veff(Φ) = V0 +
λ

4

(
Φ2 − v2

)2
+
ḡ

2
T 2Φ2, (1.17)

where the coupling constant ḡ is used to accommodate any constants when we used ⟨Ψ2⟩T ∝

T 2.

Now, we can express the potential as

Veff(Φ) = V0 +
λv4

4
+

1

2
m2

effΦ
2 +

λ

4
Φ4, (1.18)
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-meff /ν- -meff /ν
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e
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Figure 1.1: This plot showcases the behaviour of the effective potential given by eq. (1.18).
The orange and blue lines denote the behaviour of the effective potential before and after the
transition respectively. Here, we have defined Vbefore ≡ V0 +

λv4

4
, which corresponds to the

minimum of the potential before the transition. Likewise Vafter ≡ V0 +
λν4

4
− m4

eff

4λ
corresponds

to the minimum of the potential after.

where

m2
eff(T ) ≡ λv2

(
T 2

T 2
crit

− 1

)
,

and we have defined Tcrit ≡ v
√

λ
ḡ
. We can see that there is an emergent phase transition

for this potential. For T > Tcrit (before the transition) the effective mass squared is positive,

whereas for T < Tcrit (after the transition) it is negative. To minimise the potential before the

transition (when meff is positive) we require Φmin = 0, hence Veff(Φmin) = V0 +
λv4

4
. However,

if we want to minimise the potential after the transition (when meff is negative) we require

Φmin = ±
√

−m2
eff

λ
, hence Veff(Φmin) = V0 +

λν4

4
− m4

eff

4λ
. See fig. 1.1 where we have plotted

the behaviour of the effective potential both before and after the transition. Notice that

the minimising value of the scalar after the transition, Φmin = ±
√

−m2
eff

λ
, is imaginary if

we take m2
eff > 0 (i.e. the value of m2

eff before the transition). Interestingly, even if we can

normalise V0 = −λv4
4

, such that the potential vanishes before the phase transition, it will

reappear as Veff(Φmin) = −m4
eff

4λ
after. Likewise, we can also set V0 = −λν4

4
+

m4
eff

4λ
, so that the

potential vanishes after the phase transition but is present before. To reiterate, a non-trivial

10



CHAPTER 1. INTRODUCTION

minimised potential acts as a cosmological constant term, which will contribute to the vacuum

energy. Even if we can somehow construct a potential that automatically vanishes while at

its minimum, phase transitions will reintroduce the Λclass term.

The next contribution comes in the form of zero-point energy which arises from QFT.

Broadly, QFT predicts that particles found in nature are actually excitations on a quantum

field 5. It combines special relativity with quantum mechanics to describe standard model

particle physics. Using perturbative techniques, one finds that calculations of observable

quantities tend to result in infinities. To avoid this, QFT uses so-called “renormalisation”

procedures [29] to predict these observable quantities whilst removing infinities. Unfortunately,

there is no such consistent renormalisation technique that can remove the infinities inside

calculations involving gravity. Therefore we consider GR a non-renormalisable theory [30].

However, similar to GR we still uphold QFT as pillar of modern theoretical physics due

to its predictability (for example its highly prediction of the anomalous magnetic dipole

moment [31,32]).

To reiterate, a key prediction of QFT is that particles can be thought of as excited

states of a quantum field, where each state corresponds to a quanta. It also predicts that

there are quantum fluctuations about a vacuum (or the ground state of a quantum field).

These fluctuations are a result of Heisenberg’s uncertainty principle, which states that there

is a fundamental uncertainty between a given particle’s position and momentum. As a

consequence, there is a corresponding uncertainty in the energy and duration of a particle,

∆E∆t ≥ ℏ
2
. This implies that even in a vacuum the energy cannot truly be zero for a finite

time interval, as this would violate the uncertainty principle.

5Due to the breadth of the topic and the complexity of the calculations we cannot give QFT its due
diligence nor is the goal of the thesis. This thesis is mostly concerned with calculations within GR, how they
relate to cosmology, and how they relate to processes that arise from QFT. Instead we offer a very broad
qualitative overview of QFT focusing particularly on how it relates to vacuum energy. For a more detailed
review see [27,28]
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Qualitatively, this results in virtual particles that will “pop” into and out of existence.

To be more specific, the uncertainty principle allows for the creation of virtual particle/anti-

particle pairs (in accordance with conservation laws) from nothing. These pairs can exist as

long they then annihilate back into nothing in a “short enough” time period (the size of which

depends on the energy of the given virtual pair). These fluctuations will occur at all points in

the vacuum randomly, such that the culmination of all possible virtual particle/anti-particle

pair creations will produce a constant zero-point energy.

GR tells us that this zero-point energy must gravitate, where its energy density is given

by T zp
µν = −Λzpgµν . After regularising away the infinities (which is standard procedure in

QFT) the 1-loop energy density of the vacuum energy for a canonical scalar of mass m is

given by [24]

Λ1-loop
zp =

m4

64π2

[
ln

(
m2

M2

)
+ finite

]
, (1.19)

where M is some arbitrary mass scale and the second term is used to denote some finite

constants. We can write further higher order vacuum interactions, for example 2-loop (“figure

of eight”) terms, but for now we will restrict our analysis to 1-loop; we mention it here

for reasons that will become apparent later 6. Qualitatively this calculation corresponds

to considering the ground state interaction of a simple scalar field. Using the stress-energy

tensor of a simple scalar field, we can explicitly calculate an interaction with the field that

starts and ends in the vacuum (or ground) state. This creates an integral which can be solved

with a cut-off to the limits that respect Lorentz invariance. Finally, an explicit calculation

of this integral yields an expression that contains infinities, which can be cancelled using a

consistent renormalisation scheme.

To highlight the key points of zero-point fluctuations: it gravitates like a cosmological

6Also note that we have not included any concrete details of the above calculation, which we leave to [24].
To fully appreciate and understand these calculations requires an intimate knowledge of QFT. To reiterate,
this thesis cannot offer a full description of QFT, so instead we surmise a qualitative explanation of the 1-loop
calculation.
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constant; and Λ1-loop
zp scales with m4. Recall however that the above calculation only applies

for a single scalar field. To obtain an estimate for the value of all zero-point fluctuations for

1-loop we must sum over all particles, such that

Λ1-loop
zp ∼

∑
particles

m4
particles. (1.20)

It should also be noted that bosons and fermions contribute opposite signs to their respective

1-loop calculations, therefore there will be some cancellation between them when we sum over

all particles. However, since we do not live in a world with equal parts bosons and fermions

the sum (eq. (1.20)) will not automatically vanish (other than in Supersymmetry (SUSY)

theories which we discuss more in section 2.6).

Therefore, we see that zero-point fluctuations will gravitate as a cosmological constant

if they exist. But there is one key question that we have not addressed yet: do they even

exist? A priori there is no reason why we should exclude zero-point fluctuations, as they are

completely allowed from QFT. Therefore, to verify the existence of zero-point fluctuations

we must provide observable evidence. So far we have only presented the ongoing accelerated

expansion as evidence of this. But as we have described previously, this can be accounted for

by other forms of DE [23] or through Λclass. Therefore, we present two different experiments

that provide strong evidence for the existence of zero-point fluctuations. Namely, the Lamb

shift [33] and the Casimir effect [34]. Similar to before, we will only briefly explore these

effects where detailed calculations can be found in [24].

The first clue to the existence of zero-point fluctuations came in 1947 from the Lamb-

Retherford experiment [35]. This experiment involved measuring the energy difference

between the 2S1/2 and
2P1/2 orbitals in a Hydrogen atom. Previously, it had been thought that

these two levels will have the same energy. Instead they discovered that there is a very tiny

shift in the energy, which can be explained by taking into account the interaction between the
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electron and the zero-point fluctuations. These interactions will cause the electron to “wiggle”

about its usual orbit around a proton. These “wiggles” induce a “smearing” effect on the

electron’s wavefunction, which in turn will cause a shift in its energy. Since the 2S1/2 orbital

is closer to the proton, the “smearing” will be more pronounced than in 2P1/2, therefore there

will be a difference in their energies.

Another piece of evidence comes in the form of the Casimir effect [34], which (in the

original 1948 paper [36]) theorised an experiment to detect zero-point fluctuations. Imagine a

setup of two conducting plates very close together. Due to quantum mechanics, the vacuum

energy states exist in discrete quanta rather than being continuous. The value of these

discrete energy states are governed by the size of the “box” it resides in. In this sense, the

space in-between the two plates acts as a “box”, limiting the energy states that can form

from zero-point fluctuations. Meanwhile outside of the plates, they are free to occupy all

viable energy states. Both of these effects will induce a force on the plates, but since more

energy states are available outside of the plates it will induce a greater force, pushing the

plates together. This effect has since been tested and verified multiple times [37–40].

However, we will note that this experimental evidence does not necessarily explicitly link

zero-point fluctuations to the Lamb shift or Casimir effect. In fact, it is entirely possible to

derive the Casimir force from the two conducing plates without invoking zero-point fluctu-

ations [41]. Despite this, we are not aware of any equivalent challenge to the Lamb shift,

therefore we assume that it is highly likely that zero-point fluctuations exist.

Another aspect we have not yet discussed relates to whether zero-point fluctuations

actually gravitate. Thus far, we have only shown that there is strong evidence for its

existence, not its relationship to gravity. Again, a priori there is no reason why this should

not be allowed, but it would be useful to verify that these zero-point fluctuations gravitate.

To see this, consider the experiment that measured the ratio of the gravitational mass to the

14



CHAPTER 1. INTRODUCTION

inertial mass for Aluminium and Platinum nuclei [42]. They found that these ratios agreed

to the order of 10−12, despite the fact that the “Lamb shift” energy effect in Platinum is 3

times that of Aluminium (see [24, 43–45] and references therein for further details). In other

words, the inertial mass of Platinum is affected stronger than that of Aluminium due to this

“Lamb shift” energy effect. If zero-point fluctuations did not gravitate, it would lead to a far

larger difference in the ratios of the gravitational mass to the inertial mass for each nuclei.

Instead, [42] shows that this is not the case to an extremely high degree of precision. Similar

experiments agreed with the above result using Gold and Aluminium nuclei [46], as well as

Potassium and Rubidium nuclei [47]. This evidence suggests that zero-point fluctuations

gravitate.

However, there are still problems with these experiments. Firstly, despite the great deal

of evidence for its existence, there is no reason to suggest that the corresponding energy effect

for the Lamb shift must be that of a cosmological constant. Moreover, both the Lamb shift

and the Casimir effect only measure the energy differences caused by zero-point fluctuations,

so (for now) we can only look towards its cosmological effect to measure the absolute value.

Despite this, we have demonstrated that there is a great deal of evidence for the existence

of zero-point fluctuations and a priori there is no reason to not include them. Therefore, absent

a convincing mechanism to completely remove them, we proceed with the understanding that

they exist and their gravitational response is that of a cosmological constant. This, alongside

the classical contributions, combine to create what we refer to as vacuum energy such that

Λvac = Λclass + Λzp. Now, all that is left to do is to measure it.
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1.3 The Cosmological Constant Problem

This section focuses on the cosmological constant problem, which comes from the difference

between the observed cosmological constant and that of its theoretical prediction. Starting

with the theoretical prediction, recall that eq. (1.19) gives us the value of a cosmological

constant arising from 1-loop zero-point fluctuations for a given particle. Of course, to get a

precise value for the cosmological constant we must take into account all particle contributions

(eq. (1.20)) alongside the classical contributions (a detailed calculation of this can be found

in [24]). However, to get a “ballpark” estimate we instead only consider the contribution

from eq. (1.19) for an electron field. As long as this is somewhat similar to the observed

value of the cosmological constant, we can accept deviations and hash out the details later.

The mass of an electron is me = 0.511MeV, therefore our estimate becomes Λvac ∼ (MeV)4.

However, recall that the only way we can measure this is through its cosmological impact.

Therefore, we must consider how Λvac ∼ (MeV)4 affects the cosmology of the Universe.

To see this, we reconsider Einstein’s field equation (eq. (1.5)) sourced only by the above

vacuum energy (Tµν = −Λvacgµν) and we set Λbare = 0 for now. We also use a Friedmann–

Lemâıtre–Robertson–Walker (FLRW) metric: gµνdx
µdxν = ds2 = dt2+a(t)2δijdx

idxj, where

a(t)2 is the scale factor. With these alterations eq. (1.5) becomes H2
vac = Λvac

3M2
Pl
, where the

Hubble parameter, H ≡ ȧ
a
, measures the rate of expansion of the Universe. This corresponds

to the Friedmann equation sourced only by the vacuum energy, and if we only consider

the 1-loop zero-point energy for an electron we find that H2
vac ∼ (MeV)4

M2
Pl

. In other words

Λvac ∼ (MeV)4. Now we want to measure the observed value of the Hubble parameter today,

and since this a rough estimate we would consider it a success if it is similar to that of the

vacuum energy i.e. H0 ∼ Hvac where H0 is the current value of the Hubble parameter set

by observations. Unfortunately we find through measurements of CMB anisotropies [48]
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7 that H2
0 ∼ (meV)4

M2
Pl

, or in other words the observed value of the cosmological constant is

Λobs ∼ (meV)4. This means that the observed and theoretical values of the vacuum energy

differ by about 1036. This gap is only worsened when we consider particles with higher

masses, for example a proton has a mass that is close to the GeV scale. This means that the

prediction of Λvac ∼ (MeV)4 is actually a lower estimate, and the actual value is likely to be

much higher. Or in other words

Λvac > (MeV)4 ∼ 1036Λobs. (1.21)

Often this discrepancy between observed and predicted values is cited as the source of the

cosmological constant problem, but the problem is far deeper than that. Recall that we had

previously set the bare cosmological constant to vanish. QFT in a Minkowski spacetime

ordinarily does not have any problems with using counterterms to cancel off infinite diver-

gences when calculating measurable quantities. Therefore, we should not have any problems

fine-tuning the bare cosmological constant as a counterterm, such that

Λbare + Λvac = Λobs. (1.22)

After all, there is no reason why Λbare should vanish: at the moment it is a free parameter in

our theory. The problem arises when we consider phase transitions, unknown particle species,

and higher order loops.

To focus on the former, whenever a phase transition occurs we must accordingly re-tune

Λbare. However, we could instead accept that Λbare + Λvac = Λeff ∼ Λobs today, but then

the cosmological constant term would differ before any phase transitions. This may cause

problems for early Universe cosmology as Λeff will no longer be similar to Λobs. If it is the

7Note, there is a discrepancy between this measurement and that of supernovae [49] which is known as
the Hubble tension [50]. Despite this, the differing values of these measurements are still well within an order
of magnitude.
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dominant term it will contribute to early Universe dynamics in a non-trivial fashion. For

example, if we want a period of radiation domination before a phase transition, we would

require a different mechanism to remove the gravitational response of Λeff. This is undesirable

but it is a sacrifice we could be willing to make to ensure that the cosmological constant

problem is solved (for the Universe after phase transitions). Also the introduction of unknown

particles species beyond the standard model will give their own contributions to the vacuum

energy. This means we cannot get a truly accurate prediction of the vacuum energy density

until we know of every particle that exists. However, another major component of this

problem comes from the consideration of higher order loops of zero-point fluctuations.

Recall that we had only previously given an expression for 1-loop zero-point fluctuations

(eq. (1.19)). To truly calculate the full value of the vacuum energy we must consider contribu-

tions from higher order loops. To start, we can consider 2-loop (“figure of eight”) interactions

which scale as λm4 [44], where λ is some coupling constant. Without finely tuned couplings

these perturbations are not sufficiently suppressed, therefore we need to go back and re-tune

Λbare in order to account for this. Similarly, we will have to do the same for higher order loops,

re-tuning the counterterm at each step. This process of fine-tuning and re-tuning is the “real”

cosmological constant problem: one of radiative instability in the vacuum energy. In this

sense, the true value of the vacuum energy is sensitive to higher order UV physics, which we

are (so far) ignorant of when it comes to GR and QFT. Therefore simply “summing over all

the loops” is neither feasible nor possible given our current understanding of physics. Beyond

this, it shows that low energy physics is incredibly sensitive to the details of higher order

perturbations. This goes against our “natural” understanding of physics, where we believe

that low energy physics are emergent from some higher order theory. This has led some to

seek out anthropic considerations [51], which proposes that there are many possible versions

of this low energy physics and we just happen to live in the one with Λeff = Λobs ∼ (meV)4.

Despite this, our thesis focuses on solutions that are emergent due to modifications of our
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current theories. Even if anthropic principles prove to be true, we believe we must first

exhaust all other natural options. One such method to alleviate the cosmological constant

problem is by modifying GR in ways that naturally reduce the value of Λeff using self-tuning

mechanisms. This will be the main focus of our thesis. Note, that from this point onward

we use “vacuum energy” to refer to classical contributions, zero-point fluctuations, and their

combination interchangeably unless we specify otherwise.
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Self-tuning Theories

Previously in section 1.3 we saw that the cosmological constant problem arises due to the large

difference in the values of Λvac and Λobs. Whilst we could proceed with an initial fine-tuning

of a Λbare counterterm, such that Λbare + Λvac = Λobs, this ignores the underlying problem.

Vacuum energy is incredibly sensitive to unknown UV physics, so its value drastically changes

when considering higher order loops. Changes in the value of Λvac leads to repeated fine-

tunings in Λbare, owing to the radiative instability of the vacuum energy. In this chapter we

discuss a range of modifications to GR that seek to solve or alleviate this problem through

self-tuning mechanisms.

Broadly, self-tuning (or self-adjusting) mechanisms act to shield or cancel off the gravit-

ational effects of a large vacuum energy from the spacetime curvature using additional fields.

This suppression enables the cosmological constant to be naturally small, or in other words

it forces Λvac ∼ Λobs, eliminating the need for repeated fine-tunings in Λbare. Note, that the

self-tuning fields should adjust their value in response to the value of the vacuum energy.

If instead the value of a self-tuning field is predetermined it would be no different from a

counterterm, leading us back to the issue of radiative instability.

Depending on the theory, a self-tuning mechanism can act to either partially or wholly

cancel the gravitational effects of the vacuum energy. If a theory predicts Λvac = Λobs, it is

trivial to see that this completely solves the cosmological constant problem. However, if a
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theory predicts that Λvac ≠ Λobs, it requires other forms of DE [23] to explain the discrepancy.

Regardless, any good self-tuning mechanism should seek to heavily reduce the value of Λvac.

However, before constructing a self-tuning theory we must first contend with Weinberg’s

no-go theorem [51]. In his review on the cosmological constant problem Weinberg argues

that, under general assumptions, it is not possible to achieve a phenomenologically viable

self-tuning theory in Minkowski space without fine-tuning (the very thing we want to avoid!).

Weinberg was able to demonstrate this for an arbitrary (but finite) number of self-tuning

fields, alongside a general metric theory that is not necessarily minimally coupled. For a clear

review on this see [44]. Here, we will briefly demonstrate the essence of his no-go theorem

using a simplified example with arguments presented in [52].

Consider a modified GR theory with a single scalar8, ϕ, whose vacuum configuration is

a constant, ϕ0. In Minkowski space we expect that the curvature of this system will vanish

on the background. In other words the trace of Einstein’s field equation (eq. (1.5)) becomes

R = 4(Λbare + Λvac)− τ γγ (ϕ0) = 4Λeff − τ γγ (ϕ0) = 0, (2.1)

where we have set MPl = 1 for simplicity and we have written the energy-momentum tensor

as a linear combination of the vacuum contribution and the self-tuning field: T µν = −Λvacδ
µ
ν +

τµν (ϕ). For this to truly be a self-tuning field, the scalar must adjust dynamically to changes

in the value of Λeff. So we require that

∂V (ϕ)

∂ϕ
= 4Λeff − τ γγ (ϕ), (2.2)

where the potential reaches its minimum at ϕ0 such that ∂V
∂ϕ

|ϕ0 = 0. For a constant solution

there are no kinetic terms, so we can identify τµν(ϕ0) = −V (ϕ0)gµν such that τ γγ (ϕ0) =

−4V (ϕ0). At first this seems promising, we have an adjustment mechanism with ϕ that will

8For a more in-depth description on scalar-tensor theories in general see section 2.2.
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move the system to a Minkowski background in response to changes in Λeff. Now let us extend

this to ϕ ≠ ϕ0 where we only consider small changes in the scalar, hence we can discount

kinetic terms (i.e. ∂µϕ ∂νϕ = 0). This creates a differential equation for V (ϕ) which can be

solved with

V (ϕ) = V0e
4ϕ − Λeff, (2.3)

where V0 is an arbitrary constant. Unfortunately this potential is a runaway in ϕ and will

not generically have a minimum, therefore it cannot reproduce a vanishing curvature solution.

We can artificially enforce a minimum in two ways. Firstly, we can set V0 = 0 which allows

the potential to be minimised, but corresponds to a fine-tuning in the scalar. Any changes

in the value of the vacuum energy, will change the combination of the cosmological constants

i.e. Λbare + δΛvac = δΛeff. Now, there is no dynamical mechanism that can change this, which

means that it cannot self-tune. We could instead set e4ϕ → 0, however this choice is not

phenomenologically sound. In this setup the exponent will act as a conformal factor with the

metric tensor in the Lagrangian [44], therefore all masses should scale with e4ϕ. This setup

should be avoided because all masses within this theory would go to zero, which clearly does

not correspond to the Universe we live in.

As shown, a self-tuning mechanism is not possible under this regime without fine-tuning.

This is because the value of the potential is determined automatically by the theory, rather

than responding to the cosmological constant. However, it is important to recognise that

this is derived under some very general assumptions. Weinberg assumes that: the theory

admits to local kinetic structure in four dimensions; Poincaré invariance holds across all

fields; there are a finite number of fields; and general covariance holds. To address the first

assumption, this means that physics is completely causal and interacts entirely at a local

level. However, breaking this is not necessarily out of the realm of possibilities (see [53, 54]

for further discussions). Poincaré invariance involves full symmetry in translations, rotations,

and boosts. In other words, Weinberg demands that the vacuum solutions involve a constant
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scalar field alongside a Minkowski spacetime metric, and we explicitly break this assumption

in chapters 4 and 5. These chapters contain original work, thus are the main focus of this

thesis. Further discussions are contained within the above chapters, alongside chapter 3

and section 2.2. There are also possible avenues to explore when breaking the finite fields

assumption. In fact some Kaluza-Klein theories contain infinite towers of fields, whose effects

are hidden due to compactifications [55] (we will discuss compactification more in section 2.6).

Finally, general covariance or diffeomorphism invariance involves the laws of physics being

invariant under different coordinate transformations. As with the other assumptions there

are ways we can break this which we discuss further in section 2.7. To conclude, evading at

least one of these assumptions will be pivotal to any self-tuning theory that wishes to avoid

fine-tuning.

To reiterate, a viable self-tuning theory must modify GR such that it produces a naturally

small cosmological constant, all whilst evading Weinberg’s no-go theorem. Also note that

precautions should be taken if one wishes to make such modifications. As discussed in

section 1.1, a multitude of experimental and observational results have cemented GR as our

best current description of gravity. Any theory that wishes to be phenomenologically viable

must either recover GR in some limit, or be prepared to explain away the discrepancies.

The rest of this chapter focuses on different approaches to obtain viable self-tuning

theories. This is by no means an exhaustive list nor will we provide full derivations of these

models. Instead, this chapter offers the reader a chance to understand some of the approaches

adopted, their mechanisms, and some of the pitfalls of self-tuning.
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2.1 Unimodular gravity

We begin with unimodular gravity which involves modifying GR such that the object det(gµν)

is immediately restricted. Restricting the allowed values of the metric will restrict the

gravitational effect of the vacuum energy. To see this we construct a modified version of the

Einstein-Hilbert action (eq. (1.3)) such that [56,57]

SUMG =

∫
d4x

(√
−g M

2
Pl

2
R− λ(x)

(√
−g − ϵ0

))
+ Sm[gµν , ψ], (2.4)

where λ is a Lagrange multiplier (essentially an auxiliary field), ϵ0 is a constant, and we have

also removed the bare cosmological constant term for now. Varying with respect to λ sets

√
−g = ϵ0, such that δ

δgµν

√
−g = 0. This represents a gauge choice in GR, but it is one that

breaks full diffeomorphism invariance. Note, that the “addition” of extra fields (in this case

λ) only fixes the gauge condition. In reality, there are no physical extra fields that will act to

directly cancel off a cosmological constant. Instead, it changes the value of the cosmological

constant through an alternate mechanism.

To see this, we vary the action (eq. (2.4)) with respect to gµν to obtain

M2
PlGµν + λgµν = Tµν , (2.5)

where Tµν is given by eq. (1.6). Taking the trace of the above leads to λ = 1
4
(M2

PlR + T )

which we then substitute back into eq. (2.5):

M2
Pl

[
Gµν +

1

4
Rgµν

]
= Tµν −

1

4
Tgµν . (2.6)

Notice that if we expect there to be a pure vacuum source (i.e. Tµν = −Λvacgµν) then the

right hand side of eq. (2.5) automatically vanishes. At first this seems great! We seem to
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have completely removed vacuum energy from affecting the curvature. However the problem

comes when take the divergence of above field equation. Einstein’s field equation (eq. (1.5))

automatically vanishes if we act on it with ∇µ, but doing the same to eq. (2.6) creates a

constraint:

∇µ(T +M2
PlR) = 0 =⇒ T +M2

PlR = 4Λbare, (2.7)

where Λbare is an arbitrary integration constant and we have used the Bianchi identity

(∇µGµν = 0) alongside conservation of the energy-momentum tensor (∇µTµν = 0). Now

we can see that substituting the constraint (eq. (2.7)) back into the above field equation

(eq. (2.6)) yields Einstein’s field equation (eq. (1.5)). In this sense, the above version of

unimodular gravity is no different from GR.

To illustrate this phenomenon again, we consider a generalisation of unimodular gravity

by reintroducing diffeomorphism invariance [58]. As demonstrated by [59], this generalisation

is just a special case of the Henneaux-Teitelboim action [60]:

SHT =

∫
d4x

[√
−g M

2
Pl

2
R− λ

(√
−g − ∂µw

µ
) ]

+ Sm[gµν , ψ], (2.8)

where wµ is a vector density and λ is the Lagrange multiplier. Similar to before, we can vary

eq. (2.8) with respect to λ and wµ, which yields
√
−g = ∂µw

µ and ∂µλ = 0 respectively. Once

again, this restricts det(gµν). But the variation with respect to gµν yields eq. (2.5) leading to

the same problem as before: it will be indistinguishable from GR9. There is some “difference”

to GR in that the Λbare term is an integration constant that we can set, rather than having

it be arbitrary. However, this just hearkens back to the problem of radiative instability.

Even if we have more power to change Λbare, this will not stop the repeated fine-tunings and

re-tunings that we need to avoid. Note, that there is some debate as to whether quantum

unimodular differs from quantum GR (see [59, 61] and references therein). However, this

9A full generalisation of this action is analysed in [59] and is also shown to be indistinguishable from GR.
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thesis is only concerned with GR’s relationship to the cosmological constant problem. So

for our purposes we can say that unimodular gravity is indistinguishable from GR, thus we

cannot create a viable self-tuning theory from it.

2.2 Fab Four

A simple way to modify gravity is through the addition of scalar fields. These alternatives

to GR have a rich history ranging from the seminal Brans-Dicke gravity [62] to more recent

examples [63,64]10. To briefly introduce scalar-tensor theories we will explore how two different

examples modify GR. Namely quintessence [68] and Brans-Dicke [62]. To focus on the former

consider the modified Einstein-Hilbert action

S =

∫
d4x

√
−g

[
R

2
− 1

2
gµν∂νϕ∂νϕ− V (ϕ)

]
+ Sm[gµν , ψ]. (2.9)

This modification simply corresponds to adding a scalar field which has a kinetic and a

potential term. We have also set M2
Pl = 1 for simplicity. The field equations are then given

by

Gµ
ν −

1

2
∂σϕ∂νϕ+

1

4
δµν g

αβ∂αϕ∂βϕ+
1

4
δµνV (ϕ) = T µν , (2.10)

□ϕ− ∂V (ϕ)

∂ϕ
= T, (2.11)

where we have varied with respect to the gµν and ϕ respectively. Note that □ = ∇µ∇µ.

Here, we see that if ϕ = constant then the potential term in eq. (2.10) acts as a cosmological

constant, which can induce a cosmic acceleration. Furthermore, we can decompose the stress-

energy tensor into vacuum and local matter parts, such that Tµν = τµν − Λvacgµν . In doing

so, we can see that the potential term can also be used to explicitly cancel a large vacuum

10See [65–67] for reviews on scalar-tensor theories.
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term. However, as we have discussed in section 1.3 this reintroduces the problem of radiative

instability. Therefore these kind of simple modifications are often used in inflationary physics

(see [68,69] and references therein). Either way, clearly the addition of scalar fields can contain

non-trivial dynamics that alter the cosmology of our system. In fact, care should be taken to

ensure the so-called “fifth force” produced by these scalar field do not drastically alter shorter

distance physics, unless we admit to a departure from GR. As we discussed in section 1.1

there is a very close agreement between GR and observation [3]. Therefore (to recover GR

in some limit) we must either work within the allowed bounds of experimentation [3] or

introduce non-trivial mechanisms that can screen these fifth forces [70].

Turning our attention Brans-Dicke gravity, we can get a better insight into how scalar

fields can affect gravity. The explicit action is given by

S =
1

2

∫
d4x

√
−g

[
ϕR− ω

ϕ
(∇ϕ)2

]
+ Sm[gµν , ψ], (2.12)

where ω is a coupling constant and we have once again set M2
Pl = 1. The field equations for

this are given by

ϕGµν −∇ν∇µϕ− ω

ϕ
∇µϕ∇νϕ+ gµν

(
□ϕ+

ω

2ϕ
(∇ϕ)2

)
= Tµν , (2.13)

(2ω + 3)□ϕ = T. (2.14)

Notice that the scalar is coupled to Gµν . In a sense, it allows the scalar field to act as

effective gravitational constant where Geff ∝ 1
ϕ
, which modifies the strength of gravity. This

makes it even clearer that one must be careful when using scalar fields to avoid a departure

from GR. Similarly to quintessence, often Brans-Dicke models are confined to inducing an

accelerated expansion [71]. To demonstrate how Brans-Dicke can achieve this we can write

the modified Friedmann equation from eq. (2.13). For simplicity, we do so using a flat FLRW

metric (eq. (1.7) with k = 0), taking ω = 0, and a Universe that is dominated by matter
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(T µν = diag(−ρm, 0, 0, 0)) to obtain 3(H2 + Hϕ̇) = ρm. Using ′ = d
d ln a

this can then be

rewritten as

3H2 =
ρm

ϕ+ ϕ′ . (2.15)

Recall that matter scales with the scale factor as ρm ∼ a−311. To induce an accelerated

expansion we must have ϕ+ ϕ′ ∼ a−3 at least (where H = constant in this example). If this

is the case, then the value of the scalar field is decreasing with time. Recall that the effective

gravitational constant is Geff ∝ 1
ϕ
, therefore Geff is actually increasing. In a sense, we are

increasing effect of gravity in order to produce an accelerated expansion. To reaffirm this

point, we can demonstrate what happens if we decrease the effective gravitational constant.

We can do this by taking the limit where Geff ∝ 1
ϕ
→ 0. Re-adding spatial curvature, k,

causes the modified Friedmann equation to be given by

H2 = −k
2

a2
. (2.16)

The only real solution is when k ≤ 0. If k = 0 this corresponds to a completely static Universe.

Whereas if k < 0 the solution to the scale factor becomes a(t) ∝ t. This is an expansive

solution, but not one of an accelerated expansion. Instead it describes a Universe that has

some initial ‘kick’ and then continues to expand linearly. To summarise we cannot achieve

an accelerated expansion by decreasing the strength of gravity, but we can by increasing it12.

Returning our attention to self-tuning with scalar-tensor theories, we will use the rest of this

section to explore Fab Four, which is derived from Horndeski’s action.

By avoiding theories with higher than second order field equations Horndeski was able

to write the most general four dimensional scalar-tensor theory in 1974 [72] (which was later

rediscovered in 2011 [73]). Due to this, any other scalar-tensor theory, with no more than

11This can be derived by considering canonical GR without a scalar field and with Λeff = 0 = k. Then, the
solution to the Friedmann equation for matter becomes ρm ∼ a−3.

12A special thank you to Andy Taylor for their helpful discussions on this topic.
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second order field equations, must necessarily be a special case of Horndeski’s theory. Note,

that we avoid higher order theories in order to evade the Ostrogradsky instability [74,75]. The

theory states that (generically) Lagrangians with higher than second order field equations

contain instabilities because the corresponding Hamiltonian will be unbounded both above

and below13. These unbounded Hamiltonians lead to states with a negative kinetic energy,

which are known as ghosts [67] (specifically the Ostrogradsky ghost in this case). In general,

ghosts are states with a negative norms or negative energy densities (depending on how

they are quantised). The former violates unitarity as it allows for the existence of states

with a negative probability, whereas the former insinuates the existence of negative energy

eigenvalues. If they are unphysical states we can accept them within the theory. However, if

they correspond to physical excitations they are unacceptable,

Starting from the Horndeski action, the model (first proposed in [79] and whose full

derivation is contained within [80]) was able to obtain a class of solutions that give rise to a

self-tuning mechanism on FLRW backgrounds. To achieve this without fine-tuning, the theory

must first overcome Weinberg’s no-go theorem [51] by breaking a key assumption. Inspired

by the approach of a bigalileon theory [81,82], this model maintains Poincaré invariance on

the metric but breaks it for the self-tuning scalar field. In other words, it maintains a flat

spacetime geometry, but the scalar field does not remain constant on the background.

Now that the no-go theorem has been evaded, Fab Four places some very general self-

tuning conditions on Horndeski’s action. Namely, they require that:

1. the theory produces a (patch of)14 Minkowski spacetime for any value of the cosmological

constant;

2. the above condition continues to work through phase transitions, where the vacuum

13There are examples to the contrary, but these require Lagrangians that are carefully constructed to avoid
an unbounded Hamiltonian [76–78].

14Note, that the reason for the inclusion of “patch of” will become apparent later.
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energy instantaneously changes;

3. the theory allows for a non-trivial cosmology, such that the system is allowed to evolve

dynamically to an attractive fixed point.

The final assumption is that matter is minimally coupled to the metric, satisfying EEP.

Remarkably, these conditions reduce the complicated Horndeski action to just four base

Lagrangians, each containing an arbitrary function of the scalar field coupled to a curvature

term. These Lagrangians combine linearly in the action given by

SFabFour =

∫
d4x

√
−g [Lj + Lp + Lg + Lr − Λbare] + Sm[gµν , ψ]. (2.17)

Here, Lj, Lp, Lg, and Lr are known as the Fab Four, where the indices refer to John, Paul,

George, and Ringo. The form of these Lagrangians are given explicitly by

Lj = Vj(ϕ)G
µν∇µϕ∇νϕ, (2.18)

Lp = Vp(ϕ)P
µναβ∇µϕ∇αϕ∇ν∇βϕ, (2.19)

Lg = Vg(ϕ)R, (2.20)

Lr = Vr(ϕ)GGB, (2.21)

where R is the Ricci Scalar, Gµν is the Einstein tensor, P µν
αβ ≡ −1

4
δµνρδσλαβR

σλ
ρδ = −Rµν

αβ +

2Rµ
[αδ

ν
β] − 2Rν

[αδ
µ
β] − Rδµ[αδ

ν
β]

15 is the double dual of the Riemann tensor [83], and GGB ≡

RµναβRµναβ−4RµνRµν+R
2 is the Gauss-Bonnet combination [80]. The action (eq. (2.17)) also

includes an arbitrary bare cosmological constant term, Λbare. Requiring Λbare to vanish in order

to self-tune corresponds to an effective fine-tuning between it and the vacuum energy, Λvac.

In this sense, allowing for an arbitrary bare cosmological constant acts as a consistency check

to achieve a successful self-tuning mechanism. In other words, although we have previously

15Reminder that A[ab] =
1
2 (Aab −Aba) as defined in Conventions.
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stated that Λvac ∼ Λobs, in reality we require the combination Λbare+Λvac = Λeff ∼ Λobs. This

ensures that there are no hidden fine-tunings present, where Λbare can effectively be absorbed

into Λvac.

First, [80] begins by writing Horndeski’s action and field equations, albeit in a slightly

altered but still equivalent form to [72]. To study the cosmology of this system they consider

an FLRW metric as in eq. (1.7). Using this cosmological setup they are able to find some

useful identities, the full details of which are contained within [80]. They further recognise

that two Lagrangians will be equivalent in their equations of motion if they differ only by

a total derivative. Using these identities and performing several integration by parts to the

original Horndeski Lagrangian [72], LH , they arrive at simplified cosmological minisuperspace

Lagrangian, L, which is given by

L =

∫
d3x

√
−g LH∫

d3x
√
γ

, (2.22)

where γ = det(γij). To clarify, this Lagrangian, L, is essentially a simplified form of the

Horndeski Lagrangian, LH , which [80] uses to fully capture the most general scalar-tensor

theory (in four dimensions with equations of motion up to second order). To further simplify

this, they demand the matter sector takes the form of a homogeneous cosmological fluid with

energy density, ρ, and pressure, p.

From this, they write down the field equations

H = −ρ, Eϕ = 0, (2.23)

where

H =
1

a3

[
∂L

∂ȧ
ȧ+

∂L

∂ϕ̇
ϕ̇− L

]
, (2.24)
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and

Eϕ = − d

dt

[
∂L

∂ϕ̇

]
+
∂L

∂ϕ
, (2.25)

are the Hamiltonian density and the scalar equation of motion respectively. Here, they find

that Eϕ is linear in second derivatives, therefore it can be written in the form

Eϕ = ϕ̈f(ϕ, ϕ̇, a, ȧ) + g(ϕ, ϕ̇, a, ȧ, ä), (2.26)

where the functions of f and g are determined eq. (2.25). Currently, everything we have

written is still following Horndeski’s full theory: the next step is to apply the three self-tuning

conditions outlined above.

The first self-tuning condition requires the vacuum energy density within the matter

sector to be in the form of a cosmological constant, ρvac = Λvac, which will combine linearly

with Λbare such that Λvac + Λbare = Λeff. Regardless of the value of Λeff the system should

always return to a solution with a portion of flat spacetime. For this to hold the solutions

must be Ricci-flat which correspond to

H2 = − k

a2
, (2.27)

for eq. (1.7), where k = 0 is flat, k = −1 is a flat Milne slicing, and there is no slicing possible

for k = 1. Next, we go “on-shell-in-a” for the field equations by inserting a = ak(t) ≡

a0 +
√
−k t, satisfying the Ricci-flat solution (eq. (2.27)). This means that the equations are

solved for the scale factor, but ϕ remains as a variable. This changes the functional forms

of H(ϕ, ϕ̇, a, ȧ) → Hk(ϕ, ϕ̇, ak), f(ϕ, ϕ̇, a, ȧ) → fk(ϕ, ϕ̇, ak), and g(ϕ, ϕ̇, a, ȧ, ä) → gk(ϕ, ϕ̇, ak).

Therefore, from eq. (2.23) the on-shell-in-a field equations take the functional form

Hk(ϕ, ϕ̇, ak) = −Λeff, ϕ̈fk(ϕ, ϕ̇, ak) + gk(ϕ, ϕ̇, ak) = 0, (2.28)
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where Hk, fk, and gk do not contain any explicit time dependence apart from those contained

within ak.

The second self-tuning condition demands that the first condition holds in the presence

of (effectively) instantaneous, finite changes in the value of the vacuum energy. At the phase

transition the scalar field should act to maintain a Ricci-flat solution, or in other words the

scalar field should tune itself in response to changes in the vacuum energy. If we assume this

change is instantaneous, then Λeff in eq. (2.28) must be discontinuous at the time of transition,

t = t∗. For the on-shell-in-a Hamiltonian equation to hold, there must be a discontinuity

in Hk(ϕ, ϕ̇, ak). We can achieve this by assuming that ϕ(t) is continuous, whereas ϕ̇ can be

discontinuous. This leads us to our first self-tuning constraint: the on-shell-in-a Hamiltonian,

Hk, must have a non-trivial dependence on ϕ̇ to account for the discontinuity in Λeff at the

phase transition.

To find the second constraint, we (again) use the fact that the value of the vacuum

energy changes instantaneously at the time of transition. Therefore, the rate of change of

Λeff will be proportional to a Dirac delta function, δ(t− t∗), centered about t = t∗. To study

this phenomenon we can differentiate the on-shell-in-a Hamiltonian equation in eq. (2.28) to

obtain
√
−k ∂Hk

∂ak
+ ϕ̇

∂Hk

∂ϕ
+ ϕ̈

∂Hk

∂ϕ̇
∝ δ(t− t∗). (2.29)

Notice that the δ(t− t∗) on the right-hand side of the equation must be supported by one of

the terms on the left. Neither ϕ(t) nor ϕ̇ can do this, so ϕ̈ must be proportional to a Dirac

delta function. This tracks with the fact that ϕ̇ is discontinuous at the phase transition, so

its rate of change, ϕ̈, must be ∝ δ(t− t∗).

Returning to eq. (2.28), the on-shell-in-a scalar equation of motion contains a ϕ̈ term

without a δ(t − t∗) to support it. This implies that both fk(ϕ, ϕ̇, ak) and gk(ϕ, ϕ̇, ak) must
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vanish to satisfy this equation. First, we consider

fk(ϕ, ϕ̇, ak) = 0. (2.30)

If fk contains a non-trivial ϕ̇ dependence, the left-hand side of this equation must also be

discontinuous at t = t∗. However, this discontinuity is not supported by the right-hand side

of the equation, so we conclude that fk is independent of ϕ̇, or in other words

fk(ϕ, ϕ̇, ak) → fk(ϕ, ak). (2.31)

This can be constrained further by taking the time derivative of fk(ϕ, ak) = 0 around the

time of the transition:
√
−k ∂fk

∂ak
+ ϕ̇

∂fk
∂ϕ

= 0. (2.32)

As before, there is no discontinuity on the right-hand side of the equation, therefore ∂fk
∂ϕ

must

vanish which implies

fk(ϕ, ak) → fk(ak). (2.33)

Following the same process it is trivial to see that

gk(ϕ, ϕ̇, ak) → gk(ak). (2.34)

Note, this is technically only valid around the region of t = t∗. However to allow a phase

transition to occur at any t, we extend this result to all times. Recall that ak(t) ≡ a0+
√
−k t

is fixed, so fk = 0 and gk = 0 do not contain any dynamics. Therefore fk, gk, and by extension

Eϕ must vanish identically on-shell-in-a.

This impacts the on-shell-in-a Lagrangian, Lk = Lk(ϕ, ϕ̇, ak), as the scalar equations of
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motion become

− d

dt

(
∂Lk

∂ϕ̇

)
+
∂Lk
∂ϕ

= 0, (2.35)

⇒
[
− Lk,ϕ̇ϕ̇

]
ϕ̈+

[
−

√
−k Lk,ϕ̇ak − ϕ̇Lk,ϕ̇ϕ + Lk,ϕ

]
= 0, (2.36)

⇒ fkϕ̈+ gk = 0, (2.37)

where we recognise that fk = −Lk,ϕ̇ϕ̇ and gk = −
√
−k Lk,ϕ̇ak − ϕ̇Lk,ϕ̇ϕ + Lk,ϕ. As a reminder

we use the notation: A,a =
∂A
∂a
. By applying fk = 0, the Lagrangian becomes

Lk = ζk,ϕ(ϕ, ak)ϕ̇+ ξk(ϕ, ak), (2.38)

where ξk(ϕ, ak) is a general function of ϕ and ak. Notice that ζk,ϕ(ϕ, ak) is also general, but

we have written it in the form of a partial derivative for later convenience. Then, by applying

gk = 0, ξk(ϕ, ak) must take the form

ξk(ϕ, ak) =
√
−k ζk,ak(ϕ, ak) + νk(ak), (2.39)

where ν(ak) is a generic function of ak. This can be directly inserted into eq. (2.38) to yield

the final form of the on-shell-in-a Lagrangian:

Lk = ζk,ϕ(ϕ, ak)ϕ̇+
√
−k ζk,ak(ϕ, ak) + ν(ak) = ζ̇ + νk(ak) ∼= νk(ak), (2.40)

where we have used the form of ζk,ϕ(ϕ, ak) to write ζ̇. We have then discarded ζ̇ because it is

a total derivative, therefore it will not contribute to the equations of motion. This form of

Lk is the second self-tuning constraint: the on-shell-in-a Lagrangian must be independent of

ϕ and ϕ̇.

The third constraint appears when we apply the last self-tuning condition: the full theory
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must have a non-trivial cosmology. Before going on-shell-in-a, recall that the scalar equation

of motion (eq. (2.23)) vanishes when imposing the Ricci-flat solution (eq. (2.27)). This can

be achieved if Eϕ = 0 is either algebraic or dynamic in H −
√
−k
a

. If it is algebraic, then the

scalar equation of motion will demand a Minkowski solution at all times. This immediately

forces a trivial cosmology, which goes against the above self-tuning condition. To avoid this

Eϕ = 0 must contain derivatives of H −
√
−k
a

i.e. it must not be independent of ä.

To conclude these conditions imply that a self-tuning scalar-tensor theory must:

1. not be independent of ϕ̇ in the on-shell-in-a Hamiltonian density,

2. be independent of ϕ and ϕ̇ in the on-shell-in-a minisuperspace Lagrangian,

3. not be independent of ä in the full scalar equation of motion.

Now these self-tuning constraints can be applied to Horndeski’s action to reveal the final form

of Fab Four. After some manipulation [80] finds that the action becomes eq. (2.17). They

also discover that self-tuning with a homogeneous scalar for k = 0 is forbidden, however an

identical setup is allowed for k = −1. Whilst this regime is not purely flat, by changing the

self-tuning ansatz and coordinate choice, the geometry of the system can correspond to (a

patch of) Minkowski.

Another interesting property can be found by explicitly calculating the Hamiltonian for

eq. (2.17):

H = Hj +Hp +Hg +Hr + Λbare, (2.41)
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where

Hj = 3Vj(ϕ)ϕ̇
2

(
3H2 +

k

a2

)
, (2.42)

Hp = −3Vp(ϕ)ϕ̇
3H

(
5H2 + 3

k

a2

)
, (2.43)

Hg = −6Vg(ϕ)

[(
H2 +

k

a2

)
+Hϕ̇

V ′
g

Vg

]
, (2.44)

Hr = −24V ′
r (ϕ)ϕ̇H

(
H2 +

k

a2

)
, (2.45)

with primes denoting a derivative with respect to ϕ. Recall, that our first self-tuning constraint

required the on-shell-in-a Hamiltonian to not be independent of ϕ̇. By substituting the Ricci-

flat solution (eq. (2.27)) into eqs. (2.42) to (2.45), we find that Hj, Hp, and Hg contain

non-trivial ϕ̇ dependencies, whereas Hr does not. Therefore, to achieve self-tuning we must

have

{Vj, Vp, Vg} ≠ {0, 0, constant}. (2.46)

This clearly rules out GR (given by eq. (1.3)) which is not too surprising. But it does

mean that some care should be taken if Fab Four hopes to be a phenomenologically viable

cosmological theory (such that GR is recovered in some limit). This constraint also implies

that the Ringo term cannot achieve self-tuning alone despite its non-trivial effects on the

cosmological dynamics.

Next, we seek cosmological solutions for the Fab Four model that admit to self-tuning.

Further studies of the model with a large vacuum energy that dominates over other sources

can be found in [84]. Using specific scalar potentials, they show that the fixed point solutions

can correspond to inflation, radiation, and matter dominated epochs. In other words, the

scalar gives the appearance of a cosmology that is dominated by other sources, despite

the energy density being dominated by the vacuum. They find that there exists a class of

scaling solutions with a net cosmological constant term. However, these include a “matter
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dominated” solution that upon perturbing contains a gradient instability that grows too fast

to be phenomenologically sound. By setting Λeff = 0, a “matter dominated solution” can

be found that is stable against cosmological perturbations. Whilst allowing the cosmological

constant to vanish goes against the principle self-tuning, the solutions represent a good

approximation to a viable cosmology through numerical simulations when a large Λeff is

reintroduced. Although this is not ideal for a self-tuning theory, it is remarkable that Fab

Four can find such solutions.

To conclude, Fab Four is derived from Horndeski’s Lagrangian [72], making it a highly

generalised self-tuning, scalar-tensor theory in four dimensions. In this respect, it is similar

to Weinberg’s no-go theorem [51]: providing constraints on the possibilities of viable self-

tuning models using scalars. Despite its cosmological shortcomings, it is able to retrieve

solutions that mimic well-known cosmological epochs. However, it should be noted that the

discovery of gravitational waves [4] led to observational constraints on Horndeski’s action

(and by extension Fab Four). [85–87] were among the first papers to focus specifically on

constraining Horndeski theories through these observations. This has since been addressed

by [88] (see references therein for further details) which identify a class of “rescued” Horndeski

(and beyond Horndeski) theories that reside within these observational bounds. Future

explorations into Horndeski have often been through the lens of DE (for a review on the

subject see [89]). For example, through an effective field theory for DE, [90,91] have been able

to reconstruct a class of Horndeski theories that reproduce the same background dynamics

and linear perturbations, which lies within the observational constraints from gravitational

waves. However to refocus on self-tuning, even absent of gravitational wave considerations, it

was later found that issues arise when one tries to reconstruct viable cosmological histories

with Fab Four [92]. But we will save this discussion for the end of section 2.3, where we

explore an extension to Fab Four that suffers from the same issue.
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2.3 Fab Five

In section 2.2 we showed that Fab Four is the most general scalar-tensor theory that can

self-tune through the linear combination of four Lagrangians, eqs. (2.18) to (2.21). To extend

this, the idea of combining these Lagrangians in a non-linear fashion was first proposed

in [93], which extends beyond Horndeski’s action 16. Naively, these non-linear theories do not

necessarily reproduce equations of motion that only go up to second order, but in certain

situations they can. One example is a theory involving a non-linear combination of the Ricci

Scalar and the Gauss-Bonnet term [96] (which can be identified in Fab Four as mixing the

George and Ringo terms). The lack of higher order terms within the equations of motion

are a consequence of symmetries within these particular theories. Likewise, the equations

of motion for the Lagrangian in [93] remain up to second order. In this paper they analyse

a non-linear version of a “purely kinetic gravity” model as a proof of concept. The linear

version of this model involves the addition of a standard kinetic term alongside derivatives of

the scalar field coupled to the Einstein tensor (which can be identified as the John term in

Fab Four) to GR [97]. Whilst this was shown to give rise to an accelerated expansion, it was

later ruled out due to various instabilities in the model [98].

We start with the non-linear action [93]

S =

∫
d4x

√
−g
[
M2

Pl

2
R + c1X + ff5 (ζ)

]
+ Sm[gµν , ψ], (2.47)

where ff5(ζ) is a generic non-linear function with a variable ζ ≡ c2X + cG
M2G

µν∇µϕ∇νϕ; gµν

is the metric; c1, c2, and cG are constants; X ≡ −1
2
gµν∇µϕ∇νϕ; and M is a mass scale that

renders cG dimensionless. From the equations of motion, we can study the cosmology of the

system using a FLRW metric, assuming spatial flatness, alongside a fluid with energy density,

ρ, and pressure, p. To study the dynamics we can use dimensionless parameters H̄ ≡ H
H0

16For more information on scalar-tensor theories beyond Horndeski see [94,95] and references therein.
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and x = ϕ′

MPl
, where H0 =

ȧ0
a0

is the Hubble parameter at the present day and primes denote

derivatives with respect to τ .

First, consider the cosmological evolution of the system without an explicit cosmological

constant term, Λeff. By analytically and numerically studying the late-time evolution, [93]

finds that there are dS attractor solutions (with f(ζ) = ζ1.5). These fixed point solutions

occur when H̄ ′ = 0, or in other words, H̄ → constant. In a particular case (c1 = 0) there is a

solution that corresponds to H̄2
dS = − c2

6cG
, where c2 and cG must have opposite signs. This is

encouraging, but it is not self-tuning. To show self-tuning, the model must demonstrate that

dS solutions can be found upon the reintroduction of a large Λeff term.

For simplicity, [93] neglects any matter/radiation terms and considers the dynamics when

c1 = 0 (alongside the reintroduction of Λeff). It can be analytically shown that there are two

fixed point dS attractors for this. The first point corresponds to the explicit cosmological

constant, H̄2
1 = 8πGΛeff

3H0
= ΩΛ, where the scalar field contribution decays away, i.e. ρϕ →

0. Whilst this is a dS solution, clearly this is not one that self-tunes. The second point

corresponds to H̄2
2 = H̄2

dS = − c2
6cG

where H̄1 ≫ H̄2. This point is a self-tuning solution: not

only does the solution severely reduce the effect of the cosmological constant, but the scalar

field also dynamically adjusts to cancel it off. This can be verified numerically as the system

can evolve to either point (depending on the initial conditions). To further cement this idea,

it can be shown that the negative of the scalar field energy density asymptotically approaches

the effective cosmological constant at late times i.e. ρϕ → −Λeff with ρϕ < 0. Remarkably, a

numerical analysis of the system shows that this result holds even in the presence of phase

transitions. Finally, by considering linear perturbations the theory is shown to be free of

ghosts. Unfortunately, there is a possibility of an early time instability and predictions that

the gravitational couplings of the theory could differ from GR for a given form of ff5. Whilst

it renders this specific model untenable, the goal of [93] was to explore the possibilities of

non-linear extensions to Fab Four. In that sense it was successful in showing that eq. (2.47)
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can self-tune.

Upon further research, it was shown that the above cannot reproduce phenomenologically

viable cosmologies. By placing constraints on non-linear purely kinetic gravity, [92] showed

that these theories must admit to an early-time instability if it hopes to generically produce

periods of radiation/matter domination. Likewise, for the theory to be stable it must also

admit to fine-tuning in the initial conditions to produce a viable early Universe cosmology.

Whilst this is a bit of a dampener, one can still proceed with a different non-linear theory in

the hopes it can ameliorate these problems.

However, [92] also showed that all non-linear (and by extension linear) Fab Four theories

self-tune too well. These scalar fields act to cancel off any energy density within the theory.

In other words, the value of the scalar field energy density dynamically changes to counteract

any form of matter, vacuum energy or otherwise. Whilst this self-tunes away the cosmological

constant, it also “self-tunes” away any radiation or matter contributions. Therefore, even if

the theory initially starts in an era of radiation or matter domination, the scalar field quickly

acts to push the system into the given background solution. The speed at which this occurs

is far too swift to allow for radiation/matter to dominate for long enough to be consistent

with our Universe’s cosmological history. This unfortunately renders Fab Four (and Fab Five)

theories in general to not be phenomenologically viable.

2.4 Well-tempered Cosmology

As shown in sections 2.2 and 2.3, we can construct scalar-tensor theories that admit to self-

tuning by using the additional scalar fields to dynamically cancel off a cosmological constant.

However, these theories also screen any radiation or matter fields, as such they cannot produce

a viable cosmological history. To alleviate this problem, a scalar-tensor model would have to
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self-tune the vacuum energy density, whilst ignoring anything else from the matter sector. A

potential solution to this problem comes in the form of well-tempered cosmology. The idea of

a well-tempered cosmology, first introduced in [99], is to create a model whereby the scalar

field has a bias towards self-tuning a cosmological constant. We consider the specific action

S =

∫
d4x

√
−g
[
M2

Pl

2
R +K(ϕ,X)−G(ϕ,X)□ϕ+ Λbare

]
+ Sm[gµν , ψ], (2.48)

where K and G are arbitrary functions of ϕ and X. To study the cosmology of this system

they use: a perfect fluid; a FLRW metric gµνdx
µdxν = −dt2 + a(t)2δijdx

idxj; and a time

varying scalar field ϕ = ϕ(t). From this, they find the field equations where the Hamiltonian

constraint is given by

3M2
PlH

2 = ρ+ Λbare + 2K,XX −K + 3G,XHϕ̇
3 − 2G,ϕX, (2.49)

the acceleration equation is given by

−M2
Pl

(
3H2 + 2Ḣ

)
= p− Λbare +K − 2

(
G,ϕ +G,X ϕ̈

)
X, (2.50)

and the scalar field equation is given by

K,X

(
ϕ̈+ 3Hϕ̇

)
+ 2K,XXXϕ̈+ 2K,XϕX −K,ϕ − 2 (G,ϕ −G,XϕX)

(
ϕ̈+ 3Hϕ̇

)
+ 6G,X

[
˙(HX) + 3H2X

]
− 4G,XϕXϕ̈− 2G,ϕϕX + 6HG,XXXẊ = 0. (2.51)

If the scalar has shift symmetry, ϕ → ϕ + constant, these arbitrary functions can be

written as K(ϕ,X) = c3M
3ϕ +M4A(X)17 and G(ϕ,X) = MB(X). A(X) and B(X) are

arbitrary dimensionless functions, M is some mass scale, and c3 is a constant. Next, we can

17The c3M
3ϕ term is shift symmetric as any constant shift can be absorbed by the cosmological constant.
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write the field equations in terms of dimensionless parameters

ψ =
ϕ

M
, h =

H

M
, τ =Mt, Λbare =M2

PlM
2
Λ. (2.52)

Using these definitions, the Hamiltonian constraint (eq. (2.49)) becomes

3
M2

Pl

M2
h2 =

ρ

M4
+
M2

PlM
2
Λ

M4
+ A,ψ′ψ′ − c3ψ − A+ 3hB,ψ′ψ′2, (2.53)

the acceleration equation (eq. (2.50)) becomes

2
M2

Pl

M2
h′ + 3

M2
Pl

M2
h2 = − p

M4
+
M2

PlM
2
Λ

M4
− c3ψ − A+B,ψ′ψ′ψ′′, (2.54)

and the scalar field equation (eq. (2.51)) becomes

0 = 3hA,ψ′ + A,ψ′ψ′ψ′′ − c3 + 3B,ψ′(h′ψ′ + hψ′′ + 3h2ψ′) + 3hB,ψ′ψ′ψ′ψ′′, (2.55)

where primes denote derivatives with respect to τ 18. Note, that eq. (2.54) can be simplified

through a linear combination with eq. (2.53), such that the Λbare terms vanish:

2
M2

Pl

M2
h′ = − ρ

M4
− p

M4
+ A,ψ′ψ′ +B,ψ′ψ′(ψ′′ − 3hψ′). (2.56)

First, we examine whether the theory can self-tune in any capacity by considering vacuum

energy contributions only, ρ = −p = Λvac (or in other words, when the equation of state

is w ≡ p
ρ
= −1). For purposes that will become clear later, eq. (2.56) is multiplied by an

arbitrary non-trivial function fWT (ψ
′). To impose a self-tuning condition we go on-shell for

a dS solution, H = HdS, such that h = hds ≡ HdS

M
= constant. With this choice, eqs. (2.55)

18Reminder that La,b =
∂La

∂b , as defined in Conventions.
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and (2.56) become

0 = −A,ψ′FWT (ψ
′) +B,ψ′(ψ′′ − 3hdsψ

′)FWT (ψ
′), (2.57)

0 = 3hdsA,ψ′ + A,ψ′ψ′ψ′′ − c3 + 3B,ψ′(hdsψ
′′ + 3h2dsψ

′) + 3hdsB,ψ′ψ′ψ′ψ′′, (2.58)

where FWT (ψ
′) ≡ ψ′fWT (ψ

′). Recall that Fab Four (section 2.2) and Fab Five (section 2.3)

would solve this system by demanding that the scalar field equation (eq. (2.57)) vanishes

identically on-shell-in-a. The Hamiltonian constraint (eq. (2.53)) would then determine the

evolution of the scalar that cancels off a large cosmological constant on-shell-in-a. Using the

above method the model can self-tune, but it will still be plagued by the problems discussed

in section 2.3 i.e. self-tuning too well.

To avoid this [99] takes an alternative approach: through the requirement that eqs. (2.57)

and (2.58) are equivalent. This equivalency can be written by equating the ψ′′ term coefficients,

and then equating everything else such that

FWT (ψ
′)B,ψ′ = A,ψ′ψ′ + 3hds(B,ψ′ψ′ψ′ +B,ψ′), (2.59)

−FWT (ψ
′)(A,ψ′ + 3hdsB,ψ′ψ′) = 3hds(A,ψ′ + 3hdsB,ψ′ψ′)− c3. (2.60)

From this, we can write A,ψ′ and B,ψ′ in terms of FWT (ψ
′):

A,ψ′ =
c3

3hds + FWT

+ 3c3hds
(FWT ),ψ′ψ′

FWT (3hds + FWT )2
, B,ψ′ = −c3

(FWT ),ψ′

FWT (3hds + FWT )2
. (2.61)

Plugging these forms back into eqs. (2.57) and (2.58) yields

ψ′′ = −(3hds + FWT )FWT

(FWT ),ψ′
. (2.62)

Clearly this shows that the on-shell field equations (eqs. (2.57) and (2.58)) are equivalent

for this specific choice of ψ, which depends on the form of FWT (ψ
′). In [99] they showcase
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various solutions, one of which is A(ψ′) = constant (this sets the form of FWT (ψ
′) and

B(ψ′)). By substituting these forms into eqs. (2.53), (2.55), and (2.56) they were able to

find that solutions exist for h = hds, where eqs. (2.55) and (2.56) both reduce to ψ′′ = 3hdsψ
′.

This corresponds to an evolving field such that ψ′ ∼ e3hdsτ . This is a form of self-tuning

because the solution to h is that of a dS solution. Also, the form of the evolving field is

set by eqs. (2.55) and (2.56) which do not contain any vacuum energy terms. Furthermore,

the scalar field within this dS solution is time varying, hence we avoid Weinberg’s no-go

theorem [51]. To further cement this idea, the numerical solutions for A(ψ′) = constant show

that these conditions do indeed correspond to a dS attractor. It can also be shown that a

large vacuum energy can be screened both before and after a phase transition. There is a

brief period during the transition where this is not the case, which could lead to observational

traces19. However, for this specific theory the duration and amplitude of these deviations

from w ≡ p
ρ
= −1 are small. In short, this well-tempered model also seems to be resistant to

the impact of phase transitions.

Now that we have established that the model (eq. (2.48)) can self-tune a large cosmological

constant, we turn our attention to the problems presented in [92]. To evade this, the scalars

must not screen other forms of matter that we introduce to the system. To see this return to

eqs. (2.55) and (2.56) but this time keep the matter components generic. These field equations

are now no longer equivalent unless w = −1, i.e. during vacuum energy domination. Whilst

w ̸= −1, the system will no longer be satisfied by a dS solution. Instead, the scale factor,

h, and the scalar field, ψ, will react to these other matter components forming a different

solution. This shows that a well-tempered cosmology can self-tune by forcing a dS solution

during vacuum energy domination, but the scalars that screen this large cosmological constant

can allow other forms of matter to dominate. To reiterate, this contrasts with previous “Fab”

models (sections 2.2 and 2.3), where the scalar field equation (eq. (2.55)) would be trivially

19For example [100] examines the effect of phase transitions on the energy spectrum of primordial gravita-
tional waves.
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satisfied on-shell to enforce a self-tuning solution irrespective of the matter component. In

the well-tempered approach, the background solution is satisfied only for constant energy

densities. This has been verified numerically, where [99] shows that the model can admit to

a conventional period of matter domination before settling into a late-time dS state.

To conclude, in this section we have established that the model (eq. (2.48)) can use

scalar fields that dynamically cancel off a large cosmological constant. Moreover, unlike

previous models, the theory does not screen other forms of matter, thus allowing for a

viable cosmological history. However, despite its successes at demonstrating a well-tempered

cosmology, [99] is a highly simplified model. [101] provides a generalisation by applying a

well-tempered approach to Horndeski’s original model using a series expansion of its arbitrary

functions. [102] takes a different approach by assuming various ansätze for functions within

the model. Both papers go on to present example solutions that verify the results of [99].

Further explorations into this method of self-tuning are contained within [103–106]. The

future of well-tempering seems positive, prompting further investigations into its properties

to constrain the theory and verify its cosmological viability.

We will also very briefly mention a minimal self-tuning model that uses scalar fields to self-

tune differently to well-tempering, whilst avoiding the “Fab” problem [92]. Recently, [107] have

devised a “Kinetic Gravity Braiding” model 20 (also studied using well-tempering in [102,104])

given by the action eq. (2.48). To study the self-tuning properties, they consider: a perfect

fluid where the energy-momentum tensor is given by T νµ = diag(−ρ, p, p, p); with a FLRW

metric gµνdx
µdxν = −dt2 + a(t)2δijdx

idxj; and a time-dependent scalar field ϕ = ϕ(t). They

then take the specific potentials K(ϕ,X) = −3c0
Hds

M
X + c1M

3ϕ and G(X) = c0
M

√
2X where

c0 and c1 are dimensionless parameters; M is an arbitrary mass scale; Hds is the late-time

attractor solution for the Hubble parameter; and recall X ≡ −1
2
gµν∇µϕ∇νϕ = ϕ̇2

2
such that

20So-called due to the “braiding” of the scalar and metric terms in the equations of motion. For further
background reading on this topic we refer the reader to [108–110].
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the action becomes

S =

∫
d4x

√
−g

(
M2

Pl

2
R− 3c0

Hds

M
X + c1M

3ϕ− c0
M

√
2X □ϕ+ Λbare

)
+ Sm[gµν , ψ], (2.63)

where they consistently choose the positive branch of
√
2X . From the above (eq. (2.63)),

they derive the Friedmann equation:

3M2
PlH

2 = ρ+ Λbare +
3c0
2M

(2H −Hds)ϕ̇
2 − c1M

3ϕ, (2.64)

the acceleration equation:

3M2
PlH

2 + 2M2
PlḢ = −p+ Λbare +

3c0Hds

2M
ϕ̇2 +

c0
M
ϕ̈ϕ̇− c1M

3ϕ, (2.65)

and the scalar equation:

(ϕ̈+ 3Hϕ̇)(H −Hds) + Ḣϕ̇− c1M
4

3c0
= 0, (2.66)

where the Hubble parameter is H ≡ ȧ
a
and dots refer to derivatives with respect to t. Also,

the energy conservation equation is given by

ρ̇+ 3H(ρ+ p) = 0. (2.67)

First, [107] combines eqs. (2.64) and (2.65) to obtain the “Hubble evolution equation”:

2M2
PlḢ = −(ρ+ p)− 3c0

M
ϕ̇2(H −Hds) +

c0
M
ϕ̇ϕ̈. (2.68)

This is similar to eq. (2.56) in well-tempering, in that eq. (2.68) is an expression that auto-

matically removes its dependency on the vacuum term (i.e. when ρ = −p = Λvac). Where

this model differs is how they use the scalar equation. Well-tempering would enforce an

47



CHAPTER 2. SELF-TUNING THEORIES

equivalency between the scalar and Hubble evolution equation (eqs. (2.66) and (2.68)), then

solve the resultant expressions. Instead, [107] recognises that eq. (2.66) is not independent as

it can be derived through a combination of eqs. (2.64), (2.65), and (2.67). This means that

eq. (2.66) can now be solved explicitly for ϕ̇, and in this sense it is different to well-tempering.

But similar to well-tempering it seeks to find self-tuning solutions that consistently remove

cosmological constant terms, whilst allowing for other forms of matter. To solve these equa-

tions they first consider an explicit energy density that contains matter and vacuum energy

parts only (i.e. ρ = ρm + Λvac and p = −Λvac). Now, they make the following dimensionless

substitutions: h ≡ H
M
, ψ ≡ ϕ

M
, τ ≡Mt, µ ≡ M2

Pl

M2 , ρm,0 ≡ ρm
M4 , Λbare,0 ≡ Λbare

M4 , and Λvac,0 ≡ Λvac

M4 .

With these substitutions they use eqs. (2.64), (2.67), and (2.68) to find two dimensionless

evolution equations given by

h′ =
−3(h− α)(3c0ψ

′2(2h− α) + ρm,0) + c1ψ
′

6µ(h− α) + 3c0ψ′2 , (2.69)

ψ′′ =
9c0ψ

′(h− α)(c0ψ
′2 − 2µh) + 3c0ψ

′ρm,0 + 2µc1
6µc0(h− α) + 3c20ψ

′2 , (2.70)

where the attractor is denoted by the dimensionless parameter α = Hds

M
and primes denote a

derivative with respect to τ . For completeness the dimensionless fluid conservation equation

becomes

ρ′m,0 + 3hρm,0 = 0. (2.71)

Now, eqs. (2.69) to (2.71) represent a full numerical system to be solved. Notice that

none of the above equations contain explicit Λvac,0 or Λbare,0 dependencies. Instead, the value

of the vacuum energy is used to choose the initial value of ψ using eq. (2.64) (so that they have

the freedom to choose the initial conditions of h and ψ′). The evolution of the system itself

does not depend on the value of Λvac,0 (or Λbare,0), but it does depend on ρm,0. Hence, this

mechanism has (similar to well-tempering) enforced a removal of the cosmological constant

terms from the dynamics of the system, whilst allowing for matter to be included. Finally, the
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scalar equation (eq. (2.66)) is merely used to measure the behaviour of ψ′ (which is represents

ϕ̇). Full details of these calculations can be found within [107]. But we have provided this

short description here to demonstrate to the reader that well-tempering is not necessarily the

only way to self-tune whilst allowing for other forms of matter domination.

They go on to show that the above model can cancel off a large vacuum energy, whilst

self-tuning to a dS attractor solution. They further demonstrate that the model can undergo

a period of matter domination, and that these solutions are stable under phase transitions in

the value of the vacuum energy. Overall, [107] exists as an initial exploration into a self-tuning

mechanism, that is similar but separate to well-tempering. To our knowledge the above is the

only exploration into this mechanism, therefore exploring it using another model or through

generalising the above model would be interesting.

2.5 Vacuum Energy Sequestering

Vacuum Energy Sequestering is a unique method of self-tuning that recovers GR and requires

a simple modification to the usual gravitational equations. The idea is to promote a bare

cosmological constant term, Λbare, to a variable to provide constraints on the action. In this

section we will showcase the sequestering mechanism by considering a global vacuum energy

sequestering model [111–114]. This theory also introduces another variable, λ, where both

Λbare and λ are global variables i.e. variations occur on the level of the action, but not in

spacetime. The explicit action considered is

S =

∫
d4x

√
−g
[
M2

Pl

2
R− Λbare − λ4Lm(λ

−2gµν , ψ)

]
+ σ(z), (2.72)

where the matter sector Lm is minimally coupled to the “Jordan” frame metric, g̃µν , and

z ≡ Λbare

λ4µ4
. Note that a Jordan frame usually describes a scalar-tensor theory, whereby the
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Ricci scalar is coupled directly to a scalar field. Our action (eq. (2.72)) is not written in

this way, therefore it is in the “Einstein” frame. But it can be changed into an equivalent

“Jordan” frame using a redefinition of the metric, gµν → g̃µν = λ2gµν [115]. However, λ is not

related to a scalar field in this model, hence the quotation marks on “Jordan” and “Einstein”.

Finally, σ is a smooth function that lies outside of the integral that is dimensionless due to a

mass scale, µ.

Varying the action with respect to Λbare and λ yields

σ′

λ4µ4
=

∫
d4x

√
−g , (2.73)

and

4Λbare
σ′

λ4µ4
=

∫
d4x

√
−g λ4T̃αα , (2.74)

respectively, where σ′ = ∂σ(z)
∂z

and T̃µν = − 2√
−g̃

δSm

δg̃µν is the energy-momentum tensor defined

in the “Jordan” frame, which is T µν = λ4T̃ µν in the “Einstein” frame. By combining these two

equations the constraint equation becomes

4Λbare = ⟨Tαα ⟩, (2.75)

where the 4-volume average quantity is defined by ⟨Q⟩ =
∫
d4x

√
−g Q∫

d4x
√
−g . Then, varying the action

with respect to gµν yields

M2
PlG

µ
ν = λ4T̃ µν − δµνΛbare, (2.76)

which becomes

M2
PlG

µ
ν = T µν − 1

4
⟨Tαα ⟩δµν , (2.77)

using eq. (2.75). Now, we can split the energy-momentum tensor such that T µν = τµν −Λvacδ
µ
ν ,

where τ and Λvac represent the contributions from local matter sources and vacuum energy
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respectively. By writing T µν in this way, eq. (2.77) becomes

M2
PlG

µ
ν = τµν − 1

4
⟨ταα ⟩δµν , (2.78)

where ⟨Λvac⟩ ≡ Λvac. Notice that both the Λbare and Λvac terms have completely dropped out

of the equations, but the local matter sector has survived. This shows that the cosmological

constant terms no longer have a direct gravitational response, whereas the τµν term still

contributes. In other words, the explicit self-tuning mechanism here uses eq. (2.75) to set

a constraint that requires Λbare to cancel off Λvac irrespective of its overall value. Here,

eq. (2.78) has left behind a residual cosmological constant term, Λeff = 1
4
⟨ταα ⟩, where ⟨ταα ⟩ is

the 4-volume average of the trace of the local matter sector. However, since ⟨ταα ⟩ is unrelated

to vacuum loops, Λeff does not suffer from the same radiative instability that plagues the

cosmological constant problem. Instead, the value of Λeff is determined by a measurement

of the historic (and future) matter density. In this sense, the Universe must have a finite

spacetime to ensure that the value of Λeff is bounded. In other words, the Universe must

be spatially finite and collapse in the future. Similarly, due to the infinite volume in their

interiors, black holes would ordinarily provide significant contributions to this historic matter

density measurement. However, as [112] demonstrated, this is no longer the case in finite

spacetimes. They were further able to show that this Λeff is automatically small in large, old

Universes [111], with [112] providing a mechanism to achieve this.

This action (eq. (2.72)) was later modified into a local sequestering theory [116, 117],

by promoting λ and Λbare to scalar fields. Performing a similar analysis grants a global

constraint, evoking a cancellation that sets the value of Λeff, as shown previously. Note, these

models avoid Weinberg’s no-go theorem [51] as they contain non-gravitating 4-forms which

are used to break translational invariance in the corresponding 3-forms [116]. Most recently,

the “Omnia Sequestria” model [118, 119] proposes a method that gravitationally decouples

matter loops (along with its predecessors) and graviton loops.
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To conclude, vacuum energy sequestering theories modify GR to achieve self-tuning.

Promoting a bare cosmological constant to a variable alongside introducing a separate variable

allows us to vary the action with respect to them, which provides constraints on the model.

These constraints set the bare cosmological constant to automatically cancel vacuum energy

contributions without altering local matter sources. This cancellation leaves behind a residual

cosmological constant that is not related to vacuum loops and is naturally small in large,

old Universes for finite spacetimes (with [120] setting |⟨ταα ⟩| ≲ M2
PlH

2
0 , where H0 is the

Hubble parameter today). In general, both global and local sequestering theories yield similar

cosmological responses through self-tuning the value of the vacuum energy. The future

direction of these sequestering theories would be to understand these mechanisms as a UV

complete theory to further test its viability as a gravitational alternative to GR. We also briefly

mention a similar theory, which involves promoting the Planck mass to a variable [121–123].

As in vacuum energy sequestering, it acts to self-tune an arbitrary cosmological constant in

exchange for an effective cosmological constant that is set by historic matter excitations (i.e.

Λeff ∝ ⟨τ⟩).

2.6 Braneworlds and supersymmetry in cosmology

Despite the fact that we appear to live in a 4D Universe, models such as string theory [124,125]

exist in 10D. The structure of these extra dimensions affect the physics within our 4D

observable Universe, but their effect is (usually) suppressed as a consequence of Kaluza-Klein

compactifications [126]. If these compactifications are sufficiently small they do not spoil

standard model particle physics.

Braneworld gravity [127] uses the idea that our 4D observable Universe exists in an

object called a “brane”. This brane is a hyperspace inside a larger (4+N)D spacetime called
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the “bulk”. Analogous to string theories, the structure of this bulk affects physics within

the brane. The difference is that all matter fields are restricted to the brane, whilst gravity

and other non-standard model physics are not. This means that the usual constraints on

the size of these extra dimensions no longer apply, but instead they can be as large as a

few micrometres [128–130]. This non-trivial embedding of the brane in the bulk can offer

mechanisms that “hide” the gravitational response of vacuum energy in the bulk, whilst

recovering GR on the brane.

The 5D Randall-Sundrum (RS) braneworld model [131]21 was the first to include the

self-gravity of branes. This model is described by a 5D action, where the matter Lagrangian

is confined to a 4D spacetime that recovers GR in a low energy limit [133]. These models

can be oriented to produce a self-tuning mechanism [133–135]. Consider the relatively simply

5D action

S =

∫
d5X

√
−(5)G

[
(5)R− 4

3
(∇ϕ)2 − Λ5

]
−
∫

d4x
√
−g Lm, (2.79)

where (5)G and (5)R are the determinant of the metric, (5)GMN , and trace of the Ricci tensor,

(5)RMN , respectively. Furthermore ϕ is a scalar, Λ5 is the cosmological constant on the bulk,

and X are the coordinates. All of the objects we have just described are 5-dimensional, such

that the indices run asM,N = 0, ..., n−1, where n is the dimension of the model (in this case

n = 4 with M,N = 0 as the time dimension and M,N = 1, ..., 4 as the 4 spatial dimensions).

The 4D integral in eq. (2.79) corresponds to the brane where g = det(gµν) and gµν is the 4D

metric (such that µ, ν = 0, ..., 3). For simplicity we consider Λ5 = 0 and Lm = σebϕ. Here, σ

is the brane tension which corresponds to the value of the vacuum energy as calculated by a

4D observer and b is an arbitrary constant. Then, we demand a Minkowski solution on the

21This is an example of a RSII model which contains two branes, where one is placed infinitely far away,
thereby effectively removing it (at least physically). The other brane contains our standard model physics.
The RSI model has the same geometrical setup, but instead both branes are a finite distance away and our
standard model physics is contained within one of them. This model was first introduced as a method of
solving the hierarchy problem [132].
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brane such that the 5D metric ansatz is given by

(5)GMNdX
MdXN = dy2 + e2A(y)ηµνdx

µdxν , (2.80)

where A(y) is the warp factor, y = X5 denotes the extra dimension, and for simplicity we

have chosen that the brane lies at y = 0. To enter into a self-tuning regime we must find

solutions that recover a flat spacetime for any value of σ. Substituting eq. (2.80) into the

(M,N) = (4, 4) components of Einstein’s field equation yields A′ = αϕ′, where α = ±1
3
and

primes denote derivatives with respect to y. Substituting this solution into a combination of

the scalar equation, alongside the (4, 4) and (µ, ν) components of Einstein’s field equation

gives ϕ′′ ± 4
3
(ϕ′)2 = 0. By assuming that α = 1

3
for y > 0 and α = −1

3
for y < 0 the solution

to the above relationship becomes

ϕ(y) =


3
4
log
(
4
3
y + c1

)
+ d1, for y < 0

−3
4
log
(
4
3
y + c2

)
+ d2, for y > 0

(2.81)

where c1, c2, d1, and d2 are integration constants. First, d2 can be determined by demanding

continuity in ϕ(y) across y = 0. Then, substituting eq. (2.81) back into the field equations

yields two expressions for the integration constants c1 and c2, in terms of d1, b and σ for

b ̸= ±4
3
22. Therefore for any given b, there exists a Minkowski solution for the brane, regardless

of the value of σ. In other words, the system exhibits self-tuning, without fine-tuning the

vacuum energy density. We can “see” this at the level of the action (eq. (2.79)) where the

scalar field in the 4D integral can absorb shifts in σ. Note, a similar result can also be shown

for a general Lm [135]. Unfortunately these models have several issues. Firstly, notice that

eq. (2.81) contains a singularity at y = −3
4
c1 and y = −3

4
c2. Any attempt to regularise these

singularities re-introduced fine-tuning [136–138]. Secondly, there are instabilities related to

external expansion or singular collapse of the braneworld [139].

22There are solutions that exist for b = ± 4
3 which requires α = 1

3 for all y as detailed in [135]. But for
simplicity we will only consider solutions for b ̸= ± 4

3 .
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A different approach increases the dimensions from 5 to 6. [140] considers a 6D bulk

action

S =

∫
d6X

√
−(6)G

[
1

2
(6)R− Λ6 −

1

4
FMNF

MN

]
, (2.82)

where (6)G and (6)R are the 6 dimensional determinant of the metric and Ricci scalar respect-

ively. Furthermore FMN is the Maxwell field strength (which provides the pressure needed

to stabilise the extra dimensions [140]), Λ6 is a cosmological constant on the bulk and X are

the six-dimensional coordinates. The notation is consistent with the previous example such

that indices run as M,N = 0, ..., 5, and µ, ν = 0, ..., 3 refer to indices on the brane. As before

we consider a Minkowski metric ansatz given by

ds2 = GMNdX
MdXN = ηµνdx

µdxν + γab(y)dy
adyb, (2.83)

but this time γab(y) is the metric of the two extra dimensions ya, yb, where the indices

refer to (a, b) = (4, 5)23. Now, we can choose FMN to be a magnetic flux threading the

extra-dimensional space such that

Fab =
√
γ B0ϵab, (2.84)

where B0 is a constant, γ = det(γab), ϵab is anti-symmetric such that ϵ12 = 1, and all other

components of Fab vanish. Next we make the choice of a two-sphere geometry for γab,

γab(y)dy
adyb = a20(dθ

2 + sin2 θdϕ2), (2.85)

alongside fixing the magnetic field strength B0 and the radius a0 in terms of Λ6:

B2
0 = 2Λ6, a20 =

1

2Λ6

, (2.86)

23To be clear this does not necessarily mean that a = 4 and b = 5. Similar to how (i, j, k) refer only to
the spatial coordinates on a 4D spacetime, (a, b) are used to refer only to the extra dimensions (4, 5) and can
do so interchangeably.
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which is consistent with a static, stable solution [140,141].

Now, branes can be added using the action

S4 = −σ
∫

d4x
√
−g , (2.87)

where σ is the brane tension. This explicit addition is done by placing the two branes atop

the bulk on opposite ends of the 2-sphere. The metric now adjusts such that [140]

γab(y)dy
idyj = a20(dθ

2 + α2 sin2 θdϕ2), (2.88)

where

α = 1− σ

2π
, a20 =

1

2Λ6

, B2
0 = 2Λ6. (2.89)

This metric corresponds to removing a wedge that stretches from the north pole to the south

pole from the 2-sphere bulk, where σ is proportional to the size of the wedge (see figure 1

from [140]). To picture this, imagine the geometry of the bulk is a rugby ball24 with branes

that sit atop opposite points of the ball. Notice that the only object that changes due to the

brane tension, σ, is α. a0 and B0, which are necessary to ensure that the 4D spacetime is flat,

remain the same. In other words, the brane tension affects the bulk geometry but leaves the

4D geometry untouched. Unfortunately, this does not solve the cosmological constant problem.

In [142] they show that effective 4D cosmological constant corresponds to Λ4 ∝ 1
2
Λ6 − 1

4
B2

0 .

For Λ4 to vanish it requires B2
0 = 2Λ6 as in eq. (2.86), which is a choice that we made. So

for Λ4 to vanish it requires a fine-tuning between Λ6 and B0. In a sense, this moves the

fine-tuning of the cosmological constant onto the magnetic field.

This problem can be avoided by considering a Supersymmetric Large Extra Dimension

24Note, the authors in [140] refer to the geometry as an “American football”.
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(SLED) model [143–145], which is a modified version of [140]. The action is given by

S =

∫
d6x
√
−(6)G

[
1

2
((6)R− ∂Mϕ∂

Mϕ)− 1

4
e−ϕFMNF

MN − eϕΛ6

]
, (2.90)

where there is a constant scalar solution ϕ = ϕ0 = constant, and the effective 4D cosmological

constant can be shown to be Λ4 ∝ 1
2
Λ6e

ϕ0 − 1
4
B2

0e
−ϕ0 [142]. Now, notice we can write the

effective scalar potential from eq. (2.90) as V (ϕ) ≡ −1
2
B2

0e
−ϕ − Λ6e

ϕ (where the B2
0 picks up

a factor of 2 by summing over MN). For there to be a constant scalar solution, the potential

must be minimised at ϕ0, i.e. V
′(ϕ0) ≡ −1

2
B2

0e
−ϕ0 + Λ6e

ϕ0 = 0. Notice that this is the exact

cancellation needed for Λ4 to vanish. By introducing a scalar which has a constant solution,

the theory automatically chooses the value of the magnetic flux to counter the cosmological

constant in the bulk, such that the effective 4D cosmological constant vanishes. This fixes the

problem we have outlined above without introducing Supersymmetry (SUSY) on the brane.

Instead SLED models use SUSY to improve the model in other ways.

First a short note on SUSY in relation to the vacuum energy (for a review on SUSY in

general see [146]). The basic idea is that each boson has a corresponding SUSY partner that

is a fermion of the same mass, and vice versa. As we have previously discussed, bosons and

fermions contribute opposite signs to the value of the vacuum energy. Therefore the vacuum

energy will automatically vanish if we live in a fully SUSY Universe [24]. Unfortunately this

is not the case, so how does this help us? If any form of SUSY exists, it must exist above a

certain scale due to the lack of experimental evidence for superpartners below this scale [147].

In accordance with experimental observations, [143] places this lower bound of SUSY breaking

at the level of the electroweak scale, Mw. This sets the coefficient of cosmological constant in

the bulk to be Λ6 ≲M4
w, as the cancellation between boson and fermion fields will stop at the

SUSY breaking scale. Firstly, this allows one to introduce SUSY particles in the bulk, further

generalising the theory. But without fully exploring these different particles (which is beyond

the scope of this thesis, see [143–145] and references therein for details), introducing SUSY
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generates another interesting property. As shown in [133], the SUSY breaking scale can be

linked to the compactification scale, which in turn will be linked to the value of Λ4. This

provides further constraints on the size of the extra dimensions, which in turn could leave

experimental and observational traces [144,145]. However, we find that these SLED models

cannot return to a Minkowski spacetime when considering phase transitions [142, 148]. In

fact, it was later shown that there is still a hidden fine-tuning condition in the form of the flux

quantisation condition, which arises from the Maxwell sector in eq. (2.90) (see [149,150] and

references therein). Without this flux sector, the extra dimensions will either decompactify

or will collapse; either way this destroys our self-tuning mechanism. To be clear, the flux

sector can still stabilise our extra dimensions without fine-tuning, but without the fine-tuning

a large cosmological constant will reappear on the brane. Despite its lack of success, the

SLED proposal has some interesting properties. To reiterate, the idea is that the gravitational

response of the 4D cosmological constant can be “pushed” into the bulk to recover a flat

spacetime. Here, SUSY acts to introduce new particles in the bulk and restrict the size of the

cosmological constant in the bulk, which in turn restricts the size of the compactifications.

To conclude this section we briefly point towards the future directions of self-tuning

with branes and SUSY. First, to focus on the former, recent advancements come in the

form of holographic self-tuning (see [151] and references therein). This alters the original

5D RS branes [131] and casts solutions to be AdS on the bulk, rather than flat. But it

still invokes a self-tuning mechanism, whereby there is an interplay between the bulk and

the brane. [152–154] verify the stability of this proposal and explore its dynamics further.

In general there are still many open questions to this model as [151, 154] points out, which

must be explored further. As for SUSY, most recently [155] has showcased a class of 4D

supergravity models, which can be used to impose a scalar potential that can dynamically act

to reduce the gravitational response of the vacuum energy. However, due to the complexity

of this model there are several unaddressed issues25 which demand further research.

25For example the theory introduces a dilaton that couples to ordinary matter, which could result in

58



CHAPTER 2. SELF-TUNING THEORIES

2.7 Massive gravity

Massive gravity is a modification of GR that propagates with a massive spin-2 particle

of mass m (see [156, 157] for a review). It started with the original Fierz-Pauli action in

1939 [158], which describes a linear free massive graviton. Interestingly, a 4D massive theory

propagates with 5 Degrees of Freedom (DOF) instead of the usual 2 of GR. In the 1970’s van

Dam, Veltman, and Zakharov studied this linear theory coupled to a source [159,160]. They

discovered that in the limit where m → 0 GR is not fully recovered, which is known as the

vDVZ discontinuity. This arises due to the extra DOF present in a massive gravity theory.

Even when a massless limit is taken, these extra DOF do not fully decouple from the source.

The number of DOF instead become 2 from a massless graviton, 2 from a massless vector,

and 1 from a massless scalar. Specifically, the scalar remains coupled to the source, leading

to the discontinuity between the predictions of GR and massive gravity in the massless limit.

Vainshtein later studied non-linearities within massive theories [161], utilising the Vainshtein

mechanism in order to evade the vDVZ discontinuity (see [157,162] and references therein).

However, these non-linear massive gravity theories were still plagued by Boulware-Deser

ghosts [163]. These theories propagate with 6 DOF, where the extra mode presents itself as

an instability. To remove this instability one can tune the coefficients in the expansion of

the metric perturbation, to write a massive gravity theory that is ghost free [164–167]. Since

then there have been successful demonstrations of non-linear massive gravity theories that

are absent of ghosts [168–170].

Degravitation [53, 54,171,172] is the idea of modifying GR to give it a “high pass filter”

that does not allow higher energy (longer wavelength) sources to pass through, but leaves that

of lower energy (shorter wavelength) untouched. In other words, the gravitational response

of a large cosmological constant (with an effectively infinite wavelength) is screened, but GR

inconsistencies with gravitational tests.
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(which involves shorter wavelength interactions) are kept intact.

To demonstrate this phenomenon we first consider the case of a massive vector, reiterating

the arguments made in [157]. We start with the action

S =

∫
dDx

{
− 1

4
HµνH

µν − 1

2
m2AµA

µ −mAµ∂
µϕ− 1

2
∂µϕ∂

µϕ+ AµJ
µ

}
, (2.91)

where Hµν ≡ ∂µAν − ∂νAµ, ϕ is a scalar, Aµ is a vector, J is a source, m is the mass of the

vector and D are the dimensions of the model. Here, ϕ is a scalar that is introduced as part of

a Stückelberg trick, to ensure no DOF are lost when m→ 0 [173–175]26. The scalar equation

of motion becomes

□ϕ+m∂µA
µ = 0, (2.92)

which can then be plugged back into eq. (2.91) to eliminate ϕ, such that

S =

∫
dDx

{
− 1

4
Hµν

(
1− m2

□

)
Hµν + AµJ

µ

}
, (2.93)

where we have used Hµν
1
□H

µν = −2AµA
µ − 2∂µA

µ 1
□∂νA

ν . The resulting equation of motion

becomes (
1− m2

□

)
∂µH

µν = −Jν . (2.94)

If we allow Aµ to be a massive photon we see that eq. (2.94) is equivalent to Maxwell’s

electromagnetism seen through a high pass filter,
(
1− m2

□

)−1

. For higher momenta (shorter

wavelength) sources the filter ∼ 1, so ordinary electromagnetism is preserved. Whereas for

low momenta (longer wavelength) sources the filter is small, weakening the response of J .

We can demonstrate a parallel phenomenon in linearised massive gravity in flat spacetime

26A similar “trick” can be used within massive gravity theories [176].
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by taking the action [157]

S =

∫
dDx

{
Lm=0 −

1

2
m2(hµνh

µν − h2)− 1

2
m2HµνH

µν − 2m2(hµν∂
µAν − h∂µA

µ)

+ gmhµνT
µν

}
,

(2.95)

where hµν is the perturbation of the metric such that gµν = ηµν + hµν , gm is the coupling

strength to the source, and m now refers to the mass of the graviton. Similar to the role of

ϕ in eq. (2.91), Aµ is a Stückelberg field. Finally, Lm=0 corresponds to the Lagrangian of a

linearised massless graviton given by

Lm=0 =
1

2
hµνEµναβhαβ, (2.96)

where

Eµναβ =
(
η(µα η

ν)
β − ηµνηαβ

)
□− 2∂(µ∂(αη

ν)
β) + ∂µ∂νηαβ + ∂α∂βη

µν . (2.97)

To further simplify we add an auxiliary field, M = 1
2
h+ ∂µA

µ, so that the action becomes

S =

∫
dDx

{
Lm=0 +m2

[
− 1

2
hµνh

µν +
1

4
h2 + Aµ□A

µ +M(h−M)

− Aµ(∂µh− 2∂νhµν + 2∂µM)

]
+ gmhµνT

µν

}
.

(2.98)

We can then eliminate the vector field Aµ using the equation of motion

Aµ =
1

□

(
1

2
∂µh− ∂νhµν + ∂µM

)
. (2.99)

This elimination yields

S =

∫
dDx

{
1

2
hµν

(
1− m2

□

)
Eµναβhαβ − 2M

1

□
(∂µ∂νh

µν −□h) + gmhµνT
µν

}
. (2.100)

Notice the incredibly similar structure between this and eq. (2.93). Therefore, computing the
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field equations of eq. (2.100) will yield a similar structure to eq. (2.94), such that the massive

graviton acts as a filter to the source.

Although degravitation can be shown to work at a linear level, an exploration into a

non-linear extension has so far been unfruitful (see [177] and references therein). Despite this,

a study into its cosmology [178] has shown that massive gravity can produce an accelerated

expansion [179, 180]. It also seems that a related theory, bi-metric gravity [181], can also

reproduce phenomenologically accurate cosmologies [182]. Finally, there remains a small

possibility that the non-linear form of another related theory, partially massless gravity, could

provide a solution to the cosmological constant problem [183]. However, constructing such a

theory has thus far proved unsuccessful [183–187].
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Obstructions to self-tuning

In this chapter we review the work from F. Niedermann and A. Padilla in [188], which explored

obstructions to self-tuning and possible ways around these. The reason for this review is due

to the fact that our work comes as a direct reaction to the results of this paper. Much like

Fab Four (section 2.2) and Weinberg’s no-go theorem [51], they construct a generalised model

and place self-tuning conditions upon it to examine what types of theories can and cannot

self-tune. To explore this, they first construct an exchange amplitude, A, which represents

the interaction between a “probe” source, τ ′µν , and a given field. For example, to see how

a scalar, ϕ, interacts linearly with a source we can examine the object τ ′ϕ. Then, we can

understand its gravitational effect by coupling it to the metric and examining the resultant

integral (similar to the form of an action):

A0 =

∫
d4x

√
−ḡ τ ′ϕ, (3.1)

where A0 represents the exchange amplitude for a single massive spin-0 state, τ ′ = τ ′µν ḡ
νν ,

and ḡµν is the background metric where ḡ = det(ḡµν). Note, the use of the background

metric is due to the fact that we are exploring linearised interactions. These amplitudes

are used here to represent the strength of a given interaction. From these amplitudes, one

can study how they behave under certain limits. This method is simply a different way of

studying the gravitational interaction of a given theory 27. It offers a different perspective

27Alongside this it offers a way to consider a range of fields with different masses and coupling strengths,
using the Källén-Lehmann (KL) spectral representation. We will discuss this in more detail later in the
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from the “usual method” of solving the field equations from an explicit action, to provide

a new insight into a given model’s interaction with gravity. Then from this linear study

of the exchange amplitudes, one can construct an explicit non-linear action to study the

model’s field equations and cosmology based on some desired characteristics. Specifically

with self-tuning, [188] focuses on what conditions require the exchange amplitude to vanish

when interacting with a vacuum energy source in a long wavelength limit (where a constant

source has an infinite wavelength). This corresponds to the gravitational effect from a vacuum

source vanishing, which is the desired result for self-tuning to be realised. Alongside this,

they also demand a close agreement with the exchange amplitude of GR for short wavelength

sources. This ensures that the theory to be constructed from this analysis can fit within

observational bounds. Note that the exchange amplitude for GR can be found by computing

the interaction between a probe source and a massless spin-2 particle.

To write eq. (3.1) into a more functional form, we can think of this scalar as being

generated by a separate source, τ . Therefore, we can rewrite eq. (3.1) by considering the

inhomogeneous KG equation for a scalar interacting with a separate source via (−□+m2)ϕ =

τ , where m2 is effective mass squared of the scalar and τ = τµν ḡ
µν . Using this expression we

can now write ϕ = (−□+m2)
−1
τ and substitute this into eq. (3.1) to obtain

A0 = −
∫

d4x
√
−ḡ τ ′ 1

□−m2
τ.

This now represents a source τ ′µν interacting with another source τµν via a propagator. In this

case the propagator takes the explicit form (−□+m2)
−1
, which is that of a massive scalar

field.

Furthermore, we want an exchange amplitude that is mediated by both single and multi-

particle states using a Källén-Lehmann (KL) spectral representation [189,190] to ensure that

chapter.
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we fully capture all possible configurations. This idea of a KL spectral representation is to

create an expression for the sum of all the possible propagators (which will differ based on

the value of the mass term) for a given spin state. Returning to our scalar field example, we

want a way to write the sum of all propagators for spin-0 (from a lower mass limit, s0, all the

way up to ∞) such that

∆ = −
∫ ∞

s0

dsρ0(s)
1

□− s
,

where ∆ represents the sum of the propagators, ρ0(s) is the “spectral density function” for

a massive scalar, and s refers to the effective mass squared. The key point here is that the

above integral effectively creates a sum of all possible massive spin-0 configurations. Then

the spectral density function, ρ0(s), simply describes the coupling of that propagator at a

given mass s. This construction allows us to represent the full range of propagators when we

build our exchange amplitude.

In [188] they also consider the exchange amplitude for all states up to spin-2. Therefore,

we can write the entire exchange amplitude, assuming linear couplings to the source, by

summing the massless and massive components of each given spin state such that

A = ρ̄2Ā2 + ρ̄0Ā0 +

∫ ∞

s2

ds ρ2(s)A2 (s) +

∫ ∞

s0

ds ρ0(s)A0(s). (3.2)

The model includes the exchange amplitude of: a single massless spin-2 state, Ā2, with

coupling, ρ̄2; a single massless spin-0 state, Ā0, with coupling, ρ̄0; massive spin-2 states, A2,

of mass s with spectral density, ρ2(s); and massive spin-0 states, A0, of mass s with spectral

density, ρ0(s). Notice, we have not included any spin-1 states since we only consider linear

couplings to conserved sources. A linear spin-1 state can only contribute via a derivative,

therefore if we assume conservation of the source, ∇̄µτ
µν = 0, a spin-1 term will never

contribute as we can consistently remove it by integrating by parts. Finally, s2 and s0 are

the lower limits of the mass of the spin-2 and spin-0 states respectively. Note, in order to

65



CHAPTER 3. OBSTRUCTIONS TO SELF-TUNING

evade Weinberg they also allow for breaks in translational invariance and non-local kinetic

operators. It is further assumed that free field propagators are in a canonical form such that

they obey unitarity and Lorentz invariance, and the spectral densities are positive to preserve

unitarity (i.e. ρ̄2, ρ̄0, ρ2, ρ0 ≥ 0).

We can keep the couplings and spectral densities entirely arbitrary for now, as these

objects only infer the strength of the given state. But we must define the exchange amplitude

for each state. First, we reiterate our definition for the exchange amplitude of a massive

scalar, A0, and state that of a massless scalar, Ā0, by taking s = 0 to obtain

Ā0 = −
∫

d4x
√
−ḡ τ ′ 1

□̄
τ, (3.3)

A0 = −
∫

d4x
√
−ḡ τ ′ 1

□̄− s
τ, (3.4)

where □̄ ≡ ∇̄µ∇̄µ, which refers to the derivatives when computed on the background since

we are dealing with linearised sources. For spin-2 we start by examining the object

A =

∫
d4x

√
−ḡ τ ′µνhµν , (3.5)

where hµν is the graviton fluctuation due to a separate source τµν . Note, that eq. (3.5) is

the most general way of writing the exchange amplitude for models up to spin-2. However,

in order to write down A2 separately we must first write down an expression for the hµν

that is generated by τµν for a massive spin-2 state. By considering this explicit expression

on a curved background, [188] were able to write the exchange amplitude as two sources

interacting via a massive spin-2 propagator. Unlike before, we cannot generically find the

massless counterpart by setting the mass to 0 as this will give rise to the well-known vDVZ

discontinuity [159,160] (as discussed in section 2.7). Although the vDVZ discontinuity can be

evaded on a curved background, the same cannot be said for that of Minkowski. Therefore,

we must reconstruct an expression for the graviton fluctuation generated by a source for a
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massless spin-2 state to find Ā2. The full derivation is fairly involved, but can be found in

the Appendix of [188], so we will instead state the form here28:

Ā2 = −
∫

d4x
√
−ḡ
{
τ ′µν(TT )

1

□̄− 2κ
τ (TT )µν − 1

6
τ ′

1

□̄+ 4κ
τ

}
, (3.6)

A2 = −
∫

d4x
√
−ḡ
{
τ ′µν(TT )

1

□̄− 2κ− s
τ (TT )µν − κ

3(2κ− s)
τ ′

1

□̄+ 4κ
τ

}
, (3.7)

where κ is the spacetime curvature (κ = 0 is a Minkowski background, κ > 0 is a dS

background, and κ < 0 is an AdS background) with

τ (TT )µν = τµν +
1

3

[
∇̄µ∇̄ν − ḡµν(□̄+ 3κ)

]( 1

□̄+ 4κ

)
τ. (3.8)

Note κ, which refers to the intrinsic curvature of the system, should not be confused with

k in eq. (1.7), which refers to the spatial curvature. Usually 3κ = (−Λeff, 0,Λeff) for AdS,

Minkowski, and dS solutions respectively without a self-tuning mechanism. However with an

apt mechanism, we can force 3κ (the intrinsic spacetime curvature) to be small (or 0 if we

want to achieve a Minkowski solution for Λeff ̸= 0) for an arbitrarily large Λeff. This ensures

the gravitational effect of Λeff, which would usually produce a large intrinsic curvature, can be

cancelled off. In other words, the value of the effective cosmological constant will not affect

the value of the spacetime curvature. Using eq. (3.8) they also derive the spin-2 amplitudes

for localised sources:

Ā2 = −
∫

d4x
√
−ḡ
{
τ ′µν

1

□̄− 2κ
τµν −

1

2
τ ′
[

1/2

□̄− 2κ
+

1/2

□̄+ 6κ

]
τ

}
, (3.9)

A2 = −
∫

d4x
√
−ḡ
{
τ ′µν

1

□̄− 2κ− s
τµν

− 1

2
τ ′
[

1/2

□̄− 2κ− s
+
κ− s/6

κ− s/2

1/2

□̄+ 6κ− s

]
τ

}
.

(3.10)

28In section 4.2 we calculate the exchange amplitude of a theory which involves a single massive graviton
(alongside a single massive scalar) on a curved background. So a slightly altered derivation is contained within
this thesis.
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Conservation of localised sources ensures that it vanishes in response to ∇̄µ∇̄ν (contained

within our definition for eq. (3.8)). However, since vacuum sources are constant they do not

generically vanish in response to ∇̄µ∇̄ν due to the presence of non-local operators. Therefore

we cannot generically use eqs. (3.9) and (3.10), instead we must use the general expressions

when considering vacuum interactions (eqs. (3.6) and (3.7)). Note, that eqs. (3.3) and (3.4)

do not contain any ∇̄µ∇̄ν terms, so these expressions can be used for both localised and

vacuum sources.

Now that we have constructed our general exchange amplitude we place two self-tuning

conditions upon it, in order to constrain the parameter space of the theory. Self-tuning here

requires the gravitational response of an infinite wavelength source to be screened, whilst

leaving short distance gravity sources mostly untouched. In other words our conditions are

defined such that:

(1) the exchange amplitude, A, should vanish in response to a vacuum energy source, which

corresponds to a low energy (long wavelength) limit,

(2) the exchange amplitude, A, should closely agree with that of GR (due to its experimental

success) in response to localised sources, which corresponds to a high energy (short

wavelength) limit.

We start by considering this theory on a Minkowski background (κ = 0). In [188] they

take very general lower mass limits such that s2 = 0+ = s0 to ensure the positivity of each

effective mass squared (where the above refers to s2, s0 > 0, but we have written it as above

for notational convenience). We first examine condition (1) by allowing the vacuum energy

source, τµν = −Λvacηµν , to interact with a localised probe, τ ′µν . Substituting this into eq. (3.2)

with our exchange amplitudes for generalised sources (eqs. (3.3), (3.4), (3.6), and (3.7)) yields
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the “vacuum” constraint

−2

3
ρ̄2

1

□̄
1 + 4ρ̄0

1

□̄
1− 4

∫ ∞

0+
dsρ0(s)

1

s
1 = 0, (3.11)

where we have used 1
□̄−s1 = −1

s
(as |□̄| ≪ |s|) and the fact that the transverse-tracefree part

of the energy-momentum tensor τ
(TT )
µν vanishes for a constant vacuum source. If we operate

on the above (eq. (3.11)) with □̄ we notice that the third term is much smaller than the first

two terms since |□̄| ≪ |s|. Therefore, we obtain our first vacuum constraint for a Minkowski

background: ρ̄2 = 6ρ̄0
29.

Turning our attention to condition (2), shorter wavelength sources must closely match

the exchange amplitude of GR such that

A → − 1

M2
Pl

∫
d4x

√
−ḡ
[
τ ′µν

1

□̄
τµν −

1

2
(1− ϵ)τ ′

1

□̄
τ

]
, (3.12)

as □̄ → −∞. The exchange amplitude here is constructed by considering a massless spin-2

state on a generic background with a coupling constant ρ̄2 =
1

M2
Pl
. Here, we can set κ = 0 as

the kinetic sources will dominate over κ for a high energy (short wavelength) limit, |□̄| ≫ |κ|.

Finally, ϵ represents a small deviation from GR in accordance with solar system tests of

gravity where |ϵ| ≲ 10−5 [3]. The ϵ can be written coupled to the tensor parts, but instead

we have chosen to normalise it to the scalar parts. It is used to ensure that we can encode

a deviation from GR into the above description, whilst still residing within observational

bounds. To satisfy condition (2) we demand that the general exchange amplitude (eq. (3.2))

agrees with that of eq. (3.12) (hence it closely agrees with GR) for localised sources (using

the “localised” amplitudes eqs. (3.3), (3.4), (3.9), and (3.10)). From this we can write two

more constraints by separating the tensor (∝ τµν) and the scalar (∝ τ) components, and

29Note that this also implies that the third term must vanish separately, which is a property that we will
exploit when κ ̸= 0.
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expressing them in momentum space such that

ρ̄2
x

+

∫ ∞

0+
ds
ρ2(s)

x+ s
→ 1

M2
Pl

1

x
, (3.13)

−1

2

ρ̄2
x

− 1

3

∫ ∞

0+
ds
ρ2(s)

x+ s
+
ρ̄0
x

+

∫ ∞

0+
ds
ρ0(s)

x+ s
→ −1

2
(1− ϵ)

1

M2
Pl

1

x
. (3.14)

where □̄ ∝ x ≡ pµp
µ → ∞. We can also modify the “scalar” constraint (eq. (3.14)) by

removing the ρ̄2 term using the “tensor” constraint (eq. (3.13)):

1

3

∫ ∞

0+
ds
ρ2(s)

x+ s
+ 2

ρ̄0
x

+ 2

∫ ∞

0+
ds
ρ0(s)

x+ s
→ ϵ

M2
Pl

1

x
, (3.15)

which we will now refer to as the scalar constraint. We can immediately recognise that the

size of each term in the scalar constraint (eq. (3.15)) is limited due to the positivity of x

and the spectral densities. In other words, x
∫∞
0+

dsρ2(s)
x+s

, ρ̄0, and x
∫∞
0+

dsρ0(s)
x+s

≲ |ϵ|
M2

Pl
. Since

x
∫∞
0+

dsρ2(s)
x+s

is small, the tensor constraint (eq. (3.13)) implies that ρ̄2 ∼ 1
M2

Pl
. Notice there is

a contradiction: the scalar constraint implies that ρ̄0 ≲ |ϵ|
M2

Pl
, whereas the tensor constraint

implies that ρ̄2 ∼ 1
M2

Pl
. This directly contradicts the vacuum constraint: ρ̄2 = 6ρ̄0. Therefore

self-tuning, as we have defined it, is not allowed on a Minkowski background.

We can repeat the same process on a curved background (κ ̸= 0). Through condition (1)

we, once again, demand that the exchange amplitude (eq. (3.2)) vanishes for τ = −Λvacḡµν :

ρ̄2
6κ

− 4ρ̄0
1

□̄
1− 1

3

∫ ∞

s2

ds
ρ2(s)

s− 2κ
+ 4

∫ ∞

s0

ds
ρ0(s)

s
= 0. (3.16)

This is an analogous expression to the vacuum constraint on a Minkowski background

(eq. (3.11)), where this time we have used eqs. (3.3), (3.4), (3.6), and (3.7) with κ ̸= 0.

Operating on the above (eq. (3.16)) with □̄ renders the first, third, and fourth terms as small

since |□̄| ≪ |s|, |κ|. Therefore the liner combination of the three terms will vanish according

to eq. (3.16). This also implies that the second term must vanish separately, such that ρ̄0 = 0.
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This is our vacuum constraint.

To satisfy condition (2) we, once again, split the tensor and scalar parts for our exchange

amplitude eq. (3.2) (using the “localised” amplitudes eqs. (3.3), (3.4), (3.9), and (3.10) with

κ ̸= 0) and compare with that of eq. (3.12) to obtain

ρ̄2
x

+

∫ ∞

s2

ds
ρ2(s)

x+ s
→ 1

M2
Pl

1

x
, (3.17)

−1

2

ρ̄2
x

− 1

3

∫ ∞

0+
ds
ρ2(s)

x+ s

[
1− κ

s− 2κ

]
+
ρ̄0
x

+

∫ ∞

0+
ds
ρ0(s)

x+ s
→ −1

2
(1− ϵ)

1

M2
Pl

1

x
, (3.18)

where we have used the fact that |x| ≫ |κ| for the high energy (short wavelength) limit.

Similar to deriving eq. (3.15), we can remove ρ̄2 from the “scalar” constraint (eq. (3.18))

using the “tensor” constraint (eq. (3.17)) to obtain our new scalar constraint:

1

3

∫ ∞

s2

ds
ρ2(s)

x+ s
+

2κ

3

∫ ∞

s2

ds
ρ2(s)

x+ s

1

s− 2κ
+ 2

ρ̄0
x

+ 2

∫ ∞

s0

ds
ρ0(s)

x+ s
→ ϵ

M2
Pl

1

x
. (3.19)

Note, the lower limit in dS space for s2 is set by perturbative unitarity on spin-2 states such

that s > 2κ [183,184,191–193], which is often called the “Higuchi bound”. However, for AdS

space we must take the lower limit as s2 > 0 to avoid helicity-1 ghosts [194]. Also in [188]

they set a very general lower mass limit for the scalar, s0 > 0, in dS space ensuring that

the effective mass squared of the scalar is positive. However, for AdS space they use the

Breitenlohner-Freedman bound [195] such that s0 = 4κ.

First, we specifically focus on the implications of these constraints for a dS background

(κ > 0). Once again, the positivity of the spectral densities requires each term in the scalar

constraint (eq. (3.19)) to sum to be small, such that x
∫∞
s2

dsρ2(s)
x+s

≲ |ϵ|
M2

Pl
. This then sets

ρ̄2 ∼ 1
M2

Pl
from the tensor constraint (eq. (3.17)). We then narrow our focus to the second
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term in scalar constraint to obtain

|ϵ|
M2

Pl

≳ xκ

∫ ∞

2κ+
ds

ρ2(s)

s− 2κ

1

x+ s
,

≳ κ

∫ ∞

2κ+
ds

ρ2(s)

s− 2κ

1

1 + s/x
.

(3.20)

Then, we use the fact that x→ ∞ in the high energy (short wavelength) limit such that

|ϵ|
M2

Pl

≳
∫ s∗

2κ+
ds

ρ2(s)

s− 2κ
> 0, (3.21)

where s∗ is some arbitrarily large but finite constant. Note, there is some loss of generality

now that we have assumed that the masses for spin-2 states do not extend to ∞, rather the

ceiling is s∗. Nevertheless, we can still proceed with the knowledge that we can capture spin-2

states with large masses in our self-tuning analysis. Now, we substitute ρ̄2 ∼ 1
M2

Pl
and ρ̄0 = 0

into the vacuum constraint (eq. (3.16)), alongside the fact that
∫ s∗
2κ+

ds ρ2(s)
s−2κ

is small to obtain

24κM2
Pl

∫ ∞

s0

ds
ρ0(s)

s
∼ −1 +O(ϵ), (3.22)

which directly contradicts the positivity of ρ0. This suggests self-tuning is not allowed in dS

space either. Note, that these findings appear to rule out Fab Four (constructed in Minkowski

space) and well-tempering (constructed in dS space) as viable self-tuning models. However

to reiterate, the above self-tuning conditions only apply to linearised theories. Indeed, the

non-linearities within Fab Four and well-tempering ensure that both models can self-tune.

Turning our attention to an AdS background, we find that there exists an “AdS loophole”

that can satisfy all three constraints (eqs. (3.16), (3.17), and (3.19)) simultaneously. Now

that κ < 0, the 2κ
3

∫∞
s2

ds ρ2(s)
s−2κ

term in the scalar constraint (eq. (3.19)) must be negative.

Consequently, in contrast to Minkowski and dS backgrounds, each term in the scalar constraint

(eq. (3.19)) does not necessarily have to be small in order to sum to |ϵ|
M2

Pl

1
x
. Instead, there
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are theoretically a great number of loopholes we can exploit, so we demonstrate that the

constraints are satisfied through an explicit example. In [188], they achieved this by writing a

choice of spectral densities that described a theory with a massless graviton, a single massive

graviton, and a single massive scalar. Instead, we consider a choice of a spectral densities

that describes a single massive graviton alongside a single massive scalar:

ρ̄2 = 0, ρ̄0 = 0, ρ2(s) =
1

M2
Pl

δ(s−m2
g), ρ0(s) =

1

M2
Pl

m2
ϕ

12Γ
δ(s−m2

ϕ), (3.23)

where Γ ≡ 2q2 +m2
g and we have made a change in variables such that κ→ −q2 with q2 > 0

for convenience. Furthermore, m2
g and m

2
ϕ are the effective mass squared of the graviton and

the scalar respectively, where both masses are finite. Substituting this explicit example into

the vacuum constraint (eq. (3.16)) yields

1

M2
Pl

[
− 1

3

1

2q2 +m2
g

+
4

12

m2
ϕ

m2
ϕΓ

]
= 0,

which is clearly automatically satisfied. Likewise, the tensor constraint (eq. (3.17)) is imme-

diately satisfied when we recognise that x→ ∞. However, the scalar constraint (eq. (3.19))

yields

1

M2
Pl

{(
1

3
− 2q2

3Γ

)
1

x+m2
g

+ 2
m2
ϕ

12Γ

1

x+m2
ϕ

}
→ ϵ

M2
Pl

1

x
,

which produces the constraint ϵ =
m2

ϕ+2m2
g

6Γ
when we take x → ∞. This suggests that it is

viable to construct a linear self-tuning theory on an AdS background, and it is through the

specific example in eq. (3.23) that we write an explicit action.
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Chapter 4

Generalised Fab Four in anti-de Sitter

space

This chapter is based on the work published in [196], but before we consider the specific

action we will briefly discuss the efficacy of working in AdS space. We start by mentioning

the AdS/CFT correspondence (see [197] for a review), which posits the duality between

quantum field theories and gravitational theories on an AdS background (first hypothesised

by Maldacena in 1997 [198]). These principles are interesting, having been used in other areas

of modern day physics (such as condensed matter [199]) and they could provide key insights

into a complete picture of quantum gravity. However, despite its success this thesis does not

focus on this aspect of AdS space, but instead approaches it with a purely gravitational lens.

Observations seem to suggest that the Universe is undergoing an accelerated expansion (as

discussed in chapter 1), which implies that the curvature of the Universe corresponds to a

small dS space. In contrast to this, our theory seeks to create a Universe with a small AdS

background regardless of the value of the vacuum energy. However, we still consider it a

success provided that the value of the cosmological constant is heavily reduced. As discussed

in chapter 2, even if Λvac ̸= Λobs, as long as Λvac is on the same scale as Λobs this removes

the need for repeated fine-tunings in Λbare. Hence radiative instability is no longer a problem.

After this, it is on the onus of a DE candidate to make up the difference. Even so, AdS

spacetime makes for a great testing ground to explore the underlying mechanisms of a model.

As highlighted in [188] it is not immediately possible to construct a linear self-tuning theory
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on a Minkowski or dS background30. AdS is allowed, serving as an exploration point that

could point us towards possible loopholes for self-tuning in dS or Minkowski space (as we will

later show).

Returning to chapter 3, our choice of spectral densities in eq. (3.23) corresponds to a

single massive scalar field, alongside a single massive graviton. To fully capture the scalar

component and the massive graviton we consider a generalisation of the Fab Four action

(eq. (2.17) in section 2.2) on an AdS background [196]:

S =

∫
d4x

√
−g [Lj + Lp + Lg + Lr −K(ϕ)gµν∇µϕ∇νϕ− Umg − Λbare] + Sm[gµν , ψ], (4.1)

where

Lj = Vj(ϕ)(G
µν − 3q2gµν)∇νϕ∇µϕ, (4.2)

Lp = Vp(ϕ)(P
µναβ + 2q2gµ[αgβ]ν)∇µϕ∇αϕ∇µ∇βϕ, (4.3)

Lg = Vg(ϕ)(R + 12q2), (4.4)

Lr = Vr(ϕ)(GGB − 24q4), (4.5)

where gµν is the Jordan frame metric. The usual Fab Four terms (eqs. (2.18) to (2.21))

have been modified to include an AdS curvature term, −q2 (where q2 > 0), by shifting

Rµναβ → Rµναβ + q
2(gµαgνβ − gµβgνα). Here, we have extracted the latter term to ensure that

the background curvature from R is negative. This choice ensures that each term vanishes on

an AdS background solution. Recall, that we allow for an arbitrary Λbare term to ensure that

there are no hidden fine-tunings between it and Λvac. We have also included two additional

terms. The first is an extra kinetic scalar term coupled to the arbitrary function K(ϕ), with

the reasons for its inclusion becoming apparent later.

30Note the use of the word linear. Non-linearities within other scalar-tensor models (as in sections 2.2
to 2.4) ensure that self-tuning can still be achieved.
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The second additional term is that of a de Rham-Gabadadze-Tolley (dRGT) massive

gravity term that takes the form [168]

Umg =
1

4
m2V 2

g

[
U(Σ)

]FE

F̄E

, (4.6)

where we use
[
Umg(Σ)

]FE

F̄E

= Umg(FE)− Umg(F̄E) as shorthand. The explicit arguments take

the form (F 2
E)

µ
ν = g̃µαḡνα = 1

Vg
gµαḡνα and (F̄ 2

E)
µ
ν = 1

V̄g
δµν through the Einstein frame metric,

g̃µν = Vggµν , where the background AdS metric is ḡµν and V̄g is the George potential evaluated

on the background (when ϕ = ϕ̄). The explicit form of the U(Σ) is given by

U(Σ) = −4
(
12− 6Σα

α + Σα
αΣ

β
β − Σα

βΣ
β
α

)
. (4.7)

Here, we will briefly describe the derivation for our form of the potential. In [168], the form

of the metric is given by g̃µν = ηµν + hµν = ηαβ∂µΦ
α∂νΦ

β + h′µν , where hµν is the metric

perturbation, h′µν is the “covariantised” metric perturbation, ηµν is the Minkowski background

metric, and Φ are the Stückelberg fields. This simply refers to the metric perturbation when

Stückelberg fields are added to the theory. We set the Stückelberg fields to vanish so h′µν → hµν

and we set ηµν → ḡµν to cast the background into AdS space. Now, the metric takes the form

g̃µν = ḡµν + hµν . The explicit form of U (eq. (4.7)) in [168] is given by

U(g̃, h) = −4
(
Hµ
µH

ν
ν −Hµ

νH
ν
µ

)
, (4.8)

where Hµ
ν ≡ δµν −

√
δµν − hµν . Through a substitution of hµν = δµν − g̃µαḡνα, we can write

Hµ
ν = δµν −

√
g̃µαḡνα . Plugging this into eq. (4.8) yields

U(g̃, h) = −4
(
12− 6

√
g̃µν ḡµν +

√
g̃µν ḡµν g̃αβ ḡαβ −

√
g̃ναḡµαg̃µβ ḡνβ

)
. (4.9)

Since this only contains terms that are summed over we can simplify our notation such that
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(F 2
E)

µ
ν = g̃µαḡνα, so eq. (4.9) becomes eq. (4.7) if we identify Σ with FE. Finally, the explicit

form of Umg is given in [168] as

Umg = −M
2
Pl

2

m2

4
U(g̃, h). (4.10)

Recall, that g̃µν is the Einstein frame metric, which can be cast into the Jordan frame using

g̃µν = Vggµν . Then, we can identify
M2

Pl

2
with Vg by comparing the Lagrangian in [168] with

eq. (4.1). Lastly, in a similar fashion to our reconstruction of the Fab Four terms (eqs. (4.2)

to (4.5)), we demand that Umg vanishes on the background yielding eq. (4.6). Notice Umg

contains explicit forms of the background metric, hence breaks diffeomorphism invariance.

Usually this can be restored with the addition of Stückelberg fields [156], which we have set

to vanish. However, to simplify our analysis we proceed with this break in diffeomorphism

invariance, knowing that it could be restored in an extended analysis.

To achieve self-tuning we explore whether the field equations at the level of the back-

ground can accommodate for a cancellation between Λbare and Λvac, whilst the linearised

perturbations remain free of instabilities and closely align with GR. Unlike the original Fab

Four (section 2.2), we evade Weinberg’s no-go theorem by breaking translational invariance

on the level of the metric (as we are no longer in Minkowski spacetime) rather than the

scalars. This leaves us free to find a background solution that can accommodate for constant

scalars, which also allows us to consistently remove the John and Paul terms (Lj and Lp),

as they will not contribute to our analysis. Therefore the addition of the K(ϕ) term within

our action is to provide the model with a kinetic dependence for ϕ. This will ensure that the

scalar field can be dynamical; without it we run the risk of a static scalar field. If ϕ is static

then it will not be able to evolve towards its background solution when perturbed. Instead,

the scalar field will remain at its perturbed position which could spoil our self-tuning vacuum

solution (as shown in section 4.1). Also notice that the addition of the K(ϕ) term will not

alter our vacuum solution (section 4.1) but it will contribute to the linearised perturbation
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(section 4.2).

These truncations reduce the action to

S =

∫
d4x

√
−g

[
G(ϕ)2(R + 12q2) + Vr(ϕ)(GGB − 24q4)

−K(ϕ)gµν∇µϕ∇νϕ− m2

4
G(ϕ)4

[
U(Σ)

]FE

1
G 1

− Λbare

]
+ Sm[gµν ,Ψ],

(4.11)

where we have written the George potential as Vg(ϕ) = G(ϕ)2 to ensure that Vg remains

positive irrespective of the value of ϕ and the form of G. As per our discussion of Brans-Dicke

in section 2.2, Vg acts as an effective gravitational “constant”, therefore we require it be

positive. Now we calculate Einstein’s field equation (Eµν = 0) and the scalar field equation

(Eϕ = 0) which are varied with respect to the metric and the scalar respectively such that

Eµν = 2
(
∇µ∇ν − δµν□−Gµ

ν

)
G2 + 12q2G2δµν + 2K

{
∇µϕ∇νϕ− 1

2

(
∇ϕ
)2
δµν

}
− δµνΛbare

+
m2

4

{
Wµ

ν − δµν

[
U(Σ)

]FE

1
G 1

}
G4 +

(
8P µα

νβ∇α∇β − 24q4δµν
)
Vr + T µν ,

(4.12)

Eϕ = 2GG ′(R + 12q2
)
+K′(∇ϕ)2 + 2K□ϕ− m2

4
G3G ′

[
4U(Σ)− Tr

(
Σ
∂U
∂Σ

)]FE

1
G 1

+ V ′
r

[
GGB − 24q4

]
,

(4.13)

where W is given by

Wµ
ν =

(
∂U
∂FE

)α
ν

(FE)
µ
α = −4

(
− 6(FE)

µ
ν + 2(FE)

α
α(FE)

µ
ν − 2(FE)

µ
α(FE)

α
ν

)
, (4.14)

Tµν = − 2√
−ḡ

δSm

δḡµν
is the energy-momentum tensor for matter minimally coupled to the metric,

and primes denote a derivative with respect to ϕ. Finally, recall that the form of both P µα
νβ

and GGB are given in section 2.2.

Here, we will address the non-trivial parts of these calculations. We first focus on
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Einstein’s field equation (eq. (4.12)), where the first and third terms are given by Brans-Dicke

gravity [62], and the Ringo terms (coupled to Vr) are given by Fab Four [80]. Turning our

attention to the massive terms, it is not immediately obvious where the Wµ
ν term arises.

Varying U(FE) yields (
∂U(FE)
∂FE

δgFE

)α
α

, (4.15)

where δg denotes a variation with respect to the metric. Recall that (F 2
E)

µ
ν = g̃µαḡνα, so we

can write (FE)
µ
α(δgFE)

α
ν + (δgFE)

µ
β(FE)

β
ν = δg̃µαḡνα = 1

G2 δg
µαḡνα, which reduces to 2(δgF )

µ
ν =

δg̃βαḡνα((FE)
−1)µβ if we assume that gµν and ḡµν only contain diagonal components. Now we

can write (
∂U(FE)
∂FE

δgFE

)α
α

=
1

2

(
∂U(FE)
∂FE

(FE)
−1δgg̃

−1ḡ

)α
α

. (4.16)

Then, by raising the indices with the Einstein frame metric and once again recognising the

definition of FE we obtain Wµ
ν as in eq. (4.14).

Similarly with the scalar field equation (eq. (4.13)) the second and third terms are given

by Brans-Dicke [62], whilst the Ringo terms are given by Fab Four [80]. The massive term

contains
(
Σ∂U
∂Σ

)α
α
which arises by varying U(Σ):

δϕU(Σ) =
∂U(Σ)
∂ϕ

δϕ =
∂U
∂Σµ

ν

∂Σµ
ν

∂ϕ
δϕ, (4.17)

where δϕ denotes a variation with respect to ϕ. From this, we automatically recognise(
∂Σ
∂ϕ

)µ
ν
= −G′

G Σ
µ
ν and substitute this result directly back into eq. (4.13).

4.1 Self-tuning constraints

First, we consider the field equations on the background using ϕ = ϕ̄ = constant and gµν = ḡµν ,

alongside an arbitrarily large vacuum energy source, Tµν = −Λvacgµν . This will allow us to

79



CHAPTER 4. GENERALISED FAB FOUR IN ANTI-DE SITTER SPACE

establish whether the theory can accommodate for an arbitrary cosmological constant term,

to recover a small background AdS solution with curvature −q2. It is clear to see that the

scalar field equation is automatically satisfied for the background solution (which can be

shown by substituting ϕ = ϕ̄ and gµν = ḡµν into eq. (4.13)), whereas Einstein’s field equation

(eq. (4.12)) yields our “self-tuning equation”:

Λvac + Λbare

6Ḡ2
=

Λeff

6Ḡ2
= m2

(
Ḡ − 1

)
+ q2

(
1− 4q2

Ḡ2
V̄r

)
, (4.18)

where a bar denotes the corresponding potential evaluated at ϕ = ϕ̄ (i.e. evaluated on the

background). To understand the role of the massive graviton and the Ringo term we can

remove them from eq. (4.18) and analyse the resulting self-tuning equation, which is now

given by

Λeff

6Ḡ2
= q2.

For self-tuning to occur the scale of the background curvature must be similar to or smaller

than that of the curvature of the Universe today (q2 ≲ H2
0 ), which sets |Λeff| ≲M2

PlH
2
0 . This

combination fine-tunes Λbare to cancel Λvac to an extreme degree of precision, leading to the

familiar problem of radiative instability. A reintroduction of the Ringo term can provide this

cancellation between the cosmological constant term and the scalar within V̄r. Naively, the

massive term can be used in a similar way, but upon closer inspection this is not allowed.

The massive term’s scalar dependence is contained within Ḡ, which we can identify with the

Planck mass scale, G ∼MPl ∼ 1018GeV, as it sets the scale of the gravitational interactions.

This greatly restricts the allowed scalar dependence for the mass term. Whereas, V̄r can (so

far) be totally arbitrary. However, there is some potential use of the massive term still. If it

is large enough to cancel Λvac, this is still a step in the right direction, but it effectively moves

the fine-tuning from Λbare to the massive term. Unfortunately, through a detailed analysis

on fluctuations about the vacuum (in section 4.2), we demonstrate that m2
(
Ḡ − 1

)
must be

small. This reintroduces the fine-tuning onto the bare cosmological constant, highlighting
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the importance of the Ringo term.

4.2 Exchange amplitude between two conserved sources

To further understand this model, we write the exchange amplitude between two conserved

sources (similar to the analysis in [188]). This will allow us to determine whether the two self-

tuning conditions as defined in chapter 3 are met. That is to say: (1) the amplitude vanishes

for a vacuum source; but (2) the amplitude closely matches that of GR for localised sources.

Examining the resultant expression will further help us to identify potential instabilities that

we wish to avoid. The most general exchange amplitude for this action is given by

A =

∫
d4x

√
−ḡ τ ′µνhµν .

where the form matches that of eq. (3.5) in chapter 3 [188]. However, this time we consider

a metric perturbation, hµν , that can be sourced by both scalar and graviton fluctuations.

Therefore, it can describe the exchange amplitude for our entire action, not just the spin-2

components (in contrast to eq. (3.5) which considered a metric perturbation that is sourced

only by massive graviton fluctuations). In order to separate the tensor, vector, and scalar

parts of the metric perturbation we decompose hµν such that

hµν = h(TT )µν + 2∇̄(µA
(T )
ν) + 2∇̄µ∇̄νχ+ 2ḡµνψ, (4.19)

where h
(TT )
µν is transverse-tracefree (ḡµνh

(TT )
µν = 0 = ∇̄µh

(TT )
µν ), A

(T )
µ is transverse (∇̄µA

(T )
µ = 0),

and indices are raised and lowered with respect to the background metric, ḡµν . Here, we

assume that the couplings to the energy-momentum tensor are linear. In that case, A
(T )
µ will

consistently enter into equations with the form ∇̄µA
(T )
µ , which vanishes due to the transverse
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condition. Therefore, we are free to write

hµν = h(TT )µν + 2∇̄µ∇̄νχ+ 2ḡµνψ. (4.20)

Now, substituting the decomposition of hµν (eq. (4.20)) into the general equation for the

amplitude (eq. (3.5)) we obtain

A =

∫
d4x

√
−ḡ
(
τ ′µνh(TT )µν + 2τ ′ψ

)
, (4.21)

where we have removed the ∇̄µ∇̄νχ term: if we assume conservation of the source, ∇̄µτ
′µν = 0,

these terms will vanish when we integrate by parts, hence we can remove them.

Now the goal is clear, to understand the interaction our theory has in relation to another

source, we must find expressions for h
(TT )
µν and ψ that are proportional only to the source,

τµν . To find this, we start by perturbing eqs. (4.12) and (4.13) about the background solution

using

gµν = ḡµν + hµν , ϕ = ϕ̄+ δϕ, T µν = −Λvacδ
µ
ν + τµν . (4.22)

To reiterate the metric is perturbed around an AdS background, the scalar is perturbed

around a constant background scalar, and we separate the vacuum components from the

local matter components in the energy-momentum tensor (where the vacuum components

are essentially the background). The perturbed field equations, δEµν = 0 and δEϕ = 0, are

given by

δEµν = − 2Ḡ2δGµ
ν + (4ḠḠ ′ − 8q2V̄ ′

r )D
µ
ν δϕ+m2

g

(
6ḠḠ ′δϕδµν + Ḡ2

(
hδµν − hµν

))
+ τµν , (4.23)

δEϕ = 2ḠḠ ′δR + 3m2
gḠḠ ′h+ 2K̄□̄δϕ+ V̄ ′

r

(
4P̄µ

α
νβ∇̄α∇̄βhµν − 12q4h

)
, (4.24)

where

Dµ
ν ≡ ∇̄µ∇̄ν − □̄δµν + 3q2δµν , m2

g ≡ m2(3Ḡ − 2), (4.25)

82



CHAPTER 4. GENERALISED FAB FOUR IN ANTI-DE SITTER SPACE

and primes are used such that Ā′ = ∂A
∂ϕ

∣∣∣
ϕ̄
. As before, with deriving the field equations we will

address the non-trivial parts of this calculation. The massive terms can be simply derived by

substituting the perturbations (eq. (4.22)) into the field equations (eqs. (4.12) and (4.13)),

where we have used δgµαḡαν = −hµαḡαν = −hµν .

For the Ringo terms we first consider the perturbed Einstein field equation (eq. (4.23)),

where only the δϕ terms have survived since δP µα
νβ∇̄α∇̄βV̄r = 0, leaving

(
8P̄ µα

νβ∇̄α∇̄β −

24q4δµν
)
V̄rδϕ. Evaluating this expression then yields −8q2V̄ ′

rD
µ
ν δϕ as in eq. (4.23). However,

the Ringo term derivation in the perturbed scalar equation (eq. (4.24)) is a little bit more in-

volved. Of course, we could derive this expression by explicitly substituting the perturbations

(eq. (4.22)) into the scalar equation (eq. (4.13)), but it is easier to see it emerge through a little

“trick”. We first only consider the Ringo parts of Eϕ (eq. (4.13)) where (Eϕ)r = V ′
r

[
GGB−24q4

]
and by perturbing this we obtain

δ (Eϕ)r =
∫
y

δV ′
r (x)

δϕ(y)
δϕ(y)

(
ḠGB − 24q2

)
dy + V̄ ′

r

∫
y

δGGB(x)

δgµν(y)
δgµν(y)dy

= V̄ ′
r

∫
y

δGGB(x)

δgµν(y)
δgµν(y)dy,

(4.26)

where (Eϕ)r is a variable in x and y is a dummy variable that we integrate over with
∫
y
.

Note we have not included every instance where a function is dependent on x which we keep

implicit. Also, notice that we have removed the term ∝ δϕ within eq. (4.26) as ḠGB = 24q2.

Next, we must find an expression for the term on the second line. In order to do this we first

define Sr =
∫
d4x

√
−g Vr

[
GGB− 24q2

]
, which is simply the “Ringo action” given by eq. (4.5).

An explicit variation with respect to the metric yields

δgSr =

∫
d4x

√
−g Vr

[
− 1

2

(
GGB − 24q2

)
gµνδg

µν +

∫
y

δGGB(x)

δgµν(y)
δgµν(y)dy

]
. (4.27)

The above is true, however the explicit form of the field equations for the Ringo term (given

by eq. (4.12) in section 2.2 and [80]) is −2√
−g

δgSr

δgµν = 8P µα
νβ∇β∇αVr − 24q2δµνVr. We can write
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this in the same form as eq. (4.27) such that

δgSr = −1

2

∫
d4x

√
−g
[
8P µα

νβ∇β∇αVr − 24q2δµνVr

]
δgµν . (4.28)

We can then perform several integration by parts on eq. (4.28) to obtain

δgSr = −1

2

∫
d4xVr

√
−g
[
8∇α∇β (Pµ

α
νβδg

µν)− 24q2gµνδg
µν
]
. (4.29)

This will allow us to compare eq. (4.27) with eq. (4.29) to find that

∫
y

δGGB(x)

δgµν(y)
δgµν(y)dy = −4∇α∇β (Pµ

α
νβδg

µν) +
1

2
gµνGGBδg

µν . (4.30)

We then substitute the above (eq. (4.30)) into eq. (4.26):

δ (Eϕ)r = V̄ ′
r

[
− 4∇̄α∇̄β

(
P̄µ

α
νβδg

µν
)
+

1

2
ḡµνḠGBδg

µν

]
, (4.31)

where we have set everything apart from δgµν to its background value, as we are only

considering first order perturbations. Finally, recognising that δgµν = −hµν yields the Ringo

term in the perturbed scalar equation (eq. (4.24)).

Next, we use δRµν = −1
2
∆Lhµν to derive δGµν , where the Lichnerowicz operator is

given by ∆Lhµν = □̄hµν − 2∇̄(µ∇̄αhν)α − 2R̄α(µh
α
ν) + 2R̄µανβh

αβ. Now we can substitute this,

alongside the metric decomposition (eq. (4.20)), into the perturbed Einstein field equation

(eq. (4.23)) to obtain

τ (TT )µν = −Ḡ2
(
□̄+ 2q2 −m2

g

)
h(TT )µν , (4.32)

where

τ (TT )µν = τµν + Ḡ2m2
g

(
2□̄δµν − 2∇̄µ∇̄ν

)
χ+ 2

(
2Dµ

ν + 3m2
gδ
µ
ν

)(
Ḡ2ψ + ḠḠ ′δϕ

)
− 8q2V̄ ′

rD
µ
ν δϕ.

(4.33)
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Note, we have kept the ∇̄µ∇̄νχ terms in eq. (4.33) as they are not directly interacting

with the source (in contrast to eq. (4.21)). Therefore, they may yet contribute non-trivially to

our exchange amplitude. Next, we find an equivalent expression for the perturbed scalar field

equation (eq. (4.24)) by using the Lichnerowicz operator to derive δR, alongside substituting

in the metric decomposition (eq. (4.20)) to obtain

0 = 12ḠḠ ′(− □̄+ 4q2
)
ψ + 3m2

gḠḠ ′(2□̄χ+ 8ψ
)
+ 2K̄□̄δϕ+ 24q2V̄ ′

r

(
□̄− 4q2

)
ψ. (4.34)

Our first step is to simplify eq. (4.33) by introducing new variables:

S ≡ Ḡ2
(
m2
gχ− 2ψ − 2γ̄δϕ

)
+ 4q2V̄ ′

r δϕ, (4.35)

and

C ≡ 6Ḡ2m2
g

(
ψ + q2χ+ γ̄δϕ

)
(4.36)

where γ̄ ≡ Ḡ′

Ḡ . This trivial substitution alters the form of eq. (4.33) to be

τ (TT )µν = τµν − 2Dµ
νS + Cδµν . (4.37)

To further simplify, recall that we have assumed conservation of the source. Operating on

eq. (4.37) with ∇̄ yields C = 0, or in other words from eq. (4.36):

6Ḡ2m2
g(ψ + q2χ+ γ̄δϕ) = 0. (4.38)

Notice that this is only non-trivial due to the break in diffeomorphism invariance caused by

the massive graviton. If we have a massless graviton m2
g = 0, C will automatically vanish.

Now we can use eq. (4.38) to simplify eq. (4.37) such that

τ (TT )µν = τµν − 2Dµ
νS. (4.39)
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The constraint (eq. (4.38)) can also be used to simplify the form of S (eq. (4.35)) by removing

χ such that

S ≡ − 1

q2
(
Ḡ2Γψ + R̄δϕ

)
, (4.40)

where R̄ ≡ γ̄ΓḠ2 − 4q4V̄ ′
r and recall that Γ ≡ 2q2 + m2

g. Returning to the scalar field

perturbation (eq. (4.34)) we once again remove χ using the constraint equation (eq. (4.38))

yielding

−6
R̄
q2
(□̄− 4q2)ψ + 2K̄eff□̄δϕ = 0, (4.41)

where K̄eff = K̄ − 3γ̄2m2
gḠ2

q2
.

For completeness we reiterate our key equations. In eq. (4.32) we have an expression

for h
(TT )
µν , where the definition of τ

(TT )
µν is given in eq. (4.39). Here, S is defined by the

combination in eq. (4.40), which contains ψ and δϕ terms. We also have eq. (4.41), which

contains a relationship between ψ and δϕ. We now focus on finding an expression for h
(TT )
µν

that is proportional only to the source.

To explicitly state the expression we substitute eq. (4.39) into eq. (4.32) such that

τµν − 2Dµ
νS = −Ḡ2

(
□̄+ 2q2 −m2

g

)
h(TT )µν . (4.42)

Taking the trace of the above expression (eq. (4.42)) yields

S = −1

6

1

□̄− 4q2
τ, (4.43)

where we have used the traceless properties of h
(TT )
µν and the trace of the source is τ = gµντµν ,

likewise τ ′ = gµντ ′µν . To be clear, the form of

S ≡ − 1

q2
(
Ḡ2Γψ + R̄δϕ

)
,
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has been defined in eq. (4.40). Now, eq. (4.43) is merely a statement that

− 1

q2
(
Ḡ2Γψ + R̄δϕ

)
= −1

6

1

□̄− 4q2
τ. (4.44)

With this we can write an expression for h
(TT )
µν that is proportional only to the source. For

notational convenience we explicitly write this expression in terms of S, where in eq. (4.43)

we have shown that it is proportional only to the source:

h(TT )µν = − 1

Ḡ
1

□̄+ 2q2 −m2
g

[
τµν − 2Dµ

νS
]
. (4.45)

Similarly, we want to write an expression for ψ in terms S by using eq. (4.40) to eliminate

δϕ in eq. (4.41) which yields

ψ =
m2
ϕ − 4q2

4Ḡ2Γ

□̄

□̄−m2
ϕ

S, (4.46)

where

m2
ϕ ≡

12(γ̄Ḡ2Γ− 4q4V̄ ′
r )

2

Ḡ2Γ(K̄ + 6γ̄2Ḡ2 − 24q2γ̄V̄ ′
r ) + 48q6V̄ ′2

r

. (4.47)

Now, we are in a position to explicitly calculate the exchange amplitude as we have the

required expressions. In particular, substituting our expressions for h
(TT )
µν (eq. (4.45)) and ψ

(eq. (4.46)) into eq. (4.21) yields

]

A = − 1

Ḡ2

∫
d4x

√
−ḡ
{
τ ′µν

1

□̄+ 2q2 −m2
g

τµν − 2τ ′µν
1

□̄+ 2q2 −m2
g

DµνS

− τ ′
m2
ϕ − 4q2

2Γ

□̄

□̄−m2
ϕ

S
}
.

(4.48)

Recall, we can consistently work with S as it is effectively an expression for the source, τ ,

given by eq. (4.43). Then, we make use of the following formula in the appendix of [188]

1

□̄−M2
∇̄µ∇̄νS = ∇̄µ∇̄ν

1

□̄−M2 − 8q2
S +

1

4
ḡµν

[
M2

□̄−M2
− (M2 + 8q2)

□̄−M2 − 8q2

]
S, (4.49)
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alongside the conservation of the source such that the ∇̄µ∇̄νS terms vanish. The amplitude

now becomes

A = − 1

Ḡ2

∫
d4x

√
−ḡ
{
τ ′µν

1

□̄+ 2q2 −m2
g

τµν + 2τ ′
□̄− 3q2

□̄+ 2q2 −m2
g

S

− 1

2
τ ′
[ −2q2 +m2

g

□̄+ 2q2 −m2
g

−
(6q2 +m2

g)

□̄− 6q2 −m2
g

]
S − τ ′

m2
ϕ − 4q2

2Γ

□̄

□̄−m2
ϕ

S
}
. (4.50)

Finally, we use eq. (4.43) to write our final expression for the amplitude:

A = − 1

Ḡ2

∫
d4x

√
−ḡ
{
τ ′µν

1

□̄+ 2q2 −m2
g

τµν

− τ ′

2

[
1/2

□̄+ 2q2 −m2
g

+

(
q2 +m2

g/6

q2 +m2
g/2

)
1/2

□̄− 6q2 −m2
g

]
τ + gϕτ

′ 1

□̄−m2
ϕ

τ

}
,

(4.51)

where we have defined gϕ ≡ m2
ϕ

12Γ
as the scalar coupling (where the graviton coupling is

normalised as gg = 1). This closely matches our explicit example in eq. (3.23), where the

first and second line of the amplitude describe a massive graviton with an effective mass

m2
g ≡ m2(3Ḡ − 2), as defined in eq. (3.10). Likewise, the third line describes a scalar with an

effective mass given by eq. (4.47), as defined in eq. (3.4). Also, recall that Γ ≡ 2q2 +m2
g and

γ̄ ≡ Ḡ′

Ḡ . If we identify Ḡ =MPl this amplitude exactly matches our “AdS loophole” example

in eq. (3.23). Firstly, we must check that our amplitude vanishes for a vacuum energy source

(long wavelength sources) in correspondence with condition (1). Here, we can use the “low

energy limit”, |□̄| ≪ |q2|, |m2
g|, |m2

ϕ|, where vacuum sources will have a greater effect on

physics over local sources. The amplitude will indeed vanish if we substitute this alongside a

pure vacuum source, τµν = −δΛvacḡµν into eq. (4.51), provided that Ḡ,m2
ϕ, q

2 +
m2

g

6
̸= 0.

Condition (2) requires the amplitude to closely agree with GR for short wavelength

sources. For this we can take the “high energy limit”, |□̄| ≫ |q2|, |m2
g|, |m2

ϕ|, where local
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sources will have a greater effect on physics over vacuum sources. Now, the amplitude becomes

A ∼ − 1

Ḡ2

∫
d4x

{
τ ′µν

1

□̄
τµν −

1

2
τ ′

1

□̄
τ +

2m2
g +m2

ϕ

12Γ
τ ′

1

□̄
τ

}
. (4.52)

If we allow Ḡ =MPl, we can identify the third term in eq. (4.52) with ϵ in the “GR Amplitude”

(eq. (3.12)). This is the exact constraint we derived to ensure that the scalar constraint for a

curved background (eq. (3.19)) is satisfied for our explicit AdS loophole (eq. (3.23)), namely

that

ϵ =
m2
ϕ + 2m2

g

6Γ
, (4.53)

where |ϵ| ≲ 10−5 in accordance with solar system constraints [3] and recall that Γ ≡ 2q2+m2
g.

These checks ensure that there is an agreement between the above analysis and the results

in [188]. We now proceed to analyse the stability of the resulting amplitude, to further

understand the phenomenology of this model.

Scenario m2
g m2

ϕ dS/AdS?

1. 0 < m2
g ≲ O(10−5)q2 0 < m2

ϕ ≲ O(10−5)q2 AdS (q2 > 0)

2. m2
g = 0 0 < m2

ϕ ≲ O(10−5)q2 AdS (q2 > 0)

3. m2
g = 0 0 > m2

ϕ ≳ −O(10−5)|q2| dS (q2 < 0)

Table 4.1: This table showcases the distinct phenomena of the three allowed scenarios, where
other scenarios are forbidden due to observational constraints on the system. We display the
allowed range of the graviton mass, m2

g, the allowed range of the scalar mass, m2
ϕ, alongside

whether the system is in dS space or AdS space (i.e. whether q2 < 0 or q2 > 0).

Consider the massive graviton term on lines one and two of the exchange amplitude

(eq. (4.51)). To prevent a helicity-2 ghost we must have Ḡ > 0, ensuring the positivity of

the coupling. We must also have m2
g ≥ 0, as it is shown in [194] that this limit avoids a

helicity-1 ghost for AdS space. Similarly, if we choose to work in dS space (i.e. q2 < 0), then

we must have m2
g ≥ 2|q2| due to the Higuchi bound [191]. Note, that setting m2

g = 0 changes

the massive graviton to a massless graviton, which we are free to do in a curved spacetime.

Turning our attention to the scalar on line three, this is ghost free when gϕ ≥ 0. However
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unlike the massive term, removing the scalar (i.e. setting gϕ ≡ m2
ϕ

12Γ
= 0) means that the

amplitude no longer vanishes for a vacuum source, hence the model will not self-tune. To

reiterate, these constraints imply Ḡ, gϕ > 0, and m2
g ≥ 0 (alongside m2

g ≥ 2|q2| or m2
g = 0 in

dS space) in order for the theory to be ghost free and to self-tune.

From this analysis we identify three distinct scenarios whose constraints are showcased

in table 4.1. We summarise the phenomenologies of these scenarios here (with the assumption

that the scale of the background curvature is smaller than that of the curvature of the Universe

today, |q2| ≲ H2
0 ):

1. Massive graviton, no tachyons, AdS vacuum: The no-ghost condition on the

graviton, m2
g > 0, ensures that m2

g is positive. Also, the no-ghost condition on the

scalar, gϕ ≡ m2
ϕ

12Γ
> 0, ensures that m2

ϕ is positive since q2 > 0 in AdS space. The

constraint in eq. (4.53) ensures that m2
g and m

2
ϕ are both small (m2

g, m
2
ϕ ≲ O(10−5)q2).

Reminder, that we can read off the coupling of each particle to a source from the

exchange amplitude (eq. (4.51)). This shows that the coupling for the scalar field is gϕ,

where the coupling for the graviton is gg = 1. Therefore, this scenario corresponds to

an ultralight graviton and an ultralight scalar, where the latter is very weakly coupled

to matter (0 < gϕ ≲ O(10−5)gg).

2. Massless graviton, no tachyons, AdS vacuum: We have set m2
g = 0, changing

the graviton from massive to massless. Also, the no-ghost condition on the scalar,

gϕ ≡ m2
ϕ

12Γ
> 0, ensures that m2

ϕ is positive since q2 > 0 in AdS space. The constraint in

eq. (4.53) ensures that m2
ϕ is small (m2

ϕ ≲ O(10−5)q2). As before we can understand the

strength of the coupling through the exchange amplitude (eq. (4.51)). This corresponds

to an ultralight scalar that is very weakly coupled to matter (0 < gϕ ≲ O(10−5)gg).

3. Massless graviton, tachyonic scalar, dS vacuum: We have set m2
g = 0, once

again changing the graviton from massive to massless. Also, the no-ghost condition
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on the scalar, gϕ ≡ m2
ϕ

12Γ
> 0, ensures that m2

ϕ is negative since q2 < 0 in dS space.

The constraint in eq. (4.53) ensures that m2
ϕ is small (|m2

ϕ| ≲ O(10−5)|q2|). Allowing

m2
ϕ < 0 could present an instability, which is perhaps the cause of dS solutions being

ruled out in [188] (as discussed in chapter 3). But since we have assumed |q2| ≲ H2
0

this ultralight tachyon has a lifetime that exceeds the current age of the Universe.

Therefore we can potentially accept this instability, since it evolves very slowly. As

before we can understand the strength of the coupling through the exchange amplitude

(eq. (4.51)). This corresponds to an ultralight scalar that is very weakly coupled to

matter (0 < gϕ ≲ O(10−5)gg).

These scenarios all exhibit self-tuning, are ghost-free, and can fit within solar system con-

straints if the coupling of the light scalar field remains weak. Note, that through examining

each scenario 0 ≤ m2
g ≡ m2(3Ḡ − 2) ≲ O(10−5)|q2|. As alluded to in section 4.1, this also

implies that the term m2(Ḡ − 1) cannot be much greater than ∼ O(10−5)|q2|. This means

that the massive term in self-tuning equation (eq. (4.18)) cannot counter an arbitrarily large

Λeff. This, once again, highlights the importance of the Ringo term, implying that V̄r must

be the “self-tuning” term (hence the scalar acts as the self-tuning field).

As a demonstration of this theory we consider an explicit canonical example: Ḡ2 =M2
Pl,

K̄ = 1
2
, V̄r =

ϕ̄
µ
, and m2 = 0, which covers scenario 2 if q2 > 0 and scenario 3 if q2 < 0. The

exchange amplitude (eq. (4.51)) is now given by

A = − 1

M2
Pl

∫
d4x

√
−ḡ
{
τ ′µν

1

□̄+ 2q2
τµν−

τ ′

2

[
1/2

□̄+ 2q2
+

1/2

□̄− 6q2

]
τ+gϕτ

′ 1

□̄−m2
ϕ

τ

}
, (4.54)

where

m2
ϕ =

384q6

M2
plµ

2 + 96q4
, gϕ =

16q4

M2
plµ

2 + 96q4
. (4.55)
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At large wavelengths, |□̄| ≪ |q2|, |m2
ϕ|, the amplitude becomes

A ∼ − 1

M2
Pl

∫
d4x

√
−ḡ 1

2q2

{
τ ′µντµν −

1

4
τ ′τ

}
, (4.56)

which clearly vanishes for a vacuum source, τµν = −δΛvacḡµν . Note the importance of the

background curvature, as we require q2 ̸= 0 for this to be well defined. At short wavelengths,

|□̄| ≫ |q2|, |m2
ϕ|, the amplitude becomes

A ∼ − 1

M2
Pl

∫
d4x

√
−ḡ
{
τ ′µν

1

□̄
τµν −

1

2
τ ′

1

□̄
τ + gϕτ

′ 1

□̄
τ

}
, (4.57)

which exactly matches eq. (3.12) if we identify ϵ with gϕ. This requires |µ| ≳ 1000|q2|/Mpl

such that gϕ ≲ 10−5, ensuring the scalar is very weakly coupled.

To conclude this section we have shown that the exchange amplitude for our theory will

vanish for a vacuum source (condition (1)). At the same time, for localised sources it will

closely match the exchange amplitude for GR (condition (2)). This can be achieved with

three distinct scenarios, whose constraints are summarised in table 4.1. This clearly matches

the goal of self-tuning as outlined in chapter 3, but for our model we demand a greater level

of scrutiny. More specifically we now require a model that will dynamically tune to the

given background solution for an arbitrary cosmological constant term. In other words, if we

place the system away from the vacuum solution, the self-tuning fields will act to move the

system accordingly. For this we study the cosmology of the model.

92



Chapter 5

Cosmology of the Fab Four in anti-de

Sitter space

This chapter is based off unpublished works from the authors of [196]. In this chapter we derive

the cosmological equations of this model, which can be used to explore how the self-tuning

fields are used to produce a small AdS background curvature. They also provide a framework

to solve the equations numerically. As alluded to previously, this will allow us to verify whether

the system moves to a vacuum solution regardless of the initial conditions. This will ensure

that we truly have a self-tuning theory i.e. the self-tuning fields will dynamically act to move

the system to a small AdS background from an arbitrary cosmological constant. To find these

cosmological solutions we use the ansatz metric gµνdx
µdxν = −N(t)2dt2 + a(t)2dH2

3, where

N(t) is the lapse function and a(t) is the scale factor. Here, dH2
3 = r2

(
dθ21 + sinh2 θ1

(
dθ22 +

sin2 θ2 dθ
2
3

))
corresponds to a 3-hyperbole metric, where the angular coordinates are θ1, θ2 ∈

[0, π] and θ3 ∈ [0, 2π]. This choice corresponds to the third line in eq. (1.9), so we are

considering a negative spatial curvature slicing. Alongside this, the background AdS metric is

ḡµνdx
µdxν = −dt2+a20dH2

3, where a0 ≡
sin qt
q

which corresponds to a small AdS background if

|q2| ≲ |H2
0 |. We also assume the form of the energy-momentum tensor to be that of a perfect

fluid: T µν = diag(−ρ, p, p, p).

Considering the tt parts of Einstein’s field equation (eq. (4.12)) we obtain a modified
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Friedman equation:

H2 = m2

[(
2− a20

a2

)
+

(
3
a0
a

− 4

)
G
]
N2 − 2γHϕ̇− 2q2N2 +

Kϕ̇2

6G2
+
ρN2

6G2
+

N2

a2r2

+
ΛbareN

2

6G2
− 4

G2N2

[(
H2 − N2

a2r2

)
HV ′

r ϕ̇− q4N4Vr

)]
,

(5.1)

where γ ≡ G′

G , H ≡ ȧ
a
, dots represent a differential with respect to t, and primes represent a

differential with respect to the scalar, ϕ. Similarly, considering the ij parts of eq. (4.12) we

obtain an acceleration equation:

2
ä

a
+H2 = m2

[(
6− a20

a2
− 2

a0
aN

)
+

(
3

N
+ 6

a0
a

− 12

)
G
]
N2

− 2γ

[
ϕ̈+

(
γ +

G ′′

G ′

)
ϕ̇2 +

(
2H − Ṅ

N

)
ϕ̇

]
− 6q2N2 − Kϕ̇2

2G2
− pN2

2G2
+ 2

Ṅ

N
H +

N2

a2r2
+

ΛbareN
2

2G2

− 4

G2N2

[(
H2 − N2

a2r2

)(
V ′
r ϕ̈+ V ′′

r ϕ̇
2 − Ṅ

N
V ′
r ϕ̇

)
+ 2

(
ä

a
− Ṅ

N
H

)
HV ′

r ϕ̇− 3q4N4Vr

]
. (5.2)

Also, the scalar field equation (eq. (4.13)) becomes

0 = 12γG2

{
ä

a
+H2 − Ṅ

N
H − N2

a2r2
+ 2q2N2 +m2

[
− 2 +

a0
aN

+
a20
a2

+

(
6− 3

2N
− 9a0

2a

)
G
]
N2

}
−K′ϕ̇2 − 2K

(
ϕ̈− Ṅ

N
ϕ̇+ 3Hϕ̇

)
+

24V ′
r

N2

[(
H2 − N2

a2r2

)(
ä

a
− Ṅ

N
H

)
− q4N4

]
.

(5.3)

Finally, to model the fluid we use the energy conservation equation

ρ̇ = −3H(ρ+ p). (5.4)

Through these equations we have been able to find consistent vacuum solutions where

N = 1, a = a0 ≡ sin qt
q

, ρ = −p = Λvac, and ϕ = ϕ̄ = constant. As in section 4.1, this

choice automatically satisfies the scalar equation (eq. (5.3)) as long as we set r = 1 (which
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we consistently do so from here). Similarly eq. (5.4) is automatically satisfied, whereas the

modified Friedmann and acceleration equations (eqs. (5.1) and (5.2)) both yield the self-

tuning equation (eq. (4.18)). In other words, if we choose an arbitrary value of Λeff it sets the

background solution of the scalar, ϕ̄. This ϕ̄ counteracts the cosmological constant term such

that we reproduce an AdS spacetime evolution. We can also form a further constraint due

to the massive graviton, which explicitly breaks diffeomorphism invariance. Recall that we

could have restored it in chapter 4 using Stückelberg fields. However we set the Stückelberg

fields to vanish, hence the break in diffeomorphism invariance. To find this constraint we

want to find an expression for eq. (5.4) using our definitions for ρ and p. To see this we

first differentiate eq. (5.1) with respect to t, such that we have an expression for ρ̇. We can

then substitute this into eq. (5.4), alongside our definitions of ρ (eq. (5.1)) and p (eq. (5.2)).

Finally, we can eliminate the ä and ϕ̈ terms from this expression using eq. (5.3) to obtain

m2G2

aN
(3aG − 2a0)

(
−ȧ0N + ȧ+ aγϕ̇

)
= 0. (5.5)

Notice that our background solution immediately satisfies the above expression due to the

second bracket in this constraint. This expression can also be trivially satisfied by m2 = 0,

which changes the graviton from being massive to massless. It can also be satisfied by G = 0,

but we reject this solution as we have previously found that we require G ̸= 0 to avoid ghosts

in section 4.2. Interestingly, this constraint can also be satisfied through the first bracket, i.e.

3aG − 2a0 = 0. Since our background solution is satisfied for the second bracket, we do not

have to satisfy this constraint. However, if we were to write different background solutions,

then we must satisfy 3aG−2a0 = 0. Writing a different background solution is not something

we consider in this work, but we discuss the possibility further in chapter 6.

To expand on this cosmological analysis we explore numerical solutions to the model.

To this end, we consider something similar to our canonical example in section 4.2 (K = 1
2
,

G2 =
M2

pl

2
, Vr =

ϕ
µ
), but we also allow m2 ̸= 0, and set MPl = 1 for simplicity. Recall, through
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our choice of the background metric, this set of cosmological equations can only be understood

in AdS space i.e. for q2 > 0. We also invoke a change in variables such that

ϕ(t) ≡ µ

8q4
x(t), ϕ̇(t) ≡

√
6 y(t), α ≡ a0

a
. (5.6)

This change in variables is used to rewrite the cosmological equations in terms of H(t), x(t),

y(t), and α(t). These parameters will have “scaling solutions”, which correspond to the

metric undergoing an AdS evolution and the scalar reaching a constant that satisfies the

self-tuning equation (eq. (4.18)) for an arbitrary Λeff. In other words, we want the above

variables to approach the background solutions (as outlined in section 4.1) in our numerical

analysis such that

H(t) → ȧ0
a0

≡ q cot qt, x(t) → x0, y(t) → 0, α(t) → 1, (5.7)

where x0 is a constant and is determined by substituting this scaling solution into eqs. (5.1)

and (5.2):

x0 =
1

6

(
m2
(
±3

√
2 − 6

)
+ 6q2 − 2Λeff

)
. (5.8)

This essentially sets the background value of the scalar in terms of m, q and Λeff.
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Returning to our cosmological equations, alongside setting N = 1 and ρ = −p = Λvac for

simplicity, we substitute the change of variables (eq. (5.6)) into eqs. (5.1) to (5.3)31 to obtain

H2 = m2

[(
2− α2

)
±
(
3α− 4

)
1√
2

]
− 2q2 + y2 +

Λeff

3
+
α2

a20

− 8

µ

[√
6

(
H2 − N2

a2

)
Hy − µ

8
x

]
,

(5.9)

2
ä

a
+H2 = m2

[(
6− α2 − 2α

)
±
(
6α− 9

)
1√
2

]
− 6q2 − 3y2 + Λeff +

α2

a20

− 8

µ

[(
H2 − α2

a20

)
ϕ̈+ 2

√
6
ä

a
Hy − 3µ

8
x

]
,

(5.10)

ϕ̈+ 3
√
6Hy =

24

µ

[(
H2 − α2

a20

)
ä

a
− q4

]
, (5.11)

respectively. From this point on we consistently take the positive solution whenever there

is a ± sign, however we obtain similar results upon consideration of the negative solution.

Notice that we can find an explicit expression for α which effectively appears as a quadratic

in eq. (5.9):

α(t) =
αnom

αdom

, (5.12)

where

αnom = −3m2

√
2

+

[
9m4

2
− 4

(
− 8

√
6Hy

µa20
− 1

a20
+m2

)
(
8
√
6H3y

µ
+H2 + 2

√
2m2 − 2m2 + 2q2 − Λeff

3
− y2 − x

)] 1
2

,

(5.13)

and

αdom = 2

(
8
√
6Hy

µa20
+

1

a20
−m2

)
. (5.14)

Since eq. (5.9) is quadratic in α it will have two solutions, but we (once again) consistently

choose to take the positive solution (although we see a similar phenomenology when we use

the negative solution).

31Equation (5.4) is trivially satisfied as ρ = −p = Λvac, hence ρ̇ = 0 in accordance with a cosmological
constant.
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Now that eq. (5.9) is used to determine α, we effectively have two equations that determine

the cosmology: eqs. (5.10) and (5.11). Since they both contain ä
a
and ϕ̈ terms we can use

eqs. (5.10) and (5.11) as two simultaneous equations. Explicitly solving these simultaneous

equations yields two separate expressions for ä
a
and ϕ̈. To start with our expression for ä

a

becomes

ä

a
=
A

B
, (5.15)

where

A =
8
(
H2 − α2

a20

)(
3
√
6Hy + 24q4

µ

)
µ

+
α2

a20
−H2 +m2

(
6α− 9√

2
− α2 − 2α + 6

)
+ Λeff − 6q2 − 3y2 + 3x,

(5.16)

and

B =
192

(
H2 − α2

a20

)2
µ2

+
16
√
6Hy

µ
+ 2. (5.17)

Then our expression for ϕ̈ becomes

ϕ̈ =
C

D
, (5.18)

where

C = − 12µα4

+ 6µa20α
2

[
4H2 + 2m2α

(
α− 3

√
2 + 2

)
+ 6y2 − 6x+ 3m2

(
3
√
2 − 4

)
+ 12q2 − 2Λeff

]
+ 3a40

[
2µH2

(
− 3m2

(
3
√
2 − 4

)
− 12q2 − 2m2α

(
α− 3

√
2 + 2

)
− 30y2 + 6x+ 2Λeff

)
−

√
6H

(
µ2 + 64q4

)
y − 4µH4 − 8µq4

]
,

(5.19)

and

D = −192a20H
2α2 + a40

(
8
√
6 µHy + 96H4 + µ2

)
+ 96α4, (5.20)
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where the form of α in both equations is given by eq. (5.12). In this sense we can rewrite

these equations as

ä

a
=
A

B
= f(t,H, x, y), (5.21)

ϕ̈ =
C

D
= g(t,H, x, y), (5.22)

where f and g are given functions of t, H, x, y, whose forms can be found by examining

eqs. (5.15) and (5.18) and using eq. (5.12) to eliminate α. Notice that we now have expressions

for ä
a
and ϕ̈ solely in terms of our “scaling variables” and t. From this, we can form three

rate equations to fully capture the dynamics of the system. Here, we differentiate our

scaling variables with respect to t and then substitute in a given solution such that the rate

equations are first order. First, consider H differentiated with respect to t. Through an

explicit calculation Ḣ = ä
a
−H2, and now we can use eq. (5.21) to replace ä

a
with f(t,H, x, y).

Likewise for y: ẏ = ϕ̈√
6
, and now we can use eq. (5.22) to replace the ϕ̈ with g(t,H, x, y).

Finally, for x: ẋ = 8q4

µ
ϕ̇, and we recognise that ϕ̇ ≡

√
6 y. These form our three rate equations:

Ḣ =
ä

a
−H2 ≡ f −H2, (5.23)

ẋ =
8q4

µ
ϕ̇ ≡ 8q4

µ

√
6 y, (5.24)

ẏ =
ϕ̈√
6

≡ g√
6
. (5.25)

Now we can proceed to solve these specific rate equations numerically.

To address our values chosen for the initial and final times of our numerical system we

can examine the background scale factor a0 ≡ sin qt
q

with fig. 5.1. We firstly restrict the initial

time to be ti = 10−5. Ideally we would like to have ti = 0, but a0 will vanish when t = 0,

therefore we set ti > 0 to avoid singularities appearing in H̄ ≡ ȧ0
a0

≡ q cos qt
sin qt

, where H̄ is the

value of the Hubble parameter on the scaling solution. To understand our choice for the
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final time, tf , notice that in fig. 5.1 the scale factor increases for 0 ≤ qt ≤ π
2
but decreases

for π
2
< qt ≤ π. This corresponds to a cosmological expansion and subsequent cosmological

crunch (inherent to an AdS evolution). It should be noted that this cosmological crunch does

not happen in our own Universe. In a sense, 0 ≤ qt ≤ π
2
is the most important era to study, as

it corresponds to a cosmological expansion (similar to that of our own Universe). However, it

would still be interesting to study the evolution for an entire cosmological cycle, 0 ≤ qt ≤ π32.

For this cosmological analysis we use the Wolfram Mathematica inbuilt numerical solver,

NDSolve [200]. Unfortunately, we find that evolving past qt = π
2
pushes our numerical solver

beyond its capability as numerical instabilities start to appear33. Despite this, setting qtf =
π
2

still allows us to study the cosmology for a full expansion cycle. To reiterate we set ti = 10−5

and tf =
π
2q

unless otherwise specified.

0 ππ/2

1/q

0

-1/q

qt

a
0
[t
]

Figure 5.1: A graph showcasing the evolution for the background scale factor in AdS space,
a0 ≡ sin qt

q
. Notice that it undergoes an expansion for 0 ≤ qt ≤ π

2
, but contracts for π

2
< qt ≤ π.

The above represents a full cosmological cycle for AdS space.

We then ensure we are consistent with the constraints discussed in section 4.2. Namely

32Where qt > π corresponds to an entirely separate cosmological cycle, therefore we do not need to study
this.

33Note, this is only true for a weak scalar coupling i.e. when gϕ ≲ O(10−5) in accordance with the
constraint in eq. (5.28). In section 5.1 we later find that for the “strongly coupled regime” (gϕ > O(10−5))
we can evolve the system beyond qt = π

2 .
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we satisfy

0 < m2
ϕ ≲ O(10−5)q2, 0 ≤ m2

g ≲ O(10−5)q2, (5.26)

to fit within solar system constraints. Here, our cosmological framework sets

m2
ϕ =

768q8

Γµ2 + 192q6
, m2

g = m2

(
3√
2

− 2

)
, (5.27)

where we have chosen the positive branch of G = ± 1√
2
and recall that Γ ≡ 2q2+m2

g. Alongside

this, we must ensure that the scalar coupling gϕ ≡ m2
ϕ

12Γ
> 0. Recall, that gϕ is related to m2

ϕ,

so to further satisfy the solar system constraints we must have

0 < gϕ ≲ O(10−5), (5.28)

where

gϕ =
64q8

Γ (Γµ2 + 192q6)
. (5.29)

Alongside H(t), x(t), and y(t) we measure the function z(t) ≡ H(t)2 − 1
a2

= H(t)2 − α(t)2

a0(t)2
as

a consistency check because its scaling solution, z(t) → −q2, is a constant. This is simply

another way of measuring the scale factor, a(t), but the value of the self-tuning solution is

physically important. Recall that q2 measures the intrinsic curvature, and if q2 is small then

the intrinsic curvature of the system is also small. Therefore, if z(t) → −q2 at late times

this implies that the system is undergoing an AdS evolution with a small intrinsic curvature

(if |q2| ≲ |H2
0 |), and that the gravitational effect of the vacuum has been cancelled out.

Importantly (as we discussed in section 4.1 with eq. (4.18)) this will hopefully be achieved

via the scalar field, which will dynamically adjust to cancel an arbitrarily large effective

cosmological constant term on the background.

We first discuss the plots in fig. 5.2 where we have chosen the parameters such that

q2 = 10−4, m2 = 10−5q2, Λeff = −10−2, µ = 1, which sets x0 ∼ 3.43× 10−3. In this example
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we place the initial conditions of H(t), x(t), and y(t) on their respective scaling solutions

i.e. Hi = q cot qti, xi = x0, yi = 0 where the i denotes the initial value of the variable (and

recall that x0 is set by eq. (5.8)). This will act as a consistency check to ensure that our

system remains on the scaling solution if initially placed there. Firstly, H(t) (fig. 5.2a), x(t)

(fig. 5.2b), and z(t) (fig. 5.2d) all remain on their respective scaling solution (q cot qt, x0, and

−q2). Notice that y(t) (fig. 5.2c) deviates from the scaling solution despite being initially

placed there. But this is a tiny deviation where δy ∼ O(10−19), which is much smaller than

the scale of x0 ∼ O(10−3), so we can treat it practically as 0. Note that the machine precision

of our chosen numerical solver is ∼ O(10−16), so we can be sure that the deviation in δy is

simply a product of the numerical analysis. This verifies that our system remains on the

scaling solution when it initially starts there.

To further test this claim we numerically analyse the system for a variety of parameters

with differing initial conditions for H(t). In fig. 5.3 we set Hi = 10q cos qti
sin qti

. Here, H(t) rapidly

approaches its scaling solution, but this is not displayed in fig. 5.3a as H(t) → q cot qt too

quickly to easily see on a plot. However, we can essentially track the evolution of the metric

using z(t) ≡ H(t)2− α(t)2

a0(t)2
. Fig. 5.3d shows that z(t) starts away from its scaling solution but

quickly approaches it and remains there. Similar to the above, in several other upcoming plots

we also do not show H(t) explicitly approach its scaling solution from a different initial value,

with the understanding that z(t) can track the metric evolution. Alongside this, x(t) (fig. 5.3b)

remains on its scaling solution. As before y(t) (fig. 5.3c) deviates from its scaling solution,

but it is still extremely small (δy ∼ O(10−22)) compared to the value of x0 ∼ O(10−2). These

results are similar to the plots in fig. 5.4 where set Hi = 10−4q cos qti
sin qti

. Once again fig. 5.4a

appears to always follows H(t) → q cot qt as we have restricted the axis of H(t). z(t) in

fig. 5.4d also appears to start at the self-tuning solution and remain there. This is likely

due to the deviation from the self-tuning solution being initially very small (and in fact not

detectable in our numerical solver). Finally, the x(t) (fig. 5.4b) remains on its scaling solution,
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whereas y(t) (fig. 5.4c) deviation is beyond the computation precision of our numerical solver.
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Figure 5.2: These figures showcase the numerical evolution of the system when xi = x0
(i.e. the initial condition corresponds to the scaling solution). The blue line represents the
evolution of the system, whereas the orange dashed line represents the scaling solution of the
given variable, where H(t) → q cot qt, x(t) → x0, y(t) → 0, and z(t) → −q2. The parameters
are chosen such that q2 = 10−4, m2 = 10−5q2, Λeff = −10−2, µ = 1, which sets x0 ∼ 3.43×10−3

and is consistent with eqs. (5.26) and (5.28). The initial conditions chosen are Hi = q cot qti,
xi = x0, yi = 0. Note that H(t) rapidly decreases from its initial value. Therefore, we have
chosen to restrict the vertical axis of fig. 5.2a to better display its evolution.
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Figure 5.3: These figures showcase the numerical evolution of the system when xi = x0
(i.e. the initial condition corresponds to the scaling solution). The blue line represents the
evolution of the system, whereas the orange dashed line represents the scaling solution of
the given variable, where H(t) → q cot qt, x(t) → x0, y(t) → 0, and z(t) → −q2. The
parameters are chosen such that q2 = 10−6, m2 = 10−5q2, Λeff = 10−1, µ = 100, which sets
x0 ∼ −3.33× 10−2 and is consistent with eqs. (5.26) and (5.28). The initial conditions chosen
are Hi = 10q cot qti, xi = x0, yi = 0. Note that both H(t) and z(t) rapidly decrease from their
initial values. Therefore, we have chosen to restrict the vertical axis of figs. 5.3a and 5.3d
and the horizontal axis fig. 5.3d to better display the evolution of each parameter.
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Figure 5.4: These figures showcase the numerical evolution of the system when xi = x0
(i.e. the initial condition corresponds to the scaling solution). The blue line represents the
evolution of the system, whereas the orange dashed line represents the scaling solution of the
given variable, where H(t) → q cot qt, x(t) → x0, y(t) → 0, and z(t) → −q2. The parameters
are chosen such that q2 = 10−8, m2 = 10−8q2, Λeff = 10, µ = 1000, which sets x0 ∼ −3.33 and
is consistent with eqs. (5.26) and (5.28). The initial conditions chosen are Hi = 10−4q cot qti,
xi = x0, yi = 0. Note that H(t) rapidly decreases from its initial value. Therefore, we have
chosen to restrict the vertical axis of fig. 5.4a to better display its evolution.

However, we should note that H(t) is not generically robust to changes in Hi. As

Hi → 0, numerical instabilities arise within the solver (as we have previously discussed).

Similarly, setting Hi < 0 pushes our numerical analysis beyond its validity. But this should

be expected as the initial rate of expansion should never be negative for a Universe that

starts at a0 ≡ sin qt
q

= 0 for t = 0. Finally, making Hi too large also pushes our solver beyond

its validity, but the same can be said for most parameters (dividing by very large numbers
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will result in instabilities within the numerical analysis).

Altogether the above implies that we can achieve self-tuning if the initial conditions

correspond to the self-tuning scaling solutions. In fact, despite changes in Hi the system

still approaches the self-tuning solutions. Similarly the scalar field remains on the self-tuning

solution when placed there. This shows that the gravitational effects of an arbitrary Λeff

have been cancelled off to return to a small intrinsic negative curvature, as demonstrated by

z(t)− > q2 at late times. Once again (as shown through eq. (4.18)), we believe this is due to

an explicit cancellation from the scalar field inside of the Ringo term.

However, it would be interesting to see whether the scalar field can dynamically achieve

this. In other words we want to test whether the scalar field, when initially placed away from

the self-tuning solution, will dynamically evolve towards it to cancel off an arbitrary Λeff and

recover small intrinsic curvature. To observe this we follow the plots in fig. 5.5 where we have

shifted the initial conditions of x(t) (where xi = 0.995x0). Notice how in fig. 5.5a H(t) seems

to reside on its scaling solution, but at late times deviates from it. However, its deviation

from the scaling solution appears to be incredibly small (< 0.01). Similarly, from fig. 5.5d z(t)

seems to remain at a constant that deviates from its scaling solution (−q2) by approximately

0.2q2. Note that although z(t) appears to be constant, it could be varying very slowly. Despite

this we choose to focus our analysis on the dynamics of the scalar, since we have already

shown previously (through figs. 5.2a, 5.2d, 5.3a, 5.3d, 5.4a, and 5.4d) that both H(t) and

z(t) approach their scaling solutions irrespective of Hi when xi = x0. Ideally we would want

x(t) to evolve towards the self-tuning solution. Once it reaches the self-tuning solution we

would expect the scalar to remain there, such that it acts as a counterterm to an arbitrarily

large cosmological constant (as in eq. (4.18)). Then, as long as the scale factor follows an

AdS evolution (where a(t) = sin qt
q

) this corresponds to self-tuning. In other words, regardless

of the value of Λeff the system undergoes an AdS evolution with small intrinsic curvature

(|q2| ≲ H2
0 ), where the scalar acts to cancel the gravitational effect of Λeff. Interestingly,
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from fig. 5.5b, x(t) appears to not be dynamically changing at all. This is in contrast to

y(t) (fig. 5.5c) which is non-zero and positive. Therefore x(t) should be dynamically evolving

towards x0, albeit very slowly. In fact, it is so small that our numerical solver cannot detect

this change in x(t) (at least when yi = 0).

We can better demonstrate this by reconsidering the same system, but instead we set

µ = 0.01. This violates our solar system constraints (eqs. (5.26) and (5.28)) and in particular

it sets gϕ ∼ O(10−3) (from eq. (5.29)). Hence, µ = 0.01 corresponds to an increase in the

scalar coupling, which in turn increases the interaction strength of the scalar. We do this to

demonstrate that x(t) is indeed dynamical (see fig. 5.6a), but is very slow when the scalar

coupling is weak. To verify this claim we can measure the form of the effective potential

against the value of the scalar. To see this, consider the KG equation for a scalar with an

effective potential, which is given by

□ϕ =
∂Veff
∂ϕ

. (5.30)

We further study the same example but instead we set xi = 0.99x0. Once again, we find

that H(t) and z(t) (figs. 5.14a and 5.14d) quickly approach their respective scaling solutions.

This shows that the intrinsic curvature is once again small for an arbitrarily large cosmological

constant. Therefore the scalar field has been effectively able to self-tune Λeff As before, there

is a slight deviation in z(t) at late times (fig. 5.14e), which could be traced back to numerical

instabilities. Similarly, x(t) (fig. 5.14b) approaches and reaches its scaling solution at t = tf ,

but moves beyond x0 for t > tf . Similar to before there is a turning point in y(t) (fig. 5.14c)

at t = tf which could imply some sort of oscillatory nature in x(t). However, the behaviour

of the effective potential is slightly altered in fig. 5.14f. Similar to fig. 5.13f, ∂Veff
∂ϕ

crosses the

horizontal axis at x0. Unlike fig. 5.13f, ∂Veff
∂ϕ

(in fig. 5.14f) is initially negative and becomes

positive after crossing the axis. This implies that the scalar is rolling down the effective

107



CHAPTER 5. COSMOLOGY OF THE FAB FOUR IN ANTI-DE SITTER SPACE

potential to x0, which corresponds to its minimum. After this it then rolls back up to the

potential away from x0, but this is with the expectation that it will follow the slope back to

the minimum. This is exactly the type of behaviour needed in order to evade fine-tuning.
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Figure 5.5: These figures showcase the numerical evolution of the system when xi = 0.995x0
(i.e. the initial condition does not correspond to the scaling solution). The blue line represents
the evolution of the system, whereas the orange dashed line represents the scaling solution
of the given variable, where H(t) → q cot qt, x(t) → x0, y(t) → 0, and z(t) → −q2. The
parameters are chosen such that q2 = 10−4, m2 = 10−5q2, Λeff = −10−2, µ = 1, which
sets x0 ∼ 3.43 × 10−3 and is consistent with eqs. (5.26) and (5.28). The initial conditions
chosen are Hi = 10, xi = 0.995x0, yi = 0. Note that H(t), rapidly decreases from its initial
value. Therefore, we have chosen to restrict the vertical axis of fig. 5.5a to better display its
evolution.

Comparing eqs. (4.13) and (5.3) we can see that □ϕ = − 1
N2

(
ϕ̈− Ṅ

N
ϕ̇+ 3Hϕ̇

)
, which

becomes □ϕ = −
(
g + 3H

√
6 y
)
when we take N = 1, perform a change in variables using
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eq. (5.6), and replace ϕ̈ with g which is given by eq. (5.22). According to the KG equation,

the above is equal to ∂Veff
∂ϕ

, therefore

∂Veff
∂ϕ

= −
(
g + 3H

√
6 y
)
. (5.31)

Now we can plot the right hand side of eq. (5.31) against x to verify that the scalar is moving

as demonstrated by fig. 5.6b. Here, we see that the scalar is indeed rolling along the potential.

Since ∂Veff
∂ϕ

< 0 it implies that this scalar is rolling down a slope, hopefully towards a minimum

at x0. Altogether, fig. 5.6 implies that our scalar is moving very slowly towards its scaling

solution. As before the scalar does not reach the self-tuning solution as it evolves too slowly.

However fig. 5.6a does imply that x(t) is approaching x0.
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Figure 5.6: These figures showcase the numerical evolution of the system when xi = 0.995x0
(i.e. the initial condition does not correspond to the scaling solution). The blue line represents
the evolution of the system and the scaling solutions are given by H(t) → q cot qt, x(t) → x0,
y(t) → 0, and z(t) → −q2. The parameters are chosen such that q2 = 10−4, m2 = 10−5q2,
Λeff = −10−2, µ = 0.01, which sets x0 ∼ 3.43× 10−3. Our choice of µ now sets gϕ ∼ O(10−3),
which is no longer consistent with eqs. (5.26) and (5.28). Instead these parameters are chosen
to increase the scalar coupling, which demonstrates the dynamical nature of the scalar to
compare with fig. 5.5. The initial conditions chosen are Hi = 10, xi = 0.995x0, yi = 0.
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Figure 5.7: These figures showcase the numerical evolution of the system when xi = 1.05x0
(i.e. the initial condition does not correspond to the scaling solution). The blue line represents
the evolution of the system, whereas the orange dashed line represents the scaling solution
of the given variable, where H(t) → q cot qt, x(t) → x0, y(t) → 0, and z(t) → −q2. The
parameters are chosen such that q2 = 10−4, m2 = 10−8q2, Λeff = −0.1, µ = 10, which
sets x0 ∼ 3.34 × 10−2 and is consistent with eqs. (5.26) and (5.28). The initial conditions
chosen are Hi = 10, xi = 1.05x0, yi = 0. Note that H(t) rapidly decreases from its initial
value. Therefore, we have chosen to restrict the vertical axis of fig. 5.7a to better display its
evolution.

We retest this numerical analysis using a variety of parameters and initial conditions as

showcased by fig. 5.7. In this example H(t) (fig. 5.7a) initially appears to follow its scaling

solution, but deviates from it at late times. Whilst z(t) (fig. 5.7d) appears to remain at

a constant that deviates from −q2 by approximately 0.35q2 (again, it may be very slowly

moving, but it certainly appears to be constant. Note that upcoming plots may also be
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slowly evolving even if it appears to be constant, but we will not state it explicitly to avoid

repetition). Here, x(t) (fig. 5.7b) appears to remain on xi = 1.05x0. However this is only

because it evolves incredibly slowly as demonstrated by y(t) (fig. 5.7c), which is negative as

xi > x0. This further evidence that the scalar is trying to move towards the the self-tuning

solution, but is far too slow to reach it.

Similarly, in fig. 5.8 H(t) (fig. 5.8a) initially resides on the scaling solution, but deviates

slightly from it at late times. Similarly z(t) (fig. 5.8d) seems to remain at a constant that

deviates from −q2 by about 0.35q2. As before, x(t) (fig. 5.8b) appears to remain on its initial

condition, xi = 0.99x0. However, this is only because it evolves slowly as shown by y(t)

(fig. 5.8c), which is positive as xi < x0. To reiterate the point, the scalar is seemingly trying

to evolve towards the self-tuning solution, but is too slow to reach it.

To recap we have shown how our system evolves for a wide range of parameters and

initial conditions in H(t). Furthermore, H(t) seems to always approach its scaling solution

for x = x0, which can be more easily tracked via z(t). For small deviations in xi = x0, we

see that H(t) and z(t) seem to deviate slightly from their scaling solutions at late times.

This is echoed by the behaviour of x(t), which appears to be a constant that deviates from

x0. However, through the evolution of y(t) we see that x(t) does want to evolve to x0,

albeit very slowly. This can be demonstrated explicitly by analysing the system with a large

scalar coupling, which resides outside of the solar system constraints. However, the above

unfortunately does not correspond to dynamical self-tuning. Recall that we want Λeff to be

arbitrary (and large), and the scalar should act to approach the self-tuning solution of x0.

These scalar fields will modify the value of the Ringo term within eq. (4.18), which is used

to counter an arbitrary Λeff. In turn the system will undergo an AdS evolution with a small

intrinsic curvature, showing that the gravitational effect of the cosmological constant has

been cancelled. Instead, since x(t) does not reach the x0 at late times and the system deviates

from an AdS evolution, as evidenced by the deviation of z(t) (which effectively measures the
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evolution of a(t)) from its constant self-tuning solution, −q2. Since this self-tuning solution

represents the intrinsic curvature of the system, the fact that it deviates from −q2 shows that

the intrinsic curvature can be arbitrarily large depending on the deviation of xi from x0. In

this sense, the scalar field has not been able to effectively self-tune away an arbitrary Λeff to

recover a small intrinsic curvature.
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Figure 5.8: These figures showcase the numerical evolution of the system when xi = 0.99x0
(i.e. the initial condition does not correspond to the scaling solution). The blue line represents
the evolution of the system, whereas the orange dashed line represents the scaling solution
of the given variable, where H(t) → q cot qt, x(t) → x0, y(t) → 0, and z(t) → −q2. The
parameters are chosen such that q2 = 10−4, m2 = 10−5q2, Λeff = 10−2, µ = 10, which sets
x0 ∼ 3.43× 10−3 and is consistent with eqs. (5.26) and (5.28). The initial conditions chosen
are Hi = 100, xi = 0.99x0, yi = 0. Note that H(t) rapidly decreases from its initial value.
Therefore, we have chosen to restrict the vertical axis of fig. 5.8a to better display its evolution.

Now we want to force x(t) to be dynamical in an attempt to force x(t) → x0 at late
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times, whilst keeping within the constraints set by eqs. (5.26) and (5.28). In doing so we hope

that z(t) → −q2 such that the system is evolving with a small intrinsic curvature, having

cancelled off an arbitrary Λeff. To do this we deviate yi from its scaling solution, 0, which is

equivalent to giving x(t) a “kick”. In fig. 5.9 we use similar parameters to fig. 5.2, but we set

xi = 0.995x0 and yi = 400. Notice that H(t) (fig. 5.9a) seems to reside on its scaling solution

(but slightly deviates from it at late times). Similarly, z(t) (fig. 5.9e) seems to approach a

constant which deviates from −q2 (by about 0.1q2). Turning our attention to x(t) (fig. 5.9b),

it appears to have a large increase in a short amount of time before settling into a constant.

This is evidenced by examining y(t) at early times, which swiftly approaches its scaling

solution from a large initial value (fig. 5.9c). Interestingly, by examining y(t) at late times

(fig. 5.9d), we see that it does not seem to approach its scaling solution. Instead, it changes

from its early time trajectory and starts increasing rather than decreasing. This makes sense

because at this time x(t) > x0, therefore we must have a positive y(t) in order for x(t) → x0.

Unfortunately, the increase in x(t) at late times is undetectable in our numerical analysis

(even if it can be demonstrated in the behaviour of fig. 5.9d). Furthermore, it is strange

that even if y(t) is given a high initial value, it still rapidly decreases before increasing. For

this system we also plot ∂Veff/∂ϕ against x to further understand how the effective potential

moves the scalar. Fig. 5.9f implies that the scalar is rolling up the slope (as ∂Veff/∂ϕ > 0)

and it appears to be close to 0 at t = tf . This hopefully implies that it then has the intention

of rolling down the slope to a minimum at x0. However, since it does not cross 0 we cannot

make too many inferences about the form of Veff.

We then perform the same analysis but this time we set yi = 2000. This ensures that

the x(t) reaches and surpasses x0 (fig. 5.10b). Firstly we will address the similarities. H(t)

(fig. 5.10a) seems to reside on its scaling solution. But we see that z(t) (fig. 5.10e) seems to

approach a constant at late times that deviates from −q2 (by about 0.05q2). This implies

there is a small deviation in H(t) from its scaling solution at late times. At early times y(t)
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(fig. 5.10c) once again decreases rapidly, approaching the scaling solution. Examining y(t)

at late times (fig. 5.10d), we find that it does not increase after decreasing (in contrast to

fig. 5.9d). This makes sense as the high initial value of yi raised x(t) > x0. However, what

we would expect is that y(t) becomes negative in an attempt to decrease x(t) → x0. Instead,

we find that y(t) at late times seems to approach a constant. Considering ∂Veff/∂ϕ against x

(fig. 5.10f) we find that the scalar seems to roll up the slope of the potential (as ∂Veff/∂ϕ > 0).

This is despite moving past our scaling solution, x0. However, once again, it does not cross

the horizontal axis, therefore we cannot make any strong inferences about the form of Veff.

Next, we examine a similar scenario, but this time we set xi = 1.005x0. Unfortunately,

setting yi < 0 (which we would like to do since xi > x0) seems to push the numerical solver

beyond its validity. The reasons for this are unknown, and yi < 0 remains as an unexplored

region. Despite this, setting yi = 1 and observing its evolution still has interesting results.

Once again, H(t) (fig. 5.11a) resides on its scaling solution but slightly deviates from it late

times. Also, z(t) (fig. 5.11e) seems to approach a constant that deviates from −q2 (by about

0.1q2). x(t) (fig. 5.11b) appears to remain at its initial value, but as we have seen before, it

is far more instructive to track the evolution of y(t). At early times y(t) (fig. 5.11c) quickly

decreases to its scaling solution. However, at late times y(t) (fig. 5.11d) evolves past axis, and

becomes negative. This is in contrast to (fig. 5.10d, which stays positive despite x(t) > x0.

Turning our attention to ∂Veff/∂ϕ against x (fig. 5.11f), the scalar seems to once again roll

up the slope of a potential. As in figs. 5.10f and 5.11f it does not cross the axis, so we cannot

make too many inferences about the form of Veff.
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Figure 5.9: These figures showcase the numerical evolution of the system when xi = 0.995x0
(i.e. the initial condition does not correspond to the scaling solution). The blue line represents
the evolution of the system, whereas the orange dashed line represents the scaling solution
of the given variable, where H(t) → q cot qt, x(t) → x0, y(t) → 0, and z(t) → −q2. The
parameters are chosen such that q2 = 10−4, m2 = 10−5q2, Λeff = −10−2, µ = 1, which sets
x0 ∼ 3.43× 10−3 and is consistent with eqs. (5.26) and (5.28). The initial conditions chosen
are Hi = 10, xi = 0.995x0, yi = 400. Note that H(t), y(t), and z(t) rapidly decreases from
their initial values. Therefore, we have chosen restrict the vertical axis of figs. 5.9a, 5.9c,
and 5.9e to better display the evolution of each variable.
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Figure 5.10: These figures showcase the numerical evolution of the system when xi = 0.995x0
(i.e. the initial condition does not correspond to the scaling solution). The blue line represents
the evolution of the system, whereas the orange dashed line represents the scaling solution
of the given variable, where H(t) → q cot qt, x(t) → x0, y(t) → 0, and z(t) → −q2. The
parameters are chosen such that q2 = 10−4, m2 = 10−5q2, Λeff = −10−2, µ = 1, which sets
x0 ∼ 3.43× 10−3 and is consistent with eqs. (5.26) and (5.28). The initial conditions chosen
are Hi = 10, xi = 0.995x0, yi = 2000. Note that H(t), y(t), and z(t) rapidly decreases from
their initial values. Therefore, we have chosen to restrict the vertical axis of figs. 5.10a, 5.10c,
and 5.10e to better display the evolution of each variable.
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Figure 5.11: These figures showcase the numerical evolution of the system when xi = 1.005x0
(i.e. the initial condition does not correspond to the scaling solution). The blue line represents
the evolution of the system, whereas the orange dashed line represents the scaling solution
of the given variable, where H(t) → q cot qt, x(t) → x0, y(t) → 0, and z(t) → −q2. The
parameters are chosen such that q2 = 10−4, m2 = 10−5q2, Λeff = −10−2, µ = 1, which sets
x0 ∼ 3.43× 10−3 and is consistent with eqs. (5.26) and (5.28). The initial conditions chosen
are Hi = 10, xi = 1.005x0, yi = 1. Note that H(t), y(t), and z(t) rapidly decreases from their
initial values. Therefore, we have chosen to restrict the vertical axis of figs. 5.11a and 5.11e
to better display the evolution of each variable.
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Figure 5.12: These figures showcase the numerical evolution of the system when xi = 1.4x0
(i.e. the initial condition does not correspond to the scaling solution). The blue line represents
the evolution of the system, whereas the orange dashed line represents the scaling solution
of the given variable, where H(t) → q cot qt, x(t) → x0, y(t) → 0, and z(t) → −q2. The
parameters are chosen such that q2 = 10−4, m2 = 10−5q2, Λeff = −10−2, µ = 1, which
sets x0 ∼ 3.43 × 10−3 and is consistent with eqs. (5.26) and (5.28). The initial conditions
chosen are Hi = 10, xi = 1.4x0, yi = 0. Note that H(t) rapidly decreases from its initial
value. Therefore, we have chosen to restrict the vertical axis of fig. 5.12a to better display its
evolution.

Finally, for completeness we consider what happens when we “push” the initial value

of xi too much. Here, we find that “pushing” too far in the direction of xi < x0 moves our

system beyond the validity of the numerical solver. However, we can “push” xi further if

xi > x0. In fig. 5.12 we have set xi = 1.4x0 and yi = 0. Here, H(t) (fig. 5.12a) seems to

reside on the scaling solution before deviating from it at late times. Likewise, z(t) (fig. 5.12d)
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remains at a constant that deviates by a large amount away from −q2 (by about 14q2). This

is not too surprising as x(t) (fig. 5.12b) seems to remain at xi, therefore we are currently

deviating from our scaling solutions. However despite setting yi = 0, y(t) (fig. 5.12c) appears

to evolve in the positive direction (when x(t) > x0). This implies that the scalar is trying to

move away from the scaling solution, not towards it.

The above shows that even when we have given the scalar a “kick” (by setting yi ̸= 0) the

scalar still does not find its scaling solution. Likewise, z(t) approaches a constant that differs

from its scaling solution. In this sense, we cannot generically recover a small AdS because z(t)

does not seem to select −q2 consistently. This means that the curvature (represented by −q2)

can be large, showing that the scalar has been unable to effectively counter an arbitrarily

large cosmological constant unless xi and yi have been fine-tuned. Therefore we have been

unable to self-tune without fine-tuning the initial value of the scalar field.

To conclude, for this specific set of scaling equations, the system can recover the scaling

solutions when initially placed there (fig. 5.2). In fact, we find that H(t) approaches its

scaling solution for a variety of initial conditions and parameters (figs. 5.3 and 5.4). But,

we find that the scaling solutions are not recovered when we perturb xi from x0 (figs. 5.5,

5.7, and 5.8). However, (as fig. 5.6 suggests) x(t) still dynamically evolves slowly towards its

scaling solution. To further test this we give x(t) a “kick” using yi ̸= 0. In figs. 5.9 to 5.12 we

find that H(t) seems to find its scaling solution at early times, even if it deviates from it at

late times. Similarly, z(t) very quickly settles into a constant that deviates from its scaling

solution (as a reminder z(t) could be moving so slowly that its evolution cannot be detected

by our numerical solver). We also observe that y(t) seems to approach its scaling solution at

early times after it has given a “kick” to x(t). Then at late times, it takes on a non-zero value

dependent on the value of x(t) at the time. In general, it appears that x(t) can dynamically

change its value to try and recover the scaling solutions (at least for small deviations from

xi), but it does so incredibly slowly. In this sense, we have only been able to exactly recover
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the scaling solutions through fine-tuning the initial values of the scalar (xi and yi).

Note, that this could be an artefact of the method we have chosen rather than it being

intrinsic to the model. Firstly, we have used a couple of assumptions by consistently setting

N(t) = 1, G =
M2

Pl

2
, K = 1

2
, and Vr = ϕ

µ
, due to the complexity of the numerical analysis.

Changing the form of these variables (in particular Vr) may result in alleviating the fine-

tuning presented. Solving these equations via a different method could also eliminate this

fine-tuning.

As we have previously alluded to, understanding the nature of this fine-tuning requires

a stability analysis of the cosmological equations. That is to say, we want to perturb the

cosmological variables about their background solutions to understand why the scalar seems to

require such a great deal of fine-tuning. To this end, we perform a linear stability analysis [201]

on our dynamical system. Our system (eqs. (5.23) to (5.25)) can be written in matrix form:


Ḣ

ẋ

ẏ

 =


f −H2

8q4

µ

√
6 y

g√
6

 , (5.32)

which we can write as ṁ = M (m). Here,m = (H, x, y) andM (m) = (M1(m),M2(m),M3(m))

as defined by eq. (5.32). Now, we can perturb this system with m → m̄+ δm, where m̄ and

δm are the background values and the perturbed values of m respectively. From this, we

can write a perturbed matrix system such that


δḢ

δẋ

δẏ

 = Mp


δH

δx

δy

 , (5.33)
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where

Mp =


∂f
∂H

− 2H̄ ∂f
∂x

∂f
∂y

0 0 8q4

µ

√
6

1√
6

∂g
∂H

1√
6

∂g
∂x

1√
6

∂g
∂y

 , (5.34)

where each partial derivative is evaluated on the scaling solution, m̄. Recall, that the

definitions of f and g are given by eqs. (5.21) and (5.22) respectively. Now, by computing the

eigenvalues, λi, we can study the linear stability of our system. According to linear stability

theory, a solution to our system constitutes a linear combination of eλit. Therefore, if all the

real parts of λi are negative (Re(λi) < 0), the system is stable for linear perturbations since

the exponent converges. Instead, if the system has eigenvalues that are positive (Re(λi) > 0),

it will be unstable as the exponent will diverge. Computing the eigenvalues of eq. (5.34)

yields: (
0,− 8

√
6√

µ2 + 96
i,

8
√
6√

µ2 + 96
i

)
, (5.35)

or in other words Re(λi) = 0. Our linear stability analysis does not provide us with any new

information about the stability of the system. To overcome this we must use other techniques,

for example the centre manifold theory studies the dynamics of a linear system, but this

would be challenging given the complexity of f and g. Another example is using Lyapunov’s

method (see [201] and references therein), which we can use to explore the dynamics of a

system through the construction of a Lyapunov function, V (m). It states that a system is

stable about m̄ if we can find a V (m) that obeys a certain set of rules, one of which involves

interactions with m and M (m). Unfortunately, the only way to find this function is through

trial and error which, once again, would be incredibly difficult to find due to the complexity

of the system.
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5.1 Evading fine-tuning?

In this final section we return to the key question: does our theory truly evade “Weinberg’s

no go theorem”? Weinberg’s no-go theorem only accounts for constant scalar fields on a

Minkowski background, so there is no a priori reason to reject an AdS background. After

all, the translational invariance inherent to Weinberg’s construction of the no-go theorem

is broken by the explicit coordinate dependence of the metric. So we do evade the no-go

theorem, but what we are truly asking with this question is can we evade fine-tuning?

Of course, we have already shown that self-tuning without fine-tuning is possible. This

can be shown through our exchange amplitude (eq. (4.51) in section 4.2), which satisfies both

self-tuning conditions as defined by chapter 3. This is further demonstrated by our numerical

analysis in chapter 5. Although the scalar has been unable to reach its scaling solution at

late times for xi ̸= x0, there is evidence that that it tries to evolve there (albeit very slowly).

Instead, this section is used to verify that our model can indeed self-tune without fine-tuning.

If this is the case, then it would appear that the difficulties faced in our numerical analysis

are not due to fine-tuning. We later offer an alternative explanation as to why our system

does not appear to self-tune.

To show this, we return to our analysis at the start of chapter 2 where we explored

Weinberg’s no-go theorem. Recall that we were able to show that self-tuning is not possible

for a constant background scalar field in a Minkowski spacetime. Here, we demonstrated

that the effective potential, Veff, of the self-tuning scalar field evaluated on the background is

used to cancel an arbitrary cosmological constant. However, for small perturbations in the

scalar this potential cannot be minimised without fine-tuning. In other words, if a scalar is

placed away from its background solution, it cannot return to it to cancel off an arbitrary

cosmological constant. This can only be achieved through fine-tuning, which reintroduces

the radiative instability inherent to the cosmological constant problem. Therefore, the goal

122



CHAPTER 5. COSMOLOGY OF THE FAB FOUR IN ANTI-DE SITTER SPACE

of this section is to provide evidence that the effective potential within our model can be

minimised for small changes in the scalar.

We start by extending the analysis in chapter 2 to our model by taking the trace of

eq. (4.12) which yields

R =
3

G2
□G2 − 24q2 +

K
G2

(∇ϕ)2 + 2Λeff

G2

−m2

[
− 9(FE)

α
α + (FE)

α
α(FE)

β
β − (FE)

α
β(FE)

β
α +

48

G
− 24

G2

]
G2

− 4

Ḡ2
(Gα

β∇α∇β − 12q4)Vr.

(5.36)

Here we have written the equations in terms of R which represents the curvature and we have

used Tµν = −Λeff gµν . Note, we exclude other matter sources as we only want to analyse the

self-tuning field, ϕ, alongside the cosmological constant and their effects on the curvature of

the system. Now as a check the curvature should be negative (R < 0) on the level of the

background. For this, we use gµν = ḡµν and ϕ = ϕ̄ = constant, such that eq. (5.36) becomes

R = −24q2 +
2Λeff

Ḡ2
− 12m2

[
Ḡ − 1

]
+

48q4

Ḡ2
V̄r. (5.37)

Using the self-tuning equation (eq. (4.18)) we find that R = −12q2, which means the curvature

is negative and can be small as long as |q2| ≲ |H2
0 |. This is not surprising as we were able to

show, both analytically and numerically, that the model admits to this solution. We cannot

immediately identify R with ∂Veff
∂ϕ

(as we did in our analysis for a constant scalar in Minkowski

space) as the curvature is non-zero. Instead, we recognise that the right hand side of eq. (5.36)

must dynamically adjust to achieve a curvature of −12q2. Therefore, the form of the effective

potential must be such that it uses the right hand side of eq. (5.36) to dynamically evolve

the scalar to the background solution, but when ∂Veff
∂ϕ

is evaluated at ϕ = ϕ̄ it vanishes. So
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we can say that

∂Veff
∂ϕ

=
3

G2
□G2 − 24q2 +

K
G2

(∇ϕ)2 + 2Λeff

G2

−m2

[
− 9(FE)

α
α + (FE)

α
α(FE)

β
β − (FE)

α
β(FE)

β
α +

48

G
− 24

G2

]
G2

− 4

Ḡ2
(Gα

β∇α∇β − 12q4)Vr + 12q2,

(5.38)

where the right hand side of the above is identical to that of eq. (5.36), aside from a +12q2

which ensures that eq. (5.38) vanishes on the background. Recall that Veff refers to the

effective potential of the scalar field.

To study how the scalar self-tunes we consider a metric that lies on the background,

gµν = ḡµν , alongside small perturbations around a constant background scalar, ϕ̄. Similar

to our previous analysis (in chapter 2), this removes the explicit kinetic term coupled to K.

Furthermore, recall that G can be identified with MPl as discussed in sections 4.1 and 4.2,

which means we do not want G to vary much (if at all). Therefore we set G = 1 such that it

cannot vary, which subsequently removes the massive terms34. We can also justify the massive

term vanishing, as it is truly the Ringo term that accommodates for a large vacuum energy,

as shown through the self-tuning equation (eq. (4.18)). With these truncations eq. (5.38)

reduces to

∂Veff
∂ϕ

= −12q2 + 2Λeff − 4
(
Gα
β∇α∇β − 12q4

)
Vr, (5.39)

where ϕ represents small perturbations from ϕ̄ and we have kept the form of Gα
β∇α∇βVr for

clarity. To address this we use the fact that35

Gα
β∇α∇βVr =

3

N4

(
H2 − N2

a2r2

)(
∂2t −

Ṅ

N
∂t

)
Vr, (5.40)

34Note, we can make other constant substitutions for the G. The key point is that G “loses” its ϕ
dependence.

35We have derived this using our ansatz metric gµνdx
µdxν = −N(t)2 + a(t)2dH2

3, where N(t) is the lapse
function, a(t) is the scale factor, and dH2

3 = r2
(
dθ21 + sinh2 θ1

(
dθ22 + sin2 θ2 dθ

2
3

))
.
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and we set the metric on the background (such that a = a0 ≡ sin qt
q

, N = 1 and r = 1) to

obtain

Gα
β∇α∇βVr = −3q2

(
∂2Vr
∂ϕ2

ϕ̇2 +
∂Vr
∂ϕ

ϕ̈

)
. (5.41)

However, recall that we are only considering small changes around a constant background

scalar. This means that the ϕ̇2 term will vanish, hence we can substitute eq. (5.41) back into

eq. (5.39) to obtain

∂Veff
∂ϕ

= −12q2 + 2Λeff + 12q2

(
∂Vr
∂ϕ

∣∣∣∣
ϕ̄

ϕ̈+ 4q2Vr

)
. (5.42)

First, notice that on a Minkowski background the above potential cannot be minimised

unless Λeff = 0, which corresponds to fine-tuning. Whereas on an AdS background, the ϕ̈

term opens up a pathway for Veff to be minimised. This is a demonstration of how our model

can accommodate for an effective potential that can be minimised without fine-tuning. Note,

there are still some assumptions that we could avoid to further generalise the above analysis.

In eq. (5.36) there is a Gα
β term coupled to Vr. Similar to R, this will have a non-trivial effect

on the curvature, but we have set Gα
β on the background to simplify our analysis. Another

key assumption we made is to set G = constant. Whilst it is still true that we do not want

this value to vary much, a non-constant G could still provide some non-trivial effects. Even

with these assumptions we have demonstrated that there is now a possibility of minimising

the effective potential with the Ringo term on an AdS background.

With this in mind we search for other pieces of evidence that suggest that the effective

potential can be minimised. For this we return to our expression for the KG equation with
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an effective potential (eq. (5.30)). Applying this to the scalar equation (eq. (4.13)) yields

∂Veff
∂ϕ

= − 1

2K

{
2GG ′(R + 12q2

)
+K′(∇ϕ)2

− m2

4
G3G ′

[
4U(Σ)− Tr

(
Σ
∂U
∂Σ

)]FE

1
G 1

+ V ′
r

[
GGB − 24q4

]}
.

(5.43)

As before, we set the metric on the background and consider small changes in the scalar, which

causes the right hand side of the equation to vanish36. Therefore, for small perturbations in

the scalar, the effective potential (when constructed in this fashion) can also be generically

minimised.

To numerically verify this claim we reconsider eq. (5.31), which is equivalent to eq. (5.43)

using our previous cosmological setup in eqs. (5.23) to (5.25)37. Within figs. 5.13 and 5.14 we

plot the derivative of the effective potential against x (the scalar field). Previously we have

displayed these plots in figs. 5.6b, 5.9f, 5.10f, and 5.11f. But we found that x evolves too

slowly to reach its scaling solution at late times, therefore ∂Veff
∂ϕ

does not cross the horizontal

axis. This is due to fact that the scalar in the “weakly coupled regime” (where gϕ ≲ O(10−5)).

To fix this we set µ = 10−6, which sets gϕ ∼ O(10−1) such that the scalar field is in the

“strongly coupled regime”, allowing x to be more dynamical. Now, our choice for µ is no

longer consistent with eqs. (5.26) and (5.28), but this value is chosen to better display how the

effective potential evolves with x. To be clear, this is far beyond the allowed bounds for the

scalar coupling to be consistent with solar system constraints of GR. But its inclusion here is

to demonstrate the behaviour of the scalar by increasing the strength of the coupling. In a

way, this is not a representation of what our model can do, rather it demonstrates what our

model is trying to do. Note, that by increasing the scalar coupling and only allowing for small

perturbations from xi = x0, we find that we can let qt > π
2
without encountering numerical

36Recall, that we have purposely constructed the scalar equation (eq. (4.13)) to vanish for the background

solution. The only non-trivial part is (∇ϕ)
2
, which clearly vanishes for small perturbations in ϕ.

37Recall, this involves making the explicit choice: K = 1
2 , G

2 =
M2

Pl

2 , Vr = ϕ
µ with MPl = 1. Alongside a

change in coordinates: ϕ(t) ≡ µ
8q4x(t), ϕ̇(t) ≡

√
6 y(t), α ≡ a0

a .
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instabilities. But for consistency we define tf = π
2q

whilst allowing for the system to evolve

beyond that. Ideally we would like the system to evolve til t = 2tf =
π
q
as this represents a

full cosmological cycle (see fig. 5.1). However we do encounter numerical instabilities at this

point, possibly due to a0(
π
q
) = sinπt

q
= 0 which will create instabilities in H(t) ≡ ȧ

a
.

In fig. 5.13 we set xi = 1.01x0 to find that H(t) and z(t) (figs. 5.13a and 5.13d) quickly

approach their respective scaling solutions. There is some deviation in z(t) at late times

(fig. 5.13e), however this could be due to the system approaching the aforementioned numerical

instabilities. Interestingly, with an increased scalar coupling, x(t) (fig. 5.13b) approaches and

reaches its scaling solution at t = tf contrary to our previous numerical analysis. Note that

this all happens during the “expansion era” (see fig. 5.1). However, for t > tf it seems to

move away from its scaling solution, which corresponds to the “crunch era”. To understand

this, it is instructive to see how y(t) (fig. 5.13c) behaves. At t = tf it reaches its maximum,

but beyond this y(t) decreases. This could imply some sort of oscillatory behaviour in the

scalar. However, we cannot extend t beyond 2tf to study this. Firstly due to the numerical

instabilities, but more importantly evolving beyond this implies that the Universe is in a

different cosmological cycle. But it is still interesting that with an increased scalar coupling,

the system seems to remain on an AdS evolution where z(t) → −q2 with xi ≠ x0. This is

despite the fact that x(t) does not settle into its scaling solution, x0, for late times as we

previously expected. Therefore the scalar field has been able to effectively counter a large

cosmological constant, whilst deviating from its self-tuning scaling solution, to recover a

Universe with a small intrinsic curvature. This is in contrast to previous attempts within the

weak scalar coupling regime. When in the strong scalar coupling regime, the scalar can now

freely evolve in order to cancel off an arbitrary Λeff. This shows that the increase in the scalar

coupling strength has played a pivotal role in retrieving a small AdS solution. To reiterate,

this regime is outside the allowed bounds of solar system tests, but it demonstrates what

our system is trying to do. We can further examine the derivative of the effective potential
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against x(t) in fig. 5.13f. This plot starts positive, crosses the horizontal axis at x0, and then

becomes negative. This could imply one of two things. It could imply that the scalar has

rolled up the slope of the potential onto an unstable equilibrium point (at x0), rather than

settling into a global minimum. Or it could imply that the scalar is rolling up the slope and

reaches its peak at x0. After this it will roll down to a minimum that is ̸= x0. Both scenarios

are not ideal, but they both demonstrate that the effective potential can be minimised.

We further study the same example but instead we set xi = 0.99x0. Once again, we find

that H(t) and z(t) (figs. 5.14a and 5.14d) quickly approach their respective scaling solutions.

As before, there is a slight deviation in z(t) at late times, which could be traced back to

numerical instabilities. Similarly, x(t) (fig. 5.14b) approaches and reaches its scaling solution

at t = tf , but moves beyond x0 for t > tf . Similar to before there is a turning point in y(t)

(fig. 5.14c) at t = tff which could imply some sort of oscillatory nature in x(t). Once again,

despite deviating from its scaling solution, the scalar field has been effectively able to recover

a small AdS solution (as shown by z(t)− > q2) for an arbitrary Λeff. However, the behaviour

of the effective potential is slightly altered in fig. 5.14f. Similar to fig. 5.13f, ∂Veff
∂ϕ

crosses the

horizontal axis at x0. Unlike fig. 5.13f, ∂Veff
∂ϕ

(in fig. 5.14f) is initially negative and becomes

positive after crossing the axis. This implies that the scalar is rolling down the effective

potential to x0, which corresponds to its minimum. After this it then rolls back up to the

potential away from x0, but this is with the expectation that it will follow the slope back to

the minimum. This is exactly the type of behaviour needed in order to evade fine-tuning.

128



CHAPTER 5. COSMOLOGY OF THE FAB FOUR IN ANTI-DE SITTER SPACE

ti tf 1.9tf

0

0.1

-0.1

t

H
[t
]

(a) H(t)

ti tf 1.9tf

xi

x0

0.99x0

t

x
[t
]

(b) x(t)

ti tf 1.9tf

-5x10-7

-1x10-6

-1.5x10-6

0

t

y
[t
]

(c) y(t)

ti 0.1tf

-0.99q2

-1.01q2

-q2

t

z
[t
]

(d) z(t) at early times

0.1tf 1.9tf

-0.99q2

-1.01q2

-q2

t

z
[t
]

(e) z(t) at late times

x0 xi0.99x0

1x10-7

2x10-7

-1x10-7

-2x10-7

0

x

d
V
/d
ϕ

(f) ∂Veff/∂ϕ against x

Figure 5.13: These figures showcase the numerical evolution of the system when xi = 1.01x0
(i.e. the initial condition does not correspond to the scaling solution). The blue line represents
the evolution of the system, whereas the orange dashed line represents the scaling solution
of the given variable, where H(t) → q cot qt, x(t) → x0, y(t) → 0, and z(t) → −q2. The
parameters are chosen such that q2 = 10−4, m2 = 10−5q2, Λeff = −10−2, µ = 10−6, which
sets x0 ∼ 3.43× 10−3. But gϕ ∼ O(10−1), therefore it is no longer consistent with eqs. (5.26)
and (5.28). The initial conditions chosen are Hi = 10, xi = 1.01x0, yi = 0. Note that H(t)
and z(t) rapidly change from their initial values. Therefore, we have chosen to restrict the
vertical axis of figs. 5.13a and 5.13d to better display the evolution of each variable.
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Figure 5.14: These figures showcase the numerical evolution of the system when xi = 0.99x0
(i.e. the initial condition does not correspond to the scaling solution). The blue line represents
the evolution of the system, whereas the orange dashed line represents the scaling solution
of the given variable, where H(t) → q cot qt, x(t) → x0, y(t) → 0, and z(t) → −q2. The
parameters are chosen such that q2 = 10−4, m2 = 10−5q2, Λeff = −10−2, µ = 10−6, which
sets x0 ∼ 3.43× 10−3. But gϕ ∼ O(10−1), therefore it is no longer consistent with eqs. (5.26)
and (5.28). The initial conditions chosen are Hi = 10, xi = 0.99x0, yi = 0. Note that H(t)
and z(t) rapidly change from their initial values. Therefore, we have chosen to restrict the
vertical axis of figs. 5.14a and 5.14d to better display the evolution of each variable.
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We conclude by reiterating that the purpose of this section is to show that our model

truly evades fine-tuning by attempting to minimise its effective potential. In this section we

have offered several pieces of evidence that demonstrate this. Firstly, we have shown that the

effective potential (in a setup similar to our analysis of Weinberg’s no-go theorem in chapter 2)

has the possibility of being minimised. Next, we constructed a separate effective potential

using our KG equation, and analytically showed that this can be generically minimised for

small perturbations in the scalar. To verify this numerically we returned to our cosmological

analysis whilst greatly increasing the scalar coupling and studying the corresponding dynamics

for xi ̸= x0. Here, we showed that an increase in the scalar coupling allows x(t) to reach x0 at

t = tf =
π
2q

(in contrast to our numerical analysis in chapter 5). Strangely, the scalar evolves

beyond its scaling solution for t > tf , but the system remains on an AdS evolution until late

times. By specifically examining ∂Veff
∂ϕ

in fig. 5.13 we found that it crosses the horizontal axis

at x0, but is initially positive. We can infer two different behaviours from this plot, but the

key point is that the effective potential can be minimised. We also found that the plot of ∂Veff
∂ϕ

in fig. 5.14 crosses the horizontal axis at x0. Since it is initially negative, this implies that the

scalar is rolling down the effective potential to its minimum: x0. These pieces of evidence

together, alongside the analysis contained within section 4.2 and chapter 5, heavily imply

that our model can self-tune without fine-tuning. It also implies that the previous difficulties

with self-tuning (without fine-tuning) are due to the coupling of the scalar: specifically that

it is too weak.
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Discussions and future avenues

This thesis has explored modifications to GR, such that the observational value of the

cosmological constant better matches our theoretical understanding. Specifically we have

focused on self-tuning, which requires adding extra fields to GR to achieve this.

In chapter 1 we discussed how GR and predictions within QFT combine to create the

cosmological constant problem. QFT predicts the existence of vacuum energy, and GR

predicts that it will gravitate as a cosmological constant, Λvac. Even a lower estimate of its

theoretical value far surpasses the observational value, Λobs. However as we emphasised, the

real problem is the radiative instability of vacuum energy. Naively, we can add a finely-tuned

counterterm, Λbare, to “eat up” Λvac. But vacuum energy is incredibly sensitive to higher

order perturbations, which will lead to repeated fine-tunings in the counterterm. This process

of fine-tuning and re-tuning is something we want to avoid.

In chapter 2 we reviewed a range of self-tuning theories. By self-tuning we mean that

additional fields act to naturally reduce the effective value of the cosmological constant.

As explained previously, to expose any hidden fine-tunings a self-tuning theory should also

admit to an arbitrary bare cosmological constant term. Setting Λbare = 0 corresponds to

a fine-tuning between it and Λvac. Therefore, the real goal is to construct a model where

Λbare + Λvac = Λeff ∼ Λobs. First, we considered a modified version of GR with a scalar field

that is constant on the background to show that it cannot self-tune without fine-tuning. In
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doing so we demonstrated the essence of Weinberg’s no-go theorem, which places some very

general constraints on self-tuning theories. Then, we reviewed a range of self-tuning theories

which seek to avoid this. Here, we will briefly outline each section.

We began with unimodular gravity (section 2.1) which involves restricting the allowed

values of the determinant of the metric. In a sense, this will prevent the vacuum terms from

gravitating. At first glance it appeared to work well. But on closer inspection we found that

the cosmological constant terms are just reintroduced via a constraint, and that the field

equations become indistinguishable from GR (at least classically).

In section 2.2 we showed that Fab Four was able to write the most general linear scalar-

tensor action (with field equations up to second order) that can self-tune using Horndeski’s

action. Using various self-tuning conditions, this complex action can be reduced to a linear

combination of four Lagrangians. Fab Five (section 2.3) constructs a more general action by

combining the Lagrangians non-linearly. We later discovered that both “Fabs” self-tune away

a large cosmological constant, but they also self-tune away all other matter contributions.

This removes the model’s ability to enter into a radiation/matter dominated era, driven by

radiation/matter. Well-tempered (section 2.4) theories can fix this by solving the field

equations in a different way. The “Fab” theories use a solution that trivially satisfies the

scalar field equation, regardless of the matter component. Whereas well-tempering demands

that the scalar field equation is only satisfied for a cosmological constant. This ensures

that non-constant matter components are not self-tuned away. We also briefly mentioned

a recently discovered mechanism separate from well-tempering, that can both self-tune and

allow for other forms of matter domination.

We then explored a different approach with vacuum energy sequestering (section 2.5),

which involves promoting the bare cosmological constant term to a global variable, alongside

the addition of another global variable. Varying the action with respect to these variables
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creates constraints, such that the Λbare automatically cancels the Λvac. But, this leaves behind

a separate effective cosmological constant that is proportional to the 4-volume average of

the trace of the local matter sector, ⟨τ⟩. This object is determined by measurement, which

removes the fine-tuning problem, and can be shown to be automatically small in large, old

Universes.

In section 2.6 we discussed braneworlds, which is based on the idea that our observable

Universe is a 4D brane that lies atop a bulk that exists in extra dimensions. We can effectively

“hide” the gravitational response of the vacuum energy into these extra dimensions. If we

existed in a full SUSY Universe, the vacuum energy would automatically vanish since

fermions and bosons contribute opposite signs to its energy density. However we know that

a full SUSY sector cannot exist on our 4D brane. Instead, SUSY can be used to introduce

novel particles in the bulk (that can induce a non-trivial effect on the curvature), alongside

constraining the compactification scale (to fit with observations).

Finally, we explored self-tuning with massive gravity in section 2.7. The massive

graviton acts as a high-pass filter that allows shorter wavelength sources to pass through

unhindered, but screens longer wavelength sources. This screens the effect of a cosmological

constant, whilst allowing for an agreement with GR physics.

In chapter 3 we explored another self-tuning model by reiterating the arguments presented

in [188]. Here, they analyse the linear exchange amplitude between two conserved sources,

mediated by both single and multi-particle states up to spin-2. In order to self-tune, they

demand that the amplitude vanishes for vacuum energy sources but is in close agreement

with GR for short wavelength sources. Under some general assumptions, they argue that

we cannot create a self-tuning theory for Minkowski or dS backgrounds since these types of

theories violate the self-tuning constraints. However, they discover that there are models that

can satisfy these constraints through the so-called “AdS loophole”. They later construct an
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explicit example to demonstrate that there are indeed models that can self-tune in AdS space.

Slightly departing from this example, we created a model that can satisfy the constraints

using a single massive graviton and a single massive scalar. It is through this example that

we constructed a full realisation of the model.

In chapter 4, we started by considering a generalisation of the Fab Four action, which

we modified to include an AdS curvature, −q2. Alongside this, we included a dRGT massive

gravity term and an extra kinetic term. Unlike the original Fab Four we broke translational

invariance at the level of the metric, rather than the scalar. This allowed us to evade

Weinberg’s no-go theorem, with a constant scalar field on the background. This also allowed

us to remove the John and Paul terms, which do not contribute to the exchange amplitude

or background solutions, whilst justifying the addition of the extra kinetic term (which will

contribute).

Next, in section 4.1, we wrote down the field equations and examined them on the

background solution (gµν = ḡµν , ϕ = ϕ̄ = constant, and ρ = −p = Λvac). The scalar field

equation is automatically satisfied, whereas Einstein’s field equation reduces to an expression

for Λvac, which we call the “self-tuning equation”. This expression tells us that we can indeed

accommodate for a large cosmological constant, to recover a small AdS background solution.

In other words, our combination of the cosmological constant terms, Λbare + Λvac = Λeff, can

be countered by the Ringo term to create a background solution that is small and negative.

By looking at the self-tuning equation one can naively conclude that the massive terms can

also counter an arbitrarily large cosmological constant. Instead, we noticed that the massive

terms are related to G, which we later identified with MPl (as it sets the scale of gravitational

interaction). Therefore we do not want to vary G too much. Even worse, we later found

that this massive term must be small to avoid ghosts. This almost completely removes its

effectiveness at countering the large cosmological constant, which highlights the importance

of Ringo.
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Then in section 4.2, we compared our analysis with [188] by writing the exchange amp-

litude between two conserved sources for the model. To do this we returned to the field

equations, perturbed about the background solutions, and decomposed the metric perturba-

tions. Using these expressions we were able to write an exchange amplitude for our model.

Then, we showed that it both recovers GR in the high energy limit and vanishes for a cosmo-

logical constant source. We also used this expression to check the stability and the ghost-free

conditions of our model. From this, we found that there are three distinct scenarios, each

representing distinct models. We finally demonstrated this model through an explicit example,

verifying that it vanishes for a vacuum source and recovers GR in the high energy limit.

To further understand the dynamics of our model we then computed its cosmological

equations, studying them both analytically and numerically in chapter 5. For this we con-

sidered an AdS background metric, and we assumed the matter components to be that of

a conserved perfect fluid. Applying these requirements yields four equations: the modified

Friedmann equation; the modified acceleration equation; the scalar equation; and the energy

conservation equation. From this, we first verified that the vacuum solutions satisfy these

equations. The scalar equation and the energy conservation equation are immediately satis-

fied, whilst the modified Friedmann and acceleration equation yield the “self-tuning equation”.

Also, due to the break in diffeomorphism from the massive gravity term we were able to derive

a constraint equation. By differentiating the modified Friedmann equation with respect to

t, and combining again with the four “base” equations, we obtained a constraint which has

two general solutions. The first is satisfied automatically by our vacuum solution, so it acts

as a verification tool. The second creates an entirely new constraint: 3aG − 2a0 = 0. This

could provide a different set of solutions, should we choose to study a different solution in

the future.

Expanding on this we used a numerical analysis to study the dynamical nature of the

system. For this, we considered a canonical example (similar to section 4.2) and a change
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in variables such that α ≡ a0
a
, ϕ(t) ≡ µ

8q4
x(t), and ϕ̇(t) ≡

√
6 y(t). Note that these variables

will have constant vacuum scaling solutions of the form x(t) → x0, y(t) → 0, and α(t) → 1,

alongside H(t) → ȧ0
a0

≡ q cot qt. These scaling solutions correspond to the system undergoing

an AdS evolution with a constant scalar. This is consistent with the background solution we

derived in section 4.1, where gµν = ḡµν and ϕ = ϕ̄ = constant. From the change of variables

we rewrote the modified Friedmann equation in terms of α, which we used to simplify the

modified acceleration equation and the scalar equation. By manipulating these equations we

were able to derive two second order equations in terms of ä
a
and ϕ̈ separately, sourced by the

t, H(t), x(t) and y(t). Finally, using the above we derived three rate equations for H(t), x(t),

and y(t), such that Ḣ = ä
a
−H2 ≡ f −H2, ẋ = 8q4

µ
ϕ̇ ≡ 8q4

µ

√
6 y, and ẏ = ϕ̈√

6
≡ g√

6
where f

and g are given by eqs. (5.21) and (5.22) respectively.

Then, we proceeded with our numerical analysis, where we verified that the model

recovers the scaling solutions given the initial conditions Hi = q cos qti
sin qti

, xi = x0, and yi = 0.

We also tracked the variable z(t) = H(t)− 1
a2
, where z(t) → −q2 on the scaling solution, to

support this verification. We showed that the scaling solutions can be recovered for a wide

range of different parameters and initial conditions in Hi. Next, we perturbed xi from x0,

but we found that the system does not recover its scaling solution. However, upon examining

the behaviour of y(t) we found that x(t) can dynamically evolve towards x0, although it does

so very slowly. To further understand this we gave x(t) a “kick” with yi ≠ 0. These plots

showed that x(t) can dynamically change when given a “kick”. However, we were not able

to generically recover the scaling solutions without fine-tuning xi and yi.

To understand the nature of this fine-tuning we initially conducted a linear stability

analysis by perturbing the cosmological equations about the scaling solutions. Unfortunately,

our method produced results that are inconclusive. To overcome this requires analysing the

stability of this model through a different method, beyond the scope of this thesis.
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Finally, we verified that our model can self-tune without fine-tuning in section 5.1. Here,

we provided several pieces of evidence showing that the effective potential for our model

can be generically minimised. As explained towards the beginning of chapter 2 this is a

requirement of self-tuning with a constant background scalar field without fine-tuning. This

implies that the difficulties experienced in our numerical analysis (in chapter 5) is not actually

due to the system needing to be fine-tuned. Through figs. 5.13 and 5.14 we have also shown

that the system remains on an AdS evolution for small changes in xi = x0 (in contrast to our

results in chapter 5). Similarly, x(t) reaches its scaling solution at t = tf = π
2q

(at the end

of the cosmological expansion era), but moves beyond it at t > tf (during the cosmological

crunch). We also examined the derivative of the effective potential, to show that Veff can be

minimised in both of these scenarios. However, this can only be achieved by working in the

“strong scalar coupling regime”, which is well beyond the allowed solar system constraints

that we derived in eqs. (5.26) and (5.28). Therefore these results cannot be taken as a direct

representation of the evolution of our system. Instead, it represents what the system is trying

to do. However, it does imply that “fine-tuning” in our numerical analysis is really an artefact

of the scalar being too weakly coupled.

An interesting aspect of our work is that there are many potential directions that it

can take. In [188] they demonstrated that an explicit example (that differs from our model)

satisfies all of their self-tuning constraints. Namely, one that includes a single massless

graviton, a single massive graviton, and a single massive scalar. It would be interesting to

conduct an analysis similar to ours on this aforementioned example. Furthermore, there

are theoretically a great number of separate examples that can satisfy the constraints in

[188]. These will create distinct models that require separate analyses to understand their

phenomenologies. A separate project could further explore the parameter space that satisfies

these constraints, rather than constructing singular examples.

We have been able to show that our model, both analytically and numerically, can self-
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tune. In fact, the scalar seems to evolve towards its scaling solution in our numerical analysis

for small perturbations in its initial value (i.e. xi ̸= x0). However, despite evidence that x(t)

can be dynamical, it evolves far too slowly to recover its scaling solution in the “weak scalar

coupling regime”. Therefore, there are still a number of potential avenues to explore through

changes in our numerical analysis. This could take the form of numerically solving through an

alternate method, through a different choice of arbitrary functions (corresponding to different

choices of Vr, K, G, and N(t)), or by generalising these arbitrary functions entirely.

We could also seek to understand our system better through a stability analysis. Our

linear stability analysis proved to be inconclusive, but we can still study it via other methods

(that we discussed further in chapter 5).

An interesting approach to further extend our model would be to seek background

solutions that involve a non-constant scalar. This represents a full AdS generalisation of Fab

Four. Of course, reintroducing a non-constant scalar on the background will also reintroduce

the John and Paul terms38. This requires a separate analysis (similar to our work) in order

to explore whether these non-constant scalar background solutions exist. If they do, it would

be interesting to study the phenomenology of such a system.

Finally, we briefly mention that our work resolves the field equations of our model in a

similar way to Fab Four and Fab Five (sections 2.2 and 2.3). But as we pointed out, this

method may result in the self-tuning technique working “too” well. By this we mean that it

removes the gravitational effect for all matter components, not just that of a cosmological

constant. Therefore, it would be useful to solve these equations in a similar way to the

well-tempered analysis to ameliorate this problem. If this is the case, we must also satisfy

the constraint equation due to the massive graviton (eq. (5.5) as derived in chapter 5), as

it is no longer automatically satisfied by the background solution. In other words we must

38This will prompt the removal of K as the John and Paul terms will now be able to provide the system
with a kinetic dependency i.e. terms containing ∇µϕ∇νϕ.
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satisfy 3aG − 2a0 = 0, which could prove to be a useful testing ground.

Regardless, we must first find a consistent generalisation of Fab Four in AdS space

that can dynamically self-tune away an arbitrary cosmological constant term. We have

shown that self-tuning without fine-tuning is indeed analytically possible with our model.

Our numerical analysis has also shown that it can self-tune when the initial conditions of

the scalar (x(t)) match that of its self-tuning scaling solution (x0), whilst allowing for the

initial conditions of the Hubble parameter (H(t) ≡ ȧ
a
) to be (mostly) arbitrary. Furthermore,

when we perturbed x(t) away from x0, there is evidence that it tries to slowly evolve to it.

However, it never quite reaches x0 at late times without fine-tuning the initial conditions

of x(t) and ẋ ∝ y(t). Therefore, even though there is evidence that the scalar dynamically

evolves towards the scaling solution, we have been unable to numerically show that our

system can effectively counter an arbitrary cosmological constant at late times without some

fine-tuning. Despite this, our work stands as a novel exploration into self-tuning in an AdS

space. As demonstrated, there are many potential avenues that this project could take in

order to find a model that can consistently solve the cosmological constant problem.
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