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Abstract

The ability to recognise emotional expressions from non-verbal behaviour

plays a key role in human-human interaction. Endowing machines with the

same ability is critical to enriching human-computer interaction. Despite

receiving widespread attention so far, human-level automatic recognition

of affective expressions is still an elusive task for machines. Towards im-

proving the current state of machine learning methods applied to affect

recognition, this thesis identifies two challenges: label ambiguity and label

scarcity.

Firstly, this thesis notes that it is difficult to establish a clear one-to-one

mapping between inputs (face images or speech segments) and their target

emotion labels, considering that emotion perception is inherently subjec-

tive. As a result, the problem of label ambiguity naturally arises in the man-

ual annotations of affect. Ignoring this fundamental problem, most exist-

ing affect recognition methods implicitly assume a one-to-one input-target

mapping and use deterministic function learning. In contrast, this thesis

proposes to learn non-deterministic functions based on uncertainty-aware

probabilistic models, as they can naturally accommodate the one-to-many

input-target mapping. Besides improving the affect recognition perfor-

mance, the proposed uncertainty-aware models in this thesis demonstrate

three important applications: adaptive multimodal affect fusion, human-
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in-the-loop learning of affect, and improved performance on downstream

behavioural analysis tasks like personality traits estimation.

Secondly, this thesis aims to address the challenge of scarcity of affect la-

belled datasets, caused by the cumbersome and time-consuming nature of

the affect annotation process. To this end, this thesis notes that audio and

visual feature encoders used in the existing models are label-inefficient i.e.

learning them requires large amounts of labelled training data. As a solu-

tion, this thesis proposes to pre-train the feature encoders using unlabelled

data to make them more label-efficient i.e. using as few labelled training

examples as possible to achieve good emotion recognition performance. A

novel self-supervised pre-training method is proposed in this thesis by pos-

ing hand-engineered emotion features as task-specific representation learn-

ing priors. By leveraging large amounts of unlabelled audiovisual data, the

proposed self-supervised pre-training method demonstrates much better la-

bel efficiency compared to the commonly employed pre-training methods.
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Chapter 1

Introduction

Nothing in life is to be feared.

It is only to be understood.

Marie Curie

Humans are inherently social creatures. In regulating our social interac-

tions, expressing emotions through nonverbal behaviour is an integral part.

Reeves and Naas, in their seminal work ‘The Media Equation’ [Reeves

and Nass, 1996], notes that our emotional expressions are not confined to

just human-human interactions; we tend to treat computers as real people

and implicitly exhibit a social attitude towards computers too. With the

rapidly expanding role of computing devices in managing our lives, the idea

of enabling machines to recognise emotional expressions has been becoming

more and more relevant ever since the first attempt made by [Parke, 1974]

in 1974.

But why do machines need to learn about human emotional expressive

behaviour? Endowing computers with the ability to recognise users’ ap-

parent emotions and choose their responses accordingly holds the potential

1



Figure 1.1: Circumplex model of dimensional affect [Russell, 1980] (Image
source: AffectNet corpus [Mollahosseini et al., 2017])

to enrich human-computer interactions. Further, making computers aware

of human emotional behaviour is critical to build technology with a posi-

tive societal impact through applications ranging from diagnostic tools for

mental health and well-being problems [Valstar et al., 2016, Yannakakis,

2018] to personalised and interactive educational tools [Wu et al., 2016,

Yadegaridehkordi et al., 2019].

With the objective of making machines emotionally intelligent, Affective

Computing [Picard, 1997] aims to develop tools that provide machines with

the abilities to perceive, analyse and respond to human affective expres-

sions. The fundamental notion of ‘Affect’ broadly encompasses a person’s

basic sense of feeling, and it is not specific to just emotions. In its dimen-

sional representation [Russell, 1980], affect characterises a feeling in terms

of how pleasant or unpleasant it is (valence), and how active or passive

it is (arousal), as illustrated in Fig. 1.1. Unlike the commonly used basic

emotion categories such as happy, angry, disgust, etc [Ekman, 1999], the

2



dimensional affect model composed of valence and arousal axes can cap-

ture a wider spectrum of complex and nuanced emotions (e.g. depression,

content, etc).

Automatic recognition of affective states (valence and arousal levels) from

non-verbal behaviour lies at the core of building affect-aware interfaces.

Considering that affective expressions are inherently multimodal phenom-

ena [Zeng et al., 2008], collecting and integrating behavioural cues from

multiple channels is essential for building reliable affect recognition sys-

tems. To this end, facial (visual) and vocal (audio) modalities evolved as

the most favourable channels for recognising affective states [Zeng et al.,

2007], given that facial and vocal expressions are the two most dominant

modalities that humans use in communicating their affective states, and

due to the ubiquity of video cameras and microphones in human-computer

interactions. Although wearable sensors also could be used for recognis-

ing affect from other modalities such as electrodermal Activity (EDA) and

electrocardiogram (ECG), video and audio modalities are more preferable

in practice due to their unobtrusive nature, ease-of-use and scalablity ad-

vantages.

From a mathematical standpoint, training a machine learning model to

recognise affect involves essentially learning a function f : X → Y that

maps face videos and/or speech signals (X) to manually annotated valence

and arousal vectors (Y ). The performance of a trained machine learning

(ML) model is measured w.r.t how well it generalises to unseen data. Here

the notion of ‘generalisation’ refers to how well the learned function f per-

forms when presented with novel inputs (X ′). In recent years, data-driven

end-to-end ML powered by Deep neural networks (DNNs) [LeCun et al.,

2015] as universal function approximators, demonstrated impressive results

on a wide range of perceptual tasks such as image classification [Krizhevsky
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et al., 2012], object detection [Szegedy et al., 2013a], etc. Leveraging the

advancements in data-driven ML, contemporary affect recognition models

also demonstrated good generalisation performance by applying DNNs to

face and voice data collected in naturalistic conditions (e.g. [Tzirakis et al.,

2017]).

However, most existing affect recognition approaches largely ignore a fun-

damental difference between general perceptual tasks and apparent affect

recognition: ambiguity in the ground truth labels. Given an input signal

Xi, the ambiguity in manually assigning its ground truth label refers to the

condition in which several label classes or values (Y a
i , Y

b
i , ...) are likely to

be correct. In tasks such as object recognition the human supervision is

largely unambiguous and objective in nature, whereas in affect recognition

the ground truth labels are strongly influenced by the subjective nature of

emotion experience, expression or communication and perception processes

in humans [LeDoux and Hofmann, 2018].

Since emotions are inherently latent (not directly observable) psychologi-

cal constructs that are highly context-sensitive [Barrett et al., 2011], the

perception of the same expressed emotion is likely to differ significantly

from rater to rater. To give an example, if we ask two different annotators

to label the identities of clearly visible objects (e.g. bicycle and car) in an

image, it is unlikely that the two annotators will provide different labels for

the same object, considering the unambiguous nature of label classes i.e.

object identities. But when annotating valence and arousal levels, it is com-

mon to notice disagreements among different annotators [Busso et al., 2008,

Devillers et al., 2005, Douglas-Cowie et al., 2005]. For instance, as Fig. 1.2

illustrates, in the continuous-valued ratings of valence and arousal labelled

by six different annotators in the SEMAINE corpus [McKeown et al., 2010],

we can clearly see that the valence and arousal annotations have high vari-
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ability from rater to rater, inducing ambiguity into the final ground truth

labels (wide variance ranges around the mean curves) [Mower et al., 2009].

It is interesting to note that while all annotators agreed that the valence

increased at around 6 seconds, they disagreed about the exact timing of

the rise, and how strong the rise was. This disagreement among the raters

in the event of sudden changes in emotional states, has been widely studied

in the literature of dimensional affect recognition (e.g. [Cowie et al., 2012]).

Another major source of affect annotation ambiguities lies in the less accu-

rate emotion representation models. [Sethu et al., 2019] highlights the lim-

itations of existing emotion representation models and strongly advocates

the need for accommodating ambiguity into the existing models. Based

on an adapted version of Brunswik’s function lens model [Scherer, 2003],

they present a theoretical framework, as illustrated in Fig. 1.3, that de-

lineates the role of affect annotation ambiguity at different stages of the

annotation process (experience, expression and perception), and the uncer-

tainty introduced into the the machine learning models trained for emotion

recognition.

In contrast to all the aforementioned theoretical arguments, existing af-

fect recognition datasets [Kossaifi et al., 2019, Ringeval et al., 2019, Busso

et al., 2008] ignore the affect annotation ambiguities, and assume that the

variability among the emotion annotations can be modelled as mere noise.

Guided by this assumption, the process of affect annotation is designed

generally to minimise the label noise (variance of ratings), with the goal

of maximising inter-rater-reliability score. First, a small of pool of raters

annotate each video and/or audio input with affect ratings. Then, the

ground truth labels of affect are prepared by averaging the annotations

collected from all the raters, using techniques such as evaluation-weighted-

estimation [Ringeval et al., 2017, 2018, 2019].
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(a)

(b)

Figure 1.2: Rater-wise annotations of (a). valence and (b). arousal for an
example sequence from the SEMAINE corpus [McKeown et al., 2010]
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Figure 1.3: Brunswik’s functional lens model of ambiguities in emotion ex-
perience, expression and perception stages, and the uncertainty introduced
into the emotion recognition models (Image source: [Sethu et al., 2019]).

Consequently, annotating the ground truth labels of affect, especially for

large-scale datasets, is often a highly laborious and time-consuming pro-

cess. Thus, when training end-to-end ML models for affect recognition for

novel use cases (e.g. driving environments), affect label scarcity is a com-

monly encountered problem. Furthermore, despite collecting ratings from

multiple annotators, it is less likely that the final ground truth labels are

completely unambiguous, given the sub-optimal nature of simple weighted

averaging techniques which do not model the variability among the raters

systematically. The ML models trained using such ambiguous supervision

signals of affect are bound to have poor generalisation performance. There-

fore, this thesis argues that when training ML models for affect recognition

it is important to account for the problems of Label Ambiguity and Label

Scarcity, in order to advance the current state of affect recognition models.
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1.1. RESEARCH OBJECTIVES

1.1 Research Objectives

Most existing ML models applied to affect recognition tasks can be char-

acterised as deterministic function learning models, which assume that the

ground truth labels are completely unambiguous. Such models expect a

clear one-to-one functional mapping between the inputs and target labels.

On the contrary, the input-label mapping in the case of affect recognition

does not naturally fit into the one-to-one type, for the reasons discussed

above. Darwin, in his work on emotions [Darwin, 1948], notes this fun-

damental problem: “the observation of Expression is by no means easy.

Hence it is difficult to determine, with certainty, what are the movements

of the features and of the body, which commonly characterize certain states

of the mind”. Motivated by these observations, this thesis explores non-

deterministic function learning models [Del Coz et al., 2009] through un-

certainty modelling which allows us to map an input video or audio signal

to a range of affect labels.

On the other hand, to deal with the problem of label scarcity in affect

recognition it is important to make the end-to-end affect recognition mod-

els label-efficient i.e. achieve good generalisation performance using small

amounts of labelled training data. In order to make the affect recognition

models label-efficient, this thesis proposes to leverage the natural supervi-

sion signals embedded in the audiovisual data. To this end, by building

on the recent advancements in self-supervised representation learning [Jing

and Tian, 2020], this work proposes a novel self-supervised pre-training

method for improving the label-efficiency of affect recognition models.

In summary, this thesis aims to address the above discussed two fundamen-

tal challenges in automatic affect recognition, label ambiguity and scarcity,

by exploring two key ideas: 1. Uncertainty-aware learning – to learn non-
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deterministic ML models that are aware of label ambiguity through prob-

abilistic temporal modelling and 2. Label-efficient learning – to minimise

the requirement of labelled data for learning expressive features from high-

dimensional face and voice data. The following section presents a brief

summary of the approaches explored towards uncertainty-aware and label-

efficient affect recognition.

1.2 Proposed Solutions

Uncertainty Modelling in the Temporal Context of Affect. This

thesis proposes to leverage the temporal context information in face videos

and speech signals, to partially account for the affect label ambiguity

problem. Particularly, novel probabilistic temporal models are proposed

for non-deterministic function learning, in which a single input signal is

mapped to multiple output affect values by predicting distributions, in

stead of points estimates. To this end, the uncertainty of latent states and

output states is modelled in the temporal affect recognition models.

First, for latent uncertainty modelling, this thesis proposes two proba-

bilistic frameworks: Calibrated and Ordinal Latent Distributions (COLD)

and Affective Processes (APs). Both these frameworks aim to capture

uncertainty in the temporal context of affect signals, but with different as-

sumptions about the underlying temporal context distributions. Further,

applications of latent state uncertainty to audiovisual affect fusion and

human-in-the-loop affect learning are demonstrated. Then, for predictive

or output uncertainty modelling, an approach to quantify epistemic and

aleatoric predictive uncertainties is presented and its application to an im-

portant downstream behavioural analysis task, apparent personality traits
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recognition is demonstrated.

Label-Efficient Affect Representation Learning. This thesis proposes

to leverage unlabelled audiovisual data for label-efficient affect recognition

i.e for reducing the requirements of labelled examples for representation

learning – extracting low dimensional features from high dimensional raw

inputs. To this end, this thesis proposes to pre-train the audio and vi-

sual feature encoders from unlabelled audiovisual data using a novel self-

supervised learning approach, which involves learning a proxy task for

which the labels are automatically derived by exploiting the intrinsic struc-

ture of face and voice data. In contrast to the affect-agnostic priors used in

the existing proxy tasks of self-supervised learning, the proposed proxy task

based on deep temporal clustering exploits hand-engineered emotion fea-

tures by posing them as task-specific representation learning priors. Com-

pared to the generic learning priors like temporal predictability, the proxy

task proposed in this thesis demonstrates superior label-efficiency results.

Thus, towards advancing the current state of automatic affect recognition,

this thesis presents uncertainty-aware temporal models and label-efficient

feature encoders to overcome an important challenge in affective behaviour

analysis, ambiguity and scarcity of manual supervision.

1.3 Thesis Outline

This thesis is structured as follows:

• Chapter 2 first reviews the standard computational models of affect

representation, different machine learning approaches applied to af-

fect recognition and their limitations. Then, it discusses an important
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trade-off between label ambiguity and label scarcity in affect recog-

nition tasks. Towards addressing the affect label ambiguity problem,

various non-deterministic temporal function learning methods are re-

viewed. With the objective of making affect recognition models label-

efficient, this chapter reviews different self-supervised representation

learning methods applied to affect recognition.

• Chapter 3 introduces a latent uncertainty modelling step in temporal

networks based on the canonical recurrent models. In particular, this

work proposes a non-deterministic temporal model for uncertainty-

aware audiovisual fusion for affect recognition – ‘COLD Fusion: Cal-

ibrated Ordinal Latent Distributions Fusion’. In this method the

vector form hidden state (or context) in RNNs is replaced with a

distribution form hidden state whose variance is constrained by the

calibration and ordinal ranking properties. This work demonstrates

that multimodal affect fusion performance can be improved signifi-

cantly by adopting the non-deterministic temporal context learning

through uncertainty modelling.

• Chapter 4 proposes another latent uncertainty modelling method,

‘Affective Processes (APs)’, as a more efficient alternative to the

COLD fusion model. APs build on recently proposed neural la-

tent variable models using an encoder-decoder composition [Garnelo

et al., 2018b,a], and learn a global latent variable for learning the

non-deterministic temporal context. It demonstrates an application

of APs to audiovisual affect fusion and it shows that by means of

learning a global latent variable, APs outperform the COLD fusion

method and other standard model-agnostic fusion baselines. Fur-

ther, an application of APs to Cooperative Machine Learning of affect

recognition is proposed.
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• Chapter 5 discusses a predictive or output uncertainty model with

the aim to capture holistic uncertainty in video-based affect recog-

nition models. Further, it demonstrates an application of predictive

uncertainty estimates of the valence and arousal dimensions to an im-

portant downstream behavioural analysis task, apparent personality

traits estimation.

• Chapter 6 presents a novel self-supervised representation learning ap-

proach to improve the label-efficiency of affect recognition from face

and voice data. The proposed self-supervised pre-training method,

dubbed ‘CHeF: Clustering of Hand-engineered Emotion Features’,

leverages large amounts of unlabelled data by making use of their

hand-crafted audiovisual features of affect as task-specific represen-

tation learning priors. Compared to the existing self-supervised base-

lines guided by generic representation learning priors that are affect-

agnostic, the proposed CHEF pre-training demonstrates superior label-

efficiency results in both visual and audio modalities.

• Chapter 7 concludes this thesis by summarising its key contributions

made towards advancing the current state of machine learning models

applied to automatic affect recognition.
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Chapter 2

Background and Motivation

All learning has an emotional

base

Plato

In general, intelligent behaviour can be defined as the ability to perceive,

learn, and adapt to an external environment. This common view of in-

telligence fails to account for an important set of abilities human beings

naturally demonstrate with ease in their daily lives - emotional intelli-

gence [Salovey and Mayer, 1990], which constitutes the abilities to have,

communicate, perceive and process affective states1. Conveying affective

states by modulating nonverbal cues (e.g. facial and vocal expressions,

body gestures), plays a crucial role in not only enriching human communi-

cation but also in motivating human actions.

Human-human communication heavily depends on nonverbal cues for con-

veying affective states. A famous work by [Mehrabian, 1968] posited that

when the spoken word and the expressed behaviour seem to contradict each

1Affect and emotion are synonymously used throughout this work
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other, emotion information communicated in a message relies 55% on facial

expressions, 38% on vocal utterances, and only 7% on spoken words. This

trend clearly shows the importance of perceiving paralinguistic signals of

a message in communicating the affective states through facial and vocal

expressions.

As computing devices are becoming more and more ubiquitous, making

human-machine communication as natural as possible, has evolved as an

important research problem. To solve this problem, the field of Affective

Computing [Picard, 1997] aims to develop computing tools specialised in

human affective behavioural analysis. Automatic recognition of apparent

affect from face and voice data is the central problem in affective computing.

This thesis notes two fundamental challenges, label ambiguity and label

scarcity, towards solving the problem of naturalistic affect recognition.

Chapter Summary. This chapter first reviews the standard computa-

tional models used for quantitatively representing the affective states, fol-

lowed by a discussion of the key trends in machine learning approaches

applied to affect-related feature extraction and temporal modelling of af-

fective signals. Then, the focus shifts to dissecting an interesting challenge

posed by human perception uncertainty in annotating apparent emotions: a

trade-off between label ambiguity and label scarcity problems. To deal with

the former problem, this thesis explores a class of machine learning models

with non-deterministic function learning abilities, as they allow learning

from ambiguous supervision signals. This chapter discusses various exist-

ing non-deterministic ML models and their limitations. To cope with the

label scarcity problem, a recently emerging paradigm of Self-Supervised

Learning is proposed as a solution. A review of the existing affect recogni-

tion approaches that leveraged self-supervision so far and their limitations

are discussed at the end.
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2.1. COMPUTATIONAL MODELS OF AFFECT

Categorical Affect: Ekman’s Seven Basic Emotions Dimensional Affect: Russell’s Circumplex Emotions

Fear

Contempt

Happy

Surprise

DisgustSad

Anger

High Arousal

Low Arousal

Positive
Valence

Negative 
Valence

Figure 2.1: Affect Representations Models: Categorical vs. Dimensional

2.1 Computational Models of Affect

The process of human experience, expression and perception of emotions is

inherently subjective and latent in nature [Devillers et al., 2005, Liscombe

et al., 2003, Mower et al., 2009], hence, quantitatively representing affective

states is a fundamental challenge. While no universal descriptive model of

emotions is found yet in the literature, two popular models, categorical and

dimensional, are widely adopted to mathematically represent emotional

states in a machine.

Categorical Model of emotions uses the nominal approach to associate a

data instance with a discrete label representing a particular emotion class.

Ekman’s model of seven basic emotions [Ekman, 1999], as illustrated in

Fig. 2.1, is a classic categorical model that was widely used in the early

works of affect recognition from facial and vocal expressions [Pantic and

Rothkrantz, 2003]. Despite achieving impressive predictive accuracy, affect

recognition models based on categorical emotions have not much impact

in real-world applications. They were mostly evaluated on data containing
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prototypical and exaggerated emotional displays of fixed intensity, whereas

the emotions encountered in natural human interactions are often non-

prototypical, highly nuanced and continually changing in intensity with

time. Thus, there are two main limitations for the basic categorical models

in capturing emotional expressions that occur in naturalistic interactions:

1. emotional states are rarely independent and mutually exclusive and 2.

the intensity of emotions varies continually in time.

In real-world situations, we often experience complex emotions that are

composed of overlapping states of basic emotions simultaneously [Cowie

and Cornelius, 2003]. To give an example, the combinations of happi-

ness and surprise, and fear and surprise classes are not mutually exclusive

and they can co-occur very often, as illustrated in Fig. 2.2. To address

this limitation, some works proposed later advocated the use of compound

extensions of categorical models [Du et al., 2014] that are defined using

primary and secondary class combinations and describe the intensities of

each prototypical emotion (e.g. Plutchik’s emotion wheel [Plutchik and

Kellerman, 2013]). Using such secondary emotions and their intensities as

additional targets improved the applicability of emotion recognition mod-

els [Du et al., 2014], however, such methods were not actively adopted in

the later works due to their highly complex annotation processes.

Dimensional Models of affect use the interval measurement approach

for quantifying emotional states which are assumed to be neither indepen-

dent nor discrete, in contrast to the nominal approach used in the categor-

ical model. Derived from the factor analysis of self-reported emotional at-

tributes, Russell’s circumplex model [Russell, 1980] is a popular candidate

among the dimensional models, in which an emotional state is modelled

as a point on two-dimensional bipolar space composed of two orthogonal

axes: valence and arousal. In this model, for a given emotion, the axis of
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Figure 2.2: Overlapping states of categorical emotion classes (left – happy
and surprise, right – fear and surprise), demonstrating that basic emotional
states are not mutually exclusive.

valence indicates the degree of its pleasantness (sadness to happiness) and

arousal shows the degree of its activeness (sleepiness to excitement). Thus,

emotional states are represented as continuous-valued vectors living in a

two dimensional space in the dimensional affect model.

In terms of unambiguously representing a wider range of emotional ex-

pressions encountered in natural conditions, dimensional affect models are

found to be superior to categorical models in general. But, in practice it

is common to observe that some of the basic emotions get assigned similar

valence and arousal values, as shown in [Sethu et al., 2019]. In such cases,

adding dominance as a third dimension may help in resolving the ambigu-

ity. However, as the existing datasets annotated with dimensional affect

have very few samples with such overlapped emotional state, not much at-

tention has been paid to the limitations of dimensional affect in terms of

distinctly characterising all emotional states. To annotate face videos and

speech signals like time-series data with valence and arousal, tools such as

FeelTrace [Cowie et al., 2000] have been developed, which output continu-

ous valued 2D vectors defined within the fixed intervals (e.g. [-1, +1]) for

training the machine learning models.
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genc gregX Z Y

Figure 2.3: Key components of a supervised machine learning model of
affect recognition (genc and greg denote the feature extraction and temporal
regression respectively.)

2.2 Facial and Vocal Affect Recognition

Most existing automatic affect recognition models are primarily based on

visual and audio signals, considering the crucial role played by facial and

vocal expressions in communicating emotional states [Mehrabian, 1968].

Early attempts to analyse emotions in facial and vocal expressions were first

made by [Suwa, 1978] and [Williams and Stevens, 1972] respectively. Since

the late 1990s, an increasing number of machine learning approaches were

proposed for recognising affect from face images [Mase, 1991, Kobayashi

and Hara, 1993] as well as speech signals [Dellaert et al., 1996]. The work

done by [Chen et al., 1998] is one of the early efforts towards fusing au-

dio and visual cues for affect recognition. For an exhaustive survey of

the early trends in affect recognition, the reader is referred to [Pantic and

Rothkrantz, 2003]. Although most of the initial attempts were mainly con-

fined to recognising deliberate affective displays of prototypical emotions,

later the focus shifted to spontaneous affect recognition [Zeng et al., 2008].

Refer to [Rouast et al., 2019] for a comprehensive review of the recent devel-

opments in spontaneous affect recognition based on advancements in fully

supervised machine learning approaches. The task of learning automated

recognition of apparent affect from faces and voices, essentially translates

to training a machine learning model guided by human-supervision in the

form of manually defined emotion labels using either categorical or dimen-

sional models. Most affect recognition methods proposed in the literature

are based on the paradigm of supervised machine learning.
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Supervised Machine Learning. In this approach, the learning objective

is to recover a function map f : X −→ Z −→ Y , whereX indicates a raw input

face image sequence or a speech segment, Y denotes its apparent affective

state label and Z represents a facial or vocal feature vector into which

affect-specific information is distilled from its corresponding raw input.

Similar to any other supervised ML problem formulation, as illustrated in

Fig. 2.3, affect recognition can decomposed into two sub problems: (1).

Feature Extraction: Extracting the most informative low-dimensional

feature representations from high-dimensional raw face or voice data (X −→

Z) and (2). Temporal Modelling: Predicting the target affective states

from the temporal dynamics of low-dimensional representations (Z −→ Y ).

2.2.1 Trends in Affect Feature Extraction: From En-

gineering to Learning

Facial Affect Features

Feature Engineering. Early approaches to facial affect recognition were

mainly based on handcrafted feature representations, which can be broadly

grouped into two categories: geometric and appearance. As geometric

features, explicit knowledge of face salient points or popularly known as

2D face landmarks, and shapes of individual facial structures (mouth, nose,

eyes, etc.) were heavily used. Since facial actions like mouth dimpler cause

changes in the appearance only, it may be theoretically impossible to detect

all facial displays using geometric features alone. Typical examples of facial

affect analysis methods that adopted such geometric facial features include

[Chang et al., 2006], [Pantic and Rothkrantz, 2004, Pantic and Bartlett,

2007] and [Kotsia and Pitas, 2006].
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Whereas the appearance features of facial expressions were computed using

either low-level descriptors of edge distributions or template models. Gabor

wavelets used in [Bartlett et al., 2002, 2005, 2006] and [Guo and Dyer, 2005],

and Haar features used in [Whitehill and Omlin, 2006] are some notable

examples in the former group. Whereas the template-based appearance

features include holistic spatial ratio (e.g. [Anderson and McOwan, 2006])

and temporal face templates (e.g. [Valstar et al., 2004]), etc. Later, sev-

eral works found that fusing both geometric and appearance features helps

in improving the facial affect recognition performance. Active Appearance

Model (AAM) of faces used in [Lucey et al., 2007] is one such fusion method

that combines the key features of face shape and appearance for analysing

facial expressions. In spite of showing promising affect recognition perfor-

mance, most of the hand-engineered facial affect features were found to

be not suitable for a wider range of head poses. It is commonly observed

that facial appearance features based on low-level descriptors of edge dis-

tributions show poor performance when applied to the face videos recorded

in in-the-wild conditions, and naturalistic non-frontal head poses [Bartlett

et al., 2006]. Refer to [Sariyanidi et al., 2014] for a detailed review of the

limitations of different hand-engineered facial affect features.

Feature Learning. Overcoming the limitations of image feature engineering,

AlexNet [Krizhevsky et al., 2012], a Deep Convolutional Neural Network

(CNN), demonstrated the potential of (labelled) data-driven spatial fea-

ture learning in 2012. Based on the premise of end-to-end learning of

hierarchical image representations through multi-layered neural network

architectures, CNNs transformed the field of Computer Vision. The ap-

plication of CNNs to facial expression analysis was already explored in

some of the early works [Fasel, 2002a,b], much before the revival of deep

representation learning of image data in 2012 by AlexNet. However, the
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lack of sufficiently large-scale datasets annotated with affect labels con-

strained such early efforts in automatic facial feature extraction. With the

success of AlexNet [Krizhevsky et al., 2012] in image classification tasks,

gradually the focus shifted to creating large-scale face expression analy-

sis datasets such as AffectNet [Mollahosseini et al., 2017], SEWA [Kossaifi

et al., 2019], etc. Such large-scale datasets coupled with GPU-enabled par-

allel computing technology allowed facial expression recognition methods

to rapidly2 adopt advanced CNN models for spatial feature learning. Var-

ious standard CNN architectures like VGGNet [Simonyan and Zisserman,

2014], ResNet [He et al., 2016], etc that were originally proposed for image

classification and object detection tasks, have been widely applied to the

face expression analysis tasks. For a comprehensive survey of deep CNN

models applied to the facial expression tasks, the reader is referred to [Li

and Deng, 2020].

Though CNN-based facial affect recognition methods achieved impressive

generalisation performance, they are severely constrained by the limited

amount of affect labelled image data, unlike in the case of general percep-

tual tasks such as image classification and object detection, etc. As a result,

when using large-scale CNNs with millions of parameters, face expression

recognition models tend to suffer from the over fitting problem. Some of

the early works (e.g. [Jaiswal and Valstar, 2016]) that successfully adopted

CNNs for tasks such as facial action analysis, relied on shallow CNNs to

learn the appearance and shape information of different facial regions. But,

the facial affect analysis methods proposed later based on deep CNN mod-

els adopted different transfer learning techniques to alleviate the impact of

over fitting. Several prior works (e.g. [Kaya et al., 2017] and [Ng et al.,

2015]) reported the effectiveness of transfer learning in improving the face

2129 studies on facial expression analysis used CNNs between 2012 and 2017 [Rouast
et al., 2019]
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affect recognition performance. A commonly used transfer learning method

is to initialise the network parameters from pre-trained models on datasets

like ImageNet [Deng et al., 2009] (14 million images with the labels of 1000

classes) and VGG-Face [Parkhi et al., 2015] (2.6 million face images anno-

tated with identity labels). Though such pre-trainined model parameters

reduce the over fitting problem (e.g. improved accuracy from 39% to 42%

in [Chen et al., 2016]), effectively training CNNs using small amounts of

labelled data is still largely an unsolved problem in deep learning.

Vocal Affect Features

Information communicated in a speech signal can be decomposed into two

major components: linguistic and paralinguistic. While the former compo-

nent is concerned with the actual words spoken by the speaker, the latter

describes the way those words are spoken. Besides the static factors such

as identity, age, gender, etc, paralinguistic information is mainly influenced

by the speaker’s affective states that evolve dynamically with time. The

objective of speech-based emotion recognition is to extract affect-specific

paralinguistic features from a raw speech signal and map those features to

categorical or dimensional emotion attributes. The efforts made towards

distilling vocal affect features, similar to the facial affect feature extrac-

tion, can be grouped into the categories of engineering- and learning-based

approaches, as discussed below.

Feature Engineering. The role of affective states in modulating the vocal

parameters of human speech is a widely studied problem in the litera-

ture [Anagnostopoulos et al., 2015, El Ayadi et al., 2011]. Early works on

speech emotion recognition have heavily relied on the knowledge of such

affect-modulated vocal parameters for designing compact discriminative
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feature sets. A speech signal is essentially an acoustic signal whose energy

stems from vocal cord vibrations. Pitch is an important property of speech,

which corresponds to the fundamental frequency of vocal cord vibrations,

and prosodic features of speech signals refer to the acoustic variations in

the voice pitch and intensity variables that serve linguistic functions.

Several works in speech emotion recognition consistently demonstrated that

short-term prosodic, energy and spectral features of speech signals are in-

formative about the underlying affective states. In the form of Low-Level

Descriptors (LLDs) (e.g. [Eyben et al., 2010, Schuller et al., 2013, Ey-

ben et al., 2015]), such speech features have been widely used as hand-

engineered features for vocal affect recognition. Given a speech segment as

input, LLDs are typically computed from overlapping audio frames with

a short duration (e.g. window size set to 25 ms sliding at 10 ms rate).

ComPare [Schuller et al., 2013] and eGeMAPS [Eyben et al., 2015] are

two widely used standard sets of LLDs, which are composed of frequency-

based parameters (pitch, jitter, etc), energy-related information (loudness

and shimmer), spectral parameters and cepstral parameters such as Mel-

Frequency Cepstral Coefficient values, etc. Development of open-source

feature extraction tools like openEAR [Eyben et al., 2009] and openS-

MILE [Eyben et al., 2010], played a vital role in accelerating voice affect

recognition research, by offering simplified procedures for computing the

standardised LLDs. Most vocal affect recognition methods based on the

aforementioned hand-engineered features assume that temporal variations

in LLDs are more important for emotion recognition than the static val-

ues of per-frame LLDs. Motivated by this assumption, simple statistical

functions (e.g. mean, max, variance, etc) are computed to describe the

temporal variations and contours of per-frame LLDs.

Feature Learning. In recent years, the focus of voice affect feature ex-
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traction approaches shifted to end-to-end representation learning, follow-

ing the developments in other speech-related learning tasks like Automatic

Speech Recognition. Rapid adoption of learning vocal affect features di-

rectly from raw signals, was motivated by the findings reported in [Mir-

samadi et al., 2017], which demonstrated improved recognition perfor-

mance through learning LLDs directly from raw spectral representations

of individual audio frames. Given a raw audio waveform, the spectrogram

representations are computed using either Fourier Transform or log Mel-

Frequency Cepstral representations. Later, several speech emotion recogni-

tion methods relied on computing spectrogram features of multiple frames,

as it allows interpreting speech segments as 2D images and using convolu-

ational neural network architectures for feature learning. Thus, several

recent works (e.g. [Huang et al., 2014, Badshah et al., 2017]) in speech rep-

resentation learning adopted various shallow-variants of CNN architectures

that were originally proposed for image classification and object recognition

tasks.

Similarly, the idea of learning speech features directly from raw audio wave-

form data was first explored in 2011 in [Jaitly and Hinton, 2011]. Later,

[Trigeorgis et al., 2016] demonstrated the application of 1D CNNs to speech

feature learning for emotion recognition. By using a shallow-CNN with just

two convolution layers for feature learning, [Trigeorgis et al., 2016] achieved

significant improvements over LLDs, almost doubling the correlation be-

tween predicted and ground truth arousal labels. Following such initial

developments, state-of-the-art speech emotion recognition methods com-

pletely shifted to the paradigm of learning vocal features, which requires

large amounts of affect labelled audio data.

To combat the problem of limited availability of affect labelled audio data,

transfer learning of speech representations received more attention in re-
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cently proposed affect recognition methods. In such transfer learning meth-

ods, the parameters of DNNs are initialised with that of models pre-trained

on closely related paralinguistic tasks [Gideon et al., 2017], different affect

representations [Zhang et al., 2017b], and various standard datasets [Deng

et al., 2013], etc. For instance, SoundNet [Aytar et al., 2016] is one of the

notable examples of such pre-training strategies for effective transfer learn-

ing of speech representations for emotion recognition [Pini et al., 2017].

Despite these advancements in transfer learning of pre-trained representa-

tions, vocal affect recognition using state-of-the-art deep learning models

with as few labelled data points as possible is still a major challenge in

affective computing.

2.2.2 Trends in Temporal Affect Prediction: From

Local to Global

Recognising affective states from face and voice data is an inherently con-

tinuous temporal phenomenon, hence, effectively modelling the tempo-

ral dynamics of low-dimensional facial and vocal affect features is crucial

for reliably recognising affective states. By leveraging the availability of

sequence-level context information, temporal models of affect recognition

demonstrated superior generalisation performance compared to the static

(frame-level) affect recognition models [Ebrahimi Kahou et al., 2015]. In

temporal affect recognition the first step is to extract the spatial features

for each frame (see Sec. 2.2.1) and then model the feature dynamics across

the frames of a face video or a speech segment.

Several sequential data processing models have been adopted to the affect

recognition tasks, ranging from classical Hidden Markov Models (HMMs) [Ra-

biner and Juang, 1986], Recurrent Neural Networks (RNNs) [Rumelhart
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et al., 1985] to state-of-the-art self-attention [Vaswani et al., 2017] models.

The efforts made so far in the temporal affect recognition literature can be

broadly grouped into two categories, as discussed below:

Local Temporal Modelling refers to aggregating short-range temporal dy-

namics of feature representations. Given a short sequence of video or audio

frames, CNN architectures are commonly used for modelling such short-

range dynamics of spatio-temporal representations jointly. In the case of

face image sequences, 3D CNN models [Barros et al., 2015] are widely used

for modelling the temporal context directly from an input volume of face

image. But, due to the large number of trainable parameters to be learned

in 3D CNNs, local temporal modelling is usually limited to very short se-

quences (typically less than 10 frames).

In the case of speech signals, 1D CNNs [Trigeorgis et al., 2016] are typi-

cally used to hierarchically learn the spatial features and their short-range

temporal dynamics. For this purpose, 1D CNNs are designed such that

their low-level (i.e. first few) convolution layers capture the spatial (frame-

level) characteristics of audio signals and the high-level layers model the

temporal structure. In [Trigeorgis et al., 2016], the first convolution layer

coupled with pooling is used for learning the spatial characteristics of raw

audio signals, and the second layer is composed of convolutional kernels

spanning 500 ms for modelling the temporal dynamics. Similar approaches

have been explored using 2D CNN architectures for modelling the local

dynamics speech representations. For instance, in [Zhang et al., 2017a],

AlexNet [Krizhevsky et al., 2012] is adopted for processing the log Mel

Spectral segments computed from short sequences of audio frames.

Global Temporal Modelling involves learning long-range temporal dynamics

or temporal context from the feature representations of consecutive visual
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or audio frames. In the case of facial or vocal affect recognition, the length

of such long input sequences can go up to 10 seconds or more [Ringeval

et al., 2019]. Traditionally, generative sequence models such as Hidden

Markov Models (HMMs) dominated the temporal affect recognition ap-

proaches [Rabiner and Juang, 1986]. HMMs offer a highly sophisticated

probabilistic model for learning temporal dependencies between per-frame

affect features. However, due to their high computational complexity and

their ability to learn only discrete latent states, application of HMMs to

naturalistic affect recognition showed limited success. Building on the ad-

vancements in deep neural networks for sequential data processing, RNNs

and self-attention [Vaswani et al., 2017] models have been widely used in

recent years to model long-range temporal dynamics from the feature se-

quences of faces and voices. Recurrent mechanisms typically rely on gated

sequential propagation of temporal context encoded into a hidden state vec-

tor. RNNs were explored in some early works for modelling the sequential

dynamics of hand-engineered facial features like 2D landmark locations and

optical flow. Similarly, learning the temporal context from audio LLDs cou-

pled with RNNs was proposed in [Mirsamadi et al., 2017] for utterance-level

affect recognition. In recent years, the CNN-RNN combination emerged as

a prominent approach for global temporal affect modelling in both face

(e.g. [Kollias and Zafeiriou, 2018b]) and voice domains (e.g. [Lim et al.,

2016]).

In theory RNNs are capable of handling arbitrarily long sequences, however,

in practice they are found to suffer from the vanishing gradients problem

as the sequence length grows. On the other hand, attention models by-

pass the sequential propagation of information and directly attend to the

past inputs. Thus, attention models can easily capture long-range tem-

poral contingencies by circumventing the problem of vanishing gradients.
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By controlling the information flow, gated variants of RNNs perform bet-

ter than vanilla RNNs in capturing long-range dependencies. But, due to

their fixed dimensional latent state to hold past information, unlike in the

attention models, gated RNNs still fall short in practice in modelling long-

range temporal context. For this reason, self-attention models have been

recently explored in the domain of affect recognition [Wagner et al., 2011,

Chandran et al., 2020, Sanchez et al., 2021]. However, this advantage with

attention models comes at the cost of their poor (quadratic) scalability

with the sequence length, which is not the case with RNNs. Furthermore,

attention models can operate only within a fixed temporal context window

whereas the RNNs can easily handle unbounded context, at least in theory.

Hence, the CNN-RNN (its gated variants) combination still continues to

be a popular architectural choice for global temporal modelling of affective

dynamics.

Although extensive efforts have been made over the last three decades to

improve the feature extraction and temporal modelling methods, automatic

recognition of affective states encountered in naturalistic interactions has

not been able to reach human-level parity so far. Facial and vocal affect

recognition in in-the-wild operating conditions is still largely an unsolved

problem. The question is: why? Towards answering this question, this

thesis notes a fundamental challenge in affect recognition model training

w.r.t. procuring unambiguous human supervision in large quantities, as

discussed in the following section.
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2.3 Challenges in Affect Labelling: A Trade-

off Between Ambiguity and Scarcity

All the aforementioned supervised learning models assume the availability

of reliable ground truth labels to be used as supervision signals. Here, label

reliability refers to how consistently the affect labels are annotated by the

human raters. Human judgements of perceived emotions can differ drasti-

cally due to the influence of various subjective and contextual factors in-

volved in the emotion expression and perception processes [Devillers et al.,

2005, Liscombe et al., 2003, Mower et al., 2009]. As a consequence, the

labels provided by different human raters on the same data instances often

tend to have high variance. The level of inter-rater-disagreement is partic-

ularly very high when the annotators are presented with non-prototypical

and subtle emotional expressions. For instance, when annotating discrete

affect labels, the neutral category is one of the most ambiguous classes for

human raters [Kim and Provost, 2015]. Whereas in continuous dimensional

affect annotation, the disagreement among the raters is significantly high

when there is sudden and substantial rise or fall in the affect intensity [Yan-

nakakis et al., 2018]. To give an example, in the SEMAINE corpus [McK-

eown et al., 2010] annotations of valence and arousal, this particular trend

in the inter-rater-disagreement can be clearly observed, as illustrated in

Fig. 1.2. Thus, given the inherently subjective nature of human emotion

perception and its high sensitivity to different contextual factors, prepar-

ing reliable affect labels is a fundamental challenge in the field of affective

computing.

To cope with the problem of inter-rater-variability, label aggregation is

a commonly employed technique in most affective computing problems.

With the goal of normalising subjective components in the affect ratings,
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Figure 2.4: Illustration of one-to-many function mappings in facial and
vocal affect recognition

the label preparation step aims to maximise the inter-rater agreement score,

hence the label consistency. To this end, first a pool of human raters are

employed to label the same set of data instances. Then, by applying the

simple averaging or majority voting to multiple annotations, the labels pro-

vided by all the raters are aggregated into a final ground truth label. More

sophisticated aggregation techniques such as Estimator Weighted Evalua-

tion (EWE) [Grimm and Kroschel, 2005] have been adopted for maximising

the inter-rater-agreement scores. Regardless of the size and composition of

the pool of raters and the aggregation technique applied, it is impractical

to completely get rid of the ambiguity induced by the systematic disagree-

ments among the raters.

A key assumption implicitly made in the existing affect label aggregation

techniques is that inter-rater variability is simply a noise component, and

minimising this does not cause any information loss. But, it is worth noting

that clearly explainable systematic disagreements among the raters may

also induce variability, which may reflect the influence of dependencies
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such as their personality, mood, socio-demogrpahic factors, etc on their

interpretations of perceived affect. Such important nuances play a vital

role in enriching emotional expressions in natural human interactions. By

treating the variability induced by the key contextual factors as mere noise,

the existing label aggregation methods are likely to fail in capturing the

richness of affect labels provided by individual raters.

By contesting the commonly held view of treating ‘variability-as-noise’,

several recent works proposed to embrace the inter-rater-disagreement as a

learning signal. Instead of aggregating multiple annotations of affect into

a hard label, methods proposed in [Han et al., 2017, 2020] explored the

use of soft labels in systematically capturing the inter-rater-disagreements.

Another important approach is based on ensemble learning of affect [Fayek

et al., 2016, Fornaciari et al., 2021], in which different models are trained

using the emotion labels provided by individual raters. All these methods

demonstrated improved generalisation performance by using inter-rater-

disagreement as an additional supervision signal for systematically mod-

elling the label ambiguity. However, the application of soft-labelling and

ensemble learning models has been mainly confined to small-scale corpora,

and scaling them up to large-scale in-the-wild datasets is severely con-

strained by various factors such as the size and composition of the pool

of human raters, high computational complexity of deep ensemble models

etc.

Trade-off Between Label Ambiguity and Label Scarcity: Assum-

ing a fixed number of annotator-hours, the objective of making the affect

labels less ambiguous by recruiting a large pool of raters leads to scarcely

annotated datasets, as observed in the case of SEWA [Kossaifi et al., 2019].

Similarly, the objective of annotating large amounts of data using the same

number of annotator-hours can lead to more ambiguous affect labels. Thus,
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Figure 2.5: Visual perception in the absence of contextual information
(Image source:[Gregory, 2005])

the trade off between the label ambiguity and label scarcity is one of the

most important bottlenecks thwarting the progress of affect recognition

systems. This thesis aims to relax this trade off by developing ML models

that separately attempt to cope with the label ambiguity and label scarcity

problems, with the number of annotator-hours unaltered.

From the above discussion, it is clear that the process of manually annotat-

ing affect labels is inherently ambiguous. To deal with the label ambiguity

problem, one natural approach is to identify the easily accessible contex-

tual cues that can help in partly resolving the ambiguity, considering that

emotional expressions do not occur in isolation [Kosti et al., 2017]. Fun-

damentally, perception of an auditory or visual stimulus involves deriving

meaningful abstract representations or features from raw acoustic or pixel

data. In the absence of any contextual information, auditory or visual per-

ception tasks can be highly ambiguous. For example, describing the visual

stimulus presented in Fig. 2.5, without knowing any contextual informa-

tion, demands more cognitive effort to resolve the ambiguity. On the other

hand, we can effortlessly process any of this visual input if it is accom-

panied with enough contextual information. The contextual signals could
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Label: Negative
Valence

Label: Positive Valence

Impact of Scene Context on Emotion Assessment 
(Source: Emotic Dataset)

Label: Negative
Valence

Label: Positive Valence

Impact of Bodily Context Emotion Assessment 
(Source: Barret et al. Context in Emotion)

Figure 2.6: Resolving ambiguity in emotion perception using context in
(a). scene-level cues (Image source: [Kosti et al., 2017]) and (b). bodily
cues (Image source: [Barrett et al., 2011])

Label: Negative Valence

Label: Positive Valence

Figure 2.7: Using temporal contextual cues to resolve the affect labelling
ambiguities

be presented either through the same modality (like a sequence of images)

or some other modality (text, audio, etc.). To give an example, revisiting

Fig. 2.5 after reading its caption, ‘A dog sniffing around the base of a tree’,

immediately resolves the perception uncertainty encountered earlier. This

simple example clearly demonstrates the importance of the contextual cues

in minimising the label ambiguity.

Contextual cues that play a crucial role in human affect perception [Barrett

et al., 2011] can be broadly grouped into two categories, according their

accessibility:

a. Type I: Characteristics of the input stimulus like the temporal evolu-

35



2.3. CHALLENGES IN AFFECT LABELLING: A TRADE-OFF
BETWEEN AMBIGUITY AND SCARCITY

tion of emotions expressed in a face video or speech signal, multi-modal

correspondences between audio and visual modalities, body gesture signals

embedded in the 2D or 3D pose data, and interactions with other people

and objects in a given scene, etc.

b. Type II: Characteristics of the perceiver’s state like expressivity-related

latent factors (personality traits, mood, etc) that vary from individual to

individual, biases induced by various socio-demographic factors and the

degree of cultural familiarity, etc.

Compared to the Type II contextual cues, Type I cues such as scene-level

and bodily context (see Fig. 2.6) are more easily accessible for in-the-wild

emotion recognition tasks. As this thesis mainly focuses on temporal affect

recognition from face and voice data, among the Type I cues, temporal

evolution patterns or temporal context (see Fig. 2.7) is used the main con-

textual cue for partly resolving the ambiguity, as temporal dynamics are

more readily accessible compared to the remaining cues listed above. Thus,

by effectively leveraging the temporal contextual cues, this thesis aims to

address the following problems:

1. The label ambiguity problem by proposing uncertainty-aware tem-

poral regression models that can naturally handle ambiguous super-

vision signals (ground truth labels of affect) through probabilistic

temporal modelling.

2. The label scarcity problem by proposing label-efficient representa-

tion learning models for face and voice data, which exploit the freely

available supervision signals for self-supervised pre-training.
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2.4 Dealing with Label-Ambiguity: Deter-

ministic vs. Non-deterministic Tempo-

ral Context Learning

By definition, the problem of label ambiguity refers to the condition in

which an input is likely to have multiple output states, as illustrated in

Fig. 2.4. Such input-output mappings are not commonly encountered when

preparing the ground truth labels for general perceptual learning tasks such

as image classification and object detection, etc. Most existing affect recog-

nition models, ignoring this fundamental difference, directly adopt the ML

models that were originally developed for tasks dealing with unambiguous

input-output correspondences. It is important to note that such models

implicitly assume a deterministic learning function between the inputs and

outputs. As a result, label-ambiguity-unaware ML models are bound to

show poor generalisation performance when applied to affect recognition

tasks which need to deal with ambiguous supervision. This raises a funda-

mental question - how to choose an ML model that can account for the label

ambiguity without an explicit supervision signal in the form of inter-rater-

disagreement scores, etc. Answering this question, this thesis proposes to

learn affect recognition by using ML models that allow non-deterministic

function learning.

Supervised ML models, based on either parametric or non-parametric for-

mulations, can be broadly characterised as deterministic and non-deterministic

function learning approaches. In supervised learning, given a set of de-

pendent variables (X) and their corresponding independent variables (Y ),

training an ML model boils down to learning an approximate functional

map f between X and Y i.e. f : X −→ Y . The goal here is to recover an
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approximate function f that is as close as possible to the true underlying

function f ∗. In a deterministic model, a single function is learned from

the whole training dataset, and at test time the predictions made by it

are point estimates of the targets (Y ). From this function modelling view-

point, the problem of label ambiguity implies the existence of one-to-many

functional mapping between an independent variable (X) and multiple de-

pendent variables (Y). Thus, when the true underlying function f ∗ between

X and Y tends to have high variability induced by the annotation ambi-

guities, as in the case of affect recognition, a deterministic function map

is bound to have poor predictive performance. State-of-the-art DNNs ap-

plied to face and voice recognition tasks, despite their over-parameterised

implementations, can be grouped into the deterministic function learning

category, which explains their poor generalisation performance when the

supervision signals are ambiguous.

On the other hand, non-deterministic function learning models assume

that the functional mapping between X and Y can be modelled better

using a probability distribution over the function space (P (f)) or a func-

tion ensemble ({fi}). As a result, at test time, the predictions made by

non-deterministic models are probability distributions over the target val-

ues, instead of the fixed point estimates. Thus, non-deterministic function

learning approaches, at least in theory, possess the natural ability to cope

with the ambiguous supervision signals, unlike the deterministic function

learning models.

This thesis argues that adopting non-deterministic function learning is crit-

ical to make the affect recognition models capable of coping with the an-

notation ambiguities. In particular, this work explores a class of non-

deterministic models based on learning a distribution over function space

P (f), in which the most probable function corresponds to the target Y
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value with highest likelihood value. When applied to the tasks of affect

recognition from a face video or speech signal, this probabilistic functional

viewpoint translates to learning a distribution of temporal functions, rather

than learning a single temporal function. In the ML literature, learning dis-

tributions of temporal functions from sequential data using probabilistic

modelling is a widely studied topic. Some of the most notable probabilistic

temporal function learning algorithms are discussed below.

• Hidden Markov Models (HMMs) [Rabiner and Juang, 1986]

are based on the idea of augmenting the Markov chain, which were

widely used for probabilistic modelling of sequential data. Given se-

quences of random variables, also called as states {si}, a Markov

chain computes the state probabilities assuming that predicting a

next state in the sequence depends solely on the current state i.e.

P (si|s1....si−1) = P (si|si−1). Based on this assumption, an HMM is

designed to model the probabilities of not only the observable vari-

ables in a sequence but also the hidden variables that are assumed to

be the causal factors underlying the observable data. Thus, HMMs

model the time-series data as a doubly stochastic process by learning

a directed probabilistic graphical model. Due to their early success in

temporal modelling of speech signals in tasks such as speech recogni-

tion [Gales, 1998], HMMs were explored in temporal affect recognition

tasks (e.g. [Li et al., 2013]). In spite of their ability to probabilisti-

cally model the temporal context, HMMs failed to compete with other

temporal models such RNNs, mainly due to their strong Markovian

assumption, computationally expensive learning algorithms, and the

discrete hidden states which limit their representation capacity.

• Continuous Conditional Random Fields (CCRFs) [Qin et al.,

2008] extend the classical relational learning model, Conditional Ran-
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dom Field (CRF) [Sutton et al., 2012], to capture the temporal rela-

tionships of random variables in a sequence. Unlike an HMM which

learns a directed graphical model of probabilities of sequences, a CRF

is an undirected graphical model of conditional probability distri-

butions of random variables. Thus, CRFs can be arbitrarily struc-

tured, unlike the linear-sequence structuring constraint in HMMs. By

generalising CRFs to continuous variables, CCRFs were applied to

the time-continuous affect recognition tasks (e.g. [Baltrušaitis et al.,

2013]). Although CCRFs offer a rich representation framework for

capturing the ambiguity in temporal context, as in affect recogni-

tion tasks, high computational complexity of training these models

severely constrained their application to large-scale emotion recogni-

tion datasets.

• Bayesian Recurrent Neural Networks (BRNNs) [Fortunato

et al., 2017] augment the standard RNN architectures with uncer-

tainty modelling abilities by learning distributions over the weights,

rather than learning point estimates. By combining the strengths

of RNNs in modelling non-linear temporal dynamics with the ad-

vantages of Bayesian learning approaches, BRNNs offer a principled

framework for learning non-deterministic temporal functions, how-

ever, their application to large-scale models of temporal learning is

very limited. Although some affect recognition methods attempted

to combine the RNNs with Bayesian filters such as Kalman filters [Pei

et al., 2022], direct application of BRNNs to temporal affect modelling

is still an under explored solution, mainly due to more complicated

training procedures and slower convergence rates of Bayesian Neural

Networks, when compared with the standard RNNs with point-valued

weights.
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• Gaussian Processes (GPs) [Rasmussen, 2003] family is a popu-

lar choice for non-parametric Bayesian modelling of time-series data.

Fundamentally, a Gaussian process can be viewed as the generalised

formulation of a Gaussian distribution. A probability distribution is

for describing the scalar or vector-valued random variables, whereas

a stochastic process describes the principles governing the properties

of random functions. To exploit the richness of GPs w.r.t. captur-

ing the ambiguity or uncertainty in temporal function learning in a

principled fashion, some works explored the application of GPs to

continuous affect recognition tasks [Atcheson et al., 2017]. Despite

their flexibility, data-efficiency and probabilistic nature, the potential

of GPs has not been fully exploited for affect recognition. This is due

to two key limitations of the existing GP implementations that con-

strain their applicability to large-scale temporal modelling problems:

poor inference scalability (cubical complexity) to high-dimensional

feature spaces and the requirement of hand-designed covariance func-

tion (kernel function) based on the domain knowledge of problem at

hand.

Noting the limitations of above discussed non-deterministic temporal mod-

elling approaches, this thesis aims to develop novel scalable probabilistic

temporal models for face and speech emotion recognition tasks, with two

main objectives:

1. To improve the generalisation performance of in-the-wild naturalistic

affect recognition by effectively fusing the audiovisual affect informa-

tion

2. To capture temporal predictive uncertainty associated with the es-

timated affective states for the benefit of downstream behavioural
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analysis tasks

2.5 Dealing with Label-Scarcity: Direct su-

pervision vs. Self-supervision for Rep-

resentation Learning

State-of-the-art affect recognition models, as discussed in Sec. 2.2, heavily

rely on large amounts of labelled data for learning facial and vocal features.

Affect annotation is a highly time-consuming and expensive process. Due

to the label ambiguity problem in affect recognition tasks, collecting an-

notations from multiple trained human raters that have a socio-cultural

understanding of the dataset context is essential. Most existing affect la-

belled datasets are prepared by collecting labels from at least five to six

human raters [Kossaifi et al., 2019, Kollias et al., 2020, McKeown et al.,

2010]. As a consequence, preparing large-scale labelled datasets for emotion

recognition is a challenge, leading to small or scarcely labelled corpora. To

give an example, SEWA [Kossaifi et al., 2019], one of the largest in-the-wild

datasets annotated with time-continuous affect labels, has approximately

33 hours of raw audio-visual recordings. But, only 14 % of the total data

in SEWA could be labelled with affect annotations, which indicates the

prohibitively expensive nature of affect labelling process. Compared to the

other large-scale video datasets such as the YouTube-8M [Abu-El-Haija

et al., 2016] that has over 350,000 hours of audio-visual data fully anno-

tated with ground truth labels, affect recognition datasets such as SEWA

are considerably small for end-to-end video representation learning. Hence,

relying solely on directly or fully supervised approaches for learning facial

and vocal representations severely limits the generalisation performance
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of existing affect recognition methods. Towards promoting label-efficient

feature learning for affect recognition, this thesis aims to develop an alter-

native approach that can perform well using fewer human annotations for

model training.

In the absence of large amounts of labelled data, to minimise the model

over fitting, it is a common practice to use pre-trained models such as Im-

ageNet [Deng et al., 2009] or VGGFace [Parkhi et al., 2015] to initialise

the weights of the CNN feature encoders, as discussed in Sec. 2.2.1. Since

the CNNs are designed to learn representations in a hierarchical fashion,

it is reasonable to presume that the early layers’ features tend to be task-

agnostic. Hence, the first few layers of the pre-trained models may transfer

well to the task at hand in spite of the fact that the pre-trained models

are often based on completely different datasets and tasks. As a result,

initializing the feature encoders with pre-trained model weights helps in

improving the performance. However, such pre-training techniques do not

leverage abundantly available unlabelled audio-visual data. To this end,

self-supervised representation learning for model pre-training has emerged

as a promising alternative in recent years, and it demonstrated great po-

tential in facilitating label-efficient representation learning [Hénaff et al.,

2019].

Self-Supervised Representation Learning relies on natural supervi-

sion signals that are embedded in unlabelled data in the form of data point

correspondences [Jing and Tian, 2020]. These natural supervision cues are

exploited to define a surrogate or proxy learning task, which is designed in

such a way that its target labels can be automatically generated from the

structure of the unlabelled data. By training a model to learn the proxy

task, several methods demonstrated the possibility of learning the under-

lying semantic representations embedded in the unlabelled data without
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using any manual annotations.

Motivated by the success of self-supervised learning models such as BERT [De-

vlin et al., 2018] in natural language processing, a wide range of proxy

tasks [Jing and Tian, 2020] have been developed in recent years for both

visual and audio modalities as well. For example, colorization [Larsson

et al., 2017] is a well-studied visual proxy task in which the model is trained

to predict the color values of the image pixels in the corresponding gray

scale image input. Since color information is strongly correlated with the

image semantics, this proxy task indirectly encourages the model to learn

general-purpose semantic features without using any labelled data. Simi-

larly, Wav2Vec [Schneider et al., 2019] is a popular proxy task designed for

audio representation learning, in which the model is tasked with predicting

the raw waveform data of unseen segments based on the context gleaned

from the already seen audio segments.

In recent years, building on the advancements in self-supervised visual and

audio feature learning tasks, several attempts have been made to extend

them to facial and vocal features for affect recognition. For instance, given

an unlabelled video corpus, to learn discriminative features for facial action

unit (AU) analysis, [Li et al., 2020a] proposed a Twin-cycle Auto Encoder

(TAE). TAE is trained in a self-supervised manner with the goal of dis-

entangling pose-induced and action-induced facial movements. Similarly,

in [Lu et al., 2020], temporal consistency is used as a natural supervision

signal for facial feature learning, and it demonstrated how to use the natu-

ral ordering of frames in a face video for defining frame-ranking as a proxy

task. The self-supervised facial features learned in this approach achieved

impressive performance on facial action unit detection tasks. Unlike these

tasks that heavily rely on the temporal dynamics of face videos, [Chang

et al., 2021] designed a proxy task for learning features from static face
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image data, based on the idea of cycle-consistency, which is used as a con-

straint in disentangling the facial identity and expression features. In con-

trast to all the aforementioned works, Emotion-aware Contrastive Learning

(EmoCo) [Sun et al., 2021] leveraged the discrete expression labels coupled

with Contrastive Learning for AU-related feature learning. This method

exploits the fact that procuring the labels of six basic emotions is consid-

erably easier than labelling the AU intensity values.

Self-supervised speech representations are also widely explored using emo-

tion recognition as the downstream task. Most notably, [Shukla et al., 2021]

proposed audio-guided face reconstruction as the proxy task to learn speech

features for emotion recognition. They also proposed the audio-version of

a visual proxy task called Odd-One-Out in which the model is trained for

the task of temporal order verification. Affect recognition models based

on such self-supervised speech features demonstrated better generalisation

performance than the fully supervised models. To comprehensively estab-

lish the performance gains of self-supervised pre-training in speech emotion

recognition, recently, [Wagner et al., 2022] presented a thorough analysis

of some standard self-supervised transformer models. This study delin-

eated the impact of self-supervised pre-training based on methods such as

wav2vec 2.0 [Baevski et al., 2020] and HuBERT [Hsu et al., 2021] on speech

affect recognition performance. The findings presented in it confirmed that

pre-trained speech features learned through self-supervision by leveraging

linguistic information, can achieve significantly better results on valence

recognition, which is a challenging dimension to infer from speech data

alone using fully supervised learning models.

Despite the potential of self-supervised pre-training in facilitating label-

efficient learning, its adoption into affective computing is relatively very

limited. Furthermore, it is important to note that most existing works
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directly adopt the proxy tasks that were originally proposed for general

purpose visual or audio representation learning. Considering that affective

states are typically weak and noisy signals to capture from high-dimensional

in-the-wild recordings, this work argues that to effectively learn affect-

related features from face and speech data, the proxy task must be made

aware of the downstream task’s requirements. Furthermore, this thesis

presents a thorough analysis of label-efficiency advantages promised by self-

supervised pre-training, towards addressing the label scarcity problem of

affect recognition tasks.

To address the above mentioned limitations of existing self-supervised learn-

ing approaches applied to affect recognition from face and speech data, this

thesis focuses on

1. Learning a novel proxy task that is informed by the properties of a

specific downstream task of interest i.e. continuous dimensional emo-

tion recognition, through its hand-engineered feature representations.

2. Comprehensively evaluating the label-efficiency benefits of the pro-

posed self-supervised learning model, in comparison with the state-

of-the-art fully supervised learning models.
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Chapter 3

COLD Fusion: Calibrated and

Ordinal Latent Distribution

Fusion for Uncertainty-Aware

Multimodal Emotion

Recognition

As far as the laws of

mathematics refer to reality,

they are not certain; and as far

as they are certain, they do not

refer to reality.

Albert Einstein

Chapter Summary. Humans rely primarily on visual (faces) and au-

dio (voices) modalities to encode and express their affective or emotional

states. Automatically recognising apparent emotions from face and voice
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is hard, in part because of various sources of uncertainty, including in the

input data and the labels used in a machine learning framework. This

chapter introduces an uncertainty-aware audiovisual fusion approach that

quantifies modality-wise uncertainty towards emotion prediction. To this

end, this thesis proposes a novel fusion framework in which first latent

distributions are learned over audio and visual temporal context vectors

separately, and then the variance values of unimodal latent distributions

are constrained such that they represent the amount of information each

modality holds w.r.t. emotion recognition. In particular, the proposed ap-

proach imposes Calibration and Ordinal Ranking constraints on the

temporal context variance vectors of audio and visual latent distributions.

When well-calibrated, modality-wise uncertainty scores indicate how much

their corresponding predictions may differ from the ground truth labels.

Well-ranked uncertainty scores allow ordinal ranking of different frames

across the modalities. To jointly impose both these constraints on the audio

and visual latent distributions, this thesis proposes a softmax distributional

matching loss. In both classification and regression settings, this chapter

compares the proposed uncertainty-aware fusion model with standard fea-

ture and prediction fusion models, as well as a temporal context fusion

baseline. The experimental evaluation on a spontaneous emotion recog-

nition corpus, AVEC 2019 Cross-cultural Emotion Subchallenge (CES),

shows that multimodal emotion recognition can considerably benefit from

well-calibrated and well-ranked latent uncertainty measures.

3.1 Introduction

Learning to fuse task-specific information from multiple modalities is a fun-

damental problem in Machine Learning. At its core, this problem entails
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estimating how informative each modality is towards predicting the labels

of a target task. Thus, uncertainty-aware information fusion is a natural

approach to multimodal learning. This chapter formulates an uncertainty-

aware fusion method for an inherently multimodal task – apparent emotion

recognition from audiovisual signals (faces and voices). It further proposes

a multimodal fusion framework based on probabilistic modelling of uni-

modal temporal context.

Being an intrinsically temporal and multimodal phenomenon, continuous

emotion (valence and arousal) recognition from face videos and speech sig-

nals is one of the long-standing challenges in Affective Computing [Schuller

et al., 2012, Valstar et al., 2013, Ringeval et al., 2019]. A meta-analysis

presented in [D’mello and Kory, 2015] has shown that although emotion

recognition can benefit from multimodal fusion in general, performance

improvements are not significant when it comes to spontaneous emotions.

This chapter argues that uncertainty-aware multimodal fusion may have

the potential to address this challenge, considering that the intensity of

spontaneous emotions embedded in the facial and vocal expressions are

likely to vary dynamically over time [Nicolaou et al., 2011, Zeng et al.,

2008].

Although Deep Neural Networks (DNNs) have been extensively applied to

audiovisual emotion recognition [Rouast et al., 2019, Noroozi et al., 2017,

Schoneveld et al., 2021, Gerczuk et al., 2021], estimating modality-wise

uncertainty for improved fusion performance is a relatively under-explored

avenue. However, modelling predictive uncertainty (or confidence, its op-

posite) in DNNs received widespread attention in recent years [Guo et al.,

2017, Mukhoti et al., 2020], motivated by the observation that DNNs tend

to make over-confident predictions [Nguyen et al., 2015, Szegedy et al.,

2013b]. Most existing efforts towards uncertainty or confidence estimation
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in DNNs [Guo et al., 2017, Kumar et al., 2018b] focus solely on reducing

miscalibration errors, i.e., the mismatch between expected model estima-

tion errors and their corresponding confidence scores. Recently, as an al-

ternative perspective, [Moon et al., 2020] introduced the idea of learning

to rank confidence scores for identifying the most reliable predictions.

The objective of the proposed method in this chapter is to estimate the

uncertainty scores of unimodal inputs to maximise the multimodal fusion

performance. This chapter argues that the predictive uncertainty of an

estimator must be simultaneously both well-calibrated and well-ranked (or-

dinal). The former is needed to accurately represent the correctness like-

lihood of a prediction for an individual sample. The latter is essential

to effectively order predictions for a group of samples according to their

correctness likelihoods. In other words, if an uncertainty estimate of an

individual sample is well-calibrated, in the absence of its ground truth, the

uncertainty score can serve as a proxy for its expected prediction error. If

the uncertainty scores associated with different predictions are well-ranked

or maintain ordinality, then one can use them to order their corresponding

samples in terms of their reliability towards the target prediction, and to

distinguish the most informative samples from the least informative sam-

ples.

For multimodal temporal learning, it is critical to estimate how informative

the predictions made for different frames in different unimodal sequences

are, towards estimating a common target label, so that the target-specific

information can be reliably integrated [Yang et al., 2017]. This chapter

hypothesises that jointly learning these two properties – calibration and

ordinality – may lead to more reliable per-frame predictive uncertainty es-

timates for each modality, facilitating more effective uncertainty-weighted

temporal context fusion. Based on this hypothesis, this chapter proposes an
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Figure 3.1: Illustration of the proposed latent distribution modelling
for multimodal fusion (YV and YA – unimodal predictions, Y ∗ – tar-
get label, and d – a distance function): A. Calibrated Latent Dis-
tribution: For a given modality, its temporal context is modelled by
a latent distribution that is learned under the calibration constraint
i.e. argmax

σ2

Corr( 1
‖σ2‖2 , d(Y, Y ∗)). Thus, the variance σ2 is learned

to represent how informative the temporal context is w.r.t the tar-
get label prediction. B. Ordinal Latent Distributions: The vari-
ance values of audio and visual temporal context distributions (σ2

V

and σ2
A) are learned under the ordinal ranking constraint i.e. argmax

σ2
V ,σ

2
A

Corr(Rank( 1
‖σ2

V ‖2
, 1
‖σ2

A‖2
), Rank(d(YV , Y

∗), d(YA, Y
∗)). Thus, the audio and

visual modalities are ranked based on how informative they are towards the
target prediction.

uncertainty modelling method that imposes the calibration and ordinality

constraints jointly, as Figure 3.1 illustrates. The proposed method condi-

tions the unimodal latent distributions’ context variance vectors such that

they represent how informative different modalities are w.r.t. predicting the

target labels. This approach can be viewed as an uncertainty-aware exten-

sion of classical late fusion. It proposes to learn uncertainty estimates in

terms of higher dimensional (more informative) latent distributions, unlike

simple confidence-weighted late fusion which directly models uncertainty

over lower-dimensional (less informative) unimodal predictions. This for-

mulation is based on the assumption that modelling uncertainty in the
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Figure 3.2: Overview of the proposed approach to an uncertainty-aware
audiovisual fusion for emotion recognition: Modelling latent distributions
over unimodal temporal context vectors to derive modality-wise uncertainty
guided fusion weights. A detailed description of the proposed approach is
given in Section 3.4.

higher dimensional latent space may be more effective than in the lower

dimensional label space.

The proposed framework, denoted as Calibrated Ordinal Latent Distri-

butions (COLD), first learns the latent distributions (multivariate normal

distributions) over the temporal context of audio and visual modalities

separately, as Figure 3.2 shows. It models the temporal context variance

norm values of the audio and visual latent distributions, ‖σ2
V ‖2 and ‖σ2

A‖2,

as the confidence measures towards emotion prediction. A novel training

objective is designed based on softmax distributional matching to encour-

age the frame-wise temporal context variance values in each modality to

be: (a) directly correlated with the correctness likelihood of the unimodal

predictions, and (b) ordinal in nature to effectively rank the frames of both

the modalities towards the target prediction. Thus, the calibrated and or-

dinal unimodal variance scores are learnt for effective uncertainty-weighted

fusion, as shown in Figure 3.2.

This chapter evaluates the proposed COLD fusion on an in-the-wild au-

diovisual corpus, AVEC 2019 CES [Ringeval et al., 2019], for recognising

spontaneous emotions in naturalistic interactions. The experimental results

52



3.2. RELATED WORK

show that the COLD fusion outperforms the standard model-agnostic fu-

sion baselines by considerable margin, with ∼6% average relative improve-

ment in terms of mean correlation score over the best performing fusion

baseline trained for emotion regression. Furthermore, this chapter evalu-

ates the robustness of different fusion models at test time by inducing noise

into the visual modality through face masking. With the faces masked in

50% of the evaluation sequences, the COLD fusion achieves ∼17% average

relative improvement over the best fusion baseline.

The key contributions of this chapter are as follows:

• This chapter proposes an uncertainty-aware multimodal fusion method

that dynamically estimates how informative unimodal inputs are w.r.t.

the target label prediction.

• The proposed method demonstrates how to jointly learn well-calibrated

and well-ranked unimodal uncertainty measures. For this purpose, it

proposes a simple softmax distributional matching loss function that

applies to both regression and classification models.

• On an in-the-wild audiovisual emotion recognition database, the pro-

posed uncertainty-aware fusion model outperforms the standard model-

agnostic fusion baselines as well as a multimodal transformer baseline.

3.2 Related Work

Audiovisual Dimensional Affect Recognition. Recognising dimen-

sional emotions, valence (how pleasant an emotion is) and arousal (how ac-

tive an emotion is), from audiovisual modalities is a widely studied problem

in various prior works [Zeng et al., 2008, Gunes et al., 2011], ranging from
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the almost a decade-long running annual AVEC challenge series [Schuller

et al., 2012, Valstar et al., 2013, Ringeval et al., 2019] to the recently in-

troduced MuSe challenge [Stappen et al., 2020, 2021, Christ et al., 2022]

and ABAW challenge [Kollias et al., 2020, Kollias and Zafeiriou, 2021].

The reader is referred to [Poria et al., 2017] and [Rouast et al., 2019] for

comprehensive surveys of affect recognition in multimodal settings and con-

temporary deep learning-specific advancements in it. Since the main focus

in this chapter is on uncertainty-aware fusion models for emotion recogni-

tion, it reviews the literature closely related to the following key research

topics: i) uncertainty modelling for emotion and expression recognition,

ii) uncertainty-aware multimodal fusion, iii) calibrated uncertainty, and iv)

ranking-based uncertainty.

Uncertainty Modelling for Emotion and Expression Recognition.

In discrete facial expression recognition tasks, modelling predictive uncer-

tainty is studied in several recent works [She et al., 2021, Zhang et al.,

2021, Wang et al., 2020], by estimating uncertainty in the space of low-

dimensional feature embedding outputs from a Convolutional Neural Net-

work (CNN) backbone. On the other hand, directly predicting emotion

label uncertainty is explored in [Foteinopoulou et al., 2021], but only in

unimodal (video-only) settings. For uncertainty-aware multimodal emotion

recognition, some prior works applied Kernel Entropy Component Analy-

sis (KECA) [Zeng et al., 2005] and Multi Modal-Hidden Markov Models

(MM-HMMs) [Xie and Guan, 2013] by predicting modality-specific uncer-

tainty measures for estimating the fusion weights. Noting the limitations of

deterministic function learning in DNNs for uncertainty modelling, [Dang

et al., 2017] explored the application of Gaussian Process (GP) Regression

to the fusion of emotion predictions.

All the aforementioned methods demonstrated the potential of uncertainty-
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aware emotion recognition models over their uncertainty-unaware counter-

parts in general. However, they ignore two important aspects in uncer-

tainty modelling: calibration and ordinality (ranking). This chapter aims

to demonstrate the significance of these two properties by hypothesising

that learning well-calibrated and well-ranked uncertainty estimates is crit-

ical for improving the audiovisual emotion recognition performance.

Uncertainty-Aware Multimodal Fusion. In general, for multimodal

sensor fusion, several prior works [Zeng et al., 2005, Schörgendorfer and

Elmenreich, 2006, Große et al., 2008, Papandreou et al., 2009] explored

uncertainty-aware or confidence-weighted averaging techniques for clas-

sic machine learning models before the advent of Deep Neural Networks

(DNNs). Recently, [Subedar et al., 2019] applied Bayesian DNNs for uncertainty-

aware audiovisual fusion to improve human activity recognition perfor-

mance. Similarly, [Tian et al., 2020] explored the use of uncertainty estima-

tion in fusing the softmax scores predicted using CNNs for semantic seg-

mentation. Although these approaches demonstrated critical advantages

over the models that predict only point estimates, they do not study the

calibration properties of the estimated uncertainty scores. Further, such

DNN models focus mainly on modelling absolute uncertainty estimates,

whereas the focus of this chapter is on jointly learning the calibrated

and relational uncertainty estimates in an end-to-end fashion intro-

ducing a novel loss function based on softmax distributional matching.

Calibrated Uncertainty. As DNNs tend to make overconfident predic-

tions [Nguyen et al., 2015, Szegedy et al., 2013b], confidence calibration has

received significant attention in recent years [Nguyen et al., 2015, Szegedy

et al., 2013b]. Calibrating confidence or uncertainty estimates involves

maximising the correlation between predictive accuracy values and predic-

tive uncertainty scores. A wide variety of calibration techniques, particu-
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larly in classification settings, can be broadly categorised into explicit and

implicit calibration categories [Wang et al., 2021]. In the former category,

two types of post-hoc methods, binning-based and temperature-scaling,

are applied to increase the reliability of DNN confidence estimates [Guo

et al., 2017, Minderer et al., 2021]. In binning-based methods such as non-

parametric histogram binning [Zadrozny and Elkan, 2001], calibrated con-

fidence is estimated based on the average count of positive-class instances

in each bin. This method is extended to jointly optimise the bin bound-

aries and their predictions in Isotonic Regression [Zadrozny and Elkan,

2002]. Temperature-scaling methods can be viewed as generalised versions

of Platt scaling [Platt et al., 1999] using logistic regression for calibrating

the class probabilities. Here, we use temperature-scaling as a calibration

baseline [Hinton et al., 2015, Guo et al., 2017] to compare against the

uncertainty calibration performance of the proposed method, due to its

simplicity.

Implicit calibration methods mainly focus on tailoring the training objec-

tive of DNNs to minimise the prediction error and calibration error si-

multaneously. Addressing the limitations of standard cross-entropy loss

w.r.t. confidence calibration, various alternative loss functions such as focal

loss [Mukhoti et al., 2020], maximum mean calibration error [Kumar et al.,

2018b], and accuracy vs uncertainty calibration [Krishnan and Tickoo,

2020], have been investigated recently. Calibrating regression models is rel-

atively under-explored compared to the classification. Some recent works [Kuleshov

et al., 2018, Song et al., 2019, Utpala and Rai, 2020] made attempts to

extend some of the aforementioned calibration techniques to continuous-

valued predictions.

Ordinal or Ranking-based Uncertainty. In the existing uncertainty

modelling works, the ordinal property of uncertainty estimates received less
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attention compared to the calibration property, which partly motivated the

method introduced in this chapter. [Li et al., 2021] proposed to model

data uncertainty by inducing ordinality into probabilistic embeddings of

face images. Towards uncertainty-aware regression problems, the results

reported in [Li et al., 2021] highlighted the key limitations of deterministic

unordered embeddings compared to the probabilistic ordinal embeddings.

Although not strictly ordinal, relative uncertainty modelling is explored for

facial expression recognition in [Zhang et al., 2021].

Other closely related works approached the problem of ordinal ranking

of uncertainty estimates with different objectives such as failure predic-

tion [Corbière et al., 2019], out-of-distribution detection [Roady et al.,

2019], and selective classification [Geifman and El-Yaniv, 2017]. Funda-

mentally, all these objectives necessitate a method that can train the model

to output well-ranked confidence or uncertainty scores. Among these ex-

isting methods, the one most closely related to ours is by [Moon et al.,

2020], which proposes a Correctness Ranking Loss (CRL). CRL directly

imposes ordinal ranking constraints on the confidence estimates of a DNN

classifier. Similar to CRL, our proposed softmax distributional matching

loss also constrains the ordinal-ranking property of uncertainty estimates.

However, in addition to ordinal ranking, the proposed method imposes the

calibration property as well, most importantly by controlling the latent dis-

tribution variance, unlike in CRL. Moreover, its formulation generalises the

idea of calibrated and ordinal uncertainty estimates to both classification

and regression settings, using a common loss function computation.
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3.3 Method

Preliminaries and Notations. As Fig. 3.2 illustrates, given a face

video clip XV with N frames and its corresponding speech signal XA, us-

ing overlapping time windows, N speech segments that correspond to the

N visual frames are extracted first. This method assumes that both the

signals XV and XA are annotated with a common dimensional emotion

label, Y ∗ = [Y ∗valence, Y
∗
arousal] (either per-frame or per-sequence). It ex-

tracts sequences of per-frame low dimensional features (ZV , ZA) from the

face video and speech inputs using a two-stream network. This network

is composed of a 2D CNN fV and a 1D CNN fA for processing the face

images and speech segments respectively, fV : XV → [z1V , z
2
V , ..., z

N
V ] and

fA : XA → [z1A, z
2
A, ..., z

N
A ]. For unimodal emotion recognition, the temporal

context from each modality is processed separately from ZV and ZA using

different temporal networks gV : ZV → YV and gA : ZA → YA to predict

the emotion labels YV and YA.

Figure 3.3 illustrates the proposed solution to uncertainty-aware multi-

modal fusion. This section first discusses how to estimate modality-wise

uncertainty by learning unimodal latent distributions over the temporal

context, and it presents the proposed approach to derive the audiovisual

fusion weights based on unimodal temporal context variance. Then, it in-

troduces two key optimisation constraints that are imposed on the variance

norms of unimodal latent distributions and discusses their implementation

details.
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3.3.1 Uncertainty-Aware Audiovisual Context Fusion

Quantifying modality-wise uncertainty towards predicting a common tar-

get label is crucial to improve multimodal fusion performance. Here, the

objective is to first quantify intramodal uncertainty in the temporal con-

text space, and then use the estimated uncertainty scores to derive the

fusion weights. To this end, a method is proposed to learn unimodal latent

distributions over the temporal context of the audio and visual modalities

separately, as discussed below.

Latent Distributions over Unimodal Temporal Context

Figure 3.2 illustrates how the temporal networks (Gated Recurrent Unit

(GRU)-RNNs) gV and gA are modified to output the parameters (mean and

variance) of multivariate normal distributions N (µiV , σ
i
V
2
) and N (µiA, σ

i
A
2
)

over the audio and visual temporal context vectors, respectively. Here, the

term ‘temporal context’ refers to the hidden state outputs from the corre-

sponding unimodal GRU blocks (gA or gV ). For each modality separately,

this hidden state output is learned as a multivariate normal distribution,

instead of a typical deterministic embedding vector. This approach pre-

sumes that these unimodal latent distributions are capable of representing

modality-wise emotion information more effectively than deterministic em-

beddings.

Given a sequence of frames, [X1, X2, ..., XT ], in order to predict their

corresponding target variables [Y ∗1 , Y ∗2 , ..., Y ∗T ] it is important to learn the

underlying temporal context information, which is a function of the frames

present in the input sequence as well as the order in which they appear. By

modelling the temporal context as a probability distribution, we propose
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to use the prediction error ‖Yi−Y ∗i ‖2 to constrain the contribution of each

frame Xi in terms of its explained variance of the overall temporal context.

Here, the idea of frame-wise explained variance of the temporal context

refers to how much information a particular frame holds given all the rest

of frames, towards predicting the target variable Y ∗i . Thus, the higher the

explained variance of a particular frame Xi, the more informative it is for

accurately predicting the target variable.

It is important to note the difference between the absolute variance of the

temporal context distribution learned from all the frames and the explained

temporal context variance of an individual frame. While the former can be

thought of as a proxy metric for uncertainty measurement, the latter can be

viewed as a per-frame information metric w.r.t the target prediction. For

the sake of simplicity, throughout this chapter we use the term ’temporal

context variance’ in order to refer to the explained variance of temporal

context for a given frame in an input sequence. The above argument can

be extended to a multimodal fusion setting as well, in which the explained

temporal context variance of a particular modality can be used as a proxy

for how informative that modality is w.r.t predicting a common target

variable.

The proposed method models the variance of a unimodal latent distribu-

tion as a proxy for how informative that modality is w.r.t. predicting the

target emotion, and it uses the inverse of variance values to quantify how

uncertain a particular modality is towards predicting emotion labels. Note

that the potential of signal variance-based uncertainty modelling for mul-

timodal fusion was already demonstrated in [Evangelopoulos et al., 2013].

Inspired by this idea, we model the unimodal context variance norm values

‖σ2
V ‖2 and ‖σ2

A‖2 to estimate how certain the audio and visual modalities

are about predicting the emotion labels. The proposed approach to de-
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rive variance-based fusion weights for integrating the audiovisual temporal

context vectors is discussed below.

Context Distribution Variance-Based Fusion Weights

For an input frame with index i, given its unimodal latent distributions

N (µiV , σ
i
V
2
) and N (µiA, σ

i
V
2
) over its audio and visual temporal context

separately, COLD fusion first computes the L2 norms of their variance

values, ‖σiV
2‖2 and ‖σiA

2‖2. As discussed above, these variance norm values

are assumed to represent modality-specific certainty w.r.t. predicting the

target emotions. By normalising the variance norm values of the audio

and visual modalities, this method derives fusion weights that are used in

a simple linear fusion model of the audiovisual temporal context (hiV A) :

hiV A = wiV ∗ hiV + wiA ∗ hiA, (3.1)

where hiV and hiA denote the visual and audio temporal context vectors, and

wiV and wiA denote their corresponding weight values. The temporal context

vectors hiV and hiA are sampled from their respective latent distributions,

hiV ∼ N (µiV , σ
i
V
2
) and hiA ∼ N (µiA, σ

i
A
2
) during training. At test time,

hiV and hiA are set to their corresponding mean vectors µiV and µiA for

evaluation purpose.

Based on the unimodal context variance norm values (‖σiV
2‖2 and ‖σiA

2‖2),

the weight values wiV and wiA in Equation (3.1) are computed as:

wiV =
‖σiV

2‖2
(‖σiV

2‖2 + ‖σiA
2‖2)

, wiA =
‖σiA

2‖2
(‖σiV

2‖2 + ‖σiA
2‖2)

. (3.2)
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Context variance modelling seems to be a simple yet effective approach to

uncertainty-aware audiovisual fusion, yet learning audiovisual latent dis-

tributions with well-conditioned variance ranges is non-trivial in practice,

as shown later in the experiments. To condition the variance values that

can effectively capture intramodal uncertainty w.r.t. predicting the target

labels, this chapter defines a more principled model training approach that

applies two key optimisation constraints: Calibration and Ordinality.

3.3.2 COLD: Calibrated and Ordinal Latent Distri-

butions

To effectively learn the unimodal latent distributions for uncertainty-aware

fusion, COLD fusion proposes to condition their variance values by apply-

ing optimisation constraints to the model training objective. It achieves

this conditioning by imposing two key constraints: Calibration and Or-

dinality (or ranking) on the latent distribution variance vectors. When

well-calibrated, an uncertainty score acts as a proxy for the correctness like-

lihood of its prediction for an individual input from a specific modality. In

other words, well-calibrated uncertainty indicates the expected estimation

error, i.e., how far the predicted emotion is expected to lie from its ground

truth. Given the predictions made for a set of frames from different modal-

ities, when their uncertainty scores are well-ranked or maintain ordinality,

this approach can effectively arrange the input unimodal frames according

to their reliability for predicting a target emotion. Figure 3.1 illustrates the

definitions of both these constraints. It is important to note the fundamen-

tal difference between these two constraints: while the calibration constraint

is applied individually for each unimodal frame, the ordinality or ranking

constraint is imposed jointly for a set of frames from different modalities.
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Figure 3.3: COLD fusion loss function: To simultaneously impose the cal-
ibration and ordinality constraints on the unimodal latent distributions’
variance vectors, COLD fusion minimises the softmax distributional match-
ing loss (KL divergence) between the distance vectors [di] and variance-
norm vectors [ 1

‖σi2‖2
], in both intramodal and crossmodal settings.
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Calibration Constraint – this is imposed by regularising the unimodal

context variance norms, ‖σiV
2‖2 and ‖σiA

2‖2, such that their values are

strongly correlated with the correctness likelihood values of target emotion

classes. In regression models, this constraint can be implemented by forcing

the variance norm values to correlate with the Euclidean distance between

their corresponding unimodal predictions YV and YA and their ground truth

labels Y ∗, as shown in Fig. 3.1. In other words, the context variance values

are learnt as reliability measures indicating how far the emotion predic-

tions are expected to lie from their ground truth labels. To impose this

property on the variance values of both modalities, COLD fusion applies

the following regularisation constraints,

argmax
σ2
V

Corr(
1

‖σ2
V ‖2

, d(YV , Y
∗))

argmax
σ2
A

Corr(
1

‖σ2
A‖2

, d(YA, Y
∗))

(3.3)

where d(.) denotes the distance function that measures the target emo-

tion estimation error. Cross-entropy and Mean Squared Error (MSE) are

used as the distance functions for the classification and regression models

respectively.

Ordinality Constraint – this is applied to rank the frames of unimodal

sequences, so that their uncertainty measures indicate how reliable differ-

ent multimodal frames are w.r.t. each other. This ranking operation can

be implemented as a simple ordering constraint which jointly regularises

the unimodal context variance norm values, ‖σiV
2‖2 and ‖σiA

2‖2. Here,

modality-wise reliability is again computed in terms of the distance val-

ues (see Equation (3.3)) between different unimodal predictions and the
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ground truth labels:

argmax
σ2
V ,σ

2
A

Corr(Rank(
1

‖σ2
V ‖2

,
1

‖σ2
A‖2

), Rank(d(YV , Y
∗), d(YA, Y

∗))) (3.4)

Implementation: Calibration and Ordinality Constrained Train-

ing for Audiovisual Emotion Recognition

Classification models of dimensional emotion recognition are trained in ad-

dition to the standard regression models used in the literature. In both

cases, the underpinning principles of the COLD fusion are the same, but

implementations of the training objective differ slightly. To train the tem-

poral context fusion models by imposing the above-described calibration

and ordinality constraints, the network is optimised to jointly minimise a

loss function composed of the following components:

Emotion Prediction Loss (Lemo) is computed using the standard cross-

entropy function for training the classification models. For the regression

models training, similar to [Kossaifi et al., 2020], inverse Concordance

Correlation Coefficient (CCC) loss (1.0 - CCC) is used in addition to MSE.

This loss is computed for the predictions from unimodal (YV and YA) and

multimodal (YAV ) branches jointly (Figure 3.2).

Calibration and Ordinality Loss (LCO) combines the aforementioned

constraints, defined in Equation (3.3) and Equation (3.4), into a single

training objective using differentiable operations. Figure 3.3 shows the

steps involved in implementing this component: given an input sequence

with N frames, their unimodal latent distributions followed by their corre-

sponding unimodal predictions are inferred. To impose the calibration and
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ordinality constraints, two sets of vectors for each modality are computed:

Distance Vectors. The scalar distance values (diV and diA) between the

unimodal predictions (Y i
V and Y i

A) and the ground truth labels (Y i∗) are

computed using either cross-entropy (classification) or MSE (regression) as

the distance function. This step produces N-dimensional distance vectors,

DV = [d1V , d
2
V .., d

N
V ] and DA = [d1A, d

2
A.., d

N
A ].

Variance-Norm Vectors. The inverted unimodal context variance norm

values are collected into another set of N-dimensional vectors, SV and SA,

as shown below:

SV = [
1

‖σ1
V ‖2

,
1

‖σ2
V ‖2

, ..,
1

‖σNV ‖2
]

SA = [
1

‖σ1
A‖2

,
1

‖σ2
A‖2

, ..,
1

‖σNA ‖2
].

(3.5)

Softmax Distributional Matching for Calibration and Ordinal Rank-

ing. Note that the distance vectors and variance-norm vectors contain

scalar values that summarise the properties of different embedding spaces,

emotion labels, and temporal context, respectively. Hence, it is assumed

that matching their properties by imposing the calibration and ordinal-

ity constraints directly in their original spaces, is not optimal. For this

reason, as illustrated in Figure 3.3, the softmax operation is applied to

the distance vectors and variance-norm vectors separately to generate the

softmax distributions. Then, the calibration and ordinality constraints are

imposed by minimising the mismatch between softmax distributions of the

variance-norm vectors and distance vectors. This approach to calibration

and ordinality loss computation based on soft-ranking is inspired by [Bruch

et al., 2019] in which softmax cross-entropy is used for ordinal regression.

As Figure 3.3 shows, in both intramodal and crossmodal settings, soft-
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max distributions of distance vectors (PDV
, PDA

, and PDAV
) and variance-

norm vectors (PSV
, PSA

, and PSAV
) are computed. Note that in the cross-

modal case, the audio and visual distance vectors and variance-norm vec-

tors are concatenated separately, i.e., DAV = [d1A, d
1
V , .., d

N
A , d

N
V ] and SAV =

[s1A, s
1
V , ..., s

K
A , s

N
V ]. Then, the softmax operation is applied to the concate-

nated list which is 2N dimensional. Thus, the crossmodal softmax distri-

butions capture the relational information across both modalities. Now,

to impose the calibration constraint, the proposed method minimises the

KL divergence (both forward and backward) between the distance distribu-

tions and variance-norm distributions in both intramodal and crossmodal

settings, as shown below:

LCO = KL(PD||PS) +KL(PS||PD), (3.6)

where PD represents PDV
and PDA

, and PS represents PSV
and PSA

in the

intramodal loss computation. In the crossmodal case, PD and PS denote

PDAV
and PSAV

, respectively.

Variance Regularisation Loss (Lregu). Prior works [Chang et al., 2020,

Sanchez et al., 2021] on latent distribution learning in high-dimensional

input spaces such as images, have reported that the variance collapse is a

commonly encountered problem. Variance collapse occurs mainly because

the network is encouraged to predict small variance σ2 values to suppress

the unstable gradients that arise while training the latent distribution mod-

els using Stochastic Gradient Descent. To prevent this problem, the regu-

larisation term proposed in [Chang et al., 2020] is included in the training
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objective:

Lregu = KL(N (µ, σ2)||N (0, I))

= −1

2
(1 + logσ2 − µ2 − σ2),

(3.7)

where I denotes an identity variance matrix. Note that this regularisa-

tion term is applied to the audio and visual context latent distributions,

separately.

In summary, the COLD fusion training objective composed of the above-

discussed loss components, is as follows:

Ltotal = Lemo + λCOV
· LCOV

+ λCOA
· LCOA

+

λCOAV
· LCOAV

+ λR · Lregu,
(3.8)

where λCOV
(for visual-only), λCOA

(for audio-only), λCOAV
(for audio and

visual combined), and λR (for regularisation) are the optimisation hyperpa-

rameters that control the strength of each regularisation constraint. Here,

the crossmodal loss term LCOAV
is computed by replacing PD and PS in

Eq. 3.6 with PDAV
and PSAV

respectively.

3.4 Model-Agnostic Fusion Baselines

Before discussing the experimental evaluation of the proposed method, this

section briefly discusses general multimodal fusion techniques w.r.t. au-

diovisual emotion recognition. One fundamental question in multimodal

learning concerns the optimal stage to perform fusion [Baltrušaitis et al.,

2018]. This chapter considers the following three typical model-agnostic
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fusion methods as the standard baselines: feature fusion, temporal context

fusion, and prediction fusion.

Feature Fusion or early fusion integrates frame-level emotion cues present

in the audiovisual features ZV and ZA (e.g., [Zhang et al., 2017a]), not

accounting for commonly encountered temporal misalignment between dif-

ferent modalities [Lingenfelser et al., 2016]. These per-frame audiovisual

features are concatenated into a single sequence, Z = [ZV , ZA], which are

passed to a common temporal network gAV : Z → Y to predict emotion

labels.

Decision Fusion combines the unimodal emotion predictions YV and YA

(e.g., [Ringeval et al., 2015]). Here, its implementations applies predictive

confidence based weighted averaging to perform the late fusion. Unlike

early fusion, late fusion does not leverage the low-level correspondences

among the emotion cues distributed over the audio and visual streams [Bal-

trušaitis et al., 2018].

Temporal Context Fusion or simply context fusion integrates sequence-

level emotion information aggregated in the form of audiovisual temporal

context vectors hiV and hiA for frame i, produced by the temporal networks

gV and gA respectively. This method is also referred to as ‘feature fusion

with RNNs’ or ‘mid-level’ fusion in some prior works [Rouast et al., 2019,

Tzirakis et al., 2017]. It is important to note that here, temporal context

or simply context at ith frame refers to the emotion information present in

frame i w.r.t. the emotion information carried by remaining frames in the

input sequence. As a result, unlike early fusion, context fusion is bound to

suffer less from the temporal misalignment between the emotion-related se-

mantics of audio and visual feature sequences. Further, context fusion ben-

efits from the low-level audiovisual correspondences in the emotion space,
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in contrast to late fusion.

Considering the above mentioned critical advantages of temporal context

fusion, the proposed method aims to learn an uncertainty-aware context

fusion model for multimodal emotion recognition as discussed above.

3.5 Experiments

This section first discusses the details of the dimensional emotion recogni-

tion dataset used for evaluating the proposed COLD fusion model. Then,

it presents the regression and classification models’ performance evaluation

metrics, along with a standard uncertainty calibration error metric that

applies to the classification models. Network architectural details of the vi-

sual and audio stream models and their fusion implementations, and their

optimisation details can be found in Appendix A.

3.5.1 Dataset

For Spontaneous Emotion Recognition, the AVEC 2019 CES chal-

lenge corpus [Ringeval et al., 2019] is used, which was designed for in-the-

wild emotion recognition in cross-cultural settings as part of the SEWA

project [Kossaifi et al., 2019]. This corpus is composed of 8.5 hours of au-

diovisual recordings collected from German, Hungarian, and Chinese par-

ticipants. All videos in this corpus are annotated with continuous-valued

valence and arousal labels in the range [-1, 1]. Note that the train and val-

idation partitions are composed of only German and Hungarian cultures.

As the labels for the test set (which has the Chinese culture in addition)

are not publicly available, the results are reported on the validation set.
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The proposed audiovisual fusion models are trained on the AVEC 2019 CES

dataset in regression as well as classification settings. Continuous-valued

labels as targets in the range [-1, 1] are used to train the regression mod-

els. For classification, the continuous emotion values are mapped to three

different classes for valence (positive, neutral, negative) and arousal (high,

neutral, low) individually. For this binning, the thresholds of -0.05 and 0.05

are chosen to draw the boundaries between the three above-mentioned bins,

such that they minimise the imbalances in the resultant class-wise label dis-

tribution.

Addressing Imbalanced Emotion Class Label Distributions. Al-

though the binning thresholds are tuned carefully, the class-wise label dis-

tributions still have significant imbalances, as shown in Figure 3.4. To mit-

igate the effect of this problem, two general techniques are applied while

training the classification models: a. non-uniform sampling of the training

instances for different classes and b. class-weighted cross-entropy loss. In

the former, the sampling criteria is modified to oversample for the minor-

ity classes and undersample for the majority classes based on the number

of examples available for each class in the train set. In the latter tech-

nique, the cross-entropy loss values for different classes are divided by their

relative bin size (in the train set).

3.5.2 Evaluation Metrics

Regression models’ performance is measured using Lin’s Concordance

Correlation Coefficient (CCC) [Lawrence and Lin, 1989] between the pre-

dicted emotions yo and their ground truth labels y∗

CCC =
ρy∗yo .σy∗ .σyo

(µy∗ − µyo)2 + σy∗2 + σyo2
, (3.9)
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Figure 3.4: Class imbalances in the distribution of valence and arousal
labels prepared for 3-way classification on the AVEC 2019 CES dataset.

where ρy∗yo denotes the Pearson’s coefficient of correlation between y∗ and

yo, and (µy∗ , µyo) and (σy∗ , σyo) denote their mean and standard deviation

values, respectively.

Classification models are evaluated using precision, recall, and F1 score

metrics, given that accuracy is not a reliable metric because of the im-

balanced class distributions (see Figure 3.4). In all three metrics, the un-

weighted values or macro average values of the three emotion classes are

computed for the valence and arousal dimensions separately.

Uncertainty Calibration Errors of the classification models are mea-

sured to analyse the deviations between the true class likelihoods p and the

predicted class confidence estimates p̂. Reliability diagrams [Guo et al.,

2017] are used as empirical approximations to visually represent the con-

fidence calibration errors. For plotting these diagrams, first, the accuracy

and confidence axes are binned into equally-sized intervals and then, for

each interval mean accuracy values are plotted against their corresponding

mean confidence scores. For a perfectly calibrated model, the reliability

diagram is supposed to be an identity function, i.e., accuracy and confi-

dence should have the same values. Expected Calibration Error (ECE), a

scalar summary statistic of the reliability diagram, computes the weighted
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average of calibration errors over all the intervals in a reliability diagram.

ECE =
M∑
m=1

|Im|
N
|Acc(Im)− Conf(Im)|, (3.10)

where Im denotes the mth interval, M is the total number of intervals, and

N is the total number of samples.

3.6 Results and Discussion

This section first presents the results of dimensional emotion regression and

classification models based on different audiovisual fusion techniques. By

inducing visual noise through face masking, it investigates the robustness

of the proposed COLD fusion compared to the standard fusion baselines.

Then, an analysis of the uncertainty calibration performance of the COLD

fusion model is presented, particularly in classification settings. To vali-

date the improvements achieved by COLD fusion over the remaining fusion

models, statistical significance tests are performed. Furthermore, a com-

parison between the proposed COLD fusion and a multimodal transformer

baseline [Tsai et al., 2019] is provided. Finally, an ablation study of differ-

ent components in the COLD fusion formulation is conducted, by nullifying

different hyperparameters to modify the COLD training objective (Equa-

tion (3.8)).

3.6.1 Dimensional Emotion Recognition Results

Regression performance of different unimodal (Aud-branch and Vis-branch)

and multimodal (AV) predictions are presented in Table 3.1. From these re-
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Valence Arousal Avg.

Model CCC ↑ CCC ↑ CCC ↑

AVEC Winners:Aud [Zhao et al., 2019] 0.388 0.518 0.453

Aud-branch 0.369 0.465 0.417

AVEC Winners:Vis [Zhao et al., 2019] 0.579 0.594 0.586

Vis-branch 0.511 0.514 0.512

AVEC CES Winners:AV [Zhao et al., 2019] 0.614 0.645 0.629

AV Feature Fusion 0.515 0.509 0.512

AV Prediction Fusion 0.552 0.617 0.584

AV Context Fusion 0.578 0.620 0.599

AV COLD Fusion 0.611 0.661 0.636

Table 3.1: Dimensional emotion regression results on the AVEC 2019
CES validation set (CCC – Concordance Correlation Coefficient).

Figure 3.5: Dynamic adaptation of COLD fusion weights when presented
with novel noise patterns induced into the visual inputs: At test time, face
masking is applied to randomly chosen consecutive frames in the AVEC
2019 CES validation examples. When the visual modality is noisy, i.e.,
containing faces with masks, AV COLD fusion output relies more on the
audio modality (note the gaps between visual predictions and AV COLD
fusion predictions, and modality-wise fusion weights). After removing the
face masks, the fusion weight values adapt accordingly, hence, the fusion
outputs.
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Transition points (points 
at which one modality 
becomes more 
confident than the other)

Deviation between 
unimodal (visual or 
audio) predictions and 
ground truth labels

Deviation between 
unimodal (visual
or audio) fusion 
weights

Figure 3.6: Emotion predictions on an example from the AVEC 2019 CES
validation set: Unimodal and multimodal valence predictions, and their
uncertainty-based fusion weights estimated by the AV COLD fusion predic-
tions. Note that fusion weights of the audio and visual modalities demon-
strate (a) the calibration property – how far their corresponding unimodal
predictions are from the ground truth ratings and (b) the ordinal ranking
property – how well they can order the audio and visual modalities in terms
of their reliability.
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—— Valence —— —— Arousal ——

Model P↑ R↑ F1↑ P↑ R↑ F1↑
Aud-branch 68.3 48.2 56.6 74.3 50.2 59.9

Vis-branch 70.9 58.1 63.9 76.8 70.3 73.4

AV Feature Fusion 67.8 60.2 63.8 73.4 68.2 70.7

AV Prediction Fusion 68.9 60.5 64.4 77.0 69.4 73.0

AV Context Fusion 75.0 60.6 67.0 77.1 71.1 73.9

AV COLD Fusion 76.8 62.4 68.9 79.5 74.0 76.5

Table 3.2: Dimensional emotion 3-way classification results (P – Precision,
R – Recall, F1 – F1 score) on the AVEC 2019 CES validation set.

sults, it can be clearly seen that the COLD fusion consistently outperformed

the standard fusion baselines (feature, prediction and context) as well as

the unimodal results. When compared to the best performing CNN+RNN

fusion baselines, on average, COLD fusion achieved ∼6% relative improve-

ment in dimensional emotion regression.

Compared to the winners of the AVEC 2019 challenge, [Zhao et al., 2019],

COLD fusion performs well in terms of arousal and mean CCC scores.

However, it is slightly worse in the case of valence CCC. Note that [Zhao

et al., 2019] use a domain adaptation technique to cope with the cross-

cultural variations in the audiovisual emotion expressions. However, this

chapter’s focus is not on coping with the cross-cultural variations, but

primarily on improving the fusion performance. It is important to note

that the proposed fusion technique is, in principle, complementary to the

domain adaptation used in [Zhao et al., 2019].

Classification performance on the AVEC 2019 CES corpus is presented

in Table 3.2. Similar to the regression results, COLD fusion demonstrates

superior emotion classification results than the standard model-agnostic

fusion baselines. Note that here the original regression problem is posed

as a 3-way classification problem by discretising the continuous emotion

76



3.6. RESULTS AND DISCUSSION

labels. For this reason, there are no existing benchmarks for comparison in

this particular classification setting. Nevertheless, it is worth noting that

the performance improvements achieved by the COLD fusion are consistent

for both valence and arousal in terms of all three metrics.

Analysis of Fusion Baselines. Among the fusion methods that are

evaluated here, temporal context or simply context fusion is found to be the

second-best performing method after the proposed COLD fusion. Note that

the temporal context refers to the output of the unimodal GRU block, and

unimodal predictions are generated by applying a shallow fully connected

network to the unimodal context vector. Thus, the context vectors can be

viewed as higher-dimensional descriptors of the final unimodal predictions.

Based on this assumption, in theory, the performance of context fusion

is bound to be either better or at least as good as the prediction fusion,

justifying the trends observed in our experimental results.

We can clearly notice that the feature fusion performance is inferior to all

the remaining fusion techniques, and prediction fusion performs better than

feature fusion. This result is consistent with an observation that prediction

fusion achieves better results compared to feature fusion in general, as re-

ported in the existing multimodal affect recognition literature [Ringeval

et al., 2015]. It is worth noting that the results of feature fusion are

worse than that of the best performing unimodal models. This perfor-

mance degradation may be due to not explicitly correcting the temporal

misalignment effects [Lingenfelser et al., 2016], which are heuristically de-

rived in general [Ringeval et al., 2019]. This result indicates that integrat-

ing multimodal emotion information at feature-level or frame-level could be

suboptimal most likely due to the temporal misalignment issues, given that

continuous emotion information is expressed in the audiovisual modalities

at different frame rates [Rouast et al., 2019, Tzirakis et al., 2017].
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Valence ECE ↓ Arousal ECE ↓
Model BTS ATS BTS ATS

Aud-branch 13.6e-2 6.3e-2 3.2e-2 2.8e-2

Vis-branch 8.9e-2 7.1e-2 12.6e-2 3.1e-2

AV Feature Fusion 6.1e-2 5.0e-2 5.5e-2 3.3e-2

AV Prediction Fusion 8.7e-2 5.1e-2 2.5e-2 2.6e-2

AV Context Fusion 6.9e-2 4.0e-2 6.3e-2 3.0e-2

AV COLD Fusion 3.7e-2 4.3e-2 1.3e-2 0.9e-2

Table 3.3: Dimensional emotion classification calibration results on the
AVEC 2019 CES validation set (ECE – Expected Calibration Error,
BTS – Before Temperature Scaling, ATS – After Temperature Scaling).

Dynamic Adaptation of Fusion Weights in the Presence of Noise.

In this experiment, the aim is to understand how different fusion models

perform when presented with novel noise patterns at test time. By inducing

noise into the visual modality through face masking, here, the performance

of different fusion baselines is analysed, in comparison with the COLD fu-

sion. For this evaluation, the face masks are overlaid as external occlusions

on the image sequences using the method proposed in MaskTheFace [An-

war and Raychowdhury, 2020]1. MaskTheFace is applied to 50% of the

randomly chosen consecutive frames of the AVEC 2019 CES validation set

sequences, as shown in Figure 3.5. Note that all the fusion models evaluated

here have not seen faces with masks during their training. As Table 3.4

shows, in this noise-induced evaluation set up, performance drop compared

to the noise-free evaluation (Table 3.1) is considerably higher for all three

fusion baselines (feature, prediction, and context) than for the COLD fu-

sion. Furthermore, the relative performance difference between the COLD

fusion and the best performing fusion baselines is increased from ∼6% in

noise-free settings to ∼17% in this noise-induced case.

Figure 3.5 compares the COLD fusion predictions with the predictions from

1https://github.com/aqeelanwar/MaskTheFace
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Valence Arousal Avg.

Model CCC ↑ CCC ↑ CCC ↑

AV Feature Fusion 0.378 0.351 0.364

AV Prediction Fusion 0.363 0.545 0.454

AV Context Fusion 0.385 0.508 0.445

AV COLD Fusion 0.491 0.574 0.528

Table 3.4: Impact of visual noise (external occlusions) on the AV fusion
models: Dimensional emotion regression results with 50% of randomly cho-
sen face images masked during evaluation (see Fig. 3.5) on the AVEC 2019
CES validation Set.

visual and audio branches, along with the inferred modality-wise fusion

weight scores. We can clearly see that the visual fusion weights are much

lower for the frames with masks compared to the frames without masks,

and as a result, the final predictions rely more on the audio modality in

the presence of visual noise. This result clearly demonstrates the ability of

COLD fusion to dynamically adjust the importance of a specific modality

according to how informative it is towards recognising the target emotions.

3.6.2 Uncertainty Calibration Performance Analysis

To measure the quality of uncertainty estimates, Expected Calibration Er-

ror (ECE) (see Section 3.5.2) values are computed for the unimodal and

multimodal emotion classification models. Note that this calibration er-

ror metric applies only to the classification settings. By computing the

ECE values before and after applying temperature scaling to the softmax

distributions over the predictions of each model separately, the impact of

explicit uncertainty calibration (temperature scaling) is investigated. An

optimal temperature value is searched in the range of 1e − 2 to 1000 by

doing a random search for 100 iterations. Similar to the technique fol-
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Model Valence Arousal

CCC ↑ CCC ↑

With All three constraints 0.605 0.661

(λCV = λCA = λCAV = 1e− 3, λR = 1e− 4)

Without Intramodal constraints (λCV = λCA=0) 0.573 0.615

Without Crossmodal constraint (λCAV ) 0.580 0.609

Without Regularisation constraint (λR = 0) 0.541 0.595

Without Any constraints 0.517 0.578

(λCV = λCA = λCAV = 0, λR = 0)

Table 3.5: Ablation experiments on the proposed loss function (Eq. 3.6):
Analysing the impact of different loss components in the COLD Fusion on
the AVEC 2019 CES validation set (CCC-Concordance Correlation Coef-
ficient).

Valence Arousal Avg.

Model CCC ↑ CCC ↑ CCC ↑

Transformer [Tsai et al., 2019]† 0.602 0.619 0.610

Proposed AV COLD Fusion 0.611 0.661 0.636

Table 3.6: Comparison with a pair-wise crossmodal self-attention based
multimodal transformer [Tsai et al., 2019] († indicates in-house implemen-
tation for AV fusion): Regression results on the AVEC 2019 CES validation
set.

lowed in [Mukhoti et al., 2020], the temperature value is chosen such that

it achieves the lowest ECE value on the validation set.

It is important to consider that the COLD fusion models are trained to

be implicitly calibrated (see Equation (3.6)) in terms of their temporal

context variance values. Thus, even before applying explicit calibration,

i.e., temperature scaling, we expect the predictive uncertainty values or

class wise confidence scores of the COLD fusion models to have lower ECE

values compared to the other fusion baselines.

Quantitative Results. Table 3.3 reports the ECE values for valence and
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Valence Arousal
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Figure 3.7: Reliability plots of unimodal and multimodal classification
models evaluated on the AVEC 2019 validation set. A perfectly calibrated
model should appear as a perfect right angled triangle, as marked by the
diagonal lines and the red bars.
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arousal attributes on the AVEC 2019 corpus. For both the attributes, be-

fore the application of temperature scaling, COLD fusion has the lowest

calibration error when compared to the other models. After applying tem-

perature scaling, it is obvious that the ECE values for all the models go

down, and the COLD fusion still achieves the lowest error. Only in the case

of valence, AV context fusion has a marginally lower ECE value compared

to the COLD fusion. This minor discrepancy could be due to the random

search of optimal temperature values and note that here, different models

have different optimal temperature values that are tuned for valence and

arousal, separately. Nevertheless, in all the remaining cases (both before

and after temperature scaling), COLD fusion consistently demonstrates

lower uncertainty calibration errors in relation to the other fusion models.

Reliability diagrams visually illustrate the uncertainty calibration per-

formance of a model’s predictions. As Figure 3.7 shows, when a model is

perfectly calibrated, its confidence score vs the accuracy score histogram

looks like a perfect right-angled triangle. The more the deviations are from

the diagonal lines in them, the higher their ECE values are. Note that

ECE is a scalar summary statistic of a reliability diagram, which computes

the weighted average of such deviations over all the intervals in the reliabil-

ity diagram. Though the ECE values reported for the AVEC 2019 corpus

(Table 3.3) already validate the improved calibration results with COLD

fusion. Here, as an example, Figure 3.7 compares the reliability plots of

different models evaluated on the AVEC validation set. In Figure 3.7, we

can see that compared to the unimodal cases and other fusion baselines,

the COLD fusion reliability plot looks much closer to a perfect right-angled

triangle. Among all the reliability plots illustrated, it can be observed that

the audio branch for valence has the highest calibration error. This obser-

vation is in line with the poor performance achieved by the audio modality
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Model Pair Valence Arousal

p-Value ↓ p-Value ↓

(Aud-branch, AV COLD Fusion) 6.4e-34 9.7e-23

(Vis-branch, AV COLD Fusion) 1.9e-15 3.3e-16

(AV Feature Fusion, AV COLD Fusion) 3.7e-14 1.1e-18

(AV Prediction Fusion, AV COLD Fusion) 5.5e-9 7.3e-3

(AV Context Fusion, AV COLD Fusion) 1.2e-4 2.0e-3

(AV COLD Fusion, AV COLD Fusion) 1.0e-0 1.0e-0

Table 3.7: Statistical significance testing (p <0.01): Regression t-test re-
sults on the AVEC 2019 CES validation set.

in terms of the valence prediction error (see Table 3.1 and Table 3.2) on

the AVEC 2019 corpus.

Analysis of Audiovisual Fusion Weights. Figure 3.6 qualitatively il-

lustrates modality-wise fusion weights estimated by the COLD fusion model

on a validation sequence taken from the AVEC 2019 corpus. Note that these

fusion weights are functions of the unimodal temporal context distributions

(see Equation (3.2)). This illustration analyses the temporal patterns of

fusion weights along with their corresponding unimodal and multimodal

emotion predictions and their ground truth labels. This analysis clearly

shows the well-calibrated nature of modality-wise fusion weights: when the

predictions of one modality move closer to the ground truth compared to

those of the other modality, the audiovisual weight values in the COLD fu-

sion are found to be varying accordingly. From the transition points marked

in Figure 3.6, we can see that the fusion weights are gradually inverted, as

the predictions of one modality move closer to the ground truth while the

other modality predictions move further. This result validates our main

hypothesis of making unimodal latent distributions calibrated and ordinal

for improved fusion performance.
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Statistical Significance Analysis. As shown in Table 3.7, a paired t-test

is performed on the validation set of the AVEC 2019 corpus, to verify the

statistical significance of COLD fusion’s performance improvements over

the unimodal and remaining multimodal baselines. In line with the trends

in regression, performance reported in Table 3.1, p-values of the student

t-test indicate that the improvements achieved by the COLD fusion models

are statistically quite significant compared to the baseline models.

Comparison with a Multimodal Transformer [Tsai et al., 2019].

In addition to the standard fusion baselines, a multimodal transformer

model is implemented based on pair-wise crossmodal self-attention fusion

proposed in [Tsai et al., 2019]. It is worth noting that the crossmodal self-

attention fusion aims to cope with the problem of temporal misalignment

between different modalities during fusion, similar to the temporal context

fusion model we evaluated in this chapter. An audio-visual version of this

multimodal transformer method is implemented by tailoring its original

network architecture designed for the text, audio, and visual modalities2. A

3-layer self-attention network with 16 heads followed by an FC output layer,

is used to implement this multimodal transformer baseline. As shown in

Table 3.6, regression results on the AVEC 2019 CES corpus show that the

COLD fusion clearly outperformed the transformer baseline, particularly

in arousal prediction, by a large margin.

Ablation Studies. Table 3.5 presents the ablation results that quantify

the contributions of calibration, ordinality, and context variance regulari-

sation constraints to the performance gains achieved by COLD fusion. By

individually nullifying the four optimisation hyperparameters of the COLD

training objective (see Equation (3.8)), the emotion regression performance

is measured on the AVEC 2019 validation set. Compared to the fully con-

2https://github.com/yaohungt/Multimodal-Transformer
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strained COLD fusion model, different partially constrained and fully un-

constrained models listed in Table 3.5, achieve considerably lower CCC

scores. Most importantly, discarding the variance regularisation constraint

results in more performance degradation than the remaining constraints.

This observation indicates the importance of preventing the variance col-

lapse problem by using the variance regularisation term, in line with the

results reported in prior works [Sanchez et al., 2021, Chang et al., 2020].

3.7 Conclusion

This chapter introduced an uncertainty-aware multimodal fusion approach

to dimensional emotion recognition from audiovisual data. To capture

modality-wise uncertainty w.r.t. predicting valence and arousal dimensions,

the proposed method probabilistically modelled the temporal context of

faces and voices by learning unimodal latent distributions. For effective

uncertainty-weighted audiovisual fusion, this method proposed to condi-

tion the unimodal latent distributions such that their temporal context

variance norms are learnt to be well-calibrated and well-ranked (ordinal).

To jointly impose these two constraints on the latent distributions, it in-

troduced a novel softmax distributional matching loss function that en-

courages the uncertainty scores to be well-calibrated and well-ranked. The

proposed novel loss function for multimodal learning is applicable to both

classification and regression settings.

On an in-the-wild spontaneous emotion recognition dataset, the proposed

uncertainty-aware fusion model achieved significantly better recognition

performance than the uncertainty-unaware model-agnostic fusion baselines,

including a multimodal transformer [Tsai et al., 2019]. Validating the main
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hypothesis of this chapter, extensive ablation studies showed that it is im-

portant to apply both calibration and ordinality constraints for improv-

ing the emotion recognition results of uncertainty-aware fusion models.

Furthermore, the proposed COLD fusion models demonstrated noticeable

improvements in terms of predictive uncertainty calibration errors of the

emotion recognition models. It is important to note that the proposed

calibration and ordinal ranking constraints can be easily applied to gen-

eral model-fusion methods as well by quantifying model-wise predictive

uncertainty values of emotion labels. In summary, this chapter showed the

importance of uncertainty modelling for dynamic integration of emotional

expression cues from multimodal signals.
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Chapter 4

Affective Processes: Stochastic

Modelling of Temporal

Context for Audio-Visual

Affect Recognition

Probability theory is nothing

but common sense reduced to

calculation.

Pierre-Simon Laplace

Chapter Summary. As demonstrated in the previous chapter, temporal

context modelling is critical to recognise apparent emotions from face im-

ages and speech signals. Most existing temporal context models, similar to

the ones used in the COLD fusion mechanism as discussed in Chapter 3,

build on recurrent models or in the modelling of contextual dependencies

at the feature level using self-attention. This chapter argues that such
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Figure 4.1: Affective Processes: stochastic temporal context modelling of
affect labels from faces and voices. Given a sequence of feature embeddings
and their proxy labels, a distribution over temporal functions is learned
using a global latent variable.

canonical temporal models fail to effectively capture the long-term tem-

poral dependencies that subtly occur at different levels of abstraction. To

address this problem, this chapter introduces a novel uncertainty-aware

temporal context modelling framework, Affective Processes. The proposed

framework in this chapter aims to achieve superior affect recognition perfor-

mance with little additional modelling complexity, by learning the temporal

affect dynamics through a probabilistic global latent variable that captures

context and induces dependencies in the outputs. In this chapter, first the

formulation of Affective Processes is presented and then it is applied to

visual-only, audio-only, and audio-visual affect recognition problems. Fur-

ther, to improve the label efficiency of video-based affect recognition, an

application of Affective Processes to Cooperative Machine Learning set-

tings is proposed.

4.1 Introduction

Given the intrinsic temporal nature of emotion information expressed in

faces and voices, the ability to capture long range global temporal context
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is of paramount importance in building affect recognition models. In gen-

eral, the problem of modelling temporal dynamics of facial expressions and

affect has been studied over several years [Valstar, PhD Thesis, Imperial

College London, 2008, Martinez et al., 2017, Kollias et al., 2020], however,

effectively modelling the temporal context for in-the-wild affect recognition

is still a challenging problem. Particularly, not much attention has been

paid so far to the idea of probabilistic learning of affect-specific temporal

context from audiovisual signals.

De facto temporal models used in the state-of-the-art methods [Toisoul

et al., 2021, Ringeval et al., 2019, Zhao et al., 2019] are typically composed

of canonical sequence learning models based on recurrent temporal models,

or recently introduced self-attention mechanisms [Vaswani et al., 2017]. To

model the temporal context of valence and arousal attributes in face and

voice data, most existing works use canonical sequence learning models

such as Time delay neural networks [Meng et al., 2015], vanilla recurrent

neural networks and their variants (LSTM-RNNs and GRU-RNNs) in uni-

directional or bidirectional manner [Kollias and Zafeiriou, 2020, Wang and

Hsu, 2017, Deng et al., Tellamekala and Valstar, 2019, Zhao et al., 2019].

Recently, 1D Convolution networks have been shown as more efficient alter-

natives to RNNs, particularly in the case of audio dimensional affect recog-

nition [Schmitt et al., 2019]. With the success of Transformers [Vaswani

et al., 2017] in Natural Language Processing in recent years, multi-head

attention has been applied to dimensional affect recognition problem as

well [Huang et al., 2019].

Unlike the CNN+RNN based approaches that decouple spatial and tempo-

ral context processing, 3D CNNs [Zhang et al., Kuhnke et al.], 3D ConvL-

STMs [Huang et al., 2018] and temporal hourglass networks [Du et al., 2019]

jointly model the spatio-temporal contexts. While these temporal regres-
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sion models have demonstrated superior performance in terms of temporal

dynamics modelling in general, this chapter argues that they fall short in

the case of temporal affect context modelling due to: (a). their inability

to model the temporal context uncertainty and (b). their deterministic

function learning nature that constrains their representation capacity to

accommodate a wide range of temporal context variations. Note that here

deterministic function learning nature means that at test time the afore-

mentioned temporal regression models produce a fixed output sequence

for a given input sequence. In spite of achieving reasonably good perfor-

mance in practice, all the aforementioned models essentially learn a single

temporal regression function by posing affect recognition as a determin-

istic regression problem, ignoring the inherently stochastic nature of the

temporal affect estimation task.

This chapter argues that the aforementioned two temporal context mod-

elling properties are essential to improve the generalisation performance of

in-the-wild affect recognition models for the following reasons: (i). cues

of affect are often sparsely and irregularly distributed over the temporal

input signals (face image sequences and speech data) and (ii). affect label

annotation is a highly subjective task, making ground truth temporal affect

labels often ambiguous [Sethu et al., 2019] and not very consistent across

different training sequences due to inter-rater disagreements.

4.2 Background: Stochastic Process Model-

ing

Gaussian Processes (GPs) [Rasmussen, 2003] is one of the widely

used approximation methods for stochastic processes modeling [Williams
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and Rasmussen, 2006, Wang et al., 2019, Trapp et al., 2020, Tresp, 2001].

Despite their flexibility, data-efficiency and probabilistic nature, GPs have

two key limitations that constrain their applicability to large-scale regres-

sion problems: computationally intensive inference and the requirement

of a hand-designed covariance function (kernel function) based on prior

knowledge of the problem at hand.

Neural Processes (NPs) family [Garnelo et al., 2018a,b, Kim et al.,

2018, Gordon et al., 2020, Singh et al., 2019, Lee et al., 2020] addresses

both the limitations of GPs by adopting a data-driven context learning

approach and by leveraging the computational efficiency of inference in deep

neural networks. The unique function modeling features of NPs are very

appealing especially for learning problems that involve stochastic function

modelling; this chapter hypothesises that temporal affect recognition can

benefit from stochastic function learning given the ambiguous nature of

affect labels. However, extending NPs to large-scale temporal regression

tasks is constrained by the condition that at test time NPs require ground

truth labels for the context frames.

To address these challenges, this chapter introduces ‘Affective Processes’

(APs) as a more effiective alternative to learn the temporal context using

a stochastic, global latent variable model. APs is the first method that

demonstrates how to circumvent the need for ground truth context frame

labels during inference by using noisy predictions of one or more deter-

ministic regression models. As illustrated in Fig. 4.1, APs aims to model

the stochastic process behind the temporal dynamics of emotions using

Neural Processes [Garnelo et al., 2018b], which, contrary to the recurrent

temporal models used in the COLD fusion, only assume the output dis-

tributions to be permutation-invariant. Neural Processes seek to model

each training sequence as a realisation of some underlying stochastic pro-
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cess (SP) with exchangeable joint finite distribution, and uses an encoder-

decoder architecture with learnable parameters to model it. The encoder

is a DeepSet [Zaheer et al., 2017] that captures the global context, from a

provided set of input-label pairs, using a stochastic latent variable, which

is used by the decoder to carry the function-specific predictions. To avoid

the limitation of needing manually given input/output contextual informa-

tion at test time, Affective Processes extend the Neural Processes family

by using a pre-trained backbone that is tasked with delivering the input

features and corresponding predictions, referred to as proxy labels, as well

as with a context selection method that estimates the optimal frames for

global context modelling. By posing the temporal affect recognition as a

stochastic process regression problem, APs aim to render the flexibility of

temporal context uncertainty modelling to affect recognition models. With

an architecture that adds negligible complexity to the backbone, Affective

Processes is designed to be a strong candidate for the temporal modelling

of emotions, to advance the current state of the unidmodal and multimodal

affect recognition models.

4.3 Method

In temporal affect modelling, given labelled sequences of face images or

speech features {XN = [x1, x2, ..., xN ]} and their corresponding affect la-

bel sequences {YN = [y1, y2, ..., yN ]}, the objective is to learn a temporal

function that maps the input frame sequence to the target label sequence

f : XN → YN .

Assuming that a single deterministic temporal function f is inadequate to

capture the wide range of intrinsic subjective variations of in-the-wild affect
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Figure 4.2: Building blocks of Affective Processes (APs) (see Section. 4.3.2
for a detailed description of each block above)

data and to model the temporal context uncertainty, this chapter instead

proposes to learn a distribution over the temporal functions D(f) i.e. a

stochastic process. At training time, given the labelled training sequences,

the proposed method learns the function distribution D(f), and at test

time a function f ′ is sampled from the distribution D(f) by conditioning

it on a given test input sequence X ′N i.e. f ′ ∼ D(f |X ′N).

4.3.1 Affective Processes

Affective Processes (APs) build on the recently proposed Neural Processes

family [Garnelo et al., 2018b,a] to model exchangeable (i.e. permutation-

invariant) stochastic processes, using an encoder-decoder architecture with

a global latent variable. Neural Processes (NPs) are a class of deep neu-

ral latent variable models that combine the representation learning abilities

of deep neural networks with the abilities of Gaussian Processes to learn
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distribution of functions. Neural Processes use a (stochastic) global latent

variable, captured by an encoder from a context set of input/output ob-

servations, which is used by a decoder in an individual basis to estimate

the outputs for a set of target inputs. By conditioning the outputs on a

global latent variable drawn from a latent function, Neural Processes model

a particular family of Stochastic Processes: those whose finite marginals

are modelled by an exchangeable distribution (i.e. permutation-invariant1).

The learning of the Neural Process is inspired by that of Variational Auto

Encoders [Kingma and Welling, 2013], where an encoder is used to perform

amortized variational inference.

Let us assume we are given a training sequence composed of features

Xe
N and annotated labels YN . The Neural Processes paradigm randomly

chooses a subset of these points to act as context, that will be used to re-

construct the whole sequence labels ỸN . The goal is to maximise P (ỸN).

The NP encoder fenc maps each of the context points, composed of in-

put/output observations ({xec, yc}), into a latent representation rc. The

latent representations are then averaged yielding a global, fixed-dimension

representation rC of the context points2. Then, a small MLP transforms

the global latent representation into the mean µz and variance σz vectors of

a multivariate Gaussian distribution, from which the latent stochastic vari-

able can be sampled, i.e. Z ∼ N (µz, σz). Thanks to the reparametrization

trick [Kingma and Welling, 2013] learning the parameters of the encoder is

enabled through the typical backpropagation techniques. A sample latent

vector drawn from this distribution Z ∼ q(Z) is equivalent to a realisation

of the underlying Stochastic Process F , that maps each of the points xe

1It is out of the scope of this paper to show the formalism behind this notion, which
builds on De Finetti’s theorem [De Finetti, 1937]. Please refer to [Garnelo et al., 2018a]
for further details

2Any permutation-invariant operation can be used to aggregate the individual rep-
resentations
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in the sequence to their corresponding labels y. The mapping F is done

through the NP decoder, which is parameterised as a Neural Network

that in addition to the input features xe receives the sampled vector Z. As

pointed out in [Garnelo et al., 2018b], the randomness in F is given by the

latent variable Z3. Using this sampled latent vector Z as input, then the

NP decoder outputs the predictive distribution for the target labels.

Neural Processes to Affective Processes. The direct application of

NPs to temporal affect recognition would be constrained by the requirement

of ground truth labels for the context points at test time. To circumvent

the role of ground truth labels in the context inference, APs propose to

make use of ‘proxy labels’ {ŷi}Ni=1 produced by a deterministic regression

model. Though the proxy labels are noisy and erroneous, it is assumed

that they can still be informative about the underlying function space in

order to guide the latent variable inference process.

4.3.2 Building Blocks of Affective Processes

i. Feature and Proxy Label Extraction. Given an input sequence

of visual or audio frames {xi}Ni=1, a pre-trained frozen backbone is used

to extract per-frame feature vectors {xei}Ni=1 and their corresponding proxy

labels {ŷi}Ni=1 (noisy label predictions, see Fig. 4.2). The extracted feature

vectors are further transformed into a low-dimensional feature embedding

{xei}Ni=1 using a feature embedding net. The proxy labels are also mapped

to label embedding vectors {ŷei }Ni=1 using a label embedding net. Note

that the backbone model could be a static or temporal regression model

depending on the input modality; it is independently trained and during

training of the remaining AP modules it remains frozen.

3In technical terms, P (F ) would represent the pushforward measure of P (Z)
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ii. Encoding Stochastic Latent Variable. Given the target frames’ fea-

ture embeddings {xei}Ni=1 and their corresponding proxy label embeddings

{ŷei }Ni=1, first a set of context points {(xei , ŷei )}Ci=1 is randomly sampled. As

Fig. 4.2 shows, these context points are mapped to per-frame deterministic

context vectors {ri}Ni=1. Then a mean pooling operator is applied to the

per-frame context vectors to derive a global deterministic context vector r,

which is further mapped to the parameters (µz, σz) of a stochastic latent

distribution.

iii. Decoding Predictive Distributions of Output Labels. The

decoder of AP takes as input a latent vector Z sampled from the encoder

output distribution N (µz, σz), paired with feature embeddings of all frames

in the input sequence {xei}Ni=1 (target frames). As Fig. 4.2 illustrates, the

decoder outputs the predictive distributional parameters {(µyi , σ
y
i )}Ni=1 for

the output labels, by treating the target affect labels as random variables

with univariate normal distribution. During inference, for the practical

applications where only one prediction must be given, the predictive mean

is used as the output, whereas the variance is used to represent the latent

uncertainty on that estimation.

4.3.3 Training of Affective Processes

Loss Functions. Similar to VAEs [Kingma and Welling, 2013], existing

implementations of NPs are trained to minimise the Evidence Lower Bound

Objective (ELBO) function [Kingma and Welling, 2013],

LELBO = E(− log p(yi|xi, z)) +KL(qc||qt) (4.1)
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where p(yi|xt, z) is the likelihood of ground truth label yi with the AP out-

put predictive distribution N (µyi ,σ
y
i ), qc and qt are the AP encoder output

latent distributions N (µzc ,σ
z
c ), N (µzt ,σ

z
t ) for the context frames and target

frames respectively. However, when the basic ELBO function is used for

training APs — extension of NPs to large-scale noisy temporal regression

tasks such as dimensional affect recognition — this work identifies that

APs are vulnerable to two distribution collapse problems: encoder poste-

rior collapse and decoder predictive variance collapse.

Encoder Posterior Collapse. Posterior collapse is a commonly encoun-

tered problem in generative latent variable models training [Lucas et al.,

2019b,a], particularly when the training data contain high-dimensional

noisy inputs, like that of temporal affect recognition. This collapse refers to

a condition in which the decoder is encouraged to partially or completely

ignore the noisy latent variable Z from the encoder in the early stages

of model training, particularly when the decoder has high representation

capacity.

This work finds that APs are also vulnerable to the posterior collapse

problem—the decoder learning to give significantly less importance to the

latent variable compared to the feature embeddings during training. This

behaviour is expected given that the backbone features are already trained

on the task at hand whereas the stochastic latent variable Z is learned

from scratch, and it leads to an uninformative latent distribution. This

work uses a commonly applied technique, Beta scheduling [Fu et al., 2019],

in the conditional VAE literature to avoid the posterior collapse during

APs training. In beta scheduling [Fu et al., 2019], the KL divergence reg-

ularization term in the ELBO objective is multiplied with a variable β as

shown in Eq. 4.2. Here the value of beta is cyclically tuned in the range of

0 to 1 over the training iterations to improve the quality of learned latent
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variable distributions [Fu et al., 2019].

Decoder Predictive Variance Collapse. The AP decoder tends to

output smaller values for the variance σ of predictive distribution of output

labels, in order to suppress unstable gradients during training, similar to

the variance collapse problem reported in [Chang et al., 2020]. Due to this

variance collapse, the decoder output predictive distributions end up with

smaller variance values, degenerating the AP decoder to almost a deter-

ministic model. Note that this variance collapse degrades the quality of

latent variable distribution learned by the encoder. To address this prob-

lem, similar to the training of Variational Information Bottleneck [Chang

et al., 2020, Alemi et al., 2016], this work applies a weighted regularisation

term that forces the decoder output distribution to be closer to a normal

distribution N (0, 1). To achieve this, the model is trained to minimise the

KL divergence between the AP output distribution N (µyi ,σ
y
i ) and the nor-

mal distribution N (0, 1) in addition to the beta scheduled ELBO function.

Thus, the complete AP loss function is reformulated by adding the above

two regularization techniques, as follows:

LAP = E(− log p(yi|xt, z)) + β ∗KL(qc||qt)+

λ ∗KL(N (µyi , σ
y
i )||N (0, 1)),

(4.2)

where β is cyclically tuned in the range of [0,1], N (µyi ,σ
y
i ) is the decoder

output predictive distribution, λ is a hyper parameter, qc and qt are the en-

coder output latent distributions (N (µzc ,σ
z
c ) and N (µzt ,σ

z
t )) for the context

and target point sets respectively.
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4.3.4 Affective Processes for Audio-Visual Affect Fu-

sion

By leveraging the ability of APs to capture stochastic global context of a

temporal input, this chapter proposes a novel multimodal extension of APs

for audio-visual affect recognition. The key idea of the proposed approach

to audio-visual fusion is based on the intuition that global context fusion

could be more effective than instance-level feature fusion for affect recogni-

tion task. The reasoning behind this intuition is as follows: fundamentally,

affect information is expressed, perceived and processed at different frame

rates in the audio-visual channels; this chapter argues that standard in-

stance (feature) level fusion models are sub-optimal solutions due to the

intrinsic frame-level temporal misalignment between the affect information

in the audio-visual modalities. To address this problem, using APs, this

chapter proposes to fuse the stochastic global latent variables of the audio

and visual modalities.

Unlike the unimodal APs described earlier, audio-visual APs contains two

separate (modality-specific) stochastic context encoders for the audio and

visual inputs but a common predictive distribution decoder. First, the con-

text encoders of the visual and audio modalities infer the modality-specific

stochastic latent variable distributions qv and qa respectively. Then the

latent vectors Zv and Za from the distributions qv and qa are sampled and

concatenated into a multimodal latent vector Zva. The predictive distribu-

tion decoder receives the concatenated audio-visual features at frame level

Xva paired with the multimodal latent vector Zva as inputs. This chapter

uses an audio-visual backbone model based on simple feature fusion for

producing proxy labels for the audio-visual APs. To maximize the simi-

larity between the global context information captured from the audio and
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visual signals, additional regularisation terms are applied to the AP loss

function defined in Eq. 4.2. The final loss function used for training the

audio-visual APs is as follows:

LAV−AP = E(− log p(yi|xvat , zva)) + β ∗KL(qvc ||qvt )

+β ∗KL(qac ||qat ) + β ∗KL(qvc ||qac )+

β ∗KL(qvt ||qat ) + λKL(N (µyi , σ
y
i )||N (0, 1))

(4.3)

where qvc and qvt denote the visual latent distributions for the visual con-

text and target frames respectively, and qac and qat denote the audio latent

distributions for the audio context and target frames respectively. Addi-

tional regularisation terms KL(qvc ||qac ) and KL(qvt ||qat ) are for maximizing

the similarity between audio and visual latent distributions for their corre-

sponding context and target frames respectively.

4.4 Experiments

This section first describes the implementations of both unimodal and mul-

timodal Affective Processes, and then it discusses their training and optimi-

sation details. Appendix B describes (1). the datasets used for visual-only,

audio-only, and audio-visual affect recognition tasks, (2). the backbone

models, different temporal (GRUs and self-attention) and (3). some key

multimodal fusion baselines.
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Unimodal and Multimodal APs

As Fig. 4.2 shows, apart from the backbone, the key components of APs

are: (a). Stochastic Context Encoder and (b). Predictive Distribution De-

coder. The encoder is composed of two embedding nets (for features and

proxy labels) followed by a context aggregation step and a latent distri-

bution net. The decoder contains a predictive distribution net to output

predictive distributions of target labels. Architectural details of the encoder

and decoder modules of APs for visual, audio and audio-visual models are

explained below.

Visual AP network architecture is shown in Fig. B.1. This model uses two

2-layer fully connected (FC) networks with 256 hidden units as the feature

and label embedding nets in the encoder implementation. For context

aggregation, mean pooling is applied to the concatenated feature and label

embedding vectors to derive a deterministic context vector. This context

vector is then fed into the latent distribution net, a 2-layer FC network. In

the decoder, the predictive distribution net is implemented using a 3-layer

FC network.

Audio AP network is same as that of visual AP but with two major

differences (a). the mean pooling based context aggregation step in the

encoder is replaced with a 1-layer GRU block with 256 hidden units and

(b). a 3-layer GRU block with 256 hidden units followed by an FC output

layer is used as the predictive distribution net in the decoder. Note that

these two modifications are introduced to mitigate the effect of commonly

encountered temporal misalignment between the audio features and their

affect labels [Schmitt et al., 2019].

Audio-Visual AP network is similar to that of audio AP except that it
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has two stochastic encoders, one for visual and one for audio. For context

aggregation, encoders of both the modalities used two 1-layer GRUs with

256 hidden units. The predictive distribution net of the decoder is same

as that of audio AP but with 512 hidden units. Additionally, audio-visual

AP inference involves the multimodal fusion step. As a result, the decoder

receives as input an audio-visual latent vector which is prepared by con-

catenating the global latent vectors that are sampled from the visual and

audio context encoder output distributions individually.

4.4.1 Training of APs

Context Frame Selection. For training visual APs, the context frames

are sampled from a given input sequence using uniform random sampling,

in order to introduce variability into the stochastic latent distribution.

Whereas for audio AP and audio-visual AP models training, consecutive

frames are used for the context aggregation, but with the index of first

frame in that consecutive sequence randomly sampled. The latent vector

is randomly sampled from the context distribution during training phase,

but for evaluation, only the mean vector of latent variable distribution is

used as input to the decoder module.

The number of context frames (Nc) and number of target frames (Nt) are

randomised from iteration to iteration to further increase the variability

of temporal context in the training sequences, similar to [Le et al., 2018].

For training the visual APs, given that the sequence length is 70, Nt value

is varied in the range [30, 70], with the Nc value range set to [3, Nt].

Whereas in the case of audio APs and audio-visual APs training, which

use the sequence length of 200 frames, Nt and Nc values are varied in the

ranges [50, 200] and [10, Nt] respectively. During inference, the values of
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(Nc, Nt) are chosen as (30, 70) and (50, 200) for visual APs, and audio- as

well as audio-visual APs respectively.

At test time, this work experimented three types of context frame selec-

tion techniques [Sanchez et al., 2021]: (a). uniform random sampling (b).

frames with lowest context uncertainty and (c). frames with highest con-

text uncertainty. Here the context uncertainty refers to L2 norm the latent

distribution’s variance vector. For frame selection, this uncertainty is mea-

sured for each frame individually by passing its feature embedding and

proxy label through the encoder module. Note that all the reported re-

sults with APs in this chapter use the lowest context uncertainty for frame

selection.

Context Frame Labels. In APs, the labels of context frames play a

key role in inferring accurate latent variable distributions, as demonstrated

later in the ablation studies. During training, to introduce variability in

the temporal functions learned by the stochastic latent variable, it is found

that best results are achieved when the context frame labels are randomly

drawn from the mixture of proxy labels (from the backbone) and the ground

truth labels, with a probability of 0.5. During APs inference, only the proxy

labels are used as the context frame labels, unlike in NPs which require the

ground truth labels for context inference even at test time. Note that only

when APs are used in the Cooperative Machine Learning settings, ground

truth labels are utilised for the context frames sparsely at test time.

Optimisation Details. Unimodal and multimodal APs are trained

using Adam optimizer[Kingma and Ba, 2014] to minimise the regularised

ELBO loss functions in Eq. 4.2 and Eq. 4.3 respectively. The value of β is

cyclically updated in the range [0, 1], with the cycle length fixed to 1 epoch.

Learning rate and weight decay values are set to 1e-4 and 5e-4 respectively.
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Model Valid. Set Test Set

ResNet-50 Backbone (0.497, 0.440) (0.630, 0.505)

ResNet-50+BiGRU (0.570, 0.508) (0.550, 0.552)

ResNet-50+Self-Atten (0.558, 0.512) (0.591, 0.564)

ResNet-50+APs (0.577, 0.530) (0.728, 0.583)

EmoFAN Backbone (0.632, 0.609) (0.690, 0.550)

EmoFAN+BiGRU (0.687, 0.635) (0.715, 0.568)

EmoFAN+Self-Atten (0.664, 0.644) (0.706, 0.580)

EmoFAN+APs (0.710, 0.650) (0.739, 0.622)

[Mitenkova et al., 2019] - (0.439, 0.392)

[Toisoul et al., 2021] - (0.650, 0.610)

[Kossaifi et al., 2020] - (0.750, 0.520)

Table 4.1: Visual-only affect recognition results (valence CCC ↑, arousal
CCC ↑) on the SEWA test set

Here also, Cosine annealing in combination with the warm restarts is used

for tuning the initial learning rate.

4.5 Results and Analysis

This section first analyses the dimensional affect recognition results of uni-

modal (visual-only and audio-only) and multimodal APs, in comparison

with existing benchmarks and baselines on their respective datasets. Then

it proceeds to discuss the ablation experiments of APs that verify the con-

tribution of stochastic latent variable to the overall APs’ performance under

different configurations at test time.
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4.5.1 Performance of Unimodal and Multimodal APs

Visual-only Dimensional Affect Recognition. As shown in Table 4.1,

on SEWA, visual APs trained using both the backbones (ResNet-50 and

EmoFAN) outperformed their corresponding deterministic temporal mod-

els (BiGRUs and self-attention) by significant margins. Table 4.1 also com-

pares different models with existing benchmarks on SEWA. APs achieved

better performance than the prior state-of-the-art [Kossaifi et al., 2020] for

arousal, but slightly worse results on valence. The results of visual-only

models on the AVEC’19 CES dataset, as Table 4.2 shows, follow the sim-

ilar pattern–APs outperformed the deterministic regression baseline (the

backbone model) as well as the AVEC’19 CES challenge winners [Zhao

et al., 2019], particularly in the case of valence. However, in the case of

arousal, APs performed slightly worse compared to the challenge winners’

methodology [Zhao et al., 2019], which was based on an adversarial domain

adaptation technique to cope with the cross-cultural variations in the af-

fect data. In principle, APs can be complemented with such adaptation

techniques to further boost their performance.

Overall, the results of visual-only models evaluated on both SEWA and

AVEC’19 CES datasets validate the main hypothesis of APs that learning

a distribution of temporal functions generalises much better than the de-

terministic function learning, implicitly accounting for the label ambiguity

problem of affect annotations.

Audio-only Dimensional Affect Recognition. The results of audio-

only models presented in Table 4.2 show that APs have superior gener-

alisation performance, than the deterministic regression baseline (VGGish

+ BiGRU backbone) and the existing state-of-the-art model [Zhao et al.,

2019]. Unlike in the visual-only case, APs considerably improved the af-
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Model Valid. Set

A||V

Aud-only AVEC Winners [Zhao et al., 2019] (0.388, 0.518)

Aud-only Backbone (0.414, 0.546)

Aud AP (0.458, 0.592)

Vis-only AVEC Winners [Zhao et al., 2019] (0.579, 0.594)

Vis-only Backbone (0.527, 0.564)

Vis AP (0.589, 0.586)

A&V

AVEC Winners [Zhao et al., 2019] (0.614, 0.645)

Uniformly Weighted Feature Fusion† (0.597, 0.583)

Globally Weighted Feature Fusion† (0.598, 0.614)

Locally Weighted Feature Fusion† (0.583, 0.628)

Crossmodal Self-Atten Fusion [Tsai et al., 2019]† (0.602, 0.619)

COLD Fusion (0.611, 0.661)

AP-Uniformly Weighted Feature Fusion (0.637, 0.623)

AP-Global Context Fusion (0.648, 0.631)

AP-Global Context Fus.+KL(qv||qa) (0.662, 0.650)

Table 4.2: Audio-visual affect recognition results (valence CCC ↑, arousal
CCC ↑) on AVEC’19 CES Validation Set. † denotes in-house implementa-
tions of different fusion baselines (A||V denotes unimodal and A&V denotes
multimodal).

fect recognition performance in terms of both the dimensions (valence and

arousal). These results establish the modality-agnostic nature of APs’ effec-

tiveness in improving the emotion recognition models, through stochastic

process regression.

Audio-Visual Dimensional Affect Recognition. As Table 4.2 shows,

stochastic global context fusion based on audio-visual APs outperformed

the standard feature fusion (both uniformly and non-uniformly weighted)

baselines, crossmodal self-attention based fusion, and the COLD fusion

models in terms of mean CCC values. Performance difference between

APs based on the concatenated audio-visual features (uniformly weighted
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feature fusion) and APs based on the global context fusion, validates the

main hypothesis of multimodal APs that instance (feature) level fusion

is a sub-optimal solution compared to the global context fusion for mul-

timodal affect recognition. The results of global context fusion in APs

improved when the constraint of audio-visual context similarity maximiza-

tion (KL(qv||qa)) is applied (Eq. 4.3). This model achieved state-of-the-art

results on the AVEC’19 CES corpus by outperforming the challenge win-

ners [Zhao et al., 2019].

Similar to APs, crossmodal self-attention fusion [Tsai et al., 2019] captures

long-range temporal context and addresses temporal misalignment between

different modalities. However, as Table 4.2 shows, the performance of cross-

modal self-attention is found to be inferior to that of AV-APs, which could

be due to its fundamentally deterministic function learning nature, unlike

the stochastic context modelling feature of APs.

Qualitative Analysis. Fig. 4.3 illustrates modality-wise temporal latent

uncertainty patterns inferred using AV-APs on two AVEC’19 validation

set examples. In AV-APs, the uncertainty measure for a modality refers

to L2 norm of its corresponding latent distribution’s variance vector. This

analysis shows that when the valence is high, visual modality seems to have

lower latent uncertainty than the audio; in the arousal case this pattern

seems to be almost inverse. This observation is in line with the findings

reported in prior works [Ringeval et al., 2019] regarding the informativeness

of visual and audio modalities w.r.t valence and arousal inference.
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Figure 4.3: Latent uncertainty patterns in audio-visual affect (valence and
arousal) recognition using AV-APs on AVEC’19 validation set: For the vi-
sual and audio latent distributions inferred in AV-APs, this work computed
their variance vectors’ L2 norm values and consider them as modality-wise
uncertainty measures. Here, all the frames in an input sequence segment
(marked as “Sequence Duration” above) have a global uncertainty value
due to the underlying global latent distribution modelling in APs. In this
example, when the valence is high the visual modality has lower latent un-
certainty than the audio modality, and it is almost vice-versa in the case of
arousal – matching with similar observations mentioned in [Ringeval et al.,
2019].
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AP Objective Function (Valence, Arousal)

Unregularised ELBO (0.685, 0.626)

ELBO+Beta Scheduling (0.691, 0.638)

ELBO+KL Divergence Reg. (0.697, 0.644)

ELBO+Beta Sched.+KL Div. Reg. (0.710, 0.650)

Table 4.3: Visual AP results (CCC ↑) on SEWA validation set with different
loss functions (using EmoFAN backbone).

4.5.2 Ablation Studies on Affective Processes

To delineate the impact of some important design choices involved in APs’

training and inference, the following ablation experiments are conducted.

For this experimental analysis, the visual APs based on EmoFAN backbone

are evaluated under different training and inference conditions, on SEWA

validation dataset.

APs Loss Function. Table 4.3 compares the performance of visual AP

models trained with different loss functions. Unregularised ELBO loss func-

tion (Eq 4.2) clearly exhibited poorer performance than the remaining reg-

ularised AP loss functions. Improved generalisation performance with Beta

scheduling and KL divergence regularisation (Eq 4.2) validates the hypoth-

esis of this chapter that training of APs using unregularised training ob-

jective is vulnerable to encoder posterior collapse and decoder predictive

variance collapse problems.

Number of Context Points and Context Frame Sampling Meth-

ods. Fig. 4.5 presents visual APs performance for different number of con-

text points with the number of target points set to a fixed value (70), at test

time. Further, it compares the performance of three different context frame

sampling techniques: (a). uniform random sampling, (b). lowest encoder-

sigma criteria and (c). highest encoder-sigma criteria. The encoder-sigma
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Figure 4.4: Qualitative results of visual APs on SEWA validation set, with
different context frame selection methods applied.

here refers to L2 norm of the variance vector of AP encoder’s output latent

distribution. For each frame in the input sequence, the encoder-sigma value

is computed by passing that frame’s feature embedding and its proxy label

through the AP encoder. The results presented in Fig. 4.5 show that the

lowest encoder-sigma criteria achieved much better performance than the

uniform random sampling and highest encoder-sigma criteria. The quali-

tative results presented in Fig. 4.4 also indicate the same trends in both

valence and arousal cases. Note that the highest encoder-sigma criteria

results are worse than the backbone results when the number of context

points is small, which indicates that the AP encoder is capable of char-

acterising each input frame and its proxy label in terms of the temporal

context uncertainty associated with it.

Context based priors Vs Random-valued Priors. APs essentially

infer data-driven priors over the temporal functions through a stochastic

latent variable, from the context points. The impact of latent prior quality
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Figure 4.5: Visual AP results (CCC ↑) on SEWA validation set using dif-
ferent number of context points (Nc) (with the number of target points (Nt)
fixed to 70) with different context frame selection techniques: rand(Xc,Yc)
— uniform random sampling, low sigma(Xc,Yc) and high sigma(Xc,Yc)
— frame selection based on the lowest and highest AP encoder variance L2

norm values criteria respectively.

Zrand Z(Xc, Y
rand
c ) Z(Xc, Y

bb
c ) Z(Xc, Y

gt
c )

AP (0.29, 0.16) (0.54, 0.44) (0.71, 0.65) (0.92, 0.93)

Table 4.4: Visual AP results (valence CCC ↑, arousal CCC ↑) on SEWA
validation set using different priors during inference: 1.random-valued la-
tent vector Zrand, latent vector Z as a function input features Xc and 2.
random-valued context labels Y rand

c , 3. proxy context labels Y bb
c , and 4.

ground truth context labels Y gt
c .
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on APs performance is investigated in Table 4.4. By setting the number of

context and target points to 30 and 70 respectively, visual APs are evalu-

ated using different priors over latent functions at test time: 1. a random-

valued latent vector Zrand, and the latent vector as a function input fea-

tures Xc and 2. proxy context labels Y bb
c —Z(Xc, Y

rand
c ), 3. random-valued

context labels Y rand
c —Z(Xc, Y

bb
c ), and 4. ground truth context labels Y gt

c —

Z(Xc, Y
gt
c ). Here, a ‘random-valued’ vector refers to a vector drawn from

a multi-variate normal distribution with zero mean and unit variance. As

Table 4.4 shows, APs performance heavily relies on the quality of stochas-

tic latent variable, and the highest quality is obtained when ground truth

labels are used as the context frame labels.

4.6 Application: Cooperative Machine Learn-

ing for Label-Efficient Affect Recogni-

tion

Towards addressing the label scarcity problem of affect recognition tasks,

this chapter proposes a novel use case of Affective Processes to propagate

sparse human supervision to unlabelled data points, based on the following

observation: APs can easily tune their temporal regression function at test

time without requiring model retraining or fine tuning. Note that in APs

the function distribution inferred in the form of stochastic latent variable is

a function of the context frame features (Xc) and their labels (Yc). Thus, in

the form of context frame labels (Yc) APs can easily accommodate human

supervision at test time. The more accurate the context frame labels are,

the closer the inferred function distribution to the true underlying function.

These properties enable APs to improve the accuracy of their predictions by
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using very little human supervision, most importantly without requiring the

costly model retraining step as is the case with the standard deterministic

models. Building on these unique properties of APs, this chapter proposes

to use them as Cooperative Machine Learning models for the dimensional

affect recognition task.

Cooperative Machine Learning (CML) aims at effectively combining sparse

human supervision with an already trained model’s predictions to annotate

unlabelled data. CML is applied to affect recognition tasks in [Wagner

et al., 2018] in which active learning is used to identify the frames to be

passed to human annotators and a costly model retraining step to update

the pretrained model weights. The method proposed in this work simplifies

this approach to CML by circumventing the active learning and model

retraining steps, by leveraging the flexibility of APs.

To use APs as CML models, the method here uses ground truth labels

in the place of proxy labels from the backbone, as the context frames la-

bels (Yc), during both training and inference. However, at inference time,

APs need a very few context frames to infer the function distribution that

produces accurate predictions for the target labels as showed later in the

experimental results. Thus, APs as CML models require very sparse hu-

man supervision for randomly sampled context frames at test time, and

they circumvent the active learning and model retraining steps, but still

achieve superior performance on the unlabelled frames.

Fig. 4.6 illustrates the performance of visual APs on SEWA validation set,

as a Cooperative Machine Learning model. Here the goal is to verify how

well APs can utilise sparse human supervision in the form of ground truth

labels for the context frames at test time. It is import to note that here

only one randomly sampled context frame per input sequence is used and
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Figure 4.6: Visual AP results (CCC ↑) on SEWA validation set with ground
truth labels used as context frame labels, with only one context frame
(Nc) for different number of target frames (points) (Nt), evaluated over 20
runs with 20 different random seeds (the same set of random seeds is used
for all the evaluations with different Nt values).

the length of input sequences (number of target points) is varied in the

range of 100 to 1000. It shows the mean and variance values of visual

APs collected over 20 different runs with each run using a different random

seed. When the input sequence length is 100, APs achieved the best per-

formance overall (0.915 mean valence CCC and 0.932 mean arousal CCC)

with just one randomly sampled frame manually annotated. Even when the

input sequence length is increased to 1000, APs still achieved reasonably

good performance, 0.825 mean CCC for valence and 0.844 mean CCC for

arousal, with just one frame out of 1000 provided with human supervision.

These results show the potential of APs as Cooperative Machine Learning

models that do not need active learning and costly model retraining steps,

to propagate sparse human supervision to unlabelled data points.
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4.7 Conclusion

This chapter presented Affective Processes, a novel stochastic temporal

context modelling framework designed for affect recognition tasks. The ex-

perimental results showed that Affective Processes are capable of address-

ing some fundamental challenges encountered in affect recognition using

deterministic temporal function learning, which fails to: a. account for the

inherently stochastic nature of affect expression and perception processes,

b. cope with modality-specific stochasticity when integrating affect infor-

mation from multiple modalities, and c. make the manual affect annotation

process less laborious by effectively leveraging sparse human supervision.

The solutions proposed in this chapter to the aforementioned challenges

using Affective Processes demonstrated consistent performance gains and

promising results on in-the-wild challenging datasets of different unimodal

and multimodal affect recognition.

In summary, towards the objective of overcoming deterministic function

learning models’ limitations, the main technical contributions of this chap-

ter are three fold. 1. Firstly, it is identified that the training of Neu-

ral Processes is prone to distributional collapse problems, which are ad-

dressed by including additional regularisation functions in the training ob-

jective of Affective Processes. 2. Then, with some architectural changes,

the modality-agnostic nature of Affective Processes is showed by applying

them to both audio and audio-visual affect recognition tasks. By build-

ing on the ability of Affective Processes to capture the global stochastic

temporal context, this chapter proposed a novel audio-visual fusion tech-

nique for multimodal affect recognition. Most importantly, compared to

the COLD fusion technique proposed in Chapter 3, the global context fu-

sion technique implemented in the audio-visual APs has shown superior
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generalisation performance. 3. Finally, this chapter demonstrated a novel

application of Affective Processes to the label propagation task in Coop-

erative Learning models, with the potential to significantly speed up the

laborious task of affect label annotation, with minimal human intervention.

Thus, the solutions proposed in this chapter attempted to address the two

fundamental affect recognition challenges that this thesis is concerned with:

label ambiguity and label scarcity.
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Chapter 5

A Holistic Uncertainty Model

of Temporal Affect and Its

Application to Personality

Recognition

Information is the resolution of

uncertainty

Claude Shannon

Chapter Summary. Temporal uncertainty modelling methods such as

the ones proposed in Chapter 3 and Chapter 4, are based on introducing

non-deterministic function learning properties into a specific intermediate

layer or variable of the temporal networks. In the COLD approach proposed

in Chapter 3, this intermediate layer is chosen as the final hidden state

vector of an RNN model. Similarly in the Affective Processes introduced

in Chapter 4, the output of the encoder module, referred to as the global
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Definition: Captures function approximation error i. e. 
our ignorance about true underlying function of facial emotion expression data 

f : X  Y

Sources

Quantification 
Methods

Inaccurate assumptions about the required 
modelling complexity

Train-Test Data distribution P(X, Y) 
mismatches

Monte Carlo Dropout

Bayesian Neural Networks

Stochastic Process Modelling (e.g.
Gaussian Processes, Neural Processes, etc)

Definition: Captures statistical uncertainty i. e. intrinsic noise in the observations or 
measurements of the underlying emotion states expressed through faces

Sources

Quantification 
Methods

Homoscedastic: do not vary with target emotions 
& subject identities e. g. face image quality, 

external or pose induced occlusions, etc.

Heteroscedastic: vary with target emotions & 
subject identities e. g.  expressivity levels, 

perceptual biases, etc.

Modelling rater-specific perceptual uncertainty

Learning predictive distributions over the outputs

Figure 5.1: Modelling holistic uncertainty of dimensional emotion recogni-
tion from face images, using Epistemic and Aleatoric categorisation (X –
a face image sequence, Y – its corresponding ground truth emotion label
sequence, f – true underlying mapping function between X and Y , and
P (X, Y ) – joint probability distribution of X and Y )

stochastic latent variable, is used as a proxy for capturing the temporal

uncertainty. While both these approaches demonstrated good performance

gains in affect recognition in both unimodal and multimodal settings, they

are not designed to capture the temporal uncertainty in a holistic manner.

Here, the concept of ‘holistic temporal uncertainty modelling’ refers to

learning the uncertainty information based on all the network parameters in

a temporal model, as well as the uncertainty induced by input data into the

model. This chapter introduces an alternative temporal uncertainty model

that aims to holistically capture the uncertainty of temporal functions,

without confining the uncertainty modelling to any particular intermediate

latent layer or latent variable of a temporal model.

This chapter aims to learn uncertainty modelling for equipping video-based
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expressive behaviour recognition models with the abilities to (a). quan-

tify the predictive uncertainty estimates as completely as possible and (b).

propagate those estimates to the benefit of downstream behavioural analy-

sis tasks. Towards this objective, this chapter first quantifies uncertainties

in dimensional emotion recognition from face videos, by adopting the frame-

work of epistemic (model) and aleatoric (data) uncertainty categorisation.

Then for evaluating the practical utility of uncertainty-aware emotion pre-

dictions, we propose to introduce emotion uncertainty estimates in learning

an important downstream task, apparent personality recognition.

5.1 Introduction

Creation of large-scale emotion labelled datasets [Kossaifi et al., 2019, Kol-

lias and Zafeiriou, 2018a, Kollias et al., 2020] and rapid progress in Deep

Neural Networks for processing face data [Toisoul et al., 2021, Kossaifi et al.,

2020, Kollias et al., 2019] in recent years, enabled facial emotion recogni-

tion models to achieve impressive generalisation performance. However,

to effectively utilise these advancements in emotion recognition to bene-

fit downstream behavioural analysis tasks, it is important to know how

confident the models are about their predicted emotions. Hence, it is im-

portant to equip the facial emotion recognition models with the ability

to quantify the uncertainties associated with their output point estimates.

This chapter asks two important questions: (1). how to holistically quan-

tify uncertainties in facial emotion recognition? and (2). how to evaluate

the quantified uncertainties by introducing them in learning a downstream

affective computing task?

Here, the objective is to quantify uncertainties in time- and value-continuous
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dimensional emotion (valence and arousal) recognition from face videos.

Typical sources of uncertainty in machine learning models [Hüllermeier

and Waegeman, 2021] include data distribution mismatches from training

to deployment, approximation errors in mapping functions etc. In addition

to such general sources, a wide range of ambiguous elements are involved

in learning emotion recognition models: subjects’ emotional expressiveness

levels, their personality type, the nature of emotion inducing stimuli, hu-

man annotators’ perceptual biases due to socio-cultural differences [Kos-

saifi et al., 2019, Han et al., 2017, 2021], etc. Therefore, the proposed

method argues that in the case of emotion recognition it is impractical to

identify all possible uncertainty sources and quantify them individually,

due to the intrinsic subjective nature of apparent emotions. To cope with

this problem, this chapter adopts a holistic uncertainty modelling frame-

work [Hüllermeier and Waegeman, 2021, Kendall and Gal, 2017a] with two

broad categories: epistemic (model) uncertainty and aleatoric (data) uncer-

tainty, as illustrated in Fig. 5.1. Epistemic uncertainty captures function

modelling errors which are due to our ignorance of the true underlying

mapping function between facial images and their emotion labels, and it is

reducible with more training data. Whereas aleatoric uncertainty is irre-

ducible with more data, as it captures the statistical noise inherent to the

labelled data collection, for instance, ambiguities in facial emotion percep-

tion by human raters [Ghandeharioun et al., 2019].

The method introduced in this chapter quantifies epistemic and aleatoric

uncertainties in canonical CNN+GRU models trained for video-based emo-

tion recognition, using Monte Carlo dropout [Gal and Ghahramani, 2016]

and predictive distribution modelling [Kendall and Gal, 2017a] techniques

respectively. Having quantified the emotion recognition uncertainties, the

focus then shifted to the second question: how to evaluate the usefulness
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of predicted uncertainty estimates of emotions? To this end, this chapter

proposes an evaluation protocol based on how well the uncertainty esti-

mates represent the reliability of predicted emotions in learning a down-

stream task that heavily relies on emotion information [Zhang et al., 2019].

Thus, the practical utility of emotion predictions’ uncertainty estimates

is evaluated by using them as input features in an important video-based

behavioural analysis task, apparent personality traits estimation or person-

ality recognition from face videos.

For estimating the personality traits from a face video, this chapter pro-

poses to use a conditional latent variable model (CLVM) that builds on

a recently proposed global context aggregation method based on neural

latent variable models [Garnelo et al., 2018a,b, Sanchez et al., 2021, Tel-

lamekala et al., 2021], to derive personality-related information from a se-

quence of image embeddings and their corresponding dimensional emotions

(valence and arousal). Here, it is assumed that apparent personality traits

inferred from a face video can be viewed as temporal aggregate functions

of per-frame emotional expressions, motivated by the emotion-to-apparent-

personality relationship discussed in [Zhang et al., 2019]. Based on this

assumption, this chapter hypothesises that it is more effective to learn a

global latent variable that summarises the personality information from

face image features and dimensional emotion predictions. Based on this

premise, the quality of uncertainty-aware dimensional emotion predictions

is assessed by training and evaluating different CLVMs with and without

uncertainty estimates as inputs.

This chapter presents the results of extensive experiments on two large-scale

in-the-wild databases; SEWA [Kossaifi et al., 2019] for dimensional emo-

tion recognition and ChaLearn [Ponce-López et al., 2016, Escalera et al.,

2017] for personality recognition. First, SEWA dataset is used for training
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uncertainty-unaware and uncertainty-aware (both epistemic and aleatoric)

emotion recognition models. Then on the ChaLearn corpus, the quality of

emotion predictions and their uncertainty estimates is evaluated in terms of

their impact on personality recognition performance. The proposed CLVM,

even without using uncertainty estimates, achieved state-of-the-art results,

outperforming existing personality recognition methods. When emotion

uncertainty estimates are included as additional inputs, personality recog-

nition performance significantly improved further, compared to the models

based on point estimates of emotion. Particularly, fusing epistemic and

aleatoric uncertainties achieved best results with a substantial performance

improvement, ∼42% better performance (in terms of mean Pearson’s cor-

relation coefficient) than the existing state-of-the-art method [Song et al.,

2021] on ChaLearn.

In summary, the contributions made in this chapter are:

• The proposed method quantifies predictive uncertainties in dimen-

sional emotion recognition from face videos, using epistemic and aleatoric

uncertainty categorisation.

• An evaluation protocol is introduced for assessing the quantified un-

certainties of emotions by propagating them to a downstream be-

havioural analysis task, apparent personality traits estimation from

face videos.

• In personality recognition, to leverage the already predicted uncertainty-

aware dimensional emotions as additional inputs, this chapter pro-

poses to use a global latent variable model that builds on [Garnelo

et al., 2018a].

• The proposed method achieves new state-of-the-art results on in-the-
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wild personality traits estimation, outperforming the existing meth-

ods by significant margins.

5.2 Related Work

This section presents a brief survey of existing works on uncertainty mod-

elling in various Computer Vision and Affective Computing tasks. For a

general introduction to uncertainty modelling, the reader can refer to Eyke

et al. [Hüllermeier and Waegeman, 2021] which offers a thorough treat-

ment of techniques for measuring and evaluating the uncertainties. For

a detailed account of ambiguities or uncertainty sources that are inherent

to models of emotion representation models (discrete, continuous, ordinal,

etc), which are not covered in this chapter, the reader is recommended to

refer to [Sethu et al., 2019]. As the main focus here is on holistic uncertainty

modelling in affect recognition, this section does not discuss the literature

of apparent personality recognition from visual information in detail; refer

to [Escalante et al., 2020] for the most recent comprehensive review on this

topic.

5.2.1 Epistemic and Aleatoric Uncertainty Modelling

in Computer Vision

As Deep Neural Networks have been pushing prediction accuracies towards

near-perfect levels in Computer Vision, robustness and reliability aspects

of these models started receiving wide spread attention recently. Most no-

tably, Kendall et al. [Kendall and Gal, 2017a] systematically deconstruct

the holistic uncertainty in Computer Vision tasks by adopting epistemic
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and aleatoric uncertainty categorisation framework, which inspired the

work presented in this chapter. Similar to [Kendall and Gal, 2017a], several

other works focused on investigating various task-specific sources of uncer-

tainties in some general tasks like image classification [Peterson et al., 2019,

Khan et al., 2019], object detection [He et al., 2019], multi-view represen-

tation learning [Geng et al., 2021], semantic segmentation [Hu et al., 2020],

depth estimation [Eldesokey et al., 2020] etc.

Task-Specific Uncertainty. In image classification, Peterson et al. [Pe-

terson et al., 2019] utilise human perceptual ambiguities in the form of label

distributions to model the uncertainty. Sample and class uncertainties in

image classification tasks are modelled to quantify the sample-rarity and

class imbalance properties in [Khan et al., 2019]. To capture the label un-

certainty in object detection tasks, uncertainty of bounding box regression

is modelled in [He et al., 2019] by factoring in the ambiguities involved in

bounding box annotation process. Dynamic uncertainty aware networks are

proposed in [Geng et al., 2021] for multi-view image representation learn-

ing for uncertainty-aware fusion of information present in different views.

A novel Bayesian uncertainty estimation method proposed in [Hu et al.,

2020] is applied to semantic segmentation task, which models the network

outputs with Gaussian and Laplacian distributions. In [Eldesokey et al.,

2020] a framework is proposed to learn the uncertainties present in depth

completion tasks. By combining the CNN models with Gaussian Processes

(GPs) [Rasmussen, 2003], scalable models for aleatoric uncertainty quan-

tification are explored in [Carvalho et al., 2020].
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5.2.2 Epistemic and Aleatoric Uncertainty Modelling

in Affective Computing

Data Uncertainty. [Kim and Kim, 2018] use a multi-label representation

learning of discrete emotions from audio-visual data, to model human like

labelling errors due to perceptual biases. Joint learning of hard and soft

discrete emotion labels is used in [Chou and Lee, 2019] to capture the

label uncertainty and rater-specific biases explicitly. Dang et al. [Dang

et al., 2018] model continuous-time emotion uncertainty from speech by

combining multi-rater Gaussian mixture regression with Kalman filters that

capture temporal dependencies in the annotation signals. Similarly, inter-

rater variability or disagreement scores of the dimensional emotions are

used to define explicit targets for perceptual uncertainty modelling in [Han

et al., 2017, 2021].

Model Uncertainty. Bayesian Neural Networks [Ebrahimi et al., 2019,

Sun et al., 2017, Kwon et al., 2020] are used in [Rizos and Schuller, 2019,

2020] to quantify sample informativeness in dimensional emotion recogni-

tion model training, so that it is possible to regularise the impact of less in-

formative samples on the model predictions. [Sridhar and Busso, 2020] em-

ploy a teacher-student ensemble model for uncertainty-aware speech emo-

tion recognition, in which the teacher model passes a probabilistic embed-

ding (generated using Monte Carlo dropout [Gal and Ghahramani, 2016])

as a guiding signal for the ensemble of student models. In [She et al.,

2021], ambiguities in the facial expression recognition task are modelled

using (a). latent distribution mining and (b). pairwise uncertainty estima-

tion. The former technique derives a latent distribution in the label space

using multi-branch learning and the latter exploits the semantic feature

similarity between pairs of instances.
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In discrete facial expression recognition, Ghandeharioun et al. [Ghande-

harioun et al., 2019] model both the data and model uncertainties in facial

expressions in order to (a). use the predicted uncertainties as proxies for

model calibration and (b). disentangle the biases of training data distri-

bution and label annotation. These uncertainties are quantified for study-

ing the model calibration and interpretability aspects of facial expression

recognition. An interesting observation reported in [Ghandeharioun et al.,

2019] is that inter-rater disagreement scores of discrete facial expressions

are highly correlated with the data uncertainties, with a correlation coef-

ficient of 0.3. This result is one of the motivations for this work to model

aleatoric uncertainty in continuous dimensional emotion recognition which

may also implicitly capture the dimensional emotion labelling uncertainty.

Further, it is worth noting that the other uncertainty modelling methods

introduced in this thesis, COLD and APs, completely ignore the aleatoric

component of the temporal uncertainty.

In contrast to the aforementioned efforts, the work presented in this chapter

provides a more holistic perspective of uncertainties in video-based facial

affect recognition, by quantifying and fusing the epistemic and aleatoric

components of valence and arousal. Furthermore, an alternative is pro-

posed to the existing evaluation protocols for uncertainty estimates (im-

proved performance on the emotion prediction itself or model calibration

or interpretability etc) by showing how to effectively propagate the emotion

predictions to downstream behavioural analysis tasks.
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5.3 Method

In video-based dimensional emotion recognition, given a sequence of face

images X : [x1, x2, ..., xT ] ∈ X as input, the objective is to predict a se-

quence of continuous emotion labels Y : [y1, y2, ..., yT ] ∈ Y where yt is

composed of two dimensions: valence (degree of pleasantness) and arousal

(degree of activeness). Considering that the underlying mapping function

f ∗ : X −→ Y , and its complexity γ(f ∗) are not known, assuming some

modelling complexity γ(f o), the aim is to learn an approximate function

f o from the given training data {X i, Y i}Ni=1.

General Sources of Uncertainty. Two primary sources of uncertainty

in data-driven model learning are based on: how well the training data

{X i, Y i}Ni=1 represents the entire sample space (X ,Y) and how close the

approximated function f o is to the true underlying function f ∗. The

former uncertainty source impacts the model’s performance when out-of-

distribution samples are encountered at test time, whereas the latter un-

certainty source is due to the gap between assumed function complexity

γ(f o) and true underlying function complexity γ(f ∗).

This chapter argues that it is not practical to identify and explicitly quan-

tify all possible sources of uncertainty involved in facial emotion recognition

model training. As an alternative, it adopts a holistic uncertainty modelling

approach in which two broad categories are defined: epistemic (model)

uncertainty and aleatoric (data) uncertainty [Hüllermeier and Waegeman,

2021, Kendall and Gal, 2017a,b]. Fig. 5.1 shows a detailed decomposi-

tion of the epistemic and aleatoric uncertainties specific to facial emotion

recognition.
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Figure 5.2: CNN+GRU baseline: Dimensional affect recognition

5.3.1 Epistemic and Aleatoric Categorisation of Un-

certainties in Dimensional Emotion Recognition

Epistemic uncertainty entails the uncertainties that stem from our as-

sumptions about the underlying function complexity, and data-distribution

mismatches from train time to test time, same as the aforementioned gen-

eral sources of uncertainty. By providing more training data, epistemic

uncertainty can be reduced to null, at least in theory. However, in practice,

given the high degree of variability in in-the-wild facial emotion data, it may

not be possible to fully avoid the data-distribution mismatches and accu-

rately capture the true underlying mapping function. To minimise the func-

tion approximation error and quantify epistemic uncertainty, rather than

learning a single mapping functions, an ensemble of functions (e.g. [Lak-

shminarayanan et al., 2017]) or a distribution over functions (e.g. [Mitros

and Mac Namee, 2019]) can be learned from the training data.

Monte Carlo (MC) Dropout [Gal and Ghahramani, 2016], or stochas-

tic forward passes, is one of the simple yet effective techniques to model

the epistemic uncertainty in large-scale DNNs [Kendall and Gal, 2017a]. It

performs dropout based variational inference by leveraging the idea that

using dropout layers in a DNN is equivalent to learning an ensemble of

models. Thus, it performs dropout operations at test time as well in order

to draw multiple predictions for a single input. The reader is recommended

to refer to [Gal and Ghahramani, 2015] for formal details of dropout vari-
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ational inference. Other approaches to epistemic uncertainty modelling in-

clude Bayesian Neural Networks (BNNs) [Ebrahimi et al., 2019, Sun et al.,

2017, Kwon et al., 2020] that learn distributions over weights (function pa-

rameters) explicitly, and Gaussian Processes (GPs) [Rasmussen, 2003] that

instead learn distributions over the function space directly.

The proposed method chooses MC dropout method [Gal and Ghahramani,

2016] to quantify epistemic uncertainties of a dimensional emotion recogni-

tion baseline model, a CNN (feature extraction) + GRU (temporal regres-

sion) network, as Fig. 5.3 shows. Running multiple forward passes through

the entire CNN+GRU network during inference phase is computationally

intensive, particularly for video inputs, so the implementation used in this

chapter chooses to use dropout layers in the temporal regression model

alone for epistemic uncertainty modelling. Thus, the computationally ex-

pensive feature extraction step is run only once, whereas the inexpensive

temporal regression step is run multiple times at test time with dropout

configurations varying from run to run.

Aleatoric uncertainty captures statistical noisy factors inherently present

in the labelled data generation processes (e.g. ambiguities in the emotion

expression and perception [Sethu et al., 2019]). This chapter argues that

intrinsically subjective nature of emotion recognition task significantly con-

tributes to the aleatoric component of the total uncertainty [Ghandehar-

ioun et al., 2019], unlike in other Computer Vision tasks such as image

classification and object detection that mostly deal with objective labels.

Aleatoric uncertainties can be further categorised into homoscedastic and

heteroscedastic sources (see Fig. 5.1). The former category contains uncer-

tainties due to factors like image quality, occlusions induced by head pose

variations, etc, that are invariant to the underlying emotion information.

Heteroscedastic sources entail the ambiguous factors that vary for different
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Figure 5.3: Epistemic uncertainty modelling of dimensional emotion recog-
nition using Monte Carlo dropout [Gal and Ghahramani, 2016] inference
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Figure 5.4: Aleatoric uncertainty modelling of dimensional emotion recog-
nition using predictive distribution learning [Kendall and Gal, 2017a]

emotions, for instance personality types and socio-cultural backgrounds of

different groups of subjects and raters, etc. This chapter focuses on cap-

turing the heteroscedastic component of emotion aleatoric uncertainty.

Predictive Distribution Modelling [Kendall and Gal, 2017a] A

prominent approach to quantify aleatoric uncertainty, in particular its het-

eroscedastic component, is based on training models that directly predict

the distribution parameters (mean and variance) of target labels (valence

and arousal), rather than predicting the point estimates. Another poten-

tial approach to estimate one specific component of aleatoric uncertainty

could be based on perceptual uncertainty modelling using inter-rater dis-

agreement labels [Han et al., 2017, 2021]. However, such methods need

additional target labels and the quality of their uncertainty estimates re-

lies heavily on the size and composition of the pool of human raters.

Note that training the predictive distribution models does not necessarily
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Figure 5.5: CNN+GRU baseline: Personality traits estimation

require the true distributions of ground truth labels as targets. As demon-

strated in [Kendall and Gal, 2017a], negative log likelihood loss (Eq. 5.1)

can be used to train the predictive distribution models. Here, as Fig. 5.4

shows, point estimates of the ground truth valence and arousal labels are

used to train an emotion recognition model that can predict the parame-

terised distributions.

LossAU = −log(p(V ∗|N (µV , σV )))− log(p(A∗|N (µA, σA))) (5.1)

where V ∗ and A∗ denote the ground truth labels (point values) of valence

and arousal respectively, and N (µV , σV ) and N (µA, σA) are the predictive

distributions of valence and arousal respectively. It is worth noting that

this approach to quantify the aleatoric uncertainty does not involve drawing

multiple predictions at test time, unlike in the MC dropout method used

for epistemic uncertainty modeling.

5.3.2 Evaluating Uncertainty-Aware Emotion Predic-

tions

Since the ground truth emotion labels’ true distributions are not known,

it is not possible to directly assess the quality of emotion uncertainties.

Here an evaluation protocol is proposed for predictive uncertainties based
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Figure 5.6: CLVM: PT |X, (V A): Uncertainty-unaware CLVM for person-
ality recognition using point estimates of predicted valence and arousal as
inputs (ENC – encoder, DEC – decoder)

on the premise that the notion of modelling uncertainty in the predictions

essentially refers to measuring the reliability of those predictions. By using

uncertainty-aware predictions as inputs to a downstream task, this method

can indirectly measure the quality of uncertainties based on how positively

or negatively they impact the downstream task performance. Thus, this

chapter evaluates the emotion prediction uncertainties by using them as

input features in an important downstream behavioural analysis task, ap-

parent personality traits estimation or simply personality recognition from

face videos.

Apparent Personality Recognition refers to predicting continuous val-

ued scores of Big Five (also known as Five Factor Model) personality traits:

Openness, Conscientiousness, Extroversion, Agreeableness, and Neuroti-

cism (OCEAN), from visual information [Escalante et al., 2020]. Un-

like the dimensional emotions that are local (per-frame) behavioural at-

tributes, video-based personality traits are typically global (per-sequence)

behavioural constructs that are sequential cumulative functions of local
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Figure 5.7: CLVM-A: PT |X, (V AEU+AU
µ , V AEU+AU

σ ): Uncertainty-aware
CLVM for personality recognition using distributions of predicted valence
and arousal as inputs (ENC – encoder, DEC – decoder)

emotional behaviour. As Fig. 5.5 shows, given a face video input, a person-

ality recognition model estimates sequence-level predictions of the OCEAN

traits.

As shown in prior works [Zhang et al., 2019], the performance of a person-

ality recognition model heavily relies on how effectively it can aggregate lo-

cal (per-frame) emotional expressive behavioural (e.g. valence and arousal)

and map it to the personality traits. Hence, here the evaluation protocol of

emotion uncertainty estimates is based on measuring the performance dif-

ference between personality recognition models that are trained with and

without uncertainty estimates (epistemic-only, aleatoric-only, epistemic +

aleatoric) of per-frame valence and arousal.

Conditional Latent Variable Models (CLVM) for Apparent Per-

sonality Traits Estimation

To utilise the already predicted dimensional emotions (valence and arousal)

and their uncertainty estimates as inputs to a personality recognition model,
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in addition to per-frame face embeddings provided by a CNN model, this

chapter proposes a conditional latent variable model (CLVM). The design

of CLVM is based on the premise that personality traits in a video are

global behavioural primitives that are functions of local apparent emotions

expressed in each frame. This chapter hypothesises that canonical sequence

learning models (RNNs) are less effective in aggregating the personality-

related global context spread over a typically long-term temporal scale.

Inspired by different global context aggregation schemes proposed in [Gar-

nelo et al., 2018a,b, Sanchez et al., 2021, Tellamekala et al., 2021], a CLVM

is designed here not only to effectively aggregate the global context of

personality-relevant information, but also to combine the uncertainty-aware

emotion predictions with their corresponding facial embeddings in a prin-

cipled approach.

Building Blocks of CLVM. As shown in Fig. 5.6 and Fig. 5.7, the pro-

posed CLVM architecture shares the design principles originally introduced

in Conditional Neural Processes (CNP) [Garnelo et al., 2018a]. CNP is an

encoder-decoder composition in which the encoder (ENC) module infers a

global latent variable based on temporal context aggregation, and the de-

coder (DEC) module is conditioned on that global latent variable to predict

the target labels. Here, the latent variable is expected to inform the de-

coder about global temporal context, which is learned as a function of both

feature space (X) and label space (Y ) of a subset of frames in the input se-

quence. Wheras in the proposed CLVM, the encoder-decoder combination

summarises the whole sequence of input features and emotion labels (image

embeddings Xi concatenated with per-frame emotion predictions Ei) into a

global latent variable which is then used to estimate the personality traits,

(Xi, Ei)
N
i=1 −→ OCEAN . Unlike in CNP [Garnelo et al., 2018a], here

the encoder and decoder modules are implemented using GRUs, following

134



5.3. METHOD

[Tellamekala et al., 2021], where the encoder outputs a global latent vector

which the decoder uses, along with image embeddings Xi, to predict the

distributions (mean and variance values) of personality traits. Similar to

the aleatoric models, CLVMs are trained using the negative log likelihood

loss (Eq. 5.1). More details of CLVM implementations can be found in Sec-

tion. 5.4.2. To measure the quality of emotion uncertainties, the proposed

method trains and evaluates both uncertainty-unaware (point estimates of

emotion as inputs, as Fig. 5.6 shows) and uncertainty-aware (emotion dis-

tributions as inputs, as Fig. 5.7 shows) CLVMs for personality recognition.

Fusion of epistemic and aleatoric uncertainties

To introduce the predicted emotions and their uncertainties into the learn-

ing of personality recognition task, the valence and arousal distributions

(their mean and variance vectors) are fed to the encoder module of CLVM

(see Fig. 5.7). In the cases of epistemic-only and aleatoric-only, unimodal

distributions parameters of the valence and arousal [µv, σv, µa, σa] are passed

as input features, along with per-frame image embeddings X provided by

a CNN model. To inform the personality recognition model about the

total uncertainty of predicted emotions, the epistemic and aleatoric distri-

butions of valence and arousal are fused. To this end, the following two

simple fusion techniques are considered:

Gaussian Mixture Model (GMM) Fusion assumes that the total un-

certainty is a multimodal distribution composed of epistemic and aleatoric

modes. With the mixture coefficients set to 1.0, this fusion leads to a a

simple concatenation of the epistemic (EU) and aleatoric (AU) distribution
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parameters separately for valence and arousal.

µv = [µEUv , µAUv ], σv = [σEUv , σAUv ] (5.2)

µa = [µEUa , µAUa ], σa = [σEUa , σAUa ] (5.3)

Sum Fusion method directly adds the parameters of both the distribu-

tions, assuming that the epistemic and aletoric components are two inde-

pendent random variables carrying complementary information about the

total uncertainty,

µv = µEUv + µAUv , σv = σEUv + σAUv (5.4)

µa = µEUa + µAUa , σa = σEUa + σAUa (5.5)

5.4 Experiments

Appendix C describes the datasets, evaluation metrics, and backbone CNN

models used for evaluating the holistic uncertainty models of dimensional

affect evaluated in this chapter.
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5.4.1 Dimensional Emotion Recognition Models

Uncertainty-Unaware Emotion Recognition

As shown in Fig. 5.2, a temporal model on top of the backbone CNN was

learned to predict the point estimates of valence and arousal on SEWA.

This temporal model is composed of a 2-layer bidirectional GRU-RNN

with 128 hidden units followed by one fully connected (FC) output layer

with 2 units (for valence and arousal). It contains three dropout layers

with a probability of 0.5. Note that at test time all the dropout layers are

disabled in this uncertainty-unaware baseline. Inverse CCC (1.0 - CCC) +

Mean Squared Error (MSE) loss function [Toisoul et al., 2021] was used for

training this baseline by setting the sequence length to 100 frames.

Uncertainty-Aware Emotion Recognition

Epistemic Uncertainty Model of emotion recognition was implemented

by applying Monte Carlo dropout [Gal and Ghahramani, 2016] to the tem-

poral model at test time. This model was same as the above discussed

uncertainty-unaware baseline (5.4.1) but with the dropout layers enabled

during inference. Enabling dropout layers at test time alters the network

configuration from run to run, as a result, the model produces different pre-

dictions for the same input. Thus, the generated ensemble of predictions

were used to compute the mean and standard deviation output values,

which represent the model or epistemic uncertainty. With 200 forward

passes per frame, it is observed that the best personality recognition per-

formance is achieved on the ChaLearn validation set.

Aleatoric Uncertainty Model is also same as the uncertainty-unaware

baseline (5.4.1), but with its output FC layer (with 2 units) replaced with
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a FC layer of 4 units to predict the mean and standard deviation values

of valence and arousal: (µv, σv, µa, σa). This model was trained separately

using the negative log likelihood loss (Eq. 5.1).

Optimisation Details. All the above emotion recognition models are

trained using Adam optimiser [Kingma and Ba, 2014] for 150 epochs with

initial learning rate and weight decay values set to 1e-4 and 1e-5 respec-

tively. The learning rate value is tuned using Cosine annealing method [Loshchilov

and Hutter, 2016] (with warm restarts, multiplication factor set to 2 and

first restart applied at epoch 1). Each mini batch has 6 input image se-

quences, with each sequence containing 100 face frames.

5.4.2 Personality Recognition Models

CNN+GRU Baseline of personality recognition model was composed of

the backbone CNN followed by a temporal model – a 2-layer bidirectional

GRU-RNN with 256 hidden units + one FC output layer with 5 units –

to jointly predict per-video point estimates of the five personality traits,

as shown in Fig. 5.5. Here also, the temporal model has 3 dropout layers

with a probability of 0.5. Mean Absolute Error (MAE) is used to train this

model.

CLVM Implementations

Emotion Uncertainty-Unaware CLVM. As shown in Fig. 5.6, similar

to [Tellamekala et al., 2021], in the proposed CLVM the encoder module

– a 1-layer bidirectional GRU-RNN with 128 hidden units + one FC layer

with 256 output units – receives a face image embedding sequence along

with its corresponding predicted emotions (point estimates) concatenated.
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Here, the facial features learned for emotion recognition are fine tuned for

the personality recognition task as well. The encoder module’s FC layer

outputs a global (256 dimensional) latent vector, which aims to capture the

personality related global temporal context from the image embeddings and

emotions. The decoder module – again a 1-layer bidirectional GRU-RNN

with 128 hidden units + one FC layer with 5 nodes – takes as inputs the

image embedding sequence and the global latent vector to predict the point

estimates of personality traits. Similar to the CNN+GRU baseline training,

this model was also trained to minimise the MAE objective.

Emotion Uncertainty-Aware CLVM. To make the CLVM aware of in-

put emotion uncertainties, the proposed method introduced three changes

(Fig. 5.7): (a). the point estimate emotion inputs to the encoder are

replaced with mean and standard deviation values predicted using the

epistemic-only or aleatoric-only or epistemic+aleatoric uncertainty-aware

emotion recognition models (number of input units in the encoder’s GRU

changed accordingly) (b). the output FC layer with 5 output units in the

decoder is replaced with a new FC layer containing 10 output units (5

for the mean vector and 5 for the standard deviation vector) and (c). for

training the negative log likelihood loss (Eq. 5.1) is used instead of MAE.

Optimisation Details. All the personality recognition models evaluated

in this chapter are trained using Adam optimiser [Kingma and Ba, 2014]

for 100 epochs. Here the mini batch size is 3 sequences, each with 200

randomly sampled consecutive frames from the input video that originally

contains 450 frames. At test time, non-overlapping windows of 200 frames

are extracted and their predictions are averaged to produce the final out-

puts. Note that the emotion prediction model remains frozen during the

training of CLVM encoder and decoder modules. The initial learning rate

and weight decay values are set to 5e-5 and 1e-4 respectively. Similar to the
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emotion recognition models, the learning rate value is tuned using Cosine

annealing with warm restarts [Loshchilov and Hutter, 2016].

5.5 Results and Discussion

Valence Arousal Avg.

Model CCC ↑ CCC ↑ CCC ↑

[Mitenkova et al., 2019] 0.469 0.392 0.415

[Toisoul et al., 2021] 0.650 0.610 0.630

[Kossaifi et al., 2020] 0.750 0.520 0.635

Visual Affective Processes 0.739 0.622 0.680

VA: CNN+GRU 0.712 0.618 0.665

EU: CNN+GRU 0.717 0.614 0.665

AU: CNN+GRU 0.714 0.619 0.667

EU+AU: CNN+GRU 0.719 0.620 0.670

Table 5.1: Results on the test set of SEWA (VA – uncertainty-unaware
baseline, EU and AU – Epistemic and Aleatoric Uncertainty-Aware models
(see Section. 5.4.1))

5.5.1 Dimensional Affect and Personality Recogni-

tion

Emotion Recognition With vs. Without Uncertainty Modelling.

Table. 5.1 compares the results of uncertainty-unaware (VA) and uncertainty-

aware (EU, AU, and EU+AU) dimensional emotion recognition models on

SEWA. Here, different uncertainty-aware models are learned for the epis-

temic (EU) and aleatoric (AU) categories separately, and their predictions

(both mean and variance values) are averaged for computing the EU+AU

results. For the evaluation purpose, only the mean values of emotion pre-
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Metric Model Extr. Agree. Consc. Neuro. Open. Avg.

PCC ↑

Histogram [Jaiswal et al., 2019] 0.30 0.05 0.22 0.22 0.20 0.20

DCC [Güçlütürk et al., 2016] 0.36 0.12 0.20 0.25 0.25 0.24

Spectral [Song et al., 2020] 0.37 0.30 0.34 0.36 0.32 0.34

NJU-LAMDA [Wei et al., 2017] 0.43 0.37 0.45 0.34 0.36 0.39

SSL [Song et al., 2021] 0.52 0.31 0.45 0.45 0.44 0.45

CNN+GRU: PT |(V A) 0.49 0.20 0.16 0.38 0.37 0.32

CNN+GRU: PT |X 0.59 0.33 0.45 0.48 0.50 0.47

CNN+GRU: PT |X, (V A) 0.61 0.36 0.48 0.52 0.50 0.49

CLVM: PT |(V A) 0.53 0.27 0.22 0.39 0.39 0.36

CLVM: PT |X 0.64 0.39 0.48 0.55 0.52 0.52

CLVM: PT |X, (V A) 0.66 0.42 0.51 0.58 0.56 0.54

CLVM-A: PT |X,

((V A)EUµ , (V A)EUσ ) 0.69 0.50 0.59 0.63 0.61 0.61

CLVM-A: PT |X,

((V A)AUµ , (V A)AUσ ) 0.69 0.49 0.61 0.62 0.61 0.60

CLVM-A: PT |X,

((V A)EU+AU
µ , (V A)EU+AU

σ )

-GMM Fusion 0.68 0.50 0.56 0.62 0.60 0.59

CLVM-A: PT |X,

((V A)EU+AU
µ , (V A)EU+AU

σ )

-Sum Fusion 0.71 0.54 0.62 0.66 0.63 0.64

RMSE ↓

Histogram [Jaiswal et al., 2019] 0.170 0.150 0.170 0.170 0.160 0.160

DCC [Güçlütürk et al., 2016] 0.150 0.140 0.150 0.150 0.140 0.150

Spectral [Song et al., 2020] 0.150 0.130 0.140 0.140 0.140 0.140

NJU-LAMDA [Wei et al., 2017] 0.140 0.120 0.130 0.140 0.130 0.130

SSL [Song et al., 2021] 0.120 0.100 0.130 0.120 0.110 0.120

CNN+GRU: PT |(V A) 0.133 0.131 0.155 0.143 0.134 0.139

CNN+GRU: PT |X 0.121 0.124 0.137 0.132 0.120 0.126

CNN+GRU: PT |X, (V A) 0.118 0.121 0.135 0.127 0.121 0.124

CLVM: PT |(V A) 0.127 0.128 0.149 0.141 0.133 0.135

CLVM: PT |X 0.111 0.120 0.136 0.122 0.120 0.121

CLVM: PT |X, (V A) 0.109 0.118 0.130 0.121 0.118 0.119

CLVM-A: PT |X,

((V A)EUµ , (V A)EUσ ) 0.100 0.106 0.112 0.109 0.107 0.109

CLVM-A: PT |X,

((V A)AUµ , (V A)AUσ ) 0.102 0.104 0.115 0.111 0.109 0.108

CLVM-A: PT |X,

((V A)EU+AU
µ , (V A)EU+AU

σ )

-GMM Fusion 0.108 0.105 0.119 0.112 0.110 0.110

CLVM-A: PT |X,

((V A)EU+AU
µ , (V A)EU+AU

σ )

-Sum Fusion 0.096 0.103 0.110 0.109 0.105 0.104

Accuracy ↑

Histogram [Jaiswal et al., 2019] 0.8949 0.8970 0.9001 0.8913 0.8975 0.8962

DCC [Güçlütürk et al., 2016] 0.9088 0.9097 0.9109 0.9085 0.9092 0.9109

Spectral [Song et al., 2020] 0.9165 0.9099 0.9178 0.9109 0.9117 0.9134

NJU-LAMDA [Wei et al., 2017] 0.9112 0.9135 0.9128 0.9098 0.9105 0.9116

SSL [Song et al., 2021] 0.9183 0.9262 0.9082 0.9133 0.9180 0.9168

PML [Bekhouche et al., 2017] 0.9155 0.9103 0.9137 0.9082 0.9100 0.9115

PersEmoN [Zhang et al., 2019] 0.9200 0.9140 0.9210 0.9140 0.9150 0.9170

CR-Net [Li et al., 2020b] 0.9200 0.9176 0.9218 0.9150 0.9191 0.9187

CNN+GRU: PT |(V A) 0.8930 0.8944 0.8765 0.8850 0.8920 0.8881

CNN+GRU: PT |X 0.9040 0.8991 0.8833 0.8918 0.8980 0.8953

CNN+GRU: PT |X, (V A) 0.9062 0.8999 0.8871 0.8963 0.8978 0.8974

CLVM: PT |(V A) 0.8988 0.8977 0.8789 0.8878 0.8934 0.8913

CLVM: PT |X 0.9076 0.9002 0.8872 0.8998 0.9027 0.8995

CLVM: PT |X, (V A) 0.9100 0.9009 0.8935 0.9005 0.9048 0.9019

CLVM-A: PT |X,

((V A)EUµ , (V A)EUσ ) 0.9217 0.9178 0.9133 0.9156 0.9168 0.9172

CLVM-A: PT |X,

((V A)AUµ , (V A)AUσ ) 0.9205 0.9197 0.9106 0.9136 0.9151 0.9160

CLVM-A: PT |X,

((V A)EU+AU
µ , (V A)EU+AU

σ )

-GMM Fusion 0.9199 0.9175 0.9092 0.9130 0.9146 0.9148

CLVM-A: PT |X,

((V A)EU+AU
µ , (V A)EU+AU

σ )

-Sum Fusion 0.9263 0.9192 0.9148 0.9157 0.9197 0.9191

Table 5.2: Personality recognition on ChaLearn (CLVM:..-Uncertainty-
unaware, CLVM-A:..-uncertainty-aware, PT-personality traits, VA-valence
& arousal, X-image features, EU-epistemic uncert., AU-aleatoric uncert.)
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dictions are used from the uncertainty-aware models.

As it is clearly evident from the results in Table. 5.1, making the emotion

recognition models aware of their predictive uncertainty did not improve

the performance compared to the uncertainty-unaware baseline. Note that

the primary objective of uncertainty-aware learning in this chapter is to

reliably estimate the standard deviation intervals around a model’s predic-

tions, and they may not necessarily make the mean values of predictions

more accurate. Such a relationship between the model accuracy and its

predictive uncertainty was discussed in more detail in several prior works

(e.g. [Krishnan and Tickoo, 2020]).

However, when the uncertainty estimates are applied to a downstream task

i.e. personality recognition, it is expected to observe noticeable perfor-

mance gains with the uncertainty-aware models over uncertainty-unaware

baselines. Table 5.2 shows the personality recognition results of a wide

range of models on ChaLearn test set. This section presents a detailed

analysis and discussion of these results below.

Personality Recognition With Uncertainty-Aware Vs. Uncertainty-

Unaware Dimensional Emotion Predictions Emotion uncertainty-

aware CLVMs (CLVM-A models in Table 5.2) that utilised epistemic-only

or aleatoric-only or epistemic+aleatoric uncertainties of valence and arousal

predictions, outperformed the baseline model CLVM: PT |X, (V A) that is

trained using the point estimates of valence and arousal. This result val-

idates that the uncertainty-aware emotion recognition models are able to

quantify their confidence in their predicted emotions such that the down-

stream task can effectively utilise those uncertainty estimates as reliabil-

ity indicators for the emotion information. Among the uncertainty-aware

models (CLVM-A in Table 5.2), the model that combines both epistemic
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and aleatoric uncertainty, CLVM-A: PT |X, ((V A)EU+AU
µ , (V A)EU+AU

σ ) with

sum fusion, outperformed the epistemic-only and aleatoric-only CLVM-A

models. While the performance gap between epistemic-only and aleatoric-

only CLVMs is marginal, significant performance improvement with epis-

temic+aleatoric fusion confirms the complementary nature of both the un-

certainty components. Also, it achieved state-of-the-art personality recog-

nition results by outperforming the existing ChaLearn benchmarks in all

three metrics.

Fig. 5.9 qualitatively illustrates trait-wise predictions’ correlation patterns

for all examples in the ChaLearn test set. As evident from this correla-

tion analysis, uncertainty-aware CLVM exhibited highest correlation per-

formance for the extroversion trait, and the lowest correlation performance

in the case of agreeableness trait. Furthermore, as Fig. 5.8 illustrates, on an

example from the ChaLearn test set this section qualitatively compared the

personality trait scores predicted by the uncertainty-unaware (CLVM) and

different uncertainty-aware (CLVM-A) models, and their corresponding in-

put valence and arousal ratings. Here, the confidence intervals of emotion

predictions from different uncertainty models indicate 3 × the standard

deviation values around the mean predictions. Note that ChaLearn is not

annotated with emotion labels, so it is not possible here to evaluate the

quality of emotion predictions. However, as evident from Fig. 5.8, in terms

of the personality recognition results, the scores predicted by the epistemic

and aleatoric uncertainty-aware model (EU+AU) are much closer to the

ground truth personality scores, compared to the scores predicted by the

uncertainty-unaware emotion predictions (VA). Regarding the uncertainty

patterns in emotion predictions from different models, it is interesting to

observe that the confidence intervals are slightly smoother in the case of

aleatoric uncertainty than in the epistemic case.
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Figure 5.8: Comparison of different CLVMs’ predictions on an example
from the ChaLearn test set: Trait-wise ground truth scores (GT) are
compared with the predictions made by emotion (valence and arousal)
uncertainty-unaware (VA) model, and different uncertainty-aware models
(EU-Epistemic, AU-Aleatoric, and EU+AU). Confidence intervals of the
valence and arousal predictions depict three times the standard deviation
values predicted their corresponding uncertainty models.
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Figure 5.9: Correlation Analysis: Trait-wise predictions from epis-
temic+aleatoric uncertainty-aware CLVM on ChaLearn test set
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CLVM Vs. CNN+RNN for Personality Recognition. All three

CLVM baseline models, PT |(V A), PT |X, and PT |X, (V A), achieved signifi-

cant performance gains over the canonical CNN+GRU baselines, (PT |(V A),

PT |X, and PT |X, (V A)) on all five traits. These gains validate the effective-

ness of learning global latent variable models for summarising the temporal

context of personality traits from video data. Moreover, this result is in

line with the observations reported in [Sanchez et al., 2021, Tellamekala

et al., 2021] regarding the effectiveness of global context models compared

to RNNs. Furthermore, it is important to note that the results with emo-

tion predictions (V A) used as input features in CNN+GRU models are

less significant compared to the performance improvements achieved by

their CLVM counterparts. This performance gap shows that our proposed

CLVM is more effective than the canonical models based on CNN+GRUs

in combining the personality-related information embedded in the emotion

predictions and face image features. Thus, by including an intermediate

step in the form of global latent variable modelling, the proposed CLVM

framework offers the flexibility to effectively combine different low level

behavioural attributes (e.g. emotions) as prior variables in inferring high

level behavioural attributes (e.g. personality traits).

5.5.2 Ablation Study

Fusion of Epistemic and Aleatoric Uncertainty. Table 5.2 also com-

pares the performance of uncertainty fusion techniques evaluated in this

chapter: sum fusion and GMM fusion. Sum fusion, the fusion technique

based on linear combination of random variables with normal distributions,

consistently outperformed the GMM fusion technique in all three metrics.

This result implies that epistemic and aleatoric models capture the inde-
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pendent and complementary components of the total uncertainty.

CLVM With vs. Without Emotion Predictions as Input Features.

To understand the contribution of emotion prediction inputs and global

latent variable modelling to the CLVM performance, this work trained

three baseline models of CLVM, PT |X, PT |(V A) and PT |X, (V A), as shown

in Table 5.2. The performance gaps between these three models indicate

that both the proposed ideas, the global latent variable modelling as well

as the emotion prediction inputs, are critical to the performance gains that

the CLVM demonstrated.

CNN+GRU With vs Without Emotion Predictions as Input Fea-

tures. By concatenating the emotion predictions (V A) to the image fea-

tures X, this work evaluated the CNN+GRU models, PT |X, PT |(V A) and

PT |X, (V A) for personality recognition in Table 5.2. Unlike in the case

of CLVM baselines, performance gains are less significant when the emo-

tion predictions are used as additional input features in CNN+GRU mod-

els. This result demonstrates that the canonical sequence learning models

based on CNN+GRUs are less effective compared to our CLVM in terms

exploiting the already known behavioural attributes such as per-frame emo-

tion predictions in the downstream tasks. For more ablation experiments

of the CLVM and the significance of its performance gains, refer to the

supplementary material.

5.5.3 Statistical Significance Analysis

Note that the personality recognition performance difference between the

emotion uncertainty-unaware (CLVM: PT |X, (V A)) and uncertainty-aware

(CLVM-A: PT |X, ((V A)EU+AU
µ , (V A)EU+AU

σ )-Sum Fusion) models in Table. 5.2
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appears more significant in the PCC metric but less significant in the RMSE

and accuracy metrics. To verify the significance of overall improved recog-

nition results with emotion uncertainties, we conducted paired Student’s

t-test on both the models (CLVM and CLVM-A) for each trait separately.

As shown in Table. 5.3, across all five traits the p-values are noticeably low,

validating that the the performance gains achieved by the CLVM-A model

are statistically significant.

Model Pair Extr. Agree. Consc. Neuro. Open.

(CLVM, CLVM-A) 3.6e-17 4.1e-49 7.5e-40 4.6e-24 3.8e-15

Table 5.3: Statistical significance (p <0.01) analysis results on the
ChaLearn test set: Paired Student’s t-test between the emotion
uncertainty-unaware (CLVM) and uncertainty-aware (CLVM-A) predic-
tions of all five traits separately.

5.5.4 Application of Affective Processes’ Emotion Pre-

dictions and their Uncertainty Estimates to Per-

sonality Recognition

As shown in Table. 5.1, Affective Processes (APs) has better emotion recog-

nition performance than all three CNN+GRU models that are trained and

evaluated in this chapter. Here, we investigated the possibility that per-

sonality recognition models may perform better using APs’ emotion predic-

tions, than the epistemic and aleatoric uncertainty-aware emotion predic-

tions from our CNN+GRU models. For this purpose, in the CLVM model

training we replaced our CNN+GRU emotion predictions with APs’ emo-

tion predictions. It is important to note that in APs the decoder provides

both mean and variance values over the emotion predictions.

As Table. 5.4 shows, in the uncertainty-unaware (CLVM) case, APs per-
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form better than our CNN+GRU models (compared to CLVM: PT |X −

AP, (V A)−AP in Table. 5.2). However, CLVM-A model i.e. the uncertainty-

aware counter part of APs has exhibited poorer performance compared to

our emotion uncertainty predictions (CLVM-A: PT |X, ((V A)EU+AU
µ , (V A)EU+AU

σ )-

Sum Fusion in Table. 5.2). This result shows that although more accurate

emotion predictions could improve the personality recognition performance

slightly, making them uncertainty-aware in a holistic manner (combining

epistemic and aleatoric components) achieves significantly better results on

the downstream task.

Metric Model Extr. Agree. Consc. Neuro. Open. Avg.

PCC↑
CLVM 0.67 0.45 0.57 0.61 0.60 0.57

CLVM-A 0.69 0.47 0.56 0.61 0.58 0.58

RMSE↓
CLVM 0.110 0.110 0.124 0.123 0.108 0.115

CLVM-A 0.106 0.111 0.120 0.116 0.112 0.113

Acc.↑
CLVM 0.9047 0.9052 0.8941 0.895 0.9054 0.9008

CLVM-A 0.9082 0.9038 0.8963 0.9004 0.9029 0.9023

Table 5.4: Personality recognition results on the ChaLearn test set us-
ing Affective Processes (APs) emotion predictions and their uncer-
tainty estimates: Here, the uncertainty-aware (CLVM-A) is comparable to
PT |X, ((V A)EU+AU

µ , (V A)EU+AU
σ ) in Table. 5.2 and the uncertainty-unaware

model (CLVM) is equivalent to PT |X, (V A) in Table. 5.2.

5.5.5 Emotion Predictions Directly Fed Into The CLVM

Decoder

To delineate the influence of latent vector on the decoder module in the

proposed CLVM, we modified the architecture as follows: the latent vari-

able to the decoder is replaced with the raw emotion predictions in both

uncertainty-unaware and uncertainty-aware configurations. As a result, in

this modified architecture, the decoder has access to only the local (per-
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frame) emotional behaviour, unlike in the original CLVM model where the

global context is fed into the decoder in the form of latent variable input.

Validating our hypothesis about the importance of global emotion context

for personality trait analysis, the results shown in Table. 5.5 confirm that

the performance of CLVM drops significantly in the absence of global latent

variable input to the decoder.

Metric Model Extr. Agree. Consc. Neuro. Open. Avg.

PCC↑
CLVM 0.60 0.38 0.49 0.53 0.52 0.50

CLVM-A 0.62 0.40 0.48 0.54 0.53 0.51

RMSE↓
CLVM 0.117 0.122 0.130 0.128 0.122 0.124

CLVM-A 0.115 0.120 0.131 0.127 0.120 0.122

Acc.↑
CLVM 0.9057 0.9009 0.8945 0.8970 0.9005 0.8997

CLVM-A 0.9072 0.9030 0.8937 0.8977 0.9029 0.9009

Table 5.5: ChaLearn test set results with emotion predictions directly
fed to the CLVM decoder. Note that here the latent variable input to
the decoder is replaced with uncertainty-unaware (CLVM) and uncertainty-
aware (CLVM-A) emotion predictions directly.

5.6 Conclusion

Towards capturing the holistic temporal uncertainty of temporal affect, this

chapter presented a systematic decomposition of uncertainties in dimen-

sional emotion recognition from face videos. The methodology proposed in

this chapter first quantified epistemic (model) and aleatoric (data) uncer-

tainty components of the emotion recognition, without requiring any addi-

tional information. Then it evaluated the quality of emotion uncertainties

by using them as additional input features in apparent personality recog-

nition task. To this end, this chapter proposed to use a conditional global

latent variable model to effectively summarise temporal context of the per-

sonality traits from uncertainty-aware emotion predictions and face image
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features, which achieved state-of-the-art results on in-the-wild personality

recognition. Most importantly, the proposed emotion uncertainty-aware

personality recognition models achieved substantial performance gains over

their uncertainty-unaware counterparts, validating the quality of the emo-

tion uncertainty estimates quantified in this chapter. Further, compared to

the predictive uncertainty estimates of previously proposed methods such as

Affective Processes, the holistic uncertainty models based on epistemic and

aleatoric uncertainty estimates of affect recognition, demonstrated consid-

erable performance improvements in the downstream behavioural learning

task.
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Chapter 6

Label-Efficient Affect

Recognition using CHeF:

Clustering Hand-Engineered

Emotion Features for

Self-Supervised Pre-Training

6.1 Introduction

This chapter tackles the problem of learning emotion recognition models

from face and voice data with minimal human supervision. State-of-the-

art emotion recognition methods heavily rely on end-to-end representation

learning models, which are highly inefficient in terms of the amounts of

labelled training data they require. With the objective of making emo-

tion recognition models label-efficient, a novel self-supervised representa-

tion learning method is proposed in this chapter.
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The proposed method aims to exploit emotion-related cues embedded in

the standard hand-engineered features of affect as free supervision signals

for pre-training the feature encoders. Compared to the end-to-end repre-

sentation learning models, models learned from hand-crafted features tend

to have poor predictive performance in general. However, it is worth noting

that hand-crafted features are designed for a particular task at hand, and

they essentially capture the task-specific intuitive knowledge, often using

a compact set of descriptors. Thus, hand-engineered features could sum-

marise, at least partially, the key latent characteristics of a learning task,

often in a lower-dimensional space than that of the raw input data. Most

importantly, it does not require any manual supervision to extract the stan-

dard hand-engineered emotion features from large amounts of unlabelled

audiovisual data.

To give an example, in the case of voice emotion recognition, compact low-

level descriptors such as the extended Geneva Minimal Acoustic Parameter

Set (eGeMAPs) [Eyben et al., 2015] capture expert-level understanding

of emotion-related cues in vocal expressions. Similarly, in face emotion

recognition models, the predictions of facial action unit (AU) intensities

are commonly used as hand-crafted features of facial affect expressions

(e.g. [Tarnowski et al., 2017] and [Senechal et al., 2014]), and they aim

to objectively describe changes in the facial muscle movements caused by

emotional expressions. In both vocal and facial emotion recognition tasks,

their corresponding hand-engineered features perform reasonably well in

general, but not as well as the end-to-end learning models [Kollias et al.,

2020]. However, these hand-engineered features can be highly valuable

in guiding the end-to-end representation learning models, given that they

capture emotion cues embedded in the raw audio and visual data. Guided

by this intuition, this chapter proposes to leverage the standard hand-
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engineered emotion features as task-specific representation learning priors

in the self-supervised pre-training of the audio and visual CNN feature

encoders.

Given a large unlabelled dataset, a self-supervised learning (SSL) model

is trained by learning a pretext or proxy task, for which labels can be

automatically generated based on the intrinsic structure of the dataset.

Effectively formulating the proxy task is a critical factor in learning an

SSL model, as the proxy task defines how well the feature encoder can cap-

ture the rich semantics embedded in the high-dimensional unlabelled data.

The proposed proxy task for SSL pre-training in this chapter, is based on a

novel clustering paradigm, Max-Margin Deep Temporal Clustering, applied

to the facial and vocal hand-crated features widely used for emotion recog-

nition. The cluster indices derived in this process are used as the target

class labels for pre-training the visual and audio CNN feature encoders.

This chapter evaluates the efficacy of the CNN encoders pre-trained us-

ing the proposed method, by analysing their unimodal emotion recognition

performance on the benchmark face and voice datasets. The experimen-

tal analysis shows that the proposed SSL pre-training considerably out-

performs the standard transfer learning methods and performs almost on

par with the pre-trained representations on other closely related emotion

recognition datasets. Thus, this chapter demonstrates how to improve the

label-efficiency of existing facial and speech emotion recognition models,

by using self-supervision for combining the best of both worlds – rich task-

specific information in the hand-engineered emotion features with the su-

perior generalisation performance of the end-to-end representation learning

models.
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6.2 Related Work

SSL in Face and Speech Emotion Recognition. Due to the limited

number of training examples in the existing emotion-labelled datasets, sev-

eral recent works (e.g [Shukla et al., 2021, Roy and Etemad, 2021, Morais

et al., 2022]) have turned to the idea of leveraging abundantly available

unlabelled data, particularly through self-supervised pre-training, for im-

proving emotion recognition performance. Most existing SSL methods ap-

plied to face emotion recognition [Roy and Etemad, 2021] and speech [Neu-

mann and Vu, 2019, Morais et al., 2022] emotion recognition tasks exploit

only unimodal information in the unlabelled data. Considering the in-

trinsically multimodal nature of emotional expressions, the focus in recent

works [Khare et al., 2021, Shukla et al., 2021, 2020] is shifted to leverag-

ing multimodal unlabelled data for SSL method applied to the emotion

recognition tasks.

Although SSL pre-trained representations demonstrated promising results

in all the early works, the proxy tasks used in their SSL models are largely

evaluated on generic target tasks such as image classification, speech recog-

nition, etc. Considering that emotion is often a weak signal embedded in

high-dimensional input space, this work argues that using such generic

proxy tasks can limit the potential of SSL methods when applied to the

emotion recognition problem. To address this limitation, a downstream-

specific proxy task is proposed in this chapter to improve the SSL pre-

trained representations’ quality for improved emotion recognition perfor-

mance. Further, unlike the experimental analysis presented in this chapter,

the existing works that aim to leverage SSL models for emotion recognition

tasks mostly ignore the analysis of label-efficiency advantages.
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Figure 6.1: Illustration of the proposed proxy task, CHeF: Clustering Hand-
Engineered Features, for self-supervised pre-training: First, the hand-
engineered features of the downstream learning task (emotion recognition)
are clustered in a low-dimensional latent space, guided by the proposed
Max-Margin Deep Temporal Clustering technique. Then, the cluster in-
dices are posed as pseudo class labels to be used as targets in learning the
proxy task.

6.3 Method

A General Overview of Self-Supervised Pre-Training. The main

objective of SSL pre-training methods is to encourage the feature encoder

model to capture the general semantics embedded in unlabelled data, most

importantly, without requiring any manual supervision. Given a large col-

lection of unlabelled data points, in the SSL pre-training phase of a model

the goal is to learn the parameters of its feature encoder module, which

maps a high dimensional input into a low-dimensional feature embedding.

As there is no explicit supervision signal available for learning the features

encoder here, a pretext or proxy task is designed such that its labels can

be automatically generated from the intrinsic structure of the unlabelled

dataset. This structure is often defined in terms of generic representation

learning priors [Bengio et al., 2013] such as predictability, redundancy, spa-

tial or temporal coherency, invariance to different views of the same image,
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etc. These priors are expected to force the feature encoder to learn repre-

sentations of general semantics from the unlabelled data, and it is implicitly

assumed that such general semantic representations transfer well to all rel-

evant downstream supervised learning tasks. Thus, the effectiveness of a

proxy task is determined based on how well its resultant feature encoder

performs on the downstream tasks.

Note that in a typical SSL pre-training method the proxy task’s design

choices are mostly agnostic to the characteristics of the downstream tasks.

In general, this downstream-agnostic SSL approach is found to be effec-

tive in the case of standard learning tasks [Jing and Tian, 2020] such as

image classification, object detection etc, in the existing works. However,

considering that apparent emotion is often a weak and noisy semantic fac-

tor embedded in a high-dimensional input space, this chapter argues that

the existing downstream-agnostic proxy tasks are less effective in learn-

ing emotion-related feature representations. Motivated by this argument,

this chapter hypothesises that the closer the SSL pre-trained features get

to the downstream task characteristics, the lower the labelled examples

requirement becomes when learning a target downstream task.

6.3.1 Hand-engineered Features as Priors for Self-

Supervised Representation Learning

To account for the target downstream task’s characteristics in the process

of designing a proxy task, this chapter proposes to exploit the downstream

task-specific hand-engineered features as representation learning priors. It

is worth noting that such hand-engineered features are typically compact

low-dimensional descriptors of the target task’s properties, at least par-

tially. Given a raw high-dimensional input, most importantly, its hand-
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crafted feature representations for a specific target learning task are freely

available, as it does not require any manual supervision to extract them

from unlabelled data.

For example, pitch variation is an important property that is commonly

captured in the hand-crafted acoustic features designed for speech emotion

recognition tasks. When the pitch variation is used as a representation

learning prior in an SSL proxy task, it is more likely that the feature

encoder can capture emotion-related properties much better than the most

existing SSL proxy tasks that are guided by generic representation learning

priors. Based on this premise, this chapter proposes a novel proxy task that

leverages hand-engineered features as the target-specific priors to guide the

SSL pre-training. As discussed below, the proposed proxy task builds on

the idea of grouping unlabelled data points in a low-dimensional embedding

space composed of their hand-engineered features’ summary.

6.3.2 Proxy Task: Clustering Hand-Engineered Fea-

tures to Derive Pseudo Class Labels

Building on the existing SSL proxy tasks that apply the idea of cluster-

ing unlabelled data in a low-dimensional embedding space [Caron et al.,

2018], this chapter proposes a novel proxy task, which takes as inputs se-

quences of hand-crafted features. As illustrated in Fig. 6.1, given a set

of unlabelled sequences of face images or speech segments as inputs, first

a k-means clustering model is learned. This model is intended to group

the input sequences into k different clusters, according to the Euclidean

distances among their hand-crafted feature sequences. Then, the cluster

indices provided by the resultant clustering model for a particular unla-

belled example is considered as its pseudo class label. These labels are
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used as the supervision signals for pre-training the feature encoder module

by posing the proxy task as a standard classification problem.

It is important to account for the sequential structure of unlabelled data

points while learning the clustering model. Note that the temporal vari-

ations in per-frame hand-engineered features are important for learning

the downstream task of interest here i.e. apparent emotion recognition.

Directly clustering the raw sequences of hand-crafted features can be dif-

ficult, as it scales up the problem dimensionality. For this reason, the

proposed proxy task first runs a dimensionality reduction step by com-

pressing a sequence of features into a single temporal summary or context

vector.

To make sure that the resultant lower dimensional space supports the clus-

tering operations well, both the operations, dimensionality reduction and

k-means clustering, are jointly learned in the proposed proxy task. Sim-

ple clustering methods based on the standard k-means may fall short in

learning an unified model that can implement all the aforementioned ideas:

temporal clustering of hand-crafted features through simultaneous dimen-

sionality reduction and k-means clustering with max-margin constraint.

Ideally, while solving a classification problem it is desirable to have the

target class labels that are as highly discriminative as possible. To make

the pseudo labels i.e. cluster indices as discriminative as possible here, this

chapter proposes to constrain the clustering model such that the learned

cluster centroids are as far apart as possible from each other. This no-

tion of maximising the centroid-to-centroid distance can be implemented

by applying a maximum-margin regularisation constraint to the training

objective of the clustering model. Thus, this chapter proposes a novel clus-

tering methodology, Max-Margin Deep Temporal Clustering, to implement

the idea of CHeF by combining all the three ideas into a single model that
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Figure 6.2: Implementation of the proposed Max-Margin Deep Tempo-
ral Clustering model using a sequence-to-sequence (Seq2Seq) autoencoder
composed of the GRU-RNN encoder and decoder modules, and its train-
ing objective composed of the standard reconstruction loss coupled with
clustering-specific loss components.

is trained by optimising a joint loss function, as discussed in detail below.

6.3.3 MM-DTC: Max-Margin Deep Temporal Clus-

tering

To prepare the pseudo class labels for self-supervised pre-training, the

proposed MM-DTC framework performs the following three operations:

a. Dimensionality Reduction: As illustrated in Fig. 6.2, given a se-

quence of hand-engineered features, here the goal is to encode its temporal

summary into a lower dimensional 1D vector. For this purpose, a sequence-

to-sequence autoencoder (Seq2Seq-AE) model is adopted here, which is

widely used in the literature of audio representation learning (e.g. [Amiri-

parian et al., 2017]). Here, the autoencoder module, composed of encoder

and decoder blocks, is tasked with the reconstruction of input sequences.

Here, the encoder and decoder blocks are implemented using standard gated

recurrent neural networks.

First the encoder compresses an input sequence into a 1D temporal context

vector h, which is fed into the decoder module to predict the input sequence
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step-by-step. At any given time step t, the decoder receives its previous

prediction at the time step x̄t−1 and its corresponding hidden state vector

ht−1. To stabilise the reconstruction performance of the AE model, espe-

cially during the early training stages, Teacher-Forcing technique [Williams

and Zipser, 1989] is applied, in which the decoder input x̄t−1 is randomly

replaced with the original input xt−1, with the probability of 0.25. The pa-

rameters or weights of the encoder and decoder modules in this Seq2Seq-AE

model are optimised by minimising the following sequence reconstruction

loss:

LRE =
T∑
t=1

(xt − x̄t) (6.1)

Note that the AE model is first pre-trained using the reconstruction loss

alone for 10 epochs before the clustering operation is included in the model

training. After the pre-training phase, to initialise the cluster centroids,

a simple k-means clustering model is applied to the hidden state vectors

({hNi=1}) of all the N unlabelled data points in the dataset, as shown in

Fig. 6.1

b. Temporal Context Clustering is applied to the output hidden state

data h from the encoder module of the AE model. During this phase of

AE model training, given a mini batch composed of B hand-crafted feature

vector sequences, the clustering operation is applied to their corresponding

hidden vector set {hBi=1}. For each hidden vector in this set, first its clos-

est centroid among the k centroids is chosen by computing its Eucledian

distances w.r.t all k centroids. To improve the clustering performance, the

AE model is optimised to minimise the following loss term, in addition to

the reconstruction objective.

LC2H = ‖Ck − hi‖2 (6.2)
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where Ck denotes the centroid that is closest to the current hidden state

vector hi. This loss function is intended to improve the clustering perfor-

mance by minimising the distance values between the cluster centroids and

their corresponding hidden states, thus encouraging the clusters to become

as compact as possible. Note that locations of k centroids are smoothly

updated every iteration based on the hidden state vectors computed for

the current mini batch.

c. Max-Margin Constraint is applied as a regularisation condition,

alongside the aforementioned reconstruction and clustering loss compo-

nents. For learning the cluster centroids that are as discriminative as

possible, this chapter proposes to apply a maximum-margin regularisa-

tion constraint by learning the hidden state vectors that can maximise the

pair-wise centroid-to-centroid distances,

LC2C = −‖Cj − Ck‖2,∀j, k, j 6= k (6.3)

Thus, the complete training objective used for the proposed MM-DTC

framework is composed of all the three aforementioned loss components:

Ltotal = λ ∗ LRE + β ∗ LC2H − γ ∗ LC2C (6.4)

where λ, β, and γ are the hyper-paramters that are tuned to maximise the

target downstream task’s performance on its corresponding validation set.
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6.4 Experiments

6.4.1 CHeF SSL Pre-Training of CNN Feature En-

coders

Dataset. A large-scale audiovisual dataset, VoxCeleb2, is used for the

purpose of SSL pre-training in this chapter. This dataset contains over

one million utterances that are derived from YouTube videos recorded in

in-the-wild conditions. Considering the high computational costs associ-

ated with clustering such large amounts of data, we chose to use a small

partition of it containing over 36,000 utterances. The same utterances are

used for training both the visual-only and audio-only SSL models on their

corresponding face image sequences and voice signals respectively.

Network architectures of the visual and audio CNN feature encoder imple-

mentations are described in Appendix D.

Hand-Engineered Features for Vocal Emotion Recognition. The

extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) [Ey-

ben et al., 2015] is a standard set of vocal features that are widely used

for training speech emotion recognition models. These parameters capture

emotion-related speech characteristics by computing various low-level de-

scriptors such as frequency (pitch, jitter, etc), energy (shimmer, loudness,

etc), and spectral balance and dynamics (harmonic differences, spectral

slope, etc). Following prior works like [Ringeval et al., 2018, 2019, Mallol-

Ragolta et al., 2020, Schmitt et al., 2019], first and second order functionals

of both feature sets are computed here using a sliding window of 4 seconds

with a stride of 100 ms. For a given input audio segment, a 46 dimensional

feature vector is extracted.
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Hand-Engineered Features for Facial Emotion Recognition. The

presence of different facial Action Units (AUs) and their intensities are

considered as the hand-crafted features for facial emotion recognition here.

AUs capture atomic changes in the facial muscle movements to objectively

describe facial expressions. Given that the annotation of AUs for large-

scale in-the-wild datasets such as VoxCeleb2, is a prohibitively expensive

process, this work makes use of a standard AU prediction model provided

by the OpenFace 2.0 toolkit. This model predicts the presence or absence

of 18 AUs and their intensity values in the range 0 to 5, which are nor-

malised to the range [0, 1] here. Thus, for a given face image input, the

binary predictions of AUs’ presence and their continuous-valued intensity

predictions are concatenated into a single feature vector.

Seq2Seq Auto Encoder Network is implemented by stacking a set of

encoder and decoder modules implemented using bidirectional Gated Re-

current Unit Recurrent Neural Networks (BiGRU-RNNs). The encoder

module maps the input sequence of hand-crafted features into a 32 dimen-

sional embedding, using which the decoder aims to reconstruct the input

sequence. Two different 2-layer BiGRU-RNNs with 32 hidden units are

used as the encoder and decoder modules. Note that the input dimen-

sionality for the encoder module is same as the output dimensionality of

the decoder, and input dimensionality is different for the audio and visual

models.

SSL Pre-Training using CHeF as Proxy Task. By considering the

cluster indices provided by the AE model as the target class labels, the

audio and visual CNN feature encoders are separately pre-trained to predict

the cluster indices. For this purpose, the CNN feature encoder coupled with

a 2-layer BiGRU-RNN (with 128 hidden units) and a fully connected output

layer, is trained in an end-to-end fashion as a standard k-class classification
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model using the general cross entropy loss. Given an unlabelled face image

or Mel-spectrogram sequence as input, first its hand-engineered feature

sequence is fed into the already trained AE model to predict its cluster

index. Thus, the audio and visual CNN feature encoders are separately

trained to predict the cluster indices provided by their corresponding CHeF

models.

Dense Predictive Coding [Han et al., 2019] Baseline – A Generic

Prior Guided SSL Method. Unlike the downstream task-aware SSL pre-

training method proposed in this chapter, most existing SSL methods rely

on generic representation learning priors. Predictability of sequential data

is one such prior that has been widely exploited in the literature [Han et al.,

2019, Lu et al., 2020, Shukla et al., 2020]. In this chapter, an SSL model

based on predictive coding is implemented as a representative baseline for

the generic prior guided SSL. Particularly, a state-of-the-art formulation of

it based on Dense Predictive Coding (DPC) [Han et al., 2019] is trained and

evaluated for both visual and audio data separately. A DPC [Han et al.,

2019] model is composed of a CNN feature encoder and a BiGRU-RNN

for predicting the last of half of input image sequence, given the first half

of the sequence as input. Our implementation follows the same training

methodology proposed in the original DPC framework. To ensure a fair

comparison, we implement both visual and audio DPC models that are

comparable with the CHeF models in terms of the total number of network

weights. For more information on the DPC implementation and training

details, the reader is referred to the original DPC implementation 1.

Optimisation Details Adam optimiser [Kingma and Ba, 2014] with the

weight decay value set to 1e-4, is used for training all the models evaluated

in this chapter. First, in the case of AE model, only during its pre-training

1https://github.com/TengdaHan/DPC
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phase, the teacher forcing factor is set to 0.4 for the first 5 epochs, and 0.2

for the later 5 epochs. When training the AE model with the total loss

function (see Eq. 6.4, the key hyper-parameters (k – number of clusters, α

– reconstruction loss weight, β – clustering loss weight, γ – max-margin loss

weight) are tuned based on the validation set performance on the down-

stream evaluation task i.e. emotion recognition. When the value of k is

set to 6, the best results are achieved in both audio and visual emotion

recognition cases. The dropout values in the GRU layers of the AE model

are set to 0.3. The initial learning rate value is 5e-4, and it is tuned using

a cosine annealing based scheduler with warm restarts enabled [Loshchilov

and Hutter, 2016]. The batch size is set to 1024 sequences, with each se-

quence containing 100 frames, in the case of both the visual and audio AE

models.

Details of the downstream task evaluation of the SSL pre-trained CNN

encoders can be found in Appendix D.

Label-Efficiency Evaluation Protocol

Measuring the overall emotion predictive performance alone may fall short

in comprehensively illustrating the advantages of a particular pre-training

method. As the main objective of this chapter is to improve the label-

efficiency of representation learning step in the emotion recognition mod-

els, an additional evaluation protocol is adopted in order to measure and

compare the label-efficiency of different pre-training methods. In this eval-

uation protocol, only 10% of subject-wise randomly sampled labelled exam-

ples from SEWA (for visual models) and from AVEC’19 (for audio mod-

els) are used for training different emotion recognition models in which

the CNNs’ weights are initialised using different pre-training techniques.
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Thus, a particular pre-training method that achieves the best predictive

performance using just 10% of the training data can be considered as the

most label-efficient method. The main hypothesis of this chapter is that

CHeF-SSL pre-trained models should capture emotion-related representa-

tions more effectively than the SSL methods based on generic represen-

tation learning priors such as predictability. Hence, the performance of

CHeF-SSL proxy task is expected to be significantly better than that of

the Dense Predictive Coding baseline. As additional baselines, CNNs that

are pre-trained directly on the emotion recognition task itself but on a

different emotion-labelled dataset are included in this evaluation.

6.5 Results and Discussion

This section presents unimodal emotion recognition results of the proposed

CHeF-SSL method, in comparison with different pre-training methods and

the existing state-of-the-art benchmarks of emotion recognition from face

and voice data. The experimental results presented here include the overall

predictive performance as well as the label-efficiency analysis of different

CNN pre-training methods on the tasks of facial and speech emotion recog-

nition, as discussed below.

Q1. – Overall Emotion Predictive Performance Analysis – How

does the proposed SSL pre-training method perform when fine tuned with

all the emotion-labelled examples available in the training set?

Face Emotion Recognition. Table 6.1 presents valence and arousal

recognition results of different CNN pre-training methods and the current

state-of-the-art models on the SEWA test set. Among all the pre-training

methods evaluated in Table 6.1, the proposed SSL framework, CHeF-AU-
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Table 6.1: Face Emotion Recognition: SEWA Test Set Results

Valence Arousal Avg.

Model CCC ↑ CCC ↑ CCC ↑

SOTA: Aff. Proc. [Tellamekala et al., 2022] 0.739 0.622 0.680

SOTA: [Kossaifi et al., 2020] 0.750 0.520 0.635

Rand-init 0.508 0.461 0.485

2D Face Alignment-init 0.635 0.508 0.572

SSL-DPC-init [Han et al., 2019] 0.601 0.494 0.548

SSL-CHeF-AU-init 0.720 0.615 0.668

AffectNet-init 0.715 0.568 0.641

init, achieved the best results in terms of both valence CCC and arousal

CCC scores. When compared to the SSL proxy task based on DPC-init,

which relies on a standard generic representation learning prior i.e. tem-

poral predictability, the proposed CHeF proxy task exhibited noticeably

better emotion recognition performance. This trend clearly validates the

main hypothesis of this chapter: making an SSL proxy task aware of the

target downstream task’s characteristics, is more effective than a proxy

task that is completely downstream-agnostic. Most importnatly, consider-

able predictive performance gains achieved with the SSL-CHeF pre-trained

model strongly indicate the importance of exploring downstream-specific

representation learning priors in SSL.

Among the other pre-training baselines listed in Table 6.1, AffectNet-init

model achieved the second best mean CCC score, which is obvious consid-

ering that the emotion information in static face images is explicitly used

in AffectNet pre-trained models. It is interesting to note that the CHeF-

init model, which implicitly uses the emotion information, showed slightly

better recognition performance than the AffectNet-init model. This trend

could be due to the fact that the temporal dynamics of affect are leveraged
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Table 6.2: Speech Emotion Recognition: AVEC’19 Results

Valence Arousal Avg.

Model CCC ↑ CCC ↑ CCC ↑

SOTA: SPR-NPs [Mani Kumar et al., 2021] 0.441 0.618 0.530

Rand-init 0.366 0.515 0.440

AudioSet-init 0.428 0.559 0.493

SSL-DPC-init[Han et al., 2019] 0.381 0.534 0.457

SSL-CHeF-eGEMAPs-init 0.413 0.578 0.496

IEMOCAP-init 0.419 0.585 0.502

in the CHeF proxy task, unlike in the case of AffectNet-init model.

In terms of the mean CCC score, compared to the current state-of-the-

art model on the SEWA test set, Affective Processes [Tellamekala et al.,

2022], the proposed CHeF-init model has slightly poor recognition perfor-

mance. Note that the stochastic temporal context modelling of emotion

data used in Affective Processes is complementary to the improvements in

the CNN pre-training methods. Thus, the performance of the proposed

SSL pre-training method guided by the hand-crafted emotion features, can

be significantly improved further by coupling it with the advanced temporal

models such as Affective Processes. As the main focus of this chapter is on

improving the SSL pre-trained representations for emotion recognition, in-

tegration of the proposed CHeF-init CNN models with Affective Processes

is left for the future work.

Speech Emotion Recognition. Table 6.2 presents the results of emo-

tion recognition models based on different pre-trained audio representation

learning methods on the AVEC’19 validation set. Unlike in the case of face

emotion recognition, in terms of mean CCC, the performance of SSL-CHeF-

init model is found to be slightly worse than the IEMOCAP-init model, and
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Figure 6.3: Label-efficiency results of the visual-CHeF models on the
SEWA validation set: Emotion recognition performance of different
CNN pre-training methods when finetuned using only 10% of the total
labelled data in the SEWA training set.

slightly better than the AudioSet-init models. But, in the case of arousal

prediction, the CHeF-init model showed noticeably better results than the

remaining models, except for the IEMOCAP-init model which makes use of

the temporal emotion labels for the CNN pre-training. Most importantly,

compared to the results of the SSL-DPC-init model which is the only other

baseline trained on the unlabelled audio data, CHeF-init model exhibited

considerably better results, validating the main hypothesis of this chapter.

Q2. – Label-Efficiency Analysis – How does the proposed SSL pre-

training method perform when fine tuned with only a fraction of the

emotion-labelled examples available in the training set?

Fig. 6.3 compares the performance of four different pre-training methods

applied to the task of face emotion recognition on the SEWA corpus, us-

ing as few as 10% of the total number of labelled examples in the original

training set. In this setting also, the model pre-trained on the proposed

CHeF proxy task performed almost on par with the AffectNet-init pre-
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Figure 6.4: Label-efficiency results of the audio-CHeF models on the
AVEC’19 validation set: Emotion recognition performance of different
CNN pre-training methods when finetuned using only 10% of the total
labelled data in the AVEC’19 training set.

trained baseline, which requires a large amount of emotion-labelled exam-

ples to achieve this level of recognition performance. Whereas the CHeF

pre-trained model purely relies on the unlabelled video data to capture

and induce emotion-related representations into the CNN feature encoder.

Further, compared to the model pre-trained on the DPC proxy task, the

proposed CHeF-init model performed noticeably better, particularly in the

case of valence prediction. This trend clearly indicates that we can achieve

substantial performance gains using SSL pre-training when its proxy task is

made aware of the downstream task’s characteristics, through freely avail-

able task-specific hand-engineered features. Thus, it demonstrates the po-

tential of the proposed CHeF proxy task towards learning label-efficient

emotion recognition by effectively making use of the large-scale unlabelled

data. Note that the labelled examples used in this experiment cover only

10% of the subjects in the SEWA corpus, in order to mimic the conditions

with few labelled data points from a small number of subjects.

Similarly, Fig. 6.4 presents the label-efficienct speech emotion recognition
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results of different pre-training models on the AVEC’19 validation set. Akin

to the results shown in its visual counter part, the CHeF pre-trained audio

CNN model achieved superior emotion recognition performance, almost on

par with the prediction results of IEMOCAP-init model. Further, in the

case of valence prediction, the CHeF-init model showed the best results

compared to the rest of the pre-training baselines. Here also, the DPC-

init model’s performance is considerably lower than the CHeF-init model,

illustrating the insufficiency of generic representation learning priors like

temporal predictability in effectively capturing emotion-related features di-

rectly from the unlabelled data. Overall, the results shown in Fig. 6.4 vali-

date the modality-agnostic nature of the proposed SSL proxy task, CHeF,

in learning the target downstream task using as few labelled examples as

possible.

6.6 Conclusion

This chapter demonstrated that hand-crafted features in Machine Learning

can be viewed as task-specific representation priors, given that they sys-

tematically encode domain expertise developed towards a specific learning

task. With the success of end-to-end feature learning directly from raw

data, hand-engineered features have been largely ignored in recent years,

primarily due to their inferior generalisation performance compared to the

deep representation learning. However, not much attention has been paid

in the literature to the the idea of exploiting hand-engineered features to

address the limitations of data-driven representation learning such as label-

inefficiency. The self-supervised learning method proposed in this chapter,

to the best of our knowledge, for the first time illustrated that we can ex-

ploit the rich task-specific information encoded in hand-crafted features to
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the benefit of end-to-end representation learning.

With the objective of improving the label-efficiency of existing emotion

recognition models, this chapter proposed a novel solution based on the idea

that the hand-crafted features of emotion recognition can be leveraged as

weak-supervision signals to pre-train the visual and audio feature encoders.

This chapter illustrated a novel use case of emotion-related hand-engineered

features in self-supervised pre-training of the feature encoder models. Par-

ticularly, in the absence of large sets of emotion labelled examples, the

proposed solution based on SSL pre-training achieved good performance

gains in facial and speech emotion recognition tasks, with minimal human

supervision.
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Chapter 7

Conclusions

7.1 Summary

This chapter summarises the key contributions of this thesis towards im-

proving the current state of automatic affect recognition from face and

voice data. First, this thesis identified two important challenges faced by

the existing apparent affect recognition methods: label ambiguity and la-

bel scarcity. The former challenge arises due to the inherently ambiguous

nature of manual affect annotations. Whereas the latter is caused by the

prohibitively expensive nature of manual affect annotation process. To ad-

dress these two challenges, this thesis proposed to build uncertainty-aware

and label-efficient affect recognition models respectively. In particular, the

solutions proposed in this thesis explored (a). non-deterministic function

learning models for probabilistic temporal context modelling to cope with

the one-to-many mapping nature of the affect labels and (b). label-efficient

representation learning through self-supervised pre-training to minimise the

requirement of manual affect annotations.
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7.1.1 On Uncertainty-Aware Affect Recognition

Through probabilistic modelling of temporal affect context in face and voice

data, different uncertainty modelling methods were presented in Chapter 3,

4 and 5. These methods demonstrated superior emotion recognition perfor-

mance than the existing temporal models such as RNNs and self-attention,

which are largely based on deterministic function learning models that

completely ignore the label ambiguity problem. Additionally, the three

key uncertainty-aware affect recognition methods proposed in this work:

Calibrated and Ordinal Latent Distributions (COLD in Chapter 3), Affec-

tive Processes (APs in Chapter 4), and Epistemic-Aleatoric Uncertainty

(EAU in Chapter 5), led to some promising applications. First, the COLD

fusion showed that the audiovisual affect information fusion can be made

more robust to the visual occlusions, most importantly without requiring

any additional computational complexity. Second, APs demonstrated a

novel application in cooperative machine learning which holds the poten-

tial to not only accelerate the affect annotation process but also improve

the quality of the affect labels. Finally, the EAU model showed how to

holistically capture the affect predictive uncertainty and its significance in

improving the performance of downstream behavioural analysis tasks such

as apparent personality recognition.

7.1.2 On Label-Efficient Affect Recognition

Considering that the existing affect recognition models based on deep rep-

resentation learning require large amounts of affect labelled data, a novel

self-supervised pre-training method is proposed in this thesis. The pro-

posed pre-training method demonstrated how to leverage large amounts of

unlabelled data in order to reduce the label requirement for learning affect
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recognition models. In contrast to the existing self-supervised pre-training

methods which heavily rely on generic representation learning priors, the

method introduced in Chapter 6 proposed to apply affect-specific represen-

tation learning priors. To this end, hand-crafted emotion features of face

and voice data were exploited as task-specific representation learning pri-

ors and a novel clustering-based self-supervised proxy task was introduced,

dubbed as CHeF - Clustering Hand-engineered Emotion Features. Af-

fect recognition models based on the proposed CHeF pre-training method,

demonstrated considerably better label-efficiency than the commonly used

pre-training techniques in the existing affect recognition methods. Most

importantly, using as few as 10% of the labelled training data, the pro-

posed CHeF framework showed promising emotion recognition results, on

par with the pre-training baselines that require large amounts of labelled

data from different emotion recognition corpora.

In summary, this thesis presented novel uncertainty-aware and label-efficient

machine learning approaches that (a). account for the label-ambiguity

problem of affect recognition tasks and (b). require fewer labelled exam-

ples for training respectively. A potential future direction is to integrate

both these advancements, label-efficient feature encoders and probabilis-

tic temporal models, into a single affect recognition model for improved

reliability and recognition performance.
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Appendix A

COLD Fusion: Network

Architectures and

Optimisation Details

A.0.1 Network Architectures

Visual CNN Backbone. EmoFAN [Yang et al., 2020], a 2D CNN pro-

posed recently for facial feature extraction, is proved highly efficient by

building on hour-glass-based network architectures. This CNN backbone,

as illustrated in Figure B.2, when pretrained on 2D face alignment task,

has been found very efficient for transfer learning tasks [Toisoul et al., 2021,

Ntinou et al., 2021]. This work uses its pretrained model1 on image-based

emotion recognition on the AffectNet dataset [Mollahosseini et al., 2017].

Using this backbone, a 512D feature vector is extracted per frame.

Audio CNN Backbone. For speech feature extraction a 2D CNN back-

1Pretrained models of Toisoul et al. [Toisoul et al., 2021] are available at
https://github.com/face-analysis/emonet
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bone is used, which was originally proposed in [Chen et al., 2019] for audio

features in an end-to-end fashion. This backbone based on a VGGish [Her-

shey et al., 2017] pre-trained module is applied to 2D Mel-spectrograms

that are derived by setting the hop size and window length values to 0.1 s

and 1 s respectively. Similar to [Chen et al., 2019], only the last two fully

connected layers of this VGGish module are fine-tuned. To differentiate

the interlocutor’s information from that of the target speaker, the feature

dimensionality-doubling technique [Chen et al., 2017] is adopted.

Temporal Networks are stacked on top of the unimodal CNN backbones

to model the temporal dynamics and integrate the multimodal affect in-

formation. Note that all the fusion models evaluated in this work follow

different temporal network implementations. However, all the temporal

networks have the following GRU block in common: a 2-layer bidirectional

GRU module followed by a fully connected (FC) output layer. This GRU

block contains 256 hidden units with the dropout value set to 0.5. The

number of GRU blocks and their input-output dimensionality vary across

different fusion models, as discussed below.

In feature fusion, a single GRU+FC block is used to process the input

feature sequence that is prepared via frame-wise concatenation of the uni-

modal embeddings, whereas, in the prediction fusion, different unimodal

temporal models (GRU+FC) are applied separately, and their output soft-

max label distributions are aggregated into the final predictions. The con-

text fusion implementation has two different GRU blocks, but a common

FC layer. As shown in Figure 3.2, COLD fusion is similar to the context

fusion, but with the GRU block’s output layer modified to predict the mean

and variance vectors. Note that the unimodal output branches are trained

simultaneously along with the fusion branch in all the multimodal models

(see Figure 3.2).
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Data Augmentation. Strong data augmentation techniques are applied

to the audiovisual inputs to minimise the overfitting problem. It is impor-

tant to note that under heavy overfitting, the COLD loss function (Equa-

tion (3.6)) may collapse, since the calibration and ordinality constraints

rely on the prediction errors of the training instances. For face image data

augmentation, the following techniques are used: horizontal flipping with

the probability set to 0.5, random scaling by a factor of 0.25, random trans-

lation by +/- 30 pixels, and random rotation by 30◦. In the audio case,

SpecAugment [Park et al., 2019] is applied, which directly augments the 2D

spectrogram itself, instead of its original 1D waveform. Here, the standard

SpecAugment operations are applied: time warping, frequency masking

and time masking, with their order defined arbitrarily. The parameters2 of

time warping (ω), frequency masking (f), and time masking (t) are chosen

from different uniform distributions in the range [0, 50], [0,27], and [0,40]

respectively.

A.0.2 Optimisation Details

Input sequences of 30 seconds duration with per-frame targets are used.

The visual and audio backbones and all the fusion models are trained us-

ing the Adam optimiser [Kingma and Ba, 2014] by jointly minimising the

CCC loss [Kossaifi et al., 2020] and mean squared error for the regression

task and class-weighted cross-entropy loss for the classification task. The

batch size, learning rate, and weight decay values chosen for training all

these models are 4, 5e-3, and 1e-4, respectively. For tuning the learning

rate, Cosine annealing coupled with warm restarts [Loshchilov and Hutter,

2016] is used with the number of epochs for the first restart set to 1 and

2ω – warping length, f – number of consecutive mel frequency channels masked, t –
number of consecutive time steps masked
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the multiplication factor set to 2. The hyper-parameter values in the loss

function (Eq. 3.6) are tuned on the logarithmic scale in the range [1e-5,

1e+5] using RayTune [Liaw et al., 2018]. Based on the best validation set

performance, the following values are found to be optimal: 1e-3 for λCOV
,

λCOA
and λCOAV

, and 1e-4 for λR.
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Appendix B

Affective Processes: Datasets,

Network Architectures,

Backbones and Baselines

B.0.1 Datasets

Datasets To evaluate APs on visual dimensional affect recognition task,

in addition to the AVEC 2019 CES [Ringeval et al., 2019] corpus, this

work used an in-the-wild video dataset annotated with valence and arousal

dimensions: basic SEWA [Kossaifi et al., 2019]. For audio-only and audio-

visual affect recognition tasks, the AVEC 2019 CES dataset is used, similar

to the COLD fusion.

SEWA [Kossaifi et al., 2019] basic dataset1 contains 538 short (10s-30s)

videos collected from 398 subjects of six different cultures. All the record-

ings are annotated with valence and arousal ratings by five different raters

at 50 frames per second. This work used the same training, validation and

1https://db.sewaproject.eu/

219



test sets, containing 431, 53, and 53 videos respectively, 2 that were used

in [Kossaifi et al., 2020].

AVEC’19 CES Corpus [Ringeval et al., 2019] is used for the audio-only

and audio-visual emotion recognition experiments. This dataset is designed

for cross-cultural in-the-wild affect recognition tasks by capturing audio-

visual recordings of interactions between pairs of individuals from German,

Hungarian and Chinese cultures. It provides 64 videos for training and

32 audio-visual recordings for validation (both from German and Hungar-

ian cultures), with the video streams recorded at 50 FPS, the audio data

recorded at 48 kHZ and the ratings of valence and arousal annotated at

10 FPS. As the labels of test sets and Chinese culture are not publicly

available, the evaluation results are reported only on the validation set.

B.0.2 Network Architectures

Backbone Models and Baselines

Different unimodal and multimodal backbones are trained for the dimen-

sional affect recognition. Note that all the backbone models are trained

using ground truth labels as the targets, and the predictions from these

backbones are referred to as proxy labels.

Visual Backbones. For visual dimensional affect recognition on SEWA,

two different static CNNs are used: ResNet-50 [He et al., 2016] and Emo-

FAN [Bulat and Tzimiropoulos, 2017, Ntinou et al., 2021, Toisoul et al.,

2021]. By training and evaluating different visual AP models using these

two backbones, this work aims to verify the generality of APs effectiveness

regardless of the underlying backbone model complexity.

2The partition details are kindly provided by the database owners.
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Figure B.1: Visual AP network (Nt and Nc denote the number of target
and context frames respectively, and Xd and Yd denote the dimensionality
of features and labels respectively).
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ResNet-50 [He et al., 2016] pre-trained on VGG-Face database [Parkhi

et al., 2015] is extensively used for facial feature extraction in the exist-

ing temporal affect recognition models [Kollias et al., 2017, Kumar et al.,

2018a]. In this implementation, its last convolution layer output feature

maps are flattened into a 512 dimensional feature embedding. These fea-

tures are fed into a 3-layer FC network (with 256 hidden units and 2 output

units) to output the proxy labels.

EmoFAN backbone [Toisoul et al., 2021, Ntinou et al., 2021, Yang et al.,

2020] comprises a feature extraction module designed for fine-grained fa-

cial analysis through pre-training on 2D face alignment task. As shown in

Figure B.2, it includes a dimensional affect head composed of only convo-

lutional layers for producing the dimensional affect predictions and image

feature embeddings. To further improve the quality of facial features, this

backbone is initialised with the weights of a model pre-trained3 on Affect-

Net dataset [Mollahosseini et al., 2017].

Audio Backbones. In the AVEC19 CES, deep representation learning

methods [Chen et al., 2019] demonstrated significantly better performance

than the hand-crafted features [Ringeval et al., 2019]. Hence, this work

adopted the audio feature learning method proposed in [Chen et al., 2019]

for evaluating the SPR-NP model. In this method, 128-dimensional fea-

tures are extracted by applying VGGish [Hershey et al., 2017] pre-trained

network to Mel-spectrogram images of the input audio signals (hop size and

window length values set to 0.1s and 1s respectively). To differentiate the

target speaker’s features from the interlocutor’s features, this work followed

dimensionality-doubling strategy proposed in [Chen et al., 2017]. Note that

while training this backbone model, only the last two fully connected layers

3Pretrained models of Toisoul et al [Toisoul et al., 2021] available at
https://github.com/face-analysis/emonet
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Figure B.2: EmoFAN backbone architecture [Toisoul et al., 2021, Ntinou
et al., 2021, Yang et al., 2020] used for visual dimensional affect estimation.

of the VGGish pre-trained network are fine-tuned.

Audio-Visual Backbones. The network architecture of the audio-

visual backbone is same as that of AVEC’19 CES challenge winners [Zhao

et al., 2019], except that this work used EmoFAN backbone for the visual

feature extraction. By following a simple uniformly weighted feature fusion

strategy, the concatenated image and audio features are fed into a temporal

regression model (a 3-layer GRU with 256 hidden units followed by one FC

output layer) to produce the proxy labels.

Deterministic Temporal Regression Baselines. Two standard tem-

poral models are trained on top of the EmoFAN backbone: a 2-layer

bidirectional GRU network (with 256 hidden units) and a 3-layer self-

attention [Vaswani et al., 2017] network with 16 multi-attention heads,

followed by an output FC layer.

Audio-Visual Fusion Baselines. Three standard audio-visual feature
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fusion baselines are evaluated in this work. First one uses uniformly weighted

fusion (same as in the audio-visual backbone), and the remaining two are

based on (a). globally weighted and (b). locally weighted fusion tech-

niques. In the former, per-sequence weight vectors are used for fusing the

audio and visual feature sequences, while the latter model uses per-frame

weight vectors. Here, the dimensionality of unimodal weight vectors is

same as that of their corresponding unimodal feature embeddings. To pre-

dict the weight vectors in both cases, first the unimodal feature sequences

are passed through two different 1-layer GRU blocks with 256 hidden units.

Per-sequence weight vectors are inferred by concatenating the last time step

hidden vectors of the audio and visual GRUs and feeding the resultant vec-

tor into an FC layer. To predict the per-frame weight vectors, all time

steps’ hidden vectors from the audio and visual GRUs are concatenated

and then passed through the same FC layer.

Multimodal Transformer. In addition to the above discussed instance-

level fusion models, based on pair-wise crossmodal self-attention proposed

in Tsai et al. [Tsai et al., 2019], a multimodal transformer is implemented as

an additional fusion baseline. An audio-visual version of this transformer4

is constructed by tailoring its original network architecture designed for

text, audio and visual modalities. In this implementation, similar to the

self-attention based deterministic temporal regression models, the network

is composed a 3-layer self-attention network with 16 heads followed by an

FC output layer.

4https://github.com/yaohungt/Multimodal-Transformer
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B.0.3 Training of Backbones and Baselines

Image and Audio Features. The visual backbone models provide

512 dimensional feature vectors as face image representations used in both

visual-only and audio-visual affect recognition tasks. To train the audio-

only and audio-visual affect recognition models on AVEC’19 CES corpus,

this work followed the same audio feature extraction method used by the

corresponding challenge winners [Zhao et al., 2019]. In the case of audio

data, the backbone model outputs a 256 dimensional feature vector per

audio frame. Note that the VGGish backbone applied to input audio frame

provides only a 128 dimensional vector, but the dimensionality doubling

strategy transforms it into 256 dimensional vector to indicate the presence

of interlocutor in the input audio frame.

Optimisation Details. All backbones and baselines are trained using

Adam optimizer [Kingma and Ba, 2014] to minimise the inverse Concor-

dance Correlation Coefficient (CCC) loss (1.0 - CCC) is used in addition

to MSE [Kossaifi et al., 2020] for dimensional affect recognition. The vi-

sual backbones are trained on individual frames, with the batch size set to

32, and initial learning rate and weight decay values set to 1e-4 and 1e-5

respectively. When training the deterministic temporal baselines (BiGRUs

and self-attention) on top of the static visual backbones, frame sequences

are used as inputs with the sequence length set to 70 frames. Here, the

batch size is 8, the learning rate and weight decay values are 5e-5 and 1e-4

respectively.

To train the audio and audio-visual backbones, and different fusion base-

lines, input sequences of 20 seconds duration are prepared, with 200 frames.

The batch size, learning rate and weight decay values used for training all

these models are 4, 5e-4 and 1e-4 respectively. For tuning the learning rate
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in all different cases, Cosine annealing coupled with warm restarts [Loshchilov

and Hutter, 2016] is used with the number of epochs for the first restart

set to 1 and the multiplication factor set to 2. It is noticed that this warm

restart technique stabilises the model training and also minimises the hyper

parameter tuning iterations.
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Appendix C

A Holistic Uncertainty Model

of Temporal Affect: Datasets,

Evaluation Metrics, and

Backbone CNN

Implementation

C.0.1 Datasets

For Dimensional Emotion Recognition this work used SEWA [Kossaifi

et al., 2019], a large-scale continuous affect recognition dataset composed

of 538 videos (10s-30s) collected from 398 subjects of 6 different cultures.

Training, validation and test sets of SEWA contain 431, 53 and 53 videos

respectively1. Each video is annotated with per-frame valence and arousal

values in the range [-1, 1] at 50 frames per second.

1video ids of these sets were kindly provided by the dataset owners.

227



For Personality Traits Estimation, this work used ChaLearn [Ponce-

López et al., 2016, Escalera et al., 2017], an in-the-wild database containing

10,000 clips (with the total duration of 41.6 hours and 4.5M frames) sourced

from YouTube videos. Each clip contains only one subject and it is anno-

tated with per-sequence apparent Big Five personality traits: openness,

conscientiousness, extraversion, agreeableness, and neuroticism (OCEAN).

Each personality trait is annotated as a continuous value in the range [0,

1]. The standard train, validation and test partitions containing 6000, 2000

and 2000 videos respectively, were used.

C.0.2 Evaluation Metrics

For Dimensional Emotion Recognition this work used Lin’s Concor-

dance Correlation Coefficient (CCC) [Lawrence and Lin, 1989], a standard

evaluation metric used for measuring the agreement between ground truth

labels y∗ and model predictions yo.

CCC =
ρy∗yo .σy∗ .σyo

(µy∗ − µyo)2 + σy∗2 + σyo2
(C.1)

where ρy∗yo denotes the correlation coefficient between y∗ and yo, and

(µy∗ , µyo) and (σy∗ , σyo) denote the mean and standard deviation values

of y∗ and yo.

For Personality Recognition, following the existing works [Güçlütürk

et al., 2016, Wei et al., 2017, Song et al., 2021], three evaluation metrics

were used: Pearson’s Correlation Coefficient (PCC), Root Mean Square

Error (RMSE) and, mean Accuracy (Acc) [Ponce-López et al., 2016] for

each trait,

PCC =
cov(p∗, po)

σp∗σpo
(C.2)

228



RMSE =

√√√√ 1

N

N∑
i=1

(p∗ − po)2 (C.3)

Acc = 1− 1

N

N∑
i=1

|p∗ − po| (C.4)

where p∗ and po denote the ground truth and predicted values of a person-

ality trait, and N is the number of videos.

C.0.3 Backbone CNN for Face Image Feature Extrac-

tion

To extract low-dimensional features from face image sequences in both

emotion recognition and personality recognition tasks, this work used a

2D backbone CNN proposed in [Toisoul et al., 2021] which demonstrated

impressive generalisation performance on the emotion recognition task. Un-

like the commonly employed ResNet based backbones pretrained on VGG

Face dataset (face recognition task) [Kollias et al., 2019, Tellamekala and

Valstar, 2019], the backbone CNN proposed in [Toisoul et al., 2021] ex-

ploits the facial features learned for 2D face alignment task through transfer

learning. For extracting facial features with better generalisation capacity,

this backbone CNN pretrained2 on AffectNet dataset [Mollahosseini et al.,

2017] was used for emotion recognition from static face images. The back-

bone CNN was fine tuned along with the other modules of emotion recog-

nition and personality recognition. This model takes as input a 2D face

image of dimensions 256x256x3 and outputs a 1D embedding of dimensions

256x1. During training, the following augmentations were applied: random

2Pretrained models of Toisoul et al [Toisoul et al., 2021] available at
https://github.com/face-analysis/emonet
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translation by +/- 20 pixels, random rotation by 30o, random scaling by a

factor of 0.25, and horizontal flipping with a probability of 0.5.
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Appendix D

CHEF Experiments: Datasets,

Network Architectures,

Backbones and Baselines

D.0.1 Network Architectures

Visual CNN Feature Encoder Network is implemented based on the

model of EmoFAN [Toisoul et al., 2021, Sanchez et al., 2021], a 2D CNN

designed for facial feature extraction using only convolution layers. In this

work, a pre-training baseline of this model trained on 2D face alignment

tasks included as a baseline. An additional pre-training baseline of Emo-

FAN is also considered, in which the model is pre-trained on image-based

emotion recognition using the AffectNet dataset [Mollahosseini et al., 2017].

Following prior works [Toisoul et al., 2021, Sanchez et al., 2021], this work

also modifies the EmoFAN output layer in order to extract 512-dimensional

facial embedding vectors.

Audio CNN Feature Encoder Network is implemented by adopting a
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deep acoustic feature learning method originally proposed in [Chen et al.,

2019]. This network is based on a 2D CNN model, dubbed as VGGish [Her-

shey et al., 2017] network, which operates on the 2D Mel-spectrogram im-

ages of the input audio signals (hop size and window length values set to 0.1s

and 1s respectively). Given the Mel-spectrogram image of an audio segment

as input, this encoder outputs a 128-dimensional feature vector. To differ-

entiate the target speaker’s features from the interlocutor’s features, this

work followed dimensionality-doubling strategy proposed in [Chen et al.,

2017]. Similar to the 2D face alignment and AffectNet pre-training base-

lines of the visual CNN model, two baselines of this network are included

in the experimental analysis. These baselines are pre-trained using the au-

dio event recognition on the AudioSet corpus [Gemmeke et al., 2017] and

speech emotion recognition on the IEMOCAP datasets.

D.0.2 Downstream Task Evaluation of the SSL Pre-

Trained CNN Encoders

Dimensional Emotion Recognition Datasets. For evaluating the SSL-

pretrained visual and audio CNN encoders on unimodal emotion recogni-

tion tasks, this work used two benchmark in-the-wild datasets, SEWA [Kos-

saifi et al., 2019] and the AVEC’19 Cross-cultural Emotion Sub-Challenge

(CES) [Ringeval et al., 2019], respectively.

SEWA data was collected during computer-based naturalistic dyadic in-

teractions and contains 538 face videos of 398 subjects from 6 different

cultures. Each video is annotated with per-frame continuous-valued va-

lence and arousal annotations in the range of -1 to 1 at 50 frames per

second (FPS). The numbers of videos used for training, validation, and
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testing1 are 431, 53, and 53, respectively, with the duration in the range of

10 s to 30 s.

AVEC’19 CES Corpus provides the audio recordings of interactions be-

tween pairs of individuals from German, Hungarian and Chinese cultures.

As the labels of test sets and Chinese culture are not publicly available,

this work used the German and Hungarian training and validation sets. It

contains 64 videos for training, and 32 videos for validation, with a total

duration of roughly 160 minutes and 65 minutes, respectively. Audio data

is recorded at 48 kHZ and the ratings of valence and arousal are presented

at 10 FPS. Liking dimension of this dataset is not used in this work as the

liking recognition typically needs linguistic features that are explicitly de-

rived [Ringeval et al., 2018], whereas the focus is only on the audio-modality

here.

Network Architecture for Emotion Recognition. Here, the evalua-

tion focuses on unimodal temporal emotion recognition, a 3-layer BiGRU-

RNN with 256 hidden units and a fully connected output layer are included

on top of the SSL pre-trained CNN feature encoder for sequential predic-

tion. Given a sequence of face images or Mel-spectrogram images as input,

first the CNN extracts per-frame embedding vectors, which are sequen-

tially processed by the BiGRU-RNN module to predict per-frame valence

and arousal values. Note that both these modules, CNN and BiGRU-RNN,

are trained in an end-to-end manner, using the ground truth emotion labels

for supervision.

Evaluation Metric. Lin’s Concordance Correlation Coefficient (CCC) [Lawrence

and Lin, 1989] is used to measure the the agreement between the predicted

1The details of the train, validation, and test partitions were kindly provided by the
database owners.
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emotions yo and their ground truth labels y∗

CCC =
ρy∗yo .σy∗ .σyo

(µy∗ − µyo)2 + σy∗2 + σyo2
, (D.1)

where ρy∗yo denotes the Pearson’s coefficient of correlation between y∗ and

yo, and (µy∗ , µyo) and (σy∗ , σyo) denote their mean and standard deviation

values, respectively.

Optimisation Details. To train all the emotion recognition models, a

hybrid loss function is used here, L = LMSE + LiCCC where LiCCC =

1 − CCC(Ygt, Ypred) and LMSE is the mean square error between Ygt and

Ypred. The dropout values in the BiGRU-RNN and the final FC layers

are set to 0.5 and 0.25, respectively, and L2 regularisation is applied by

setting the weight decay value to 1e-4. Each mini-batch is composed of 4

sequences, with each sequence containing 100 frames. The initial learning

rate value is 1e-4, and it is tuned using a cosine annealing based scheduler

with warm restarts enabled [Loshchilov and Hutter, 2016].
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