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Abstract

This thesis contains an analysis of the problem of time in quantum cosmology
and its application to a cosmological minisuperspace model. In the first part, we
introduce the problem of time and the theoretical foundations of minisuperspace
models. In the second part, we focus on a specific minisuperspace universe, analyse
it classically, and quantise it using the canonical quantisation method. The chosen
model is a flat FLRW universe with a free massless scalar field and a perfect
fluid. We explain how different types of perfect fluid can be accommodated in
our model. We extract the Wheeler–DeWitt equation, and calculate its solutions.
There are three dynamical variables that may be used as clock parameters, namely
a coordinate t conjugated to the perfect fluid mass, the massless scalar field ϕ,
and v, a positive power of the scale factor. We define three quantum theories,
each one based on assuming one of the previous dynamical quantities as the clock.
This quantisation method is then compared with the Dirac quantisation. We find
that, in each quantisation procedure, covariance is broken, leading to inequivalent
quantum theories. In the third part, the properties of each theory are analysed.
Unitarity of each theory is implemented by adding a boundary condition on the
allowed states. The solutions to the boundary conditions are calculated and their
properties are listed. Requiring unitarity is what breaks general covariance in the
quantum theory. In the fourth part, we study the numerical properties of the wave
functions in the three theories, paying special attention to singularity resolution
and other divergences from the classical theory. The t-clock theory is able to
resolve the singularity, the ϕ-clock theory presents some non trivial dynamics that
can be associated with a resolution of spatial infinity, and the v-clock theory does
not show significant deviations from the classical theory. In the last part, we
expand our analysis in order to include another quantisation method: path integral
quantisation, and finally, we conclude.
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Part I.

Foundations of quantum
gravity and quantum cosmology



1. Notation and outline

This thesis is a comprehensive analysis of the problem of time in a concrete minisu-
perspace example. Here, we present the principal assumptions and meaning of the
mathematical notation used throughout the thesis. The reader can come back here to
remind themselves of the general notation. The presentation order is roughly the same
order in which the quantities are introduced in the thesis.
We use the sign convention (−,+,+,+) and we assume the speed of light c is 1. The

abbreviations used in the thesis are:

• SR: special relativity.

• GR: general relativity.

• QM: quantum mechanics.

• LQG, LQC: loop quantum gravity, loop quantum cosmology.

Next we present a mostly exhaustive list of the main symbols used. We tried our best
to not repeat a same symbol for different quantities, but there are only so many letters
in the Greek and Latin alphabet.

• gab, gab,
√
−g: general relativity metric, inverse metric and determinant. We use

the units convention for which the metric is dimensionless.

• S: classical action.

• R: Ricci scalar.

• K: Extrinsic curvature.

• κ = 8πG where G is the gravitational constant.

• φ, ϕ: free massless scalar field.

• Gijkl: superspace metric.

• ρ, m, p, w: perfect isentropic fluid energy density, pressure, mass and parameter
in the state equation.

• Ja: perfect isentropic fluid flux.

• αa, βa, ϑ: isentropic perfect fluid action Lagrange multipliers.
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• N , N i: lapse function and shift vector.

• M = Σ× R: usual representation of the spacetime manifold.

• hij , V0 =
∫

Σ dx3
√
h: space metric and volume.

• Λ, λ: cosmological constant or perfect fluid mass.

• H, C: Hamiltonian and Hamiltonian constraint.

• πx: conjugated momentum of the variable x.

• v ∝ a
3(1−w)

1−w will usually be referred as “volume” for short in an abuse of language.

• τ , t: coordinate time in the metric and conjugated variable to λ.

• {·, ·}: Poisson braket.

• O: Dirac observable.

• �: Laplace–Beltrami operator.

• Ψ, Φ: quantum wave functions.

• k: quantum conjugated momentum to ϕ.

• Jy(x), Ky(x), Iy(x): ordinary and modified Bessel functions.

• u = log
(
v
v0

)
where v0 is a constant used for dimensional reasons.

• 〈·|·〉: quantum inner product. The mathematical expression of the inner product
varies from theory to theory.

• α(k, λ), β(k, λ), γ(k, λ), ε(k, λ) are parameters of the wave functions Ψ and Φ.
When considering semiclassical states, the underscore sc will be added to these
parameters

• θ(k), ϑ(λ) and κ0(λ) are self-adjoint extension parameters of the different theories.

• Hkin, Hphys: kinematical and physical Hilbert space.

• Ĥ, Ĝ and F̂ are the operators that specify time evolution through a Schrödinger
or a Klein–Gordon equation in each of the theories.

• δ(x0 − x): Dirac delta distribution. δ(x0 − x) =∞ when x = x0.

• δab: Kronecker delta.

• 〈x〉Ψ = 〈Ψ|x |Ψ〉 corresponds to the expectation value of the quantity x with
respect to the state Ψ.

• σx, σ2
x: standard deviation and variance of the variable x.

• ψ(x): digamma function.
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• γ: Euler-Mascheroni constant.

• Ξv, Ξv2 , ε: cutoffs.

• DX: Functional differential of the functional X.

• δX: functional variation of the quantity X.

• %: gauge fixing of the lapse derivative in the path integral quantisation.

• Π: Lagrange multiplier of the path integral quantisation.

• ε(τ): infinitesimal coordinate transformation parameter. For the gauge fixing of
the path integral quantisation it will be replaced by the anticommuting ghost
fields ωc(τ).

• c̄, c, p, p̄: other anticommuting ghosts fields.

In general, a mathematical quantity with hats represents the quantisation of the
equivalent classical quantity. The meaning of quantisation will be specified in a case by
case basis.
This work is divided in five parts. In the first part we present an analysis of the current

landscape of quantum gravity and quantum cosmology and the necessary prerequisites
for the rest of thesis. In the second part we introduce the model we want to analyse,
first classically and then we quantise it using the methods described in the introduction.
In the third part, we analyse the dynamics of the model using three different quantum
clocks. In part IV, we show numerical results that provide more evidence to the analysis
realised in the previous sections, and finally, in the last part, we present an alternative
way of interpreting our model and the general conclusions of this work.
This thesis is the result of the work produced in the scientific papers [1], [2] and an

essay [3]. In particular, the results presented in chapter 5, chapter 6, section 8.1 and
section 8.2 are based on [1], whereas section 4.3, chapter 7, and section 8.3 show the
results obtained in [2]. Other parts of the thesis, notably chapter 3 may bear resemblance
to both papers. It is impossible to present the results of [1] and [2] independently, as
they are very intertwined together. We instead try to convene their message in a clear
and logical order, expanding whenever possible the analysis already done. Chapter 9 is a
more speculative chapter based on still ongoing work. All the original work is presented
as such.



2. Introduction

2.1. Introduction to quantum gravity

2.1.1. The frontiers of physics

In 1900 Lord Kelvin delivered his famous lecture about the two “19th century clouds in
Physics”, subsequently written as a paper [4]. There, he points out the two principal
unresolved issues at the time. We will call them the light cloud and heat cloud for short.
The light cloud refers to the failure of the Michelson Morley experiment. Maxwell

had recognised light as an electromagnetic wave and it was thus believed that it needed
a propagation medium, called aether. The Earth would be embedded in the aether
fluid, and due to its motion around the Sun, the Earth and the aether would have a
relative motion with respect to each other, leading to differences in the light propagation
speed. The experiment failed to observe this speed change, complicating substantially
the properties such a medium should have.
The heat cloud deals with heat properties, more concretely it refers to the failure

of the equipartition theorem to describe certain situations where quantum effects were
later found to be non negligible. For example, at low temperatures, the heat capacity
of a solid was lower than expected, and black body radiation was incorrectly modelled,
leading to the so called “ultraviolet catastrophe”.
The resolution of the first cloud came with the development of the theory of special

relativity (SR) by Albert Einstein [5], whereas the second cloud would lead to the
birth of the theory of quantum mechanics (QM) whose father is often considered to
be Max Planck [6]. Coming back to the light cloud, SR states that the speed of light
is always the same in all reference frames. However, if the speed of light is constant,
then time associated with the different reference frames has to be relative. The theory
was expanded to the general relativity theory (GR) [7], [8]. The geometry of space and
time is entangled and represented by a four dimensional Lorentzian manifoldM, called
spacetime, with metric gµν . Einstein’s equations can be derived from the variation of
the Einstein–Hilbert action [9]

SEH =
1

2κ

∫
M

d4xR
√
−g , (2.1)

where κ = 8πG where G is the Newtonian gravitational constant, R is the Ricci scalar
and
√
−g is the determinant of the metric. For manifolds that have a boundary, it is
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necessary to add the Gibbons–Hawking–York boundary term [10]

− 1

κ

∫
∂M

d3x
√
hK , (2.2)

where K is the extrinsic curvature trace and
√
h the determinant of the metric at the

boundary.
The theory of GR explains the motion of slow and fast bodies under strong grav-

itational fields and has been thoroughly tested. The theory has a very vast range of
applications, ranging from solar system dynamics to the interaction between neighbour-
ing galaxies. Some examples of GR successes at different scales are the prediction of
Mercury’s perihelion precession [11], pulsar dynamics [12], and gravitational lensing of
galaxies. Even given the success of GR, there have been many attempts to modify the
theory only relying on classical physics, leading to a very wide family of theories often
referred as modified gravity theories [13].
The theory of GR predicts the existence of extreme objects, like black holes, intro-

duced first by Schwarzschild as early as 1916 [14]. Since their first theoretical postu-
lation, black holes have been a major subject of research. The first black holes to be
discovered were stellar mass black holes, like Cygnus-X, the first one to be identified
in 1971 [15]. Perhaps the ultimate confirmation test of GR is the direct observation
of gravitational waves from black hole merging coming from the LIGO–Virgo–KAGRA
collaborations [16]. The data provided by these collaborations has set strong constraints
for theories of modified gravity coming from the ringdown of the gravitational waves
[17], or the difference between gravitational wave detection and gamma rays detection
(in the case of a neutron star merger) [18], for example.
However, there are other categories of black holes, like supermassive black holes that

inhabit the centre of galaxies. The first quasars (quasi stellar objects), galaxies with
an active supermassive black hole in their centre, were identified in the sixties [19], and
strong indirect evidence of the presence of a supermassive black hole in the centre of our
galaxy, Sagittarius A*, was found in 1998 [20]. The first pictures of two supermassive
black holes, M87* (located at the centre of the galaxy M87) and Sagittarius A* were
taken by the Event Horizon Telescope [21], setting a landmark for the study of black
holes and GR. These observations set more constraints for theories of modified gravity
[22].
It seems that so far GR has been a success story, and that the theory is capable to

make accurate predictions even in the most extreme environments. However, there are
a couple of mysteries surrounding black holes. Mathematically, these objects have a
mass M concentrated in one point in spacetime; the metric gµν becomes singular. This
singularity is often signalled by divergent tensorial quantities. Singularities, and in gen-
eral divergent quantities, are a hint that a theory breaks down in certain regimes and
should therefore be completed by another theory. In the black hole case, the singularity
comes with an event horizon. While a rigorous definition of an event horizon would
require pages of mathematical formalism, the pedestrian definition works fine for the
purposes of this introduction. In short, the event horizon is a region surrounding the
singularity such that all matter and light that has the misfortune of “falling in” is lost
forever for an outside observer. The event horizon effectively divides spacetime in two
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regions: a singularity-free region, where we live, and a region that contains the singu-
larity, and in which predictability is lost, among many other unpleasant consequences.
The event horizon protects us from the singularities of black holes, as they are effectively
unreachable for us (if we reach them we cannot come back).
The singularity of black holes may be viewed an indicator that GR is not a complete

theory. Copying Lord Kelvin’s terminology, singularities in GR may be one of the 21st

century clouds in physics. Cherry on top, there are other types of even more challenging
singularities. These singularities arise from the study of cosmological spacetimes. GR
has been used to describe not only the spacetime around a massive object, but the
universe as a whole. It is assumed that to a certain scale, the universe is homogenous
and isotropic. These two assumptions together are often referred as the cosmological
principle. The content of the universe is supposed to be same everywhere (homogeneity),
and there should be no preferred direction (isotropy). A solution to Einstein equation
which is both isotropic and homogeneous is the Friedmann–Lemaître–Robertson–Walker
(FLRW) family of metrics. The line element ds2 of such metrics is usually represented
as:

ds2 = −N(τ)2dτ2 + a(τ)2hijdx
idxj , (2.3)

where hij is an euclidean three metric whose coordinates not depend on τ and xi (i =
1, 2, 3) are the spatial coordinates. τ is the time coordinate, the parameter a is called
scale factor and N the lapse function. We will come back to the lapse function later.
The metric hij has constant curvature. These universes have been largely studied and
provide a very good approximation for our own universe. Some generalisations to the
FLRW metrics are the anisotropic and homogeneous Kantowski–Sachs models [23] of
metric

ds2 = −N(τ)2dτ2 + a(τ)2dr2 + b(τ)2(dθ2 + sin2 θdϕ2) . (2.4)

The presence of two scale factors a and b breaks isotropy. There are other more com-
plicated models like the Bianchi models. They are named after Bianchi’s classification
of 3 dimensional Lie algebras. Bianchi universes are homogenous cosmologies with a 3
dimensional group of isometries. Their line element can be written as:

ds2 = −N(τ)2dτ2 + hij(τ)ui ⊗ uj , (2.5)

where ui are the invariant one-forms associated with the given isometry group. The
simplest Bianchi universe is Bianchi I, whose isometry group is R3. Its line element is

ds2 = −N(τ)2dτ2 + a(τ)2dx2 + b(τ)2dy2 + c(τ)2dz2 , (2.6)

where now we have 3 scale factors a, b and c. The most complicated (and interesting)
Bianchi model is Bianchi IX, that is associated with SO(3) symmetry. The one forms
ui can be written as:

u1 = − sinψdθ + sin θ cosψdϕ ,

u2 = cosψdθ + sin θ sinψdϕ , (2.7)

u3 = cos θdϕ+ dψ

where, ϕ, θ and ψ are Euler angles on the sphere.
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Most cosmological models share a common feature: a big bang and/or big crunch
singularity. In most cases, this singularity is signalled by a vanishing scale factor,
meaning that all matter in the universe is condensed in a single point in space. The
terminology big bang1 vs big crunch describe whether the singularity lies in the past
vs in the future of an observer. In fact, it has been demonstrated that under very
generic conditions cosmological models present an initial big bang singularity [24]. This
singularity is naked, i.e it has no event horizon to protect us from itself. The discovery
of the cosmic microwave background (CMB) points out that indeed, the universe seems
to have emerged from a very dense state and then expanded to what we observe today.
The latest data suggests a flat universe with several perfect fluids: matter (which most
of it is non-relativistic dark matter), radiation, and a cosmological constant Λ, ΛCDM,
that originated from a very condensed and warm state [25].
We may think that the presence of singularities in such extreme environments is no

coincidence. It is believed that quantum effects are supposed to play an important rôle,
and therefore one should try to include them in the theory of quantum gravity. The
19th century light cloud has been replaced with the unavoidable presence of singularities
in GR, one of the frontiers of physics today.
However, to understand better why a quantum theory of gravity might be the answer

to the classical singularities, we need to introduce the solution of Lord Kelvin’s heat
cloud, i.e. the theory of quantum mechanics. Max Planck was the first to propose that
the electromagnetic energy was quantised in “quantas” each having an energy E of

E = hν , (2.8)

where ν is the frequency of each and h is the now called Planck constant [6]. The
existence of a “light particle” (the photon) was theorised by Einstein and earned him a
Nobel prize for explaining the photoelectric effect [26]. Quantisation of the energy of a
system was a solution for most failures of the equipartition theorem, in particular the
ultraviolet catastrophe in the black body heat spectrum.
The theory of QM was developed by many talented people. Erwin Schrödinger intro-

duced the “wave formalism” of QM, and he is considered the father of wave mechanics.
His famous equation, the Schrödinger equation, may be written as

Ĥψ(t) = i~
∂

∂t
ψ(t) , (2.9)

where ψ(t) is a wave function that describes the system, Ĥ is a differential operator,
the Hamiltonian of the system, and ~ is the reduced Planck constant ~ = h

2π . Werner
Heisenberg developed an approach based on matrix operators, that turned out to be
equivalent to the wave function formalism. The nature of the theory is probabilistic,
the wave function ψ representing the probability measure of the system. Paul Dirac
found out the similarities between classical and quantum theories comparing Poisson
brackets and Dirac brackets [27] and formalised the notion of Hilbert space. The first
complete rigorous description of QM is attributed to John von Neumann [28].

1The word big bang was first coiled as a mocking term, because people believed that the universe
must have been static and therefore eternal. Expanding universes and the presence of a “beginning
of time” were (and are still) very unsettling.
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Needless to say, QM was not only a revolution in physics but also a philosophical
revolution. GR challenges the notion of time and space, but QM defies determinism and
the existence of our own reality. We recap briefly the postulates of QM. We assume the
reader is familiar with the braket notation. We will use this notation for the postulates
and throughout the thesis.

1. The state of an isolated quantum system is represented by a unitary state vector
|ψ〉, belonging to a Hilbert space H , the state space. If the system were to
be composite, the resulting Hilbert space would be the tensor product of the
individual state spaces.

2. Observables are self-adjoint operators acting on the Hilbert space H . Measure-
ments of an observable O on a state ψ always result in an eigenvalue of O, let’s
say o. After a measurement, the state |ψ〉 collapses into the subspace of eigen-
vectors of eigenvalue o. The collapse of the wave function is highly debated, but
unfortunately, we do not have time to focus on this issue of QM.

3. Evolution of a state vector is governed by the Schrödinger equation (2.9) where Ĥ
is a self-adjoint operator. In other words, the evolution of a state can be described
by a unitary transformation:

|ψ(t)〉 = Û |ψ(t0)〉 , (2.10)

where |ψ(t0)〉 is the initial state at time t0, and Û = e−it
Ĥ
~ is the time evolution

operator.

These postulates are of major importance, and we will come back to them. Despite its
philosophically challenging nature, the theory of QM was also an amazing success and
its applications lead to great breakthroughs in atomic physics.
However, to fully understand subatomic physics, or environments in which particles

are not only subject to quantum mechanics, but also have relativistic speeds, we need
another theory. The theory of quantum field theory (QFT) fills this gap. We can
describe QFT as a theory combining classical field theory with quantum mechanics and
special relativity. The major success of QFT is the theory of the standard model of
particle physics, that explains the electromagnetic, weak and strong interactions, see
[29] (and references therein). The standard model, like GR, has been thoroughly tested
and is a very successful theory. However, a few discrepancies signal that this theory
may also be incomplete. For example, the tension over the magnetic momentum of the
muon has been getting bigger recently [30], and evidence against lepton universality has
been discovered [31].
In addition to that, the biggest flaw in the standard model may be the incapacity to

include gravity. The standard model explains the electro-magnetic, the strong and the
weak forces with the exchange of bosons. When trying to apply the same technique and
include a new boson carrier of the gravitational force, the graviton, the theory becomes
perturbatively non-renormalisable. The presence of divergent integrals in QFT is a
common feature (see any QFT book, for example [32]). The different methods for
tackling these infinite quantities, usually referred as renormalisation and regularisation,
are very interesting and would lead to enough material for another PhD thesis. We
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will point only the implications for our work. The standard model is considered to be
a renormalisable theory: with the addition of a finite number of extra terms (called
counter terms), the infinite quantities can be made finite. The theory of the standard
model+graviton is perturbatively non-renormalisable: we would need an infinite amount
of counter terms to cancel the infinite integrals [33], [34]. The non-renormalisability of a
quantum field theory including gravity is a sign that QFT is also an incomplete theory,
that fails to describe environment in which both quantum interaction and gravitational
interactions are strong. The heat cloud observed by Lord Kelvin has transformed into
the incompleteness of the standard model and QFT.
In conclusion, both GR and QFT signal their incompleteness by the presence of

infinities in the form of singularities and non-renormalisability. There have been many
attempts to get rid of these infinite quantities, coming from the particle physics side
and the more geometrical side of the spectrum; however physicists seem to agree on
the following: both theories are incomplete and therefore need to be expanded. We
hope that this non exhaustive list of the feats and failures of GR, QM and QFT has
convinced the reader of this necessity. Of particular interest for us, are the attempts
of finding a theory of quantum gravity, i.e. a theory that is neither GR nor QFT and
is able to describe environments in which both gravitational and quantum effects are
important. We will explore the different proposals for such a theory of quantum gravity
in the next section.

2.1.2. What is really quantum gravity?

The concept of quantum gravity is very slippery. There have been many attempts
to reconcile GR and QM in very diverse environments and coming from different ap-
proaches. For example, people have tried to incorporate an invariant length scale into
SR. This length scale would be important for stages of large energy. This approach
is called doubly special relativity (DSR) [35], [36]. DSR would be a limiting case of
a theory of quantum gravity, when gravity effects are less important in comparison to
velocities and energy.
There have also been efforts to expand the theory of general relativity using “new

physics”, most notably to introduce QFT, or effective field theory, in the analysis of black
holes. One of the first attempts to do this was done by Hawking, who derived the black
hole temperature [37]; black holes could now vanish due to quantum effects. This lead
to black hole information paradox: what happens with the information that has been
“swallowed” into a black hole? [38]. A series of non-singular bodies, called black hole
mimickers, have been proposed, mainly coming from effective approaches to quantum
gravity, see for example [39] (and references therein). None of these techniques are
conclusive yet, but there is great effort in trying to understand black hole singularities.
Yet another approach linked to effective field theories is the idea of applying asymp-

totic safety to gravity [40]. Asymptotic safety is a theoretical paradigm that can be
applied to any quantum field theory by extending it in the high energies regime. A
quantum field theory including gravity could be made renormalisable via asymptotic
safety by the presence of a nice enough ultraviolet fixed point. In this framework one
works with the coupling constants of the theory and analyse their variations at high
energies. For some examples to see how this can be applied to gravity see [34] (also for
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some criticism) and [41], for example.
All the previously mentioned techniques are very useful tools that have their range

of application, but they cannot be called a theory of quantum gravity, with perhaps
the exception of asymptotic safety. Indeed, asymptotic safety is often considered a
quantum theory of its own right, as it is a renormalisable quantum field theory that
can potentially include gravity. Nonetheless, we think that a theory of quantum gravity
should come with the existence of drastically different physics and interactions to get
rid of the black holes and big bang singularities. There are people that have attempted
to find a new theoretical framework that would allow for a theory of quantum gravity.
There are two main starting points that one can use to try to find a theory of quantum
gravity. One is to start form QFT and particle physics, we will call this the particle
physics perspective. The other one is to start with GR and modify it, we will call it the
geometrical perspective. The two principal candidates coming from these perspectives
are string theory [42] from particle physics perspective, and loop quantum gravity (LQG)
[43], from the geometrical perspective.
String theory assumes that particles can be obtained by different vibrational modes

on a one dimensional object, called string. We will not discuss this approach to quantum
gravity in much detail, but we wanted to mention it to have a more complete picture.
In popular science, string theory and LQG often appear to be opposed theories fighting
for the same spot, but they have slightly different goals. String theory is an attempt of
expanding the standard model to include gravitational interactions, and hence can be
considered a “theory of everything”, in the sense that all forces would be explained by
the same formalism. LQG, and any other theory coming from the geometrical perspec-
tive, does not look at the other forces or interactions, rather focuses on how classical
spacetime can be made a quantum object. The starting point is so different, that it is
almost impossible to give a meaningful comparison between the two approaches.
Besides the particle physicist approach to quantum gravity, the first geometrical ap-

proach, namely the Wheeler–DeWitt quantisation [44], [45], was developed in the sixties.
This is the quantisation scheme we will use in a cosmological toy model, and therefore
we present here the principal characteristics of this approach. We follow [46] for the
derivation of the equations. The first thing we have to do is to define GR in the so-called
canonical formulation: we split spacetime in one time direction τ and 3 space directions
xk, that are related with an euclidean metric hij , the metric induced on the spatial
hypersurface Σ defined by xk. This is possible in general if M is globally hyperbolic.
The line element in this decomposition is

ds2 = gµνdxµdxν = (−N2 +N iNi)dτ
2 + 2Nidτdxi + hijdx

idxj , (2.11)

where N(τ, xk) and N i(τ, xk) are the lapse function and shift vector. In general, one
can think of N as the difference between the coordinate time τ and the proper time
on curves normal to Σ. The shift vector measures how the normal changes from one
hypersurface to another. The coordinates are said to be commoving if N i = 0. Note
that we use hij to lower and raise space indices: N iNi = hijN

iN j and Ni = hijN
j .

The Einstein-Hilbert action with a cosmological constant is

S =
1

2κ

(∫
M

d4x
√
−g(R− 2Λ)− 2

∫
∂M

d3x
√
hK

)
. (2.12)
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In the canonical decomposition, the gravitational action (leaving the boundary term
out) can be written with a Lagrangian density

S =

∫
dτL =

1

2κ

∫
dτd3xN

√
h
{
KijK

ij −K2 + 3R− 2Λ
}
, (2.13)

where Kij is the extrinsic curvature, K = Ki
i , and 3R is the Ricci scalar of the 3

dimensional induced metric. Thus, one can define a Hamiltonian form for the action

S =

∫
dτd3x

{
π0Ṅ + πiṄi −NC −NiCi

}
, (2.14)

where the canonical momenta are defined as

π0 =
δL
δṄ

, πi =
δL
δṄi

. (2.15)

The constraints C and Ci are

C = 2κGijklπijπkl −
√
h

2κ
(3R− 2Λ) ,

Ci = −2πij;j , (2.16)

where the subindex ; j denotes the covariant derivative with respect to the 3-metric, the
momentum πij is the conjugated momentum to the 3-metric

πij =
δL
δḣij

= −
√
h

2κ
(Kij − hijK) , (2.17)

and the tensor Gijkl is known as the Wheeler–DeWitt metric and has expression

Gijkl =
1

2
h−1/2(hikhjl + hilhjk − hijhkl) . (2.18)

Variation with respect to N and N i yields to the constraints

C = 0, Ci = 0 , (2.19)

These constraints, respectively called the Hamiltonian and the diffeomorphism con-
straints, are a consequence of the diffeomorphism invariance of GR, that can be viewed
as a constrained system [47].
Let us now analyse the configuration space of GR. We are interested in the space of

three metrics on the spatial hypersurface, but modulo diffeomorphism invariance, in or-
der not to count several times the same configuration. This space is infinite dimensional
and can be loosely written as:

{hij(x)|x ∈ Σ}/Diff0(Σ) , (2.20)

where Diff0(Σ) are the diffeomorphisms connected to the identity. The infinite dimen-
sions come from the fact that the space accounts for the metrics over all points x ∈ Σ.
This space is denoted as superspace. The Wheeler–DeWitt metric is a metric on the
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superspace. If we label A,B ∈ {h11, h22, h33, h12, h13, h23}, i.e., as running over the
independent components of hij and write the Wheeler–DeWitt metric as

GAB = G(ij)(kl) . (2.21)

It can be seen that this metric has signature (−,+,+,+,+,+) regardless of the signa-
ture of the spacetime metric gµν .
To quantise this system, there are two main approaches, the canonical quantisation

and the path integral quantisation. Canonical quantisation consists in changing (2.19) to
operators applied on a Hilbert space, in everyday language “to put hats”. This implies
replacing the momenta π0, πi and πij by derivatives to find

ĈΨ = 0, ĈiΨ = 0 , (2.22)

where Ψ is the wave function of the universe. The quantum constraint Ĉi is easier
to deal with and encodes the covariance of Ψ under a coordinate change of hij [48].
The quantisation of the Hamiltonian constraint leads to the famous Wheeler–DeWitt
equation. This equation was first written as:

ĈΨ =

(
−2~2κGijkl

∂2

∂hij∂hkl
−
√
h

2κ
(3R− 2Λ)

)
Ψ = 0 . (2.23)

This comes from the replacement πij → i~ ∂
∂hij

in the first equality of (2.16). Note
that this is not a single equation, but rather one equation for every point x in Σ. The
operator Ĉ is an operator acting on the superspace. This quantisation leads to the
ordering problem. Indeed, while classically everything commutes, it is not clear which
differential operator we should use as a replacement for πij . The resulting quantum
theory depends on this choice. Our answer to this question is to use the following
ordering:

Gijklπijπkl −→ −
~2

√
−G

∂

∂hij

(
Gijkl
√
−G ∂

∂hkl

)
. (2.24)

Here
√
−G is the determinant of the metric Gijkl. The right-hand side corresponds to the

Laplace–Beltrami operator of the superspace metric. This choice makes the Wheeler–
DeWitt equation covariant under a coordinate change of the superspace metric [49].
We call this ordering the Hawking and Page ordering. The study of the solutions to
the Wheeler–DeWitt equation allows us to extract information about the possible wave
functions of a given universe. In this work, we analyse a cosmological model using
this approach to quantum gravity. Our model has a matter component, but matter
can be straightforwardly added to the action (2.13) and quantised in a similar fashion,
expanding Gijkl to include also the matter variables. See [46] for an example of such
construction with a massless scalar field. Although this quantisation scheme works
with symmetry-reduced models, The Wheeler–DeWitt quantisation is not well-defined
in the general case and its formulation remains formal today. This is why alternatives
formulations have been proposed.
An obvious one is the path integral quantisation. This quantisation method started

to be explored in the seventies [10b]. The idea behind it consists in expanding Feyn-
man QFT path integral representation to gravity. The path integral represents the
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probability amplitude to go from a universe with initial configuration in to the final
configuration f via a functional integral of the form:

〈gµν,f , φf |gµν,in, φin〉 =

∫
DgµνDφi . . . exp

[
iS(gµν , φi, φ̇i, . . . )

]
. (2.25)

Here φ represents the matter components of the universe in a very generic way and D
is called functional differential. Here we integrate over all the possible paths of gµν and
φi. We will devote an entire chapter (chapter 9) to the analysis of this quantisation
method. The path integral (2.25) can potentially be a very powerful calculation tool (as
the Feynman diagrams and Feynman rules testify), but it is a slippery object that is not
entirely well defined mathematically. In this 3+1 canonical decomposition of gravity,
the path integral quantisation may be written as an amplitude between initial and final
hypersurface configurations Σin and Σf

〈hij,f , φf ,Σf |hij,in, φin,Σin〉 =

∫
DgµνDφi . . . exp

[
iS(gµν , φi, φ̇i, . . . )

]
. (2.26)

The measure DgµνDφi is ill-defined, and there are other issues (like the oscillations of
the action S) that difficult the obtention of a workable theory of quantum gravity from
this quantisation scheme. However, this method can once again be applied to simplified
models.
Last but not least, we ought to mention LQG. This geometrical approach is closely

linked to the Wheeler–DeWitt approach we have briefly outlined. Indeed, the starting
point is the Einstein–Hilbert action and the constraint equations (2.16). As explained in
[43], work we follow for this introduction, the form of the constraints are non polynomial
in the metric hij and its associated momentum πij . This makes them very complicated
to handle mathematically, especially the Hamiltonian constraint. In order to simplify
the constraints, GR is treated as a gauge theory by introducing new variables in terms
of an SU(2) connection AIi and an su(2) potential EiI [50]. Here the uppercase letters
I, J etc refer to the internal SU(2) indices, whereas the lowercase letters refer to the
original spatial hypersurface indices. In these variables, the Hamiltonian density of GR
can be written as function of the connection and the potential

H(A,E) =

∫
Σ

dx3(NS +N iVi +N IGI) , (2.27)

where
GI = DiE

i
I , Vi = EjIF

I
ij , S =

1

2
εIJKE

i
IE

j
JF

K
ij , (2.28)

again where εIJK are the structure constants related with the SU(2) metric and F Iij =

2∂[iA
I
j] + εIJKA

J
i A

K
j is called the field strength. The notation D refers to the total (or

covariant) derivative. N and N i are the shift function and the lapse vector and N I is
the generator of gauge rotations. To obtain the equations of motion one now need to
impose three constraints:

GI = 0, Vi = 0, S = 0 , (2.29)

These constraints are often referred as the Gauss, vector and scalar constraints (which
explains the notation). The first one is new, and comes from the addition of the new
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variables, but the other two are the equivalent Hamiltonian and diffeomorphism con-
straints. This theory is equivalent to GR, but now the constraints are written in a
much simpler compact form. Now one can follow the canonical or path integral quan-
tisation on this theory, resulting in the quantum theory of LQG. However, instead of
directly quantising AIi and EiI , one smears them respectively around curves (or loops)
` parametrised by tI and surfaces S with test fields f I , resulting in the holonomies and
fluxes

h`(A) = P exp

[∫
`
d`iAIi t

I

]
, Ef,S =

∫
S

d2Sif
IEiI . (2.30)

One then proceeds to the introduction of abstract mathematical operators ĥ`(A) and
Êf,S as a base for the canonical quantisation. One can view the resulting theory as a
graph of links ` and vertices with intertwinners in. The details on this construction are
rather technical, so we leave them out, but we can say that LQG gives a very unique
vision of quantum spacetime. Several models like the Barrett–Crane model [51] and
the EPRL (Engel–Livine–Pereira–Rovelli) model [52] have been proposed from a path
integral representation of LQG. They are often referred as spinfoam models
There is no experimental proof that none of the main theories of quantum gravity

presented here, namely string theory, Wheeler–DeWitt quantisation, and LQG are the
definitive theory of quantum gravity. The problem of recovering GR as a “classical
limit” of these theories is still ongoing (the notion of classical limit in itself seems to
be a conceptually hard problem). Nonetheless, all theories have promising features and
applications. In the next section we discuss one of the many technical problems of the
Wheeler–DeWitt (and LQG) quantisation and its application to cosmology.

2.2. The problem of time in quantum gravity

Let us come back for a moment to the Wheeler–DeWitt equation (2.23). This is in
principle a nice second order partial differential equation. But on a closer look, a very
non-trivial question arises: How do we account for evolution in this equation? If we
come even further back, and we want to compare it with the Schrödinger equation
(2.9) there is a striking difference: whereas the left-hand side is conceptually the same,
the right-hand side is i~ ∂

∂tψ in the Schrödinger equation and 0 in the Wheeler–DeWitt
equation. In short, quantum mechanics relies on the existence of an external continuous
parameter t to account for time evolution, whereas such external variable does not exist
in the Wheeler–DeWitt quantisation of GR. The reason behind this is that in GR time
is a part of the spacetime manifold, and cannot be an external parameter. An equation
like the Wheeler–DeWitt equation (2.23) implies that Ψ is frozen, it cannot evolve. This
issue is known as the problem of time and it is a central question in quantum gravity
[53]–[55].
In our case, with our Wheeler–DeWitt equation, there are several strategies one can

attempt to give meaning to the evolution of the universe. They fall in three main
categories [53]:

1. Tempus ante quantum: We choose an internal degree of freedom to serve as clock
before quantisation. This usually involves solving the constraints classically and
quantise the remaining “true” degrees of freedom. One example of this procedure
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is the reduced phase space quantisation [56]. This approach involves breaking the
general covariance of GR at the classical level. Then, a question arise: which in-
ternal variable should we use? This is known as the multiple choice problem. The
resulting theories stemming from this choice are generally inequivalent. Another
early example of this procedure applied to a cosmological model can be found in
[57].

2. Tempus post quantum: We first obtain the Wheeler–DeWitt equation (or an equiv-
alent wave equation depending on the quantisation scheme) and choose one of the
internal degrees of freedom to serve as a clock. We then build a Hilbert space with
respect to the remaining variables. This approach is the one we will follow for our
thesis. Although the idea is similar to the reduced phase space quantisation, as
it involves choosing an internal parameter to be the clock, the execution is very
different. The multiple choice problem also applies here and this is what we will
try to analyse. An effective approach to the problem of time can be found in [58].
In this setting, there is a conjecture established by Gotay and Demaret in [59].
They postulate that the principal features of the quantum theories, such as singu-
larity resolution are inherited by the classical properties of the chosen clock. If the
clock is classically slow, i.e. reaches the singularity in a finite time, the resulting
quantum theory will need a reflecting boundary condition to ensure unitarity and
this will lead to singularity resolution. On the contrary, if the clock is fast, this
boundary will not be needed. We will verify and expand their conjecture.

3. Tempus nihil est : We first build a too large kinematical Hilbert space using all
the internal variables of the Wheeler–DeWitt equation, and this equation is then
used to find the true physical Hilbert space, where the wave function evolves.
This approach is known as Dirac quantisation. As observables are frozen in time,
dynamics must be expressed in a relational way. This implies taking observables
corresponding to the value of quantity A when quantity B takes a given value [60]–
[62]. We will also briefly analyse Dirac quantisation of our cosmological model.
Dirac quantisation, despite a priori looking better than the two other approaches
as no choice of clock needs to be made, is not as straightforward as it seems. The
way of obtaining a physical Hilbert space is complicated and requires an algebraic
procedure, like group averaging. Group averaging has to be implemented in a
case by case basis, see [63] for examples of this. Of particular interest is the work
of Höhn and collaborators [64], that presents a scheme for which one can change
relational clocks in the Dirac quantisation scheme.

Note that LQG also has a Hamiltonian (also named scalar) operator coming from (2.29),
hence also presents the same issues, at least in the canonical quantisation scheme.
The problem of time rises many questions: should we choose an internal variable to

serve as clock? Then which one? Should we choose it before or after quantising? What
are the consequences of this choice? Are there alternative answers? It has been argued
that the path integral quantisation scheme avoids the problem of time [54], and we will
briefly mention this approach as well.
However, studying these questions within a given theory of quantum gravity can be

very complicated mathematically. Our approach to the problem of time consists in
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analysing the problem in a much simpler setting, namely studying a cosmological toy
model. On one side, We believe that the results found in these very simple toy models
can be very useful to find insights applicable for the full theory of quantum gravity. On
the other side, the study of these models can provide direct answers to the presence
(or absence) of singularities, which might be the main reason to consider a theory of
quantum gravity. In fact, the study of quantum cosmology is a very active sub-area of
the work of quantum gravity, along with black hole analysis. We present the basis of
quantum cosmology and our model in the following.

2.3. Introduction to quantum cosmology and our model

Quantum cosmology is the result of the application of the different quantum theories to
cosmological models. In the Wheeler–DeWitt quantisation the construction is straight-
forward: instead of working with the infinite dimensional superspace defined in (2.20)
we truncate most of the degrees of freedom to obtain a particular minisuperspace (or
midisuperspace if there are more degrees of freedom than usual). An usual truncation
is to assume a homogeneous metric, for example FLRW, (a calculation we will show
explicitly in the next section). There is some debate on whether this approach is valid
or it is a too brutal approximation [65]–[67]. Indeed, by reducing the infinite degrees
of freedom to a finite number with the imposition of homogeneity, one may lose crutial
aspects of the quantum theory. Such reduction may not be justified, especially tak-
ing into account that inhomegeneities could diverge at the singularity. In addition to
that, comparison of minisuperspace models embedded in slightly bigger midisuperspace
model suggests that minisuperspace behaviour cannot always be related to one of the
midisuperspace. In any case, these minisuperspace models should be considered useful
toy models, able to provide a testing ground for quantum gravity.
Minisuperspaces are based on the Wheeler–DeWitt approach to quantum gravity,

but there are other approaches to quantum gravity coming from other theories, see [68]
for a review. Notably, applying the prescripts of LQG to cosmological models leads
to the well known theory of loop quantum cosmology (LQC) [69]. LQC leads to very
interesting results regarding singularity resolution and other dynamics of the universe.
Another approach to quantum cosmology related to LQG is group field theory (GFT).
In general, GFT are field theories over a group manifold but there are in one-to-one
correspondence with spinfoam models [70] and therefore this formalism can be applied
to gravity and cosmology [71], [72].
In this work we study the problem of time and the multiple choice problem in a

minisuperspace model. The chosen model is a flat FLRW universe with two matter
components, namely a free massless scalar field and a perfect fluid. Different types of
perfect fluid will be discussed throughout the thesis. Why did we choose this model?
Other similar models have been analysed in the literature [57] but they usually contain
only one matter degree of freedom. This degree of freedom is often used as clock. As
our goal is to compare different clocks, having different matter components comes in
handy. We also think it is important that the model tries to be as realistic as possible.
Of course assuming isotropy and homogeneity simplifies the calculations by a lot, but
having a field gives the opportunity for more complex dynamics. We will quantise the
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model using three clocks, a clock t coming from the perfect fluid, the scalar field clock
ϕ, and a geometrical clock v where v is a positive power of the scale factor.
This model has been previously studied from different perspectives with the different

clocks. In their work [73], Gryb and Thebault worked with a universe that contained a
cosmological constant and used the t clock. On the other hand Gielen and Turok [74]
studied a universe filled with radiation and used a clock equivalent to our v clock. A
very similar model with a fixed cosmological constant has been analysed in the Wheeler–
DeWitt and LQC quantisation using the ϕ clock [75]. The same model with a fixed
positive cosmological constant has been analysed semiclassically [76]. In this thesis we
will reproduce and expand their results, and give a meaningful comparison between the
three clocks.
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3. The classical model

3.1. One model, many perfect fluids choices

3.1.1. Standard GR

We wish to study the problem of time through a toy model. As introduced previously,
the chosen universe is a homogenous and isotropic flat FLRW universe. The matter
contents of this universe are a massless and free scalar field φ and a perfect fluid charac-
terised by its equation of state p = wρ where p is the pressure and ρ the energy density.
Some particularly interesting cases are radiation (w = 1

3), dust (w = 0) and dark energy
(w = −1). We leave the specific choice of the perfect fluid for later.
We start by writing the action for our model. The dynamics of GR coupled to a free

massless scalar and a perfect fluid are defined by an action

S =

∫
d4x

{√
−g
[
R

2κ
− 1

2
gab∂aφ∂bφ− ρ

(
|J |√
−g

)]
+ Ja(∂aϑ+ βA∂aα

A)

}
. (3.1)

The perfect fluid action used here is Eq. (6.10) of [77], which describes an isentropic fluid.
An isentropic perfect fluid is a fluid with constant entropy per particle. The dynamical
variables are the spacetime metric gab, scalar field φ, densitised particle number flux Ja

and Lagrange multipliers ϑ, βA and αA. For isentropic fluids, ρ, the energy density of
the fluid, is a function of only |J | =

√
−gabJaJb and

√
−g, but does not depend on

the entropy per particle. We have also defined κ = 8πG where G is Newton’s constant.
The Lagrange multipliers αA represent a coordinate system for the flow lines of the
fluid. Given a spacetime hypersurface and a coordinate system αA, with A = 1, 2, 3,
a flow line can be labelled by the coordinate value of its intersection point with the
hypersurface.
In order to avoid divergent integrals we define spacetime as a manifold with topology

R×Σ where Σ is a bounded three-dimensional manifold. All the matter fields and the
geometry are homogeneous and locally isotropic on each copy of Σ. The metric is

ds2 = −N(τ)2dτ2 + a(τ)2hijdx
idxj . (3.2)

Here hij is a flat metric, a(τ) is the scale factor and N(τ) is the lapse function. The
lapse function parametrises the freedom of choosing different time coordinates. This
coordinate system represents the canonical decomposition of our model. Due to the
FLRW symmetry, the shift vector N i = 0 everywhere. The choice N = 1 means we
are working in cosmological time, but if, for example, N(τ) = a(τ) we are in conformal
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time. Due to homogeneity and isotropy, the field φ and the particle number density of
the perfect fluid are only a function of τ . Moreover the flux is of the form Ja = a3nδaτ
where n is the particle number density. This means that the flux is proportional to the
commoving number of particles. All Lagrange multipliers are also only functions of τ .
The reduced minisuperspace action, after an integration by parts, is then

S = V0

∫
R

dτ

[
−3ȧ2a

Nκ
+

a3

2N
φ̇2 −Na3ρ(n) + a3n(ϑ̇+ βAα̇

A)

]
. (3.3)

V0 =
∫

Σ d3x
√
h is the coordinate volume of Σ. In order for V0 to be finite, it is important

that Σ is bounded. For simplicity, we will suppose that Σ has no boundary (in particular
Σ could be a three torus). However, the manifold M = Σ × R has a boundary. It is
therefore necessary to include the Gibbons–Hawking–York term in (3.3). In this simple
case it is sufficient to add the following term to the action:

SGHY = −3V0

κ

[
ȧ(τ)a2(τ)

N(τ)

]τ=∞

τ=−∞
. (3.4)

Then why are there no boundary terms in the action (3.3)? To obtain the final expres-
sion (3.3) we have integrated the term coming from the Ricci scalar R, −3ȧ2a

Nκ , by parts.
The Gibbons–Hawking–York term and the boundary term coming from the integration
by parts cancel, leading to a well-defined variational principle.
The last term in (3.3) involving βA and αA may now be dropped: variation with

respect to ϑ imposes particle number conservation d
dτ (a3n) = 0 and there is no further

constraints from these other Lagrange multipliers. The other constraints, requiring the
fluid flow to be directed along flow lines labelled by the αA, are trivial in a highly
symmetric FLRW universe.
Now, it is time to specify a bit more our perfect fluid. For a perfect fluid with equation

of state p = wρ where w 6= −1 we have ρ = ρ0n
1+w where ρ0 is a fixed constant. We

can then replace n by m such that na3 =
(
m
ρ0

) 1
1+w and write the action as a function

of m:

S = V0

∫
R

dτ

[
−3ȧ2a

κN
+

a3

2N
φ̇2 −N m

a3w
+mχ̇

]
. (3.5)

Here we have changed Lagrange multiplier from ϑ to χ so that χ̇ = m
−w
1+w ϑ̇

ρ
1

1+w
0

in an

attempt to simplify the notation. Recall that d(a3n)
dτ = 0 implies dm

dτ = 0, making m a
constant energy density (or mass) of the perfect fluid. A free field with no potential is
a perfect fluid with w = 1, which is in principle supported by this formalism. However,
we already have a free field in our theory. Having multiple identical quantum clocks and
being able to change between them is another very interesting problem that we leave
for future work. In addition to that, We will see later that this case is fundamentally
different. Finally, note that the quantities m and χ appear as conjugated variables in
the action (3.5).
What happens if the perfect fluid is dark energy? In that case we cannot do the

transformation that leads to (3.5), as it is ill-defined. However using unimodular gravity
we can describe a similar action for this type of perfect fluid.
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3.1.2. Unimodular Gravity

The theory of unimodular gravity gained popularity with the different problems related
to the cosmological constant. Today we know that in order to obtain the right dynamics
of the universe the cosmological constant has to have a very small positive value. How-
ever, when we try to explain this value as vacuum energy coming from QFT there is a
massive disagreement between the predicted value and the observed one. Unimodular
gravity has been proposed as a solution of this problem [78], [79]. Moreover, unimodular
gravity has also been studied in the context of the problem of time [80], [81].
It was first noted by Einstein that a unimodular choice of coordinates, i.e.,

√
−g = 1

was a good way to partially fix a coordinate system [8]. Soon after, the first version of
unimodular gravity was introduced by fixing the determinant of the metric

√
−g = 1

before deriving the Einstein’s equation [82]. This theory is invariant under a smaller
group than the full diffeomorphism group of GR, as

√
−g has to remain unchanged

under a coordinate transformation. A consequence of this reduction is that only the
trace-free part of the Einstein equation is imposed as equation of motion. In the Hamil-
tonian formulation, a cosmological constant Λ appears as a constant of integration
corresponding to the value of the Hamiltonian on a given solution. We then recover the
Einstein–Hilbert action of GR with a cosmological constant “for free”.
However, in order to compare with (3.5), we are interested in parametrised unimod-

ular gravity. A parametrised version of unimodular gravity is obtained by introducing
additional fields to restore full diffeomorphism invariance. This leads to the following
action:

SPUM =

∫
dx4

{√
−g

2κ
[R− 2Λ] + Λ∂µT

µ

}
, (3.6)

where Λ and Tµ are dynamical fields [83]. One can obtain this action by promoting a
special set of coordinates satisfying

√
−g = α to dynamical fields XA(x), where x are

now arbitrary coordinate labels [81], thus restoring the full diffeomorphism invariance
of the theory. The fields Tµ depend on the XA’s. Variations with respect to Λ in (3.6)
fix
√
−g = κ∂µT

µ and variations with respect to Tµ imply Λ is a constant.
In our specific case we work with an FLRW universe with a massless scalar field, so

the action is formed of the unimodular part (3.6) and the field part. Given the FLRW
symmetries of the theory, the term Λ∂µT

µ reduces to ΛṪ giving the final form of the
action

S =

∫
R

dτ

[
−3V0a

κN
ȧ2 +

V0a
3

2N
φ̇2 − V0a

3NΛ

κ
+ ΛṪ

]
. (3.7)

Note that we have followed the same procedure that we used to obtain (3.3): we add
the Gibbons–Hawking–York term and perform an integration by parts.
We see that the actions (3.5) and (3.7) are very similar. They both contain a ȧ2

dependent term, a φ̇2 dependent term and a linear term either on χ̇ or Ṫ . Λ and m
play the same rôle. In fact, if we write the action as a function of Λ̃ = Λ

κ and T̃ = κ
V0
T

we find the exact same expression as (3.5):

S = V0

∫
R

dτ

[
−3ȧ2a

κN
+

a3

2N
φ̇2 −N Λ̃

a3w
+ Λ̃ ˙̃T

]
, (3.8)
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where w = −1. We have then derived an action expression valid also for dark energy.
Recall that Λ and T (and Λ̃ and T̃ ) are a pair of conjugated momenta just as m and χ
were in (3.5). We thus will consider that (3.5) is valid also in the dark energy case.

3.2. The Hamiltonian formulation

In order to quantise our model, we want to bring the action (3.5) to the Hamiltonian
form. Later on, when quantising, we will identify the classical momenta with derivatives.
The canonical momenta are

πa = −V0
6a

κN
ȧ, πφ = V0

a3

N
φ̇ . (3.9)

Recall that m is the conjugated momentum to χ, satisfying the Poisson bracket relation
{χ,m} = 1. The Hamiltonian of the model is

H = N

[
− 1

12

κπ2
a

V0a
+

1

2

π2
φ

V0a3
+ V0

m

a3w

]
, (3.10)

and the action can be written as

S =

∫
dτ
[
πaȧ+ πφφ̇+mχ̇−H

]
. (3.11)

The lapse function N is multiplying the whole expression of H, making it a totally
constraint Hamiltonian. The lapse function is a Lagrange multiplier of the theory, so
from (3.11) we can deduce that taking the variation of the action will lead the usual
Hamilton’s equations and to the constraint:

− 1

12

κπ2
a

V0a
+

1

2

π2
φ

V0a3
+ V0

m

a3w
= 0 . (3.12)

This constraint is the Hamiltonian constraint of the system. Recall that, when express-
ing GR in a Hamiltonian way, we usually also find the diffeomorphism constraint [84],
but it is trivial in FLRW symmetry.
In order to simplify notation, we set κ = 1, and we perform the following change of

variables in (3.5):

v = 4

√
V0

3

a
3(1−w)

2

1− w
, πv =

√
1

12V0
πaa

3w−1
2 , (3.13)

ϕ =

√
3

8
(1− w)φ, πϕ =

√
8

3

πφ
1− w

. (3.14)

The Hamiltonian takes the form

H = Ñ

[
−π2

v +
π2
ϕ

v2
+ λ

]
, (3.15)
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where we have also defined the lapse as Ñ = Na−3w = N
(

16V0
3v2(1−w)2

) w
1−w and λ = V0m.

The Hamiltonian constraint looks very simple after this change:

C = −π2
v +

π2
ϕ

v2
+ λ = 0 (3.16)

In this form w no longer appears explicitly. Note that this change is only valid if
w 6= 1. Our description does not cover the case in which the perfect fluid is a free field,
but as said previously, that is an entirely different problem as our model already has a
free field φ. In the dark energy interpretation and working in the convention where the
metric is dimensionless and the line element has units of length, the Hamiltonian has
dimensions of length and v has dimension of volume, whereas Ñ is dimensionless.
The expression (3.15) has many interesting features. On the one hand, it has two

quadratic momenta, but also a linear term, λ. This linear term is a distinguishing
feature of our model in comparison to earlier models [57]. On the other hand, the two
quadratic momenta can be written using the Rindler wedge metric

gAB =

(
−1 0
0 1

v2

)
, (3.17)

so that
H = Ñ

[
gABπAπB + λ

]
. (3.18)

If we consider the coordinate ϕ to be timelike and v to be spacelike, the metric gAB can
be used to describe a particle moving with constant acceleration. This spacetime, which
is a section of Minkowski space, is referred as Rindler wedge. In this analogy λ > 0
would correspond to a “tachyon”, or a particle with negative mass squared, whereas
λ < 0 would be a massive particle. On the contrary, if ϕ is spacelike and v is timelike,
this metric is used to describe a different section of Minkowski spacetime, often referred
as Milne wedge. The Milne wedge is used to represent the Milne universe, a hypothetical
flat universe with 0 energy density [85].
For simplicity, from now on we choose to interpret the perfect fluid as dark energy.

In this interpretation the coordinates and momenta are:

v = 2

√
V0

3
a3, πv =

√
1

12V0

πa
a2
. (3.19)

Hence the v coordinate is proportional to a “scale volume” of the universe, justifying
its notation. Its conjugated momentum πv is proportional to the Hubble constant and
λ would play the rôle of cosmological constant. There is nothing privileged about this
energy interpretation, but it is simpler to stick to a specific one in order to minimise
confusion. Almost all the following results are independent of the energy interpretation
and the ones that are not will be pointed out. As long as w < 1, v will always be a
positive power of the scale factor.
In this theory, the lapse function can be chosen arbitrarily, but a particularly at-

tractive choice is Ñ = 1. In this case the Hamiltonian is of the form H = −H0 + λ
with H0 = −gABπAπB. The Hamiltonian constraint becomes H0 = λ, thus λ plays the
rôle of the energy of the system defined by v and ϕ and their conjugate momenta. Let
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t = χ
V0

be the conjugated momentum to λ; in this gauge, dt
dτ = 1 which implies that

we can use t to express the evolution of ϕ and v. Note that whereas τ is just a label
for a coordinate in the metric, t is a dynamical variable of the system. For dark energy
w = −1 and this corresponds to N = a−3, but all perfect fluid choices similarly have a
preferred time coordinate in which the dynamics take the simplest form. The N = a−3

gauge is often called unimodular gauge. In this gauge we have that the determinant of
the metric is one. The Ñ = 1 gauge has been extensively used for the w = 0 (dust)
case [86], [87].

3.3. Classical solutions

Hamilton’s equations can be solved straightforwardly. In this model we are interested
in expressing evolution using different clocks. In principle, all monotonic variables are
good choices of clock, which makes t, ϕ and v all viable candidates, with the subtlety
that v experiences a turnaround for λ < 0 and hence is not a good clock everywhere.
The loss of monotonicity can easily be avoided, by considering separately the evolution
in the v growing and decreasing branches. The canonical momentum πv would also
be a good clock everywhere, as it is monotonic. A similar clock has been studied in a
simpler model [57]. In this section, we present the equations of motion of the dynamical
variables with respect to the classical clocks t, ϕ and v.
λ and πϕ are constants of motion, which means that they are constant along a given

solution. We saw above that in the case where one thinks of a perfect fluid with
w = −1, λ is essentially the cosmological constant and thus could take either sign. For
other types of perfect fluid one might assume that particle number density and energy
density must be positive and only consider λ > 0. The classical solutions we present
are always well-defined for any interpretation of the perfect fluid matter. Recall that
the main difference between a cosmological constant coming from unimodular gravity,
rather than from GR, is that here solutions with different values for λ are allowed, and
λ has its own conjugated coordinate. This makes λ a dynamical variable, rather than
the usual constant of nature.
We first present the solutions with respect to t. Remember that in the gauge we are

working dt
dτ = 1, hence t can be used as evolution parameter. For λ 6= 0 and πϕ 6= 0 we

have

v(t) =

√
−
π2
ϕ

λ
+ 4λ(t− t0)2, ϕ(t) =

1

2
log

∣∣∣∣πϕ − 2λ(t− t0)

πϕ + 2λ(t− t0)

∣∣∣∣+ ϕ0 . (3.20)

t0 and ϕ0 are integration constants. We see that v = 0 when |t− t0| = πϕ
2|λ| . For λ = 0

the solutions are slightly different:

v(t) = 2
√
|πϕ||t− t0|, ϕ(t) =

1

2
sgn(πϕ(t− t0)) log

∣∣∣∣ tt0 − 1

∣∣∣∣+ ϕ0 . (3.21)

The scalar field diverges logarithmically when v = 0 for all values of λ. The plots of
v(t) and ϕ(t) are presented in figure fig. 3.1.
It is easy to see from fig. 3.1 that v reaches 0 at a finite value of t and therefore there

is a range of the parameter t for which v stops being well defined. However, this is not
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enough to prove that this universe presents a big bang and big crunch singularity. A
quick way to acknowledge the big bang/big crunch singularity is to focus on commoving
observers, i.e., dx = dy = dz = 0. Since curvature invariants diverge as v → 0, if v = 0
can be reached in finite proper time τ̃ , it would be clear that there is a singularity at that
point. We are working in the gauge for which Ñ = 1

2

√
3
V0
vN = 1, hence N = 2

√
V0
3 v
−1.

Let us consider λ > 0, the expanding branch of the universe (t > 0), and tsing =
|πϕ|
2λ .

Using the fact that in this case dτ̃ = Ndt, the proper time for commoving observer
between τ̃1 > τ̃sing and τ̃sing is∫ τ̃1

τ̃sing

dτ̃ = 2

√
V0

3

∫ t1

tsing

dt

v(t)

=

√
V0

3λ
log

(
2λt1
|πϕ|

+

√
4λ2t21
π2
ϕ

− 1

)
<∞ . (3.22)

Note that we have set t0 = 0 for simplicity. This calculation can be adapted to the
λ < 0 case. For the λ = 0 case it is even easier:∫ τ̃1

τ̃sing

dτ̃ = 2

√
V0

3

∫ t1

tsing

dt

v(t)
= 2

√
V0t1
3|πϕ|

<∞ . (3.23)

In conclusion, a commoving observer reaches v = 0 in finite proper time, which implies
the existence of a big bang singularity (in the past of the commoving observers) and a
big crunch singularity (in the future of commoving observers).
As classically GR is covariant, we can express the dynamic quantities as functions

of ϕ, which is a globally well-defined clock as long as πϕ 6= 0. We will assume this
throughout the thesis. Once again we have to distinguish between the different signs of
λ. For λ > 0:

v(ϕ) =
|πϕ|√

λ|sinh(ϕ− ϕ0)|
, t(ϕ) = −πϕ

2λ
coth(ϕ− ϕ0) + t0 , (3.24)

and for λ < 0:

v(ϕ) =
|πϕ|√

−λ|cosh(ϕ− ϕ0)|
, t(ϕ) = −πϕ

2λ
tanh(ϕ− ϕ0) + t0 . (3.25)

The case λ = 0 is rather different. In this case ϕ takes all values from −∞ to ∞ in a
single branch (either the expanding or the contracting one). Hence we have to restrict
ourselves to parametrise half of the full solution (3.21). The reason behind this is that
instead of reaching a constant value ϕ0 at large volume, the field grows logarithmically
when λ = 0. The equation of motion for v is

dv

dτ
= {v,H} = −2Ñπv . (3.26)

Given the fact that Ñ > 0, the sign of πv is what determines whether the universe is
expanding or contracting. In particular, if λ ≥ 0, the sign of πv does not change during
the evolution. The two possible solutions for λ = 0 are

v(ϕ) = 2
√
|t0πϕ|e− sgn(πvπϕ)(ϕ−ϕ0), t(ϕ) = t0 − |t0| sgn(πv)e

−2 sgn(πvπϕ)(ϕ−ϕ0) . (3.27)
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These classical curves are represented in fig. 3.2.
We also want to study the clock v. As we can see from (3.20), v is not a good clock

everywhere. In fact, for λ ≥ 0, v is a good clock in each branch separately. If λ < 0,
the universe has a turnaround, hence v is not a valid clock around that point. The
expressions are different depending on the sign of λ. For λ 6= 0 we have

t(v) = t0 − sgn(πv)
1

2

√
v2

λ
+
π2
ϕ

λ2
, ϕ(v) = ϕ0 + log

∣∣∣∣∣∣ πϕ√
|λ|v

+

√
π2
ϕ

|λ|v2
+ sgnλ

∣∣∣∣∣∣ . (3.28)

Depending on the sign of πϕ, ϕ(v) is either and increasing or decreasing. Note that

for λ < 0, the terms inside the square roots are only well-defined if v < |π
2
ϕ|√
|λ|

which is

the maximum volume reached in the evolution. When v reaches this value (3.28) is no
longer well-defined and in any interval around that point v fails to be a good clock (good
in the sense of monotonic). Note that in the turnaround dv

dτ = 0 and hence πv = 0.
Once again the case λ = 0 is slightly different:

ϕ(v) = ϕ0 − sgn(πϕπv) log

(
v

2
√
|t0πϕ|

)
, t(v) = t0 − sgn(πv)

v2

4|πϕ|
. (3.29)

The curves (3.28) and (3.29) are plotted in figure fig. 3.3. The v clock is rather special:
it is defined to take values from 0 to ∞ and the sign of πv is what tell us whether we
lie in the contracting or expanding universe.

3.4. Dirac observables

Our system has a local gauge symmetry under time reparametrisations (a remanent of
the full diffeomorphism symmetry of GR). Given that all observables must be gauge
invariant, it seems that only constants of motion and quantities of the form “the value
of x when my time coordinate has value y”, are the only possible local observers [80].
However, there is a way to incorporate time evolution: building relational observables.
These quantities express how some phase space variables vary as functions of other phase
space variables. As our model is homogeneous, we only need one relational coordinate,
which acts as a clock. This gives a notion of relational evolution [60]–[62]. In this section
we define the Dirac observables that will be important when quantising our universe. As
we will be working with three different clocks, we define Dirac observable with respect
to all of them.
The Hamiltonian constraint (3.16) defines a constrained surface C where the solutions

of the equations of motion evolve. Dirac observables O are functions of the phase space
variables that are invariant under the flow generated by the constraint C:

{C,O} ≈ 0 , (3.30)

where {·, ·} is the Poisson bracket of the system and the notation ≈ is a standard
notation that means that the equality only has to hold on the constrained surface C
rather than on the whole phase space (in which case we would use the equal sign).
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(a) v as a function of t for several values of λ.

(b) ϕ as a function of t for several values of λ.

Figure 3.1.: In this figure we observe the evolution of the principal dynamical variables
using t as clock. The chosen values of the integration parameters is t0 =
ϕ0 = 0. Note that t0 = 0 is a singular value in the λ = 0 case, but it can
be approximated continuously. The conjugated momentum to ϕ, πϕ has
been chosen to have value 1. In these plots the big crunch and big bang
singularities lie respectively at t = ±1

2 for λ 6= 0 and at t = 0 for vanishing
λ. We see how the scalar field diverges at the singular points. We also see
that for λ < 0, v is not a good clock everywhere.
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(a) v as a function of ϕ for several values of λ.

(b) t as a function of ϕ for several values of λ

Figure 3.2.: We have represented the evolution of the principal dynamical variables using
ϕ as a clock. The constants chosen are t0 = ϕ0 = 0. It is interesting to
see that the singularity (v = 0) is pushed to ∞. In the λ = 0 case, we
have chosen to represent only the expanding curve, the collapsing one is
symmetric with respect to the vertical axis. In this case t0 = 0 is a singular
value, so we have chosen t0 = 1. In the limit t0 = 0 the curves still have
the same qualitative forms.
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(a) ϕ as a function of v for different values of λ.

(b) t as a function of v for different values of λ.

Figure 3.3.: Here are represented all the dynamical variables as a function of v. It is
clear from these graphs that v is not a good clock everywhere. We have
chosen πϕ = 1 and t0 = ϕ0 = 0 except for the curve ϕ(v) when λ = 0,
where we chose t0 = 1. In this case, t0 = 0 is not well-defined. For clarity,
as ϕ(v) takes values on the whole real line for any value of sgn (πv) in the
case λ = 0, we have chosen to represent only one of the two resulting curves
to avoid crossings.
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This apparently subtle detail is what will allow the system to have non-trivial Dirac
observables. Concretely,

{C,O} ≈ 0 ⇐⇒ −
2π2

ϕ

v3

∂O
∂πv
− ∂O

∂t
− 2πϕ

v2

∂O
∂ϕ

+ 2πv
∂O
∂v
≈ 0 . (3.31)

Our Hamiltonian is of the form ÑC so {C,H} ≈ 0. From there we immediately deduce
that any Dirac observer O is a constant of motion. (3.31) does not depend on λ or πϕ,
hence any function of these conserved quantities is a Dirac observable. However these
observables are constant along a given trajectory, making them unable to account for
the evolution of the system.
We are interested in the study of three clocks, v, t and ϕ. For this reason we are

interested in the relational observables t(v = v1), ϕ(v = v1), v(t = t1), ϕ(t = t1),
v(ϕ = ϕ1), and t(ϕ = ϕ1). These observables are all constructed following the same
fashion: we choose our relational clock x and we look at the values of the rest of
the quantities when the clock takes the fixed value x1. Because x1 is fixed, all these
observables are constants of motion, however by making x1 vary, we can construct a
complete family of observables that parametrises the evolution of the system.
Let us begin by fixing a starting point P in the constrained surface C . P has coordi-

nates (tj , vj , ϕj , λ, πvj , πϕ); this initial data is enough to determine uniquely a trajectory
in the constraint surface. If we decide to use t as clock, we can ask ourselves what is
the value of the volume or the field when t shows a value t1. The volume is a very
important observable because the classical singularity lies at v = 0. The expression for
this observable is:

v(t = t1) =


√
−π2

ϕ

λ + 4λ
(
t1 − tj −

vjπvj
2λ

)2
, λ < 0 or λ > 0

2

√
|πϕ|

∣∣∣∣t1 − tj +
v2
j

4πϕ

∣∣∣∣, λ = 0.

(3.32)

The first expression is only valid when the argument of the square root is positive; as
we saw earlier, the classical solutions reach singularities at some finite value of t beyond
which they would not be defined. Note that, logically the observables are defined such
that when t1 = tj v(t = tj) = vj . The expression for ϕ(t = t1) is

ϕ(t = t1) =


arcoth

(
− 2λ
πϕ

(
t1 − tj −

vjπvj
2λ

))
− artanh(

πϕ
vjπvj

) + ϕi, λ > 0

artanh
(
− 2λ
πϕ

(
t1 − tj −

vjπvj
2λ

))
− artanh(

vjπvj
πϕ

) + ϕi, λ < 0

−1
2 sgn(πϕπvj ) log

(
4πvj (t1−tj)

vj
+ 1
)

+ ϕj , λ = 0

(3.33)

Note ϕ(t = t1) is defined only when the absolute value of what is inside the hyperbolic
tangent/cotangent is smaller/bigger than 1, which is an equivalent condition than what
we saw for v. Outside this range, this observable is simply not defined. A similar
condition holds for the case λ = 0 as the logarithm has to be positive.
However, we are also interested in other clocks, such as v. As we saw earlier, this

clock is not valid throughout the entire evolution of the system. Therefore, to match
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the numerical analysis of the following section, we choose to focus on a Dirac observable
valid in the expanding branch of the universe

t(v = v1) =


tj −

vj|πvj |
2λ + 1

2

√
v2
1
λ +

π2
ϕ

λ2 , λ < 0 or λ > 0

v2
1−v2

j

4|πϕ| + tj , λ = 0.

(3.34)

and

ϕ(v = v1) =


sgn(πvj ) arsinh

(
πϕ

vj
√
λ

)
− sgn(πvj ) arsinh

(
πϕ

v1

√
λ

)
+ ϕi, λ > 0

sgn(πvjπϕ) arcosh
(
|πϕ|

vj
√
−λ

)
− sgn(πvjπϕ) arcosh

(
πϕ

v1

√
−λ

)
+ ϕi, λ < 0

− sgn(πϕπvj ) log
(
v1
vj

)
+ ϕi, λ = 0

(3.35)
Note that for λ < 0 the expressions are only valid if v1 ≤ |πϕ|√

−λ which is the upper bound
of the volume. The sign of πvj is what determines which curve we are at (see fig. 3.3).
Finally, we present the relevant Dirac observables for the ϕ clock:

v(ϕ = ϕ1) =



|πϕ|
√
λ
∣∣∣sinh

(
ϕ1 − ϕj + sgnπvjarsinh

(
πϕ

vj
√
λ

))∣∣∣ , λ > 0

|πϕ|
√
−λ cosh

(
ϕ1 − ϕj + sgnπϕπvjarcosh

(
|πϕ|

vj
√
−λ

)) , λ < 0

vje
− sgnπϕπvj (ϕ1−ϕj) , λ = 0

(3.36)

and

t(ϕ = ϕ1) =



−πϕ
2λ

coth

(
ϕ1 − ϕj + artanh

(
πϕ
πvjvj

))
+ tj +

πvjvj

2λ
, λ > 0

−πϕ
2λ

tanh

(
ϕ1 − ϕj + artanh

(
πvjvj

πϕ

))
+ tj +

πvjvj

2λ
, λ < 0(

tj +
vj

4πvj

)(
1− vj

4tjπvj + vj
e−2 sgn (πϕπvj )(ϕ1−ϕj)

)
, λ = 0 .

(3.37)
All these Dirac observables have something in common that distinguish them from

the simple constants πϕ and λ. For πϕ and λ we have {C, πϕ} = {C, λ} = 0, i.e.,
the Poisson bracket is 0 everywhere, not just in the constraint surface. Conversely, for
t(v = v1), we find {C, t(v = v1)} = ft(v=v1)C, where ft(v=v1) is a non-trivial function
of the phase space variables. A similar non-trivial function may be found when doing
the Poisson bracket of the Dirac observable defined above. Of course, in the constraint
surface C all Poisson bracket vanish, but the Poisson brackets of (3.32)–(3.37) are not
trivial on the whole phase space.
Let us do a quick summary of this chapter. First of all, we have deduced the action

of our model from GR (in the case where the perfect fluid is not dark energy), and then
from unimodular gravity (in the case where the perfect fluid is dark energy). Then,
we have chosen coordinates such that the Hamiltonian constraint has two quadratic
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momenta parametrised with the Rindler metric and a linear term related to the perfect
fluid energy density. After that, we were able to calculate the equations of motion of all
the dynamical variables using different clocks and plot them. This allowed us to have a
very good picture on how the model behaves classically. Finally, we have analysed the
classical phase space of this model and found out the relevant Dirac observables. This
concludes the classical analysis of the model, as we have all the tools we need to start
analysing the quantisation of this universe.



4. Quantisation(s) of the model

4.1. The Wheeler–DeWitt equation

In this section we present the derivation of the Wheeler–DeWitt equation of the model.
Recall this quantisation scheme is one of the first methods used for cosmological models,
being developed in the sixties [44], and still widely used today. In our case, the Wheeler–
DeWitt equation is solvable analytically; in this chapter we introduce its solutions and
analyse the resulting quantum theories focusing especially on unitarity.
In order to obtain the Wheeler–DeWitt equation of the model we need to recall the

Hamiltonian constraint (3.16)

C = −π2
v +

π2
ϕ

v2
+ λ = gABπAπB + λ = 0 , (4.1)

where gAB is the inverse metric on the Rindler wedge parametrised by v and ϕ. To
quantise our universe, we replace the term gABπAπB with −~2� where � is the Laplace–
Beltrami operator on the Rindler wedge:

� =
1√
−g

∂

∂qA

(
gAB
√
−g ∂

∂qB

)
= −1

v

∂

∂v

(
v
∂

∂v

)
+

1

v2

∂

∂ϕ2
. (4.2)

Hence, the Wheeler–DeWitt equation is(
~2 ∂

∂v2
+

~2

v

∂

∂v
− ~2

v2

∂2

∂ϕ2
− i~ ∂

∂t

)
Ψ(v, ϕ, t) = 0 . (4.3)

Note that the term λ has been replaced by −i~ ∂
∂t . This equation is a version of (2.23),

but applied to our model. Because we are assuming a form of the metric and of the
matter components, we are left with only three degrees of freedom for our minisuper-
space, one coming from the metric (v) and two coming from the matter components of
the universe (ϕ and λ). The other (infinite) degrees of freedom of the superspace have
been frozen. This Wheeler–DeWitt equation is the same found in [73].
Recall from the introduction that we are using the Hawking and Page ordering [49].

This makes the Wheeler–DeWitt equation covariant under a change of coordinates in
the Rindler wedge parametrised by the pair (v, ϕ)1. However, in order to study the

1In general, this choice is unique up to the addition of a term ~2ξR where R is the Ricci scalar and
ξ a free parameter [88], [114a]. Nevertheless, in our case the minisuperspace metric is flat, hence
R = 0.
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ambiguities in the Wheeler–DeWitt equation one may add free parameters that corre-
spond to different orderings (see e.g., [89], [90]), and study their impact on the resulting
theory. In this thesis, we will only focus on the specific Wheeler–DeWitt equation (4.3),
but how the resulting theories may depend on the ordering of the operators is another
very interesting problem and open issue in quantum cosmology.
The Wheeler–DeWitt equation can be solved using a separation of variables ansatz

Ψ(v, ϕ, t) = ν(ϕ)ψ(v)eiλ
t
~ which leads to two different equations:

ν ′′(ϕ)

ν(ϕ)
= A , (4.4)

and
v2ψ′′(v) + vψ′(v) +

(
λ

~2
v2 −A

)
= 0 . (4.5)

Note that all functions here are one dimensional. The prime notation corresponds to
taking the derivative with respect to that parameter.
The first equation is straight forward to solve and its solutions are real exponentials

eκϕ if A > 0, and imaginary exponentials eikϕ if A < 0. Equation (4.5) is known as the
Bessel equation and its solutions are Bessel functions J±|κ|

(√
λ
~ v
)

and J±i|k|

(√
λ
~ v
)
,

again depending on the sign of A. In conclusion, the general solution to the Wheeler–
DeWitt equation (4.3) is:

Ψ(v, ϕ, t) =

∫ ∞
−∞

dλ

2π~

∫ ∞
−∞

dk

2π
eikϕeiλ

t
h

[
α(k, λ)Ji|k|

(√
λ

~
v

)
+ β(k, λ)J−i|k|

(√
λ

~
v

)]

+

∫ ∞
−∞

dλ

2π~

∫ ∞
−∞

dκ

2π
eκϕeiλ

t
h

[
γ(κ, λ)J|κ|

(√
λ

~
v

)
+ ε(κ, λ)J−|κ|

(√
λ

~
v

)]
.

(4.6)

α, β, γ and ε are free complex functions. For λ < 0 we follow the convention

Jx

(√
λ

~
v

)
= Jx

(
i
√
−λ
~

v

)
= e

ixπ
2 Ix

(√
−λ
~

v

)
, (4.7)

where x is any possible order and Ix is the modified Bessel function of the first kind.
Functions like (4.6) will often be referred as wave functions of the universe.
An interesting feature of this model is that the universe is in a superposition of

cosmological constants λ. This comes from the fact that we are working with unimodular
gravity rather than simply GR. In other energy interpretations, like dust, this means
that the universe is in a superposition of mass parameter m, where m can have negative
values (hence implying tachyons).
The Wheeler–DeWitt equation (4.3) and its general solution (4.6) are not enough

for a reasonable interpretation of the theory. In particular, we would like our universe
to evolve in “time”. As the Wheeler–DeWitt equation is simply a differential equation
we first choose one of the internal dynamical variables to play the rôle of clock, just
as we did classically, following the tempus post quantum prescription. This will allow
us to find a physical interpretation of the wave function of the universe. Nonetheless,
this interpretation depends on the chosen clock variable. In the next section we present
briefly the differences of the clock choices before diving deeper in the calculations.
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4.2. The different interpretations of the Wheeler–DeWitt
equation and unitarity

Let us first introduce what we mean by choosing an internal variable as clock. We first
quantise the universe by finding the Wheeler–DeWitt equation, and then we choose one
of the variables as our clock. Once this is done, we build a Hilbert space on the remaining
variables by choosing an appropriate inner product (the meaning of appropriate will be
explained shortly). Finally, we restrict ourselves to the subspace of (4.6) whose norm is
conserved under the chosen inner product. This step is key to have a well-defined notion
of probability distribution. The clock choice gives a conditional time interpretation:
knowing the value of the clock, what is the value of an observable quantity? In this
way, despite being an internal variable of the system, the clock is treated like an external
quantum mechanical time parameter, i.e., it has no uncertainty. As general relativity is
a covariant theory, no clock has any advantage with respect to the others besides being
globally monotonic rather than locally.
We first analyse t as clock. By defining the Hamiltonian

Ĥ = ~2

(
− ∂2

∂v2
− 1

v

∂

∂v
+

1

v2

∂2

∂ϕ2

)
, (4.8)

the Wheeler–DeWitt equation looks like a Schrödinger equation using t as clock:

i~
∂

∂t
Ψ(t, ϕ, t) = −ĤΨ(t, ϕ, t) . (4.9)

Replacing −i ∂∂t by λ here, we see that the values of λ are the eigenvalues of (4.8). This
structure suggests using a standard L2 inner product

〈Ψ|Φ〉t =

∫ ∞
0

dv

∫ ∞
−∞

dϕ vΨ̄(t, ϕ, v)Φ(t, ϕ, v) . (4.10)

The subindex t will serve to distinguish this inner product to the ones from the other
theories. As the Wheeler–DeWitt equation only contains first order derivatives in t,
there are no time derivatives in the inner product. The Hilbert space considered here
is then L2(R,

√
−gdvdϕ) where R is the Rindler wedge in v and ϕ and

√
−g = v the

determinant of the Rindler wedge metric. This measure is covariant under changes of
coordinates in the Rindler wedge. The interpretation of the Wheeler–DeWitt equation
as a Schrödinger equation in unimodular gravity has been one of the reasons to propose
that unimodular gravity as a solution to the problem of time [80]. Indeed, usually the
action is quadratic in the momenta, which leads to second order derivates. Unimodular
gravity is an easy way to add a linear term in the action. This term can later be
interpreted as the energy of the Hamiltonian, like we are doing here.
Now that we have constructed the basis of the quantum theory we make a crucial

assumption: We would like this theory to be unitary. This means that inner products
〈Ψ|Φ〉t should be preserved over time, i.e., ∂

∂t 〈Ψ|Φ〉t = 0. Unitarity, as we recalled in
the introduction, is one of the principles of QM, and it allows us to have a well-defined
notion of probability interpretation of the quantum theory. Contrary to what we can
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think at first glance, our theory is not automatically unitary, rather we have to impose
an extra condition:

∂

∂t
〈Ψ|Φ〉t = 0 ⇐⇒

∫ ∞
−∞

dϕ

[
v

(
Ψ̄
∂

∂v
Φ− Φ

∂

∂v
Ψ̄

)]v=∞

v=0

= 0 . (4.11)

Hence not all square integrable solutions of (4.3) satisfy (4.11), one has to find a subspace
of L2(R,

√
−gdvdϕ) where the boundary condition holds. This boundary condition is

non-trivial only in the limit v = 0 (more on this can be found in chapter 5).
Why are we finding a boundary condition? The operator Ĥ (4.8) is not self ad-

joint with respect to the inner product (4.10). The technicalities around self-adjoint
extensions of an operator are presented in appendix A. Curious and mathematically
inclined readers can consult them. The key thing to take out is that despite the fact
that Ĥ is not self-adjoint, it possesses a one parameter family of self-adjoint extensions.
Hence we must restrict the solutions to the Wheeler–DeWitt equation to solutions to
the boundary condition (4.11).
Under a change of coordinates Ψ(v, ϕ, t) = v−

1
2 eikϕeiλ

t
~w(v) the Wheeler–DeWitt

equation can be transformed in a Schrödinger equation with a radial 1/r2 potential:

− ~2 ∂
2

∂v2
w(v)− ~2k

2 + 1
4

v2
w(v) = λw(v) . (4.12)

The properties of this potential are well known [91]. Depending on the (dimensionless)
strength of the potential one distinguishes different cases. We are in the strongly at-
tractive case (−(k2 + 1

4) < 0), which requires a boundary condition at v = 0 to make Ĥ
self-adjoint. If we consider a particle moving under this potential, it would reach v = 0
in a finite proper time. The normalisable solutions to (4.3) that satisfy (4.11) are very
non-trivial to calculate, and they will be presented in chapter 5.
In this section we are interested in the different interpretations of the Wheeler–DeWitt

equation (4.3), so let us choose another clock, like ϕ. If we multiply the Wheeler–DeWitt
equation by a factor v2, we obtain(

~2 ∂2

∂ϕ2
− ~2

(
∂

∂ log(v/v0)

)2

+ i~v2 ∂

∂t

)
Ψ(v, ϕ, t) = 0 , (4.13)

where v0 is a constant introduced to cancel the dimension of v. In principle, as equations
(4.3) and (4.13) have the same solutions, they are equivalent. (4.13) looks like a Klein
Gordon equation with respect to v and ϕ with an added potential term. Contrary to
Schrödinger equations, Klein–Gordon type equations require inner products with time
(in this case ϕ) derivatives. Hence, the inner product we are working with is

〈Ψ|Φ〉ϕ = i

∫ ∞
−∞

dt

∫ ∞
0

dv

v

(
Ψ̄(v, ϕ, t)

∂

∂ϕ
Φ(v, ϕ, t)− Φ(v, ϕ, t)

∂

∂ϕ
Ψ̄(v, ϕ, t)

)
. (4.14)

Once again, the inner product is a function on the phase space variables v and t, but
not ϕ, which is the clock of the theory. However, the Hilbert space considered is not a
simple L2, rather the functions with finite norm with the chosen inner product. Note
that this inner product is also invariant under a change of coordinates in (t, v). The
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differential operator appearing in (4.14) is nµ∂µ = 1
v∂ϕ which is the normal to the ϕ =

const surfaces in the Rindler wedge metric.
Once more, we require that our inner product is unitary, i.e., ∂

∂ϕ 〈Ψ|Φ〉ϕ = 0. This
leads to another boundary condition

∂

∂ϕ
〈Ψ|Φ〉ϕ = 0 ⇐⇒

∫ ∞
−∞

dt

[
v

(
Ψ̄
∂

∂t
Φ− Φ

∂

∂t
Ψ̄

)]v=∞

v=0

= 0 . (4.15)

This condition is very similar to (4.11), but has different consequences. This time,
the boundary condition is non-trivial in the limit v =∞. With the ansatz Ψ(v, ϕ, t) =

ψ(v, ϕ)eiλ
t
~ we can see that this boundary condition is equivalent to require self-adjointness

of the operator

Ĝ = −~2 ∂
2

∂u2
− λv2

0e
2u , (4.16)

with respect to a standard (L2,du) inner product parametrised by the coordinate
log
(
v
v0

)
= u. For λ > 0, this Hamiltonian contains an attractive potential such that

classically, a particle can reach u = ∞ (and hence v = ∞) in a finite time. Thus, in
the quantum theory we have to impose a boundary condition at v = ∞. The charac-
terisation of this Hamiltonian and its self-adjoint extensions has already been studied
in [92], [93]. We will re-derive their results in detail in chapter 7.
In the λ < 0 case, the potential term in (4.16) is repulsive, making the Hamiltonian

already self-adjoint without the need for additional boundary conditions. This case has
also been analysed [94].
In a nutshell, we had to add an extra condition on the allowed wave functions in order

to have a unitary theory for the clocks t and ϕ. What happens with the remaining clock
v?
The equation (4.13) can be seen as a Klein–Gordon equation in v or rather log(v/v0).

Hence, to use v as clock we define the following inner product

〈Ψ|Φ〉v = i

∫ ∞
−∞

dt

∫ ∞
−∞

dϕ

[
vΨ̄(v, ϕ, t)

∂

∂v
Φ(v, ϕ, t)− vΦ(v, ϕ, t)

∂

∂v
Ψ̄(v, ϕ, t)

]
.

(4.17)
This time, the differential operator used is nµ∂µ = ∂log(v/v0) which is normal to the v =
const surfaces. Conservation of the inner product is equivalent to self-adjointness of the
operator

F̂ = −~2 ∂2

∂ϕ2
− i~v2 ∂

∂t
, (4.18)

for an (L2, dtdϕ) inner product. Note that contrary to the last two cases, F̂ is time (in
this case v) dependent. However, this operator is already self-adjoint, so all solutions
to the Wheeler–DeWitt equation have a time independent norm.
Even before calculating the allowed states for each theory we appreciate how the

choice of clock has many non-trivial effects. We can already see from here that co-
variance is broken from the choice of clock; the different boundary conditions mean
that the quantum theories are inequivalent. It is worth mentioning that the different
boundary conditions come from ensuring unitarity of the quantum theory. Unitarity
is sometimes not applied as a fundamental concept when studying phenomenology of
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quantum universes: one writes the Wheeler–DeWitt equation, finds some solution and
calculates relevant quantities. Unitarity may then be required to emerge at the semi-
classical level. What we are finding here is that the study of the Hilbert space of the
theory is important. In particular, it is important to mention that unitarity is not given,
even constructing the Hilbert space in the most covariant and systematic way. If we
believe that unitarity is a defining feature of a such cosmological models, we have to add
it by hands. However, one could argue that this issue is an artefact of the framework we
are working with. What happens when instead of choosing a clock we Dirac quantise
our model?

4.3. Dirac quantisation

The Dirac quantisation is often defined as the “clock–neutral” quantisation [64], as it
supposed to treat all dynamical variables identically. Therefore, this approach is some-
times considered preferable with respect to the relational one. The Dirac quantisation
programme works as follows: one builds a kinematical Hilbert space Hkin, which cor-
responds to the quantisation of the system without imposing the constraints. As this
Hilbert space is too big, the question is then how to implement the constraints, find
the physically relevant wave functions, and provide the system with a notion of time
evolution. This approach is historically important, as the canonical formulation of LQG
is based on the Dirac quantisation [43]. The Dirac quantisation is also used for LQC
models [69].
The constraints are implemented as operators (how to build these operators is subject

to the usual ordering ambiguities) and the physical states are those that are annihilated
by the constraints (see [63] for a comprehensive introduction). Constructing the physical
Hilbert space and its corresponding inner product involves a careful analysis of the
spectrum of the constraints. Depending on the system, finding explicitly the physical
Hilbert space Hphys is quite challenging mathematically and there is not an established
answer to this problem [95], [96].
Usually, in order to implement the quantisation process, the constraints have to be

self-adjoint operators on Hkin. For an example of this requirement in a very similar
model to ours see [75]. This model features a universe with scalar field and a fixed
positive cosmological constant (as opposed to ours where the cosmological constant can
vary between two different trajectories in phase space). In this model, the Hamiltonian
was required to be self-adjoint on the kinematical Hilbert space leading to a boundary
condition very similar to ours. (We will see in the next sections that these two models
have also very similar dynamics).
Let us consider again the Wheeler–DeWitt equation (4.3):(

~2 ∂
2

∂v2
+

~2

v

∂

∂v
− ~2

v2

∂2

∂ϕ2
− i~ ∂

∂t

)
Ψ(v, ϕ, t) = 0 . (4.19)

This is the quantum version of the Hamiltonian constraint and must be viewed as the
operator Ĉ1 acting on the space of solutions:

Ĉ1Ψ(v, ϕ, t) = 0, Ĉ1 := ~2 ∂

∂v2
+

~2

v

∂

∂v
− ~2

v2

∂2

∂ϕ2
− i~ ∂

∂t
(4.20)
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The kinematical Hilbert space is L2(M, v dtdϕdv) whereM = R×R withR the Rindler
wedge in ϕ and v and the measure vdtdϕdv is the one inherited from the Rindler wedge
metric. With this measure, the kinematical inner product is invariant under a change
of coordinates. The kinematical inner product is then straight forward

〈Ψ|Φ〉kin1
=

∫ ∞
−∞

dt dϕ

∫ ∞
0

dv vΨ̄(v, ϕ, t)Φ(v, ϕ, t) . (4.21)

Square integrable functions under this inner product are functions of the form Ψ = v−
1
2 Υ

where Υ is square integrable in the standard L2 inner product on R2×R+. By doing this
change of coordinates and Fourier transforming in ϕ and t, we find that self-adjointness
of Ĉ1 is equivalent to require self-adjointness of the operator

D̂1 = ~2

(
− ∂2

∂v2
−

1
4 + k2

v2

)
(4.22)

with respect to the standard inner product on L2(R+, dv). This operator is exactly
the same we had to impose self-adjointness to in section 4.2 when using the t clock
i.e., (4.12). Hence, we are finding the same issue in the two approaches. Moreover, in
this case Dirac quantisation and relational lead to the same theory: as the constraint
is linear in λ, the momentum conjugated to t, the group averaging procedure would
remove the integral t of the measure leaving us with the inner product (4.10)2.
However, recall that in order to use v and ϕ as clocks, we had to multiply the Hamilto-

nian constraint by a phase space function, v2. We obtained another Hamilton constraint(
~2 ∂2

∂ϕ2
− ~2 ∂

2

∂u2
+ i~v2

0e
2u ∂

∂t

)
Ψ(v, ϕ, t) = 0 , (4.23)

where we have applied the change of variable u = log(v/v0) so that all kinematical
variables are valued over the entire real axis. Here, the operator considered is

Ĉ2 := ~2 ∂2

∂ϕ2
− ~2 ∂

2

∂u2
+ i~v2

0e
2u ∂

∂t
. (4.24)

We impose Ĉ2Ψ = 0, the same constraint used in [75], where they analysed the same
model but with a fixed (non unimodular) cosmological constant with respect to the
ϕ clock. Naively, we would say that multiplying the Hamilton constraint by a phase
function does not affect the theory as it does not affect its solutions. The second order
derivatives in ϕ and u look like a flat Laplacian in Cartesian coordinates in a (1 + 1)
space, hence motivating the kinematical inner product

〈Ψ|Φ〉kin2
=

∫ ∞
−∞

dtdϕdu Ψ̄(u, ϕ, t)Φ(u, ϕ, t) , (4.25)

where we assumed that the metric on u and ϕ is the flat metric ηAB, again, by interpret-
ing Ĉ2 as the Laplace–Beltrami operator of a metric (in this case flat). This difference

2The group averaging procedure is a way to find a inner product for the physical Hilbert space from
the inner product of the kinematical Hilbert space by (in a hand-wavy manner) applying a “Dirac
delta” of the constraints

∫
dξeiĈξ to the kinematical inner product.
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of metric in the two kinematical inner products comes from the rescaling induced by
multiplying the Wheeler–DeWitt equation by v2.
Again by taking the Fourier transform in λ and ϕ, we see that requiring that Ĉ2 is

self-adjoint is equivalent to asking for self-adjointness of the operator

D̂2 = −~2 ∂
2

∂u2
− λv2

0e
2u (4.26)

with respect to an L2(R, du) inner product for any given value of λ. Note that this
operator is the same as Ĝ, defined in (4.16). When using ϕ as clock we have to impose
self-adjointness of this operator by hand.
We can conclude from this analysis that the different notions of unitarity with respect

to different clocks do not arise from the relational quantisation, but from writing the
Wheeler–DeWitt equation in the forms (4.19) or (4.23). In the classical theory these
different Wheeler–DeWitt equations correspond to different choices of lapse function.
Indeed, in section 3.2, the Hamiltonian was written as

H = Ñ

[
−π2

v +
π2
ϕ

v2
+ λ

]
, (4.27)

so that (4.3) corresponds to the choice Ñ = 1 and (4.23) to Ñ = v2. Classically this does
not make any difference, it just corresponds to different choices of time coordinate in
the metric. However, this classical symmetry of time reparametrisation is broken in the
quantum theory in a subtle way: changing the lapse leads to a different kinematical inner
product and then to different criteria to self-adjointness of the Hamiltonian constraints,
and finally to different boundary conditions (that will lead to different dynamics as we
will see in the following chapters).
Recently, a framework for clock changing in quantum gravity has been developed

[64]. Our findings are not in contradiction with theirs as in these papers the Hamilto-
nian constraint and the kinematical Hilbert space are taken as given and therefore not
changed throughout the work. In our case, we have changed the constraint form Ĉ to
N̂ Ĉ. Using the same inner product, it might be possible that these two constraints are
self-adjoint at the same time if one chose to quantise NC as

√̂
N Ĉ
√̂
N . Doing this is

not the path we have chosen, and moreover is not guaranteed to work as
√
N = v0e

u

might not become a self-adjoint operator. Our main point is that ĈΨ = 0 has the same
solutions that N̂ ĈΨ = 0. The ambiguity in the choice of the Wheeler–DeWitt equation
seems to be unavoidable if one maintains reparametrisation invariance in the classical
theory. The v-clock theory seems to have no analogue in the Dirac quantisation scheme.
Before we proceed to the following chapters, it is important to recall the basics to our

approach to the problem of time. In our case, we first quantised the theory using the
Wheeler–DeWitt equation and then chose a clock (tempus post quantum). This first
step is already different from approaches to quantisation, like deparametrisation and
reduced quantisation (tempus ante quantum). In the reduced quantisation framework,
one solves the constraint at the classical level by identifying the constraint surface, and
then one quantise the resulting theory, which possesses only true degrees of freedom.
This identification, or gauge choice, is not unique and hence the quantum theories are
not equivalent [56]. We also considered the chosen clock to act as an external parameter,
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and hence not forming part of the Hilbert space of the quantum theory. In the Page–
Wooters formalism, another tempus post quantum approach, one considers models that
are quantised as a tensor product between the clock Hilbert space and the system
Hilbert space. The clock is hence also quantised and clock measurements have the
usual uncertainties that come with quantum mechanics. The way to measure dynamics
in these cases is via conditional probabilities of the form ‘what is the probability that
the operator Ô has value o if the clock operator T̂ has value τ?’ This approach has the
benefit of considering clocks like quantum systems, but then the notion of time evolution
becomes blurry. Moreover, it has been shown that in some simple settings the Page–
Wooters formalism, reduced quantisation and Dirac quantisation, are equivalent [64].
Lastly, another approach to the problem of time is through path integral quantisation.
In this setting, the histories are sums over space geometries. We will discuss further
about that in chapter 9.
In summary, in this chapter we have computed the Wheeler–DeWitt equation of our

model and calculated its solutions. Following this, we have built a quantum theory
around all the clock choices we are interested in, and interpreted unitarity as self-
adjointness of a specific operator. Finally, we have shown how the issue of unitarity is
a direct consequence of time reparametrisation invariance rather than a consequence of
the quantisation used. In the next chapters, we will focus more on the dynamics of the
different quantum theories, but we want to highlight the crucial rôle of unitarity. It is
really the key assumption that leads to all the different theories we have introduced. One
might be tempted to assume that unitarity is not a fundamental property of quantum
gravity, in order to obtain an equivalent theory for all clock choices, but this assumption
is very hard to motivate as it is one of the most fundamental principles of quantum
mechanics. Hence, we believe in the need of a more fundamental approach to these
minisuperspace models before we making big claims such as singularity resolution. In
the following part, we will dive deeper in the allowed wave functions in each relational
quantum theory and calculate some important expectation values in order to analyse
the early and late times behaviour of these theories.
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5. The t-clock theory

Let us start to analyse the t-clock theory. We recall the Wheeler–DeWitt equation (4.3)(
~2 ∂

∂v2
+

~2

v

∂

∂v
− ~2

v2

∂2

∂ϕ2
− i~ ∂

∂t

)
Ψ(v, ϕ, t) = 0 , (5.1)

and its solutions (4.6)

Ψ(v, ϕ, t) =

∫ ∞
−∞

dλ

2π~

∫ ∞
−∞

dk

2π
eikϕeiλ

t
h

[
α(k, λ)Ji|k|

(√
λ

~
v

)
+ β(k, λ)J−i|k|

(√
λ

~
v

)]

+

∫ ∞
−∞

dλ

2π~

∫ ∞
−∞

dκ

2π
eκϕeiλ

t
h

[
γ(κ, λ)J|κ|

(√
λ

~
v

)
+ ε(κ, λ)J−|κ|

(√
λ

~
v

)]
.

(5.2)

In section 4.2 defined the inner product (4.10)

〈Ψ|Φ〉t =

∫ ∞
0

dv

∫ ∞
−∞

dϕ vΨ̄(t, ϕ, v)Φ(t, ϕ, v) , (5.3)

which involves integration over the variables v and ϕ but not the clock t. Not all
functions of the form (5.2) have a time (in this case t) independent norm. In order to
obtain a unitary theory we need to restrict ourselves to solutions that fulfil the boundary
condition (4.11) ∫ ∞

−∞
dϕ

[
v

(
Ψ̄
∂

∂v
Φ− Φ

∂

∂v
Ψ̄

)]v=∞

v=0

= 0 . (5.4)

This condition affects the specific expressions of the coefficients α(k, λ), β(k, λ), γ(k, λ)
and ε(k, λ).
But firstly, we have to see which solutions (5.2) are normalisable under the inner

product (5.3). We can consider the κ and the k sectors separately, so for simplicity we
will consider first wave functions such that α(k, λ) = β(k, λ) = 0. When applying (5.3)
to such states we find that we have to solve integrals of the type∫ ∞

−∞

dκ1

2π

∫ ∞
−∞

dκ2

2π

∫ ∞
−∞

dϕ e(κ1+κ2)ϕ (combinations of real Bessel functions) . (5.5)

The ϕ integral is always divergent unless κ1 = κ2, but this set has measure zero in the
(κ1, κ2) space. In conclusion, to have normalisable states we must enforce γ(κ, λ) =
ε(κ, λ) = 0.
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In order to calculate the solutions to the boundary condition (5.4), the imaginary
Bessel functions can be divided into two sectors, λ < 0 and λ > 0. For each sector we find
the one parameter family of solutions to the boundary condition. The calculations of the
following sections are rather complicated and some results involve distribution theory.
In order to not overflow the section we have moved the most technical calculations to
appendix B. We will cite it when necessary.

5.1. The λ > 0 sector

We now proceed to give explicit the explicit solutions to (5.4). Let us consider wave
functions of the form

Ψ+(v, ϕ, t) =

∫ ∞
0

dλ

2π~

∫ ∞
−∞

dk

2π
eikϕeiλ

t
~

[
α(k, λ)Ji|k|

(√
λ
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v

)
+ β(k, λ)J−i|k|

(√
λ

~
v

)]
.

(5.6)
When evaluating the boundary condition (5.4) where Ψ and Φ take the form (5.6), the
integral over ϕ simplifies to 2πδ(k1 − k2) giving∫ ∞
−∞

dk

2π

∫ ∞
0

dλ1

2π~
dλ2
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= 0 , (5.7)

where αj = α(k, λj) and βj = β(k, λj), j = 1, 2. The inside part of the integral can be
rearranged into 4 terms:
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(5.8)

+ vβ̄1β2
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v
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+ vᾱ1β2
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+ vβ̄1α2

(
Ji|k|

(√
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)
∂vJi|k|
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v

)
− ∂vJi|k|
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Ji|k|
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v

))
(5.11)

To solve the boundary condition we must analyse these terms in the limits v = ∞
and v = 0. We study both limits separately. In the limit v = 0 the Bessel functions
have the form:

J±i|k|

(√
λj

~
v

)
−→
v→0

e
±i|k| log

(√
λj

2~ v

)
Γ(±i|k|+ 1)

. (5.12)
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By direct substitution into (5.7) we find that (5.10) and (5.11) vanish and (5.8) and
(5.9) lead to

ᾱ1(λ1, k)α2(λ2, k)e
−i|k| log

√
λ1
λ2 − β̄1(λ1, k)β2(λ2, k)e

i|k| log
√
λ1
λ2 = 0 (5.13)

for all values of k, λ1 and λ2. By setting λ1 = λ2 we can see that |α(k, λ)| = |β(k, λ)|.
The general solution to (5.13) is

β(k, λ) = α(k, λ)eiθ(k)e
i|k| log

(
λ
λ0

)
, (5.14)

where θ(k) is an arbitrary real function of k and λ0 is a reference scale. This free
function represents the degree of freedom of the one dimensional self-adjoint extension
of (4.8). This concludes the analysis of the v = 0 limit.
When v is large we use the asymptotic expression of the J-Bessel functions

J±i|k|

(√
λj

~
v

)
−→
v→∞

√
2~

π
√
λjv

cos

(√
λjv

~
∓ i|k|π

2
− π

4

)
. (5.15)

When taking the derivative with respect to v and substituting in (5.8)–(5.11) we can
discard all terms that depend on 1

v as they go to zero. Hence, the terms (5.8) and (5.9)
vanish immediately. However, (5.10) and (5.11) do not vanish so easily; they become
respectively

ᾱ1β2
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1
4
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√
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√
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)
− (5.16)

(
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(

cosh(|k|π) cos
(
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)
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for (5.10) and

β̄1α2

π(λ1λ2)
1
4

(
−(
√
λ1 +

√
λ2) sin

(
(
√
λ1 −

√
λ2)

v

~

)
+ (5.17)

(
√
λ1 −

√
λ2)
(

cosh(|k|π) cos
(
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)
+ i sinh(|k|π) sin
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√
λ2)

v

~

)))
for (5.11). The second line of each term is formed of trigonometric functions of argument
(
√
λ1 +

√
λ2)v~ ; according to (B.34), when taking the limit v = ∞ these will result in

Dirac delta distributions δ(
√
λ1 +

√
λ2) (or zero) that vanish as λ1 and λ2 are always

positive. Moreover, also using (B.34), the first line of terms results in (λ1−λ2)δ(
√
λ1−√

λ2) that is always zero due to the prefactor. In conclusion, the limit v =∞ does not
add anything to the allowed states.
We can now say that the allowed wave functions (of positive λ) are

Ψ+(v, ϕ, t) =

∫ ∞
0

dλ

2π~

∫ ∞
−∞
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~α(k, λ) Re

[
e
iθ(k)−i|k| log

√
λ
λ0 Ji|k|

(√
λ

~
v

)]
.

(5.18)
Here we have chosen to write these states as a combination of real Bessel functions.
Recalling the small argument approximation of the Bessel functions (5.12), we can see
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that for small values of v the Bessel functions look like plane waves either coming to
the singularity (for Bessel functions of order −i|k|), or going out of the singularity (for
Bessel functions of order i|k|). Wave functions of the universe like (5.18) are always an
equal weight combination of incoming and outgoing waves from the singularity. This
superposition will play a key rôle when studying the dynamics of our universe.
States of the form (5.18) have a time independent norm, but they are not normalised,

so we proceed here to find the normalisation of these states, a quite long and technical
calculation. Readers not interested in the derivation of these states can directly jump
to formula (5.45). For simplicity, we label

ψk,λ(v, ϕ) = eikϕ Re

[
e
iθ(k)−i|k| log

√
λ
λ0 Ji|k|

(√
λ

~
v

)]
. (5.19)

These states are eigenfunctions of the (now self-adjoint) Hamiltonian (4.8) of eigenvalue
−λ. Thus, as λ > 0 lies in the continuum spectrum of that operator, we should look
to modify α(k, λ) such that 〈ψk1,λ1 |ψk2,λ2〉 = (2π)2~δ(k1 − k2)δ(λ1 − λ2). Because ψk,λ
are eigenstates of the operator (4.8), we know they are automatically orthogonal. In
addition to that, the ϕ part is already normalised as

∫
dϕ ei(k1−k2)ϕ = 2πδ(k1 − k2).

Hence, it is enough to evaluate the following integral:∫ ∞
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∫ ∞
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We already know that this integral yields a result of the form f(λ1)δ(λ1 − λ2). The
v integral converges in a distributional sense, as shown in appendix B.1. The v = 0
contribution to the integral is

1

4
ᾱ1α2

{
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}
= 0 , (5.21)

as shown in (B.5). On the other side, the upper limit v = ∞ results in a combination
of Dirac deltas δ(

√
λ1 ±

√
λ2) and some prefactors (see (B.8) for the specific formula).

Using that λ1 and λ2 are always positive (and hence δ(
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that the final result is real we obtain∫ ∞
0

dv vψ̄k,λ1ψk,λ2 =

=
~2|α1|2√

λ1

(
cos

(
|k| log

λ1

λ0
− 2θ(k)

)
+ cosh(|k|π)

)
δ(
√
λ1 −

√
λ2)

= ~2|α1|2
(

cos

(
|k| log

λ1

λ0
− 2θ(k)

)
+ cosh(|k|π)

)
δ(λ1 − λ2) . (5.22)
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In the second step we set λ1 = λ2. In conclusion, given
∫

dk
2π

dλ
2π~ |α(k, λ)|2 = 1 an

orthonormal basis for the eigenstates of positive energy is given by
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. (5.23)

These results are in accordance with [73] (note that their different definition of Λ
accounts for the different factors of 2 and ~). Using again the large argument approxi-
mation of the Bessel functions (5.15) we find that at large v

ψk,λ(v, ϕ) ∝ F (k)
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, (5.24)

where F (k) represents all remaining k dependence. This wave function can be inter-
preted as a combination of plane waves with phase difference Θ(k, λ) = ±π

2 + 2θ(k) −
k log

(
λ
λ0

)
. Hence, we can interpret these states as being scattered and experiencing a

phase shift across v = 0. For a more in detail discussion around this fact, consult [73].

5.2. The λ < 0 sector

Let us consider the negative part of the spectrum

Ψ−(v, ϕ, t) =

∫ 0
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2π~

∫ ∞
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eikϕeiλ
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(√
λ
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)]
.

(5.25)
To not overwhelm the notation we stick to the expressions α(k, λ) and β(k, λ) for the
prefactors, but as we are in a different part of the spectrum of λ, the relations we find
previously do not hold here. In order to simplify the notation it is better to work with
the modified Bessel functions

Kα(z) =
π

2

I−α(z)− Iα(z)

sin(απ)
, (5.26)

along with the I-Bessel functions defined in (4.7). The K and I-Bessels can be used to
form a complete set of solutions to the Wheeler–DeWitt equation (4.3), and hence we
can redefine α and β such that

Ψ−(v, ϕ, t) =
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∫ ∞
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(5.27)
At large arguments, the asymptotic behaviour of the I-Bessel is
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Due to the real exponential contribution, the I-Bessel functions diverge in the large v
limit. Hence, in order to obtain normalisable states one should consider wave functions
where β(k, λ) ≡ 0. The large argument asymptotic form of the K-Bessel functions is

Ki|k|

(√
−λ
~

v

)
−→
v→∞

√
~π

2
√
−λv

e−
√
−λv
~ , (5.29)

which tends to zero, so wave functions that contain these Bessel functions are all nor-
malisable. In addition to that, evaluating the boundary condition (5.4) becomes trivial;
we thus find no non-trivial contribution to the states from this limit. On the other
hand, the asymptotic form of these Bessel functions for small arguments is

Ki|k|
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)
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. (5.30)

Introducing this form in the v = 0 limit of (5.4), we find that two negative values λ1

and λ2 have to satisfy

log

(√
λ1

λ2

)
=
πn

|k|
, n ∈ Z . (5.31)

In other words, for a given k, the only allowed λ are of the form

λkn = λkRe
−2πn
|k| , n ∈ Z , (5.32)

for some λR < 0, where λR is a reference scale. λR does not define a ground energy
because the Hamiltonian (4.8) is unbounded. All these requirements restrict the form
of (5.27) to

Ψ−(v, ϕ, t) =
∞∑

n=−∞

∫ ∞
−∞
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2π
eikϕeiλ

t
~α(k, λkn)Ki|k|
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~

v

)
. (5.33)

The integral over λ has been replaced by a sum. If we consider Ĥk, i.e. the Fourier
transform in ϕ of the Hamiltonian (4.8)

Ĥk = ~2

(
− ∂2

∂v2
− 1

v

∂

∂v
− 1

v2
k2

)
, (5.34)

we see that for each k, the allowed values of λ are discrete. Thus, λ < 0 forms part of
the discrete spectrum of Ĥk and λ > 0 forms part of its continuum spectrum .
So far, we have analysed what is the boundary condition restriction on states that

are in a superposition of λ of only one sign. However, it is necessary to check that the
boundary condition (5.4) is also fulfilled for Ψ+ and Ψ− of the form (5.18) and (5.33),
that is ∫ ∞

−∞
dϕ

[
v

(
Ψ̄+

∂

∂v
Ψ− −Ψ−

∂

∂v
Ψ̄+

)]v=∞

v=0

= 0 . (5.35)

The limit v = ∞ is trivially zero (as can be seen remembering that the modified K-
Bessel functions tend to 0). Nonetheless, the limit v = 0 is not trivial and leads to

e
2iθ(k)+i|k| log

(
v2λ
~2

)
+ e

i|k| log λ
λ0

+i|k| log

(
−v2λkn
h2

)
= 0 , (5.36)
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where λ > 0 comes from Ψ+ and λkn follows (5.32). This condition has to hold for every
k. The dependence in v and λ vanish after simplification leaving us with

e
2iθ(k)+i|k| log

(
− λ0
λkn

)
= −1 (5.37)

Finally, using −1 = ei(2n+1)π, we have

λkn = −λ0e
− (2n+1)π

|k| +
2θ(k)
|k| . (5.38)

Thus,
λkR = −λ0e

−π
k

+
2θ(k)
k . (5.39)

In conclusion, the two reference scales are related. Note that changing λ0 to λ′0 and
θ(k) to θ(k) + k log

√
λ0
λ′0

leaves λkR invariant.
Finally, we calculate the norm of the negative λ eigenstates. Consider

φk,λkn(v, ϕ) = α(k, λkn)eikϕKi|k|

(√
−λkn
~

v

)
. (5.40)

We would like to modify α(k, λkn) so that
〈
φ
k1,λ

k1
n1

∣∣∣φ
k2,λ

k2
n2

〉
= 2πδ(k1−k2)δn1,n2 . Notice

that this time the normalisation requires the use of a Dirac delta for the continuous k
part and a Kronecker delta for the discrete λ part. As for the positive λ sector, these
states are already orthogonal, and the ϕ part is already normalised, hence it is enough
to analyse the integral

∫ ∞
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φ
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∫ ∞
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v

 . (5.41)

Recall that the modified Bessel functions are real, even for imaginary order and note
that we are using the shorthand notation βi ≡ β(k, λkni). These integrals are known in
the literature (see p. 658, formula 6.521(3) in [97]):∫ ∞

0
dx xKν(ax)Kν(bx) =

π(ab)−ν(a2ν − b2ν)

2 sin(νπ)(a2 − b2)
. (5.42)

In our specific case, taking the limit a = b we have that (5.42) vanishes for n1 6= n2,
while for n1 = n2 ∫ ∞

0
dv v

∣∣∣φλkn,k∣∣∣2 =
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∣∣∣2 π~2|k|
−2λkn sinh(|k|π)

. (5.43)

Therefore, the correct normalisation for the negative energy eigenstates is

φλkn,k(v, ϕ) =
1
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√
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(√
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v

)
. (5.44)
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We are now in condition to write the general wave function of the universe in terms
of the orthonormal basis {φk,λkn , ψk,λ}:

Ψ(v, ϕ, t) =

∫ ∞
−∞

dk

2π
eikϕ

[ ∞∑
n=−∞

eiλ
k
n
t
~

1

~

√
−2λkn sinh(|k|π)

π|k|
α(k, λkn)Ki|k|

(√
−λkn
~

v

)

+

∫ ∞
0

dλ

2π~
eiλ

t
~

√
2πeikϕ Re

[
e
iθ(k)−i|k| log

√
λ
λ0 Ji|k|

(√
λ
~ v
)]

√
~ cos

(
−2θ(k) + |k| log λ

λ0

)
+ ~ cosh(|k|π)

α(k, λ)

 ,
(5.45)

where α(k, λ) and α(k, λkn) satisfy
∫

dk
2π

[∑∞
n=−∞

∣∣β(k, λkn)
∣∣2 +

∫∞
0

dλ
2π~ |α(k, λ)|2

]
= 1.

We remind here that the self-adjoint extension is parametrised by the free function

θ(k), λ0 > 0 is an arbitrary reference scale and λkn = −λ0e
− (2n+1)π

|k| +
2θ(k)
|k| are the allowed

negative λ values.
We see that requiring unitarity leads to non-trivial conditions over the allowed states.

The most important consequence is that the combination of Bessel functions must be
real, i.e., in a superposition such that the two modes ±i|k| have the same weight (this
is the case for both the K-Bessels and the J-Bessels). For small values of v, close
to the classical singularity, one can say that the wave function of the universe is in
a superposition of plane waves incoming to and outgoing from the singularity. The
consequences of this superposition will be explored in chapter 8, but it is already clear
that this will have an effect on the classical singularity.
Looking closely at (5.45) we see that this expression is well-defined for all values of

t; this is in opposition to the classical solutions (3.20) that vanish when |t− t0| < |πϕ|
2|λ| ,

and it is a direct consequence of the way we built our theory. Indeed, we started from a
classical theory defined with a slow clock at the singularity, i.e., a clock that does not tick
fast enough to push the singularity to ±∞, and then we built a unitary quantum theory
around that clock1. The unitarity demand introduces the reflecting boundary condition
(5.4), which changes the behaviour of the quantum solutions around the classical theory,
thus obtaining a theory well defined everywhere in t space. Recall that, in their works
[59], Gotay and Demaret theorise that all (unitary) quantum universes build from a slow
clock (at the singularity) lead to a well-defined and non-singular quantum theory. On
the contrary, given a fast clock at the singularity, i.e., a clock that pushes the singularity
to its domain boundaries, no extra boundary condition is required. The t-clock theory
is consistent with this conjecture.
A last important thing to discuss around (5.45) is the rôle of the parameter θ(k).

This function corresponds to the one parameter freedom in choosing the self-adjoint
extension of the operator Ĥ (4.8) (or equivalently (5.34)). One could (and should!) ask
which features of the theory are sensitive to this parameter. We have not analysed this

1In fact, what makes t a slow clock, is that for every chosen finite tc, there is a solution of the

equation of motion for which tc lies in the classically forbidden interval |t− t0| < |πϕ|
2|λ| . This

classically forbidden interval always lies within the initial domain of t, R. For other clocks like v
the initial domain is (0,∞).
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in our model, and when dealing with the numerical analysis of our model we will make
the choice of θ that leads to the simplest calculations. However, the dependence of the
self-adjoint extension parameter has been analysed in [73] and it was found that despite
making a difference quantitatively, it did not make any difference qualitatively. Our
results, including the normalisation of the wave functions of the universe are compatible
with their work.
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6.1. Normalisation and positivity of the inner product

The choice of t as clock is motivated by the fact that t is monotonic classically and
that the Wheeler–DeWitt equation is a Schrödinger equation in t, but other choices are
possible. In particular, one can use v as clock, the only catch being that in the λ < 0
case it is not valid throughout the entire evolution. Indeed, the volume experiences a
turnaround. We can also use v as clock before or after reaching the maximum value,
even if we would have to use another clock around this maximum. This choice was
studied in a similar model [74]. In this section we build a unitary quantum theory using
this clock.
As we have seen previously, to use this clock it is better to multiply the Wheeler–

DeWitt equation by v2 to obtain (4.13):(
~2 ∂2

∂ϕ2
− ~2

(
∂

∂ log(v/v0)

)2

+ i~v2 ∂

∂t

)
Ψ(v, ϕ, t) = 0 . (6.1)

Multiplying the original equation by a phase space function does not change the solu-
tions of the Wheeler–DeWitt equation. However, due to the second order derivatives in
log(v/v0) it makes possible to interpret it as a Klein–Gordon equation with a potential
in the variable log(v/v0), where v0 is a constant needed to match the units of v. In an
abuse of language we will refer to v as the clock whereas the true clock is log(v/v0).
Remember that in this set up, the chosen inner product (4.17) is

〈Ψ|Φ〉v = i

∫ ∞
−∞

dt

∫ ∞
−∞

dϕ

[
vΨ̄(v, ϕ, t)

∂

∂v
Φ(v, ϕ, t)− vΦ(v, ϕ, t)

∂

∂v
Ψ̄(v, ϕ, t)

]
. (6.2)

The associated Hilbert space is composed of the normalisable functions under this
inner product, but it is not of the standard L2 square integrable form. Regardless, a
common feature of Klein–Gordon theories is the non positive definitiveness of the inner
product. This case is not an exception: the general norm of a state of the form

Ψ(v, ϕ, t) =

∫ ∞
−∞

dλ

2π~

∫ ∞
−∞

dk

2π
eikϕeiλ

t
~

[
α(k, λ)Ji|k|

(√
λ

~
v

)
+ β(k, λ)J−i|k|

(√
λ

~
v

)]
,

(6.3)
is

‖Ψ‖2v =
2

π

∫ ∞
−∞

dk

2π

∫ ∞
−∞

dλ

2π~

[
−|α(k, λ)|2 + |β(k, λ)|2

]
sinh(|k|π) . (6.4)
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Even if this norm is not positive in general, it is straightforward to redefine the inner
product to have a positive norm. From (6.4) we see that we can decompose the wave
functions (6.3) into negative and positive frequencies: Ψ = Ψ− + Ψ+ where

Ψ− =

∫ ∞
−∞

dk

2π

∫ ∞
−∞

dλ

2π~
eiλ

t
~ teikϕα(k, λ)Ji|k|

(√
λ

~
v

)

Ψ+ =

∫ ∞
−∞

dk

2π

∫ ∞
−∞

dλ

2π~
eiλ

t
~ eikϕβ(k, λ)J−i|k|

(√
λ

~
v

)
. (6.5)

These states are such that ‖Ψ−‖v ≤ 0, ‖Ψ−‖v ≥ 0 and 〈Ψ−|Ψ+〉v = 0, making positive
and negative frequency states decoupled. Note that here frequency and the subindices
± do not refer to an eigenvalue of v ∂

∂v but to the sign of the inner product 〈·|·〉v. Due
to this decoupling, it is possible to build a consistent “single universe” quantum theory
from the positive frequency sector only and no need of “third quantisation” [98], in which
Ψ would be promoted to a quantum field.
In our case we will consider both the Ψ+ and Ψ− sectors and construct a positive

definite inner product from 〈·|·〉v. It is enough to redefine the inner product of the
negative frequency modes by adding a global minus sign in front of the Ψ− contribution:

‖Ψ‖v′ = ‖Ψ+‖v − ‖Ψ−‖v , (6.6)

or more explicitly,

‖Ψ‖2v′ =
2

π

∫ ∞
−∞

dk

2π

∫ ∞
−∞

dλ

2π~

[
|α(k, λ)|2 + |β(k, λ)|2

]
sinh(|k|π) . (6.7)

This inner product treats positive and negative λ modes in exactly the same way (con-
trary to the t inner product) despite the λ < 0 modes falling off exponentially at large
v rather than oscillating like the λ > 0 ones.
But what happens to wave functions of the form

Ψ(v, ϕ, t) =

∫ ∞
0

dλ

2π~

∫ ∞
−∞

dκ

2π
eκϕeiλ

t
~

[
γ(κ, λ)J|κ|

(√
λ

~
v

)
+ ε(κ, λ)J−|κ|

(√
λ

~
v

)]
?

(6.8)
Identically to the t-clock case, the integral

∫
dϕ is divergent making these states non

renormalisable. We can hence focus only on functions of the form (6.3).
As we can see from (6.7), this inner product is time (v) independent, meaning that

no extra condition is required in this theory (recall that (4.18) is unitary). The Hilbert
space hence contains all regular functions of the form (6.3).

6.2. Semiclassical interpretation

We have seen that the solutions to the Wheeler–DeWitt equation have a time indepen-
dent norm already without the need of boundary conditions. Following the Gotay and
Demaret conjecture [59], we can explain is this by the fact that v is a fast clock every-
where: the singularity is at the boundary of the domain of v (v = 0) and hence no extra
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condition is needed. Moreover, there is no Hamiltonian that can be interpreted as the
generator of time evolution. This leads to an interesting semiclassical interpretation.
Indeed, let us recall the operator F̂ :

F̂ =

(
−~2 ∂2

∂ϕ2
− i~v0e

2u ∂

∂t

)
, (6.9)

where u = log v
v0
. The wave functions of this theory have to satisfy the second order

differential equation

− ~2 ∂
2

∂u2
Ψ(u, ϕ, t) = F̂Ψ(u, ϕ, t) (6.10)

If F̂ was independent of u and had only positive eigenvalues, this equation could be
replaced by two Schrödinger equations

i~
∂

∂u
Ψ±(u, ϕ, t) = ±

√
F̂Ψ±(u, ϕ, t) . (6.11)

In this case, self-adjointness and positivity would be enough to ensure that
√
F̂ is a well-

defined operator. Moreover, in this case
√
F̂ could be interpreted as the Hamiltonian

of the theory.
However, F̂ is not time independent; if we want to rewrite equation (6.10) as a

Schrödinger equation, we have to introduce the operator Ĥu

i~
∂

∂u
Ψ(u, ϕ, t) = ĤuΨ(u, ϕ, t) , (6.12)

where Ĥu would be the generator of time evolution and it is a solution of the equation

Ĥ2
u + i~

∂Ĥu
∂u

= F̂Ψ(u, ϕ, t) . (6.13)

There is no self-adjoint operator Ĥu that is a solution of this equation and this can be
easily verified by taking expectation values (assuming states that are well-behaved in
both sides of the equation): 〈

Ĥ2
u

〉
+ i~

∂

∂u

〈
Ĥu
〉

=
〈
F̂
〉
. (6.14)

The right-hand side always takes real values whereas the left-hand side does not unless
∂Ĥ
∂u = 0. That would imply that F̂ must also be time independent, thus ultimately
leading to a contradiction. Notice also that, even classically, the constraint

C = −π2
v +

π2
ϕ

v2
+ λ , (6.15)

does not admit a splitting C = π2
v +H2

v such that Hv is a Dirac observable.
In a nutshell, there is no link between our theory and a Schrödinger theory with

a self-adjoint Hamiltonian. Still, if one tries to interpret the v theory as an effec-
tive Schrödinger theory in the semiclassical regime we require the use of a complex
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Schrödinger time. Similar analysis have been done already, we summarise here the
method used in [99]. More examples of models that acquire a complex semiclassical
time can be found in [100].
The main idea is to relax the requirement that (6.12) is a Schrödinger equation in the

same time variable u than (6.10), instead we introduce a variable σ such that ∂
∂σ = ∂

∂u .
Assuming δ is small, we can thus write σ as u + δ and rewrite the condition over
expectation values (6.14) as

〈
Ĥu
〉2

+

〈
Ĥu

∂Ĥu
∂u

+
∂Ĥu
∂u
Ĥu

〉
δ + i~

∂
〈
Ĥu
〉

∂u
=
〈
F̂
〉
, (6.16)

where we have expanded 〈Hu〉2 at first order in δ. Now, if we assume that the expecta-
tion values are over semiclassical states for which covariances are small, we can do the
following approximation:〈

Ĥu
∂Ĥu
∂u

〉
=

〈
∂Ĥu
∂u
Ĥu

〉
=
〈
Ĥu
〉 ∂ 〈Ĥu〉

∂u
. (6.17)

If we set δ = − i~
2〈Ĥu〉 (which is purely imaginary), then at first order of perturbation

Ĥu can be considered the square root of F̂ and hence the theory can be seen as a
Schrödinger theory. Notice that σ = u − ~ i

2〈Ĥu〉 can be considered a semiclassical

expansion due to the factor of ~. Thus, the only way write our theory as a first-order
theory semiclassically is by introducing a complex time variable.
An interesting exercise is to calculate the imaginary part of the effective time σ on

a classical solution. To do so, we replace
〈
Ĥu
〉
by its classical limit πu = vπv. Recall

from section 3.3 the classical trajectories (for non vanishing λ):

v(t) =

√
−
π2
ϕ

λ
+ 4λ(t− t0)2, πv(t) =

2λ(t0 − t)√
−π2

ϕ

λ + 4λ(t− t0)2

, (6.18)

so that vπv = 2λ(t0 − t) and

δ = −i ~
4λ(t0 − t)

. (6.19)

For an expanding solution with λ > 0 we see that δ reaches a maximum value of ~
|πϕ| at

the classical singularity and tends to 0 as t goes to infinity, although, for macroscopic
πϕ, i.e., |πϕ| � ~ the imaginary part remains very small. The plots of δ alone as a
function of t and of δ compared with u for the same value of t are presented in fig. 6.1.
In this comparison we had to set the parameters λ, ~, πϕ, and v0 to arbitrary values.
In fact the numerical values of the plots are irrelevant, the most important feature is
the general shape which is overall conserved for different choices of the parameters.
From these plots, we can visualise how the imaginary part of σ is relevant near the

classical singularity but tends to 0 as the volume v grows to infinity, confirming the gen-
eral expectation that far away from the singularity the quantum theory is well described
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(a) |δ(t)| for a solution in which ~ = πϕ = 1,
λ = 1/2, and t0 = 0 for values of t between
1/2 and 3. The singularity is at t = 1/2
and δ(1/2) = 1 which is a finite value.

(b) Parametric plot of the real part of σ(t) and
the imaginary part of σ(t) for a solution in
which ~ = πϕ = v0 = 1, λ = 1/2, and
t0 = 0 for values of t between 1/2 and 3.

Figure 6.1.: Analysis of the imaginary contribution δ.

by a real time Schrödinger theory, whereas close to the singularity, this approximation
not longer holds. Interestingly, the quantum behaviour of the perfect bounce model
[74] was also captured by semiclassical complex trajectories in conformal time, leading
to the avoidance of the classical singularity in the complex plane, similarly to quantum
tunnelling.
Coming back to the Gotay and Demaret conjecture, we see here that as v is fast

everywhere, no boundary condition is needed in this theory, and thus near the classical
singularity we do not observe the superposition of plane waves present in the t-clock
theory. This leads to the suspicion (later confirmed by the numerical analysis) that this
theory does not resolve the singularity. It is now time to centre ourselves around the
last possible theory, the ϕ-clock theory.
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The last theory we study here is the ϕ-clock theory. As seen previously, we can rewrite
the Wheeler–DeWitt equation by multiplying it by v2 to find(

~2 ∂2

∂ϕ2
− ~2

(
∂

∂ log(v/v0)

)2

+ i~v2 ∂

∂t

)
Ψ(v, ϕ, t) = 0 . (7.1)

By using the ansatz Ψ(v, ϕ, t) = ψ(v, ϕ)eiλ
t
~ we obtain(

~2 ∂2

∂ϕ2
− ~2

(
∂

∂ log(v/v0)

)2

− v2λ

)
ψ(v, ϕ) = 0 . (7.2)

In section 4.2 we introduced the ϕ-inner product (4.14) which we recall here:

〈Ψ|Φ〉ϕ = i

∫ ∞
−∞

dt

∫ ∞
0

dv

v

(
Ψ̄(v, ϕ, t)

∂

∂ϕ
Φ(v, ϕ, t)− Φ(v, ϕ, t)

∂

∂ϕ
Ψ(v, ϕ, t)

)
, (7.3)

Remember that nµ∂µ = 1
v∂ϕ, where here nµ is the normal to the ϕ = const surfaces in

the Rindler wedge metric.
In section 4.2 we saw that our theory is not unitary unless the correct boundary

conditions are satisfied. In fact, introducing the variable u = log(v/v0) we verified
that the condition ∂ϕ 〈Ψ|Φ〉ϕ = 0 is equivalent to the self-adjointness problem for the
operator (4.16)

Ĝ = −~2 ∂
2

∂u2
− λv2

0e
2u , (7.4)

in an L2(R×R+, dv
v dt), or equivalently L2(R2, dudt), inner product, which is then also

equivalent to imposing the boundary condition (4.15)∫
dt

[
vΨ̄

∂

∂v
Φ− vΦ

∂

∂v
Ψ̄

]v=∞

v=0

= 0 . (7.5)

The operator Ĝ has a very different behaviour depending on the sign of λ. If we consider
its classical theory, (i.e. replacing i~∂u by pu and treating pu as a classical momentum
of a particle), G is of the form T + V where V = −λv0e

2u is a potential term and
T is a kinetic term (note the absence of hats in G). If λ is positive, this potential is
attractive enough to accelerate a particle to reach u =∞ in a finite time, yet for λ < 0
the potential is repulsive and this acceleration does not occur. The classical behaviour
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signals two facts: on the one side, the operator Ĝ is not self-adjoint for positive λ and
we would need a reflective boundary condition around v = ∞. On the other side, it is
self-adjoint for negative λ so no boundary condition is needed.
There is a one parameter family of linear subspaces of the wave functions that satisfy

the boundary condition (7.5), as derived first (to our knowledge) in [93] and in very
comprehensive way in [92]. The work [92] was done in the context of S-branes and λ was
a fixed quantity. In our case, as λ is not a fixed parameter but a dynamical variable,
the one parameter freedom of choosing subspace depends on λ. In this section, we
will reproduce the results of [92] but our normalisation will be different because we are
working with a Klein–Gordon rather than a Schrödinger inner product. For the λ < 0
case, the boundary solution is trivially satisfied, and the eigenstates of Ĝ are also known,
as shown in [94]. We will re-derive them using in our context.
Yet, before we start these calculations, there is a major point to take into account.

As we saw for the v-clock theory, Klein–Gordon inner products such as 〈·|·〉ϕ are not
expected to be positive definite and hence these inner products cannot be used for
a consistent (Born) probability interpretation. However, the explicit construction of a
positive inner product over the whole space of solutions of the Wheeler–DeWitt equation
is neither needed (because we will only work on the subspaces solving the boundary
condition (7.5)) nor straightforward. In fact, solutions that do not satisfy the boundary
condition (7.5) have no physical interpretation in this setting: no meaningful probability
distribution can be associated to a state whose norm is not conserved over time. By
first imposing unitarity, the resulting wave functions naturally split into orthonormal
positive, null, and negative norm subspaces, which makes the redefinition of the inner
product possible for such subspaces. In conclusion, we will build a positive definite
inner product after finding the family of self-adjoint extensions of the theory and only
on the subspace of solutions of the boundary condition.
In the following sections we derive the form of the wave functions that are both

normalisable and satisfy the boundary condition (7.5). Normalisability puts further
restrictions on the states. Our results are compatible with the analysis of [75] where
a quantum theory in ϕ time was constructed for a cosmological model with massless
scalar field and fixed λ > 0. In this work, the authors define a Dirac quantisation of the
kinematical Hilbert space rather than fixing a clock variable before quantisation, but as
we have seen in section 4.3, the same self-adjointness problems arise in this framework.
Another subtlety is that they do not use the volume v but a dual representation in
terms of a variable b corresponding to the Hubble parameter, hence even if their results
are not directly comparable to ours, we reach similar conclusions.
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7.1. The λ > 0 sector

Remember that the general solution to the Wheeler–DeWitt equation (7.2) is

Ψ(v, ϕ, t) =

∫ ∞
−∞

dλ

2π~

∫ ∞
−∞

dk

2π
eikϕeiλ

t
h

[
α(k, λ)Ji|k|

(√
λ

~
v

)
+ β(k, λ)J−i|k|

(√
λ

~
v

)]

+

∫ ∞
−∞

dλ

2π~

∫ ∞
−∞

dκ

2π
eκϕeiλ

t
h

[
γ(κ, λ)J|κ|

(√
λ

~
v

)
+ ε(κ, λ)J−|κ|

(√
λ

~
v

)]
.

(7.6)

We discuss real and imaginary order Bessel functions separately, as they have very
different asymptotic behaviour, hence we start by considering a wave function with
γ(κ, λ) = ε(κ, λ) = 0:

Ψ1(v, ϕ, t) =

∫ ∞
−∞

dλ

2π~

∫ ∞
−∞

dk

2π
eikϕeiλ

t
h

[
α(k, λ)Ji|k|

(√
λ

~
v

)
+ β(k, λ)J−i|k|

(√
λ

~
v

)]
.

(7.7)
The inner product of these states is

〈Ψ1|Ψ1〉 = −
∫

dk1dk2

(2π)2

dλ

2π~
dv

v
ei(k2−k1)ϕ(k1 + k2)× (7.8)[

ᾱ1α2J−i|k1|

(√
λ

~
v

)
Ji|k2|

(√
λ

~
v

)
+ ᾱ1β2J−i|k1|

(√
λ

~
v

)
J−i|k2|

(√
λ

~
v

)

+β̄1α2Ji|k1|

(√
λ

~
v

)
Ji|k2|

(√
λ

~
v

)
+ β̄1β2Ji|k1|

(√
λ

~
v

)
J−i|k2|

(√
λ

~
v

)]
,

where we use again the abbreviation αi for α(ki, λ) and βi for β(ki, λ). This expression
is clearly ϕ dependent. In order to simplify it further, we make use of the explicit
expressions for the integral of the two products of Bessel functions of appendix B. Here
we use equation (B.14) to find

〈Ψ1|Ψ1〉 =−
∫

dk1dk2

(2π)2

dλ

2π~
ei(k2−k1)ϕ(k1 + k2)× (7.9){

PV
2i

π(k2
1 − k2

2)

(
sinh

(
(|k1|+ |k2|)

π

2

) [
ᾱ1α2 − β̄1β2

]
+ sinh

(
(|k1| − |k2|)

π

2
)
) [
ᾱ1β2 − β̄1α2

])
+ 2

sinh
(
(|k1|+ |k2|)π2

)
|k1|+ |k2|

δ(|k1| − |k2|)
[
ᾱ1α2 + β̄1β2

]
+2

sinh
(
(|k1| − |k2|)π2

)
|k1| − |k2|

δ(|k1|+ |k2|)
[
ᾱ1β2 + β̄1α2

]}
,

where PV denotes the Cauchy principal value, a definition of the integral in terms of
a symmetric limit around the singular point k1 = k2. We need to analyse these terms
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one by one. The two last terms come from the v = 0 limit. In particular, the last
term, depending on δ(|k1|+ |k2|), will not contribute to the final result. The Dirac delta
δ(|k1| − |k2|) can be simplified using:

(k1 + k2)δ(|k1| − |k2|) = (k1 + k2)[δ(k1 + k2) + δ(k1 − k2)] = 2k1δ(k1 − k2) . (7.10)

When integrating over k1 or k2, the Dirac delta ensures k1 = k2 leading ei(k2−k1)ϕ = 1
and thus the contribution of this term is independent of ϕ.
The first two terms come from the limit v =∞ and they cannot be further simplified;

thus they must vanish. Hence, the boundary condition (7.5) is non-trivial only in the
v = ∞ limit. Due to the presence of the principal value, the integral over k of these
factors only depends on the antisymmetric part with respect to the point k1 = k2. This
leads to the condition

Y (k1, k2, λ, ϕ)− Y (2k2 − k1, k2, λ, ϕ) = 0 , (7.11)

(which is odd with respect to the reflection around the singular point k1 = k2), where

Y (k1, k2, λ, ϕ) = ei(k2−k1)ϕ sinh
(

(|k1|+ |k2|)
π

2

) [
ᾱ1α2 − β̄1β2

]
+ sinh

(
(|k1| − |k2|)

π

2

) [
ᾱ1β2 − β̄1α2

]
. (7.12)

To solve this condition we expand it around the singular point k1 = k2 up to linear
order to find:

α(k, λ)β̄(k, λ)− ᾱ(k, λ)β(k, λ)− cosh(kπ)
(
|α(k, λ)|2 − |β(k, λ)|2

)
(7.13)

+
2

π
sinh(kπ)

(
β(k, λ)

∂β̄(k, λ)

∂k
− α(k, λ)

∂ᾱ(k, λ)

∂k
+ iϕ

(
|α(k, λ)|2 − |β(k, λ)|2

))
= 0

The last term depends on ϕ, so it has to vanish independently, hence

|α(k, λ)|2 = |β(k, λ)|2 =⇒ eiχ(k,λ)β(k, λ) = α(k, λ) , (7.14)

where χ(k, λ) is an unspecified function taking values between [−π, π). Using this
information in (7.13) we find the differential equation

π sin(χ(k, λ)) + sinh(kπ)
∂

∂k
χ(k, λ) = 0 . (7.15)

The general solution to this equation is

χ(k, λ) = −2 arctan

[
ϑ(λ) coth

(
|k|π

2

)]
, (7.16)

where ϑ(λ) is a free function. By looking at (7.15) we see that we have the apparent
freedom to multiply χ(k, λ) by a overall minus sign which can be different for positive
and negative k (note that χ(k, λ) is ill-defined for k = 0). However, this sign is fixed
by imposing that the solution to (7.15) must also be a solution to (7.13). Given that
χ(k, λ) as defined in (7.16) solves (7.13) we have found the most general solution to the
boundary condition.
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Let us analyse the free function ϑ(λ) deeper. Two obvious solutions to (7.12) are
β(k, λ) = ±α(k, λ) for some (or all) values of λ. The “+” solution corresponds to
χ(k, λ) = ϑ(λ) = 0, at least for these values of λ. However, the “−” solution is χ(k, λ) =
−π which formally corresponds to ϑ(λ) = ∞, which must hence be included as a
possibility. The function ϑ(λ), defined to take values over R ∪ {∞}, is the degree of
freedom of the one dimensional self-adjoint extension of the operator (7.4), analogously
to the free parameter θ(k) present in the t-clock theory. A similar free parameter was
found in [92] and [93].
Now, the inner product of any state where α(k, λ) and β(k, λ) follow (7.14) with

χ(k, λ) defined as in (7.16) gives

〈Ψ1|Ψ1〉ϕ = −
∫ ∞
−∞

dk

2π

∫ ∞
0

dλ

2π~
2 sinh(kπ)

π
|α(k, λ)|2 . (7.17)

In consequence, this inner product is not positive definite, the k > 0 modes give a
negative contribution to the norm. We follow here the same approach from the v-clock
theory, we redefine the inner product (7.3) so that it becomes positive definite. This
allows all k modes to be considered as physical states. This redefinition can be done
with ease as the k > 0 and k < 0 modes are decoupled after the imposition of the
boundary condition. We thus modify the inner product on these states

〈Ψ1|Ψ1〉ϕ′ = 〈Ψ1|Ψ1〉ϕ,k<0 − 〈Ψ1|Ψ1〉ϕ,k>0 , (7.18)

where the notation k < 0 and k > 0 refer to the value of integration of k in (7.17).
Explicitly this gives

〈Ψ1|Ψ1〉ϕ′ =

∫ ∞
−∞

dk

2π

∫ ∞
0

dλ

2π~
2 sinh(|k|π)

π
|α(k, λ)|2 , (7.19)

which is manifestly positive definite. Note that even after this redefinition norm of
states is still conserved, i.e., the theory is still unitary.
In conclusion, a normalised solution to the Wheeler–DeWitt equation satisfying the

boundary condition (7.5) built using only imaginary order Bessel function can be ex-
pressed as

Ψ1(v, ϕ, t) =

∫ ∞
−∞

dk

2π

∫ ∞
0

dλ

2π~
eikϕeiλ

t
~α(k, λ)

√
2π

sinh(|k|π)
Re

[
ei
χ(k,λ)

2 Ji|k|

(√
λ

~
v

)]
,

(7.20)
where

∫∞
−∞

dk
2π

∫∞
0 |α(k, λ)|2 = 1. Note the similarity between this solution and the

expression of Ψ+, (5.18), found in the t-clock theory. In both cases the combination of
Bessel functions must be real and in both cases there is a free parameter that acts like
a phase. However, in the t-theory the free parameter θ(k) is a function of k, whereas in
the ϕ-clock theory ϑ(λ) is a function of λ.
However, the expression for χ(k, λ) presented in (7.16) can be inconvenient to work

with later in the numeric section and the comparison to [92] is not clear, so we chose to
rewriting the arctangent in terms of logarithms such that:

ei
χ(k,λ)

2 =

√√√√√sinh
(
|k|π

2

)
− iϑ(λ) cosh

(
|k|π

2

)
sinh

(
|k|π

2

)
+ iϑ(λ) cosh

(
|k|π

2

) . (7.21)
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One can further simplify this expression by introducing a new function κ0(λ) such that

ϑ(λ) = tan
(
κ0(λ)

π

2

)
, (7.22)

where κ0(λ) takes values in the interval [0, 2). In this notation κ0(λ) = 1 corresponds to
the possible choice ϑ(λ) =∞ discussed earlier. Using this new function we can rewrite
(7.20)

Ψ1(v, ϕ, t) =

∫ ∞
−∞

dk

2π

∫ ∞
0

dλ

2π~
eikϕeiλ

t
~α(k, λ)

√
2π

sinh(|k|π)
×

Re

[√
sinh

(
|k| − iκ0(λ)π2

)
sinh

(
|k|+ iκ0(λ)π2

)Ji|k|
(√

λ

~
v

)]
. (7.23)

This is the form used in [92] but with a different normalisation (as they are using another
inner product).
Now that we have found normalisable states with imaginary order Bessel functions, let

us turn our attention to real order Bessel functions by considering states with α(k, λ) =
β(k, λ) = 0

Ψ2(v, ϕ, t) =

∫ ∞
0

dλ

2π~

∫ ∞
−∞

dκ

2π
eκϕeiλ

t
~

[
γ(k, λ)J|κ|

(√
λ

~
v

)
+ ε(κ, λ)J−|κ|

(√
λ

~
v

)]
.

(7.24)
The norm squared of such a state is

〈Ψ2|Ψ2〉 = i

∫
dκ1dκ2

(2π)2

dλ

2π~
dv

v
e(κ1+κ2)ϕ(κ2 − κ1)× (7.25)[

γ̄1γ2J|κ1|

(√
λ

~
v

)
J|κ2|

(√
λ

~
v

)
+ γ̄1ε2J|κ1|

(√
λ

~
v

)
J−|κ2|

(√
λ

~
v

)

+ε̄1γ2J−|κ1|

(√
λ

~
v

)
J|κ2|

(√
λ

~
v

)
+ ε̄1ε2J−|κ1|

(√
λ

~
v

)
J−|κ2|

(√
λ

~
v

)]
,

where as usual all functions are evaluated at the same λ due to the appearance of the
factor

∫
dt ei(λ2−λ1) t~ = 2π~δ(λ2 − λ1), and we use the abbreviation γi = γ(κi, λ) and

εi = ε(κi, λ). We have studied the integral over v in appendix B and found that it does
not converge (neither in the usual sense nor in a distributional sense), unless the order
of the two Bessel functions are strictly positive. In this case, the expression is given
by (B.22). Consequently, we must make ε(κ, λ) = 0 in order to obtain a normalisable
state. We then find

〈Ψ2|Ψ2〉 = −2i

π

∫
dκ1dκ2

(2π)2

dλ

2π~
e(κ1+κ2)ϕ sin

(
(|κ1| − |κ2|)π2

)
κ1 + κ2

γ̄(κ1, λ)γ(κ2, λ) . (7.26)

The only way to ensure that this inner product is time independent is by setting

sin
(

(|κ1| − |κ2|)
π

2

)
= 0 =⇒ |κ1| − |κ2| = 2n, n ∈ Z . (7.27)
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This condition can be solved separately for each value of λ; but given a fixed λ only a
discrete set of values for κ is allowed, namely those satisfying

|κ| = κ′0(λ) + 2n for some n ∈ N ∪ {0} , (7.28)

where κ′0(λ) is an arbitrary function of λ which we can choose to take values in [0, 2).
Thus the wave functions that have a preserved norm under the inner product are

Ψ2(v, ϕ, t) =

∫ ∞
0

dλ

2π~
eiλ

t
~

[ ∞∑
n=0

(
γ+
n (λ)e(κ′0(λ)+2n)ϕ + γ−n (λ)e−(κ′0(λ)+2n)ϕ

)
×

Jκ′0(λ)+2n

(√
λ

~
v

)]
. (7.29)

These functions have norm zero, which is indeed ϕ independent. These states have no
classical analogue; one would interpret them as configuration for which π2

ϕ < 0 in the
classical constraint (3.16), similar to the tunnelling solutions under a potential barrier in
quantum mechanics. In quantum cosmology similar states that may “decay” in relational
time have been briefly discussed as “quantum puff” universes by Misner [101], however
their interpretation is not clear at all. Such states are also mentioned in Blyth’s PhD
thesis [102], once again with difficulties to find a good interpretation. Luckily, in our
case they have norm zero, so they have no influence in the probabilistic interpretation
of our theory. We will not consider universes composed only of such states because the
fact that they have norm zero makes it impossible to calculate expectation values of
observables.
As we did for the t-clock theory, we must now calculate the inner product of two

states Ψ1 and Ψ2 given by (7.20) and (7.29)

〈Ψ1|Ψ2〉 =i

∫
dk

2π

dλ

2π~
dv

v

∞∑
n=0

(
e(κ′0(λ)+2n−ik)ϕᾱ(k, λ)γ+

n (λ)(κ′0(λ) + 2n+ ik)

+ e(−κ′0(λ)−2n−ik)ϕᾱ(k, λ)γ−n (λ)(−κ′0(λ)− 2n+ ik)
)
×√

2π

sinh(|k|π)
Re

[
ei
χ(k,λ)

2 Jκ′0(λ)+2n

(√
λ

~
v

)
Ji|k|

(√
λ

~
v

)]
. (7.30)

It is better for now to use the form with χ(k, λ) for Ψ1 to simplify the calculations.
The v integral has been calculated in the appendix B, and the exact formula is given in
(B.25)

〈Ψ1|Ψ2〉 =
2i

π

∫
dk

2π

dλ

2π~

∞∑
n=0

(
e(κ′0(λ)+2n−ik)ϕ ᾱ(k, λ)γ+

n (λ)

κ′0(λ) + 2n− ik

− e(κ′0(λ)−2n−ik)ϕ ᾱ(k, λ)γ−n (λ)

κ′0(λ) + 2n+ ik

)
×

√
2π

sinh(|k|π)
Re
[
ei
χ(k,λ)

2 sin
(

(κ′0(λ) + 2n− i|k|)π
2

)]
. (7.31)
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To ensure this is ϕ-independent we demand Re
[
ei
χ(k,λ)

2 sin
(
(κ′0(λ) + 2n− i|k|)π2

)]
= 0.

This is equivalent to

tan
(
κ′0(λ)

π

2

)
= − tan

(
χ(k, λ)

2

)
tanh

(
|k|π

2

)
. (7.32)

Using (7.22) and (7.16) we find that

tan
(
κ′0(λ)

π

2

)
= tan

(
κ0(λ)

π

2

)
. (7.33)

Hence, if we choose κ′0(λ) = κ0(λ) + 2n where n is a integer for all λ, the condition
∂
∂ϕ 〈Ψ1|Ψ2〉 = 0 is satisfied. We impose n = 0 as we defined both κ0 and κ′0 to take
values between 0 and 2. Thus, given a state composed of both real and imaginary Bessel
functions, there is no cross contribution to its norm. Note that other choices like are
possible as the tangent function is π-periodic, but we choose the simplest one.
We are now in condition to write the most generic normalised wave function that

satisfies the boundary condition (7.5) of the λ > 0 sector:

Ψ(v, ϕ, t) =

∫ ∞
−∞

dk

2π

∫ ∞
0

dλ

2π~
eikϕeiλ

t
~α(k, λ)

√
2π

sinh(|k|π)
×

Re

[√
sinh

(
(|k| − iκ0(λ))π2

)
sinh

(
(|k|+ iκ0(λ))π2

)Ji|k|
(√

λ

~
v

)]

+

∫ ∞
0

dλ

2π~
eiλ

t
~

[ ∞∑
n=0

(
γ+
n (λ)e(κ0(λ)+2n)ϕ + γ−n (λ)e−(κ0(λ)+2n)ϕ

)
×

Jκ0(λ)+2n

(√
λ

~
v

)]
, (7.34)

where
∫∞
−∞

dk
2π

∫∞
0 |α(k, λ)|2 = 1. Note that there is no normalisation condition for

γ±n (λ) because they do not contribute to the total norm of the state.

7.2. The λ < 0 sector

Now that we have analysed in great detail the states with λ > 0, we can turn our
attention to the λ < 0 ones. Recall that classically the behaviour of the operator
Ĝ = −~2 ∂2

∂u2 − λv2
0e

2u, (7.4) is very different depending on the sign of λ. In particular,
for λ < 0 we will see that no boundary condition is needed.
Like we did previously, we start by analysing purely imaginary order Bessel functions

working with the modified Bessel functions Ii|k|
(√

λ
~ v
)
and Ki|k|

(√
λ
~ v
)

Ψ3(v, ϕ, t) =

∫ 0

−∞

dλ

2π~

∫ ∞
−∞

eikϕeiλ
t
~

[
α(k, λ)Ki|k|

(√
−λ
~

v

)
+ β(k, λ)Ii|k|

(√
−λ
~

v

)]
.

(7.35)
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Note that α(λ, k) and β(λ, k) are not the parameters we found in the λ > 0 case but
generic functions. The asymptotic behaviour of the I-Bessel functions is

I±i|k|

(√
−λ
~

v

)
−→
v→∞

√
~e
√
−λ
~ v√

2π
√
−λv

, (7.36)

Given the inner product (7.3), the norm of a state containing I-Bessel functions diverges.
This feature is common both in the t-clock theory and in the ϕ-clock theory. Hence, we
restrict ourselves to states

Ψ3(v, ϕ, t) =

∫ 0

−∞

dλ

2π~

∫ ∞
∞

dk

2π
α(k, λ)Ki|k|

(√
−λ
~

v

)
. (7.37)

The inner product of these states is

〈Ψ3|Ψ3〉ϕ = −
∫

dλ

2π~
dk1dk2

(2π)2

dv

v
(k1+k2)ei(k2−k1)ϕᾱ1α2Ki|k1|

(√
−λ
~

v

)
Ki|k2|

(√
−λ
~

v

)
.

(7.38)
Here we are using the notation αi = α(ki, λ), and we simplified one λ integral using∫

dtei(λ1−λ2) t~ = 2π~δ(λ1−λ2). The integral over v converges in the distributional sense
and its expression can be found in (B.19), resulting in

〈Ψ3|Ψ3〉ϕ = −
∫

dλ

2π~
dk1dk2

(2π)2
ei(k2−k1)ϕπ

2(k1 + k2)ᾱ1α2

2|k1| sinh(|k1|π)
[δ(|k1| − |k2|) + δ(|k1|+ |k2|)] .

(7.39)
The term δ(|k1| + |k2|) does not contribute to the integral and the other delta can be
simplified using (7.10) to find

〈Ψ3|Ψ3〉ϕ = −π
2

2

∫
dλ

2π~
dk

2π

|α(k, λ)|2

sinh(kπ)
. (7.40)

There are a few things to comment about this result. First of all, during the derivation
of (B.19) we saw there was no contribution to the result from the v = ∞ limit, which
is another way of seeing that the boundary condition (7.5) is trivial in this case. The
triviality of the boundary condition can also be verified directly by substituting there
a state like (7.37) and using the small and large argument asymptotic forms of the
K-Bessel functions (5.29) and (5.30) in each limit. In a nutshell, the operator Ĝ (7.4)
is self-adjoint in the λ < 0 case. Secondly, we see that in (7.40) positive k modes have
a negative contribution; the inner product is again not positive definite. Hence, given
that the k modes are decoupled in this inner product we can define a new inner product
for these modes by

〈Ψ3|Ψ3〉ϕ′ = 〈Ψ3|Ψ3〉ϕ,k<0 − 〈Ψ3|Ψ3〉ϕ,k>0 , (7.41)

where the subindices k ≶ 0 refer to the interval of integration in k. This is exactly the
same modification we did for (7.18). With this new inner product the squared norm of
states Ψ3 is

〈Ψ3|Ψ3〉ϕ′ =
π2

2

∫ 0

−∞

dλ

2π~

∫ ∞
−∞

dk

2π

|α(k, λ)|2

sinh(|k|π)
≥ 0 . (7.42)
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Finally, we need to consider real order Bessel functions for λ < 0. Given that the
asymptotic behaviour of the I-Bessel function (7.36) does not depend on the order of
the Bessel function, real order I-Bessel functions are not normalisable. We thus define

Ψ4(v, ϕ, t) =

∫ 0

−∞

dλ

2π~

∫ ∞
−∞

dκ

2π
eκϕeiλ

t
~α(k, λ)K|κ|

(√
−λ
~

v

)
, (7.43)

as a candidate for normalised function. The calculation of 〈Ψ4|Ψ4〉 involves the integral
(B.23) which diverges for all values of κ, hence there are no normalisable real order
Bessel function states for λ < 0.
In conclusion, we are now in a position to give the most general normalised solution

to the Wheeler–DeWitt equation which solves the boundary condition (7.5):

Ψ(v, ϕ, t) =

∫ ∞
−∞

dk

2π

∫ ∞
0

dλ

2π~
eikϕeiλ

t
~α(k, λ)

√
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sinh(|k|π)
× (7.44)
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+
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dλ
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n=0

(
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n (λ)e(κ0(λ)+2n)ϕ + γ−n (λ)e−(κ0(λ)+2n)ϕ
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×

Jκ0(λ)+2n
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+

∫ ∞
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eikϕeiλ
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2 sinh(|k|π)
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where
∫∞

0
dλ
2π~
∫∞
−∞

dk
2π |α(k, λ)|2 +

∫ 0
−∞

dλ
2π~
∫∞
−∞

dk
2π |η(k, λ)|2 = 1. As we have discussed

previously, the function κ0(λ) ∈ [0, 2) represents the Ĝ (7.4) self-adjoint extension
choice, in a similar fashion than the parameter θ(k) in the t-theory. Thus, the most
obvious question is what is the rôle of κ0(λ) in the dynamics of the theory? We have not
studied this explicitly, but we are confident that κ0(λ) does not change substantially
the behaviour of relevant observables. In the closely related model [75] it is shown that
the impact of choosing different parameters for a fixed value of λ is negligible.
Regarding the physical interpretation of the theory, we found that the modes with

λ > 0, that correspond to classical solutions which can reach infinity in a finite time,
must satisfy a boundary condition. This boundary condition may be interpreted as
a reflection around v = ∞. Identically to what happened to the t-theory, states of
the form (7.44) are continuous everywhere. When analysing the classical theory (see
fig. 3.2), we saw that classical solutions v(ϕ) and t(ϕ) are not continuous everywhere,
rather they present a discontinuity when ϕ = ϕ0 (where v reaches ∞). The quantum
boundary condition ensures continuity past the threshold ϕ = ϕ0 as the λ > 0 modes
are reflected from v = ∞. The ϕ clock is indeed slow at v = ∞, but contrary to the
t clock, it is fast at the singularity. In the numerical analysis we will see that this
reflecting boundary condition implies that the solutions experience a turn around at
finite maximum volume rather than reaching infinity, thus expanding the Gotay and
Demaret conjecture to include also “infinity resolution”.
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In conclusion, we have three theories for which the allowed wave functions look very
different. From chapter 5 to chapter 7 we have illustrated the breaking of covariance
coming from the clock choice. As explained in section 4.3, the t-clock and ϕ-clock the-
ories can also be obtained by the Dirac quantisation of the same model multiplying the
Hamiltonian by a non-trivial phase space function. These results trigger the question:
is there a preferred quantum theory? From the clock choice perspective there is no
preference, all the chosen clocks are valid and equivalent choices, and all of them have
been explored in the literature. However, one can argue that the theory that gives
the desired dynamics should be considered over the rest. But, what is the “desired
dynamics”? In the context of quantum cosmology (and black hole spaces), the ultimate
goal for a quantum universe is to resolve the singularity (the definition of “resolving the
singularity” comes with its own caveats that we will analyse shortly). It is then inter-
esting to study the dynamics of the three theories we found. In the following chapter we
will calculate numerically expectation values of different observables and build testable
criteria for singularity resolution for all theories.



Part IV.

Numerical analysis of the
different theories



8. Dynamics of the three
theories

One of the main reasons to consider quantum gravity, and in particular, quantum cos-
mology, is to resolve singularities. The most striking ones are perhaps the big bang/big
crunch singularities, as they are not hidden by an event horizon. So far, we have done a
complete analysis of the three different theories obtained considering different dynam-
ical variables as quantum clocks, and we have seen that they are not equivalent. In
consequence, we expect different behaviours towards the big bang/big crunch singu-
larity. Nonetheless, defining conditions for singularity resolution is not trivial, and we
must first specify them. In fact, several criteria are used in the literature, see [103].
A strong criterion is to demand that the energy density (that classically becomes infi-
nite at the big bang/big crunch) or other divergent physical quantities have a universal
upper bound satisfied for all states; see [103a] for an example of energy density upper
bound.
We use a simpler and less constraining criterion for our theory, similar to what was

proposed by Gryb and Thébault [73], i.e, we demand that expectation values of clas-
sically singular quantities, like the volume or the scale factor, are always non singular
for a given semiclassical state. However, the meaning of “non-singular behaviour” and
“semiclassical state” has to be specified in a case by case basis. We will give more details
about singularity resolution criteria in the following sections.
In the rest of the chapter we will construct semiclassical states for each of the three

theories and give explicit values for expectation values of v and t with respect to these
semiclassical states, compare them to the relevant classical Dirac observables calculated
in section 3.4, and analyse whether these semiclassical universes are non-singular. After
we have understood the dynamics of each theory, we will analyse their causal structure
to highlight their differences.
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8.1. Dynamics of the t-clock theory

We start by analysing the dynamics of the Schrödinger theory. Let us recall the general
solution of the Wheeler–DeWitt equation and the boundary condition:

Ψ(v, ϕ, t) =

∫ ∞
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∫ ∞
0

dλ

2π~
eiλ

t
~

√
2πRe

[
e
iθ(k)−ik log

√
λ
λ0 Ji|k|

(√
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√
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(
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 , (8.1)

where θ(k) is a free parameter. The first line corresponds to the λ < 0 modes and the
second line to λ > 0.
Building a semiclassical state amounts to choosing a form for α(k, λ), α(k, λkn), and

θ(k). Our choices are the following:

θ(k) = 0, (8.2)

α(k, λkn) = 0, (8.3)

α(k, λ) = αsc(k, λ) = C
2
√
~π

√
σkσλ

e
− (k−kc)2

2σ2
k

− (λ−λc)2

2σ2
λ . (8.4)

The choice θ(k) = 0 is the simplest choice of self-adjoint extension. We work under
the assumption that the qualitative results are independent of the self-adjoint extension
choice, as studied in [73], in particular [73b]. However, any given function of k (even non-
continuous functions) is allowed. It is neither possible, nor needed, to study the effect
of all possible self-adjoint extensions to analyse singularity resolution in this theory.
Our choice α(k, λkn) = 0 comes from the analysis of our universe. Let us recall the

physical interpretation of the parameter λ. In section 3.1 we saw that it can be related
to a perfect fluid energy density, and hence its values will depend on the energy density
interpretation. In particular, λ < 0 implies a negative energy density, which would be
considered as exotic matter in the case where the perfect fluid is dust or radiation. In
this work we have focused on the “dark energy interpretation” of λ, i.e. we interpret λ
as a cosmological constant. In this case negative values are possible, but according to
the data we have, it is very clear that our universe has a small positive cosmological
constant. Therefore, we will only consider positive λ modes.
Our last choice is standard in the study of minisuperspaces. We consider a normalised

wave functions centred around the classical values λc and kc. Again, to simplify some
calculations, we will only consider k > 0 modes and therefore the constant C plays
the rôle of a normalisation constant; it ensures

∫∞
0

dλ
2π~
∫∞

0
dk
2π |αsc(k, λ)|2 = 1. The

parameters σk and σλ are the standard deviations of the Gaussians. A state with smaller
expectation values can be considered as more “classical”. For most states we consider
kc and λc are large enough with respect to σk and σλ, that C can be approximated to
1.
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In a nutshell, our semiclassical state is

Ψsc,t(v, ϕ, t) =

∫ ∞
0

dk

2π

∫ ∞
0

dλ

2π~
eikϕeiλ

t
~αsc(k, λ)

√
2πRe

[
e
ik log

√
λ
λ0 Jik

(√
λ
~ v
)]

√
~ cos

(
k log λ

λ0

)
+ ~ cosh(kπ)

.

(8.5)
Here the subindex t is a label to distinguish the semiclassical states from the rest of
the theories. Note again the equal weight combination of Bessel functions of ±ik index.
Recall that λ0 is a constant needed for dimensional reasons that will be set to 1 to
obtain the numerical results of this section.
Now that we have an expression for the semiclassical states, we can calculate the ex-

pectation values of different observables. In this theory the most interesting observable
probably is the volume

〈Ψsc,t(v, ϕ, t)| v |Ψsc,t(v, ϕ, t)〉 = 〈v(t)〉Ψsc,t . (8.6)

The label t refer to the fact that this calculation is done using the t-clock inner product.
The expression for this observable is

〈v(t)〉Ψsc,t =

∫ ∞
0

dv v2

∫
dλ1dλ2

(2π~)2

dk

2π
e−i(λ1−λ2) t~αsc(k, λ1)αsc(k, λ2)×

2πRe

[
e
−ik log

√
λ1
λ0 Jik

(√
λ1
~ v
)]

Re

[
e
−ik log

√
λ2
λ0 Jik

(√
λ2
~ v
)]

√
~ cos

(
k log λ1

λ0

)
+ ~ cosh(kπ)

√
~ cos

(
k log λ2

λ0

)
+ ~ cosh(kπ)

. (8.7)

These integrals cannot be simplified by the techniques we used in our appendix. As
αsc(k, λ) is chosen to be real 〈v(t)〉Ψsc,t is symmetric with respect of time reversal
t −→ −t, which simplifies the numerical evaluation. Indeed, one can evaluate 〈v(t)〉Ψsc,t
for positive values of t, and then deduce the 〈v(t)〉Ψsc,t for the corresponding negative
values of t. Given that numerical evaluation is very slow, this allows us to save a lot of
time.
Nevertheless, the evaluation of (8.7) is a challenge numerically. To simplify it we

will assume that the Gaussian over k is sharply peaked, i.e. σk
kc
� 1. Consequently,

αsc(k, λ1)αsc(k, λ2) = K(k)L(λ1)L(λ2) where K(k) can be approximated to a Dirac δ
distribution, K(k) ≈ δ(k − kc) up to a certain degree, hence removing the k integra-
tion from the calculation. The v integral is still a challenge, so we have verified that
〈Ψsc|Ψsc〉 = 1 to very high precision.
Let us recall the characteristics of the t-clock theory. In section 3.3 we have seen that

the classical trajectories terminate at a finite tsing where v(tsing) = 0. The classical
evolution cannot be continued beyond t = tsing, however, our quantum theory is by
construction unitary so the state is well-defined along the entire t axis. Hence, our
criterium for singularity resolution is that if for a specific Ψsc,t, there exists a constant
CΨsc,t such that 〈v(t)〉Ψsc,t ≥ CΨsc,t > 0, this state resolves the singularity. A stronger
criterium for singularity resolution would be to require that the constant CΨsc,t is in-
dependent of the state, but we will not do this in this work. Some other quantum
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behaviours that we might observe are 〈v(tp)〉Ψsc,t =∞ for a finite tp or 〈v(t)〉Ψsc,t −→ 0
when t −→ ±∞, however these behaviours can still be seen as singularities in the
quantum theory.
We compare 〈v(t)〉Ψsc,t (8.7) to the classical curve

vc(t) =

√
4λct2 −

~2k2
c

λc
, (8.8)

where kc and λc take the same values as in αsc(k, λ) (8.4). Figure 8.1 shows the compar-
ison between 〈v(t)〉Ψsc,t and vc(t) for different values of the parameters. We see clearly
that 〈v(t)〉Ψsc,vt reaches a minimum value strictly above zero and slowly tends to the
classical curve as t increases. The quantum expectation value is always above the clas-
sical one and it is well-defined before the big bang and after the big crunch singularity.
This behaviour is exactly what we would expect from a nonsingular universe.
Figure 8.1 also shows solutions for various values of σλ with the rest of the parame-

ters unchanged. To our surprise, the states with greater standard deviations σλ seem
to agree better with the classical theory at late times and seem to have a smaller
minimum value. In other words, states with a larger quantum spread seem to have a
more abrupt transition between the two classical branches. In fact, the minimum value
〈v(t = 0)〉Ψsc,t = Vmin is a function of the parameters λc, kc and σλ, and it appears that
it is decreasing in σλ. For values of the parameters kc = 1, λc = 10 and ~ = 1 we have

Vmin,σλ=2 = 2.08± 0.04, Vmin,σλ=2.5 = 1.72± 0.04, Vmin,σλ=3 = 1.47± 0.02, (8.9)

where the errors are the estimation of the integration error of Mathematica. This
quantity does not have a classical analogue, hence the fact that Vmin decreases with
σλ is not problematic per se for the quantum theory. In [73], the authors found a
very similar behaviour in a limit in which the contribution of the cosmological constant
dominates over the scalar field. They found that Vmin ∝ 1/σλ. Our results do not
assume this limit and deviate from this relation but not very strongly.
One interpretation to this behaviour is the following: despite that λ and t are con-

jugated variables, in some sense λ is also conjugated to v (recall the small argument
asymptotic behaviour of the Bessel functions Jik

(√
λ
~ v
)
∝ eik log

√
λv

2~ ), so that a greater
spread in λ would imply a smaller spread in t and v, bringing the quantum expectation
value closer to the classical solution.
The errors in Vmin tell us that the integrals of this section are non-trivial to imple-

ment numerically. The v integral in (8.7) poses the most problems: The lower end
contribution is always zero as the prefactor of the Bessel functions cancels the infinite
oscillations, but the upper end contribution is harder to deal with. The Bessel functions
behave like trigonometric functions for large values of v and these oscillating integrals
are a challenge, for this reason the estimated error of the numerical results is non neg-
ligible. There are a couple of secondary factors that one should also take into account
when doing these numeric calculations. First of all, increasing kc mean that the Bessel
function oscillate more rapidly, interfering further in the calculations. This is why we
decided to study only modes with kc ≤ 3. Furthermore, the term e−i(λ1−λ2) t~ adds more
oscillations, making the results at large t more prone to errors. Finally, decreasing σλ,
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(a) The dotted lines represent 〈v(t)〉Ψsc,t
for values kc = 1, λc = 10, ~ = 1, and σλ = 3

(red circles), σλ = 2.5 (blue squares) and σλ = 2 (yellow triangles). The black thick line
corresponds to the classical trajectory with the same values of kc and λc. We see that the
quantum trajectory is well-defined for all t’s and reaches a positive minimum value Vmin.

(b) The dotted lines represent 〈v(t)〉Ψsc,t
for values kc = 3, λc = 10, ~ = 1, and σλ = 3

(red circles), σλ = 2.5 (blue squares) and σλ = 2 (yellow triangles). The black thick line
corresponds to the classical trajectory with the same values of kc and λc. We see that the
quantum trajectory is well-defined for all t’s and reaches a positive minimum value Vmin.

Figure 8.1.: Comparison between 〈v(t)〉Ψsc,t and vc(t) for different values of the param-
eters.
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λc kc σλ ∆rel(0.2) (%) ∆rel(0.5) (%) ∆rel(1) (%)

10 1 3 −53.15± 3.73 −10.51± 2.44 −4.76± 2.03
10 1 2.5 −68.00± 2.49 −11.80± 2.58 −4.921± 0.901
10 1 2 −92.59± 5.37 −15.13± 3.39 −5.15± 1.73
10 3 3 −173.80± 1.98 −32.025± 0.943 −14.870± 0.990
10 3 2.5 −96.37± 7.53 −33.07± 1.14 −14.97± 1.05
10 3 2 −233.6± 12.4 −36.34± 3.70 −15.03± 1.82

Table 8.1.: Relative difference between the classical solution and quantum expectation
values of λc, kc and σλ. The errors are calculated using Mathematica inte-
gration error estimate and standard error calculation.

makes αsc(k, λ) more peaked, and functions with larger gradients tend to be more diffi-
cult to integrate (this explains the errors in (8.9)). It is almost impossible to establish
an exact parameter range in which the numerical integration gives a reliable enough re-
sult, but we consider that within the ranges we are plotting in fig. 8.1 numerical errors
are manageable.
We are aware fig. 8.1 may not convey the fact that 〈v(t)〉Ψsc,t tends to the classical

trajectory, at least when k = 3. We had to find a compromise where the behaviour
around v = 0 is clearly visible, the difference between the different quantum curves
noticeable, and the plot range wide enough to see the dynamics at larger t. In order to
check that the classical and quantum curves agree at larger times (t) we have checked
the relative difference between the two in a safe range of the parameters:

∆rel(t) =

(
1−
〈v(t)〉Ψsc,t
vc(t)

)
. (8.10)

As the quantum curve seems to be always above the classical one, ∆rel is negative.
Looking at table 8.1 we see that in all cases, ∆rel approaches 0 when t increases and
smaller values of σλ give larger numerical errors. Larger values of kc seem to slow down
convergence, but we do not consider this to be of worry.
Finally, it is interesting to study the variance of the states throughout the bounce.

If a state maintains a small variance throughout the evolution, it stays semiclassical.
This semiclassicality occurs in models of LQC [103]. The variance of our model is:

σ2〈v(t)〉Ψsc,v =
〈
v2(t)

〉
Ψsc,v

− 〈v(t)〉2Ψsc,v (8.11)

where,〈
v2(t)

〉
Ψsc,t

=

∫ ∞
0

dv v3

∫
dλ1dλ2

(2π~)2

dk

2π
e−i(λ1−λ2) t~αsc(k, λ1)αsc(k, λ2)×

2πRe

[
e
−ik log

√
λ1
λ0 Jik

(√
λ1
~ v
)]

Re

[
e
−ik log

√
λ2
λ0 Jik

(√
λ2
~ v
)]

√
~ cos

(
k log λ1

λ0

)
+ ~ cosh(kπ)

√
~ cos

(
k log λ2

λ0

)
+ ~ cosh(kπ)

. (8.12)
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This time, the numerical integration of this quantity poses even more problems than
〈v(t)〉Ψsc,t due to the divergent integral

∫
dv v3. We have tried several parameter com-

binations, and we consider that the integration errors are too high, hence we cannot
present them in this section.
Overall, we consider that the results we obtained are accurate enough to prove that

this theory resolves the singularity and the universe experiences a bounce. For a deeper
numerical analysis (in particular regarding the dependence in the self-adjoint extension
parameter) we refer to [73]. We confirm the fact that a slow clock ( as defined in [59])
solves the singularity generally.

8.2. Dynamics of the v-clock theory

Among all the studied theories, the v-theory has always been the outsider, and in this
section this will be no different. In chapter 6 we have seen that this theory is unitary
without boundary condition. The expression for a normalised state is

Ψ(v, ϕ, t) =

∫ ∞
−∞

dλ

2π~

∫ ∞
−∞

dk

2π
eikϕeiλ

t
~

√
π

2 sinh(|k|π)
×[

α(k, λ)Ji|k|

(√
λ

~
v

)
+ β(k, λ)J−i|k|

(√
λ

~
v

)]
. (8.13)

The small argument asymptotic of the Bessel function is comparable to a plane wave:
limv→0 J±i|k|

(√
λ
~ v
)
∝ e±i|k|

√
λ

2~ , the + sign are waves going into the singularity and
the − sign are waves going out of the singularity. We want to compare the quantum
expectation values with a classical universe that expands from the big bang singularity
(see fig. 3.1), we consider solutions that are composed of only outgoing waves, i.e.
α(k, λ) = 0. To construct semiclassical states, we make very similar assumptions to the
t theory, namely:

• We limit ourselves to the range λ > 0, in order to work with universes with a
perfect fluid positive energy density.

• We set β(k, λ) := αsc(k, λ) as defined in (8.4), i.e., a double normalised Gaussian
centred in the classical values kc and λc

The expression of a semiclassical state is then

Ψsc,v(v, ϕ, t) =

∫ ∞
0

dλ

2π~

∫ ∞
−∞

dk

2π
eikϕeiλ

t
~

√
π

2 sinh(|k|π)
αsc(k, λ)J−i|k|

(√
λ

~
v

)
.

(8.14)
The sub-indices sc, v refer to the fact that this state is specifically the semiclassical state
of the v-clock theory.
In this case, studying singularity resolution is not as straightforward as for the other

theories, because the volume of the universe v is now the clock variable. However, we can
study the expression of other important observables, like 〈Ψsc,v| t |Ψsc,v〉 = 〈t(v)〉Ψsc,v .
Classically, v(t) and t(v) are invertible quantities and classical trajectories, t(v) can-
not be defined past t = tsing as v cannot be negative. Consequently, we consider that
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Figure 8.2.: Possible singularity resolution in the v-clock theory. The blue solid line
represents a classical trajectory t(v) for λ > 0. The green dotted line rep-
resents a hypothetical trajectory of 〈t(v)〉Ψsc,v where ∂v 〈t(v)〉Ψsc,v = 0 and
then 〈t(v)〉Ψsc,v experiences a turnaround. The red dashed line corresponds
to a 〈v(t)〉Ψsc,v trajectory that becomes ill-defined. Both hypothetical tra-
jectories would be considered singularity resolution even if the green dotted
curve reaches v = 0.

〈t(v)〉Ψsc,v avoids the singularity if we observe one of the following behaviours: either

〈t(v)〉Ψsc,v becomes ill-defined as
∣∣∣∂v 〈t(v)〉Ψsc,v

∣∣∣→∞ for some value of v, or 〈t(v)〉Ψsc,v
starts moving backwards, i.e., ∂v 〈t(v)〉Ψsc,v = 0 somewhere. These hypothetical be-
haviours are presented in fig. 8.2.
It is possible to simplify the expression for 〈t(v)〉Ψsc,v . In fact,

〈t(v)〉Ψsc,v = 〈Ψsc,v| t |Ψsc,v〉

= i
πv

2

∫
dλ1dλ2

(2π)2

dk

2π
dt te−i(λ1−λ2) t~
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)
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(√
λ2

~
v

)
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(√
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~
v

)
∂vJi|k|

(√
λ1

~
v

)]
.

(8.15)

Here we simplified the integral
∫

dϕe−i(k1−k2)ϕ = 2πδ(k1−k2). We cannot use the same
trick for the t integral, however this integral can be solved using:∫

dλ1dλ2

(2π~)2
dt te−i(λ1−λ2) t~F (λ1, λ2)

= − i~
2

∫
dλ

2π~

(
∂

∂λ1
F (λ1, λ2)− ∂

∂λ2
F (λ1, λ2)

)∣∣∣∣
λ1=λ2=λ

. (8.16)
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This leads to

〈t(v)〉Ψsc,v =

∫
dλ

2π~
dk

2π
|αsc(k, λ)|2f(v, k, λ)

+
i~
2

∫
dλ

2π~
dk

2π
[ᾱsc(k, λ)∂λαsc(k, λ)− ∂λᾱsc(k, λ)αsc(k, λ)] , (8.17)

where
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4~ sinh(|k|π)
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~
v

)
− c.c.

]
, (8.18)

where the notation c.c. means complex conjugate. Two things stand out from this
expression. The first one is that (8.17) does not depend on any approximation or
expression for αsc yet, hence this expression is not only valid on the semiclassical states
we want to study, but also for general states. The second one is that the expression
(8.17) is manifestly real, as it should be.
Let us now consider αsc(k, λ) as in (8.4). Because αsc(k, λ) is real, the second line of
〈t(v)〉Ψsc,v is trivially zero. In the limit σk → 0 and σλ → 0 we can approximate the
integral:

〈t(v)〉Ψsc,v =

∫
dλ

2π~
dk

2π
|αsc(k, λ)|2f(v, k, λ) ≈ f(v, kc, λc) . (8.19)

This limit can be considered as a classical limit, as we have σk
kc
� 1 and σλ

λc
� 1, and

very small standard deviation implies small dispersion of the states. We would like to
compare (8.19) with the classical solution

tc(v) =
1

2

√
~2k2

c

λ2
c

+
v2

λc
, (8.20)

where the subindex c refers to the fact that this is a classical solution. λc and kc should
have the same values in the two expressions for a meaningful comparison. Expanding
(8.18) and (8.20) around v = 0 (the classical singularity) we find

tc(v) =
~|kc|
λc

+
v2

4~|kc|
− λcv

4

16~3|kc|3
+

λ2
cv

6

32~5|kc|5
+O(v8) (8.21)

f(v, kc, λc) =
~|kc|
2λc

+
v2

4~|kc|
− λcv

4

16~3(|kc|+ |kc|3)
+

λ2
cv

6

32~5(4|kc|+ 5|kc|3 + |kc|5)
+O(v8)

(8.22)

There is a very close agreement between these two expressions, the first difference comes
at order v4. These expressions reveal an interesting interpretation of the parameter kc:
in the large kc limit, the two solutions agree, hence kc can be considered as another
measure of semi-classicality. It is therefore insightful to study solutions with different
values of kc1.

1As k grows, the Bessel functions become increasingly harder to numerically integrate, hence we will
not study functions with k > 10.
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Already at this stage, we can confirm that this quantum theory and the classical
theory are in very close agreement. This backs up the theoretical analysis done in
chapter 6. There are no signs of singularity resolution as described around fig. 8.2.
However, we would like to plot tc(v) and 〈t(v)〉Ψsc,v . In order to do that effectively, we
use one last approximation. Assuming the limit is well-defined, we will only consider
Gaussians (8.4) that are very peaked in k, i.e σk

kc
� 1. Thus, |αsc(k, λ)|2 = K(k)L(λ)

where K(k) can be approximated to a delta distribution K(k) ≈ 2πδ(k−kc) allowing us
to drop k integral in (8.17). We are aware that this is a tremendous simplification, but
without this approximation the numerical implementation of (8.17) is almost impossible
due to the non-triviality of the integral of the Bessel functions. The parameter σλ
remains and different values of it represent different states: if σλ

λc
is small, the wave

function has less dispersion in λ and hence can be considered as a “more classical” state.
In fig. 8.3 we present 〈t(v)〉Ψsc,v with respect to different values of kc and σλ. We see

that the quantum expectation values follow the classical trajectory to the singularity,
and there are no apparent signs of singularity resolution as the ones considered in fig. 8.2.
This behaviour is expected as v is a fast clock everywhere. A few things stand out from
the figure: the classical and quantum curves are still in very close agreement for higher
values of v, and the quantum expectation value is always greater than the classical
curve, in accordance to (8.22). Indeed, the term of order v3 (which is the first term
that differs from the classical and quantum curve) is bigger for 〈t(v)〉Ψsc,v . In addition
to that, the curves with smaller σλ are in closer agreement with the classical theory,
contrary to what happened in the t-clock theory.
It is interesting to study the variance of such expectation values, to verify whether

the state Ψsc,v remains semiclassical throughout the evolution. In this case

σ2〈t(v)〉Ψsc,v =
〈
t2(v)

〉
Ψsc,v

− 〈t(v)〉2Ψsc,v (8.23)

should remain small throughout the evolution. The calculation of
〈
t2(v)

〉
Ψsc,v

is very
similar to the 〈t(v)〉Ψsc,v one, namely〈
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〉
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(8.24)

where we have again simplified the integral
∫

dϕe−i(k1−k2)ϕ = 2πδ(k1 − k2). This time,
we use the formula∫

dλ1dλ2

(2π~)2
dt t2e−i(λ1−λ2) t~F (λ1, λ2)

= −~2

2

∫
dλ

2π~

(
∂2

∂λ2
1

F (λ1, λ2) +
∂2

∂λ2
2

F (λ1, λ2)

)∣∣∣∣
λ1=λ2=λ

, (8.25)
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(a) The dotted lines represent 〈t(v)〉Ψsc,v
for values of kc = 3, λc = 10, ~ = 1 and σλ = 2,

(red circles) and σλ = 1 (grey squares). The blue thick line corresponds to the classical
trajectory tc(v) for the same values of kc and λc. We can see that the classical and quantum
curves are very close to each other.

(b) The dotted lines represent 〈t(v)〉Ψsc,v
for values of kc = 10, λc = 10, ~ = 1, and σλ = 2,

(red circles) and σλ = 1 (grey squares). The blue thick line corresponds to the classical
trajectory tc(v) for the same values of kc and λc. Once again, the classical and quantum
curves are very close to each other.

Figure 8.3.: Comparison between 〈t(v)〉Ψsc,v and tc(v) for different values of the param-
eters.
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which comes from the second derivative of a Dirac δ distribution. Thus,

〈
t2(v)

〉
Ψsc,v

=
1

4

∫
dλ

2π~
dk

2π
|α(k, λ)|2

[
~2k2

λ2
+
v2

λ

]
− iπv~2

2

∫
dλ

2π~
dk

2π

αsc(k, λ)∂λᾱsc(k, λ)

sinh(|k|π)
∂λ1h(λ1, λ2)|λ1=λ2=λ

− iπv~2

2

∫
dλ

2π~
dk

2π

ᾱsc(k, λ)∂λαsc(k, λ)

sinh(|k|π)
∂λ2h(λ1, λ2)|λ1=λ2=λ

− ~2

2

∫
dλ

2π~
dk

2π

[
ᾱsc(k, λ)∂2

λαsc(k, λ) + ∂2
λᾱsc(k, λ)αsc(k, λ)

]
, (8.26)

where

h(λ1, λ2) = Ji|k|

(√
λ1

~
v

)
∂vJ−i|k|

(√
λ2

~
v

)
− J−i|k|

(√
λ2

~
v

)
∂vJi|k|

(√
λ1

~
v

)
. (8.27)

In our case αsc(k, λ) is real, so the two intermediate terms cancel due to the symmetry
of h(λ1, λ2). Moreover, it is straightforward to see that the first term can be directly
related to the classical solution tc(v) (8.20), thus in our case

〈
t2(v)

〉
Ψsc,v

=

∫
dλ

2π~
dk

2π
|αsc(k, λ)|2t2c(v)

− ~2

∫
dλ

2π~
dk

2π
αsc(k, λ)∂2

λαsc(k, λ) . (8.28)

Note that contrary to what happened in 〈t(v)〉Ψsc,v , the second term does not vanish.
In the limit σk

k � 1, the integral over λ of the second term can be done yielding to

〈
t2(v)

〉
Ψsc,v

≈
∫

dλ

2π~
|αsc(kc, λ)|2t2c(v) +

~2

2σ2
λ

(8.29)

This is the expression we will use for the plots. We can already see from this expres-
sion that the term

〈
t2(v)

〉
Ψsc,v

remains close to and slightly above the classical curve
throughout the evolution. Indeed, as the first contribution is the classical expression
modulated by a Gaussian and the second term is a small positive contribution.
We represented

〈
t2(v)

〉
Ψsc,v

and 〈t(v)〉2Ψsc,v in fig. 8.4.
Despite their apparent good shape, and the simplicity of these results in comparison

to the previous section, we ought to take the numerical calculations and plots of this
section with a grain of salt. The expressions (8.17) and (8.29) present a number of
challenges regarding their numerical integration:

• The numerical results for 〈t(v)〉Ψsc,v are only valid for small enough v. This is
due to the fact that the Bessel functions in (8.18) oscillate and the bigger v gets,
the more oscillations are contained in the λ integration range (this becomes clear
looking at the large argument asymptotic form (5.15)). Mathematica is a very
powerful computational tool but it does not deal well with very oscillatory inte-
grals, as seen in the previous section already. In general, we will not trust the
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Figure 8.4.: Comparison between
〈
t2(v)

〉
Ψsc,v

, 〈t(v)〉2Ψsc,v and the classical curve tc(v)2

for λc = kc = 10, ~ = 1 and σλ = 1. The orange squares represent the
curve for

〈
t2(v)

〉
Ψsc,v

, whereas the green triangles 〈t(v)〉2Ψsc,v . The classical
curve tc(v)2 is represented by a thick blue line. We see that

〈
t2(v)

〉
Ψsc,v

and 〈t(v)〉2Ψsc,v are close throughout the evolution of the state.

values for “large v’s” but the exact definition of what large v really means in-
volves not only an excellent knowledge of the behaviour of all the Bessel functions
involved but also a very deep understanding of the mechanism of numerical inte-
gration Mathematica uses, and this goes well beyond the scope of this thesis. In
our plots we have decided to stay in a range that remains as close as possible from
v = 0 but is large enough to show interesting behaviours, such as the classical and
quantum curves not diverging from each other

• The numerical results for 〈t(v)〉Ψsc,v are only valid for small k. For larger k, the
Bessel functions have larger values and more pronounced oscillations which dif-
ficult the numerical integration. We find that for k > 10, Mathematica starts
sending a lot of error messages (warning us from the rapid oscillations) and deliv-
ering unreliable results, so we resolved to stick to values k ≤ 10.

• Both
〈
t2(v)

〉
Ψsc,v

and 〈t(v)〉Ψsc,v are only valid within a certain range of λ. The
expressions (8.17) and (8.29) are divergent when λ → 0. We resolve this by
reducing the range of the integration over λ to (λc− 3σλ, λc + 3σλ). This range is
wide enough to cover almost all the dispersion in λ while avoiding the divergent
part of the integral as long as λc − 3σλ � 0. In general, λ = 10 and σλ ≤ 3 are
‘acceptable’ values of the parameters. Theorically any set of parameter where λc−
3σλ > 0 should be valid, as the integration over such range is finite. However, in
practice, when a function has a very steep gradient numerical integration becomes
much harder to implement, so the set of acceptable values of the parameters has
to be defined one more time case by case.
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Despite these difficulties we still consider that the numerical results we found are mean-
ingful and that they complement the theoretical predictions made in previous chapters.
In conclusion, this theory does not solve the singularity resolution and the divergences

of the quantum expectation values remain small. This is in agreement with what we
studied in chapter 4 and chapter 6. These results confirm the conjecture that a classical
fast clock cannot resolve the singularity when going to the quantum theory.

8.3. Dynamics of the ϕ-clock theory

The ϕ-theory is very interesting because the clock ϕ behaves quite uniquely. It is slow
(using the terminology of [59]) at v = ∞, and in consequence we expect to observe
divergences from the classical theory around ϕ = ϕ0, where v(ϕ0) = ∞ (we refer to
section 3.3 for a recap of the classical theory). A general solution of the Wheeler–DeWitt
equation and of the boundary condition (7.44) is

Ψ(v, ϕ, t) =

∫ ∞
−∞

dk

2π

∫ ∞
0

dλ

2π~
eikϕeiλ

t
~α(k, λ)

√
2π

sinh(|k|π)
× (8.30)
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sinh
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)
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~
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+

∫ ∞
0
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t
~

[ ∞∑
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(
γ+
n (λ)e(κ0(λ)+2n)ϕ + γ−n (λ)e−(κ0(λ)+2n)ϕ

)
×

Jκ0(λ)+2n

(√
λ

~
v

)]

+

∫ ∞
−∞

dk

2π

∫ 0

−∞

dλ

2π~
eikϕeiλ

t
~

√
2 sinh(|k|π)

π2
η(k, λ)Ki|k|

(√
−λ
~

v

)
,

where κ0(λ) is the self-adjoint extension parameter, and α(k, λ) and η(k, λ) are nor-
malised:

∫∞
0

dλ
2π~
∫∞
−∞

dk
2π |α(k, λ)|2 +

∫ 0
−∞

∫∞
−∞

dk
2π |η(k, λ)|2 = 1. We consider that semi-

classical states are wave functions that fulfil the following:

• γ+
n (λ) = γ−n (λ) = 0. We have seen that Jκ0(λ)+2n

(√
λ
~ v
)
states have norm zero

and do not have an analogue in the classical theory. Consequently, they cannot
be considered as semiclassical modes.

• η(k, λ) = 0. As in the two previous sections we suppose the universe is in a
superposition of positive cosmological constant modes (or positive perfect fluid
energy density modes).

• α(k, λ) = αsc(k, λ), i.e, we only consider Gaussian states as defined in (8.4).

Finally, we also consider states for which the self-adjoint extension parameter κ0(λ) =
0. This is not a condition of semiclassicality, rather a choice to make the numerical
integration simpler, and it is exactly the same procedure we followed in the t-clock
theory. We know from [75], where they studied the same model for a fixed cosmological
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constant, that the self-adjoint extension parameter does not change the presence or
absence of big bang/big crunch singularity. In conclusion, the states we work with in
this section are:

Ψsc,ϕ(v, ϕ, t) =

∫ ∞
−∞

dk

2π

∫ ∞
0

dλ

2π~
eikϕeiλ

t
~αsc(k, λ)

√
2π

sinh(|k|π)
Re

[
Ji|k|

(√
λ

~
v

)]
.

(8.31)

For simplicity, we only consider modes for which k > 0, but maintain the notation with
absolute value of k in case someone wants to repeat or expand our calculations to other
ranges of k. Once again, the subindex sc, ϕ refers to the fact that this wave function is
a semiclassical state in the ϕ-clock theory

8.3.1. Results for 〈v(ϕ)〉Ψsc,ϕ
There are two observables that can be calculated explicitly: 〈Ψsc,ϕ| v |Ψsc,ϕ〉 = 〈v(ϕ)〉Ψsc,ϕ
and 〈Ψsc,ϕ| t |Ψsc,ϕ〉 = 〈t(ϕ)〉Ψsc,ϕ . The criterion for singularity resolution is again
〈v(ϕ)〉Ψsc,ϕ > CΨsc,ϕ > 0 for a positive (and probably state dependent) constant CΨsc,ϕ .
We interpret any failure to observe this behaviour as singular. Starting by 〈v(ϕ)〉Ψsc,ϕ
we have

〈v(ϕ)〉Ψsc,ϕ =

∫ ∞
0

dk1dk2

(2π)2

∫ ∞
0

dλ

2π~

∫ ∞
0

dv
2πei(k2−k1)ϕ(k1 + k2)√
sinh(|k1|π) sinh(|k2|π)

ᾱsc(k1, λ)αsc(k2, λ) Re

[
Ji|k1|

(√
λ

~
v

)]
Re

[
Ji|k2|

(√
λ

~
v

)]
. (8.32)

This time we can calculate the v integral analytically, which greatly speeds up the nu-
merical analysis. However, the integral over v is divergent. This is a priori not good
news, as one cannot make sense of the quantity 〈v(ϕ)〉Ψsc,ϕ , but we follow the same atti-
tude particle physicists have regarding infinite quantities. When loop corrections make
a scattering amplitude divergent, instead of giving up and ditching the full theory, what
has been done is renormalise and/or regularise the results. In short, when a scattering
amplitude is divergent in the theory, new contributions (usually called counterterms)
are added to the theory so that the result of the scattering amplitude matches the (fi-
nite) quantity observed experimentally. This process is called renormalisation and it
does not imply the existence of new physics. Renormalisation techniques have been a
common practice since the seventies (see [104] for an early reference on the renormalisa-
tion group). Another option for dealing with these divergences would be to not compute
directly 〈v(ϕ)〉Ψsc,ϕ , but rather try to find a finite expectation value for a function of v.
In [75], the authors used tan(v) instead of v to avoid similar issues.
Our case is slightly different, because we are implying the existence of new physics

from the start (namely that spacetime is quantum) and moreover there is no experimen-
tal (in our case observational) quantity 〈v(ϕ)〉obs we can compare with. Nevertheless,
we require that the v integral in (8.32) is finite. Indeed, if we assume that this quantum
universe has a classical limit, namely the one studied in section 3.3, we would like the
classical quantity 〈v(ϕ)〉Ψsc,ϕ to agree with the classical curve, at least for a subset of
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the range of ϕ. Otherwise, it is impossible to recover the classical limit. Again, this
assumption, as radical as it sounds is recurrent in particle physics and QFT.
However, in order to make (8.32) finite, we need to regularise the integral. This can be

done implementing a cutoff, which is in a way implies the existence of “more additional
physics” that act at large v and make to final result of the integral finite2. There are
different ways of regularising an integral. In this work we have focused on the two
easiest ones (as to our knowledge). The relevant formulas are (B.27) and (B.29). The
first one diverges logarithmically, hence, in order to obtain a finite result, we introduce
a finite cutoff Ξv. With this cutoff, the expectation value is

〈v(ϕ)〉Ψsc,ϕ ≈ −
∫

dk1dk2

(2π)2

dλ

2π~
~√
λ
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2

)
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k2π

2

)
√
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×
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λΞ2
v

)
+ ψ

(
1

2
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)
+ψ

(
1

2
(1 + i(|k1| − |k2|))

)
+ ψ

(
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2
(1 + i(|k1|+ |k2|))

)
+ ψ
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2
(1− i(|k1|+ |k2|))

)
+ 2γ

}
, (8.33)

where γ refers to the Euler-Mascheroni constant and ψ(x) to the digamma function.
This cutoff can be interpreted as adding an extra term of the form

∫∞√
λΞv
h

dv 2
Ξv

. When,
integrated, this contribution will cancel the logarithmic divergence. This addition of an
extra term resembles the Pauli-Villars regularisation method that consists in adding a
fictitious mass term to certain divergent propagators (see chapter 7 of [32]).
The second method of regularisation, based on (B.29) gives:

〈v(ϕ)〉Ψsc,ϕ ≈ −
∫
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(2π)2
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, (8.34)

where now ε→ 0. The previous Ξv logarithmic divergence is “hidden” in the regulator
ε, which comes from a dimensional regularisation approach. However, the two meth-
ods give the same non divergent part. As the divergent parts are comparable, indeed
log[Ξv] = 1/ε, we have decided to use (8.33) for the numerical calculations. There is a
quantitative difference in a logarithmic and a 1/ε divergence, but the debate on which

2We are using the word regularisation rather than renormalisation because in particle physics, the
procedure of renormalisation does not assume the existence of forces and particles beyond the
standard model. In this case we have to assume the existence of some additional phenomena or
scale in which our theory is not valid anymore in order to implement a cutoff.
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regularisation method is better goes beyond the scope of this thesis (as so many other
interesting issues). We thus compare different values of the cutoff and take it to values
as high as 1010. As we will see in more detail later in the section, the cutoff choice
has a non-trivial influence in the results, especially around ϕ = 0, but it is clear that
qualitative features of the expectation values (which we are mostly interested here) are
not too sensitive to it. The numerical evaluation of the v integral (without using (B.27))
would require a cutoff similar to Ξv leading to the same ambiguity.
On a final note, the integrals involved in (8.32) are not absolutely convergent, but

might be convergent in a weaker sense, where separating the three integrals and compute
them independently does not make sense. This, of course does not solve the issue of
implementing it numerically, but makes the divergences less problematic.
The quantum expectation value (8.33) is symmetric under ϕ→ −ϕ and therefore we

compare it to the classical solution

vc(ϕ) =
~kc√

λc|sinh(ϕ)|
(8.35)

Even after simplifying the v integration, (8.33) is still very hard to compute numeri-
cally. The integrals over λ are

2~
√
π

σλ

∫
dλ

2π~
~√
λ
e
− (λ−λc)2

σλ ,
2~
√
π

σλ

∫
dλ

2π~
~√
λ
e
− (λ−λc)2

σ2
λ log

(
4~2

λΞ2
v

)
. (8.36)

These integrals are finite (although they have a complicated expression) and it can be
verified that, in the limit σλ → 0, they reduce to the value of the integrand evaluated at
λ = λc. All the calculations we show are in this limit. This approximation is analogous
to σk → 0 in the previous sections since in the inner product of this theory, the different
λ sectors are decoupled.
The numerical results are presented in figs. 8.5 to 8.7. Figure fig. 8.5 shows the

classical curve and quantum expectation values with different values of the cutoff, figure
fig. 8.6 shows the maximum value of the volume Vmax = 〈v(0)〉Ψsc,ϕ for different values
of σk and figure fig. 8.7 shows the classical curve and expectation values with different
values of σk. There are several things to comment about these figures. First of all, we
see that the values of the classical curve and the quantum expectation values are very
close to each other for |ϕ| large enough (this specific value depends on the rest of the
parameters). Moreover, in this limit, all quantum curves are very close to each other,
meaning that the value of the cutoff is important only for small values of |ϕ|, where
the classical curves start diverging from the classical one and separating from each
other. The quantum expectation value grows with ϕ and reaches a maximum value
Vmax = 〈v(0)〉Ψsc,ϕ and this value grows weakly with Ξv. Then, as ϕ > 0 the quantum
expectation values decreases and gets closer to the classical curve. This behaviour
is what we would expect from the analysis of chapter 7 since we had to impose a
reflective boundary condition at v = ∞, which corresponds to ϕ = 0 in this example.
Independently of the value of the cutoff, we see that the quantum corrections are small,
but start growing and lead to a faster expansion than in the classical theory, before
slowing down and stopping completely at ϕ = 0. This first phase of rapid expansion is
in agreement with the results of [99], where a systematic expansion into higher order
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Figure 8.5.: Comparison between 〈v(ϕ)〉Ψsc,ϕ and vc(ϕ) for different values of the cutoff
Ξv. The values of the cutoff are Ξv = 103 (dark green circle), Ξv = 107

(green squares), and Ξv = 1010 (light green triangles). The values for the
rest of parameters are kc = 10, λc = 1 and σk = 3.

Figure 8.6.: Values of Vmax (vertical axis) as a function of σk (horizontal axis). The rest
of the parameters are kc = 100, λc = 1. The curve has been fitted with a
fit function of the form Vmax = aσbk where a = 821.487 and b = 0.767681



8. Dynamics of the three theories 96

quantum fluctuations around the classical trajectory was studied in a similar model. In
their work one sees explicitly how quantum fluctuations diverge as the volumes grows,
which in our case trigger the recollapse later on. As interesting as these results are, we
cannot say that they resolve the singularity: the quantum expectation value 〈v(ϕ)〉Ψsc,ϕ
goes to zero at large ϕ. This is in accordance to the results obtained in [75] for a fixed
positive cosmological constant.
There is another, more quantitative argument to show that the classical singularity

is not resolved in this theory. Substituting the limit at large |ϕ| (B.31) into (8.33) we
conclude that limϕ→±∞ 〈v(ϕ)〉Ψsc,ϕ = 0. We consider this argument strong enough to
replace the ∆rel table made for the t-clock theory, in which we could not simplify the v
integration.
In figures figs. 8.6 and 8.7 we see the influence of the parameter σk in the theory. The

maximum value Vmax grows with σk, hence, bigger σk trigger a more abrupt transition
between the two classical branches and the quantum expectation value remains close
to the classical solution for longer. We observed a very similar counter intuitive result
in the t-clock theory regarding Vmin. This behaviour can be explained using the same
argument: k and ϕ (the clock) are conjugated variables, hence a greater spread in k
implies smaller uncertainty in ϕ leading to the observed curves.
It is interesting to complement these results with the variance

〈
v2(ϕ)

〉
Ψsc,ϕ

as we did
in the v-clock theory. The integral we are interested in is〈
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As for 〈v(ϕ)〉Ψsc,ϕ , the v integral is divergent and needs to be regularised. If we imple-
ment a cutoff Ξv2 , using (B.39), we find
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This time the divergence is linear, which is much worse than the logarithmic divergence
in (8.33). We can regularise the integral with dimensional regularisation using (B.40).
This time, the divergent terms vanish living only the finite contribution〈
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〉
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≈
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(8.39)
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(a) The dotted lines represent 〈v(ϕ)〉Ψsc,ϕ
for values λc = 1, kc = 10, ~ = 1, Ξv = 105 and

σk = 3 (red circles), σk = 2.5 (blue squares) and σk = 2 (yellow triangles). The black thick
line corresponds to the classical trajectory with the same values of kc and λc. We see that
the quantum trajectory is well defined for all ϕ’s and reaches a positive maximum value
Vmax.

(b) The dotted lines represent 〈v(ϕ)〉Ψsc,ϕ
for values λc = 5, kc = 10, ~ = 1, Ξv = 105 and

σk = 3 (red circles), σk = 2.5 (blue squares) and σk = 2 (yellow triangles). The black thick
line corresponds to the classical trajectory with the same values of kc and λc. We see that
the quantum trajectory is well defined for all ϕ’s and reaches a positive maximum value
Vmax.

Figure 8.7.: Comparison between 〈v(ϕ)〉Ψsc,ϕ and vc(ϕ) for different values of the pa-
rameters.
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It seems that the v integral in
〈
v2(ϕ)

〉
Ψsc,ϕ

diverges for one regularisation method and
is finite with another one. This may appear contradictory, but different regularisation
methods may yield to different results. After a preliminary numerical analysis it appears
that (8.39) would be valid at large ϕ, whereas for small ϕ, only (8.38) gives sensible
(positive) results. We thus use (8.38) for the calculation. The expression is coherent
with (8.33), where we used the same regularisation method.
Last but not least, we might be tempted to ask ourselves whether it makes sense that

the cutoffs Ξv and Ξv2 should be the same. We assume that, if Ξv represents a scale for
which the theory is not valid anymore, it should be the same for both results.
(8.38) gives a measure for the error of the results through the standard deviation

σ〈v(ϕ)〉Ψsc,ϕ =
√
〈v2(ϕ)〉Ψsc,ϕ − 〈v(ϕ)〉2Ψsc,ϕ . (8.40)

This quantity is a measure of semiclassicality: if it is small throughout the evolution, it
indicates that the state remains semiclassical, but if it grows larger when approaching
ϕ = 0 it means that the state cannot be considered semiclassical around Vmax. If we
had to take a measurement of the volume at any point in evolution, we would like to
have a small deviation as this would mean a higher chance to measure a quantity close
to 〈v(ϕ)〉Ψsc,ϕ .
It appears that the integrals involved in (8.38) are even more difficult to handle than

the ones in (8.33). They depend non-trivially on the deviation of the Gaussian σk,
the cutoff Ξv2 , and are only valid in a limited range of ϕ, where ϕ is small, otherwise
the oscillations coming from the term exp(i(k2 − k1)ϕ) render the expression extremely
hard to compute numerically, even after all the approximations taken. Doing a complete
analysis on the validity of these results would require again tremendous efforts, therefore
we focus on trying to answer the most important question: Is σ 〈v(0)〉Ψsc,ϕ big? In
the work [75], where a similar model with a fixed positive cosmological constant was
analysed from a Wheeler–DeWitt and the LQC perspective, it was shown that the
dispersion of similar semiclassical states at late time (here large ϕ) is small, indicating
that the state is indeed semiclassical. However, in our model, σ〈v(ϕ)〉Ψsc,ϕ becomes
very large when ϕ = 0 as indicated in fig. 8.8.
Figure 8.8 shows several things. It indicates, for fixed values of the rest of the param-

eters, a range in σk in which the numerical integration gives a coherent result. Indeed,
we see that the error is more or less the same for σk = 1, . . . , 5 and then diminishes
(before becoming complex and hence not reliable). If we limit ourselves to the interval
σk ∈ (1, 5), we can also say that the error is quite large, and even compatible with a
priori negative values for some cases. This is a sign, that when going through the quan-
tum recollapse, the wave function does not remain semiclassical. This is different to
what we observed in the v-clock theory, where

〈
t2(v)

〉
Ψsc,v

remained small throughout
all evolution (recall fig. 8.4). However, in the v-theory there were no quantum effects,
that could generate this dispersion. Looking at these results, we expect a similar dis-
persion to happen in the t-clock theory, concerning

〈
v2(t)

〉
Ψsc,t

. We could not verify
this conjecture due to the intractability of the integrals involved. In [75], in the LQC
universe, the singularity was replaced by a quantum bounce, but the dispersion of the
states remained small throughout the bounce. This is not what happens here in the
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Figure 8.8.: Values for Vmax (vertical axis) as a function of σk (horizontal axis) with
error bars calculated using (8.40). The rest of the parameters are kc = 100,
λ = 1 and Ξv = Ξv2 = 105.

reflection from infinity, this transition has a non-trivial effect in the dispersion of the
state.
The fluctuations of Vmax can be explained by the fact that the state is going through

a reflection. In a non rigorous sense, part of state is expanding and part is contracting,
hence generating what we observe in fig. 8.8. In this case the fluctuations might be
more sever because classically the volume grows to arbitrarily large values that might
also contribute to the final result.

8.3.2. Results for 〈t(ϕ)〉Ψsc,ϕ
To complete the analysis of the theory, we also study 〈t(ϕ)〉Ψsc,ϕ . In this case the
relevant formula is

〈t(ϕ)〉Ψsc,ϕ =

∫ ∞
0

dk1dk2

(2π)2

∫ ∞
0

dλ1dλ2

(2π~)2

∫ ∞
0

dv

v

∫ ∞
−∞

dt
2πei(k2−k1)ϕ(k1 + k2)√
sinh(|k1|π) sinh(|k2|π)

×

tei(λ2−λ1) t~ ᾱsc(k1, λ1)αsc(k2, λ2) Re

[
Ji|k1|

(√
λ1

~
v

)]
Re

[
Ji|k2|

(√
λ2

~
v

)]
.

(8.41)
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To simplify the λ integral in the same way we did in the v-clock theory for the calculation
of 〈t(v)〉Ψsc,v , using (8.16). Hence,

〈t(ϕ)〉Ψsc,ϕ = −iπ~
∫

dk1dk2

(2π)2

dλ

2π~
dv

v

ei(k2−k1)ϕ(k1 + k2)√
sinh(|k1|π) sinh(|k2|π)

×{
(αsc(k2, λ)∂λᾱsc(k1, λ)− ᾱsc(k1, λ)∂λαsc(k2, λ))×

Re

[
Ji|k1|

(√
λ

~
v

)]
Re

[
Ji|k2|

(√
λ

~
v

)]
+ ᾱsc(k1, λ)αsc(k2, λ)H(k1, k2, λ, v)

}
(8.42)

where

H(k1, k2, λ, v) =
v

4~
√
λ

{
Re

[
Ji|k2|

(√
λ

~
v

)]
Re

[
J1+i|k1|

(√
λ

~
v

)
− J−1+i|k1|

(√
λ

~
v

)]

− Re

[
Ji|k1|

(√
λ

~
v

)]
Re

[
J−1+i|k2|

(√
λ

~
v

)
− J1+i|k2|

(√
λ

~
v

)]}
.

(8.43)

The terms containing the λ derivative of αsc(k, λ) vanish in our case, since αsc(k, λ)
is real and separable in k and λ. Hence, only the term containing H(k1, k2, λ, v) is
important. This term is a combination of 16 integrals over v that are slight variations
from (B.36) and (B.37). After performing every integral and regrouping the 16 terms
one finds that all terms multiplying δ(|k1| ± |k2|) (that come from the contribution in
the limit v = 0) cancel, hence only the v = ∞ limit plays a rôle. Some terms diverge
as log

(
4~2

λv2

)
, but these also cancel. Note that for these integrals we do not have a

formula like (B.28), which allows for a different regularisation method. Finally, the
terms containing digamma functions also simplify, leaving us with the extraordinarily
simple expression∫

dv

v
H(k1, k2, λ, v) =

1

4λ

(
coth

(
(|k1|+ |k2|)

π

2

)
sinh

(
(|k1| − |k2|)

π

2

)
+ coth

(
(|k1| − |k2|)

π

2

)
sinh

(
(|k1|+ |k2|)

π

2

)
. (8.44)

In conclusion the final expression of the expectation value 〈t(ϕ)〉Ψsc,ϕ is

〈t(ϕ)〉Ψsc,ϕ = − iπ~
4

∫
dk1dk2

(2π)2

dλ

2π~
ei(k2−k1)ϕ(k1 + k2)

λ
√

sinh(|k1|π) sinh(|k2|π)
αsc(k1, λ)α(k2, λ)×(

coth

(
k+π

2

)
sinh

(
k−π

2

)
+ coth

(
k−π

2

)
sinh

(
k+π

2

))
, k± := |k1| ± |k2|.

(8.45)

This expression is antisymmetric with respect to the change ϕ → −ϕ which motivates
comparing this quantum expectation value to the classical solution

tc(ϕ) = −~kc
2λc

coth(ϕ) . (8.46)
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(a) The dotted lines represent 〈t(ϕ)〉Ψsc,ϕ
for values λc = 1, kc = 10, ~ = 1, Ξv = 105 and

σk = 3 (red circles), σk = 2.5 (blue squares) and σk = 2 (yellow triangles). The black thick
line corresponds to the classical trajectory with the same values of kc and λc. We see that
the quantum trajectory is well defined for all ϕ’s and is not monotonic anymore.

(b) The dotted lines represent 〈t(ϕ)〉Ψsc,ϕ
for values λc = 5, kc = 10, ~ = 1, Ξv = 105 and

σk = 3 (red circles), σk = 2.5 (blue squares) and σk = 2 (yellow triangles). The black thick
line corresponds to the classical trajectory with the same values of kc and λc. We see that
the quantum trajectory is well defined for all ϕ’s and is not monotonic anymore.

Figure 8.9.: Comparison between 〈t(ϕ)〉Ψsc,ϕ and tc(ϕ) for different values of the param-
eters.
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We evaluate (8.45) in figure fig. 8.9 for the several values of the parameters. As in
the case of 〈v(ϕ)〉Ψsc,ϕ , at large |ϕ| the classical and quantum curves agree closely. For
small |ϕ|, the quantum expectation values reaches an extremum and then goes to zero,
to transition smoothly between the classical expanding and contracting branch. We also
observe the same behaviour with respect to changes in σk: for greater σk, the classical
and quantum solutions agree more closely, and the transition between the expanding
and contracting branch is more abrupt. These figures show that the expectation value
〈t(ϕ)〉Ψsc,ϕ is no longer monotonic with respect to ϕ in any of the two sectors t < 0
and t > 0 and experiences a turnaround, unlike what happens classically. Note that
contrary to 〈v(t)〉Ψsc,t, this observable does not need any cutoff and also signals the
divergences between the classical and quantum theories.
Given the formula (B.31), we can calculate analytically the limit 〈t(ϕ)〉Ψsc,ϕ at large
|ϕ|, finding

lim
ϕ→±∞

〈t(ϕ)〉Ψsc,ϕ = ∓~
2

∫
dk

2π

dλ

2π~
k

λ
|αsc(k, λ)|2 , (8.47)

Note that αsc(k, λ) is a Gaussian in k and λ with means kc and λc. The integral over k
gives simply the mean kc. The integral over λ requires a regularisation at λ = 0 (whose
implementation is beyond the scope of this thesis), but after this regularisation, we can
assume that the result of this integral is 1

λc
. Hence,

lim
ϕ→±∞

〈t(ϕ)〉Ψsc,ϕ = ∓~kc
2λc

= lim
ϕ→±∞

tc(ϕ) . (8.48)

In conclusion, analytically the expression 〈t(ϕ)〉Ψsc,ϕ tends to the classical solution.
Since large values of |ϕ| correspond to the classical big bang/big crunch singularity,

the behaviour of 〈t(ϕ)〉Ψsc,ϕ illustrates again that there is no singularity resolution in
this theory. The quantum expectation values follows the classical curve all the way up
to the singularity.
Given that we have calculated 〈v(ϕ)〉Ψsc,ϕ and 〈t(ϕ)〉Ψsc,ϕ we can plot parametrically

these two quantities for the same value of ϕ and compare this plot with the classical
trajectory vc(t) (8.8). The result of this comparison can be found in figure fig. 8.10. We
see clearly how the universe emerges from the classical singularity and is very close to
the classical vc(t), evolving forward in t. However, then t experiences a turnaround and
starts going backwards. The universe reaches a maximum volume when t = 0 and finally
approaches the contracting classical solution while t starts going forward again. Form
this picture it is clear that the big bang and big crunch singularities are not resolved.
In summary, this theory does not resolve the singularity, but contrary to the v-

clock theory, it shows major divergences from the classical theory. These divergences
are in accordance with the analysis performed in chapter 7. In particular, as the ϕ
clock is slow at v = ∞, the quantum expectation values show the “infinity resolution”
that was theorised at the end of the chapter. This brings further evidence to the
Gotay and Demaret conjecture. We believe the study of this minisuperspace model
is particularly interesting because each of the possible quantum clocks shows a very
particular behaviour regarding singularity resolution and divergences from the classical
theory.
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Figure 8.10.: Parametric plot of 〈v(ϕ)〉Ψsc,ϕ and 〈t(ϕ)〉Ψsc,ϕ in comparison to vc(t). The
vertical axis accounts for the values of v (and 〈v(ϕ)〉Ψsc,ϕ) and the hori-
zontal axis for values of t (and 〈t(ϕ)〉Ψsc,ϕ). The red circles correspond to
trajectories with σk = 3, the blue squares σk = 2.5 and the yellow triangles
σk = 2. The rest of the parameters are kc = 10, λc = 1 and Ξv = 105.

8.4. Causal structure of the different theories

In the previous sections we have seen how the expectation values 〈v(t)〉Ψsc,t , 〈v(ϕ)〉Ψsc,ϕ
and 〈t(v)〉Ψsc,v behave. We can use this information to study the causal structure of
each of our theories with help of conformal diagrams. Conformal diagrams are a very
popular tool in general relativity. To construct a conformal diagram explicitly, one needs
to apply a conformal transformation to the metric ds2 = −N(τ)2d2τ + a(τ)2hijdx

idxj

so that spacetime is mapped to a finite region. One can reduce a spherically symmetric
spacetime to create a two-dimensional picture of the universe. Usually, the vertical
axis is related to the timelike parameter of the metric and the horizontal axis to the
remaining spacelike parameter. Every point in the picture represents a two-dimensional
sphere. Hence, in conformal diagrams, lengths are modified, but angles are conserved.
We can thus extrapolate the light cones of the conformal diagrams from the original
theory. The concept of conformal infinity and conformal diagram was first introduced
by Penrose [105]. These diagrams are often referred as Penrose diagrams, or Penrose–
Carter diagrams. In our model, the expression of the conformal transformation depends
on the energy interpretation of the model, i.e. it depends on the equation of state of the
perfect fluid p = wρ, more concretely in the parameter w.
We will only consider “standard” and non exotic perfect fluids in this work. In par-

ticular, we will not consider perfect fluids with w < −1, that would generate a “big rip”
and perfect fluids with w = 1

2 (a massless free scalar field). As expressed previously,
our model is not well defined for two massless scalar fields. Of particular interest are
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the cases w = −1 (dark energy), w = 0 (dust), and w = 1
3 (light). Although in the

previous chapters we have focused on the dark energy interpretation, we will expand
our analysis to other perfect fluids to make it more exhaustive.
In this section, we are not looking to define a conformal transformation valid on

the whole spacetime, hence we consider only the asymptotic regimes of large and small
volume v. At small v, close to the big bang/big crunch singularity, which is spacelike, the
dynamics are dominated by the scalar field (assuming that πϕ 6= 0). Then, at large v, we
can distinguish two cases. A universe with a perfect fluid that generates an accelerated
expansion (like dark energy), is asymptotically de Sitter, whereas a universe with dust or
light is asymptotically Minkowski. The reason why the asymptotic behaviour is perfect
fluid dependent, is that different perfect fluids lead to a different lapse Ñ in (3.15).
Examples of studies of conformal diagrams of asymptotically Minkowski spacetimes
and asymptotically de Sitter spacetimes can be consulted in [106] and [107].
Now, the quantum theories are the result of symmetry reduction at the classical level,

so the connection between a particular choice of time coordinate and the spacetime
metric (as expressed by the lapse) is no longer obvious at the quantum level. Our
way out is to assume that a particular time coordinate has the same interpretation
in the classical and the quantum theory, so that the form of the lapse is unchanged.
This is justified since in any case these conformal diagrams we draw can only represent
expectation values in a quantum state, and clearly only make sense in a semiclassical
regime. We believe the conformal diagrams illustrate very well where the corrections to
the classical geometry are, and allow us to have a better understanding of the quantum
universes.
The conformal diagrams of the classical theory are represented in fig. 8.11 and fig. 8.12.

Both in the asymptotically Minkowski and in the asymptotically de Sitter case there
are two possible solutions, a contracting universe I, and an expanding universe II. Light
cones are determined by taking lines at ±45◦, thus a timelike trajectory is a curve
whose tangent vector at any point always stays inside the light cone at that point. In
the contracting universe, the singularity is in the future light cone of every observer.
In contrary, the reverse happens in the expanding universe, the singularity is in the
past light cone of every observer. The classical universe is always composed of two
disconnected parts.
We have seen in section 8.2 that the v-clock theory does not present big deviations

from the classical theory. In fact, 〈t(v)〉Ψsc,v is very close to tc(v) all the time. Therefore,
we assume that the conformal diagrams of this quantum theory are identical to fig. 8.11
and fig. 8.12 for semiclassical states Ψsc,v. The universe is composed of two disconnected
regions and there is no trajectory that joins the two.
The conformal diagrams for semiclassical states in the t-clock theory are presented

in fig. 8.13; we replace vc(t) by 〈v(t)〉Ψsc,t . The left diagram is the asymptotically de
Sitter space and the right diagram is the asymptotically Minkowski space. As this
expectation value does not go to zero, rather has a strictly minimum value before
growing to infinity, we have glued universes I and II together removing the classical
singularity. This singularity is replaced by a region in which quantum fluctuations are
large, and where classical trajectories are not well defined. We have labelled this region
in grey. However, the region near infinity is identical to the classical theory, both in
the Minkowski and de Sitter case. Note that we do not know exactly where the limit
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I II

v = 0

v =∞ v = 0

v =∞

Figure 8.11.: Conformal diagram for classical solutions assuming that the perfect fluid is
dark energy. The zigzag line represents the singularity and the thicker line
represents spacelike infinity (and I− or I+ depending on the diagram). I
is a contracting universe and II is an expanding universe. There is no
trajectory linking I and II. This universe is asymptotically de Sitter

v =∞

I

v = 0
v =∞

II

v = 0

Figure 8.12.: Conformal diagram for classical solutions assuming the perfect fluid is dust
or radiation. The zigzag line represents the singularity and the dot rep-
resents timelike infinity (ι− or ι+). The thicker line represents I±, where
v = ∞ too. I is a contracting universe and II is an expanding universe.
There is no trajectory linking I and II. This universe is asymptotically
Minkowski.
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between the highly quantum are and the semiclassical area lies, but we know that it is
state dependent. The main difference between this theory and the classical universe is
that now region I and II are connected, hence it is possible to cross between the two
regions.
The conformal diagrams of the ϕ-clock theory can be seen in fig. 8.14. The right

diagram corresponds to a universe in which the perfect fluid is dark energy, and the left
diagram corresponds to a universe in which the perfect fluid is radiation or dust. We rep-
resent the expectation value 〈v(ϕ)〉Ψsc,ϕ instead of the classical vc(ϕ). Here the classical
singularity remains, but infinity (which is either de Sitter or Minkowski) is “resolved” .
Hence, regions I and II are glued the opposite way, infinity is replaced but the classical
singularity is unchanged. Once more, there is a region (represented in grey) in which
quantum fluctuations dominate. If we assume that the perfect fluid is dark energy (left
diagram of fig. 8.14), the theory has some similarities with Penrose’s conformal cyclic
cosmology [108]. Indeed, spacelike infinity is no longer seen as the future end point of
a cosmological constant dominated universe, but it becomes a transition point into the
new universe. However, in our case, the subsequent “aeon” is contracting, rather than
expanding again, and the origin of the transition lies in quantum fluctuations. If we
assume the perfect fluid is radiation of dust, the two parts are glued from the diagonal.
(provided one has been rotated). The ϕ-theory is very puzzling because the quantum
effects arise at late times, instead of arising close to the big bang/big crunch. It could
be possible to find a fully cyclic cosmology if time evolution was controlled by a “slow”
clock both at the singularities and at spacelike infinity. Unitarity would then enforce
resolution of the singularity and the replacement of spacelike infinity by a quantum
recollapse. A universe with such clock would be eternal.
After this numerical analysis, we can quantify how each clock affects the resulting

quantum theory. The reflecting boundary conditions of the wave functions changes
the causal structure of the universe and prevent or generate singularity resolution in
semiclassical states. This motivates the following questions: Could other approaches
to quantum cosmology give some insight with respect to the problem of time? What
meaningful conclusions can we extract from this analysis? We will try to answer these
questions in the next sections.
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II

I

〈v〉 =∞

〈v〉 =∞

II

I

〈v〉 =∞

〈v〉 =∞

Figure 8.13.: Conformal diagram of the t-clock theory. The left diagram corresponds to
a universe in which the perfect fluid is dark energy, and the right diagram
corresponds to a universe in which the perfect fluid is radiation or dust.
Now the contracting region I lies to the future of the expanding region II.
The singularity is still present, but the expectation value of the volume
remains finite. At large v there is a region in which quantum fluctuations
dominate and where the volume reaches its maximum expectation value
〈v〉 = VminΨ . It is impossible to talk about a “classical trajectory”.
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II

I

〈v〉 = 0

〈v〉 = 0

I

II

〈v〉 = 0

〈v〉 = 0

Figure 8.14.: Conformal diagram of the ϕ-clock theory, with contracting region I and
expanding region II. The left diagram corresponds to a universe in which
the perfect fluid is dark energy, and the right diagram corresponds to a
universe in which the perfect fluid is radiation or dust. Infinity replaced
by the shaded area, where quantum fluctuations are large. In this state-
dependent region the volume reaches a minimum expectation value 〈v〉 =
VmaxΨ and it is impossible to talk about a “classical trajectory”.
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9. Path integral quantisation

As there is not (yet) a fully satisfactory theory of quantum gravity, the problem of time
appears in very different contexts and with many nuances. A very popular approach
to quantisation of general relativity, besides the ones we have already seen, is the so
called path integral quantisation procedure. The idea of this method is to extend the
concept of path integral quantisation used in quantum mechanics and QFT to a whole
spacetime. The object of interest is∫

DgµνDφi . . . exp
[
iS(gµν , φi, φ̇i, . . . )

]
, (9.1)

Where gµν is the spacetime metric and φi represent the matter fields. The fields can
be as complicated as one wishes, i.e., not only massless scalar fields. The action S
may depend on the metric, the fields, their derivatives, and maybe higher derivatives
if a version of modified gravity is considered. Recall that the notation D denotes a
functional differential, where we are integrating over all paths. In general, people use
Lagrangian actions in the path integral formulation, but Hamiltonian actions, in which
one replaces the derivatives φ̇i with the canonical momenta πφi , are also possible. We
will be working in a Hamiltonian formulation of the action.
The path integral as written in (9.1) represents roughly (the exact meaning of the

path integral needs additional assumptions to be specified) the probability for a space-
time of initial configuration gµν = gµν,in and φi = φi,in to transition to a spacetime
of configuration gµν = gµν,f and φi,f , where one has integrated over all possible mo-
menta, or if one is working in the momentum representation, the probability to go from
configuration g = gin, πφi = πφi,in to the configuration g = gf , πφi = πφi,f .
The big difference between the path integral quantisation and the Wheeler–DeWitt

quantisation that we used in the previous chapters is that the former is centred in the
sum of histories, and the latter is centred in the wave function of the universe Ψ [109].
In the previous chapters, the wave function and the Hilbert space were clear, and we
measured observable quantities, like the expectation value of the volume v. In this
approach these characteristics appear to be hidden inside the integral. However, path
integral quantisation offers a new perspective on the problem of time. We do not have
the problem of the frozen formalism, at least initially [54]. The most powerful feature of
this approach of quantum gravity is perhaps that it can incorporate spacetime topology
changes, simply by considering a sum of terms of the form (9.1) where the spacetime
manifoldM has different topologies. In fact, the initial conditions can come from one
spacetime topology and the final conditions from another. As the path integral is an
object that allows us to go from some initial state to a final state of the universe, one can
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ask questions like what are the initial conditions of the universe? rather explicitly. The
famous no-boundary proposal [110], that postulates that the universe starts from a state
that has no boundaries, was motivated in this setting. Path integral quantisation has
been used in very different ways, included minisuperspace models and has been linked
to the Wheeler–DeWitt equation [112c], [114a]. In this section we mainly follow the
approach of [114a] in order to present the path integral quantisation of our model. In
his work, Halliwell presents a universe with a quadratic Hamiltonian. Our Hamiltonian,
however possesses an extra linear term. Mathematically a linear term poses no problem
(contrary to what would happen with higher powers of the momenta).
We would like to devote the next few pages in the analysis of the path integral

quantisation of our model, in order to relate this approach to the previous ones we have
analysed and get more insights on diffeomorphism invariance and the problem of time.
For completeness, rather than refer the reader to the classical section of the model, we
will recap the important equations and concepts here. The metric of our universe was
defined in (3.2)

ds2 = −N(τ)2dτ2 + a(τ)2hijdx
idxj . (9.2)

The topology of our universe is R×Σ where Σ is a bounded three-dimensional manifold,
for example a three torus. For concrete amplitudes, the topology of Σ has to be specified,
but we will not do this here. The metric hij is flat. The matter components of the models
are a (free) massless scalar field φ and a perfect fluid with equation of state p = wρ
where p is the pressure and ρ is the energy density. We have previously discussed that
we can choose our perfect fluid to be a standard matter component like pressureless dust
(w = 0), radiation (w = 1

3), but for the inclusion of dark energy (w = −1) we need to
work with a parametrised version of unimodular gravity (recall that the “parametrised”
part is very important to maintain full diffeomorphism invariance), see [83] for more
information about the different actions of unimodular gravity. The distinction between
parametrised and non parametrised unimodular gravity plays a non-trivial rôle in the
path integral quantisation formalism, for an example of path integral quantisation of a
non parametrised version of unimodular gravity see [111]. As in the previous sections,
for simplicity we identify the perfect fluid as being dark energy, but all the results
we present are valid for all (standard) perfect fluids interpretation, unless specified
otherwise.
After the change of variables (3.14)

v = 4

√
V0

3

a
3(1−w)

2

1− w
, πv =

√
1

12V0
πaa

3w−1
2 , (9.3)

ϕ =

√
3

8
(1− w)φ, πϕ =

√
8

3

πφ
1− w

. (9.4)

the Hamiltonian of the model can be written as

Hclass = Ñ

[
−π2

v +
π2
ϕ

v2
+ λ

]
, (9.5)

where Ñ = Na−3w = N
(

16V0
3v2(1−w)2

) w
1−w , λ = V0m where m is the energy density of the
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fluid and V0 =
∫

d3x
√
h <∞. The Hamiltonian constraint is

Cclass = −π2
v +

π2
ϕ

v2
+ λ = 0 . (9.6)

The Hamiltonian action of this model is

Sclass =

∫ τf

τin

dτ

{
πvv̇ + πϕϕ̇+ λṫ− Ñ

[
−π2

v +
π2
ϕ

v2
+ λ

]}
, (9.7)

where · = d
dτ . Note that in τin < τf . The coordinates v, ϕ and t are fixed at the

boundaries by vin = v(τin), ϕin = ϕ(τin) and vf = v(τf ), ϕf = ϕ(τf ). The momenta
πv, πϕ and λ are free. If we write qµ = (v, ϕ, t) and πµ = (πv, πϕ, λ) the equations of
motion are:

q̇µ = Ñ {qµ, Cclass} , π̇µ = Ñ{πµ, Cclass} (9.8)

with the Poisson bracket being defined by:

{F,G} =
∂F

∂qµ
∂G

∂πµ
− ∂G

∂qµ
∂F

∂πµ
(9.9)

The action (9.7) is diffeomorphism invariant. This can be seen by applying an infinites-
imal coordinate transformation parametrised by ε(τ). This transforms the coordinates
of the action by:

δqµ = ε(τ){qµ, Cclass}, δπµ = ε(τ){πµ, Cclass}, δÑ = ε̇(τ) . (9.10)

The variation of the action under the transformation (9.10) is

δSclass =

[
ε(τ)

(
πµ

∂

∂πµ
Cclass − Cclass

)]τf
τin

(9.11)

For the momenta that appear quadratically in Cclass, the variation of the action is
0 if and only if ε(τ) vanishes at the end points, i.e., ε(τin) = ε(τf ) = 0. However,
for the linear term λ, yields to a contribution of the form λ-λ = 0, hence this term
does not contribute for ε(τ) boundary conditions. We will come back to the condition
ε(τin) = ε(τf ) = 0 later.
The path integral we are interested in is

G(vf , ϕf , tf |vin, ϕin, tin) =

∫
DvDϕDt DπvDπϕDλ DÑ exp[iSclass] , (9.12)

where vf = v(τf ), ϕf = ϕ(τf ), and tf = t(τf ), is the final configuration and vin = v(τin),
ϕin = ϕ(τin), and tin = t(τin) is the initial configuration of the system. Diffeomorphism
invariance of Sclass poses a problem, as physically identical trajectories might be counted
several times. It is then necessary to gauge fix the action. The gauge fixing procedure
involves a complex process of adding some gauge fixing and additional ghosts fields
in the action. A reader not interested in this procedure can jump directly to formula
(9.30), we include it for completeness. Gauge fixing amounts to fixing the derivative of
Ñ :

˙̃N = %(qµ, πµ, Ñ) (9.13)
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Hence, we add a gauge fixing term of the form

Sgf =

∫ τf

τin

dτ Π( ˙̃N − %) , (9.14)

to the classical action Sclass. Π is another Lagrange multiplier that satisfies

Π(τin) = 0 and Π(τf ) = 0 , (9.15)

The equations of motion obtained variating the action with respect to qµ and πµ are
now

q̇µ = Ñ {qµ, Cclass}+ Π{qµ, %}, π̇µ = Ñ{πµ, Cclass}+ Π{πµ, %} . (9.16)

We have integrated by parts and used the boundary conditions on qµ to obtain the
second equality. Variation with respect to Ñ leads to

Π̇ + Cclass = 0 , (9.17)

and variation with respect to Π gives us the gauge condition. Differentiating (9.17) and
using (9.16) (and the fact that the Hamiltonian is at most quadratic in the momenta)
we find

Π̈ + Ċclass = 0 =⇒ Π̈ + {%, Cclass}Π = 0 . (9.18)

As Π vanishes at τin and τf the unique solution to this equation is Π ≡ 0. If {%, Cclass} 6=
0 there are non-trivial solutions to the equation, but we will consider % = 0 which makes
{%, Cclass} = 0. Thus the action Sclass + Sgf leads to the correct equations of motion
and is gauge invariant.
However, the we need to make the path integral independent of the choice of gauge

(or the choice of % in our case). The usual method for this is to add some additional
anticommuting ghost fields and extend the phase space. The most general method (as to
our knowledge) was developed by Batalin, Frankin and Vilkovisky (BFV) [112]. There
are some criticisms to the BFV method [113], mainly regarding the generality of this
approach, as it may not be independent of the gauge fixing function % for all choices of
%. In our case, choosing % = 0 fixes most possible issues. The action resulting from the
BFV method is invariant under Becchi-Rouet-Stora-Tyuting (BRST) symmetry.
The BFV method involves replacing ε(τ) in the coordinate transformation (9.10) by

a parameter ωc(τ) where ω is an anticommuting constant and c(τ) is an anticommuting
field. Anticommuting variables are a very useful tool for QFT, we will assume that the
reader is familiarised with them. If this is not the case, the basis of anticommuting
variables are presented in appendix C. One wants to impose the relation ċ(τ) = p(τ) by
adding a term p̄(ċ−p). The variable p is made dynamical by adding a term c̄ṗ. The an-
ticommuting fields c and c̄ are anticommuting variables, and p and p̄ are anticommuting
momenta. These variables are called ghosts, as they will not appear in the final action.
They are added to ensure that the final path integral action is independent of the choice
of gauge. We expand the phase space from (qµ, πµ, Ñ) to (qµ, πµ, Ñ ,Π, c, c̄, p, p̄) and
hence also expand the Poisson bracket to include the new anticommuting variables. The
ghost action is:

Sgh =

∫ τf

τin

dτ

{
p̄ċ+ c̄ṗ− p̄p+ c{%, Cclass}c̄+ p

∂%

∂Ñ
c̄

}
, (9.19)
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The total action is invariant: δSclass+ δSgf + δSgh = 0 under the BRST transformation

δqµ = ωc{qµ, Cclass}, δπµ = ωc{πµ, Cclass}, δÑ = ωp ,

δΠ = δc = δp = 0 ,

δc̄ = −ωΠ, δp̄ = −ωCclass , (9.20)

if we impose the additional boundary conditions:

c(τin) = c(τf ) = 0, and c̄(τin) = c̄(τf ) = 0 , (9.21)

so the ghost fields vanish at the end points. Note that the first line of (9.20) is just a
normal coordinate transformation (9.10) where ε = ωc and the other two lines are some
extra conditions needed on the ghost fields that ensure the invariance of the total action.
The first line of (9.21) comes from the original condition ε(τin) = ε(τf ) = 0. When
calculating the path integral the ghost fields will disappear, so these extra conditions
do not restrict our original theory. For more details on the proof of the action invariance
under this BRST transformation see [114].
The path integral quantisation over the extended phase space is

G(vf , ϕf , tf |vin, ϕin, tin) =

∫
DvDϕDt DπvDπϕDλ DÑDΠ Dp̄DcDpDc̄

exp[i(Sclass + Sgf + Sgh)] .
(9.22)

In the case where the gauge fixing function % vanishes, the ghost integral∫
Dp̄DcDpDc̄ exp[iSgh] , (9.23)

can be computed separately. It is important to stress that the notation D hides all the
potentially problematic things of the functional integral, because it does not specify the
“weight” of each trajectory. In more scientific terms, in order to do calculations we need
to specify a measure. The choice of measure is usually a really non-trivial task, but as
these fields have been added by hand, we have the freedom of choosing a measure that
works for ur purposes. Specification of the integral is done by splitting the τ interval in
n+ 1 intervals of length ε such that τf − τin = ε(n+ 1), where ε > 0 is a small quantity
that will be taken to zero in the limit. This involves changing the integral over τ by a
sum times ε and the continuous quantities c, c̄, p and p̄ are discretised such that the
derivative of the coordinates c and c̄ are replaced by a difference, and the momenta p
and p̄ are replaced by a constant value. The simplest choice of measure, also referred
as skeletonisation, is putting equal weight to all trajectories to find:∫

Dp̄DcDpDc̄ exp[iSgh] =

∫
dp1/2 . . . dpn+1/2

∫
dp̄1/2 . . . dp̄n+1/2∫

dc1 . . . dcn

∫
dc̄1 . . . dc̄n exp

[
i

n∑
k=0

{
p̄k+1/2(ck+1 − ck)

+pk+1/2(c̄k+1 − c̄k)− εp̄k+1/2pk+1/2

}]
. (9.24)
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There are a few things to note here. Firstly, the term
∫

dτ c̄ṗ has been integrated
by parts using the boundary condition (9.21) to find −

∫
dτ ˙̄cp =

∫
dτ p ˙̄c. Secondly,

there are n + 1 integrals for each of the two momentum variables and n integrals for
each of the coordinate variables, and the boundary conditions (9.21) transform into
c0 = cn+1 = c̄0 = c̄n+1 = 0. Finally, the integrals appearing in the right-hand side are
standard Berezin integrals, and they can be performed to lead to the final result:∫

Dp̄DcDpDc̄ exp[iSgh] = ε(n+ 1) = τf − τin (9.25)

For more explanations of the intermediate steps of this result, we refer again to [114]
and for the standard rules of Berezin integrals to appendix C. Now, all the ghost fields
have vanished of the action.
We can also do the integral over DΠ and DÑ . This time, Ñ is integrated over whereas

Π is fixed at the end points by the boundary condition (9.15). Using again the simplest
possible measure we have:∫

DÑDΠ exp

[
i

∫ τf

τin

dτ Π ˙̃N

]
=

∫
dÑ1/2 . . . dÑn+1/2

1

(2π)n

∫
dΠ1 . . . dΠn (9.26)

× exp

[
i

n∑
k=1

Πk(Ñk+1/2 − Ñk−1/2)

]
. (9.27)

Recall that once again there are n + 1 Ñ integrals and n Π integrals. The Π integrals
can be done first and yield to standard Dirac delta functions leaving us with∫
DÑDΠ exp

[
i

∫ τf

τin

dτ Π ˙̃N

]
=

∫
dÑ1/2 . . . dÑn+1/2

n∏
k=1

δ(Ñk+1/2 − Ñk−1/2) . (9.28)

Recall that the factors 1/(2π) are part of the measure so that they cancel the factors
2π coming from the Dirac delta functions. Such factors where not needed working with
Berezin integrals. As we have n delta functions and n+ 1 integrations, we are left with
a single Ñ integral, which we can rename Ñ for simplicity leading to∫

DÑDΠ exp

[
i

∫ τf

τin

dτ Π ˙̃N

]
=

∫
dÑ (9.29)

Combining (9.25) and (9.29) we obtain the final formula

G(vf , ϕf , tf |vin, ϕin, tin) =

∫
dÑ(τf − τin)

∫
DvDϕDtDπvDπϕDλ exp[iSclass] (9.30)

Sometimes, a change of variables T = Ñ(τf − τin) is performed, and the integral∫
dÑ(τf − τin) is directly presented as

∫
dT [112c]. Note that the integral (9.30),

although specified and calculated for our specific model, is a general formula valid for
all Hamiltonians as long as they are at most quadratic in the momenta [114].
The formula (9.30) is the starting point to specify the path integral quantisation of our

model. The Hamiltonian (9.5) has the same form of the parametrised non relativistic
point particle, so we can start by specifying the term∫

dÑ(τf − τin)

∫
DtDλ exp

[
i

∫ τf

τin

dτ
{
λṫ− Ñλ

}]
. (9.31)
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Once again we divide the interval τf − τin in n + 1 intervals of length ε we use the
simplest skeletonisation to find∫

dÑ(τf − τin)

∫
DtDλ exp

[
i

∫ τf

τin

dτ
{
λṫ− Ñλ

}]
(9.32)

=

∫
dÑ(τf − τin)

1

(2π)n

∫
dt1 . . . dtn

∫
dλ1/2 . . . dλn+1/2

exp

[
i
n∑
k=0

{
λk+1/2(tk+1 − tk − εÑ)

}]
.

The momentum integration can be done first and yield to a product of Dirac delta
distributions: ∫

dÑ(τf − τin)

∫
DtDλ exp

[
i

∫ τf

τin

dτ
{
λṫ− Ñλ

}]
=

∫
dÑ(τf − τin)

∫
dt1 . . . dtn

n∏
k=0

δ(tk+1 − tk − εÑ)

=

∫
dÑ(τf − τin)δ(tn+1 − t0 − ε(n+ 1)Ñ) . (9.33)

In the last line, we can replace tn+1 and t0 respectively by tf and tin (as these are the
boundary conditions) and ε(n+ 1) by τf − τin so the complete path integral is

G(vf , ϕf , tf |vin, ϕin, tin) =

∫
dÑδ(tf − tin − Ñ(τf − τin))

×
∫
DvDϕDπvDπϕ exp

[
i

∫ τf

τin

dτ

{
πvv̇ + πϕϕ̇− Ñ

[
−π2

v +
π2
ϕ

v2

]}]
. (9.34)

The second line of the formula is by definition the probability to go from a state with
initial conditions vin, ϕin at time Ñτin and final conditions vf , ϕf at time Ñτf , provided

that the Hamiltonian of the system is the quantisation of π2
v +

π2
ϕ

v2 (the meaning of
quantisation will be specified soon). Using the standard notation for quantum mechanics
we can write this as

G(vf , ϕf , tf |vin, ϕin, tin) =

∫
dÑδ(tf − tin − Ñ(τf − τin))

〈
vf , ϕf , Ñτf

∣∣∣vin, ϕin, Ñτin〉 .
(9.35)

In order to continue with the calculation we ought to make a choice on the range of
Ñ . The simplest assumption is to take Ñ ∈ (−∞,+∞) in this case, the δ is always
evaluated, and we can take Ñ =

tf−tin
τf−τin . The path integral quantisation is then

G(vf , ϕf , tf |vin, ϕin, tin) = 〈vf , ϕf , tf |vin, ϕin, tin〉 (9.36)

where 〈vf , ϕf , tf |vin, ϕin, tin〉 is a solution to the Schrödinger equation(
i~

∂

∂tf
− Ĉclass,f

)
〈vf , ϕf , tf |vin, ϕin, tin〉 = 0 , (9.37)
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where,

Ĉclass,f =
̂

−π2
v +

π2
ϕ

v2
f

. (9.38)

The quantisation of Cclass is subject to the same ambiguities we have already seen, in
particular ordering ambiguities. If we use the Hawking and Page ordering [49] and we
multiply (9.37) by −1, we recover the Wheeler–DeWitt equation(

~2 ∂

∂v2
f

+
~2

vf

∂

∂vf
− ~2

v2
f

∂2

∂ϕ2
f

− i~ ∂

∂tf

)
Ψ(vf , ϕf , tf ) = 0 , (9.39)

which corresponds to (4.19) of the Dirac quantisation section 4.3.
Naively, one could conclude from this that the path integral quantisation offers a way

of finding a preferred Wheeler–DeWitt equation, but there are two main catches:

• The path integral quantisation depends on the skeletonisation (measure choice)
used. If one decides to partition the λ and t integrals in another way, we would
have obtained another Wheeler–DeWitt equation.

• The range of Ñ plays a non-trivial rôle. If we had chosen Ñ to vary only over
0 and +∞, instead of a solution to the Schrödinger equation (9.37), we would
have obtained a Green function of the Schrödinger [112c], [114]. In this case the
δ function only contributes if tf − tin > 0 requiring the appearance of a Heaviside
θ function:

G(vf , ϕf , tf |vin, ϕin, tin) = θ(tf − tin) 〈vf , ϕf , tf |vin, ϕin, tin〉 (9.40)

In this case (
i~

∂

∂tf
− Ĉclass,f

)
θ(tf − tin) 〈vf , ϕf , tf |vin, ϕin, tin〉

= i~δ(tf − tin)δ(vf − vin)δ(ϕf − ϕin) , (9.41)

Any other range is in principle possible but it is not clear that one can obtain a
useful result out of it.

In fact, it has been argued that the path integral quantisation is not invariant under
reparametrisations of Ñ [114]. Recalling the results we had in section 4.3, we had two
Wheeler–DeWitt equations, the already seen (4.19) and (4.23) which is obtained by
multiplying (4.19) by v2. It would be possible to reparametrise Ñ by N ′ = Ñ/v2 in the
extended phase space path integral (9.22), and, with the right skeletonisation we could
obtain the Wheeler–DeWitt equation (4.23). Recalling that the kinematical Hilbert
space of the Dirac quantisation depended on the specific Wheeler–DeWitt equation,
we find that the path integral quantisation does not offer a way to find a “preferred”
Wheeler–DeWitt equation.
In a nutshell, path integral quantisation can certainly produce the Wheeler–DeWitt

equation of our model, but does not provide any additional hint on a preferred physical
Hilbert space. In this simple example we can also appreciate directly how diffeomor-
phism invariance of general relativity poses a challenge in the path integral specification.
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However, this quantisation method is conceptually very different from the previous two
approaches. The formalism allows playing with the initial conditions of the universe
and the concept of evolution is treated in a complete different way: in an object such as
〈vf , ϕf , tf |vin, ϕin, tin〉, it is assumed that the configuration (vin, ϕin, tin) occurs “before”
(vf , ϕf , tf ) but a priori no assumptions on the initial and final values of the parameters
is made. We can therefore study possible evolutions of the universe given a set of ini-
tial conditions (vin, ϕin, tin). We might then recover (or not) the wave functions of the
universe analysed in our three theories. Do we recover either (5.45), (6.3), or (7.44)?
For which boundary conditions? Does this give a hint for a possible problem of choice
resolution? To answer these questions, we want to explore the possibility of analysing
our model from a path integral quantisation perspective in future work. For two recent
examples of path integral quantisation calculations in quantum cosmology see [115].



10. Conclusions

In this thesis, we have analysed the three quantum theories coming from different clock
choices. To do so, we made some assumptions. First of all, when deriving the Wheeler–
DeWitt equation, we assumed a very specific (and to our knowledge the best moti-
vated) operator ordering, namely we constructed a Wheeler–DeWitt equation covariant
under coordinate changes. Secondly, we chose a specific inner product, also covariant,
for each theory. The inner product choice indirectly introduced a dependence on the
lapse function N , since multiplying the constraint by a non-trivial phase space func-
tion changes the minisuperspace metric, even if it does not change the solutions of the
Wheeler–DeWitt equation. However, the most important assumption we made is con-
sider unitarity as a fundamental principle of our quantum theories. Each of the three
theories has very defining features, we remind them one last time.

• The v-clock theory leads to a quantum theory that is already unitary, and therefore
no extra boundary condition is needed. The dynamics of this theory show that
for a semiclassical state the quantum expectation values of the observables remain
close to the classical curve.

• The t-clock theory does not have a self-adjoint Hamiltonian. Unitarity requires
a reflective boundary condition in the limit v = 0, hence predicting that wave
functions would be reflected from the classical singularity and thus produce a
quantum bounce. This is confirmed in the numerical analysis of the quantity
〈v(t)〉Ψsc,t .

• The ϕ-clock theory also needs the introduction of a boundary condition to ensure
unitary dynamics, but this time in the limit v =∞. This also suggests a reflection
from v = ∞ of the allowed wave functions, leading to a quantum recollapse
(quantum because the reason for this recollapse would be purely quantum). This
is again confirmed by the numerical analysis of both 〈v(ϕ)〉Ψsc,ϕ and 〈t(ϕ)〉Ψsc,ϕ .

We can thus conclude that divergences from the classical theory are a consequence
of requiring unitarity given a certain clock choice, and hence it is a clock dependent
feature. Far from being a characteristic only present in relational quantisation, this
self-adjointness problem is also a feature of Dirac quantisation: if one starts with one
Wheeler–DeWitt equation (4.19), it will lead to a quantum theory equivalent to the
t-clock theory. But, if instead one starts with the same Wheeler–DeWitt equation
multiplied by v2, (4.23), which corresponds classically to another choice of lapse function
N , one ends with the same self-adjointness problem than in ϕ-clock theory. We stress
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that these results are compatible with the covariant approach implemented in [64]. In
their work, they consider a single Wheeler–DeWitt equation, whereas we effectively
worked with two. However, our main point is that the two Wheeler–DeWitt equations
have exactly the same solutions. How to distinguish between the two? Why should we
use one instead of the other? We see no strong reason for a preferred Wheeler–DeWitt
equation in the Dirac quantisation scheme. The path integration formalism, despite
being a very different approach to quantisation, presents a similar situation with the
lapse dependency and is capable of reproducing the same Wheeler–DeWitt equations.
We would like to investigate whether we recover any of the wave functions (5.45), (6.3),
or (7.44) given a certain choice of initial conditions.
A possible way of “deciding” for a quantum theory might be to ask the question: which

of the clock theories follows better the predictions one would expect from a theory of
quantum gravity? In this sense, we expect quantum effects to be important near the
big bang/big crunch singularity, where the universe is hot and dense and prevent the
appearance of quantum effects at late time, where the universe is supposedly governed
by classical physics. Following this argument, the clear winner is the t-clock theory.
The quantum recollapse happening in the ϕ-clock theory is certainly puzzling as it
represents a transition from a classical to a quantum dominated universe at late times.
What would be the driving factor of this transition? This type of massless field derived
clock is very popular in loop quantum cosmology. Models such as FLRW universes [116],
Bianchi I [117] or Bianchi IX [118], to name a few, have been analysed with such clocks.
These models show singularity resolution, as opposed to analogous models based on
the Wheeler–DeWitt equation, and this has lead to the (already criticised [119]) belief
that loop quantum cosmology resolves the singularity whereas the Wheeler–DeWitt
quantisation of the same models (with the same clock) does not. Our analysis shows
that Wheeler–DeWitt quantisation can resolve the singularity given the right clock, and
also suggests that this breaking of general covariance may also be a shared feature in
LQC and be ultimately responsible for singularity resolution. We want to explore this
idea in future work.
Another question that our study raises is whether it is really true that all classically

monotonic variables can be used as clocks. For example, the clock ϕ is mathematically
well defined but might not be physically as well motivated for the reasons seen before.
In addition to this, no timelike observer will ever experience the passing of time that
way, whereas the t clock can be associated with timelike observers. In particular, the t
clock represents conformal time for a radiation perfect fluid and commoving time for a
pressureless matter perfect fluid. Maybe we should restrict ourselves to measure clocks
that can potentially measure proper time for an observer, even if it breaks the covariance
of the theory. In a way time is not only what a clock measures but also what observers
experience.
Perhaps, in a more philosophical point of view, this thesis presents an extensive

analysis of the problem of time in quantum cosmology throughout the study of a min-
isuperspace example. We have shown how the problem of time manifests itself in the
relational quantisation and the Dirac quantisation scheme, and we had a glimpse of the
path integral quantisation scheme. In particular, it seems that unitarity of the quantum
theory is incompatible with general covariance, and the requirement of unitarity leads
to the appearance (or absence) of boundary conditions for the allowed wave functions.
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These boundary conditions can be related to a self-adjointness problem and can be
linked to the classical solutions of the theory by analysing whether the chosen clock
is slow or fast. At the semiclassical level, the boundary conditions induce deviation
of expectation values from the classical theory that can ultimately lead to a quantum
resolution of the big bang and big crunch singularities, a quantum recollapse of the
universe, or neither.
Singularity resolution may be considered the holy grail of a quantum theory. It

appears to us that this feature, is neither a consequence of the quantisation scheme
used, whether it is Dirac quantisation or relational quantisation, nor an outcome of
the underlying theory of quantum gravity, whether loop quantum gravity or another
one. The answer to the singularity resolution, in a rather simple and surprising way,
seems to stem out of the clock choice (or the choice of lapse). In other words, unitarity
and general covariance appear to be two incompatible requirements. One could then
decide that general covariance is more fundamental and that unitarity may not be a
defining feature of a quantum universe. But how can we get rid of the cornerstone
of quantum mechanics? What could motivate that quantum theory would have such
drastic differences if the system studied is the universe, instead of let’s say, an atom?
The subsequent non conservation of probabilities renders the obtention of quantitative
results almost impossible.
If instead, we decide that unitarity is more fundamental than general covariance,

we have to face the problem of clock choice. How and why does the universe decide
on a clock? There has been some work in this direction [120]. The clock dependent
singularity resolution is not only a characteristic of cosmological spacetimes, but of
any spacetime that possess a classical singularity, i.e, a black hole spacetime. There
is no reason to think that for such spacetime, singularity resolution and transition
to a white hole spacetime might be expected. The lack of covariance certainly raises
many questions. In particular, it challenges the utility of such simplified minisuperspace
models. Maybe, the idea that such universes where most of the degrees of freedom have
been frozen is too naive and too far from the real complexity of the universe to yield to
interesting results. There are not, unfortunately, many alternatives to minisuperspace
models and the problem of time is virtually impossible to study in the full theory.
The answer to all these uncertainties, as always, lies in the phrase: “more research

is needed”. The theory of special and general relativity was born thanks to the radical
thought that time was not an absolute quantity, rather relative to each observer. This
way of thinking of time was fundamentally opposite to everything seen before. Maybe
the next revolution in physics (and a satisfactory theory of quantum gravity) will come
with another revolution like this.



A. Theory of self-adjoint
extensions

In order to understand better self-adjoint extensions, we need to introduce some math-
ematical concepts. As operators are not the topic of this thesis we will not include
the proofs of the results we mention. We mainly follow [121]. We assume that we are
working with closed (or at least closable) operators.

Definition A.1 (Symmetric operator). Let O be an operator on a Hilbert space H . O
is called symmetric if for all Ψ and Φ in the domain of O (Dom(O)) we have 〈OΨ|Φ〉 =
〈Ψ|OΦ〉.

Remark. Symmetric operators are always closable, so we do not have to restrict our-
selves to a subset of them. In finite dimensional spaces symmetric and self-adjoint are
equivalent notions, but in infinite dimensional Hilbert spaces like the ones we are deal-
ing with there are subtleties that we must take into account. Those are related to the
domain of an operator.

Definition A.2 (Adjoint operator). Let O be an operator on a Hilbert space H . The
adjoint of O, generally denoted as O∗, is an operator acting on the subspace of Φ ∈H
such that there exists ξ ∈H such that 〈OΨ|Φ〉 = 〈Ψ|ξ〉, where we define ξ = O∗Φ.

Remark. As we can see from this definition, for symmetric operators we have

Dom(O) ⊆ Dom(O∗) , (A.1)

so it is possible for the domain of the adjoint to be too big.

Definition A.3 (Self-adjoint operator). A symmetric operator O is self adjoint if and
only if Dom(O) = Dom(O∗)

Why is the distinction between symmetric and self-adjoint important? The nice
properties we are used to in matrix spaces are only satisfied by self-adjoint operators,
for example:
Theorem 1. The spectrum of a self-adjoint operator is always real.
Remark. We can extend a symmetric operator in the hope of finding a self-adjoint
operator. Indeed, let P be a symmetric extension of O. We have

Dom(O) ⊆ Dom(P) ⊆ Dom(P∗) ⊆ Dom(O∗) . (A.2)

We are interested in the cases where we can find extensions such that Dom(P) =
Dom(P∗). To do so it is important to introduce the notion of deficiency subspace.
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Definition A.4 (Deficiency subspaces). Let O be an operator on a Hilbert space H .
Then the spaces K + = ker(iI − O∗) = ran(iI + O)⊥ and K − = ker(iI + O∗) =
ran(iI−O)⊥ are called the deficiency subspaces of O. Their dimension n± = dim(K ±)
is called deficiency index.

Remark. The deficiency indices can be any pair of positive numbers, including infinity.

With this introduction we have enough material to introduce the most important
result of the section:

Theorem 2. Let O be a symmetric operator on a Hilbert space H with deficiency
indices n+ and n−. Then the following hold:

i) O is self-adjoint if and only if n+ = n− = 0.

ii) O has self-adjoint extensions if and only if n+ = n−. There is a one-to-one corre-
spondence between any self-adjoint extension of O and the unitary maps between
K + and K −.

iii) If either n+ = 0 6= n− or n− = 0 6= n+, then O has no non-trivial symmetric
extensions.

Theorem 2 gives us a recipe to find whether the operators we are interested in have
self-adjoint extensions and how many parameters are needed to describe them. The
operator Ĥ and Ĝ defined in (4.8) and (4.16) have n+ = n− = 1, which means that they
admit a one parameter self-adjoint extension.



B. Important integrals

In this appendix we collect the results of various integrals containing a product of two
Bessel functions. These are used in chapter 5 when computing the boundary condition
(5.4) on two generic wave functions of the universe, in chapter 7 when calculating the
inner product of two solutions of the Wheeler–DeWitt equation, and finally in chapter 8
when finding the expressions of the expectation values with the ϕ-clock inner product.
The integrals needed for chapter 5 are

Piα,±iα,C1,C2 =

∫ ∞
0

dv v Jiα(C1v)J±iα(C2v) , (B.1)

where α is real and C1 and C2 are positive. The integrals of interest in chapter 7 are

Jµ,ν =

∫ ∞
0

dv

v
Jµ(Cv)Jν(Cv), Kµ,ν =

∫ ∞
0

dv

v
Kµ(Cv)Kν(Cv) , (B.2)

where µ and ν can be real or imaginary. These integrals will turn out to be independent
of the parameter C. Lastly, we are interested in the integrals

Oµ,ν,C =

∫ ∞
0

dv Jµ(Cv)Jν(Cv) Piα,iβ,C =

∫ ∞
0

dv v Jiα(Cv)Jiβ(Cv) (B.3)

for chapter 8. This time µ and ν are either imaginary or of the form ±1 + iα where α is
real and β is always real. C is always considered positive, although its sign is irrelevant
for (B.2). Despite the similarities between Piα,±iα,C1,C2 in (B.1) and Piα,iβ,C,C in (B.3)
the methods for solving these integrals are quite different, so we present them in different
sections. The integrals are presented roughly in the same order they are needed in the
thesis.

B.1. The integrals Piα,±iα,C1,C2

These integrals are useful in chapter 5 when computing the norm of the wave functions.
In this case we assume that α is real and C1 and C2 are positive. To evaluate this
integral we start by calculating∫ v2

v1

dv vJiα(C1v)J±iα(C2v)

=

[
v
C2J−1±iα(C2v)Jiα(C1v)∓ C1J∓1+iα(C1v)J±iα(C2v)

C2
1 − C2

2

]v=v2

v=v1

. (B.4)
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In the Piα,iα,C1,C2 case there is no contribution from the v = 0 limit as the numerator
cancels out, whereas in the Piα,−iα,C1,C2 case we have

lim
v→0

v
C2J−1−iα(C2v)Jiα(C1v) + C1J1+iα(C1v)J−iα(C2v)

C2
1 − C2

2

= −2i
e
iα log

C1
C2 sinh(πα)

π(C2
1 − C2

2 )
. (B.5)

This contribution is finite and when substituted into (5.20) it cancels out.
The limit v = ∞ is different. Using the large asymptotic expression for the Bessel

functions we find

Piα,iα,C1,C2 = lim
v→∞

{
cos((C1 + C2)v) cosh(απ)− i sinh(απ) sin((C1 + C2)v)

π
√
C1C2(C1 + C2)

+
sin((C1 − C2)v)

π
√
C1C2(C1 − C2)

}
, (B.6)

and

Piα,−iα,C1,C2 = lim
v→∞

{
sin((C1 − C2)v) cosh(απ) + i cos((C1 − C2)v) sinh(απ)

π
√
C1C2(C1 − C2)

+
cos((C1 + C2)v)

π
√
C1C2(C1 + C2)

}
− 2i

e
iα log

C1
C2 sinh(πα)

π(C2
1 − C2

2 )
. (B.7)

Using (B.34) we obtain

Piα,iα,C1,C2 =
δ(C1 − C2)− i sinh(απ)δ(C1 + C2)√

C1C2

Piα,−iα,C1,C2 =
cosh(απ)δ(C1 − C2)√

C1C2
− 2i

e
iα log

C1
C2 sinh(πα)

π(C2
1 − C2

2 )
. (B.8)

Once substituting this expression in (5.20) we obtain the result (5.23).

B.2. The integrals Jµ,ν and Kµ,ν
B.2.1. The integrals Jiα,iβ and Kiα,iβ
These integrals appear when computing orthogonality relations between different states
in the ϕ clock theory. The parameters α and β are real. Recall that these integrals
are independent of C. In addition, Jiα,iβ does not converge but it can be defined in a
distributional sense as a limit of the integral

lim
ν→1

∫ ∞
0

dx

xν
Jiα(x)Jiβ(x)

= lim
ν→1

2−νΓ
(

1−ν
2 + i

2(α+ β)
)

Γ(ν)

Γ
(

1+ν
2 + i

2(α− β)
)

Γ
(

1+ν
2 + i

2(β − α)
)

Γ
(

1+ν
2 + i

2(α+ β)
) (B.9)
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which is initially only defined for ν < 1; notice the possible singularity in the first
Gamma function in the numerator as ν → 1. We have also introduced the integration
variable x = Cv to simplify the notation in this integral. To proceed, we can now
rewrite

Γ

(
1− ν

2
+
i

2
(α+ β)

)
=

Γ
(

3−ν
2 + i

2(α+ β)
)

1−ν
2 + i

2(α+ β)
(B.10)

so that we obtain

lim
ν→1

∫ ∞
0

dx

xν
Jiα(x)Jiβ(x) =

2 sinh
(
(α− β)π2

)
π(α− β)

× lim
ν→1

1

(1− ν + i(α+ β))
. (B.11)

The last limit must now be taken in a distributional sense using the identity

lim
ε→0+

1

y + iε
= PV

1

y
− iπδ(y) (B.12)

where PV denotes the Cauchy principal value, i.e. the distribution defined by∫ ∞
−∞

dy

[
PV

1

y

]
f(y) =

∫ ∞
0

dy

y
(f(y)− f(−y)) (B.13)

for any test function f(y), which depends only on the odd part of f . In summary, we
then find∫ ∞

0

dx

x
Jiα(x)Jiβ(x) = 2 sinh

(
(α− β)

π

2

)(δ(α+ β)

α− β
− PV i

π(α2 − β2)

)
. (B.14)

In the case of modified Bessel functions we can proceed in the same fashion; we find

lim
ν→1

∫ ∞
0

dx

xν
Kiα(x)Kiβ(x) = lim

ν→1

∣∣Γ (1−ν
2 + i

2(α− β)
)∣∣2 ∣∣Γ (1−ν

2 + i
2(α+ β)

)∣∣2
22+νΓ(1− ν)

(B.15)

which has a more complicated singularity structure, with possible singularities in all
Gamma functions. By substitutions similar to (B.10) we obtain

lim
ν→1

∫ ∞
0

dx

xν
Kiα(x)Kiβ(x) =

π2(α2 − β2)

cosh(απ)− cosh(βπ)
× (B.16)

lim
ν→1

(1− ν)

|1− ν + i(α− β)|2|1− ν + i(α+ β)|2
.

If we now exclude the case α = β = 0 (which we can, given the fact that these integrals
only appear with integrals over α and β and a single point can be removed from the
domain), then at least one of the two factors in the denominator remains regular as
ν → 1 and can be taken outside of the limit. For the second factor we have to take the
distributional limit

lim
ε→0+

ε

ε2 + y2
= πδ(y) , (B.17)

as can be seen from

lim
ε→0+

∫ ∞
−∞

dy f(y)
ε

ε2 + y2
= lim

ε→0+

∫ ∞
−∞

dυ f(ευ)
1

1 + υ2
, (B.18)
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where f is again a test function. Altogether we have∫ ∞
0

dx

x
Kiα(x)Kiβ(x) =

π3(α2 − β2)

cosh(απ)− cosh(βπ)

(
δ(α− β)

(α+ β)2
+
δ(α+ β)

(α− β)2

)
=

π2

2α sinh(απ)
(δ(α− β) + δ(α+ β)) . (B.19)

Notice that the modified Bessel functions of the second kind are always real even for
imaginary order, hence there is no imaginary contribution leading to a principal value.
Such imaginary contributions come from the large x limit of the integral, whereas the
right-hand side of (B.19) only comes from the lower limit x = 0.

B.2.2. The integrals Ja,b and Ka,b
Here a and b are real numbers. In order to identify the cases where the integral can be
defined, we first evaluate the indefinite integral∫ x2

x1

dx

x
Ja(x)Jb(x) =

[
x (Ja−1(x)Jb(x)− Ja(x)Jb−1(x))

a2 − b2
− Ja(x)Jb(x)

a+ b

]x=x2

x=x1

(B.20)

where we again defined x = Cv for simplicity. After now substituting the large argument
and small argument asymptotic expressions of the Bessel functions we find∫ ∞

0

dx

x
Ja(x)Jb(x) = 2

sin
(
(a− b)π2

)
(a2 − b2)π

− lim
x→0

(x/2)a+b

(a+ b)Γ(1 + a)Γ(1 + b)
. (B.21)

We now see that the integral is finite when a+ b > 0; otherwise the second term makes
the integral divergent and undefinable even in a distributional sense. For a+ b > 0,∫ ∞

0

dx

x
Ja(x)Jb(x) = 2

sin
(
(a− b)π2

)
(a2 − b2)π

(B.22)

which is the standard formula given, for example, as Equation 6.574.2 in [97].
For the integral Ka,b, there is no contribution from large v where the integral falls off
but from v = 0 we find∫ ∞

0

dx

x
Ka(x)Kb(x) = − π2

4 sin(aπ) sin(bπ)
×

lim
x→0

[
(x/2)a+b

(a+ b)Γ(1 + a)Γ(1 + b)
− (x/2)−(a+b)

(a+ b)Γ(1− a)Γ(1− b)

+
(x/2)b−a

(a− b)Γ(1− a)Γ(1 + b)
− (x/2)a−b

(a− b)Γ(1 + a)Γ(1− b)

]
, (B.23)

so that this integral always diverges for any a or b (this is true also for the case in which
a or b are integer, which we do not discuss in detail here).
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B.2.3. The integrals Ja,iβ and Ka,iβ
This is the third possible case in which one order is real and the other one is imaginary.
This integral appears when computing cross-terms in the inner product in chapter 7.
In this case the expression resulting from computing first the indefinite integral is∫ ∞

0

dx

x
Ja(x)Jiβ(x) = 2

sin
(
(a− iβ)π2

)
(a2 + β2)π

− lim
x→0

(x/2)a+iβ

(a+ iβ)Γ(1 + a)Γ(1 + iβ)
. (B.24)

As x → 0, the exponential function in the second term has a growing (if a < 0) or
decreasing (if a > 0) absolute value. If a > 0, the limit when x → 0 is 0, making the
integral converge to the value∫ ∞

0

dx

x
Ja(x)Jiβ(x) = 2

sin
(
(a− iβ)π2

)
(a2 + β2)π

. (B.25)

For a < 0 the integral is divergent.
The integral Ka,iβ is again found to diverge for all real values of a.

B.3. The integrals Oµ,ν,C
B.3.1. The integral Oiα,iβ,C
Here again α and β are real numbers. This integral depends non-trivially on the value
of C. This integral presents a divergence that makes the final expression depend on a
regulator. There are several methods for dealing with such divergences; we present two
in this work. We use first the same method of first evaluating the integral for arbitrary
limit values, where it yields∫ v2

v1

dv Jiα(Cv)Jiβ(Cv) = −

[
i v exp

(
i(α+ β) log Cv

2

)
(α+ β − i)Γ(1 + iα)Γ(1 + iβ)

× (B.26)

3F4

(
1

2
+ ι,

1

2
+ ι, 1 + ι; 1 + iα,

3

2
+ ι, 1 + iβ, 1 + 2ι;−C2v2

)]v=v2

v=v1

which can only be given in terms of generalised hypergeometric functions and where
we have defined ι := iα+β

2 . This complicated expression simplifies as v1 → 0 and
v2 →∞. First, note that the generalised hypergeometric function defines a power series
in (−C2v2) and goes to 1 at v = 0; because of the additional factor v the contribution
from the lower limit vanishes as v1 → 0.
Using the large v asymptotic of the generalised hypergeometric function we then have,

formally,∫ ∞
0

dv Jiα(Cv)Jiβ(Cv) = −
cosh

(
(α− β)π2

)
2πC

× lim
v→∞

{
log

(
4

C2v2

)
+ ψ

(
1 + i(β − α)

2

)
+ψ

(
1 + i(α− β)

2

)
+ 2ψ

(
1 + i(α+ β)

2

)
+ 2γ

}
, (B.27)

where ψ is the digamma function and γ is the Euler–Mascheroni constant. (B.27)
diverges logarithmically at large v; when using it for numerical evaluation of expectation
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values, we take the upper limit to some large cutoff value Ξv and verify that the final
result after integrating over the other variables is not too sensitive to the choice of Ξv.
This method of integration is very similar to the Pauli-Villar regularisation method used
in QFT.
The second method consists in using the convergent integral∫ ∞

0

dx

xν
Jiα(Cx)Jiβ(Cx)

=
Cν−12−νΓ

(
1−ν

2 + i
2(α+ β)

)
Γ(ν)

Γ
(

1+ν
2 + i

2(α− β)
)

Γ
(

1+ν
2 + i

2(β − α)
)

Γ
(

1+ν
2 + i

2(α+ β)
) , (B.28)

that is the same formula as we used in the calculation of Jiα,iβ , however, this time we
are interested in the limit ν → 0. Consider ν = 0 − ε where ε > 0 is small, then the
expansion of (B.28) around 0 is:∫ ∞

0
dx Jiα(Cx)Jiβ(Cx) =−

cosh ((α− β)π2 )

επC
−

cosh
(
(α− β)π2

)
2πC

{
log (4)− 2 log(C)

+ψ

(
1 + i(β − α)

2

)
+ ψ

(
1 + i(α− β)

2

)
+2ψ

(
1 + i(α+ β)

2

)
+ 2γ

}
+O(ε) . (B.29)

We can see that (B.27) and (B.29) are very similar except for the divergent term that
is a function of ε. This regularisation method resembles the dimensional regularisation
method used in QFT. In particular, see [32] pages 248-251 for an example in which Pauli-
Villar regularisation leads to a logarithmic divergence and dimensional regularisation a
divergence of the form 1/ε. There are other regularisation methods and how to treat
the different regulators is still an open question.

B.3.2. The integral O±1+iα,iβ,C

Again we start by evaluating the indefinite integral which yields∫ v2

v1

dv J±1+iα(Cv)Jiβ(Cv) =

[
v exp

(
(±1 + i(α+ β)) log Cv

2

)
((1± 1) + i(α+ β))Γ(1± 1 + iα)Γ(1 + iβ)

× (B.30)

3F4

(
1

2
+ ι′,

1

2
+ ι′, 1 + ι′; 1± 1 + iα,

3

2
+ ι′, 1 + iβ, 1 + 2ι′;−C2v2

)]v=v2

v=v1

where now ι′ := ±1
2 + iα+β

2 .
In order to evaluate the limit v = 0 we need to use the fact that

lim
x→±∞

eiξx = ±iπξδ(ξ) . (B.31)

This follows from

lim
x→±∞

∫
dξ

ξ
eiξxf(ξ) = lim

x→±∞
±
∫

dη

η
eiηf

(η
x

)
. (B.32)
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This integral is undefined in the usual sense but its Cauchy principal PV value yields
to ±iπf(0), which justifies the result. In fact, if we consider separately the real and
imaginary parts of (B.32) we have

lim
x→±∞

PV

∫
dξ

ξ
cos(ξx)f(ξ) = lim

x→±∞
±PV

∫
dη

η
cos(η)f

(η
x

)
= 0

lim
x→±∞

∫
dξ

ξ
sin(ξx)f(ξ) = lim

x→±∞
±
∫

dη

η
sin(η)f

(η
x

)
= ±πf(0) . (B.33)

The cosine integral only converges using the principal value argument whereas the sine
integral converges in the usual sense. Thus

lim
x→±∞

sin(ξx)

ξ
= ±πδ(x) and lim

x→±∞

cos(ξx)

ξ
= 0 (B.34)

Using (B.31) and the fact that the generalised hypergeometric function goes to 1 at
v = 0 we can conclude that we do not have any non-trivial contribution from the plus
sign, but for the case of the minus sign we now have

lim
v→0

2i exp
(
i(α+ β) log Cv

2

)
C(α+ β)Γ(iα)Γ(1 + iβ)

= lim
u→∞

2i exp (−i(α+ β)u)

C(α+ β)Γ(iα)Γ(1 + iβ)
=

2 i

C
sinh(απ)δ(α+ β) . (B.35)

Including the contribution from large v we find, again formally,∫ ∞
0

dv J1+iα(Cv)Jiβ(Cv) =−
cosh

(
(α− β − i)π2

)
2πC

× lim
v→∞

{
log

(
4

C2v2

)
+ ψ

(
i(β − α)

2

)
+ψ

(
1 +

i(α− β)

2

)
+ 2ψ

(
1 +

i(α+ β)

2

)
+ 2γ

}
, (B.36)

and ∫ ∞
0

dv J−1+iα(Cv)Jiβ(Cv)

= −
cosh

(
(α− β + i)π2

)
2πC

× lim
v→∞

{
log

(
4

C2v2

)
+ ψ

(
1 +

i(β − α)

2

)
+ψ

(
i(α− β)

2

)
+ 2ψ

(
i(α+ β)

2

)
+ 2γ

}
+

2 i

C
sinh(απ)δ(α+ β) . (B.37)

These integrals again diverge logarithmically at large v so we need to cut them off at a
fixed cutoff value Ξv. However, for the calculation of interest in the main text we find
that the sum over various integrals O±1+iα,iβ,C leads to an expression in which all the
logarithm terms cancel, and which is hence well-defined in the limit v →∞.
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B.4. The integrals Piα,iβ,C
As in the previous section, this integral is divergent even in the distributional sense.
The same two regularisation methods can be applied here. The definite integral yields∫ v2

v1

dv vJiα(Cv)Jiβ(Cv) = −
[
exp

[
2 log(2) + i(α+ β) log

(
Cv

2

)]
Γ (ι) Γ (2ι) v2(α+ β)2

×3F4

(
1

2
+ ι, 1 + ι, 1 + ι; 1 + iα, 2 + ι, 1 + iβ, 1 + 2ι;−C2v2

)]v=v2

v=v1

(B.38)

where ι = i (α+β)
2 and 3F4 is the generalised hypergeometric function. The limit v → 0

is 0, as the hypergeometric function goes to 1 and is paired with a v2 term. However,
the limit v →∞ is divergent:∫ ∞

0
dv vJiα(Cv)Jiβ(Cv) =

i(α2 − β2) sinh
(
π
2 (α− β)

)
4πC2

×
(
γ − ψ

(
−1

2

)
+ ψ

(
− i

2
(α− β)

)
+ ψ

(
i

2
(α− β)

)
+ ψ(ι) + ψ (1 + ι)

)
+ lim
v→∞

{
1

4πC2

(
4Cv cosh

(π
2

(α− β)
)
− 2i(α2 − β2) sinh

(π
2

(α− β)
)

log(Cv)

−2 cos

(
Cv − iπ

2
(α+ β)

))}
. (B.39)

γ is the Euler Mascheroni constant and ψ is the digamma function. Hence, we see
here that there are two divergence: a logarithmic divergence like in (B.27) and a linear
divergence. We thus implement a cutoff Ξv2 . There is also an oscillatory term, which
is not problematic as one can always choose a cutoff such that this term vanishes.
We can also solve this integral using the dimensional regularisation method, taking

the limit ν −→ 1 in (B.28). Consider ν = −1− ε we find∫ ∞
0

dv vJiα(Cv)Jiβ(Cv) = −
i(α2 − β2) sinh

(
π
2 (α− β)

)
2πC2ε

+
i(α2 − β2) sinh

(
π
2 (α− β)

)
4πC2

×
(
γ − ψ

(
−1

2

)
+ ψ

(
− i

2
(α− β)

)
+ ψ

(
i

2
(α− β)

)
+ ψ(ι) + ψ (1 + ι)

)
+O(ε)

(B.40)

We can see that the non divergent terms are the same, but the linear and logarithmic
divergences are all absorbed in the first ε term. The correspondence between a cutoff
Ξv2 and ε is less clear from this result and it is not the same relation that we found in
Oiα,iβ,C .



C. Short introduction to
anticommuting variables

Anticommuting variables (sometimes also called Grasmann variables) were introduced
by Berezin [122]. Anticommuting variables {θi} can be defined as the generators of an
algebra over a vector space V , A(V )n, such that they anticommute

θiθj = −θjθi , ∀i, j = 1, . . . n (C.1)

This implies that they are nilpotent: θ2
i = 0. They commute with complex numbers

z ∈ C
θiz = zθi . (C.2)

These anticommuting numbers are very useful in QFT for fermion (anticommuting)
fields. Because they are nilpotent, any function of an anticommuting variable can be
written as a Taylor series with two terms:

f(θ) = a+ bθ , a, b ∈ C. (C.3)

In the case of n anticommuting numbers a general function has expression

f(θ1, . . . , θi) = c0 +
n∑
k=1

∑
i1,...,ik

ci1,...,ikθi1 . . . θik , (C.4)

Where ci1,...,ik are complex completely antisymmetric tensors.
Integration over anticommuting variables are known as Berezin integrals, and they

are defined to be a linear functional. The integral over one anticommuting variable θ is
defined by ∫

dθ θ = 1 ,

∫
dθ 1 = 0 , (C.5)

so that ∫
dθ

∂

∂θ
f(θ) = 0 . (C.6)

Note that the integral is not an integral in the usual Lebesgue sense. In general∫
dθf(θ) =

∫
dθ(a+ bθ) = b . (C.7)
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In the case of n anticommuting variables over An, the integral is defined with the
following properties:∫

An
dθ1 . . . dθn θn . . . θ1 = 1 ,

∫
An

dθ1 . . . dθn
∂

∂θi
f(θ1, . . . θn) = 0 , ∀i = 1, . . . , n .

(C.8)
When calculating the integral of a generic function of expression (C.4), we express f as
f = g(θ1, . . . , θn−1)θn+ other terms that do not depend on θn and do the first internal
θn integral, resulting in g(θ1, . . . , θn−1). Then we repeat the process until all integrals
are done. In conclusion, the integral of f results in the coefficients of order n. These
are the general rules used to perform (9.24) and obtain (9.25).
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